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Preface
As a token of appreciation and in celebration of the 60th birthday of Professor Terence
P. Speed, this volume has been compiled from contributions offered by his colleagues
and former students.

Terry's intellectual curiosity and enthusiasm, along with deep and very broad sub-
ject matter knowledge and expertise, have been highly influential to many individuals.
His influence extends to the wider statistical community as well. Terry has a solid
record of service to the statistical profession, including serving as reviewer or editor
for numerous journals and also for the U. S. National Science Foundation and National
Institutes of Health, and is a member (or Fellow) of several professional societies, in-
cluding the ASA, LSI, WNAR, and IMS. Terry has also accepted officer responsibilities
(for example, past President of WNAR), and indeed is serving as the current President
of the IMS. In addition, he has received a number of professional accolades; for exam-
ple, he has recently given the prestigious Wald lectures at the Joint Statistical Meetings
(2001) and the Forum Lecture at the European Meeting of Statisticians (2002).

After completing the Ph. D., Terry became a Lecturer at the University of Sheffield.
He was later Associate Professor, then Professor, at the University of Western Australia.
He was Chief of the Division of Mathematics and Statistics at the CSIRO in Australia
before coming to the University of California at Berkeley as a Professor in 1987. Since
1997, he has split his time, roughly evenly, between Berkeley and Melbourne, Australia,
where he is Division Head of Bioinformatics at the Walter and Eliza Hall Institute of
Medical Research.

His career thus far has encompassed a number of remarkably distinct areas, be-
ginning with algebra, then probability, followed by statistics and its applications in a
number of fields, particularly in genetics and, most recently, bioinformatics. This broad
background has allowed him to find connections between apparently vastly different
fields: for example, between algebraic group theory and genetic linkage analysis. Terry
also maintains an active role in statistical education at all levels, promoting learning
both through his own teaching and his book Stat Labs and papers on the subject.

To present a concrete picture of Terry's research activities, we considered including
a list of his publications here. However, we have not done so for two practical reasons.
First, space: his publications number in the hundreds; and second, timeliness: Terry
is even now publishing at so rapid a pace that any such list would be immediately out
of date. We refer interested readers to electronic databases such as Current Index to
Statistics, MathSciNet, PubMed of the United States National Library of Medicine,
and Current Contents, for example. However, to give an impression of the variety of
Terry's work, we note that his papers have been published in such diverse journals as:

Mathematics, Probability, and Information Theory: Advances in Applied
Probability, Annals of Applied Probability, Canadian Mathematical Bul-
letin, IEEE Transactions on Information Theory, Journal of Applied Prob-
ability, Journal of the Australian Mathematical Society, Journal of the Lon-



don Mathematical Society, Probability Theory and Related Fields, Pro-
ceedings of the Cambridge Philosophical Society, SIAM Journal on Ap-
plied Mathematics, Stochastic Processes and their Applications;

Statistics: American Statistician, Annals of Statistics, Applied Statistics,
Australian Journal of Statistics, Biometrics, Indian Journal of Statistics,
International Statistical Review, Journal of Computational and Graphical
Statistics, Journal of Educational Statistics, Journal of the American Sta-
tistical Association, Journal of the Royal Statistical Society Scandinavian
Journal of Statistics, Statistica Sinica, Statistical Science;

Genetics: American Journal of Human Genetics, Annals of Human Genet-
ics, Bioinformatics, Cytogenetics and Cell Genetics, Genetic Epidemiol-
ogy, Genetics, Genome Research, Genomics, Human Heredity, Journal of
Molecular Evolution, Nature Reviews Genetics, Nucleic Acids Research,
Theoretical and Applied Genetics;

Others: Canadian Journal of Fisheries and Aquatic Sciences, Electrophore-
sis, European Journal of Immunology, Infection and Immunity, Investiga-
tive Ophthalmology, Journal of Applied Bacteriology, Journal of Computa-
tional Biology, Journal of Immunological Methods, Journal of Solid State
Chemistry, Molecular and Biochemical Parasitology, Molecular Vision,
Neuron, Proceedings of the National Academy of Sciences USA, Socio-
logical Methodology, Statistics for the Environment, Survey Methodology,
Theoretical Population Biology.

The response to invitations to submit contributions was tremendous, and has re-
sulted in this very diverse collection of papers. They address topics in many of the
areas in which Terry has had an interest during some part of his highly varied career.
He has had great impact in the development and progress of several of these fields,
most recently in experimental design and statistical analysis of microarray studies of
gene expression. This volume contains refereed papers, roughly organized by topic, on
probability, algebraic experimental design, generalized linear models, statistical educa-
tion, and assorted applications, including the US census, fire risk assessment, genetics
and other biological applications. We all hope that every reader will find something
of interest and will benefit from this access to the broad spectrum of scientific and
mathematical/statistical ideas represented here.

Happy Birthday, Terry!
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Poisson-Kingman Partitions

Jim Pitman

Abstract

This paper presents some general formulas for random partitions of a finite
set derived by Kingman's model of random sampling from an interval partition
generated by subintervals whose lengths are the points of a Poisson point pro-
cess. These lengths can be also interpreted as the jumps of a subordinator, that is
an increasing process with stationary independent increments. Examples include
the two-parameter family of Poisson-Dirichlet models derived from the Poisson
process of jumps of a stable subordinator. Applications are made to the random
partition generated by the lengths of excursions of a Brownian motion or Brown-
ian bridge conditioned on its local time at zero.

Keywords: exchangeable; stable; subordinator; Poisson-Dirichlet; distribution

1 Introduction

This paper presents some general formulas for random partitions of a finite set de-

rived by Kingman's model of random sampling from an interval partition generated

by subintervals whose lengths are the points of a Poisson point process. Instances and

variants of this model have found applications in the diverse fields of population genet-

ics [17, 19], combinatorics [4, 48], Bayesian statistics [23], ecology [15, 37], statistical

physics [11, 12, 13, 53, 55], and computer science [25].

Section 2 recalls some general results for partitions obtained by sampling from a

random discrete distribution. These results are then applied in Section 3 to the Poisson-

Kingman model. Section 4 discusses three basic operations on Poisson-Kingman mod-

els: scaling, exponential tilting, and deletion of classes. Section 5 then develops for-

mulas for specific examples of Poisson-Kingman models. Section 6 recalls the two-

parameter family of Poisson-Dirichlet models derived in [50] from the Poisson process

of jumps of a stable(α) subordinator for 0 < α < 1. Section 7 reviews some results

of [41, 46, 49, 50] relating the two-parameter family to the lengths of excursions of a

Markov process whose zero set is the range of a stable subordinator of index α. Section

8 provides further detail in the case α = j which corresponds to partitioning a time

interval by the lengths of excursions of a Brownian motion. As shown in [2, 3], it is

this stable(^) model which governs the asymptotic distribution of partitions derived

in various ways from random forests, random mappings, and the additive coalescent.

See also [5, 9] for further developments in terms of Brownian paths, and [10, 25] for
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applications to hashing and parking algorithms. This paper is a revision of the earlier

preprint [42]. See [48] for a broader context and further developments.

2 Preliminaries

This section recalls some basic ideas from Kingman's theory of exchangeable random

partitions [30, 31], as further developed in [43]. See [45,48] for more extensive reviews

of these ideas and their applications. Except where otherwise specified, all random

variables are assumed to be defined on some background probability space (Ω,^F,P),

and E denotes expectation with respect to P. Let N \— {1,2,...}, let F denote a random

probability distribution on the line, and let Π be a random partition of N generated by

sampling from F. That is to say, two positive integers / and j are in the same block

of Π iff Xi: = Xj, where conditionally given F the Xi are independent and identically

distributed according to F. Formally, Π is identified with the sequence (Π π ) , where Π n

is the restriction of Π to the finite set NΛ := {1,...,«}. The distribution of Π n is such

that for each particular partition {A \, ,Ak} of N π with #(Ai) = Λ, for 1 < i < k, where

/i, > 1 andχf = 1 n{ — n,

Ψ(nn = {Au...,Ak})=p(nu-. ,nk) (1)

for some symmetric function p of sequences of positive integers, called the exchange-
able partition probability function (EPPF) of Π. Conversely, Kingman [30,31] showed

that if Π is an exchangeable random partition of N, meaning that the distribution of its

restrictions Tln is of the form (1) for every «, for some symmetric function /?, then Π has

the same distribution as if generated by sampling from some random probability distri-

bution F. Let P( denote the size of the zth largest atom of F. If F is a random discrete

distribution, then Σ;PZ = 1 almost surely, and Π is said to have proper frequencies (Pi).

In that case, let Pj denote the size of the yth atom discovered in the process of random

sampling. Put another way, Pj is the asymptotic frequency of the yth class of Π when

the classes are put in order of their least elements. It is assumed now for simplicity that

Pi > 0 for all i almost surely, and hence Pj > 0 for all j almost surely. The sequence

(Pj) is a size-biased permutation of (Pi). That is to say, Pj = Pn. where for all finite

sequences (ίy, 1 < j < k) of distinct positive integers, the conditional probability of the

event (πy = ij for all 1 < j < k) given (P\,Pi-> •) is

p. p.
p Γ ι 2 t Λ ( Ύ )
' Ί 1 _ P . 1 _ P . _ _ P .

1 Λ*l A ^Z! Γlk-\

The distribution of Π n is determined by the distribution of the sequence of ranked fre-

quencies (Pi) through the distribution of the size-biased permutation (Pj). To be precise,

the EPPF p in (1) is given by the formula [43]

(3)
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Alternatively [45]

/>(*!,•••,**)= Σ E Π ^ (4)

where (j\,..., y'jt) ranges over all permutations of k positive integers, and the same for-

mula holds with Pj. replaced by Pj.. For each n = 1,2, the EPPF p, when restricted to

{n\, , Λjfc) with X,-/!,- = >z, determines the distribution of Π Λ . Since Π π is the restriction

of Π n + i to N π , the EPPF is subject to the following sequence of addition rules [43]: for

p(nu -,nk) = £ / ? ( . . . , r t y + l , . . . ) + / ? ( « i , ,>z*,l) (5)

7=1

where (..., ny + 1,...) is derived from («i,... ,/ifc) by substituting rij + 1 for rij. The

first few rules are

) (6)

l , l ) = 2 / ? ( 2 , l ) + / ? ( l , l , l ) (7)

where /?(2,1) = /?(1,2) by symmetry of p. Letμ(g) denote the qth moment of P\\

(8)

where v denotes the distribution of P\ on (0,1]. Following Engen [15], call v the struc-

tural distribution associated with an random discrete distribution whose size-biased

permutation is (Pj), or with an exchangeable random partition Π whose sequence of

class frequencies is (Pj). The special case of (3) for k — 1 and n\ = n is

p{n)=Έ{Pζ-ι]=μ(n-l) (Λ = 1,2Γ»)- (9)

From (6), (7), and (9) the following values of the EPPF are also determined by the first

two moments of the structural distribution:

p(l,l) = \-μ(l); p(2,l) = μ(l)-μ(2); /?(1,1,1) = 1 - 3μ(l) +2μ(2). (10)

So the distribution of the random partition of {1,2,3} induced by Π with class frequen-

cies (Pi) is determined by the first two moments of the structural distribution of P\. It

is not true in general that the EPPF is determined for all (n \, , n£) by the structural

distribution, because it is possible to construct different distributions for a sequence of

ranked frequencies which have the same structural distribution.

Continuing to suppose that (P, ) is the sequence of ranked atoms of a random dis-

crete probability distribution, and that (Pj) is a size-biased permutation of (Pi), for an

arbitrary non-negative measurable function / , there is the well known formula
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This formula shows that the structural distribution v encodes much information about

the entire sequence of random frequencies. Taking / in (11) to be the indicator of

a subset B of (0,1], the quantity in (11) is v(B) = fβP~lv(dp). This measure v is

the mean intensity measure of the point process with a point at each Pz G (0,1]. For

x > j there can be at most one P, > x, so the structural distribution v determines the

distribution of Pi = max^P, on ( i , 1] via the formula

P(Λ >x)= v(x, 1] = ί p-ιv(dp) (x > i).
J{x,\]

(12)

Typically, formulas for Ψ(P\ > x) get progressively more complicated on the intervals

( l ' ^ ] ' ( ϊ > 5 ] ' " " See for instance [40,50].

A random variable of interest in many applications is the sum of mth powers of

frequencies

1=1 7=1

where it is still assumed that S\ = 1 almost surely. Let π : = {A\,-',Ak} be some

particular partition of N Λ with #(Λ, ) = n, for l<i<k, and consider the event (ΠΠ > π),

meaning that each block of Π n is some union of blocks of π. Then it is easily shown

that
' k 1 k

P(ΠΠ > π) = E γ[Sn. = Σ Σ P(nBi, ,nBj) (13)

where the second sum is over partitions {2?i,...,2?y} of N*, and ΠB '•— ΣieBni ^n

particular, for /iz = m this gives an expression for the kth moment of Sm for each k =

1,2,...:

E \Sm \ — 2^ — 2^ p(mk\,...,mkj) (14)

where the second sum is over all sequences of j positive integers (k\,..., kj) with k\ +

\-kj — k. Thus the EPPF associated with a random discrete distribution directly

determines the positive integer moments of the power sums Sm, hence the distribution

ofSm, for each m.

3 The Poisson-Kingman Model

Following McCloskey [37], Kingman [29], Engen [15], Perman-Pitman-Yor [40, 41,

50], consider the ranked random discrete distribution (P, ) := (Ji/T) derived from an

inhomogeneous Poisson point process of random lengths J\ > J2 > > 0 by normal-

izing these lengths by their sum T := X°lj Jt. So it is assumed that the number Nj of J[

that fall in an interval / is a Poisson variable with mean Λ(/), for some Levy measure
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Λ on (0,oo), and the counts N/^ ^Njk are independent for every finite collection of

disjoint intervals I\, ,7^. It is also assumed that

L
1
xA(dx) < 00 and Λ[l,«>) <

0

to ensure that Ψ(T < 00) — 1. The sequence (P, ) may be regarded as a random element of

the space (P^ of decreasing sequences of positive real numbers with sum 1. Throughout

this section, the following further assumption is made to ensure that various conditional

probabilities can be defined without quibbling about null sets:

Regularity assumption. The Levy measure Λ has a density p(x) such that the distri-

bution ofT is absolutely continuous with density

f{t):=Ψ{Tedt)/dt

which is strictly positive and continuous on (0,©o).

Note that the regularity assumption implies the total mass of the Levy measure is

infinite:

Γp(x)dx = oo. (15)
Jo

The results described below also have weaker forms for a Levy density p(x) just subject

to (15), with appropriate caveats about almost everywhere defined conditional proba-

bilities.

It is well known that / is uniquely determined by p via the Laplace transform

E(e~XT) = [ e-**f{x)dx = exp[-ψ(λ)] (λ > 0) (16)
JO

where, according to the Levy-Khintchine formula,

ψ ( λ ) = f (1 - e~λx)p(x)dx. (17)
JO

Alternatively, / is the unique solution of the following integral equation, which can be

derived from (16) and (17) by differentiation with respect to λ:

f(t) = fp(v)f(t-vfyv. (18)

Let (Pj) be a size-biased permutation of the normalized lengths (P, ) := {Jί/T) and let

(Jj) — (TPj) be the corresponding size-biased permutation of the ranked lengths (/,).

Then (18) admits the following probabilistic interpretation [37, 41]:

P(/i edvje dt) = p{v)dvf{t - v)dt-. (19)

This can be understood as follows. The left side of (19) is the probability that among

the Poisson lengths there is some length in dv near v, and the sum of the rest of the
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lengths falls in an interval of length dt near t — v, and finally that the interval of length
about v is the one picked by length-biased sampling. Formally, (19) is justified by the
description of a Poisson process in terms of its Palm measures [41].

The following two Lemmas are read from [41, Theorem 2.1]. The first Lemma is
immediate from (19), and the second is obtained by a similar Palm calculation.

Lemma 1
[41] For each t > 0 the formula

f(p\t) :=ptp(pt)ίΆ (0<p< 1; p := 1-p), (20)

where p is the density of the Levy measure ofT and f is the probability density ofT,
defines a function ofp which is a probability density on (0,1). This is the density of
the structural distribution ofP\ \—JχjT given T = t:

nPi€dp\ή=f(p\t)dp (0<p<l). (21)

Lemma 2
[41] Forj = 0,1,2,"-let

2}:=Γ-XΛ= £ Jk (22)
k=\ k=j+\

which is the total length remaining after removal of the first j Poisson lengths J\,... ,7/
chosen by length-biased sampling. Then the family of densities (20) on (0,1), parame-
terized byt>0, provides the conditional density of the random variable

given Γo, , Γy via the formula

V(GJ+ι€dp\To,...Jj) =f(p\Tj)dp (0<p<l). (23)

Lemma 2 provides an explicit construction of a regular conditional distribution for
(Pj) given T = t for arbitrary t > 0. This conditional distribution of (Pj) given T = t
determines corresponding conditional distributions for the ίP^-valued ranked sequence
(Pi) and for an associated random partition Π of N.

Definition 3
The distribution of (P, ) := (Ji/T) on ίP+ determined by the ranked points J, of a Poisson
process with Levy density p will be called the Poisson-Kingmαn distribution with Levy
density p, and denoted PK(p). Denote by PK(p \t) the regular conditional distribution
of (Pi) given (T = t) constructed above. For a probability distribution γ on (0,o°)? let

PK(p,γ):= / PK(p|0γ(Λ) (24)
Jo
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be the distribution on ̂  obtained by mixing the PK(p 11) with respect to y(dt). Call

PK(p,γ) the Poisson-Kingman distribution with Levy density p and mixing distribution

Ί

Note that pκ(p | ί ) = PK(p,δ,), where δt is a unit mass at t, and that PK(p) = Pκ(p,γ)

for y(dή = f{t)dt. A formula for the joint density of (Pj, ,PΠ) for (Pi) with pκ(p | /)

distribution was obtained by Perman [40] in terms of the joint density p\ (ί,jt) of T and

J\. This function can be described in terms of p and / as the solution of an integral

equation [40], or as a series of repeated integrals [50]. But this formula will not be used

here.

For a probability distribution Q on T^9 such as Q = pκ(p,γ), a random partition Π

of N will be called a Q-partition if Π is an exchangeable random partition of N whose

ranked class frequencies are distributed according to Q. Immediately from Definition

3, the structural distribution of a PK(p,γ)-partition Π of N, that is the distribution on

(0,1) of the frequency Pi of the class of Π containing 1, has density

P(P, € dp) I dp = Γf(p I t)Ί{dt) (0 < p < 1) (25)
70

where f(p \ t) given by (20) is the density of the structural distribution of A given T = t

in the basic Poisson construction. Similarly, the EPPF of Π is

p(ni,'~,*k)= ί p(nu ,nk\t)y{dή (26)
Jo

where p(n\, , rik \ t), the EPPF of a pκ(p | /)-partition, is determined as follows:

Theorem 4

The EPPF of a PK(p | t)-partition is given by the formula

f
Jo
f pn+k-2I(nu...,nk;tp)f(p\t)dp (27)
o

where n = Σ\ ni> I{n\ v) = 1 ifk = 1 andn\ = n, and for k = 2,3,. . .

* 1

A
(28)

ί = l

whereSk is the simplex {(u\,...,Uk) : ux > 0 andu\ -\ hwjt = 1}

Proof. In view of the formula (20) for f(p \ t), the formula (27) is obtained from for-

mula (31) in the following Lemma by dividing by f(t)dt, letting p = ΣZ*ZΛ, a n d inte-

grating out with respect to p and to wz = Xij(pt) for 1 < i < k — 1. •

A change of variables gives the following variant of formula (27), whose connection

to the next lemma is a bit more obvious:

^ (29)
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Lemma 5

Let Πn be the restriction to Nn of a PK(p) partition Π whose class frequencies (in order

of least elements) are Pj = Jj/T, where T = ΣjJj has density f, and the lengths Jj

are the points of a Poisson process of lengths with intensity p, in length-biased random

order. Then for each partition {A \, ,Ak} of Nn such that #{Ai) — πi for 1 < / < k,

P(Πn = {AU'",Ak}Ji E dxi for\<i<kje dt) (30)

= rnf(t - Σ ? = 1 * , )
i=\

Proof. This can be derived by evaluation of the expectation (3) for the joint distribution

of Pi, . . . ,Pk given T = t determined by Lemma 2. Alternatively, there is the following

more intuitive argument, which can be made rigorous using the characterization of

Poisson process by its a Palm measures, as in [49, 41]. Let Π be constructed as in [46]

using random intervals // laid down on [0, T] in some arbitrary random order, where the

lengths Ji := |7j | are the ranked points of the Poisson process with intensity p(x), and

T = ΣjJi. Let U\, f/2, * be i.i.d. uniform on (0,1) independent of this construction. Let

Π be the partition of N generated by the random equivalence relation «~mif f either

n — mov TUn and TUm fall in the same interval /; for some i. Then by construction, Π

is a PK(p) partition. For the event in (30) to occur,

(i) there must be some Poisson point in dxt for each 1 < i < k, and

(ii) given (i), the sum of the rest of the Poisson points must fall in an interval of

length dt near t - ^=\ xu a n d

(iii) given (i) and (ii), for each 1 < i < k and each m G At the sample point TUm

must fall in the interval of length JC,.

The infinitesimal probability in (30) therefore equals

\Jlp(xi)dxΛ f(t~ΣUxi)dt{[(^)n' (32)

which rearranges as (31). •

The formula (27) expresses p{n\, ,n^ \ t) as the expectation of a function of Pi

given T = t, where the function depends on t and n \, , n^. Because some values of

an EPPF can always be expressed as moments of Pi, as in (8) and (10), it seems natural

to try to express an EPPF similarly whenever possible. This idea serves as a guide to

simplifying calculations in a number of particular cases treated later. The integrations

in (27) and (28) are essentially convolutions, which can be expressed or evaluated in

various ways. Consider for instance the length Tk'.= T — Σf=i^' which remains after

removal of the first k lengths discovered by the sampling process. Then the formula of

Lemma 5 can be recast as

Ψ(Πn = {Au->,Ak},Ji e dxt for \<i<kjke dv) (33)
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= (v + Σ t i XiΓ"Av)dv Y[p(xi)xT dXi (34)
ι=l

which yields the following integrated forms of (27):

Corollary 6

The EPPF of a Pκ(p) -partition is given by the formula

n(n n)~ Γ Γ f{v)dV Π ^ P W & ' ™
P\n\, , nk) - I / — — T (35)

JO JO {v + Σi=\χi)
+ Σi=\χi)

where n := χf=1 niy or again by

p(nu-,nt) = ̂ ^ Γλ^dλe-^fl^iλ) (36)

where ψ(λ) : = /0°°(l — e~^uc)p(x)dx is the Laplace exponent as in (17), and

*p{x)dx (m = 1,2,...). (37)

Proof. Formula (34) yields (35) by integration, and (36) follows after applying the

formula b~n = r{n)~ι J^λ^e-^dλto b = v + Σ?=i*, . Π

These integrated forms (35) and (36) also hold more generally, with f{v)dv replaced

by Ψ(T G dv), and p(x)dx replaced by the corresponding Levy measure on (0,<*>), as-

suming only that the Levy measure has infinite total mass.

Provided E(eεT) < °° for some ε > 0, the Laplace exponent ψ can be expanded in a

neighbourhood of 0 as

where the cumulants κ.m of T are the moments of the Levy measure

= Γxmp(x)dx.
Jo

Then for each partition {A \, ,Ak] of N n such that #(Ai) = Πi for 1 < / < k, Lemma 5

yields the formula

Ψ{Πn = {AU'",4fc},Tedή= ΓnΨ(T + Σξ=ιJiiΛι e dt) f[κni (38)
i=\

where JιΛ denotes a random length distributed according to the Levy density tilted by
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and T and the Jz?n/ for 1 < i < k are assumed to be independent. If fnu...,nk{ή denotes
the probability density of T + Σf=1^Πi, then formula (27) for the EPPF of a Pκ(p | ή-
partition can be rewritten

(39)

and formula (35) for the EPPF of a pκ(p)-partition becomes

k

(40)

See also James [23] for closely related formulas, with applications to Bayesian non-
parametric inference.

4 Operations

Later discussion of specific examples of Poisson-Kingman partitions will be guided
by a number of basic operations on Levy densities p and their associated families of
partitions.

4.1 Scaling

By an obvious scaling argument, the PK(p) and PK(p') distributions are identical when-
ever p'(x) = bp(bx) is a rescaling of p for some b > 0. The converse is less obvious,
but true [49, Lemma 7.5].

4.2 Exponential tilting

It is elementary that if p is a Levy density, corresponding to a density / for Γ, and b is
a real number such that ψ(i) defined by (17) is finite, then

pV>\x)=p(x)e-bx (41)

is also a Levy density, and the corresponding density of T is

=f{t)e^b)-bt (42)

It is also well known [34, Proposition 2.1.3] that if P ^ denotes the probability dis-
tribution governing the Poisson set up with Levy density p ^ then (42) extends to the
absolute continuity relation

dψ{b)
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This relation is equivalent to a combination of (42) and the following identity, which
can also be verified using the construction of Lemma 2:

PK(p(ό) 11) = PK(p I /) for all t > 0. (44)

Consequently

pκ(p^',γ) = pκ(p,γ) (45)

for every γ. In particular, the distribution on ίP^ derived from the unconditioned Poisson
model with Levy density p^ is

p κ ( ρ w ) = pκ(ρ,γ(*)) (46)

where γ ^ is the pW distribution of Γ, that is ψ>\dt) = f^b\ήdt for /*) as in (42).
It can also be shown that if p' and p are two regular Levy densities such that PK(p') =
PK(p,γ) for some γ, then p' = p ^ and γ = γW for some b.

4.3 Deletion of Classes

The following proposition, which generalizes a result of [41], provides motivation for
study of pκ(p,γ)-partitions for other distributions γbesides y(dt) = f[t)dt correspond-
ing to the unconditioned Poisson set up, and γ = bt corresponding to conditioning
on T — t. Given a random partition Π of N with infinitely many classes, for each
k — 0,1, let Πk be the partition of N derived from Π by deletion of the first k
classes, an operation made precise as follows. First let Π'k be the restriction of Π to

Hk := N — G\ Gk where G\, Gk are the first k classes of Π in order of least
elements, then derive Π^ on N from Tlf

k on Hk by renumbering the points of Hk in
increasing order.

Proposition 7
Let Π be a Pκ(p, y)-partition of N, and let Π* be derived from Π be deletion of its first
k classes. Then Πk is a ?κ(p,yk)-partition ofN, where γ^ = yQk for Q the Markov
transition operator on (0,°o)

Q(t,dv)=p(t-v){t-v)Γ]f{v)l{O<v<t)dv.

In particular, ifΠ is a PK(p) partition ofN, then Πk is PK(p,γ^) -partition ofN, where
yk is the distribution ofTk, the total sum of Poisson lengths T minus the sum of the first
k lengths discovered by a process of length-biased sampling, as in (22).

Proof. According to a result of [41] which is implicit in Lemma 2, the sequence
is Markov with stationary transition probabilities given by Q. The conclusion follows
from this observation, the construction of PK(p γ), and the general construction of an
exchangeable partition of N conditionally given its class frequencies [43].
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5 Examples

5.1 The one-parameter Poisson-Dirichlet distribution

Following Kingman [29], for the particular choice

p(jc) = θ j c " 1 e - t e (47)

where θ > 0 and b > 0, corresponding to T with the gamma(θ,6) density

the PK(p) distribution is the Poisson-Dirichlet distribution with parameter θ, abbrevi-
ated PD(Θ). Note the lack of dependence on the inverse scale parameter b. The well
known fact the structural distribution of PD(Θ) is beta(l,θ) follows immediately from
(20). It follows easily from any one of the previous general formulas (27), (35), (36) or
(40), that the EPPF of a PD(Θ)-partition Π = (ΠΛ) is given by the formula

J
This is a known equivalent [32,43] of the Ewens sampling formula [18,17] for the joint
distribution of the number of blocks of Tln of various sizes. It is also known [41, 49]
that the following conditions on p are equivalent:

(i) p is of the form (47), for some b > 0, θ > 0;
(ii) PK(p 11) =PK(p) for all t > 0;
(iii) PK(p) =PD(Θ) for some θ > 0.
(iv) a PK(p)-partition has EPPF of the form (49) for some θ > 0.

See also [4, 33] for further properties and applications of PD(Θ).

