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Preface

The primary aim of this book is to guide researchers needing to flexibly incor-
porate nonlinear relationships into their regression analyses. Flexible nonlinear
regression is traditionally known as nonparametric regression; it differs from
parametric regression in that the shape of the functional relationships are not pre-
determined but can adjust to capture unusual or unexpected features of the data.

Almost all existing regression texts treat either parametric or nonparametric
regression exclusively. The level of exposition between books of either type dif-
fers quite alarmingly. In this book we argue that nonparametric regression can
be viewed as a relatively simple extension of parametric regression and treat the
two together. We refer to this combination as semiparametric regression. Our
approach to semiparametric regression is based on penalized regression splines
and mixed models. Indeed, every model in this book is a special case of the lin-
ear mixed model or its generalized counterpart. This makes the methodology
modular and is in keeping with our general philosophy of minimalist statistics
(see Section 19.2), where the amount of methodology, terminology, and so on is
kept to a minimum. This is the first smoothing book that makes use of the mixed
model representation of smoothers.

Unlike many other texts on nonparametric regression, this book is very much
problem-driven. Examples from our collaborative research (and elsewhere) have
driven the selection of material and emphases and are used throughout the book.

The book is suitable for several audiences. One audience consists of students
or working scientists with only a moderate background in regression, though
familiarity with matrix and linear algebra is assumed. Marginal notes and the ap-
pendices are intended for beginners, especially those from interface disciplines.
We make liberal use of graphics because visualization is a particularly effective
tool for acquiring intuition in a new subject.

Another audience that we are aiming at consists of statistically oriented scien-
tists (e.g., biostatisticians, econometricians, quantitative social scientists, and
epidemiologists) who have a good working knowledge of linear models and the
desire to begin using more flexible semiparametric models. There are many con-
nections between linear and nonparametric regression. Our goal is to exploit them
and the reader’s knowledge of linear models to provide a foundation for under-
standing nonparametric modeling.

There is enough new material to be of interest even to experts on smoothing,
and they are a third possible audience.

xiii



xiv Preface

There are several competing approaches to nonparametric modeling: smooth-
ing splines (e.g., Eubank 1988, 1999; Wahba 1990; Green and Silverman 1994);
series-based smoothers, including wavelets (Tarter and Lock 1993; Ogden 1996);
kernel methods, including local regression (Wand and Jones1995; Fan and Gijbels
1996); and regression splines (Friedman 1991; Stone et al. 1997; Hansen and
Kooperberg 2002). All four approaches can be used effectively and have their
devotees. We believe that the nature of the data should play a role in the choice
among them. For example, wavelets are more suited to highly oscillatory func-
tions. Apart from this, the choice of a nonparametric regression method is a
matter somewhat of individual taste and background. Based on our motivating
applications and personal tastes, the approach to nonparametric regression used
throughout this book is what we call penalized splines, although they are also
labeled as P-splines, pseudosplines, and low-rank spline smoothers in the litera-
ture. Penalized splines are quite similar to smoothing splines; in fact, they are a
generalization of smoothing splines that allow more flexible choices of the spline
model, the basis functions for that model, and the penalty.

Penalized splines have close ties with ridge regression, mixed models, and
Bayesian statistics, ties that were discovered by researchers working on smooth-
ing splines. These ties allow techniques from mixed models – for example, (re-
stricted) maximum likelihood estimation and likelihood ratio tests – to be added to
penalized spline methodology. Similarly, Bayesian techniques based on Markov
chain Monte Carlo provide what we believe to be the most satisfactory approach to
fitting complex semiparametric models as well as the direction that semiparamet-
ric regression is most likely to take in the future. This book includes introductions
to mixed models and to Bayesian modeling.
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Guide to Notation

This chapter gives a brief overview of notational conventions used in the book.
Please see the Notation Index for more specialized notation.

The symbol “≡” means “equal by definition”.
We use both lower- and uppercase letters (e.g., x, X, and λ) to denote scalar

quantities, either fixed or random. Lowercase bold letters (e.g., x and λ) will be
used for vectors. Uppercase bold fonts (e.g., X and �) will denote matrices. The
entries of a vector or matrix use the same letter and case as the vector or matrix
itself but are not bold. Thus,

x =
 x1

...

xn


and

A =
[
A11 A12

A21 A22

]
.

If a matrix is partitioned then the submatrices are in bold; for example,

A =
[

A11 A12

A21 A22

]
.

We will indicate the row index of a matrix to the right and the column index
below, as in:

C =
[

cik
1≤k≤K

]
1≤i≤n

.

The transpose of A is denoted by AT. If A is an invertible square matrix, then
A−1 denotes its inverse. Any vector is assumed to be a column, so its transpose is
a row.

The norm of a vector x is denoted by ‖x‖; that is,

‖x‖ ≡
√

xTx.

The real line will be denoted by R, and d-dimensional space will be denoted
by Rd .

For a function f(x) of a scalar x,

f (r)(x) ≡ (d r/dxr)f(x),

the rth derivative of f(x).

xv
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If f(x) is a function from Rd to R then the derivative vector is a 1 × d row
vector with j th entry equal to (∂/∂xj )f(x), the partial derivative of f(x) with
respect to xj, and is denoted by

Df(x).

The Hessian matrix is a d × d matrix whose (i, j) entry is equal to

∂ 2

∂xi∂xj
f(x);

it is denoted by
Hf(x).

If x and y are random variables, then E(x), var(x), and st.dev.(x) are the mean,
variance, and standard deviation of x, and cov(x, y) is the covariance between
x and y. Cov(x) is the covariance matrix of a random vector x; see Appendix A
for its definition.
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Introduction

Semiparametric regression can be of substantial value in the solution of complex
scientific problems. The real world is far too complicated for the human mind to
comprehend in great detail. Semiparametric regression models reduce complex
data sets to summaries that we can understand. Properly applied, they retain es-
sential features of the data while discarding unimportant details, and hence they
aid sound decision-making.

Figure 1.1 depicts a complex data set corresponding to a cancer study in the
Upper Cape Cod region of Massachusetts. Apart from the geographical location
of cancer occurrences, there are data on age and smoking status. These data are
for females.

One question of interest is whether there are elevated lung cancer rates, relative
to all cancers and after adjustment for confounders, in any particular geographi-
cal locations. There is clearly a lot of relevant information represented by the one
thousand points in this plot. However, it is very difficult to draw any conclusions
from this alone. A semiparametric regression analysis leads to Figure 1.2.

Each of the graphics in Figure 1.2 displays an easy-to-comprehend estimate of
the effect of smoking status, age, and geographical location on the occurrence of

Figure 1.1 One
thousand randomly
chosen occurrences
of female cancer in
Upper Cape Cod,
Massachusetts, for
the period 1986–
1994. The data are
categorized according
to lung cancer (red)
or other (blue) and
smoker (closed
circle) or nonsmoker
(open circle). The
size of the circle is
proportional to age.
For confidentiality
reasons, the data have
been jittered.
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2 Introduction

Figure 1.2 Graphical
outcomes from a
semiparametric
regression analysis
of Upper Cape Cod
lung cancer data: top
panel, point estimate
and approximate 95%
confidence interval for
the odds ratio of lung
cancer among smokers
who have some type
of cancer; middle
panel, estimated odds
ratio as function of
age; bottom panel,
estimated odds ratio as
function of geographic
location. Higher
values correspond
to high estimated
probabilities of lung
cancer, given cancer,
measured through the
odds ratio.
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lung cancer, relative to cancer, while controlling for each of the other two vari-
ables. Smoking status is a binary variable, so its effect can be modeled through
a single parameter. This the simplest type of parametric modeling. The graphic
shows an odds ratio estimated to be in the range 11 to 33. Age is a continuous

The odds ratio of an
event A, relative to
an event B, is defined
to be the ratio of the
odds of A to the odds
of B. The odds of A
is the probability of A
occurring divided by
the probability of A
not occurring.

variable and, in this instance, its effect can be modeled reasonably well using
parametric regression techniques. However, the nonparametric estimate shown
in the middle panel suggests an unusual type of nonlinearity and so nonparamet-
ric regression techniques may lead to an improved fit. The effect of geography is
difficult to model using traditional parametric models, and the map in Figure 1.2
is the result of a bivariate nonparametric regression technique. It clearly shows
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Table 1.1 Observed
mammary tumor rates
with phenolphthalein.
For example, 32
of the 50 animals
exposed at 25,000
ppm had tumors at
the time of death. Of
these, 18 died during
the experiment and
32 were sacrificed
at the end of the
experiment, with 15 of
the sacrificed animals
being among the 17
with tumors.

0 ppm 25,000 ppm

Tumor rates Tumor rates
Mean body Mean body

Overall Terminala weight b Overall Terminal weight

32/50 25/30 287 17/50 15/32 254

a Tumors found at terminal sacrifice time.
b Average body weight at 12 months.

regions with elevated lung cancer levels, something that is not easy to discern in
Figure 1.1. Since the effects of smoking, age, and location have been modeled
using a combination of parametric and nonparametric regression techniques, we
call this a semiparametric regression analysis.

In the next sections we look at other important scientific investigations where
semiparametric regression can play a useful role. We give detailed analyses of
these studies (or at least references to where careful analyses can be found) in
Chapter 18, after we have developed methodology to tackle them; Chapters 2–17
will be spent describing this methodology.

1.1 Assessing the Carcinogenicity of Phenolphthalein

The U.S. National Toxicology Program (NTP) routinely conducts animal exper-
iments to measure the toxicity of certain foods and drugs. One such example is
the assessment of the possible carcinogenicity of phenolphthalein, an ingredient
of over-the-counter laxatives that was recently withdrawn by the U.S. Food and
Drug Administration.

A topic of recent interest in the analysis of carcinogenicity data is how to deal
with body weight. A recent editorial in Science magazine was highly critical of
risk assessment agencies for not controlling for the possible confounding effect
of weight, since weight loss caused by a toxic substance might protect against
cancer and mask a carcinogenic effect (Abelson 1995). It is not uncommon for
control animals to weigh substantially more than the treated animals through-
out the course of an experiment owing to toxic effects of the chemical. Several
sources have reported a lower incidence of tumors corresponding to lower body
weights (Hart et al. 1995; Haseman, Bourbina, and Eustis 1994; Seilkop 1995).
Thus, dose-related differences in body weights could affect the conclusions drawn
from these studies. Indeed, many studies conducted by the NTP have shown pro-
tective effects of the chemical being tested on certain tumor incidences. These
apparent reductions in tumor incidence across dose may be due to differences in
body weight (Hart et al. 1995). This phenomenon is illustrated in Table 1.1, taken
from the NTP study in phenolphthalein.

Figure 1.3 shows nonparametric estimates of the probabilities of four carcino-
genic outcomes as a function of weight based on a large NTP set of data on
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Figure 1.3
Estimated probability
of mammary tumor,
leukemia, pituitary
tumor, and thyroid
tumor as a function
of weight for a set
of NTP historical
controls. The shaded
region represents plus
and minus twice the
estimated (pointwise)
standard error.
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controls. It is apparent from these plots that nonlinear relationships exist and that
semiparametric models for incorporation of weight data would be beneficial.

1.2 Salinity and Fishing in North Carolina

This example comes from a larger project to predict the annual shrimp (or prawn)
harvest in Pamlico Sound, North Carolina, where shrimping occurs in the sum-
mer and autumn. It was believed that low salinity in the sound was detrimental
to the shrimp harvest and that salinity values during certain crucial springtime
periods would be useful predictors.

Salinity values were not measured regularly during the years prior to the
project. However, discharges from rivers that empty into Pamlico Sound were
known. The goal of the project was to develop a prediction model that could be
used during the spring, early enough to help the fishing industry decide whether
to rig for shrimp or instead to harvest some other species such as bluefish.

The data set has 28 cases taken from the spring periods of years 1972 to 1977.
In each case, salinity was measured at the current time period and two weeks ear-
lier, giving the variables salinity and lagged.sal. Two other variables were
measured, discharge and trend. The variable trend indicated which of six
biweekly periods during March to May a case came from. It was felt that trend
might model the effects of increasing evaporation as the weather warmed, but no
effect of trend was detected and so that variable will be ignored.

Figure 1.4 is a scatterplot matrix of the salinity data. One can see the strong,
seemingly linear, relationship between salinity and lagged.sal. The re-
lationship between salinity and discharge is somewhat weaker and pos-
sibly nonlinear. There is not a strong relationship between lagged.sal and
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Figure 1.4
Scatterplot matrix of
the salinity data.
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discharge, so their effects upon salinity should be individually estimable
with good precision.

The relationship between salinity and discharge is easier to see if we
remove the effects of lagged.sal. To do this, we regressed salinity on
lagged.sal using a straight line model (see Section 2.2). The residuals (i.e.,
the differences between salinity and the predicted values) are plotted against
discharge in Figure 1.5. The nonlinearity is now more evident, especially be-
cause a scatterplot smooth has been added. This suggests that a semiparametric The notion of

smoothing a
scatterplot will be
described extensively
in Chapters 3 and 5.

regression approach will be beneficial. The observation with discharge equal
to nearly 34 is a “high leverage point,” meaning that it has a potentially high in-
fluence on the fitted curve. In fact, the fitted curve bends upward in the figure but
would not do so if the leverage point were excluded. However, unlike a linear
fit, the curved fit is only influenced locally – that is, on the right. We will discuss
this point further when we return to this example in Chapter 18.

1.3 Management of a Retirement Fund

Bryant and Smith (1995) describe a managerial problem based on a real data
set, but with names changed to protect confidentiality. It concerns a company,
Best Retirement Inc. (BRI), that sells retirement plans to corporations around the
United States. To capture a market niche, it has decided to target smaller firms:
those with 500 or fewer employees. The major portion of their revenue comes
from retirement packages.

For a particular type of retirement plan known as 401(k), data are available
on several attributes of the firms from the previous year. It is advantageous that
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Figure 1.5
Scatterplot of
residuals from
the regression
of salinity on
lagged.sal. A
scatterplot smooth
has been added. Note
the effect of the high
leverage point on the
extreme right.
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Figure 1.6
Estimated effect
of salary on
contribution to the
logarithm of year-end
contributions in
a semiparametric
regression analysis.
The shaded region
represents plus and
minus twice the
estimated (pointwise)
standard error.

salary

ef
fe

ct
 o

n 
m

ea
n 

ye
ar

 e
nd

 c
on

tr
ib

ut
io

ns

0 20000 40000 60000

-1
.5

-1
.0

-0
.5

0.
0

0.
5

BRI be able to estimate the year-end dollar amount contributed to each plan in
advance so that it can make internal revenue and cost projections.

Apart from building a prediction model for year-end contributions, there are
some other managerial questions that can be addressed using these data. For ex-
ample, BRI has a sales representative who has been specifically trained to deal
exclusively with 401(k) retirement plans. The company would like to know if her
expertise is a factor that influences contributions to such retirement plans.

Figure 1.6 shows the effect of salary (average salary of each firm) on the
logarithm of year-end contributions as estimated by a semiparametric regression
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Figure 1.7 Plot of
biomonitoring data.
Open circles show
sampling locations,
and asterisks mark
the single or replicate
values of mercury
measured at each
sampling location.
The large solid circle
marks the location of
the incinerator.
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analysis. There is a pronounced nonlinearity here, which suggests that better
predictions and managerial decisions can be realized through the use of semi-
parametric regression.

1.4 Biomonitoring of Airborne Mercury

Waste incineration is a major source of environmental mercury. As part of an envi-
ronmental monitoring program in Warren County, New Jersey, pots of sphaghum
moss were placed at 15 sampling locations about a solid waste incinerator and
exposed to ambient conditions between July 9 and July 23, 1991. The moss was
then collected, dried, and assayed for mercury. The resultant data are shown in
Figure 1.7.

The goals of the study include estimating the distribution of mercury about the
incinerator and testing the null hypothesis that the mean mercury concentration
is constant.

Figure 1.8 shows estimated levels of mercury concentration that were obtained
using nonparametric methods described in this book. The plot indicates that mer-
cury concentration peaks north of the incinerator. There are only 15 sampling
locations, with replicate moss pots at 7 of these sites, for a total of 22 observa-
tions. With so few data, only gross features of mercury deposition can be resolved,
but the nonparametric fit provides a pleasing image of these features.

1.5 Term Structure of Interest Rates

Corporations, municipalities, the U.S. Treasury, and other entities raise money by
issuing bonds. The purchase price of the bond is a loan to the issuing entity and
the bond is a contract requiring that entity to pay to the bond holder both principal
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Figure 1.8 Plot of
biomonitoring data
with coloring of
estimated mercury
concentration. There
were 15 sampling
locations and 7 had
replicate samples.
Open circles indicate
sampling locations;
the asterisk marks the
incinerator location.
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and interest according to a schedule. At the time of expiration of the bond, which
is called the maturity, the bond holder receives a payment call the par value.
There are two general classes of bonds, coupon bonds and zero-coupon bonds.
At fixed periods, often every six months, the holder of a coupon bond receives
a coupon payment. Generally, coupon bonds sell at a price near their par value.
The par payment at maturity is a repayment of principal while the coupon pay-
ments are interest. Zero-coupon bonds have no coupon payments and sell below
par. The par payment at maturity represents principal and interest.

Frequently, the initial owner of the bond will sell the bond to another investor.
The current price at which bonds trade depends upon the current interest rates.
For example, suppose a corporate coupon bond with a 5% coupon rate is issued
with the initial price equal to par, so that the coupon payments are 5% of the ini-
tial price. If the prevailing interest rate increases to 6% then the price of the bond
will drop, so that a new purchaser of the bond will in effect receive a 6% rate.

The interest rates on bonds depend upon their maturities, with long-term bonds
frequently (though not always) paying higher rates than short-term bonds. For ex-
ample, on January 26, 2001, the rate on a 1-year Treasury bill was 4.83% whereas
the rate on a 30-year Treasury bond was 6.11%. The term structure of interest
rates is a quantitative description of the dependency of rate upon maturity. The
estimation of term structure is essential for financial analysts working, for exam-
ple, with credit derivatives.

A financial derivative
is a security whose
value depends on
the value of other
underlying securities.
As an example of a
derivative, consider a
call option on a stock.
A call option gives the
owner the right, but
not the obligation, to
purchase a share of
stock at a fixed price
on a given date, called
the expiration date.
The value of the call
option depends on the
price of the underlying
stock and on such

Interest rates not only depend upon the maturity, but for any fixed maturity, the
interest rate on bonds with that maturity will change over time. In this case study,
we are not concerned with such changes. Rather, we will only be concerned with
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how interest rates on a given day depend on maturity. Specifically, in our exam-
ple, we will model bond interest rates on December 31, 1995.

We will work with continuously compounded interest rates. As an illustration,

other variables as
the time left until
expiration. An
example of a interest
rate derivative is a
cap. If an interest rate
exceeds the cap, then
the owner of the cap
is paid the difference
between the interest
rate and the cap.
Clearly, the value of
the cap depends on
the underlying interest
rate. A company
paying interest at a
floating rate might
purchase a cap as
insurance against rate
increases.

we will start with an unrealistic assumption that the interest rate is constant, that
is, not dependent on maturity. If a bond is worth P(t) dollars at time t and is
continuously compounded at a constant rate r, then P(t) satisfies the simple dif-
ferential equation

P ′(t) = rP(t) (1.1)

and so, at maturity T,

P(T ) = P(0) exp(rT ). (1.2)

The rate r is called the forward rate. It is the rate agreed upon at present for in-
terest in the future, that is, forward in time.

Interest rates must be inferred from bond prices. Recall that the bond’s value
at maturity, P(T ), is called the par value. Hence, from (1.2) we have

P(0) = par exp(−rT ), (1.3)

where par is the par value. Suppose a 1-year, par $100 zero-coupon bond is sell-
ing now for $92. This means we can buy the bond now for $92 and receive $100
exactly one year from now. Recall that zero-coupon means the bond holder re-
ceives no interest payments until maturity. The $8 difference between the present
price and the par value is the only interest payment. Here we have T = 1, P(1) =
par = 100, P(0) = 92, and, from (1.2),

92 = 100 exp(−r)

or
r = log(100/92) = 0.0834.

Thus, the annual continuously compounded interest rate over the next year is
8.34%.

Suppose, in addition, that a 2-year, par $100 zero-coupon bond sells for $85.
We assume that this bond pays the just-determined rate of 8.34% the first year
but a different interest rate the next year. The rate for the second year, call it r2,

solves
83 = 100 exp{−(0.0834 + r2)}

or
r2 = log(100/83)− 0.0834 = 0.1029.

Table 1.2 gives the prices on December 31, 1995, of five bonds previously is-
sued by the U.S. communications companyAT&T and maturing at some time after
that date. These are the prices at which the bonds were traded – that is, purchased
by one investor from another. Each bond price is expressed as a percentage of
par, the amount AT&T will pay the bond owner at maturity. The maturity is given
in years from December 31, 1995. The bonds make semiannual interest payments
called coupons. The time in years of the next coupon and the coupon payments
are given in the table. The aim is to determine the forward rate of AT&T bonds
from these data.
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Table 1.2 AT&T
bond prices on
December 31, 1995.
Issue, maturity, and
next coupon dates
are in years from
December 31, 1995.

Next
Issue Maturity coupon Coupon Price

−3.9644 5.9781 0.0356 7.1250 109.4580
−1.7726 8.1890 0.2274 6.7500 106.2840
−1.5836 10.3562 0.4164 7.5000 111.4360
−0.8384 11.1041 0.1616 7.7500 115.5090
−0.6384 9.3096 0.3616 7.0000 107.6590

We have been assuming that the forward interest rate is constant over each
year. Clearly, this is an oversimplification. Financial analysts model the forward
interest rate as a continuous function of time, r(t). If P(T ) is the par value of a
zero-coupon bond maturing at time T and if P(0) is the current price of the bond,
then (1.1) is replaced by

P ′(t) = r(t)P(t),

with solution

P(0) = P(T ) exp

(
−
∫ T

0
r(x) dx

)
. (1.4)

The problem is to estimate r(t) from bond prices, such as those shown in TableA forward price is a
price negotiated at
the present for the
future delivery of
some commodity. A
forward interest rate
means an interest rate
that is agreed upon
now for a loan in the
future.

1.2. A further complication is that many bonds, including those in the table, have
coupons. A coupon bond can be modeled as a bundle of zero-coupon bonds, one
for each coupon payment and one for the final payment at maturity of the par
value. The bond price is the aggregate price of all of these coupon bonds. Bond
prices such as in Table 1.2 have some random “error” since, for example, they are
really prices at last transaction, not exactly at the current time. Therefore, the es-
timation of the forward rate curve is a statistical problem. Fisher, Nychka, and
Zervos (1994) have developed a very elegant spline method for estimating the for-
ward rate curve. Their method works well for Treasury bond data because there
are enough Treasury bonds to estimate a continuous forward rate.

For corporate bonds, there is often a paucity of data and so the method of Fisher
and colleagues cannot be applied directly. Jarrow, Ruppert, andYu (2001) extend
the model of Fisher et al. by assuming that the forward rate for a corporation such
as AT&T differs from the Treasury forward rate by a constant or, perhaps, by a
low-degree polynomial function of time. The corporate forward rate is greater
than the Treasury rate, since Treasury bonds have no risk of default; the U.S. Trea-
sury can always raise money by taxation. The difference between the two rates
is called the risk premium or spread and reflects the extra interest that investors
demand when buying corporate bonds (which may default) rather than risk-free
Treasury bonds. The model of Jarrow and colleagues is semiparametric in that
the Treasury forward rate is modeled as a spline, but the risk premium is mod-
eled parametrically. This case study is typical of semiparametric models in that
parts of the model for which there is much data are modeled nonparametrically
while parts that are not well supported by data are modeled parametrically.

Figure 1.9 shows the prices of U.S. STRIPS (Separate Trading of Registered
Interest and Principal of Securities), a type of zero-coupon Treasury bond. The
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Figure 1.9 U.S.
STRIPS prices as a
percentage of the par
value.
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prices are expressed as a percentage of the par value and are plotted against time
to maturity. If r(x) is constant, say r(x) = r0 for all x, then by (1.4) we have

yi = 100 exp(−r0Ti) (1.5)
and

log(yi) = log(100)− r0Ti. (1.6)

Here P(Ti) is the par, P(0) is the present price, yi = 100P(0)/P(Ti) is the
“response,” and Ti is the maturity for the the ith U.S. STRIPS.

The rough exponential shape in Figure 1.9 suggests that model (1.5) is at least
approximately correct. However, in Figure 1.10 we see log(yi) plotted against
Ti, and the plot is not quite the straight line that (1.6) suggests. In fact, we fit
a straight line to {Ti, log(yi)}ni=1 and plotted the “residuals,” which are the dif-
ferences between the log(yi) and the fitted line. This plot, shown as Figure 1.11,
shows an obvious deviation from the random cloud that we would expect if the
model (1.5) fit the data, thus indicating the need for a nonparametric model. The
fitting of straight line models and residual analysis will be discussed in Chapter 2.

1.6 Air Pollution and Mortality in Milan: The Harvesting Effect

In the last decade, a good deal of literature has been published concerning the
short-term effect of air pollution on health. Daily mortality counts and hospi-
tal admissions have been associated with daily air pollution levels, correcting
for several time-dependent confounders. From the public health point of view,
the significance of air pollution’s short-term effects corresponds to an increase in
mortality or morbidity among individuals who would otherwise die much later,
not among those who could have died within a few days.
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Figure 1.10
Logarithms of U.S.
STRIPS prices as a
percentage of the par
value.
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Figure 1.11
Residuals from a
straight line fit to the
logarithms of the U.S.
STRIPS prices as a
percentage of the par
value.
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Figure 1.12 is a schematic representation of the dynamics that arise when air
pollution has an impact on mortality. The risk pool consists of sick and elderly
people. Transitions between this state and the general population are affected by
air pollution levels.

Consider the following lagged regression model of air pollution and generic
mortality:

log{E(mortalityt )} = α + β0pollution t + · · · + βqpollution t−q + εt ,
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Figure 1.12
Schematic
representation
of the dynamics
that arise when air
pollution has an
impact on mortality.
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Figure 1.13
Lag structure
corresponding to the
harvesting effect.
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where mortalityt and pollution t are (respectively) the mortality count and
pollution level for day t. The lag structure in Figure 1.13 describes the so-called
harvesting effect. The horizontal axis is the lag number and the vertical axis shows
the coefficients β!. Each β! has this interpretation: net effect of pollution level !
days ago on mortality.

In the figure, A is the sum of the positive coefficients for low lags and repre-
sents the fact that pollution levels in the past few days or weeks have a positive
effect on mortality. However, the negative coefficients in B mean that pollution
levels a longer period ago have a negative effect. This is due to “depletion of
the risk pool,” normally made up of elderly and sick people whose deaths have
been hastened a few days or weeks by episodes of high pollution; this is known
as “harvesting.” Here A overestimates the public health significance of pollution,
since it is really A + B (where B is negative) that represents deaths induced by a
noticeable amount of time.

Daily data over 10 years are available on mortality, air pollution, and several
meteorological variables for the city of Milan, Italy. It is of interest to use these to



14 Introduction

Figure 1.14
Estimates of the
coefficients of the
lags of sulphur
dioxide on mortality
in Milan, Italy. The
shaded points are
plus and minus 2
times the estimated
standard error of each
coefficient estimate.

lag number

es
t. 

co
ef

fic
ie

nt
s

0 10 20 30 40

-5
*1

0^
-5

0
5*

10
^-

5
10

^-
4

quantify the public health significance of air pollution, incorporating the harvest-
ing effect. By constraining the lag coefficients to be on a smooth (but otherwise
flexible) curve, we obtained Figure 1.14. This suggests some evidence of harvest-
ing. The construction of this result required some nonstandard semiparametric
regression techniques that allowed for the lag coefficients to lie on a smooth curve
and also be influenced by data on daily weather conditions.

Chapter18 provides much fuller analyses and solutions for a selection of the prob-
lems presented in this chapter. Between now and then we will need to describe
techniques for performing semiparametric regression analysis. The next chapter
signals the start of this journey.
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Parametric Regression

2.1 Introduction

Each of the problems described in the previous chapter can benefit from regres-
sion analysis. In this book we focus on the combination of classical parametric
regression techniques and modern nonparametric regression techniques to de-
velop useful models for such analyses. Therefore, it is essential to have a good
grounding in the principles of parametric regression before proceeding to the
more complicated semiparametric regression chapters. In particular, some of
the theoretical aspects of regression should be well understood since these are
important in extensions to semiparametric regression. The present chapter can
serve as either a brief introduction to parametric regression for readers without
a background in that field or as a refresher for those with a working knowledge
of parametric regression but who could benefit from a review. If you are very
familiar with parametric regression methodology and theory, then this chapter
could be skimmed. Of course, this brief introduction can only cover the main
concepts and a few special models. Many widely used parametric models are not
discussed. This chapter provides sufficient background in parametric regression
for the chapters to follow. However, readers wishing to apply parametric regres-
sion models may consult a textbook on parametric regression such as Weisberg
(1985), Neter et al. (1996), or Draper and Smith (1998).

Note, moreover, that Section 2.5 contains some new perspectives on paramet-
ric regression that are relevant to later chapters on semiparametric models, so this
is worth covering regardless of experience.

Toward the end of the chapter we describe some limitations of parametric re-
gression. Most of the remainder of the book is concerned with extensions of
parametric regression that have much more flexibility.

The theory in this book makes extensive use of matrix notation and results, a
summary of which is given in Appendix A.

2.2 Linear Regression Models

Figure 2.1 shows a scatterplot of 55 months of data from a house in Westchester

The electricity usage
data are from the
textbook A Casebook
for a First Course
in Statistics and
Data Analysis by
Chatterjee, Handcock,
and Simonoff. The
analysis here differs
somewhat from
the analysis in that
textbook – there are
many valid ways of
analyzing any given
set of data.

County, New York. The horizontal variable is temp, the average temperature (in
degrees Fahrenheit) for the month; the vertical variable is logkwh, the logarithm
of electricity usage in kilowatt-hours (kwh).

15
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Figure 2.1
Scatterplot of logkwh
versus temp from
the electricity usage
study.
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One aim of the study was to determine the relationship between temp and
logkwh. The scatterplot suggests that a plausible relationship is one of the form

logkwh i = β0 + β1tempi + errori, (2.1)

where tempi and logkwh i are the value of each variable for the ith month. The
errori term accounts for the fact that the points in the scatterplot are randomly
scattered about the line, so this term is assumed to be independent realizations of
a random variable with mean equal to zero. Hence an alternative formulation is

E(logkwh|temp) = β0 + β1temp,

which says that the mean logkwh value is a linear function of the corresponding
temp value.

It is common to call logkwh the response variable and temp the predictor
variable. Many alternative names are commonly used, although we will use this
terminology throughout the book.

The model can be fit using least squares, which corresponds to finding the line
that best fits the scatterplot in terms of minimizing the sum of the squared verti-
cal distances between the points and the line; that is, minimizing over (β0, β1)

the quantity
n∑

i=1

{logkwh i − (β0 + β1tempi )}2.

Algebraically, this can be done by setting up the matrices
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Figure 2.2 Least-
squares fit to the
logkwh versus
temp data from the
electricity usage
study.
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y =
 logkwh1

...

logkwh55

, X =
 1 temp1

...
...

1 temp55

,
β =

[
β0

β1

]
, ε =

 error1
...

error55

,
so that (2.1) can be written as

y = Xβ + ε.

Then the least-squares estimator of β is calculated as

β̂ =
[
β̂0

β̂1

]
= (XT X)−1XTy. (2.2)

This leads to the estimated coefficients

β̂ =
[

5.34
−0.0319

]
and the fitted line

̂logkwh = 5.34 − 0.0319temp,

which is shown in Figure 2.2.
This is an example of the simple linear regression model, the simplest regres-

sion model of all. We use the word “simple” because the model has only one pre-
dictor variable, temp. The slope coefficient β̂1 = −0.0319 has the interpretation:
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Figure 2.3 Number
of calories versus
sodium content of 54
sausages, categorized
according to meat
type.
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a 1-degree increase in average temperature corresponds to a 0.0319-unit
decrease in mean logkwh.

Figure 2.3 depicts a slightly more complicated data set. In this case, data onThe sausage data are
from the textbook
Introduction to the
Practice of Statistics
by Moore and
McCabe (1998).

the calorie count for a sample of 54 sausages are plotted against sodium content.
However, the data are categorized according to meat type: beef/pork and poultry.
The plot shows that there is evidence of a linear relationship between calories
and sodium, but the relationship seems to be different according to meat type.
The difference is not so much in the slope as in the intercept. In other words,
it seems reasonable to model the mean calorie content in terms of two parallel
lines, one for each type. This can be done through the model:

caloriesi = β0 + β1sodium i + β2pork.beefi + errori, (2.3)

where

pork.beefi =
{

1 if ith sausage is beef or pork,

0 if ith sausage is poultry.

Such a variable is often called an indicator variable or a dummy variable and
allows the incorporation of a categorical variable such as meat type into a linear
regression model. We also call model (2.3) a binary offset model since the lin-
ear relationship between calories and sodium is offset by the binary variable
pork.beef.

As with the simple linear regression model, the coefficients can be estimated
using (2.2) with

X =
 1 sodium1 pork.beef1

...
...

...

1 sodium54 pork.beef54

, β =
 β0

β1

β2

, y =
 calories1

...

calories54

.
The fitted model is
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Figure 2.4 Fitted
model for the sausage
data. The model
corresponds to the
calories–sodium
relationship being
represented by two
parallel lines; one for
each meat type.
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̂calories = 25.6 + 0.211sodium+ 45.8pork.beef.

Because of the way we defined pork.beef, this is equivalent to

̂calories =
{

71.4 + 0.211sodium for beef or pork sausages,

25.6 + 0.211sodium for poultry sausages.

So the fitted model corresponds to two parallel lines with intercepts differing by
the amount β̂2, as illustrated in Figure 2.4. The interpretations of the coefficients
in the fitted model are:

• for both types of sausage, a one-unit increase in sodium corresponds to a
mean increase of 0.211 calories;

• controlling for sodium content, beef and pork sausages have a mean calorie
level that is 45.8 higher than poultry sausages.

However, before adopting these conclusions and perhaps going on to make
inferential statements (e.g., confidence intervals or p-values), it is important to
check the validity of the linear regression model. This is addressed in Section 2.3.

2.2.1 General Linear Model

The general multiple regression model with k predictor variables is

yi = β0 + β1xi1 + · · · + βkxik + εi. (2.4)

Here, for j = 1, . . . , k, we have xij as the value of the j th predictor variable for
the ith case, i = 1, . . . , n.

This model can be written in matrix notation as

y = Xβ + ε.
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Here y is an n × 1 vector of response variables, ε is an n × 1 vector of “errors,”
and X is an n× (k+1) matrix of predictor variables. The ith row of X, which we
will denote by xT

i , contains a 1 followed by the values of the predictor variablesIn the so-called
no-intercept model,
the intercept
parameter is deleted
and the 1 is omitted
from x i vector.

for the ith case, that is,
xT
i = [1, xi1, . . . , xik].

The ordinary least-squares (OLS) estimator minimizes
n∑

i=1

(yi − xT
iβ)2 = ‖y − Xβ‖2,

where ‖v‖ =
√

vTv is the “length” of the vector v. As seen in the preceding ex-
amples, the least-squares estimator of β is

β̂ = (XT X)−1XTy.

The error vector ε has zero mean: E(ε) = 0. Additional assumptions about ε

are often made. The first, often called homoscedasticity, is that

var(εi) = σ 2 for all 1 ≤ i ≤ n. (2.5)

It is also usual to assume that the errors are uncorrelated:

cov(εi, εj ) = 0, i �= j. (2.6)

Conditions (2.5) and (2.6) can be summarized by the expression

Cov(ε) = σ 2 I. (2.7)

Finally, there is the normality assumption; given (2.7), this translates to

ε ∼ N(0, σ 2 I). (2.8)

2.3 Regression Diagnostics

The term regression diagnostics refers to a large collection of techniques used
to check the quality of the data and the adequacy of a regression model. Often
data are misrecorded or do not come from the population of interest. For ex-
ample, a retailer analyzing weekly sales figures may be advised to exclude data
from holiday periods since they are not part of the population of ordinary trad-
ing outcomes. If holiday sales were unintentionally included in the data set, then
they would likely be outlying in some ways and might be detected by diagnos-
tics. Outliers should not be removed simply because they are outlying, but if they
are found to be erroneous then they should be removed or (if possible) corrected.
In some circumstances outliers reveal an interesting feature of the data that had
not been previously realized.

The two basic components of many diagnostics are the fitted values and the
residuals. The ith fitted value is the estimate of E(yi) from the model; that is, ŷi =
xT
i β̂, where as before xT

i is the ith row of X. The vector of all n fitted values is
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Figure 2.5 Residual
plot for the least-
squares fit to
the simple linear
regression model for
the logkwh versus
temp data from the
electricity usage study.
A scatterplot smoother
(see Chapter 3) is
included (dashed
curve).
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ŷ = Hy, (2.9)

where
H = X(XT X)−1XT.

The matrix H is called the hat matrix since multiplication by H converts y to ŷ.
As will be seen in the following chapters, the hat matrix plays an extremely im-
portant role in regression theory and practice.

The ith residual is defined to be

ei = yi − ŷi,

which is the difference between the ith observed response and its predicted value
according to the fitted model. If the model provides an adequate fit to the data,
then ei predicts εi.

Most of the information for determining the adequacy of a linear regression
model is contained in the residuals, since these estimate that part of the model
that was assumed to be random. Therefore, any patterns in the residuals reflect
extra structure that is not accommodated by the model. Residual analysis for di-
agnosis of linear regression models is a very large topic, with many more facets
then we can go into here. We will just touch on some of the most basic prin-
ciples. Fitted values and residuals are available for the semiparametric models
we will be studying in later chapters, so the plots we discuss here are useful for
semiparametric as well as linear regression.

Figure 2.5 shows the residuals for the fit to the logkwh and temp data plotted
against the fitted values. The points are scattered about the zero line without any
strong patterns, so this is an indication that the simple linear regression model is
a reasonable one in this case. If there had been a curvilinear pattern to the resid-
uals, then this would have been evidence of lack of fit of the simple linear model.
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Figure 2.6 Residual
plot for the least-
squares fit to
the simple linear
regression model
for the kwh versus
temp data from the
electricity usage
study.
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Sometimes a curvilinear pattern is difficult to detect, and it is helpful to include
a scatterplot smooth in the residual plot. This is shown in Figure 2.5 as a dashed
curve. A scatterplot smooth is a curve that shows the general trend of the data;
this will be discussed in depth in Chapter 3. Clearly, the smooth is close to the
horizontal line through zero and provides more evidence that there is no substan-
tial pattern.

Figure 2.6 is the same plot as Figure 2.5 except that the response is kilowatt-
hours (kwh), not logkwh. In this figure, a curvilinear pattern is apparent, so the
straight line model appears not to fit. This lack of fit is the reason why logkwh,
rather than kwh, was used as the response variable.

In Figure 2.5 one sees that the amount of scatter in the residuals is roughly
constant across values of temp. This is good, since it supports the assumption
used later for making the inference (e.g., constructing confidence intervals) that
var(logkwh|temp) is constant. Another feature displayed by the plot is that none
of the residuals is unusually large in magnitude relative to the others, that is, there
are no outliers. This is also in keeping with the assumptions for inference.

The plot of the residuals against fitted values for the linear model fit to the
sausage data, shown in Figure 2.7, has the same patternless nature as Figure 2.5.
There is no lack of fit to the binary offset straight line model and the assump-
tion that var(calories|sodium) is constant. Also, there are no outliers in the
sausage data.

Noting that the vector of residuals is

e = (I − H)y
and using

H = HT = H2, (2.10)

we have
Cov(e) = (I − H)Cov(y)(I − H)T = σ 2(I − H).
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Figure 2.7 Residual
plot for the sausage
data.
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Figure 2.8
Studentized residual
plot for the sausage
data. The dashed lines
are at ±2 standard
deviations and the
dotted line are at ±3
standard deviations.
The observations
between the dashed
lines are “mild”
outliers. Observations
outside the dotted
lines, if they existed,
would be strong
outliers.
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Therefore,

ŝt.dev.(ei) = σ
√

1− (ith diagonal entry of H) = σ
√

1−Hii.

The ith studentized residual is then

The studentized
residual is sometimes
called the internally
studentized residual to
distinguish it from the
externally studentized
residual. The latter is
defined by (2.11) but
with σ̂ replaced by an
estimate of σ that does
not use the ith case. In
this book, studentized
residual will always
refer to internally
studentized residual.

e∗i ≡ ei

ŝt.dev.(ei)
= ei

σ̂
√

1−Hii

, (2.11)

which, under normality and homoscedasticity, should behave like a N(0,1) sam-
ple when the model is correct. Figure 2.8 shows the studentized residuals for the
sausage example. Since all are between −3 and 3 and all but 3 out of 54 are be-
tween −2 and 2, we have no reason to doubt our assumption in this case.
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Figure 2.9 Salinity
data. Scatterplot
of discharge and
delta.salinity
with a least-squares
line. Influential cases
5, 15, 16, and 17 are
labeled.
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2.3.1 Influence Diagnostics

Recall the salinity example of Chapter1. The primary goal is to predict salinity
from lagged.sal (i.e., the lagged value of salinity) and discharge, the dis-
charge from rivers of fresh water into Pamlico Sound. As an example, we will
regress the change in salinity, called delta.salinity, on discharge. Fig-
ure 2.9 is a scatter plot plus a least-squares fit. Figure 2.10 shows the studentized
residuals. Cases 15, 16, and 17 have the large absolute studentized residuals. In
Figure 2.9, cases 5 and 16 are seen to have outlying discharge values.

A natural question is: How much influence do these possible outliers have on
the fitted line? Two diagnostics that are in common use to assessing influence are:

• the hat diagonals or leverages, which measure the potential of outliers in the
predictors to influence the fit; and

• Cook’s distance (also called Cook’s D), which measures actual influence of
an observation on the fit.

The ith leverage value is the ith diagonal of the hat matrix, Hii. We know from
(2.9) that the ith fitted value is

ŷi =
n∑

j=1

Hijyj = Hi1y1 + · · · +Hiiyi + · · · +Hinyn, (2.12)

so that Hii is the weight of yi in the expression for ŷi, that is, the influence of
yi on its own fitted value. It should be appreciated that Hii depends only on the
predictors, not on the ys, so that Hii measures only the potential for being influ-
ential and not actual influence. For example, in linear regression with a single
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Figure 2.10 Salinity
data with discharge
as the predictor and
delta.salinity
as the response:
studentized residuals.
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Figure 2.11 Salinity
data with discharge
as the predictor:
leverage values.
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predictor x, Hii is a linear function of the squared distance from xi to x̄ and so is
purely a measure of how “outlying” xi is.

Figure 2.11 shows the leverages for the salinity data using discharge as the
sole predictor. Cases 5 and especially 16 have high leverage.

Let ŷ and ŷ(i) be, respectively, the vector of fitted values using all the data and
with the ith case deleted. Let p be the number of regression parameters, includ-
ing the intercept. Cook’s D is defined as
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Figure 2.12 Salinity
data with discharge
as the predictor and
delta.salinity as
the response: values
of Cook’s D.
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Di = ‖ŷ − ŷ(i)‖2

pσ̂ 2
.

It can be shown that

Di = (e∗i )2Hii

p(1−Hii)
,

which expresses Cook’s D in terms of the ith studentized residual (e∗i ) and the
ith leverage.

Figure 2.12 shows the values of Cook’s D for the salinity data using discharge
as the predictor and delta.salinity as the response. Case 16 with high lever-
age and a large studentized residual has very large Cook’s D, approximately ten
times larger than the second largest value. We conclude that the fitted line would
be changed substantially if case 16 were not included. This case might be an out-
lier or it might indicate that the linear model does not hold over a wide range of
discharge. We will return to this example in Chapter 18.

2.3.2 Autocorrelation

The data in the electricity usage study were collected in time order. An important
assumption in regression analysis is that the errors are independent or, at least,
uncorrelated. If this assumption is false, then ordinary least-squares estimation
could be inefficient. Perhaps more seriously, commonly used inferential proce-
dures (as described in Section 2.4) are invalid when there is autocorrelation.

The main diagnostic is the autocorrelation function of the residuals. The kth
lag sample autocorrelation, denoted ρ̂(k), is the sample correlation between ei
and ei−k, where k + 1 ≤ i ≤ n. For example, the lag-1 autocorrelation measures
the correlation between adjacent residuals. For general k = 0, 1, . . . , n− 1,
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Figure 2.13
Autocorrelation plot
of the electricity
usage data. The
horizontal dashed
lines are at ±2/

√
n,

corresponding
to approximate
95% confidence
limits under the
independence
assumption.
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ρ̂(k) =
∑n−k

i=1 eiei−k∑n
i=1 e

2
i

(see e.g. Brockwell and Davis 1996). If the errors are independent, then ρ̂(k)

is approximately normally distributed with mean 0 and variance 1/n. Thus, any
value of |ρ̂(k)| that exceeds 2/

√
n is roughly significant. Of course, if one exam-

ines a large number of sample autocorrelations, then some should be significant
by chance. For this reason – and because autocorrelation, if it exists, should man-
ifest itself at short lags – one should look for significant autocorrelation at, say,
k = 1 or 2. For monthly data, one should also look at autocorrelation at k = 12.
If autocorrelation is not significant at these lags, then it is reasonable to assume
that the errors are independent.

The electricity usage data are longitudinal. That is, the data were collected
over time from a single residence. Longitudinal data are often correlated, and it
is important to check for autocorrelation in this example.

Figure 2.13 is a plot of the first 24 autocorrelation values of the residuals from
fitting (2.1). The horizontal dashed lines are at ±2/

√
n, corresponding to approx-

imate 95% confidence limits under the independence assumption. The autocor-
relation values at k = 1 and 10 are significant. The significant autocorrelation at
lag 10 may be due to chance – as mentioned, we expect a few significant autocor-
relations due solely to chance because we are examining 24 autocorrelations.

The significant lag-1 autocorrelation is likely to be real. Of course, statistical
significance is not the same as practical significance. The lag-1 autocorrelation
is 0.279 and the squared correlation is 0.0780. Squared correlation has an inter-
pretation as the amount of squared variation in one variable that can be predicted
by the second variable; see Section 2.4.7.1. Certainly, 7.8% is a somewhat small
(though not negligible) percentage.
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There are at least four ways one can deal with this autocorrelation. The first is
to ignore the autocorrelation since it is small. We will take that approach in this
chapter, since our intention is only to provide a simple illustrative example. An-
other option is to use additional predictor variables, in particular, lagged values
of logkwh and temp. The model

logkwh i = β0 + β1tempi + β2logkwh i−1 + tempi−1 + errori

has lag-1 residual autocorrelation of only 0.0273. The fitted model is

̂logkwh i = 3.837 − 0.034tempi + 0.278logkwh i−1 + 0.011tempi−1.

A third approach is to use only tempt as a predictor variable but to assume a more
general form for Cov(y).

The fourth approach is to add f(time), a random function of time, to the
model. Since it is random, f(time) will induce correlation between the obser-
vations. We might model f(time) as a stationary stochastic process. This type
of modeling strategy is used in the Milan mortality example in Chapter 8.

2.3.3 The Building Blocks of Regression Diagnostics

All of the diagnostics that we have discussed are constructed from two basic build-
ing blocks:

• hat diagonals, and
• residuals.

This fact has an important implication. In the later chapters of this book, we shall
discuss the fitting of many types of semiparametric models by penalized least
squares. These building blocks are available for such fits. For any fit there is, of
course, a residual – the difference between the actual and the fitted response. For
penalized least squares and other linear smoothers, there is also a hat matrix and
therefore hat diagonals (see Section 3.10 for a definition of linear smoothers and
their hat matrices). Thus, studentized residuals, leverages, and Cook’s D are all
easily generalized to the penalized least-squares fits that we will be discussing in
the ensuing chapters. Eubank (1985) gives a nice discussion of influence diagnos-
tics for smoothing splines, and his ideas are easily applied to penalized splines.

2.4 Inference

2.4.1 Confidence and Prediction Intervals

Although Figure 2.2 is a reasonable summary of the relationship between temp
and logkwh, it does not give any indication of the uncertainty of the fitted line.
If the study were re-run for a different time period, how much would this rela-
tionship between mean logkwh and temp level change? An enhancement that
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Figure 2.14 95%
confidence (dark
grey) and prediction
(light grey) bands
for the electricity
usage example. The
horizontal lines
correspond to 95%
confidence and
prediction intervals
at temperature =
41◦F.
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illustrates uncertainty is shown in Figure 2.14, which we will call a confidence
band plot. The dark grey band gives an indication of the degree to which the mean
of logkwh, for each level of temp, is unknown. It has the following interpretation:

For a given level of temp, if a vertical line is drawn through that value then
we can be 95% confident that the mean of logkwh given that temp is be-
tween the values cut off by the dark grey region. For example, there is a
vertical line through temp = 41. The inner (i.e., second and third) hor-
izontal lines show where this vertical line intersects the lower and upper
boundaries of the confidence band and give a 95% confidence interval for
E(logkwh|temp = 41).

These confidence intervals for mean logkwh do not tell us where we can ex-
pect the actual values of logkwh to lie, since these will differ from their expected
values by an amount equal to the value of error for that observation.

The light grey band in Figure 2.14 is a 95% prediction band for logkwh.
Suppose that we will observe logkwh at value of temp that is known now.
We can be 95% confident that a new observation will lie in the interval
above that value of temp. Thus, if temp = 41, then the 95% prediction in-
terval for logkwh is the interval cut off by the outer (i.e., first and fourth)
horizontal lines.

The dark grey region in Figure 2.14 was obtained by adding and subtracting
twice the estimated standard deviation of the estimated line

̂logkwh = β̂0 + β̂1temp.

Similarly, the light grey region is centered at ̂logkwh, but the quantity that is
added and subtracted is the estimated standard deviation of y − ŷ, the difference
between a new observation and its predicted value.
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In the remainder of this section we show how one obtains expected values and
standard deviations of β̂, fitted values, and prediction errors, since these are the
basis of confidence intervals.

2.4.2 Inference about the Regression Coefficients

Consider the general linear regression model

y = Xβ + ε,

and let β̂ be the least-squares estimator of β. First we will find the expectation
vector of β̂, that is, the vector of its expected values.

The values of the predictor variables in the matrix X can be either fixed, as in
a designed experiment, or random, as in observational data. However, in all cal-
culations we will treat the matrix X as fixed; that is, all expectations, variances,
and covariance are conditional on X. For notational simplicity this convention
will not be made explicit. We assume that X is of full rank – that its columns are
linearly independent.

Recall the expression for the least-squares estimate of β:

β̂ = (XT X)−1XTy.

Since we are conditioning on X, the only random variables in this β̂ expression
are those in y. Therefore, from (A.5) in Appendix A it follows that

E(β̂) = (XT X)−1XTE(y) = (XT X)−1XT Xβ = β,

showing that β̂ is unbiased. Next, we will find the covariance matrix of β̂, butThe covariance matrix
of an m-dimensional
random vector,
Cov(U), is an m × m

matrix whose (i, j)th
entry is the covariance
between the ith and
j th components of the
random vector U (see
Appendix A).

first we need the covariance matrix of y.
Using the homoscedasticity assumption and the assumption of no correlation

(2.7), it follows that
Cov(y) = σ 2 I.

Therefore, from equation (A.6) with A = (XT X)−1XT,

Cov(β̂) = (XT X)−1XT Cov(y)X(XT X)−1

= σ 2(XT X)−1. (2.13)

Then, since

st.dev.(β̂i) =
√
ith diagonal entry of Cov(β̂) =

√
{Cov(β̂)}ii ,

we have

ŝt.dev.(β̂i) = σ̂ ×
√
ith diagonal entry of (XT X)−1 = σ̂

√
{(XT X)−1}ii ,

where σ̂ is an estimate of σ discussed in Section 2.4.6.
If the normality assumption (2.8) is made, then a 100(1− α)% confidence in-

terval for βi is
β̂i ± ŝt.dev.(β̂i)t

(
1− α

2 ; n− p
)
, (2.14)
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Table 2.1 Estimates,
standard deviations,
and 95% confidence
intervals for the
coefficients from
the temp–logkwh
example and from the
sausage example.

Variable Coeff. St. dev. 95% CI

temp −0.0319 0.00215 (−0.0362,−0.0276)

sodium 0.211 0.021 (0.170, 0.252)
pork.beef 45.8 4.22 (37.3, 54.2)

where p is the number of regression parameters (including the intercept) in the
model; t(q;m) is the 100qth percentile of the t-distribution with m degrees of
freedom. For n− p bigger than about 30 we can replace (2.14) by

β̂i ± ŝt.dev.(β̂i)z
(
1− α

2

)
,

where z(q) is the 100qth percentile of the standard normal distribution.
These results can be used to construct Table 2.1, which shows coefficients,

standard errors, and 95% confidence intervals (CIs) for the coefficients in elec- The standard deviation
of an estimator is
usually called its
standard error.

tricity usage and sausage examples. Since none of the confidence intervals in
Table 2.1 include zero, we see that all of the coefficients are significant at the 0.05
level.

These confidence intervals have exact 100(1− α)% coverage probability only
if the errors are independent and normally distributed with a constant variance.
However, the coverage probability is somewhat robust to nonnormality. Corre-
lated errors, however, can cause the coverage probability to deviate wildly from
100(1 − α)%. Since some residual autocorrelation was seen in the electricity
usage data, the standard deviation and confidence interval for temp should be in-
terpreted cautiously. In fact, in the expanded model that uses lagged values of
temp and logkwh as additional predictor variables, the standard deviation of the
coefficient of temp is 0.0039, rather larger than the value in Table 2.1.

2.4.3 t-Statistics and p-Values

One is often interested in testing the null hypothesis that βi is zero versus the al-
ternative that βi is nonzero. The null hypothesis has the interpretation that there
is no linear relationship between y and xi such that one could drop xi from the
model. This test can be done using the t-statistic, defined as

t(β̂i) ≡ β̂i

ŝt.dev.(β̂i)
.

The p-value is
2[1− Ft{t(β̂i); n− p}],

where Ft(·; k) is the cumulative distribution function of the t-distribution with k

degrees of freedom.
An alternative way to test is to reject the null hypothesis if the 100(1 − α)%

confidence interval does not include zero.
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Table 2.2 Typical
regression package
output for the sausage
example.

Variable Est. St. dev. t-Stat. p-Value

intercept 25.5671 10.0543 2.5429 0.0141
sodium 0.2111 0.0206 10.2358 0.0000
pork.beef 45.7595 4.2173 10.8504 0.0000

Table 2.2 is a summary of the fit of (2.3) to the sausage data, which is typical
of that produced by regression packages.

2.4.4 Inference about the Mean Response

We are now in a position to describe how the grey regions in Figure 2.14 are com-
puted. They rely on expressions for the expectation and standard deviation of
ŷ0 = xT

0β̂, the estimator of E(y|x0) = xT
0β, where xT

0 is a fixed and known row
vector of predictor variables. Of course, xT

0 could be xT
i , the ith row of X, if we

were interested in E(yi).

Using (A.5) and the unbiasedness of β̂, we have

E(ŷ0) = xT
0E(β̂) = xT

0β,

so that ŷ0 inherits the unbiasedness of β̂. Also, using (A.6) and (2.13), we have

var(ŷ0) = xT
0 Cov(β̂)x0 = σ 2 xT

0(XT X)−1x0, (2.15)

so that
ŝt.dev.(ŷ0) = σ̂

√
xT

0(XT X)−1x0.

A 100(1− α)% confidence interval for E(y) is

ŷ0 ± ŝt.dev.(ŷ0)t
(
1− α

2 ; n− p
); (2.16)

this result is the basis for the confidence band plot, the dark grey band in Fig-
ure 2.14.

For n− p larger than about 30, we can replace t
(
1− α

2 ; n− p
)

by

ŷ0 ± ŝt.dev.(ŷ0)z
(
1− α

2

);
as before, z(q) is the 100qth percentile of the standard normal distribution.

2.4.5 Inference about New Observations

Suppose that we wish to predict the value of y at a new data point for which x0

is available; that is, we wish to predict xT
0β + ε when x0 is known. The predic-

tor is ŷ0 = xT
0β̂, which predicts xT

0β by xT
0β̂ and ε by 0 – that is, both quantities

are predicted by estimates of their expected values. Uncertainty in the prediction
has two causes: β will differ from β̂, and ε will not equal 0.

Since the new ε is independent of β̂, it follows that

var(y − ŷ0) = var(ε)+ var(ŷ0).
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Hence, by (2.15), we have

ŝt.dev.(y − ŷ0) = σ̂
√

1+ xT
0(XT X)−1x0.

A 100(1− α)% prediction interval for y is

ŷ0 ± ŝt.dev.(y − ŷ0)t
(
1− α

2 ; n− p
); (2.17)

this is the basis for the prediction band plot, the light band in Figure 2.14.

2.4.6 Estimation of σ 2

As we have seen, confidence and prediction intervals require an estimate of σ 2.

The “natural” choice for this is the average of the squared residuals,

1

n

n∑
i=1

e2
i .

Using (2.10), this can be expressed in matrix notation as

1

n
‖y − ŷ‖2 = 1

n
‖(I − H)y‖2

= 1

n
yT(I − H)(I − H)Ty

= 1

n
yT(I − H)y.

It is reasonable to ask that the estimate of σ 2 be unbiased when the model is
correct. Note that The trace of a square

matrix A, denoted by
tr(A), is the sum of
the diagonal elements
of A.

E{yT(I − H)y} = E[tr{yyT(I − H)}]
= tr{E(yyT)(I − H)}
= tr[{Cov(y)+ E(y)E(y)T}(I − H)]

= σ 2 tr(I − H)+ (Xβ)T(I − H)Xβ.

Since H = X(XT X)−1XT, it is easily shown that (I − H)X = 0. Therefore,

E

(
1

n
‖y − ŷ‖2

)
= 1

n
σ 2 tr{In − X(XT X)−1XT}

= 1

n
σ 2{n− tr(Ip)}

= n− p

n
σ 2,

where Ip is the identity matrix of order p. This shows that our first proposal for
estimation of σ 2 is biased by a factor of n−p

n
. Therefore, it is common to use the

unbiased estimator

σ̂ 2 ≡ 1

n− p
‖y − ŷ‖2.
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Figure 2.15 Linear
and quadratic fits to
the electricity usage
data with kwh as the
response variable.
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2.4.7 Extra Sums of Squares and Hypothesis Testing

In practice, we often need to compare two or more models. For example, in
the electricity usage data, if one uses kwh as the response variable then there is
evidence of lack of fit to a straight line model; see Figure 2.6. One might then
consider a parabolic or quadratic model given by

kwhi = β0 + β1tempi + β2temp
2
i + errori . (2.18)

The fits to the linear and quadratic models are shown in Figure 2.15. The qua-
dratic fit appears better, but is this just due to random variation or is there really
curvature that requires an alternative to the straight line model?

We can address this question by starting with model (2.18) and testing

H0 : β2 = 0 versus H1 : β2 �= 0.

The least-squares estimator minimizes

n∑
i=1

(yi − β0 − β1tempi − β2temp
2
i )

2 =
n∑

i=1

e2
i ,

which is often called the residual sum of squares (RSS). The RSS provides a
cursory measure of the quality of the fit. If one model fits better than another,
then this difference in fit should be evident in the RSS values for the two models.
Therefore, a test can be performed by comparing the sum of squared residuals
from the quadratic model to the same quantity under the null hypothesis – that
is, from the straight line model. The former is always smaller than the later. The
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difference between the two, called the extra sum of squares, measures the im-
provement in fit gained by adopting the quadratic model instead of the linear.
The extra sum of squares is

ExtraSS ≡ RSSlinear − RSSquadratic,

where RSSlinear and RSSquadratic are the RSS values for the respective models.
This idea can be generalized. Suppose that two models are being considered,

where one is smaller than the other (e.g., the smaller model can be obtained by
dropping predictor variables from the larger model). We will refer to these as the
larger and smaller models. Then

ExtraSS ≡ RSSsmaller − RSSlarger.

The extra sum of squares can be used to test the larger versus smaller models.
The null hypothesis is that the smaller model fits the data, while the alternative is
that smaller does not fit but the larger does. Let psmaller and p larger be the number
of parameters in the respective models and let σ̂ 2

larger be the estimate of σ 2 from
the larger model. The F -test statistic is

F ≡ ExtraSS/(p larger − psmaller)

σ̂ 2
larger

. (2.19)

It can be shown that, under the null hypothesis and the normality assumption
(2.8), F has an F -distribution with p larger − psmaller and n − p larger degrees of
freedom.

The F -statistic has an intuitive interpretation. The numerator is the ratio of
the improvement in fit of the larger model over the smaller one to the increase
in number of parameters; the denominator is an estimate of the variance of the
response. The F -statistic compares the improvement per parameter to the data
variability.

Given this interpretation, one sees that the null hypothesis should be rejected
when F is large. An α-level test is obtained by rejecting the null hypothesis when
F exceeds the (1 − α) quantile of the F -distribution with p larger − psmaller and
n−p larger degrees of freedom. Therefore, the p-value is FF (F ;p larger −psmaller,

n − p larger), where FF (·;m1, m2) is the cumulative distribution function of the
F -distribution with m1 and m2 degrees of freedom.

These F -tests have exact α-level only if the errors are independent and nor-
mally distributed with a constant variance. Like the t-intervals in Section 2.4,
they are somewhat robust to nonnormality and nonconstant variance but not to
correlated errors.

In the electricity usage example, RSSlinear = 6833, RSSquadratic = 4766, and
σ̂ 2 = 91.66. Therefore,

F = (6833 − 4766)/(2 − 1)

91.66
= 22.55.

This gives a p-value of 0.000016, which is strong evidence that the straight line
model does not fit well compared to the quadratic one.
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Figure 2.16
Scatterplots of
y versus ŷ, with
45◦ line, and
corresponding
squared correlation
coefficients (R2

values) for the linear
and quadratic models
fitted to the electricity
usage data with kwh
as response.
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2.4.7.1 R2 Values and F-Tests
An alternative (and perhaps more intuitive) way to think about an F -test is in
terms of the increase in the R2 value of the fit. Assuming the model contains an
intercept, the R2 value is given by

R2 = square of correlation coefficient between y and ŷ.

The idea is that a model with a “better” fit exhibits a stronger correlation between
the data and fitted values, and thus it has a higher R2 value. The caveat is that
the R2 value is always increased by adding more terms to a linear regression, so
the pertinent issue is whether the addition of one or more terms leads to a signifi-
cant increase in R2. This is illustrated in Figure 2.16 for the linear and quadratic
models for the electricity usage data described in Section 2.2.

As shown in these plots, the R2 values are 78% for the smaller (linear) model
and 85% for the larger (quadratic) model. Does this represent a significant enough
increase in R2 to adopt the latter model?

With a bit of algebra, one can show that the F -statistic is

F = R2
larger − R2

smaller

(1− R2
smaller)(p larger − psmaller)/(n− p larger)

,

which shows how the F -test can be thought of as deciding whether or not an in-
crease in the R2 value is significant. Because the F -statistic is highly significant
in this case, we can conclude that the second plot in Figure 2.16 represents a sig-
nificantly higher R2 value.

Another interpretation of R2 is as the proportion of the variation in the re-
sponse that can be predicted or “explained” by the predictor variables. An R2

value of 0.25 means that only 25% of the variability in the response is predictable
using the regression model.

2.5 Parametric Additive Models

Perhaps the most widely used semiparametric regression model is the additive
model (see e.g. Hastie and Tibshirani 1990). It assumes that the effect of the pre-
dictor variables on the response variable is additive, which essentially means that



2.5 Parametric Additive Models 37

Figure 2.17 Location
of 56 U.S. cities
with points shaded
with respect to
min.temp. A map of
the United States is
superimposed.

minimum temperature

0 65

the predictor variables affect the response variable independently of one another.
We will give a thorough treatment of additive models in Chapter 8. As we will
see there, the term is usually taken to mean that the predictors are nonparametric
functions. But many parametric regression models are also additive models, so
it is expedient to introduce the notion of an additive model – and the mechanics
of its fitting and interpretation – in this more familiar setting.

Figure 2.17 displays a “shaded” scatterplot of data corresponding to the av-
erage minimum January temperature of 56 cities in the United States and the
geographical location of the cites (Peixoto 1990). We will refer to these data as
the U.S. temperature data. In Peixoto (1990) it is demonstrated that an accurate
prediction model for minimum temperature is

min.tempi = β0 + β1lati + β21loni + β22lon
2
i + β23lon

3
i + εi, (2.20)

where lati is the number of degrees latitude of the ith city and loni is the num-
ber of degrees longitude. We work with the negative version of degrees longitude
so that the longitude axis matches geographical maps.

Equation (2.20) is an example of an additive model. It assumes that lat and
lon act additively on the mean minimum temperature value. There is no inter-
action (sometimes called effect modification). This means that the effect of lat
on min.temp is the same for all values of lon, and vice versa.

2.5.1 Displaying Additive Fits

Figure 2.18 shows the fits corresponding to (2.20). The main attraction of an
additive model is that, assuming the model is correct, the two panels show the
estimated effects in a simple, interpretable way. The additive model shows that
lat has a negative linear effect on min.temp while lon has a striking nonlin-
ear effect due to, for example, altitudinal variation. This result suggests that one
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Figure 2.18
Components of fit
of (2.20) to the U.S.
temperature data.
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might add altitude as another predictor variable, though altitude is not included
in the data set we are using.

Notice that Figure 2.18 also shows the values of the predictor variables through
the use of a rug plot at the base of each panel. Apart from conveying the distri-
bution of the predictor, this plot can be useful for identifying observations with
high influence. However, there is still room for improvement. For example, the
vertical axes are somewhat arbitrary and there is no indication of the amount of
variability in the estimates.

The next few subsections describe a number of embellishments to Figure 2.18.
For easier digestion we will use the following notation:

yi = min.tempi, si = lati, ti = loni .

2.5.1.1 Vertical Alignment
The first aspect of Figure 2.18 that warrants attention is that the vertical posi-
tions of the curves are arbitrary. If the line in Figure 2.18(a) is moved up or down
10 units then the interpretation is unchanged: a 1-degree increase in latitude re-
sults in a 2.36-degree decrease in mean minimum temperature. The scales on the
vertical axes are only meaningful in a relative sense; they have no absolute in-
terpretation. Since we have the freedom to choose the vertical positionings, we
should try to make them meaningful in the absolute sense. A reasonable solution
is to plot, for each predictor, the profile of the response surface with each of theThe response surface

of a regression fit
is the multivariate
function of the
predictors with all
parameters replaced
by their estimates.

other predictors set at their average. For the current example this would involve
plotting

β̂0 + β̂1s + β̂21t̄ + β̂22 t̄
2 + β̂23 t̄

3 against s

and
β̂0 + β̂1s̄ + β̂21t + β̂22 t

2 + β̂23 t
3 against t.

Operationally, this can be achieved by setting up grids of size M,

gs ≡ [gs1, . . . , gsM ]T and gt ≡ [gt1, . . . , gtM ]T,

in the s and t directions (respectively) and then defining the matrices
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Figure 2.19
Components of
parametric additive
model fit to the U.S.
temperature data with
vertical alignment as
described in the text.
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Figure 2.20
Components of fit to
the U.S. temperature
data as effects
about the mean,
with approximate
pointwise 95%
confidence bands
indicated by the
shaded regions.
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Xs =
 1 gs1 t̄ t̄ 2 t̄ 3

...
...

...
...

...

1 gsM t̄ t̄ 2 t̄ 3

, X t =
 1 s̄ gt1 g2

t1 g3
t1

...
...

...
...

...

1 s̄ gtM g2
tM g3

tM

.
The vertically aligned curves are then

Xs β̂ versus gs and X t β̂ versus gt ,

where β̂ = [β̂0 β̂1 β̂21 β̂22 β̂22 ]T. These are shown in Figure 2.19. The vertical
scales are the same and correspond to the minimum temperature values.

2.5.1.2 Variability Bands
Just as we argued in the single predictor case, it is useful to show some esti-
mate of the variability in the estimated curves. Such an embellishment is shown
in Figure 2.20. The shaded regions correspond to approximate 95% pointwise
confidence intervals for mean minimum temperature for a given value of the pre-
dictor on the horizontal axis, and the contribution of the other predictor set at its
average.
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Figure 2.21
Components to the
U.S. temperature
data as effects about
the mean, with 95%
confidence bands and
partial residuals.
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How are these variability bands computed? If, for a general random vector
v = [v1, . . . , vM ], we define

st.dev.(v) ≡ [√var(v1), . . . ,
√

var(vM)
]T
,

then it is straightforward to show that

st.dev.(Xs β̂) =
√

diagonal{Xs Cov(β̂)XT
s }

= σ
√

diagonal{Xs(XT X)−1XT
s }.

The vertical boundaries of the bar in Figure 2.20(b) are then

Xs β̂ ± 2 × ŝt.dev.(Xs β̂),

where ŝt.dev.(Xs β̂) involves replacement of σ by its usual estimate (Section
2.4.6). As usual, the multiplicative factor of 2 is an approximation to the 0.975
quantile of the normal and t-distributions, and it leads to approximate 95% point-
wise confidence.

2.5.1.3 Partial Residuals
The ith residual from the fit to the U.S. temperature data is

ei = yi − β̂1si − β̂21ti − β̂22 t
2
i − β̂23 t

3
i .

If the model provides an adequate fit to the data then the ei should behave like a
random sample with zero mean (Section 2.3). If the ei are added to each of the
curves in Figure 2.20 then, for an adequate fit, the residuals should be randomly
scattered about the curve. The result is shown in Figure 2.21. In this case the scat-
ter about the curves does not show any systematic patterns, so we have a positive
diagnosis of model adequacy.

In general, the sum of the componentwise fitted values and residuals are called
partial residuals and provide a useful diagnostic for adequacy of an additive
model fit.
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2.5.1.4 Derivative Plots
In the situation where both predictors enter the model linearly, that is, where the
response surface is

β̂0 + β̂1s + β̂2 t, (2.21)

it is usual to report the coefficient estimates β̂1 and β̂2 and their estimated stan-
dard deviations (see e.g. Table 2.1). This is because they correspond to the rates
of change or slopes of the mean response for each of the predictors. Another
way of expressing this is in terms of partial derivatives: β̂1 and β̂2 are the partial Partial derivatives

are obtained via
differentiation with
respect to one variable
while the others are
held fixed.

derivatives of (2.21) with regard to s and t, respectively.
In the U.S. temperature example the second component is not linear, but we

can extend the notion of predictor slope by using partial differentiation. From

ŷ(s, t) ≡ β̂0 + β̂1s + β̂21t + β̂22 t
2 + β̂23 t

3

it follows that

∂

∂s
ŷ(s, t) = β̂1,

∂

∂t
ŷ(s, t) = β̂21 + 2β̂22 t + 3β̂23 t

2.

Curve estimates and variability bands can be computed in the same fashion as
for Figure 2.20 by replacing the columns of Xs and X t by their respective partial
derivatives,

X ′
s =

 0 1 0 0 0
...

...
...

...
...

0 1 0 0 0

, X ′
t =

 0 0 1 2gt1 3g2
t1

...
...

...
...

...

0 0 1 2gtM 3g2
tM

,
and then plotting

X ′
s β̂ versus gs and X ′

t β̂ versus gt .

Variability bands can be obtained by adding plus and minus twice the estimated
standard deviations:

ŝt.dev.(X ′
s β̂) = σ̂

√
diagonal{X ′

s(XT X)−1(X ′
s)

T},
ŝt.dev.(X ′

t β̂) = σ̂
√

diagonal{X ′
t(XT X)−1(X ′

t )
T}.

Figure 2.22 is the resulting graphic for the U.S. temperature data. The left-
hand panel is none other than a graphical representation of the regression co-
efficient for latitude, along with its approximate 95% confidence interval. The
right-hand side shows that the slope for longitude changes depending on loca-
tion. For example, for a given latitude, the longitudinal effect is significantly
negative on the U.S. west coast but is significantly positive at around −90 de-
grees longitude.

A summary of the fitted model that relates the additive fits to the geography is
shown as Figure 2.23.
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Figure 2.22
Derivatives of
components of
fit to the U.S.
temperature data,
with approximate
pointwise 95%
confidence bands.

(a)

degrees latitude

ef
fe

ct
 o

n 
m

in
im

um
 te

m
pe

ra
tu

re

25 30 35 40 45

-4
-3

-2
-1

0

(b)

degrees longitude

ef
fe

ct
 o

n 
m

in
im

um
 te

m
pe

ra
tu

re

-120 -110 -100 -90 -80 -70

-4
-3

-2
-1

0

Figure 2.23
Summary of fitted
additive model in
relation to the United
States map.
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2.5.2 Degrees of Freedom

The fit to the U.S. temperature data involves five parameters. Alternatively, we
can say that the fit uses 5 degrees of freedom. The latter terminology has the ad-
vantage that it generalizes more naturally to semiparametric regression fits, so we
will mainly use this alternative in the remainder of the book.

In general parametric regression models such as

y = Xβ + ε,

the number of degrees of freedom is simply p, the length of the β-vector or
(equivalently) the number of columns in the X-matrix. However, these are not
ideal definitions of “degrees of freedom” because they do not generalize to semi-
parametric models.

Recall from Section 2.3 that the “hat matrix” H = X(XT X)−1XT is such that

ŷ = Hy,
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Table 2.3
Breakdown of degrees
of freedom (df ) for
fit to U.S. temperature
data.

Term df

intercept 1
latitude 1
longitude 3

Fit 5

so that Hii is the multiplying factor for the contribution of yi to its corresponding
fitted value. The total of these factors is

n∑
i=1

Hii = tr(H) = tr{X(XT X)−1XT}
= tr{XT X(XT X)−1} = tr(Ip) = p,

so this also coincides with the number of parameters being fit. Moreover, its
derivation can be applied to any regression fit of the form ŷ = Ly, where L is
an n× n matrix. This flexibility will prove to be useful in the extension to semi-
parametric models.

Here is an intuitive interpretation of
∑n

i=1 Hii. First note that Hii is the coeffi-
cient of yi in equation (2.12) for ŷi . A large value of Hii indicates that the ith data
point has a high influence on its own fitted value. For this reason, Hii is called
the leverage of the ith data point. Thus, the degrees of freedom p is the total in-
fluence of all the observations – the greater the number of parameters, the greater
the aggregate influence of the data.

As mentioned earlier, the fit to the U.S. temperature data uses 5 degrees of free-
dom. But it is also useful to break this down according to the contribution from
each term in the model, as shown in Table 2.3. The degrees-of-freedom values
correspond to the number of parameters used for each component of the addi-
tive model. But we will now describe an alternative definition that will be useful
when we extend additive models to nonparametric fits. Note that the vector of
fitted values is

ŷ = β̂01 + β̂11s + β̂21t + β̂22t2 + β̂23t3

= H0 y + H1y + H2 y, (2.22)

where, for example,

H1 = seT
2(XT X)−1XT, X = [1 s t t2 t3],

and e2 = [0 1 0 0 0]T.

Specifically, let E0 = diag(1, 0, 0, 0, 0), E1 = diag(0,1, 0, 0, 0), and E2 =
diag(0, 0,1,1,1). Then E0 + E1 + E2 = I and Hi = XE i(XT X)−1XT. Using
the identity tr(AB) = tr(BA), it follows that tr(Hi ) = tr(E i ) and so

tr(H0) = tr(H1) = 1 and tr(H2) = 3.

This suggests adoption of the degrees of freedom being the trace of the compo-
nentwise hat matrices for additive models in general.
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2.6 Model Selection

In applied multiple regression there are usually several possible models for the
data set at hand. Model selection concerns the problem of choosing among them.
Linhart and Zucchini (1986) provide a summary of the many approaches to this
problem.

In a nutshell, good model selection methods aim to achieve a balance between
goodness of fit and parsimony. Better fits to the data can always be achieved by
adding more parameters. But parsimonious models (i.e., those with few param-
eters) are attractive because of their simplicity and interpretability; they are also
less subject to estimation variability and so can yield more accurate predictions.

One approach to model selection is hypothesis testing. For example, if the
models can be ordered by complexity – linear, quadratic, and cubic polynomial
regression models, say – then we can test the first model versus the second. If the
first model is rejected, then we test the second versus the third. One continues in
this fashion until one finds a null model that is not rejected. Hypothesis testing,
however, is not entirely satisfactory as a model selection method. The asymmetry
between the null and alternative hypothesis is problematic in the model selection
context. Hypothesis testing is “biased” toward the null hypothesis in that we re-
tain the null unless there is strong evidence to the contrary. When we want to
select between two models, we often want to treat them on an equal footing rather
than accepting one unless there is strong evidence against it. Moreover, the error
probabilities of a sequence of tests are difficult to determine. For example, sup-
pose we test linear versus quadratic regression, then quadratic versus cubic, then
cubic versus quartic, and so forth – until we accept the null hypothesis of the
smaller of the two models being tested. Since each individual test statistic has an
null F -distribution, we could keep the type I error rate fixed at (say) 0.05 for each
individual test; but determining the probability that a correct model is selected by
the entire sequence of tests is an unsolved problem.

A more satisfactory approach to model selection is to estimate the predictive
ability of the various models and then select the model with the best estimated
predictive power. This method of model selection has the advantage that it ex-
tends easily to semiparametric modeling.

The residual sum of squares (RSS) of a model is a measure of predictive abil-
ity, since a residual is the difference between an observation of a response and its
fitted or predicted value:

ei = yi − ŷi .

However, RSS is not satisfactory as a model selector. The problem is that ŷi uses
yi as well as the other observations to predict yi. The result is that the most com-
plex model – that is, the model with the largest degrees of freedom and containing
the other models as special cases – always has the smallest RSS.

There is a simple remedy to this problem: when predicting yi, use all the ob-
servations except the ith one. Thus, define ŷ(i) to be the predicted value for the
ith case when the ith case is not used to estimate β. Then, let e(i) = yi − ŷ(i)
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be the ith deleted residual. The predicted residual sum of squares (PRESS) is
defined by

PRESS =
n∑

i=1

e2
(i).

PRESS is sometimes called the cross-validation statistic. Cross-validation is
the technique of model validation that splits the data into two disjoint sets, fits the
model to one set, predicts the data in the second set using only the fit to the first
set, and then compares these predictions to the actual observations in the second
set. This process can be repeated using different partitionings of the data into
two sets. PRESS uses leave-one-out cross-validation, where in each partition the
second set contains a single observation and the first set contains the remaining
observations.

The cross-validation statistic is not as difficult to calculate as it might first ap-
pear. One does not need to fit the model n times, thanks to an important identity.
Let Hii be the ith diagonal element of the hat matrix H. Then, the ith deleted
residual is related to the ith ordinary residual by

e(i) = ei

1 −Hii

.

Cross-validation selects the model with the smallest value of the cross-validation
statistic or (equivalently) of the PRESS statistic.

A popular model selection criterion related to cross-validation is the Mallows
Cp statistic (Mallows 1973). It can be written in various forms, but one is

Cp = RSS(p)+ 2σ̂ 2p, (2.23)

where p is the number of terms in the candidate model, RSS(p) is the residual
sum of squares for the same candidate model, and

σ̂ 2 = 1

n− p largest
RSS(p largest)

is the estimate of residual variance based on the largest model being considered.
The idea is to choose the model with the smallest Cp value. The justification for
the Cp expression (2.23) is given in Section 5.3.3.

Consider once again the electricity usage data with kwh as the response vari-
able. We saw that the quadratic model improves upon the straight line model.
Might a cubic polynomial model offer further improvement? The PRESS statis-
tics for the linear, quadratic, and cubic regression models are 7414, 5248, and
5356, respectively. Therefore, cross-validation selects the quadratic model. The
linear polynomial model suffers from large bias and thus has a large PRESS value.
The cubic model includes the quadratic model as a special case, so bias is not
a problem for the cubic model. However, compared to the quadratic model, the
cubic model must estimate an additional parameter. The result is that cubic model
predictions have slightly more random variation and are therefore somewhat less
accurate compared to predictions from the quadratic model.



46 Parametric Regression

Figure 2.24 Example
of quadratic regression
improving on linear
regression: (a) linear
fit to Janka hardness
data, (b) residual plot;
(c) quadratic fit to
Janka hardness data,
(d) residual plot.
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2.7 Polynomial Regression Models

Most of the remainder of this book is concerned with the situation where linearity
between mean response and predictor cannot be reasonably assumed. Perhaps the
most common means of dealing with nonlinearity in regression is to use higher-
degree polynomials. A pth-degree regression model for the scatterplot (xi, yi),

1 ≤ i ≤ n, is

yi = β0 + β1xi + · · · + βp x
p

i + εi.

Figure 2.24 illustrates polynomial regression via some forestry data. The re-
sponse is the logarithm of Janka hardness, a structural property of timber thatThe Janka hardness

data are from
Regression Analysis
by E. J. Williams
(1959).

is difficult to measure. The predictor is the timber’s density. In Figures 2.24(a)
and (b), the linear model is seen to be inadequate. However, the quadratic re-
gression model (p = 2) fits the data quite well, as shown in panels (c) and (d).

We now turn to an example in which polynomial regression does not seem to
help. The technique known as LIDAR (light detection and ranging) uses the re-
flection of laser-emitted light to detect chemical compounds in the atmosphere.
The LIDAR technique has proven to be an efficient tool for monitoring the dis-
tribution of several atmospheric pollutants of importance; see Sigrist (1994).

A typical LIDAR data set is shown in Figure 2.25. The horizontal variable,The LIDAR example
was taken from
Holst et al. (1996).

range, is the distance traveled before the light is reflected back to its source. The
vertical variable, logratio, is the logarithm of the ratio of received light from
two laser sources. One source had a frequency equal to the resonance frequency
of the compound of interest, which was mercury in this study. The other source
had a frequency off this resonance frequency. For details see Ruppert et al. (1997).
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Figure 2.25
Scatterplot of LIDAR
data.
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Figure 2.26 Higher-
degree polynomial fits
to the LIDAR data.
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Important features of this scatterplot are the nonlinear pattern and the evidence
of nonconstant variance (heteroscedasticity) – there is more vertical scatter on
the right compared to the left. Apparently, logratio is more variable at larger
values of range. In nonparametric regression we estimate

f(range) ≡ E(logratio|range).
A noteworthy feature of this example is that there is scientific interest in the first
derivative of f as well as in f itself.

The mean response is neither linear nor quadratic in the predictor. Can higher-
degree polynomial models provide an adequate fit to these data? Figure 2.26
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shows fits of degree 3, 4, and 10 to the LIDAR data. The lower-degree fits do not
go through the data very well. In particular, the cubic fit turns downward at the
left boundary, though the data do not. There is a similar problem for the quartic
fit at the right boundary. Neither the cubic nor the quartic fits can follow the sud-
den downturn in the data around range equal to 550–580. The degree-10 fit goes
through the data reasonably well but has wiggles that are representative not of
any features in the data but rather of high-degree polynomials generally. These
wiggles are a serious problem in this example, where the derivative of the regres-
sion function is the focus of study. Small wiggles perturb the derivative of the
fitted function far more than they perturb the fitted function itself. The derivative
is proportional to the negative concentration and should therefore be nonpositive.
Disturbingly, the derivatives of the polynomial fits in Figure 2.26 can be quite
large and positive. This is not true of the nonparametric fits in Chapter 6.

We might use high-degree polynomial models if nothing better were avail-
able, but fortunately much better fitting methods are available. This is the focus
of Chapter 3.

2.8 Nonlinear Regression

All of the parametric models that have been discussed so far are linear, mean-
ing that the model is linear in the parameters. For example, a polynomial model
is linear in the coefficients even though it is a nonlinear function of the predictor
variable, so polynomial regression is a linear model. In many subject matter dis-
ciplines there are theoretical models relating the predictors and the response, and
often these models are nonlinear in their parameters. Such nonlinear theoretical
models lead us to nonlinear regression. The nonlinear regression model is

yi = f(z i;β)+ εi,

where z i is a vector of predictors, β is a vector of unknown regression coeffi-
cients, and f(z;β) is a known function.

For example, the term structure model in Section 1.5,

P(0) = P(T ) exp

(
−
∫ T

0
f(x) dx

)
,

leads to a nonlinear regression model if we have a parametric model for the
forward rate f. In our AT&T bond example, the response is the time-0 price ex-
pressed as a percentage of par:

yi = 100
P(0)

P(Ti)
,

where Ti is the maturity of the ith bond and P(Ti) is its par value. Suppose that
we model f as linear:

f(t) = β0 + β1t.

Then the regression model is
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yi = 100 exp(−β0Ti − β1T
2
i /2)+ εi.

Here εi represents noise in the price P(0), mostly due to prices being some-
what “stale” (that is, based on the last trade). Also, z i = Ti and f(T ;β) =
100 exp(−β0T − β1T

2).

Nonlinear regression models are usually estimated by least squares, so that β̂

minimizes
n∑

i=1

{yi − f(z i;β)}2.

The least-squares estimate cannot be found explicitly as for linear regression,
but there are iterative algorithms such as the Gauss–Newton and Levenberg–
Marquandt algorithms that can be used. These are readily available in, for exam-
ple, PROC NLIN of SAS, nls of S-Plus, and lsqnonlin of MATLAB.

Define

Z =
 zT

1
...

zT
n

 and f(Z;β) =
 f(z1;β)

...

f(zn;β)

.
The analog of the matrix X in linear regression is

X = ∂

∂β
f(Z;β),

so that the (i, j)th element of X is

Xij = ∂

∂βj
f(z i; β̂).

There is no exact formula for the covariance matrix of β̂, but for large samples
we have the approximation

Cov(β̂) � σ̂ 2(XT X)−1.

In the term structure example,

[Xi1 Xi2 ] = −[100Ti 50T 2
i ] exp(−β̂0Ti − β̂1T

2
i /2) (2.24)

and

XT X =
n∑

i=1

exp(−2β̂0Ti − β̂1T
2
i )

[
(100)2T 2

i (50)(100)T 3
i

(50)(100)T 3
i (50)2T 4

i

]
.

Using (2.8), inference for β, and confidence intervals for the mean response,
prediction intervals for new observations can be obtained using the method intro-
duced in Section 2.4 for linear regression.

We fit the linear forward rate curve model to the U.S. STRIPS data. We also
tried the models where the forward curve was constant and where it was qua-
dratic. The estimated forward curves are shown in Figure 2.27.

Residuals can be defined for a nonlinear regression model in the obvious way:

ei = yi − f(z i; β̂).
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Figure 2.27 Term
structure example:
estimated forward rate
curves assuming a
constant, linear, and
quadratic model.
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Figure 2.28 Term
structure example:
residuals from
constant, linear, and
quadratic model.
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Residuals from the constant, linear, and quadratic models are plotted in Fig-
ure 2.28. For the constant curve model, the residuals are shown as circles con-
nected by solid lines. For the other two models, only lines are used. The residuals
do not have the “random” appearance one expects from a nearly independent in-
dependent series but instead are a nearly smooth curve. This is especially true of
the constant forward rate model and, for T large, the linear forward rate model –
these show poor fit. There is a problem either with the polynomial models or with
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the assumption that the errors are independent, or (more likely) with both. We
will return to this example in Chapter 18. There we will see that a nonparamet-
ric model fits better than the parametric polynomial models considered here, but
the residuals do not appear independent even with a more sophisticated model
for the forward rate. We were puzzled by the observation with the largest matu-
rity, which appears as an outlier owing to an extremely large residual in all three
models. Eventually, while this book was in production, we learned that this ob-
servation is a contaminant and in future work we will delete it. This STRIPS did
not trade recently and its price was imputed, not determined by an actual trade as
was the case for the other STRIPS in the data set.

We do not have space to discuss nonlinear regression in much detail, but more
information is available via the references given in Section 2.10.

2.9 Transformations in Regression

As we discussed in Section 2.6, simple models, if they fit the data well, gener-
ally predict with more accuracy than complex models. They are also in keeping
with the statistician’s role of summarizing data in a form that is easy to explain
and interpret. If a simple model does not fit the data very well, it is often possi-
ble to transform some of the variables so that the model fits the transformed data.
Transforming a variable means replacing the variable by some function of that
variable – for example, replacing kwh by its logarithm logkwh, as was done in
Section 2.1 so that a straight line model was appropriate.

As we mentioned in Section 2.2.1, several assumptions are made in linear
regression:

(1) E(y|x) = xTβ;
(2) var(y|x) is constant;
(3) ε = y − E(y|x) is normally distributed; and
(4) εi and εj are uncorrelated if i �= j.

Transformations can be used to meet one or more of assumptions (1)–(3). Un-
fortunately, data transformation cannot help if the data are correlated. Atkinson
(1985) and Carroll and Ruppert (1988) are good sources for information about
data transformation. These references discuss advanced methods for selecting a
data transformation. Here we will consider only the simplest method: trial and
error.

In regression we can transform either the response, the predictor variables, or
both. Transforming either the predictor variables or the response can help meet
assumption (1), but only transformation of the response affects the distribution
of the response and can help meet assumptions (2)–(3).

The most commonly used transformations are the square root, log, and recip-
rocal transformations, although other power transformations are sometimes used.
Consider a power transformation of a variable u, which replaces u by
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gλ(u) ≡ uλ, λ �= 0. (2.25)

The “strength” of a transformation depends on how much its first derivative dif-
fers from a constant function. Since

∂gλ(u)

∂u
= constant × uλ−1, λ �= 0,

and
∂ log(u)

∂u
= u−1,

it is natural to consider the log transformation to correspond to λ = 0; hence we
define

g0(u) = log(u). (2.26)

However, definitions (2.25) and (2.26) have the drawback that

gλ(u) �→ g0(u) as λ → 0.

This makes choice of λ via, say, maximum likelihood messy. It is thus more com-
mon to work with the Box–Cox (Box and Cox 1964) family of transformations:

gλ(u) =
{

(uλ − 1)/λ, λ �= 0,

log(u), λ = 0.

Observe that, with this definition, gλ(u) is continuous and in fact infinitely dif-
ferentiable at λ = 0.

We have seen that the electricity usage data can be fit adequately by either (a) a
straight line model to logkwh or (b) a quadratic polynomial model to kwh. Model
(a) might be considered simpler than (b), though we feel that they are of compa-
rable complexity since (a) involves a choice of transformation, which is similar to
using an additional regression parameter. However, there is one good reason for
using model (a) instead of (b). Assumption (2) concerning constant variance is
much closer to being fulfilled when the log transformation in (a) is used. We can
see this by using residual plots. In these plots, we use the studentized residuals
as defined in Section 2.3.

When checking for a constant variance, it is better to plot absolute studen-
tized residuals rather than the studentized residuals themselves. Using absolute
studentized residuals increases the data density by combining the negative and
positive residuals. Also, a scatterplot smooth to the absolute residuals can be of
considerable help when deciding whether the variation in y is constant or not. In
contrast, a scatterplot smooth of the residuals can reveal lack of fit but tells us
nothing about possible heteroscedasticity.

Figure 2.29 is a plot of the absolute studentized residuals from the quadratic
fit of kwh to temp. Superimposed is a scatterplot smoother. One can see the gen-
eral pattern that at low temperatures, where average kwh is highest, variability in
kwh is also highest.

The scatterplot smoother dips down at the far left in Figure 2.29. This seems
not to be a “real” effect but due rather to random variation caused by data sparsity
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Figure 2.29 Absolute
residuals from the
quadratic polynomial
fit of kwh to temp.
The solid curve is a
smooth to all the data
and the dashed line is
a smooth to the data
with the two leftmost
observations removed.
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Figure 2.30 Absolute
residuals from the fit
of logkwh to temp.
The solid curve is a
smooth to all the data
and the dashed line is
a smooth to the data
with the two leftmost
observations removed.
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in that region. For comparison, we have included a scatterplot smooth that does
not use the two leftmost data points. Thus, the quadratic model fits kwh well, but
the residual variation is heteroscedastic.

Figure 2.30 is a similar plot of the absolute studentized residuals from the
straight line fit to logkwh. One can see that the residual variation is nearly con-
stant, especially if one ignores the two data points at the extreme left. When a
response transformation induces a nearly constant variance, one says that it sta-
bilizes the variance and calls it the variance-stabilizing transformation.
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Figure 2.31
Scatterplots of all
nine combinations
of the identity,
square root, and
log transformations
(λ = 1, 1/2, and 0)
on range and on
logratio for the
LIDAR data.
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Despite the many examples that show the usefulness of data transformation,
there is a limit to what transformations can accomplish. The next example illus-
trates this unfortunate fact.

2.9.1 LIDAR Monitoring of Air Pollutants

The LIDAR data set is an example where transformations seem to be unhelpful.
We tried all nine combinations of the identity, square root, and log transforma-
tions (λ = 1, 1/2, and 0) on range and on logratio. Since logratio can
assume negative values, a constant was first added to logratio to ensure that
its smallest value was 0.1 before transformation. The resulting scatterplots are
shown in Figure 2.31.

None of the nine combinations of transformations could remove the severe
heteroscedasticity or induce a relationship between range and logratio that
appeared linear or even parabolic.

Usually a power transformation can straighten only a convex or concave x–y
relationship and not a more complex relationship, such as between range and
logratio in the LIDAR example. The next chapter is concerned with remedies
to this shortcoming of parametric regression models and transformations.

As explained, for example, in Carroll and Ruppert (1988), transformations can
stabilize a response variance only when that variance is a function of the response
mean. In the LIDAR example, the response variance is a function of range but
not of the response mean. This fact can be appreciated by noticing that, as range
increases from 400 to 550, the mean response is nearly constant but the variabil-
ity of the response increases noticeably. Thus, it should come as no surprise that
transformations cannot stabilize the variance in the LIDAR example.
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Transformations are wonderful tools, but they are not a panacea. Not every
example can be transformed into fitting a standard parametric model. For this rea-
son, it is essential to include semiparametric models in one’s statistical toolkit.

2.10 Bibliographic Notes

Several general textbooks on parametric regression were mentioned in the intro-
duction to this chapter. Here we will mention some more specialized textbooks.

Good books on regression diagnostics include Belsley, Kuh, andWelsch (1980),
Cook and Weisberg (1982), and Chatterjee and Hadi (1988). Diagnostics for
smoothing splines are discussed in Eubank (1984, 1985) and Eubank and Gunst
(1986) – see also Eubank (1988). Diagnostics are useful for finding outliers but do
not address the question of what to do about them. The robust regression meth-
ods discussed in Rousseeuw and Leroy (1987) are designed to provide stable and
reliable estimates in the presence of possible outliers. Atkinson (1985) is an ex-
cellent textbook of transformations in regression. We have only briefly discussed
parametric nonlinear regression, where the conditional expectation has a known
parametric form that is nonlinear in the parameters, but that topic is treated in
depth in Bates and Watts (1988) and Seber and Wild (1989).

Ryan’s (1997) textbook covers many of the newer topics in regression analysis,
including diagnostics, transformations, robust estimation, smoothing, and non-
linear regression. Also covered by Ryan are ridge regression, which is related to
the penalized least-squares estimators used in this book, and logistic regression,
which is a special case of generalized regression that we discuss in Chapter 10.

2.11 Summary of Formulas

General linear model

y = Xβ + ε, E(ε) = 0

Homoscedasticity and noncorrelation assumptions

Cov(ε) = σ 2 I

Normality assumption
ε ∼ N(0, σ 2 I)

Least-squares estimates
β̂ = (XT X)−1XTy

Fitted values and hat matrix

ŷ = Hy, H = X(XT X)−1XT
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Residuals
ei = y − ŷi, 1 ≤ i ≤ n

e = (I − H)y

Residual sum of squares

RSS =
n∑

i=1

e2
i = ‖y − ŷ‖2 = yT(I − H)y

Variability estimation

Cov(β̂) = σ 2(XT X)−1

st.dev.(βi ) = σ
√
ith diagonal entry of (XT X)−1

σ̂ 2 = ‖y − ŷ‖2/(n− p), p = number of terms

Confidence intervals
Under a normality assumption, a 100(1− α)% confidence interval for βi is

β̂i ± ŝt.dev.(β̂i)t
(
1− α

2 ; n− p
)

where p is the number of terms in the model and t(q,m) is the 100qth percentile
of the t distribution with m degrees of freedom.

Under a normality assumption, a 100(1− α)% confidence interval for E(y) at
x0 is

ŷ0 ± ŝt.dev.(ŷ0)t
(
1− α

2 ; n− p
)

Prediction interval for new observation
A 100(1− α)% prediction interval for y at x0 is

ŷ0 ± ŝt.dev.(y − ŷ0)t
(
1− α

2 ; n− p
)

R2 value

R2 = square of correlation coefficient between y and ŷ

F-test

F = R2
larger − R2

smaller

(1− R2
smaller)(p larger − psmaller)/(n− p larger)

Under the smaller model and normality assumptions, F has anF -distribution with
p larger − psmaller and n− p larger degrees of freedom.

Model selection

PRESS =
n∑

i=1

e2
(i), e(i) = ei

1 −Hii

where e(i) is the ith residual from fit with ith observation omitted;

Cp = RSS + 2σ̂ 2p, σ̂ 2 = 1

n− p largest
RSS(p largest)

where p is the number of terms in the candidate model.
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Scatterplot Smoothing

3.1 Introduction

As we saw at the end of the previous chapter, the LIDAR data, shown again in Fig-
ure 3.1, are virtually impossible to model using traditional parametric techniques.
Many of the problems described in Chapter 1 also involve nonlinear effects that
are difficult to model parametrically. There is a clear imperative to be able to
handle such nonlinear relationships effectively through more flexible techniques.
Even in circumstances where transformations and/or quadratic terms can be used
to handle nonlinearities, it should be kept in mind that their use can require a good
deal of expertise and time. In some applications, particularly those where many
regression fits are required, it is not feasible for such delicate modeling to be done.
Rather, one requires the nonlinear components to be handled automatically.

In this chapter we will look at some ways of freeing oneself of the restrictions
of parametric regression models. The title of this chapter, scatterplot smoothing,
has become commonplace in data-analytic contexts where one is interested in
highlighting the “underlying trend” in the scatterplot. Here the scatterplot points
are simply treated as a collection of points on a plane, without any regard to an

Figure 3.1
Scatterplot of LIDAR
data.
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underlying probabilistic model. Alternatively, we could think of the vertical po-
sitions of each point as a realization of a random variable y conditional on the
variable x with value corresponding to the horizontal position of the point. In
this chapter, x will be univariate. Nonparametric regression with multiple pre-
dictor variables will be discussed in Chapters 7–13. The underlying trend would
then be a function such as

f(x) = E(y|x).
This can also be written as

yi = f(xi)+ εi, E(εi) = 0,

in which case the problem is often referred to as nonparametric regression, where
the function f is some unspecified “smooth” function that needs to be estimated
from the (xi, yi).

There are several available methods for smoothing a scatterplot. The method
that we focus on in this chapter, penalized splines, has the attractiveness of
being a relatively straightforward extension of linear regression modeling (see
e.g. O’Sullivan 1986; Kelly and Rice 1990; Gray 1992, 1994; Eilers and Marx
1996; Hastie 1996). Some alternatives are discussed at the end of the chapter.

3.2 Preliminary Ideas

We will start with the straight line regression model :

yi = β0 + β1xi + errori . (3.1)

Figure 3.2 provides some graphical representations of this model. Figure 3.2(a)
shows an example of (3.1), with the line representing the underlying regression
function and the points representing a typical data set for such a model.

Figure 3.2(b) displays the corresponding basis for the model. These are the
functions:

1 and x. (3.2)

Note that the right-hand side of (3.1) is a linear combination of these functions,
which is the reason for use of the word basis. The basis functions correspond to

From linear algebra,
a basis of a vector
space is a set, V, of
elements of that space
such that any element
of the space can be
expressed uniquely as
a linear combination
of elements of V. For
example, β0 + β1x is
a linear combination
of the basis functions
1 and x. Thus, {1, x}
is a basis for the
vector space of all
linear polynomials in
x. Further details are
given in Appendix A.

the columns of the X-matrix for fitting the regression:

X =
 1 x1

...
...

1 xn

.
As we described in Chapter 2, the vector of fitted values ŷ can be obtained from
this matrix and y through the formula

ŷ = X(XT X)−1XTy = Hy. (3.3)

A simple extension of the simple linear model is the quadratic model:

yi = β0 + β1xi + β2x
2
i + errori . (3.4)
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Figure 3.2 The
simple linear
regression model.

(a) Straight Line Model
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It is illustrated in Figure 3.3. Notice that there is an extra basis function: x 2,

which corresponds to the addition of the β2x
2
i term to the model. The X-matrix

for the quadratic model is

X =
 1 x1 x 2

1
...

...
...

1 xn x 2
n

,
and fitted values can be obtained using (3.3) with this particular X.

The quadratic model is an example of how the simple linear model might be
extended to handle nonlinear structure. We will now look at how it can be ex-
tended to accommodate a different type of nonlinear structure.

Consider the model depicted in Figure 3.4(a). We call this the broken stick
model because it consists of two differently sloped lines that join together at
x = 0.6. How might one choose the set of basis functions to handle this type of
structure? One possible answer (there are several others) is to introduce a basis
function that is zero to the left of 0.6 and then is a positively sloped function from
0.6 onward. One should be able to see from Figure 3.4 that the broken line in
the top panel can be obtained as a linear combination of the three basis functions
in the bottom panel. A compact mathematical way of expressing the new basis
function is

(x − 0.6)+,

where, for any number u, u+ is equal to u if u is positive and is equal to 0 other-

We often call
(x − 0.6)+ the
positive part of the
function x − 0.6
because the “+” sets
it to zero for those
values of x where
x − 0.6 is negative
(i.e. x < 0.6). A
function such as
(x − 0.6)+ is also
sometimes referred to
as a truncated line.
The reason for this
name is illustrated in
Figure 3.4(b).

wise. The broken stick model (with a break at x = 0.6) is therefore

yi = β0 + β1xi + β11(xi − 0.6)+ + errori, (3.5)
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Figure 3.3 The
quadratic regression
model.

(a) Quadratic Model
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Figure 3.4 The
broken stick
regression model.

(a) Broken Stick Model
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which can be fit using (3.3) with

X =
 1 x1 (x1 − 0.6)+

...
...

...

1 xn (xn − 0.6)+

.
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Figure 3.5 The whip
regression model.(a) Whip Model
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Now suppose that we have structure that is more complicated than the broken
stick model. Figure 3.5(a) gives an example for which there is a straight line
structure in the left-hand half, but the right-hand half is prone to a high amount
of detailed structure. We will descriptively label this the whip model since the
right-hand half is free to move around like the lash of a whip, while the left-hand
side corresponds to the whip’s stiff handle and is linear. If we have good reason
to believe that our underlying structure is of this basic form, then how might one
change the basis? One possible answer is provided by Figure 3.5(b), where the
functions

(x − 0.5)+, (x − 0.55)+, . . . , (x − 0.95)+
are included. It is not too hard to see that this basis will do a reasonable job of
modeling any “whiplike” structure with a handle between x = 0 and x = 0.5.
Once again we can appeal to ordinary least squares to fit such a model with the
X-matrix:

X =
 1 x1 (x1 − 0.5)+ (x1 − 0.55)+ · · · (x1 − 0.95)+

...
...

...
...

. . .
...

1 xn (xn − 0.5)+ (xn − 0.55)+ · · · (xn − 0.95)+

.
From this example you should now appreciate that it is possible to handle any

complex type of structure you like by simply adding more functions of the form
(x − κ)+ to the basis or, equivalently, by adding a column of (xi − κ)+ values to
the X-matrix. The value of κ corresponding to the function (x − κ)+ is usually
referred to as a knot. This is because the function is made up of two lines that
are “tied together” at x = κ. Figure 3.5 displays the function (x − κ)+ for κ =
0.5, 0.55, . . . , 0.95.
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Figure 3.6 Linear
spline regression fit
to LIDAR data with
knots at range = 575
and range = 600.
The bar at the base
of the plot shows the
position of the knots.
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A function such as (x − 0.6)+ is called a linear spline basis function and a set
of such functions is called a linear spline basis. Note that any linear combina-
tion of linear spline basis functions 1, x, (x− κ1)+, . . . , (x− κK)+ is a piecewise
linear function with knots at κ1, . . . , κK. Such a function is called a spline.The traditional

definition of the word
spline is a thin strip
of flexible timber. A
mathematical spline
is so named because
of the analogy of a
flexible function able
to adapt to the data.

Rather than referring to the spline basis function (x − κ)+, it is common to
simply refer to its knot κ. Thus, we say that a model has a knot at 0.35 if the
function (x − 0.35)+ is in the basis. The spline model for f is

f(x) = β0 + β1x +
K∑
k=1

bk(x − κk)+. (3.6)

3.3 Practical Implementation

In the previous section we knew the form of the underlying function, so selection
of the appropriate basis was relatively easy. In the real world we are only given
the scatterplot, so selection of a good basis is usually more challenging. Con-
sider the scatterplot for the LIDAR data shown in Figure 3.1. One could start by
trying to choose appropriate knots by trial and error. Figure 3.6 shows the result
of a fit with knots placed at range = 575 and range = 600. The bar at the base
of the plot shows the position of the knots. While this fit displays the essential
qualitative features of the data, it is somewhat lacking in quality. For instance,
for low values of range the points follow a much flatter trend than the fitted line
over this region.

An obvious remedy is to use four knots instead of two; say, at range = 500,
550, 600, and 650. The resulting fit is shown in Figure 3.7. This fit is clearly much
more pleasing than the one shown in Figure 3.6 and would suffice for most prac-
tical purposes. However, the piecewise linear nature of the fit is an artifact of the
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Figure 3.7 Linear
spline regression fit
to LIDAR data with
knots at range =
500, 550, 600, and
650.
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Figure 3.8 Linear
spline regression
fit to LIDAR
data with knots
at range = 400,
412.5, 425, . . . ,700.

range

lo
g 

ra
tio

400 500 600 700

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

fitting method rather than the underlying mean structure in these data. In other
words, we do not really believe that the underlying mean is piecewise linear with
knots at range = 500, 550, 600, and 650 – this answer has arisen because of our
model specification. One might try to alleviate this problem by adding even more
knots, say at every 12.5 meters of the range. This results in Figure 3.8. Because
the fit in Figure 3.8 is based on a larger set of knots, the long piecewise linear
segments of Figure 3.7 are not present and the fitting procedure has much more
flexibility. However, for these data, it appears that there is now too much flexibil-
ity: the plot is heavily “overfitted”, meaning that the fitted function is following
small, apparently random, fluctuations in the data as well as the main features.
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Figure 3.9 Linear
spline regression fit
to LIDAR data with
knots at range =
612.5, 650, 662.5, and
687.5 deleted from the
basis that was used
to construct the fit in
Figure 3.8.

range

lo
g 

ra
tio

400 500 600 700

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

One could try pruning the knots to overcome this problem. For example, if the
knots at range = 612.5, 650, 662.5, and 687.5 are deleted then we obtain the fit
in Figure 3.9.

This fit is quite pleasing because it fits the data well without overfitting it.
However, it was arrived at after a lot of time-consuming trial and error. Clearly
it would be better to have the computer choose the best knots for us. The next
section discusses some ideas for achieving this objective.

3.4 Automatic Knot Selection

A natural first attempt at automatic selection of the knots is to use a model selection
criterion. There are several such criteria available in the multiple linear regres-
sion framework, for example, cross-validation and Mallows’s Cp as described in
Section 2.6. The idea is to choose that combination of knots that optimizes the
chosen criterion. However, before contemplating such an approach it is worth
considering the number of possible models. If there are K candidate knots then
there are 2K possible models, assuming the overall intercept and linear term are
always present. For the example depicted in Figure 3.8, K = 24 and so the
number of models that could be generated from this set of knots is 226, which
is approximately equal to 67 million! Already we can see that application of the
usual model selection ideas becomes either highly computationally intensive (or
impossible) for this approach to automatic knot selection.

The recent literature has seen the proposal of several approaches to automatic
knot selection that circumvent the need to fit all possible models. Many of them
are based on stepwise regression ideas. See, for example, Smith (1982), Fried-

Stepwise regression
means building
regression models by
adding or deleting
predictors one at
a time based on
some goodness-of-fit
criterion. man and Silverman (1989), Stone et al. (1997), Smith and Kohn (1996), Denison,
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Mallick, and Smith (1997), and DiMatteo, Genovese, and Kass (2001). The ap-
proach of the latter three references is to couch the problem in a Bayesian frame-
work and use Monte Carlo Markov chain procedures to select the knots. A review
and comparison of some of these approaches is given by Wand (2000).

Although most of the automatic knot selection procedures mentioned in the
previous paragraph have exhibited good performance, they are each quite com-
plicated and computationally intensive. In particular, their extension to the semi-
parametric models that are required to handle the problems given in Chapter 1
can, in some cases, be quite difficult. We therefore seek a simpler method for
flexible spline-based regression.

3.5 Penalized Spline Regression

As we have already discussed, the roughness of the fit in Figure 3.8 is due to there
being too many knots in the model. Another way to overcome this problem is to
retain all of the knots but to constrain their influence. The hope is that this will
result in a less variable fit.

Consider a general spline model with K knots, where K is large (K = 24 in
Figure 3.8). The ordinary least-squares fit can be written as

ŷ = Xβ̂, where β̂ minimizes ‖y − Xβ‖2

and β = [β0, β1, β11, . . . , β1K ]T, with β1k the coefficient of the kth knot. As
discussed previously, unconstrained estimation of the β1k leads to a wiggly fit.
Constraints on the β1k that might rectify this situation are

(1) max|β1k| < C,

(2)
∑|β1k| < C, and

(3)
∑

β2
1k < C.

For judicious choice of C, each of these will lead to a smoother fit to the scat-
terplot. However, the third constraint is much easier to implement than the first
two. If we define the (K + 2)× (K + 2) matrix

D =



0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 0 0 1 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1


=
[

02×2 02×K

0K×2 IK×K

]
,

then our minimization problem can be written as

minimize ‖y − Xβ‖2 subject to βT Dβ ≤ C.

It can be shown, using a Lagrange multiplier argument, that this is equivalent to

Lagrange multipliers
are a mathematical
tool for solving
optimization problems
when the solution is
subject to constraints.choosing β to minimize
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Figure 3.10
Penalized linear
spline regression fit
to LIDAR data with
λ = 30.
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‖y − Xβ‖2 + λ2βT Dβ (3.7)

for some number λ ≥ 0.

Equation (3.7) can be
minimized by using
exactly the same
calculus techniques
that are used to derive
the solution to the
OLS problem. See
Section A.2.12 for
an introduction to
calculus of functions
of a vector.

This has the solution

β̂λ = (XT X + λ2 D)−1XTy.

The term λ2βT Dβ is called a roughness penalty because it penalizes fits that are
too rough, thus yielding a smoother result. The amount of smoothing is con-
trolled by λ, which is therefore usually referred to as a smoothing parameter.
The fitted values for a penalized spline regression are then given by

ŷ = X(XT X + λ2 D)−1XTy. (3.8)

The reason for using λ2 rather than λ is given in Section 3.7. Penalized esti-
mation shrinks all coefficients of spline basis functions toward zero and can be
contrasted with knot selection, which shrinks some coefficients all the way to
zero while leaving the remaining coefficients unshrunk. Note that (3.8) is a type
of ridge regression. Ridge regression is sometimes used in parametric multiple
regression modeling to reduce the variability of estimated coefficients (see e.g.
Draper and Smith 1998).

Figure 3.10 shows a fit to the LIDAR data obtained by applying (3.8) with λ =
30. This fit is quite pleasing. It depends on the set of knots and the smoothing
parameter λ. In Chapter 5 we will show that, provided the knots cover the range
of xi values reasonably well, their number and positioning does not make much
difference to the result. However, λ has quite a big effect. This is illustrated in
Figure 3.11, where fits to the LIDAR data are shown for various values of λ with
the knot sequence used in Figure 3.8. The case λ = 0 corresponds to the uncon-
strained case, so the fit is identical to that shown in Figure 3.8. For λ = 10 we
have downweighted the influence of the knots, so the fit is a little less rough. In-
creasing λ threefold leads to a very pleasing fit, as shown in Figure 3.11(c). If we
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Figure 3.11 Linear
penalized spline
regression fits to
LIDAR data for λ

values of 0, 10, 30,
and 1000 (24 knots are
used).

take λ to be very large, as in Figure 3.11(d), then the effect of the knots diminishes
and the least-squares line is approached.

Methods for choosing λ and the knot locations from the data are described in
Chapter 5.

3.6 Quadratic Spline Bases

Each of the regression models that we have fit so far are linear splines – that is,
continuous, piecewise linear functions. There are conceptually very simple and
intuitive and will suffice in many applications.

As we discussed in Section 3.2, the reason for the piecewise linear nature of
the functions is that they are a linear combination of piecewise linear functions
of the form (x − κ)+. A simple way of escaping from piecewise linearity is to
add x 2 to the basis and also to replace each (x − κ)+ by its square, (x − κ)2+. The potentially

ambiguous notation
(x − κ)

p
+ will always

be taken to mean
{(x − κ)+}p rather
than {(x − κ)p}+.

The function (x − 0.6)2+ is illustrated in Figure 3.12.
Notice that this function does not have a sharp corner like (x − 0.6)+ does.

In other words, (x − 0.6)2+ has a continuous first derivative. It follows that any
linear combination of the functions

1, x, x 2, (x − κ1)
2
+, . . . , (x − κK)2

+ (3.9)

will also have a continuous first derivative and not have any sharp corners. This
will usually result in an aesthetically more appealing fit. We call (3.9) a quadratic
spline basis with knots at κ1, . . . , κK.
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Figure 3.12 A
quadratic basis
function with a knot
at 0.6.
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Figure 3.13
Penalized spline
regression fits to the
fossil data based
on (a) linear spline
basis functions and
(b) quadratic spline
basis functions. In
each case, eleven
equally space knots
are used.
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(b) Quadratic Spline
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Another advantage of using quadratic spline basis functions is that quadratics
tend to do a better job of fitting peaks and valleys in a scatterplot. This is illus-
trated in Figure 3.13 for data on ratios of strontium isotopes found in fossil shells

The fossil data
were collected by
T. Bralower of
the University of
North Carolina
and are analyzed
by Chaudhuri and
Marron (1999).
We are grateful to
Professor J. S. Marron
for providing us with
these data.

and their age. Both estimates are based on eleven equally spaced knots. The
quadratic spline fit smooths out the valley much more effectively than the linear
spline fit; and there are no unsightly corners. However, if one uses enough knots
and penalized least squares, then the difference between a linear and quadratic
spline fit is usually negligible – see Section 5.5, in particular, Figure 5.12.
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When fitting quadratic splines by penalized least squares, the coefficients of 1,
x, and x 2 are unpenalized. If the ith row of X contains the basis functions (3.9)
in that order, all evaluated at xi, then D = diag(0, 0, 0,1, . . . ,1).

3.7 Other Spline Models and Bases

All of the previous examples in this chapter use the linear spline or the quadratic
spline model with the truncated power basis. Two types of generalizations are
possible:

(1) to other spline models; and
(2) to other bases for a given spline model.

One reason for considering other models is to achieve smoother fits. Smoother
fits are especially important if one plans to differentiate the fit to estimate a de-
rivative of the regression function; see Section 6.8.

In principle, a change of basis does not change the fit – though some bases
are more numerically stable and allow computation of a fit with greater accuracy.
Besides numerical stability, reasons for selecting one basis over another are ease
of implementation (especially of penalties) and interpretability. The latter con-
sideration is usually not too important since one is generally interested only in
the fit, not the estimated coefficients.

An obvious generalization is to a spline model of general degree. Using the
truncated power functions, the basis is:

1, x, . . . , xp, (x − κ1)
p
+, . . . , (x − κk)

p
+, (3.10)

which is known as the truncated power basis of degree p. Since the function
(x − κ)

p
+ has p − 1 continuous derivatives, higher values of p lead to smoother

spline functions. The pth-degree spline model is

f(x) = β0 + β1x + · · · + βp x
p +

p∑
k=1

βpk(x − κk)
p
+. (3.11)

When fitting a pth-degree spline by penalized least squares, none of the poly-
nomial coefficients is penalized. For p > 0, the formula for the fitted values
becomes

ŷ = X(XT X + λ2pD)−1XTy, (3.12)

where
D = diag(0p+1, 1K). (3.13)

The power of 2p on the λ is justified as follows. Suppose that the x-variable un-
dergoes a transformation of the form

x �→ αx

for some α > 0. This will happen if different units of measurement are used for
x. Then it is natural to ask that application of the same transformation on the
smoothing parameter,
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Figure 3.14 B-spline
bases of degrees
(a) one, (b) two,
and (c) three. The
positions of the knots
are indicated by the
solid diamonds.
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λ �→ αλ,

results in the same fit ŷ. It can be shown that the parameterization used in (3.12)
is necessary and sufficient for λ to have this property.

3.7.1 B-Splines

Truncated power bases are useful for understanding the mechanics of spline-based
regression, and they can be used in practice if the knots are selected carefully or a
penalized fit is used. However, the truncated power bases have the practical disad-
vantage that they are far from orthogonal. This can sometimes lead to numerical
instability when there is a large number of knots and the penalty parameter λ is
small (or zero in the case of ordinary least squares). Therefore, in practice, es-
pecially for OLS fitting, it is advisable to work with equivalent bases with more
stable numerical properties. The most common choice is the B-spline basis.

Figure 3.14 shows the B-spline bases of degrees1, 2, and 3 for the case of seven
irregularly spaced knots. Each of these are equivalent to the truncated power basisTwo bases are

equivalent if they
span the same set of
functions. By span
we mean the set of
all possible linear
combinations of the
basis functions. Some
details are given in
Appendix A.

of the same degree. In the regression context, this means that if one used an X-
matrix with columns corresponding to the functions in Figure 3.14, then the fits
would be identical to those obtained using the truncated polynomial of the same
degree with knots in the same locations.

Mathematically, we can quantify the equivalence as follows. If XT is an X-
matrix with columns corresponding to (3.10) and if XB is the X-matrix corre-
sponding to the the B-spline basis of the same degree and same knot locations,
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Figure 3.15 Natural
spline basis for the
same set of knots used
in Figure 3.14.
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then
XB = XT Lp, (3.14)

where Lp is a square invertible matrix. Substitution into (3.8) allows us to ex-
press a penalized spline fit of degree p in terms of the B-spline basis as

ŷ = XB(XT
BXB + λ2pLT

pDLp)
−1XT

By. (3.15)

This form of the estimator is used by Eilers and Marx (1996).
Regression packages routinely transform the columns of the X-matrix to a

version that is more numerically stable (see Appendix B). Therefore, the basis
functions used in the formulation of a model will not correspond to those that
are used during its fitting. For this reason, we will not concern ourselves about
numerical issues when formulating spline-based smoothers.

3.7.2 Natural Cubic Splines

A commonly used modification of the cubic spline model is the natural cubic
spline basis. Natural cubic splines are cubic splines with the constraint that they
are linear in their tails beyond the boundary knots. For example, in Figure 3.15
the basis functions would be linear to the left of 0 and to the right of 1; here 0
and 1 are called the boundary knots and the other knots are interior knots. The
linearity is enforced through the constraints that the spline f satisfy f ′′ = f ′′′ =
0 at the boundary knots. The natural spline basis shown in Figure 3.15 has the
knot locations used in Figure 3.14.

A cubic smoothing spline, f̂ , minimizes the residual sum of squares plus a
penalty on the integral of the squared second derivative, (f̂ ′′)2. The resulting pe-
nalized RSS is
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n∑
i=1

{yi − f̂ (xi)}2 + λ3
∫
{f̂ (2)(x)}2 dx, (3.16)

where the λ > 0 is the smoothing parameter and the cubic power is based on the
scale arguments given earlier in this section. Although there is no prior constraint
imposed on f̂ that it even be a spline, it has been proved that the minimizer of
this penalized sum of squares is a natural cubic spline with knots (boundary and
interior) at the xi. Smoothing splines have enjoyed widespread use in nonpara-
metric regression and have a vast literature; see, for example, the monographs of
Eubank (1988), Wahba (1990), and Green and Silverman (1994). In Chapter 13
we will describe their connection with spatial statistical methodology.

Natural cubic splines are called “natural” because they arise as the solution of
an optimization problem. Also, the draftsman’s spline – a thin flexible strip of
wood once used to draw curves and the prototype of mathematical splines – as-
sumes a linear shape beyond the pegs used to constrain it. However, the boundary
constraints have no natural statistical interpretation of which we are aware. Nor
are the boundary constraints natural in any application we have seen. We see lit-
tle reason for preferring the natural cubic spline model to the cubic spline model
without these constraints.

The smoothing spline penalty (3.16) can be implemented with penalized splines
as well. In that case, penalized splines are much like smoothing splines. How-
ever, penalized splines are more general than smoothing splines in that one can
use as many or as few knots as desired and natural cubic spline boundary con-
straints can be either imposed or not.

3.7.3 Radial Basis Functions

The truncated polynomial basis functions (3.10) and the B-spline basis func-
tions defined via (3.14) span the space of pth-degree polynomials with knots at
κ1, . . . , κK. When p is odd, yet another set of basis functions with this property is

1, x, . . . , xp, |x − κ1|p, . . . , |x − κk|p.
Figure 3.16 shows the basis functions for p = 1 when the knots are the same as
those used in Figure 3.14.

Note that

|x − κk|p = r(|x − κk|), where r(u) = up.

This shows that the basis functions |x − κk|p (1 ≤ k ≤ K) depend only on the
distance |x − κk| and the univariate function r. An advantage of this property is
that the extension to higher-dimensional predictor variables is straightforward.
That is, if x ∈ Rd and κ1, . . . , κK are knots in Rd, then plausible basis functions
are those of the form

r(‖x − κk‖); (3.17)

as before, ‖v‖ =
√

vTv is the length of the vector v. Functions of general form
(3.17) are radially symmetric about κk. They are sometimes called radial basis
functions.
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Figure 3.16 Linear
radial basis functions
for the same set
of knots used in
Figure 3.14.
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Smoothing splines have a natural representation in terms of radial basis func-
tions. For a given value of λ > 0, the cubic smoothing spline defined in the
previous section can be written as

f̂ (x) = β̂0 + β̂1x +
n∑

j=1

β̂1j |x − xj |3, (3.18)

where β̂0, β̂1 and β̂11, . . . , β̂1n minimize

‖y − X0β0 − X1β1‖2 + λ3βT
1 Kβ1

subject to
XT

0β1 = 0; (3.19)

see Green and Silverman(1994). Here β0 ≡ [β0, β1]T, β1 = [β11, . . . , β1n]T,

X0 = [1, xi]1≤i≤n, and

X1 = K ≡
[
|xi − xj |3

1≤i,j≤n

]
. (3.20)

Note that constraint (3.19) means that smoothing splines use n basis functions
rather than the n+ 2 implied by the combined number of columns in X0 and X1.

Approximations to smoothing splines requiring considerably less computation
can be obtained by specifying a knot sequence κ1, . . . , κK, using the basis func-
tions 1, x, |x − κ1|3, . . . , |x − κK |3, and replacing (3.20) by

X1 =
[
|xi − κk|3

1≤k≤K

]
1≤i≤n

and K =
[
|κk − κk ′ |3

1≤k,k ′≤K

]
.

This family of smoothers can be extended to those of arbitrary odd degree by re-
placing the cubic power on the radial basis functions by 2m−1(m = 1, 2, . . . ) and
adding polynomial terms up to degree m−1 as in Section 13.2.1 (see also Nychka
2000). Section 13.5 describes some implementational details of this approach.
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Smoothers with radial basis functions also arise in the field of geostatistics,
where the term kriging is used in place of smoothing. Chapter 13 provides details.

3.8 Other Penalties

As the penalty parameter λ converges to infinity, the smooth fit will converge to-
ward some limit. One good way to understand a penalty is to identify the limit.

If we use a pth-degree spline with the truncated power function basis and if
the penalty is

λ2p
K∑
k=1

β2
pk, (3.21)

then the fit is shrunk toward the least-squares fit to a pth-degree polynomial.
Thus, the degree of the spline and the shrinkage target are tied together. With
penalty (3.21), for example, to shrink toward a straight line one must use linear
splines.

In some instances, one wants the flexibility of choosing the spline model and
the shrinkage limit independently. To achieve this flexibility, one can introduce
other penalties. Eilers and Marx (1996) use B-splines with equally spaced knots
and penalize the (q +1)th-order difference in the B-spline coefficients. Thus, by
using q = 1, for example, shrinkage is toward a straight line regardless of the de-
gree of the spline; whereas, for q = 2, the shrinkage is toward a parabola. The
Eilers and Marx penalty is not tied to the use of B-splines, though they do not
mention this point. We can replace one basis by an equivalent basis if the penalty
matrix is also transformed as discussed in Section 3.7.1; see equations (3.14) and
(3.15). Thus, the Eilers and Marx penalty could be implemented using truncated
power functions as the basis, provided the knots were equally spaced.

The Eilers and Marx penalty is certainly useful when equally spaced knots are
appropriate. In practice, however, we often find irregularities in the spacings of
the data that require the knots to be unequally spaced. We prefer using knots that
are at equally spaced quantiles. An alternative to (3.21) that allows shrinkage to a
wide range of limits and that is suitable for any spacing of the knots is a quadratic
integral penalty of the form

λ2p
∫ b

a

{f (q+1)(x)}2 dx, (3.22)

where q+1 ≤ p and where a and b are the smallest and largest x-values. Penalty
(3.22) shrinks toward a qth-degree polynomial. Using p = 3 and q = 1 gives a
fit very similar to a cubic smoothing spline. In fact, using natural cubic splines
with knots at every x gives precisely a cubic smoothing spline.

Let B(x) = [B1(x), . . . , BN(x)]T be the vector of spline basis functions, so
that the ith row of X is B(xi)

T and

f̂ (x) = β̂T B(x).
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Then (3.22) is equal to
βT Dβ,

where D is no longer the diagonal matrix of zeros and ones given by (3.13) but
rather the second moment matrix of B:

D =
∫ b

a

B(q+1)(x){B(q+1)(x)}T dx.

The fit is still given by (3.12) with only the definition of D in that expression
changed.

3.9 General Definition of a Penalized Spline

The various types of penalized splines that have been mentioned can be tied to-
gether with a broader concept. Our general definition of a penalized spline is
β̂T B(x), where β̂ is the minimizer of

n∑
i=1

{yi − βT B(xi)}2 + αβT Dβ

for some symmetric positive semidefinite matrix D and scalar α > 0.
The explicit form of β̂ is (3.12) with λ2p replaced by α. Throughout this book,

we will ordinarily use spline basis (3.10) and D given by (3.13). However, as
shown in the previous section, other choices of D have appeal, especially to those
familiar with smoothing splines.

When applying penalized splines, there are two basic choices to be made:

(1) the spline model – that is, the degree and knot locations and whether to
impose constraints such as natural spline boundary constraints;

(2) the penalty – or, more explicitly, the form of the penalty up to a nonnega-
tive smoothing parameter.

Once these two choices have been made, there follow two secondary choices:

(3) the basis functions – for example, truncated power functions or B-splines –
used to represent the model (here we are concerned mostly with inter-
pretability of the regression coefficients, not numerical stability);

(4) the basis functions used in the computations (here we are mostly con-
cerned with numerical stability).

Choices (3) and (4) do not affect the fitted curve, except for the effects of
numerical error. Choice (4) is discussed in Appendix B. If one uses mixed model
software, then choice (4) is made automatically by the software.

Constraints such as natural spline constraints are part of the model in (1) and
are subsumed in the basis functions in (3) and (4). For example, the natural cubic
spline basis functions are linear combinations of cubic spline basis functions that
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satisfy the natural spline constraints, with the number of natural cubic spline basis
functions equal to the number of cubic spline basis functions minus the number
of independent constraints.

Once the penalty and the basis functions have been determined, then a fifth
“choice” is automatically determined:

(5) the penalty matrix D.

As discussed in Section 3.7.1, if in (3) or (4) we change the basis to an equiv-
alent basis, then the penalty matrix can be changed so that the penalty itself is
unchanged.

3.10 Linear Smoothers

Although penalized spline fits are fundamentally different from ordinary least-
squares fits, they do share some common ground. In particular they are both
linear functions of the data vector y. As noted in Chapter 2, for a linear regres-
sion model

y = Xβ + ε,

the ordinary least-squares fit to the data is

ŷ = Hy, where H = X(XT X)−1XT (3.23)

is the hat matrix. The penalized spline model generalizes this to

ŷ = Sλy, (3.24)
where

Sλ = X(XT X + λ2pD)−1XT

and X corresponds to the pth-degree truncated polynomial basis. In nonparamet-
ric regression contexts, Sλ is usually called the smoother matrix, though the term
hat matrix is also used.

From (3.23) and (3.24) it is immediate that each can be written in the form

ŷ = Ly

for some n×n matrix L that does not depend on y. We call this the class of linear
smoothers.

Often, L depends on y through a smoothing parameter. In this case, the
smoother is not really linear. However, it is common practice to pretend the
data-based smoothing parameter is fixed and, as an approximation, to treat the
smoother as linear.

3.11 Error of a Smoother

Let f̂ be an estimator of f in the general scatterplot smoothing model

yi = f(xi)+ εi,

and let X ⊆ R be a set of values of x for which estimation of f(x) is of interest.
Then, for each x ∈X ,
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f̂ (x) is an estimate of f(x).

A cornerstone of statistical estimation theory is the error incurred by an estima-
tor with respect to a given target. The most common measure of error is the mean
squared error (MSE), which in this case is

MSE{f̂ (x)} ≡ E[{f̂ (x)− f(x)}2].

The MSE has the advantage of admitting the following decomposition:

MSE{f̂ (x)} = [E{f̂ (x)} − f(x)]2 + var{f̂ (x)},
which represents squared bias and variance contributions to the overall error.

Usually the entire curve fit is of interest (rather than individual points), so it is
common to measure the error globally across several values of x. One possibility
is the mean integrated squared error (MISE):

MISE{f̂ (·)} ≡
∫

X
MSE{f̂ (x)} dx.

A simpler alternative – and one that avoids dependence on X – is the mean summed
squared error (MSSE):

MSSE{f̂ (·)} ≡ E
n∑

i=1

{f̂ (xi)− f(xi)}2,

where only error at the observations are considered. An advantage of MSSE is that
it has matrix algebraic representations that simplify. Let f̂ = [f̂ (x1), . . . , f̂ (xn)]T

denote the vector of fitted values and let f similarly define the vector of f(xi)

values. Then
MSSE(f̂ ) = E‖f̂ − f‖2.

In the case of linear smoothers (Section 3.10),

f̂ = Ly.

Then the mean summed squared error can be written as

MSSE(f̂ ) =
n∑

i=1

{Ef̂ (xi)− f(xi)}2 +Var{f̂ (xi)}

=
n∑

i=1

{E(Ly)i − fi}2 +Var{(Ly)i}

=
n∑

i=1

{E(Ly)i − fi}2 + {Cov(Ly)}ii

= ‖(L − I)f‖2 + tr{Cov(Ly)}
= ‖(L − I)f‖2 + tr{L Cov(y)LT}.

Assuming homoscedasticity via Cov(y) = σ 2
ε I yields

MSSE(f̂ ) = ‖(L − I)f‖2 + σ 2
ε tr(LLT ). (3.25)
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Figure 3.17
Illustration of the
bias–variance trade-
off. The dashed line
is the contribution to
MSSE from squared
bias and is increasing
in the smoothing
parameter; the dotted
line is the contribution
to MSSE from
variance. The vertical
line corresponds to
the minimum MSSE
(solid curve) and
represents the optimal
trade-off between
summed squared bias
and summed variance.

The first term of (3.25) represents the squared bias contribution, while the second
corresponds to the sum of the variances. In smoothing, bias and variance work
against one another in what is known as the bias–variance trade-off. For penal-
ized spline smoothers, where L = Sλ, larger values of λ lead to an increase in
bias but to a decrease in variance. Smaller values of λ lead to the opposite re-
sults. Figure 3.17 illustrates the variance–bias trade-off for data simulated from
f(x) = sin(3πx), where the xi (1 ≤ i ≤ 200) are equally spaced between 0
and 1 and where σε = 0.4 (see Figure 4.6 for a realization of these data).

From Figure 3.17 we see that the MSSE-optimal amount of smoothing corre-
sponds to log(λ) � −2 and represents the optimal trade-off between summed
squared bias and summed variance. However, note that this is only obtainable in
the unrealistic situation where f and σε are known. Chapter 5 deals with estima-
tion of the optimal amount of smoothing.

3.12 Rank of a Smoother

Classical smoothing splines usen basis functions, whereas linear penalized splines
or cubic radial smoothers (3.18) with K knots use K + 2 basis functions. For
large n there are considerable computational savings available from the latter ap-
proach. But what is the cost? We will now show that “reduced knot” smoothers
tend to discard components of “full knot” smoothers that are unimportant to the
final smooth.

Consider a general linear smoother with n × n smoother matrix L, where L
is symmetric and positive semidefinite (as is true for all of the spline smoothers
we consider). Let λ1 ≥ · · · ≥ λn be the ordered eigenvalues of L with corre-

Every n×n matrix has
n scalar eigenvalues
and corresponding
n × 1 eigenvectors;
see Appendix A.
These can be used
to characterize its
properties in various
ways.

sponding eigenvectors v1, . . . , vn. Figure 3.18 shows the eigenvalues of (a) a full
knot smoothing spline and (b) a cubic radial smoother with K = 9 knots, both for
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Figure 3.18
Eigenvalues for
the smoothing
spline (n = 20)
corresponding to
the eigenvectors in
Figure 3.19 and a
9-knot penalized
spline.
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Figure 3.19
Eigenvectors
corresponding to the
ordered (largest to
smallest) eigenvalues
of the smoother matrix
of a smoothing spline
with n = 20.

1st eigenvector 2nd eigenvector 3rd eigenvector 4th eigenvector 5th eigenvector

6th eigenvector 7th eigenvector 8th eigenvector 9th eigenvector 10th eigenvector

11th eigenvector 12th eigenvector 13th eigenvector 14th eigenvector 15th eigenvector

16th eigenvector 17th eigenvector 18th eigenvector 19th eigenvector 20th eigenvector

n = 20 equally spaced observations. In Figure 3.19, the eigenvectors correspond-
ing to the full knot smoothing spline are plotted against the predictor variable.
Notice that the eigenvectors corresponding to the smaller eigenvalues become
more oscillatory.

Eigenvalues and eigenvectors are defined through the relationship

Lvi = λivi, i = 1, . . . , n. (3.26)

The eigenvectors form a basis for Rn, so for a general response vector y one has
the representation
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y =
n∑

i=1

αivi .

Using (3.26), fitted values can then be represented as

ŷ =
n∑

i=1

αiλivi .

With this representation, Figure 3.18(a) and Figure 3.19 show that the main part of
the smoothing spline fit is in the first nine or ten eigenvectors. The higher-order
eigenvectors contribute relatively little to the fit.

In Figure 3.18(b) one sees that the eigenvalues are exactly zero for all but
the first eleven eigenvectors. These correspond to a linear transformation of the
eleven basis functions in the fit. The eigenvectors of this fit are not plotted here
but are similar in nature to those plotted in Figure 3.19. It is apparent that the re-
duced knot smoother has a built-in omission of the least important component of
the smoother. Hastie (1996) gives a fuller mathematical treatment of this basic
idea.

Using the matrix algebraic result

A set of vectors are
linearly independent
if none of the vectors
can be expressed as
linear combinations
of the others; see
Appendix A.

rank of a matrix L ≡ number of linearly independent columns in L

= number of eigenvalues of L that are nonzero,

one can use the rank of the smoother matrix to quantify its computational com-
plexity. Smoothers that use considerably less than n basis functions will be called
low-rank, while those with basis functions approximately the same as the sample
size will be called full-rank.

Low-rank smoothers have risen to prominence in recent years owing to articles
such as Eilers and Marx (1996) and Hastie (1996). However, the idea of using
fewer than n basis functions in spline smoothing had been discussed in several
earlier articles, including Parker and Rice (1985), O’Sullivan (1986, 1988), Kelly
and Rice (1990), and Gray (1994), The S-PLUS function smooth.spline()
uses low-rank approximations for n > 50.

For scatterplot smoothing with sample sizes in the hundreds, there is not a
great deal to be gained from the use of low-rank smoothers. But for larger sam-
ple sizes and more complicated models involving several smooths, as treated in
the later chapters of this book, the reduction in computational overhead enabled
by low-rank smoothers can be enormous.

3.13 Degrees of Freedom of a Smoother

As seen in Figure 3.11, a small value of the smoothing parameter λ leads to a wig-
gly scatterplot smooth, somewhat close to interpolation of the data, whereas a
very large λ results in a parametric fit that depends on the degree of the spline
basis functions. What is not so clear is the relationship between intermediate
values of λ and the resulting amount of smoothing. This problem is illustrated in
Figure 3.20, which shows 24-knot linear penalized spline smooths of the LIDAR
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Figure 3.20 24-knot
linear spline fits to
the LIDAR data with
λ = 32 and λ = 48
but with respective
degrees of freedom
equal to 9.86 and 8.34.

data with λ = 32 and λ = 48. Even though the second smoothing parameter is
50% larger than the first, the two fits look almost identical. So the value of the
smoothing parameter does not have a direct interpretation as to how much struc-
ture is being imposed in the fit.

A transformation t(λ) of λ that provides a reasonable solution to this problem
is

t(λ) = tr(Sλ),

which we call the degrees of freedom of the fit corresponding to the smoothing
parameter λ. We saw in Section 2.5.2 that, in parametric regression, the trace of
the hat matrix H is

tr(H) = number of fitted parameters = degrees of freedom,

so tr(Sλ) is a generalization of this definition to scatterplot smoothers. It has the
rough interpretation as the equivalent number of parameters and can be calibrated
with polynomial fits: a scatterplot smooth with ν degrees of freedom summarizes
the data to about the same extent as a (ν − 1)-degree polynomial.

We will use the notation
dffit ≡ tr(Sλ) (3.27)

as an abbreviation. For the penalized spline we have, by the matrix result tr(AB) =
tr(BA),

dffit = tr{(XT X + λ2 D)−1XT X}.
For a penalized spline scatterplot smooth with K knots and degree p, it is eas-

ily shown that
tr(S0) = p + 1+K.

At the other extreme,

tr(Sλ) → p + 1 as λ → ∞,

so positive values of λ correspond to

p + 1 < dffit < p + 1+K.
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Figure 3.21 Plot of
dffit(λ) against λ for
24-knot linear spline
fits to the LIDAR
data.

Figure 3.21 shows dffit plotted against λ for 24-knot linear penalized spline
smooths of the LIDAR data. From this one sees that there is a monotonically
decreasing relationship between λ and dffit. Thus, there is a unique dffit corre-
sponding to each value of λ > 0. For the values of λ depicted in Figure 3.20,
the values of dffit are 9.86 and 8.34. This explains their similar appearance: they
have roughly the same number of equivalent parameters.

3.14 Residual Degrees of Freedom

As seen in Section 2.4.6, E(RSS) = (n− p)σ 2 in parametric regression models.
Therefore, the degrees of freedom for residuals, n−p, is used to correct for bias
when using RSS to estimate σ 2.

In nonparametric regression, we define the residual degrees of freedom to be

dfres ≡ n− 2 tr(Sλ)+ tr(SλST
λ ). (3.28)

As in parametric estimation, the residual degrees of freedom is used in estima-
tion of σ 2. To see the motivation for the definition, suppose that the true model
is

y = f + ε, where Cov(ε) = σ 2 I. (3.29)

Let
f̂λ ≡ Sλy. (3.30)

Using the result

E(vTAv) = E(v)TAE(v)+ tr{A Cov(v)}
for a general random vector v (see Appendix A), we have
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Figure 3.22
Comparison of
n − dfres(λ) and
dffit(λ) for 24-knot
linear spline fits to the
LIDAR data.

E(RSS) = E‖f̂λ − y‖2

= E‖(Sλ − I)y‖2

= E{yT(Sλ − I)T(Sλ − I)y}
= fT(Sλ − I)T(Sλ − I)f + σ 2 tr{(Sλ − I)T(Sλ − I)}
= ‖(Sλ − I)f‖2 + σ 2{tr(SλST

λ )− 2 tr(Sλ)+ n}
= ‖(Sλ − I)f‖2 + σ 2dfres. (3.31)

Assuming that the bias term ‖(Sλ − I)f‖2 is negligible, it follows that

RSS/dfres

is an unbiased estimate of σ 2.

Note that
n− dfres = 2 tr(Sλ)− tr(SλST

λ ) (3.32)

is an alternative measure to
dffit = tr(Sλ) (3.33)

for the effective number of parameters being fit by f̂λ. For parametric regres-
sion models fitted by ordinary least squares, (3.32) and (3.33) coincide because
SλST

λ = Sλ. But for nonparametric models they can differ substantially. For ex-
ample, in the 24-knot linear spline fit to the LIDAR data,

dffit = 18 corresponds to n− dfres = 21.3.

Figure 3.22 is an embellishment of Figure 3.21 with n − dfres added. The dif-
ference is greater for “mid-range” amounts of smoothing, whereas for low and
high amounts of smoothing the measures tend to coincide. This is because zero
smoothing and “infinite” smoothing correspond to parametric regression fits.
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For regression methods that are based on residual sums of squares (such as
F -tests), use of dfres is more appropriate than dffit. Details are given in Sec-
tion 6.6.2.

3.15 Other Approaches to Scatterplot Smoothing

Spline-based smoothers form just one class of the large collection of scatterplot
smoothers developed over the years. In this section we briefly describe some of
the other main classes.

3.15.1 Local Polynomial Fitting

One of the most popular methods for smoothing a scatterplot is local polynomial
fitting. One of its advantages compared with spline-based smoothers is simpler
theoretical analysis. This has allowed greater insight into the smoothing process.
Summaries of this theory are given in Wand and Jones (1995), Fan and Gijbels
(1996), and Loader (1999).

Figure 3.23 provides an illustration of the basic idea. The smooth at x = u is
obtained by fitting a weighted least-squares line where the weights correspond to
the height of the kernel function, which is shown at the base of the plot. The es-
timate at x = v is obtained similarly and also illustrated in Figure 3.23. If this
procedure is applied over a grid of x-values then the solid curve results.

In Figure 3.23, local lines are being fitted. However, polynomials of any de-
gree could be used. Let p be the degree of the polynomial being fit. At a point
x, the smooth is obtained by fitting the pth-degree polynomial model

E(yi) = β0 + β1(xi − x)+ · · · + βp(xi − x)p

using weighted least squares with kernel weights K{b−1(xi − x)}. The kernel
function K is usually taken to be a symmetric positive function with K(x) de-
creasing as |x| increases. For example, Figure 3.23 uses the standard normal
density function. The parameter b > 0 is the smoothing parameter for local poly-
nomial smoothers and is usually referred to as the bandwidth. The value of the
curve estimate is the height of the fit β̂0, where β̂ = [β̂0, . . . , β̂p]T minimizes

n∑
i=1

{yi − β0 − · · · − βp(xi − x)p}2K

(
xi − x

b

)
.

Assuming the invertibility of XT
x WxXx, standard weighted least-squares theory

leads to the solution
β̂ = (XT

x WxXx)
−1XT

x Wxy,

where

Xx =
 1 x1 − x · · · (x1 − x)p

...
...

. . .
...

1 xn − x · · · (xn − x)p


is an n× (p + 1) design matrix and



3.15 Other Approaches to Scatterplot Smoothing 85

Figure 3.23 Local
linear scatterplot
smooth (solid
curve) based on
100 simulated
observations
(represented by
circles). The dotted
curves are the kernel
weights and cubic fits
at the points u and v.
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Wx = diag

{
K

(
x1 − x

b

)
, . . . , K

(
xn − x

b

)}
is an n× n diagonal matrix of weights. Since the estimator of f(x) = E(y|x) is
the intercept coefficient, we obtain

f̂ (x;p, b) = eT
1(XT

x WxXx)
−1XT

x Wxy,

where e1 is the (p + 1)× 1 vector having 1 in the first entry and 0 elsewhere.
The case p = 0 results in the Nadaraya–Watson (Nadaraya 1964; Watson

1964) estimator:

m̂(x; 0, b) =

n∑
i=1

K

(
xi − x

b

)
yi

n∑
i=1

K

(
xi − x

b

) .

The data analyst must choose p and b. Our experience is that p = 1 works well if
f appears to be monotonically increasing; otherwise, p = 2 is satisfactory. The
bandwidth b can be chosen by trial and error with visual inspection, but it can
also be chosen from the data using one of the automatic smoothing parameter
selection approaches discussed in Chapter 5.

The Nadaraya–Watson (or “local constant”) estimator has long been studied
by theoreticians, but the local linear (p = 1) estimator seems to have been more
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widely used in practice after the seminal paper of Cleveland (1979). The reasons
for the superior practical performance of local linear over local constant estima-
tion became clearer with the papers of Fan (1992, 1993). Near the boundaries of
the data – and also in the interior, if the x are unequally spaced – local linear es-
timation is less biased than local constant estimation. Fan (1992, 1993) showed
that, as n → ∞ and b → 0, the bias of f̂ (x; b, p) is O(b2) for all x but the biasA sequence an is

O(cn) if there exists a
constant M such that
|an| ≤ M|cn| for n.
In other words, an is
bounded by a multiple
of cn. Thus, saying
that the bias is O(b2)

means that there is
a constant M such
that the bias when
using bandwidth b is
bounded in absolute
value by Mb2 for
any b.

of m̂(x; b, p) is O(b) at the boundaries and O(b2) at the interior. Ruppert and
Wand (1994) showed that this effect of greater asymptotic bias near the bound-
ary than in the interior holds for all even values of p. However, experience with
data and simulation studies is required when interpreting this asymptotic result.
The effect of this “boundary bias” is most severe for p = 0. In practice, p = 2
is an excellent choice for the degree of the local polynomials and is much less
variable near the boundaries as compared to p = 3. In simulation studies, p = 2
often outperforms p = 1 and p = 3.

There are several variations on the basic local polynomial fitting idea depicted
in Figure 3.23. Mostly they involve changing the value of the bandwidth across
the estimation region. For example, the method of Cleveland (1979) sets the band-
width so that the number of points used to estimate f(x) is fixed, regardless of the
estimation location x. The resulting scatterplot smooth is named LOESS (short
for “local regression”).

Relative to penalized splines, local polynomial regression is slow to compute
if programmed directly. However, there are several strategies for speeding up the
calculations (see e.g. Cleveland and Grosse 1991; Härdle and Scott 1992; Fan and
Marron 1994; Seifert et al. 1994).

3.15.2 Series-Based Smoothers

Without loss of generality, assume that the regression function f is defined on
the unit interval [0,1]. Under certain regularity conditions, f admits the Fourier
series representation

f(x) = β0 +
∞∑
j=1

{β s
j sin(jπx)+ βc

j cos(jπx)}.

For higher values of j, the functions sin(jπx) and cos(jπx) become more oscil-
latory, as shown in Figure 3.24. The more oscillatory functions account for the
finer structure in f. For smoother f, the corresponding coefficients will be small.
This suggests the model

f̂ (x) = β̂0 +
J∑

j=1

{β̂ s
j sin(jπx)+ β̂ c

j cos(jπx)},

where β̂ s
j , β̂

c
j (1 ≤ j ≤ J ) and β̂0 are all estimated by least squares. The cut-off

value J is the smoothing parameter in this case.
Other basis functions that are ordered by amount of oscillation may be used in-

stead of the trigonometric basis functions. An example is the Demmler–Reinsch
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Figure 3.24 Fourier
series basis functions:
(a) sin(jπx) and
(b) cos(jπx), both
for 1 ≤ j ≤ 5.
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basis, which (like the B-spline basis) is a transformation of the truncated polyno-
mial basis used throughout most of this chapter (see e.g. Nychka and Cummins
1996). Another possibility is one of the wavelet bases. The use of wavelets in
nonparametric regression has been the focus of a great deal of research since
the early 1990s, in part because of the ability of wavelets to handle discontinu-
ities, kinks, and other sharp features in a systematic fashion. We have no hope of
doing justice to this burgeoning research area here. Instead we refer to the texts
of Ogden (1996) and Härdle et al. (1998).

3.16 Choosing a Scatterplot Smoother

In this chapter we have described several ways of smoothing a scatterplot. Nu-
merous embellishments (see e.g. Chapter17) are possible. How should one decide
between these various choices?

First, it should be noted that there are approximate mathematical equivalences
between the various linear smoothers described in this chapter (e.g., Silverman
1984; Eubank 1994). This means that, for fixed degrees of freedom, the fits from
two different scatterplot smoothing methods are approximately the same. This
is illustrated in Figure 3.25 for low-rank and full-rank spline, local linear, and
Fourier series smoothers. Each smooth uses 11 degrees of freedom on the LIDAR
data and are difficult to tell apart.

Some criteria for evaluating and deciding between scatterplot smoothers may The list of criteria
for evaluating and
deciding between
scatterplot smoothers
is an adaptation of
one given in Marron
(1996).

be listed as follows.

(1) Convenience. Is it available on the analyst’s favorite computer package?
(2) Implementability. If not immediately available, how easy is it to imple-

ment in the analyst’s favorite programming language?
(3) Flexibility. Is the smoother able to handle a wide range of types of rela-

tionships that may exist among the variables of interest?
(4) Simplicity. Is it easy to understand how the technique processes the data

to obtain answers?
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Figure 3.25
Scatterplot smooths
of the LIDAR data
using four different
approaches: 24-knot
penalized spline (low-
rank); smoothing
spline (full-rank);
local linear estimator;
Fourier series
estimator. Each
smooth uses 11
degrees of freedom.
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(5) Tractability. Is it easy to analyze the mathematical properties of the tech-
nique?

(6) Reliability. Can the answers be trusted?
(7) Efficiency. Does the technique use the data in the most efficient way?
(8) Extendibility. Is the technique easily extended to more complicated set-

tings?

This book is geared toward analysis of real data sets, some of which are quite
complex (see Chapter 1). Therefore, we place a high premium on (2) and (8).
Criteria (4), (6), and (7) are also quite important to us, and each of the techniques
described in this chapter do quite well in this regard.

A trade-off exists regarding (3). Most of the smoothers described in this chap-
ter require the specification of a single smoothing parameter. However, there is a
cost in flexibility and – for functions with differing amounts of curvature across
their domain – improvements are possible by using, for example, the ideas de-
scribed in Section 3.4 and Chapter 17. On the other hand, these methods require a
bigger implementational effort and can be difficult to extend to more complicated
settings.

3.17 Bibliographic Notes

Scatterplot smoothing has a very large literature both inside and outside of statis-
tics. In the past decade or so, several books have summarized various aspects of



3.18 Summary of Formulas 89

the problem from a statistical viewpoint, so we will use these as pointers to the
wider literature.

Books mainly on spline approaches to scatterplot smoothing are Eubank (1988),
Wahba (1990), Green and Silverman (1994), Dierckx (1995), Gu (2002), and
Hansen et al. (2003). The latter book concentrates on the automatic basis func-
tion approach described in Section 3.4.

Books mainly on local polynomial and kernel approaches to scatterplot smooth-
ing are Müller (1988), Nadaraya (1989), Härdle (1990, 1991), Wand and Jones
(1995), Fan and Gijbels (1996), Simonoff (1996), Bowman and Azzalini (1997),
Hart (1997), Loader (1999), Pagan and Ullah (1999), and Fox (2000). Loader’s
book contains an interesting early history on local regression.

Books on classical series approaches are Thompson and Tapia (1990), Tarter
and Lock (1993), and Efromovich (1999). The wavelet approaches are treated in
Ogden (1996), Louis, Maass, and Rieder (1997), Härdle et al. (1998), Müller and
Vidakovic (1999), Vidakovic (1999), Nason and Silverman (2000), and Walter
and Shen (2001).

3.18 Summary of Formulas

Nonparametric regression model
Given scatterplot data (xi, yi), 1 ≤ i ≤ n,

yi = f(xi)+ εi

where f(x) = E(y|x).

Penalized spline with truncated polynomial basis
Model is

f(x) = β0 + β1x + · · · + βp x
p +

K∑
k=1

βpk(x − κk)
p
+

for p = 1, 2, . . . .
Fitting criterion is

minimize ‖y − Xβ‖2 + λ2pβT Dβ

where

X =
 1 x1 · · · x

p

1 (x1 − κ1)
p
+ · · · (x1 − κK)

p
+

...
...

. . .
...

...
. . .

...

1 xn · · · x
p
n (xn − κ1)

p
+ · · · (xn − κK)

p
+


and D = diag(0p+1, 1K).

Fitted values are
ŷ = X(XT X + λ2pD)−1XTy

Smoother matrix is
Sλ = X(XT X + λ2pD)−1XT
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Penalized spline with radial basis
Model is

f(x) = β0 + β1x + · · · + βm−1x
m−1 +

K∑
k=1

βmk|x − κk|2m−1

for m = 1, 2, . . . .
Fitting criterion is

minimize ‖y − Xβ‖2 + λ2m−1βT Kβ

where

X =
 1 x1 · · · xm−1

1 |x1 − κ1|2m−1 · · · |x1 − κK |2m−1

...
...

. . .
...

...
. . .

...

1 xn · · · xm−1
n |xn − κ1|2m−1 · · · |xn − κK |2m−1


and

K =
[
|κk − κk ′ |2m−1

1≤k,k ′≤K

]
Fitted values are

ŷ = X(XT X + λ2m−1K)−1XTy

Smoother matrix is
Sλ = X(XT X + λ2m−1K)−1XT

Linear smoothers
Fitted values ŷ of the form

ŷ = Ly

for some n× n matrix L.

Rank of a symmetric linear smoother
For symmetric L:

rank of a linear smoother = rank of L

= number of eigenvalues of L that are nonzero

Degrees of freedom of a linear smoother

dffit = tr(L)

Residual degrees freedom of a linear smoother

dfres = n− 2 tr(L)+ tr(LLT )
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Mixed Models

4.1 Introduction

Mixed models are an extension of regression models that allow for the incor-
poration of random effects. However, they also turn out to be closely related to
smoothing. In fact, we will show in Section 4.9 that the penalized spline smoother
exactly corresponds to the optimal predictor in a mixed model framework. This
link allows for mixed model methodology and software to be used in semipara-
metric regression analysis, as we will demonstrate in subsequent chapters.

This chapter begins with a brief review of mixed models. Readers with de-
tailed knowledge of mixed models could skip these sections and proceed directly
to Section 4.9.

4.2 Mixed Models

Much of the early work on mixed models – in particular, the special case of vari-
ance component models – was motivated by the analysis of data from animal
breeding experiments and driven by the need to incorporate heritabilities and ge-
netic correlations in a parsimonious fashion. They have also played an important
role in establishing quality control procedures and determination of sampling de-
signs, among other applications. Overviews of this vast topic are provided by
Searle, Casella, and McCulloch (1992), Vonesh and Chinchilli (1997), Pinheiro
and Bates (2000), Verbeke and Molenberghs (2000), and McCulloch and Searle
(2001).

A more contemporary application of mixed models is the analysis of longitu-
dinal data sets (see e.g. Laird and Ware 1982; Diggle et al. 2002). We will use
this setting to illustrate the essence of mixed modeling.

Figure 4.1 shows two representations of data pertaining to weight measure-
ments of 48 pigs for nine successive weeks. Figure 4.1(a) is simply a scatterplot
of the weights against their corresponding week number; in Figure 4.1(b), lines
are drawn connecting those measurements that belong to the same pig. This
second panel shows the longitudinal aspect of the data: there are nine repeated
measurements for each pig.

Let weightij denote the weight of pig i on week j, and let weekj = j be
the corresponding week number. If the data are treated cross-sectionally (i.e.,

91
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Figure 4.1
Representations of pig
weight data. Panel (a)
is a scatterplot of
weight against week
number. In (b), lines
are used to connect
those points pertaining
to the same pig.
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without taking the repeated measure aspect into account), then the ordinary least-
squares model

weightij = β0 + β1weekj + εij, 1 ≤ i ≤ 48, 1 ≤ j ≤ 9, (4.1)

with εij i.i.d. N(0, σ 2
ε ), leads to a slope estimate (with estimated standard devia-

tion) of
β̂1 = 6.21, ŝt.dev.(β̂1) = 0.0818.

But there are some problems with (4.1). First of all, inspection of Figure 4.1(b)
shows that the scatterplot for each individual pig is less variable, so one would
expect that utilization of within-pig information would be beneficial. Related to
this is the fact that (4.1) ignores the correlation of measurements pertaining to the
same pig. An analysis of the residuals shows patterns arising from this correla-
tion, so the assumption that the εij are independent does not hold.

An initial remedy would be to extend (4.1) to allow for a different intercept for
each pig. This models the data shown in Figure 4.1(b) as 48 parallel lines and
would be written

weightij = αi + β1weekj + εij, (4.2)

where αi represents the intercept for the ith pig. This leads to a noticeably more
precise estimate of β1, but model (4.2) is unappealing on a few counts. First, it
contains 49 parameters, 48 intercepts and one slope, which is somewhat large for
such a simple data set. Secondly, it gives too much credence to the pigs used
in the study. If 48 different pigs were sampled, then the estimated αi would be
completely different. Normally we think of parameters as being population de-
pendent rather than sample dependent. Other longitudinal data sets have manyLongitudinal data

sets consist of
measurements made
on a set of individuals
repeatedly over time.

more subjects and even fewer repeated measurements. So a model such as (4.2)
is not very satisfactory when the data are longitudinal.

A remedy is to replace αi by a random intercept:

weightij = β0 + Ui + β1weekj + εij . (4.3)

Here
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U1, . . . , U48

are treated as a random sample from, say, a N(0,σ 2
U) distribution for some σ 2

U > 0.
The Ui-term is an example of a random effect and has the advantage of requiring
just a single parameter, σ 2

U , which is commonly referred to as a variance com-
ponent. Moreover, it takes into account the randomness due to other samples of
pigs. For these data, one may want to consider a random slope model in which
β1 is replaced by β1 + Vi, where Vi is a random effect that accounts for possible
variability in the slopes of the growth curves. However, since we are using this
example for illustrative purposes, we will assume that (4.3) is adequate.

Model (4.3) is an example of a mixed model. It has a fixed component,

β0 + β1weekj,

as well as a random component,

Ui ∼ N(0, σ 2
U).

The next two sections describe estimation techniques for fitting (4.3). For these
data they result in

β̂1 = 6.21, ŝt.dev.(β̂1) = 0.0391,

which is somewhat more precise than an ordinary regression model. Moreover,
the random intercept Ui allows for the within-pig correlation. To appreciate this,
note that the covariance between the weights of pig i, measured at two different
times (j �= j ′), is

cov(weightij, weightij ′) = var(Ui) = σ 2
U .

The correlation coefficient is then

corr(weightij, weightij ′) = σ 2
U

σ 2
ε + σ 2

U

.

This is estimated to be 0.775, indicating considerable within-pig correlation in
this case.