5.2 Generalized gamma

After the one-parameter Poisson-Dirichlet family, the next simplest Levy density p to
consider is

-ιe-bx (50)

for positive constants c and b, and α which is restricted to 0 < α < 1 by the constraints
on a Levy density and (15). The corresponding distributions of T are known as gen-
eralized gamma distributions [8]. Note that the usual family of gamma distributions is
recovered for α = 0, and that a stable distribution with index α is obtained for b = 0
and 0 < α < 1. One can also take α = — K for arbitrary K > 0, except that in this model
the Levy measure has a total mass ψ(°°) < ~ s o

ψ(T = 0)= exp(-ψ(oo)) > 0,
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contrary to the present assumption that the distribution of T has a density. Such models
can be analyzed by first conditioning on the Poisson total number of lengths, which
reduces the model to one with say m i.i.d. lengths with probability density proportional
to p. In the case (50) for α = —K, that is to say that the lengths are i.i.d. gamma(κ,Z?)
variables. This model for random partitions has been extensively studied. It is well
known that features of the PD(Θ) model can be derived by taking limits of this more
elementary model with m i.i.d. gamma(κ, b) lengths as K -> 0 and m-)°° with Km -» θ.
See [45] for a review of this circle of ideas and its applications to species sampling
models.

The PK(pα?C)&) model for a random partition defined by pα,c,& in (50) for 0 < α < 1
was proposed by McCloskey [37], who first exploited the key idea of size-biased sam-
pling in the setting of species sampling problems. Due to the remarks in Section 4 about
scaling and exponential tilting, for 0 < α < 1 the family of pκ(pα c^,γ) distributions,
as γ varies over all distributions on (0,°°), depends only on α and not on c or b. So in
studying this family of distributions on (P^ and their associated exchangeable partitions
of N, the choice of c and b is entirely a matter of convenience. This study is taken up in
the next section, with the choice of b = 0 and c = oc/Γ(l — α) which leads to the sim-
plest form of most results. See also [8, 24, 23] regarding generalized gamma random
measures and further developments.

5.3 The stable (α) model

Suppose now that Ψa governs the Poisson model for T with stable (α) distribution with
Laplace transform

Eα[exp(-λΓ)] = Γe-hcfa(x)dx = exp(-λα) (51)
Jo

for some 0 < α < 1, where fa(x) is the stable(α) density of Γ, that is [52]

k=0

For α = \ this reduces to the following formula of Doetsch [14, pp. 401-402] and Levy
[36]:

P. {IT € dx)/dx = \fd\x) = 4 = H e - = . (53)
2 2 V 2 π

2

Special results for α = 5, discussed in Section 8, involve cancellations due to simplifi-
cation of fa(pή/fa(t) for 0 < p < ί9 which does not appear to be possible for general
α. The Levy density corresponding to the Laplace transform (51) is well known to be

pa{x) = ψf=Ίή {x>0) (54)
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Write P α ( 11) for P α ( | T = t). So the P α distribution of (Pi) on ίP1 is PK(pα), and the

P α ( 11) distribution of (Pi) is PK(pα | t). Note from (51) that if Tc is the total length in

the model governed by c p α for a constant c > 0, then Tc has the same distribution as

cιlaT\ for T\ = T as in (51). Together with similar scaling properties of the lengths Ju

this implies that for all 0 < α < 1 and t > 0 there is the formula

PK(cp α | 0 = P K ( p α | c - 1 / α 0 . (55)

Formulas for the p κ ( p α | ί ) distribution are described in Section 5.4. These formulas

can be understood as disintegrations of simpler formulas obtained in [43], and recalled

in Section 6, for a particular subfamily of the class of PK(pα,γ) distributions.

One reason for special interest in the Kingman family associated with the stable

Levy densities p α is the following result which will be proved elsewhere.

Theorem 8

The EPPF of an exchangeable random partition Π of N with an infinite number of

classes with proper frequencies has an EPPF of the Gibbs form

k

p(n\ , . - . , / ! * ) = cn)kYlwni where n = χf= 1 m (56)
i = l

for some positive weights w\ — 1, M>2, W3,... and some cn^ if and only if

m-\

for some 0 < α < 1. if α = 0 then the distribution of Π corresponds to /J°

for some probability distribution γ on (0,°°), whereas ifO < α < 1 then the distribution

ofU corresponds to pκ(p α ,γ) := /0°°PK(pα|/)γ(Λ) for some γ.

See also Kerov [28] and Zabell [57] for related characterizations of the two-parameter

family discussed in Section 6. This family is characterized by an EPPF of the form (56)

with cn{ a product of a function of n and a function of A:.

5.4 Conditioning on T

Assume throughout this section that 0 < α < 1. Immediately from (20) and (54), in the

pκ(p α 11) model, the distribution of Pi has density

( 0 <'<"

Let h be a non-negative measurable function with Eαh(T) = /0°°h(t)fα(t)dt = 1, and

let h'fα denote the distribution on (0,«>) with density h(t)fα(t). Then by integration
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from (57), under the probability Ψa,h governing the PK(pα, h fa) model, the structural

distribution of P\ has density

Pα,Λ(Λ G dp) I dp = Γ{ι

a_a)P~a(l -p)a-\aAl -P) (0 < p < 1) (58)

where

ηα;/,(«) := Γv-ah(v/u)fa(v)dv = ¥«[T-ah(T/u)). (59)
Jo

For instance, it is known [41] that

Cα,θ := ̂ (T~θ) = ψ ^ ^ (θ > -<*)• (60)

So for θ > - α , (58) and (59) imply:

if h(t) = C~eί" θ then A has beta(l - α,α + θ) distribution. (61)

This example is discussed further in the next section. As another example, if h(t) =

exp(Z?α — bt) for some b > 0, then according to (46) the model PK(pα, h fa) is identical

to the unconditioned generalized gamma model PK(pα^) with

: = Pa(x)e~bx = Γ ( 1 ^ ^

So the structural density of the Pκ(p α ^) model is given by formula (58) with

η α , Λ ( W ) = exp(&α)Eα[Γ-αexp(-&Γ/W)]. (62)

For α = j the expectation in (62) can be evaluated by using (53) to write for ξ > 0

E, [Γ-i exp(-ξΓ)] = - 1 j Γ f β-(^'/χ)/2 = 2 ^ , ( V ξ ) (63)

where AΊ is the usual modified Bessel function. Thus for b > 0 the Pκ(pi b) model

associated with the inverse Gaussian distribution [54] has structural distribution with

density f\ b given by the formula

Proposition 9

For 0 < α < \,q > 0 letμa(q\t) denote the qth moment of the structural density (57)

ofώePK(pα |ί) distribution:

μα(q\ή' =Jo

lpqfα(p \ή dp = ¥«(!* \ή. (65)
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Then for each t > 0 the EPPF of a PK(pα 11) partition of N is

where

[l-α]Π|._i := Y\(

Alternatively,

Pα(nu • • •, nk 10 = —gα(« - *α | ί) Π t 1 ~ <*k-l ( 6 7 )
' 1=1

wherega(q\t) :=

k

π
1=1

Proof. This is read from Theorem 4, since the integral (28) reduces to a standard

Dirichlet integral. •

As checks on (66), the symmetry in (wj, ,«Ar) is still evident, and pa(
n\ή =

μa{n — 1 \t) as required by (8). However, the addition rules (5) for this EPPF are not

at all obvious. Rather, they amount to the following identity involving moments of the

structural distribution:

Corollary 10

The moments μa(q\ή of the structural distribution on (0,1) associated with the PK(pα 11)

distribution on ΰ?^ satisfy the following identity: for all 1 <k<n and t > 0

μα{n-\-kα^α\t)^μα{n-kα^α\t)^^~^^_ μα{n-kα\t). (68)

To illustrate, according to the simplest addition rule (6),

l = J P α ( 2 | / ) + j P α ( l , l | 0 ,

which amounts to (68) for n — k — 1, that is

^ ^ α | / ) . (69)

The addition rule underlying (68) can be checked for general α by an argument de-

scribed in Section 6. In the case α = 5, the later formulae (99) and (93) show that (68)

reduces to a known recursion (106) for the Hermite function.

Repeated application of (68) shows that for each 1 < k < n the moment on the left

side of (66) can be expressed as a linear combination of integer moments μα(./10 f°Γ

j = 0, • , n — 1, with coefficients depending on «, &, α, t which could easily be computed

recursively. But except in the special case α = \ discussed in Section 8, even the integer

moments seem difficult to evaluate.
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6 The two-parameter Poisson-Dirichlet family

For 0 < α < 1, θ > - α , let γαjθ denote the distribution on (0,°°) with density C~Q/~Θ at
/ relative to the stable(α) distribution of T defined by (51), that is

, Q l θ (70)

where Cα,θ := E ^ Γ " 9 ) = Π f + 1)/Γ(Θ'+ 1) as in (60) and (61).

Definition 11
[41,50] The Poisson-Dirichlet distribution with two parameters (α,θ), denoted PD(α,θ),

is the distribution on ίP+ defined for 0 < α < 1, θ > - α by

forα = 0 , θ > 0
forO<α<l,θ>-α

This family of distributions on ίP^ has some remarkable properties and applications. As
shown in [41], it follows from Lemma 2 that if (P, ) has PD(GC,Θ)distribution then the
corresponding size-biased sequence (Pj) can be represented as

(72)

where the Wj are independent with beta( 1 - α, θ 4- jo) distributions. (73)

So the PD(α, θ) distribution can just as well be defined, without reference to the Poisson-
Kingman construction, as the distribution of (Pi) defined by ranking (Pj) constructed
by (72) from independent Wj as in (72). The sequence (Pj) defined by (72) and (73) for
0 < α < 1 and θ > 0 was considered by Engen [15] as a model for species abundances.
See [50] for further study of the PD(CC,Θ) family. It was shown in [44] that if (Pi) is
a random element of ίP^ with Pi > 0 a.s. for all i and the corresponding size-biased
sequence (Pj) admits the representation (72) with independent residual fractions Wj,
then the Wj must have beta distributions as described in (73), and hence the distribution
of (Pi) must be PD(OC,Θ) for some 0 < α < 1 and θ > - α . Reformulated in terms of
random partitions, and combined with Proposition 7, this yields the following:

Proposition 12
Let Π be the exchangable random partition of N derived by sampling from a random

element (/>•) ofT^ with Pt > 0 for all i. Let Y\k be derived from Π by deletion of the
first k classes of Π, with classes in order of appearance, as defined above Proposition 1.
Then the following are equivalent
(i) for each k, Π^ is independent of the frequencies (Pi,---, A) of the ήrst k classes of
Π;
(ii) Π is a PD(α,θ) -partition for some 0 < α < 1 and θ > — α, in which case Π* is a
PD (α, θ 4- kα) -partition.
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As shown in [43], the independence property (72) of the residual fractions Wj of a

PD(α, θ)-partition allows the corresponding EPPF pa#(n\,..., nk) to be evaluated using

(3). The result is as follows. For all 0 < α < 1 and θ > - α ,

Γ
n _ l = 1

where n = £f=1 ni and for real x and a and non-negative integer m

[x]m;a = \
1 for m = 0
jc(jc + α) ( x + ( m - l ) α ) f o r m = 1 , 2 , . . .

and [x]m = [x]m;i. The previous formula (49) is the special case of (74) for α = 0. Both

this case of (74), and the case when 0 < α < 1 and θ = 0, follow easily from (36).

Formula (74) shows that a PD(α,θ) partition Π of N to be constructed sequentially as

follows [43, 45]. Starting from Πi = {{1}}, given that Hn has been constructed as a

partition of N n with say k blocks of sizes (n \, , n^), define ΠΛ +1 by assigning the new

element n -f 1 to the yth class whose current size is rij with probability

P(,tK -,«*) = ̂ | (75)

for 1 < 7 < £, and assigning n + 1 to a new class numbered k + 1 with the remaining

probability

to
(76)w -h σ

For α = 0 and θ > 0 this is generalization of Polya's urn scheme developed by Blackwell-

McQueen [7] and Hoppe [21]. See [43, 45, 20] for consideration of more general pre-

diction rules for exchangeable random partitions.

The following calculation shows how to derive either of the two EPPF's (74) and

(66) from the other. The argument also shows that the function /?α(«i > • , nu. \ t) defined

by (66) satisfies the addition rules of an EPPF as a consequence of the corresponding

addition rules for /7α,θ(^i, , *u), which are much more obvious.

The kernel γα,θ(Λ) introduced in (70), is now viewed for a fixed α as a family of

probability distributions on (0,«>) indexed by θ G (—α,«>), that is a Markov kernel γ α

from (—α,<») to (0,«>). For a non-negative measurable function h = h(t) with domain

(0,°o), define a function γα/z = (γα/z)(θ) with domain (-α,<*>) by the usual action of

this Markov kernel as an integral operator:

Γ (77)

Then say (γα/ι)(θ) is the ^-transform ofλ(ί). LetE^β denote expectation with respect

to the probability distribution
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By definition, for each non-negative random variable X governed by the family of con-
ditional laws (Pα( |f),/ > 0),

the Yα-transform of E« (X \ t) is Eαfθ {X) (78)

In particular, for each (ΛI , -..,Λ*),

the γα-transform of pa{n\, ,nk 11) is /?α,θ(«i, ,"*)• (79)

An obvious change of variable allows uniqueness and inversion results for the γα-
transform to be deduced from standard results for Mellin or bilateral exponential trans-
forms. So the problem is just to show that the γα-transform of the right side of (66) is
the right side of (74). To see this, observe first that for each q > 0, because //α(?l0 : =

the γα-transform of μa(q\ή is ̂ , θ (/») = r[ j " e + ̂ l - α ) ( 8 0 )

where E^Θ (P\) is evaluated using (61). To deal with the factor of/~^~^α in (66), note
from (60) that for each β > 0, and any h(t),

the γα-transform of r*h{t) is p | ξ ^ ^ ^ ^ (ϊα*)(θ + β). (81)

By (80) ϊoτ q = n-\ - £α + α and (81) for β = α λ - α a n d A(0 =μa{q\ή the right
side of (66) has for its γα-transform the following function of θ:

αHΓ(l-α) Γ(g+A:)Γ(θ+l) Γ(πita)Γ(l + θ + toα) ^

f (/i + θ ) Γ ( l - α )

which reduces by cancellation to the right side of (74).

6.1 The α-diversity

Let Π be an exchangeable random partition of N with ranked frequencies (Pi). Let Kn

denote the number of classes of ΠΛ, the partition of Nw induced by Π. Say that Π has
a-diversity S and write OC-DIVERSITY(Π) = S iff there exists a random variable S with
0 < S < oo a.s. and

Kn - Sna as n -* oo (82)

where for two sequences of random variables An and Bn, the notation An ~ Bn will now
be used to indicate that An/Bn —>• 1 almost surely as n —> <». According to a result of
Karlin [27], applied conditionally given (P, ), if these ranked frequencies are such that

( 8 3 )

for some 0 < S < oo then Π has a-diversity S.
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Proposition 13
Suppose Π is a pκ(pα,γ) partition of N for some 0 < α < 1 and some probability
distribution γ on (0,°°). Then

(i) α-DlVERSlTY(Π) = S for a random variable S with 5 = Γ" α where Γ = S~ι/α

has distribution γ. In particular, S = /~α is constant if Π is a PK(pα | /) partition.

(ii) A regular conditional distribution for Π given S = s is defined by the EPPF
Pα(*w * >"*k~1/α) obtained by setting t = s~ι/α in (66).

(iii) In particular, both (i) and (ii) hold if Π is a PD(α,θ) partition for some θ > — α.
Then the α-diversity S of Π is S = Γ~α for T with the distribution yα$ defined by (70).

Proof. Suppose that (J> ) has PK(pα,γ) distribution. The fact that (83) holds for 5 = T~α

in the unconditioned case where Γ has stable (α) distribution is due to Kingman [29].
Kingman's argument, using the law of large numbers for small jumps of the Poisson
process, applies just as well for T conditioned to be a constant t. So (83) follows in
general by mixing over t. D

See [50] and papers cited there for further information about the Mittag-Leffler dis-
tribution of 5 = T~α derived from a PD(OC,0) partition. The corresponding distribution
of 5 for PD(α,θ) has density at s proportional to .sθ/α relative to this Mittag-Leffler
distribution.

As shown in [50, Proposition 10], if Π is a partition of N whose ranked frequencies
(Pi) have the PD(α,0) distribution, then S = α-DlVERSlTY(Π) can be recovered from
Π or (Pi) via either (81) or (83). Then T = S'ι/α has stable(α) distribution as in (51),
and (TPi) is then sequence of points of a Poisson process with Levy density p α . See
also [47, 48] for more about the distribution of Kn derived from a PD(α, θ) partition.

7 Application to lengths of excursions

This section reviews some results of [41, 49, 46, 50]. Let P^ govern a strong Markov
process B starting at a recurrent point 0 of its statespace, such that the inverse (τ^, £>0)
of the local time process (Lt,t > 0) of B at zero is a stable subordinator of index α for
some 0 < α < 1. That is to say, E£ exp(-λτi) = exp(-cλα) for some constant c > 0.
So the P^ distribution of τi is the P α distribution of cι/αT for T as in (51). For example,
B could be a one-dimensional Brownian motion (α = ^) or Bessel process of dimension
2 — 2α. In the Brownian case, take c — y/2 to obtain the usual normalization of local
time as occupation density relative to Lebesgue measure, which makes L\ = \B\ |. Let
M = {t : 0 < t < \,Bt = 0} denote the random closed subset of [0,1] defined by the
zero set of B. Component intervals of the complement of M relative to [0,1] are called
excursion intervals. For 0 < / < 1 let Gt = sup{MΠ [0,ί]}, the last zero of B before
time ί. Note that with probability one, G\ < 1, so one of the excursion intervals is the
meander interval (G\, 1], whose length 1 — G\ is one of the lengths appearing in the list
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(Pi) say of ranked lengths of excursion intervals. According to the main result of [49],

the sequence (Pi) of ranked lengths has PD(α,0) distribution (84)

Let C/i,/72, be a sequence of i.i.d. uniform [0,1] random variables, independent of

B, called the sequence of sample points. Let Π = (Πn) be the random partition of N

generated by the random equivalence relation i ~ j iff Gut = G\j.. That is to say i ~ j iff

Ui and Uj fall in the same excursion interval. So for example Π 5 = {{1,2,5}, {3}, {4}}

iff U\, Uι and Us fall in one excursion interval, C/3 in another, and U4 in a third. By

translation of results of [49, 50] into present notation

Π is a PD(<X,0) partition and OC-DIVERSITY(Π) = cL\ (85)

where L\ is the local time of B at zero up to time 1. By construction, the sequence (Pj)

of class frequencies of Π is the sequence of lengths of excursion intervals in the order

they are discovered by the sample points, and (Pi) is recovered from (Pj) by ranking. To

illustrate formula (74), U\ and U2 fall in different excursion intervals with probability

Ax5o(l, 1) = α ' a n c * *n ^ e s a m e o n e with probability /?α,o(2) = 1 — α. Similarly, given

that the local time is L\ = ί, two sample points fall in the same excursion interval

with probability /?α(2| (cί)~ι/a), and in different excursion intervals with probability

pa(\, 11 ( c ί ) ~ 1 / α ) , for pa(- \ t) defined by (66). See Section 8 for evaluation of these

functions in the case α = \ corresponding to a Brownian motion B.

Let Rn= \— P\ — Pn, which is the total length of excursions which remain

undiscovered after the sampling process has found n distinct excursion intervals. The

result of Proposition 12 in this setting, due to [41], is that for each n = 0,1,2,••• a

PD(α,Azα) distributed sequence is obtained by ranking the sequence

— (Λ+iΛ+2,- ) (86)

of relative excursion lengths which remain after discovery of the first n intervals. For

n — 1 the same PD(α,α) distribution is obtained more simply by deleting the meander

of length 1 - G\, renormalizing and reranking. This is due to the result of [49] that

the length 1 - G\ of the meander interval is a size-biased choice from (Pf). As the

excursion lengths in this case are just the excursion lengths of a standard bridge, equiv-

alent to conditioning on B\ = 0 , the ranked excursion lengths of such a bridge have

PD(α,α) distribution. As first shown in [49], this implies that both the unconditioned

process B and the bridge B given B\ = 0 share a common conditional distribution for

the ranked excursion lengths (Pi) given the local time L\. In present notation, this con-

ditional distribution of (P, ) given L\ = ί, with or without conditioning on B\ = 0, is

/

One final identity is worth noting. As a consequence of the above discussion, for

the process B, the conditional distribution of the meander length 1 — G\ given L\ = ί is

given by

G^ dp\U =i) = Π£(Λ G dp\Lλ =t)= ~fa{p\{cl)-'la)dp (87)
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where fa(p\ή as in (57) is the structural density of the Poisson model for stable (α)
distributed T conditioned on T = t. So the moment function μa(q \ t) appearing in the
EPPF (66) of this model can be interpreted in the present setting as

Lλ=c-λt-«). (88)

8 The Brownian excursion partition

In this section let Π be the Brownian excursion partition, that is the random partition of
N generated by uniform random sampling of points from the interval [0,1] partitioned
by the excursion intervals of a standard Brownian motion B. According to the result of
[49] recalled in (84),

Π is a pκ(p i) = PD(i,0) partition. (89)

With conditioning on B\ = 0, the process B becomes a standard Brownian bridge. So Π
given B\ = 0 is a PD(^, J) partition, as discussed in the previous subsection. Features of
the distribution of Π and the conditional distribution of Π given B \ = 0 were described
in [46]. This section presents refinements of these results obtained by conditioning on
L\, the local time of B at 0 up to time 1, with the usual normalization of Brownian local
time as occupation density relative to Lebesgue measure. Unconditionally, L \ has the
same distribution as |2?i |, that is

P(Zi € dλ) = P(|5i I € dλ) = 2φ(λ)dλ (λ > 0)

where φ(z) := (l/\/2π)exp(-^z2) is the standard Gaussian density of B\. Whereas
the conditional distribution of L\ given B\ = 0 is the Rayleigh distribution

P(Ii e dλ\Bι =0) = V2πλφ{λ)dλ (λ > 0).

Note from (85) that the ^-diversity of Π is the random variable VΪL\. So the number
Kn of blocks of Π grows almost surely like y/ΐϊτL\ as n -¥ °o. For λ > 0 let Π(λ) denote
a random partition with

Π(λ) I (Π |I i = λ ) = (Π|L! = M i =0) (90)

where = denotes equality in distribution. So according to the previous discussion,

Π(λ) is a pκ(p i I ^λ"2) partition (91)

whose ^-diversity is Vϊλ. Let PD(^||λ) denote the probability distribution on T^
associated with Π(λ), that is the common distribution of ranked lengths of excursions
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of a Brownian motion or Brownian bridge over [0,1] given L\ = λ. Then by Definition

11 and (53), for θ > -\ there is the identity of probability laws on ίP^

(92)

where, according to the gamma^) distribution of \B\ and the duplication formula for

the gamma function,

| 2 Θ Λ _
)

2 )

It was shown in [3] (see also [5,48]) that it is possible to construct the Brownian excur-

sion partitions as a partition valued fragmentation process (Π(λ),λ > 0), meaning that

Π(λ) is constructed for each λ on the same probability space, in such a way that Π(λ)

is a coarser partition than Π(μ) whenever λ < μ. The question of whether a similar

construction is possible for index α instead of index \ remains open. A natural guess is

that such a construction might be made with one of the self-similar fragmentation pro-

cesses of Bertoin [6], but Miermont and Schweinsberg [38] have recently shown that a

construction of this form is possible only for α = j .

8.1 Length biased sampling

Let Pj(λ) denote the frequency of the yth class of Π(λ). So (P, (λ),y = 1,2...) is

distributed like the lengths of excursions of B over [0,1] given Lj = λ, as discovered by

a process of length-biased sampling. In view of Levy's formula (53) for the stable(^)

density, the formula (57) reduces for α = j to the following more explicit formula for

the structural density of Π(λ):

^ ( j j ^ ) p (0<p<l) (94)

or equivalently

P( ) (λP^) < l ) (95)

where Φ(z) := Ψ(B\ < z) is the standard Gaussian distribution function. Put another

way, there is the equality in distribution

Furthermore, by a similar analysis using Lemma 1, there is the following result which

shows how to construct the whole sequence {Pj{X)J > 1) for any λ > 0 from a single

sequence of independent standard Gaussian variables. Then Π(λ) can be constructed

by sampling from (Pj(λ),j > 1) as discussed in Section 2.
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Proposition 14
[3, Corollary 5] Fix λ > 0. A sequence (Pj(λ),j > 1) is distributed like a length-biased
random permutation of the lengths of excursions of a Brownian motion or standard
Brownian bridge over [0,1] conditioned onL\ = λ if and only if

where Sj := Σ/=1Λv forXi which are independent and identically distributed like B\ for
a standard Gaussian variableB\.

Letμ(<7||λ) denote the qth moment of the distribution of Pi(λ). So in the notation of
(65) and (68)

^||λ):=E[(Λ(λ)n=//»(^|iλ-2). (98)

Lemma 15
For each λ > 0

where E(\B\ I29) is given by (93) and λ_29 is the Hermite function of index -2q, that is
A0(λ) = l and for q^ {0,1,2...}

*-2<7(λ) := — U Σnq + J/2)2"+J'2^. (100)

Also,

/ z ( 9 | | λ ) = E [ e x p ( - λ v ^ ] (q>0) (101)

where Γq denotes a Gamma random variable with parameter q:

Ψ{Yq e dt) = Γiq^t^e-'dt (t>0).

Proof. The first equality in (99) is read from (96). The second equality in (99) is
the integral representation of the Hermite function provided by Lebedev [35, Problem
10.8.1], and (100) is read from [35, (10.4.3)]. According to another well known integral
representation of the Hermite function [35, (10.5.2)], [16, 8.3 (3)], for q > 0

Formula (101) follows easily from this and (99). D

The identity

E [ ( 3 ( 2 ^ 2 ) ]=E[exp(-λv/2Γ7] ( 9>0), (103)
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which is implied by the previous proposition, can also be checked by the following

argument suggested by Marc Yor. Let X be a positive random variable independent of

Γq, and let ε with ε = Γj be a standard exponential variable independent of both X and

Tq. Then by elementary conditioning arguments, for θ > 0

>Θ). (104)

Take X = B] and θ = λ2, and use the identity zB\ = ε2/2, which is a well known
probabilistic expression of the gamma duplication formula, to deduce (103) from (104).

The following display identifies hy(z) in the notation of various authors:

hv{z) = 2"v/2/ίv(z/\/2) = 2v / 2Ψ(-v/2,l/2,z2/2) (Lebedev[35])

= 2 v / 2t/(-v/2, l/2,z2/2) (Abramowitz and Stegun) [1]

) (Miller[39])

(Erdelyi [16], Toscano [56])

The functions U(a,z) and Z)v(z) are known as parabolic cylinder functions, Weber func-
tions or Whittaker functions. The function £/(β,&,z), which is available in Mathematica
as HypergeometricU[a#b,z], is a confluent hypergeometric function of the second
kind. Note that hn{z) defined for n — 0,1,2,... by continuous extension of (100) is
the sequence of Hermite polynomials orthogonal with respect to the standard Gaussian
density φ(jc). Also, the function h-\(x) for real x is identified as Mill's ratio [26, 33.7]:

e~^z2dz. (105)

For all complex v and z, the Hermite function satisfies the recursion

Λv+i(*)=zΛv(z)-v*v-i(z), (106)

which combined with (105) and ho(x) = 1 yields

A_2W = l-xA_iW (107)

2!A-3(x) = -JC + (1 +Λ 2)Λ_I(JC) (108)

(x) (109)

and so on. See [51] for further interpretations of the Hermite function in terms of
Brownian motion and related stochastic processes.



26 J. Pitman

8.2 Partition probabilities

Recall the notation

Corollary 16
The distribution of Π(λ), a Browniaπ excursion partition conditioned on L\ = λ,

determined by the following EPPF: for «i,..., H* with £* = 1 /ι, = AZ

Ϊ = 1

Proof. This is read from (66), (99) and (93). D

Formula (110) combined with (14) gives an expression in terms of the Hermite
function for the positive integer moments of the sum Sm(λ) of mth powers of lengths
of excursions of Brownian motion on [0,1] given L\ — λ. This formula for m = 2 was
derived in another way by Janson [25, Theorem 7.4]. There the distribution of 52(λ)
appears as the asymptotic distribution, in a suitable limit regime, of the cost of linear
probing hashing.