4.2.1 Degrees-of-Freedom Interpretation

Consider the more general form of (4.3):

yij = β0 + Ui + β1xij + εij, 1 ≤ j ≤ ni, 1 ≤ i ≤ m. (4.4)

Section 4.5 describes how to fit this model. As discussed in that section, we can
write the vector of fitted values as

ŷ = H0 y + HUy + Hxy

and then, analogously to (2.22), define the degrees of freedom for each compo-
nent of (4.4):

df0 = tr(H0), dfU = tr(HU), dfx = tr(Hx).
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Figure 4.2 Plot of
degrees of freedom
for random intercepts
(dfU ) versus the
variance ratio σ̂ 2

ε /σ̂
2
U

for the pig weight
example. The lines
correspond to the
estimated values via
REML, as discussed
in Section 4.5.4.
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Not surprisingly,
df0 = dfx = 1,

since each of these components involve a single parameter: β0 and β1, respec-
tively. When n1 = · · · = nm, we have

dfU = (m− 1)n1

n1 + σ 2
ε/σ

2
U

.

This shows that the effective number of parameters depends on the variance ratio

σ 2
ε/σ

2
U .

In the pig weight example,

dfU = 47

(
9

9 + σ 2
ε/σ

2
U

)
.

Figure 4.2 shows this degrees of freedom plotted against σ 2
ε/σ

2
U . Using re-

stricted maximum likelihood (described in Section 4.5.4), this ratio is estimated
to be σ̂ 2

ε/σ̂
2
U = 0.29, corresponding to 46.5 degrees of freedom. We see from this

that the random intercept model corresponds to a potential compromise between
two possible models with fixed effects only.

(a) A single fixed intercept (df0 + dfU = 1, σ 2
U = 0); this is model (4.1).

(b) an intercept for each pig (48 parameters, so df0 + dfU = 48, σ 2
U = ∞);

this is model (4.2).

In model (a), σU = 0 implies that U1, . . . , U48 = 0. Hence all the random ef-
fects drop out, and we are left with a fixed effects model.
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When σ 2
U = ∞ in model (b), the interpretation is thatU1, . . . , U48 are no longer

random but rather are unknown fixed constants; the random effects have become
fixed effects. Model (b) appears to have 49 parameters, β0, U1, . . . , U48, but in
this model one constraint is needed to make the parameters well-defined. Often
this constraint is chosen to be U1+· · ·+U48 = 0. Although the random intercept
model is a potential compromise between (a) and (b), we see that in this exam-
ple it is quite close to (b) because the random and fixed intercept models differ
by only 1.5 degrees of freedom.

In this example the random intercept is closer to (b) than to (a) because the
within-pig variability is considerably lower than the between-pig variability.

There is an analogy between the Ûi and the β̂1k of Section 3.5. In both cases,
the estimates are shrunk in such a way that their contribution to the degrees of
freedom of the fitted values is less than the number of coefficients. As will be
clear by the end of this chapter, the fitting of both longitudinal data sets (such as
the pig weight data) and nonlinear trends (such as for the LIDAR data) can be
achieved through the same general approach.

4.3 Prediction

Mixed models contain fixed effects, random effects, and covariance matrix pa-
rameters. For model (4.3) the fixed effects are β0 and β1, the random effects
are U1, . . . , U48, and the covariance matrix parameters are σ 2

U and σ 2
ε . The pa-

rameters in the model are (β0, β1, σ
2
U , σ

2
ε ), and their estimation can be achieved

by using common statistical approaches such as maximum likelihood. This is
treated for general linear mixed models in Sections 4.5.1 and 4.5.4. However,
maximum likelihood does not apply to random effects. Instead we can form pre-
dictions of U1, . . . , U48. The difference between prediction and estimation is that
the target is random for the former but deterministic (nonrandom) for the latter.
Some writers (Robinson 1991; Hayes and Haslett 1999) argue that this distinction
is unnecessary and that the word “estimation” should be used for both types of
targets. However, in accordance with the majority of relevant literature, we will
here use the classical naming convention.

Prediction is a fundamental problem in statistics, although its treatment in Prediction is at
the heart of our
semiparametric
and nonparametric
methods.

textbooks is overshadowed by estimation. An excellent synopsis of prediction is
provided by Chapter 9 of McCulloch and Searle (2001). We will summarize the
main points here. Figure 4.3 shows the distributions of two random variables y

and v, which are distributed according to

y = v + ε, where

[
v

ε

]
∼ N

([
0
0

]
,

[
1 0
0 4

])
.

We observe only y. Based on this observation, what is a good prediction for the
value of v? The best predictor (BP) of v is defined to be the ṽ for which

E{(ṽ − v)2}
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Figure 4.3 Simple
illustration of
prediction. The value
of y is observed but
v’s value is not. The
best predictor of v is
y/5.
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is minimized. For general (y, v) the solution is

ṽ ≡ BP(v) = E(v|y);
in the current example, we obtain

ṽ = y/5.

This is intuitively consistent with Figure 4.3, where v is seen to be a “shrunken”
version of y.

In general: If y is the vector of observed data and v is a random vector, then
best prediction corresponds to minimization of

E{‖ṽ − v‖2},
and the solution is

ṽ ≡ BP(v) = E(v|y).

4.3.1 Best Linear Prediction (BLP)

The best predictor is not necessarily a linear function of y. A common simplifi-
cation is to restrict the family of predictors to be linear. That is,

ṽ = Ay + b

for some matrix A and vector b. The solution is called the best linear predictor
(BLP) and can be shown to be

ṽ ≡ BLP(v) = E(v)+ CV−1{y − E(y)}, (4.5)

where
C ≡ E[{v − E(v)}{y − E(y)}T] and V ≡ Cov(y).

If [
v
y

]
is multivariate normal,
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Figure 4.4
Predictions of
U1, . . . , U48 for the
pig weight data. A
vertical line is plotted
for each Ũi value,
1 ≤ i ≤ 48.
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then best prediction and best linear prediction coincide. That is,

BP(v) = BLP(v) = E(v|y) = E(v)+ CV−1{y − E(y)}.

4.3.2 Application to Pig Weight Example

In model (4.3), let

U =
 U1

...

U48

 and y =



weight1,1
...

weight1,9
...

weight48,1
...

weight48,9


.

Then [
U
y

]
is multivariate normal

and, for given β0, β1, σ
2
U , and σ 2

ε , the best predictor of Ui reduces to

Ũi = niσ
2
U

σ 2
ε + niσ

2
U

(ȳi • − β0 − β1x̄i •)

= 9σ 2
U

σ 2
ε + 9σ 2

U

(weighti • − β0 − β1week),

where ȳi • = weighti • is the average weight of the ith pig and x̄i • = 5 is the
average week value. See McCulloch and Searle (2001).

Figure 4.4 shows Ũ1, . . . , Ũ48 after estimates of the variance components are
plugged in. The variability in the intercepts among the 48 pigs is apparent, as is
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an estimated ranking of the pigs in this regard. Indeed, there is a branch of statis-
tics devoted to ranking and selection of subjects that has roots in animal breeding
and genetics.

4.4 The Linear Mixed Model (LMM)

Just as with the linear model, we can generalize mixed models to arbitrary de-
sign matrices. The covariance structure of the random effects vector can also be
general. The resulting general linear mixed model is

y = Xβ + Zu + ε, (4.6)

where

E

[
u
ε

]
=
[

0
0

]
and Cov

[
u
ε

]
=
[

G 0
0 R

]
.

Note that model (4.3) is a special case of (4.6) with

y =



weight1,1
...

weight1,9
...

weight48,1
...

weight48,9


, X =



1 week1
...

...

1 week9
...

...

1 week1
...

...

1 week9


, β =

[
β0

β1

]
,

Z =


19×1 09×1 · · · 09×1

09×1 19×1 · · · 09×1
...

...
. . .

...

09×1 09×1 · · · 19×1

, u =
 U1

...

U48

,
G = σ 2

U I, and R = σ 2
ε I.

As we will see in subsequent chapters, the general model (4.6) is extremely
rich in that it includes a large number of special cases that are useful in practice.
The next few sections discuss statistical inference within this general framework.
We will then explain how such inference relates to semiparametric regression
modeling.

4.5 Estimation and Prediction in LMM

We now treat estimation of β, prediction of u, and estimation of the parameters
in G and R.

4.5.1 Estimation of Fixed Effects

One way to derive an estimate of β is to rewrite (4.6) as

y = Xβ + ε∗, where ε∗ = Zu + ε.
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This is just a linear model with correlated errors, since

Cov(ε∗) ≡ V = ZGZT + R.

For given V, the classical textbook estimator of β (e.g., Rao 1973; Draper and
Smith 1998) is

β̃ = (XT V−1X)−1XT V−1y (4.7)

and is sometimes referred to as generalized least squares (GLS).
Expression (4.7) can be justified in a number of different ways. For y having

a general distribution, (4.7) can be shown to be the best linear unbiased estima-
tor (BLUE) for β. Alternatively, if y is multivariate normal then the right-hand
side of (4.7) is both the maximum likelihood estimator (MLE) and the uniformly
minimum variance unbiased estimator (UMVUE). The latter is the estimator that
has the best (smallest) possible variance of any unbiased estimator regardless of
the parameter values.

4.5.2 Prediction of Random Effects

The random effects vector can be predicted via best linear prediction using (4.5).
For given β, we obtain

ũ = BLP(u) = GZT V−1(y − Xβ). (4.8)

In practice β would be replaced by an estimator such as β̃ in (4.7), and the
parameters in G and V would need to be estimated (see Section 4.6).

4.5.3 Best Linear Unbiased Prediction (BLUP)

A more unifying way to arrive at the results of the previous two subsections is
through the notion of best linear unbiased prediction (BLUP). For arbitrary n×1
vectors s and t, this involves the determination of linear β̃ and ũ to minimize the
prediction error

E{(sT Xβ̃ + tTZũ)− (sT Xβ + tTZu)}2

subject to the unbiasedness condition

E(sT Xβ̃ + tTZũ) = E(sT Xβ + tTZu).

Then it can be shown (see e.g. Robinson 1991; Hayes and Haslett 1999) that the
solutions for β̃ and ũ are

BLUP(β) ≡ β̃ = (XT V−1X)−1XT V−1y,

BLUP(u) ≡ ũ = GZT V−1(y − Xβ̃).
(4.9)

Note that the BLUP for β is identical to the generalized least-squares solution
(4.7) and that the BLUP for u is the BLP with β replaced by BLUP(β) = β̃.

As described by Robinson (1991), there are several other ways to derive BLUP
solutions. A simple (albeit somewhat ad hoc) way is Henderson’s justification,
which makes the distributional assumptions
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y|u ∼ N(Xβ + Zu,R), u ∼ N(0,G),

and maximizes the likelihood of the (y, u) over the unknowns β and u. This leads
to the criterion

(y − Xβ − Zu)T R−1(y − Xβ − Zu)+ uTG−1u. (4.10)

This shows that BLUP estimation of (β, u) involves generalized least squares
with a penalty term. It is easy to show from (4.10) that the BLUP of (β, u) can
also be written as [

β̃

ũ

]
= (CT R−1C + B)−1CT R−1y, (4.11)

where C ≡ [X Z] and

B ≡
[

0 0
0 G−1

]
.

The fitted values are then

BLUP(y) = Xβ̃ + Zũ = C(CT R−1C + B)−1CT R−1y.

This “ridge regression” formulation of BLUP shows the difference between β̃

and ũ explicitly.

4.5.4 Estimation of Covariance Matrices

There is a large and varied literature on estimation of covariance matrices in
mixed models. Dictated by computational issues, the earlier literature concen-
trated on strategies known as minimum norm quadratic unbiased estimation
(MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE)
(e.g. Rao 1973). However, with the advent of better computing algorithms, max-
imum likelihood (ML) or restricted maximum likelihood (REML) have becomeRestricted maximum

likelihood also goes
by the names residual
maximum likelihood,
marginal maximum
likelihood, and
generalized maximum
likelihood.

the most common strategies for estimating the parameters in covariance matrices.
First we describe ML. As in the previous section,

V ≡ Cov(y) = ZGZT + R.

Then the ML estimate of V is based on the model

y ∼ N(Xβ,V).

The log-likelihood of y under this model is

!(β,V) = − 1
2 {n log(2π)+ log|V| + (y − Xβ)T V−1(y − Xβ)}, (4.12)

so the ML estimate of (β,V) is the one that maximizes the right-hand side of this
expression. If one first optimizes over β (which appears only in the last term)
then we obtain that, for any fixed V, !(β, V ) is maximized over β by

β̃ = (XT V−1X)−1XT V−1y,
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which corresponds to the best linear unbiased estimator given at (4.7). On sub-
stitution into (4.12) we obtain the profile log-likelihood for V: The profile log-

likelihood of
a parameter is
obtained from the
log-likelihood by
substitution of the
ML estimators of the
other parameters in
the model.

!P (V) = − 1
2 {log|V| + (y − Xβ̃)T V−1(y − Xβ̃)+ n log(2π)}

= − 1
2 [log|V| + yT V−1{I − X(XT V−1X)−1XT V−1}y] − n

2 log(2π).
(4.13)

ML estimates of the parameters in V can be found by maximizing (4.13) over
those parameters. In the pig weight example,

V = σ 2
UZZT + σ 2

ε I,

so (4.13) is a function of the variance component pair (σ 2
U , σ

2
ε ). Their estimation

involves maximization of the bivariate function

!P (σ
2
UZZT + σ 2

ε I)

over all σ 2
U , σ

2
ε ≥ 0. The answers are

σ̂ 2
ε,ML = 4.38 and σ̂ 2

U,ML = 14.8.

Derivation of the REML criterion is more complicated. It involves maximiz-
ing the likelihood of linear combinations of the elements of y that do not depend
on β. Details can be found in, for example, Chapter 6 of Searle et al. (1992). The
resulting criterion function is the restricted log-likelihood,

!R(V) = !P (V)− 1
2 log|XT V−1X|. (4.14)

The main advantage of REML over ML is that REML takes into account the de-
grees of freedom for the fixed effects in the model. For example, in the special
case where a random sample X1, . . . , Xn is collected from the N(µ, σ 2) distribu-
tion, with X̄ = n−1∑n

i=1 Xi we have

σ̂ 2
ML = 1

n

n∑
i=1

(Xi − X̄)2, σ̂ 2
REML = 1

n− 1

n∑
i=1

(Xi − X̄)2.

The n − 1 in the denominator of σ̂ 2
REML accounts for the estimation of µ via X̄.

For small sample sizes REML is expected to be more accurate than ML, but for
large samples there is little difference between the two approaches.

There has been a considerable amount of work devoted to computation of co-
variance matrix estimates (e.g., Lindstrom and Bates 1988; Wolfinger, Tobias,
and Sall 1994) and ensuing software development. The procedure PROC MIXED
in the SAS computing system and the function lme() in the S-PLUS package
both compute REML and ML covariance matrix estimates.

4.6 Estimated BLUP (EBLUP)

The BLUPs of β and u given at (4.9) depend on

G = Cov(u) and R = Cov(ε),

especially through
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V = Cov(y) = ZGZT + R.

As described in the previous section, the parameters in these covariance matrices
are typically estimated via ML or REML; in practice, the BLUPs are usually re-
placed by

β̂ = (XT V̂−1X)−1XT V̂−1y,

û = ĜZT V̂−1(y − Xβ̂)

where Ĝ and V̂ are obtained by plugging in the ML or REML estimates of their
parameters.

We will refer to β̂ and û as estimated BLUPs, or EBLUPs, ofβ and u. Similarly,
the EBLUP of

BLUP{E(y|u)} = Xβ̃ + Zũ

is
EBLUP{E(y|u)} ≡ ŷ ≡ Xβ̂ + Zû.

Estimated BLUPs therefore have two sources of variability: that from estima-
tion of (β, u), and that from estimation of G and V. Ideally, both should be taken
into account when making inference about the quantity of interest. As described
in the next section, this is a somewhat delicate matter.

4.7 Standard Error Estimation

From the BLUP expressions in Section 4.5, it follows that

Cov(β̃) = (XT V−1X)−1

and so the natural estimate of the standard deviation of the ith entry of the EBLUP
β̂i is

ŝt.dev.(β̂i) =
√
ith diagonal entry of (XT V̂−1X)−1. (4.15)

Note that such an estimate ignores the variability due to estimation of V. For
larger samples this extra variability will be negligible. However, it can make a
difference for smaller samples. As pointed out by McCulloch and Searle (2001,
p. 258), the variance of β̂i is largely intractable although there have been some
attempts (Kackar and Harville 1984; Prasad and Rao 1990) at using approxima-
tions to quantify the extra variability in EBLUPs. The mixed model packages use
(4.15), and we will use this estimator throughout much of this book in the hope
that the samples are sufficiently large.

However, it is possible to handle these “intractable” calculations through a
Bayesian approach and Markov chain Monte Carlo methods. The details are post-
poned to Chapter 16. Treating the variance components as known – even though
they really have been estimated – is what Bayesians call an empirical Bayes
method. By taking instead a fully Bayesian approach, the extra variability in the
EBLUPs due to estimation of variance components can be taken into account.
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Table 4.1 Summary
of REML /EBLUP fit
of (4.3) for the pig
weight data.

Component Coeff. St. dev. Z-Ratio

intercept 19.4 0.603 32.1
week 6.21 0.0391 159

σ̂ 2
U = 15.1 σ̂ 2

ε = 4.39

To estimate the precision of BLUPs involving u, we also need

Cov

([
β̃ − β

ũ − u

])
= Cov

([
β̃

ũ − u

])
.

Using (4.11), it can be shown that

Cov

([
β̃

ũ − u

])
= (CT R−1C + B)−1, (4.16)

where (as before)

C ≡ [X Z] and B ≡
[

0 0
0 G−1

]
.

In some contexts it is useful to estimate the conditional covariance matrix

Cov

([
β̃ − β

ũ

]∣∣∣u) = Cov

([
β̃

ũ

]∣∣∣u).
From (4.11),

Cov

([
β̃

ũ

]∣∣∣u) = (CT R−1C + B)−1CT R−1C(CT R−1C + B)−1. (4.17)

These results suggest the approximations

Cov

([
β̂

û − u

])
� (CTR̂−1C + B̂)−1

and

Cov

([
β̂

û

]∣∣∣u) � (CTR̂−1C + B̂)−1CTR̂−1C(CTR̂−1C + B̂)−1.

Standard errors may also be estimated for the covariance matrix parameters,
although the details are omitted. Searle et al. (1992) contains some details. Con-
fidence intervals for both fixed effects and covariance matrix parameters (i.e.,
variance components) are described by Pinheiro and Bates (2000).

4.7.1 Summary of Fit to Pig Weights

Table 4.1 summarizes the fit of (4.3) based on REML estimation of the variance
components and EBLUP.

A graphical summary of the fit is shown in Figure 4.5. There is a strongly
significant positive growth but with considerable between-pig variability in the
intercepts.
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Figure 4.5 Graphical
summary of
REML /BLUP fit
of (4.3) for the pig
weight data. The line
is estimated mean
weight. The shaded
region corresponds to
plus and minus two
standard deviations.
The curve at the left is
a density estimate of
the estimated random
intercepts.
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4.8 Hypothesis Testing

There is a rich literature on hypothesis testing in the linear mixed model frame-
work. Verbeke and Molenberghs (1997) and Khuri, Mathew, and Sinha (1998)
provide surveys. We will restrict discussion to some of the simpler methods here.

4.8.1 Normal Theory Tests

First consider the problem of hypothesis testing for βi, the ith entry of β. Ideally,
this can be done through a result of the form

zi ≡ β̂i − βi

ŝt.dev.(β̂i)

approx.∼ N(0,1). (4.18)

Specifically, for the hypothesis set-up

H0 : βi = 0 versus H1 : βi �= 0, (4.19)

the approximate p-value is given by the tail area:

p-value � 2{1−=(|z0,i |)},
where = is the cumulative distribution function of the standard normal distribu-
tion, and z0,i is given by (4.18) with βi = 0. However, the theoretical justification
of (4.18) for general mixed models is somewhat elusive owing to the dependence
in y imposed by the random effects. Theoretical back-up for (4.18) exists in cer-
tain special cases, such as those arising in analysis of variance and longitudinal
data analysis (e.g. Miller 1977). For some mixed models, including many used
in the subsequent chapters of this book, justification of (4.18) remains an open
problem.
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4.8.2 Likelihood Ratio Tests

We saw in Sections 4.5.1 and 4.5.4 that parameters in mixed models can be esti-
mated by maximum likelihood; hence, the likelihood ratio procedure can be used
to test hypotheses. We will first give a brief description of the likelihood ratio test
procedure for general parametric models.

Let L(θ; y) be the likelihood of the parameter vector θ based on the data in y.
The likelihood ratio statistic for testing a null restricted model against an alterna-
tive unrestricted model is

LR(y) = L(θ̂0; y)/L(θ̂; y),

where θ̂0 and θ̂ are the maximum likelihood estimates of θ under the null model
and unrestricted model, respectively. It is more common to work with

−2 log{LR(y)} = −2{!(θ̂0; y)− !(θ̂; y)}, (4.20)

where !(θ; y) = log L(θ; y) is the log-likelihood.
The classical result for determining the significance of the observed value of

!(θ; y) is one that states, under H0,

−2 log{LR(y)} approx.∼ χ2
ν ; (4.21)

here the right-hand side is the chi-squared distribution with ν degrees of freedom,
where

ν = number of independent parameters in unrestricted model

− number of independent parameters in null model.

For hypothesis test (4.19) ν = 1, so (4.21) provides an alternative way to test this
hypothesis. Since a χ2

1 random variable is the square of a standard normal ran-
dom variable, we have

p-value � 1−=
(√−2 log LR(y)

)
. (4.22)

Once again the dependence in y means that justification of (4.21), and hence
(4.22), is dependent on the type of correlation structure induced by the G and R
matrices.

Hypothesis tests for covariance matrix parameters may also be of interest.
Consider, for example, the random intercept straight line model for repeated
measures regression data:

yij = β0 +Ui +β1xij + εij, 1 ≤ j ≤ ni, 1 ≤ i ≤ m, Ui ∼ N(0, σ 2
U). (4.23)

One may wish to determine whether the intercepts of the individuals are signifi-
cantly different from one another – that is, whether the submodel

yij = β0 + β1xij + εij, 1 ≤ j ≤ ni, 1 ≤ i ≤ m, (4.24)

is adequate compared with (4.23). This boils down to testing the hypotheses

H0 : σ 2
U = 0 versus H1 : σ 2

U > 0. (4.25)
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For (4.25) this would suggest that −2 log{LR(y)} be compared with percentiles
from the χ2

1 distribution. However, the theory behind (4.21) assumes that the
parameter of interest is not on the boundary of its parameter space. Since the pa-
rameter space for σ 2

U is [0,∞), this assumption is violated. In fact, under certain
independence assumptions to be discussed shortly, the asymptotic distribution
when H0 is true is such that there is a 50 : 50 chance that

σ̂ 2
u,ML = 0.

This type of behavior leads to

−2 log{LR(y)} approx.∼ 1
2χ

2
0 + 1

2χ
2
1 (4.26)

for (4.25), where χ2
0 means a point mass at zero and the right-hand side of (4.26)

The notation
X

approx.∼ 1
2χ

2
s + 1

2χ
2
t

means that the random
variable X has a
approximate density
function equal to a
50 : 50 mixture of the
χ2

s and χ2
t densities.

This is different
from the density
of the average of
independent random
variables from each of
these densities.

is shorthand for a 50 : 50 mixture between a χ2
0 and a χ2

1 distribution (Self and
Liang 1987). Use of (4.26) rather than (4.21) leads to p-values being halved.

If, instead, one were interested in testing the adequacy of

yij = β0 + εij, 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

compared with (4.23), then the hypotheses would be

H0 : σ 2
U = β1 = 0 versus H1 : σ 2

U > 0 or β1 �= 0;
under H0, we would have

−2 log{LR(y)} approx.∼ 1
2χ

2
1 + 1

2χ
2
2.

More generally, if H0 constrains one variance component and s regression coef-
ficients to be zero, then

−2 log{LR(y)} approx.∼ 1
2χ

2
s + 1

2χ
2
s+1. (4.27)

If there are two variance components of interest then the distribution theory for
−2 log{LR(y)} becomes much more complicated (see e.g. Self and Liang 1987;
Stram and Lee 1994; Silvapulle 1996; Verbeke and Molenberghs 1997).

The classical large-sample theory for likelihood ratio tests assumes indepen-
dence of the y vector under all values of the parameters, or more precisely, that the
y vector can be partitioned into subvectors that are independent. This assumption
does not hold in general for mixed models, at least not under the alternative. How-
ever, for the simple longitudinal model (4.23), independence between subjects
allows for extension of the classical theory and validation of (4.26) and (4.27)
for a large number of subjects. The idea is that these approximations assume that
the number of independent observations approaches infinity, which is true if we
take the subjects to be the observations and the number of subjects increases to
infinity (Stram and Lee 1994). As for the normal theory tests described in the
previous section, the asymptotic distribution theory for general mixed models is
more difficult and, in some instances, yet to be worked out.

One case that has been studied carefully in Crainiceanu, Ruppert, and Vogel-
sang (2002) and Crainiceanu and Ruppert (2002) is the balanced one-way analysis
of variance with random treatment (or subject) effects. This model is given by
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equation (4.23) with β1 known to equal 0 and ni = n for some fixed n and all i. If
n is fixed and m tends to infinity, then the Self and Liang (1987) assumptions are
met and (4.26) does hold. In contrast, if n goes to infinity with m fixed, then we
have a fixed number of subjects (or treatments) and the number of observations
per subject goes to infinity. In this case, the Self and Liang (1987) assumptions
do not hold and (4.26) fails to hold. The asymptotic probability of zero – that is,
the probability attached to the χ2

0 component – is not 1
2 but rather is greater than 1

2
and tends very slowly to 1

2 as m goes to infinity (Crainiceanu et al. 2002). In fact,
this probability is about 0.65 when m is 10 and 0.55 when m is 100. Moreover,
the component that is nonzero is not χ2

1 but something that tends to be smaller
than χ2

1 (Crainiceanu and Ruppert 2002). Thus, the likelihood ratio test statis-
tic tends to be smaller than under the Self and Liang asymptotics, so that using
those asymptotics to obtain p-values gives tests that are conservative (i.e., have
nominal p-values larger than the true p-value). Conservative tests have smaller
type 1 error probabilities than stated, which is not a problem. However, they have
the disadvantage of having less power at the alternative than a test with correct
type 1 error probability.

As we will see in the next section, penalized splines can be viewed as BLUPs
in a certain mixed model. Approximation (4.26) is very poor when applied to pe-
nalized splines (Crainiceanu and Ruppert 2002). In general, the asymptotics of
Self and Liang (1987) do not apply to the semiparametric models we discuss in
this book. This means that asymptotics cannot be used to find p-values, at least
not until alternative asymptotics are derived.

As we discuss in later sections, critical values of likelihood ratio tests can
be determined satisfactorily by Monte Carlo simulations. The idea is to set the
values of all fixed effect and variance component parameters equal to their es-
timates under the null distribution and then to simulate the distribution of the
likelihood ratio test under the null model at the parameters and with the covari-
ates equal to their observed values. More precisely, we simulate a large number
of independent data sets (say, 10,000 to 100,000) with fixed effects parameters
at their estimated values and with the ε-values and random effects generated ac-
cording to their estimated variances, both estimations under the null hypothesis.
The likelihood ratio test statistic (4.20) is calculated for each simulated data set.
The p-value of the test is the proportion of simulated values of the test statistic
that exceed the value at the real data.

4.8.3 Restricted Likelihood Ratio Tests

Instead of using the likelihood function to form test statistics, one could do so using
the maximum restricted log-likelihood !R(V) defined at (4.14). Since REML es-
timates of V are less biased, the accuracy of the test might be improved. There
is some discussion on this approach in Verbeke and Molenberghs (1997). They
mention that restricted likelihood can only be used to compare models with the
same mean structure – that is, the same fixed effects model. The reason for this
is that restricted likelihood is the likelihood of the residuals after fitting the fixed
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effects and so is not appropriate when there is more than one fixed effects model
under consideration.

As discussed in Crainiceanu et al. (2002) and Crainiceanu and Ruppert (2002),
restricted likelihood ratio tests have the same complex asymptotic theory as like-
lihood ratio tests. For this reason, we advocate computing p-values by simulation
as just discussed at the end of Section 4.8.2.

4.9 Penalized Splines as BLUPs

In Chapter 3 we considered the ordinary nonparametric regression model

yi = f(xi)+ εi, 1 ≤ i ≤ n, (4.28)

and showed how f could be estimated by penalized splines. In this section we
show that this estimate can be written as the BLUP of a mixed model.

For clarity we will treat the linear case and suppose that the errors satisfy
Cov(ε) = σ 2

ε I. The linear spline model for f is

f(xi) = β0 + β1xi +
K∑
k=1

uk(xi − κk)+. (4.29)

Let

β =
[
β0

β1

]
and u =

 u1
...

uK


be the coefficients of the polynomial functions and truncated line functions, re-
spectively. Corresponding to these vectors, define

X =
 1 x1

...
...

1 xn

 and Z =
 (x1 − κ1)+ · · · (x1 − κK)+

...
. . .

...

(xn − κ1)+ · · · (xn − κK)+

.
The penalized spline fitting criterion (3.7), when divided by σ 2

ε , can then be writ-
ten as

1

σ 2
ε

‖y − Xβ − Zu‖2 + λ2

σ 2
ε

‖u‖2.

Notice that this can be made to equal the BLUP criterion given at (4.10) by treating
the u as a set of random coefficients with

Cov(u) = σ 2
u I, where σ 2

u = σ 2
ε/λ

2.

Putting all of this together yields the mixed model representation of the regres-
sion spline

y = Xβ + Zu + ε, Cov

[
u
ε

]
=
[
σ 2
u I 0
0 σ 2

ε I

]
. (4.30)

Note that the fitted values f̃ can be rewritten as

f̃ = C(CTC + λ2 D)−1CTy, (4.31)
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Figure 4.6
Comparison
between treating the
coefficients of the
knots as fixed effects
versus random effects.
The solid curve is the
estimated curve, while
the dashed curve is the
true function.
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where
C = [X Z], D = diag(0, 0,1,1, . . . ,1), λ2 = σ 2

ε/σ
2
u,

matching (3.12) for p = 1.
Figure 4.6 shows how the mixed model approach to fitting the regression

splines leads to a smooth result. In this example, data are simulated according to
the situation where f(x) = sin(3πx), 0 ≤ x ≤ 1, and σε = 0.4. In Figure 4.6(a)
we see the result when

yi = β0 + β1xi +
K∑
k=1

uk(xi − κk)+ + εi

is fit using ordinary least squares. Notice that it overfits the data rather than
smoothing it. The fit in Figure 4.6(b) corresponds to treating (4.29) as a mixed
model with

uk i.i.d. N(0, σ 2
u ).

Ordinary least squares corresponds to σu = ∞, where the uk are unrestricted.
Taking σu to be finite – in this case, σu = 3σε = 1.2 – leads to smaller estimates
of the uk and the effect of the (xi − κk)+ being diminished. A smooth fit results.

This representation of the penalized spline as a BLUP in a mixed model is
useful because it allows smoothing to be done using mixed model methodology
and software. This will be exemplified in the following chapters. It also lends
itself (via e.g. Robinson 1991) to a host of other derivations, including one as a
Bayesian estimator. As explained there, if β is regarded as a parameter with a

Bayesian estimation
is a large branch
of statistical
methodology based
on the notion
of incorporating
prior beliefs about
parameters of interest.
Chapter 16 deals with
Bayesian estimation.

A prior distribution is
improper if its total
probability equals
infinity rather than
one.

The Kalman filter
is a fast algorithm
for fitting optimal
solutions to a certain
class of linear
statistical models.
An introduction to
the Kalman filter is
provided by Maybeck
(1979).

uniform and improper prior, then f̃ corresponds to the posterior mode. Robinson
(1991) also demonstrates how the Kalman filter can be used to compute BLUPs.
See also the discussion by Spall (1991) and Robinson’s rejoinder.
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When σ 2
u and σ 2

ε are replaced by estimators, such as those obtained from ML
and REML, the final vector of fitted values is

f̂ = Xβ̂ + Zû.

For arbitrary x ∈R, the estimate of f(x) is

f̂ (x) = β̂0 + β̂1x +
K∑
k=1

ûk(x − κk)+,

where β̂0, β̂1, and ûk (1 ≤ k ≤ K) are EBLUPs.

4.10 Bibliographical Notes

Mixed modeling is a massive and growing branch of statistics. Here we have sim-
ply summarized the aspects that are most relevant to the subsequent chapters in
this book.

An excellent introduction to general design linear mixed models is Robinson
(1991). REML estimation of covariance matrices is due to Patterson and Thomp-
son (1971). An important reference for computational issues in mixed models is
Harville (1977).

In recent years, several books on mixed models – some with an emphasis on
longitudinal data analysis – have been published. These include Searle et al.
(1992), Vonesh and Chinchilli (1997), Pinheiro and Bates (2000), Verbeke and
Molenberghs (2000), and McCulloch and Searle (2001). Brumback, Ruppert,
and Wand (1999) discuss the mixed model representation of penalized splines,
though this representation had been developed earlier for the special case of
smoothing splines; see their paper for references to the latter.

4.11 Summary of Formulas

Linear mixed model
y = Xβ + Zu + ε

where

E

[
u
ε

]
=
[

0
0

]
and Cov

[
u
ε

]
=
[

G 0
0 R

]
V ≡ Cov(y) = ZGZT + R

Best linear unbiased prediction (BLUP)

BLUP(β) ≡ β̃ = (XT V−1X)−1XT V−1y

BLUP(u) ≡ ũ = GZT V−1(y − Xβ̃)

Alternatively,
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β̃

ũ

]
= (CT R−1C + B)−1CT R−1y

where

C = [X Z] and B =
[

0 0
0 G−1

]
Likelihood-based estimation of V

y ∼ N(Xβ,V)

Profile log-likelihood for ML estimation of V is

!P (V) = − 1
2 [log|V| + yT V−1{I − X(XT V−1X)−1XT V−1}y] − n

2 log(2π)

Restricted profile log-likelihood for REML estimation of V is

!R(V) = !P (V)− 1
2 log|XT V−1X|

Standard error estimation

Cov(β̃) = (XT V−1X)−1

Cov

([
β̃

ũ

]∣∣∣u) = (CT R−1C + B)−1CT R−1C(CT R−1C + B)−1

BLUP representation of linear penalized spline
Scatterplot data are (xi, yi), 1 ≤ i ≤ n. Knots are κ1, . . . , κK.

y =
 y1

...

yn

, X =
 1 x1

...
...

1 xn

, Z =
 (x1 − κ1)+ · · · (x1 − κK)+

...
. . .

...

(xn − κ1)+ · · · (xn − κK)+


G = σ 2

u I, R = σ 2
ε I, λ2 = σ 2

ε/σ
2
u
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Automatic Scatterplot Smoothing

5.1 Introduction

In Chapter 3 we showed how one can smooth a scatterplot using spline functions.
However, the methods described there were not automatic in that the user must
specify a number of quantities: the degree of the piecewise polynomials, the knot
locations, and the smoothing parameter λ. To varying extents, each of these has
an effect on the quality of the smooth. It is natural, therefore, to ask if the data
can guide the choice of these quantities and so lead to reasonably automatic scat-
terplot smooths.

Inspection of Figure 5.1 (which is identical to Figure 3.11) shows that the
choice of λ has a profound influence on the fit. In fact, λ can be chosen to give
any one of a spectrum of fits between the unconstrained regression spline fit and
the least-squares line. In this particular example, λ = 30 could be chosen by

Figure 5.1 Linear
penalized spline
regression fits to
LIDAR data for
λ-values of 0, 10, 30,
and 1000 (24 knots
are used).

112
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eye as reasonable. However, some applications require many scatterplot smooths
and it is not feasible to have the amount of smoothing chosen subjectively by a
human. Rather, it is advantageous that the data themselves “choose” an appro-
priate amount of smoothing.

Apart from the smoothing parameter, the degree of the polynomial basis and
the number and positioning of the knots need to be specified. As we will demon-
strate in Section 5.5, these choices are much less crucial than the smoothing
parameter, and reasonable default values are relatively easy to devise. Hence, the
first part of this chapter in concerned solely with smoothing parameter selection;
it is assumed that the degree and knot locations are fixed.

By the end of the chapter we will have given full prescriptions for choosing the
smoothing parameter, degree, and knot locations from the data. Such automatic
scatterplot smoothing is the focus of this chapter.

5.2 The Likelihood Approach

An attractive consequence of the BLUP representation of the penalized spline
smoother is that it can be fit using mixed model software, with ML or REML
used to select the amount of smoothing. REML is the more commonly used of
the two, so we will concentrate on that here.

Recall from Section 4.5.4 that, for a linear mixed model

y = Xβ + Zu + ε,

the REML criterion for estimating covariance matrix parameters is

!R(V) = − 1
2 [n log(2π)+ log|V| + log|XT V−1X|
+ yT V−1{I − X(XT V−1X)−1XT V−1}y],

where V = Cov(y). For the pth-degree penalized spline model,

V = σ 2
u ZZT + σ 2

ε I

and the smoothing parameter λ is

λ = (σ 2
ε/σ

2
u )

1/2p.

Therefore, if the REML criterion is minimized over σ 2
u , σ

2
ε ≥ 0 to give estimates

(σ̂ 2
u,REML, σ̂

2
ε,REML), then the selected bandwidth is

λ̂REML = (σ̂ 2
ε,REML/σ̂

2
u,REML)

1/2p.

The same idea, of course, can be used to select smoothing parameters via ML.
Figure 5.2 shows fits to the LIDAR data obtained using REML and ML. The

two fits are here almost indistinguishable because

λ̂REML = 38.7 and λ̂ML = 40.8,

which corresponds to 8.36 and 8.09 degrees of freedom, respectively. In our ex-
perience, λ̂REML and λ̂ML are usually quite close. See, for example, the results
from a simulation study presented in Figure 5.6.
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Figure 5.2 Automatic
penalized linear spline
fits to LIDAR data
based on REML
and ML selection
of the smoothing
parameter and using
24 knots. The two
fits are visually
indistinguishable for
these data.
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5.3 The Model Selection Approach

The maximum likelihood–based smoothing parameter selection methods depend
on the mixed model representation of penalized splines. Many other smoothing
methods, such as those described in Section 3.15, do not have such a represen-
tation. Hence more generic methods, based on classical model selection ideas,
are typically used to select the amount of smoothing. We will describe the most
common of these approaches here.

5.3.1 Cross-Validation (CV)

As we discussed in Section 2.6, one of the most common measures for the “good-
ness of fit” of a regression curve to a scatterplot is the residual sum of squares:

RSS =
n∑

i=1

(yi − ŷi)
2 = ‖y − ŷ‖2. (5.1)

However, since RSS is minimized at the interpolant (ŷi = yi, 1 ≤ i ≤ n),

minimization of this criterion will lead to the smooth that is closest to interpo-
lation. For penalized spline or local polynomial regression this corresponds to
a zero smoothing parameter. As illustrated by the fit in the upper left panel of
Figure 5.1, this is usually unacceptable. This difficulty is similar in nature to the
problem that we described in parametric model selection in Section 2.6 – the ob-
servation yi is being used as part of its own predictor. Therefore, a small amount
of smoothing, which gives high weight to yi, appears optimal for prediction ac-
cording to RSS.

We saw in Section 2.6 that cross-validation (CV) gets around this problem. Let
f̂ (x; λ) denote the nonparametric regression estimate at a point x with smooth-
ing parameter λ. Then we can rewrite the RSS formula (5.1) as
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Figure 5.3 Cross-
validation and RSS
curves for the LIDAR
data using 24-knot
linear regression
splines.

RSS(λ) =
n∑

i=1

{yi − f̂ (xi; λ)}2.

The cross-validation criterion is

CV(λ) =
n∑

i=1

{yi − f̂−i(xi; λ)}2,

where f̂−i denotes the nonparametric regression estimator applied to the data but
with (xi, yi) deleted. This “leaving one out” strategy is a way of guarding against
the wiggly answer that RSS(λ) gives. The CV choice of λ is the one that mini-
mizes CV(λ) over λ ≥ 0. We denote this minimizer by λ̂CV.

For the LIDAR data, Figure 5.3 shows the CV and RSS functions for 24-knot
penalized linear spline regression plotted against log(λ). CV(λ) is minimized on
this grid at λ = 44.7, which is close to the values determined by ML and REML
and is indicated by a vertical line in the plot. Also, λ = 30 (log(λ) = 3.4), which
we saw gives a visually appealing curve in Figure 5.1 and comes close to mini-
mizing CV; whereas λ = 10 (log(λ) = 2.3), which is a slight undersmooth in
Figure 5.1, yields a somewhat larger CV value. Furthermore, λ = 1000 (log(λ) =
6.9) is obviously a severe oversmooth in Figure 5.1 and gives a rather large CV
value in Figure 5.3. In this case, cross-validation appears to give a reasonable
result.

In this example 24 knots are used, so OLS gives a somewhat undersmoothed
but not disastrously poor estimate. As λ → 0, CV(λ) converges to 1.63, which is
only somewhat above the minimum-CV value of 1.46. As λ → ∞, the estimate
converges to the ordinary least-squares fit to a straight line model with severe
bias. Thus, as λ → ∞, CV(λ) converges to the rather large value of 3.88.

In Figure 5.3 one sees that RSS is monotonically increasing in λ, as theory
predicts, so that minimizing RSS does indeed lead to near-interpolation.



116 Automatic Scatterplot Smoothing

5.3.1.1 Computation of CV
When calculating cross-validation, some care is needed to avoid high computa-
tional cost. If one directly programs

CV(λ) =
n∑

i=1

{yi − f̂−i(xi; λ)}2,

then n versions of f̂−i(x; λ) are required, which leads to an order-n2 algorithm.
Fortunately, there now exist fast order-n algorithms for computation of CV(λ)

for most common smoothing techniques (Hutchinson and de Hoog 1985).
Let Sλ be the smoother matrix associated with f̂ . The vector of fitted values is f̂ (x1; λ)

...

f̂ (xn; λ)

 = Sλy

so that

f̂ (xi; λ) =
n∑

j=1

Sλ,ij yj,

where Sλ,ij is the (i, j) entry of Sλ. For many smoothers,

f̂−i(xi; λ) =
∑

j �=i Sλ,ij yj∑
j �=i Sλ,ij

. (5.2)

Even if (5.2) does not hold exactly, it usually holds approximately. Moreover, we
could take (5.2) as a definition of f̂−i(xi; λ) for use in cross-validation. Also, all
smoothers used routinely have the sensible property that if yi ≡ 1 then ŷi ≡ 1,
which implies that

n∑
j=1

Sλ,ij = 1 for all i, (5.3)

so that the denominator in (5.2) is equal to 1 − Sλ,ii . Using this fact, (5.2), and
some algebra, one can show that

CV(λ) =
n∑

i=1

(
yi − f̂ (xi; λ)

1− Sλ,ii

)2

=
n∑

i=1

( {(I − Sλ)y}i
1− Sλ,ii

)2

=
n∑

i=1

(
yi − ŷi

1− Sλ,ii

)2

. (5.4)

The beauty of (5.4) is that CV can be computed using only ordinary residuals and
the diagonal elements of the smoother matrix.

5.3.2 Generalized Cross-Validation (GCV)

Efficient algorithms for computation of CV(λ) were developed in the mid-1980s
(Hutchinson and de Hoog 1985). Before that time, the difficulties surrounding
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Figure 5.4
Scatterplot of the
age and log(income)
data with CV-based
penalized spline
smooth.
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computation of the cross-validation criterion led to the proposal of a simplified
version where the

Sλ,ii

are replaced by their average

1

n

n∑
i=1

Sλ,ii = 1

n
tr(Sλ).

This criterion is known as generalized cross-validation, or GCV for short:

GCV(λ) =
n∑

i=1

( {(I − Sλ)y}i
1− n−1 tr(Sλ)

)2

= RSS(λ)

{1− n−1 tr(Sλ)}2
. (5.5)

Of course, GCV is not a generalization of CV. However, we will observe conven-
tion and continue to use “generalized” where we would prefer to use “approxi-
mate”. We let λ̂GCV denote the smoothing parameter that minimizes GCV(λ). In
the smoothing spline context, GCV was proposed by Craven and Wahba (1979).

The GCV curve for the LIDAR data is so close to the CV curve that the two
are difficult to distinguish on a plot. Moreover, on the 40-point grid of λ-values
used in Figure 5.3, GCV is minimized at the same point as CV.

5.3.2.1 Age and Income Data
Figure 5.4 is a scatterplot of the log(income) versus age for a sample of 205
Canadian workers, all of whom were educated to grade 13.

The Canadian workers
data were used by
Ullah (1985), who
identifies their source
as a 1971 Canadian
Census Public Use
Tape.

Consider the problem of modeling log(income) as a function of age. The
scatterplot smooth in the figure is an estimate of the conditional expectation of
log(income) given age using 24-knot linear regression splines with the smoother
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Figure 5.5 Cross-
validation and
generalized cross-
validation curves for
age–income data
using 24-knot linear
regression splines.
The vertical lines
correspond to the
minima for each
function.

parameter chosen via CV. The dip around age = 45 years in the spline smooth
in the figure might be of interest to economists. If real, this dip represents a
mid-career decline in mean salary.

Figure 5.5 shows GCV and CV curves for the age–income data. We see that,
as with the LIDAR data, both criteria choose the same amount of smoothing.
However, the two curves of GCV and CV versus λ differ somewhat more here
than for the LIDAR data.

As with the LIDAR data, there is a suggestion of heteroscedasticity because
log(income) appears more variable for older individuals compared to those under
40. For illustration, we will use a simple analysis that ignores this heteroscedas-
ticity. See Chapter 14 for methods of analyzing heteroscedastic data.

5.3.3 Mallows’s Cp Criterion

In Section 2.6 we briefly mentioned Mallows’s Cp criterion (Mallows 1973),

Cp = RSS(p)+ 2σ̂ 2
εp,

as a means of choosing among multiple regression models. The motivation for
this criterion can be derived through nonparametric regression ideas. Suppose
that the true model is

y = f + ε, where Cov(ε) = σ 2
ε I,

and that the estimator of f is a linear smoother

f̂ = Ly.

Then, as shown in Section 3.11, the mean summed squared error of f̂ can be writ-
ten as

MSSE(f̂ ) = ‖(L − I)f‖2 + σ 2
ε tr(LLT ).
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Using first (3.31) and then (3.32), we have

E(RSS) = MSSE(f̂ )+ σ 2
ε (n− 2dffit),

where dffit = tr(L) as defined in Section 3.13. It follows that if σ̂ 2
ε is an unbiased

estimate of σ 2
ε , then

RSS + 2σ̂ 2
ε dffit

is an unbiased estimator of

MSSE(f̂ )+ nσ 2
ε .

Since nσ 2
ε does not depend on L, minimization of Cp is approximately the same

as minimization of MSSE(f̂ ).
For scatterplot smoothers such as penalized splines, putting L = Sλ leads to

the criterion
Cp(λ) ≡ RSS(λ)+ 2σ̂ 2

ε dffit(λ)

for choosing λ. We let λ̂Cp
denote the smoothing parameter that minimizesCp(λ).

The estimate σ̂ 2
ε requires a choice of dffit. In Section 5.3.3.1,

we will discuss two
ways to choose dffit

when calculating f̂
to obtain residuals
for estimating σ 2

ε :
(a) use a large value of
dffit so there is little
smoothing and little
bias; (b) use GCV (or
CV). Because Cp is
used as an alternative
to GCV and CV, (a)
will be used here.

5.3.3.1 Estimation of σ 2
ε

Since the residuals estimate the true errors, a crude estimate of σ 2
ε is RSS/n. This

statistic underestimates σ 2
ε because the residuals are less variable than the true er-

rors. The same problem was encountered in parametric regression in Section 2.4.
The solution there was to divide RSS by n− p rather than n. The same solution
is appropriate here, with n − p replaced by dfres(λ) as defined in Section 3.13.
Therefore, we take

σ̂ 2
ε = RSS(λ)

dfres(λ)
. (5.6)

How should λ be chosen for estimation of σ 2
ε ? Using λ that minimizes CV or

GCV is appropriate, but one might instead choose λ somewhat smaller than the
minimizers of these criteria. The reason is that CV and GCV balance the bias
and the variance f̂ . However, for the purpose of estimating σ 2

ε , bias in f̂ is to be
avoided even at the expense of extra variability of f̂ . This is because the bias in
f̂ inflates σ̂ 2

ε in a manner that cannot be easily corrected. Variance in f̂ deflates
σ̂ 2
ε , but this is precisely the effect that can be corrected by dividing RSS by dfres

instead of n.
From this argument we see that, when estimating σ 2

ε , a very small amount of
smoothing is acceptable. When using penalized regression splines, even λ = 0
could be used to estimate σ 2

ε – provided there are not so many knots that the OLS
fit can no longer be computed in a numericalally stable manner.

5.3.3.2 Relationship between GCV and Cp

Recall that

GCV(λ) = RSS(λ)

{1− n−1dffit(λ)}2
.
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By a one-term Taylor series approximation,If f is a smooth
function, then the
one-term Taylor
series approximation
to f(x + h) is
f(x)+ hf ′(x).

{n− dffit(λ)}−2 � n−2{1+ 2dffit(λ)/n}.
Therefore, by letting

σ̂ 2
ε (λ) ≡

RSS(λ)

n− dffit(λ)
� RSS(λ)

n

we obtain
GCV(λ) � RSS(λ)+ 2σ̂ 2

ε (λ)dffit(λ).

Thus, GCV(λ) is approximately equal to Cp(λ). The major difference between
the two criteria is that GCV estimates σ 2

ε using RSS(λ) whereas Cp(λ) requires
a prior estimate of σ 2

ε . This makes GCV somewhat more attractive.

5.3.4 Other Model Selection Criteria

Apart from GCV and Cp, there are several other selection criteria that trade off
RSS against dffit(λ) in various ways. One popular one is Akaike’s information
criterion (AIC) (Akaike 1973):

AIC(λ) ≡ log{RSS(λ)} + 2dffit(λ)/n. (5.7)

The search for better-performing model selection criteria for selecting smooth-
ing parameters is ongoing. For selection of a bandwidth for kernel regression,
Hurvich, Simonoff, and Tsai (1998) proposed a modification of AIC called cor-
rected AIC:

AICC(λ) ≡ log{RSS(λ)} + 2{dffit(λ)+ 1}
n− dffit(λ)− 2

.

They give a mathematical justification and conduct a large simulation study that
shows good comparative performance of this criterion for selecting the bandwidth
in kernel regression.

5.4 Caveats of Automatic Parameter Selection

The preceding sections may give the impression that the choice of a good smooth-
ing parameter can be achieved by simply implementing one of the algorithms de-
scribed there. Unfortunately, this is not the case. Like all estimators, automatic
smoothing parameter selectors are subject to variability and will not necessarily
estimate the “best” smoothing parameter very well.

Since the early 1980s, a great deal of theoretical and simulation-based inves-
tigation into the performance of automatic smoothing has taken place. Most of
the theory has been done by asymptotics in the local polynomial context (Sec-
tion 3.15.1), where a theoretically optimal smoothing parameter is taken to be the
target. However, it has been shown (Härdle, Hall, and Marron 1988) that, as the
sample size increases to infinity, smoothing parameter selectors such as GCV and
Cp converge very slowly to the optimum. This translates to the variability of the
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Figure 5.6 Pairwise
scatterplots of dffit

for REML, ML, CV,
GCV, and Cp from
small simulation
study.
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best smoothing parameter being quite high. Therefore, one should not implicitly
trust the answer given by one of these methods.

Simulation studies are useful for gaining an appreciation of the practical per-
formance of smoothing parameter selectors and for making comparisons. Some
large studies were published in the 1990s – such as Park and Turlach (1992),
Cao, Cuevas, and González-Manteiga (1994), Chiu (1996), and Jones, Marron,
and Sheather (1996a) – although each of these concerned the related problem of
probability density estimation.

To illustrate the practical performance of automatic smoothing parameter se-
lectors in the context of penalized spline regression, we ran a small simulation
study in which (xi, yi), 1 ≤ i ≤ 200, were generated from

yi = f(xi)+ εi, εi
ind.∼ N(0, 0.01),

with the xi uniformly distributed on the interval (0,1). The true regression func-
tion is

f(x) = 1.5φ

(
x − 0.35

0.15

)
− φ

(
x − 0.8

0.04

)
,

where φ(x) = (2π)−1/2e−x 2/2 is the standard normal density function. There
were 100 simulated data sets.

Figure 5.6 shows pairwise scatterplots of dffit for REML, ML, CV, GCV, and
Cp. Immediately it is seen that the selectors separate into two groups that give
roughly the same results for each sample: the likelihood-based selectors REML
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Figure 5.7
(a) dffit(λ̂REML )

versus dffit(λ̂GCV)

and (b) log10(RMSE)

for REML versus
log10(RMSE) for
GCV for the small
simulation study
described in the
text. The 45◦ line
allows comparison of
the values for each
sample.

and ML; and the model selection–based selectors CV, GCV, and Cp. Thus, we
will restrict further comparison to REML and GCV.

Figure 5.7(a) is a reproduction of the dffit(λ̂REML) versus dffit(λ̂GCV) scatter-
plot with a 45◦ line added. Notice that GCV tends to choose more degrees of
freedom than REML for this example. In Figure 5.7(b) we compare the two se-
lectors via the root mean squared error (RMSE) goodness-of-fit measure,

RMSE =
√√√√ 200∑

i=1

{f̂ (xi)− f(xi)}2,

on the log10 scale. Notice that the RMSE values for GCV and REML are quite
similar, with neither being systematically larger than the other. In summary,
REML will produce smoother fits than GCV because it chooses lower values
of dffit than GCV. This means that in the fitted curves REML will have more
bias and less variance than GCV. However, the two methods of selecting the
amount of smoothing will be about equally accurate in terms of MSE; they trade
off bias and variance differently but achieve nearly the same values of MSE =
bias2 + variance.

Figure 5.8 shows the regression function estimates corresponding to the 50th
and 90th percentiles of the RMSE values for REML and GCV. This reveals that
REML does not handle the dip around x = 0.8 as well as GCV does. However,
the GCV-based fits tend to be more wiggly. Out of the 100 simulations, GCV
has a lower RMSE on 57 occasions. Moreover, a Wilcoxon test shows the mean
RMSE differences to be significantly less than zero and so, based on this mea-
sure, GCV comes out on top for this example.

Simulation studies with many more settings are required to better understand
the relative practical performance of smoothing parameter selectors described
in this chapter. For scatterplot smoothing such studies are somewhat piecemeal
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Figure 5.8 Estimates
based on (a) REML
and (b) GCV
corresponding to
the 50th and 90th
percentiles of the
RMSE distributions
for the simulation
study described in the
text.
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throughout the literature, and general recommendations are difficult to extract at
this stage.

5.5 Choosing the Knots and Basis Functions

Two regression spline fits that differ by their numbers of knots or by their basis
functions can be compared if each has a λ value that was automatically chosen
“optimally” (say, by CV). We can also compare the amount of smoothing that
they impose by comparing their dffit values. Thus, by using CV and dffit, we
can study the effects of varying the number of knots or the degree of a regres-
sion spline. This same principle was applied earlier to compare regression spline
fitting to polynomial regression for the LIDAR data; see Section 3.13.

5.5.1 Varying the Number of Knots

First we study the effect of varying the number of knots by using CV and dffit. In
Figure 5.9, CV(λ) is plotted against λ for 24-knot linear splines and for 48-knot
linear splines. Only the region of dffit values that come close to minimizing CV
is shown. One sees that in this region there is little difference between using 24
knots and 48 knots, at least in terms of CV. For these data there really is no essen-
tial difference between 24 and 48 knots. In fact, plots of the 24-knot and 48-knot
minimum-CV smooths are virtually indistinguishable by eye.

Of course, if there are too few knots then a good fit may not be achievable.
Figure 5.10 shows minimum-CV linear spline fits with 6, 12, and 24 knots. The
12-knot fit is only slightly different from the 24-knot fit and still fits the data well.
The 6-knot fit is less flexible and fits the data less well. The 6-knot spline also
has a noticeable piecewise linear or “kinky” appearance. The 12- and 24-knot
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Figure 5.9 Plot of
CV(λ) versus dffit(λ)

for the LIDAR data
for 24-knot and
48-knot linear splines.
The vertical lines pass
through the minima
of the CV(λ) curves
which are virtually
indistinguishable in
this case.

Figure 5.10 Plot of
minimum-CV linear
splines with 6, 12,
and 24 knots for the
LIDAR data.
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splines are, of course, piecewise linear, but they appear smooth because the jump
at each of their knots is small.

5.5.2 Varying the Degree of the Regression Spline

What happens to a regression spline smooth if the degree of the spline is changed?
The answer depends on how many knots are being used and how smooth the true
function f is.
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Figure 5.11 Plot of
CV for 24-knot linear
and quadratic splines
for the LIDAR data.
The vertical lines pass
through the minima
of the CV(λ) curves,
which are virtually
indistinguishable in
this case.

Suppose that f is smooth (e.g., f ′′ is continuous). If one is using a linear
spline with enough knots so that increasing the number of knots has no appre-
ciable effect on the penalized fit, then increasing the degree of the spline is also
unlikely to have a noticeable effect. As an example, consider 24-knot linear and
quadratic spline fits to the LIDAR data. The CV functions for both fits are shown
in Figure 5.11. One can see that, for a fixed value of dffit, the two fits have nearly
equal CV values. The range of possible values of dffit is shifted 1 unit to the right
when the degree is increased by 1, but CV-optimal values of dffit are well within
both ranges. Figure 5.12 shows minimum-CV linear and quadratic fits that are
nearly indistinguishable.

However, if one uses fewer knots then quadratic regression splines can fit the
LIDAR data better than linear splines. Figure 5.13 shows that minimum-CV lin-
ear and quadratic 6-knot fits. One sees that the kinky appearance of the linear
spline disappears when one uses a higher-degree fit.

5.5.3 Default Choices for Knot Locations

In Section 5.5.1 we saw that, provided the set of knots was relatively “dense”
with respect to the xi, the result hardly changed. The idea is to choose enough
knots to resolve the essential structure in the underlying regression function. But
for more elaborate penalized spline models (to be studied in later chapters) there
are computational advantages to keeping the number of knots relatively low. A
reasonable default is to choose the knots to ensure that there are a fixed number
of unique observations, say 4–5, between each knot. For large data sets this can
lead to an excessive number of knots, so a maximum number of allowable knots
(say, 20–40 total) is recommended.
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Figure 5.12 Plot of
the minimum-CV
24-knot linear and
quadratic penalized
spline fits for the
LIDAR data.
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Figure 5.13 Plot of
minimum-CV 6-knot
linear and quadratic
splines.
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Our current default for knot locations is:

κk = ( k+1
K+2

)
th sample quantile of the unique xi (5.8)

for k = 1, . . . , K.

A simple default choice of K that usually works well is

K = min
(

1
4 × number of unique xi, 35

)
. (5.9)

Although (5.8) and (5.9) work well in most of the examples we come across, they
do not use any information in the data except the sample size. There are times
where one needs a more sophisticated algorithm that uses the data to choose K.
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Alternatively, the user may choose K based on visual inspection of the scatterplot
to determine the complexity of f relative to the noise in the data.

For example, if the regression function seems to have a lot of fine detail then
K should be increased. For this reason, we have developed two automatic algo-
rithms for determining K. These are studied in the next section.

5.6 Automatic Selection of the Number of Knots

This section discusses two algorithms for data-based selection of the number of
knots, K. The myopic algorithm searches a sequence of trial values ofK and stops
when there is no improvement in GCV. The full-search algorithm searches the
entire sequence of trial values and uses the one that minimizes GCV. The myopic
algorithm works very well for most problems, but it can be fooled into stopping
prematurely.

5.6.1 Myopic Algorithm

The myopic algorithm uses a sequence of trial values of K (5, 10, 20, 40, 80, and
120), except that only values of K in this sequence that are less than nuniq −p−1
are used, where nuniq is the number of unique xi.

The algorithm for selecting the number of knots is as follows. First, the pe-
nalized spline fit is computed for K equal to 5 and 10. In each case λ is chosen
to minimize GCV(λ) for that number of knots. If GCV at K = 10 is greater
than 0.98 times GCV at K = 5, then one concludes that further increases in K

are unlikely to decrease GCV and hence uses K = 5 or 10, whichever has the
smallest GCV. Otherwise, one computes the penalized spline fit with K = 20
and compares GCV for K = 10 with GCV for K = 20 – in the same way one
compared GCV for K = 5 and 10. One stops and uses K = 10 or 20 (whichever
gives the smaller GCV) if GCV at K = 20 exceeds 0.98 times GCV at K = 10.
Otherwise, one computes the penalized spline at K = 40, and so forth. The al-
gorithm is called “myopic” because it never looks beyond the value of K where
it stops.

5.6.2 Full-Search Algorithm

The full-search algorithm computes GCV, minimized over λ, at all values of K
in our trial sequence. The value of K (in that sequence) that minimizes GCV is
selected.

The myopic algorithm has the advantage that it usually takes far less computa-
tion than the full-search algorithm. However, penalized splines can be computed
so rapidly that this advantage is not compelling.

The one drawback to the myopic algorithm is that it can stop “before it really
gets started”. More precisely, for regression functions with enough complexity,
neither K = 5 nor 10 will fit the data satisfactorily; it may happen that 5 knots is
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just as good as 10. In this case, the myopic policy will stop at 10 knots whereas
the full-search policy will select a much greater number of knots and achieve a
much better fit. An example where this phenomenon occurs is the cyclic function
example in Section 5.6.3. This problem with the myopic policy may be occur-
ring in the fossil data example given in Section 5.6.4, though with real data it is
impossible to know the “right answer”.

5.6.3 A Simulation Study

A small simulation study of the two algorithms used n = 250 observations per
data set. The xi were equally spaced on [0,1]. Two regression functions were
studied: the first, called the “bump function”, was

f(x) = 1

0.1+ x
+ 8 exp{−400(x − 0.5)2};

the second, called the “cyclic function”, was

f(x) = 10 sin(20πx1.3).

The standard deviation σ was equal to 2 for the bump function and to 4 for the
cyclic function. There were 300 simulated data sets for each regression function.
On each data set, the myopic and full-search algorithms were applied. Penalized
splines using each of the fixed values of K searched by the automatic algorithms
(i.e., 5, 10, 20, 40, 80, 120) were also calculated.

Figure 5.14 shows the results for the bump function. Panel (a) shows the func-
tion, a typical data set, and the full search estimator for that data set. In panel (b)
there is a plot of relative MASE (mean average squared error) versus K for the
penalized splines with K fixed. Here MASE is the average over the 300 simu-
lated data sets of

ASE = n−1
n∑

i=1

{f̂ (xi; λ̂)− f(xi)}2.

Relative MASE is MASE divided by MASE minimized over fixed K. For the
bump function, the minimum occurs at K = 10. There are also horizontal lines
to indicate MASE for the two automatic algorithms. Panel (c) shows histograms
of the values of K chosen by the algorithms. Panel (d) plots ASE for K = 40
versus for K = 10.

MASE is very high for K = 5, is minimized by K = 10, and is near a min-
imum for K = 20, 40, 80, and 120. Neither automatic algorithm chooses K =
5 for any of the 300 data sets. Both tend to choose the best K, K = 10. Not
surprisingly, the myopic algorithm tends to choose smaller values of K than the
full-search algorithm, and for this reason the myopic algorithm has a smaller
MASE in this example than the full-search algorithm.

The results for the cyclic function are shown in Figure 5.15. Note that in
panel (b), the vertical axis is on the log scale because the MASE for K = 5, 10,
and 20 is an order of magnitude greater than for K = 80 or 120. The full-search
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Figure 5.14 Bump
function. (a) Typical
data set, true
regression function,
and estimate from the
full-search algorithm.
(b) Semilog plot
of relative MASE
as a function of
K with horizontal
lines through MASE
for the myopic and
full-search algorithms.
(c) Histograms of
K as chosen by the
myopic (black on left)
and full-search (white
on right) algorithms.
The number of knots
is coded: 1 = 5
knots, 2 = 10 knots,
3 = 20 knots, 4 = 40
knots, 5 = 80 knots,
and 6 = 120 knots.
(d) Plot of average
squared errors for
the 300 samples for
a small and a large
value of K.
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algorithm is successful in that it chooses 80 or 120 knots in each of the 300 simu-
lated data sets. The myopic algorithm chooses 5 or 10 knots in about 80% of the
data sets. The problem here is that 10 knots is no better than 5, and the myopic
algorithm stops prematurely. Interestingly, the myopic algorithm never chooses
20 knots: once the algorithm decides not to stop at 10 knots, it finds a moder-
ate improvement going from 10 to 20 knots and then a huge improvement going
from 20 to 40 knots. In panel (d) one sees that the ASE for 40 knots is rather
consistently slightly larger than for 80 knots, an effect of larger bias for 40 knots
compared to 80.

5.6.4 Fossil Data

When applied to the fossil data, the myopic algorithm chooses 5 knots and the
full-search algorithm chooses 80 knots. See Figure 5.16. The fits with 10 and
20 knots are also shown. The 40-knot fit is similar to the full-search fit with 80
knots. Clearly the number of knots does affect the fit in the region between 95 and
105 million years. A dip in this region is seen in all fits except the 5-knot fit. As
with any example of real data, the “true” regression function is unknown and we
cannot be certain which estimate is best. Since the myopic algorithm chooses 5
knots, one might conjecture that it has stopped prematurely. However, Chaudhuri
and Marron (1999) use their feature significance methodology (see Section 6.9)
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Figure 5.15 Cyclic
function. (a) Typical
data set, true
regression function,
and estimate from the
full-search algorithm.
(b) Semilog plot
of relative MASE
as a function of
K with horizontal
lines through MASE
for the myopic and
full-search algorithms.
(c) Histograms of
K as chosen by the
myopic (black on left)
and full-search (white
on right) algorithms.
The number of knots
is coded: 1 = 5
knots, 2 = 10 knots,
3 = 20 knots, 4 = 40
knots, 5 = 80 knots,
and 6 = 120 knots.
(d) Plot of average
squared errors for
the 300 samples for
a small and a large
value of K.
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Figure 5.16 Myopic,
full-search, and two
fixed-knots fits to the
fossil data.
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to conclude that the data do not support the hypothesis of a dip at about 97 mil-
lion years. Thus, there is little or no evidence that the 5-knot fit without the dip
selected by the myopic algorithm is inferior to the other fits; in fact, if the dip is
spurious then the 5-knot fit could be considered better than the other estimators.
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5.7 Bibliographical Notes

Automatic smoothing parameter selection was the focus of a great deal of research
in the 1980s and early 1990s. Much of it was concerned with the kernel density
estimation setting; Jones, Marron, and Sheather (1996a,b) provide a good survey.
See also Chiu (1996). Ansley and Kohn (1985) and Wahba (1985) investigated
the use of REML for automatic smoothing spline fitting. The myopic algorithm
for selecting K was proposed by Ruppert and Carroll (2000). The myopic and
full-search algorithms were studied in detail by Ruppert (2002). His simulation
study is much like that in Section 5.6.3 but more extensive.

In contrast to the situation with penalized estimation, with OLS knot selection
is crucially important. Therefore, it is not surprising that there is a large litera-
ture on knot selection when fitting is by OLS. Smith (1982) appears to be the first
paper in this area, and Friedman (1991) and Smith and Kohn (1996) are impor-
tant contributions. See Stone et al. (1997) and Hansen et al. (2003) and references
therein for a good introduction to this work.

5.8 Summary of Formulas

REML smoothing parameter selection
For pth-degree truncated splines,

λ̂REML = (σ̂ 2
ε,REML/σ̂

2
u,REML)

1/2p

where (σ̂ 2
u,REML, σ̂

2
ε,REML) minimizes

!R(V) = − 1
2 [n log(2π)+ log|V| + log|XT V−1X|

+ yT V−1{I − X(XT V−1X)−1XT V−1}y]

with V ≡ σ 2
u ZZT + σ 2

ε .

ML smoothing parameter selection

λ̂ML = (σ̂ 2
ε,ML/σ̂

2
u,ML)

1/2p

where (σ̂ 2
u,ML, σ̂

2
ε,ML) minimizes

!(V) ≡ − 1
2 [n log(2π)+ log|V| + yT V−1{I − X(XT V−1X)−1XT V−1}y]

Cross-validation (CV)
λ̂CV minimizes

CV(λ) ≡
n∑

i=1

{yi − f̂−i(xi; λ)}2

where f̂−i(xi; λ) is the scatterplot smooth based on the data with (xi, yi) omitted.

Generalized cross-validation (GCV)
λ̂GCV minimizes

GCV(λ) ≡ RSS(λ)

{1− n−1dffit(λ)}2
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Mallows’s Cp

λ̂Cp
minimizes

Cp(λ) ≡ RSS(λ)+ 2σ̂ 2
ε dffit(λ)

for some estimate σ̂ 2
ε of σ 2

ε ≡ var(εi).

Akaike’s information criterion (AIC)
λ̂AIC minimizes

AIC(λ) ≡ log{RSS(λ)} + 2dffit(λ)/n

Corrected AIC (AICC)

λ̂AICC
minimizes

AICC(λ) ≡ log{RSS(λ)} + 2{dffit(λ)+ 1}
n− dffit(λ)− 2

.
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Inference

6.1 Introduction

The methodology in Chapters 3 and 5 solves the problem of fitting a smooth curve
to a scatterplot. More formally, for the nonparametric regression model

yi = f(xi)+ εi, E(εi) = 0,

it estimates the function f(x) = E(y|x) without the stringency of a parametric
model.

For a particular value x of the predictor, the value of a scatterplot smooth at
x, f̂ (x), is a point estimate of f(x). Natural follow-up questions are:

• What is the estimated standard deviation of f̂ (x)?
• What is a 95% confidence interval for f(x)?

These problems fall within the realm of statistical inference for the unknown
quantity f(x) and are simply in keeping with those used routinely in paramet-
ric modeling. However, in this function estimation context there are a number of
new global inferential questions that arise, such as:

• Is f linear or nonlinear?
• Is the dip apparent in f̂ “really there”?
• Is f monotonically increasing?

In this chapter we will describe techniques for addressing both point and global
inferential questions.

6.2 Variability Bands

Figure 6.1 is a penalized spline smooth of the fossil scatterplot described on
page 68. For each value of age, the height of the curve is a point estimate of

f(age) = E(strontium ratio|age).
For example,

f̂ (100) = 0.7074118.

However, a common convention in statistical analysis is to report a standard de-
viation estimate:

133
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Figure 6.1 Smooth
of the fossil data.
For each value of
age, the vertical
height of the curve
is a point estimate
of E(strontium
ratio|age). The
shaded bar at
age = 100 is an
approximate 95%
confidence interval
for E(strontium
ratio|100).
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Figure 6.2 Variability
band for a smooth
of the fossil data.
The shaded region
represents plus and
minus twice the
estimated standard
deviation at each value
of age.
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f̂ (100) = 0.7074118 (0.000011).

Here 0.000011 is the estimated standard deviation of f̂ (100), which we will de-
note by ŝt.dev.{f̂ (100)}. If f̂ (100) is approximately normally distributed (see next
section), then an approximate 95% confidence interval for f(100) is

f̂ (100)± 2 × ŝt.dev.{f̂ (100)} = (0.7073898, 0.7074339);
this interval is shown by the shaded vertical strip around age = 100 in Figure 6.1.

Obviously it would be useful to do this for all values of age in the range of the
data set. The result is shown in Figure 6.2. The “cloud” around the scatterplot
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smooth corresponds to plus and minus twice the estimated standard deviation at
each age value; we will call this a variability band.

Variability bands are straightforward to calculate if the smooth is linear in the
response vector y, as is the case for a fixed smoothing parameter in the penalized
spline or the local polynomial estimates described in Chapter 3. For the special
case of penalized splines, the mathematics for calculating variability bands dif-
fers depending on whether a mixed model representation is being used. In this
section and the next we will not use a mixed model representation, leaving that
to Section 6.4.

Let x be a general value of the predictor variable. Then the estimate at f(x) is

f̂ (x) = �T
xy (6.1)

for some n × 1 vector �x. Ignoring, for now, the dependence of �x on estimated
smoothing parameters, we have

var{f̂ (x)} = �T
x Cov(y)�x.

If it is reasonable to assume homoscedasticity via

Cov(y) = σ 2
ε I,

then
ŝt.dev.{f̂ (x)} = σ̂ε‖�x‖

for some suitable estimate σ̂ 2
ε of σ 2

ε . Such a strategy was used to produce Fig-
ure 6.2. The variability bands correspond to

f̂ (x)± 2 × ŝt.dev.{f̂ (x)} for 91.8 ≤ x ≤ 123.

Strictly speaking, an adjustment should be made to ŝt.dev.{f̂ (x)} to account
for

(1) variability in σ̂ε as an estimate of σε,

(2) bias due to curvature, and
(3) variability in �x due to smoothing parameter estimation.

In the next section we argue that replacement of the “2” by t(0.975; dfres) is a
reasonable strategy for addressing (1), although for typical scatterplot smoothing
this correction will not make much difference. For example, for the fossil data
n = 106 and dfres = 90.2, so t(0.975; dfres) = 1.987 ≈ 2.

Sources (2) and (3) are somewhat more delicate and are best appreciated
through the mixed model representation of penalized splines and Bayesian mod-
eling. Thus, we postpone further discussion of these issues until Section 6.4 and
Chapter 16.

6.3 Confidence and Prediction Intervals

Consider, first, the homoscedastic normal errors model

yi = f(xi)+ εi, εi
ind.∼ N(0, σ 2

ε ),
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and estimation of f(x) through a general linear smoother

f̂ (x) = �T
xy. (6.2)

For fixed values of the smoothing parameter �x,

f̂ (x) ∼ N(E{f̂ (x)}, σ 2
ε ‖�x‖2)

and so
f̂ (x)− E{f̂ (x)}

σε‖�x‖ ∼ N(0,1). (6.3)

If σε is replaced by an estimate σ̂ε then, for small n, the normal approxima-
tion is poor. In parametric regression models such studentized statistics have a
t-distribution with degrees of freedom equal to n− p, where p is the number of
parameters in the model. In scatterplot smoothing we have the approximation:

f̂ (x)− E{f̂ (x)}
σ̂ε‖�x‖

approx.∼ t[dfres] (6.4)

(Hastie and Tibshirani 1990), where [x] is the closest integer to x.

If the errors are not necessarily Gaussian then, by a central limit theorem forCentral limit theorems
for smoothers require
certain assumptions
on �x . Several papers,
starting with Schuster
(1972), have worked
out the details.

the smoother f̂ (x), for large samples we have

f̂ (x)− E{f̂ (x)}
σ̂ε‖�x‖

approx.∼ N(0,1).

Confidence intervals like the t-intervals of Section 2.4 can be based on (6.4) and
(6.3). The resulting intervals are

f̂ (x)±
{

t
(
1− α

2 ; dfres
)
σ̂ε‖�x‖ for small n,

z
(
1− α

2

)
σ̂ε‖�x‖ for large n.

(6.5)

Note that these intervals cover E{f̂ (x)} with 100(1 − α)% confidence rather
than f(x). Interpretation of them as approximate confidence intervals for f(x)
requires approximate unbiasedness of f̂ (x). Often the plausibility of unbiased-
ness can be assessed from inspection of the fitted curve to the scatterplot, but in
high-noise situations and more complex settings this may be difficult. Theory
for local polynomial regression (e.g. Tsybakov 1986) shows that bias is inher-
ent in nonparametric regression when the amount of smoothing is optimal, and
that it tends to be higher at peaks and valleys in the regression curve. Because
of this, it is difficult to give a theoretical “stamp of approval” for (6.5) being a
100(1− α)% confidence interval for f(x). Nevertheless, it is often the case that
approximate unbiasedness is reasonably assumed and hence variability bands can
be interpreted as approximate confidence intervals. A form of bias correction is
discussed in Section 6.4.

A prediction interval for a new observation at x, analogous to parametric in-
terval (2.16), is

f̂ (x)±
{

t
(
1− α

2 ; dfres
)
σ̂ε

√
1+ ‖�x‖2 for small n,

z
(
1− α

2

)
σ̂ε

√
1+ ‖�x‖2 for large n.

(6.6)
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Figure 6.3
Confidence intervals
for f(xi) (dark
band) and prediction
intervals for new y

(light band).
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Figure 6.3 shows the 95% confidence intervals (6.5) and prediction intervals (6.6).
Bias is the same in prediction and confidence intervals, but variability is much
greater in the former. For this reason, generally bias can safely be ignored in (6.6).
The prediction intervals should contain about 95% of the observations. Because
of the large sample size, the confidence intervals are relatively narrow. The pre-
diction intervals are wider because most of the uncertainty in prediction is due to
variation of a new observation about its mean, not to uncertainty regarding that
mean.

Although the bands depicted in Figure 6.3 are useful for conveying the amount
of sample variability inherent in a scatterplot smooth, it is important to realize
that they can only be interpreted in a pointwise fashion. They cannot be used to
infer the existence of any features, such as bumps or dips, that depend on the en-
tire curve. Section 6.9 describes inference for feature existence.

6.4 Inference for Penalized Splines

Inference for penalized splines is a delicate matter because the variability esti-
mates depend on whether or not the mixed model formulation is being used and
(if not) how the random coefficients are handled.

Consider first the linear penalized spline without mixed model representation:

yi = β0 + β1xi +
K∑
k=1

β1k(xi − κk)+ + εi, (6.7)

where none of the coefficients β0, β1, β11, . . . , β1K are considered random and
εi

ind.∼ N(0, σ 2). This is the representation used in Chapter 3. In this case

f̂ (x) = �T
xy,
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where
�x = C(CTC + λ2 D)−1CT

x

with Cx ≡ [1 x (x − κ1)+ . . . (x − κK)+], D ≡ diag(0, 0,1, . . . ,1), and

C ≡ [Cxi ]1≤i≤n.

Approximate confidence intervals can then be constructed using (6.5) with

‖�x‖ =
√

Cx(CTC + λ2 D)−1CTC(CTC + λ2 D)−1CT
x. (6.8)

In Chapter 5 we used the mixed model formulation of penalized splines as a
convenient fiction to estimate smoothing parameters. The mixed model is a rea-
sonable (though not compelling) Bayesian prior for a smooth curve, and ML or
REML estimates of variance components give estimates of the smoothing para-
meter that generally behave well. Can we push this idea further and use the mixed
model for inference? We will see that the answer is “yes”. Mixed model theory
gives confidence intervals that are similar to (6.5) but a little wider. The extra
width is a good thing, since it comes about because the mixed model theory takes
bias into account whereas (6.5) does not.

Consider the mixed model representation of (6.7):

yi = β0 + β1xi +
K∑
k=1

uk(xi − κk)+ + εi,

which can be written as

y = Xβ + Zu + ε, Cov

[
u
ε

]
=
[
σ 2
u I 0
0 σ 2

ε I

]
, (6.9)

where
X = [1 xi]1≤i≤n, Z =

[
(xi − κk)+

1≤k≤K

]
1≤i≤n

.

Let
Xx = [1 x], Zx =

[
(x − κk)+

1≤k≤K

]
,

and
f̃ (x) ≡ Xx β̃ + Zx ũ,

where β̃ and ũ are the BLUPs of β and u. Then f̃ (x) is the BLUP of

f(x) ≡ Xxβ + Zxu.