According to (91) and Definition 11, for each θ > -\, the EPPF (110) describes
the conditional distribution of a PD(^,Θ) partition (Πn) given UmnKn/V2n = λ, where
Kn is the number of blocks of Πn. Easily from (110), for each fixed λ > 0, a sequential
description of (ΠΛ(λ),w = 1,2,...) is obtained by replacing the prediction rules (75)
and (76) by

nιr ',nk) = (2nj-l)!£±=^ (l<j<k) (111)

(112)

The addition rule for the EPPF (110) is equivalent to the fact that these transition prob-
abilities sum to 1. As a check, this is implied the recurrence formula (106) for the
Hermite function.

Corollary 17
LetKn(λ) be the number of blocks ofΠΛ(λ), where (ΠΛ(λ),« = 1,2,...) is theBrow-
nian excursion partition conditioned onL\ =λ. Then (Kn(λ),n = 1,2,...) is a Markov
chain with the following inhomogeneous transition probabilities: for 1 <k<n

Ϋ{Kn+λ(λ) =k\Kn(λ)=k) = (2n- k) f!k'l-2"{^\ (113)
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P(A;+I (λ) = k+ι \κn(λ) = k) = ̂ k~2f^) • (ii4)

Moreover, the distribution ofKn(λ) is given by the formula

Proof. The Markov property of (ίΓrt(λ),/7 = 1,2,...) and the transition probabilities
(113)—(114) follow easily from (111)—<112). Then (115) follows by induction on n,
using the forwards equations implied by the transition probabilities. •

Let Kn denote the number of blocks of Ππ, where (Ππ) is the unconditioned Brow-
nian excursion partition. Then, from the discussion around (90),

{Kn{λ),n > 1) = [Kn,n > 11 l imA^/v^ = λ). (116)
n

According to (89), (75) and (76), the sequence {Kn,n > 1) is an inhomogeneous Markov
chain with transition probabilities

^ ^ (117)k)
In

=k) = ± (118)
Zn

which imply that the unconditional distribution of Kn is given by the formula [46, Corol-
lary 3]

P ( £ π = £ ) = f 2 " ~ _ * ~ i y + 1 - 2 ' 1 (1 <*<«). (119)

Due to (116), for each λ > 0 the inhomogeneous Markov chain (Kn(λ),n > 1) has
the same co-transition probabilities as {Kn,n > 1). From (117), (118) and (119), the
co-transition probabilities of (Kn,n > 1) are

ψ{κn = jt| j ς + 1 = k) = 2 ^ I * ^ } (120)

Ψ(Kn = k- 1 1 * , + 1 = k) = 2 y | ^ ί

1

+ Γ (121)

As a check, the fact that (Kn(λ),n > 1) has the same co-transition probabilities can be
read from (113), (114) and (115). It can be shown that the Markov chains (Kn(λ),n > 1)
for λ G [0, oo], with definition by weak continuity for λ = 0 or «>, are the extreme points
of the convex set of all laws of Markov chains with these co-transition probabilities. A
generalization of this fact, to α G (0,1) instead of α = \, and similar considerations for
α = 0, yield the second sentence of Theorem 8.
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To illustrate the formulas above, according to (9) and (99), or (110) for n - 2, given

L\ = λ, two independent uniform [0,1] variables fall in the same excursion interval of

the Brownian motion with probability

and in different excursion intervals with probability λ/z_j(λ). According to (110) for

n — 3, given L\ = λ, three independent uniform random points U\,Ui,Uι with uni-

form distribution on [0,1] fall in the same excursion interval of a Brownian motion or

Brownian bridge with probability

Ψ(K3(λ) = 1) =/?. (3 | |λ) = 3A_4(λ) = 1 + \λ2 - (\ λ + ^λ3)A_!(λ) (123)

while U\ and Uι fall in one excursion interval and U$ in another with probability

and the three points fall in three different excursion intervals with probability

ι(λ). (125)λ) 3 ) ^ ,

As a check, the sum of expressions for P(^3 (λ) =k) over k = 1,2,3 reduces to 1. Since

Ψ{Kn{λ) = k)= X #(«i, ,B*)pj(»i, ,»t l |λ) (126)
n\> >Πk

where the sum is over all decreasing sequences of positive integers (n \, , n^) with

sum n, and #(n\, , njc) is the number of distinct partitions of N w into k subsets of sizes

inι 5 * * 5Λjt), formula (115) amounts to

Σ
 #(«" '

which can be checked as follows. According to (74) and (89), the unconditional EPPF

of the Brownian excursion partition Π is

(128)

so (127) can be deduced from (128), (119), and the unconditioned form of (126).

8.3 Some identities

As a consequence of (92) and (99), for all q > - i and θ > - £ there is the identity
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where the right side is the q\h moment of the beta( j , ̂  -f θ) structural distribution of

PD(^,Θ), and on the left side this moment is computed by conditioning on L\. As in

- (80), for each fixed q this formula provides a Mellin transform which uniquely deter-

mines μ(q 11 λ) as a function of λ. In view of (129) and (93), the formula (99) forμ(q \ | λ)

in terms of the Hermite function amounts to the identity

( 1 3 0 ,

As checks, since ho(x) = 1 and A_i (x) = Φ(x)/φ(x), the case q — 0 is obvious, and the

case q - \ is easily verified since then the left side of (129) equals (2Θ+1) ̂ Efliί i | 2 Θ + 1 )

by integration by parts. Formula (130) can then be verified for q = m/2 for all m =

0,1,2,..., using the recursion (106). Formula (130) was just derived for q> —\, but

both sides are entire functions of q, so the identity holds for all q £ C. Using the se-

ries formula (100) and integrating term by term, the substitution r = θ + \ allows the

identity (130) to be rewritten in the symmetric form

h v υ x i) β ~ τ(q+r+ι/2)
Π31)
( 1 3 1 )

where the series is absolutely convergent for real q and r with q + r + \ < - 1 , and can

otherwise be summed by Abel's method provided neither 2q nor 2r is a non-positive

integer. This version of the identity is easily verified using standard identities involving

Gauss's hypergeometric function and the gamma function. For —2q = na positive

integer, when hn is the nth Hermite polynomial

*.(*) = nΛ = ( -

the identity (130) reduces easily to the following pair of identities of polynomials in θ,

which relate the rising and falling factorials [x]n := x(x + 1) (x + n - 1) and (x)n :=

x(x — 1) - ( JC — « + l ) , and which are easily verified directly: for m = 0,1,2...

k=0

and

k=0

Thus the coefficients of the Hermite polynomials are related to some instances of gen-

eralized Stirling numbers [22, 48].
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Diffusions on the Simplex from Brownian Motions
on Hypersurfaces

Steven N. Evans

Abstract

The (n — 1)-dimensional simplex is the collection of probability measures on
a set with n points. Many applied situations result in simplex-valued data or in
stochastic processes that have the simplex as their state space. In this paper we
study a large class of simplex-valued diffusion processes that are constructed by
first "coordinatising" the simplex with the points of a smooth hypersurface in such
a way that several points on the hypersurface may correspond to a given point on
the simplex, and then mapping forward the canonical Brownian motion on the
hypersurface. For example, a particular instance of the Fleming-Viot process on
n points arises from Brownian motion on the (n — 1)-dimensional sphere. The
Brownian motion on the hypersurface has the normalised Riemannian volume as
its equilibrium distribution. It is straightforward to compute the corresponding
distribution on the simplex, and this provides a large class of interesting probabil-
ity measures on the simplex.

Keywords: manifold; stochastic differential equation; measure-valued process; com-
positional data; Riemannian volume element; Fleming-Viot process

1 Introduction

Many data sets come in the form of proportions that add to unity (that is, as points in a
simplex with dimension one less than the number of proportions). For example, there
is the breakdown of the composition of an ore sample into component minerals or the
division of a family's expenditures into housing, food, clothing, leisure, etc. This type
of data is often referred to as compositional and a standard reference for models and
inference in this area is [1].

Such data can also have a temporal component. For example, there are the propor-
tions of the population at any time having each of the possible combinations of alleles
of a given set of genes (see, for example, [5]). There appears to be something of a
dearth of flexible, tractable models for such stochastic processes.

Of course, stochastic processes on the simplex are an elementary instance of pro-
cesses taking values in the set of probability measures on an arbitrary measurable space.
However, the literature in this more general area is primarily concerned with models
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such as the Fleming-Viot process that arise as continuum limits of particle systems

with relatively simple dynamics (see, for example, [2]).

There is a substantial literature on diffusions on manifolds and particularly Brown-

ian motion on manifolds (see, for example, [3, 4, 6, 8]). The approach we follow here

for building diffusions on the simplex is to first take a simplicial decomposition of some

compact manifold. This gives a typically many-to-one mapping of the manifold onto

the simplex. We then take Brownian motion on the manifold and map it forward to ob-

tain a continuous stochastic process on the simplex. If the manifold and the associated

simplicial decomposition have suitable symmetry properties, then the resulting process

on the simplex will be Markovian.

The simplest example of our construction is when the manifold is the (n — 1)-

dimensional sphere

= 1}.

We map the sphere onto the (n — 1)-dimensional simplex via

If (Xt, P*) is the Brownian motion on the sphere, then the distribution of the process X =

{Xι,X2,...,Xn) under pίi*1,**2,-,**1) [s the same as the distribution of (±X\ ±X2,

. . . , άJC1) under P* for any x and any of the 2n possible choices of sign. In particular, for

any pointy = (yι,/,... , / ) in the simplex the distribution of ((X 1 ) 2 , (X 2 ) 2 , . . . , {Xn)2)

is the same under any of the measures P* for which ((x 1) 2, (* 2 ) 2 , , (x71)2) = (yl, y2,

..., y1). Dynkin's criterion for a function of a Markov process to be Markovian (see

Theorem 13.5 of [7]) then gives that ((X 1) 2, {X2)2,..., {Xn)2) is Markovian.

It turns out that Brownian motion on the sphere is mapped to a particular Fleming-

Viot process on the set {1,2,... , n). The underlying mutation process for the Fleming-

Viot process is a Markov chain that jumps at a constant rate and chooses a new state

uniformly from the (n — 1) possibilities. The Brownian motion on the sphere has the

normalised surface area measure on the sphere as its equilibrium distribution. The

corresponding process on the simplex (that is, the Fleming-Viot process) has the push-

forward of this measure as its equilibrium distribution and, as is well-known, this latter

probability measure is the Dirichlet distribution with parameters ( 5 , 5 , . . . , 5 ) ,

The plan of the paper is the following. We construct a particular class of hypersur-

faces and Brownian motions on them in Section 2. We show that the Brownian motion

mapped to the simplex is Markovian in Section 3, and exhibit the semimartingale de-

composition of this diffusion on the simplex in Section 4. The push-forward of the

normalised Riemannian volume measure is the equilibrium distribution of the diffusion

on the simplex, and an explicit formula is given for this distribution in Section 5. We il-

lustrate the general results with the special cases where the hypersurface is an ellipsoid

in W1 or the unit sphere in W1 equipped with the ίp norm for p an even positive integer.



Diffusions on the Simplex 37

2 Brownian motion on a hypersurface

Fix functions gιr: R ->• R+, 1 < i < n, with the following properties:

i) g i is C°°;

ϋ) g, ( 0 ) = 0 ;

iii) gi(-u) =gi{u);

iv) g{(κ) > 0, u > 0;

v) {ueR:gi(u) = \}^(d.

Define g : Rπ -> R̂ _ by

and G : E n -> K+ by

The set M := {x G E n : G(x) = 1} is a compact, connected, (« — 1)-dimensional

embedded submanifold of W1 and the range of g restricted to M is the simplex

Each;; G 5 is the image of2
#^^n:yi>^ points of Λί.

We will construct a diffusion process 7 = ( ί ί , ^ ) or 5 by letting {Yt)t>o under Q^

have the law of (goXt)t>o under IP, where X = (Xt^W) is the canonical Brownian

motion on Λί and x is any pre-image of y for g. The infinitesimal generator of X is a

multiple of the Laplace-Beltrami operator on Λί", but the most convenient way for us to

describe X is as the solution of a stochastic differential equation (SDE).

Let

HgradG(x)

be the unit normal to M at x, and write
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for the corresponding orthogonal projection onto the tangent plane to M at x. The mean
curvature at x is given by

Φ ) := --div/φc)

i f Σ gi V) Σjgfj(*)W)\
2\(Σig

ί

i(χi)2? (Σiβί ̂ ) 2 ) 1 1

By [9], Brownian motion on ίλί starting at x G M solves the SDE

dXt = P(Xt)dBt+c(Xt)n(Xt)dt

Xo = x,

where B is a standard ^-dimensional Brownian motion. Write P* for the distribution of
the solution of this SDE.

3 Diffusion on the simplex

Set 7 := goX. That is, Yt = g(AJ) G 5. We claim that 7 is Markovian. As with the
example on the sphere in the Introduction, this will follow from Dynkin's criterion for
a function of a Markov process to be Markovian if we can show that the law of 7 is
the same under P^ and P*" for any two points jt',jc" G M such that g(x') = g(x") (see
Theorem 13.5 of [7]).

For any x G Λf, let X& denote the solution of the SDE

Ϊx) = P (X^) dBt + c ( X « ) n (X^) dt

Y{x)-χΛo —X.

FixεG {±1}" and write E for the diagonal matrix diag(εi,ε2,. . ,επ) sothatforzElK",
Ez = (εiz1,ε2z

2,... ,εnz?). Note that if x',x" e M are such that g{x') = g(jc"), then
x" = Exf for some such E. Observe by our assumptions on the gi that

g'ii-u) = -g>,(u),

and so

P(Ex)=EP(x)E,
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c(Ex)=c(x).

Thus,

d [EX®] = EP (xt

{x)) dBt + c (x,W) En (x,W) dt

= EP (x}x)) E d[EBt] + c (x®) En (x,W) dt

= P (EX®) dBt + c (EX®) n (EX®) dt,

where 8 = EB is a standard ^-dimensional Brownian motion. Moreover,

and so we conclude that EX^ has the same distribution as χ(Ex\ That is, the law of

EX under P* is the same as that of X under ΨEx

9 and Dynkin's criterion holds. Write

(Qy for the distribution of Y starting at y G 5. Because X is a Feller process and g is

continuous, it follows that Y is also a Feller process.

4 Semimartingale description

By Itό's formula we have

j

+g'i(X!)c(Xt)ni(Xt)dt+l-gι;(Xt)

By our assumptions on gz, for 0 < v < 1 there exists a unique u > 0 such that

u) = v. Write u = hi{v). Observe that g, (-A/(v)) = v, g?(-A, (v)) - -g{(A, (v)), and

and

W)
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Note that because P(x) is a projection matrix,

ΣW2 = Σ

Thus for y — g(x) we have

Note also that

Putting this all together,

dt

where Mt = (Mj,... ,A/ )̂ is a continuous martingale with

Example 1

Suppose that g,(w) = QM2 for constants Ci > 0, 1 < i < n, so that 9ά is the ellipsoid

= 2ch

and hence

C 1 dt,
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where M is a continuous martingale with

• ί CYJ 1

{ ΣkdcYt )

When c\ = c-i = = cn = c (so that 9A. is the sphere with radius 4=), we have

= dM\ dt

\ + c[\-nYί]dt

-\n

where M is a continuous martingale with

If we associate Yt with the probability measure on {1,2,..., n} that assigns mass Y} to

i, then (Yt,ζJ) is a particular case of a Fleming-Viot process (see [2]) in which the

underlying mutation process jumps from each state at rate c(n - 1) and chooses a new

state uniformly from the (n — 1) possibilities.

When n = 2, the process Z\—Yx is a one-dimensional diffusion that solves the SDE

where

L/i C Z 1 , . . / , C 2 ( l - Z )

and

σ2(z)-4dz(l %• A.
KJ \ cλz + c2{\-z)\

An interesting feature of these coefficients is that the unique zero ofμ and the unique

maximum ofσ2 both occur at the point z— y/cil(<y/c\+y/ci). The infinitesimal dήft

μ is graphed in Figures 1 and 2 for the parameter values (ci,C2) = (1,1) and (c 1^2) —

(4,1), respectively The infinitesimal variance σ 2 is graphed in Figures 3 and 4 for the

parameter values (c\^c2) = (1,1) and (ci,c2) = (4,1), respectively
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Figure 1: Drift for c\ = 1 and ci = 2
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Figure 2: Drift for ci = 4 and C2 = 1
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Figure 3: Variance for ci = 1 and C2 = 1
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Figure 4: Variance for ci = 4 and C2 = 1
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Remark 1 If we formally send n-Λ°°in the martingale problem for Y, then the result-

ing martingale problem on the infinite simplex {{γι

 7 y 2 , . . .) : Σi/ = 1,/ > 0} makes

sense when

S U P
0<v<l

< o o

(in Example 1 this condition becomes £, :Ci < °°) It would be interesting to know if this

infinite-dimensional martingale problem is well-posed.

5 Equilibrium distribution

The Brownian motion X is reversible with respect to the normalised Riemannian vol-

ume measure on ΰrf andJζ converges in distribution to this measure as t —> °o under any

IP. Therefore, if we let π denote the push-forward of the normalised Riemannian vol-

ume measure by g, then the diffusion Y is reversible with respect to π and Yt converges

in distribution to π as t -» °o under any (Q .̂

We can calculate the Riemannian volume measure as follows. The set

is the union of the two open sets

and ( c1 j * 2 , . . . ,x"~ !) can be used as local coordinates for M in these two patches. The

Riemannian metric in each patch is given by the matrix / + J(x)J(x)τ, where J(x) is

the (n — 1)-dimensional column vector

The corresponding Riemannian volume measure is

[det(/ + y(x)7(jc)τ)]5 dxιdx2 -dxn~ι = [1 +J(x)TJ{x)]*dxldxl -dx"'1,

where we have used the familiar matrix fact that

άst{A + bbτ) = det(A){l+bτA-χb).

The Jacobian matrix for the transformation
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is the diagonal matrix diag(gΊ (J

tise S with {(y\y2,... y~ι) :
, . . . ,gf

n_ι (xn 1 ) ) . Therefore, if we coordina-

< 1, Ϋ > 0}, then π is the measure

n-l

i = l

n

2 1 2

7=1 ί = l

C

= c

for a suitable normalisation constant C.

Example 2

Suppose thatgi(u) = CiU2 for constants C[ > 0, 1 < i < n. Then

so that π is

z=l ί = l

for a suitable constant C. In particular, ifc\=C2 = '- = cn, then π is the Dirichlet

distribution with parameters (5 ,5 , . . . ,5) .

For n — 2, the equilbrium density is graphed in Figures 5 and 6 for (c \, cι) — (1,1)

and (ci,C2) = (4,1), respectively. The equilibrium density has its unique minimum

at τ/c2/(->/c\ + y/ci)- Recall from Example 1 that the infinitesimal drift coefficient

vanishes and the infinitesimal variance coefficient has its maximum at this same point.

6 Another example

Suppose that gz(w) = up, 1 < i < n, where p is an even positive integer. Then

0C/(y) = p2(yι)2^l~?' and βz (y) =p2(p —

H e n c e , s e t t i n g r = 2 ί l — -M a n d s = ί 1 - | J ,
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0 . 2 0 . 4 0 . 6 0 . 8

Figure 5: Equilibrium density for c\ = \ and C2 = 1

0 . 2 0 . 4 0 . 6 0 . 8

Figure 6: Equilibrium density for ci =4 and cι = 1
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where M is a continuous martingale with

The equilibrium measure π is

C

for some constant C.
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Investigating the Structure of Truncated
Levy-stable Laws

Anthony G. Pokes

Abstract

Truncations of stable laws have been proposed in the econophysics litera-
ture for modelling financial returns, often with imprecise definitions. This paper
sharpens definitions of exponential truncations and attempts to expose underlying
structure. Analytical comparisons are made with alternative models, leading to a
tentative conclusion that the generalized hyperbolic family is more attractive for
empirical work.

Keywords: Truncation; Levy-stable laws

1 Introduction

Extensive empirical research shows that (log-)return data obtained from frequently

sampled financial time series is not well fitted by a normal (Gaussian) law. Rather,

the 'true' population law is more peaked around its median and it has fatter tails. Many

analytically specified laws have been proposed and found to give a good fit to selected

data sets. For example McDonald [22], Rydberg [31], and Voit [35, §5.3,5.4] are re-

cent reviews representing the finance, statistics, and physics disciplines, respectively.

In particular, Mandelbrot [23, E14,15] champions validity of non-normal stable laws.

In fact, many return series exhibit tail behaviour which is intermediate to normal and

non-normal stable behaviour. As a result, various more complicated models built from

stable laws are found to mimic the stylized features of real data; see [31, 3].

The 'econophysics' school of modellers support use of so-called truncated Levy

(i.e., stable) laws. See [7] for a general discussion of their use in finance, and [25] for

pricing options. Let g(x; α) denote the density function of a stable law having index

α G (0,2) and symmetric about the origin, and let X be a random variable having this

law. If 1 < α < 2 then E(X) = 0 and var(X) = <», but if 0 < α < 1 then neither the

mean nor the variance can be defined. Econophysicists hold this to be unsatisfactory on

the reasonable grounds that returns cannot be arbitrarily large in magnitude, and hence

admissible models should possess finite moments of all orders. In general terms, the

solution they propose is to use weighted densities

/(x;α,w) = w(x)g(x;a), (1.1)
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where w(x) > 0 is a weighting function satisfying w(x) -> 0 as \x\ —>«», / / ( * ; oc, w)dx =

1, and / |JC|7(X; α, w)dx < <*> for all r > 0.

This idea was introduced by Mantegna and Stanley [24] in the specific case w(x) =

cl[_/ /] (x) where 0 < / < °° is a truncation level and c is a normalization constant. Let

Sn denote the sum of n independent copies of a random variable having this truncated

stable law, let fn(x) denote its density function, and v/ = E(S\). The local version of

the central limit theorem asserts that

^ (1.2)

Mantegna and Stanley [24] provide simulations showing that the asymptotic regime

(1.2) is approached more and more slowly as / increases. In addition, they found ev-

idence of a quite long-lived pre-asymptotic regime during which /Λ(0) decays in pro-

portion to n~ι/a, the asymptotic behaviour for the parent stable law.

This modification of stable laws is analytically awkward and hence Koponen [19]

recommends versions where w(x) > 0 for all x but decaying exponentially fast as |JC| —»

oo. In fact, the precise nature of his definition is not clear. He asserts (for the symmetric

case) that the truncated density function is

f(x)=c\x\-ι-ae-M, (1.3)

where γ > 0 is an additional parameter and c is the normalizing constant. But clearly

(1.3) does not define a density function since Jj_ε εi f{x)dx = °° for any ε > 0. Koponen

[19] mentions a lengthy calculation of a characteristic function (CF) whose symmetric

version is

Paul and Baschnagel [29, p. 123] specify (1.3) holding in an asymptotic sense as |JC| ->

oo5 thus removing the singularity problem. They give a detailed derivation of (1.4) (see

their Appendix D) where it is evident that the right-hand side of (1.3) is taken as the

density of the Levy measure of an infinitely divisible law. Consequently the nature of

the law whose CF is (1.4) is unresolved.

Our aim here is to illumine this obscurity. We will distinguish three operations: (i)

truncation as envisaged by Koponen [19], that is, exponential down-weighting a parent

density function; exponential tilting, which involves multiplying a parent density by a

decreasing exponential function (thus inflating the left-hand tail); and (iii) pruning an

infinitely divisible (infdiv) law by truncating its Levy measure. Pruning is implicit in

Paul and BaschnageΓs calculation. Briefly, it seems that truncation does not support a

useful theory, whereas shrinking and tilting are almost equivalent, and they support a

richer theory.

A key reason for considering truncated/pruned stable laws is to give a parametric

family which exhibits a wider spectrum of tail behaviours than the stable laws, normal
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and non-normal. Thus in §2 we review relevant results about infinite divisibility and

convolution equivalent laws. In particular, Theorem 2.1 gives conditions ensuring the

right-hand tail of the law is asymptotically proportional to the right-hand tail of its Levy

measure. This is a simple extension of known results for one-sided laws, and its proof

is given in Pakes [27]. In §3 we define an exponential truncation operation on two-

sided laws, observing that even though tail behaviour is in principal accessible, other

structural properties such as determination of its moments present substantial analytical

difficulties.

Section 4 reviews a tilting operation, familiar in other contexts, and relates it to the

pruning of spectrally positive infinitely divisible laws. Particular application is made

to extreme stable laws, and some limit distributions are obtained which illuminate the

simulation results in Mantegna and Stanley [24]. In §5 we define the pruning of two-

sided stable laws as the difference of independent tilted extreme stable random variables

and Theorem 5.1 gives its characteristic function. Representation as either a tilted or

truncated law is examined. We explore the representation of differences of tilted laws

in terms of a truncated law, showing in particular that these pruned stable laws can-

not be represented as a truncation of any two-sided stable law. In §6 we observe that

pruned stable laws are generalized gamma convolutions, (GGC's) and hence their sym-

metric versions are normal-variance mixtures. This form of mixing is significant in

financial modelling as a representation of stochastic volatility. Unfortunately, the mix-

ing law appears to be quite complicated. Simpler representations as GGC's are found.

These representations suggest comparisons with other laws which can be obtained from

normal-variance mixing and tilting, and we look briefly at two special families, one be-

ing the generalized hyperbolic laws. Process and series representations of tilted and

pruned stable laws are examined in §7. Here we give a self-contained and elementary

account of random series representations of a broad class of infinitely divisible laws,

and demonstrate that although there are many representations of tilted and pruned stable

laws, finding one with simple explicit generating elements is problematic. Some final

comments are given in §8, where we recommend the generalized hyperbolic family as

being far better suited for empirical work than truncated or pruned stable laws.

2 Infinitely divisible laws

Our context will be the infinitely divisible (infdiv) laws, and there are several equivalent

ways of defining this notion. We will agree that the random variable X with distribution

function F(x) has an infdiv law if its characteristic function (CF) φ(/) = E[eitX] has the

form φ(/) = exp(—ψ(0) where the characteristic exponent is

= -Ait + Wt1 + ί [1 - eitx + itx] v{dx) + ί [1 - eitx] v{dx), (2.1)
J\x\<\ L J 7|x|>i L

A is a real constant, V > 0, and v is a measure on (-oo^oo) satisfying v{0} = 0 and

/(x 2 Λ l)v(dx) < oo, and called the Levy measure. (We use the notation vΈ to denote
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the measure assigned by v to the set Έ.) Thus L(X), the law of X, is comprised of three

independent components, the constant A, a Λ£(0, V) normal component, and a superpo-

sition of compound Poisson laws (Sato (1999) for example). Infdiv laws comprise the

totality of laws which satisfy the partition property: For any integer n > 1, X can be

written as a sum £y = 1 εjn of independent and identically distributed random variables

(and clearly their law has the CF (φ(/)) l^n))> The centering term itx in the first integral

of (2.1) is often expressed in different ways, but this only affects the value of A. Infdiv

laws are always unbounded in at least one direction and hence the Mantegna-Stanley

[24] truncation always results in a law which is not infdiv.

We identify the important special case of spectrally positive infdiv laws (SPID

laws), defined by the constraint v(—°o7θ) = 0. In this case the Laplace-Stieltjes trans-

form (LST) E(e'QX) := Z,(θ) = exp(-κ(θ)) is finite (θ > 0) where the cumulant func-

tion has the representation

κ(θ) =AΘ- IKΘ2 + ί [l - e~Qx - θx] v(dx) + Γ [l - £ΓΘ*] v(dx). (2.2)

To minimise algebraic details, we will always assume that V — 0. It is clear that the

general infdiv law can be decomposed as X — A +X\ - X2, where X\ and X2 are inde-

pendent SPID random variables with zero constant terms. In this sense SPID laws are

fundamental.

There are two types of SPID law. Type 2 is defined by the condition /J xv(dx) = °o5

in which case supp(L(X)) = R; X can assume any positive or negative value. But

since Z,(θ) < °o if θ > 0, the left-hand tail P(X < —x) (x > 0) decreases to zero faster

than any exponentially decreasing function. Indeed, Ohkubo [26, p. 78] shows that

P{X < -x) = O(exp(-xlogx)) for large x. Thus L{X) is 'almost' one-sided.

Type 1 is defined by the condition /Q1 xv(dx) < «> in which case the cumulant func-

tion has the slightly simpler representation

[}{dx), (2.3)

where B—A- / Q ~ JCV(JX), and L(X) is one-sided with support [5,«>). This includes

the fundamental compound Poisson case where p = v[0,<») < °°. In this case p - 1v[0,x]

is a distribution function and we can write

where N has a Poisson(p) law and the η y are independent with distribution function

p^vfΰ,*] and independent of N. We shall see below that the asymptotic behaviour of

P(X — A > x) is determined by the rate at which v[jt,°°) tends to zero as x —» <*>; in

other words, it is determined by the compound Poisson component of the infdiv law. It

typically is the case that an infdiv or SPID law is such that it is not possible to explicitly
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exhibit its distribution function, whereas its Levy measure often has a simple form.

(This is certainly true for stable laws which we later consider.) Thus, it is important

to somehow relate the upper tail P(X > x) to properties of v(dx). Sato [33] discusses

these matters for cases where there exists a constant γ > 0 such that the transform

v(θ) = f~e~txv(dx) converges in the open interval (-γ,°°) and diverges otherwise.

Here we are concerned with cases where γ > 0 and v(—γ) < <». The following concepts

embrace this situation.

We begin the following definition, slightly extending Definition 1 in Cline [10].

Denote the survivor function of a distribution function G(x) by G(x) := 1 — G(x).

Definition 2.1. A distribution function G( ) has an exponential tail with rate γ > 0,

written G( ) G £γ, if

lim ^ " ^
G

e ( < J < ) .
G{x) f

For eachy > 0 the limit holds uniformly fory < yf if γ > 0, and uniformly in [—y^y1] if

γ = 0. Speaking of an exponential tail with rate γ = 0 is somewhat contradictory, and we

observe that, for our purposes, LQ is a very substantial class of long-tailed distribution

functions in that lim^oo e£JCG(x) = °° for each ε > 0.

We will see that stable and pruned stable laws belong to the following general class

of laws. Denote the convolution of distribution functions G and H by G*H, and con-

volution powers by, for example, G*2.

Definition 2.2. If G G Ly for some γ > 0, say that it is convolution equivalent, written

G G 5y, if

(2.4)
G(x)

where M < °o.

Bingham et ah [5] make some remarks about convolution equivalence on the line,

and the unpublished report [37] develops some properties of two-sided convolution

equivalence. Apart from these references, general theory for convolution equivalent

distribution functions assumes that G(O-) = 0, that is, that the corresponding random

variables are non-negative. In this case Cline [11, p. 355] shows that M — MQO) '•—

j eΊxdG{x)i the moment generating function of G. (Unrestricted integrals are taken

over the real line.) Pakes [27] extend this to the two-sided case. For positive laws,

G(0—) = 0, the boundary case γ = 0 usually is defined by (2.4) alone with the addi-

tional condition M — 1, giving the so-called subexponential class S, which is a proper

subset of ϋo The subexponential class was introduced by Chistyakov [8] for estimat-

ing the long-term mean size of certain population processes, and it contains virtually
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any long-tailed law occuring in financial modelling and other applications. We de-

fine S to comprise the laws satisfying (2.4) with M = 1. An important example is

G G H^a, the class of regularly varying (at infinity) functions with index — a. Another

is G(x) = const. exp(-cxα) (x > 0) where c > 0 and 0 < a < 1. In these cases G € 5 .

The definition (2.4) is equivalent to lim^ooG n(x)/G(x) = nλf1"1 for some (and

hence all) integers n > 1. Thus if γ = 0, the definition has the probabilistic meaning

p(γι + + γn>x) =

χ-*-P(mia(Yι,...,Yn)>x) '

where the 7y are independent with distribution function G( ). If γ > 0, then G(x) =

e-^T^ t), where f~x(x)dx < <*>. Bingham βί α/. [5] thus use the term 'close to expo-

nential' for members of Uγ>oiγ. Observe that exponential and gamma laws with scale

parameter γ belong to L^ but not to Sy. Cline [10] gives several criteria for membership

of 5 γ (γ > 0). The following lemma, embracing the laws we consider here, is a direct

consequence of his Corollary 2.

Lemma 2.3. Suppose that

where γ,c > 0, ω < 1, L( ) is normalized slowly varying, and if c = 0 then either δ > 1

or δ - 1 and f~{L{x)/x)dx < ~. Then G € iγ.

Proof. Observe that if c = 0 then MGO) < °° iff the conditions on δ hold. Write

G(x) = exp[—ξ(jc)] and observe that

ξ'(x) = γ + cωχω-1 + δ/jc - ε(x)/χ

where ε(x) -> 0 (JC -> ©o) is the index function of L( ); see [5, pp. 12-15]. The function

ξi (JC) = yx + cxω + δlogx is concave and *|ξ'(x) - ξj (x)| -* 0, thus fulfilling Cline's

conditions. •

The following theorem relates the asymptotic behaviour of F(x) for an infdiv law

and the distribution function

where λ = v(l,<»), of its positive jump components exceeding unity. Its proof with

other details and references are given in Pakes [27].

Theorem 2.1. Suppose that γ > 0 and F is an infdiv distribution function. The fol-

lowing assertions are equivalent:
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(ii) J G Ly and

As an application of his results for two-sided convolution equivalence, Willekens
[37] proved the equivalence of (i) and (ii) and that each implies (iii). In addition to
the Tauberian converse, Pakes [27] shows Theorem 2.1 is essentially a consequence of
the one-sided case. We emphasize that for our purposes the most significant part of
Theorem 2.1 is the assertion that (i) implies (ii) and (iii). Observe also that reflection
about the origin shows that if J(x) = v[—x, - l)/v(—«>? -1) £ Sy then

r P(X<-x) λ/f ( λlim — f =MF{-y).

Consider the important case of the general stable law with index α € (0,2), denoted
by stable(α, £,/?). This is defined by the absolutely continuous Levy measure v(dx) =
n(x)dx where

{
p

Γ(2-α)
^ |χι-l-α i f χ < 0

Γ(2-α) \X\ II X <. U,

where b > 0 and 0 < p~ \—q< 1. Then the CF is given by

fc|ί|α(l-/βsgn(Otan(iπα)) i

where

\\bπ if α = 1,

and β = p — q. Note that many textbook renditions err in the sign attached to β; see
[15]. The most error-proof derivation of this result is synthesizing it from the cumulant
function of the spectrally positive version, p = 1. In this case

Ψ ( O ^ I / + \c |/ | (l + ίβsgn(0|log(|/|) i f α = l ,

v ' [έθlogθ i f α = l ,

obtained by integrating the relation κ"(θ) = /0°°e~Qxx2n(x)dx = -αfeθ~2 + α. Some ma-
nipulation with complex algebra leads to the above CF.
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Stable laws are subexponential (γ= 0), and hence Theorem 2.1 gives the asymptotic

estimate

P{X >x)~ v(*,~) = p ^ ^ * - α (x -> ~) (2.6)

For later reference observe that the parameter b functions as a scale constant, and that

it affects only the constant multiplier in (2.6). In particular, all one-dimensional laws of

the embedding process are tail equivalent in the sense that

l i mf(A(τi)>χ)=τL

χ-+» P(A(τ2) >x τ 2

3 Truncating the density

Suppose a random variable X has a density f(x) > 0 for all real x, and with γ > 0 let XΊ

denote the random variable having the symmetrically truncated density

where K is a normalizing constant. In principle, this specifies an explicit density func-

tion with easily determined tail behaviour. Thus if/(•) is a stable density, it follows

from (2.6) that P(Xy > x) ~ const.x~ι~ae~Ίx. However, it seems difficult to gain further

structural information, such as moments or the CF, or to determine if L(Xy) is infdiv, or

to give a probabilistic characterization of this construction. In addition, it is hard to see

how truncation could be put into a process framework. Specifically, if X = Λ(l) where

(A(s)) is a Levy process then is there a process (Λγ(.s)) such that Λ γ(l) has density

fy(x) and properties which are relevant to the modelling context?

Recalling that φ(ί) is the CF of /(•) and observing that the Fourier transform of

the kernel e~y^ equals γ/(γ2 +1 2 ) , we can write the CF of the truncated density as the

convolution (or Poisson integral)

: : rwdu.

This however seems to offer little insight into the nature of L(Xy), even for quite specific

cases such as symmetric stable laws.

One exception is the Cauchy density f(x) = c/n(c2 +x2). In this case, reference to

a table of integrals [14] shows that the truncated law has the LST

2/(γ) VI ' "

where
Γ°° c

/(θ) = / e~*x— ^dx = ci(cθ) sin(cθ) - si(cθ) cos(cθ)
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and
Γ°cosv

ci(χ) = - / dv & si(x) -
Jx V

are cosine and sine integrals, respectively. In addition, E(XΊ) — 0 (by symmetry) and

F(x;y) = ! 1 - e ^ F { x ) (*€*). (4.1)

We conclude that truncation is not a fruitful concept.

4 Tilting and pruning

In this section, we recall an asymmetric exponential weighting operation which has
been much studied in other contexts. So we let X be a random variable with arbitrary
distribution function F(-) satisfying I (θ) = fe~θxdF(x) < <~ for all θ > 0. Fix a con-

stant γ > 0 and define the law of a random variable Xy, the (exponential) γ-tilt ofL(X),

which has the distribution function

The LST of Xy is

The family of laws obtained by varying γ through the largest open interval such that

L(y) <oo is called the natural exponential family (NEF) generated by L(X). See Se-

shadri [34] for these matters, but note that we adopt an opposite sign convention for

the exponent parameter. Tilting is used for obtaining asymptotic expansions for sums

of random variables, and in the theory of random walk. See Feller [13] for the latter

application, where he uses the term 'associated distribution'.

If X has a SPID law, as defined by (2.2), we can define an operation of pruning

whereby v is replaced by the truncation

vy{dx)=τe-*v{dx), (4.2)

where τ > 0 is a constant. Some manipulation shows that the cumulant function K is

transformed into

κ(θ;γ,τ)=τ[κ(θ + γ)-κ(γ)+5 7 θ],

where

By= ί
J oy

A random variable Xττ with this pruned law has the LST is
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This shows that the exponential tilt of L{X) is equivalent to weighting v according to

(4.2) with τ = 1, together with a shift BΊ to the left of the pruned law. For the reverse

direction, let (Λ(τ) : τ > 0) denote the spectrally positive Levy process with cumulant

function κ(θ). Then the transformation (4.2) maps L(X) to £(Λ γ (τ) + τi?γ), the expo-

nential tilt of the process at time τ with a translation τBΊ to the right. In particular, if

τ = 1 then, in obvious notation,

sLy —— Jί.y i x?γ

In the Type 1 case, we can apply the tilting operation to (2.3) to obtain the same

form with B unchanged (i.e.,By = 0) and Levy measure (4.2) with τ = 1. In any event,

we see that the non-symmetric tilting operation thins the right-hand tail of L(X) in the

manner recommended by [19, 24]. In contrast, the left-hand tail, if it is non-trivial, is

inflated by exponential tilting but it still decreases faster than exponential. In addition,

if v( ) has a density n(-), that is V(0,JC] = fon(y)dy, then F ( ) has a density function

/(JC), and L(Xy) has a density function and an absolutely continuous Levy measure

given respectively by

f(x;y) = e-Tf{x)lL{Ί) & vγ(rfjc) = e^n{x)dx.

Finally, any relation connecting the tail behaviours ofF{x) and v(dx) translates to a par-

allel relation between F(x γ) and vΊ(dx). In general, it is analytically more convenient

to work with tilting rather than pruning.

We shall now consider the effect of these transformations on the spectrally positive

stable law stable(α,fe, 1). First, ignoring the change of location, note that the effect of

the parameter τ in (4.2) is simply to multiply the parameter b. Consequently, for our

present considerations, we lose no generality in setting τ = 1, and we do this until fur-

ther notice. Tilting shrinks the Levy measure to vy(dx) — [αδ/Γ(2 — ά)]e~yxx~ι~adx,

yielding the cumulant function

l ' (4.4)
\ -γlogγ] i f a = l .

We denote this tilted law by t-stable(α,ό;γ), where the notation is understood to imply

that the asymmetry parameter β = 1. The case α < 1 defines the so-called Hougaard

laws [17], used to model lifetime distributions in a heterogeneous population. Seshadri

[34] mentions some earlier formulations. The special case α = \ gives the inverse-

Gaussian law whose density function in the case A — 0 is

/(x γ) = -T^exp \τb^- (- +γc)] , (x> 0).
V 3 L \x )\

The gamma laws occur as the limit of the t-stable(α,Z?/α;γ) as α —> 0. In no other case

is it possible to express f{x;y) in terms of elementary functions. This is a consequence

of the corresponding intractability of stable densities. However Hoffmann-Jorgensen
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[16] gives expressions for stable densities in terms of an incomplete hypergeometric
function, valid in all cases except α = 1 and β / 0. Williams [38] gives an elegant
demonstration that the stable density for the case α = 1/3 and β = 1 has a simple form
in terms of a Bessel function. See Zolotarev [39, pp. 155-158] for some representations
in terms of Whittaker functions.

The mean and variance of XΊ are given respectively by

^(1+logγ), r [ f i f α = l .

These quantities are finite, and indeed all moments are finite. Observing that

(JL.X
/

oo /.oo / \ i-r**

i_a^_^ =e-yχ _Λ_) e-Ίydy „ Ί-\e-Ί*

Jo \χ+yj
we see that Theorem 2.1, or the tilting construction itself, implies that

Note that in the case of heavy tilting, γ > 1, μΊ « 0 if α < 1 and μy « — oo if α >
1, and σγ « 0 in both cases. It is easy to show that (XΊ — μy)/ay is approximately
standard normal when γ is large, a regime which is unlikely to be relevant for financial
applications.

As mentioned in §1, Mantegna and Stanley [24], on the basis of simulations, iden-
tify two limit regimes as n increases for the sum Sn of n identical copies of random
variables having their version of the truncated Levy law. In addition, they assert a value
of n, denoted by nx, which is claimed to characterize the transition from stable limit
behaviour to ultimate normal limit behaviour. The basis for this is an assertion that the
density function of Sn, evaluated at the origin, has a stable form when n is small and a
normal form when n is large. (The precise nature of these forms result from local limit
theorems.) The critical value nx is obtained by equating the two density values.

The following considerations identify three limit regimes for the tilted spectrally
positive stable law. The cumulant function of Sn is nκ(θ;y) and since, from (4.4), the
factor n merely inflates the paramter b we can, and shall, set n — 1 and let b —> °o. We
will see that the limit behaviour of L{XΊ) is determined by a critical parameter ξ = atrf*.
There is some tension in the literature on modelling financial returns between whether
they exhibit algebraically decreasing (heavy) tails or whether there also is a truncation
factor e~^ present (called semi-heavy tails by some). If this factor is present, then it
may be that γ < l : see §8 for further remarks. In such a case we can envisage that
even with b large, there are three possible regimes, ξ « 0, ξ = 0(1), and ξ > 1, the
last being attained in the limit b -> oo. The following theorem deals with the first two
possibilities. The proof is omitted since it involves only a straightforward manipulation
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Theorem 4.1. Let b -> ~ and ξ ->• αζ where 0 < ζ < oo. If α φ 1 then

I f α = 1 then
:= b'1(Xy-A - logb) 4:= b'1(Xy-A - logb) 4 t-stable(l, l ζ).

The proof shows in the case α = 1 that the limit actually is an identity in law if ζ Ξ ξ/α.
(We define ζlogζ := 0 if ζ = 0.) Theorem 4.1 asserts that if b is large but γ is so small
that ξ <C 1 then L(Vb) is close to stable. As b grows further so that ξ is moderate, then
L(Vb) retains the tilted stable form.

As b becomes larger still the critical parameter ξ becomes large. A straightforward
application of the binomial theorem to the cumulant function of the normed variable
Zb := (Xy — μy)/θy yields the expansion

where

logE (e-*z) = {&+Σaj(-β)Jξ-b+ι, (4.6)

J y!Γ(2-α)

This expansion is valid for 0 < α < 2. The following result characterizing the third
(limiting) regime follows immediately.

Theorem 4.2. If ξ -> <~ as b -* oo then Zj, -> fAί(0,1), the standard normal law.
Observe that the norming in Theorem 4.1 when ζ > 0 is equivalent to that used for

Theorem 4.2 since σγ ~ y/aζ{b/Qι/a and, if α φ 1, (μy-A)/θy -> ( α - I ) " 1 yfol,. It
is not at all clear how one might quantify the transition from one regime to the next.

The expansion (4.6) makes it clear that the normal limit is approached only after \J%
becomes large. Indeed, this expansion can be inverted using the Fourier methodology
described by Feller [13, Chapter XVI]. If gb{x) denotes the density function of Z^ and
φ(x) is the standard normal density function, then

gb(x) - φ(*) = φ(x)

where Pj(x) is a polynomial of degree j which is independent of ξ. The case r < 5 gives
the approximation

gb(x)-φ(x) = iφW l ^ \

where

is a (version of a) Hermite polynomial. Thus Hi(x) = x3 — 3JC, H^{X) — JC4 — 6x2 + 3 and
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5 Pruning two-sided stable laws

The construction implicit in the calculation of Paul and Baschnagel [29] can be ex-
pressed in general terms as follows. LetX(y) (j = 1,2) be independent random vari-
ables having a SPID law with Levy measure Vj, constant term Aj, and LST L/(θ). Next,
iQtXy(j) denote a random variable with the pruned law obtained from (4.2), that is, with
Levy measure vJ)y(dx) = ije~ΊXVj{dx). Thus the scaling constant, but not the shrink-
age parameter γ, may depend on j . Alteration of details below allows relaxation of this
restriction. Then X = XΊ{\) -Xy{2) has a two-sided infdiv law, and from (4.3) its mgf

which is finite in an interval containing [-γ, γ]. Equivalently, we can defineX=Xy( 1) -
Xy(2), in which case the exponential factor is absent.

AssumeX is centered so that 1\{A\ +£i, γ) — 12{A2Λ-B2;1) = 0. If

then Theorem 2.1 implies that

J

with a similar relation for P(X < — x).

In the sequel, we will work with the tilted rather than the pruned version. So we
let X(j) -Aj ~stable(α,&/, 1) (j = 1,2) where bj > 0, Aj is real, γ > 0. The CF of
X = Xy{l) —XΊ{2) can easily be computed from (4.4) by substituting θ = — it and con-
verting to the polar representation y-it= Λ/Y2 + t2e~iωsgn^ where ω = arctanflf |/γ).
Algebraic manipulation yields the following result, agreeing with Paul and Baschnagel
[29], and with Koponen [19], apart from scaling of some of the parameters.

Theorem 5.1. The CF of the pruned law L(X), where X=XΊ(l) -ΛΓγ(2), is exp(-ψ(f))
where

__JL_ |(γ2 + ί 2)α/2[ c o s ( α ω ) _ z β S gn(/)sin(αω)]-f*} ifaφ 1

• V / i i i / i , . i \ i f i i / - . ? , . ? \ • - - D / *\ / i Λ /.2 i ^2\ _i_ , , i ^ M vincvV if Π 1

where

A=Aι-A2, b = τιbι+τ2b2, & β =

We shall, without any real loss in generality, take τi = τ 2 = 1, and let p-stable(α, έ, β γ)

denote the resulting law.
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Moments of L(X) and its asymptotic behaviour for large b can be inferred from the
results in the previous section. For later reference we record tail estimates, assuming
the location parameter A = 0:

p(χ) ~ ^t jc" 1 -^-^ & F(-JC) - — x-l-ae-y (jc->~) (5.2)

where

obp L2{2y)
-O- =+ Γ(2-α)Z!(γ)Z2(γ) " Γ(2-α)L,(γ)I 2 (γ)

The following considerations will make it clear that L(X) cannot be realized as a two-
sided exponential truncation (1.1) of a stable law.

We can gain some appreciation of the structure of L(X) as follows. Suppose for
now that ̂ (y) (y =1,2) are independent with density functions fj(x) positive at least
in (0,oo) and that Lj(Q) = fe-Qxfj(x)dx < 00 if 0 < θ < 2γ. Then the density of X =

Observe that

which is finite if 0 < θ < 2γ. Hence,

is a density function positive on the real line and with (bilateral) LST

LG(θ)=L1(θ)L2(2γ-θ)/L2(2γ).

This is the LST of a random variable U := X(l) — ^2γ(2), which clearly is infdiv if
the Jf(y') are SPID. In particular, ifX{j) has a stable(α,fey, 1) law then U has the Levy
density

showing that L(U) is asymmetric with tail probabilities P(U > x) — O(x~a) and

Returning to the general case, we now can interpret (5.3) as specifying the expo-
nential tilt L{X) = L(Uy), noting that L{U) depends on γ. This interpretation can be
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extended to show that L(X) can indeed be represented as an exponential truncation of
a two-sided law. Denoting the integral in (5.3) by I(x), observe that

Kx := f I(x)dx= [Fx(y)f2(y)e-2iydy = L2{2γ)P(<X(l) >X2y(2)).
JO J

Similarly

K2:=

Thus h+(x;y) := (I(x)/Kι)l(0oo)(x) is the conditional density of X(\) -X2y(2), given
this difference is positive. Similarly h-(x;y) := (e~2yxI(x)/K^I^Q^X) is the condi-
tional density of X2y(l) —X(2), given this difference is negative. Now define the family
of two-sided densities hr(x;y) = rh+(x\y) + (1 - r)h-(x;y), where 0 < r < 1. For each
such r let mλ{r) = (Kλ / rLλ(y)L2{y)) and m2(r) = (£ 2/(l -r)L!(γ)L2(γ)). Then we
have the truncation (c.f (1.1))

\nι2(r)^Ar(jc;γ) if JC < 0,

thus representing /(JC) somewhat in the manner (apparently) envisaged by Koponen
[19]. We emphasize that the law we are truncating here depends on the parameter γ,
and it is obvious that this construction gives the only possible truncation representation.
Observe however that in the stable case (5.2) implies that f(x) ~ Bi.x~ι~ae~yx (x -»<*>)
and hence that hr(x;y) ~ const.\x\~λ~a as |x| -> °o? with a different constant for each
tail. Hence the truncated density has tails which decay at the same algebraic rate as a
stable(α, ,β) with |β| < 1. The nature of these laws is an open question, for example,
it is not clear whether or not they are infdiv.

6 Normal-variance mixtures

Following Bondesson [6], let % denote the class of extended generalized gamma convo-
lutions, that is, the closure of laws obtained as finite linear combinations of independent
gamma distributed random variables. The subclass T of generalized gamma convolu-
tions (GGC's) is generated from the linear combinations having positive coefficients.
Members of % are infdiv and absolutely continuous. Moreover the symmetric members
of % are normal-variance mixtures. More specifically, if L(X) G % a^d it is symmetric,
then X = Zy/Ϋ where L(Z) = 3\£(0,2), L{Y) G T and Y and Z are independent. The
parametrization for L(Z) is chosen so that

Mf\Ό) — JVLQ\Ό J, V^ IJ

where G( ) is the distribution function of 7, and we assume the mgf's are finite. Normal-
variance mixing is important in financial modelling as a way of modelling stochastic
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volatility. More precisely, if (Y(τ) : τ > 0) is the Levy process with 7(1) — Y and

{B(τ) : τ > 0) is a Brownian motion process with B(\) =Z then the subordinated pro-

cess Λ(τ) := B(Y(τ)) is an embedding Levy process, Λ(l) = X. Many marginal laws

used for financial modelling can be represented in this way. See [18] for a catalogue

and references. The following considerations show that pruning is accomodated by this

framework.

The Laplace transform relation

vdv

implies that t-stable(α,Z?;γ) £ T and p-stable(α,6,β;γ) G %\ see Bondesson [6, pp.
30,107]. In particular, p-stable(α,δ,0;γ) is a normal-variance mixture, a fact which is
not evident from inspection of its CF in Theorem 5.1 or its cumulant function

(6.2)

finite if |θ | < γ. The following results will show that the mixing law arises from tilting
another positive law, and that this more basic law has a complicated form.

Suppose that L(X) =p-stable(α, b, O γ) and denote its Levy density by n(x). Hence,

n{x) = (oΛ/2Γ(2 - α))\x\-ι-αe~^ (all real JC). As above, X = ZVΫ, and m(x) will
denote the Levy density of the mixing law L(Y). The general relation (6.1) can be
expressed for infdiv laws as

logMF(θ) - j (e#y - l) m(y)dy. (6.3)

We use the following general result relating the Levy densities of a normal-variance
mixture.

Lemma 6.1. Suppose F(x) is an absolutely continuous and symmetric infdiv law and
that it is a normal-variance mixture as specified by (6.1). Then the corresponding Levy
densities are related by

or

= ί e-svm{l/4v)v-3/2dv. (6.4)
Jo
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Proof. The right-hand side of (6.3) has the representation J^E [eθz^ - l] m(y)dy.
Equating this expression to κ(—θ), as obtained from (2.3) with A = V = 0, and differ-
entiating twice with respect to θ yields the identity

JeQxx2n(x)dx = =E \z

where δ( ) is the Dirac delta-function. Interchanging the integrals on the right-hand
side and inverting the bilateral Laplace transforms yields

x2n(x) =E

Evaluating the expectation and cancelling the x2 factor common to both sides leads to
(6.4). •

Lemma 6.2. If ή(θ) is the Laplace transform of the function η(x), then f\(y/s) = h(s)
where

Proof. Simply observe that h(s) = Jo°° e~u^r\(u)du and that the exponential factor in
the integrand is the Laplace transform of the stable( \, {u, 1) law. D

Theorem 6.1. The Levy density of the mixing law L(Y) for the p-stable(α, b, O γ) is

m W"Γ(α)Γ(l-α)J/ Γ(l-α) Ύ[2a,2,Tx),

(6.5)

where Ψ is the Kummer (confluent hypergeometric) function of the second kind.

Proof. The left-hand side of (6.4) has the form ή(\/ϊ) where

Vπoώ_ [(»-γ)+Γ
η W ~ Γ ( 2 - α ) '

and hence Lemma 6.2 leads to the evaluation

But h(s) must equal the right-hand side of (6.4), that is, h(v) = v~3/2rn(l/4v). Inte-
grating I(x) by parts leads to the integral representation in (6.5). The final form comes
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from a substitution in the identity /0°°w
α λe "2 2uzdu = Γ(α)i/_α(z), where the Her-

mite function H-a{z) = 2~αΨ(iα, i z2) [20, pp. 285,290]. •

Expanding the exponent in (6.5) yields m(x) = e~^xί{x) where

*

Lemma 6.3. The mixing law is a tilted law, Y — W^ where L(W) is a positive infdiv

law with Levy density ί(x). Moreover, /Q1 ί{x)dx = °o? and

μ-1-01/2 (x -> 0) & φ ) - 5 _ ϊ _ ^ - _ ^ χ - i - « (* -> oo).

Proof. We show first that ί(x) is a Levy density. Clearly ί(x) 10 as x f oo, and £(0+) =

oo. The substitution v = w ^ yields ί(x) - 2oKχ-χ-al2 ^ v " - 1 ^ - 2 ^ and the

integral converges to \T{\a) asx -> 0. Consequently $xl{x)dx < oo. Next, observing

that v 0 1 "^"^ ~ v""1 as v —> 0, a Tauberian theorem implies that the last integral is

asymptotically equal to r(a)(2yv5)~ a as x -)• oo? and the second asymptotic relation

follows. In particular f™ ί(x)dx < oo. •

It is clear from Lemma 6.3 that L{W) is not stable, although P{W > x) is asymptot-

ically proportional to the right-hand tail of a stable (α) law (provided it is not spectrally

negative). We have not been able to relate L(W) to simpler known laws. The integral

expression (6.6) yields the Laplace transform expression

/ xί(x)e-Qxdx = 2oK Γ -^ du =
Jo Jo w2 + 2γw + θ

α - l

sin(απ) z+(θ)-z_(θ)

(6.7)

where z± — γ ± y^γ2 — θ, |θ | < γ2, and the second equality follows from Gradshteyn

and Ryzhik [14, 3.223,#1], and it holds for α φ 1. The expression for α = 1 is given by

2^[log(z+(θ)/z_(θ))]/[z+(θ)-z_(θ)].

A further integration yields the explicit expression for the cumulant function of L(W)9

f°° ,Λ _θχ\ / \ , 2πέ (2γ)α — (z+(θ))α — (z_(θ))α . .

I (i—e )m(X)ux = — —r—. — , ( o c ^ i )
Jo Γ ( α ) γ ( 2 - α ) sin(απ)

valid for θ < γ2. This representation is too narrowly defined to give the cumulant func-

tion of Y = Wyi. An explicit expression for the cumulant function of Y can be given in

terms of trigonometric functions, but it yields little insight.