We let
f̂ (x) ≡ Xx β̂ + Zx û

denote the corresponding EBLUP of f(x).
Note that, within this framework, the target function f(x) is random owing to

randomness in u. Variability estimates differ depending on whether randomness
in u is taken into account. One argument, which leads to the same variability es-
timates as the ridge regression formulation, is that randomness of u is a device
used to model curvature, while ε accounts for variability about the curve. Ac-
cording to this argument, variance calculations should be done with respect to
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the conditional distribution y|u rather than the unconditional distribution of y.
Variability bands can then be obtained from

var{f̃ (x)|u} = [Xx Zx] Cov

([
β̃

ũ

]∣∣∣u)[Xx Zx]T

= Cx Cov

([
β̃

ũ

]∣∣∣u)CT
x.

Then, from (4.17) of Section 4.7,

Cov

([
β̃

ũ

]∣∣∣u) = σ 2
ε

(
CTC + σ 2

ε

σ 2
u

D
)−1

CTC
(

CTC + σ 2
ε

σ 2
u

D
)−1

. (6.10)

Hence

ŝt.dev.{f̂ (x)|u} = σ̂ε

√
Cx

(
CTC + σ̂ 2

ε

σ̂ 2
u

D
)−1

CTC
(

CTC + σ̂ 2
ε

σ̂ 2
u

D
)−1

CT
x, (6.11)

which matches (6.8). Also, if ε ∼ N(0, σ 2
ε I) then

f̃ (x)|u ∼ N[E{f̃ (x)|u}, var{f̃ (x)|u}],
where

E{f̃ (x)|u} = Xx β̃ + Zx ũ

corresponds to the fitted curve. It follows that

f̃ (x)− E{f̃ (x)|u}
ŝt.dev.{f̃ (x)|u}

∣∣∣u ∼ N(0,1),

and an approximate 100(1− α)% confidence interval for E{f̃ (x)|u} is

f̂ (x)± z
(
1− α

2

)
ŝt.dev.{f̂ (x)|u}. (6.12)

If there is no appreciable bias then E{f̃ (x)|u} ≈ f(x), and this interval can
be interpreted as a confidence interval for f(x). However, in this mixed model
framework we can get a handle on bias. Note that this conditional bias is

E{f̃ (x)− f(x)|u} = Xx{E(β̃|u)− β̃} + Zx{E(ũ|u)− u}

= −σ 2
ε

σ 2
u

Cx

(
CTC + σ 2

ε

σ 2
u

D
)−1[ 0

u

]
,

which is nonzero. But, since E(u) = 0, the unconditional bias is

E{f̃ (x)− f(x)} = 0.

Thus, on average over the distribution of u, f̃ (x) is unbiased for f(x). To account
for bias in the confidence intervals, the ridge regression variance var{f̃ (x)|u}
should be replaced by the conditional mean squared error

E[{f̃ (x)− f(x)}2|u] = var{f̃ (x)|u} + [E{f̃ (x)− f(x)|u}]2

and then averaged over the u distribution. Noting that var{f̃ (x)|u} is constant
(not dependent on u), we obtain
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E
(
E[{f̃ (x)− f(x)}2|u]

) = var{f̃ (x)|u} + E
(
[E{f̃ (x)− f(x)|u}]2

)
.

But the left-hand side is just

E[{f̃ (x)− f(x)}2] = var{f̃ (x)− f(x)}

= var

{
Cx

[
β̃ − β

ũ − u

]}
= Cx Cov

[
β̃

ũ − u

]
CT

x.

Therefore, the ridge regression and bias adjusted variability estimates differ: the
former uses

Cov

([
β̃

ũ

]∣∣∣u) = Cov

([
β̃

ũ − u

]∣∣∣u)
whereas the latter uses

Cov

([
β̃

ũ − u

])
= σ 2

ε

(
CTC + σ 2

ε

σ 2
u

D
)−1

. (6.13)

Note that (6.13) is a special case of (4.16). This suggests

ŝt.dev.{f̂ (x)− f(x)} = σ̂ε

√
Cx

(
CTC + σ 2

ε

σ 2
u

D
)−1

CT
x.

Also, under certain assumptions,

f̂ (x)− f(x)

ŝt.dev.{f̂ (x)− f(x)} ∼ N(0,1),

and an approximate 100(1− α)% confidence interval for f(x) is

f̂ (x)±
{

t
(
1− α

2 ; dfres
)
σ̂ε ŝt.dev.{f̂ (x)− f(x)} for small n,

z
(
1− α

2

)
σ̂ε ŝt.dev.{f̂ (x)− f(x)} for large n.

(6.14)

Interval (6.14) will be somewhat longer than interval (6.12) because (6.14) ac-
counts for both components of error (variance and squared bias) whereas (6.12)
accounts only for variance and covers E{f̃ (x)|u}, not f(x).

A revealing comparison between the two intervals can be made using the
smoother matrix (Hastie and Tibshirani 1990, p. 60). If f̃ and f are the vectors of
f̃ (xi) and f(xi), respectively, then

Cov(f̃ − f |u) = σ 2
ε SST, Cov(f̃ − f ) = σ 2

ε S,

where

S ≡ C
(

CTC + σ 2
ε

σ 2
u

D
)

CT

is the smoother matrix associated with f̃ (f̃ = Sy). Therefore, at the xi, the ridge
regression variability bands use diagonal entries of SST while the bias adjusted
bands use diagonal entries of S.
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Figure 6.4 Fossil
data with confidence
bands that account for
squared bias (outer)
and do not account for
squared bias (inner).
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Figure 6.4 shows two sets of 95% confidence bands for the fossil data, the
inner one given by (6.12) and the outer one given by (6.14). Note that the differ-
ences between the two are greatest in regions of higher curvature around 100 and
115 million years of age. This is where bias in curve estimates is greatest.

Often there is only a small difference between (6.14) and (6.12), but the differ-
ence can be nontrivial. We prefer (6.14) because it is an interval for f(x), the true
object of interest. We discussed (6.12) carefully, since that interval is in common
use and there is a need to understand why (6.14) is superior.

The bias adjustment described here is equivalent to that developed for smooth-
ing splines by Wahba (1983) and Nychka (1988). Their derivation was based on
a Bayesian perspective and so they used the name Bayesian confidence inter-
vals. Because the mixed model can be viewed as a partially Bayesian model –
with the distribution of the random effects as their prior but with the fixed effects
and variance components not having priors – these intervals can be also viewed
as non-Bayesian intervals that account for bias. Nychka (1988) argues that the
Bayesian intervals have a frequentist interpretation in having coverage probabili-
ties that, on average over x, are 1−α. However, as shown in Ruppert and Carroll
(2000), if there are regions of sharp curvature in an otherwise flat regression func-
tion, then the coverage probability can be far below 1− α in the regions of high
curvature and greater than 1−α elsewhere. As demonstrated by Ruppert and Car-
roll (2000) and Cummins, Filloon, and Nychka (2001), spatially adaptive splines
can be used to correct this problem; see Chapter 17.

Finally, we note that none of the interval estimates given thus far in this chapter
account for variability in smoothing parameter estimation. In penalized splines
with mixed model representation, this corresponds to variability in σ̂u and σ̂ε. In
Section 4.7 we discussed this issue and its difficulties for general mixed models,
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so the same comments apply to penalized spline scatterplot smoothing. It is com-
mon practice to ignore this source of variability in the hope that the sample sizes
are sufficiently large that the extra variability will be negligible, but in Chapter 16
we show how this extra variability can be taken into account by fully Bayesian
inference.

6.5 Simultaneous Confidence Bands

Each of the confidence intervals presented so far in this chapter are pointwise.
For example, we can use Figure 6.4 to separately make the statements

(0.70739, 0.70743) is an approximate 95% confidence interval for f(100)

and

(0.70732, 0.70735) is an approximate 95% confidence interval for f(110).

However, as is well known in multiple comparison circles, it is a fallacy to say
that

f(100) is contained in (0.70739, 0.70743) and simultaneously f(110) is
contained in (0.70732, 0.70735) with 95% confidence.

How might we modify these intervals so that such statements are valid? Let X
denote the set of x values of interest. Often X will be the smallest interval con-
taining each of the xi (e.g., for the fossil data X = (91.3,123)). Mathematically,
the pointwise 100(1 − α)% confidence bands {(L(x), U(x)) : x ∈ X } approxi-
mately satisfy

P {L(x) ≤ f(x) ≤ U(x)} ≥ 1− α for all x ∈X . (6.15)

In Section 6.4 we argued that, for large n,

L(x) = f̂ (x)− z
(
1− α

2

)
ŝt.dev.{f̂ (x)− f(x)},

U(x) = f̂ (x)+ z
(
1− α

2

)
ŝt.dev.{f̂ (x)− f(x)}

approximately satisfies (6.15). In contrast to (6.15), a 100(1− α)% simultaneous
confidence band must satisfy

P {L(x) ≤ f(x) ≤ U(x) for all x ∈X } ≥ 1− α.

Penalized splines lend themselves to fairly straightforward simulation-based
simultaneous confidence bands as we now describe. Suppose that we want a si-
multaneous confidence band for f over a grid of M x-values

g = (g1, . . . , gM).

Define

fg ≡
 f(g1)

...

f(gM)
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Figure 6.5
95% simultaneous
confidence band for
the fossil data.
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to be the true function over g and let f̂g be the corresponding EBLUP based on
linear penalized splines in the mixed model framework. Note that

f̂g − fg = Cg

[
β̂ − β

û − u

]
,

where, for linear splines,

Cg = [1 g (g − κ11)+ . . . (g − κK1)+]

and [
β̂ − β

û − u

]
approx.∼ N

{
0, σ̂ 2

ε

(
CTC + σ̂ 2

ε

σ̂ 2
u

D
)−1}

. (6.16)

A 100(1− α)% simultaneous confidence band for fg is

f̂g ±m1−α

 ŝt.dev.{f̂ (g1)− f(g1)}
...

ŝt.dev.{f̂ (gM)− f(gM)}

,
where m1−α is the (1− α) quantile of the random variable

sup
x∈X

∣∣∣∣ f̂ (x)− f(x)

ŝt.dev.{f̂ (x)− f(x)}

∣∣∣∣ ≈ max
1≤!≤M

∣∣∣∣∣∣
(

Cg

[
β̂−β

û−u

])
!

ŝt.dev.{f̂ (g!)− f(g!)}

∣∣∣∣∣∣. (6.17)

The quantile m1−α can be approximated using simulation. One simulates a re- supx∈X g(x) is the
supremum or least
upper bound on the
set {g(x) : x ∈ X }
and often corresponds
to the maximum value
obtained by g(x)

over X .

alization of (6.16) and then computes the corresponding value of (6.17). This
process is repeated a large number of times, say N = 10,000. The N simu-
lated values of (6.17) are sorted from smallest to largest, and the one with rank
�(1− α)N  is used as m1−α.

Figure 6.5 shows simultaneous confidence bands based on this simulation-
based method. The approximation to the 95% quantile of (6.17) based on a sim-
ulation of size N = 10,000 was
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msim
0.95 = 3.17.

With N this large, m0.95 can be approximated very accurately. On five inde-
pendent simulations of 10,000 draws each, we obtained m0.95 � 3.172, 3.198,
3.172, 3.201, 3.199. The smallest and largest of the five differ by less than 1%.
The global intervals are about 1.62 (= 3.17/1.96) times wider than the pointwise
intervals.

Simulation-based approximation ofm1−α, though accurate, is computationally
somewhat expensive, but this is not a significant problem because the computa-
tion involves a matter of seconds. However, analytic approximations to m1−α

are also worth considering. Loader (1999, sec. 9.2) surveys asymptotics for si-
multaneous confidence bands based on upcrossing theory (Rice 1939). For linear
smoothers as defined by (6.2),

P

{∣∣∣∣ f̂ (x)− f(x)

ŝt.dev.{f̂ (x)− f(x)}

∣∣∣∣ > c for all x ∈X
}

� κ0

π
e−c2/2 + 2{1−=(c)},

(6.18)
where

κ0 ≡
∫

X

√
‖�x‖2‖�′

x‖2 − (�T
x�

′
x)

2

‖�x‖2
dx.

Here �′
x ≡ (d/dx)�x, with the differentiation applied elementwise. Such an

approximation was used by Knafl, Sacks, and Ylvisaker (1985) to derive simul-
taneous confidence bands for a general class of regression functions.

The approximation to m1−α implied by (6.18) is

mUCI
1−α ≡ {c > 0 : (κ0/π)e

−c2/2 + 2{1−=(c)} − α = 0}.
However, 2{1 − =(c)} is quite small for c > 2 and often has little effect on
the result. If this term is ignored then the following closed-form upcrossing
probability-based approximation ensues:

mUCII
1−α = √2 log{κ0/(απ)}.

For differentiable smoothers, the vectors �x and �′
x are straightforward and in-

expensive to compute over a fine grid, and quadrature can be used to obtain an
accurate approximation to κ0. For the smooth of the fossil data using quintic ra-
dial splines (see Section 3.7.3) but with the same dffit value as that used to produce
Figure 6.5, one obtains

mUCI
0.95 = 3.11 and mUCII

0.95 = 3.10,

which are about 97–98% the size of those obtained via simulation.
Despite the simultaneous coverage enjoyed by the confidence bands described

in this section, they are prone to misinterpretation. For example, it is not valid to
infer that the true relationship is linear just because a line can be drawn within
the band. Hastie and Tibshirani (1990, sec. 3.8.2) provide detailed discussion on
this matter. They point out that the confidence sets for fg exist in M-dimensional
space, and the simultaneous confidence bands are just a projection of this space.
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Figure 6.6
Embellishment of
Figure 6.5. Smooths
corresponding to 25
draws from (6.16)
have been added.
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Figure 6.7 Logarithm
of Janka hardness
plotted against density
for 36 Australian
eucalypt hardwood
timbers.

density

lo
g(

Ja
nk

a 
ha

rd
ne

ss
)

30 40 50 60 70

6.
0

6.
5

7.
0

7.
5

8.
0

Figure 6.6 provides some insight. It shows 25 fits corresponding to the simulation.
The bands simply give approximate bounds on the maxima and minima of the
curves, but they do not say anything about other structure apparent in the 25 curves.

6.6 Testing the Adequacy of Parametric Models

Figure 6.7 shows the logarithm of Janka hardness of a sample of Australian tim- The Janka hardness
data are from
Regression Analysis
(Williams 1959).

bers against the density of the timber. Janka hardness is a structural property of
the timber, but it is difficult to measure and so a regression model linking it to
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Figure 6.8 Figure 6.7
with penalized spline
fit added. The linear
fit is rejected by a
significance test,
but it is close to
the nonparametric
fit and might be
adequate for some
purposes – one should
not confuse statistical
significance with
practical significance.
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density is desirable. The least-squares line is shown on the plot. But is the rela-
tionship really linear? Closer inspection of Figure 6.7 shows that there is a hint
of curvature about the line that suggests inadequacy of the linear model.

In Figure 6.8, a penalized spline regression fit is added to the plot. It indicates
some degree of nonlinearity. But how much evidence is there for this more com-
plex model compared with the linear model? This can be assessed by testing the
hypotheses:

H0 : E{log(hardness)|density} = β0 + β1density,

H1 : E{log(hardness)|density} = f(density)
(6.19)

for some “smooth” function f.

In this section we will describe some procedures for testing the adequacy of
a particular parametric model against the nonparametric alternative. These are
sometimes referred to as lack-of-fit tests.

6.6.1 Restricted Likelihood Ratio Tests

Consider the mixed model representation of the linear spline model for f(x):

f(x) = β0 + β1x +
K∑
k=1

uk(x − κk)+, uk i.i.d. N(0, σ 2
u ). (6.20)

In this case, hypotheses (6.19) reduce to

H0 : σ 2
u = 0 versus H1 : σ 2

u > 0, (6.21)

so we can appeal to the likelihood ratio paradigm summarized in Section 4.8.
Since the fixed effect model is the same under the null and alternative hypothe-
ses, restricted likelihood ratio tests are appropriate for (6.21) – and our simulations
have shown them to be better behaved than ordinary likelihood ratio tests.
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In the case of (6.20) with normally distributed homoscedastic errors having
variance σ 2

ε , the response vector is such that

y ∼ N(Xβ,V), where V = σ 2
u ZZT + σ 2

ε I.

The restricted log-likelihood is

− 2!R(σ
2
u , σ

2
ε ; y)

= n log(2π)+ log|V| + (y − Xβ)T V−1(y − Xβ)+ log|XT V−1X|.
The restricted likelihood ratio statistic is then

−2 log LRR(y) = −2{!R(0, σ̂ 2
ε,0; y)− !R(σ̂

2
u , σ̂

2
ε ; y)},

where σ̂ 2
ε,0 minimizes −2!R(0, σ 2

ε ; y) and (σ̂ 2
u , σ̂

2
ε ) minimizes −2!R(σ 2

u , σ
2
ε ; y).

We conclude that the null hypothesis of linearity should be rejected if the ob-
served −2 log LRR(y) is in the upper tail of its null distribution. We now discuss
approximations to the null distribution of −2 log LRR(y).

6.6.1.1 Null Distribution of the Likelihood Ratio
Since we are treating the penalized spline model as a mixed model, the discussion
in Section 4.8.2 is relevant. As mentioned in that section, classical asymptotics
may fail when y cannot be partitioned into a large number of independent sub-
vectors. Crainiceanu and Ruppert (2002) show that this problem is especially
severe when a polynomial null hypothesis is tested against a spline alternative.
For this reason, we strongly recommend against using the standard asymptotics
that assume independence, such as in Self and Liang (1987). Asymptotics that
take dependence into account may be a useful area for further study, but for now
we have only preliminary results that do not seem ready to present.

As discussed in Section 4.8.2, one can use simulation to determine the null
distribution of the likelihood ratio test statistic. This is the approach that we
recommend.

For the Janka hardness example, the restricted likelihood ratio test of linearity
versus a linear spline has a p-value of 0.000010. This value is based on 1,000,000
simulations. Computational time was 98.7 seconds for 10,000 simulations.

6.6.2 F-Test Approach

The parametric F-tests of Section 2.4.7 can be generalized to semiparametric re-
gression, though they are only approximate when the models are not parametric.
As we described in Section 2.4.7.1, the F-statistic for parametric regression mod-
els can be defined in terms of R2 values as

F = R2
larger − R2

smaller

(1− R2
larger)(p larger − psmaller)/(n− p larger)

,

where, for each model,

R2 = square of correlation coefficient between y and ŷ

and psmaller and p larger are the numbers of parameters in each model.
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Figure 6.9
Scatterplots of
y versus ŷ, with
45◦ line, and
corresponding
squared correlation
coefficients (R2

values) for the linear
and smooth function
models fitted to the
Janka hardness data.
The smooth function
is estimated via a
penalized spline with
REML smoothing
parameter choice.
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In the semiparametric context it can be argued (Hastie and Tibshirani 1990,
sec. 3.9) that an appropriate F-statistic is

F = R2
larger − R2

smaller

(1− R2
larger)(dfres, smaller − dfres, larger)/dfres, larger

,

with dfres, smaller and dfres, larger the values of dfres (as defined in Section 3.14) for
the respective models’ fits.

Under the null hypothesis, F will have an approximate F-distribution with

dfres, smaller − dfres, larger and dfres, larger

degrees of freedom. In general, neither of these degrees of freedom will be inte-
gers. Some software packages provide values of the cumulative distribution func-
tion of the F-distribution function for noninteger degrees-of-freedom values, so
use of these (rather than tables) is recommended. If only tables are available then
linear interpolation should be used.

Obviously this test procedure depends on how much smoothing is done to ob-
tain the two fits – in other words, the values of dfres, larger and dfres, smaller. Ideally,
these values are chosen via a reasonable automatic smoothing criterion such as
REML or GCV.

Figure 6.9 shows the result of applying the F-test procedure to the Janka hard-
ness example. The left panel corresponds to the linear model, while the right
panel corresponds to a REML-based penalized spline fit. In this case we have

R2
smaller = 0.948, dfres, smaller = 34,

R2
larger = 0.974, dfres, larger = 31.3194.

Under H0 (linearity), the F-statistic is approximately distributed as an F(2.6805,
31.3194) random variable. The observed F-statistic is
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Figure 6.10 Plot of
birthweight versus
maternal age for
data described in
Section 8.4.1. The
solid line is an
ML-based penalized
spline fit. The dashed
line is a horizontal line
through the mean of
the birthweights and
represents maternal
age having no effect.

maternal age (years)

bi
rt

hw
ei

gh
t (

gr
am

m
es

)

15 20 25 30 35 40 45

10
00

20
00

30
00

40
00

50
00

F = 0.974 − 0.948

(1− 0.974)(34 − 31.3194)/31.3194
= 11.919,

which leads to an approximate p-value of 0.0000387. Once again, there is strong
evidence against linearity.

Unpublished work by C. Crainiceanu shows that F-tests using the F-distribu-
tion for critical values are often liberal, meaning the stated p-value is smaller than
the true p-value and the type 1 error probability is larger than stated. In fact, in
the example of Section 6.7.1, use of the F-distribution appears to give a very lib-
eral test compared to using simulation when computing the p-value, a topic we
discuss next.

6.6.3 Simulation for p-Values

The F-test statistic does not have an exact F-distribution, even when the values
of the smoothing parameters are fixed in advance. It seems reasonable that the
F-approximation is worse when the smoothing parameters depend on the data,
as will typically be the case in practice. An alternative to using the F-distribution
is to use simulation. Computation for p-values is discussed in Section 4.8.2 for
likelihood ratio tests, and the same technique can be applied to other test statistics
such as the F-test.

6.7 Testing for No Effect

The likelihood ratio idea can also be used to test whether a particular predic-
tor variable has no effect on the response. This is illustrated in Figure 6.10 for
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some data from the example described in Section 8.4.1. The response variable is
birthweight and the predictor is maternal age. The sample size is n = 1630. As
seen from inspection of Figure 6.10, the relationship between these two variables
seems tenuous.

The solid curve is a penalized spline fit, while the dashed line is just the overall
mean of birthweight. In this case the hypotheses are

H0 : E(birthweight|maternal.age) = constant,

H1 : E(birthweight|maternal.age) = f(maternal.age).
(6.22)

If f is modeled as a linear penalized spline,

f(x) = β0 + β1x +
K∑
k=1

uk(x − κk)+, uk

ind.∼ N(0, σ 2
u ),

then the hypotheses become

H0 : β1 = σ 2
u = 0 versus H1 : β1 �= 0 or σ 2

u > 0.

Using simulation to compute the p-value as discussed in Section 4.8.2, we find
the p-value to be 0.12 using 10 knots.

6.7.1 F-Test for No Effect

TheF-test approach can also be extended to testing for no effect. For the mater-
nal age–birthweight example, we obtain (based on the ML fits)

R2
larger = 0.011356 and dfres, larger = 1623.99.

For the constant model,

R2
larger = 0 and dfres, smaller = n− 1 = 1629.

The observed F-statistic is

F = 0.011356 − 0

(1− 0.011356)(1629 − 1623.99)/1623.99
= 3.724,

and its approximate null distribution is F with 5.01 and 1623.99 degrees of free-
dom. From this we obtain

p-value = 0.0023,

which is rather different from the conclusions of the likelihood ratio test. How-
ever, although the F-approximation is widely used, we have found it to be inac-
curate. Moreover, the p-value of 0.0023 is rather different from the conclusions
of the likelihood ratio test and from an exact p-value based on simulation. In
other words, the F-approximation is not to be trusted.

In fact, using maximum likelihood to estimate the smoothing parameters,
we get a simulation-based p-value of 0.13, whereas using GCV yields a p-value
of 0.050.
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Figure 6.11 Scatter
plot of age and income
data with smooth.
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The difference between the simulation-based p-values using ML and GCV is a
bit disturbing, since 0.050 is borderline significant by the conventional 0.05 stan-
dard while 0.13 is not significant by even the rather liberal 0.10 standard. The
difference is due to a substantial difference between the amount of smoothing
chosen by GCV and ML. The ML fit is shrunk to nearly a straight line, whereas
the GCV is smoothed less – see Figure 6.10.

In summary, our experience is that simulations should be used to obtain ac-
curate p-values. Simulation is not too expensive computationally. In fact, the
simulations to compute a p-value used 10,000 iterations and took about 1.6 min-
utes in MATLAB on a rather old 600-MHz personal computer.

6.8 Inference Using First Derivatives

The derivatives of the regression function f can be of interest as well as f itself.
Consider the simple linear model

E(y|x) = β0 + β1x.

Generally, there is less interest in β0 than in β1. Why? Because β1 is the effect
of x on y as measured by a rate of change – that is, it is the derivative of E(y)
with respect to x. In contrast, the additive constant β0 tells us nothing about the
effect of x on y (though it is, of course, a crucial part of a prediction model).

When we plot f̂ (x), our eye often looks at its slope and how it changes with x.

In our mind, we note where the slope is positive, where it is negative, and where
it is essentially zero. Let us look again at the age and income data, shown now
in Figure 6.11.

The interesting features of this plot can be expressed in terms of first derivative
f ′(x). It appears that f ′ is large and positive at young ages, meaning that young
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Figure 6.12 Age and
income data: estimate
of the first derivative
with confidence
intervals.
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workers see their incomes rise rapidly. But eventually f reaches a plateau, sug-
gesting that middle-age workers do not experience much (if any) rise in income.
There is some suggestion in the data that f ′ is negative at older ages, meaning
that older workers actually may see a drop in income. Of course, these data are
cross-sectional and not longitudinal; one must be very cautious about interpret-
ing cross-sectional data in such a longitudinal fashion (see Diggle et al. 2002).

Figure 6.12 shows the first derivative of the scatterplot smooth of Figure 6.11,
along with a pointwise 95% confidence band. It helps us answer some basic
questions:

• How fast is income rising at young ages?
• When does income start to plateau?
• Does income really decline at older ages (but before 65) or is the apparent

decline not statistically significant?

Notice that the first derivative is significantly above zero until age 30 and then
stays quite near zero until age 55. Between ages 55 and 60 it is significantly nega-
tive. After age 55, the estimated derivative becomes increasingly negative, but the
large boundary variance overwhelms the estimate and it is not significantly differ-
ent from zero at age 65, the right boundary. Note that the confidence intervals are
pointwise, not simultaneous, so one should be cautious about concluding that f ′
is ever negative. Also, the confidence intervals are based on a homoscedasticity
assumption although the data suggest higher variance of log.income at higher
ages. To construct better confidence intervals, one should avoid the homoscedas-
ticity assumption and construct intervals based upon an estimate of the conditional
variance of log.income given age. Chapter 14 describes this extension.
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Besides telling us about the shape of f, derivatives of f are important in them-
selves, as can be see in examples from several fields. In the field of pollution
monitoring, for the LIDAR example −f ′(range) is proportional to the concen-
tration of mercury at a given value of range. Nonparametric regression is used
by engineers to smooth data from the Monte Carlo study of turbulence; in such
studies, partial derivatives with respect to spatial variables are of fundamental
interest.

6.8.1 Derivative Estimation via Penalized Splines

For derivative estimation via penalized splines, it is recommended that higher-
degree polynomial basis functions be used to ensure that the resulting derivative
estimates are smooth. We will start by describing first derivative estimation, for
which quadratic splines are the simplest basis leading to continuous fits.

Let f̂ be a quadratic penalized spline fit:

f̂ (x) = β̂0 + β̂1x + β̂2x
2 +

K∑
k=1

ûk(x − κk)
2
+.

This is a piecewise quadratic function that can be differentiated over each piece
to obtain the piecewise linear estimate of f ′:

f̂ ′(x) = β̂1 + 2β̂2x +
K∑
k=1

2ûk(x − κk)+.

Operationally, a derivative estimate at location x can be obtained from the qua-
dratic fit coefficients β̂ = [β̂0 β̂1 β̂2 ]T and û = [û1, . . . , ûK ]T by setting

X ′
x = [0 1 2x] and Z′

x =
[
2(x − κk)+

1≤k≤K

]
.

Then
f̂ ′(x) = X ′

x β̂ + Z′
x û.

Also,

var{f̂ ′(x)− f ′(x)} � C ′
x Cov

([
β̃

ũ − u

])
C ′

x

T

= σ 2
ε C ′

x

(
CTC + σ 2

ε

σ 2
u

D
)−1

C ′
x

T
, (6.23)

where C ′
x = [X ′

x Z′
x] and D = diag(0, 0, 0,1, . . . ,1).

If f̂ is based on cubic radial basis functions,

f̂ (x) = β̂0 + β̂1x +
K∑
k=1

ûk|x − κk|3,

then the first derivative can be estimated by

f̂ ′(x) = β̂1 +
K∑
k=1

3ûk(x − κk)|x − κk|
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and inference can be handled using matrix algebra similar to that used for qua-
dratic fits – for example, (6.23).

The extension to other basis functions and higher derivatives is straightfor-
ward. Note that the degree of the spline used to estimate f should exceed the
order derivative by at least 1 in order to avoid piecewise constant estimates.

6.8.2 Choosing the Smoothing Parameter

The smoothing parameter that minimizes the mean squared error of f̂ ′ as an es-
timate of f ′ will not be the same as that minimizing the mean squared error of f̂
as an estimate of f. Nonetheless, we find in practice that using REML or GCV
to select the smoothing parameter is generally an effective strategy.

Derivative estimates are typically more noisy than estimates of f, and this fact
suggests that derivative estimates should be smoothed more than estimators of f.
In the context of local polynomial estimation, it is known that the best bandwidth
for estimating f ′ converges to zero at a slower rate than the optimal bandwidth for
f. Again, this is a reason why f̂ ′ might be smoothed more than f̂ . Nonetheless,
smoothing parameter selection can be a problem because asymptotics often do
not take effect until sample sizes are enormous – much larger than the sample
sizes in our examples. Our experience with finite-sample problems is that the op-
timal smoothing parameter for estimation of f ′ or even f ′′ is generally close to
that which is optimal for f. Furthermore, if one adopts the mixed model formu-
lation of penalized splines, then the smoothing parameter depends only on the
estimated variance components, not on which order of derivative is being esti-
mated. Yet in one case study Jarrow, Ruppert, and Yu (2003) did find problems
when using GCV to choose the smoothing parameter when estimating a deriva-
tive. They developed an alternative to GCV based on Ruppert’s EBBS (empirical
bias bandwidth selection) methodology.

Thus, our recommendation is to use REML or GCV to select a smoothing
parameter appropriate for estimating f and then to use the same smoothing para-
meter value when estimating the derivative. This is our strategy in both examples
of the next section.

6.8.3 LIDAR Data

Figure 6.13 shows −f̂ ′ (i.e., the negative of the estimated first derivative) for the
LIDAR data. As mentioned previously, −f ′(range) is proportional to the con-
centration of mercury at a given value of range. The estimate is the derivative
of a 15-knot penalized cubic spline. The top plot shows the estimate with the
penalty parameter chosen by GCV. The “bump” where the estimate is signifi-
cantly positive reveals a plume of mercury. This is an example where a single
penalty parameter λ does not achieve the best possible estimate. The value of
λ chosen by GCV is rather small, because GCV minimizes the bias around the
bump. Minimizing this bias is a good thing, but it has the undesirable side ef-
fect of undersmoothing to both sides of the bump where the function is relatively
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Figure 6.13 LIDAR
data: estimate of
first derivative with
confidence intervals.
The top plot uses a
global penalty and
the bottom plot uses
a spatially adaptive
penalty.
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flat and where a large value of λ is appropriate. The problem is not with GCV
but rather with the constraint that λ be constant over all values of the predictor
variable range.

In Chapter 17, a method is presented that allows the penalty parameter to vary
as a smooth function of the predictor variable. This “local” or “spatially adap-
tive” penalty parameter is chosen by GCV (though in principle REML could be
used), and for this data set GCV is more successful in choosing the right amount
of smoothing when it is not constrained to a “global” penalty parameter. The
bottom plot in Figure 6.13 shows the estimate with a spatially adaptive penalty
parameter. We see that, compared to the estimate in the top plot, the spatially
adaptive estimate has a sharper estimate of the peak and smoother estimates of
the regions where f ′ is close to zero. The large boundary variance of the global
penalty estimator is reduced by using a local penalty, so the confidence intervals
near the boundaries are much narrower in the bottom plot.

A simultaneous confidence band for the derivative f ′ can be constructed in ex-
actly the same way as described in Section 6.5 by replacing the basis functions
with their derivatives. Figure 6.14 shows the 95% pointwise and simultaneous



156 Inference

Figure 6.14 LIDAR
data: estimate of
first derivative with
pointwise (dark)
and global (light)
confidence limits.
Global penalty.
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confidence bands for −f ′ using the LIDAR data; M = 100 grid points were used,
and m0.95 was computed using N = 10,000 simulations.

Since −f ′ is proportional to the concentration of mercury, one can conclude
with 95% confidence that there is mercury at all values of rangewhere the global
interval is entirely above zero. This example is used only for illustration. Be-
cause of the heteroscedasticity, the intervals should be constructed assuming a
nonconstant variance function; see Chapter 14.

6.9 Testing for Existence of a Feature

Consider, again, the fit of the fossil data shown (with variability band) in Fig-
ure 6.15. A question of interest is: Do the bumps at age = 95 and age = 105
and the dip at age = 115 represent structure that is “really there”? By this we
mean: If several other laboratories collected a different realization of the same
data, would they tend to have same features in the same position?

Features such as bumps and dips in regression curves are often of practical
interest. For example, the dip in Figure 6.11 for workers in their mid-40s corre-
sponds to a mid-career decline in income. In this section we describe some recent
methodology known as significance zero crossings of derivatives (SiZer) due to
Chaudhuri and Marron (1999) that assesses feature significance systematically.

Figure 6.16 shows a derivative estimate with corresponding 95% simultaneous
confidence band. The regions over which the variability band is positive corre-
spond to those where the regression function is significantly increasing. Regions
for which the variability band is below the zero line correspond to those where
the regression function is significantly decreasing. If the variability band covers
a portion of the zero line then nothing can be concluded about the slope of the
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Figure 6.15
Penalized spline
smooth of the fossil
data with variability
band.
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Figure 6.16 Top:
Penalized spline
smooth of the fossil
data. Bottom:
Penalized spline
estimate of first
derivative with bar
at the base showing
significant zero
crossings. 
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mean function. The bar at the base of the plot summarizes this through a sim-
ple graphic that uses black for increasing, white for decreasing, and dark grey for
neither increasing nor decreasing. Light grey is used in regions where the data
are too sparse to draw any conclusions. The fact that, around age = 115, the
band goes from white to dark grey to black means that the dip there is statisti-
cally significant. Similarly, the large hump from around age = 95 to age = 110
is significant, since the band goes from black to grey to white. However, there
is no such behavior immediately about age = 95 and age = 105, so the sec-
ondary bumps at age = 95 and 105 with the associated dip around age = 100
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Figure 6.17 Map of
significance of zero
crossings against
several degrees of
freedom values.
The horizontal line
corresponds to degrees
of freedom chosen by
REML.
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are, perhaps, an aberration. A drawback of Figure 6.16 is that it depends on the
amount of smoothing. For example, higher amounts of smoothing can wash away
features that are apparent in less smoothed plots. Chaudhuri and Marron (1999)
propose a “SiZer map” of significant zero crossing bars across a range of smooth-
ing parameters. Figure 6.17 shows such a map for the fossil data. Chaudhuri and
Marron (1999) also discuss adjustments for simultaneous confidence bands across
degrees of freedom, but they advise that using simultaneous confidence bands for
individual degrees of freedom in SiZer maps often yields a reasonable approx-
imation. Figure 6.17 uses this approximation, although further research in this
direction is warranted.

From Figure 6.17 we see that the bump at around age = 115 is significant if
the value of dffit is anywhere between about 3 and 18. However, there is no level
of smoothing at which the dip at age = 95 is significant. Thus, we conclude that
it is “not really there”. As a further example, a SiZer map for the age–income
data does not find the mid-40s dip to be statistically significant.

6.10 Bibliographical Notes

The literature on inference in smoothing is large and varied. Much of it is in
the local polynomial or kernel smoothing context, where theoretical properties
are more tractable. The books of Fan and Gijbels (1996), Bowman and Azzalini
(1997), Hart (1997), Eubank (1999), and Loader (1999) summarize and provide
references to some of this literature.
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Inference for spline-based smoothing is less studied. Wahba (1990) summa-
rizes some of the earlier work. More recently, Lin and Zhang (1999) have explored
the use of score tests in spline-based smoothing with mixed model representations.

6.11 Summary of Formulas

Pointwise variability band

f̂ (x) = �T
xy

f̂ (x)± 2 × ŝt.dev.{f̂ (x)}, ŝt.dev.{f̂ (x)} = σ̂ε‖�x‖
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sup
x∈X

∣∣∣∣ f̂ (x)− f(x)

ŝt.dev.{f̂ (x)− f(x)}

∣∣∣∣
Restricted likelihood ratio test for linearity
Model is:

f(x) = β0 + β1x +
K∑
k=1

uk(x − κk)+, uk

ind.∼ N(0, σ 2
u )

Restricted log-likelihood is:

!R(σ
2
u , σ

2
ε ; y)

= 1
2 {n log(2π)+ log|V| + (y − Xβ)T V−1(y − Xβ)+ log|XT V−1X|}

V = σ 2
u ZZT + σ 2

ε I
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Test statistic is:

−2 log LRR(y) = −2{!R(0, σ̂ 2
ε,0; y)− !R(σ̂

2
u, σ̂

2
ε ; y)}

where σ̂ 2
ε,0 minimizes −2!R(0, σ 2

ε ; y) and (σ̂ 2
u, σ̂

2
ε ) minimizes −2!R(σ 2

u, σ
2
ε ; y).

Likelihood ratio test for no effect
Model is:
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ind.∼ N(0, σ 2
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Log-likelihood is:
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2
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First derivative estimation
Quadratic penalized splines:

f̂ (x) = β̂0 + β̂1x + β̂2x
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uk(x − κk)
2
+

f̂ ′(x) = β̂1 + 2β̂2x +
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2ûk(x − κk)+

Cubic radial basis functions:

f̂ (x) = β̂0 + β̂1x +
K∑
k=1

ûk|x − κk|3

f̂ ′(x) = β̂1 +
K∑
k=1

3ûk(x − κk)|x − κk|
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Simple Semiparametric Models

7.1 Introduction

Until now we have confined discussion to scatterplot smoothers. This setting
served well to illustrate the main concepts behind smoothing. However, there is
a gap between the methodology and the needs of practitioners. As exemplified
by the problems described in Chapter 1, most applications of regression involve
several predictors. To begin closing the gap, this chapter introduces a class of
multiple regression models that have a nonparametric component involving only
a single predictor and a parametric component for the other predictors. Having
both parametric and nonparametric components means the models are semipara-
metric. This class of simple semiparametric models is important in its own right
but also serves as an introduction to more complex semiparametric regression
models of later chapters, where the effects of several predictors are modeled
nonparametrically.

7.2 Beyond Scatterplot Smoothing

The end of the previous chapter closed off quite a lengthy description of how to
smooth out a scatterplot and perform corresponding inference. In Chapter 3 we
described three general approaches: penalized splines, local polynomial fitting,
and series approximation. For penalized splines, we presented both an algorith-
mic approach based on ridge regression and a mixed model approach based on
maximum likelihood and best prediction. There are other approaches to scatter-
plot smoothing that we did not describe at all.

It is expedient to choose just one method of scatterplot smoothing to extend in
this book. Which should it be? Our preference for the penalized spline scatterplot
smoothing with mixed model representation is based on the following reasons.

1. It is a model-based approach to smoothing that utilizes two basic principles
of statistics: maximum likelihood and best prediction. This makes it easy to ex-
tend to other models such as logistic regression. The incorporation of likelihood-
based models for complications such as dependence, measurement error, and
missing data is also more straightforward.

2. Software for mixed models is becoming more accessible, since it is now
featured in at least two prominent statistical computing environments: SAS and

161
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Figure 7.1 Scatterplot
of the density and
log.yield for the
onions data. The
plotting symbols
indicate the two
locations where
the onions were
cultivated. The lines
correspond to the
linear additive model
fit to the data.
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S-PLUS. This allows semiparametric modeling to be done without the depen-
dence on specialist smoothing software and thus means that more complex models
can be built.

3. Mixed model–based smoothers come equipped with an automatic smooth-
ing parameter choice that corresponds to maximum likelihood and restricted max-
imum likelihood estimation of variance components. We are not able to say
whether these smoothing parameter choices outperform traditional model selec-
tion choices such as GCV. But their availability in software packages makes ML
or REML smoothing parameter selection quite attractive.

4. Inference can be performed within the mixed model framework. For ex-
ample, many hypothesis tests of interest can be performed by appealing to the
likelihood ratio principle, as illustrated in Section 6.6.1.

5. Mixed models are extendible to a full hierarchical Bayesian model, which
when analyzed via Markov chain Monte Carlo allows the most satisfactory ap-
proach to inference. See Chapter 16.

7.3 Semiparametric Binary Offset Model

Figure 7.1 contains data on yields (g/plant) of white Spanish onions in two loca-The onions data are
taken from Ratkowsky
(1983). A detailed
semiparametric
analysis of the data is
given by Young and
Bowman (1995) and in
Bowman and Azzalini
(1997).

tions: Purnong Landing and Virginia, South Australia. The horizontal axis cor-
responds to areal density of plants (plants/m2). The dashed lines in Figure 7.1
correspond to fitting the linear additive model

log(yield i ) = β0 + β1PL i + β2densityi + εi,

where

PL i =
{

0 if ith measurement is from Virginia,

1 if ith measurement is from Purnong Landing.
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The effect of Purnong Landing compared with Virginia is estimated to be

β̂1 = 0.3154 with ŝt.dev.(β̂1) = 0.0311.

An approximate 95% confidence interval for the locational effect is then

(0.254, 0.376) (7.1)

on the log-yield scale.
Close inspection of Figure 7.1 reveals some curvature apparent in the scatter-

plots for each location, suggesting the model

log(yield i ) = β1PL i + f(densityi )+ εi. (7.2)

We call (7.2) the semiparametric binary offset model for these data. The model has
a nonparametric component, f(density), and a parametric component, β1PL.
The binary variable PL vertically offsets the relationship between E{log(yield i )}
and density according to location.

We can fit (7.2) using a penalized linear spline through the mixed model

log(yield i ) = β0 + β1PL i + β2densityi +
K∑
k=1

uk(densityi − κK)+ + εi,

where
uk

ind.∼ N(0, σ 2
u ) and εi

ind.∼ N(0, σ 2
ε ).

Note that this is a special case of the Gaussian linear mixed model

y = Xβ + Zu + ε

with y containing the log(yield i ) values

X =
 1 PL1 density1

...
...

...

1 PL84 density84

, β =
 β0

β1

β2

,
Z =

 (density1 − κ1)+ · · · (density1 − κK)+
...

. . .
...

(density84 − κ1)+ · · · (density84 − κK)+

, u =
 u1

...

uK

,
where Cov(u) = σ 2

u I and Cov(ε) = σ 2
ε I.

Figure 7.2 shows the resulting fit based on REML estimation of σ 2
u and σ 2

ε .

The estimated locational effect from this model is

β̂1 = 0.3331 with ŝt.dev.(β̂1) = 0.0239,

and an approximate 95% confidence interval for the locational effect is

(0.286, 0.380).

This interval is 77% of the length of that obtained from the model with density
entering linearly, given at (7.1). It is also less biased because density is modeled
in a less parametric manner.
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Figure 7.2 Onion
data: fit to the
additive model (7.2).
The response is
log.yield. The
effect of density
is fit by a penalized
quadratic spline using
REML to select the
penalty parameter.
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7.4 Additivity and Interactions

Model (7.2) is said to be additive, since the effects of location and density
on E(log.yield) are simply added together to obtain their joint effect. The ef-
fect on E(log.yield) at Purnong Landing versus Virginia is β1, regardless of
the fixed value of density. Likewise, if density changes from a to b then the
change in E(log.yield) is f(a)− f(b), regardless of the fixed location.

Additivity is an assumption, often a reasonable one, but like all assumptions
it should be checked. If the assumption seems seriously incorrect, then alterna-
tive models should be considered. When two predictors do not act additively on
the mean response then there is an interaction between them. Chapters 12 and 13
describe models for interactions.

For the onions data, the most general interaction model is

E{log(yield i )} =
{

f PL(densityi ) if Purnong Landing,

fVA(densityi ) if Virginia.
(7.3)

This model can be fit by smoothing the log(yield) versus density scatterplots
for each location separately. The fits based on penalized linear splines with a
REML smoothing parameter choice are shown in Figure 7.3. The fits look ap-
proximately the same, suggesting that the additivity assumption is reasonable in
this case. Formal tests for interaction are given in Section 12.2.1.

7.5 General Parametric Component

A natural extension of the semiparametric binary offset model is to the model
with the offset term replaced by a general linear component βT

x x i, where x i is a
vector of covariates that enter the model linearly and the subscript x indicates the
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Figure 7.3 Additive
and interaction fits
to onion data. The
solid curves are
REML-based fits of
the general interaction
model (7.3). The
dashed curves are
REML-based fits
of the additive
model (7.2).
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component of β consisting of coefficients of x i . We will illustrate this extension
through the analysis of some pollen count data.

The variable of central interest is the level of ragweed pollen. The data were
recorded during the 1993 ragweed season in Kalamazoo, Michigan. Since avoid-
ance plays a large role in the treatment of pollen-related allergies, a major objec-
tive in aerobiology is the development of accurate forecasting models for daily
pollen levels. Stark et al. (1997) developed some parametric regression models
geared toward this aim. The data set at hand consists of: The ragweed

pollen data and
corresponding
meteorological
measurements were
provided to us by
Professor Harriet
Burge and Dr. Paul
Stark of the Harvard
School of Public
Health.

ragweed = ragweed level for that day (grains/m3);
temperature = temperature of following day (◦F);

rain = indicator of significant rain for following day
(1 = at least 3 hours of steady or brief but intense rain,
0 = otherwise);

wind = wind speed forecast for following day (knots);
day.in.seas = day number in the current ragweed pollen season.

Stark et al. (1997) also used the variable temp.resid ,

temp.resid = the difference between temperature and an estimate
of the time trend of temperature,

which corresponds to deviations from the average temperature for a particular
day in the ragweed season. Since day.in.seas takes care of seasonal tempera-
ture variation, we will use temp.resid rather than temperature. The response,
ragweed, is quite skewed, so we work with its square root. The marginal rela-
tionships between

√
ragweed and the other variables is shown in Figure 7.4.

Since day.in.seas has a pronounced nonlinear relationship with the mean
pollen level, a useful semiparametric regression model for these data is
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Figure 7.4
Relationships between√
ragweed and each

possible predictor.
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√
ragweed i

= β0 + β1rain i + β2temp.resid i + β3wind i + f(day.in.seasi )+ εi.

This can be achieved with penalized splines through the linear spline model√
ragweed i

= β0 + β1rain i + β2temp.resid i + β3wind i + β4day.in.seasi

+
K∑
k=1

uk(day.in.seasi − κk)+ + εi, (7.4)

where κ1, . . . , κK are knots over the range of day.in.seas values and u1, . . . , uK
are taken as independent N(0, σ 2

u ) variates. The model can then be written as

y = Xβ + Zu + ε,

where

X =
 1 rain1 temp.resid1 wind1 day.in.seas1

...
...

...
...

...

1 rain87 temp.resid87 wind87 day.in.seas87

,

β =


β0

β1

β2

β3

β4

,

Z =
 (day.in.seas1 − κ1)+ · · · (day.in.seas1 − κK)+

...
. . .

...

(day.in.seas87 − κ1)+ · · · (day.in.seas87 − κK)+

,
and u = [u1, . . . , uk]T, with Cov(u) = σ 2

u I and Cov(ε) = σ 2
ε I.
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Figure 7.5
Components of
fits to the pollen
data. The shaded
regions correspond
to approximate 95%
pointwise confidence
intervals for the
expected response at
the average value of
the other components.
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A summary of the fit based on REML and BLUP is shown in Figure 7.5.
The variability bars are calculated by extending the calculations given in Section
2.5.1.2 and, discounting bias, can be interpreted as approximate 95% pointwise
confidence intervals.

Although the ragweed pollen data provides a nice illustration of a semipara-
metric model with a parametric component, model (7.4) has some deficiencies.
Firstly, the response is really a count variable and so a discrete distribution such
as the Poisson might be more appropriate; parametric Poisson regression (Chap-
ter 10) was used by Stark et al. (1997). Secondly, the effect of temp.resid and
wind may also be nonlinear. The extension to models that permit multiple non-
linear predictors is made in the next chapter. Additionally, data are available
on the years 1991–1994 but with a different day.in.seas effect for each year.
This means that interactions between day.in.seas and year number should be
considered for the full data set. We give a full explanation and analysis in Sec-
tion 12.3.2.

7.6 Inference

Inference for the parametric components in β can be based on the result

Cov(β̂) = (XT V−1X)−1.

One would then need to replace V by V̂, in which the variance components in V
are replaced by their REML estimates. For example, in the onions example the
significance of location (Purnong Landing versus Virginia) can be made through
the Z-statistic
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Z1 = β̂1/

√
second diagonal entry of (XT V̂−1X)−1.

Such statistics are reported in mixed model packages such as lme() in S-PLUS.
However, its interpretation as an approximate standard normal variate under H0 :
β1 = 0 needs to be made with caution. If normality of the errors can be reason-
ably assumed, then

Z1
approx.∼ N(0,1). (7.5)

Otherwise, the asymptotic distribution theory is complicated by dependence in-
herent in the yi. Full theoretical justification for use of Z1 for penalized spline
mixed models is an area of current research, although cursory justification (via
e.g. Heckman 1986) is possible.

7.6.1 Hypothesis Tests

Hypothesis tests about the overall effect and linearity of the nonparametric com-
ponent can be achieved by extending the tests described in Section 6.6. For
example, the test for linearity of f(density) in (7.2) reduces to

H0 : σ 2
u = 0 versus H1 : σ 2

u > 0, (7.6)

and that for overall effect of density reduces to

H0 : β2 = σ 2
u = 0 versus H1 : β2 �= 0 or σ 2

u > 0. (7.7)

For testing (7.6), minus twice the log of the restricted likelihood ratio was
35.90; for testing (7.7), minus twice the log of the likelihood ratio was 229.49.

Monte Carlo simulation was used to compute p-values for both (7.6) and (7.7).
In each case, 1,000,000 Monte Carlo samples were drawn from the null hypoth-
esis, and the likelihood ratio statistic calculated from the data exceeded the test
statistic calculated from all 1,000,000 simulated data sets. Thus, the p-values are
both less than 10−6.

The null distribution for testing (7.6) is well approximated by the chi-squared
mixture

0.66χ2
0 + 0.34χ2

1

(Crainiceanu and Ruppert 2002). Using this approximation, we obtain a p-value
of 7 × 10−10.

The null distribution for testing (7.7) is well approximated by a χ2
1 distribu-

tion (Crainiceanu and Ruppert 2002), and this approximation gives a p-value of
essentially zero.

7.7 Bibliographical Notes

The simple semiparametric regression model exemplified by (7.4) goes by a num-
ber of names in the literature: partial linear model, partially linear model, partly
linear model and partial spline model. Theory for the parametric components
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has been treated in several papers and contexts, including Heckman (1986), Chen
(1988), and Speckman (1988). Härdle, Liang, and Gao (2000) devote a book to
simple semiparametric regression models.

Engle and colleagues (1986) developed simple semiparametric regression mod-
els for electricity sales and weather. A customer’s income, price, and monthly in-
dicators entered the model linearly, while weather variables were modeled nonlin-
early with smoothing splines. Young and Bowman (1995) applied similar models
to the onion data.



8

Additive Models

8.1 Introduction

The previous chapter showed how to construct flexible regression models for
a single continuous predictor modeled as a smooth function, with all the other
predictors entering the model linearly. However, many regression problems in-
volve several continuous covariates that may have nonlinear relationships with
the response. An example is illustrated in Figure 8.1, where birthweight is plotted
against four maternal variables for all 1990 births in the Upper Cape Cod region
of Massachusetts.

The plots in Figure 8.1show only the marginal effects of each maternal variable
on birthweight, but they nonetheless suggest that some degree of nonlinearity will
be present when all the predictor variables are considered together. The exten-
sion to models that allow multiple smooth functions is relatively straightforward.

Figure 8.1
Scatterplots of
birthweight versus
four maternal
variables: parity,
cigarettes per day,
years of education,
and number of
prenatal visits; for all
1990 births in Upper
Cape Cod. Smooths
of each scatterplot
also shown.
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Since the only assumption made is that of additivity, they are referred to as addi-
tive models (Ezekiel 1924; Friedman and Stuetzle 1981).

8.2 Fitting an Additive Model

In Section 2.5 we considered data on

y ≡ minimum temperature,
s ≡ degrees latitude, and
t ≡ degrees longitude

for 23 cities in the United States and fitted the parametric additive model

yi = β0 + βssi + βt1ti + βt2 t
2
i + βt3 t

3
i + εi.

The nonparametric additive model for these data is

yi = β0 + f(si)+ g(ti)+ εi, (8.1)

where f and g are smooth (but otherwise unspecified) functions of latitude and
longitude, respectively. Penalized splines are easily extended to handle (8.1): to
model f and g by linear splines, fit

yi = β0 + βssi +
Ks∑
k=1

us
k(si − κ s

k )+ + βt ti +
Kt∑
k=1

ut
k(ti − κ t

k)+ + εi (8.2)

using least squares, but penalize the knot coefficients us
k and ut

k. Here κ s
1 , . . . , κ

s
Ks

and κ t
1, . . . , κ

t
Kt

are knots in the s and t directions that can be chosen using rules
such as those given in Section 5.5.3. The vector of fitted values is given by

ŷ = C(CTC + �)−1CTy,

where
C =

[
1, si, ti, (si − κ s

k )+
1≤k≤Ks

, (ti − κ t
k)+

1≤k≤Kt

]
1≤i≤n

and
� = diag(0, 0, 0, λ2

s1Ks×1, λ
2
t 1Kt×1).

The smoothing parameters λs and λt induce smoothing in the s and t directions
(respectively) by penalizing the knot coefficients us

k and ut
k.

As we have seen for scatterplot smoothing, penalization of the us
k and ut

k is
equivalent to treating them as random effects in a mixed model. Specifically, if
we define

β = [β0, βs, βt ], u = [us
1 , . . . , u

s
Ks
, ut

1, . . . , u
t
Kt

]T,

X = [1 si ti]1≤i≤n, Z =
[
(si − κ s

k )+
1≤k≤Ks

, (ti − κ t
k)+

1≤k≤Kt

]
1≤i≤n

,

then penalized least squares is equivalent to best linear unbiased prediction in the
mixed model
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Figure 8.2
Components of fit
of (2.20) to the U.S.
temperature data.
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y = Xβ + Zu + ε,

E

[
u
ε

]
= 0, Cov

[
u
ε

]
=
 σ 2

s I 0 0
0 σ 2

t I 0
0 0 σ 2

ε I

. (8.3)

Once again, the mixed model representation can be used to facilitate fitting, infer-
ence, and model selection. Its extension to higher numbers of smooth functions
and other bases is straightforward. Linear components can be incorporated as
fixed effects in the Xβ term.

Apart from the presence of random effects, there is no inherent difference be-
tween the parametric additive model and the nonparametric one. Therefore, the
material in Section 2.5 extends rather simply to the nonparametric case. Note that
we are using the U.S. temperature data only to illustrate the operational details
of nonparametric additive models. For these data it appears that the parametric
additive model (2.20) is adequate.

With this mixed model representation, the number of degrees of freedom used
to estimate f( ·) and g( ·) can be chosen via REML (we will give a precise defini-
tion of degrees of freedom in Section 8.3). However, as explained in Section 8.4,
we may also want to fix the degrees-of-freedom values in advance. Figure 8.2
shows latitude and longitude components of the fit to (8.2) with 3 degrees of free-
dom used for degrees latitude and 6 degrees of freedom used for degrees longitude
for each function. As we pointed out for the parametric model in Section 2.5, the
vertical positioning of the curves is somewhat arbitrary. An improvement is that
shown in Figure 8.3. The curve for latitude is a slice of the fitted surface at the
average longitude value, as described in Section 2.5.1.1. The curve for longitude
is the slice at the average latitude value. This means that the vertical axes cor-
respond to the minimum temperature values, rather than only having a relative
interpretation as in Figure 8.2.

The next embellishment involves variability bands, as shown in Figure 8.4. The
arithmetic for their construction is analogous to that described in Section 2.5.1.2
but is based on the covariance matrix
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Figure 8.3
Components of fit of
(8.2) with vertical
alignment as described
in Section 2.5.1.1.
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Figure 8.4 Fits
of Figure 8.3 with
variability bands
added.
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Cov

([
β̂

û − u

])
= σ 2

ε (C
TC + �)−1.

As discussed in Section 6.4, this makes some allowances for the bias in the curve
estimates.

Figure 8.5 adds on partial residuals, as described in Section 2.5.1.3. The ap-
parent random scatter about the curves indicates a good fit in this case.

Estimates of the derivatives – based on quadratic spline fits with the same de-
grees of freedom as used in Figure 8.5 – are plotted in Figure 8.6 along with
corresponding variability bands. These reveal that the effect of latitude is signifi-
cantly negative across the range of values of that variable. For longitude, there is
a significant negative effect between the west coast and Rocky Mountain region
(approximately −105 degrees longitude) and then a significant positive effect
across the prairies east of the Rocky Mountains. The effect of longitude from
about −85 degrees eastward is not significant.

The reader may wonder why we used a linear spline for estimating the curve
when a quadratic spline was used to estimate the derivative. A quadratic fit is
needed to have a continuous first derivative, but why not use a quadratic fit for
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Figure 8.5 Fits of
Figure 8.4 with partial
residuals added.
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Figure 8.6
Derivatives of
components of
additive model fit to
the U.S. temperature
data, along with
variability bands.
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both purposes? In fact, the quadratic and linear spline estimates of the curve are
similar, so it didn’t really matter which we used.

8.3 Degrees of Freedom

The amount of smoothing used for each component is a defining characteristic of
an additive model fit. The degrees-of-freedom notion, as defined for scatterplot
smoothing in Section 3.13, is a natural and attractive way of quantifying this. Lin-
ear terms have 1 degree of freedom; whereas nonlinear terms have some number
greater than 1, depending on the curviness of the function.

Let

yi = β0 +
d∑

j=1

fj(xji)+ εi (8.4)

be a general penalized spline additive model with mixed model representation

y = Xβ + Zu + ε, Cov(ε) = σ 2
ε I,
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and with centering possibly incorporated into the design matrices X and Z. The
functions fj, 1 ≤ j ≤ d, may be parametric or nonparametric. For given vari-
ance components, the fitted values are

ŷ = Xβ̂ + Zû = C(CTC + �)−1CTy,

where

C ≡ [X|Z] and � ≡
[

0 0
0 σ 2

ε Cov(u)−1

]
. (8.5)

The total degrees of freedom of the fit is

dffit = tr{C(CTC + �)−1CT} = tr{(CTC + �)−1CTC}.
However, we can also compute the degrees of freedom for each component. Let
P denote the number of columns in C, and let

{I 0, I1, . . . , Id}
be a partition of the column indices {1, . . . , P } such that I 0 corresponds to the in-
tercept β0 and Ij corresponds to fj( ·) for each 1 ≤ j ≤ d. For example, in the
additive model described by (8.1) and (8.3) with Ks = Kt = 20, we would have
P = 43 and

I 0 = {1}, I1 = {2, 4, . . . , 23}, I2 = {3, 24, . . . , 43}.
For a general matrix A having P columns, define

AI ≡ submatrix of A consisting of columns with indices in I.
According to this notation,

{CI 0,CI1, . . . ,CId
}

represents a partition of the columns of C corresponding to the terms of the ad-
ditive model (8.4).

Define Ej to be the P ×P diagonal matrix with ones in the diagonal positions
with indices in Ij and zeros elsewhere on the diagonal. The fitted values for the
j th term are  f̂j(xj1)

...

f̂j(xjn)

 = {CEj(CTC + �)−1CT}y,

so the corresponding degrees of freedom may be computed as

dfj = tr{CEj(CTC + �)−1CT} = tr{Ej(CTC + �)−1CTC},
which is the sum over the indices of Ij of the diagonal elements of the matrix
(CTC+�)−1CTC. This last fact helps us appreciate that dffit = df0 + · · ·+ dfd.

We thus have a readily computable formula for the degrees of freedom of
the components of a penalized spline additive model after the model has been
fit. However, sometimes it is desirable to specify one or more of the dfj values
before a model is fit. For example, it is common to ask that a particular compo-
nent have 3 degrees of freedom; this is the default used by the function gam()
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Table 8.1
Approximate and
exact degrees of
freedom for each
nonparametric
component of the
additive model
analysis in Section
8.4.1 of the Cape Cod
birthweight data.

Component adf df

parity 2.906 2.895
cig’s per day 2.372 2.363
years of education 3.687 3.665
prenatal visits 2.359 2.341

in the S-PLUS package. For additive models with more than one or two com-
ponents, solving for these prespecified dfj values is computationally expensive
because several additive model fits and multiparameter root-finding algorithms
are required. A much simpler alternative is to approximate dfj by the degrees of
freedom in the nonparametric regression model involving only xj :

yi = fj(xji)+ εi.

Then an approximation to dfj is

adfj = tr{(CT
j Cj + �j )

−1CT
j Cj } − 1,

where
Cj ≡ CIj∪I 0, �j = diag{0, 0, (σ 2

ε/σ
2
uj
)1Kj×1}

corresponds to a linear penalized spline scatterplot smooth, and σ 2
uj

is the variance
component corresponding to the spline coefficients for estimation of fj . (The ex-
tension to higher-degree smooths is trivial.) It is relatively simple to solve for the
λj ≡ σε/σuj that give rise to a prespecified adfj value. An algorithm for efficient
computation of adfj values is given in Appendix B. Asymptotics where λj → 0
lead to the result adfj/dfj → 1 (Aerts, Claeskens, and Wand 2002).

Table 8.1 shows the values of dfj and adfj for the Cape Cod birthweight
data corresponding to the analysis given in Section 8.4.1. In this case there is
practically no difference between the approximate and exact degrees-of-freedom
values. This is the case for all examples that we have observed.

8.4 Smoothing Parameter Selection

In theory, the methods described in Chapter 5 are extendible to the additive model
setting for automatic smoothing parameter selection. For example, in the additive
model (8.1) with mixed model representation (8.3), the smoothing parameters

λs = σε/σs and λt = σε/σt

can be selected via REML estimation of the variance components σ 2
s , σ

2
t , and σ 2

ε .

Mixed model software such as lme() in S-PLUS and PROC MIXED in SAS can
help overcome the computational burden, since multiple variance component es-
timation via REML is now standard. Classical model selection criteria such as
GCV and AIC can also be devised for choice of λs and λt ; see Wood (2000).

Owing to the computational challenges arising from having to minimize a
function in several variables, early implementations of additive models avoided
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Figure 8.7 Additive
model fit of Milan
mortality data with
smoothing parameters
chosen by “3 degrees
of freedom per
smooth” rule. The
seasonal effect of
day.num is lost due to
gross oversmoothing.
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automatic smoothing parameter selection. In particular, the S-PLUS additive
model function gam() defaults to the rule: 3 degrees of freedom for each addi-
tive component. This is a reasonable starting point but should not be the only
amount of smoothing used. Consider, for example, the Milan mortality data in-
troduced in Section 1.6. Figure 8.7 shows the fits to the model√

mortalityt

= β0 + βTSPt + f1(t)+ f2(temperaturet )+ f3(humidityt )+ εt

using the default of 3 degrees of freedom per smooth. The fits for temperature
and humidity look plausible, but the one for day number (t) does not. For several
years of data one would expect an oscillatory relationship corresponding to the
seasons. This pattern is apparent in Figure 8.8, where the amount of smoothing
is chosen via REML.

This particular example makes REML look good, but automatic smoothing
parameter selectors are, unfortunately, somewhat erratic. In Figure 8.8, 35 knots
are used for mean temperature and for relative humidity, while 60 knots are used
for day number. If instead 30 knots are used for mean temperature and relative
humidity, then REML leads to fits depicted in Figure 8.9, where the fit to day num-
ber shows none of the seasonal variation that exists in the data. When 30 knots
are used, REML chooses a zero variance component for day number, leading to
a gross oversmooth of this variable. We cannot explain this apparent sensitivity
of REML to the number of knots. However, it is in keeping with previous work
(by e.g. Härdle, Hall, and Marron 1988) that raises concerns about the instabil-
ity of automatic smoothing parameter selection even for single predictor models.
Although we are attracted by the automatic nature of the mixed model–REML
approach to fitting additive models, we discourage blind acceptance of whatever
answer it provides and recommend looking at other amounts of smoothing.
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Figure 8.8 Additive
model fit of Milan
mortality data with
smoothing parameters
chosen by REML,
with 35 knots for
mean temperature
and relative humidity
and 60 knots for day
number. In this case
REML chooses an
approximate amount
of smoothing for all
variables. Similar
fits are achieved by
Schwartz’s rule of 3
degrees of freedom
per year.
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Figure 8.9 Additive
model fit of Milan
mortality data with
smoothing parameters
chosen by REML,
but with 30 knots
rather than 35 used for
mean temperature and
relative humidity. The
seasonal effect of day
number is lost due to
gross oversmoothing.
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In Section 6.9 we described maps (Chaudhuri and Marron 1999) that, for scat-
terplot smoothing, present a range of smoothing parameter choices. The exten-
sion to additive models is still in the developmental stages but would be useful
for dealing with the smoothing parameter selection problem.

Finally, we mention that prior experience with the type of functional rela-
tionship between response and predictor can aid smoothing parameter selec-
tion in practice. For example, in Figures 8.7 and 8.9 the conditional mortality–
temperature and mortality–humidity relationships both seem plausible. However,
as mentioned previously, such is not the case for day number. An environmental
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epidemiologist with whom we work, Joel Schwartz, routinely uses 3 degrees of
freedom per year when controlling for day number in an additive model analysis.
Indeed, the REML answer depicted in Figure 8.8 chooses 39 degrees of freedom
for the ten-year series, which matches Schwartz’s rule reasonably well.

8.4.1 Upper Cape Cod Birthweight Data

A number of environmental health studies have taken place in the Upper Cape
Cod region of Massachusetts after elevated cancer rates were observed there in
the mid-1980s. Several possible sources of health risks have been identified and
include fuel dumping at a large military reservation, pesticide use in cranberry
bogs, and poly-chlorinated biphenyl in water pipes. However, the studies have
been largely inconclusive.

In the late 1990s the Department of Public Health for the Commonwealth of
Massachusetts commissioned a new study into geographical variation of health
outcomes in Upper Cape Cod. In the latest phase, reproductive outcomes, birth-
weight, and gestational age have been considered. Birthweight is measured on
nearly all newborns and is sensitive to recent exposures, thus facilitating the deter-
mination of exposures of biological importance. For example, a 170–200-gram
decrease in mean birthweight may be seen in babies whose mothers smoke over
16 cigarettes per day during pregnancy compared with those who do not smoke.

The Upper Cape Cod reproductive data correspond to all 1630 births in 1990
across five towns; Barnstable, Bourne, Falmouth, Mashpee, and Sandwich. Apart
from geographical location (longitude and latitude) and the response variables
birthweight (grams) and gestational age (weeks), there are 39 covariates. A pre-
liminary analysis showed that many have no significant association with birth-
weight. Those that are significantly associated with either outcome (birthweight
or gestational age) include maternal age, years of education, number of cigarettes
per day, and number of drinks per week. Table 8.2 lists all other variables that ex-
hibited some association with birthweight, together with the abbreviated names
that are used in Tables 8.3 and 8.4.

While the goal of the Upper Cape Cod study is the assessment of geographi-
cal variation in birthweight, the effect of these infant and maternal covariates is
also of scientific interest. So, with a view to illustrating the usefulness of additive
models in practice, we will ignore the geographical aspect in this section. Kam-
mann and Wand (2003) analyze these data with the incorporation of geographical
information, as described in Section 13.6.

A penalized spline additive model, as described in Section 8.2, was fit to the
variables in Table 8.2 with smooth functions for the four variables depicted in
Figure 8.1. The linear components were chosen according the the approximate
Z-value given by lme() in S-PLUS (see Section 7.6). Table 8.3 provides a nu-
merical summary of the final model. We see that fourteen linear predictors have a
significant effect on birthweight. The four nonlinear predictors involve smooths
with degrees of freedom ranging from 2.4 to 3.7.
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Table 8.2 Covariates
that had some
association with
birthweight and
gestational age
according to a
preliminary analysis
of the Cape Cod data.

Abbreviation Description

Infant covariates
male indicator for infant being male
black indicator for infant being black
asian indicator for infant being Asian
plurality 1 = single, 2 = twin, etc.

Maternal covariates
parity number of live births from mother
prenatal visits number of prenatal care visits
preg. hyperten. pregnancy-related hypertension
incomp. cervix indicator for incomplete cervix
eclampsia indicator for eclampsia
light prev. birth previous pre-term infant
heavy prev. birth previous infant ≥ 4000 grams
psychiatric indicator for psychiatric disorder
renal disease indicator for renal disease
uterine bleeding indicator for uterine bleeding

Table 8.3 Summary
of REML-based fit
of geoadditive model
for Upper Cape Cod
birthweight data.

Coeff. St. dev. Z-Ratio p-Value

male 161.12 23.6310 6.8182 0.0000
maternal age −7.4278 2.6925 −2.7587 0.0058
preg. hyperten. −187.82 95.1320 −1.9743 0.0484
light prev. birth −448.42 132.67 −3.38 0.0007
heavy prev. birth 310.11 97.61 3.1770 0.0015
renal disease −636.40 332.69 −1.9129 0.0558
black −142.95 66.0910 −2.1629 0.0306
asian −221.05 112.34 −1.9677 0.0491
drinks per week −39.5970 16.2740 −2.4331 0.0150
plurality −843.02 89.5930 −9.4094 0.0000
uterine bleeding −410.31 158.90 −2.5822 0.0098
psychiatric −387.12 210.29 −1.8409 0.0657
incomp. cervix −931.09 470.35 −1.9796 0.0478
eclampsia −1080.70 469.24 −2.3031 0.0213

df

parity 2.9
cig’s per day 2.4
years of education 3.7
prenatal visits 2.3

Figure 8.10 displays all nonlinear covariate effects. Though our primary con-
cern in this study is geographical effects on reproductive outcomes, the nonlinear
covariate effects depicted here are quite interesting in their own right. The cor-
responding derivative estimates are plotted in Figure 8.11. From this we see,
for example, that the effect of cigarettes is significant only when the number is
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Figure 8.10
Components of full
additive model fit
to Upper Cape Cod
reproductive data.
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Figure 8.11
Derivatives of
additive model fit
to Upper Cape Cod
reproductive data.
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between none and about ten per day. The cigarette effect “plateaus” from about
10 per day onward.

8.5 Hypothesis Testing

The overall effect of a continuous predictor – and whether or not it has a nonlinear
effect – is of fundamental interest when building an additive model. Research into
corresponding hypothesis tests is somewhat scant, and has been mainly confined
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Table 8.4 Likelihood
ratio statistics for
nonlinear terms.

Null hypothesis −2 log{LR(y)}
effect of parity 31.55
effect of cig’s per day 82.71
effect of years of education 36.82
effect of prenatal visits 62.99

linearity of parity 6.29
linearity of cig’s per day 3.39
linearity of years of education 3.03
linearity of prenatal visits 0.74

to F-tests available in the S-PLUS gam() function. These tests give some indi-
cation of the amount of evidence regarding overall effect or nonlinearity, but they
are based on an ad hoc smoothing parameter choice that (as illustrated by Figure
8.7) could be inappropriate.

8.5.1 Likelihood Ratio Tests

If a linear spline model is used, then linearity of the effect of a general predictor
s can be assessed through a test of the hypotheses

H0 : σ 2
s = 0 versus H1 : σ 2

s > 0,

where σ 2
s is the variance of the spline basis function coefficients for estimating

the effect of s. We can also use the likelihood ratio statistic to test for the overall
effect of each predictor. For linear splines, this corresponds to the hypotheses

H0 : βs = σ 2
s = 0 versus H1 : βs �= 0 or σ 2

s > 0. (8.6)

Table 8.4 shows likelihood ratio statistics for the additive model fit to the Up-
per Cape Cod birthweight data. As described in Section 6.6.1.1, the determination
of corresponding p-values is a delicate problem. In the additive model situation,
this is a current research problem and is not yet settled.

8.5.2 F-tests

The F-test paradigm (Section 2.4.7) can also be adapted to the additive model
setting. Consider, for example, the model

yi = β0 + f(si)+ g(ti)+ εi. (8.7)

Linearity of f can be assessed by comparing the quality of the fit of (8.7) with
that of

yi = β0 + βssi + g(ti)+ εi. (8.8)

Let ŷsmaller be the fitted values under the smaller model (8.8) and let ŷlarger be the
same for the larger model (8.7). Then the degree to which (8.7) improves upon
(8.8) can be measured by the difference between

R2
smaller = square of correlation coefficient between y and ŷsmaller
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Table 8.5 Results
from approximate
F-tests for nonlinear
terms.

Approx.
Null hypothesis F p-value

effect of parity 7.98 0.0000
effect of cig’s per day 7.18 0.0000
effect of years of education 4.48 0.0005
effect of prenatal visits 2.79 0.0111

linearity of parity 4.39 0.0055
linearity of cig’s per day 3.60 0.0273
linearity of years of education 3.16 0.0185
linearity of prenatal visits 1.98 0.1378

and
R2

larger = square of correlation coefficient between y and ŷlarger.

Arguments similar to those given in Section 2.4.7 lead to the F-statistic

F = R2
larger − R2

smaller

(1− R2
larger)(dfres, smaller − dfres, larger)/dfres, larger

,

where dfres, larger and dfres, smaller are the residual degrees of freedom for the re-
spective models, as defined in Section 8.3. Under the null hypothesis that the
larger model is true, we have

F
approx.∼ F(dfres, smaller − dfres, larger, dfres, larger)

(Hastie and Tibshirani 1990). Such tests are used by the S-PLUS function gam()
to check for nonlinearities. However, as mentioned in Section 8.4, the default
used there is 3 degrees of freedom per smooth function. For example, if model
(8.7) is compared with (8.8), then gam() defaults to

dffit, larger = 7 and dffit, smaller = 5,

which corresponds to

dffit, smaller − dffit, larger � 2 and dfres, larger � n− 7

regardless of the shape of f. Thus, there is the potential for undersmoothing and,
especially, oversmoothing, which could affect the power of the test. This limita-
tion in the choice of smoothing parameter needs to be kept in mind when using
such tests.

An improvement is to use automatic smoothing parameter selection methods
for choosing dffit, larger and dffit, smaller.

Table 8.5 contains F-statistics and approximate p-values for the same null hy-
potheses as in Table 8.4.

8.6 Model Selection

Model selection is a vital component of parametric regression, particularly when
there are several candidate predictors. The extension of selection techniques to
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additive models has only recently started. In this section we will briefly survey
these developments.

8.6.1 All-Subsets Algorithms

If there are d candidate predictors then the total number of subset models is 2d.

Hence, if d is not too large then all such models can be fit and then compared
through a model selection criterion. Simonoff and Tsai (1999) take such an ap-
proach and use an additive model extension of the AICC criterion defined in
Section 5.3.4. This approach also requires that the degrees of freedom for each
term be chosen by some objective criterion, and Simonoff and Tsai (1999) achieve
this using AICC as well. The same general approach could be used with other au-
tomatic degrees-of-freedom choices, such as those based on REML (Section 8.4)
and other model selection criteria for choosing among the subset models. We cau-
tion that this method of model selection can sometimes lead to spurious results;
see Burnham and Anderson (2002) for discussion. It is likely that no automatic
model selector will ever be found that is foolproof. Good scientific knowledge
together with model selection criteria will provide better model selection than
automatic methods alone.

Alternatively, the degrees of freedom can be chosen subjectively and in mul-
titude. For example, the user could nominate that a particular predictor, s, enter
the model with either 4, 7, or 10 degrees of freedom. Another predictor, t, could
enter the model with 1 (i.e. linearly) or 4 degrees of freedom. This will obvi-
ously increase the number of subsets, but it overcomes the need for automatic
degrees-of-freedom choice.

8.6.2 Stepwise Algorithms

All-subset approaches can be time-consuming, even for moderate numbers of
candidate predictors. In parametric regression this is circumvented through al-
gorithms that step through a smaller number of subset models, usually called
stepwise algorithms. The same principle can be applied to additive models. That
said, there is little published work on stepwise algorithms for additive models.
However, Chambers and Hastie (1993, pp. 280–5) describe one algorithm based
on ordered regimens. This is implemented in the S-PLUS package via the func-
tion step.gam().

8.6.3 MCMC Model Selection Algorithms

Markov chain Monte Carlo (MCMC) refers to a growing body of methods for fit-
ting complex models when traditional approaches become infeasible. A special
case of MCMC with relatively simple structure is Gibbs sampling. Some refer-
ences on MCMC are Gilks, Richardson, and Spiegelhalter (1996) and Robert and
Casella (1999). Chapter 16 describes such an approach for the penalized spline
models used throughout this book.
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Smith and Kohn (1996) used Gibbs sampling with a regression spline ap-
proach, as briefly described for scatterplot smoothing in Section 3.4, to perform
variable selection for additive models. Shively, Kohn, and Wood (1999) proposed
an alternative MCMC-based algorithm with smoothing splines used for function
estimation.

8.7 Bibliographical Notes

Early developments of the additive model are due to Ezekiel (1924) and Fried-
man and Stuetzle (1981). However, the catalyst for widespread use of additive
models is the monograph of Hastie and Tibshirani (1990) and its correspond-
ing implementation in the S-PLUS language as the function gam(). Most early
references, and many of the later ones, use the backfitting algorithm to fit addi-
tive models. This algorithm reduces the fit to a sequence of scatterplot smooths.
Buja, Hastie, and Tibshirani (1989) describe the convergence properties of back-
fitting; Opsomer and Ruppert (1997) derive statistical properties for backfitting
with local polynomial smoothers. See also Härdle and Hall (1993).

Alternatives to backfitting have been proposed more recently. These include
marginal integration (Newey1994; Tjøstheim andAuestad1994; Linton and Niel-
sen 1995) and direct fitting based on low-rank smoothers (Hastie 1996; Marx and
Eilers 1998). The approach described in this chapter falls into this last category.

Inference and model selection in additive models has also been treated by
Härdle and Korostelev (1996), Smith, Wong, and Kohn (1998), Lin and Zhang
(1999), and Cantoni and Hastie (2002).

Finally, we mention that many disciplines have already embraced additive
models. Examples include economics (e.g. Linton and Härdle1996), environmen-
tal epidemiology (Schwartz 1994), political science (Beck and Jackman 1998),
environmental science (Davis and Speckman1999), public health (Engels, Rosen-
berg, and Biggar 1999), and ecology (Roland, Keyghobadi, and Fownes 2000).
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Semiparametric Mixed Models

9.1 Introduction

As we have seen in the last few chapters, semiparametric regression models based
on penalized splines can be couched in the mixed model framework, allowing for
mixed model estimation and for inferential and computational tools to be used.
This synergy is similar in spirit to the mixed model approach to analyzing longitu-
dinal data that commenced with the paper of Laird and Ware (1982). Most of the
work that has been undertaken to model longitudinal data has been parametric,
in the sense that the effects of continuous covariates have been modeled linearly
or by using some parametric nonlinear model (Lindstrom and Bates 1990; Da-
vidian and Giltinan 1995; Pinheiro and Bates 2000). An alternative to nonlinear
mixed modeling is to incorporate smoothing methods. The mixed model repre-
sentation of penalized splines allows for a seamless fusion between parametric
mixed models and smoothing, which we call semiparametric mixed models.