We now explore the GGC properties of L(W) and L(Y), beginning by rendering

Bondesson's [6, p. 29] definition as follows. We say that the positive law L(W) is a
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GGC if

E{e~m) = exp ί-ΔΘ - jΓlog (l + ̂ ) dV(x)] , (6.8)

where Δ is a constant and V(x) > 0 is non-decreasing on (0,°°) and satisfies the con-
ditions /Q^ I \ogx\dfl;(x) < oo and f~x~ιdV{x) < <*>. We have the following stochastic
integral representation,

W= ί τ-ιdτς{V(τ)) (6.9)

where (^(τ) : τ > 0) is a (standard) gamma process with cumulant function log(l +θ),
and V(τ) functions as a deterministic time transformation. This representation arises
from the easily demonstrated result for the stochastic integral / = fjk(τ)dΛ(ΊS(τ)),
where k(τ) and T < <*> are deterministic, and the L'evy process Λ has characteristic
exponent ψ(ί): The CF of / is exp[- / 0

Γψ(^(τ))^^(τ)].
The following result shows that L(W) is a GGC.

Lemma 6.4. The cumulant function κ^(θ) of L{W) has the canonical form (6.8) with
Δ = 0 and

Proof. Observing that the left-hand side of (6.7) is κ^(θ), integration of the second
term yields

The change of variable y = u2 + 2yu reduces this to the GGC canonical form (6.8)
as asserted. The density v(x) of the measure (6.10) satisfies v(x) ~ K(x/2a)a~ι as
x —> 0+, showing that /J | logx\v(x)dx < ©o, and v(x) ~ aKχϊa~ι as x —>>«», showing
/ Γ ^ W A ] ^ < °° Thus all conditions for GGC membership are satisfied. •

A little manipulation with (6.8) shows that the α-tilt of a GGC is again a GGC
with canonical measure V{x-ά). Applying this to (6.10) shows that Y = Wψ is a GGC
with canonical measure Ί/y(x) = K ([y/x — γ]+)α. The stochastic integral representations
(6.9) of these laws could form the basis of data simulation.

The above decompositions leading to Lemma 6.3 shows the existence of a positive
law L{W) which can be tilted, then used to mix a normal variance, thus yielding the
symmetric pruned stable law X = Z^JW^. If desired, asymmetry can be introduced by
a further tilting operation as follows. Let —γ < ζ < γ, and define the law L(Xζ) whose
density is proportional to e~&f(x). From (6.2), we see that its cumulant function is

^ θ ) α + ( γ ~ ζ " Θ Γ " 2 f ] '
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showing that this law is realized as Xζ = Jγ+ζ(l) - Jγ-ζ(2) where the V(j) are indepen-
dent stable(α,6,1) variates.

This chain of construction can be applied to any initial positive law. For example, a
structurally simpler way of truncating the tails of stable laws could begin with W having
a positive stable(α,6,1) law where 0 < a < 1. Then Wψ has LST

L ( θ ; ζ ) = e x p ( - τ ^ - [ ( γ 2 + θ ) * -

As before, let Z be independent of Wψ. with a normal Λ£(0,2) law and X —
The CF of X is φ(ί) = exp(-ψ(ί)) where

where α = 2a. The normal inverse Gaussian family corresponds to α = 1 [1], and the
normal-variance gamma laws arise as the limiting case α —» 0 after replacing b with
2b/a. Note the similarity of (6.11) and the case α φ 1 and β = 0 of Theorem 5.1; there
is no cos(αω) term or dependence on the sign of α— 1 in (6.11). The following result
lists properties relevant to our theme of this tilted-stable mixture law. L e t ^ ( ) denote
the modified Bessel function of the third kind.

Theorem 6.2. The law defined by (6.11) is infdiv with a symmetric Levy density

\+i(γ|x|). (6.12)

A s x -> oo?

and

- ' - " e - ^ . (6.14)

The density function has the series representation

A χ ) = _ ^ Σ HU T ^ U . V , _ p g KaMm, (6-15)
\x\j=ι J L Vzr,

where p = b/{\ - a) and M — (2π)~3ί/2γ~ϊ exp (pγ01).
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Proof. The Levy density of Wψ is

Lemma 6.1 yields a standard integral [14, p. 340,#9], giving (6.12). The asymptotic

form (6.13) immediately follows [14, p. 963, #6], and then (6.14) from Theorem 2.1.

For (6.15), let gψ (x) be the density of Wψ and observe that the specification of f(x) as

a normal-variance mixture entails

Λ*) = Λ= Γe-^ygf(y)y-Uy^^l Γ e - 1 / ^ (1/v)v-3/2Λ
ly/Tί JO ly/Tί JO

where go{x) is the stable(α,fe, 1) density. Inserting the power series representation of

go(l/ v ) and integrating term-by-term leads to (6.15). D

A key difference between the symmetric pruned stable law and this variance mix-

ture is seen in the differing algebraic factors in the expansions (5.2) and (6.14), x " 1 " "

and x" 1 ""/ 2 , respectively. The pruned stable law allows a little more scope for fitting

tails than the tilted stable mixture. Another difference lies in their variances,

2 a b χx-2 p 2 a b xx-2

for the pruned stable law and the tilted-stable mixture, respectively. The first is obtained

by differentiation of the characteristic exponent in Theorem 5.1 and the second from

There is no reason to expect a closed expression for the sum (6.15), just as there is

no closed expression for general stable densities. By contrast, the density for the pruned

stable is completely intractable. The case α = 1 for the tilted-stable mixture admits the

explicit result

_
J\x) ~

which we recognize as the symmetric normal inverse Gaussian law because the base

law is the positive stable Q) law whose tilt is an inverse Gaussian. See [1,2] for finan-

cial applications. An asymmetric extension of (6.11) is produced by a further ζ-tilting

operation, that is, multiplying the Levy density (6.13) by e~&.

An algebraically even simpler starting point gives the very flexible generalized hy-

perbolic (GH) family. Define a measure μ on (0,°o) by μ(dx) = xλ~ιe~^2/χdx, where

δ > 0 and λ G R. This measure is finite iff λ < 0 and δ > 0, in which case normalization

gives the density of the reciprocal gamma family. A normal-variance mixture using this

family gives the Student Maws. If δ > 0 then the γ2-tilt e~^xμ(dx) after normalization

gives the generalized inverse Gaussian family [34]. Using this family to form a normal-

variance mixture gives the symmetric GH family, and ζ-tilting (with |ζ | < γ) gives the

full GH family, which we denote by GH(λ, δ γ, ζ). Note that we use a parametrization
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differing slightly to the usual accounts in order to more easily compare with the p-stable
and t-stable mixture laws. Specifically, the mgf of the GH(λ,δ;γ,ζ) law is

JCλ(2δ,

and there is an explicit expression for the corresponding density, also in terms of a
Bessel function. The tail behaviour of the GH law can be expressed via its density as
f(x) ~ Cxλ~ι e~^~^x (x -» oo). Note that the exponent in the algebraic factor can take
any real value. See [12] and references therein for accounts of the GH family.

A related construction of the GH family (e.g., [3, p. 173]) is via X = ζ7 + ZΛ/Ϋ9

where Y has the generalized inverse Gaussian law. The random mean term accom-
plishes the second tilting operation, but with the modified parametrization
GH(λ,δ; V r + ζ?ζ) Analagous outcomes occur if Y has the mixing law of Theorem
6.1, or the t-stable(α,έ;γ2) law.

Rydberg [31], and Barndorff-Nielsen and Shephard [3, 4] are recent surveys of the
application to financial data of the GH and related models and the highly developed
methodology developed for them.

7 Process and series representations

It hardly needs saying that t-stable and p-stable random variables can be embedded in
a Levy process. The random measure representation of this embedding process does
not significantly simplify, except insofar as discussed by Eberlein [12, p.326] whose
remarks apply whenever the process has a finite mean. Barndorff-Nielsen and Shep-
hard [4] construct stationary models of Ornstein-Uhlenbeck (OU) type built on the fact
that a law L(X) is self-decomposable iff X — J^e~τd/B(τ) where the integrator is a
Levy process, called the background driving Levy process (BDLP). The corresponding
stationary OU process is X{τ) = e~τX{0) +tie-(τ-uϊd<B(u), where X(0) = X. If* and
ί denote the Levy densities of X and CS(1), respectively, then ί(x) = —(d/dx)(xn(x))
[4, p. 302]. This construction forms-therbasi^of ίheir coherent modelling methodology
mentioned above.

Barndorff-Nielsen and Shephard [3,4] choose the GH family for L(X). In principle
their general approach is applicable to t-stable and p-stable laws. For example, if we
fix A > 0 and let L(X) have the Levy density

then

which clearly is a Levy density. It follows that the t-stable law is self-decomposable
and its BDLP is the sum of two independent Levy processes. The first has Levy density
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α«γ(jc) corresponding to the time dilated embedding process (Λ(ατ)). If α < 1 then the

second component is a compound Poisson process having a gamma jump law which in

obvious notation we denote by Gam(l — α,γ). If α = 1 then the second component is

a gamma process, and if 1 < α < 2 then it is generated by a t-stable(α — l,Z?;γ) law,

where b = (A/a)Γ(2 — α) . Similar representations hold for p-stable laws, even in the

asymmetric case.

The tilted-stable mixture law of Theorem 6.2 being a normal-variance mixture with

a GGC mixing law is a member of %, and hence it too is self-decomposable. It follows

that

The proof involves differentiating (6.12) and using the fact xK{, (x) + vKv (x) = xKv- \ (x).

So again the BDLP resolves into independent components with the first a time di-

lated version of the embedding process. The second component can be shown to be a

compound Poisson process of normal-variance mixture type, C τ = Σ!J=\ Zjy/Vj where

(Nτ) is a Poisson process with rate 2abf /(I —a), the Zy are independent copies of

Z ~ ίA£(0,2), and the Vj are independent Gam(α,γ2) variates. This decomposition gen-

eralizes Proposition 6.2 in [4] (a = ±) and it represents the second component in a

simpler and more explicit form than they achieve.

Motivated in part by the search for prior laws for Bayesian nonparametric inference,

there is a body of work on random series representations of stable, and more generally,

of infdiv variates. See [21, 30, 32, 36] for a fairly complete listing of the literature.

Practicable ways of simulating stably distributed data appears to be a subsidiary moti-

vation, but it is generally agreed now that the series converge too slowly to be useful

for this purpose. As we now show, an elementary treatment results from imposing a

regular variation condition on a Levy measure. This condition holds for all modelling

applications we know of.

Let (Nτ) be a unit rate Poisson process with event times T\ < Tz < --. Given a

Levy measure μ, define M(x) = μ(*,°°) and suppose there is a constant β > 0 and a

function L slowly varying at infinity such that

that is, M is regularly varying at the origin. The constraint /J x2μ(dx) < °° implies that

β < 2. The function M has an asymptotic inverse

p(v) = ( v L # ( v ) ) - 1 / β > 0 , ( x > 0 ) (7.1)

where L# is the slowly varying conjugate of L [5]. Finally, let {Yn : n > 1} denote

independent copies of 7 which has CF σ and first moment ξi, when it is defined.
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Theorem 7.1. (i) Suppose 7p := f\°p(v)dv < °°. Then the series

oo

χ=Σγ»p(τ») ( 7 2>
n=\

converges absolutely almost surely iff

β < 1 &

or

β = l & Έ\Y\t{\Y\)<-i

where ί(x) = f~y~ιL(γ)dy < oo. If either condition holds then the CF of X is

φ(ί) = exp — / (1 — c(tx))μ(dx) . (7.3)

(ii) Suppose 1 < β < 2, 7p = oo? ζj is finite, and L is normalized slowly varying. Then
the series

X=Σ(Ynp(Tn)-ζip(n)) (7.4)
n=\

converges unconditionally almost surely if E\Y\P < oo for some p > β. If ζi = 0 then.?
has the CF (7.3). If ζj φθ then

0 0 / /V2+1 \

= Σ μ;p(^)-ζi / P(v)rfv) -5,
11=1 V Jn J

μ ( ) / ( ) ) (7.5)
11=1 V Jn J

where 5 = ζi /j ^p(v)Jv, converges unconditionally almost surely under the above
moment condition, and its CF is

φ(ί) - exp J- ̂ " ( 1 - σ{tx))μ(dx) - £(1 - c(tx) + i

Proof, (i) The law of large numbers and (7.1) imply that p(Tn) ~ p(n) and the absolute
convergence assertions are an immediate consequence of general convergence criteria
for random Dirichlet series: See Corollary 2.2(b,c) in Pakes [28], observing that β < 1
is necessary for 7p < «>.

The form (7.5) of the CF is derived essentially as in [21]. lfXn = Σ%\ YjP(Tj)

E (eitXή = E[E {eitXή \Nn] = E in'1 Γ a(tp{v)dv
Nn

= exp f- Γ ( l -σ(ίp(v)))rfvl = exp f- Γ (l-σ(tx))μ(dx)] (7.6)
I Jθ J L Jp(n) J
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and (7.3) follows since Xn

 aA X.
(ii) Our assumptions imply that /p = °° whence Σ r t > 1 Ynp(Tn) is almost surely divergent
(Pakes [28, Corollary 2(a,c)]). Express the summands in (7.4) as Yn[p(Tn) - p(/i)] +
% - ζi]p(n) = Um + Uln and let ic - sup{κ > 1 : £ | 7 | κ < ~}. Now Σn>ι U2n is a
random Dirichlet series if it is regarded as a function of β" 1 , and Theorem 3.2 (b)
of Pakes [28] asserts that its abscissa of unconditional convergence is max(i,ic~1).
Choose p < 2 and note that since β" 1 > \ we have β" 1 > p~ι > Ίnι, and hence this
series is almost surely unconditionally convergent under our moment hypothesis.

Observe that the normalization assumption on L implies that Z,# is normalized
slowly varying, and hence that \L#(Tn)/L#{n) - 1| = o(\Tn - n\/n). This estimate and
the mean value theorem imply that

We infer from the Marcinkiewicz-Zygmund strong law [9, p. 122] that a.s. \Tn — n\ =
o{nι/P) and hence that |p(Γπ) - p(n) \ = o{n~x~^~l-P'^Ln{n)). It follows that Σn>\ Uχn

is almost surely absolutely convergent. If ζi = 0 then (7.6) still holds and hence the
integral has a finite limit as n —»<χ>.

If ζi φ 0 write the nth partial sum of (7.5) is

*{n) = Σ PjPPj) ~ ζiPt/)) + Σ fp(Λ - Γl PMrfv) -B.
7=1 y=i V JJ J

The terms in the second sum are non-negative and bounded above by p(y') - p(y + 1),
and hence that sum converges as «—><». This establishes the unconditional convergence
of the series (7.5). Observe now that

[

where

H(n)= /
Jn

and the final estimate is a consequence of a strong law of Kolmogorov. (In Feller's
rendering [13, p. 239], for example, take his independent summands Xk to have the
same law and bk — \fk\ogk. Of course, the above estimate follows from the more
abstruse law of the iterated logarithm.) It follows that X" has a limit law coinciding
withL(X).

But since ffi^ p(v)dv = f^xμ(dx), it follows from (7.6) that

E Utx'») = exp Γ- Γ ( l -a(tx))μ(dx)- f (1 -a{tx) + iζιtx)μ{dx)] ,
V / [ J\ Jp(n) J
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and this converges to φ(ί) because the series (7.5) converges. •

Two boundary cases, which are not covered by Theorem 7.1, are stated without

proof in the next result. Its proof is similar to that above, but using Corollary 2.3 and

Theorem 3.2 in Pakes [28].

Theorem 7.2. If M is slowly varying at the origin then the series (7.2) converges ab-

solutely almost surely iff EM(\Y\~ι) < <*>. If β = 2 and ζi = 0 then (7.2) converges un-

conditionally almost surely iSi(x) = ^M(y~2)dy/y < oo (x > 0) a n d £ | F 2 | £ ( | 7 | ) < oo.

If either convergence criterion is satisfied then (7.3) holds.

Observe that if M(0+) < oo then p(v) = 0 if v > M(0+) and the series (7.2) has

finitely many non-zero terms, that is, X has a compound Poisson law. In the case

β = 2 note that I is slowly varying. Finally, we mention that representations for the.

embedding process, with its time parameter restricted to [0,1], are obtained by replacing

Y with yi(o,c/] (τ) in the above series, where U has the uniform law on (0,1].

It is clear that the laws of X and X are infdiv since the Levy measure τμ induces

the function p(v/τ). In particular, if// has density m and Y has density / , then X and X

have the Levy density

»W = Γ f(Φ)m(y)dy/y = Γf(ysga(x))m(\x\/y)dy/y. (7.7)
Jo Jo

Thus desired functional forms of n in principle can be tailored from convenient choices

of m and / . For example, it is known that m(x) = Ax~ι~a yields spectrally positive

(respectively, two-sided) stable(α)) laws for any one-sided (respectively, two-sided)

L(Y), provided the convergence criteria are satisfied. The common choice is the point

mass at unity (respectively, P(Y = ±1) = £). If m(x) = Ax~ι~ae~yxl(o,oo) (*) then these

choices for L(Y) give n(x) = m(x) in the first case (t-stable), and n(x) = £JW(|JC|) in the

second case (p-stable). Integration and changing variables yields

M{x)=aχ-χ-aEx+a{Ίx)

where E\+a is an exponential integral.

If/ is the ίA£(0,2) density, then (7.7) has the normal mixture form in Lemma 6.1

after replacing m(x) there with 2xm(x2). To realize the t-stable or symmetric p-stable

laws, it follows from (6.5) that we must have

( \ A ̂  1—ct — 1 — e x ~
v I — Ay y P

X) — ΛΔ X e

Similarly, p-stable laws can be achieved by taking

r/'Λ — y lxlδ~V~γW & m(r) -

Explicit determination of p in any of these cases is problematic.
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8 Final remarks

We have illuminated confused definitions of exponentially truncated stable laws and

elicited some properties of the pruned version. Symmetric pruned stable laws have

been contrasted with normal variance mixtures using a tilted positive stable law or

an inverse Gaussian law. Two characteristics stand out. The first is the absence of

explicit expressions for the densities of the pruned stable or the tilted-stable mixture.

The second is the restricted ranges which are permissable for the exponent values in the

algebraic factors occuring in the tail estimates; (1,3) for (5.2) and (1,2) for (6.14).

Proponents of truncated/pruned stable laws argue their case in terms of the good

fits obtained for selected data sets. It seems to us that a consistent application of this

criterion should cause abandonment of these laws in favour of generalized hyperbolic

laws. The GH family of laws is more useful because

• There are explicit expressions in terms of Bessel functions for their density func-

tions, their Levy densities, and for their moment generating functions for all pa-

rameter values;

• The family includes several commonly used sub-families;

• Members have the financially desirable property of being represented as normal

variance mixtures;

• The family is more flexible for data fitting purposes, particularly by having greater

scope in its tail behaviour.

The last point is nicely illustrated by Hurst and Platen [18] in their examination of

five major world market index series. They fit eight types of symmetric law to these

series, including the stable, Student-/, and the GH family. The Student-/ family is

declared the 'winner' in the sense of achieving a uniformly better fit according to a

likelihood ratio criterion. The GH family fits equally well, but at the expense of an

extra parameter. The Student /-law density function f(x) ~ const.x~λ~d as x —> °°,

where d > 0 is the degrees-of-freedom parameter. In all cases its estimated value d lies

outside the interval (0,2), the permissable range of the stable index α. The estimates

γ of the exponential decay factor for symmetric GH laws all appear to be very close

to zero, though it should be noted that only estimates of 2δγ are actually reported.

However, the fact that γ > 0 implies that —λ should be smaller than d, as indeed it is.

In fact —λ > 0, and it lies outside the interval (0,2) for the Australian index series, but

not for the other series. For all series, the best fitting laws have smaller tails than any

non-normal stable law can attain. One anticipates that fitting a symmetric p-stable law

will show little improvement over the stable, and not so good a fit as the symmetric

GH. It would be worthwhile fitting the p-stable, if only to eliminate it from further

consideration.
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Designs on Association Schemes

R. A. Bailey

Abstract

An association scheme partitions a finite set Ω into symmetric subsets, one
of which is the diagonal subset. This paper develops the idea of a design map
between two association schemes. In many designed experiments, the structure
on the experimental units is an orthogonal block structure. These appear to be the
structures where both the components-of-variance and patterns-of-covariance ap-
proaches (almost) agree. By replacing orthogonal block structures by association
schemes, only the patterns-of-covariance model generalizes.

Keywords: association schemes; balanced design; experimental design; general bal-

ance; Latin square; orthogonal block structures

1 Introduction

Terry Speed and I worked together in the 1980s on problems in the analysis of variance.

My motivation was to understand how an analysis of variance could be defined by the

randomization used in setting up the experiment [3]; his was more fundamental, seeking

to answer the question 'What is an analysis of variance?' [29]. We were both heavily

influenced by John Nelder's two papers [25,26], in which he defines simple orthogonal

block structures, makes an unsubstantiated claim about randomization, defines general

balance, and shows how to analyse data from generally balanced experiments with

many strata.

In joint work with Cheryl Praeger and Chris Rowley [7], we were able to generalize

Nelder's simple orthogonal block structures to a class which I now call poset block

structures, and prove that Nelder's claim about randomization holds in poset block

structures. The other three authors extended this work in [27], while I showed in [4]

that poset block structures are the same as the 'complete balanced response structures'

which Kempthorne and his team at Ames, Iowa had studied extensively [21,22, 32,36].

More surprisingly, in [30, 31] Speed and I found that if you ignore the question

of randomization then you can define an even wider class of structures in which all of

Nelder's theory carries through, with rather easy proofs. Today I use the term 'orthogo-

nal block structure' for structures in this class [4]. An important input from Speed was

to recognise that these orthogonal block structures are association schemes: this insight

has influenced my own subsequent work enormously. A second key input from Speed

was to introduce concepts from partial orders, most importantly the Mobius function,
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which enables us to give explicit formulae which do not involve matrix inverses. In

conversation in 1990, Oscar Kempthorne told me how important he thought the intro-

duction of the Mόbius function was to the subject. He said that the Mobius function

really did the job; he wished that he and his colleagues had known about it.

Orthogonal block structures are reviewed in Section 2. They give a context for the

remainder of the paper. In a very large proportion of designed experiments, the struc-

ture on the experimental units is an orthogonal block structure, but other association

schemes do occur.

In [20], Houtman and Speed examined general balance in detail. In order to in-

clude as many covariance structures as possible, they did not restrict their attention to

structures defined by combinatorial concepts such as 'in the same block'. Instead, they

defined a linear model to 'have orthogonal block structure' if all the eigenspaces of the

covariance matrix are known. Everything about general balance and estimation was

worked through in this framework. It is certainly true that general balance can be fruit-

fully defined whenever the eigenspaces of the covariance matrix are known. However,

I prefer to retain the term Orthogonal block structure' for the combinatorial structures

defined in Section 2.

Section 5.2 of [20] discusses partially balanced incomplete-block designs. These

have an association scheme defined on the set of treatments: indeed, this is the context

in which association schemes were defined [9, 10]. It is fairly natural to extend the idea

of partial balance to other orthogonal block structures: see [8, 18, 19] for nested block

designs and [16] for nested row-column designs. However, Section 5.2 went far beyond

that, because it proposed that both the set of treatments and the set of experimental units

could have an arbitrary association scheme defined on them.

This idea, of two association schemes and a design map from one to the other, was

given less than two pages in [20]. It is developed in the main part of this paper.

There are two rather natural ways of defining a covariance matrix on a structured

set of random variables. If the structure is defined by partitions on the set, then indepen-

dent random variables can be associated with each class (part) of each partition: those

associated with the same partition have the same variance. This gives the components-

of-variance model, which is widely used: see [28]. On the other hand, if the structure

is defined by a partition on the ordered pairs from the set, one can demand that the co-

variance is the same for all pairs in the same part. This gives the patterns-of-covariance

model, which is natural if the model is justified by randomization: see [3]. Orthog-

onal block structures appear to be precisely those structures where not only are both

approaches possible and tractable but also the two approaches (almost) agree, as shown

in Section 2. However, in generalizing from orthogonal block structures to association

schemes, only the second approach is possible.
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2 Orthogonal block structures

Let F be a partition of a finite set Ω. Define the subspace VF of the real vector space R Ω

to consist of all those vectors which are constant on every class of F . Then dimVp is

equal to np, the number of classes of F.

Two Ω x Ω real matrices are defined by F. The first is the relation matrix Rp, whose

(α, β)-entry is equal to 1 if F(a) = F(β) and to 0 otherwise. Here we are writing F(a)

for the class of F which contains α. The second is the projection matrix Pp. There is a

natural inner product ( , ) o n R Ω given by

(v,w) = £ vωwω;
ωeΩ

this defines orthogonality, and Pp is just the matrix of orthogonal projection onto Vp.

The (α, β)-entry of PF is equal to 1/ | F ( α ) | if F{a) = F(β); otherwise it is zero.

The partition F is defined to be uniform if all of its classes have the same size,

which must be |Ω| jnp. If F is uniform then \Ω\Pp = npRp.

There are two trivial uniform partitions of Ω. The universal partition U has a single

class. Thus VJJ is the 1-dimensional subspace consisting of the constant vectors. At the

other extreme, the classes of the equality partition E are all singletons, so VE = R Ω .

Suppose that F and G are two partitions of Ω. We say that F is finer than G, and

write F =̂  G, if every F-class is contained in a G-class. In this case, VG ^ Vp. In

particular, E =̂  F =̂  U for every partition F of Ω.

More generally, the infimum F Λ G of F and G is defined to be the coarsest partition

which is finer than both F and G. Its classes are the non-empty intersections of F-

classes with G-classes. Dually, the supremum F V G of F and G is the finest partition

which is coarser than both F and G. Its classes are the connected components of the

graph whose vertices are the elements of Ω and whose edges are the pairs {α,β} for

which F(ά) = F(β) or G(α) = G(β). It follows that VFs/G = VFΠ VG\ however, there is

no simple expression for FFΛG

Partitions F and G are defined to be orthogonal to each other if Pp commutes

with PG; that is, if Vp is geometrically orthogonal to VQ in the sense that Vp Π Vp^G

is orthogonal to VG Π V^G\ see [33]. If F ^ G then F V G = G so VG Π V^G is the zero

subspace, which is orthogonal to all subspaces, so F is orthogonal to G. In particular,

F is orthogonal to U, E and itself.

Orthogonality is equivalent to a combinatorial condition that statisticians will recog-

nise as 'proportional meeting'. Figure 1 shows five examples where the set Ω is a rect-

angle. In each case F is the partition into rows, G is the partition into columns, and the

numbers show the size of the row-column intersections. In (a), (c) and (d), each of F,

G and F Λ G is uniform; in (e), F and G are uniform but neither F Λ G nor F V G is; in

(a)-(d), F V G = U; in (c) and (d), F Λ G = E; in (a), (b), (d)and (e), F is orthogonal

toG.

If F, G, F Λ G and F V G are all uniform then there is a simple criterion for or-

thogonality: F is orthogonal to G if and only if, for all pairs α and β, F(α) Π G(β) is
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(b)
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1

(c)

1
1

1
1

1
1

(d)

1
1
0

1
1
0

0
0
2

(e)

Figure 1: Examples to demonstrate orthogonality

non-empty if and only if G(α) ΠF(β) is non-empty.
Sections 42 and 76 of [17] show that if F is orthogonal to G then

(1)

Definition

An orthogonal block structure on Ω is a set 7 of uniform partitions of Ω such that

(i) 7 contains E and U;

(ii) i f F G i Γ a n d G e ^ t h e n F Λ G e J a n d F v G e 7\

(iii) if F £ 7 and G € 7 then F is orthogonal to G.

Suppose that 7 is an orthogonal block structure. Then 7 defines a partition of Ω x
Ω into associate classes CF labelled by elements of 7-> as follows. Let a and β be in Ω.
Since 7 is closed under Λ, there is a unique finest F in 7 such that F(a) = F(β). Now
the class C(α,β) containing (α,β) is CF, and we call α and β F-associates. In other
words, (α,β) G CF if and only if (i) F(α) = F(β) and (ii) if G € / and G(a) = G(β)
then F ^ G. The Ω x Ω adjacency matrix Af is defined to have (α, β)-entry equal to 1
if α and β are F-associates; otherwise it is zero.

Example 1
Suppose that Ω consists of b blocks, each of which is an n x m rectangular array. Let
B be the partition into the blocks, F the partition into the bn rows and G the partition
into the bm columns. Then {E,F,G,B,U} is an orthogonal block structure. Moreover
(α,β)isin

CE ifα = β
CF if ex Φ β but α and β are in the same row
CG if α Φ β but α and β are in the same column
CB if oc and β are in the same block but different rows and columns
Cu if oc and β are in different blocks.
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Also, given an orthogonal block structure jF, define

= vFn f| v& (2)
Ge J,

for F in 7- Since Γ̂ is closed under V and satisfies the orthogonality condition, it is
fairly easy to show that WF _L WG if F Φ G, and that

VF= 0 WG (3)

10 otherwise.

The elements of ̂ Γ can be written in such an order that, as a matrix, ζ is upper triangular
with all diagonal elements equal to 1. Therefore, ζ has an inverse matrix μ, and it is this
which is called the Mδbius function.

The definition of Ap shows that

Ge7

for all F in 7. Hence

for all F in 7, and span {AF :F € 7} = span {RF :Fe!f}. Since all the partitions are
uniform, \Ω\PF = nFRF for all F in J , and span{PF :Fe?} = spm{RF :Fe?}.
Finally, let SF be the matrix of orthogonal projection onto WF. Equation (3) shows that

Gel

for all F in 7, and hence

SF= ~

Therefore

span{ΛF : F G 7} = span{ΛF :Fe7} = span{P/r \Fe7}

= span{SF:Fe7} (4)
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Now suppose that Ω is the set of experimental units in an experiment. We observe

a data vector that is a realization of a random vector Y. What should we assume about

the covariance matrix Cov(7)?

One common assumption is that there are independent random variables associated

with every class of every partition in 7- all those associated with F have variance σjL

This gives

Cov(7) = £ c2

FRF, (5)

which is called the components-of-variance model. A second assumption is that all

pairs of F-associates have the same covariance yF, for all F in 7 - This gives the

patterns-of-covariance model

Cov(7) = X yFAF. (6)

Because of Equation (4), both of Equations (5) and (6) can be reparametrized as

Cov(7) = X ξFSF. (7)
Fe?

This shows that the spaces WF are eigenspaces of Cov(7) in both cases, with eigen-

values ξf. Nelder called these eigenspaces strata, so the quantities ξ/r are called the

stratum variances. His proposed analysis of the data begins by projecting the data onto

each stratum, where it has effectively a scalar covariance matrix, so that ordinary least

squares can be applied: see also [1].

However, models (5) and (6) are not identical. A covariance matrix is non-negative

definite, so Equation (7) is constrained by

ξ/Γ^O for all F in J. (8)

Variances must also be non-negative, so (5) is constrained by

<ήr>0 for all F in J . (9)

Now,

F F nF

SO

and therefore condition (9) is stronger than condition (8).

In [20], Houtman and Speed effectively started with Equation (7) for known pro-

jectors SF. By replacing orthogonal block structures by association schemes, we can

also retain Equation (6) for known adjacency matrices AF. That is, the patterns-of-

covariance model generalizes but the components-of-variance model does not.
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3 Association schemes

A subset of Ω x Ω can be identified with its Ω x Ω adjacency matrix A, whose (α, β)-

entry is equal to 1 if (α, β) is in the subset and to 0 otherwise. The subset is said to

be symmetric if its adjacency matrix is a symmetric matrix. The diagonal subset is

{(ω,ω) : ω £ Ω}: its adjacency matrix is the identity matrix /. The adjacency matrix

of Ω x Ω is the all-1 matrix J.

Definition

An association scheme on Ω is a partition of Ω into symmetric subsets, called associate

classes, one of which is the diagonal subset, such that the product of any two of its

adjacency matrices is a real linear combination of the adjacency matrices of associate

classes.

The trivial association scheme has just one non-diagonal associate class. If B is a

non-trivial uniform partition of Ω then B defines a group-divisible association scheme

on Ω: its non-diagonal classes are

{(α, β) € Ω x Ω : B[μ) = 5(β) but α φ β} and

If T is an association scheme, the set Ά(T) of all real linear combinations of its

adjacency matrices forms an algebra, called the Bose-Mesner algebra, A key theorem

for association schemes (see [14, Chapter 17]) is that Λ(ίP) is commutative and hence

has a basis {Se:ee Έ} consisting of the matrices of orthogonal projection onto its

mutual eigenspaces We, for e in some suitable index set Έ. If the adjacency matrices

are At for i in / then | / | = | £ | = dimA(Φ), but there is not usually any canonical

bijection between / and Έ. The subspace V\j is always a common eigenspace, with

projector |Ω|~ J.

Equations (4) and (1) show that the non-zero adjacency matrices A p of an orthogo-

nal block structure J form an association scheme, and the common eigenspaces are the

non-zero strata Wp defined by Equation (2). It is convenient to extend the term 'stra-

tum' to all association schemes. If none of the Ap is zero then I — 7 = Έ and none

of the Wp is zero: here there is a natural bijection between the associate classes and the

strata.

4 Designs

I take the view, explained in [2], that a design is a function h from one structured

set Ω, consisting of the experimental units, to another structured set Θ, consisting of

the treatments. The treatment assigned to experimental unit ω is just A(ω). In this

paper, the structures on Ω and Θ are both association schemes.
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Information about the design map can be recorded in the Ω x Θ design matrix X,

whose (ω,θ)-entry is equal to 1 if A(ω) = θ and to 0 otherwise. If A is the adjacency

matrix of a subset Δ of Ω x Ω, then the (θ,φ)-entry in X'AX is equal to

|{(α,β)GΔ:A(α) = θ a n d Λ ( β ) = φ } | .

Here X' denotes the transpose of X. In particular, X'X = X'lX is diagonal with (θ, θ)-

entry equal to the replication of treatment θ, which is [/Γ^G)!, while the (θ,φ)-entry

oLTJXisequalto | Λ | | |

Definition

Let ίP be an association scheme on Ω with adjacency matrices At, for / in /, and let

Q,be an association scheme on Θ with adjacency matrices Bj, for j in J. Let h: Ω -» Θ

be a design with design matrix X. Then h impartially balanced for T with respect to Q,

if there are integers λ, y for (i,j) in I x J such that

pairs of ΐ-thfor all z in I; that is, if θ and φ are >th associates in Θ then there are

associates α and β in Ω such that h(ά) = θ and Λ(β) = φ.

When T is group divisible, this definition agrees with the usual definition of a par-

tially balanced block design. In general, the definition is identical to the definition of

(ίP, Qj-balance in Section 5.2 of [20]. However, the usual definition of a balanced block

design is more restrictive: a block design is balanced if it is partially balanced, in the

above sense, with respect to the trivial association scheme on Θ. It therefore seems less

confusing to reserve the unqualified term 'balance' for the case in which Q, is trivial:

that is, h is balanced for ίP if it is partially balanced for ίP with respect to the trivial

association scheme on Θ. Such balanced designs are investigated in [6].

If ίP is the association scheme defined by an orthogonal block structure then Equa-

tion (4) shows that an equivalent definition of partial balance is that there are integers

λ*j such thatX'RiX = Σjλ*jBj for all i. Thus Figure 2 shows a design which is partially

balanced for the association scheme of the orthogonal block structure in Example 1

(with b — n — 2 and m — 3) with respect to the group-divisible scheme defined by the

partition A,B || C,£> || £ , F .

It is usual to use the label 0 to index the diagonal associate class. In a partially

balanced design every treatment has replication λoo, so the design is equi-replicate. It

is conventional to write r for λoo

A
D

C
F

E
B

A
C

D
E

F
B

D
B

E
C

A
F

B
C

D
F

E
A

Figure 2: A partially balanced design on the orthogonal block structure in Ex. 1
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Given a random vector Y on Ω, a natural assumption is that

Cov(7) = Y^jAj; (10)

that is, that cov(7α,7β) depends only on the associate class containing (α,β). Equa-
tion (10) can be reparametrized as

, (11)

where Se are the stratum projectors in ίP and ξe are the stratum variances.
The other assumption for a linear model for a designed experiment is that

E{Y)=Xτ

for some unknown vector τ in RΘ. Projection onto the stratum We gives

Έ{SeY) = SeXτ and

Cov(SeY) = SeCov{Y)Sfe =

which is scalar on We.
Put Le = X'SeX, which is called the information matrix for stratum fFe. If x G ImL£

then there is a vector z in RΘ such that Lez = x. Ordinary least-squares theory shows
that the best linear unbiased estimator of (jc,τ) from SeY is z!X'SeY, whose variance is
z'XlSf

e(t>eSe)SeXz = ξez/LeZ. In particular, if x is an eigenvector of Le with eigenvalue
rε then this variance is equal to ξ^jc/rε.

In the textbook situation, where Cov(7) = σ2/, the variance is x'xo2 jr. The ratio
σ 2ε/ξ e is called the efficiency for x in stratum We, while ε, which depends on the design
and not on the values of the stratum variances, is called the efficiency factor for x in
stratum We.

Now, Se is a linear combination of the adjacency matrices Au so Le is a linear
combination of the matrices X'AiX. If the design is partially balanced for ίP with respect
to Q,then each of the matrices X'AiX is in Λ(Q), so Le eΛ(Q). Therefore the strata
of Q, are (contained in) eigenspaces of Le. Write εef for the efficiency factor for vectors
from stratum / (in Q) in stratum We (of (P). If the strata in Q,have projection matrices
Tf for / in f then

(12)

The matrices Le are non-negative definite and sum to rl, so, for each fixed / in ?,
the efficiency factors εe/ are non-negative and sum to 1. If there is any e such that εef =
1 then any contrast (jc,τ) with x in ImΓ/ is estimated only in stratum We. Otherwise,
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information has to be combined from two or more strata, as described in [20]. If every

efficiency factor is equal to 0 or 1 then no combining is needed and the design is said

to be orthogonal.

Both (P and Q,have the one-dimensional stratum labelled U. Moreover,

Therefore, Zyy = 1 > εc// — 0 if/ 7̂  t/ and εet/ = 0 if e φ U.

If the design is balanced, Vy is the only other stratum in Q,. It is convenient to give

it no label, and write εe for the eigenvalue of Le on Vy.

Just as for incomplete-block designs, for a more general association scheme ¥ the

Έx 7 table of efficiency factors gives important information about the design. Pro-

posed designs for an experiment are compared on the basis of these tables. In Section 6

onwards, some partially balanced designs and their efficiency factors are given for those

association schemes which are not orthogonal block structures but which are plausible

for the set of experimental units in a designed experiment, as noted in [3]. First, Sec-

tion 5 gives some theory which aids subsequent calculations.

5 Composite designs

If Ai: Ω -> Θ and hi: Θ -» Ψ are functions then we can form the composite function

hιoh\\ Ω -» Ψ, as shown in Figure 3. If h\ and hi are both designs, then so is hιoh\,

and it is natural to call hιoh\ a composite design, although this conflicts with the

terminology in [11]. If A, is equi-replicate with replication rz for i = 1,2 then hιoh\ is

equi-replicate with replication r\rι.

Q _*!» θ JH+ Ψ

¥ (I Hi

Figure 3: A composite design

Theorem 1

Let T, Q and %^ be associaήon schemes on Ω, Θ and Ψ respectively. Let h\\ Ω —> Θ

and hi: Θ —> Ψ be designs. Ifh\ is partially balanced for T with respect to Q and hi is

partially balanced for Q, with respect to ^ then hιoh\ is partially balanced for T with

respect to %^.

Proof

Let the adjacency matrices for ΦbeAi for z in /, for Q be Bj for j in J, and for %. be

Cfc for k in %, For z = 1,2 letJ^ be the design matrix for λ, . There are integers λ l y, for
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(ij) in / x J7, and vy*, for (j,k) in J x 3C, such that

for / in / and

for j in J. Now, the design matrix for hιoh\ is Λ Ί ^ and

j k j

for all i in /, and so A2 ° Ai is partially balanced for ίP with respect to H^. •

The following theorem gives a partial converse.

Theorem 2

Lei ίP, Q, and ^ be association schemes on Ω, Θ and Ψ respectively. Let Ai} for i

in I, be the adjacency matrices for (P. Let h\: Ω -» Θ and hi: Θ -> Ψ be designs. If

{X[AiX\ :ie 1} spans Ά{Q) and hi o h\ is partially balanced for Φ with respect to %^

then h\ is partially balanced for Φ with respect to Q, and hi is partially balanced for Q,

with respect to ΰ{^.

Proof

lf{X[AiXι : i e 1} spans Λ(Q) ±enX[AiXι G Λ(Q) for all i in / and so hx is partially

balanced for ίP with respect to Q,. Moreover, if Bj is an adjacency matrix for Qthen

Bj — X[MX\ for some M in Ά(Φ). If hi o Λ] is partially balanced for ίP with respect

to Hi then ( X j ^ ) ^ ^ ^ ) € Λ ( ^ ) ; that is, Xf

2BjX2 € Λ(^.). Hence h2 is partially

balanced for Q, with respect to ̂ . •

If {Xj^jXi : / G /} spans ^(Q,) then the information matrices for h\ span Λ(Q),

so their mutual eigenspaces are precisely the strata in Q. Otherwise there is at least

one pair of strata in Q, with the same efficiency factors in every stratum of ίP. In some

sense, a design h\ in which \X[A[X\ : i € /} spans Λ(Q) has/w// rank with respect to

T and d

Theorem 3

Lei (P, Q, and ^ be association schemes on Ω, Θ a.nd Ψ respectively, with stratum

projectors Se for e in Έ, Tf for f in ?, and Ug forg in Q respectively. Leth\: Ω -> Θ

be a partially balanced design for Φ with respect to Q, whose efficiency factors are εef

for (e,f) in Έ x J, and let hi: Θ —> Ψ be a partially balanced design for Q with respect

to %. whose efficiency factors are ε/g for (/,g) in 7 x Q- Then the efficiency factors

εeg of hi o h\ are given by

teg = X ε e / ε / g

for{e,g)inΈxg.
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Proof

Let r\ and rι be the replications of h\ and hi respectively. Then Equation (12) gives

X[SeXλ = n X ε^/Γ/ and J^7>X2 = r2 ^ ε Λ t / g .
geg

Hence

{XxXι)'Se{XxX2) =

A version of Theorem 1 is used in [13] for the multitiered experiments described in

[12] to show that if the component designs h\ and hi are generally balanced then so is

their composite. For example, hi oh\ can be a two-phase experiment. In the first phase,

treatments Ψ are applied to field plots Θ according to design hi. In the second phase,

the treatments are the produce from Θ, which are allocated to evaluation-occasions Ω

according to design h\. [13] uses Theorem 3 to construct analysis-of-variance tables

for the composite designs.

By contrast, we shall use Theorems 2 and 3 in the case that ίP is group-divisible.

Then h\ and hιoh\ are both block designs. Knowledge about block designs will be

exploited to deduce properties of hi.

Thus we now switch notation so that hi is the design function h of Section 4, with

the associated notation for adjacency matrices and stratum projectors. Meanwhile,

h\ becomes a design function g from Γ to Ω, where Γ has the group-divisible asso-

ciation scheme defined by the orthogonal block structure {U,B,E} for some non-trivial

uniform partition B of Γ. See Figure 4, which applies to the next two sections.

{U,B,E} T d

Figure 4: Another composite design

6 Triangular association schemes

If ίP is a triangular scheme Ύ(n) then Ω consists of all unordered pairs from an n-

set: two elements of Ω are z-th associates if their intersection has size 2 — /, for i = 0,

1, 2. This can happen in an experiment where the treatments are tasks to be carried

out by teams of two people playing the same role. It can also happen in half-diallel

experiments, where the experimental units consist of all crosses between n parental

lines, excluding self-crosses, in situations where the gender of the parent is irrelevant.

A design h on 0? can conveniently be shown as a symmetric square with the diag-

onal missing, as in Figures 5-6. The symbol in row a and column b is h({a,b}), the
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treatment on the element {a,b} of Ω. This square layout also suggests a suitable block
design for g: it has n blocks of size n — 1, and block a contains every pair {<z, b} with
b φ a. Now the composite design h og also has n blocks of size n - 1; the treatments in
block a are the symbols occurring in row a of the square.

The diallel context gives a way of naming the strata for Ί{n). They are:

WQ the one-dimensional space V\j\

Wp the (n — 1)-dimensional space for contrasts between parents;

Wq {W0 + Wp)
L.

The efficiency factors for g are

= 0

εup = 0 Eί/f = 0
n-2 °

No two columns are identical, so g has full rank. Therefore, design h is partially bal-
anced for Ί(n) with respect to an association scheme Q, on Θ if and only if the block
design A og is partially balanced with respect to Q. Theorem 3 shows that, for stratum /
inQ,

In a block design we usually want the efficiency factors Zβf to be as small as pos-
sible. In a design on T(«), it is plausible that ξ p > > ξ^, so we also want the efficiency
factors εpf to be as small as possible. Thus a strategy for finding a good design h is
to find a good design gf and see if it can be arranged in a symmetric square so that
h og = g1: not all block designs gf can be so arranged.

Example 2
Figure 5 gives two balanced designs for seven treatments on the association scheme
T(7). The design h is constructed by omitting the main diagonal of a symmetric idem-
potent Latin square. Its composite design A og is a binary balanced block design with
εB = 1/36 and εE = 35/36. Hence h is balanced with εp = 1/15 and εq = 14/15, by
Equations (13) and (14). Although the design h! is also balanced, its composite design
h1 og is not binary. Now the composite design has ε# = 2/9 and ε^ = 7/9 so h! has
εp = 8/15 and εq = 7/15. Thus h is better than ti.
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Example 3

Figure 6 shows a design Λ for 12 treatments A,..., I in T(9). The composite design is

a binary incomplete-block design which is partially balanced with respect to the group-

divisible association scheme defined by the partition A,B,C \\ D,E,F || G,//,/1| J,K,L.

Although this is an orthogonal block structure, we shall label the classes and strata

without reference to U and E, to avoid confusion with the labels B and E for the block

design g. Label the within-group class (pairs such as {A,B}) by 1 and the between-

group class (pairs such as {D,H}) by 2. Label the strata so that

Wo = Vv

Wg = the space for contrasts between groups

In the composite design, λ*i = 3, λβi = 4 and Eβg = 0. Theorem 2.2 of [15] shows

that the composite design is optimal among binary incomplete-block designs in the

sense of maximizing the harmonic mean of the efficiency factors in stratum WE, counted

according to multiplicity. Equations (13)—(14) suggest that h will therefore be a good

design for T(9).

The design h is constructed by taking T(9) to consist of unordered pairs of points

in the affine plane over GF(3). The letters A, ..., L are the twelve lines of the plane,

in their four parallel classes. Let π be a permutation of the parallel classes of cycle

type 2 2. Any two points a and b in the plane lie on a line ί containing a third point c.

The line ί lies in a parallel class L. Define h({a,b}) to be the line through c in parallel

class n(L). Then row a of the square contains all lines which do not pass through a.

7 Latin-square schemes

Let Ω consist of the n2 cells of a square array on which there are s — 2 mutually orthog-

onal Latin squares of order n, for some s with 2 ^ s ^ n — 1. Let F\ be the partition

Design h
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D
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E
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F
G
D
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Design h!

Figure 5: Two balanced designs for 7 treatments in T(7)
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H
E

I
B
C
D
J

Figure 6: Group-divisible design for 12 treatments in T(9)

of Ω into rows, F2 the partition of Ω into columns, and, for / = 3, . . . , 5, let Fi be the

partition of Ω into subsets defined by the letters of square /. Then {U,E,F\,... ,FS} is

an orthogonal block structure on Ω. Put

Ao = I

Ab = AFι+- '+AFs

Ac = J — Ao — At,.

Then Ao,Ab and Ac are the adjacency matrices of an association scheme on Ω which is

said to have Latin-square type L ( J , Λ ) . Its strata are

VυWo =

Wb =

Wc =

We are mostly concerned with the case that s = 2.

If the plots in a field trial have a n n x m rectangular array, it is usually appropri-

ate to regard them as having the rectangular association scheme R(w,ra), which is the

orthogonal block structure whose two non-trivial partitions correspond to the rows and

columns. Even if n = m the rectangular scheme may still be appropriate, because the

plots may not be square or the columns may be in the direction of ploughing. How-

ever, if m = n and the plots are square and cultivation is by hand then L(2, w) may be

appropriate.

A design h on L(s, n) can obviously be shown in a square array: see Figures 7 and 8.

If s — 2 the labels A(ω), for ω in the square array, give all the information. If s ^ 3 then

the letters of the Latin squares must also be shown. The natural choice for the block

design g is a square lattice design [34]. It has sn blocks of size n, whose 'treatments'

are the elements of Ω in the classes of F\,..., Fs. The composite design hog also has
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sn blocks of size n; the treatments in a block are those occurring in a row, or a column,
or a letter of a Latin square, in the square array.

The efficiency factors for the lattice design g are

ει/o = 1 tub = 0 εt/c = 0

ε5o = 0 ε/to = - εBc = 0

Hence g has full rank, so h is partially balanced for L(.s, ή) with respect to Q, if and only
if the block design h og is partially balanced with respect to Q,. Moreover,

= -ft/ (15)
s

= -[(s-l)εbf+sεcf] = l--εbf (16)
s s

for strata / of Q,.
For the association scheme L(s,n) it is plausible that ξ& > > ξo so we want ε&/ to

be as small as possible for all /. Once again, it appears that h will be a good design if
h o g is good.

Example 4
Figure 7 shows a design A for treatments A, ..., G on L(2,4). The composite design
h o g is partially balanced with respect to the group-divisible scheme defined by the
partition

A,B\\C,D\\E,F\\G,H

of Θ. Labelling the strata of the latter scheme as in Example 3, we find that the effi-
ciency factors for h og are

1
tBg = 0 εBw = -

3

4'

Equations (15) and (16) show that those for h are

_ 1

-I
ε c g — l tew — 2 *

The cyclic block design for eight treatments with initial block {0,1,2,4} is more
efficient than A og, but it cannot be arranged as the rows and columns of a 4 x 4 square.
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A
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E
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F
D
B

Figure 7: Design for 8 treatments in L(2,4)

Example 5

Houtman and Speed [20] discuss the design h in Figure 8, originally given by Kshir-

sagar [23]. They regard the association scheme on the 6 x 6 square Ω as R(6,6), and

show that h is partially balanced for R(6,6) with respect to the association scheme

L(2,3) on Θ shown in Figure 9. However, if we regard the association scheme on Ω as

L(2,6) then the design h is balanced.
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F
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E
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B

E
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I

Figure 8: Design h on Ω in
Ex. 5; Ω may carry R(6,6) or
L(2,6)

Figure 9: Treatment set Θ for
Ex. 5; its association scheme
may be L(2,3) or trivial

In nested row-column designs the experimental units carry the orthogonal block

structure b/R(n,m), which consists of b copies of R(/i,w). If n — m then R(n,m) can

be replaced by L(2,AZ). Some nested row-column designs with n — m bear a double

interpretation similar to the one in Example 5. A family of such examples consists of

the lattice square designs of Yates [35].

8 Pair schemes

In a full diallel experiment without self-crosses, the experimental units are all ordered

crosses between n parental lines; that is, the gender of the parent is deemed important.

Similarly, an experiment on tasks may need ordered pairs of people if the two people

play different roles.

Now the appropriate association scheme is Pair(«), which was introduced by Nair

[24] in the context of rectangular lattice designs, called the square association scheme

in [5] and Pair(w) in [6]. The set Ω consists of all ordered pairs of distinct elements

from an H-set, where n ^ 4. For ω in Ω, if ω = (x,y) then put ώ = (y,x). The associate



96 i?. A. Bailey

classes are defined so that α and β are

Oth associates if α = β

1 st associates if ά = β

2nd associates if α and β are in the same row or column but α φ β

3rd associates if ά and β are in the same row or column but ά φ β

4th associates otherwise.

Call a vector in R Ω symmetric if vω = Vώ for all ω in Ω, and antisymmetric if

vω = — Vώ for all ω in Ω. Then the strata are as follows.

Wo = Vv

W\ = the space of symmetric vectors spanned by row and column

contrasts (dimension n — 1)

Wι = the space of antisymmetric vectors spanned by row and column

contrasts (dimension n — 1)

Ws = the space of symmetric vectors orthogonal to row and column

contrasts (dimension n(n-3)/2)

Wa — the space of antisymmetric vectors orthogonal to row and col-

umn contrasts (dimension (n - l)(n - 2)/2)

The stratum projectors are

So = A
n ( n -

= ±t[2(I-Al)+A2-A3]

Sa = l~[{n-
In

Put R = / + A\. Then R is the relation matrix of the uniform partition B of Ω

into mirror-image pairs {ω, ώ}. Let ΰ^ be the group-divisible association scheme on Ω

defined by B.

It is reasonable to assume that ξi and t^ are much bigger than ξs and ξα, so that

only Ws and Wa are used for estimation. (There is also a randomization argument for

using only these two strata: see Section 12 of [3].) Thus we want efficiency factors in

W\ and Wi to be as small as possible.

One way to achieve this is to use a unipotent Latin square of order n and omit its

main diagonal: recall that a Latin square is unipotent if it has the same letter throughout
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Figure 10: Orthogonal balanced design
for 7 treatments in Pair(8), obtained
from a symmetric unipotent Latin square
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Figure 11: Balanced design for
7 treatments in Pair(7), obtained
from a symmetric idempotent Latin
square

its main diagonal. Examples are shown in Figures 10, 12 and 14. Then there are n — 1

treatments, each replicated n times.

For such a design,

andX'JX = n2J, so Lλ = L2 = 0. Moreover, X'lX = nl9 so

Ls =

La = nI--X'RX.

(Here To denotes the projector onto stratum Vυ in QJ) Therefore, such a design h on Ω

is partially balanced for Pair(rt) with respect to Q if and only if it is partially balanced

for ^ with respect to Q, Moreover, εs/ = EB/ and zaf = €>Ef for all strata / in Q,.
There are three obvious ways to construct A as a block design for n treatments in

n(n — l ) /2 blocks of size 2. The first is to apply each treatment to both experimental
units in each of n/2 blocks. Then X'RX = 2nl, so La = 0 and Ls = n(I - 7b). The
design is orthogonal and balanced, with all estimation taking place in stratum Ws. A
unipotent Latin square gives such a block design if and only if it is symmetric. Such a
square exists if and only if n is even. An example with n = 8 is in Figure 10.

The second is to have each pair of treatments occurring together in a single block,
and each treatment occurring on both experimental units in one block. Then X'RX =

(n + 1)1 +J, so the design is balanced with εB = ε5 = (n + l)/2π and zE = za-{n-

\)/2n. Construction of a unipotent Latin square with this property is possible when n is

even and 3 does not divide n — 1. An example with n = 8 is in Figure 12.

The third is to divide the n - 1 treatments into (n - l)/2 groups of two and ensure

that each pair {ω, ώ} is allocated one of these groups. Then the design is orthogonal and

group divisible, with contrasts between groups estimated in stratum Ws and contrasts
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Figure 12: Balanced design for 7
treatments in Pair(8), obtained from
a unipotent Latin square
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Figure 13: Balanced design for
7 treatments in Pair(7), obtained
from an idempotent Latin square
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Figure 15: Group-divisible de-
sign for 6 treatments in Pair(6)

within groups estimated in stratum Wa. A unipotent Latin square with this property

exists if and only if n is odd. One construction for odd n is to label the rows and columns

of Ω by the integers modulo n, and put j>-x (mod n) in cell (x,y). An example with

n = 7 is in Figure 14.

A similar family of three types of design is available for n treatments with replica-

tion Λi — 1. This time we start with an idempotent Latin square of order n\ that is, one

in which every letter occurs once on the main diagonal. Omitting the diagonal leaves

each letter in all rows except one and in all columns except one; the exceptional row

does not meet the exceptional column. Therefore

XΊX =(n-l)IandX'JX =(n- 1)V, so

2

which has efficiency factor 2/(n - 1)(« - 2) on all treatment contrasts. Meanwhile,
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and

= (n-\)I--XfRX.

Once again, the design is partially balanced for Pair(λz) with respect to Q if and only if

it is partially balanced for %^ with respect to Q,. This time, εsf = ε#/ — 2/{n—\){n — 2)

and εaf = EE/ for all strata / in Q,.

If the Latin square is symmetric then X'RX = 2 (n - 1)1 so the design is balanced

with εi = 2/(/i -I)(n-2),ε2 = 0, εs = n(n - 3)/(/i - \)(n - 2) and εfl = 0. A symmet-

ric idempotent Latin square exists if and only if n is odd. One construction for odd n

is to label the rows and columns of Ω by the integers modulo n, and put x+y (mod n)

in cell {x,y). An example with n = 7 is in Figure 11. A unipotent Latin square can be

obtained from this by moving the letter on cell (X,JC) to the cell in row x of an additional

column and column JC of a new row, and putting a new letter on the main diagonal. The

design in Figure 10 is obtained in this way from the design in Figure 11.