9.2 Additive Mixed Models

In Chapter 4 we explained how the longitudinal pig weight data set could be fit
using the mixed model

weightij = β0 + Ui + β1weekij + εij, Ui i.i.d. N(0, σ 2
u ).

Figure 9.1 shows a data set, similar in nature to the pig weight data, that cor-
responds to spinal bone mineral density (SBMD) measurements of 230 female
subjects aged between 8 and 27. Each subject is measured either one, two, three,
or four times. Hastie and Tibshirani (2000) provide a thorough semiparametric
analysis of these data for the subjects with two or more measurements. Other
analyses are given in James, Hastie, and Sugar (2000) and James and Hastie
(2001).

The main difference between Figure 9.1 and Figure 4.1(b) (p. 92) for the pig
weight data is that the linearity assumption is not reasonable here. Therefore, an
appropriate model is

SBMDij = Ui + f(ageij )+ εij, 1 ≤ j ≤ ni, 1 ≤ i ≤ m, (9.1)

where f is some smooth function. For the spinal bone mineral density data, m =

We are grateful to
Professors Trevor
Hastie and Gareth
James for making the
spinal bone mineral
density data available
for this analysis. 230 and ni ∈ {1, 2, 3, 4}.

186
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Figure 9.1 Spinal
bone mineral
density of 230
female subjects. Lines
connect measurements
on the same subject.
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Fitting (9.1) via penalized splines is relatively straightforward. If we define

X =



1 age11
...

...

1 age1n1
...

...

1 agem1
...

...

1 agemnm


, (9.2)

Z =



1 · · · 0 (age11 − κ1)+ · · · (age11 − κK)+
...

. . .
...

...
. . .

...

1 · · · 0 (age1n1 − κ1)+ · · · (age1n1 − κK)+
...

...
...

...
. . .

...

0 · · · 1 (agem1 − κ1)+ · · · (agem1 − κK)+
...

. . .
...

...
. . .

...

0 · · · 1 (agemnm
− κ1)+ · · · (agemnm

− κK)+


,

and

u =



U1
...

Um

u1
...
uK


then we can simultaneously estimate variance components for the random inter-
cept and the amount of smoothing for f by using the mixed model
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Figure 9.2 REML
smooth of spinal bone
mineral density data.
The variability bars
take the within-subject
correlation into
account. The curve
at the left is a density
estimate of the
estimated random
intercepts.
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y = Xβ + Zu + ε, Cov

[
u
ε

]
=
 σ 2

U I 0 0
0 σ 2

u I 0
0 0 σ 2

ε I

. (9.3)

Here σ 2
U measures the between-subject variation, σ 2

ε measures within-subject
variation, and σ 2

u controls the amount of smoothing done to estimate f.

Figure 9.2 shows the fit based on REML smoothing parameter selection. The
estimate of f involves 9.56 degrees of freedom while the random intercept in-
volves 219.5 degrees of freedom, so the entire fit uses about 229 degrees of
freedom.

9.2.1 Additive Model Extension

The study for which the spinal bone mineral density data was collected is actually
concerned with effects of ethnicity on bone density. As illustrated in Figure 9.3,
the data can be categorized according to four ethnic groups: Asian, Black, His-
panic, and White.

To address the main question of interest, define indicator variables black i,

hispanici, and whitei to correspond to membership of each of these three eth-
nic groups, and consider the model

SBMDij = Ui + f(ageij )+ β1black i + β2hispanici + β3whitei + εij,

1 ≤ j ≤ ni, 1 ≤ i ≤ m.
(9.4)

With this formulation, the Asian subjects comprise the reference group and
β1, β2, β3 represent mean differences in spinal bone mineral density between
the other ethnic groups.
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Figure 9.3 Spinal
bone mineral density
data broken down by
ethnic group.
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Model (9.4) is easily accommodated by adding the columns

black1 hispanic1 white1
...

...
...

black1 hispanic1 white1
...

...
...

blackm hispanicm whitem
...

...
...

blackm hispanicm whitem


to the matrix X given at (9.2) to form an( m∑

i=1

ni

)
× 5 = 547 × 5

X-matrix and then fitting a mixed model of the same form as (9.3). The mixed
model output corresponding to the fixed effects (from the lme() function in S-
PLUS) is summarized in Table 9.1.

A graphical summary of these contrasts is given in Figure 9.4, which shows
the difference in mean bone mineral density between Black and Asian subjects
to be highly significant. There is some suggestion of a difference between His-
panic and Asian subjects. Contrasts not involving Asian subjects can be done by
taking other ethnic groups as the reference group, or through contrast coding.
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Table 9.1 Fixed
effects component of
mixed model output
for the linear mixed
model fit of (9.4).

Approx.
Variable Value st. dev. Z-Ratio

black 0.1062 0.02066 5.141
hispanic 0.0260 0.02164 1.203
white 0.0131 0.02165 0.6069

Figure 9.4 Estimates
(horizontal lines)
and approximate
95% confidence
intervals for the
differences in mean
spinal bone mineral
density between
female subjects with
Black, Hispanic, and
White ethnic origin
contrasted with those
of Asian origin.
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Extensions to more elaborate additive mixed models (e.g., several smooth func-
tions) are quite straightforward by way of combining material presented here and
in Chapter 8.

9.2.2 Serially Correlated Errors

The model (9.4) assumes that the errors εij are uncorrelated. Since the data are
collected over time, it is likely (see Diggle et al. 2002) that some serial correla-
tion would exist within each subject. The spinal bone mineral density measure-
ments for each subject are not equally spaced in time, so such serial correlation
is difficult to model by (say) an autoregressive process. However, equation (9.7)
discussed in the next section models serial correlation with a random function gi

that is specific to the ith individual.
An example where serial correlation is easily formulated was given in Coull,

Schwartz, and Wand (2001) with respect to daily data collected by Pope et al.
(1991) on respiratory health and air pollution. In this study, 41 Utah school-
children had peak expiratory flow (PEF) measurements recorded for 109 consec-
utive days. Coull et al. (2001) fit the model

PEFij = β0 + Ui + (β1 + Vi)PM10j + f(low.tempj )+ g(j)+ εij, (9.5)

where PEFij is the PEF measurement for child i on day j, PM10j is the amount of
particulate matter of aerodynamic diameter less than 10µm on day j, low.tempj
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Table 9.2 Analysis
of the peak expiratory
flow data for the fits of
(9.5) with and without
AR(1) errors.

Approx.
Variable Value st. dev. Z-Ratio

Independent errors PM10 −0.086 0.032 −2.7
AR(1) errors PM10 −0.070 0.025 −2.8

is the lowest temperature on day j, and Ui and Vi are (respectively) random
intercept and slope effects for the effect of PM10. However, the errors for each
child were taken to be serially correlated:

εij = ρεi,j−1 + ξij , (9.6)

where the ξij are independent and |ρ| < 1. Correlation of this type is also referred
to as first-order autoregressive, abbreviated as AR(1). AR(1) serial correlation in
the errors can be accommodated by standard mixed model software packages.

Coull et al. (2001) fit (9.5) and (9.6) using PROC MIXED in SAS and estimated ρ

as ρ̂ = 0.510 with a standard error of 0.014. This represents a significant amount
of serial correlation. Table 9.2 compares the regression coefficients and their es-
timated standard deviations for models with and without AR(1) errors. Note the
decrease in standard deviation when the autocorrelation is taken into account.

9.3 Subject-Specific Curves

Models such as (9.1), (9.4), and (9.5) have the feature that the nonparametric func-
tion f(·) is a global function and does not depend on the individual. Consider,
for example, model (9.1). Another way of thinking about this model is that in-
dividuals have their own functions but that the functions differ from one another
only in their intercept.

In many contexts, it seems sensible to allow the functions to vary with the in-
dividuals by more than just the intercept. Thus, for example, instead of (9.1) we
might have the model

SBMDij = f(ageij )+ gi(ageij )+ εij, (9.7)

where now the gi(·) are random functions with mean zero. We can model these
random functions as regression splines and place them into the mixed model
framework.

Recall that the ordinary linear regression spline has two components: a fixed
component for the linear part of the model, and a random component describing
the deviations from linearity; see (9.3). Each gi has two components, but now we
must remember that the functions gi(·) are random with mean zero. This means
that the linear part of the regression spline is also random, rather than a fixed
effect.

We now describe a strategy for fitting (9.7). Define the linear predictors xT
ij =

[1, ageij ] and the nonlinear components
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zT
ij = [(ageij − κ1)+, . . . , (ageij − κK)+].

Then (as before) we will write

f(ageij ) = xT
ijβ + zT

ijU, (9.8)

where Cov(U) = σ 2
U I. The random functions follow the same basic framework,

gi(ageij ) = xT
ijui1 + zT

ijui2. (9.9)

However, these are random functions with mean zero, so there are no fixed ef-
fects. We set Cov(ui1) = �, an unstructured 2 × 2 covariance matrix, and thus
allow for complex departures from the common linear component. Finally, we set
Cov(ui2) = σ 2

2 I. We can now place (9.7) in a mixed model framework. Define

Z =



zT
11 xT

11 0 · · · 0 zT
11 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

zT
1n1

xT
1n1

0 · · · 0 zT
1n1

0 · · · 0

zT
21 0 xT

21 · · · 0 0 zT
21 · · · 0

...
...

...
. . .

...
...

...
. . .

...

zT
2n2

0 xT
2n2

· · · 0 0 zT
2n2

· · · 0
...

...
...

...
...

...
...

...
...

zT
m1 0 0 · · · xT

m1 0 0 · · · zT
m1

...
...

...
. . .

...
...

...
. . .

...

zT
mnm

0 0 · · · xT
mnm

0 0 · · · zT
mnm


and

u = [UT, uT
11, uT

21, . . . , uT
m1, uT

12, uT
22, . . . , uT

m2 ]T,

so that

y = Xβ + Zu + ε, Cov(u) =


σ 2
U I 0 0

0 blockdiag
1≤i≤m

(�) 0

0 0 σ 2
2 I

. (9.10)

Although this approach to fitting subject-specific curves seems straightfor-
ward, more work needs to be done on implementation. At this stage we have not
explored the use of standard software for fitting (9.10). There may also be some
advantages in centering X so that � becomes effectively diagonal. This would
be in keeping with advice regarding Markov chain Monte Carlo fitting of mixed
models, where some form of centering is advocated even for very simple mixed
models (see e.g. Gelfand, Sahu, and Carlin 1995).

9.4 Bibliographical Notes

The main ideas of Section 9.3 have been discussed in a number of contexts in
the smoothing spline literature. See, for example, Donnelly, Laird, and Ware
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(1995), Brumback and Rice (1998), Zhang et al. (1998), Wang (1998), Verbyla
et al. (1999), and Guo (2002). There are nontrivial practical differences among
these papers.

Without going into the details of the smoothing spline approach, for the equiv-
alent formulation of our (9.9) Brumback and Rice (1998) treat the linear terms
as fixed rather than random effects, thus leading to the number of fixed effects
being at least twice as large as the number of sampled individuals. As we do in
Section 9.3, Guo (2002) lowers the dimension of the fixed effects by allowing
these linear terms to be random; in his example, � is assumed to be a diago-
nal matrix. Zhang et al. (1998) use a smoothing spline parameterization for (9.8)
but not for (9.9), assuming that the latter is a realization of a nonhomogeneous
Ornstein–Uhlenbeck process with 1–2 fixed parameters.

Rice and Wu (2001) use B-spline basis functions with a fixed number K of
knots. In their formulation, f(x) = ∑K

k=1 βkBk(x), where the βk are fixed ef-
fects. In addition, gi(x) = ∑K

k=1 γikBk(x), where the γik have a K × K covar-
iance matrix �. Their covariance matrix � is thus potentially of much higher
dimension than ours, depending on the number of knots.
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Generalized Parametric Regression

10.1 Introduction

The data that we have dealt with in the preceding chapters has the feature that
the response variable is continuous. This usually means that, possibly with the
help of a transformation, the data can be modeled to be normal and that linear
regression techniques (such as least squares and best linear unbiased prediction)
can be used for fitting. However, it is often the case that the response variable
is not continuous but rather categorical or perhaps a count. Examples include:
tumor present or absent; customer prefers green, pink, orange, or yellow pack-
aging; number of emergency asthma admissions on a given day. Such response
variables cannot be handled through the normal regression framework. In many
fields (e.g., medicine and marketing), categorical response variables are more the
rule than the exception. Some continuous response data cannot be handled sat-
isfactorily within the normal errors framework – for example, if they are heavily
skewed. Skewed data often can be transformed to near symmetry, but an alterna-
tive is to apply a Gamma model (Section 10.4.3) to the untransformed data.

Regression models that aim to handle non-Gaussian response variables such
as these are usually termed generalized linear models (GLMs). The first part of
this chapter gives a brief overview of GLMs; a reader with plenty of experience
on this topic could skip this part of the chapter. The second part of the chapter
deals with generalized linear mixed models (GLMMs) and is recommended for
all readers.

10.2 Binary Response Data

The data depicted in Figure 10.1 correspond to 223 birthweight measurements (inThe source of the BPD
data is Principles of
Biostatistics (Pagano
and Gauvreau 1993).
We are grateful
to Professor Kim
Gauvreau for sharing
the data.

grams) and occurrence of bronchopulmonary dysplasia (BPD) for a set of babies.
The BPD data are coded as

BPDi =
{

1 if ith baby has BPD,

0 otherwise.

Such 0–1 data are usually referred to as binary. It is of interest to measure the
effect of birthweight on the occurrence of BPD. Consider, for the moment, the
model

BPDi = β0 + β1birthweighti + εi, εi ∼ N(0, σ 2). (10.1)

194
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Figure 10.1 Plot
of the occurrence
of the coded
bronchopulmonary
dysplasia data against
birthweight for 223
babies. The data are
plotted as vertical
bars and, since BPD
is binary, appear only
along the bottom and
top of the plot.
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Table 10.1
Some cumulative
distribution functions
used with a binary
response.

F(x) Distribution

H(x) = ex/(1+ ex) logistic
=(x) normal
1 − exp(−ex) complementary log-log

This is easily seen to be inappropriate. First of all, the right-hand side of (10.1)
is not guaranteed to be binary. Second, it implies that the BPDi are normally dis-
tributed and with homoscedastic errors; such an assumption is easily refuted for
binary data. Finally, the expected values of the fit need not be probabilities, and
there is a danger that, when fit, the model will report estimated probabilities of the
occurrence of BPD for certain values of birthweight that are negative, or exceed1!

10.3 Logistic Regression

A remedy for the problems just raised is to change the model to

P(BPDi = 1|birthweight) = F(β0 + β1birthweighti ), (10.2)

where F is a function that maps any real number to a number between 0 and
1. To retain interpretability of the coefficients, F should also be strictly increas-
ing. There are many functions that have these properties. In fact, the cumulative
distribution function of any continuous distribution with an everywhere positive
density (e.g., the standard normal distribution) must meet these requirements.
Some examples are shown in Table 10.1. They are each plotted in Figure 10.2,
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Figure 10.2 Plots of
the three cumulative
distribution functions
listed in Table 10.1;
they have been shifted
and scaled to have the
same value and slope
at the origin.
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where it is seen that they have the properties mentioned previously. The func-
tions are each shifted and scaled to have the same value and slope at the origin in
order to allow easier comparison.

Logistic regression uses the logistic probability distribution function, whereas
probit regression uses the normal probability distribution function. Paradoxically,
although the normal distribution is used in almost all branches of statistics, for
binary data the logistic distribution is used in most applications. The reason for
this choice goes back many years and is both philosophical and computational.
Unlike the probit model, the logistic model possesses nontrivial sufficient sta-
tistics, thus allowing data compression and exact (finite-sample) inference. In
addition, although this is no longer a major issue, logistic regression requires
only the exponential function – something hard-coded into computers – whereas
probit regression requires the calculation of the normal distribution function. Fi-
nally, the logistic regression model leads to particularly simple expressions when
it comes to fitting the model. The complementary log-log distribution function is
more often used for ordered categorical data. It should be mentioned, however,
that Bayesians are abandoning the logistic model in favor of the probit model be-
cause the probit is much simpler to implement with MCMC than is the logistic.

Since H−1(y) = log{y/(1−y)}, the logistic regression model can be rewritten
as

log

{
P(BPDi = 1|birthweight)

1− P(BPDi = 1|birthweight)
}

= β0 + β1birthweighti . (10.3)

The left-hand side is the logarithm of the odds of BPD for a given birthweight,
sometimes called the log odds for short. A convenient shorthand is to define the
logit function as H−1 so that
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logit(u) = log

(
u

1− u

)
,

which leads to

logit{P(BPDi = 1|birthweight)} = β0 + β1birthweighti .

Notice that logit maps numbers in (0,1) to the real line. The logit transforma-
tion of the probability of BPD is an example of what is commonly called a link
transformation. In particular, the logit transformation – the one that results in the
simplest likelihood – is called the canonical link. A more precise definition of
canonical link will be given in the next section.

10.4 Other Generalized Linear Models

Although the logistic regression model

yi ∼ Bernoulli

(
exp{(Xβ)i}

1+ exp{(Xβ)i}
)

is the most common generalized linear model, there are others that are often used
in practice. These include the Poisson regression model

yi ∼ Poisson[exp{(Xβ)i}],
which is appropriate for count data, and the Gamma regression models such as

yi ∼ Gamma[{1/(Xβ)i}, φ] (10.4)

and
yi ∼ Gamma[exp{(Xβ)i}, φ], (10.5)

which are appropriate for right-skewed continuous data. Although (10.4) has the
canonical link, (10.5) is more commonly used because the log link guarantees
a positive mean. Here Gamma(µ, φ) means a gamma distribution with mean µ

and coefficient of variation
√
φ. The gamma and the Gaussian families are exam-

ples of GLMs with dispersion parameters, the standard deviation for the Gaussian
family, and coefficient of variation for the gamma family. The coefficient

of variation of a
distribution is the
ratio of the standard
deviation to the mean.

A GLM begins with a 1-parameter exponential family of distribution for the
response with density of the form

f(y; η) = exp

(
yη − b(η)

φ
+ c(y, φ)

)
(10.6)

for some functions b(η) and c(y, φ); see Table 10.2. Here φ is a dispersion para-
meter; the Bernoulli and Poisson distributions have no dispersion parameters, so
for these distributions we take φ ≡ 1. The parameter η is called the natural para-
meter. It can be shown that E(y) = b ′(η) and var(y) = φb ′′(η), where b ′(η) and
b ′′(η) are the first and second derivatives of b. In a GLM, it is assumed that the
natural parameter for yi, ηi, depends on a vector of predictor variables, x i . More
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Table 10.2 Functions
b and c for some
common 1-parameter
exponential families.

Canonical
Name b(η) b ′(η) link c(y, φ)

Bernoulli log(1+ eη) eη/(1+ eη) logit(µ) 0

Poisson eη eη log(µ) −log(y!)

Gamma log(η) 1/η 1/µ see text

Gaussian η2/2 η µ see text

explicitly, it is assumed that for some function ψ, ηi = ψ(xT
iβ). The canonical

link occurs when ψ is the identity function and hence ηi = xT
iβ.

More generally, the link function L is defined by the equation L{E(yi)} = xT
iβ.

Later we will need the notation µ(·) = L(·)−1. Note that the inverse link, µ(·),
converts the linear predictor xT

iβ to the expectation of yi : µ(xT
iβ) = E(yi) =

µi. For logistic regression, L(u) = logit(u) and µ(u) = H(u), where H is the
logistic function.

The dispersion parameter φ is assumed not to depend on i; this is a gener-
alization of the constant variance assumption of the linear model. With these
assumptions, the density of y is

f(y;β) = exp

(
yTψ(Xβ)− 1Tb{ψ(Xβ)}

φ
+ 1Tc(y, φ)

)
. (10.7)

10.4.1 Poisson Regression and Overdispersion

The Poisson GLM, often called Poisson regression, uses the Poisson density

P(Y = y) = µye−µ

y!
, y = 0, 1, . . . .

The logarithm of this density is y log(µ)−µ− log(y!). Letting η = log(µ), the
log density is yη− eη − log(y!). Therefore, b ′(η) = eη and c(y, φ) = −log(y!).

The Poisson regression model is often used when the response is a count.Poisson regression
is often appropriate
for count data, but
overdispersion can
easily occur and so
affect inference.

However, the assumption that a count is Poisson distributed should not be taken
lightly, since the variance of a Poisson regression equals its mean. Often, a re-
sponse that is a count has a variance that is larger than its mean, sometimes much
larger. This is “overdispersion” relative to the Poisson model (McCullagh and
Nelder 1989). In such a case, the Poisson assumption can lead to a underesti-
mation of variability. This would, for example, cause confidence intervals to be
too small, with coverage probability smaller than the nominal value. With seri-
ous overdispersion, which occurs fairly frequently, the size of the undercoverage
could be substantial. See Section 10.7 for discussion of overdispersion and other
models for the variance.

There are various models for overdispersion, the most well-known of which
is the negative binomial distribution. Another way to achieve overdispersion is to
introduce random effects (see Section 10.8 and following for details). Let u be
a normal random variable with mean −σ 2

u/2 and variance σ 2
u ; these parameters
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are chosen so that E{exp(u)} = 1. Given u and the covariate x, suppose that y is
Poisson with mean exp(xTβ + u). Then, unconditionally, y has mean exp(xTβ)

but its variance is

exp(xTβ)+ exp(2xTβ){exp(σ 2
u )− 1} ≥ exp(xTβ).

Thus, the variance exceeds the mean (overdispersion) unless the random effects
are all zero. With this mixed model formulation, overdispersion is a natural con-
sequence of nonzero random effects.

10.4.2 The Gaussian GLM: A Model for Symmetrically Distributed
and Homoscedastic Responses

The GLM is just the ordinary linear model, which shows that generalized linear Ordinary multiple
linear regression is a
Gaussian GLM.

models are, in fact, a generalization of linear models. The Gaussian family of
densities, when parameterized by the mean µ and variance φ, is

1√
2πφ

exp

{
− 1

2φ
(y − µ)2

}
.

The log density is

yµ− µ2/2

φ
− 1

2

{
y2

φ
+ log(2πφ)

}
.

Therefore, η = µ, b(η) = η2/2, and c(y, φ) = − 1
2 {y2/φ + log(2πφ)}.

10.4.3 The Gamma GLM: A Model with a Constant Coefficient
of Variation

There are many ways to parameterize the gamma family. Following McCullagh
and Nelder (1989), we will use the mean, µ, and squared coefficient of variation
(variance over squared mean), denoted by φ, as the parameters. Then the gamma
density with parameters (µ, φ) is

1

yH(φ−1)

(
y

φµ

)φ−1

exp

(
− y

φµ

)
. (10.8)

Define η = −1/µ. Then the log of the density in (10.8) is

yη + log(−η)

φ
− log{yH(φ−1)} + φ−1 log

(
y

η

)
,

which is in exponential family form with b(η) = −log(−η) and with c(y, φ) =
−log{yH(φ−1)} + φ−1 log(y/η).

The gamma model can be used when the responses have a right-skewed dis-
tribution and are heteroscedastic. However, only a special type of heteroscedas-
ticity can be modeled by the gamma family: var(yi |x i ) must be proportional
to {E(yi |x i )}2. Other types of heteroscedasticity should be modeled by variance
function models or transformation models; see Carroll and Ruppert (1988), which
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also has an extensive discussion of how to detect the presence and functional
form of heteroscedascity. Ruppert, Carroll, and Cressie (1989, 1991) compare the
gamma–GLM approach to modeling skewness and heteroscedasticity with the
more flexible variance function–transformation approach. A brief discussion of
variance function estimation in nonparametric regression is given in Chapter 14.
Section 10.7 contains details of estimation in overdispersion and variance func-
tion models.

10.5 Iteratively Reweighted Least Squares

In the GLM family, we have seen that if the mean E(y|x) = µ(xTβ) then the
variance is var(y|x) = φV(xTβ) for some function V. In canonical exponential
families, it can be shown that the first derivative of µ is V, that is, µ′ = V.

Computing parameter estimates in GLMs is particularly simple and uses a
method called iteratively reweighted least squares. This method also turns out toIteratively reweighted

least squares is the
main computational
engine for GLMs
and also for some
implementations of
generalized linear
mixed models.

be equivalent to Fisher’s method of scoring, which is simply the Newton–Raphson
method with the Hessian replaced by its expected value.

Suppose now that y1, . . . , yn denote the response variables and x1, . . . , xn are
vectors of predictor variables. For the BPD example,

yi = BPDi and x i =
[

1
birthweighti

]
.

Define

y =
 y1

...

yn

 and X =
 xT

1
...

xT
n

.
In the case of the birthweight data,

X =
 1 birthweight1

...
...

1 birthweight223

.
Notice that X is precisely the model matrix in a linear regression model.

In iteratively reweighted least squares, the basic idea is as follows. Suppose
the current estimate is β (t). Form the weights w = 1/V(xTβ (t)). Then, in iter-
atively reweighted least squares, we update the current estimate by performing
one step of Fisher’s method of scoring for weighted least squares. When imple-
mented, the algorithm takes the following form. Let

W1,β ≡ diag{µ′(xT
iβ)},

W2,β ≡ diag{V(xT
iβ)}.

Then the updating step is

β̂ ← β̂ + (XT W1,β̂
W−1

2,β̂
W1,β̂

X)−1XT W1,β̂
W−1

2,β̂
{y − µ(Xβ̂)}. (10.9)

For canonical links, W1,β = W2,β and the algorithm takes the usual generalized
least-squares form
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β̂ ← β̂ + (XT W−1
2,β̂

X)−1XT{y − µ(Xβ̂)}. (10.10)

In the logistic regression case, the algorithm takes the simple form

β̂ ← β̂ +
(

XT diag

{
exp[Xβ̂]

(1+ exp[Xβ̂])2

}
X
)−1

XT

(
y − exp[Xβ̂]

1+ exp[Xβ̂]

)
. (10.11)

10.6 Hat Matrix, Degrees of Freedom, and Standard Errors

It is relatively easy to define analogues to the hat matrix and degrees of freedom
as well as to obtain standard errors for the parameter estimates. The calcula-
tions necessary are outlined for the logistic case at the end of this chapter in
Section 10.10.

Using those type of calculations, the hat matrix is defined as These quantities
are the natural
generalizations
from ordinary linear
regression to GLMs.

Hβ = W1,β X(XT W1,βW−1
2,βW1,β X)−1XT W1,βW−1

2,β, (10.12)

and the degrees of freedom of the fit is tr(Hβ), which equals

tr{(XT W1,βW−1
2,βW1,β X)−1XT W1,βW−1

2,βW1,β X} = p. (10.13)

Moreover, the estimated variance matrix of β̂ is

̂Cov(β̂) = (XT W1,β̂
W−1

2,β̂
W1,β̂

X)−1. (10.14)

Standard errors for each component of the estimate of β are formed by taking the
square root of the diagonal of the matrix in (10.14).

The fit to the BPD data based on this estimation strategy is shown in Fig-
ure 10.3. One can see that the estimated probability of BPD decreases from ap-
proximately 0.80 to approximately 0.05, indicating a strong dependence of BPD
on birth weight. Of course, to assess this dependence statistically we need infer-
ence procedures, and for this we use standard errors.

Application of the standard error formulas to the BPD example leads to the
standard errors and t-values in Table 10.3. Note that, as expected, birth weight is
a statistically significant predictor of BPD, with higher birth weights associated
with lower risk of BPD.

10.7 Overdispersion and Variance Functions: Pseudolikelihood

In general regression problems, suppose that the mean is f(xTβ) and the variance
is V(xTβ, θ), where θ is an unknown parameter. For example, consider Poisson
data. We discussed in Section 10.4.1 a model for count data in which

f(xTβ) = exp(xTβ),

V(xTβ, θ) = f(xTβ)+ θf 2(xTβ).

Other common models include the power of the mean model, so that with θ =
(θ0, θ1) we have
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Figure 10.3 Plot
of the occurrence
of the coded
bronchopulmonary
dysplasia data against
birthweight for 223
babies.
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Table 10.3 Results of
the logistic regression
analysis of the BPD
data.

Coefficient Value St. dev. t-Value

intercept 1.21 1.06 × 10−1 11.5
birth.weight −7.46 × 10−4 8.70 × 10−5 −8.58

V(xTβ, θ) = θ0f(xTβ)θ1 .

Pseudolikelihood estimation is the process of iteratively alternating between es-
timation of one set of parameters, say β, by maximizing the likelihood in those
parameters with another set of parameters, say θ , fixed; then maximization of the
likelihood in θ with β fixed; and so on. Pseudolikelihood should not be confused
with quasilikelihood, where the likelihood function is replaced by a so-called
quasilikelihood function with some (but not all) of the properties of the likeli-
hood function. In fact, pseudolikelihood and quasilikelihood can be combined
by alternating between maximization of a quasilikelihood function over β and
over θ .

Carroll and Ruppert (1988) describe the pseudolikelihood method for estimat-
ing (β, θ). The algorithm is given as follows. The method refers to iterativelyVariance function

estimation and the
pseudolikelihood
algorithm form a
general approach
to the problem of
nonconstant variances
in regression and
are applicable to
nonlinear least-
squares problems
as well.

reweighted least squares (see Section 10.5 for details). We assume a sample of
size n.

(1) Set t = 0 and estimate β by (unweighted) iteratively reweighted least
squares with a constant variance function. Call the estimate β (t).

(2) Estimate θ by maximizing in θ only the pseudolikelihood

−∑n
i=1 log{V(xT

iβ
(t), θ)} −∑n

i=1{yi − f(xT
iβ

(t))}2

V(xT
iβ

(t), θ)
.

Call the estimate θ (t).
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(3) Update β (t) to β (t+1) using iteratively reweighted least squares with the
variance function V(xTβ, θ (t)).

(4) Set t = t + 1 and return to step (2).
(5) Iterate until convergence.

10.7.1 Quasilikelihood and Overdispersion Parameters

One common approach to quasilikelihood starts with a full parametric model but
then relaxes the assumptions by specifying that the variance function is φ times
the variance function specified by that model, where φ is an unknown overdisper-
sion parameter. For example, one might specify that the variance of count data
is φ times the mean. Quasilikelihood estimation is used in the GLIMMIX macro
of SAS that is discussed in Section 10.8.3. GLIMMIX will provide an estimate of
φ. If φ̂ > 1, then there is an indication of overdispersion.

10.8 Generalized Linear Mixed Models

As in the case of linear models, it is sometimes useful to incorporate random
effects into a generalized linear model. The resultant models are known as gener-
alized linear mixed models (GLMMs). However, their fitting presents some com- Generalized linear

mixed models include
hierarchical models,
longitudinal models,
and cluster variation
models. This area
is one of the most
rapidly expanding and
vigorously researched
fields in statistics.

putational challenges. This has led to a large amount of recent research aimed at
overcoming these challenges.

Each of the generalized linear models in Section 10.4 can be extended to allow
for some effects to be random. We will denote such random effects by u, and we
will assume that they are normally distributed with mean zero and a covariance
matrix Gθ , where Gθ is a positive definite matrix that depends on a parameter
vector θ , usually called the variance component.

The most common such models are the logistic–normal mixed model

yi |u ∼ Bernoulli

(
exp{(Xβ + Zu)i}

1+ exp{(Xβ + Zu)i}
)
, u ∼ N(0,Gθ ),

and the general Poisson–normal mixed model

yi |u ∼ Poisson[exp{(Xβ + Zu)i}], u ∼ N(0,Gθ ).

In what follows, for purposes of explication we will assume that the dispersion
parameter φ is known and equal to 1 – for example, logistic or Poisson regres-
sion. We will also work entirely within the context of the canonical exponential
family. We can treat both the logistic–normal and Poisson–normal models with
the 1-parameter exponential family notation:

f(y|u) = exp{yT(Xβ + Zu)− 1Tb(Xβ + Zu)+ 1Tc(y)},
f(u) = (2π)−q/2|Gθ |−1/2 exp

(− 1
2 uTG−1

θ u
)
,

(10.15)

where q is the dimension of u. The second equation is the probability density
function of the random effects.
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10.8.1 Estimation of Model Parameters

The parameters in the model are (β, θ), and the corresponding likelihood is

L(β, θ) = f(y;β, θ)
=
∫

Rq

f(y|u)f(u) du

= (2π)−q/2|Gθ |−1/2 exp{1Tc(y)}J(β, θ),
where

J(β, θ) =
∫

Rq

exp
{

yT(Xβ + Zu)− 1Tb(Xβ + Zu)− 1
2 uTG−1

θ u
}
du. (10.16)

Maximum likelihood estimation of !(β, θ) is hindered by the presence of this
q-dimensional integral. As in Section 4.9, if we want to use GLMMs to fit pe-
nalized splines then q is the number of knots; even for five knots, the integral
becomes essentially intractable to direct calculation.

There has been a great deal of research, accelerating in the 1990s, on remedies
to the computational problem. There are also a variety of software options (seeThe computational

issues in GLMMs
are nontrivial and
require special tools.
There is considerable
research interest in
the computational
methods themselves
as well as in the
modeling.

e.g. the website 〈multilevel.ioe.ac.uk〉 for various links). These reme-
dies may be divided into four distinct categories.

(1) Laplace approximation of (10.16) via PQL. Laplace’s method is a classi-
cal approximation technique for handling intractable multivariate integrals. Ap-
plication to (10.16) reduces the problem to one that is akin to fitting a generalized
linear model (among many others, see McGilchrist and Aisbett 1991; Schall 1991;
Breslow and Clayton 1993; Wolfinger and O’Connell 1993). The only difference
is that the coefficients are subject to a penalty, and nowadays the name penalized
quasilikelihood (PQL) is usually associated with the method. Interestingly, PQL
is essentially the same as maximizing the joint likelihood of the observed data
and random effects simultaneously (Harville and Mee 1984; Gilmour, Ander-
son, and Rae 1985; Schall 1991); see below for more details. This corresponds to
Henderson’s (1950) justification for Gaussian mixed models; see equation (4.10).
Improved Laplace approximation through higher-order expansion has been in-
vestigated by Shun and McCullagh (1995), Shun (1997), and Raudenbush, Yang,
and Yosef (2000).

(2) Bias corrections to PQL. The approximations used by PQL induce bias
in the estimates. This has resulted in a stream of research (Breslow and Lin 1995;
Goldstein and Rasbash 1996; Lin and Breslow 1996) that uses asymptotic argu-
ments to devise bias corrections to the PQL estimates.

(3) Fitting via expectation maximization. The expectation maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977) can be used to fit mixed models
by treating the random effects as missing. However, the E-step involves in-
tractable integrals, so Laplace integration (Steele 1996) or Monte Carlo methods
(McCulloch, 1997; Booth and Hobert 1999) need to be employed.

(4) Bayesian fitting via Markov chain Monte Carlo. This involves a Bayesian
formulation of the generalized linear mixed model in which (β, θ) is treated as
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randomly distributed according to some prior distribution. The posterior distri-
bution of (β, θ) is intractable, so Markov chain Monte Carlo algorithms (see e.g.
Robert and Casella 1999) are used to generate samples from this distribution and
allow estimation and inference for these parameters (Zeger and Karim1991; Clay-
ton 1996; Diggle, Tawn, and Moyeed 1998). See Section 17.4 for a discussion of
Bayesian fitting by MCMC.

Generalized estimating equations (GEE) (see Gourieroux, Monfort, and Trognon
1984; Liang and Zeger 1986) are also, in some sense, a remedy to the maxi-
mum likelihood problem conveyed by (10.16). However, this remedy is specific
to the longitudinal data setting rather than the type of mixed models that arise in
smoothing. Hence, we will forego outlining details of the GEE methodology.

We now discuss each of (1)–(4).

10.8.2 Penalized Quasilikelihood (PQL)

Penalized quasilikelihood is a relatively simple method for fitting generalized lin-
ear mixed models. The fits from PQL also serve as useful starting values for the
other fitting approaches. As we will see in Section 11.2, its application to penal-
ized spline fitting is equivalent to the penalized likelihood approach traditionally
used there. In this subsection, we state the necessary formulas required to imple-
ment PQL. Derivation of these equations is given in Section 10.10.4.

Observe that, in what follows, for purposes of explication we will assume that
the data come from a canonical exponential family and that the dispersion param-
eterφ is known and equal to1. Writeµ = b ′ andV = b ′′ as the mean and variance
functions. Also write µ = µ(Xβ + Zu) = b ′(Xβ + Zu) = E(y|X,Z, u) and
W = diag{b ′′(Xβ + Zu)} = var(y|X,Z, u).

Recall from (10.15) that f(y|u) is the notation we use for the likelihood of the
data given the random effects u. PQL estimates of (β, u) are obtained by treating
the random effects u as fixed parameters, but the likelihood is penalized accord-
ing to the distribution of u. Thus, for given θ , (β, u) is obtained by maximizing
the penalized log-likelihood

log{f(y|u)} − 1
2 uTG−1

θ u.

The notion that the likelihood is penalized leads to the name penalized likelihood.
Penalized quasilikelihood involves the technical extension of likelihood that we

PQL is only an
approximation to
a full likelihood
analysis, except in
the Gaussian GLMM
(i.e., an ordinary
LMM), where it is
exact. Sometimes the
approximation works
remarkably well, but
in some problems (e.g.
logistic regression) the
variance components
may not be well
estimated.

have described as quasilikelihood.
Given θ , direct differentiation of the penalized likelihood leads to the score

equations for (β, u): [
XT(y − µ)

ZT(y − µ)− G−1
θ u

]
= 0. (10.17)

The Hessian of (10.17) is independent of y and is given by

−
[

XT WX XT WZ
ZT WX ZT WZ + G−1

θ

]
.

In this case, the Newton–Raphson and Fisher’s method of scoring are identical.
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There is an identical formulation of Fisher’s method of scoring that leads to
the PQL estimates of θ . Consider the pseudodata

ypseudo = Xβ + Zu + W−1(y − µ) = Xβ + Zu + εpseudo.

This is in the form of a linear mixed model, where (in the notation of Section 4.4)
the covariance matrix of the pseudoerrors εpseudo is R = W−1. Fisher’s method
of scoring turns out to be nothing more than iterative updating of the LMM for-
mula (4.9) and (4.11), using the pseudodata ypseudo as the response.

10.8.2.1 Estimation of Variance Components via Mixed Models
This formulation of the GLMM as an interactively updated form of the LMM
led Breslow and Clayton (1993) to suggest a PQL method for estimating θ .

Specifically, fixing β and u at their current values, they suggest updating θ at
each stage of the iteration by using the ML or REML estimates of Section 4.5.4
applied to the pseudodata and with R = W−1.

10.8.2.2 Estimation of Variance Components via Cross-Validation
An alternative method for estimating the variance components appropriate for
smoothing is cross-validation; see Chapter 11.

10.8.3 GLIMMIX

The SAS macro GLIMMIX implements a refinement of PQL due to Wolfinger
and O’Connell (1993), which they call pseudolikelihood (PL). Pseudolikelihood
incorporates an overdispersion parameter, φ. The GLIMMIX macro makes PL
available on a standard statistical package, and values of φ̂ substantially larger
than 1 are an indication of overdispersion.

10.8.4 Bias Correction to PQL

PQL is based on an only approximate likelihood; hence estimates of the variance
component θ are asymptotically biased, as are estimates of β. This has led Bres-
low and Lin (1995) and Lin and Breslow (1996) to derive corrections to the PQL
estimates based on small-θ asymptotics.

10.8.5 Fitting via Expectation Maximization

The expectation maximization algorithm (Dempster et al. 1977) is a general-The EM algorithm
in GLMMs often
requires simulation,
and it is sometimes
referred to as Monte
Carlo EM.

purpose method for maximum likelihood estimation in the presence of missing
data (see e.g. McLachlan and Krishnan 1997). It can be used for fitting mixed
models by treating the random effects as missing data. For the Gaussian mixed
model it provides an alternative to BLUP/REML for estimation of the model pa-
rameters (Laird and Ware 1982). It can also be used to guide the choice of the
parameters in the generalized context. For the generalized linear mixed model
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f(y|u) = exp{yT(Xβ + Zu)− 1Tb(Xβ + Zu)+ 1Tc(y)},
f(u) = (2π)−q/2|Gθ |−1/2 exp

(− 1
2 uTG−1

θ u
)
,

let ψ ≡ (β, θ) be the parameter vector. The EM algorithm iterates between
the E-step (expectation) and the M-step (maximization) until convergence. The
E-step requires computation of an expectation:

Q(ψ ′|ψ) ≡ Eu|y;ψ{log f(y, u;ψ ′)},
while the M-step involves an update of parameter estimates through maximi-
zation,

ψnew = argmax
ψ

Q(ψ |ψold). (10.18)

Because (from Bayes’ rule)

f(u|y;ψ) = f(y|u;ψ)f(u)∫
Rq f(y|u;ψ)f(u;ψ) du

, (10.19)

we have the representation

Q(ψ ′|ψ) =
∫

Rq log f(y, u;ψ ′)f(y, u;ψ) du∫
Rq f(y, u;ψ) du

. (10.20)

However, computation of (10.20) is at least as difficult as computation of the
log-likelihood !(ψ).

One solution is to use Laplace’s approximation to handle the integrals in (10.20)
(Steele 1996). Techniques designed for approximating ratios of integrals (e.g.
Tierney, Kass, and Kadane 1989) are appropriate in this case. Alternatively, one
can use a Monte Carlo EM:

Q̂(ψ ′|ψ) = 1

m

m∑
i=1

log f(y, u i;ψ ′), (10.21)

where u1, . . . , um is a Monte Carlo–generated sample from [u|y;ψ] (Wei and
Tanner 1990). Inspection of (10.19) shows [u|y;ψ] to have a complicated distri-
bution from which sampling is difficult. One remedy is to use the Metropolis–
Hastings (MH) algorithm (McCulloch 1997). Another is to replace (10.21) by

1

m

m∑
i=1

log f(y, uh
i ;ψ ′)f(y|uh

i )f(u
h
i )

h(uh
i )

, (10.22)

where h is a standard density (such as that of the multivariate t-distribution) and
uh

1 , . . . , uh
m is a random sample from h. This is known as importance sampling

(Rubinstein 1981; Booth and Hobert 1999). Note that (10.22) estimates the nu-
merator of (10.20) rather than Q(ψ ′|ψ) itself. However, since the denominator
does not involve ψ ′, the M-step (10.18) is unaffected.

10.8.6 Bayesian Fitting via Markov Chain Monte Carlo

Another approach to fitting a GLMM is to put priors on all parameters and to sim-
ulate from the posterior by Markov chain Monte Carlo. This, in effect, integrates
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out the unobserved random effects; it also imputes the values of the random ef-
fects so that we get the equivalent of their BLUPs. The parameters are estimated
by their posterior means, which are approximated by their sample averages from
the MCMC output. This method is introduced in Chapter 16 (see Section 16.5).

10.8.7 Prediction of Random Effects

For the generalized extension of semiparametric models such as those described
in Chapters 8 and 9, prediction of u is required. For known (β, θ), the best pre-

Prediction of the
random effects is
crucial in smoothing
and semiparametric
fitting.

dictor of u is
ũ = E(β,θ)(u|y),

which suggests the predictor

û = E
(β̂,θ̂)

(u|y).
Note that

ũ =
∫

Rq u exp
{
yT(Xβ + Zu)− 1Tb(Xβ + Zu)− 1

2 uTG−1
θ u
}
du∫

Rq exp
{
yT(Xβ + Zu)− 1Tb(Xβ + Zu)− 1

2 uTG−1
θ u
}
du

,

so computation is hindered by the presence of higher-dimensional integrals.
Of course, PQL directly estimates u. Methods that provide corrected estimates

of θ can then provide an estimate of u through the solving of (10.17). Monte Carlo
EM produces an estimate of β, and since one generates a sample of the us from
the distribution of u given y, the mean of these samples provides an estimate of
u. Similarly, in the Bayesian formulation, MCMC also provides a sample of the
us, and the mean of this sample yields an estimate of u.

10.8.8 Standard Error Estimation

Standard error estimates for (β, u) can be constructed using either the EM algo-
rithm or MCMC. For the EM algorithm, consult Louis (1982). Bayesian meth-
ods yield standard error estimates and posterior confidence intervals as part of
the MCMC calculations. Both methods account for the estimation of the vari-
ance component θ . On the other hand, known standard error estimates for PQL
do not account for estimation of θ . However, using the identification of PQL as
an iterative updating of the linear mixed model, we have a result similar to (4.17)
for the LMM:

Cov

([
β̂

û

]∣∣∣u) � (CT WC + B)−1CT WC(CT WC + B)−1, (10.23)

where C = [X Z],

W = diag{b ′′(Xβ + Zu)} = var(y|X,Z, u), (10.24)

and

B =
[

0 0
0 G−1

θ

]
.
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Evaluation of (10.23) allows for standard error bars for the fitted function and
its linear part. Suppose that interest focuses on estimating at a given (x, z), so
that the linear predictor is xTβ̂ + zTû. The estimated standard error of this predic- These formulas for

standard errors are
useful for smoothing
and semiparametric
modeling.

tion is √[
x
z

]T

Cov

([
β̂

û

]∣∣∣u)[ x
z

]
,

where the β and u appearing in W are replaced by their estimates. Often more in-
teresting is a standard error estimate for the estimated mean µ(xTβ̂ + zTû). This
estimate is √

{µ′(xTβ̂ + zTû)}2

[
x
z

]T

Cov

([
β̂

û

]∣∣∣u)[ x
z

]
.

Since µ′ = b ′′ = V, there are several ways to re-express this standard error.

10.8.9 Bias Adjustment

In Section 6.4 we argued in favor of confidence bands based on the unconditional
covariance matrix

Cov

([
β̂

û − u

])
because they adjust for the additional uncertainty in the fitted curve due to bias,
whereas confidence regions based on the conditional covariance

Cov

([
β̂

û

]∣∣∣u)
make no such adjustment. Such confidence bands have not yet been studied for
generalized regression, but we believe this would be a useful area for further
inquiry.

10.9 Deviance

In Chapter 2 we saw that sums of squared deviations of yi from its fitted value ŷi

played an important role in inference for Gaussian regression models. In a GLM,
deviance is the analogue of the residual sum of squares. The deviance of a model
compares the fit for that model with the fit for the so-called saturated model,
where there is a separate parameter for each observation. More specifically, the
deviance of any model is twice the difference in log-likelihoods between the sat-
urated model and the given model.

Let ŷi be the fitted value for a given model. This means that ŷi is the expected
value of yi, given the covariates for the ith case, evaluated at β̂. We will assume
that ŷi = yi for the saturated model, which is true for any of the GLMs we are
considering. For logistic regression, the deviance is

D(y; ŷ) = 2
n∑

i=1

{
yi log

(
yi

ŷi

)
+ (1− yi) log

(
1− yi

1− ŷi

)}
;
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for Poisson regression, the deviance is

D(y; ŷ) = 2
n∑

i=1

{
yi log

(
yi

ŷi

)
− (yi − ŷi)

}
,

where 0 log(0) = 0; see McCullagh and Nelder (1989), who give the deviance
for other GLMs as well.

For Gaussian linear models, the deviance is just the residual sum of squares.
As discussed in detail in McCullagh and Nelder (1989), the analysis of variance
for Gaussian linear models can be generalized to the analysis of deviance for
GLMs.

10.10 Technical Details

In this section we collect some technical details that may be of use to those who
want to understand the methods of this chapter algebraically. Those readers whose
interests are mainly in applications and an intuitive understanding of the theory
should skip this section.

10.10.1 Fitting a Logistic Regression

The general logistic regression model can be written as

logit{P(yi = 1|x i )} = βTx i, i = 1, . . . , n. (10.25)

The log-likelihood for this problem is

!(β) =
n∑

i=1

{yi(β
Tx i )− log(1+ exp[βTx i])}

= yT Xβ − 1T log(1 + exp[Xβ]). (10.26)

Differentiation with respect to β leads to the score equations

S(β) ≡ XT

(
y − exp[Xβ]

1+ exp[Xβ]

)
= 0.

The prototype of tools for solving a vector equation of the form

S(β) = 0 (10.27)

is the Newton–Raphson technique. It involves the updating step

β̂ ← β̂ − {DS(β̂)}−1S(β̂), (10.28)

where DS(β) is called the Hessian: the square matrix with (i, j) entry equal to

∂

∂βj
S(β)i .
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Provided S(β̂) is well-behaved, the iteration defined by (10.28) leads to rapid
convergence to the solution of (10.27)

Fisher’s method of scoring uses the same basic algorithm as in (10.28), except
that if the Hessian depends on y then it is replaced by its expected value. We call
this the scoring Hessian.

For logistic regression, the Hessian and the scoring Hessian are the same and
equal

DS(β) = DXT

(
y − exp[Xβ]

1+ exp[Xβ]

)
= −XT diag

(
exp[Xβ]

(1+ exp[Xβ])2

)
X = XT Wβ X,

so the updating step is as given in (10.11). Convergence is usually very rapid, with
5–10 iterations being sufficient in most circumstances.

In the logistic regression model, and more generally for canonical exponen-
tial models, the Newton–Raphson algorithm is identical to Fisher’s method of
scoring and to iteratively reweighted least squares (see Section 10.5). For other
GLMs, the Newton–Raphson differs from the other two algorithms and is gener-
ally not used.

10.10.2 Standard Error Estimation in Logistic Regression

There are two ways to make inference about the regression parameter β: (i) like-
lihood ratio tests and confidence intervals; and (ii) using standard t-test /interval
methods after having obtained standard error estimates. In this subsection, we
discuss how to obtain standard error estimates for logistic regression.

The maximum likelihood estimate of β satisfies

S(β̂) = 0.

Thus we can make the informal Taylor’s theorem argument

0 = S(β̂)

= S(β + β̂ − β)

� S(β)+ DS(β)(β̂ − β).

Rearranging yields

β̂ − β � −{DS(β)}−1XT

(
y − exp[Xβ]

1+ exp[Xβ]

)
.

This means that

E(β̂ − β) � 0 and Cov(β̂ − β) � (XT Wβ X)−1.

From this it follows that

ŝt.dev.(β̂)i =
√
ith diagonal entry of (XT W

β̂
X)−1.



212 Generalized Parametric Regression

10.10.3 The Hat Matrix and Degrees of Freedom

For linear regression, we defined the hat matrix ŷ in Section 2.3, noting that mul-
tiplying it by the response y led to the predicted values. There is an analogue of
the hat matrix for GLMs, one that reflects both leverage and degrees of freedom.

In a generalized linear model, ŷ is a nonlinear function of y; there is no ma-
trix H such that ŷ = Hy and hence the usual definition of a hat matrix does not
apply. However, we can define a hat matrix by a linearization using the following
analogy with a linear model. For a linear model,

ŷ − E(y) = H{y − E(y)} = Hε;
the left-hand side of this equation is the error in estimating E(y) by ŷ. We will de-
fine the hat matrix Hβ to be the matrix such that, with µ the inverse link function,

µ(Xβ̂)− µ(Xβ) � Hβ{y − E(y)}.
It is a general fact that

β̂ − β ≈ (XT Wβ X)−1XT{y − E(y)}.
Then, by a Taylor approximation and using Wβ = diag{H ′(Xβ)}, we have

µ(Xβ̂)− µ(Xβ) ≈ Wβ X(XT Wβ X)−1XT{y − E(y)}.
Thus, an appropriate definition for the hat matrix is

Hβ ≡ Wβ X(XT Wβ X)−1XT.

Notice that

tr(Hβ) = tr{(XT Wβ X)−1XT Wβ X} = tr(Ip) = p,

where
p = number of parameters in model.

This argument shows that
dffit ≡ tr(H

β̂
)

is a reasonable definition for degrees of freedom in generalized parametric regres-
sion models. Later we will see that the same definition can be used to quantify
the effective number of parameters in generalized semiparametric models.

10.10.4 Derivation of PQL

Here we show how PQL can be derived as an approximation to the maximum
likelihood solution. We hold θ fixed and, as before, consider only the canonical
model with φ = 1 known.

Write

J(β, θ) =
∫

Rq

exp{h(u)} du, (10.29)

where

h(u) = yT(Xβ + Zu)− 1Tb(Xβ + Zu)− 1
2 uTG−1

θ u. (10.30)
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Recall that D refers to first-order differentiation whereas H refers to second-order
differentiation. Laplace approximation of J(β, θ) starts with the Taylor series
approximation

h(u) � h(u0)+ Dh(u0)(u − u0)+ 1
2 (u − u0)THh(u0)(u − u0).

Choose u0 to solve
Dh(u0) = 0.

This leads to the approximation

h(u) � h(u0)+ 1
2 (u − u0)THh(u0)(u − u0).

Using the expression for the density of a N(µ,�) random vector, we have∫
Rq

(2π)−q/2|�|−1/2 exp
{− 1

2 (x − µ)T�−1(x − µ)
}
dx = 1.

Combining this result with (10.29) and (10.30) results in the approximation

J(β, θ) � (2π)q/2|−Hh(u0)|−1/2 exp{h(u0)}. (10.31)

Vector differential calculus (see Appendix A) shows that

Dh(u) = {y − b ′(Xβ + Zu)}TZ − uTG−1
θ ,

Hh(u) = −ZT diag{b ′′(Xβ + Zu)}Z − G−1
θ .

The resulting loglikelihood approximation is then

!(β, θ) � yT(Xβ + Zu0)− 1Tb(Xβ + Zu0)+ 1Tc(y)− 1
2 u0T

G−1
θ u0

− 1
2 log|I + GθZT diag{b ′′(Xβ + Zu0)}Z|.

However, for ease of fitting, PQL uses one final approximation that is based on
the assumption that b ′′(Xβ + Zu0) is relatively constant as a function of β. For
the purpose of maximizing !(β, θ) with respect to β, this gives some justification
for its omission from the log-likelihood to yield

!(β, θ) � yT(Xβ + Zu0)− 1Tb(Xβ + Zu0)+ 1Tc(y)− 1
2 u0T

G−1
θ u0.

Maximizing this expression leads to the solutions described in Section 10.8.2.
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Generalized Additive Models

11.1 Introduction

The generalized parametric models of Chapter 10 are nonlinear because of the
link function, but nonetheless they are parametric and have none of the flexibility
of nonparametric models.

As an example of this lack of flexibility, consider data on wages (denoted asThe wage data were
taken from the Internet
at the Statlib site
at Carnegie Mellon
University. The
URL of Statlib is
〈lib.stat.cmu.
edu/〉.

wages) and union membership (union). These data are from 1985 and appear
in Berndt (1991). The variable union is binary and wages is continuous. To
understand the relationship between these variables, one can examine the binary
regression of union on wages. In Figure 11.1 we have the fits to these data using
linear, quadratic, and cubic logistic regression. There is strong evidence from
the quadratic and cubic fits that the linear logistic model is inadequate. In fact,
the quadratic and cubic coefficients are both significant in the cubic logistic fit.
Seeing how dramatically the fits change as the degree is increased, one could be
suspicious – and rightly so – as to whether even the cubic fit is adequate.

Figure 11.1
Polynomial-logistic
fits to the union and
wages scatterplot.
Raw data are plotted
as plusses but with
values of 1 for union
replaced by 0.5 for
graphical purposes.
A worker making
$44.50/hour was used
in the fitting but not
shown on the plot to
increase the detail.
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The solution to this problem of inflexibility is not hard to guess: one replaces
the linear predictor in the generalized linear model by a spline. The resulting
model is called a generalized nonparametric regression model.

The nonmonotonic behavior seen in the quadratic and cubic fits is interesting.
The probability of union membership increases as wages increase, but only up to
a point. Once wages are above approximately $15/hour, the probability of union
membership decreases with increasing wages. An obvious question at this point
is whether the nonmonotonic pattern will persist when we switch to a nonpara-
metric model. We will see that, in fact, it does.

In Section 11.2 we look at the simplest case of generalized nonparametric re-
gression, a binary response and a univariate predictor variable having a smooth
but otherwise unknown effect on the response. In Section 11.3 this simple model
is extended in two ways: the response distribution can be in an arbitrary expo-
nential family, and there may be several predictors. In this case, we replace the
linear predictor of the generalized linear model by an additive model predictor.
Such models are called generalized additive models (GAMs). In a GAM, some
variables may enter the the additive predictor linearly but the effects of others are
modeled as splines.

The remaining sections cover estimation of standard errors, approximating de-
grees of freedom, and connections with mixed models.

11.2 Generalized Scatterplot Smoothing

Suppose that we observed pairs (xi, yi), where the conditional distribution of yi

given xi is in an exponential family with density (10.6). For example, yi might
be binary. In Chapter 10 we saw that we could estimate f(x) = E(y|x) under
a set of parametric assumptions called the generalized linear model (GLM). In
this chapter we estimate f assuming only that f is a smooth function. In other
words, the “linear” part of the GLM assumptions will be relaxed but the remain-
ing structure of the GLM will be retained. Thus, we assume that yi given xi has
density

f(yi; ηi) = exp

(
yηi − b(ηi)

φ
+ c(y, φ)

)
,

where ηi depends on xi. More precisely, we will assume that ηi = η(xi) for a
smooth function η( ·), and we will use the notation

η = [η(x1), . . . , η(xn)]
T.

For simplicity, throughout this chapter we will assume a canonical link func-
tion. Assume also that φ ≡ 1 – for example, binary or Poisson regression.

The most common method for smoothing such data is penalized likelihood,
which is a generalization to non-Gaussian data of smoothing splines that min-
imize the penalized sum of squares (3.16). For example, the smoothing spline
solution is
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f̂ = (b ′)−1(η̂),

where

η̂ = argmax
η(·)

{yTη − 1Tb(η)} − 1

2
λ3
∫ ∞

−∞
η ′′(x)2 dx. (11.1)

For any space of splines, there is a matrix K such that ηT Kη equals
∫ ∞
−∞ η ′′(x)2 dx

for all η( ·) in this space. Thus, we can find such a K and substitute ηT Kη for∫ ∞
−∞ η ′′(x)2 dx in (11.1). Note that finiteness of

∫ ∞
−∞ η ′′(x)2 dx requires splines

of quadratic degree or higher.
The penalized linear spline solution to the same problem, for the basis functions

X = [1 xi], Z =
[
(xi − κk)+

1≤k≤K

]
1≤i≤n

,

is
η̂ = Xβ̂ + Zû,

where[
β̂

û

]
= argmax

β,u
{yT(Xβ + Zu)− 1Tb(Xβ + Zu)} − 1

2
λ3‖u‖2. (11.2)

Recall that we are assuming a canonical link; for noncanonical links, (11.2) would
need to be modified appropriately. For a fixed value of λ, (11.2) is equivalent to
PQL estimation in the generalized linear mixed model

f(y|u) = exp{yT(Xβ + Zu)− 1Tb(Xβ + Zu)+ 1Tc(y)},
u ∼ N(0, σ 2

u I),

with σ 2
u = (1/λ3).

This generalized linear mixed model representation comes equipped with a
method for selecting the amount of smoothing via the PQL and REML algorithm
given in Section 10.8.2. See Section 11.5.

11.2.1 Application to Wage–Union Data

Figure 11.2 shows a logistic spline fit to the union and wages scatterplot using a
20-knot linear spline. The value of λ was chosen by an extension of generalized
cross-validation; Section 11.5 provides the details.

The nonmonotonic behavior seen in the previous figure is seen here as well.
However, the actual shape of the fit here is different from the shape of the paramet-
ric fits, since the shape is now determined by the data rather than by the functional
form of a parametric model.

Regression analysis by itself cannot be used to infer causality. Therefore, we
do not know why the probability of union membership increases with increasing
wages when wages are below $15/hour. One cannot determine from the regression
analysis whether union membership causes wages to increase, whether increasing
wages causes a worker to consider union membership, or whether (as is likely)
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Figure 11.2 Logistic
spline fit to the union
and wages scatterplot
(solid) with 95%
confidence bands
(shaded). Raw data
are plotted as plusses
but with values of 1
for union replaced
by 0.5 for graphical
purposes. A worker
making $44.50/hour
was used in the fitting
but not shown on the
plot to increase the
detail.
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something more complex is happening such as both wages and union are being
influenced by other variables. Similarly, we do not know why the probability of
union membership decreases for wages above $15/hour. Regression analysis can
only raise these interesting questions.

11.3 Generalized Additive Mixed Models

As shown in Section 8.2, the additive model can be represented as a mixed model
with a variance component controlling the amount of smoothing for each additive
component. For example, the normal additive model

yi

ind.∼ N(β0 + f(si)+ g(ti), σ
2), (11.3)

where f and g are linear splines with knots at {κ s
k }Ks

k=1 and {κ t
k}Kt

k=1 (respectively),
can be fit through the normal mixed model

y|u ∼ N(Xβ + Zu, σ 2
ε I) (11.4)

with
X = [1 si ti]1≤i≤n, Z = [Zs |Z t ],

Zs =
[
(si − κ s

k )+
1≤k≤Ks

]
1≤i≤n

, Z t =
[
(ti − κ t

k)+
1≤k≤Kt

]
1≤i≤n

, (11.5)

where

u ∼ N

(
0,
[
σ 2
s I 0
0 σ 2

t I

])
.
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The extension to the generalized case can be achieved by replacement of
(11.4) by

log{f(y|u)} = yT(Xβ + Zu)− 1Tb(Xβ + Zu)+ 1Tc(y), (11.6)

where (as usual in this chapter) a canonical link and φ ≡ 1 are assumed. This is
now a generalized linear mixed model and can be fit using any of the techniques
given in Section 10.8. In particular, β̂ and û maximize

yT(Xβ + Zu)− 1Tb(Xβ + Zu)+ 1Tc(y)− 1
2 uT�u,

where � is given by equation (8.5).
Instead of this specific additive model with two predictor variables, consider

a generalized semiparametric additive model with D1 + D2 predictor variables.
The first D1 predictors are assumed to enter the model linearly, while the last D2

predictors enter nonparametrically as pth-degree splines. Then the first D1 pre-
dictors form columns of the matrix X representing the fixed effects. For each of
the last D2 predictors, the powers of degree 1 through p are columns of X while
the truncated power functions form columns of Z. Then model (11.6) still holds
for the appropriate choices of X and Z.

As an example, we return to the union membership data set. The response is
again the indicator of union membership (union). The predictor variables are:

• wages (wages in dollars/hour);
• age (age in years);
• ed (number of years of education);
• race (indicator of white race);
• gender (indicator of female);
• South (indicator of living in southern region of the U.S.).

The effects of the first three (wages, age, and ed) were modeled nonparametri-
cally using splines and GCV. The last three variables (race, gender, and South)
are all indicators, so they were modeled with linear effects. The t-statistics for
these variables were −2.23, −3.12, and −2.12, respectively. These values indi-
cate that U.S. union membership is significantly lower for whites, for females,
and for workers living in the South.

Figure 11.3 shows the effects of the variables entering the model nonparamet-
rically. Each plot shows the estimated probability of union membership as the
variable on the horizontal axis varies across its observed range while the other
variables are fixed at their observed means; 95% confidence bands are also shown.
The confidence bands for the variable ed are quite wide on the left. The reason is
that not many workers have fewer than eight years of education, so the function
is not accurately estimated in this region.

We see from Figure 11.3 that the effect of wages on union does not change
qualitatively when adjusted for the effects of the other predictor variables. In par-
ticular, the effect of wages still appears to be nonmonotonic. The probability of
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Figure 11.3
Components of the
additive model fit
(solid) and 95%
confidence bands.
Each solid curve is
the probability of
union membership
as a function of one
covariate with the
other covariates fixed
at their sample means.
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union membership increases with age and decreases with ed. The effect of age
is nearly linear, as is the effect of ed (at least for ed above 10).

11.4 Degrees-of-Freedom Approximations

The hat matrix and the degrees of freedom of the fit can be defined by generaliz-
ing the results given in Section 10.6 for ordinary maximum likelihood estimation
to penalized maximum likelihood. Let C and � be defined by (8.5).

As before, let µ(η) and V(η) be the conditional mean and variance of y given
η = xTβ + zTu. As in (10.24), define

W = diag{µ′(xT
i β̂ + zT

i û)}.
Analogous to (10.12), the hat matrix is

H
β̂,û = WX

(
XT WX + 1

2�
)−1

XT (11.7)

and the degrees of freedom of the fit is tr(H
β̂,û), which equals

tr
{(

XT WX + 1
2�
)−1

XT WX
}
. (11.8)

Moreover, the estimated conditional covariance matrix of (β̂, û)T given u is cal-
culated by a “sandwich” formula somewhat analogous to (6.10) and (10.23):(

XT WX + 1
2�
)−1

(XT WX)
(
XT WX + 1

2�
)−1

, (11.9)

which reduces to (10.14) when the penalty matrix � is 0.
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Recall that this chapter assumes a canonical GLM and a φ that is known and
equal to 1. The results in this section would need to be modified slightly in
other cases.

11.5 Automatic Smoothing Parameter Selection

As was seen in Chapter 5, there are two general approaches to selecting the
amount of smoothing from the data. One is to use the generalized linear mixed
model framework – in which the amount of smoothing is controlled by variance
components – and estimate the variance components via (approximate) maximum
likelihood as described in Section 10.8. The second is to extend the various model
selection criteria of Section 5.3 to the generalized case. Here we will concentrate
on generalized cross-validation (GCV) andAkaike’s information criterion (AIC).

Let Hβ,û(�) and D(y; ŷ : �) be the hat matrix and deviance of the model for
a fixed value of the smoothing parameter matrix �. The GCV deviance is

GCV(�) = n−1D(y; ŷ : �)

[1− n−1 tr{H
β̂,û(�)}]2

. (11.10)

See Hastie and Tibshirani (1990), who also define AIC as

AIC(�) = n−1[D(y; ŷ : �)+ 2 tr{H
β̂,û(�)}φ], (11.11)

where φ is the dispersion parameter and assumed to be equal to 1 in this chapter.
One selects � by minimizing GCV(�) or AIC(�).

There are several other ways by which GCV or AIC can be extended to the
generalized situation; the extensions given in (11.10) and (11.11) represent the sim-
plest ones. Examples of other extensions may be found in Gu (1992a) and Xiang
and Wahba (1996), for example.

11.6 Hypothesis Testing

Hypothesis testing can be approached in the same ways as for additive models in
Section 8.5.

For example, within the GLMM framework, many hypotheses are equivalent
to assuming that one or more variance components are zero and can be tested using
likelihood ratios. As discussed in Section 8.5.1, currently available asymptotic
theory is inadequate for likelihood ratio testing even for ordinary additive models,
so the null distribution of the likelihood ratio must be approximated by simulation.

The F-tests for additive models in Section 8.5.2 treat all parameters as fixed
effects, but they are estimated by penalized least squares. Hastie and Tibshirani
(1990, sec. 6.8.3) describe approximate F-tests for generalized additive models
based on deviances. However, we are not aware of any investigations of the ac-
curacy of such approximation, so for formal testing we recommend that critical
values be determined by Monte Carlo.
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11.7 Model Selection

Model selection methodology for GAMs is still in its infancy. One can com-
pare models using the GCV deviance or AIC as defined in the previous section.
For each model, GCV or AIC would be minimized over � to obtain the model
GCV or AIC. Then models with small GCV or AIC would be considered best.
Of course one should not just blindly minimize GCV or AIC. Rather, all models
with reasonably small GCV or AIC values should be considered as potentially
appropriate and evaluated according to their simplicity and scientific relevance.

The function step.gam() in S-PLUS builds GAMs stepwise using AIC; see
Chambers and Hastie (1993, chap. 7). Shively et al. (1999) develop a Bayesian
approach to model selection for probit additive models using smoothing splines.

11.8 Density Estimation

A common statistical problem is that we observe a sample x1, . . . , xn from a den-
sity f that we need to estimate. There is a huge literature on density estimation
that we will not even attempt to summarize, but the references in Section 11.9 will
provide the reader with a place to start.

A convenient method for univariate density estimation is converting the density
estimation problem to a regression problem (Eilers and Marx 1996). Specifically,
one takes a histogram of x1, . . . , xn with many equal-width bins, say 200. Af-
ter normalization, the plot of the bin heights versus the bin centers is a rough
estimate of f. If we smooth these points, then we have a satisfactory density es-
timate. Moreover, conditional on n, the bin counts are binomially distributed.
They are also approximately Poisson distributed, since a binomial(n, p) variable
is approximately Poisson(np) if n is large and p is small. Therefore, generalized
regression based on either a binomial or Poisson model is appropriate.

Suppose that there are B histogram bins of equal width on the interval [a, b],
so that the bin widths are L = (b − a)/B. Let Nj be the number of xi in the j th
bin and let cj be the center of the j th bin. If the height of the j th bin is yj =
Nj/(nL) then the area under the histogram will be 1, so that it is an estimate of
f – albeit not a very smooth estimate. In order to obtain a smooth estimate, one
regresses the Nj on the cj using either a logistic or Poisson spline model. The
fitted curve is then divided by nL to yield the smooth density estimate.

As an example, we will use Monte Carlo data. The data are from a Markov
chain Monte Carlo Bayesian analysis of the Canadian age–income data. The
analysis is discussed fully in Chapter 16. All that one needs to understand at
present is that the data are a sample of 3000 observations from a particular den-
sity of interest – specifically, the posterior density of the residual standard devi-
ation σε. In the top panel of Figure 11.4 we have the raw “data,” the bin counts
divided by nL versus the bin centers. There are 200 bins. One can see that the
data are scattered about a roughly bell-shaped curve. The bottom plot is a smooth
fit to these data, using a Poisson model and a log link function.
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Figure 11.4 Age and
income data: estimate
of posterior density
of σε. Top: Plot of
normalized bin counts
versus bin centers.
Bottom: Smooth fit to
the data on top.

11.9 Bibliographical Notes

The definitive reference for generalized additive models is the book of Hastie and
Tibshirani (1990). Most of that book is concerned with full-rank smoothers with
implementation through the backfitting algorithm. Lin and Zhang (1999) develop
the mixed model approach to generalized additive models, including the incor-
poration of random effects.

Density estimation has a very large literature. Summaries may be found, for
example, in Wand and Jones (1995), Simonoff (1996), and Loader (1999).
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Interaction Models

12.1 Introduction

The additive models of Chapters 8 and 11 have many attractive features. The joint
effect of all the predictor variables upon the response is expressed as a sum of in-
dividual effects. These individual effects show how the expected response varies
as any single predictor varies with the others held fixed at arbitrary values; be-
cause of the additivity, the effect of one predictor does not depend on the values
at which the others are fixed. Thus, the individual component functions can be
plotted separately to visualize the effect of each predictor, and these functions –
taken together – allow us to understand the joint effects of all the predictors upon
the expected response. If, for example, we wish to find conditions under which
the expected response is maximized, then we need only maximize separately
each of the component functions of the additive model. In summary, it is ex-
tremely convenient whenever an additive model provides an accurate summary
of the data.

However, there are no guarantees that an additive model will provide a satis-
factory fit in any given situation. Nonadditivity means that, as one predictor is
varied, the effect on the expected response depends on the fixed values of the other
predictors. A deviation from additivity is called an interaction. Consider a gen-
eral multiple regression model yi = f(x i )+ εi, where f is a smooth function of
a vector x i of predictor variables. Suppose that {x i}ni=1 are contained in a region
that is small relative to the curvature in f. Then both additivity and linearity can be
justified by a first-order Taylor approximation: f(x) ≈ f(x∗)+Df(x∗)(x−x∗),
where x∗ is at the center of the x i (e.g., is their sample mean); see Appendix A for
vector differential calculus notation. If there is enough curvature in f over the re-
gion in which x varies, then more terms in the Taylor approximation are needed.
The next terms are quadratic. The pure quadratic terms, where components of x
are squared, give nonlinear but additive departures from a linear model. Mixed
quadratic terms are those where two different components of x are multiplied;
they represent two-way interactions. Thus, whenever there is enough curvature
that nonlinearities appear, we might expect that interactions will also appear. In
fact, the popularity of additive models as an alternative to linear models is un-
doubtedly their simplicity – not their ability to provide highly accurate summaries
of data where a linear model fails.

223
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In this chapter we consider models with interactions. These models have two
uses. The first use is checking for additivity. One can do this by testing the
null hypothesis of a pure additive model (i.e., one without any interaction terms)
against the alternative of the additive model plus interaction terms. If we accept
the null hypothesis, then we have some assurance that using the additive model
provides a reasonable fit to the data.

The second use of interaction models is as alternative models when an additive
model does not fit important aspects of the data. If the hypothesis of an additive
model is rejected, then one can add appropriate interaction terms to the additive
model.

In Section 12.2 we introduce the basic ideas of interactions in semiparametric
regression with the simple special case of one binary factor that possibly interacts
with a single continuous covariate. In Section 12.3 we generalize to interactions
between a discrete factor at more than two levels and a continuous covariate, and
we consider adding interactions in generalized additive models. In Section 12.4
we look at varying coefficient models. These are models for the interaction be-
tween two continuous predictors, where the effect of one variable is linear but
with intercept and slope depending nonparametrically on the second variable.

12.2 Binary-by-Continuous Interaction Models

In Chapter 7 we fit a model of the form

yi = γ0 zi + f(xi)+ εi (12.1)

to the onion data, where

(xi, yi, zi) = (locationi, log.yield i, densityi ).

As we mentioned there, this model assumes that location and density act
additively on log.yield. A more general model is

yi = fzi(xi)+ εi,

zi =
{

1 if (xi, yi) is from Purnong Landing,

2 if (xi, yi) is from Virginia.

(12.2)

Here f1 and f2 are any two smooth curves. This model dispenses with the addi-
tivity assumption and allows for the possibility that location and density
interact with one another, meaning that the effect of density on yield can de-
pend in a completely general way upon location. Model (12.2) is the simplest
example of a nonparametric interaction model. It involves the interaction be-
tween a binary factor (location) and a nonparametric function of a continuous
variable (density).

To fit (12.2) using penalized splines, we may start with the following represen-
tation of (12.1):
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yi = β0 +
p∑

j=1

βj x
j

i +
K∑
k=1

uk(xi − κk)
p
+ + γ0 zi + εi. (12.3)

The γ0 zi term represents the vertical shift between the two curves in the additive
model.

Define the indicator of the !th location as

zi! =
{

1 if zi = !,

0 otherwise.

To cater for (12.2) we simply extend (12.3) to

yi = β0 +
p∑

j=1

βj x
j

i +
K∑
k=1

uk(xi − κk)
p
+

+
2∑

!=1

zi!

(
γ0! +

p∑
j=1

γj! x
j

i +
K∑
k=1

vk!(xi − κk)
p
+

)
+ εi. (12.4)

A mixed model representation can be obtained by taking

uk i.i.d. N(0, σ 2
u ) and vk! i.i.d. N(0, σ 2

v ).

In order for the fixed effects parameters to be identified (i.e., so that they are
uniquely defined), we need constraints on the {γj!}. One possible set of con-
straints is that γj2 = 0 for all j = 0, . . . , p. Another possibility is that

∑2
!=1 γj! =

0 for all j = 0, . . . , p. Very similar constraints are used for certain non–full-rank
analysis of variance models to identify parameters.

The fitted curves do not depend on which set of constraints is chosen, but the
interpretation of the parameters in the curve does. Note that, if we adopt the con-
straints that γj2 = 0 for j = 0, . . . , p, then

β0 +
p∑

j=1

βj x
j

i +
K∑
k=1

uk(xi − κk)
p
+ (12.5)

is the fitted curve for ! = 2 (Virginia) and

γ0! +
p∑

j=0

γj! x
j

i +
K∑
k=1

vk!(xi − κk)
p
+ (12.6)

is the difference of the fitted curves for the !th location and Virginia – that is, the
difference between Purnong Landing and Virginia when ! = 1 and zero when
! = 2. If we adopt the constraints

∑2
!=1 γj! = 0 for all j = 0, . . . , p, then (12.5)

is the average curve for the two sites and (12.6) is deviation of the curve for the
!th location from the average curve.

The maximum likelihood fit of this model for p = 2 is shown in Figure 12.1,
with the additive model fit shown for comparison. The fits are reasonably close
to each other and differ mostly where the data are sparse on the right side of the
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Figure 12.1
Interaction model
fit to the onion data
based on maximum
likelihood smoothing
parameter selection
(solid curve). The
dashed curves show
the additive model fit.
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plot, suggesting adequacy of the additivity assumption in this case. The next sec-
tion describes a way of testing this hypothesis.

12.2.1 Testing for Additivity

A test for additivity can be conducted by comparing the additive model to the in-
teraction model and checking whether the interaction model offers a significant
improvement in fit. In particular, one can compare the log-likelihoods for the
additive and interaction models through the likelihood ratio statistic. In terms of
the parameters in (12.4), the null hypothesis of additivity corresponds to all terms
in (12.6) except the intercept being zero for all !. Thus, the null hypothesis is

H0 : γj! = 0, ! = 1. . . , L, j = 1, . . . , p, and σ 2
v = 0.

After accounting for the constraints imposed on the fixed effects to ensure iden-
tifiability, the null hypothesis restricts (L−1)p fixed effects parameters and one
variance component.

12.3 Factor-by-Curve Interactions in Additive Models

12.3.1 Modularity of Spline Models

One of the real advantages of spline modeling is its modularity. By this we mean
that concepts like main effects, interaction effects, generalized regression, and
the mixed model formulation with smoothing parameter selection by REML can
be viewed as modules and put together into an almost endless variety of statistical
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Figure 12.2
Ragweed pollen
levels in Kalamazoo,
Michigan, 1991.
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models. Therefore, one can easily tailor a model to a specific application. In par-
ticular, there are many ways in which the two-way interaction between a binary
and a continuous variable presented in Section 12.2 can be extended or combined
with other techniques discussed in this book. For example: higher-order inter-
actions can easily be defined; the binary-by-continuous interactions used in the
onions example can be extended to discrete-by-continuous interactions; and in-
teractions can be added to generalized additive models. In this section we will
discuss some of these extensions.

12.3.2 Example: Ragweed Pollen Revisited

As a motivating example, we will use the case study in Section 7.5 of daily ragweed
pollen counts. The interaction model for the pollen data presented here is taken
from Coull, Ruppert, and Wand (2001). Figure 12.2 shows data on daily ragweed
pollen counts from four consecutive pollen seasons in Kalamazoo, Michigan.
Stark et al. (1997) and Brumback et al. (2000) fit generalized linear and gener-
alized additive models, respectively, to these data to investigate the predictive
power of meteorological variables on pollen level. Because each year’s pollen
season starts at a different time and will progress at a different rate, the effect of
the seasonal trend is thought to be different for each year. This year-to-year het-
erogeneity led both sets of authors to fit models to each year’s data separately.
Later in this section, we will present a single analysis based on data from all four
pollen seasons.

Some intuition for why a model like this is appropriate is shown in Fig-
ures 12.3 and 12.4, which show the marginal relationships between

√
ragweed

and day.in.season and wind, respectively. In Figure 12.3 we see that the re-
lationship between

√
ragweed and day.in.season is relatively strong and also
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Figure 12.3
Interaction fits
for
√
ragweed on
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wind

sq
rt

(r
ag

w
ee

d)

0 5 10 15

0
5

10
15

20

somewhat different for each season, so an interaction term seems appropriate. On
the other hand, the

√
ragweed–wind relationship is rather weak, and there is lit-

tle to be gained from going beyond using the same smooth function relationship
across all years.
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The pollen example requires two extensions. First, ragweed counts are dis-
crete responses and should be modeled by the Poisson distribution – possibly
with overdispersion. Second, Figure 12.3 suggest an interaction between the dis-
crete factor, year, and the continuous variable, day of the year. (Strictly speaking,
day of the year is discrete, but it makes sense for this variable to be modeled as
a continuous variable because expected ragweed pollen counts are a continuous
function of day of the year.) After discussing these and other extensions of the
basic interactions models, we will return to the pollen data.

12.3.3 Discrete-by-Continuous Interactions

For simplicity, we first explain “discrete factor by curve” interactions for a single
continuous predictor and a single categorical factor. Consider the set of triples
(xi, yi, zi), 1 ≤ i ≤ n, where the xi and yi represent continuous predictor and
response recordings (respectively) and where zi ∈ {1, . . . , L} represents a coded
factor. The type of model that we wish to fit is

yi = fzi(xi)+ εi, 1 ≤ i ≤ n, (12.7)

where f1, . . . , fL are L different functions depending on the value of zi and where
the εi are i.i.d. N(0, σ 2

ε ).

Let κ1, . . . , κK be a set of knots inside the range of the xi. Define

zi! =
{

1 if zi = !,

0 otherwise,
(12.8)

for ! = 1, . . . , L. A linear penalized spline model for (12.7) is

yi = β0 + β1xi +
K∑
k=1

uk(xi − κk)+ +
L∑

!=1

zi!(γ0! + γ1! xi)

+
L∑

!=1

zi!

( K∑
k=1

v!
k(xi − κk)+

)
+ εi, (12.9)

where the uk are i.i.d. N(0, σ 2
u ) and the v!

k are i.i.d. N(0, σ 2
v!), ! = 1, . . . , L, for

appropriate values of σu and σv!, ! = 1, . . . , L. Henceforth, we use this mixed
model formulation of penalized spline models.

In model (12.9),
∑K

k=1 v
!
k(xi − κk)+ represents deviations from the overall

smooth term
∑K

k=1 uk(xi − κk)+. Note that model (12.9) is overparameterized in
that (for example) we could add a constant to β0 and subtract the same constant
from each γ0! without changing the expectation of yi in any way. This overpa-
rameterization is similar to that of non–full-rank analysis of variance (ANOVA)
models and can be handled by the same types of constraints used in ANOVA
models. For example, Coull et al. (2001) assume that γ01 = γ11 = 0. With
this constraint, (γ0! + γ1! xi) models the linear deviation between f1 and f!,

! = 2, . . . , L.
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No constraint is needed on the v!
k. They are modeled as having zero means, so

one cannot add an arbitrary constant to them. In effect, the assumption of a zero
mean serves the same role as a constraint on the fixed effects.

We can write model (12.9) in matrix notation as

y = Xβ + Zu + ε, (12.10)

where

β = [β0, β1, γ02, . . . , γ0L, γ12, . . . , γ1L]T,

u = [u1, . . . , uK, v
1
1, . . . , v

1
K, . . . , v

L
1 , . . . , v

L
K ]T,

X = [1 xi zi2 . . . ziL zi2xi . . . ziLxi]1≤i≤n,

Z =
[
(xi − κk)+

1≤k≤K

zi1(xi − κk)+
1≤k≤K

. . . ziL(xi − κk)+
1≤k≤K

]
1≤i≤n

,

and [
u
ε

]
∼ N

(
0,
[

G 0
0 σ 2

ε I

])
,

with G = diag(σ 2
u 1K, σ

2
v11K, . . . , σ

2
vL1K).

Extension to models with truncated polynomials (xi − κk)
p
+ for p > 1 is

straightforward. For example, the pth-order penalized spline model for (12.7) is

yi = β0 +
p∑

j=1

βj x
p

i +
K∑
k=1

uk(xi − κk)
p
+

+
L∑

!=1

zi!

(
γ0! +

p∑
j=1

γj! x
j

i

)
+

L∑
!=1

zi!

( K∑
k=1

v!
k(xi − κk)

p
+

)
+ εi,

where again the uk are i.i.d. N(0, σ 2
u ) and the v!

k are i.i.d. N(0, σ 2
v!), ! = 1, . . . , L.

We have assumed that σ 2
v! depends on !, meaning that the variance of the jumps

in the pth derivative at the knots depends on !. A simpler model uses a constant
variance component, σ 2

v .

Model (12.9) specifies a different smooth function f(xi) for each subset of
observations defined by the levels of z. Thus, one can effectively fit this model
(apart from the assumption of homoscedastic errors across factor levels) by fit-
ting a nonparametric regression model to each subset separately. For a multiple
regression model in which some terms do not interact with z, however, the pe-
nalized spline approach holds a substantial advantage over the data subsetting
approach because the latter must be nested within a backfitting algorithm.

12.3.4 Interactions in Additive Models

We now incorporate the additive effects of other variables into the discrete-by-
continuous interaction model (12.9). To keep notation simple, consider a semi-
parametric model with a single parametric term, a single nonparametric term,
and a factor-by-curve interaction. (Extension to models with more than one term
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of each type is straightforward.) Consider the multiple regression setting with
response yi, general predictor xi, continuous predictors (si, ti), and categorical
predictor zi, i = 1, . . . , n. A semiparametric model for yi that allows the func-
tional form of the effect of ti on yi to vary according to the level of zi is

yi = α0 + α1xi + g(si)+ fzi(ti)+ εi, 1 ≤ i ≤ n. (12.11)

To generalize model (12.9), let κ s
1, . . . , κ

s
Ks

and κ t
1, . . . , κ

t
Kt

be the Ks and Kt

knots corresponding to si and ti, respectively. In addition, let zi! (i = 1, . . . , n,
! = 1, . . . , L) be defined as in (12.8). Then a linear penalized spline model for
(12.11) is

yi = α0 + α1xi + β s
1si +

Ks∑
k=1

us
k(si − κ s

k )+ + βt
1ti +

Kt∑
k=1

ut
k(ti − κ t

k)+

+
L∑

!=2

zi!(γ0! + γ1!ti)+
L∑

!=1

zi!

( Kt∑
k=1

v!
k(ti − κ t

k)+
)

+ εi, (12.12)

where the us
k are i.i.d. N(0, σ 2

us), the ut
k are i.i.d. N(0, σ 2

ut ), and the v!
k are i.i.d.

N(0, σ 2
v!). Model (12.12) also falls within the mixed model framework (12.10),

making estimation and inference no more difficult than that for the single covari-
ate model (12.9).

For penalized spline model (12.12), smoothing parameter selection is a by-
product of model fitting with variance component estimation. The amount of
smoothing for g(·) and f!(·), ! = 1, . . . , L, is governed by

σ 2
ε

σ 2
us

and
σ 2
ε

σ 2
ut + σ 2

v!

, ! = 1, . . . , L,

respectively. Thus, smoothing parameter selection reduces to variance component
estimation in a mixed model, with a small variance component corresponding to
more smoothness for a particular curve. Note that models (12.11) and (12.12) spec-
ify independent amounts of smoothing for each curve f!. One can obtain either
maximum likelihood (ML) or restricted maximum likelihood (REML) estimates
(Searle et al. 1992) of the variance components – and hence of the smoothing pa-
rameters – by using, for example, PROC MIXED in SAS or the S-PLUS function
lme(). Alternatively, one can fit these models using a prespecified amount of
smoothing for a given curve by fixing the value of the corresponding variance
component. This can be accomplished, for instance, using the parms option in
the SAS procedure PROC MIXED.

12.3.5 Generalized Additive Models with Interactions

It is very simple to add interaction terms to the generalized additive models dis-
cussed in Chapter 11. One simply takes the additive model predictor – for exam-
ple, β0 +f(s)+ g(t) in (11.3) – and adds interaction terms. Thus, if all variables
are continuous then the linear predictor becomes the right-hand side of (12.12)
but without εi.
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12.3.6 Pollen Data

We now consider both generalized linear and generalized additive interaction
models for the pollen data. Let µij denote the mean pollen count on day i of the
pollen season j, j = 1, . . . , 4. We first fit the most general parametric Poisson re-
gression model that contains terms corresponding to rain, wind, temperature, and
day in season, with each of these effects varying according to year. Specifically,
we fit the Poisson GLM

log(µij ) = β0j + β1jrain ij + β2jwind ij + β3jtempij

+ β4jtemp.resid ij + β4 i + β4j log(i + 1). (12.13)

Here, for day i in year j, rain ij is a rain indicator, wind ij denotes wind speed,
tempij denotes the fitted values from a smooth of temperature as a function of
day in season, and temp.resid ij denotes the residual from this smooth. The
last two terms on the right-hand side of (12.13) aim to capture the nonlinearity
in day number. This model corresponds to fitting a Poisson regression model to
data from each year separately. This model does not appear to fit the data well,
yielding a deviance of 4169.6 on 312 residual degrees of freedom.

We next fit generalized additive models to investigate whether this lack of fit
arises from the linearity assumptions in the Poisson GLM. Consider the semi-
parametric regression model

log(µij ) = α0 +α1jrain ij +g1(wind ij )+g2(temp.resid ij )+fj(i). (12.14)

This model specifies a rain-by-year interaction and a factor-by-curve interaction
representing distinct seasonal trends for the four years. The functions g1 and g2,

however, are the same for every year j. That is, we assume that the relationships
between pollen and residual temperature and wind speed do not change from
year to year. The penalized quasilikelihood fit of the appropriate linear penal-
ized spline model yields a deviance of 2577.9 on approximately 293.5 degrees
of freedom, or an almost 40% decrease relative to deviance from model (12.13).
Overdispersion is still present, however, and GLIMMIX yields a overdispersion
parameter estimate of φ̂ = 8.5; see Section 10.8.3 for a discussion of GLIMMIX
and overdispersion parameters. This overdispersion persists under the more gen-
eral models containing heterogeneous wind and/or residual temperature effects
for different seasons.

Table 12.1 shows the estimates of the rain coefficients and corresponding stan-
dard errors, adjusted for overdispersion, from the fit of model (12.14). The range
of these estimates is larger than those of previous analyses, which is primarily
due to the linear assumption for the residual temperature effect in earlier models.
Fitting the data to all four years simultaneously allows us to test formally the
plausibility of a homogeneous rain effect across the four years. In particular,
we compare the fit of model (12.14) to that obtained under the constraint α11 =
· · · = α14. Because of overdispersion, we compare the difference between the
deviances, scaled by φ̂, to the quantiles of an F -distribution (McCullagh and
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Table 12.1
Yearly and pooled
pseudolikelihood
estimates of the
rain coefficients
from semiparametric
model (12.14).

Year α̂1 St. dev.

1991 0.56 0.33
1992 0.72 0.21
1993 0.99 0.25
1994 0.87 0.42

Pooled 0.80 0.14

Figure 12.5 Fitted
curves for residual
temperature and wind
speed for the pollen
data.
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Nelder 1989, p. 203) instead of the usual χ2 cut-off. Wolfinger and O’Connell’s
(1993) pseudolikelihood approximation of this test is F = 0.74 on 3 df, suggest-
ing that a common homogeneous rain effect is plausible; see Section 10.8.3 for
a discussion of pseudolikelihood. Table 12.1 shows the pooled estimate and as-
sociated standard error adjusted for overdispersion. Note the improved precision
of the pooled estimate that results from estimating the rain effect from all of the
data.

Figure 12.5 shows plots of the estimated curves and pointwise 95% confidence
bands for the effects of residual temperature and wind speed on daily pollen
counts. The model that specifies equivalent smoothness for {fj } via σ 2

v1 = · · · =
σ 2
v4 yields a scaled (by φ̂) difference in deviance of 1.5 on three additional de-

grees of freedom, suggesting that this simplification is reasonable. This model
specifies the same amount of smoothness for the different functions, but the ran-
dom effects are independent from function to function and so there is no implied
similarity between the effects.

Figure 12.6 shows plots of the estimates and pointwise 95% confidence bands
for fj, j = 1, . . . , 4, from this model. The fit of the model specifying a common
rain effect and additivity between year and seasonal trends yields a deviance of
4451.5 on approximately 316.2 residual degrees of freedom, supporting the hy-
pothesis that seasonal trend of pollen counts does indeed vary across year.
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Figure 12.6 Fitted
curves for day in
season by year.
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Figure 12.7 Plots
of NOx against
compression ratio (C)
for low, moderate,
high, and very high
values of equivalence
ratio (E).
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12.4 Varying Coefficient Models

Until now, we have developed models for two-way interactions between two pre-
dictors only in the special case where at least one of the two variables is discrete –
including binary as a special case of discrete. Now we introduce a special class
of continuous-by-continuous interactions.

A motivating data set is shown in Figure 12.7, corresponding to data from

The data
corresponding
to Figure 12.7 is
part of the S-PLUS
computing package,
where it is referred to
as ethanol. an experiment in which ethanol was burned in a single-cylinder automobile test
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engine. Each panel corresponds to a scatterplot of the concentration of NOx (ni-
tric oxide and nitrogen dioxide in engine exhaust, normalized by the work done
by the engine) versus the compression ratio of the engine. However, the data are
stratified according to a third variable: the equivalence ratio at which the engine
was run – a measure of the richness of the air–ethanol mix. Notice that, for a
given equivalence ratio, there appears to be a linear relationship between mean
NOx concentration and compression ratio. However, the equivalence ratio mod-
ifies this relationship.

An appropriate model is one where the effect of one predictor, conditional
upon a fixed value of the second predictor, is modeled linearly. However, the in-
tercept and slope parameters in this model vary nonparametrically as a function
of the second predictor. Models of this type are called varying coefficient models
(Hastie and Tibshirani 1993).

Let x be a predictor variable that, for given values of a modifying predictor s,
has a linear relationship with the mean of the response variable y. If (xi, si, yi),

1 ≤ i ≤ n, are measurements on each, then a varying coefficient model for these
data is

yi = α(si)+ β(si)xi + εi. (12.15)

The model allows the intercept and slope coefficients to be arbitrary smooth func-
tions of s. The penalized linear spline version of this model is

yi = α0 + α1si +
K∑
k=1

uα
k (si − κk)+ +

(
β0 + β1si +

K∑
k=1

u
β

k (si − κk)+
)
xi + εi,

where κ1, . . . , κK are knots over the range of the si values. A mixed model repre-
sentation y = Xβ + Zu + ε is obtained by setting

X = [1 si xi si xi]1≤i≤n, Z =
[
(si − κk)+

1≤k≤K

xi(si − κk)+
1≤k≤K

]
1≤i≤n

,

u = [uα
1 , . . . , u

α
K, u

β

1 , . . . , u
β

K ]T, and Cov(u) = diag{σ 2
α 1K×1, σ

2
β 1K×1}.

Figure 12.8 shows the fitted varying coefficient model for the ethanol data.
Notice, for example, that the positive linear relationship peaks when the equiva-
lence ratio is about 0.85 but then declines to zero for higher values of the equiva-
lence ratio.

Local polynomial regression methods have been developed for varying coeffi-
cient models. However, we find penalized spline models to be at least as simple
and easier to implement than local regression; furthermore, penalized splines re-
tain all of the flexibility of local regression.

12.5 Continuous-by-Continuous Interactions

So far we have seen several special cases of two-way interactions. In Sections12.2
and 12.3 we studied interactions when one of the covariates was discrete. The
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Figure 12.8 Fit of
varying coefficient
model to ethanol data.
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varying coefficient models that were just discussed are used for interactions be-
tween two continuous covariates when the effect of one covariate can be modeled
parametrically. There are two approaches to the important case not yet discussed,
completely nonparametric continuous-by-continuous two-way interactions:

(1) tensor products of spline bases;
(2) bivariate radial basis functions.

In the tensor product approach, the interaction basis functions are products of
spline basis functions in one variable multiplied by spline basis functions in the
other variable; see Section 13.2. We have seen tensor products before: they were
used for discrete-by-continuous interactions. In that case, the basis functions of
the discrete variable (the indicator functions of its levels) were multiplied by the
spline basis functions of the continuous variable. Also, varying coefficient mod-
els are tensor product models. The basis function of the linear regression in x,

namely x itself, was multiplied by spline basis functions in s to obtain the inter-
action basis functions.

We have had good success with tensor product models of continuous-by-
continuous interactions in some examples – for instance, the biomonitoring ex-
ample in Section 1.4. In fact, the fit in Figure 1.8 uses tensor product splines.
The reason that this example worked well with tensor product interactions was
that the predictor variables (latitude and longitude) were distributed reasonably
evenly on a rectangular region with sides parallel to the coordinate axes. In other
examples, where the covariates are on more irregular regions (such as the scallops
data in the next chapter), tensor product interaction models have led to frustrating
experiences. For this reason, we focus on alternatives to tensor product models
of continuous-by-continuous interactions.

Radial basis models for two-way interactions will be discussed in Chapter 13.
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Bivariate Smoothing

13.1 Introduction

The previous chapter dealt with interactions between a continuous variable and a
categorical variable. Bivariate smoothing is essentially concerned with interac-
tions between two continuous variables. In its purest form, bivariate smoothing
is free of any structural assumptions on the way in which the two continuous
variables affect the mean response. Just as Chapters 3 and 5 dealt with flexible
smoothing of scatterplots, bivariate smoothing deals with flexible smoothing of
“point clouds”. Figure13.1shows such a point cloud. The response is a monotone
transformation, y ′ = log(y + 1), of the sizes (in number of scallops) of scallop
catches recorded in a 1990 survey cruise in the Atlantic continental shelf off LongThe scallop data

were obtained from
Lange et al. (1994),
corresponding to
the contribution
“Geostatistical
Estimates of Scallop
Abundance” by Ecker
and Heltshe (1994).

Island, New York. These are plotted against longitude and latitude. Interest cen-
ters on the mean response as a general bivariate function of longitude and latitude.

Figure 13.2 shows a bivariate smooth of these data as an image plot. It re-
veals certain regions suggestive of higher scallop abundance, which is of obvious
interest to the fishing industry. This surface estimate was obtained through an ex-
tension of the penalized spline approach to scatterplot smoothing. The details of
this extension are the focus of this chapter.

Bivariate smoothing is of central interest in a number of application areas such
as mining, hydrology, and public health. Indeed, the name geostatistics describes

Figure 13.1
Transformed scallop
catches plotted against
geographical location.

latitude
longitude

catch

238
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Figure 13.2 Bivariate
smooth corresponding
to scallop data
depicted in
Figure 13.1. Lighter
areas correspond to
higher catches.
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Figure 13.3
Incidence of AIDS
against yearly age
(age at diagnosis for
cases) and calendar
year.

age at diagnosis
year

AIDS

the process of converting geographically referenced responses, such as those de-
picted in Figure 13.1, to maps such as Figure 13.2. The main tool of geostatistics,
kriging, has close connections with penalized spline smoothing, as we will see
shortly.

A nongeographical bivariate smoothing example is depicted in Figure13.3. The
response is incidence of acquired immune deficiency syndrome (AIDS), specif-
ically the number of new diagnoses in a year among Italian men who have sex
with men. The predictors are yearly age (age at diagnosis for cases) and calen-
dar year. There is reason to believe that these two predictors interact (Marschner
and Bosch 1998). In pure technical terms, the problems of the scallop and Ital-
ian AIDS examples are identical: fit a surface through a point cloud. There is,
however, a subtle difference. In the scallop example, longitude and latitude have
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no particular interpretation and are just the conventional axes for geographically
referenced data. Any perpendicular axes will do. But this is not the case for
the AIDS data, where the two predictors are meaningful. As we will see in sub-The Italian AIDS data

were kindly provided
by Dr. Rino Bellocco
of Karolinska
Institutet, Sweden.

sequent sections, this difference between geographical and nongeographical bi-
variate smoothing has led to a divergence of approaches to the problem. When
viewed in terms of basis functions, however, the various approaches will be seen
to be quite similar to each other.

13.2 Choice of Bivariate Basis Functions

As seen in earlier chapters, penalized spline smoothing relies on a set of basis
functions that permit the handling of nonlinear structure. Bivariate smoothing re-
quires bivariate basis functions, but the extension from one dimension to two can
be done in at least two distinct ways. One is based on products while the other is
based on rotation.

Suppose that s and t are two continuous predictors of the response variable y

that possibly interact. The general bivariate smoothing model is

yi = f(si, ti)+ εi,

where f is a real-valued bivariate function. In linear regression it is common to
model interactions by adding the product term γs si ti to the linear additive model:

yi = β0 + βssi + βt ti + γs si ti + εi.

The natural extension for truncated lines is

yi = β0 + βssi +
Ks∑
k=1

us
k(si − κ s

k )+ + βt ti +
Kt∑
k=1

ut
k(ti − κ t

k)+

+ γsiti +
Ks∑
k=1

vs
k si(ti − κ t

k)+ +
Kt∑
k=1

vt
kti(si − κ s

k )+

+
Ks∑
k=1

Kt∑
k ′=1

vst
kk ′(si − κ s

k )+(ti − κ t
k)+ + εi. (13.1)

Model (13.1) is obtained from the basis functions

1, s, (s − κ s
1 )+, . . . , (s − κ s

Ks )+,

1, t, (t − κ t
1)+, . . . , (t − κ t

Kt )+
by forming all pairwise products. The resulting basis is often referred to as a ten-
sor product basis.

Figure 13.4 shows the basis functions corresponding to (13.1) with

κ s
1 = κ t

1 = 0.3 and κ s
2 = κ t

2 = 0.6.

A possible drawback of tensor product splines is their dependence on the ori-
entation of the coordinate axes. For example, if (13.1) were used to fit a surface
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Figure 13.4 Basis
functions for
model (13.1) with
κ s

1 = κ t
1 = 0.3 and

κ s
2 = κ t

2 = 0.6.
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Figure 13.5 Radial
basis functions
corresponding to
the knots used in
Figure 13.4.

to the scallop data of Figure 13.1 then the result would change if the geographical
locations were measured on axes with different orientations. Rotational invari-
ance can be achieved through the use of radial basis functions. These are basis
functions of the form

C(‖(s, t)− (κ s, κ t )‖)
for some univariate function C. Since the value of the function at (s, t) depends
only on the distance from the knot (κ s, κ t ), the function is radially symmetric
about this point. Figure 13.5 shows the radial basis functions corresponding to
the knots used in Figure 13.4. We use the same knots only as an illustration, not
because the knots appropriate for one basis are appropriate for the other. In this
case C(x) = exp(−x/0.1)(1 + x/0.1), which is a special case of an important
family of radial basis functions defined soon in equation (13.6).

In a nongeographical application like the Italian AIDS example, rotational in-
variance is not a big problem, but for geographical smoothing it is at least reassur-
ing to know that the answers are independent of axis orientation. Indeed, bivariate
smoothing based on radial basis functions arises from the traditional method used
in geographical circles, where bivariate smoothing is known as kriging. The fol-
lowing section reviews this approach.

13.3 Kriging

The term kriging is derived from the name of a South African mining engineer,
D. G. Krige, who conducted seminal research in spatial interpolation in the 1960s
(see e.g. Krige 1966) driven by the need to map ore grade from drill samples taken
at different geographical locations. Parallel research was conducted in the Paris
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School of Mines (e.g. Matheron 1965), and early work along these lines is at-
tributed by Webster (1998) to Kolmogorov (1941). The gist of their approach is
assuming that the spatial measurements are realizations of a stochastic process
with parsimonious covariance structure and then using best prediction theory
(Section 4.3) to construct a map over the region of interest. We will summarize
the basics of kriging here and then relate it to spline regression in the next section.

Let
(x1, y1), . . . , (xn, yn)

be a set of data where the responses yi ∈ R and where x i ∈ Rd are predictors.
The nonparametric regression model for these data is

yi = f(x i )+ εi,

where the εi are uncorrelated and with common varianceσ 2
ε . As we have discussed

in earlier chapters, splines provide a flexible means of modeling the smooth func-
tion f and can be used to interpolate over a given subregion of Rd.

The simple kriging model for the same data is

yi = µ+ S(x i )+ εi,

where {S(x) : x ∈ Rd} is a zero mean stationary stochastic process in Rd that is Stationarity of S

means that, for
all h ∈ R

d, the
joint probability
distribution of S(x)
and S(x + h) is the
same for all x ∈R

d.

independent of the εi. Interpolation at a general point x0 ∈Rd is obtained as

ŷ0 = ȳ + Ŝ(x0), (13.2)

where Ŝ(x0) is the best linear predictor of S(x0) based on the data in y. We can
use (13.2) to interpolate over any given subregion of Rd. Therefore, kriging pro-
vides a way of fitting a surface to the point cloud (x i, yi),1 ≤ i ≤ n. Recall from
Section 4.3 that the best linear predictor (BLP) of S(x0) is the one of the form

Ŝ(x0) = aTy + b

that minimizes
E[{Ŝ(x0)− S(x0)}2].

From (4.5) the solution is

Ŝ(x0) = cT
0(C + σ 2

ε I)−1(y − µ1),

where
C ≡ Cov{[S(x1), . . . , S(xn)]

T}
and

c 0 = [Cov{S(x0), S(x1)}, . . . ,Cov{S(x0), S(xn)}]T.

It is therefore apparent that the covariance structure of S is all that is needed for
obtaining the BLP. The usual approach is to postulate a parsimonious model for
Cov{S(x), S(x + h)} (which by stationarity depends only on h), estimate the pa-
rameters to obtain estimates Ĉ and ĉ 0, and then apply the kriging formula

ŷ0 = ȳ + ĉT
0(Ĉ + σ̂ 2

ε I)−1(y − ȳ1). (13.3)

A common assumption for simplification of Cov{S(x), S(x + h)} is the assump-
tion of isotropy:
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Table 13.1 Some
correlation functions
and corresponding
spectral densities.

Correlation Spectral
function density

Exponential e−|r| 1
π(1+x 2)

Gaussian e−r 2 1√
2π

e−x 2/2

Triangular (1 − |r|)+ 1−cos(x)

πx 2

Spherical
(
1 − 3

2 |r| + 1
2 |r|3

)
I[−1,1](r) not simple

Cov{S(x), S(x + h)} depends only on ‖h‖. (13.4)

This says that covariance between sites that are ‖h‖ units apart is the same, re-
gardless of direction and the sites’ location. This is a stronger assumption than
stationarity, which says that this covariance is independent of location but may
depend on direction. For example, if spatial data are stationary then all pairs of
points with one a mile due east of the other have the same covariance, but pairs
such that one is a mile due north of the other could have a different covariance.
If the data are isotropic then pairs a mile part east-to-west would have the same
covariance as pairs one mile apart north-to-south.

Condition (13.4) implies that

C =
[
C(‖x i − xj‖)

1≤i,j≤n

]
,

where
C(r) ≡ σ 2

S C0(r), σ 2
S ≡ Var{S(x)}.

Here C0(r) satisfies C0(0) = 1, and if one selects a class of models for C0(r)

then it should be chosen to ensure that C is positive definite. The functions C

and C0 are respectively called the covariance function and correlation function
of the isotropic process S.

Characterization of the class of functions that result in valid covariance matri-
ces is of interest when it comes to choosing C0 in practice. There is a particularly
simple solution to this problem known as Bochner’s theorem. Essentially it states
that

C0 is a valid correlation function if and only if it is the characteristic func-
tion of a symmetric random variable.

This means that C0 must be expressible as

C0(r) =
∫ ∞

−∞
eirxfX(x) dx,

where fX is the density of a continuous random variable X and fX(−x) = fX(x).

This density is sometimes called the spectral density of the process S (e.g. Stein
1999). Some examples are listed in Table 13.1 and graphed in Figure 13.6.
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Figure 13.6
Correlation functions
from Table 13.1.
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Figure 13.7
Exponential
correlation function
for three different
values of the range
parameter ρ.

We will now focus on the exponential correlation function

C0(r) = e−|r|

because of its particularly simple form. It may be extended in a number of ways.
The first is to add a scale parameter to allow for appropriate adjustment when the
scale of the xi change. This results in

C0(r) = e−|r/ρ| (13.5)

for some ρ > 0, which is known as the range parameter. Figure 13.7 illustrates
this covariance function for various values of ρ. Larger values of ρ correspond
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Table 13.2 Matérn
covariance functions
for ν = m + 1/2,
m = 0,1, 2, 3.

ν C0(r)

1/2 e−|r|

3/2 e−|r|(1+ |r|)
5/2 e−|r|(1+ |r| + 1

3 |r|2
)

7/2 e−|r|(1+ |r| + 2
5 |r|2 + 1

15 |r|3
)

Figure 13.8 Matérn
correlation function
for four different
values of the
smoothness
parameter ν.

to longer range correlations being present, while the opposite is the case for
smaller ρ.

However, the fact that C0(r) has a cusp at r = 0 means that the krige predic-
tor (as a linear combination of C(‖x i − x0‖), 1 ≤ i ≤ n) will have discontinuous
partial derivatives. Therefore, it is reasonable to ask for the option that C(r) be a
smoother function. Recent literature (e.g., Kent, 1998; Stein 1999) advocate the
use of the Matérn family, for which the covariance functions have the generalAn alternative

parameterization to
(13.6) (e.g. Handcock
and Wallis 1994) uses
2
√
ν/ρ in place of

1/ρ.

form

CM(r) ≡ σ 2
S

2ν−1H(ν)

(
r

ρ

)ν
Kν

(
r

ρ

)
, σ 2

S , ρ, ν > 0. (13.6)

Here Kν is the modified Bessel function of order ν (such functions do not have
a closed form for general ν). Bessel functions and modified Bessel functions are
so-called special functions in mathematics (Abramowitz and Stegun 1974). They
do not have closed-form expressions for general ν, but algorithms and software
exist (e.g., the Fortran 77 library SPECFUN and several functions in MATLAB).
However, if ν = m + 1

2 for m = 0, 1, 2, . . . then it does have a simple form; see
Table 13.2. The functions in this table are plotted in Figure 13.8. The Matérn cor-
relation function with parameter ν corresponds to the characteristic function of
the t-density with ν+ 1

2 degrees of freedom. Stein (1999) strongly advocates use
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of this family of covariance functions for kriging. Reasons include well-behaved
likelihood surfaces and a wide range of smoothness, controlled by 0 < ν < ∞.

The classical approach to selecting C0 and its parameters, as well as σ 2
S and

σ 2
ε , is through a variogram analysis. The semivariogram (half the so-called var-

iogram) of the spatial process {y(x) : x ∈Rd} is defined as

γ (h) = 1
2 Var{y(x + h)− y(x)}. (13.7)

For the isotropic process

y(x) = µ+ S(x)+ ε(x),

where Cov{S(x), S(x + h)} = C(‖h‖), the semivariogram depends only on the
interpoint distance r ≡ ‖h‖. In this case we can work with γI (r) ≡ γ (‖h‖),
which can be shown to be

γI (r) = σ 2
ε + C(0)− C(r), r > 0. (13.8)

Note that from (13.7) we have γI (0) = 0, but from (13.8) and the continuity of C
(which we assume),

lim
r↓0

γI (r) = σ 2
ε ,

which in geostatistics is called the nugget. Estimators of γ (e.g. Cressie 1993) are
then used to choose σ 2

ε as well as the covariance function C and its parameters.
An alternative to variogram analysis that has received an increasing amount of

attention in recent years is likelihood-based estimation of the covariance param-
eters (Mardia and Marshall 1984; O’Connell and Wolfinger 1997; Stein 1999).
Stein (1999), in particular, argues against the use of empirical semivariograms
on the grounds that they are too untrustworthy. He recommends Matérn family
kriging with σ 2

S , σ
2
ε , ρ, and ν all chosen via (restricted) maximum likelihood.

This is a tall order, not only because of the number of parameters that need to be
estimated simultaneously but also because ρ and ν enter in a nonlinear fashion.
The benefits of likelihood-based estimation of these two parameters is question-
able (see e.g. Nychka 2000, sec. 13.3.4), and there are significant computational
advantages to having them chosen in a simpler fashion.

13.3.1 The Kriging Algorithm

When all of the pieces of this section are assembled, the following kriging algo-
rithm results:

(1) Specify the covariance function C and σ 2
ε via either variogram analysis or

likelihood-based estimation.
(2) Construct the estimated covariance matrix

Ĉ =
[
C(‖x i − xj‖)

1≤i,j≤n

]
.

(3) Set up a mesh of x0 values in the subregion of Rd of interest.
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Figure 13.9 An
example scatterplot
for n = 9.
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(4) For each x0 in the mesh:
(a) compute c 0 = [C(‖x0 − x i‖)]1≤i≤n;
(b) compute

ŷ(x0) = ȳ + cT
0(Ĉ + σ̂ 2

ε I)−1(y − ȳ1).

(5) Plot the ŷ(x0) values against x0 to obtain the map.

Finally, we note that this algorithm assumes isotropy of S. There has been a
great deal of work on anisotropic kriging (e.g. Cressie 1993), where the assump-
tion of isotropy is relaxed.

13.4 General Radial Smoothing

Kriging provides one means of radial smoothing, but not the only one. In this sec-
tion we show that it is a subset of a family of radial smoothers that also includes
smoothing splines. We call the family general radial smoothers. We will begin
by showing how they differ from the penalized spline smoothers used throughout
the earlier chapters. First we will work in one dimension. Because of the radial
nature of the smoothing, the higher-dimensional extension is trivial.

Consider the problem of smoothing the scatterplot shown in Figure 13.9. Fig-
ure 13.10 shows the truncated line basis for this problem. Note, however, that
the knots are at the data x1, . . . , xn with n = 9. We will stick with full knots for
now so that the connections between kriging and splines will be more apparent.
One sidelight concerning the full knot sequence depicted in Figure 13.10 is that
the leftmost and rightmost knots are redundant, and the latter leads to a zero col-
umn in the design matrix. However, this is not a problem for penalized splines
because the ridge regression for the fit is still defined when the smoothing para-
meter is positive.
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Figure 13.10 The
truncated line basis,
with knots at each of
the nine observations.
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Define
X = [1 xi]1≤i≤n and Z =

[
(xi − xj )+

1≤i,j≤n

]
. (13.9)

We showed in Chapter 3 that smoothing of the scatterplot can be achieved by set-
ting

ŷ = Xβ̂ + Zû,

where [
β̂

û

]
= argmin

β,u

(
‖y − Xβ − Zu‖2 + λ2

[
β

u

]T

D
[

β

u

])
and where D = diag(0, 0,1, . . . ,1). Recall from Section 4.9 that β̂ and û corre-
spond to the EBLUP in the mixed model

y = Xβ + Zu + ε, Cov

[
u
ε

]
=
[
σ 2
u I 0
0 σ 2

ε I

]
, λ2 = σ̂ 2

ε

σ̂ 2
u

.

Now consider the transformation of the truncated line basis shown in Fig-
ure 13.11. These are obtained by taking linear combinations of the columns of X
and Z in such a way that X remains unchanged and Z becomes the radially sym-
metric matrix

ZR =
[
|xi − xj |

1≤i,j≤n

]
.

The transformation can be expressed in terms of an (n+ 2)× (n+ 2) = 11×
11 matrix L for which

[X ZR] = [X Z]L.

The vector of fitted values for this new basis is

ŷ = Xβ̂R + ZRûR,

where β̂R and ûR are given by
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Figure 13.11 A linear
transformation of the
basis functions of
Figure 13.10.
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[
β̂R

ûR

]
= argmin

β,u

(
‖y − Xβ − ZRu‖2 + λ2

[
β

u

]T

LT DL
[

β

u

])
.

While ZR exhibits radial symmetry, the same is not true for the penalty

λ2

[
β

u

]T

LT DL
[

β

u

]
. (13.10)

Also, penalty (13.10) does not have a simple multivariate extension. An alterna-
tive penalty that does is simply λuTZRu. This leads to the criterion[

β̂

û

]
= argmin

β,u
(‖y − Xβ − ZRu‖2 + λuTZRu). (13.11)

On face value the penalty λuTZRu might seem somewhat arbitrary and with no
justification other than its radial symmetry. However, it can be shown that such
a choice corresponds to the thin plate spline family of smoothers (see e.g. GreenCubic smoothing

splines, mentioned
in Chapter 3, are
members of the family
of thin plate splines.

and Silverman 1994) and, in the nonparametric regression model

yi = f(xi)+ εi,

corresponds to minimization of

n∑
i=1

{yi − f(xi)}2 + λ

∫ ∞

−∞
{f ′(x)}2 dx. (13.12)

The penalty in (13.12) is the integral of a squared derivative – in this case the
first derivative, which is appropriate for a linear spline. Cubic smoothing splines
correspond to penalization of the second derivative. However, it is possible to pe-
nalize the mth derivative for any m such that 2m > d, where d is the dimension
of x; that is, d = 1 here and d = 2 for bivariate smoothing, which we consider
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next (Green and Silverman 1994; Nychka 2000). Note that m = 1 is possible only
for 1-dimensional smoothing.

Can estimator (13.11) be derived from a mixed model? It would appear that
the solution to (13.11) corresponds to the EBLUP in the “mixed model”

y = Xβ + ZRu + ε, Cov

[
u
ε

]
=
[
σ 2
u Z−1

R 0
0 σ 2

ε I

]
.

However, this is not a valid mixed model since it implies that

Cov(ZRu) = ZR

even though ZR is not a proper covariance matrix – it is not necessarily positive
definite. There are at least three possible ways out, as shown in each of the fol-
lowing three subsections.

13.4.1 Generalized Covariance Functions

The first way to rectify the lack of positive definiteness of ZR is to replace it by

ZP =
[
−|xi − xj | + |xi | + |xj |

1≤i,j≤n

]
.

This matrix is positive semidefinite and usually positive definite, as will be as-
sumed, so

y = XβR + ZP uR + ε, Cov

[
u
ε

]
=
[
σ 2
u Z−1

P 0
0 σ 2

ε I

]
is a valid mixed model. Moreover, as shown in Section 13.9, β̂ and û in (13.11)
are unaffected by replacement of ZR by ZP (French, Kammann, and Wand 2001).
The same is true for the fitted values. The function

C(r) = −|r|
is sometimes referred to as a generalized covariance function, since it is possible
to add increments which make it a valid covariance function but which cancel in
the BLUP computations and have no effect on the final answer (Kitanidis 1997).

13.4.2 Positive Definitization

For a general square matrix M, there exists a square root M1/2. The matrices The square root
of a matrix can be
defined by its singular
value decomposition;
Section A.2.11 of the
Appendix gives the
details. Note that this
definition differs from
that of the symmetric
matrix square root of
the MATLAB language.

M1/2(M1/2)T and (M1/2)T M1/2

are both positive semidefinite, and positive definite if M is nonsingular.
We can also obtain a valid mixed model by using the positive definitization

of ZR, ([
|xi − xj |

1≤i,j≤n

]1/2)T[|xi − xj |
1≤i,j≤n

]1/2
.

The radial properties are maintained, and the hope is that it makes little practical
difference to the smooth.
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Figure 13.12
Basis functions
corresponding
to ZE ≡
[e−|xi−xj |/ρ ]1≤i,j≤n.
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13.4.3 Proper Covariance Matrices

The final way out is to simply use proper covariance functions such as

e−|xi−xj |/ρ

since, as we discussed in Section 13.3,

ZE ≡
[
e−|xi−xj |/ρ

1≤i,j≤n

]
is a proper covariance matrix (see Figure 13.12). But this, essentially, just gets us
back to kriging. When viewed this way kriging and smoothing splines are seen
to be quite closely related. For fitting at the data, they are both just penalized re-
gressions with radial basis functions. Some subtle differences exist for fitting at
other values of x0 ∈ R. An advantage of kriging is that the mixed model repre-
sentation is immediate because the Z matrix is positive definite. As we pointed
out at the end of Section 13.3, a disadvantage is that the range parameter ρ, and
perhaps a smoothness parameter, needs to be chosen.

13.4.4 Low-Rank Radial Smoothers

Each of the radial smoothers described in the preceding subsections are BLUPs
for mixed models of the form

y = Xβ + ZCu + ε,

where X is defined by (13.9),

Cov(u) = σ 2
u (Z−1/2

C )(Z−1/2
C )T, (13.13)

and
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ZC ≡
[
C(|xi − xj |)

1≤i,j≤n

]
for some real-valued function C possibly containing parameters. The fitted func-
tions involve linear combinations of

C(|x − xj |), 1 ≤ j ≤ n,

for x ∈R.

Such a smoother is full-rank as defined in Section 3.12. As we have argued a
number of times in the preceding chapters, there are considerable computational
payoffs from using low-rank approximations. We now describe a low-rank ex-
tension for radial smoothers.

Let κ1, . . . , κK be a set of knot locations. Then an approximation based on the
smaller set of basis functions

C(|x − κk|), 1 ≤ k ≤ K,

arises from fitting the mixed model

y = Xβ + ZKu + ε, Cov(u) = σ 2
u (�

−1/2
K )(�

−1/2
K )T,

where X is given by (13.9),

ZK ≡
[
C(|xi − κk|)

1≤k≤K

]
1≤i≤n

, and �K ≡
[
C(|κk − κk ′ |)

1≤k,k ′≤K

]
;

we observe that u is now a K × 1 random vector. Using the transformation Z =
ZK�

−1/2
K , the final model can be written as

y = Xβ + Zu + ε, Cov

[
u
ε

]
=
[
σ 2
u I 0
0 σ 2

ε I

]
. (13.14)

This form allows fitting through standard mixed model software.
How do each of these alternatives compare to the ordinary penalized spline

smoother? In lieu of a thorough simulation study, Figure 13.13 shows the results
of applying some of the kriging-type smoothers to the LIDAR data. In each case
12 degrees of freedom are used and the range parameter is chosen so that the basis
functions cover approximately the range of the data. The fits are virtually iden-
tical and, when overlaid, are indistinguishable from one another (there are some
slight differences near the boundaries).

Radial smoothers in one dimension have little to add compared with ordinary
penalized splines. Their strength is their simple extendibility to multivariate pre-
dictors, as we will now show.

13.4.5 Higher-Dimensional Radial Smoothers

So far, we have only discussed radial smoothers in one dimension. Our real in-
terest in them is for higher-dimensional smoothing, a topic we can now take up.

Because of its radial form, dependence on the data is entirely through the
point-to-point distances
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Figure 13.13
Comparison of four
radial smooths of the
LIDAR data with a
linear and quadratic
penalized spline
smooth; 12 degrees of
freedom are used in
each case.

|xi − κk|, 1 ≤ i ≤ n, 1 ≤ k ≤ K. (13.15)

Therefore, extension to x i ∈Rd essentially involves replacing (13.15) with

‖x i − κk‖, 1 ≤ i ≤ n, 1 ≤ k ≤ K.

For x i ∈ Rd (1 ≤ i ≤ n) and κk ∈ Rd (1 ≤ k ≤ K), approximate thin plate
splines of higher dimension can be obtained by using the design matrices X =
[1 xT

i ]1≤i≤n and

Z =
[
C(‖x i − κk‖)

1≤k≤K

]
1≤i≤n

[
C(‖κk − κk ′‖)

1≤k,k ′≤K

]−1/2
,

where

C(r) =
{ ‖r‖2m−d for d odd,

‖r‖2m−d log‖r‖ for d even,

and m is an integer satisfying 2m − d > 0 that controls the smoothness of C(·)
(see discussion following (13.12)). Note the addition of the log‖r‖ factor for even
dimensions. In the full knot case, this arises from the multivariate extension of
squared derivative penalties such as that given in (13.12).

Alternatively, one could use radial basis functions corresponding to the proper
covariance functions described in Section 13.3. For example, the two simplest
members of the Matérn class (for any d ≥ 1) are

C(r) =
{

exp(−‖r‖/ρ), ν = 1
2 ,

exp(−‖r‖/ρ)(1+ ‖r‖/ρ), ν = 3
2 .
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Figure 13.14 Knot
selection based on
rectangular lattices
(panels (a) and (c))
and space filling
algorithms ((b) and
(d)) for the scallop and
Italian AIDS data; o =
data and x = knot.
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13.4.6 Choice of Knots

In the full-rank case the knots correspond to the predictors, but in the low-rank
case a set of K < n knots in Rd needs to be chosen. One approach is to put down
a rectangular lattice of knots as in panels (a) and (c) of Figure 13.14. However,
this has the tendency to waste a lot of knots. For example, for the scallop data
only about 40% of the knots are needed. A reasonable alternative strategy is to
have the knots “mimic” the distribution of the predictor space. In one dimension,
a simple solution is

κk = (k/K)th sample quantile of the unique xi.

However, the notion of quantile does not have a straightforward extension be-
yond d = 1 dimension. A pointer on how to reasonably handle d > 1 arises from
the fact that, for d = 1, sample quantiles correspond to maximal separation of K
points among the unique xi. In higher dimensions, space filling designs (Nychka
and Saltzman 1998) are based on a maximal separation principle. Panels (b) and
(d) of Figure 13.14 show the results of applying such an algorithm to the scal-
lop and Italian AIDS data. We see that there is no wastage of knots, which will
likely lead to better approximation in sparse regions of the prediction space. On
the other hand, space filling knot selection is harder to implement. The FUNFITS
module (Nychka et al. 1998) provides some software for this, although it can be

At the time of
writing, the FUNFITS
module is available
at the Internet site
〈www.cgd.ucar.
edu/stats/

Funfits/index.

shtml〉.
slow for large n and K. A remedy for this problem is to apply the space filling
algorithm to a random sample of the xi.
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Figure 13.15
Bivariate smooths
of the scallop data
with (a) 5 degrees
of freedom,
(b) 10 degrees
of freedom,
(c) 20 degrees
of freedom, and
(d) 40 degrees of
freedom. Lighter
areas correspond to
higher catches.

(a)

degrees longitude

de
gr

ee
s 

la
tit

ud
e

-73.5 -73.0 -72.5 -72.0 -71.538
.5

39
.5

40
.5

(b)

degrees longitude

de
gr

ee
s 

la
tit

ud
e

-73.5 -73.0 -72.5 -72.0 -71.538
.5

39
.5

40
.5

(c)

degrees longitude

de
gr

ee
s 

la
tit

ud
e

-73.5 -73.0 -72.5 -72.0 -71.538
.5

39
.5

40
.5

(d)

degrees longitude

de
gr

ee
s 

la
tit

ud
e

-73.5 -73.0 -72.5 -72.0 -71.538
.5

39
.5

40
.5

2 4 6

mean log(total catch+1)

13.4.7 Degrees of Freedom

Although the notion of degrees of freedom is usually confined to univariate
smoothers, the principle extends naturally to most higher-dimensional smoothers,
including those described in the current section. Since the fitted values can be
written in the form

ŷ = Xβ̂ + Zû,

there is an n× n matrix S for which

ŷ = Sy
and we can define

dffit = tr(S).

A planar fit uses 3 degrees of freedom, whereas an unpenalized fit based on K

radial basis functions uses K + 3 degrees of freedom. All dffit values in between
are possible via appropriate tweaking of the smoothing parameter λ or the vari-
ance ratio σ 2

ε/σ
2
u. Figure 13.15 shows bivariate smooths of the scallop data with

four different degrees-of-freedom values.

13.5 Default Automatic Bivariate Smoother

Based on considerations summarized in the previous three sections, we have ar-
rived at a “default” automatic bivariate smoother with which we are reasonably
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happy. It is a low-rank thin plate spline with REML smoothing parameter choice
and space filling knot selection. The attractions are

• quite fast for even large sample sizes,
• stable even when the design has lots of sparse regions, and
• implementable using mixed model software once the knots

have been selected.

The most difficult aspect is space filling selection of the knots, but publicly avail-
able software is available for this (Nychka et al. 1998).

The full prescription of this automatic bivariate smoother for inputs x1, . . . , xn∈
R2 and y1, . . . , yn∈R is as follows.

(1) Choose the number of knots to be

K = max{20,min(n/4,150)}.
(2) If n > 1500 then take a random sample of the x i of size 1500. Do not do

this if n ≤ 1500. Apply the space filling algorithm to the sample to obtain
knots κ1, . . . , κK ∈R2.

(3) Form the matrices X = [1 xT
i ]1≤i≤n,

ZK =
[
‖x i − κk‖2 log‖x i − κk‖

1≤k≤K

]
1≤i≤n

,

and
� =

[
‖κk − κk ′‖2 log‖κk − κk ′‖

1≤k,k ′≤K

]
.

(4) Find the singular value decomposition of �,

� = U diag(d)VT,

and use this to obtain the matrix square root of �:

�1/2 = U diag
(√

d
)
VT.

(5) Compute
Z = ZK�−1/2.

(6) Use mixed model software to fit the mixed model

y = Xβ + Zu + ε,

[
u
ε

]
∼ N

([
0
0

]
,

[
σ 2
u I 0
0 σ 2

ε I

])
,

with σ 2
u and σ 2

ε chosen via REML. Let β and u be the resulting EBLUPs
of β and u.

(7) Set up a mesh of x0 values in the subregion of R2 of interest.
(8) For each x0 in the mesh,

(a) form X0 = [1 xT
0 ] and

Z0 = [‖x0 − κk‖2 log‖x0 − κk‖]1≤k≤K(�1/2)−1;
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(b) compute
ŷ(x0) = X0β̂ + Z0û.

(9) Plot the ŷ(x0) values against x0.

Note that using REML implies that normality of the response can be reason-
ably assumed. If this is not reasonable (owing to e.g. outliers or heavy skewness)
then the algorithm described here may need modification, or perhaps the response
should be transformed.

13.6 Geoadditive Models

A basic geostatistical study concerns mapping the mean of a response of interest,
y, based on data

(yi, longitudei, latitudei ), 1 ≤ i ≤ n.

However, in many such studies data on other variables are likely to impact yi

and could have a confounding effect. For example, if yi measures occurrence
of Alzheimer’s disease in a particular city then suburbs with more retirees are
likely to have higher prevalence, regardless of environmental exposures. Age
will thus have a confounding effect, so a proper assessment of environmental ef-
fects on Alzheimer’s disease will require controlling for age. In the Upper Cape
Cod reproductive study described in Kammann and Wand (2003), possible con-
founders are smoking level and maternal age. Yet some of these have nonlinear
relationships with birthweight. Under the additivity assumption we can handle
such covariate effects by combining the ideas of additive models and kriging. We
call the result a geoadditive model.

For clarity, consider the situation where (si, ti), 1 ≤ i ≤ n, represent contin-
uous confounders and x i ∈R2. A geoadditive model for such data is

yi = f(si)+ g(ti)+ h(x i )+ εi, si, ti ∈R, x i ∈R
2. (13.16)

This can be written as a mixed model

y = Xβ + Zu + ε,

where
X = [1 si ti xT

i ]1≤i≤n

and Z is obtained by concatenating matrices containing spline basis functions
to handle f, g, and h, respectively. For f and g, either linear spline or radial
basis functions could be used. For h we prefer radial basis functions with de-
fault choices as given in Section 13.5. Through appropriate linear transformation
of the basis functions (see e.g. steps (4) and (5) of Section 13.5) it is possible to
achieve the canonical covariance structure for u,

Cov(u) =
 σ 2

f I 0 0

0 σ 2
g I 0

0 0 σ 2
h I

 ,
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and fit the model simultaneously with mixed model software. Kammann and
Wand (2003) give a fuller description of geoadditive models and illustrate their
use on the Upper Cape Cod reproductive data.

13.7 Additive Plus Interaction Models

Several types of interactions were discussed in Chapter 12, but continuous-by-
continuous interactions were postponed until this chapter. We now have machin-
ery sufficient to handle this type of interaction. In fact, model (13.16) is a special
case of a model with additive terms and continuous-by-continuous interactions.
More complex additive models with interaction terms are easy to construct, thanks
again to the modularity of spline modeling.

Suppose that we have the four predictors s, t, u, v, that s enters additively, that
t and u possibly interact, and that t and v also possibly interact. Then our model is

yi = f(si)+ g(ti, ui)+ h(ti, vi)+ εi, si, ti, ui, vi ∈R. (13.17)

To implement this model, we would take a univariate spline basis in s and bi-
variate radial bases in both (t, u) and (t, v). To view this model as a mixed linear
model, the polynomial terms in each basis – plus a column of ones for the inter-
cept – would be put together to form the matrix X. The polynomial terms would
be the linear terms t, u, and v and, if we model f as apth-degree spline, s, . . . , sp.
The other terms, truncated power function in s and radial basis function in (t, u)

and (t, v), would form Z.

13.8 Generalized Bivariate Smoothing

Given the earlier sections and Chapter 10, extension of bivariate smoothing and
geoadditive models to the generalized response situation is relatively straightfor-
ward. For example, if the response y is binary then the analogue of (13.16) is

logit{P(yi = 1)} = f(si)+ g(ti)+ h(x i ); (13.18)

this can be fit through a mixed model of the form

logit{P(yi = 1|u)} = (Xβ + Zu)i,

where u is a random effects vector with covariance structure exemplified by that
given in (13.13). In the case where all covariate effects are linear, (13.18) essen-
tially corresponds to the model proposed by Diggle et al. (1998).

Such models are a special case of generalized linear mixed models described
in Section 10.8 and can be fit using algorithms there. The formulation and imple-
mentation of Bayesian approaches to such models is described in Chapter 16.

13.9 Appendix: Equivalence of BLUP using ZR and ZP

The equivalence of the BLUP based on ZP or ZR can be established through ex-
amination of the criterion for BLUP given, for example, in McCulloch and Searle
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(2001). For each1 ≤ i ≤ n,we seek � for which �Ty is unbiased for (Xβ+ZP u)i .
This is equivalent to

XT� = XTei,

where ei is the n×1 vector with 1 in the ith position and 0s elsewhere. For X as
given in (13.9), the unbiasedness condition becomes

�T1 = 1 and �Tx = xi,

where x = [x1, . . . , xn]T.

Let m0 and m1 be Lagrange multipliers that impose the unbiasedness condi-
tions. For � to minimize the variance of the prediction error �Ty− (Xβ +ZP u)i,
we need to minimize

Var{�Ty − (Xβ + ZP u)i} +m0(�
T1 − 1)+m1(�

Tx − xi)

= �T(σ 2
u ZP + σ 2

ε I)� − 2σ 2
u �TZP ei + σ 2

u (ZP )ii

+m0(�
T1 − 1)+m1(�

Tx − xi)

= �T(σ 2
u ZR + σ 2

ε I)� − 2σ 2
u �TZRei + σ 2

u (ZR)ii

+m0(�
T1 − 1)+m1(�

Tx − xi)+ 2σ 2
u (�

T1 − 1)(�T|x| − |xi |).
It is clear from this that the first unbiasedness constraint will cause the last term
to vanish and that minimization over � is unaffected by replacement of ZP by ZR.

Therefore, for fixed λ = σ 2
ε/σ

2
u, only ZR matters.

Note that similar arguments have appeared in the literature to demonstrate
equivalences between smoothing splines and kriging (e.g., Kimeldorf and Wahba
1971; Duchon 1976; Cressie 1990).

13.10 Bibliographical Notes

Reviews of multivariate thin plate splines may be found in Green and Silverman
(1994) and Gu (2000). Kriging is summarized in several books, including Cressie
(1993), Kitanidis (1997), and Stein (1999). Nychka (2000) describes connections
between kriging and splines.
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Variance Function Estimation

14.1 Introduction

In Chapters 1–6 we concentrated on the estimation of regression functions for the
the mean of the response y as a function of a predictor x. In the simplest case,
the regression function was modeled semiparametrically using linear regression
splines, so that

f(x) = E(y|x) = β0 + β1x +
K∑
k=1

uk(x − κk)+.

The function was fit using the linear mixed model (see Section 4.9) under the as-
sumption that

g(x) = Var(y|x) = σ 2
ε . (14.1)

In many examples, the assumption (14.1) of constant conditional variance is
unrealistic. For example, consider the LIDAR data in Figure 14.1. It is clear from
this figure that the variability in the logratio is much smaller when range =
400 than it is when range = 700. This situation of the variability changing as the
predictor changes is known as heteroscedasticity; constant conditional variance

Figure 14.1 LIDAR
data with scatterplot
smooth. Note
how the variability
in the response
(logratio) increases
as the predictor
(range) increases.
This is known as
heteroscedasticity.
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is known as homoscedasticity. A comprehensive review of heteroscedasticity is
given in Carroll and Ruppert (1988). Details of fitting models for variances in
the general parametric case, including nonlinear least squares, were discussed in
Section 10.7.

The purpose of this chapter is to give a brief introduction to the problem of
heteroscedasticity in smoothing problems and to indicate how one can both under-
stand and adjust for such nonconstant variance. We make no pretense that this isIt is possible

to understand
and adjust for
nonconstant variances
in smoothing and
semiparametric
problems.

the last word on the subject, and it indeed remains a field of active research; see
for example Opsomer et al. (1999).

In the linear mixed model, not accounting for heteroscedasticity does not nec-
essarily invalidate the estimate of the regression function. The estimator that
assumes homoscedasticity is unbiased and often is reasonably efficient under
heteroscedasticity. This is a well-known robustness property of generalized least
squares (Section 4.5). There are, however, three main reasons for trying to under-
stand how the variability changes with the predictor.

1. The regression function is estimated most efficiently when nonconstant vari-A major purpose of
understanding and
adjusting nonconstant
variation is validity
of inference. In
addition, the
efficiency of inference
is enhanced – for
example, smaller
standard error bars.

ance is accounted for. This is generally the least important reason, because the
robustness property of generalized least squares suggests that one will not do too
badly in terms of estimation. However, in examples where the response standard
deviation (conditional on the predictors) varies over several orders of magnitude,
not accounting for heteroscedasticity can be disastrous.

2. Ignoring heteroscedasticity may lead to incorrect inferences. This is prob-
ably the most important reason for thinking about heteroscedasticity.

(a) For example, the structure of the data in Figure 14.1 makes it clear that, if
we were to try to draw a confidence interval for the true regression func-
tion, we should be much less certain about what will happen for large
values of range (= x) than for small values.

(b) Carroll and Ruppert (1988) point out that calibration inference (predicting
an x from a y) is adversely affected by ignoring heteroscedasticity.

(c) In semiparametric models with a parametric component (as in Chapter 7),
inference about the regression parameter is not valid unless heteroscedas-
ticity is accounted for. In our experience, this can often mean the differ-
ence between a statistically significant and a statistically nonsignificant
outcome.

3. In some cases, understanding how variability changes with the predictor
may be of intrinsic interest. We have encountered instances in biology where the
effect of a treatment is to cause an increase in variance rather than an increase in
mean. In financial engineering, the variances of returns on assets are of funda-
mental importance. For example, the famous Black–Scholes formula gives the
price of a call option, which gives its owner the right (but not the obligation) to
purchase a stock at a specified price and future date. The price of the option de-
pends on the variance of the stock returns but not on the expected value.

There are three general approaches to handling the problem of heteroscedasticity.
First, one can change the model. For example, with positive data such as measured
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amounts or counts, one would expect nonconstant variance. The Poisson model
for count data states that the variance equals the mean, while the Gamma model

Generalized linear
models (GLMs) can
impose a particular
form to the variances.
For example, in
the Gamma GLM,
the variance is
proportional to the
square of the mean.

states that the variance is proportional to the square of the mean. In such circum-
stances, the data may be modeled most naturally as a generalized linear mixed
model (Chapter 10). However, there are many problems where natural general-
ized linear mixed models do not capture the variability adequately. For example,
in radioimmunoassays and ELISA assays, the variability is generally somewhere
in between that suggested by Poisson variation and Gamma variation.

A second approach is to transform the response data to make the variation Response
transformation
is often a simple
way of removing
nonconstant variation.

more constant. As described in Section 2.9, we tried various transformations of
the LIDAR response logratio and were unable to find one that stabilized the
variance.

The third and final approach is to model the variance as a function of the pre-
dictor. We take up this approach in the following section. As discussed in Carroll
and Ruppert (1988), transformations are appropriate only when the conditional
variance of the response is a function of the response’s conditional expectation.
The same is true of GLMs. If the conditional variance is a function of a predic-
tor variable rather than a function of the conditional expectation, then modeling
the conditional variance is necessary. An example is the LIDAR data, for which
the conditional variance of logratio is a function of range but not a function
of E(logratio|range).

14.2 Formulation

The idea of variance function estimation is to allow the variance to be a function
of the predictors. In other words, this means treating the variance as if it were a
regression function.

There are many ways to implement variance function estimation. In this sec-
tion, we illustrate one approach that is appropriate for the LIDAR data, where
there is no natural generalized linear mixed model and there is no natural data
transformation for logratio. The idea is to model the logarithm of the variance
function as a linear mixed model. Thus, we extend (14.1) to

g(x) = exp

(
γ0 + γ1x +

K∑
k=1

vk(x − κk)+
)
, (14.2)

where we use the exponential function to ensure that the variance function g(x) This section discusses
problems for which
the variance is not
modeled as a known
function of the mean;
instead, it is modeled
separately.

is positive. Models such as (14.2) are often called logspline models, since the
logarithm of the right-hand side of (14.2) is a spline.

As in the rest of the book, the terms involving the nonlinear part of (14.2) must
be penalized to ensure stable estimation. The simplest approach is to do exactly
what we have done before – namely, penalize by assuming that these nonlinear
coefficients are random effects, so that

vk i.i.d. N(0, σ 2
v ).

We can thus write the entire model as a double mixed model,



264 Variance Function Estimation

y|u, v ∼ N[Xβ + Zu, diag{exp(Xγ + Zv)}], (14.3)

with the random effects being doubled as well:[
u
v

]
∼ N

([
0
0

]
,

[
σ 2
u I 0
0 σ 2

v I

])
.

Model (14.3) can in principle be fit by maximum likelihood, but computational
implementation appears to be challenging and no less difficult than fitting a gen-
eralized linear mixed model (Chapter 10). The reason for this is as follows. If the
vector f of mean function values were known then the squared errors (y − f )2

would follow a generalized linear mixed model of Gamma type, so that

(y − f )2|v ∼ Gamma
{

1
2 , 2 exp(Xγ + Zv)

}
, (14.4)

where the notation
z ∼ Gamma(r, s)

means that each zi has density

f(z) = 1

s
ri
i H(ri)

zri−1e−z/si .

As an alternative, the following iterative algorithm is easier to implement.

(1) Fit a standard linear mixed model to y and x, and call the fitted function f̂ .
(2) Form the squared residuals r̂2 = (y − f̂ )2.

(3) Fit to the squared residuals the generalized linear mixed model Gamma
{

1
2 ,

2 exp(Xγ + Zv)
}
. Call the fitted function exp(ĝ).

(4) Fit a heteroscedastic mixed model: pretending that the vector of estimated
variance function values, ĝ, is the actual variance function, fit the model

y|u ∼ N[Xβ + Zu, diag{exp(ĝ)}]. (14.5)

This is achieved by using the algorithms given in Section 4.4 and follow-
ing sections, where the error matrix R = diag{exp(ĝ)}. Special software
is not required for this step. Let f̂ be the resulting regression function.
(a) To implement this step with standard software, let R−1/2 be the diago-

nal matrix whose elements are diag{exp(−ĝ/2)}. Then run standard
mixed model software but with “response” y∗ = R−1/2 y and with de-
sign matrices X∗ = R−1/2 X and Z∗ = R−1/2Z.

(b) Call the resulting fitted “function” f∗. The estimate of f is f̂ = R1/2 f∗.
(5) Return to step (2) and iterate.

14.3 Application to the LIDAR Data

Figure 14.2 gives the fit and variability bar for the LIDAR data when constant
variance is assumed; Figure 14.3 gives the same plot but after modeling the vari-
ances. Note how the former overestimates the variability when range is near 400
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Figure 14.2 Fit and
variability bar for the
LIDAR data when the
variances are assumed
to be constant.
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Figure 14.3 Fit and
variability bar for the
LIDAR data when the
variances are assumed
to be heteroscedastic
(variability bar based
on variance function
estimate).
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while it underestimates the variability when range is near 700. This difficulty
with inference is characteristic of regression problems when heteroscedasticity is
ignored.

The most common way to assess whether a fitted variance function is adequate
is to plot the normalized absolute values of the residuals, |y − f̂ |/√ĝ, against the
predictor x and then smooth the resulting fit to see if there is any unexplained vari-
ability (see Section 2.9). This plot is given in Figures 14.4 and 14.5. Figure 14.4
shows an obvious trend, thus indicating that the assumption of a constant condi-
tional variance is not supported by the data. On the other hand, Figure 14.5 shows
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Figure 14.4 Smooth
of the standardized
absolute residuals
in the LIDAR data,
where standardization
assumes
homoscedasticity.
The obvious trend
indicates that the
constant fitted
variance function
does not explain the
variability in the
problem.
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Figure 14.5 Smooth
of the standardized
absolute residuals
in the LIDAR data,
where standardization
assumes
heteroscedasticity
that is modeled
nonparametrically.
The lack of a major
trend indicates that
the fitted variance
function adequately
explains the variability
in the problem.
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no obvious trend, thus indicating that the double mixed model has explained both
the mean and the variance functions adequately.

14.4 Quasilikelihood and Variance Functions

In Section 14.2 we allowed the variances to take an unspecified form. In many
problems, such as for overdispersion models and generalized linear models, the
variance is linked to the mean via a known function and an unknown parameter.

It is relatively easy
to do smoothing
when variation is not
constant but is related
to the mean via a
known functional
form. That is, when the mean is f(x), the variance is
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g(x) ≡ Var(y|x) = V {f(x), θ}, (14.6)

where V( ·) is a known function and θ is an unknown parameter. For example,
a common model for overdispersion in count data is V {f(x), θ} = θ0f

θ1(x),

where θ1 > 1 or θ1 = 1 and θ0 > 1, so there is more dispersion than for the Pois-
son model, where θ0 = θ1 = 1. In assays, the same model applies except 1 ≤
θ1 ≤ 2. More detailed discussion is given in Carroll and Ruppert (1988, chaps.
1–3); see Section 10.7 for the parametric case. We call these models quasilikeli-
hood and variance function models.

The algorithm for estimating f(x) in quasilikelihood and variance function
models is the same as that described in Section 14.2, except that the vector of
variances ĝ is estimated in a different way. If θ is known and if f̂ is the current
estimate of f, then

ĝ = V {f(x), θ}.
It thus remains to estimate θ . This is done by a method we call pseudolikelihood,
and it involves estimating θ by pretending that f̂ is the actual mean vector (not
an estimate) and that y is normally distributed. Thus, in a sample of size n, we
choose θ so that it maximizes

−1

2

n∑
i=1

log[V {f̂ (xi), θ}] − 1

2

n∑
i=1

{yi − f̂ (xi)}2
/
V {f̂ (xi), θ}.

There is a REML version of the pseudolikelihood estimator; see Carroll and Rup-
pert (1988) for a detailed discussion.

14.5 Bibliographical Notes

A comprehensive introduction to variance function estimation is Carroll and Rup-
pert (1988). The ideas behind variance function estimation as a general technique
appear in Carroll and Ruppert (1982). Davidian and Carroll (1987) present a uni-
fied treatment of variance function estimation that sheds light on earlier work that
treats special cases.
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Measurement Error

15.1 Introduction

Measurement error in predictors causes loss of information and biases and evenError in predictors
means that the
observed data
regression function
often looks nothing
like the actual
regression function.

misleading conclusions for inference.
Figure 15.1 depicts a case where the true regression function is f(x) = sin(2x)

and the responses y exactly fit the true function so that y = f(x), but instead of
observing x we observe w = x + v, where the measurement error v is normally
distributed with mean 0 and variance 1. Moreover, the sample size is n = 200
and the true but unobserved values of x are normally distributed with mean 0 and
variance 1. Plotted are the observed (y,w) data and the true function. Note how
the observed data look nothing at all like the true function. The essential point
here is that measurement error causes the observed data to lose its features.

Figure 15.2 is the same plot, except that now – instead of adding measure-
ment error to the covariate with the same variance as that of the covariate – we
add measurement error to the response with the same variance as that of the re-
sponse. Note how the sin(2x) is readily identified. This emphasizes that the error

Figure 15.1
Simulated data with
measurement error in
the covariate x. The
measurement error
variance is the same
as the variance of x.
The true regression
function sin(2x) is
plotted. Here the
observed error-prone
data look nothing like
the true regression
function.
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Figure 15.2
Simulated data with
measurement error in
the response y. The
measurement error
variance is the same
as the variance of y.
Here the observed
error-prone data look
much like the true
regression function
sin(2x).
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in the covariate has a much greater potential to distort the features of the regres-
sion function.

The purpose of this section is to discuss briefly some methods that can be
used to obtain information about the true regression function. Remarkably, even
though the observed data plot looks nothing at all like the actual regression func-
tion, we can obtain a reasonable estimate of the regression function – at least for
much of the range of the x.

15.2 Formulation

In this section we illustrate how one might fit a nonparametric regression func-
tion with an error-prone covariate using mixed model methods. Ganguli, Stau-
denmayer, and Wand (2001) show how to extend these methods to the additive
model of Chapter 8. Their work builds upon the Bayesian work of Berry, Carroll,
and Ruppert (published 2002).

In the example of Section 15.5 we will fit an additive model with measure-
ment error, but to keep the exposition simple we here present the methods only Measurement error

models take the form
of an intractable and
complex generalized
linear mixed model
(GLMM).

for univariate regression.
Let y be an n × 1 vector of responses, let x be the n × 1 vector of predic-

tors, and let f(x) be the regression function. If x were observable, we showed in
Section 4.9 how to estimate the regression function using mixed model methods;
repeating equation (4.30), the mixed model representation is

y = Xβ + Zu + ε, Cov

[
u
ε

]
=
[
σ 2
u I 0
0 σ 2

ε I

]
. (15.1)
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In a measurement error model, instead of observing x we observe w, which we
now take to be unbiased measures of x, so that

w = x + v, v
ind.∼ N(0, σ 2

v I), (15.2)

where the measurement error variance σ 2
v is assumed known for purposes of expo-

sition. Of course, σ 2
v = 0 corresponds to x being observed. In practice, σ 2 is un-

known and is replaced by an estimate from, for example, replicate measurements.
The difficulty with measurement error models is that x is unobservable andMeasurement error

models are formally
the same as latent
variable models, but
the model for the
measurement error
leads to techniques
that differ from latent
variable modeling.

hence latent. To understand the main hurdle, it is useful to think of the unob-
served x as random effects. Just as for the GLMMs described in Section 10.8,
computation of maximum likelihood and REML estimates requires that these
latent variables be integrated out. The difficulty with doing this is strictly com-
putational: the regression spline formulation means that the latent variables enter
(15.1) nonlinearly and so are impossible to integrate analytically.

Thus, special computational tools are required to compute regression spline
estimates in measurement error models. This has been done by Berry et al. (2002)
using Bayesian techniques and by Ganguli et al. (2001) using the EM (expectation
maximization) algorithm. Since we have not yet described Bayesian methods, we
will indicate how the EM algorithm can be used in this context. We will assume
that the x are normally distributed with mean µx and variance σ 2

x . Since we are
assuming that the measurement error variance is known, good starting estimates
for (µx, σ

2
x ) are the mean of the w and the variance of the w minus σ 2

v .

The assumption that x is normally distributed makes the computations some-
what easier, but it is not required. Some additional model robustness can be
achieved by positing more flexible distributions, for example, mixtures of normals
(Carroll, Roeder, and Wasserman 1999) or an altered Gaussian family (Davidian
and Gallant 1993).

15.3 The Expectation Maximization (EM) Algorithm

The vector of unknown parameters is ψ = (β, σ 2
u , σ

2
ε , µx, σ

2
x ). Denote the ob-We discussed the

Monte Carlo EM
algorithm briefly in the
context of GLMMs;
see Section 10.8.5.

served data as Yobs = [y,w] and the “complete” data as Ycomp = [y,w, x, u].
The log-likelihood for the complete data is denoted by !comp(ψ), while the log-
likelihood for the observed data is denoted by !obs(ψ). In our case, the former
is easily computed (see below) whereas the latter involves intractable numerical
integration to integrate out the unobserved X and u.

Indeed, except for a constant, the complete data log-likelihood for a sample of
size n and K knots is given by

!comp(ψ) = −(2σ 2
ε )

−1‖y − Xβ − Zu‖2 − ‖x − µx1‖2/(2σ 2
x )

− ‖w − x‖2/(2σ 2
v )− ‖u‖2/(2σ 2

u )

− (n/2) log(σ 2
ε )− (K/2) log(σ 2

u )− (n/2) log(σ 2
v ). (15.3)

The observed data log-likelihood !obs(ψ) is the integral of the exponential of
(15.3) over both x and u. One might think that this integral can be computed ana-
lytically, but in fact it cannot, as we now show.
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Define V(x, σ 2
u , σ

2
ε ) = σ 2

u ZZT + σ 2
ε I. Define φ(y, x, σ 2

u , σ
2
ε ,β) to be the

multivariate normal density function for y with mean Xβ and covariance matrix
V(x, σ 2

u , σ
2
ε ). Then the complete data likelihood is proportional to

(σ 2
x σ

2
v )

−n/2
∫

φ(y, x, σ 2
u , σ

2
ε ,β) exp

(−‖x − µx1‖2

2σ 2
x

)
exp

(−‖w − x‖2

2σ 2
v

)
dx.

(15.4)

Note that the integral in (15.4) is an n-dimensional integral. The presence of x
in the marginal covariance matrix V(x, σ 2

u , σ
2
ε ) means that the integral in (15.4)

cannot be computed analytically, and since it is of high dimension, it cannot be
computed by standard numerical recipes. This results in the need for the EM al-
gorithm or Bayesian methods using Markov chain Monte Carlo (Chapter 16).

The EM algorithm is an iterative method. Let the current estimates of the pa-
rameters be ψ (t). In the EM algorithm, the “expectation” or E-step consists of
evaluating the expectation of the complete data log-likelihood as a function of
ψ conditional on the observed data, where the conditional expectation is taken
assuming that the current value ψ (t) is the true value. In symbols, the E-step con-
sists of calculating

Q(ψ;ψ (t)) = E[!comp(ψ)|Yobs;ψ (t)].

Next, the “maximization” or M-step consists of calculating

ψ (t+1) = argmax
ψ

Q(ψ;ψ (t)).

As seen for example in McCulloch (1997) or Booth and Hobert (1999), the hard
step is the E-step; the M-step is typically simple.

In principle, in order to implement the E-step we need to compute the joint dis-
tribution of (x, u) given the observed data. In order to speed up the computations,
we use a method suggested by van Dyk (2000), which in our context reduces to
sampling only from the distribution of x given (y,w, u). This is facilitated by the
following fact, which arises from (15.3).

Fact 1: The density of [x|u, y,w] is proportional to

exp

(
− 1

2σ 2
ε

‖y − Xβ − Zu‖2 − 1

2σ 2
x

‖x − µx1‖2 − 1

2σ 2
v

‖w − x‖2

)
. (15.5)

As a result, conditional quasirandom variates from x’s conditional distribution
can be generated using the Metropolis–Hastings algorithm. (A convenient refer- The Metropolis–

Hastings algorithm
can be used
for computing
numerically the
expectations required
for Monte Carlo EM.

ence is Robert and Casella 1999.) This fact is also used by Berry et al. (2002).
We now specify the complete algorithm.

(1) Start with an initial ψ (0). Set t = 0.
(2) Use the Metropolis–Hastings algorithm and Fact1 to drawm samples from

the distribution of x given (u, y,w) evaluated at ψ (t). Call these samples
(x1t , . . . , xmt).

(a) This is the most time-consuming step in the EM algorithm, because
generating the samples requires evaluation of (15.5).
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(b) The choice of the number of samples m is a problem that remains
difficult to solve. McCulloch (1997) and Booth and Hobert (1999)
discuss this issue in the context of GLMMs. In our calculations, we
have started with m = 50 and increased it by 10 for each interaction
of the EM algorithm, to a maximum of 500.

(3) Let

P =
[

XT X XTZ
ZT X ZTZ + (σ̂ 2

ε/σ
2
u )IK

]
.

(4) As before, let C = [X,Z]. With the results from step (1), compute Monte
Carlo estimates of the conditional expectations of

P, CTy, and CTC

given (y,w, u). We denote estimates of these quantities by

P̂, ĈTy, and ĈTC.

For example, P̂ is computed by constructing the X design matrix for each
of (x1t , . . . , xmt), say (X1t , . . . ,Xmt), and then P̂ = m−1∑m

j=1 XT
jtXjt .

(5) Holding the estimates from the previous step fixed, run several iterations of
an update scheme. For instance, using the standard EM algorithm to com-
pute REML estimates (see e.g. Dempster, Rubin, and Tsutakawa 1981),
the (k + 1)th nested updates are as follows.
(a) Set [

β (k+1)

b

]
= P̂−1ĈTy.

(b) Set

σ 2(k+1)
u = uTu + tr(σ 2(k)

ε P̂−1)

K
.

(c) Set

σ 2(k+1)
ε =

yTy − 2ŷTC
[

β (k+1)

u

]
n

+

[
β (k+1)

u

]T

ĈTC
[

β (k+1)

u

]
n

+ σ 2(k)
ε tr(ĈTCP̂−1)

n
.

(6) Calculate µ(t+1)
x and σ 2(t+1)

x using standard point estimates based on step
(4)’s Monte Carlo data. Specifically, µ(t+1)

x is the mean across all compo-
nents of (x1t , . . . , xmt). Also, σ 2(t+1)

x is the mean across all components of
(xjt − µ(t)

x )2.

We terminate the algorithm after plots of the current estimates of the regression
function appear to stabilize (Wei and Tanner 1990).
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Figure 15.3
Simulated data
with true regression
function sin(2x)
(large solid line),
the fitted regression
function that ignores
measurement error
(light dotted line),
and the fitted function
that accounts for
measurement error
(large dotted line).
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15.4 Simulated Example Revisited

Figure 15.3 displays the results of the EM algorithm accounting for measurement
error, along with the true function and the naive function that ignores the mea-
surement error.

In plotting this function, one should be aware of a limitation. Specifically,
since the unobserved x are distributed as Normal(0,1), approximately 95% of
them lie between −2.0 and 2.0. In the actual simulated data, all but twelve x-
observations lie in this interval. The net effect is that we cannot expect to obtain
a particularly good estimate of the regression function outside this range, even
for fairly large data sets.

Remarkably, as seen in Figure 15.3, correcting for measurement error comes In measurement
error models, the
observed predictor is
more variable than
the unobserved true
predictor. This means
that function fitting
is accurate only on
a subinterval of the
observed data.

very close to recouping the actual regression function, even though the observed
data look nothing like the regression function. We are not so bold as to suggest
that this will happen with all functions; indeed, the results of Fan and Truong
(1993) strongly suggest that there must be some functions that are impossible to
estimate efficiently. However, simulations in Berry et al. (2002) suggest that it is
often possible to do much better in regression function estimation by accounting
for rather than ignoring measurement error.

15.5 Sensitivity Analysis Example

Here we consider briefly a somewhat more complex problem. We fit a simple ad-
ditive model to an air pollution–mortality data set recorded in Milan, Italy, from
1980 to 1989 (Zanobetti et al. 2000) and analyze its sensitivity to measurement
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Figure 15.4 Air
pollution data
sensitivity analysis.
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error in total suspended particles. In the example, we have no information about
the measurement error variance, so here our purpose is to show that models such
as this one can be sensitive to covariate measurement error. Also see Dominici,
Zeger, and Samet (2000) for a discussion of measurement error in air pollution–
mortality studies.

Let i index day and let TSPi, dayi, tempi, humid i, and morti be (respectively)
the measured total suspended particles, sequential day number, average tempera-
ture, average relative humidity, and mortality (from natural causes – International
Classification of Diseases, 9th rev., pp. 1–799) count on day i. Our additive model
regression equation is:

E{log(morti )} = β0 + f1{log(TSPi )} + f2(dayi )+ f3(tempi )+ f4(humid i ).

We are interested in assessing the sensitivity of estimates to measurement error
in log{TSPi}. Let v be the measurement error with variance σ 2

v . We have no in-
formation about the size of measurement error variance, so here we varied what
is called the reliability ratio:

reliability ratio = var{log(TSPi )}
var{log(TSPi )} + σ 2

v

.

We took values 1.0 (no measurement error), 0.9, 0.8, and 0.7. Ganguli et al. (2001)
developed EM algorithm methods for additive models that are subject to mea-
surement error.