In the second type of design, each pair of treatments occurs together in a single

block. Thus X'RX =(n-2)I+J so the design is balanced with εi = 2/(n - 1) (n - 2),

ε 2 = 0, εs = n(n - 4)/2(/i - l)(/i - 2) and εa = n/2(n - 1). If n is odd and not divisible

by 3 then such an idempotent Latin square can be constructed by labelling the rows and

columns of Ω by the integers modulo n and putting 2x-\-y (mod n) in cell (x,y). An

example is in Figure 13. A unipotent Latin square of order n + 1 can be constructed

from this just as in the previous case. Thus the design in Figure 12 is obtained from the

design in Figure 13.

For the third type of design, we do not use an idempotent Latin square. If treatments

A and B always occur on mirror-image pairs then the row which omits A passes through

the same diagonal cell as the column which omits B. Hence

but

X'(2Aι+A3)X= -?—XtRX-2I+2(n-2)J.
n — 1
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Therefore

I, ^χRX2To]
n-2 [n-l J n-2

L2 = -\2I--λ-X'Rχ\ = -Twn n— 1 n

The design is group divisible. Such a design can be constructed from the third type of

design based on unipotent squares, by simply omitting the final row and column. An

example is in Figure 15.

R. A. Bailey, School of Mathematical Sciences, Queen Mary, University of London, Mile

End Road, London El 4NS, UK, r . a. bailey@qmw .ac.uk
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Ordered Triple Designs and Wreath Products of
Groups

Cheryl E. Praeger and Csaba Schneider

Abstract

We explore an interesting connection between a family of incidence structures
and wreath products of finite groups.

Keywords: ordered triple designs; permutation groups; wreath products; product ac-

tion; innately transitive groups; maximal subgroups of symmetric groups

1 Introduction

The problem discussed in this paper arose from a study in [2] of the set of primitive

maximal subgroups of a finite symmetric group SymΩ containing a given subgroup

of SymΩ. Application of group theoretic results, depending on the classification of

finite simple groups, reduced the problem of describing one family of such maximal

subgroups to a problem concerning a certain kind of incidence structures. We chose this

topic because of the unexpected links between several types of mathematical objects.

For a finite set Ω the maximal subgroups of SymΩ may be divided into several

disjoint families: intransitive maximal subgroups, imprimitive maximal subgroups, and

several families of primitive maximal subgroups; see [6]. A given permutation group

G on Ω may be contained in many maximal subgroups of SymΩ. The intransitive and

imprimitive maximal overgroups of G may be determined from the G-orbits and the

G-invariant partitions of Ω. However, determining the primitive overgroups of G is a

difficult problem in general. It has been essentially solved in [6] and [9] in the case

where G itself is primitive, and even this case required significant use of the finite sim-

ple group classification. In [2] we were concerned with a more general situation: the

groups G of interest were innately transitive, in other words, they contain a minimal

normal subgroup that is transitive. The maximal overgroups of G studied in [2] were

wreath products in product action (see Section 3 for the definition of wreath products

and product actions). Investigating such overgroups led to a study of certain incidence

structures discussed in Section 2. Their connection with overgroups of innately tran-

sitive groups is described in more detail in Section 3, and a construction is given in

Section 4.
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2 Suitable ordered triple designs

Describing and constructing a certain family of overgroups of innately transitive groups

required incidence structures of the type introduced in the following definition. Note

that a permutation group H ^ Sym Ω acts naturally on the set

Q ( 3 ) = {(αi,α2,ot3) I oti, ot2, (X3 are distinct points of Ω}

of triples of distinct points of Ω via h : (αi ,α2,α 3 ) »-> ( α ^ α ^ α ξ ) for all h € H and
(<Xi, (X2, (X3) e Ω(3). We denote by S3 the symmetric group on a set of size 3.

Definition 1

(a) An ordered triple design H is a pair (Ω, T) in which Ω is a finite set, and T is a

subset of Ω^3), and for each 1 € {1,2,3} and each α € Ω, the number of triples in T

containing the point α in position i is independent of α, namely it is | T | / | Ω | .

(b) An ordered triple design (Ω, T) is said to be suitable if there exists H ^ SymΩ

that leaves T invariant and is transitive on both Ω and T . For such a group //, the

subgroup A of S3 induced on {αi,0X2,0X3} by the setwise stabiliser H^aχaia^ is the

same (up to isomorphism) for all triples (cci, 0x2, 0x3) € Ί \ Thus we also say that (Ω, T )

is A-suitable relative to H.

(c) If H < SymΩ and A ^ S3, such that H is transitive on Ω, then an //-orbit Ί

in Ω ^ is said to be A-suitable if, for (αi,(X2,(X3) € T, the setwise stabiliser in H of
{(Xi, (X2, (X3} induces a permutation group isomorphic to A on {a\, (X2, (X3}.

Definition l(c) enables us to characterise ^-suitable ordered triple designs group
theoretically. In Section 3 we explain how ordered triple designs arose in [2], while
in Section 4 we show that each suitable ordered triple design arises in relation to our
problem.

The proof of the following lemma is easy and is omitted.

Lemma 1
LetH be a transitive permutation group on a ήnite set Ω, let 1 be an H-orbit in Q^3\

andletA ^ S3. Then T is A-suitable if and only if (Ω,T) is an A-suitable ordered triple

design relative to H.

The concepts of generously 2-transitive and almost generously 2-transitive permu-

tation groups were introduced by Neumann [7]. In our terminology, a permutation

group H acting on Ω is generously 2-transitive if and only if every //-orbit in Ω(3)

is S3-suitable; and H is almost generously 2-transitive if and only if every //-orbit in

Ω(3) is A3-suitable or S3-suitable. It was shown in [7] that each almost generously 2-

transitive group is 2-transitive with the single exception of A3. The classification of

2-transitive groups is a consequence of the finite simple group classification, so the

generously and almost generously 2-transitive groups can be regarded as known.

In our construction of innately transitive groups in Section 4, part of the input data

is an A -suitable ordered triple design relative to //. It turns out that the structure of
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the group that is the result of our construction depends on A. We were interested in

examples where A was either a cyclic group of order 2 or the trivial group. Hence the

question arose as to how prevalent 1-suitable ordered triple designs might be. For some

transitive permutation groups H on a set Ω, every //-orbit in Ω^3) is 1-suitable. Such

groups are characterised in Theorem 4 below. Here a permutation group G on a set Ω

is said to be semiregular if the only element of G that fixes a point of Ω is the identity

element.

Theorem 4

Let H be a transitive permutation group on a finite set Ω. Then all H-orbits in Ω^

are 1 -suitable if and only if\H\ is not divisible by 3 and a Sylow 2-subgroup ofH is

semiregular.

PROOF. Let us assume that \H\ is not divisible by 3, and a Sylow 2-subgroup of H is

semiregular. This implies that an element of// with even order has no fixed points in Ω.

Let Ί be an //-orbit in Ω<3) and (κi, κ2, κ 3) E T . Suppose that g € H and g stabilises
the set K = {κi,K2,K3}, and consider the permutation gf induced by g on K. Since the

order \g*\ of g7 divides the order of g, and hence divides |//|, we have that |g'| φ 3. If

\t£\ = 2 then g has even order and g7, and hence also g, fixes one element of the κz ,

which is a contradiction. Hence g* — 1 and it follows that T is 1-suitable.

Suppose now that every //-orbit in Ω^3^ is 1-suitable. If \H\ is divisible by 3, then

there is an element g £ H of order 3. If {κi,κ2,K3} is a (g)-orbit of size 3, then

(κj,K2,K3)// C Ω^3) is not 1-suitable. Hence \H\ is not divisible by 3. Suppose now

that there is a non-identity 2-element g in H that fixes a point Ki G Ω. Then gk is an

involution, for some k, gk fixes Ki, and if {κ2,K3} is a (g*)-orbit in Ω with size 2, then

( κ i , κ 2 , κ 3 ) / / C Ω^3) is not 1-suitable. Hence a Sylow 2-subgroup of// is semiregular.

D

The family of groups that satisfy the conditions of Theorem 4 contains some prim-

itive and some insoluble examples, though most groups in this family are imprimitive

and soluble.

Remark 1

Let H satisfy the conditions of Theorem 4.

(a) The only finite simple groups T for which 3 does not divide \T\ are the Suzuki

groups Sz(q), where q = 22α+ι ^ 8; see pages 8-9 of [5]. So if// is insoluble then

the non-abelian composition factors of H are all isomorphic to Sz(^) for various q.

There are certainly some insoluble examples H. For instance if H = Sz(q), and L is

any subgroup of// such that \L\ is odd, then the action of// by right multiplication on

{Lx I x e //} satisfies the conditions of Theorem 4.

(b) A transitive permutation group H is primitive on Ω if and only if the stabiliser

Hα in H of a point α € Ω is a maximal subgroup. The conditions in Theorem 4 are

equivalent to requiring 3 f \H\ and 2 \ |//α |. Since all maximal subgroups of Sz(#)

have even order (see [11]), none of the examples given in paragraph (a) are primitive.



106 C. E. Praeger and C. Schneider

Indeed, it is not difficult, using the O'Nan-Scott Theorem (see Theorem 4.1 A of [4]),

to show that if H is primitive and satisfies the conditions of Theorem 4, then H is a

semidirect product NxL where N = l/p, with p a prime, p Φ 3, and L ^ GL</(/?), such

that gcd(6, \L\) = 1 and L leaves no non-trivial, proper subspace of Έd

p invariant. If

d = 1 then any subgroup L with gcd(6, | I | ) = 1 gives an example. Also if d ^ 2 and

pd - 1 has a prime divisor r ^ 5 such that r does not divide pa - 1 for any aζd—1

then GL</(/?) contains a cyclic subgroup of order r that satisfies these conditions. Such

a prime divisor always exists unless pd = 64 or d = 2 and /? is of the form 2α3^ — 1 for

some a, Z?; see [12].

Not every transitive group H gives rise to a 1-suitable orbit T . If// is 3-transitive

on Ω then the setwise stabiliser of each triple {α,β,γ} induces the symmetric group

S3 on {α,β,γ}, and so 3-transitive groups have no 1-suitable orbits on triples. In [8]

a transitive permutation group H on a set Ω was defined to be a three-star group if

for all 3-subsets t of Ω the setwise stabiliser Ht does not fix t pointwise. Thus H is a

three-star group if and only if it has no 1-suitable orbit in ΩS*\ Each 3-transitive group

is a three-star group, and there are other examples, for example the group H — PSLd(q)

(d ^ 3 and q a prime-power) acting on the set Ω of 1-dimensional subspaces of the

underlying ^-dimensional vector space. An investigation of finite three-star groups by

P. M. Neumann and the first author is in progress [8]. It has been shown in particular

that primitive three-star groups have rank at most 3, but a complete classification of

finite three-star groups is yet to be achieved.

3 Embedding permutation groups into wreath
products

Let Γ be a finite set, L ^ Sym Γ, ί ^ 2 an integer, and H ^ S .̂ The wreath product L wr//

is the semidirect product Lίy*H where for (jq , . . . , * / ) € Le and σ € S ,̂ (x\,... ,x^)σ =

(jc lσ-i,...,JC/σ-i). The product action of Iwr// is the action of Lwr// on Te defined by

for all fa , . . . , % ) € Γ*, (xγ,... ,*/)σ G Iwri/ .

The following couple of remarks give a summary of the elementary properties of

wreath products and product actions. The interested reader will find the proofs of

these comments in Section 2.7 of the book by Dixon and Mortimer [4]. If γ £ Γ then

(γ,... ,γ) 6 Γ^; set ω = (γ,... ,γ). The stabiliser (Lwr//)ω in Lwr// of ω is the sub-

group (LΊY x H = LγWr//, where LΊ is the stabiliser of γ in L. (It is easy to see that H

normalises {Ly)
e, and so {Ly)

e * H is indeed a subgroup of Lwr//.) The subgroup Le is

normal in Lwr// and is transitive on Γ^ if and only if I is transitive on Γ. Moreover no

non-identity element of Iwr// stabilises all points of Γ*. In other words, the product

action of Lwr// on Γ^ is faithful. Therefore LVJΓH can be considered as a permutation

group on Γ*.
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If |Γ| ^ 5 then SymΓwrS^ is a maximal subgroup of Sym (Γ*), and is primitive on

Γ*. The subgroups of a finite symmetric group Sym Ω of the form SymΓwrS^, where Ω

can be identified with Γ^ in such a way that SymΓwrS^ acts on Γ^ as above, form one

of several classes of primitive maximal subgroups of Sym Ω, identified by the O'Nan-

Scott Theorem; see [6]. Thus an important part of classifying the primitive maximal

subgroups of SymΩ containing a given (innately transitive) subgroup G is finding all

ways of identifying Ω with a Cartesian product Γ^ with ί > 2 and |Γ| ^ 5, so that G acts

as a subgroup of SymΓwrS^ in product action.

For the rest of this section suppose that G is an innately transitive group on a finite

set Ω and that M is a non-abelian, transitive, minimal normal subgroup of G. Let ΊA/Q

be the set of primitive maximal subgroups W of SymΩ such that W is a wreath product

in product action and G ^ W.

Let W G WG. Then W S SymΓwrS^ for some Γ and I ^ 2, and we can identify Ω

with the Cartesian product Γ*. It was proved in [3] that M ^ (SymΓ)*. Let ω be a fixed

element of Ω, say ω = (γi, . . . ,γ/), and for i = 1,... ,1 let Kt = MΊr It was shown in [3]

that the set %^{W) = {K\,... ,Kι} is invariant under conjugation by G ω , the Kt have

the same size,

f]Ki = Mω and Kilf]Kj)=M. (1)
ί=l W /

In general we say that a set 3£ = {K\,... , ^ } of subgroups of M is a Cartesian

system of subgroups for M if \Kj | = \Kj \ for all /, j G {1 , . . . ,£} and there is some ω G Ω

such that (1) holds. Cartesian systems provide a way of identifying the subgroups in

We from information internal to G.

Theorem 5 ([3])

For a fixed ω G Ω the map W ι-> %α(W) is a bijection between the set WQ and the set

ofGω-invaήant Cartesian systems 9ζ of subgroups forM such that ΓΪKZ^K = Mω.

Fix We<WG,saγW*ί Sym ΓwrS^ for some Γ and I > 2, and let πw : W -> S^ be the

natural projection. Then π^(G) is a subgroup of S .̂ Moreover, since M is transitive on

Ω, we have G = MGω, and since M ^ (SymΓ)^ = kerπ^, Uw(G) = π ^ ( G ω ) . Thus π ^

gives rise to an action of G ω on {1,... ,£}. It was proved in [3] that the Gω-actions on

{1, . . . , ί] and on the Cartesian system %ϋ{W) are equivalent. It can also be shown that

Kψ(G) has at most 2 orbits in {1, . . . ,£} , and a description of the maximal subgroups

W G *WG for which %w{G) is intransitive on {1,... ,t] is given in [2]. In this paper

we are interested in the remaining case, namely in primitive maximal subgroups W G

WG where π^(G) is transitive on {1,... ,1}. This is equivalent to requiring G ω to be

transitive on the corresponding Cartesian system !Kω{W).

Suppose that M =Tk where T is a finite, non-abelian, simple group and k ^ 1, and

let Cj.M —> T denote the i-th coordinate projection map (t\,... ,/*) »->• tim Let W G ^G

and set %x{W) = {K\,... ,Kι}. The properties of Cartesian systems imply that for all
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i ^ k and j ^ ί

Thus it is important to understand the following sets of subgroups:

The set % is independent of/ up to conjugation by Gω, in the sense that for all ί'i, ii G
{1,..., k} there is a g G Gω such that 7h = ?* = {Iβ\L£?h}. Moreover, using the
finite simple group classification, it was shown in [1] that the number of indices j such
that Gi(Kj) G 7ι is at most 3. It is easy to see that this number is also independent of
the choice of ω, and we denote this number by c(G, W). In [2] the study of subgroups
W G We for which %w{G) is transitive is split into several cases corresponding to the
value of c{G,W) G {0,1,2,3} and to the group theoretical structure of the Cartesian
system elements. In the case when c(G, W) = 3 we prove the following theorem.

Theorem 6
Suppose that G is an innately transitive permutation group with a non-abelian, tran-
sitive, minimal normal subgroup M, and suppose that W G 'WG such that nw(G) is
transitive. Let {K\,... ,Λ^} be the corresponding Cartesian system HQoiW) for a fixed
ω G Ω, and suppose that c(G, W) = 3. Then the following hold.

(a) The isomorphism type of the simple direct factor T ofM and those of the sub-
groups A, B, and C in 7Ϊ are as in Table 1.

(b) Forj= 1,... ,£, C\(KjY x ••• x σ*(Jζ))' ^ Kj and if T is as in row I or row 2 of
Table 1 then σj (Kj) x x αk(Kj) = Kj.

(c) Fori=l,...,kletα(ή,b(i),c{i)e{h...,i}besuchthatσi{Kα{i))^
S B, and Ci{Kc{i)) £ C, and set <T = {{Kα{ή,Kb{ή,Kc(i)) | i = 1,...,*}. Then
(%ΰ(W),T) is a suitable ordered tπple design relative to the faithful action of
κw{G) on

PROOF. Suppose that M = Tk for some k and for i = 1,... , k let σ,?: M -> T be the
z-th coordinate projection defined by σ, {x\,... ,**) = *2. Also for i\, 12 G {1,... , /:} we
define σ { z 1)2 2} : M -> T x T by σ{/1)/-2}(xi,... ,xk) = (xh ,xh).

(a) By (1), Kj {^mφjKm) = M for all y, and hence

f|σI-(Am)]=σί(Aί) = Γ for i= 1,... ,kmdj = 1,... ,
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1

2

3

T

Sp4a(2), α > 2

PΩ8(3)

SP6(2)

A

Sp2a(4) 2

Ω7(3)

G2(2)
G2(2)'

G2(2)

G2(2)

B

04.(2)
Ί\ x PSU(3)

0,(2)
O6-(2)
O6~(2)'

O«(2)

C

Oi(2)
PΩ 8 (2)

O6

+(2)

O6

+(2)

O6

+(2)

O f i

+(2)'

Table 1: Strong multiple factorisations {A,B, C} of finite simple groups T

Thus if % = {A,B,C} for some i then the set {A,B,C} is a strong multiple factorisation

of T (see [1] for definitions), and, using [1, Table V], we obtain that Γ, A, B, and C

must be as in one of the lines of Table 1.

(b) Suppose that J\ = {A,B,C} for some subgroups A, B, and C of T. We see from

Table 1 that Af, Bf, and C are perfect groups. Moreover for all i € { 1 , . . . , k} we have
that either θi(Kj) = Γ, or θi{Kj) is isomorphic to one of A, B, and C. We show next

that

for i = l , . . . , £

Since Oi(Kj)1 is a perfect group, for all i and y, it follows from [10, Lemma 3.2] that we

only have to prove that

for j = 1,... , {1,. . . ,*} . (2)

Suppose that j G { l , . . . , Q and i \, z'2 G {1, . ,k} are such that (2) does not hold. If

σ,-, (Kj) = T or σ i2 (Jζ}) = T then [10, Lemma 2.2] implies that o^^Kj) is a diagonal

subgroup ofTxT isomorphic to T. Suppose that this is the case. By assumption, there

are 7 l , y2, y3, U € { 1 , . . . Λ}\{j] such that σ ^ J ^ J S σ / 2 ( ^ 2) ^ ^ a n d σ Z l ( ^ 3 ) ^

σ, 2(-K}4) = 5 . Nov/KjiKjt Γ\Kj2ΠKj3Γ)Kj4) =M, and so applying the projection O{il)/2}

gives

Γ x Γ = ΠA >3

On

and

the

σ

so

other hand,

{iuii}(KJιnKJ2

we obtain

TxT =

nκj4) ζ (σ. , (^ y i) nσ,,(K h)) x (σ , 2 (^ 2 ) nσ,-

) Π σ Z l
x (σ/2(K j2) nσ / 2

(3)

Note that (σ/, (^-J n σ , - , ^ ) ) x (σ,-^^) Πσ ί 2 (^ 4 )) ^ (^Π5) x (^Π5). Therefore (3)

is a factorisation of the characteristically simple group T x T in which one factor is a di-

agonal subgroup and the other factor is the direct product of two isomorphic subgroups.

Therefore [10, Theorem 1.5] applies and we find that σ ^ ^ J ί l σ , , ^ ) has to be a
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maximal subgroup of T. On the other hand, A7lAy3 = M implies σ, , (Ay, )σ, , (Ay3) = T,

and so σ, , (ΛL/, ) Π σ , , ^ ) is properly contained in σ^Ay,) and σ/,(Ay3). This is a

contradiction, and so each of σ, , (Ay), σ, 2 (Ay) is isomoφhic to one of A, B, or C.

Suppose without loss of generality that σ, , (Ay) =A. Then there are indices j \ , j'2,

73,74 e {1,... ,i}\{J} such that σ / l (A,,) *oh{Kh) ^5andσ,,(Ay 3 ) *ci2{KJ4) ^C.

The defining properties of Cartesian systems imply that

{*{hh}(Kj)^h (*/i) X M * * ) * ^ (Ay3) X σ, 2(Ay4)}

is a strong multiple factorisation of T x Γ, as defined in [10]. However, [10, The-

orem 1.7] implies that (2) holds, and we assumed that this was not the case. Thus

If T is as in row 2 then σ, (Ay) is a perfect group, for all / G {1, . . . , k} and j G

{1 , . . . , £ } , and so A, = σj (Aj ) x x σ*(A, ). Let us now suppose that T is as in row 1

and set Az = σi (A,) x x σ*(A|) for all i. Since fl/A, = H; A; (see [1] page 181), it

follows that 9ί — {K\,... , A^} is a Cartesian system of subgroups for M. Therefore

M:
I

n*
ί=l

Aί:
£

ι=l i=\

which forces \M: A, | = |Λ/: A2|, and hence Az = A,- for all ί.

(c) Finally let T be as in (c), and let us show that (^(W), T ) is a suitable ordered

triple design. It is clear that T C %o{W)(3\ Note that G ω is transitive on ^ ( F F ) . Sup-

pose that T\,..., Tk are the simple direct factors of M. If g G G ω and /1, j'2 € {1 ? ? £}

such that 7* = 7}2, then^ S σ,-, (Aσ ( / l )) S σZl (Afl(z } ) g = σ/2 ( (A f l ( / l ) )
g ), and soK a { h ) =

(A α ( z i ) )
g . The same argument shows that Kb{h) = (A ό ( / l ) )

g and Kc{h) = {Kc{h))
8.

Hence Tjf = 7 2 implies (Afl(l- ) ,A M i l ) ,A c ( l l ) )
g = (A f l ( z 2 ),AM z 2 ),Ac ( ί 2 )). For each t G T

let It = {Ti \ (Aα(J ),A^,(2),Ac(/)) = ί}. Then {/, | / G T } is a Gω-invariant partition of

{T\,... , 7*} such that the Gω-actions on T and {// | / G T } are equivalent. Since Gω is

transitive on {Tu... , 7*}, we obtain that G ω is transitive on T. Thus (%,(»"), T ) is a

suitable ordered triple design relative to the group π ^ ( G ω ) induced by Gω on %»(}¥).

Since π^(G) = π ^ ( G ω ) , the proof is complete. D

Thus each W G ^ G such that π^(G) is transitive and c(G,W) = 3 gives rise to

a suitable ordered triple design H relative to Kψ(G). In addition, for this to occur the

simple direct factor T of M and the three subgroups A,B,C such that AΠBΓ\C=Ci (Mω)

are restricted to those given in one of the rows of Table 1. In the next section we give

a construction for such groups G to demonstrate that each T,A,B,C given in Table 1

and each suitable ordered triple design (Ω, T) relative to a subgroup H of SymΩ can

occur in Theorem 6. The groups will be wreath products as defined above.
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4 The construction

Let Γ, A, B, C be as in one of the rows of Table 1, let (3C,T) be a suitable ordered
triple design relative to a subgroup H of Sym 30 and set ί = 19(] and k = |T | . We may
assume without loss of generality that % = {1,... ,ί}. Set Δ = {(^Π5ΠC)x | x G Γ},
so Γ acts transitively on Δ by right multiplication. It follows from Definition 1 that
H acts transitively and faithfully on T, and so we can view H as a subgroup of S*.
Consider the wreath product G — Γwr// = Tk xH defined with respect to this action
of//. Set Ω = Δ*. Then G acts on Ω in its product action. Let M denote the normal
subgroup Tk of G.

Now we use the properties of T wr// discussed in the second paragraph of Section 3.
The group G acts faithfully and transitively on Ω, and M is a transitive normal subgroup
of G. Moreover, since H is transitive on T, H permutes the k coordinate subgroups of
M transitively, and hence M is a minimal normal subgroup of G. Thus G is innately
transitive and M is a transitive, minimal normal subgroup of G. Let γ denote the trivial
coset AΠBΠC in Δ, and set ω = (γ,... ,γ). Then ωeΩ, Mω = (AΓ)BΠC)k and

For each element i G 3C set Kι = Πjer
κij where

if the first coordinate of j is /;
if the second coordinate of j is i;
if the third coordinate of j is i\
otherwise.

Let Ĉ = {K\,... ,Ke}. We claim that 9C is a Gω-invariant Cartesian system for M and
f)jKj = Mω. Let Oi'.M-ϊT denote the i-th coordinate projection mapping (x\,... ,**) ι-»
JC, . First note that the Kf are direct products of their projections and for all ί,

σ ^ i ) n n σ,-(A:*) = A n 5 n c.

Therefore K\ Π Π/Q = (Λ Π5 Π C)* = Mω. The choice of Λ, 5, and C implies that
for/ = 1,... ,

Since σ, (A:7 ) < Kj for each ι, y, it follows that Kj (f]f^jKf) = M for all j . Thus
(1) holds and % is a Cartesian system for M. Let us prove that the set %. is invariant
under conjugation by //. Let i e K and g = H. Then £f = UjerKfj. lfKu = A then
j = (i,ι\f) for some ί', ΐ" G ̂ C and / = (^,//g,///r), and so Kigj8 = ^. Similarly, if
/ξ/ = 5, C, Γ then AT*,* = 5, C, T, respectively. Therefore Kf = Kβ e ^ Hence %
is //-invariant, and, since Mω = (AΓ)BΓ)C)k ^ ΛΓ, for all ί G {1,... ,^}, the set Ĉ is
invariant under conjugation by Gω = Mω//.
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Therefore the conditions of Theorem 5 hold, and there is a wreath product W £ W?G

such that 9t = Xω{W). It follows from the definition of %. that c(G, W) = 3. Finally,

transitivity of H on Hζ implies that G ω is transitive on άζ = %a{W), and it follows from

our comments above that τtw{G) is transitive. Thus all conditions of Theorem 6 hold.

The group G constructed above has the very interesting property that there are

two different maximal subgroups in 7Φ^. The first is the subgroup W in the previous

paragraph, and it is of the form W = SymΓwrS^ where |Γ| = \M: i ζ | (1 < i ^ ί).

It follows from the definition of G that G is contained in SymAwrS*, and so also

SymΔwrSjfc G Ήfc These are necessarily different subgroups, for example c(G, W) = 3,

while c(G, SymΔwrS*) = 1. Thus the set Ω can be identified with both Δ* and Γ*, and

G preserves both of these Cartesian decompositions of Ω.
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Pearson's Goodness of Fit Statistic as a Score Test
Statistic

Gordon K. Smyth

Abstract

For any generalized linear model, the Pearson goodness of fit statistic is the
score test statistic for testing the current model against the saturated model. The
relationship between the Pearson statistic and the residual deviance is therefore
the relationship between the score test and the likelihood ratio test statistic, and
this clarifies the role of the Pearson statistic in generalized linear models. The
result is extended to cases in which there are multiple reponse observations for
the same combination of explanatory variables.

Keywords: Pearson statistic; score test; chi-square statistic; generalized linear model;

exponential family nonlinear model; saturated model

1 Introduction

Goodness of fit tests go back at least to Pearson's (1900) article establishing the asymp-

totic chi-square distribution for a goodness of fit statistic for the multinomial distri-

bution. Pearson's chi-square statistic includes the test for independence in two-way

contingency tables. It has been extended in generalized linear model theory to a test

for the adequacy of the current fitted model. Given a generalized linear model with

responses yi9 weights w, , fitted means /iz , variance function v(μ) and dispersion φ = 1,

the Pearson goodness of fit statistic is

[14]. If the fitted model is correct and the observations j>z are approximately normal,

then X2 is approximately distributed as χ 2 on the residual degrees of freedom for the

model.

The Pearson goodness of fit statistic X2 is one of two goodness of fit tests in routine

use in generalized linear models, the other being the residual deviance. The resid-

ual deviance is the log-likelihood ratio statistic for testing the fitted model against the

saturated model in which there is a regression coefficient for every observation. The

Pearson statistic is a quadratic form alternative to the residual deviance, and is often

preferred over the residual deviance because of its moment estimator character. The
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expected value of the Pearson statistic depends only on the first two moments of the
distribution of the ^ and in this sense the Pearson statistic is robust against misspecifi-
cation of the response distribution.