Figure 15.4 shows that any estimate of the function that relates log(TSP) to
mortality appears to be sensitive to measurement error. This suggests that an
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analysis of these data would benefit from measurement error modeling and the
collection of validation data that allow σ 2

v to be estimated.

15.6 Bibliographical Notes

Comprehensive surveys of the measurement error literature are given by Fuller
(1987) for the linear model and by Carroll, Ruppert, and Stefanski (1995) for gen-
eral regression models. Some work has been done on GLMMs; see Wang et al.
(1998). Recent discussions of semiparametric modeling in the presence of covari-
ate measurement error are given by Berry et al. (2002) and Ganguli et al. (2001).
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Bayesian Semiparametric Regression

16.1 Introduction

Classical statistics treats parameters as fixed unknown quantities. Bayesian sta-
tistics is based on a different philosophy; parameters are treated as random vari-
ables. The probability distribution of a parameter characterizes knowledge about
the parameter’s value, and this distribution changes as new data are acquired. The
mixed models of classical statistics have a Bayesian flavor because some param-
eters are treated as random. However, in a mixed model both the fixed effects
and the variance components are treated as nonrandom unknowns. Bayesians go
one step beyond mixed models in that they treat all parameters as random. In this
chapter we take the mixed model formulation of Section 4.9 and extend it to a
fully Bayesian model.

Bayesian statistics differs from classical statistics in two important respects:

(1) the use of the prior distribution to characterize knowledge of the parame-
ter values prior to data collection; and

(2) the use of the posterior distribution – that is, the conditional distribution
of the parameters given the data – as the basis of inference.

Some statisticians are uneasy about the use of priors, but when done with care,
the use of priors is quite sensible. In some situations, we might have strong prior
beliefs that will influence our analysis. For example, suppose we needed to es-
timate the probability that a toss of a coin comes up heads. If we inspect the
coin and see that it is not bent or otherwise unusual, we might be rather cer-
tain that the probability is close to 1

2 . Even with some data – say, 7 heads out
of 10 tosses – we might rather estimate the probability by some value much
closer to 1

2 than to the observed frequency. In other situations, where we feel
that we know little or nothing about the parameters, we can chose a “vague”
or “noninformative” prior – for example, a density that is uniform over a large
but bounded set containing all reasonable values of the parameter. As an non-
informative prior, one could also use an “improper prior” (i.e., one with infinite
mass) such as the uniform distribution on the real line. By stating a prior, we
make clear how much, or how little, we believe we know a priori about the
parameter.

In contrast to the controversy about the use of priors, there is little argument
that the posterior provides a powerful inferential machinery. For example, in the

276
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context of semiparametric spline modeling, we will see that it allows one to as-
sess the effects of uncertainty in the smoothing parameters upon a smooth fit.

In a Bayesian analysis, the likelihood of classical statistics become the condi- With the advent
of Gibbs sampling
and other Markov
chain Monte Carlo
(MCMC) methods,
Bayesian methods
are becoming more
widespread. In
particular, the BUGS
software for MCMC
allows some otherwise
complicated analyses
to be carried out
routinely.

tional density of the data given the parameters. Bayesians add to this the prior
density of the parameters. The product of the prior and the likelihood is the
joint density of the data and the parameters. The marginal density of the data
is obtained by integrating out the parameters from the joint density. The Bayes
theorem states that the conditional distribution of the parameters given the data,
which is called the posterior distribution, is the ratio of the joint density of the
data and the parameters to the marginal density of the data.

The calculations required by Bayesian inference – in particular, the need to
integrate the parameters out of the joint density – have been a serious obstacle
to the application of Bayesian methods. However, new Monte Carlo techniques
such as Markov chain Monte Carlo and importance sampling have provided pow-
erful methods for attacking this problem. In this chapter we use the Gibbs sam-
pler (an MCMC technique) to provide a fully Bayesian approach to smoothing
by penalized splines. Although we discuss only univariate splines, the MCMC
methodology is readily adapted to additive and interaction models.

16.2 General Framework

Throughout this chapter we will use the “[ ]” notation for probability densities
that has become standard in the MCMC literature. For example, [W ] is the den-
sity of a random variable W, while [W |U,V ] is the conditional density of W

given U and V.

Let D be the observed data and let θ be the unknown parameter vector. Then
[θ ] is the prior density of θ and [D|θ ] is the likelihood. The joint density of (D, θ)

is [θ ][D|θ ], and the marginal density of D is [D] = ∫ [D|θ ][θ ] dθ . The posterior
density of θ is

[θ |D] = [D|θ ][θ ]∫
[D|θ ][θ ] dθ

. (16.1)

When the dimension of θ is high, deterministic methods of numerical inte-
gration are unfeasible for calculating the integral in the denominator of (16.1).

The denominator
of (16.1) is required
to compute such
quantities as the
posterior mean and
Bayesian confidence
intervals.

MCMC is the most
common method
of implementing
Bayesian techniques.

The componentwise
conditional
distributions are
often called the
complete conditionals.

Notice, however, that this denominator is just a normalizing factor; that is, it does
not depend on θ . There are methods of sampling from a density that is known only
up to a constant of proportionality. These methods allow us to sample from the
posterior without calculating the denominator. Thus, for example, if θ1, . . . , θN
is such a sample then N−1∑N

i=1 θi provides an estimate of the posterior mean.

16.2.1 Markov Chain Monte Carlo

Among the most popular methods of sampling from a posterior are the MCMC
methods. The idea is to sample from a Markov chain whose stationary distribu-
tion is equal to the posterior. Suppose that we can partition θ into subvectors:
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θ = (θ1, . . . , θM),

where for each m = 1, . . . ,M it is easy to sample from

[θm|D, θj, j �= m].

Then we can form a Markov chain by starting at an arbitrary value

θ (0) = (θ
(0)
1 , . . . , θ

(0)
M )

and then sampling from
[θ1|D, θ

(0)
2 , . . . , θ

(0)
M ]

to obtain θ
(1)
1 , then from [θ2|D, θ

(1)
1 , θ

(0)
3 , . . . , θ

(0)
M ] to obtain θ

(1)
2 , and so forth.

After one cycle we have θ (1) = (θ
(1)
1 , . . . , θ

(1)
M ). Continuing in this manner we

obtain a Markov chain θ (0), θ (1), . . . . Under weak assumptions, this chain will
converge to a stationary distribution that is the posterior (Tierney 1994). MCMC
works well when one can sample easily from these complete conditional distri-
butions. Up to a multiplicative constant, the conditional density [θm|D, θj, j �=
m] is simply the posterior density with only θm varying. Often the numerator of
the posterior in (16.1), when viewed as a function of θm, is seen to be proportional
to some familiar density (e.g., a normal or gamma). Then, since the denomina-
tor does not depend on θ , the conditional posterior density of θm must be equal –
and not just proportional – to that density.

There are a number of important implementational issues that are discussed in
the books listed in Section 16.7 and in the journal literature. These include:

(1) the length of the “burn in period”, which is the initial part of the chain that
is discarded to eliminate the effects of the starting value;

(2) whether one should use one long chain or multiple starting values;
(3) how starting values should be chosen (this is an especially important ques-

tion if one uses multiple short chains);
(4) diagnosis of convergence of the chain;
(5) partitioning of the parameter vectors;
(6) the use of centering of covariates and auxiliary variables to improve con-

vergence.

16.2.2 Credible Sets

Let θ1 be a subvector of θ and suppose we would like to know the likely values
of θ1. A frequentist’s confidence set for θ1 is a random set with the following
property: if sampling is repeated indefinitely then a known fraction, 1− α, of the
sets generated will contain θ1. The quantity 1− α is called the “confidence coef-
ficient” or the “coverage probability”. Coverage probability is a probability only
under repeated sampling, not for a given data set. Therefore, a frequentist will
not say that the probability that θ1 is in the confidence set constructed for a par-
ticular data set is 1 − α. Rather, the frequentist will state that this probability is
either 0 or 1 but it is not known which. A confidence interval is the special case
of a confidence set where θ1 is univariate and the confidence set is an interval.
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A Bayesian credible set is an analog of a confidence set. A credible set for θ1 Credible sets are easy
to compute from
MCMC output.

is a set of values of that subparameter with probability 1− α under the posterior
distribution (Berger 1985). Unlike a frequentist with a confidence set, a Bayesian
will say that 1 − α is the probability that θ1 is in the credible set for a particular
data set. To appreciate the distinction between confidence and credible sets, let
θ be a parameter and let S(D) be a subset of the parameter parameter space that
depends on data D. Then S(D) is a confidence set if

P {θ ∈ S(D)|θ} for all θ . (16.2)

Since the probability in (16.2) is conditional on θ , it depends only on the like-
lihood, not on the posterior, and can be computed either within or outside the
Bayesian framework. Here S(D) is a credible set if

P {θ ∈ S(D)|D} for all D. (16.3)

The probability in (16.3) is conditional on the data, so it is a posterior probability
and is meaningful only within the Bayesian framework. Within that framework,
we can take the expectations of the conditional probabilities in either (16.2) or
(16.3), and in either case we obtain the same result:

P {θ ∈ S(D)} = 1− α.

Although credible sets and confidence sets are developed from entirely differ-
ent philosophies, often a Bayesian credible set can be used as a confidence set
because we can show that the former’s coverage probability (in the frequentist’s
sense) is close to 1− α, that is, (16.2) holds approximately.

A 1 − α credible interval for a univariate subparameter can be easily con-
structed from the output of a MCMC analysis. The left endpoint of the interval is
the α/2 sample quantile of the realizations of that subparameter from the chain.
Similarly, the right endpoint is the 1 − α/2 sample quantile. Often the mar-
ginal posterior distribution of a subparameter is nearly normal. In this case the
“normal theory” credible interval is the posterior mean of that subparameter plus
and minus z(1− α/2) times its posterior standard deviation.

16.3 Scatterplot Smoothing

Recall the mixed model representation of a penalized spline:

y = Xβ + Zu + ε, Cov

[
u
ε

]
=
[
σ 2
u I 0
0 σ 2

ε I

]
, (16.4)

where Xβ is the pure polynomial component of the spline and Zu is the com-
ponent with spline basis functions. Letting (β, u, σ 2

u, σ
2
ε ) be the parameter vec-

tor, the mixed model specifies a N(0, σ 2
u I) prior on u as well as the likelihood,

[y|β, u, σ 2
u, σ

2
ε ]. To specify a complete Bayesian model, we also need a prior dis-

tribution on (β, σ 2
u , σ

2
ε ). Assuming that little is known about β, it makes sense

to put an improper uniform prior on β. Or, if a proper prior is desired, one could
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use a N(0, σ 2
β I) prior with σ 2

β so large that, for all intents and purposes, the nor-
mal distribution is uniform on the range of β. Therefore, we will use [β] ≡ 1.
More informative priors could be used, of course, in contexts where they seem
desirable.

We will assume that the prior on σ 2
ε is inverse gamma with parameters Aε andA random variable

W has an inverse
gamma distribution
with parameters A

and B if W−1 has
a Gamma(A,B)

distribution;
common notation
is W ∼ IG(A,B).

One generates an
inverse gamma
random variable by
reciprocating a gamma
random variable. The
latter has mean A/B

and variance A/B2.

The coefficient of
variation, defined to
be the ratio of the
standard deviation to
the mean, is 1/

√
A.

Bε – denoted IG(Aε, Bε) – so that its density is

[σ 2
ε ] = BAε

ε

H(Aε)
(σ 2

ε )
−(Aε+1) exp

(
−Bε

σ 2
ε

)
. (16.5)

If Aε > 1 then the mean of this random variable is finite and equals Bε/(Aε −1);
if Aε > 2 then its variance is finite and equals B2

ε/{(Aε −1)2(Aε − 2)}. We may
also write this as

σ 2
ε ∼ IG(Aε, Bε).

Further, we assume that
σ 2
u ∼ IG(Au, Bu).

Here Aε, Bε, Au, and Bu are “hyperparameters” that determine the priors and
must be chosen by the statistician. These hyperparameters must be strictly posi-
tive in order for the priors to be proper. If Aε and Bε were zero, then [σ 2

ε ] would
be proportional to the improper prior 1/σ 2

ε , which is equivalent to log(σε) hav-
ing an improper uniform prior. Therefore, choosing Aε and Bε both close to zero
(say, both equal to 0.1) gives an essentially noninformative, but proper, prior. The
same reasoning applies to Au and Bu.

The model we have constructed is a hierarchical Bayes model, where the ran-
dom variables are arranged in a hierarchy such that distributions at each level are
determined by the random variables in the previous levels. At the bottom of the
hierarchy are the known hyperparameters. At the next level are the fixed effects
parameters and variance components whose distributions are determined by the
hyperparameters. At the level above this are the random effects, u and ε, whose
distributions are determined by the variance components. The top level contains
the data, y.

Except for a constant of proportionality, denoted by “∝”, the posterior distri-
bution is equal to

[β, u, σ 2
ε , σ

2
u |y] ∝ [y|β, u, σ 2

ε ][u|σ 2
u ][σ 2

u ][β][σ 2
ε ]. (16.6)

This is the numerator of (16.1); the denominator of (16.1) is the constant of pro-
portionality, which cannot be computed easily but is still required for inference.

If we isolate the part of (16.6) that depends on (β, u) then we see that the con-
ditional posterior of (β, u) given (σ 2

ε , σ
2
u ) – that is, the complete conditional – is

proportional to

exp

{
− 1

2σ 2
ε

(
‖y − Xβ − Zu‖2 + σ 2

ε

σ 2
u

‖u‖2

)}
. (16.7)

The term in parentheses in (16.7) is a nonnegative quadratic function of (β, u)
and so (16.7) is proportional to a multivariate normal density. By the usual tech-
nique of “completing the square”, it may be shown that
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[β, u|σ 2
ε , σ

2
u , y] ∼ N

{(
CTC + σ 2

ε

σ 2
u

D
)−1

CTy, σ 2
ε

(
CTC + σ 2

ε

σ 2
u

D
)−1}

. (16.8)

Here, as before, C = [X,Z] and D is a diagonal matrix with p + 1 zeros It is important to
generate random
variables from (16.8)
and not just substitute
in the mean. The
latter quick and
dirty method will
underestimate the
variance of the fit,
sometimes badly.

followed by K ones on the diagonal; this corresponds to the p + 1 polynomial
coefficients and the K knots. Note that the posterior mean in (16.8) is the pe-
nalized spline with smoothing parameter equal to σ 2

ε/σ
2
u ; see (4.31). Also, the

covariance in (16.8) is the same covariance matrix as (6.13), though in (6.13) the
variance components are treated as fixed unknown constants. Thus, as part of the
MCMC chain, one generates (β, u) from the current values of (σ 2

ε , σ
2
u ) according

to the multivariate normal distribution, with mean and covariance matrix given
by (16.8).

The complete conditional for σ 2
ε is proportional to

(σ 2
ε )

−(n/2+Aε+1) exp

{
− 1

σ 2
ε

(
1

2
‖y − Xβ − Zu‖2 + Bε

)}
. (16.9)

Therefore, comparing (16.5) to (16.9) shows that

[σ 2
ε |y,β, u, σ 2

u ] ∼ IG
(
Aε + 1

2n, Bε + 1
2‖y − Xβ − Zu‖2

)
.

By the same reasoning,

[σ 2
u |y,β, u, σ 2

ε ] ∼ IG
(
Au + 1

2K, Bu + 1
2‖u‖2

)
. (16.10)

To sample from the posterior, we iterate N times (for some fixed N) through the
following three steps.

(1) Sample (β, u) from the multivariate normal distribution:

N

{(
CTC + σ 2

ε

σ 2
u

D
)−1

CTy, σ 2
ε

(
CTC + σ 2

ε

σ 2
u

D
)−1}

.

(2) Sample σ 2
u from IG

(
Au + 1

2K, Bu + 1
2‖u‖2

)
.

(3) Sample σ 2
ε from IG

(
Aε + 1

2n, Bε + 1
2‖y − Xβ − Zu‖2

)
.

(4) Return to step (1) and iterate.

This Markov chain can be started at (β (0), u(0)) equal to a penalized spline esti-
mate, σ 2

ε estimated as in Chapter 3, and σ 2
u = σ 2

ε/λ (where λ is chosen by GCV;
see Section 4.9, where it is shown that λ = σ 2

ε/σ
2
u ). Alternatively, (β (0), u(0),

(σ (0)
ε )2, (σ (0)

u )2) can be estimated from the mixed model formulation of penalized
splines discussed in Section 4.9. The exact choice of starting values in not im-
portant, since the chain converges quickly to the stationary distribution and the
beginning of the chain is discarded as a burn-in period.

Notice that, given (β, u, y), it follows that σ 2
ε and σ 2

u are independent. There-
fore, the net effect of steps (2) and (3) is to sample (σ 2

ε , σ
2
u ) from its conditional

distribution given (β, u, y). Also, because of this independence, interchanging
the order of steps (2) and (3) has no effect on the algorithm. The MCMC iterates
between sampling the regression coefficients (β, u) given the variance compo-
nents (σ 2

ε , σ
2
u ) and vice versa – all conditional on the data, y.
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The Bayes estimate under squared-error loss of any subvector of the parame-
ter vector is the mean of its posterior distribution. Uncertainty about that set of
parameters can be measured by its posterior covariance matrix. A simple (but
somewhat inefficient) method for estimating the posterior mean and covariance
of a set of parameters is the sample mean and covariance of these parameters
from the N iterations of the MCMC. Often, as is the case here, more efficient
estimates can be found via Rao–Blackwell techniques; see Section 16.6.The Rao–Blackwell

theorem provides a
method for improving
the efficiency
of an estimator
by computing
its conditional
expectation given a
sufficient statistic. See
Section 16.6.

A simple method of approximating the posterior of (β, u) is to use (16.8) with
σ 2
ε and σ 2

u replaced by estimators from, for example, a mixed model analysis.
Methods such as this one are often called “empirical Bayes”. In an empirical
Bayes analysis, one starts with a prior containing unknown parameters, replaces
the parameters with estimates, and then performs a Bayesian analysis with the
previously unknown parameters now regarded as fixed. The phrase “empiri-
cal Bayes” is disliked by some Bayesians, since empirical Bayes methods are
neither truly Bayesian (Deely and Lindley 1981) nor any more empirical than
fully Bayesian methods. Although we prefer the term “approximate Bayes”, we
will use the term “empirical Bayes” because it is so well known.

The literature on MCMC discusses a number of important topics such as ap-
propriate burn-in periods, monitoring convergence to the stationary distribution,
and the question of how many independent chains to use. In our particular appli-
cation, we have found that burn-in periods and monitoring for convergence are
not needed. Also, a single chain of 1000–3000 iterations seems sufficient. The
reason why it is relatively easy to implement an MCMC here is that we are iterat-
ing between sampling from (β, u) given (σ 2

ε , σ
2
u ) and vice versa. Moreover, the

distribution of the regression coefficients is relatively insensitive to the values of
the variance components, and vice versa. Also, with the starting values we sug-
gest – that is, using estimates from a mixed model analysis – the chain essentially
starts in the stationary distribution or at least quite close to it.

16.3.1 Application to LIDAR Data

We implemented a Bayesian spline analysis of the LIDAR data using 30-knots
penalized quadratic splines. Assume the usual nonparametric regression notation,

yi = f(xi)+ εi,

throughout this section.
Results from 3000 iterations of an MCMC sampler are shown in Figure 16.1.

Figure 16.1(a) shows five realizations from the posterior of (β, u). One can see
that there is little variation in the curves except at the boundaries, where the high
boundary variance is evident. All five curves follow roughly the same pattern.
They are nearly horizontal until range is about 550, then decrease rapidly until
range is about 620, and then decrease a bit more slowly. The behavior of these
realizations corroborates the finding of Section 6.8.3 that there is a strong plume
of mercury in the region where range is between 550 and 620 and a “shoulder”
on this plume between range = 620 and 700 (see Figure 6.13).
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Figure 16.1 Bayesian
analysis of the
LIDAR data using a
3000-iterate Gibbs
sampler and 30-knot
quadratic splines.
(a) Five realizations
from the posterior of
f(x). (b) Posterior
mean of f(x) and 95%
credible intervals.
(c) Standard deviation
of the posterior
distribution of f(x).
(d) Relative error in
approximating the
posterior standard
deviation of f(x)

by an approximate
(or empirical) Bayes
method. (e) Density
estimate from
smoothing a 200-bin
histogram of 3000
realizations of the
posterior of σε.

(f ) Estimate of the
posterior density
of σu.
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In panel (b) of Figure 16.1, the average of the 3000 values of (16.8) are used as
a point estimate of the true curve. Similarly, in panel (c), the posterior standard
deviation of f(x) is shown. The higher variance at the boundaries is clear.

In panel (d) we compare the fully Bayesian estimate of the posterior variance
of f(x) to an approximate Bayesian analysis discussed in Section 16.2.2, where
(σ 2

ε , σ
2
u ) are treated as known. In this panel, the relative error – or, more pre-

cisely, the ratio of the two posterior variance estimates minus 1 – is plotted. The
plot shows that the approximate Bayesian method underestimates the posterior
variance by about 10% in the interior and at the extreme boundary region, and by
somewhat less in a region near the boundary. Thus, ignoring the variability of the
smooth fit (due to variability in the smoothing parameters) yields a reasonable ap-
proximation. Confidence intervals, such as in Chapter 6, or approximate Bayesian
credible intervals that ignore this variability in the smoothing parameters should
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Figure 16.2
Iterations of the
Gibbs sampler for the
LIDAR data. (a) Plot
of estimated mean at
range = 620 at every
30th iteration. (b) Plot
of estimated mean
at range = 620 at
iterations 1501–1600.
In both panels, the
solid horizontal line is
at the sample mean of
all 3000 iterations.
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have reasonably accurate coverage probability in this example. However, a fully
Bayesian credible interval will achieve better coverage probability. Moreover,
the accuracy of the approximate Bayesian method will be less in other examples,
such as the Canadian age and income data analysis of the next subsection.

Panels (e) and (f ) of Figure 16.1 show density estimates based on 3000 real-
izations of σε and σu. The estimates were obtained by smoothing a 200-bin his-
togram as described in Section 11.8. Estimates of their posterior densities could
also be obtained by the more efficient methods based on Rao–Blackwellization;
see Section 16.6. Since these variance components are of less interest, such Rao–
Blackwellized density estimates are not normally needed. An advantage of direct
density estimation is that it illustrates the frequency distribution of the actual
MCMC output.

When applying MCMC to a Bayesian analysis it is important to check whether
the chain has converged to the stationary distribution, that is, to the posterior. It is
also essential to check whether the number of iterations was sufficient. The num-
ber of iterates needed for an accurate estimation of the posterior depends strongly
on the correlation between iterates. Strong correlation causes the chain to move
slowly through the posterior. When the correlation is very strong, hundreds of
thousands of iterations might be needed. Fortunately, this is not the case here; the
iterates behave as if they are uncorrelated – the primary reason for this felicitous
situation is that, in step (1), we sample (β, u) as a block.

As an example of the behavior of the chain, Figure16.2 contains plots of f̂ (620)
as a function of the iteration number. Panel (a) plots every 30th iteration (i.e., it-
erations 30, 60, . . . , 2970, 3000), and panel (b) shows 100 consecutive iterations
(iterations 1501 to 1600). Notice that no trend appears in panel (a); the lack of a
trend is an indication that the chain starts in the stationary distribution. Also, there
is no indication of autocorrelation in either panel. Autocorrelation, if it existed,
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should be evident in the consecutive observations in panel (b) being somewhat
similar to each other. In fact, the sample autocorrelation function of the 3000
iterations is −0.013, −0.008, 0.024, and 0.018 at lags 1 to 4. Autocorrelations As discussed in

Section 2.3.2,
the k-lag sample
autocorrelation
of a time series
{Z1, . . . , Zn} is
the correlation
between the pairs
(Zt , Zt+k)

n−k
t=1 .

For an sequence
of independent
observations, the
autocorrelations will
be zero at all lags
except for sampling
error. If one examines
many autocorrelation
coefficients, some will
be large in absolute
value by chance.
Large absolute
autocorrelations at
small lags are a sign
of dependence.

greater than 2/
√

3000 = 0.0365 would be considered significantly different from
zero, but all four autocorrelations are below that cut-off. In summary, the real-
izations from the chain of the posterior of f̂ (620) behave like independent and
identically distributed observations from that posterior. We have found similar
independence, or near independence, when plotting f̂ at other values of range
and when plotting σ 2

ε and σ 2
u. This is an ideal situation, and is somewhat unusual

for MCMC methods. Often, MCMC suffers from high autocorrelations between
iterations, and either very long chains or many independent chains are needed to
obtain a good representation of the posterior. Because of the near independence
between iterations here, a single chain of 3000 observations is more than suffi-
cient to obtain an accurate estimate of the posterior.

16.3.2 Application to Age and Income Data

Realizations from the posterior such as shown in Figure 16.1(a) can help us judge
whether a feature seen in a smooth is “real” or perhaps due merely to chance.

Consider the Canadian age and income data introduced in Section 5.3.2.1.
There is evidence that the expected income begins to decrease after age 50; see
Figure 5.4 and the discussion in Section 6.8.

Figure 16.3 shows the same output from an MCMC analysis as Figure 16.1 ex-
cept now for the age and income data. Notice that the variance ratio minus 1 in
panel (d) is typically about 0.25. This value is larger than for the LIDAR data and
is an indication that one might wish to account for uncertainty in the smoothing
parameter when making inferences about the age and income data.

Figure 16.4 is a histogram of the 3000 realizations of f(50)− f(60), the dif-
ference in log-income at ages 50 and 60. The difference was positive in 99.5% of
the 3000 realizations and in 99.1% of the realizations if one compares ages 50 and
65 instead of 50 and 60. The reason for slightly less positive differences when
comparing age 65, rather than 60, to age 50 is the serious variance inflation at
the boundary. These percentages are the posterior probabilities that income de-
clines from age 50 to 60 (or 65), and since they are close to 1 they provide strong
evidence of a decline in expected income after age 50. To see where the decline
begins, 24 realizations are plotted in Figure 16.5, six realizations per panel. The
realizations peak almost anywhere between 50 and 57, indicating that the loca-
tion of the true peak cannot be established with any certainty using this amount
of data.

16.4 Linear Mixed Models

The Gibbs sampling scheme given on page 281 for scatterplot smoothing is really
just fitting a mixed model with a single variance component. In this section we
briefly describe the extension to linear mixed models with more than one variance
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Figure 16.3 Bayesian
analysis of the
Canadian age and
income data using a
3000-iterate Gibbs
sampler and 15-knot
quadratic spline.
(a) Five realizations
from the posterior of
f(x). (b) Posterior
mean of f(x) and 95%
credible intervals.
(c) Standard deviation
of the posterior
distribution of f(x).
(d) Relative error in
approximating the
posterior standard
deviation of f(x)

by an approximate
(or empirical) Bayes
method. (e) Density
estimate from
smoothing a 200-bin
histogram of 3000
realizations of the
posterior of σε.

(f ) Estimate of the
posterior density
of σu.
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component. This extension allows Bayesian analyses of the Gaussian response
models described in Chapters 7, 8, 9, 12, and 13.

The Gaussian linear mixed model with several variance components is

y = Xβ + Zu + ε, Cov

[
u
ε

]
=
[

G 0
0 σ 2

ε I

]
, (16.11)

where

G ≡ blockdiag
1≤!≤L

σ 2
u!I and u = [uT

1, . . . , uT
L]T (16.12)

is the partition of u such that Cov(u!) = σ 2
u!I. Let q!,1 ≤ ! ≤ L, denote the num-

ber of entries in u! and suppose that the prior distribution for σ 2
u! is IG(Au!, Bu!).

As in Section 16.3, we will assume a uniform improper prior on β. Then an ap-
propriate Gibbs sampling scheme for fitting (16.11) is as follows.
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Figure 16.4
Histogram of 3000
realizations of
f(50)− f(60).
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Figure 16.5 Twenty-
four realizations
of f(age), 50 <

age < 65. The
realizations are shown
in groups of six so
that the individual
curves are more
easily seen. Since the
realizations are i.i.d.,
group membership is
arbitrary.

50 52 54 56 58 60
13.2

13.4

13.6

13.8

14

14.2

age
50 52 54 56 58 60

13.2

13.4

13.6

13.8

14

14.2

age

50 52 54 56 58 60
13.2

13.4

13.6

13.8

14

14.2

age
50 52 54 56 58 60

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

age

(1) Sample (β, u) from the multivariate normal distribution

N{(CTC + σ 2
ε B)−1CTy, σ 2

ε (C
TC + σ 2

ε B)−1},
where C ≡ [X Z] and B ≡ blockdiag(0,G−1).

(2) For 1 ≤ ! ≤ L, sample σ 2
u! from IG

(
Au! + 1

2q!, Bu! + 1
2‖u!‖2

)
.

(3) Sample σ 2
ε from IG

(
Aε + 1

2n, Bε + 1
2‖y − Xβ − Zu‖2

)
.

(4) Return to step (1) and iterate.
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16.5 Generalized Linear Mixed Models

Now suppose that the distribution of the response given the covariates is not
Gaussian but rather has a distribution in another exponential family – for exam-
ple, is binomial. Generalized linear models (GLMs) that allow such response
distributions were discussed in Chapter 10. In particular, the generalized linear
mixed models (GLMMs) of Section 10.8 are useful here since the random effects
can include the spline coefficients that should be penalized as well as, for ex-
ample, random subject effects. However, as discussed in Section 10.8, GLMMs
present computational challenges well beyond those of fixed effects generalized
linear models. MCMC algorithms for GLMMs require the same order of compu-
tational effort as the non-Bayesian exact methods presented in Section 10.8 such
as Monte Carlo EM (though approximate methods based on the Laplace method
are much less intensive than MCMC algorithms).

As in Chapter 10, to keep the exposition simple we will consider the theory
only for canonical exponential families with scale parameter φ = 1 (e.g., logistic
regression). Using the notation of Section10.8, let the density of y given (β, u) be

[y|β, u] = exp{yT(Xβ + Zu)− 1Tb(Xβ + Zu)+ 1Tc(y)} (16.13)

and assume that

u ∼ N(0,G)

as in (16.12).
The sampling scheme for σ 2

u!, 1 ≤ ! ≤ L, remains the same as for the Gauss-
ian case: [

σ 2
u!|β, u, y, σ 2

u!′
1≤!′≤L,!′ �=!

]
∼ IG

(
Au! + 1

2q!, Bu! + 1
2‖u!‖2

)
.

However,

[β, u|y, σ 2
u1, . . . , σ

2
uL]

∝ exp
{
yT(Xβ + Zu)− 1Tb(Xβ + Zu)− 1

2 uTG−1u
}
, (16.14)

and sampling is somewhat difficult because this conditional density is not in any
standard family. In such instances, more involved algorithms such as adaptive
rejection sampling (Gilks and Wild 1992) or the Metropolis–Hastings algorithm
(Metropolis et al. 1953; Hastings 1970) are required to complete the sampling
scheme. We will focus on the latter.

The Metropolis–Hastings algorithm can be used to generate a Markov chain
with a given stationary distribution when the density of that target distribution is
known only up to a constant of proportionality – for example, [β, u|y, σ 2

u1, . . . ,

σ 2
u!] here. The Metropolis–Hastings algorithm allows one to sample from a con-

venient distribution (e.g., a normal distribution) and then to “accept” this new
observation depending upon its probability at the target distribution. We will not
discuss the theory behind the Metropolis–Hastings algorithm, nor will we intro-
duce the most general form of the algorithm. A good introduction to the general
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algorithm is given by Chib and Greenberg (1995). Often a pure Metropolis–
Hastings algorithm is not used and instead the steps of Metropolis–Hastings are
put into a more complex MCMC. That is what we propose here.

Let (βc, uc) be the current value of the (β, u) in the chain. We generate a trial In GLMMs or even
GLMs, generating
observations of
(β, u) from their
complete conditionals
generally requires
special tools such
as adaptive rejection
sampling or the
Metropolis–Hastings
algorithm.

value for the new (β, u), call it (βt , u t ), that is normally distributed with mean
(βc, uc). The choice of covariance matrix is discussed in the next paragraph. Let
R be the ratio of (16.14) evaluated at (βt , u t ) to the same density evaluated at
(βc, uc). Then with probability min(1, R) we “accept” (βt , u t ) – that is, we re-
place (βc, uc) with (βt , u t ). Otherwise, the current value of (β, u) is retained.

For the covariance of the trial values (βt , u t ) we recommend a multiple of
the approximate conditional covariance matrix of the penalized quasilikelihood
estimate of (β, u), namely (10.23). The scalar multiplier, call it τ, should be suf-
ficiently small so that we accept the trial values with reasonably high probability;
as τ → 0, (βt , u t ) will approach (βc, uc) and the acceptance probability will
converge to unity. However, τ should not be too small, either. If τ is small then,
since the trial (βt , u t ) is close to (βc, uc), the chain will move slowly even if
nearly all trial values are accepted. We have found 0.2 ≤ τ ≤ 0.4 to work rea-
sonably well in our examples.

In summary, here is our algorithm for fitting Bayesian generalized linear mixed
models.

(1) Set the tuning parameter τ. We recommend 0.2 ≤ τ ≤ 0.4.
(2) Obtain initial estimates of βc, uc, σ

2
u1, . . . , σ

2
uL via penalized

quasi-likelihood and set

� = (CT WC + B)−1CT WC(CT WC + B)−1,

where C = [X,Z] and W = diag{b ′′(Xβc + Zuc)}.
(3) Generate [

βt

u t

]
∼ N

([
βc

uc

]
, τ�

)
and compute

R = exp
{
yT(Xβt + Zu t )− 1Tb(Xβt + Zu t )− 1

2 uT
tG

−1u t

}
exp
{
yT(Xβc + Zuc)− 1Tb(Xβc + Zuc)− 1

2 uT
cG

−1uc

} .
Now generate U, a random uniform variate between 0 and 1.
(a) If U ≤ R then replace (βc, uc) by (βt , u t ).

(b) If U > R then leave (βc, uc) unchanged.
(4) For 1 ≤ ! ≤ L, sample σ 2

u! from IG
(
Au! + 1

2q!, Bu! + 1
2‖u!‖2

)
.

(5) Return to step (3) and iterate.

16.5.1 Probit Mixed Models

If the entries of y are binary, then the Metropolis–Hastings algorithm just de-
scribed can be used to fit a logistic mixed model by taking b(x) = log(1 + ex).

However, in this special case an even easier implementation is possible using
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the probit model (see e.g. Chib and Greenberg 1995). The probit model was dis-
cussed in Section 10.3, and Figure 10.2 shows that the probit and logistic models
are very nearly the same.

The probit model begins with an auxiliary variable a = [a1, . . . , an]T, which
has a multivariate normal distribution with mean Xβ+Zu and identity covariance
matrix. If a were observed then we would have exactly the problem described in
Section 16.3 – with the simplification that σ 2

ε = 1. The link to the observed bi-
nary response data y is that yi is the indicator that ai > 0. With this convention,
the observed binary data satisfy

P(yi = 1|u) = ={(Xβ + Zu)i},
where = is the standard normal cumulative distribution function. Note that

[ai |β, u, σ 2
u1, . . . , σ

2
uL]

∝ {I(ai > 0)}yi=1{I(ai ≤ 0)}yi=0 exp
[− 1

2 {ai − (Xβ + Zu)i}2
]
.

This means that, for those components of y that equal1, the corresponding compo-
nents of a have the distribution of a normal random variable with mean Xβ +Zu
but truncated from the left at 0. Also, for those components of y that equal 0, the
corresponding components of a have the distribution of a normal random variable
with mean Xβ + Zu but truncated from the right at 0. Robert (1995) describes
algorithms for generating truncated normal random variables.

The full algorithm, given starting values, is as follows.

(1) Sample (β, u) from the multivariate normal distribution

N{(CTC + B)−1CTa, (CTC + B)−1},
where C ≡ [X Z] and B ≡ blockdiag(0,G−1).

(2) For 1 ≤ ! ≤ L, sample σ 2
u! from IG

(
Au! + 1

2q!, Bu! + 1
2‖u!‖2

)
.

(3) For 1 ≤ i ≤ n:
(a) if yi = 0, sample ai from a N{(Xβ + Zu)i,1} density truncated over

(−∞, 0);
(b) if yi = 1, sample ai from a N{(Xβ + Zu)i,1} density truncated over

(0,∞).

Set a = [a1, . . . , an]T.

(4) Return to step (1) and iterate.

16.5.1.1 Union and Wages Data Revisited
Here we illustrate Bayesian methods in the union and wages example discussed
in Chapter 11 (see especially Section 11.2 and Figure 11.2). In Chapter 11 we fit a
logistic nonparametric regression model to these data. Here we fit a linear spline
with 20 knots. The Bayesian fit was based on a chain of 10,000 samples, of which
the first 5000 were removed as a burn-in period.

Figure 16.6 gives the posterior mean fit and compares it to the frequentist fit:
note how the two differ hardly at all. Figure 16.7 gives the posterior mean fit
along with the 95% credible interval. Note that this graph is almost identical to
the corresponding frequentist plot, Figure 11.2.
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Figure 16.6
Comparison of the
frequentist (solid line)
and posterior mean
Bayesian (dashed line)
probit fits to the union
and wages data, using
a linear regression
spline with 20 knots.
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Figure 16.7 Bayesian
probit fit to the
union and wages data
with 95% credible
interval, using a linear
regression spline with
20 knots.
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16.6 Rao–Blackwellization

This section deals with Rao–Blackwellization of the MCMC. Readers not inter-
ested in the details of the implementation can safely skip this section.

Consider the scatterplot smoothing setting of Section 16.3. The posterior ex-
pectation (β, u) can be estimated from the MCMC simulation by averaging the
conditional mean in (16.8) over the realizations of (σ 2

u , σ
2
ε ). The MCMC realiza-

tions of (β, u) have these conditional means, so averaging the conditional means
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rather than the realizations themselves reduces Monte Carlo variance. Let N de-
note the number of realizations from the MCMC algorithm. An efficient estimate
of the posterior covariance matrix of (β, u) is obtained by the following steps:

(1) the sample covariance of the N conditional means of (β, u) in (16.8) esti-
mates Cov[E{(β, u)|σ 2

u , σ
2
ε , y}];

(2) averaging the N covariance matrices in (16.8) estimates E[Cov{(β, u)|σ 2
u ,

σ 2
ε , y}];

(3) by (A.8), summing the two provides an efficient estimate of Cov{(β, u)|y}.
Since the mean of the IG(a, b) distribution is b/(a − 1) for a > 1, the condi-

tional mean of σ 2
u in step (2) is

(
Bu + 1

2‖u‖2
)
/
(
Au + 1

2K − 1
)
. Averaging this

over the N simulated values of u provides an estimate of σ 2
u . If an estimate of

the posterior density of σ 2
u is desired, say for plotting, then the IG

(
Au + 1

2K,

Bu + 1
2‖u‖2

)
density can be averaged over the N values of u. Estimates of σ 2

ε

and its posterior density can be found in the same way.

16.7 Bibliographical Notes

Recent books on Bayesian statistics that contain advice on Markov chain Monte
Carlo include Gelman et al. (1995), Tanner (1996), Robert and Casella (1999),
Carlin and Louis (2000), Ibrahim, Chen, and Lipsitz (2001), and Liu (2001).
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Spatially Adaptive Smoothing

17.1 Introduction

The penalty parameter λ of a penalized spline controls the trade-off between bias
and variance. In this chapter we introduce a method of fitting penalized splines
wherein λ varies spatially in order to accommodate possible spatial nonhomo-
geneity of the regression function. In other words, λ is allowed to be a function of
the independent variable x. Allowing λ to be a function of spatial location can im-
prove mean squared error (MSE; see Section 3.11) and the accuracy of inference.

Suppose we are using a quadratic spline that has constant curvature between
knots. If the regression function has rapid changes in curvature, then a small value
of λ is needed so that the second derivative of the fitted spline can take jumps large
enough to accommodate these changes in curvature. Conversely, if the curvature
changes slowly, then a large value of λ will not cause large bias and will reduce
dffit and the variance of the fitted values. The problem is that a regression func-
tion may be spatially nonhomogeneous with some regions of rapidly changing
curvature and other regions of little change in curvature. A single value of λ is not
suitable for such functions. The inferiority – in terms of MSE – of splines having
a single smoothing parameter is shown in a simulation study by Wand (2000). In
that study, for regression functions with significant spatial inhomogeneity, penal-
ized splines with a single smoothing parameter were not competitive with knot
selection methods. In an empirical study by Ruppert (2002), the spatially adaptive
penalized splines described in this chapter were found to be at least as efficient
as knot selection methods.

Another problem with having only a single smoothing parameter concerns
inference. As seen in Chapters 4 and 16, penalized splines are BLUPs if one as-
sumes a certain mixed model or Bayes estimates for particular priors. A single
smoothing parameter corresponds to a spatially homogeneous mixed model dis-
tribution or Bayesian prior. For a penalized spline, the mixed model assumption
(or prior) is that the knot coefficients u1, . . . , uK are independent N(0, σ 2

u ) for a
single parameter σ 2

u . Such priors on u1, . . . , uK are not appropriate for spatially
heterogeneous f. Consider the confidence intervals based on the posterior vari-
ance of f( ·) discussed in Section 16.2.2. As Nychka (1988) shows, the resulting
confidence bands have good average (over x) coverage probabilities but do not
have accurate pointwise coverage probabilities in areas of high oscillations or
other “features” in f.

293
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17.2 A Local Penalty Method

Here is a simple approach to spatially varying λ. Choose another set of the knots,
{κ∗

k }Mk=1, where M is smaller than K and such that {κ∗
1 = κ1 < · · · < κ∗

M = κK}.
The penalty at one of these “subknots”, say κ∗

k , is set equal to a parameter λ∗k.
The penalties at the original knots, {κk}Kk=1, are determined by interpolation of
the penalties at the {κ∗

k }Mk=1. The interpolation is on the log-penalty scale to en-
sure positivity of the penalties. Thus we have a penalty λ(κk) at each κk, but these
penalties depend only upon λ = (λ∗1, . . . , λ∗M)T. Therefore, {λ(κ1), . . . , λ(κK)} is
a function of λ. This function need not be derived explicitly but rather can be
computed by using an interpolation algorithm; we used MATLAB’s built-in linear
interpolator. One could, of course, use other interpolation methods (e.g., cubic
interpolation). If linear interpolation is used, then log{λ( ·)} is a linear spline with
knots at {κ∗

k }Mk=1.

As in Chapter 3, let y = [y1, . . . , yn]T and let C be a matrix with ith row
equal to

Ci = [1 xi · · · x
p

i (xi − κ1)
p
+ · · · (xi − κK)

p
+]. (17.1)

Let D(λ) be a diagonal matrix whose first p + 1 diagonal elements are 0 and
whose remaining diagonal elements are λ2(κ1), . . . , λ

2(κK), which depend only
on λ. Then, as in Section 3.5, penalized spline estimates of

ν ≡ [βT uT]T

are given by
ν̂(λ) = {CTC + D(λ)}−1CTy. (17.2)

The smoothing parameter λ = (λ∗1, . . . , λ∗M ) can be determined by minimizing
the generalized cross-validation statistic

GCV(λ) = ‖y − Cν̂(λ)‖2

{1− dffit(λ)/n}2
.

Here
dffit(λ) = tr[{CTC + D(λ)}−1CTC] (17.3)

is the degrees of freedom of the fit.
A search over an M-dimensional grid is not recommended because of compu-

tational cost. Rather, we recommend that one start with λ∗1, . . . , λ∗M, each equal
to the best global value of λ chosen by minimizing GCV as in Chapter 5. Then
each λ∗k is varied, with the others fixed, over a 1-dimensional grid centered at the
current value of λ∗k. On each such step, λ∗k is replaced by the λ-value minimizing
GCV on this grid. This minimizing of GCV over each λ∗k is repeated a total of
Niter times. Although minimizing GCV over the λ∗k one at a time in this manner
does not guarantee finding the global minimum of GCV over λ∗1, . . . , λ∗M, our sim-
ulations show that this procedure is effective in selecting a satisfactory amount
of local smoothing. The minimum GCV global λ is a reasonably good starting
value for the smoothing parameters, and each step of our algorithm improves on
this start in the sense of lowering GCV. Since each λ∗k controls the penalty over
only a small range of x, the optimal value of one λ∗k should depend only slightly
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upon the other λ∗k. We believe this is why the one-at-a-time search strategy works
effectively.

17.3 Completely Automatic Algorithm

The local penalty method has three tuning parameters: the number of knots, K;
the number of subknots, M; and the number of iterations, Niter. The exact values
of the tuning parameters are not crucial provided they are within certain accept-
able ranges – the crucial parameter is λ, which is selected by GCV, not the user.
However, users may want a completely automatic algorithm that requires no user-
specified parameters and attempts to ensure that the tuning parameters are within
acceptable ranges. An automatic algorithm would have to balance the need for
the tuning parameters to be large enough to obtain a good fit with the need that the
tuning parameters not be so large that the computation time is excessive; overfit-
ting is not a concern because it is controlled by λ.

In this section, we propose two methods for choosing the tuning parameters,
the myopic and the full-search algorithms, which are similar to algorithms of the
same names in Section 5.6.3. The two algorithms are based on the following
principle: As the complexity of f increases, each of K,M,Niter should increase.
The algorithms use a sequence of values of (K,M,Niter) where each parame-
ter is nondecreasing in the sequence. The myopic algorithm stops when there is
no appreciable decrease in GCV between two successive values of (K,M,Niter).

Monte Carlo experimentation, discussed in Section 17.5, shows that the values of
Niter and M have relatively little effect on the fit, at least within the ranges stud-
ied. However, it seems reasonable to increase Niter and M slightly with K. On the
other hand, computation time for given K is roughly proportional to M × Niter,

so we avoid Niter > 2 and M > 6.
The full-search algorithm computes GCV for all tuning parameter sets and

chooses the set that minimizes GCV. Specifically, the sequence of values of
(K,M,Niter) that we use are (10, 2,1), (20, 3, 2), (40, 4, 2), (80, 6, 2), and
(120, 6, 2). For each set of tuning parameters, λ is chosen to minimize GCV.
The full-search algorithm chooses the set that has the smallest of these mini-
mized GCV values. The myopic algorithm first compares (10, 2,1) and (20, 3, 2)
using GCV. If the value of GCV for (20, 3, 2) is more than a constant C times
the GCV value of (10, 2,1), then we conclude that further increases in the tun-
ing parameters will not appreciably decrease GCV – in the simulations we used
C = 0.98 and that choice worked well. Therefore, we stop and use (10, 2,1)
or (20, 3, 2) as the final value of the three tuning parameters, whichever has the
smallest GCV value. Otherwise, we fit using (40, 4, 2) and compare its GCV
value to that of (20, 3, 2). If the value of GCV for (40, 4, 2) is more than C times
the GCV value of (20, 3, 2) then we stop and use either (20, 3, 2) or (40, 4, 2),
whichever has the smallest GCV, as the final tuning parameters. Otherwise, we
continue in this manner, comparing (40, 4, 2) to (80, 6, 2), and so on. If very
complex f were contemplated then one could, of course, continue using increas-
ingly larger values of the tuning parameters.
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17.4 Bayesian Inference

Bayesian inference for local penalty splines differs little from the Bayesian infer-
ence for global penalty splines that was discussed in Section 16.2.2. Suppose that
ε1, . . . , εn are independent N(0, σ 2

ε ) and that the prior on ν is N{0,�(λ)}, where
�(λ) is a covariance matrix that depends on λ. Here N(µ,�) is the multivariate
normal distribution with mean and covariance matrix µ and �. For now, assume
that σ 2

ε and λ are known. Then the posterior log density of ν given y is, up to an
additive function of y and (σ 2

ε ,λ), given by

−1

2

(
1

σ 2
ε

‖y − Cν‖2
2 + νT�(λ)−1ν

)
. (17.4)

The maximum a posteriori (MAP) estimator of ν – that is, the mode of the
posterior density – maximizes (17.4). Now let β0, . . . , βp have improper uniform
(−∞,∞) priors and let {uk}Kk=1 be independent, with βp+k having a N(0,σ 2

ε/λk)

distribution. Then

�−1(λ) = σ 2
ε diag(0, . . . , 0, λ1, . . . , λK). (17.5)

More precisely, we let β0, . . . , βp have a N(0, σ 2
β ) prior and then (17.5) holds in

the limit as σβ → ∞. The MAP estimator of ν minimizes

n∑
i=1

{yi − f(xi; ν)}2 +
K∑
k=1

λ(κk)u
2
k.

Of course, the λ = (λ∗1, . . . , λ∗M)T that determines the λk will not be known
in practice. Empirical Bayes methods replace unknown “hyperparameters” in a
prior by estimates. For example, if λ is estimated by GCV and then considered
fixed, one is using empirical Bayes methods. Standard calculations show that
when λ and σ 2

ε are known, the posterior distribution of ν is

N[ν̂(λ), σ 2
ε {CTC + �(λ)}−1]. (17.6)

Also, the posterior distribution of f = {f(x1), . . . , f(xn)}T is

N[Cν̂(λ), σ 2
ε C{CTC + �(λ)}−1CT]. (17.7)

An approximate Bayes posterior replaces λ and σ 2
ε in (17.6) and (17.7) by esti-

mates. Assuming that λ has been estimated by GCV, one need only estimate σ 2
ε

by ‖y − Cν̂(λ̂)‖2/{n − dffit(λ̂)}, where dffit(λ) is defined by (17.3). This gives
the approximate posterior distribution for f :

f ∼ N[Cν̂(λ̂), σ̂ 2
ε C{CTC + �(λ̂)}−1CT]. (17.8)

The approximate Bayes 100(1− α)% confidence interval for f(xi) is

f̂ (xi)± z(1− α/2) ŝt.dev.{f̂ (xi)− f(xi)},
where f̂ (xi) = Ciν̂(λ̂) is the ith element of the posterior mean in (17.8) and
ŝt.dev.{f̂ (xi)−f(xi)} is the square root of the ith diagonal entry of the posterior
covariance matrix in (17.8).
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Because they estimate hyperparameters yet then pretend that the hyperparam-
eters were known, these approximate Bayesian methods do not account for extra
variability in the posterior distribution caused by estimation of hyperparame-
ters in the prior; for discussion see, for example, Morris (1983), Laird and Louis
(1987), Kass and Steffey (1989), or Carlin and Louis (2000). Everything else held
constant, the underestimation of posterior variance should become worse asM in-
creases, since each λ∗m (m = 1, . . . ,M) will be determined by fewer data and will
therefore be more variable. As Nychka (1988) has shown empirically, this under-
estimation does not appear to be a problem for a global penalty that has only one
hyperparameter. However, the local penalty has M hyperparameters. For local
penalty splines we have found that the pointwise approximate posterior variance
of f̂ is too small in the sense that it noticeably underestimates the frequentist MSE.

A simple ad hoc correction to this problem is to multiply the pointwise pos-
terior variances of the local penalty f̂ from (17.8) by a constant so that the average
pointwise posterior variance of f̂ is the same for the global and local penalty esti-
mators. The reasoning behind this correction is as follows. As stated previously,
the global penalty approximate posterior variance from (17.8) is nearly equal to
the frequentist’s MSE on average. The local penalty estimate has an MSE that
varies spatially but should be close, on average, to the MSE of the global penalty
estimate and hence also close, on average, to the estimated posterior variance of
the global penalty estimator. We found that this adjustment is effective in guaran-
teeing coverage probabilities at least as large as nominal, though in extreme cases
of spatial heterogeneity the adjustment can be conservative; see Section 17.5.
The reason for the latter is that, in cases of severe spatial heterogeneity, the local
penalty MSE will be less, on average, than that of the global penalty estimate.
Then, there will be an overcorrection and the local penalty MSE will be overesti-
mated by this adjusted posterior variance. The result is that confidence intervals
constructed with this adjustment should be conservative. The empirical evidence
in Section 17.5 supports this conjecture. In that section, we refer to these adjusted
intervals as local penalty, conservative intervals.

Another correction would be to use a fully Bayesian hierarchical model, where
the hyperparameters are given a prior. Deely and Lindley (1981) first considered
such empirical Bayes methods. An exact Bayesian analysis for penalized splines
would require Gibbs sampling or other computationally intensive techniques (dis-
cussed in Chapter 16) and would be an interesting area for further research.

There are intermediate positions between the quick, ad hoc, conservative ad-
justment just proposed and an exact, fully Bayesian analysis. One that we now
describe is an approximate fully Bayesian method that uses a small bootstrap ex-
periment and a delta-method correction adopted from Kass and Steffey’s (1989)
“first-order approximation”. Kass and Steffey considered conditionally indepen-
dent hierarchical models, which are also called empirical Bayes models, but their
ideas apply directly to more general hierarchical Bayes models.

The Kass and and Steffey approximation is applied to penalized splines as fol-
lows. Let fi = f(xi) = Ciν. The posterior variance of fi is calculated from the
joint posterior distribution of (ν,λ) and by a standard identity is
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var(fi) = E{var(fi |λ)} + var{E(fi |λ)}.
Note that E{var(fi |λ)} is well approximated by the posterior variance of fi when
λ is treated as known and fixed at its posterior mode (Kass and Steffey 1989).
Thus, var{E(fi |λ)} is the extra variability in posterior distribution of fi that the
approximate posterior variance given by (17.8) does not account for. We estimate
var{E(fi |λ)} by the following three steps and add this estimate to the posterior
variance given by (17.8).

(1) Use a parametric bootstrap to estimate Cov{log(λ̂)}. Here the log function
is applied elementwise to the vector λ.

(2) Numerically differentiate Cν̂(λ) with respect to log(λ) at λ = λ̂. We use
one-sided numerical derivatives with a step length of 0.1.

(3) Put the results from (1) and (2) into the delta-method formula:

var{E(fi |λ)} �
{
∂Cν̂(λ̂)

∂ log(λ)

}T

Cov{log(λ̂)}
{
∂Cν̂(λ̂)

∂ log(λ)

}
. (17.9)

When (17.9) is added to the approximate posterior variance from (17.8), we re-
fer to the corresponding confidence intervals as local penalty, corrected intervals.
Since the correction (17.9) is a relatively small portion of the corrected posterior
variance, it need not be estimated by the bootstrap with as great a precision as
when a variance is estimated entirely by a bootstrap. In our simulations, we used
only 25 bootstrap samples in step (1).

In the simulations of the next section, the local penalty, conservative intervals
are close to the more computationally intensive local penalty, corrected intervals.
Since the latter have a theoretical justification, this closeness is some justification
for the former.

17.5 Simulations

17.5.1 Effects of the Tuning Parameters

A Monte Carlo experiment was conducted to learn how the tuning parameters af-
fect the accuracy of the local penalized spline. The regression function

f(x; j) = √x(1− x) sin

(
2π(1+ 2(9−4j)/5)

x + 2(9−4j)/5

)
(17.10)

was used, where j varied as a factor with levels 3, 4, 5, and 6. Larger values of
j imply greater spatial heterogeneity. The sample size was 400, the x were all
equally spaced on [0,1], and σε was 0.2. The three other factors besides j were
tuning parameters: K with levels 20, 40, 80, and 120; M with levels 3, 4, 6, and
8; and Niter with levels 1, 2, and 3. A full four-factor design was used with two
replications for a total of 384 runs.

The response was log(MASE), where MASE is defined in Section 5.6.3. Be-
cause of interaction between j and the tuning parameters, quadratic response
surfaces in the three tuning parameters were fit with j fixed at each of its four
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levels. It was found that for j = 3, 4, or 5, the tuning parameters had no appre-
ciable effects on log(MASE). For j = 6, only the number of knots, K, had an
effect on log(MASE). That effect is nonlinear: log(MASE) decreases rapidly as
K increases up to about 80, but then log(MASE) levels off.

In summary, for the scenario we simulated, of three tuning parameters only K

has a detectable effect on log(MASE). It is important that K be at least a cer-
tain minimum value depending on the regression function; however, after K is
sufficiently large, further increases in K do not affect accuracy.

17.5.2 The Automatic Algorithms

The algorithms in Section 17.3 that choose all tuning parameters automatically
were tested on simulated data. As previously mentioned, it is important that the
number of knots, K, be sufficiently large that all significant features of the regres-
sion function can be modeled. Thus, the main function of the automatic algorithm
is to ensure that K is sufficiently large. As reported in Section 17.5.1, the number
of subknots and the number of iterations were not noticed to affect accuracy, but
in our proposed algorithm we allowed them to increases slightly with K.

There were three simulations that differed in the regression function and the
sample size. All three simulations used 300 simulated data sets and a standard
deviation of all the ε equal to 0.2. The regression function was always of form
(17.10) but with different values of j. The estimators were compared by MASE.

The first simulation used j = 3 and n = 150. Panel (a) of Figure 17.1 shows
a typical data set and the true regression function. Recall that the algorithm can
choose as the final value of the tuning parameters (K,M,Niter) one of the vectors
(10, 2,1), (20, 3, 2), (40, 4, 2), (80, 6, 2), or (120, 6, 2). We coded these tuning
parameter sets as1, 2, 3, 4, and 5. Panel (b) shows the MASE for each fixed tuning
parameter set and for the myopic and full-search algorithms. Panel (c) gives his-
tograms of the tuning parameter sets chosen by the myopic (left) and full-search
(right) algorithms. Finally, panel (d) plots the ASE for tuning parameter set 5
versus ASE for tuning parameter set 1.

In this example, MASE increases with the tuning parameter set number, so
that larger values of K, M, and Niter lead to worse estimates. The myopic algo-
rithm chooses the best (i.e., the first) tuning parameter set over two thirds of the
time and performs better than the full-search algorithm. In panel (d) one sees
that the difference in ASE between the best and the worst tuning parameter sets
is quite small for over 90% of the data sets. But there are about 20 out of 300
data sets where the fifth tuning parameter set has a substantially higher ASE than
the first tuning parameter set. This behavior explains why one often finds that,
for a given data set, the tuning parameters have little effect on the fit – provided
that they exceed a certain minimal value – yet MASE still depends on the tuning
parameters even when they are above this threshold.

The second simulation used j = 3 and n = 400. See Figure 17.2. The results
are similar to those of the first simulation, except that now the myopic algorithm
chooses the first tuning parameter set nearly 100% of the time and has a MASE
value nearly as small as the best of the fixed tuning parameter set estimators.
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Figure 17.1 Study
of the automatic
algorithm for
choosing the tuning
parameters with
n = 150 and j = 3
so that there is low
spatial variability.
(a) Typical data set
and true regression
function. (b) MASE
of estimates using
each of the five
sets of fixed tuning
parameter values and
for the myopic and
full-search algorithms.
(c) Histograms of the
tuning parameter sets
chosen by the myopic
(left) and full-search
(right) algorithm.
(d) ASE for tuning
parameter set 5 versus
tuning parameter set 1.
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Figure 17.2 Study
of the automatic
algorithm for
choosing the tuning
parameters with
n = 400 and j = 3 so
that there is low spatial
variability; (a)–(d) as
in Figure 17.1.
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Figure 17.3 Study
of the automatic
algorithm for
choosing the tuning
parameters with
n = 400 and j = 6
so that there is
substantial spatial
variability; (a)–(c) as
in Figure 17.1. (d) ASE
for tuning parameter
set 5 versus tuning
parameter set 3.0 0.5 1
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The third simulation (Figure 17.3) used n = 400 and j = 6. With this value
of j there is serious spatial heterogeneity. The MASE is rather large unless the
fourth or fifth tuning parameter set is used. Both the myopic and full-search algo-
rithms choose either the fourth or fifth tuning parameter set in nearly all samples.
The bias for tuning parameter sets 1 and 2 is so large that in panel (d) the compar-
ison is between sets 3 and 5, not sets 1 and 5 as in the previous figures. The plot
in panel (d) is similar to those in the previous figures except shifted to the right
owing to the bias with parameter set 3.

We conclude that the automatic algorithms can supply reasonable, but not op-
timal, values of the tuning parameters when the user has little idea how to choose
them. In particular, for complex functions such as (17.10), both of the automatic
algorithms choose K and M large enough to obtain good estimates. However,
for less complex functions such as (17.10) with j = 3, the MASE is somewhat
reduced by choosing K and M small, but the automatic algorithms are not likely
to achieve this reduction in MASE.

The myopic algorithm performed better than the full-search algorithm for the
examples studied here, but we have seen in Section 5.6.3 that myopic algorithms
can stop prematurely if the regression function is particularly nasty. The my-
opic algorithm can be used provided one exercises caution and checks whether
it might have stopped prematurely. The full-search and myopic algorithms can
easily be computed together and, in fact, our MATLAB routine does this. It is
useful to compute both and to check whether they give vastly different estimates.
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Figure 17.4 Typical
data in the Bayesian
inference study: local
and global penalty
splines.

If they do, that is evidence that the myopic algorithm may have stopped prema-
turely. If the myopic and full-search estimates are similar, we recommend using
the myopic algorithm because it is likely to be slightly closer to the true regres-
sion function.

17.5.3 Bayesian Inference

To compare posterior distribution with and without a local penalty, we used a
spatially heterogeneous regression function

f(x) = sin{8(x − 0.5)} + 2 exp{−162(x − 0.5)2}. (17.11)

The xi were equally spaced on [0,1], the sample size was n = 200, and the εi
were normally distributed with σε = 0.3. We used quadratic splines with K =
40 knots, the number of subknots was M = 5, and the number of iterations to
minimize GCV using the local penalty was Niter = 1.

Figure 17.4 shows a typical data set and the global and local penalty estimates.
The global and local penalty estimate are difficult to distinguish visually. In cases
with more extreme spatial heterogeneity, this is not true; see an example in Rup-
pert and Carroll (2000, p. 215), where the global penalty estimate is noticeably
undersmoothed but where the local penalty estimate is much smoother in a region
where f is nearly constant.

Figure 17.5 shows the pointwise MSE and squared bias of the global penalty
estimator calculated from 300 Monte Carlo samples. Also shown is the pointwise
posterior variance given by (17.8) averaged over the 300 repetitions. The poste-
rior variance should be estimating the MSE. We see that the posterior variance is
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Figure 17.5 Bayesian
inference study:
behavior of the global
penalty estimator.
Plots of pointwise
MSE, squared bias,
and average (over
Monte Carlo trials)
posterior variance.
The MSE and the
posterior variance
have been smoothed
to reduce Monte
Carlo variance. The
posterior variance
assumes that λ

is known, so the
variability in λ̂ is not
taken into account.

Figure 17.6 Bayesian
inference study:
behavior of the local
penalty estimator.
Plots of pointwise
MSE, squared bias,
and average (over
Monte Carlo trials)
posterior variance.
The MSE and the
posterior variance
have been smoothed
to reduce Monte Carlo
variance.

constant, except for boundary effects, and cannot detect the spatial heterogeneity
in the MSE.

Figure 17.6 is similar to Figure 17.5 but is for the local penalty estimator. Two
posterior variances are shown, the conservative adjustment and the Kass–Steffey
correction. One can see that the MSE is somewhat different than in Figure 17.5
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Figure 17.7 Bayesian
inference study using
function (17.11).
Pointwise coverage
probabilities of 95%
Bayesian confidence
intervals for f(xi)

using global and
local penalties. The
probabilities have
been smoothed to
remove Monte Carlo
variability. The local
penalty intervals
use the conservative
adjustment to the
posterior variance
and the Kass–Steffey
correction.

since the estimator reduces bias by adapting to spatial heterogeneity. Also, the
posterior variance tracks the MSE better than for the global penalty estimator.

In Figure 17.7 we present the Monte Carlo estimates of the pointwise coverage
probabilities of nominal 95% Bayesian confidence intervals based on the global
and local penalty estimators. These coverage probabilities have been smoothed
by penalized splines to remove some of the Monte Carlo variability. All three
confidence interval procedures achieve pointwise coverage probabilities close to
95%. Because the local penalty methods are somewhat conservative, the global
penalty method is, on average, the closest to 95%, but the local penalty methods
avoid low coverage probabilities around features in f.

17.6 LIDAR Example

As mentioned in Section 6.8.3, an interesting feature of the LIDAR example is
that there is more scientific interest in the first derivative (f ′) than in f itself be-
cause −f ′(x) is proportional to concentration at range x; see Ruppert et al. (1997)
for further discussion. For the estimation of f, a global penalty works satisfac-
torily. Visually, the local penalty estimate of f is difficult to distinguish from the
global penalty fit.

However, for the estimation of f ′, a local penalty appears to improve upon
a global penalty. Figure 6.13 (p. 155) shows the derivatives (times −1) of fitted
splines and their confidence intervals using global and local penalties. Notice that
the confidence intervals using the local penalty are generally narrower than for
the global penalty – except at the peak, where the extra width should be reflecting
real uncertainty. The local penalty estimate has a sharper peak and less noise in
the flat areas.



17.7 Additive Models 305

17.7 Additive Models

17.7.1 An Algorithm for Additive Models

Spatially adaptive penalties can be easily extended to additive models. Suppose
we have d predictor variables and that x i = (xi,1, . . . , xi,d)

T is the vector of pre-
dictor variables for the ith case. The additive model is

yi = β0 +
d∑

j=1

fj(xi,j )+ εi.

Let the j th predictor variable have Kj knots, κ1,j, . . . , κKj,j . Then the additive
spline model is

f(x, ν) = β0 +
d∑

j=1

(
β1,j xj + · · · + βp,j x

p

j +
Kj∑
k=1

uk,j(xj − κk,j )
p
+

)
.

The parameter vector is ν = [β0, β1,1, . . . , uK1,1, . . . , uKd,d ]T. Let λj( ·) be the
penalty function for the j th predictor. Then the penalized criterion to minimize is

n∑
i=1

{yi − f(x i; ν)}2 +
d∑

j=1

λ2
j(κk,j )u

2
k,j .

Consider three levels of complexity of the penalty:

(1) λj( ·) ≡ λ (a common global penalty);
(2) λj( ·) ≡ λj (separate global penalties);
(3) λj( ·) is a linear spline (separate local penalties).

The following algorithm allows one to fit separate local penalties using only 1-
dimensional grid searches for minimizing GCV. First minimize GCV using a
common global penalty. For this penalty to be reasonable, one should standard-
ize the predictors so that they have common standard deviations. Then, using the
common global penalty as a starting value, minimize GCV over separate global
penalties. The d global penalty parameters are varied one at a time during mini-
mization, with the rationale that the optimal value of λj depends only slightly on
the λj ′, j ′ �= j. Finally, using separate global penalties as starting values, mini-
mize GCV over separate local penalties. The j th local penalty hasMj parameters,
so there are a total of M1 + · · · + Md penalty parameters. These parameters are
then varied in succession to minimize GCV.

17.7.2 Simulations of an Additive Model

To evaluate the practicality of this algorithm, we used an example in which we
added two spatially homogeneous component functions to a spatially heteroge-
neous function. Thus, there were three predictor variables, which for each case
were independently distributed as Uniform(0,1) random variables. The compo-
nents of f were spatially homogeneous, f1(x1) = sin(4πx1) and f2(x2) = x3

2 ,

and f3 was the spatially heterogeneous function
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Figure 17.8
Log-log plot of the
computation time for
fitting an additive
model with local
penalties as a function
of the number of
variables, d. A linear
fit (slope = 2.45) is
also shown.

f3(x3) = exp{−400(x3 − 0.6)2}
+ 5

3 exp{−500(x3 − 0.75)2} + 2 exp{−500(x3 − 0.9)2}.
As in Section 17.5.3, n = 300 and the ε were independent N(0, 0.25). We used
quadratic splines and 10, 10, and 40 knots for f1, f2, and f3, respectively. The
local penalty estimate had four subknots for all three functions.

First consider computation time. For a single data set and using our MATLAB
program on a SUN Ultra 1 computer, the common global penalty estimate took
2.1seconds to compute, the separate global penalty estimate took an additional1.5
seconds, and the separate local penalties estimate took an additional 10.4 seconds.
Thus, local penalties are more computationally intensive than global penalties but
still feasible for small values of the number of predictor variables d – for exam-
ple, for d = 3 here.

Now consider larger values of d. Everything else held constant, the number of
parameters of an additive model grows linearly in d and, since matrix inversion
time is cubic in dimension, the time for a single fit should grow cubically in d.

Since the number of fits needed for the sequential grid searching just described
will grow linearly in d, the total computation time for local penalties should be
roughly proportional to d 4. To test this rough calculation empirically, we found
the computation time for fitting additive models with 300 data points, 10 knots per
variable, and 4 subknots per variable. The number of predictor variables d took
seven values from 1 to 20. Figure 17.8 is a log-log plot of computation time versus
d. A linear fit on the log scale is also shown; its slope is 2.2, not 4 as the quar-
tic model predicts. The actual data show log-times that are nonlinear in log(d )
with an increasing slope. Thus, a quartic model of time as a function of d may
work for large values of d, but a quadratic or cubic model would be better for d
in the “usual” range of 1 to 20. A likely reason that the quartic model doesn’t fit
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well for smaller d is that it ignores parts of the computation that are linear, qua-
dratic, and cubic in d. The computation time for 7 variables is about 0.5 minutes
but for 20 variables is about 9.4 minutes. It seems clear that local additive fitting
is feasible up to at least 8–10 variables and perhaps 20 variables, but it is only
“interactive” up to 4 variables.

An important point to keep in mind is that computation times are largely inde-
pendent of the sample size n. The reason for this is that once CTC and CTy have
been computed, all computation times are independent of n, and the computation
of CTC and CTy is quite fast unless n is enormous.

Now consider statistical efficiency. The MSEs that were computed over 500
Monte Carlo samples for the separate local penalties estimator were 0.010, 0.0046,
and 0.0165 for f1, f2, and f3, respectively. Thus, f2 is relatively easy to estimate
and f3 is slightly more difficult to estimate than f1. Ratios of the MSE for com-
mon global penalties to separate local penalties were 1.26, 2.36, and 1.23 for f1,

f2, andf3, respectively, whereas ratios of the MSE for separate global penalties to
separate local penalties were 0.85, 0.88, and 1.20 for f1, f2, and f3, respectively.
Thus, for all three component functions, the common global penalty estimator
with a single smoothing parameter is less efficient than the fully adaptive esti-
mator with separate local penalties. For the spatially homogeneous functions f1

and f2, there is some loss of efficiency when using local penalties rather than
separate global penalties, but the spatially heterogeneous f3 is best estimated
by separate local penalties. These results are somewhat different than what we
found for univariate regression, where no efficiency loss was noticed when a lo-
cal penalty was used even though a global penalty would have been adequate.
There may be practical situations where one knows that a certain component func-
tion is spatially heterogeneous but the other component functions are not. Then
greater efficiency should be achievable by using global penalties for the spatially
homogeneous component functions and local penalties for the spatially hetero-
geneous ones.

The results in this section provide evidence that sequential 1-dimensional grid
searches to find the smoothing parameter vector are effective. The reason for this
is that the optimal value of one tuning parameter depends only weakly upon the
other tuning parameters. The result is that searches over a rather large number of
tuning parameters (up to 60 when d = 15 and there are four subknots per vari-
able) do appear to be feasible.

17.8 Bibliographical Notes

The spatially adaptive local penalty estimators were introduced by Ruppert and
Carroll (2000). Other methods for spatially adaptive smoothing include automatic
knot selection, local polynomial regression with local bandwidths (e.g. Ruppert
1997b), and wavelets. The automatic knot selection literature is discussed in Sec-
tion 3.4. For wavelets, see Cai (1999) and the bibliographic notes at the end of
Chapter 3.
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Analyses

In Chapter 1 we introduced several substantive problems that mainly involved sci-
entific studies. In this chapter, we return to these problems. The goal here is not
simply to illustrate semiparametric modeling techniques but to show how these
techniques can be integrated into scientific studies. Analyses for about half of
the studies have recently been published and so, in order to save space, we will
simply refer the interested reader to the relevant journal article.

18.1 Cancer Rates on Cape Cod

An analysis of the Cape Cod cancer data is given in French and Wand (2003). In
their presentation, a logistic geoadditive model (Section13.6) leads to maps show-
ing regions of elevated relative cancer risk after accounting for age and smoking
status. The model developed there also accounts for missingness (missing values)
in the smoking variable.

18.2 Assessing the Carcinogenicity of Phenolphthalein

Parise and colleagues (2001) used semiparametric logistic mixed models to assess
the carciogenicity of phenolphthalein. After adjusting for rodent weight, they
were not able to find a significant dose effect for phenolphthalein.

18.3 Salinity and Fishing in North Carolina

Real data sets often illustrate several different statistical principles. The salinity
data set is not simply an example of semiparametric modeling; it also shows the
differing effects of outliers on parametric and nonparametric modeling.

The salinity data are introduced in Section1.2. Recall the definitions of the vari-
ables:salinity is the measured value of salinity in Pamlico Sound, lagged.sal
is salinity two weeks earlier, and discharge is the amount of fresh water flow-
ing into the sound from rivers. In this example there are two unusual values of
discharge, and the question naturally arises of whether these data points should
be included. We will see that this question is less of an issue if one uses a semi-
parametric rather than a parametric model.

308
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Figure 18.1 Salinity
data: plot of β̂0 +
β̂1lagged.sal +
f̂ (discharge),
modeling f as a
penalized linear spline
(solid) and modeling
f as a linear function
(dashed). Also plotted
are the salinity
partial residuals
after regression on
lagged.sal.
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Figure 1.4 suggests that the effect of lagged.sal on salinity is linear but
the effect of discharge on salinity may be nonlinear. Therefore, we used the
semiparametric additive model,

salinityi = β0 + β1lagged.sali + f(dischargei )+ εi. (18.1)

To visualize f̂ , we follow the recommendation in Section 2.5.1.1 by plotting the
fitted model versus discharge with lagged.sal fixed at its average value, so
in Figure 18.1 we show β̂0 + β̂1lagged.sal + f̂ (discharge) using a 10-knot
penalized linear spline for f and also modeling f as linear. The smoothing para-
meter for the penalized spline was determined by minimizing GCV. Also plotted
are the partial residuals from the spline model. Partial residuals are defined in
Section 2.5.1.3, and here they are given by

salinityi − {β̂1(lagged.sali − lagged.sal)}.
As can be seen in Figure 18.1, all but two of the values of discharge are be-

tween 20.8 and 26.4. The anomalous values are case 5 with discharge = 29.9
and case 16 with discharge = 33.4. Most of the curvature in the spline estimate
is due to the accommodation of cases 5 and 16.

Figure 18.2 is a plot of the hat diagonals (or leverages) against case number.
One can see that case 16 has high leverage. The sum of the hat diagonals is dffit =
4.31 for the linear spline and 3 for the linear model. Therefore, the average hat
diagonal is 0.154 (= 4.31/28) for the linear spline model and 0.1071 (= 3/28)
for the linear model. For both models, the leverage for case 16 is about five times
the average. A case with a leverage value more than two times the average value
is often considered a high leverage point – see Belsley et al. (1980, sec. 2.1).
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Figure 18.2 Salinity
data: plot of diagonals
of the hat matrices for
linear spline model
and linear model.
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Figure 18.3 Salinity
data: plot of Cook’s D
for linear spline model
and linear model.
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So case 16 is a high-leverage observation, but high leverage implies only a
potential for being highly influential. What, in fact, is the influence of this case?
Figure 18.3 is a plot of Cook’s D for both the linear spline and linear models.

The effects of case 16 on the fits is evident in Figure 18.1. The effect on the
spline fit is to put the estimated curve up on the right side. For the linear model, the
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Figure 18.4 Salinity
data without case 16:
plot of Cook’s D for
linear spline model
and linear model.
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effect is to tilt the entire estimated curve. The spline fit has a certain robustness,
since the effect of case 16 is somewhat localized to large values of discharge.
This can be considered an advantage of a semiparametric fit.

Figure 18.4 is a plot of Cook’s D for fits without case 16. One can see that
with case 16 deleted, case 5 now has a high distance value. One must now won-
der whether to delete both cases 5 and 16, though we hesitate to delete any data
point unless it is known to be an error. In this case study, there is no evidence
that either case 5 or case 16 is in error. It has been noticed that if the value of
discharge were exactly 10 units less, 23.4 instead of 33.4, then its value of
salinity would be consistent with the rest of the data. However, it could very
well be that case 16 is a valid data point, and there are ways to explain case 16
without maintaining that it is erroneous. One hypothesis is that large values of
discharge indicate that the rivers flowing into Pamlico Sound are flowing so
rapidly that their fresh water flows through the sound into the ocean without mix-
ing with the water in the sound. If true, this hypothesis would explain why very
large values of discharge are not associated with low salinity.

Fortunately, the question of which observations, if any, to delete is less of a
pressing issue when one uses semiparametric rather than linear models. To ap-
preciate this fact, look at Figure 18.5. This graph shows the plots of the estimated
effects of discharge for the semiparametric model with all the data, with case 16
deleted, and with cases 5 and 16 deleted. Notice that the fits are quite similar for
discharge less than 26.4, which is the largest value observed besides cases 5
and 16. If one deletes case 16, the result is that the curve is estimated over a
shorter interval, but the curve is changed only slightly in the region were the bulk
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Figure 18.5 Salinity
data: plot of β̂0 +
β̂1lagged.sal +
f̂ (discharge) for
penalized linear spline
fits using the full data
set and with selected
cases deleted.
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Figure 18.6 Salinity
data: plot of β̂0 +
β̂1lagged.sal +
f̂ (discharge) for
linear fits using the
full data set and with
selected cases deleted.
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of the data lie. The same is true if both cases 5 and 16 are deleted. With a linear
model, in contrast, if case 16 is deleted or if both 5 and 16 are deleted then the
fitted curves change everywhere – see Figure 18.6.

The intended purpose of our modeling was to estimate salinity at time
points where salinity was not measured but discharge and lagged.sal
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were known – or at least where discharge was known and lagged.sal had
been estimated. For example, if salinity were known for one week, then it
could be estimated for a period two weeks later by using discharge. Using that
“imputed” value of salinity, one could estimate salinity forward another
two weeks, and so forth.

If discharge is less than, say, 27 (as is typically true), then the estimation of
salinity will not depend heavily on which data points are used to fit the model.

What we have have seen in this case study is an example of a general phenom-
enon: parametric models have a rigidity, so that an outlier affects the global fit;
whereas nonparametric models are flexible, so that an outlier affects only the fit
in its locality.

18.4 Management of a Retirement Fund

The response variable

contribution ≡ year-end contribution

is heavily skewed. Its logarithm displayed approximate normality, so we worked
with log(contribution) throughout the analysis.

The spreadsheet contains nine possible predictors of log(contribution). An
additive model fit containing all nine variables suggested that the variables with
the most predictive power are:

group – indicator variable taking the value 1 if the client also has a group life
or health insurance policy with Best Retirement Inc. (BRI) and 0 otherwise;

susan – indicator variable taking the value 1 if Susan Shepard sold the policy
and 0 otherwise;

eligible – number of employees eligible to participate in retirement plan;
salary – average annual employee salary in dollars.

As mentioned in Section 1.3, Susan Shepard is the only sales representative
who has been specifically trained to deal with 401(k) retirement plans. BRI would
like to know if Susan’s expertise is a factor that influences year-end contributions
to 401(k) retirement plans. If so, BRI would like to consider training other sales
representatives.

We fit all additive models containing these variables, with eligible and
salary entering either linearly or nonlinearly. Each model fit was obtained using
a mixed model representation of penalized spline-based additive models with
REML estimation of degrees of freedom. The corresponding correctedAIC value,
AICC (Section 5.3.4), was recorded. The results are summarized in Table 18.1.

The clear winner according to AICC is the model

E{log(contribution)} = β0 + β1group+ β2susan

+ β3eligible+ f2(salary). (18.2)
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Table 18.1 Corrected
AIC values for four
models containing
group, susan,
eligible, and
salary.

Model for E{log(contribution)} AICC

β0 + β1group+ β2susan+ β3eligible+ β4salary 3.7831
β0 + β1group+ β2susan+ f1(eligible)+ β4salary 3.7832
β0 + β1group+ β2susan+ β3eligible+ f2(salary) 3.6896
β0 + β1group+ β2susan+ f1(eligible)+ f2(salary) 3.7831

Figure 18.7
Graphical display of
REML fit of model
(18.2).
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The residuals after fitting were examined and seemed well-behaved. The fit is
shown in Figure 18.7. Panel (d) shows salary having a pronounced nonlinear
effect. The coefficient corresponding to susan is

β̂2 = 0.3467 with ŝt.dev.(β̂2) = 0.2248.

The corresponding t-ratio is 0.3467/0.2248 = 1.542 and has a one-sided ap-
proximate p-value of 0.062. Hence, there is some evidence that Susan’s training
positively influences year-end contributions.

18.5 Biomonitoring of Airborne Mercury

Ruppert (1997a) gives a detailed analysis of these data using local polynomial re-
gression. We have also fit tensor product spline to these data, and the fit is similar
to that in Ruppert (1997a). Tensor product methods are successful in this case
study because the data are in a roughly rectangular region. Radial basis fitting
(as discussed in Chapter 13) could also be used and would be more appropriate
in similar problems where the data are in a more irregularly shaped region.
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18.6 Term Structure of Interest Rates

The problem of estimating the term structure of interest rates was introduced in
Section 1.5. Recall that we have two types of bonds, AT&T bonds, which have
coupons, and U.S. STRIPS, which are zero-coupon bonds. There are 118 U.S.
STRIPS prices but only five AT&T bond prices. We will start with a nonpara-
metric model for the U.S. STRIPS prices. As in Section 2.8, the response is

yi = 100
P(0)

P(Ti)
,

where P(t) is the price of the ith U.S. STRIPS at time t, 0 is the time at which
the prices are given, and Ti is the maturity of the ith bond; P(Ti) is called the par
value. Theoretically, the expected value of yi is

100 exp

(
−
∫ Ti

0
r(x) dx

)
,

where r is the forward rate curve. We will use the linear spline model,

r(x) = β0 + β1x +
K∑
k=1

uk(x − κk)+,

where κ1, . . . , κK are equally spaced quantiles of the maturities. This gives us the
nonlinear regression model

yi = 100 exp

(
−β0Ti − 1

2
β1T

2
i − 1

2

K∑
k=1

uk(Ti − κk)
2
+

)
+ εi, (18.3)

where ε1, . . . , εn are assumed to be independent N(0, σ 2). Note that model (18.3)
is a Gaussian generalized regression model but with a log link function rather than
the usual identity link function for Gaussian responses. The log link comes from
financial theory. Model (18.3) is also a nonlinear regression model of the type
discussed in Section 2.8. In that section we saw that the parameters in nonlin-
ear regression models could be estimated by nonlinear least squares. Like other
spline models, model (18.3) is overparameterized and so penalized nonlinear least
squares is needed.

Define θ = (β0, β1, u1, . . . , uK)T. The penalized nonlinear least-squares esti-
mator of θ is the minimizer of

SS(θ) =
n∑

i=1

{
yi − 100 exp

(
−β0Ti − 1

2
β1T

2
i − 1

2

K∑
k=1

uk(Ti − κk)
2
+

)}2

+ λ2
K∑
k=1

u2
k. (18.4)

The hat matrix is defined as follows. As in Section 2.8, let X be the n×(2+K)

matrix whose (i, j)th element is the partial derivative
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Figure 18.8 Term
structure example:
GCV function.
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)
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Let D be the diagonal matrix with two zeros and K ones along the diagonal. Then
the hat matrix is

H = X(XT X + λ2 D)−1XT.

The degrees of freedom for the fit is

dffit(λ) = tr(H) = tr{(XT X + λ2 D)−1(XT X)}.
The GCV function is defined as before – for example, by equation (5.5). Fig-

ure 18.8 shows the GCV function for log10(λ
2) = 1, 2, . . . , 6. Notice that GCV is

minimized by a small value of λ, which induces the very rough estimate in the
upper left panel of Figure 18.9 – this estimate even becomes negative at the right
boundary, though negative values are not plotted in the figure. It is puzzling that
GCV selects such a rough estimate and, in fact, would select an even rougher one
if smaller values of λ2 had been tried. The problem is likely that the GCV as-
sumption of independent errors is not satisfied. It may be that observations with
similar values of Ti are correlated.

To investigate possible correlation of the errors, a plot of the first-order auto-
correlation function of the residuals is shown in Figure 18.10. We would like the
autocorrelation to be zero. Notice that instead it is rather high and becomes worse
as λ increases. An estimated correlation function is considered significant if its
absolute value exceeds 2/

√
n = 2/

√
118 = 0.184. Here, all six autocorrelations

are significant by this criterion.
Figure 18.11 is a plot of the residuals in time order using λ2 = 104 for the fit;

the first-order residual autocorrelation is 0.4 in this case. The dependence among
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Figure 18.9 Term
structure example:
spline estimates of the
forward rate curve for
six values of λ2.
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the residuals is quite clear. Figure 18.12 is the same plot except that λ2 = 10,
where the residual autocorrelation is 0.2.

Another problem with the data is that the observation with the largest value
of Ti has an outlying price – in fact, its price is higher than the observation with
the second largest Ti. As mentioned in Chapter 1, we learned during the produc-
tion of this book that this observation is a contaminant. If this price were correct,
then that would imply a negative interest rate when maturity is between these two
values. Yet this single outlier is not what drives GCV to select small λ, because
GCV continues to select small λ even after this case is dropped.

How should we select λ? Since GCV is selecting a value of λ giving little
smoothing and since the assumptions behind GCV are suspect, probably the best
way is visual inspection. Use λ2 = 104 corresponding to dffit = 9.5 and the mid-
dle right plot in Figure 18.9. The estimated curve in this plot shows the main
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Figure 18.10 Term
structure example:
first-order residual
autocorrelation.
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Figure 18.11 Term
structure example:
plot of residuals
against maturity when
log10(λ

2) = 4.
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trend without exhibiting too much wiggling. If the estimated curve were used
to price a credit derivative, then it would be important to do a sensitivity analy-
sis to find just where the derivative’s price is sensitive to the choice of λ: at the
small GCV value or at the larger value selected by eye. Recently, Jarrow and
colleagues (2003) have developed a new method of selecting λ based upon Rup-
pert’s (1997b) EBBS methodology, which chooses a value of λ similar to the one
we have selected by eye.
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Figure 18.12 Term
structure example:
plot of residuals
against maturity when
log10(λ

2) = 1.
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18.7 Air Pollution and Mortality in Milan: The Harvesting Effect

The analyses of these data required embellishment of generalized additive models
(Chapter 11), including distributed lags (e.g. Davidson and MacKinnon 1993), in
order to account for lagged effects of air pollution and to handle the harvesting
effect. Zanobetti et al. (2000) provide full details on this modeling and an analy-
sis of the Milan mortality data. A harvesting effect is seen to be apparent in the
Milan mortality data, with the distributed lag component capturing this effect.
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Epilogue

19.1 Introduction

The final draft of this book was written in 2002 and reflects our priorities and
views on semiparametric regression at that time. However, the interplay between
statistical methodology and applications is currently in a dynamic state. We hope
that our coverage of the main ideas of semiparametric regression will serve as a
reasonable basis for whatever new directions semiparametric regression takes. In
this closing chapter, we note that the approach to semiparametric regression used
throughout most of the book can be distilled into just a few basic ideas. We also
mention some notable omissions and comment on future directions.

19.2 Minimalist Statistics

One of the major themes of this book is the use of the mixed model framework
to fit and make inferences concerning a wide variety of semiparametric regres-
sion models, though we have intentionally used both the mixed model and more
classical GCV methods in our examples. This approach has the advantage of re-
quiring little more than familiarity with mixed model methodology, as outlined
in Chapter 4 and Section 10.8. In particular, fitting is achieved through just two
fundamental and well-established principles:

(1) estimation of parameters via (restricted) maximum likelihood; and
(2) prediction of random effects via best prediction.

If there is an important scientific exception to the basis model – such as a predic-
tor being subject to measurement error – then these principles can still be used
for fitting, as demonstrated in Chapter 15. However, as seen there and in Sec-
tion 10.8, maximum likelihood and best prediction are sometimes hindered by
the presence of intractable integrals. Computational schemes such as Laplace ap-
proximation, Monte Carlo EM, and Markov chain Monte Carlo algorithms are
then important for implementation. If a Bayesian approach is used then similar
comments apply, with fitting corresponding to finding the mode or mean of a pos-
terior density. Inference can be made within the mixed model framework using,
for example, likelihood ratio tests.

We call this streamlining of statistical methodology minimalist statistics. As
the field of statistics finds itself increasingly intertwined with other disciplines

320
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and as required models become more complicated, we believe that such mini-
malism is of critical importance. There is only so much time available to educate
interdisciplinary researchers and practitioners in statistical theory and methodol-
ogy. Even in the training of doctoral level statisticians, time is a limiting resource
and streamlining may be just as important.

19.3 Some Omitted Topics

The choice of topics covered in the book is partly driven by the case studies of
Chapter 1 and partly by what we see as a logical progression of themes for learn-
ing semiparametric regression. There are a number of additional topics that we
have not been able to cover owing to space and time constraints. It became appar-
ent to us that getting the book to students and applied workers as soon as possible
was far more important than covering all topics. We give brief mention to some
of the omitted topics here.

19.3.1 Robustness

Regression methodology that is resistant to the adverse effects of outlying re-
sponse values has been the subject of an enormous amount of literature over the
past few decades (e.g., Hampel et al. 1986; Rousseeuw and Leroy 1987; Staudte
and Sheather 1990; Wilcox 1997). Some of the main approaches to robust regres-
sion involve M-estimation (Huber1983) and the t-distribution likelihood (Lange,
Little, and Taylor1989). Welsh and Richardson (1997) provide a detailed survey of
robustness in the linear mixed model, and the approaches described there could be
used to “robustify” the semiparametric regression estimators in this book. Kam-
mann, Staudenmayer, and Wand (2002) explored the t-distribution approach for
penalized splines in the mixed model framework. Robustness has been built into
other smoothers by, for example, Fan, Hu, and Truong (1994) and Smith and
Kohn (1996).

19.3.2 Quantile Regression

Throughout the book we focused on estimation of conditional means of the re-
sponse variables. An alternative is to work with conditional quantiles. This is
appropriate for response variables that are heavily skewed and prone to outliers.
Quantile regression is also a form of robust regression. Formulation, fitting al-
gorithms, and theory for both parametric and nonparametric quantile regression
models have received a fair amount of treatment in the recent literature. See, for
example, Koenker, Ng, and Portnoy (1994) and Yu and Jones (1998).

19.3.3 Nonquadratic Penalties

All penalization in the book involved quadratic forms of certain coefficients.
A number of alternatives are possible. One is the lasso, an acronym for least
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absolute shrinkage and selection operator (Tibshirani 1996). For the linear re-
gression model

yi = β0 +
d∑

j=1

βj xji + εi, 1 ≤ i ≤ n,

the lasso estimates the βj by minimizing

n∑
i=1

(
yi − β0 −

d∑
j=1

βj xji

)2

subject to
d∑

j=1

|βj | ≤ C

for some shrinkage factor C > 0. One of the advantages is that the least sig-
nificant coefficients are estimated to be exactly zero, so model selection is more
clear-cut. The constraint can also be imposed on

∑d
j=1|βj |q for other values of

q > 0; see Yu and Ruppert (2002). Hastie, Tibshirani, and Friedman (2001) pro-
vide detailed discussion on the advantages of nonquadratic penalties.

19.3.4 Highly Adaptive Smoothing

Penalized splines with a single smoothing parameter can model nonlinear rela-
tionships quite well, provided that the curvature is not too heterogeneous. The
nonlinearity present in most of the examples in this book is adequately handled
through smoothers of this type, and the models enjoy the benefits of simplicity
and ease of fit. Yet in some application areas, such as speech recognition and
neuroscience, discontinuities and varying amounts of curvature in the signal are
the norm. A literature in what might be called highly adaptive smoothing has
emerged to deal with such data. Good performance requires algorithms that are
more complex. The spatially adaptive penalties in Chapter 17 are an effective
means of achieving an adaptive smoother, but there are other approaches in the
literature; some are based on careful knot selection. This was touched on in Sec-
tion 3.4, where penalized splines were first introduced as an alternative to the
more adaptive regression spline approaches. Several references are given there.
Others involving spline-type smoothers are Holmes and Mallick (2001), Zhou
and Shen (2001), Lee (2002), Shen and Ye (2002), and the forthcoming book by
Hansen and colleagues (2003). As discussed in Section 3.15.2, wavelets also offer
highly adaptive smoothing; see Ogden (1996) for access to this literature.

19.3.5 Missing Data

Missing data is a common problem in many application areas, and careful adjust-
ment is often necessary for trustworthy and efficient analyses. The missing data
problem has similarities with the measurement error problem covered in Chap-
ter 15. There are numerous proposed strategies for dealing with missing data;
these are surveyed in the books by Little and Rubin (1987) and Schafer (1997).
Particularly noteworthy, given Section 19.2, are likelihood-based models that ac-
count for missing data – for example, Little and Rubin (1987), Ibrahim (1990), and
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Ibrahim et al. (2001). The latter reference deals with generalized mixed models.
French and Wand (2003) explore the extension of these ideas to semiparametric
regression models with mixed model representation.

19.3.6 Functional Data Analysis

These days, data often arrive as curves or images, and methodology for their
analysis has received a great deal of treatment in the past decade or so. Ram-
say and Silverman (1997) provide a broad overview of functional data analysis.
There are a number of connections between semiparametric regression and func-
tional data analysis that we have not discussed in this book.

19.3.7 Survival Analysis

Time-to-event data are common in certain application areas, such as reliability
and actuarial science – and ubiquitous in others, such as clinical trials and drug
development. Survival analysis is concerned with statistical modeling and infer-
ence for such data. Popular survival analysis models, such as the Cox proportional
hazards model, traditionally cater to parametric functional effects. However, the
semiparametric extension can be done analogously to the methods described
throughout this book. Therneau and Grambsch (2000) provide a summary of this
work and access to related literature.

19.3.8 Single-Index Models

Additive models (Chapters 8 and11) and varying coefficient models (Section12.4)
are both means by which the effects of several predictors can be modeled in a
flexible and interpretable fashion. Another such model is the single-index model
(Ichimura 1993). If x i (1 ≤ i ≤ n) represents a vector of continuous measure-
ments, then a single-index model is one of the form

yi = f(αTx i )+ εi, (19.1)

where f is a smooth but unspecified function and where the α are coefficients
in the single index αTx i . A common extension of (19.1), called a partially lin-
ear single-index model, is the addition of a linear term βTz i, where z i is another
vector of predictors. Contributions to the estimation and theoretical properties of
single-index models include Härdle, Hall, and Ichimura (1993), Ichimura (1993),
Weisberg and Welsh (1994), Carroll et al. (1997), andYu and Ruppert (2002). The
last reference deals with penalized spline estimation of f.

19.3.9 Diagnostics

Because of space and time considerations, this book does not give as much treat-
ment of diagnostics as we would have liked. Of course, this topic has not been
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omitted entirely. Partial residual plots were discussed in Chapter 8, and the resid-
ual analysis in Chapter 2 can be applied to residuals from a semiparametric fit.
However, there is a vast literature on regression diagnostics for linear regression.
Unfortunately, similar diagnostics for semiparametric regression is a relatively
neglected area of research, although it receives some attention in the books of
Hastie and Tibshirani (1990) and Loader (1999). Other contributions include Eu-
bank (1985), Thomas (1991), and Gu (1992b). Diagnostics to accompany the
methodology described in this book could be assembled by adapting and extend-
ing of the methods developed in these references, but this is yet to be done.

19.3.10 Statistical Learning

Statistical learning is a relatively new branch of statistics (see e.g. Vapnik 1998,
2000) that has grown out of the explosion in amounts of data being collected
in various application areas. Some related topics are data mining and knowl-
edge discovery, machine learning, pattern recognition, artificial intelligence,
and bioinformatics. Examples of learning problems include prediction of a loan
applicant defaulting based on questionnaire data, identification of handwritten
postal codes from a digital image, and inference of which genes cluster together
based on their expression profiles on a microarray. The recent book by Hastie
et al. (2001) summarizes solutions to learning problems from a statistical per-
spective, and semiparametric regression is prominently featured. For example,
binary response additive models can be used to build very accurate classifiers
through the notion of boosting (Schapire et al. 1998; Jiang 2002). Neural net-
works (Bishop 1995; Ripley 1996) and support vector machines (Cristianini and
Shawe-Taylor 2000) are powerful statistical learning tools with strong connec-
tions to semiparametric regression.

19.3.11 Constrained Smoothing

In the nonparametric regression situation

E(yi |xi) = f(xi), 1 ≤ i ≤ n,

it is sometimes the case that f(·) should obey certain conditions. For example, if
x corresponds to age measurements on a group of children and y corresponds to
height measurements (subject to error), then it is reasonable to assume that f is
monotonically increasing. Therefore, the estimate f should be computed accord-
ing to the monotonicity constraint. Other possible constraints include convexity
and f having a fixed value at one or more x.

Smoothing under constraints has a substantial literature. See, for example,
Ramsay (1988), Tantiyaswasdikul andWoodroofe (1994), Delecroix, Simioni, and
Thomas-Agnan (1995), Delecroix and Thomas-Agnan (2000), and Mammen et al.
(2001). The last paper shows how to incorporate constraints into smoothers quite
generally through projection ideas and can be applied to each of the smoothers
described in this book.
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19.3.12 Smoothing Geographical Count Data

Chapter 13 dealt with the smoothing of geographically referenced “point” data,
where each sampling unit has a corresponding longitude–latitude pair. A related
problem is the smoothing of geographical “count” data, corresponding to aggre-
gated summaries for “small areas” such as U.K. enumeration districts and U.S.
census block groups. Smoothing is also important in this context because (a) the
variance of standardized incidence rates is inversely proportional to the expected The standardized

incidence rate of a
particular occurrence
(often a disease)
is the ratio of the
observed number of
occurrences to the
expected number
according to some
reference population.

count and (b) areas with small populations will have high sampling variability
(see e.g. Elliott et al. 2000). Methodology for disease mapping has close ties
with mixed model fitting (Breslow and Clayton 1993; Leroux, Lei, and Breslow
1999; Wakefield, Best, and Waller 2000; MacNab and Dean 2001). Incorporat-
ing the semiparametric regression models for nonlinear confounders can be done
straightforwardly (Fahrmeir and Lang 2002).

19.3.13 Other Topics

The list of omitted topics in this section is not exhaustive. Many other topics of
research overlap with the methodology presented in this book. Examples include
image analysis, multilevel models, and spatiotemporal models.

19.4 Future Research

Semiparametric regression has a bright future. In this book we have shown
how it can be useful in applications such as environmental epidemiology and
finance, two fields that correspond to our recent collaborative research interests.
Other areas that make extensive use of semiparametric regression are data mining
and knowledge discovery, atmospheric research, hydrology, and econometrics.
Emerging application areas such as functional magnetic resonance imaging (in
neuroscience) and computational genomics and proteomics are benefiting from
flexible regression methodology. Future research in semiparametric regression
that is tied to application areas such as these promises to be very fruitful.
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Technical Complements

A.1 Introduction

Throughout the book, a number of technical definitions and results have been
used. This appendix provides some details on each of them. Further details can
be found in specialized text books, some of which are listed in Section A.6.

A.2 Matrix Definitions and Results

In this section we assume some familiarity with the fundamentals of matrix alge-
bra and determinants. For notation, we will use bold capital letters (e.g. A) for
matrices. Vectors which will be denoted by bold lowercase letters such as a and
are assumed to be columns. The transpose of A is written as AT.

A.2.1 Trace

The trace of a square matrix A is the sum of its diagonal entries and is usually
denoted by tr(A). For example,

tr

([
7 4
3 2

])
= 7 + 2 = 9.

A very useful result concerning trace is

tr(AB) = tr(BA)

for any two matrices A and B where AB is defined and square, which requires
that A and BT have the same dimensions.

A.2.2 Eigenvalues and Eigenvectors

Let A be an m×m matrix. Then a number λ is an eigenvalue of A if it satisfies

Ax = λx

for some m× 1 vector x, called the eigenvector associated with λ. For example,[
1 3
3 1

][
1
1

]
= 4

[
1
1

]
,
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so λ = 4 is an eigenvalue of the matrix

A =
[

1 3
3 1

]
with corresponding eigenvector x =

[
1
1

]
.

Any nonzero multiple of x is also an eigenvector corresponding to λ.

The eigenvalues of A may be found by solving the equation

|A − λI| = 0.

This is an mth-degree polynomial with solutions λ1, . . . , λm, although some of
these may be complex numbers and not all are necessarily distinct. These m so-
lutions are the full set of eigenvalues of A. If A is symmetric, then all of its
eigenvalues are real.

A.2.3 Rank

The rank of a matrix A is defined as the number of linearly independent columns
(see Section A.3.3) in A and is usually denoted by rank(A). If A is a square ma-
trix, then

rank(A) = number of eigenvalues of A that are nonzero. (A.1)

Note that repeated (nondistinct) eigenvalues are included in the right-hand side
of (A.1).

A.2.4 Diagonalization

The diagonalization of an m× 1 vector a (or 1×m vector aT ) is the m×m ma-
trix with ith diagonal entry equal to the ith entry of a and off-diagonal entries
equal to zero; this is denoted by diag(a). For example,

diag([−1 8]) = diag

([−1
8

])
=
[−1 0

0 8

]
.

If A is an m×m matrix, then we define diagonal(A) to be the vector [A11, . . . ,

Amm]T with elements equal to the diagonal entries of A.

A.2.5 Elementwise Function Notation

Let

a =
 a1

...

ap

 and b =
 b1

...

bp


be general vectors of the same length. Throughout this book we use the follow-
ing notation:

a ' b =
 a1b1

...

apbp

, a/b =
 a1/b1

...

ap/bp

, s(a) =
 s(a1)

...

s(ap)

,
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where s : R → R is a scalar function. For example, 9
4

15

'
 3

2
5

 =
 27

8
75

,
 9

4
15

/ 3
2
5

 =
 3

2
3

,
and

log10

 10
1

1000

 =
 1

0
3

.
We will use 1 to denote a vector of ones, with dimension clear from the context.

A.2.6 Definiteness

A symmetric matrix A is said to be positive definite if

xTAx > 0 for all x �= 0.

A symmetric matrix A is said to be positive semidefinite if

xTAx ≥ 0 for all x.

A symmetric matrix A is positive definite if and only if each of its eigenval-
ues is positive; it is positive semidefinite if and only if each of its eigenvalues is
nonnegative.

An example of a positive definite matrix is

A =
[

7 2
2 2

]
,

since

[x1 x2 ]

[
7 2
2 2

][
x1

x2

]
= 7x 2

1 + 4x1x2 + 2x 2
2 = 5x 2

1 + 2(x1 + x2)
2 > 0

for all [x1 x2 ]T �= 0.
An example of a semipositive definite matrix is

A =
[

1 −1
−1 1

]
,

since

[x1 x2 ]

[
1 −1

−1 1

][
x1

x2

]
= (x1 − x2)

2,

which of course is nonnegative but equals zero whenever x1 = x2.

A.2.7 Triangular Matrices

A square matrix R is an upper triangular matrix if every entry below the main
diagonal of R is zero. An example of an upper triangular matrix is 8 11 −5

0 7 2
0 0 9

.
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A square matrix L is a lower triangular matrix if every entry above the main di-
agonal of L is zero.

A.2.8 Cholesky Decomposition

If A is a symmetric positive definite matrix, then there exists an upper triangular
matrix R such that

A = RT R. (A.2)

The right-hand side of (A.2) is called the Cholesky decomposition of the matrix
A. An example of a Cholesky decomposition is[

9 27
27 202

]
=
[

3 0
9 11

][
3 9
0 11

]
.

There exist fast and numerically stable algorithms for computing the Cholesky
decomposition, which is an important tool for matrix computations.

A.2.9 QR Decomposition

For a general m× n matrix A, a QR decomposition of A is

A = QR,

where Q is an m×n matrix for which QTQ = I and R is an n×n upper triangular
matrix. An example of a QR decomposition is 5/

√
2 6

√
2

0 0
5/

√
2 2

√
2

 =
1/

√
2 1/

√
2

0 0
1/

√
2 −1/

√
2

[ 5 8
0 4

]
.

A.2.10 Singular Value Decomposition

For a general m× n matrix A, the singular value decomposition of A is

A = U diag(d)VT,

where U is an m×m matrix and V is an n×m matrix such that UTU = VT V =
Im and where d is a m × 1 vector with nonnegative entries. The entries of d are
called the singular values of A. An example of a singular value decomposition is[

121/
√

2 0 8
√

2
−121/

√
2 0 8

√
2

]
=
[−1/

√
2 1/

√
2

1/
√

2 1/
√

2

]
diag

([
121
16

])[−1 0 0
0 0 1

]
.

A.2.11 Matrix Square Root

The principal square root of A is defined to be

A1/2 = U diag
(√

d
)
VT,

where U, d, and V correspond to the singular value decomposition of A (Sec-
tion A.2.10) and

√
d is obtained by replacing the entries of d by their nonnegative

square roots.
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For example,[
121/

√
2 0 8

√
2

−121/
√

2 0 8
√

2

]1/2

=
[−1/

√
2 1

√
2

1/
√

2 1
√

2

]
diag

([
11
4

])[−1 0 0
0 0 1

]
=
[

11/
√

2 0 2
√

2
−11/

√
2 0 2

√
2

]
.

The matrices
A1/2(A1/2)T and (A1/2)TA1/2 (A.3)

are both positive definite provided A is invertible. If A is symmetric and positive
semidefinite, then the matrices in (A.3) are each equal to A.

A.2.12 Derivative Vector and Hessian Matrix

Let f be a scalar-valued function with argument x ∈ Rp. The derivative vector
of f, Df(x), is the 1× p vector whose ith entry is

∂f(x)∂xi.

If f(x) ≡ [f1(x), . . . , fm(x)]T is a vector-valued function of the vector x, then
Df(x) is a matrix whose ith row is Dfi(x).

The Hessian matrix of a scalar-valued f is

Hf(x) = D{Df(x)T}
and is, alternatively, the p × p matrix with (i, j) entry equal to

∂ 2f(x)
∂xi∂xj

.

For example, if

f

([
x1

x2

])
= x 2

1 x2 − cos(x2 + 7),

then

Df

([
x1

x2

])
= [2x1x2 x 2

1 + sin(x2 + 7)]

and

Hf

([
x1

x2

])
=
[

2x2 2x1

2x1 cos(x2 + 7)

]
.

Often f has a matrix algebraic expression in terms of its argument x. Then it
is usually the case that matrix algebraic expressions exist for Df(x) and Hf(x).
For example, if

f(x) = 1
2 xTx log(xTx)

then

Df(x) = {log(xTx)+ 1}xT,

Hf(x) = (2/xTx)xxT + { log(xTx)+ 1}I.
Details on how to obtain such expressions are given in, for example, Magnus and
Neudecker (1999) and Wand (2002).
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Figure A.1 Four
members of the vector
space V1. The last one
is the zero vector.
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A.3 Linear Algebra

A.3.1 Vectors and Vector Spaces

In matrix algebraic parlance (e.g., SectionA.2), a vector is anm×1matrix such as

x =
 6

1
8

.
However, in the field of linear algebra the term “vector” is much more general. A
vector is an element of a vector space. A vector space is a set with certain prop-
erties, given that addition and scalar multiplication (i.e., multiplication by a real
number) are defined for its elements. The basic properties of a vector spaceV are:

if x, y ∈ V then x + y ∈ V;
if x ∈ V and α ∈R then αx ∈ V. (A.4)

Several other conditions, such as existence of a zero vector, are also required for
V to be a vector space. The full definition of a vector space can be found in any
linear algebra textbook.

It is easy to see that the set of m×1 matrices satisfy (A.4) and, indeed, they do
form a vector space. However, many different types of sets form vector spaces.
An example is

V1 = set of real-valued piecewise continuous functions f defined on
the interval [0,1] such that the knots of f are a subset of

{
1
4 ,

1
2 ,

3
4

}
.

Four members of V1 are shown in Figure A.1, including the zero vector of the
space: the function that is zero for all arguments in [0,1].

It is easily checked that the members of V1 satisfy (A.4) and the other condi-
tions required for a vector space.
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A.3.2 Linear Combination and Span

If x1, . . . , xk is a set of vectors and α1, . . . , αk ∈R is a set of k numbers, then

α1x1 + · · · + αkxk

is also a vector. The span of a set of vectors S is the set of all linear combinations
of the vectors in that set and is often denoted by span(S ). For example,

span

({[
8
3

]
,

[
5

−7

]})
= R

2,

the set of all 2 × 1 matrices. We also say that S spans R2.

A.3.3 Linear Dependence and Independence

Vectors x1, . . . , xk are said to be linearly dependent if there exist numbers α1, . . . ,

αk, not all zero, such that

α1x1 + · · · + αkxk = 0.

Otherwise x1, . . . , xk are said to be linearly independent. For example, the vectors[
5
2

]
and

[
10
4

]
are linearly dependent because

2

[
5
2

]
+ (−1)

[
10
4

]
=
[

0
0

]
.

On the other hand, the vectors[
5
2

]
and

[
10
3

]
are linearly independent because

α1

[
5
2

]
+ α2

[
10
3

]
=
[

0
0

]
if and only if α1 = α2 = 0.

A.3.4 Bases

A set of vectors B forms a basis for the vector space V if it spans V and if its
members are linearly independent of one another. For example,{[

8
3

]
,

[
5

−7

]}
is a basis for R2. Any other pair of linearly independent 2 × 1 matrices forms a
basis for R2. A particularly simple one is{[

1
0

]
,

[
0
1

]}
,

which is sometimes called the natural basis for R2.
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Figure A.2 Four
bases of the vector
space V1: (a) truncated
line, (b) B-spline,
(c) radial, and
(d) Demmler–
Reinsch.
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The number of elements in a basis for a particular vector space V is always the
same; this is called the dimension of the vector space. Note that R2 has dimen-
sion equal to 2.

Figure A.2 shows four different bases for V1: (a) truncated line; (b) B-spline
(see Section 3.7.1); (c) radial (see Section 3.7.3); and (d) Demmler–Reinsch (see
Section B.1.1.1). Note that the dimension of V1 is 5.

A.4 Probability Definitions and Results

A random vector x = [x1, . . . , xn]T is a vector whose components are random
variables.

A.4.1 Mean of a Random Vector

The mean or expectation vector, E(x), of x contains the expected values of the
entries of x:

E(x) =
 E(x1)

...

E(xn)

.
A.4.2 Covariance Matrix of a Random Vector

The covariance matrix of x is an n × n matrix, denoted Cov(x), whose (i, j)th
entry is the covariance between xi and xj . An equivalent definition is

Cov(x) = E[{x − E(x)}{x − E(x)}T].
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A.4.3 Conditional Distribution, Mean, and Covariance Matrix

Let x and y be two random vectors with probability density functions px and py

(respectively) and with joint probability density function py,x(y, x). The con-
ditional distribution of y given x is that distribution having probability density
function

py|x(y|x) = py,x(y, x)/px(x)

for all x at which px(x) > 0.
The conditional expectation of y given x is

E(y|x) =
∫

R
dy

py|x(y|x) dy,

where dy is the length of y.
The conditional covariance matrix of y given x is

Cov(y|x) = E[{y − E(y|x)}{y − E(y|x)}T|x].

A.4.4 Bayes Theorem

Bayes theorem is the following result, which expresses px|y(x|y) in terms of
py|x(y|x):

px|y(x|y) = py|x(y|x)px(x)∫
Rdx py|x(y|x)px(x) dx

.

Here dx is the length of x.

A.4.5 Results Concerning Mean Vector and Covariance Matrix

If x is a random vector, A is a constant matrix, and c is a constant vector whose
dimensions are such that Ax + c is defined, then

E(Ax + c) = AE(x)+ c (A.5)

and
Cov(Ax + c) = A Cov(x)AT. (A.6)

The mean of a quadratic form, xTAx, is given by

E(xTAx) = E(x)TAE(x)+ tr{A Cov(x)}. (A.7)

The following relationships hold between conditional and unconditional means
and covariance matrices:

E(y) = E{E(y|x)};
Cov(y) = E{Cov(y|x)} + Cov{E(y|x)}. (A.8)

A.4.6 Multivariate Normal Distribution

The d × 1 random vector x has a multivariate normal distribution with mean µ

and invertible covariance matrix � if its probability density function is
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px(x) = (2π)−d/2|�|−1/2 exp
{− 1

2 (x − µ)T�−1(x − µ)
};

we denote this by
x ∼ N(µ,�).

If [
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
�11 �12

�21 �22

])
is a general partitioned normal random vector, then the marginal distribution of
x2 is N(µ2,�22) and the conditional distribution of x2 given x1 is

x2|x1 ∼ N{µ2 + �21�
−1
11 (x1 − µ1),�22 − �21�

−1
11 �12}.

Analogous results hold for x1. Alternatively, x2|x1 may be expressed in terms of
the submatrices of the inverse covariance matrix of [xT

1 xT
2 ]T. If[

x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Q11 Q12

Q21 Q22

]−1)
,

then
x2|x1 ∼ N{µ2 − Q−1

22Q21(x1 − µ1),Q−1
22}.

A.5 Maximum Likelihood Estimation

Maximum likelihood estimation is a general technique for estimation of param-
eters in a statistical model. Maximum likelihood estimators generally have good
statistical properties and, in many circumstances, are optimal among competing
estimators (see e.g. Huber 1967).

Let y denote the vector of observed data, and suppose that it is modeled to
have probability density function

py(y; θ).
Here θ is a vector of parameters requiring estimation. Let � be the set of per-
missible values of θ . Then the likelihood of θ is

L(θ) ≡ py(y; θ)
considered as a function of θ ∈�. The maximum likelihood estimator of θ is

θ̂ = the θ that maximizes L(θ) over �.

A.6 Bibliographical Notes

Detailed references on matrix algebra geared toward statistics are Searle (1982)
and Harville (2000). There are numerous elementary linear algebra books; for
example, Strang (1998), Halmos (1995), Anton and Rorres (2000), and Nichol-
son (2001). Elementary probability and statistics books are also quite numer-
ous. Good examples are Hoel (1984), Hogg and Craig (1995), and Casella and
Berger (2002).
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Computational Issues

B.1 Fast Computation of Penalized Spline Smooths

A penalized spline smooth involves fitting a ridge regression. Automatic smooth-
ing parameter selection may involve several such ridge regressions. Their direct
implementation can be both slow and numerically unstable. In this section we
describe algorithms that lead to large improvements in both facets.

B.1.1 Demmler–Reinsch Orthogonalization

Suppose that
f̂α = C(CTC + αD)−1CTy (B.1)

for some symmetric matrix D. Such is the case for Gaussian data for all low-rank
spline smoothers described in the book. Algorithm A.1 allows for fast and stable
calculation of (B.1).

Algorithm A.1 Inputs: y, C, D, α.

(1) Obtain the Cholesky decomposition of CTC:

CTC = RT R,

where R is square and invertible.
(2) Form the symmetric matrix R−T DR−1 and obtain its singular value de-

composition:
R−T DR−1 = U diag(s)UT.

(3) Compute the matrix and vector,

A ≡ CR−1U and b ≡ ATy.

(4) The fitted values are then

f̂α = A
(

b
1 + αs

)
with corresponding degrees of freedom

dffit(α) = 1T

(
1

1 + αs

)
.

336
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The Cholesky decomposition applies only to nonsingular matrices. If C is ill-
conditioned then it is advisable to add a small multiple of D to CTC before ap-
plying the Cholesky decomposition, so that

CTC + δD = RT R,

where δ is small (e.g., δ = 10−10).

Once the matrix A and vectors b and s have been computed, the vector of fits
(for different values of α) reduces to a matrix multiplication. Therefore, f̂α and
dffit(α) can be computed cheaply for several α-values. This is particularly use-
ful when solving for the α corresponding to a prespecified number of degrees of
freedom.

Automatic smoothing parameter selection also benefits greatly from cheap cal-
culation for several smooths. This is because common methods, such as all those
described in Section 5.3, depend only on dffit(α) and

RSS(α) = ‖y − f̂α‖2.

For example,

GCV(α) = RSS(α)/{1− dffit(α)/n}2,

AIC(α) = log{RSS(α)} + 2dffit(α)/n,

AICC(α) = log{RSS(α)} + 2{dffit(α)+ 1}
n− dffit(α)− 2

.

Grid searches for the smoothing parameter that minimizes each of these criteria
can be done very rapidly.

If the length of y is very large, then direct computation of RSS(α) can be
costly. A faster alternative is to compute yTy, b = ATy, and ATA (which will be
low-dimensional) and then use

RSS(α) = yTy − 2yT f̂α + f̂T
α f̂α

= yTy − 2bT

(
b

1 + αs

)
+
(

b
1 + αs

)T

ATA
(

b
1 + αs

)
.

Confidence bands that adjust for bias as described in Section 6.4 can be formed
using

st.dev.( f̂α − f ) = σε

√
diagonal

{
A diag

(
1

1 + αs

)
AT

}
,

assuming that Cov(y − f ) = σ 2
ε I. When computing the diagonal in this expres-

If x is a vector,
then diag(x) is the
diagonal matrix with
the elements of x
on its diagonal. The
inverse operation is
diagonal(A), which
converts a square
matrix A to the
vector containing the
diagonal elements
of A.

sion, one does not need to first compute the entire n× n matrix. Rather, one can
use

diagonal

{
A diag

(
1

1 + αs

)
AT

}
=
[{

A diag

(
1

1 + αs

)}
' A

]
1,

where 1 is a vector of ones of length equal to the number of basis elements – that
is, the number of columns of C.
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A reasonable estimate of σ 2
ε is

σ̂ 2
ε = RSS(α)/dfres(α),

where dfres(α) can be computed as

dfres(α) = n− 21T

(
1

1 + αs

)
+
∥∥∥∥ 1

1 + αs

∥∥∥∥2

.

If computations over a grid

g = [g1, . . . , gM ]T

are required then, in the definition of f̂α, A = CR−1U should be replaced by
CgR−1U, where the columns of Cg have the same form as those in C but with
the xi replaced by the g!.

B.1.1.1 Justification of Algorithm A.1
Now

R−T DR−1 = U diag(s)UT with UTU = I.

Since U is a square matrix, UT = U−1 and so

D = RTU diag(s)U−1R.

Also,
CTC = RT R = RTUU−1R

and consequently

CTC + αD = RTU{I + α diag(s)}U−1R.

Hence

f̂α = C[RTU{I + α diag(s)}U−1R]−1CTy

= (CR−1U){diag(1 + αs)}−1(CR−1U)Ty = A
(

b
1 + αs

)
,

where A ≡ CR−1U and b ≡ ATy.
The degrees-of-freedom expression follows quickly from the result

ATA = UT R−TCTCR−1U = U−1R−T RT RR−1U = I.

The new expression for f̂α is thus of the form

f̂α = A{ATA + α diag(s)}−1ATy.

Comparison with (B.1) shows that we have effectively replaced the basis func-
tions in C with those in A where this design matrix has the orthogonality property
ATA = I. The columns of A correspond to the Demmler–Reinsch basis for the
vector space spanned by C (see Section A.3.4). The orthogonality property is
crucial for fast computation over several smoothing parameters.
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B.1.1.2 S-PLUS Implementation of Algorithm A.1
We will now give some S-PLUS code for implementation of Algorithm A.1 as
well as code for automatic smoothing parameter selection via GCV and variabil-
ity bars.

The basic inputs are the x and y scatterplot vectors. Here we will take these to
correspond to some components of the S-PLUS data set air:

x <- $radiation
y <- air$ozoneˆ(1/3)

(B.2)

Now set the default number and location of the knots:

num.knots <- max(5,min(floor(length(
unique(x))/4),35))

knots <- quantile(unique(x),seq(0,1,length=
(num.knots+2))[-c(1,(num.knots+2))])

(B.3)

Set up a logarithmic grid of alpha values:

alpha.low <- 1
alpha.upp <- 10000000
num.alpha <- 25
alpha.vec <- 10ˆ(seq(log10(alpha.low),

log10(alpha.upp),length=num.alpha))

Set up design matrices, for linear splines in this case:

n <- length(x)
X <- cbind(rep(1,n),x)
Z <- outer(x,knots,"-")
Z <- Z*(Z>0)

(B.4)

Set up input matrices for Algorithm A.1:

C.mat <- cbind(X,Z)
CTC <- t(C.mat)%*%C.mat
D.mat <- diag(c(rep(0,ncol(X)),rep(1,ncol(Z))))

Carry out steps (1) and (2) of Algorithm A.1:

R.mat <- chol(CTC)
svd.out <- svd(t(solve(t(R.mat),

t(solve(t(R.mat),D.mat)))))
s.vec <- svd.out$d
U.mat <- svd.out$u

Obtain a suite of fits for a vector of smoothing parameters, along with correspond-
ing GCV values, and determine the minimum smoothing parameter:
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A.mat <- C.mat%*%backsolve(R.mat,U.mat)
b.vec <- as.vector(t(A.mat)%*%y)
r.mat <- 1/(1+outer(s.vec,alpha.vec))
f.hats <- A.mat%*%(b.vec*r.mat)
y.vecs <- matrix(rep(y,num.alpha),n,num.alpha)
RSS.vec <- apply((y.vecs-f.hats)ˆ2,2,sum)
df.vec <- apply(r.mat,2,sum)
GCV.vec <- RSS.vec/((1-df.vec/n)ˆ2)
ind.min <- order(GCV.vec)[1]
if (ind.min==1)

stop("Hit left boundary; make alpha.low smaller.")
if (ind.min==num.alpha)

stop("Hit right boundary; make alpha.upp bigger.")
alpha.GCV <- alpha.vec[ind.min]

Compute lower and upper limits of variability bars:

df.res <- n-2*df.vec[ind.min]
+sum((1/(1+alpha.GCV*s.vec))ˆ2)

sig.eps.hat <- sqrt(RSS.vec[ind.min]/df.res)
st.dev.hat <- sig.eps.hat*sqrt(diag(A.mat%*%

(r.mat[,ind.min]*t(A.mat))))
var.bar.upp <- f.hats[,ind.min]+2*st.dev.hat
var.bar.low <- f.hats[,ind.min]-2*st.dev.hat

Plot GCV curve and minimum GCV fit, along with variability bars:

par(mfrow=c(1,2))
plot(log10(alpha.vec),GCV.vec,type="l",bty="l",

xlab="log10(alpha)",ylab="GCV")
points(log10(alpha.GCV),min(GCV.vec),pch=4,

lwd=2,cex=1.2)
lines(rep(log10(alpha.GCV),2),c(0,min(GCV.vec)),

err=-1)
plot(x,y,pch=1,bty="l")
lines(x[order(x)],f.hats[order(x),ind.min])
lines(x[order(x)],var.bar.low[order(x)],lty=3)
lines(x[order(x)],var.bar.upp[order(x)],lty=3)

The result is shown in Figure B.1.

B.1.1.3 MATLAB Implementation of Algorithm A.1
Algorithm A.1 is implemented by the MATLAB program PsplineDR04.m that is
available at the book’s website along with other MATLAB programs for smooth-
ing. PsplineDR04.m can be called as in the following example, which fits a
25-knot linear spline to the LIDAR data.
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Figure B.1 Plots
obtained by running
the S-PLUS

code listed in
Section B.1.1.2.
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The first two arguments in the call are the x- and y-variables. The third argu-
ment, which is optional and can be omitted, is a MATLAB “structure” that contains
values for tuning parameters. Any tuning parameter not defined in this structure
will be given a default value.

load lidar.dat ;
x = lidar(:,1) ;
y = lidar(:,2) ;
fit = PsplineDR04(x,y,struct(’degree’,1,’nknots’,25)) ;
plot(fit.xgrid,fit.mhat,x,y,’o’) ;

PsplineDR04.m calls the program quantileknots01.m as well as the
program powerbasis01.m. quantileknots01.m finds the sample quan-
tiles of the unique values of the x-variable and is as follows:

function knots = quantileknots01(x,nknots) ;
x = unique(x) ;
n = length(x) ;
xsort = sort(x) ;
loc = n*(1:nknots)’ ./ (nknots+1) ;
knots = xsort(round(loc)) ;

powerbasis01.m creates the polynomial and truncated power basis func-
tions that form the matrix C:

function xm = powerbasis01(x,degree,knots,der) ;
% Returns the power basis functions of a
% spline of given degree
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%
% USAGE: xm=powerbasis(x,degree,knots)
%
% Last edit: 3/22/99

if nargin < 4 ;
der = 0 ;

end ;

if der > degree ;
disp(’***************************************’) ;
disp(’***************************************’) ;
disp(’WARNING: der > degree --- xm not’) ;
disp(’returned by powerbasis’) ;
disp(’***************************************’) ;
disp(’***************************************’) ;
return ;
end ;

n = size(x,1) ;
nknots = length(knots);
mx = mean(x) ;
stdx = std(x) + 100*eps ;

if der == 0 ;
xm = ones(n,1);
else ;
xm = zeros(n,1) ;

end ;

for i=1:degree ;
if i < der ;

xm = [xm zeros(n,1)] ;
else ;
xm = [xm prod((i-der+1):i) * x.ˆ(i-der)] ;

end ;
end ;

if nknots > 0 ;
for i=1:(nknots) ;
xm = [xm prod((degree-der+1):degree) * ...
(x-knots(i)).ˆ(degree-der).*(x > knots(i))] ;
end ;

end ;
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To explain how PsplineDR04.mworks, the program will be listed in a sequence
of small sections of code with explanatory text between them. The beginning of
the program consists of comments:

function fit = PsplineDR04(x,y,param);
% Fits a P-spline to univariate x’s
% with Demmler-Reinsch algorithm.
%
% Copied from PsolineDR02 – like that program but
% optional input enters as a structure.
%
% Also allows a quadratic integral penalty
% on the 2nd derivative
%
% USAGE: fit=PsplineDR03(x,y,param);
%
% INPUT – REQUIRED
% x = independent variable (univariate)
% y = response (same length as x)
%
% INPUT – OPTIONAL (put in a structure
% that is the third argument in)
% degree = degree of the spline (default is 2)
% (changed to 3 if smooth_spline_penalty=1)
% nknots = number of knots (default min of
% floor(.3*n) and 20)
% extrapen: if 1 then the xˆdegree term is
% penalized; if 0 then not (default is 0)
% penwt = trial values of the penalty weight
% (one is chosen by minimizing gcv
% (default is logspace(-12,12,100))
% boundstab = parameter passed to quantileknots
% (see that program)
% knots (default is to generate nknots using the
% program quantileknots)
% istd = 1 if x and y are to be standardized
% before computation (default=1)
% smooth_spline_penalty: if 1 then penalty is on the
% integral from min(x) to max(x) of the
% square of the second derivative
%
% OUTPUT
% Returns a structure "fit" with the following
% components
%
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% CALLS: powerbasis01, quantileknots01
%
% Last edit: 9/17/2002

Next, any tuning constants not specified in the third input argument are set to de-
fault values.

n = size(x,1) ;

if nargin < 3 ;
param = ’’ ;

end ;

if isfield(param,’gcvfact’) == 0 ;
gcvfact = 1 ;

else ;
gcvfact = param.gcvfact ;

end ;

if isfield(param,’istd’) == 0 ;
istd = 1 ;

else ;
istd = param.istd ;

end ;

if isfield(param,’penwt’) == 0 ;
penwt = logspace(-12,12,100) ;

else ;
penwt = param.penwt ;

end ;

if isfield(param,’nknots’) == 0 ;
nknots = min([floor(.3*n), 20]) ;

else ;
nknots = param.nknots ;

end ;

if isfield(param,’knots’) == 0 ;
knots = quantileknots01(x,nknots) ;

else ;
knots = param.knots ;
nknots = length(knots) ;

end ;

if isfield(param,’degree’) == 0 ;
degree = 2 ;
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else ;
degree = param.degree ;

end ;

if isfield(param,’smooth_spline_penalty’) == 0 ;
smooth_spline_penalty = 0 ;

else ;
smooth_spline_penalty
= param.smooth_spline_penalty ;

end ;

Here the x-variable is standardized if istd is equal to 1.

originalx = x ;
if istd == 1 ;

stdx = std(x) ;
meanx = mean(x) ;
x = (x - meanx) ./ stdx ;
meany = mean(y) ;
y = y - meany ;
knots = (knots - meanx) ./ stdx ;

end ;

n = length(x) ;

If smooth spline penalty equals 1, then a cubic smoothing spline penalty
is used and so degree is set equal to 3.

if smooth_spline_penalty == 1 ;
degree = 3 ;

end ;

Next, knots and the matrix C (which is called xm in the program) are created.
Then the penalty matrix D is created.

xm = powerbasis01(x,degree,knots) ;
xx = xm’*xm ;
id = [zeros(1,degree+1) ones(1,nknots)] ;
D = diag(id) ;
maxx = max(x) ;
knots2 = [min(x);knots] ;

for i = 1:4+nknots ;

if i < 3 ;
D(i,:) = zeros(1,4+nknots) ;
elseif i == 3 ;
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D(i,1) = 0 ;
D(i,2) = 0 ;
D(i,3) = 4 ;

for i2 = 4:4+nknots ;
D(i,i2) = 6*(maxx-knots2(i2-3))ˆ2 ;
end ; % end "for i2 = 4:4+nknots"

elseif i > 3 ;
D(i,1) = 0 ;
D(i,2) = 0 ;
D(i,3) = 6*(maxx-knots2(i-3))ˆ2 ;

for i2 = 4:4+ nknots ;
knotmax = knots2( max([i-3 i2-3]) ) ;
knotmin = knots2( min([i-3 i2-3]) ) ;
D(i,i2) = 36*( (maxx-knotmax)ˆ3/3 + ...

(knotmax-knotmin) * (maxx-knotmax)ˆ2/2) ;
end ; % end "for i2 = 4:4+nknots"

end ; % end "if i < 3"

end ; % end "for i:4+nknots"

end ; % end "if smooth_spline_penalty == 1"

Next, Algorithm A.1 is started. First, the matrix R is created using MATLAB’s
built-in Cholesky factorization command.

R = chol(xx + 10e-10*D) ;
B = inv(R’) ;
[U,C] = eig(B*D*B’) ;
Z = xm*B’*U ;

Zy = Z’*y ;
ZZ = Z’*Z ;

In the code that follows, penwt is the vector of values of the penalty λ, while
beta, asr, dfres, and gcv are (respectively) the spline basis coefficients, av-
erage squared residual, degrees of freedom for residuals, and generalized cross-
validation statistics, all computed at each value of penwt. These are initialized
as zero matrices to set up storage.

m = length(penwt) ;
beta = zeros(size(xm,2),m) ;
asr = zeros(m,1) ;
gcv = asr ;
trsd = asr ;
trsdsd = asr ;
dfres = asr ;
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aic = asr ;
ssy = y’*y ;

for i=1:m ;
oneld = 1 ./ (1 + penwt(i)*diag(C)) ;
trsd(i) = sum(oneld) ;
alpha(:,i) = (Zy) .* oneld ;
asr(i) = (ssy - 2*Zy’*alpha(:,i) ...

+ alpha(:,i)’*ZZ*alpha(:,i))/n ;
trsdsd(i) = sum(oneld.*oneld) ;
dfres(i) = n - 2*trsd(i) + trsdsd(i) ;
gcv(i) = asr(i) / (1 - gcvfact*trsd(i)/n)ˆ2 ;
sigma2 = asr(i) / (1 - trsd(i)/n) ;
aic(i) = n*log(sigma2) + 2*trsd(i) ;
end ;

Next we have imin, the index of penwtwhere gcv is minimized; a, the value
of penwt at this minimum; and dffit, degrees of freedom for the fit. The fitted
curve at the GCV selected value of λ is computed.

imin = min(find( (gcv==min(gcv)) ) ) ;
a = penwt(imin) ;

dffit = trsd ;
alpha = alpha(:,imin) ;
beta = B’* U * alpha ;
dbeta = length(beta) ;
yhat = Z*alpha ;
res = y - yhat ;
sigma2hat = n*asr(imin) ./ dfres(imin) ;
sigmahat = sqrt(sigma2hat) ;

oneld = 1 ./ (1 + penwt(imin)*diag(C)) ;
postvaralpha = sigma2hat*diag(oneld);
varalpha = sigma2hat * diag(oneld.ˆ2) ;
postvaryhat = (Z.*(Z*postvaralpha))*ones(dbeta,1) ;
postvarbeta = B’*U*postvaralpha*U’*B ;
varbeta = B’*U*varalpha*U’*B ;
varyhat = (Z.*(Z*varalpha))*ones(dbeta,1) ;

Now some diagnostics, Cook’s D, the hat diagonals, and the studentized resid-
uals are computed.

[m1,m2] = size(Z) ;
hi = Z.*(Z*diag(oneld))*ones(m2,1) ;
cookD = (res.ˆ2) .* hi ./ ( dffit(imin)*(1-hi) ) ;
studres = res .* (sqrt(1-hi)) ./ sigmahat ;
Z = [] ;
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Now the estimate of the derivative is computed.

yhatder = ’’ ;
postvaryhatder = ’’ ;

if degree > 0 ;

xmder = xm ;
xmder(:,1) = 0*xmder(:,1) ;

for i = 2:degree+1 ;
xmder(:,i) = (i-1)*(abs(xm(:,i))).ˆ( ...

(i-2)/(i-1) ) ... .* (sign(x)).ˆ(i-2) ;
end ;

for i=degree+2:degree+1+nknots ;
xmder(:,i) = degree*(abs(xm(:,i))).ˆ( ...

(degree-1)/degree ) ... .* (xm(:,i) > 0) ;
end ;

yhatder = xmder*beta ;
postvaryhatder = ((xmder*postvarbeta).*xmder) ...

*ones(dbeta,1) ;
clear xmder ;
end ; % end "if degree > 0"

if istd == 1 ;
yhat = yhat + meany ;

end ;

Confidence limits for the fitted curve and its derivative are then computed.

ulimit = yhat + 2*sqrt(postvaryhat) ;
llimit = yhat - 2*sqrt(postvaryhat) ;
ulimitder = yhatder + 2*sqrt(postvaryhatder) ;
llimitder = yhatder - 2*sqrt(postvaryhatder) ;

Next, the fitted curve and its derivative are computed on an equally spaced
grid. The estimates are called mhat and mhatder, and the grid is called xgrid;
xgridm is the matrix of spline basis functions evaluated at xgrid.

xgrid = linspace(min(x),max(x),200)’ ;
xgridm = powerbasis01(xgrid,degree,knots) ;

if istd == 1 ;

xgrid = meanx + stdx*xgrid ;
mhat = meany + xgridm*beta ;
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knots = meanx + stdx*knots ;
yhatder = yhatder./stdx ;
ulimitder = ulimitder./stdx ;
llimitder = llimitder./stdx ;

else ;
mhat = xgridm*beta ;

end ;

[B,I] = unique(originalx) ;

Next, confidence limits are evaluated at xgrid.

ulimit_xgrid = interp1(originalx(I),ulimit(I), ...
xgrid,’cubic’) ;

llimit_xgrid = interp1(originalx(I),llimit(I), ...
xgrid,’cubic’) ;

ulimitder_xgrid = interp1(originalx(I), ...
ulimitder(I),xgrid,’cubic’) ;

llimitder_xgrid = interp1(originalx(I), ...
llimitder(I),xgrid,’cubic’) ;

mhatder = interp1(originalx(I),yhatder(I),
xgrid,’cubic’) ;

Various statistics are collected into a structure called fit, which is the out-
put. Exactly which statistics are included in fit depends on whether or not the
sample size n is large (i.e., over 5000).

if n < 5001 ;

fit=struct(’yhat’,yhat,’beta’,beta,’gcv’,gcv, ...
’imin’,imin,’dffit’,dffit, ...
’knots’,knots,’postvarbeta’,postvarbeta, ...
’postvaryhat’,postvaryhat,’xm’,xm,’xx’,xx, ...
’a’,a,’penwt’,penwt,’sigma2hat’,sigma2hat, ...
’dfres’,dfres,’yhatder’,yhatder, ...
’postvaryhatder’,postvaryhatder, ...
’ulimit’,ulimit,’llimit’,llimit, ...
’ulimitder’,ulimitder, ...
’llimitder’,llimitder,’asr’,asr, ...
’xgrid’,xgrid,’mhat’,mhat, ...
’x’,meanx+stdx*x,’degree’,degree, ...
’varbeta’,varbeta,’varyhat’,varyhat, ...
’ulimit_xgrid’,ulimit_xgrid, ...
’llimit_xgrid’,llimit_xgrid, ...
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’ulimitder_xgrid’,ulimitder_xgrid, ...
’llimitder_xgrid’,llimitder_xgrid, ...
’mhatder’,mhatder,’hi’,hi,’res’,res, ...
’cookD’,cookD,’studres’,studres) ;

else ;
fit=struct(’yhat’,yhat,’beta’,beta,’gcv’,gcv, ...

’imin’,imin,’dffit’,dffit,’knots’,knots, ...
’postvarbeta’,postvarbeta, ...
’postvaryhat’,postvaryhat,’xx’,xx,’a’,a, ...
’penwt’,penwt,’sigma2hat’,sigma2hat, ...
’dfres’,dfres,’yhatder’,yhatder, ...
’postvaryhatder’,postvaryhatder, ...
’ulimit’,ulimit,’llimit’,llimit, ...
’ulimitder’,ulimitder, ...
’llimitder’,llimitder,’asr’,asr, ...
’xgrid’,xgrid,’mhat’,mhat, ...
’x’,meanx+stdx*x,’degree’,degree, ...
’varbeta’,varbeta,’varyhat’varyhat) ;

end ;

B.1.1.4 Multipredictor Extension
Demmler–Reinsch orthogonalization can be extended to fit semiparametric mod-
els involving several predictors. For example, penalized spline fitting of the ad-
ditive model

yi = f(si)+ g(ti)+ εi

involves solving the ridge regression

(CTC + αs Ds + αt Dt )
−1CTy

for smoothing parameters αs and αt . For fixed αs, a suite of estimates of g for
several αt values can be obtained by replacing CTC in step (2) of Algorithm A.1
by CTC + αs Ds and vice versa.

B.1.2 QR Decomposition

An alternative approach to handling the ridge regressions that arise in penalized
spline models is through QR decomposition (see e.g. Golub and Van Loan 1983;
Hastie 1996). Algorithm A.2 provides the fitting procedure. Here D is assumed
to be positive semidefinite.

Algorithm A.2 Inputs: y, C, D, α.

(1) Form the augmented matrices

Ca =
[

C√
αD1/2

]
and ya =

[
y
0

]
.
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(2) Obtain the QR decomposition of Ca,

Ca = QR,

and set
Q1 = matrix consisting of first n rows of Q.

(3) The fitted values are then

f̂α = CR−1QT
1y.

Note that the degrees of freedom and standard error estimates can be computed
from

dffit(α) = tr(R−1QT
1C)

and
st.dev.( f̂α − f ) = σε

√
diagonal(CR−1QT

1 ).

Other quantities described in Section B.1.1 can be computed straightforwardly
using Q1 and R. Hastie (1996) provides some of the details.

B.1.2.1 Justification of Algorithm A.2
Note that

CT
aCa = CTC + αD and CT

aya = CTy,

so
f̂α = Cβ̂a,

where
β̂a ≡ (CT

aCa)
−1CT

aya. (B.5)

However, (B.5) corresponds to ordinary least-squares estimation, for which
the QR approach is standard (Golub and Van Loan 1983). The solution is

β̂a = R−1QTya = R−1QT
1y.

B.1.2.2 Multipredictor Extension
Algorithm A.2 can be easily extended to general ridge regressions of the form

(CTC + B)−1CTy,

where B is positive semidefinite, and hence allow fitting of the various multi-
predictor models considered in this book. Hastie (1996) gives some of the details.

B.2 Computation of Covariance Matrix Estimators

Many of the models described in the book are special cases of the linear mixed
model

y = Xβ + Zu + ε, where Cov

[
u
ε

]
=
[

G 0
0 R

]
.
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As described in Section 4.5.4, the covariance matrices G and R can be estimated
by assuming normality of y and maximizing either the log-likelihood or restricted
log-likelihood. We will focus on the latter:

!R(V) = − 1
2 [log|V| + yT V−1{I − X(XT V−1X)−1XT V−1}y
− log|XT V−1X|] − n

2 log(2π), (B.6)

with

V ≡ Cov(y) = ZGZT + R.

However, direct computation of (B.6) and its derivatives is hindered by the pres-
ence of the determinant and inverse of the n× n matrix V. The identities

V−1 = R−1 − R−1ZG(I + ZT R−1ZG)−1ZT R−1,

|V| = |R||I + ZT R−1ZG| (B.7)

(Harville 1977) help overcome this problem. Assuming that R has a simple form
(e.g., is diagonal), the matrices requiring inverses and determinants are q × q,

where q is the number of columns in Z.

Most of the examples considered in the book involve the fitting of variance
component models, which take the form

G = blockdiag
1≤!≤c

(σ 2
u!I), R = σ 2

ε I.

In this case it is useful to introduce the vector

α = [α1, . . . , αc]
T ≡ [σ 2

ε/σ
2
u1, . . . , σ

2
ε/σ

2
uc]

T

and the matrices

A(α) ≡ blockdiag
1≤!≤c

(α!I) and �(α) ≡ σ 2
ε V−1.

Then, using the identities (B.7) and letting p be the number of columns in X, the
following set of computing formulas can be derived:

!R(σ
2
ε ,α) = − 1

2 [(n− p) log(σ 2
ε )+ {y − Xβ(α)}T�(α){y − Xβ(α)}/σ 2

ε

+ log|I + ZTZA(α)−1| + log|XT�(α)X|] − n
2 log(2π);

β(α) = {XT�(α)X}−1XT�(α)y;
�(α) = I − Z{A(α)+ ZTZ}−1ZT.

For fixed α, !R(σ
2
ε ,α) is maximized over σ 2

ε > 0 by

σ̂ 2
ε (α) = {y − Xβ(α)}T�(α){y − Xβ(α)}/(n− p).

Therefore, all that remains is maximization of !R(σ̂
2
ε (α),α) over α ∈ Rc+, and

this must be done numerically. Further details on this numerical maximization –
including expressions for partial derivatives – are given in Lindstrom and Bates
(1988), Searle et al. (1992), and Pinheiro and Bates (2000).
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B.3 Software

B.3.1 Smoothing Software

The support of smoothing functionality in commercial software packages has
increased quite markedly in recent years. This section provides a summary of
developments known to us at the time of writing.

B.3.1.1 S-PLUS Functions
The commercial version of S-PLUS comes equipped with a number of func-
tions for scatterplot smoothing as well as a function for fitting generalized ad-
ditive models. Scatterplot smoothing functions include ksmooth(), loess(),
smooth.spline(), and supsmu(). Of these, smooth.spline() is the one
closest to the penalized spline smoothers used throughout this book. Indeed, for
sample sizes greater than 50, smooth.spline() uses a low-rank approxima-
tion to the smoothing spline that can be thought of as a penalized spline with
cubic radial basis functions.

Suppose that commands (B.2) have been issued. Then the fitted values, with
GCV smoothing parameter selection, can be obtained using:

fit <- smooth.spline(x,y)
f.hat <- predict.smooth.spline(fit,x)$y

The degrees-of-freedom value for the fit may also be specified by the user. For
example, a smooth with 12 degrees of freedom is obtained by replacing the first
line above with:

fit <- smooth.spline(x,y,df=12)

To illustrate the use of additive models, suppose that three predictors x1, x2,
x3 and a response y are set. An example, based on the S-PLUS data set air, is:

x1 <- air$radiation
x2 <- air$temperature
x3 <- air$wind
y <- air$ozoneˆ(1/3)

(B.8)

Then an additive model fit based on low-rank smoothing splines can be obtained
and plotted as follows:

fit <- gam(y˜s(x1)+s(x2)+s(x3))
par(mfrow=c(2,2))
plot(fit,ask=F,se=T,bty="l")

Note that, by default, each smooth uses 3 degrees of freedom (not counting the
intercept). The user may also specify the number of degrees of freedom through
commands such as:

fit <- gam(y˜s(x1,df=7)+s(x2,df=6)+s(x3,df=8))
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The function step.gam() implements the model selection algorithm as de-
scribed in Section 8.6.2.

B.3.1.2 S-PLUS and R Modules
Some researchers have written their own smoothing “modules” and made them
available on the Internet. Those known to us are either in the S (S-PLUS) lan-
guage or the closely related R language. Some examples are KernSmooth and
LOCFIT, described (respectively) in the books by Wand and Jones (1995) and
Loader (1999). Typically such modules are placed on the developer’s personal
website, but both S-PLUS and R have designated Internet repositories for mod-
ules. Each have several modules for smoothing. At the time of writing, S-PLUS
modules could be downloaded from the site 〈lib.stat.cmu.edu/S/〉, which
is part of the Statlib system maintained by the Department of Statistics,
Carnegie Mellon University. Modules in the R language may be downloaded
from the Comprehensive R Archive Network (CRAN). This site has several
“mirrors” but at the time of writing is accessible via the Statlib system at
〈lib.stat.cmu.edu/R/CRAN/〉. If you use S-PLUS or R, it is worth brows-
ing these sites from time to time for new and updated modules.

B.3.1.3 The SemiPar Module
An S-PLUS module named SemiPar has been developed in parallel to the writ-
ing of this book. It handles many of the models discussed in the book. The central
function of the SemiPar module is named spm(), an acronym for semipara-
metric model, and has similarities with the S-PLUS function gam(). However,
spm() has the following features not available in gam():

• penalized splines of arbitrary rank and degree (the knots may be input or
chosen by default);

• the option to have the degrees of freedom for all smooth functions in addi-
tive models chosen automatically via REML or ML;

• bivariate smoothing, including incorporation into additive models (called
geoadditive models in Section 13.6).

Information on SemiPar is posted on the website corresponding to this book.
The URL is 〈http://www.cup.org/titles/0521785162.htm〉.

B.3.1.4 SAS Procedures
The SAS package has several procedures for smoothing and generalized additive
model fitting, for example, PROC GAM and PROC TPSLINE. Note, in particular,
that PROC GAM facilitates the choice of multiple smoothing parameters via GCV.

B.3.2 S-PLUS Mixed Model Functions

The S-PLUS function lme() fits linear mixed models and therefore can aid the

The code given
in Section B.3.2
corresponds to
the nlme library
developed by
José C. Pinheiro and
Douglas M. Bates.
This library is not
available in earlier
releases of S-PLUS. computation of many of the estimators described in this book. For example, if X
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and Z are computed using the S-PLUS code in equations (B.4), then automatic
scatterplot smoothing can be achieved through:

fit <- lme(y˜-1+X,random=pdIdent(˜-1+Z))
beta.hat <- fit$coef$fixed
u.hat <- unlist(fit$coef$random)
f.hat <- X%*%beta.hat + Z%*%u.hat

The estimated variance components are:

sig.sq.eps.hat <- fit$sigmaˆ2
sig.sq.u.hat <- sig.sq.eps.hat*exp(

2*unlist(fit$modelStruct))

The REML estimate of α is then:

alpha.REML <- sig.sq.eps.hat/sig.sq.u.hat

Next, we illustrate how an additive model may be fit using lme(). Sup-
pose that (a) the data are defined by (B.8) and (b) knots corresponding to each
of the three predictors are obtained and stored as knots.1, knots.2, and
knots.3. First set up the block structure for the random effects covariance
matrix:

K.1 <- length(knots.1)
K.2 <- length(knots.2)
K.3 <- length(knots.3)
re.block.inds <- list(1:K.1,(K.1+1):(K.1+K.2),

(K.1+K.2+1):(K.1+K.2+K.3))
Z.block <- list()
for (i in 1:length(re.block.inds))

Z.block[[i]] <- as.formula(paste("˜Z[,c(",paste(
re.block.inds[[i]],collapse=","),")]-1"))

The additive model can now be fit as follows:

fit <- lme(y˜-1+X,random=pdBlocked(Z.block,
pdClass="pdIdent"))

beta.hat <- fit$coef$fixed
u.hat <- unlist(fit$coef$random)

The variance component estimates are given by:

sig.sq.eps.hat <- fit$sigmaˆ2
sig.sq.u.hat <- sig.sq.eps.hat*exp(

2*unlist(fit$modelStruct))
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B.3.3 SAS Mixed Model Procedures

The following macro computes the default set of knots from a vector x, as done
by the S-PLUS code (B.3).

%macro default_knots(librefknots=,data=,
varknots=,numknots=);

proc sort data=&data (keep=&varknots) out=q1;
by &varknots;

run;
data q2;

set q1;
by &varknots;
if first.&varknots;

run;
data &librefknots..knots;

set q2 nobs=n;
knotsp=int(n/5);
if knotsp>=35 then kmx=35; else
if knotsp<35 then kmx=knotsp;
%if &numknots ne %then %do;

ktemp=&numknots;
if 1 <= ktemp <= 35 then kmx=ktemp;

%end;
kintrvl=int(n/kmx);
knotsok=mod(_n_,kintrvl);
knots=&varknots;
if knotsok=0 then output;
keep knots;

run;
%mend;

Given the scatterplot vectors x and y and a set of knots, the following macro
uses PROC MIXED to perform a penalized linear spline regression with REML
estimation of the amount of smoothing.

%macro scatter_smooth(libref=,data=,x=,y=,
knotdata=,knots=);

data dataw;
set &data (keep=&y &x);
m=1;

run;
data kt1;

set &knotdata nobs=nk;
call symput(’nkt’,nk);

run;
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proc transpose data=&knotdata prefix=knots out=knotst;
var &knots;

run;
data &libref..knotst;

set knotst;
m=1;

run;
data dataw;

merge dataw &libref..knotst;
by m;
%let nk=&nkt;
array Z (&nk) Z1-Z&nk;
array knots (&nk) knots1-knots&nk;
do k=1 to &nk;

Z(k)=&x-knots(k);
if Z(k)<0 then Z(k)=0;

end;
drop knots1-knots&nk _name_;

run;
ods output CovParms=&libref..varcomp;
proc mixed;

model &y = &x / solution outp=&libref..yhat;
random Z1-Z&nk / type=toep(1) s;

run;
%mend;

B.3.4 WinBugs

WinBugs (Bayesian analysis using Gibbs sampling for Windows) is a flexible
software package that implements MCMC simulations and runs under Microsoft
Windows. As discussed in Chapter 16, the result of using MCMC is a sample
from the joint posterior distribution of parameters. Writing code in WinBugs is
similar to summarizing the model, which makes the language intuitive and easy
to use. Currently, WinBugs is distributed free of charge over the Internet. In
this section, we assume the reader is already familiar with WinBugs. We found
that WinBugs produces results quite similar to those in Chapter 16, which were
obtained from our own MATLAB programs.

We first describe the logistic semiparametric model used for the union–wages
example analyzed previously in Section 16.5.1.1. Then we show how this pro-
gram can easily be transformed for binomial, Poisson, and Gaussian responses.

B.3.4.1 Logistic Semiparametric Models

Specifying the likelihood. For the union–wages example in Section 16.5.1.1,
response[k] is the indicator of whether or not the kth individual is a mem-
ber of the union. The logit of the probability that the kth individual belongs to
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the union is assumed to have a linear mixed structure. The matrices X and Z are
the design matrices for fixed effects (e.g., polynomials) and random effects (e.g.,
truncated power functions), respectively. beta is the vector of fixed effects pa-
rameters and u contains the random effects. The function inprod is the inner
product of two vectors.

The program begins with the following code:

model
{
for (k in 1:n)

{
response[k]˜dbern(p[k])
logit(p[k])<-inprod(x[k,],beta[])

+inprod(z[k,],u[])
}

In WinBugs code, dbern is the Bernoulli distribution.

Specifying the priors. We take the fixed effects parameters beta to have inde-
pendent and very diffuse normal priors. Here 1.0E-6 represents the precision
(i.e., the inverse of the variance) of the normal distribution. WinBugs does not
allow improper priors, so we cannot specify a uniform prior on beta as in Chap-
ter 16.

The program continues with the following code for the priors:

for (l in 1:degree+1)
{
beta[l]˜dnorm(0,1.0E-6)
}

We assume the random effects u are exchangeable with mean zero, precision
tauu, and a normal distribution. They are specified by the code:

for (i in 1:nknots)
{
u[i]˜dnorm(0,tauu)
}

We assume that the prior distribution of the precision tauu of the random
effects u is gamma with mean 1 and variance 1000. sigmau is the standard de-
viation for the distribution of u[i]. The program continues as:

tauu˜dgamma(1.0E-3,1.0E-3)
sigmau<-1/sqrt(tauu)

Here, dgamma(alpha,beta) means the gamma distribution with mean αβ−1

and variance αβ−2.
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Constructing the design matrix for the fixed effects. The fixed effects design ma-
trix can be constructed outside WinBugs, but we prefer to do it here so that the
program can easily be used for other applications. For the union–wages exam-
ple, covariate[k] is the wage per hour for the kth individual. The !th column
of matrix x corresponds to the !th-order power function. The function pow is the
power function, whose second argument is the exponent. The number of obser-
vations is n and the degree of the spline used for smoothing is degree. The code
for constructing this design matrix is:

for (k in 1:n)
{
for (l in 1:degree+1)

{
x[k,l]<-pow(covariate[k],l-1)
}

}

Constructing the design matrix Z of random effects. The ith column of matrix
Z contains the truncated power funtion corresponding to the ith knot. The step
function is an indicator of the argument being positive. Here nknots is the num-
ber of knots and knot is a vector of knots (usually fixed-sample quantiles for
covariate). The program continues:

for (k in 1:n)
{
for (i in 1:nknots)

{
u[k,i]<-(covariate[k]-knot[i])*step(

covariate[k]-knot[i])
z[k,i]<-pow(u[k,i],degree)
}

}
}

Inputting arguments. The input arguments containing data and user-specified
parameters include:

response – an n-dimensional vector of 0–1 responses (e.g., union
membership);

covariate – an n-dimensional vector used for the regression of response
(e.g., wages/hour);

n – number of observations;
nknots – number of knots;
degree – degree of the spline;
knots – an nknots-dimensional vector of knots.
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B.3.4.2 Binomial Responses
This model can be extended to a logistic model simply by replacing the line

response[k]˜dbern(p[k])

with

response[k]˜dbin(p[k],N[k])

where p[k] continues to represent the probability of success and N[k] is the
number of repeated Bernoulli experiments. Here N is an n-dimensional vector
that needs to be input.

B.3.4.3 Poisson Semiparametric Models
To change the model to a Poisson model, we simply replace the likelihood part
of the model with

for (k in 1:n)
{
response[k]˜dpois(p[k])
log(p[k])<-inprod(x[k,],beta[])+inprod(z[k,],u[])
}

B.3.4.4 Gaussian Semiparametric Models
To change the model to spline smoothing with normal errors, one needs to replace
the likelihood part of the model with

for (k in 1:n)
{
response[k]˜dnorm(m[k],taueps)
m[k]<-inprod(beta[],x[k,])+inprod(u[],z[k,])
}

where the conditional mean, m[k], of the response given the random effects is
modeled as a spline. We also need to add a line specifying the prior distribution
of the error precision taueps:

taueps˜dgamma(1.0E-3,1.0E-3)

B.3.4.5 Other Models
Because of the flexibility of WinBugs, the programs just described can be ex-
tended easily to GAMs, models with measurement error, and variance function
models. The beauty of WinBugs is that one need only describe the model –
estimation is automatic.
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PROC NLIN in SAS, 49

profile log-likelihood, 101
pseudolikelihood, 201

see also iteratively reweighted least
squares

QR decomposition, 329, 350
quadratic form, 334
quantile regression, 321
quasilikelihood, 266

R software, 354
R2, 36, 182
radial basis functions, 236, 242, 248, 254, 314
radial smoother, 248, 252, 253

higher-dimensional, 253
radial symmetry, 250
random effect, 93
random effects, prediction of, 99
random intercept, 92
range parameter, 245
rank, of a matrix, 327
ranking and selection, 98
regression

nonlinear, 48
nonparametric, 58
polynomial, 46
quadratic, 60
ridge, 66, 100

regression coefficients, inference, 30
REML,100–2,113,115,121,122,131, 247, 320

sensitivity to number of knots, 177
REML test, 107, 108
residual, deleted, 45
residual sum of squares, 34, 44, 114, 115, 119
residuals, 20–2, 28

nonlinear regression, 49
partial, 40, 173
plot, 21, 22
studentized, 23

response, 16, 20, 21
response surface, 38
restricted log-likelihood, 101
restricted (or residual) maximum likelihood:

see REML
ridge regression: see regression, ridge
RMSE, 122
robustness, 321
rotation invariance, 242
roughness penalty, 66
RSS, expectation of, 83
rug plot, 38

sandwich formula, 219
SAS
PROC MIXED, 356
software package, 49, 101, 354
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scatterplot, 57, 62, 89
smoothing, 57, 58, 76, 80, 81, 84, 85, 87, 89

score equations, 210
semiparametric mixed model, 186
semiparametric model

binary offset: see binary offset,
semiparametric model

general parametric component, 164, 167
hypothesis testing, 168
inference for, 167

semivariogram, 247
serially correlated errors, 190
simple linear regression, 17, 18, 21
single index, 323
SiZer, 156, 158
skewed data, 194
smoother

advice on choosing, 87
degrees of freedom of, 80, 81, 174
error of, 76
full-rank, 80, 87
linear, 28, 76
local constant, 85
local linear, 84, 85, 87
local polynomial, 84, 235, 307, 314
low-rank, 80, 87, 252, 253, 257
matrix, 76, 140
rank of, 78, 80
series-based, 86, 87

smoothing
constrained, 324
geographical count data, 325
highly adaptive, 322
software, 353

smoothing parameter, 66
selection, 112–20

for additive model, 176
smoothing spline: see spline, smoothing
space-filling designs, 255, 257
span, of a set of vectors, 332
spatial process, 247
special functions, 246
spectral density function, 244
spline, 62

cubic smoothing, 71, 250
natural cubic, 71, 72
penalized, 28, 65, 66, 88, 91, 113
smoothing, 28, 88

spline models, modularity of, 226
S-PLUS, 49, 101, 339, 341, 353, 354
SemiPar module, 354

standard errors, 31, 201, 202, 208, 211
stationarity, 243, 244
statistical learning, 324
stepwise algorithm, 184
subject-specific curves, 191, 192
supremum, 143
survival analysis, 323
SVD (singular value decomposition), 257,

329, 339

t-statistic, 31
tensor products, 236, 240, 314
term structure, 8
testing

for existence of feature, 156
for no effect, 149

using F -tests, 150
thin plate spline, 250, 254, 257, 260
trace, of a matrix, 33, 326
transformations, 51, 57, 199, 263

Box–Cox, 52
power, 51
variance-stabilizing, 53

triangular matrix, 328
truncated line, 59

UMVUE, 99
uniform prior, 109
uniformly minimum variance unbiased

estimator: see UMVUE
upper triangular matrix, 328

variability bands, 39–41, 133–5, 172, 340
variance component, 91, 93, 102, 103, 113
variance estimation, 33, 119

effect of bias in curve estimate, 119
variance functions, 199–201, 261–6
variogram, 247
varying coefficient model, 234–6
vector space, 331
vectors, linear independence of, 80

wavelets, 87
whip model, 61
Wilcoxon test, 122
WinBugs software package, 357

X-matrix, 58

zero-coupon bond, 8, 315
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