The score test, like the likelihood ratio test, is a general asymptotic parametric test
associated with the likelihood function [22]. Score tests are often simpler than likeli-
hood ratio tests because the statistic requires parameter estimators to be obtained only
under the null hypothesis. For this reason score tests have been proposed frequently in
generalized linear model contexts to test for various sorts of model complications such
as overdispersion [3, 5, 7, 13, 19, 24], zero inflation [8], adequacy of the link function
[9, 20], or extra terms in the fitted model [1, 2,4, 19, 21, 26].

While the residual deviance arises from a general inferential principle, namely the
likelihood ratio test, the origin of the Pearson statistic has seemed more ad hoc. Several
authors have noted that score tests for extra terms in the linear predictor give rise to
chi-square statistics, but there has been no result for the residual Pearson statistic it-
self. Pregibon [21] shows, by using one-step estimators, that the score statistic for extra
terms in the linear predictor can be expressed as a difference between two chi-square
statistics, just as the likelihood ratio test can be obtained as the difference between
two residual deviances. Cox and Hinkley [6, Examples 9.17 and 9.21] show that the
simplest Pearson statistic, the goodness of fit statistic for the multinomial distribution,
can be derived as a score statistic. This article shows that Cox and Hinkley's result
for the multinomial extends to all generalized linear models. The Pearson goodness
of fit statistic is itself a score test statistic, testing the current model against the satu-
rated model. The relationship between the Pearson statistic and the residual deviance
is therefore the relationship between the score test and the likelihood ratio test statistic,
and this clarifies the role of the Pearson statistic in generalized linear models.

The result of this article extends to several more general situations. The result
extends to data sets with multiple counts in categories and to generalizations of ex-
ponential families models, such as overdispersion models, for which there are extra
parameters in the variance function. It includes for example as special cases the results
on tests for independence in two-way contingency tables of Thall [26] and Paul and
Banerjee [19]. The general proofs given here are simpler and more transparent than
the special case proofs for contingency tables. Finally, the results given here do not re-
quire link-linearity as in generalized linear models, but apply to any exponential family
non-linear regression model.

The theory of score tests is revised briefly in Section 2 and the background material
required for generalized linear and non-linear models is stated briefly in Section 3. The
main results of the article showing the relationship between score tests and goodness of
fit are given in Section 4. Section 5 goes on to consider models with extra-dispersion
and Section 6 considers estimation of the dispersion parameter.
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2 Score tests

This section summarizes briefly the theory of likelihood score tests. Further background
on score tests and likelihood ratio tests can be found in Rao [23, pages 417-418] and
Cox and Hinkley [6, Section 9.3]. Let £(y;θi,θ2) be a log-likelihood function de-
pending on a response vector y and parameter vectors θi and Θ2. We wish to test the
composite hypothesis HQ : Θ2 = 0 against the alternative that Θ2 is unrestricted. The
components of θj are so-called nuisance parameters because they are not of interest in
the test but values must be estimated for them for a test statistic to be computed. The
likelihood score vectors for θi and Θ2 are the partial derivatives

and

respectively. The observed information matrix for the parameters is -ί with

The expected or Fisher information matrix is I = E(-£), which is partitioned confor-
mally with ί as

" in hi
h\ hi

The score test statistic is based on the fact that the score vector ί has mean zero and
covariance matrix 7. If the nuisance vector θj is known, then the score test statistic of

where 722 stands for any factor such that 722 722 = 2̂2? or equivalently

with I2 and 722 evaluated at Θ2 = 0. The score vector ί is a sum of terms corresponding
to individual observations and so is asymptotically normal under standard regularity
conditions. It follows that Z is asymptotically a standard normal /?2-vector under the
null hypothesis Ho and that 5 is asymptotically chi-square distributed on pi degrees of
freedom, where P2 is the dimension of Θ2.

If the nuisance parameters are not known, then the score test substitutes for them
their maximum likelihood estimators §1 under the null hypothesis. Setting θi = θ\ is
equivalent to setting ί\ — 0, so we need the asymptotic distribution of ίi conditional on
tλ — 0, which is normal with mean zero and covariance matrix

h.\ — hi~ h\I\\ hi-
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The score test statistic becomes

s=iτ

2i2:lέ2,
with ίi and h.\ evaluated at θi = θi and Θ2 = 0. If I\ι — 0 then θi and Θ2 are said to
be orthogonal. In that case, ί\ and £2 are independent and /2.1 = In, meaning that the
information matrix /22 does not need to be adjusted for estimation of θ 1,

Neyman [15] and Neyman and Scott [16] show that the asymptotic distribution and
efficiency of the score statistic S is unchanged if an estimator other than the maximum
likelihood estimator is used for the nuisance parameters, provided that the estimator
is consistent with convergence rate at least O(n~1/2), where n is the number of ob-
servations. They show that we can substitute into S any estimator θ\ of θi for which
y/n\Q\ — θi | is bounded in probability as n —> ©o. in that case they rename the score
statistic the C(α) test statistic.

3 Generalized Linear Models

Generalized linear models assume that observations are distributed according to a linear
exponential family with an additional dispersion parameter. The density or probability
mass function for each response is assumed to be of the form

/(y ^ φ ) =α(y,φ)exp[{yθ-κ(θ)}/φ], (1)

where a and K are suitable known functions. The mean is μ = κ(θ) and the variance
is φκ(θ). The mean μ and the canonical parameter θ are one-to-one functions of one
another. We call φ the dispersion parameter and v(μ) = κ(θ) the variance function.

Following Jorgensen [10, 12], we call the distribution described by (1) an exponen-
tial dispersion model and denote it ED(//,φ). If the data y\,... ,yn are independently
distributed as ED(//,φ), then the sample meany is sufficient for// and >> ~ ED(μ,φ/ji).
More generally, if yt ~ ED(μ,φ/wf ) where the w, are known weights, then the weighted

is sufficient for// and

E D

A generalized linear model assumes independent y\,... ,yn with^,- ~ ED(μ, ,φ/w, ).
The means /// are assumed to follow a link-linear model

* ( « ) = i T β , (2)

where g is a known monotonic link function, x, is a vector of covariates and β is an
unknown vector of regression coefficients. Without loss of generality we will assume
that the n x p matrix X with rows x, is of full column rank and that p < n, where p is
the dimension of β.

More generally, we consider generalized nonlinear models in which the mean vector
/ / = ( / / ! , . . . ,μn)

τ is a general /2-dimensional function of the p~vector β. To ensure that
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the parametrization is not degenerate, we assume that the gradient matrix 3μ/3β is of

full column rank, at least in a neighborhood containing the true value of β and the

maximum likelihood estimate β.

This article mainly considers models in which the dispersion is known, φ = 1 say.

Most models with discrete responses have known dispersion.

4 Goodness of Fit Tests

Let Ω be the locus of possible values for μ9 Ω = {//(β) : β G IR/}. Let Ho be the

null hypothesis that μ belongs to Ω and let Ha be the alternative hypothesis that μ is

unrestricted. The goodness of fit test for the current model tests Ho against Ha. For a

generalized linear model, Ho is the hypothesis that the//, are described by the link-linear

model (2).

Theorem 7

The score statistic for the goodness of fit test of a generalized nonlinear model with unit

dispersion is the Pearson chi-square statistic

ί = l

where μi is the expected value μ, evaluated at the maximum likelihood estimator β.

Proof. There exists a parameter vector β 2 of dimension n- p such that (β,β 2) is a

one-to-one transformation of// in the neighborhood of interest and such that β 2 = 0

if and only if μ G Ω. The goodness of fit test consists of testing Ho : β 2 = 0 against

the alternative that β 2 is unrestricted. The components of the original parameter vector

β are the nuisance parameters for this test. In the generalized linear model case, the

implicit parameter vector β 2 can be constructed by finding an nx (n— p) matrix X2

such that (X,Xi) is of full rank. Then Hα is the saturated model that g(μ, ) = X$+X2$2

for some β and some β 2 .

Let ί\ and 4 be the score vectors for β and β 2 respectively, and let / be the Fisher

information matrix, partitioned into I\\, In and I22 as in Section 2. The Fisher infor-

mation for β 2 adjusted for estimation of β is /2.1 and the score statistic for testing Ho

is

s = ^ / 2 - / 4 ,
where 4 and /2.1 are evaluated at β = β and β 2 = 0.

Let V = diag{v(μi)/wi} and write

for the vector of Pearson residuals. Also write
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and

It is straightforward to show that the score vectors are given by

ΐj = Uje

for j — 1,2 and the information matrices are given by

fory,*=l,2[25][27].

Write Pi for the matrix P\ = U\ {U[U\)~ιU[ of the orthogonal projection onto the
column space of U\. Also write

and P2.1 for the matrix

of the orthogonal projection onto the column space of U2.\. Then P\ and P2m\ project
onto orthogonal subspaces and P\ +P2.1 — I since the dimensions of the subspaces add
ion.

We can rewrite

We can also rewrite

because evaluating at β = β ensures that U[e = 0 and hence Pie = 0. This shows that
the score statistic is

which is the Pearson statistic.

Example. Theorem 1 shows that the chi-square test for independence in a two-way
contingency table is a score statistic, based on the assumption that the counts are inde-
pendent and Poisson distributed. For multiway contingency tables, Theorem 1 shows
that the score test of the hypothesis that any chosen subset of the pairs of faces are
independent yields a Pearson statistic.



Pearson's Goodness of Fit Statistic 121

We now consider the case where there are multiple observations for some or all of

the covariate combinations. In such cases it is usually more natural to associate the

saturated alternative with unique combinations of the explanatory variables rather than

to allow every μ, to be different. The following corollary to Theorem 1 shows that the

score test statistic in such cases is naturally expressed in terms of the mean response

for each covariate-combination group. The score statistic in the corollary is the Pearson

goodness of fit statistic when the data has been reduced to sufficient statistics for each

covariate-combination group.

Corollary 1

Suppose thatyij ~ ED(μ,r, 1 /w/y), i = 1,..., n, j = 1,... , Λ, , are independent. The score

test statistic of Ho, that theμi are functions of$, against the alternative Hα that they are

unrestricted, is given by

i=\

where μi is the maximum likelihood estimator ofμi, wz. is the sum of weights

andywi is the weighted mean

Proof. The weighted means ywi are sufficient for the μi, and y{ ~ ED(μz, 1/H>Z.). The

ywi are distributed as for the >>z but with weights w, ., so the result follows immediately

from Theorem 1. •

Example. Suppose that the j ^ are binary responses and that w/7 = 1 for all i and j . Then

where rz is the empirical proportion for the rth covariate-combination group, /?, is the

estimated probability thatjty = 1, and v(/?z) = pι{\ -pi). Ifyt. = ΣyLi^/y *s *^e number

of successes for the z'th group, then the yi. are binomial(w/,/7|) and

ί = l

i = npi and v;(μz) =//,-(«,• -///)/«/. This is the Pearson goodness of fit statistic for

the data summarized in the usual generalized linear model way as binomial counts for

each covariate-combination group.

Example. Paul and Banerjee [19] derive the score test for interaction in a two-way

contingency table with multiple counts in each cell. Corollary 1 includes Paul and

Banerjee's Theorem 1 as a special case.
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5 Extra Parameters in the Variance

Suppose now that there are extra parameters which affect the variance of the yh but

not the mean, and which are outside the exponential dispersion model framework. Let

γ be the vector of extra parameters and let G be the parameter space for γ. Suppose

that for each fixed value of γ, the yι follow a generalized nonlinear model with variance

function// —> v(μ;γ). The values of γ effectively index a class of generalized nonlinear

models. This setup arises frequently when extra parameters are introduced to accom-

modate overdispersion in generalized linear models [1, 2, 7, 19].

It is straightforward to show that γ and β are orthogonal parameters. This follows

because

and μ does not depend on γ. Therefore, the cross derivative 32£/3β9γ will be linear in

y — μ and will have expectation zero.

Orthogonality of γ and β implies that estimation of γ does not affect the form of

the score statistics for goodness of fit. According to the theory of C(α) tests, γmay be

replaced in the score test statistics by any estimator which is 0{n~ll2) consistent with-

out changing the distributional properties of S to first order. This gives the following

theorem.

Theorem 8

Suppose that for each γ € G,y\,...,yn ~ ED(μ, , 1/w,) are independent with variance

function v(μ;γ). TheC(α) goodness of fit statistic is

where γ is any y/n-consistent estimator ofy andμi is the maximum likelihood estimator

i given γ = γ.

Corollary 2

Suppose that for each γ G G, yy ~ ED(μz, 1 /w/7 ), / = 1,...,n, j = 1,...,/i, , are inde-

pendent with variance function v(μ;γ). TheC(ά) goodness of fit statistic is

ί=l

where γ is any y/n-consistent estimator ofy, μ\ is the maximum likelihood estimator of

μi given γ = γ, the w,. are sums of weights and theywi are weighted means.

The proofs of Theorem 2 and the corollary are similar to the proofs in Section 2.

Example. Suppose that ytj follows a negative binomial distribution with mean μz and

variance function V[μ\ c) = μ + cμ2, i = 1,.. ., n, j = 1,.. ., nλr for each c > 0. Suppose
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that the μz are a function of a vector β of regression parameters. For fixed values of c,

the means y{ are sufficient for the μ, and are negative binomial with the same variance

function and weights n\. The C(α) goodness of fit statistic therefore is

where c is a v^-consistent estimator of c and μ, is the maximum likelihood estimator

of/// with c — c. This includes Theorem 3 of Paul and Banerjee (1998).

One possible estimator for γ is the maximum likelihood estimator. An alternative

estimation method is to solve S = n— p with respect to γ. This estimator is often

preferred in overdispersion contexts because it is evidently a consistent estimator based

only on the first and second moments of the yι and therefore has a quasi-likelihood

flavor (Breslow, 1990). Obviously, the score statistic S is no longer useful as a goodness

of fit statistic if γ is estimated by either of the above methods.

If there are repeat observations for covariate combinations, then an estimate of γ

may be obtained from the 'pure error' or within-covariate combination variability. In

this approach, γ can be estimated by solving

With such an estimator for γ, S still has meaning as a goodness of fit statistic.

6 Unknown Dispersion Parameter

All the above results have assumed that φ = 1. If φ is unknown, then both ί and / are

divided by φ and the score statistic for goodness of fit for a generalized nonlinear model

becomes

h
The appearance of the unknown scale parameter φ in S means that the statistic is no

longer useful for judging goodness of fit. The statistic leads instead, by equating S to

its expectation, to the so-called Pearson estimator of φ,

which is the default estimator of φ in generalized linear model functions in the statistical

programs Splus and R. Other estimators of φ are discussed by Jorgensen [11].
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When there are repeat observations, the difference between the full version of the

score statistic in Theorem 1 and the reduced form in Corollary 1 can be used to define

a 'pure error' estimate of the dispersion parameter φ,

Φpure = v ^ . _ i

In the case of normal linear regression, this is the well known 'pure error' estimator of

the variance. With the use of this this estimator, the score statistic recovers its use as

a goodness of fit statistic, but now as a generalized F-statistic rather than chi-square.

Substituting the pure error estimator into the score test for the reduced data gives

n-p ztΐ Φpur

If the yij are approximately normal, then under the null hypothesis F follows approx-

imately an F-distribution on n — p and Σ(Λ, — 1) degrees of freedom. This is asymp-

totically true for example as the weights w,y -» «> or the dispersion φ —> 0, because

any exponential dispersion model ED(μ,φ) tends to normality as φ -» 0 [11, 12]. The

F statistic above is a generalization of the normal theory equivalents, described for

example by Weisberg [28, Section 4.3].

Dedication
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from a more recent conversation with Terry.

Gordon K. Smyth, Division of Genetics and Bioinformatics, Walter and Eliza Hall In-
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A Bayesian Approach to Variable Selection when
the Number of Variables is Very Large

Harri T. Kiiveri

Abstract

In this paper, we present a rapid Bayesian variable selection technique which
can be used when the number of variables is much greater than the number of
samples. The method can handle tens of thousands of variables, such as might
be measured using biological array technologies. A general formulation is first
given, followed by specific details for the class of generalised linear models.

Keywords: Bayesian; Jeffreys hyperprior; posterior; variable selection; EM algo-
rithm; generalised linear models; survival analysis

1 Introduction

Traditional methods of variable selection for statistical models include backward and
forward stepwise procedures, and all subsets calculations using branch and bound al-
gorithms, see for example [19]. Typically some criterion such as LAIC or BICE is used
to guide the selection process. These stepwise methods have also been implemented in
software packages such as R and Splus for more general models than linear regression,
e.g. generalised linear models.

These traditional methods were implicitly designed for situations where the number
of variables is less than the number of observations, and the number of variables was
at most of the order of hundreds. Unfortunately, these methods do not cope well with
large numbers of variables, say of the order of ten thousand, or when the number of
observations is less than the number of variables. In these circumstance they either fail
completely, or, even if they can be modified to work, require such a huge computational
effort that they are impractical to use.

More recently, Bayesian variable selection methods based on Markov chain Monte
Carlo methods have been developed, see for example [4, 13, 21, 22]. These have some
attractive properties; however, aside from other issues, these methods are computation-
ally intensive and do not scale up well to problems with ten thousand variables or more.

With the advent of microarray technologies, variable selection problems with ten
thousand variables and hundreds of observations are becoming quite common, with the
likelihood that the problem sizes will scale up at least one order of magnitude in the
near future. Clearly, new methods are required to handle these large problems.
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With this background in mind, we present here an automated method for elimi-

nating redundant parameters from statistical models. The general method is presented

first, followed by the special case when parameter elimination corresponds to variable

selection in generalised linear models. This method can be applied when the number

of parameters is much greater than the number of observations as well as in the usual

case when the number of parameters is less than the number of observations.

In Section 2 we describe the general algorithm for the situation when there are

two sets of parameters β and φ. In this case there is a prior expectation that many

components of β are zero but not those of φ. For example, the β might be a large set

of parameters such as might occur in a matrix factorisation and the φ might be a scale

parameter or a shape parameter.

In Section 3 we consider an important special case of the algorithm, namely gener-

alised linear models, in which a response, discrete or continuous, is explained by a set

of covariates. In this case, eliminating (setting to zero) components of β corresponds to

selecting relevant covariates or components and discarding the rest.

One application is to biological array data, where each biological array has a re-

sponse associated with it, such as disease class or a continuous measurement of re-

sponse to treatment. We seek to find (a small number of) components of the biological

array data which explain or predict the response. Another application area is in spec-

troscopy, where spectra are measured over a large number of wavelengths and it is

desired to predict sample properties of interest from the observed spectrum.

In the following, N denotes the number of samples, and vectors such as y, z and

μ have components y, , z, and μ2 for / = 1,... , JV. Vector multiplication and division is

defined component-wise and Δ( ) denotes a diagonal matrix whose diagonals are equal

to the argument. We also use | | | | to denote Euclidean norm.

2 General algorithm for parameter selection

Consider a likelihood for some data y which is a function of a p x 1 parameter vector

β, many components of which are a priori expected to be zero, and a ? x l vector of

parameters φ (not expected to be zero); note that q could be zero. We want a sparse

model representation with as many components of β zero as possible.

The work of Figueiredo [10, 11] can be extended to handle this general problem.

Basically, Figueiredo formulated a hierarchical prior for the regression parameters in

the standard regression model as well as for the probit regression model for binary data.

This prior had a Jeffreys hyperprior and strongly favoured regression parameters being

zero. By using the trick of introducing a latent variable, he was able to construct an

efficient EM algorithm for maximising the "posterior" distribution of the regression pa-

rameters. This posterior had discontinuous derivatives at any point where a component

of beta was zero and would have caused problems in maximising the posterior directly.

A natural by product of the maximisation was the elimination of redundant variables.

Following Figueiredo, we specify a prior for the parameters β by introducing a p x 1
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vector of hyperparameters v2. This prior is of the form

(1)

where p (β|v 2) is N(θ,diag{v2}) and p(v2) ~ nf=ι i / v

2 is a Jeffreys prior for v2,

[16]. We choose an uninformative prior for φ, although the following can be easily

modified to include an informative prior. Writing i(y |βφ) for the likelihood function,

in this Bayesian framework the posterior distribution of β, φ and v given y is

By treating v 2 as a vector of missing data, the EM algorithm [6] may be used to

maximise (2) to produce maximum a posteriori estimates of β and φ. The prior above

is such that the maximum a posteriori estimates will tend to be sparse; i.e. if a large

number of parameters are redundant, many components of β will be zero. The algo-

rithm is stated below.

2.1 EM algorithm for the general problem

To implement the EM Algorithm, we need to perform the so-called E step and M step.

In the following, we start by initialising the algorithm, then perform the E step, which

provides a function to maximise in the M step. Newton-Raphson iterations are used

to carry out the M step, see [17]. After the M step, current values of φ are updated.

Parameter values which fall below a threshold during the iterations are eliminated from

the model, i.e. are fixed at zero.

1. Set n = 0, So = {1,2,... ,/?}, initialise φ(°) , β* and put ε = 1(Γ5 (say)

2. Define

10 otherwise,

and at iteration n, define Pn to be a matrix of zeroes and ones defined from the

identity matrix of the same dimension as β by deleting columns corresponding to

components of β which are zero. It is easy to see that

where the nonzero elements of β ^ are
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3. Perform the E step by calculating

β(β|βW,φW) = £{log^(β,φ,vb)b,β ( π ),φW}

= X(y|β,φW)-0.5(||β/βW||2),

where L is the log likelihood function of y. The expectation is over v2. Using
β = Pny and βM = P*γ(π), Equation (4) can be written as

ρ(γ|γW,φ(«)) = L(y\Pny,φW)-0.5(\\yrfnψ). (5)

4. Perform the M step, which involves finding the maximum of (5) over γ. This
can be done with Newton-Raphson iterations as follows. Set γo = γM and for
r = 0,1,2,..., γ r +i = yr + α r δ r , where ar is chosen by a line search algorithm to
ensure that ^ Y r + i h ^ W ^ ) > Q{yr\ψn)Mn)), and

.Δ(y-))gΔ(γί-)) 4 - / ] ( Δ ( ^ ) ) | - ̂ ) , (6)

where dL/dyr = P*ndL/d$r, d
2L/d2yr = /^a2I/32βrP« = ̂ 32L/a2β rPM. Equa-

tion (6) is simply the Newton-Raphson algorithm involving the first and second
derivatives of (5) with respect to γ after some algebraic manipulation. Note the
regularisation of the second derivative matrix induced by the prior.

5. Maximise (5) as a function of φ given the current estimate of β. Let γ* be the
value of yr when some convergence criterion is satisfied, e.g. \ \yr - γr+i 11 < ε (for
example 10~5). Define β* =Pnf, 5 n + ] = {ί: |β*| > max, (|β*-|εi)} where εi is a
small constant, say 10~5. The set 5π+i identifies variables which are still in the
model. Now set n = n + 1 and choose φ( π + 1 ' = φW + κn(φ* - φ ^ ) , where φ*
is a (local) maximum which satisfies 3/9φZ(y|Pπγ*,φ) = 0 and κn is a damping
factor such that 0 < κn < 1.

6. Check convergence. If ||γ* — γ^H < £>i where Zι is suitably small, then stop;
otherwise, go to step 2 above.

For the general case, modifications are required if the regularised matrix in (6) is in-
definite. The term d2L/d2yr in step 4 above can also be replaced by its expectation
E[d2L/d2yr]; we do this in Section 3 below.

2.2 Variable selection in generalised linear models

An important special case of the model and algorithm described above is generalised
linear models (GLMs, see [20]). In the notation in the 1985 GLIM System Release
manual, a GLM has likelihood function
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J
(7)

where y = (yi,. . ,yn)
T and α;((p) = <p/w, , with the w, being a fixed set of known

weights and φ a single scale parameter. We also have

(8)

(9)Var{yί}=&"(θί)α(φ) = τ?αί(

Each observation has a set of covariates JC, and a linear predictor η, = xfβ. The

relationship between the mean of the ith observation μz and its linear predictor is given

by the link function η z = g{μt) = g(£'(θ, )). The inverse of the link is denoted by h,

i.e. μι — b'(θi) = h(τ]i). In summary, in addition to the scale parameter, a GLM can be

specified by four components:

• the likelihood or (scaled) deviance function

• the link function

• the derivative of the link function

• the variance function.

Some common and well known examples of GLMs are given in table 1.

Table 1: Some examples of common GLMs
Distribution

Gaussian

Binomial

Poisson

Gamma

Inverse Gaussian

Link function

S(M)

μ

logWO-μ))
lθg(μ)

I/A

1 / /

Derivative

of link

function

1

1/M1-/0)
i/μ
-l/μ'

-2/μ*

Variance

function

1

μ(l-μ)/n

μ

μZ

μ5

Scale

parame-

ter

yes

no

no

yes

yes

For generalised linear models, it can be shown that

anJU(φ)
(10)
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where X is the Nby p matrix with ith row xf and

E\ > = - £ < >. (11)

This can be written as

^=XTV-1A(y-u) (12)

where V = A{ai{φ)τ}{to\i/dμi)
2).

3 EM algorithm for variable selection in GLMs

A description of the EM algorithm follows for the special case of generalized linear
models. The algorithm is of the same form as in Section 2, however we give more de-
tails regarding the choice of initial value and the calculation of first and second deriva-
tives.

1. Set n = 0,5b = {1,2,...,/?}, φ(°) , and ε = 10~5 (say). If p < N compute initial
values of β* by

O (14)

if instead p> N, then compute initial values of β* by

β* = i ( / - ^ ( J ^ J f + λi)-1)Jffg(y + ξ) ϊ (15)

where the ridge parameter λ satisfies 0 < λ < 1 (say) and ζ is small and chosen
so that the link function is well-defined at>> + ζ. Cross-validation [14] could be
used to estimate λ.

2. Define

p

1̂ 0 otherwise

and let Pn be a matrix of zeroes and ones such that the nonzero elements y^ of
βM satisfy
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3. Perform the E step by calculating

ρ(β|βW,φ ( n )) = £{log/7(β,φ,v|y)ly,βM,φW}

= JL(y|β,φW)-0.5(||β/βW||2),

where Z, is the GLM log likelihood function of y. Since β = PΛγand βW = Pn^
n\

Equation (16) can be written as

ny,φW) -0.5(| |γ/γW||2) (17)

4. Perform the M ste/?. This can be done with Newton-Raphson iterations as fol-
lows. Set γ0 = γW; for r = 0,1,2,..., γr+i = γr + α r δ r , where α r is chosen by
a line search algorithm to ensure β(γ r+i |γM,φM) > β ( γ Γ | ^ , φ ^ ) . For/? < N,
use

(y/F- z, - ^ ) , (is)

where

Yτ =

and the subscript r denotes that these quantities are evaluated atμ r = h(XPnyr).
For p> N, use

with Vr and zr defined as before.

5. Let γ* be the value of γ r when some convergence criterion is satisfied, for example
| |Yr-Yr+i| |<e(e.g. 10"5). Define β* =Pnf,Sn+] = {/: |β*| > maxy (|β;.|εi),
where εi is a small constant, say 10~5. Set n = n + 1 and choose φ Λ + 1 = φn +
κn(φ* — φ"), where φ* satisfies d/dφL(y\Pny*,φ) = 0 and κn is a damping factor
such that 0 < κM < 1. In some cases the scale parameter may be known, or this
equation can be solved explicitly to get an updating equation for φ.

6. Check convergence. If | |γ* — γW 11 < 62 for 62 suitably small, then stop; otherwise,
go to step 2 above.
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4 Remarks

1. The algorithm can be implemented to be <9(min(N3,/?3)). Differentiation of (5) with

respect to γ gives

(20)
θγ dy (γM) 2 '

By the definition of the algorithm in Section 2, γ ( n + I ' is defined so that the left hand

side of (20) is zero. Hence, if the sequence (γ("> , φ(")) converges, then from

31

we can see that redundant parameters which are still in the model but have yet to cross

the threshold for omission approach zero at a quadratic rate. This observation is due to

Dr. Frank De Hoog (personal communication) and is mirrored in the observed perfor-

mance of the algorithm.

2. The selection of initial values is important, as values too close to zero can result in

the solution β = 0. It also appears that multiple local maxima exist. The initial value is

chosen so as to get a perfect fit to the training data if possible. The algorithm can then

be viewed as sequentially throwing out variables which do not affect the fit, or cause

the least degradation to the fit.

3. Integrating the prior in (2) over v we obtain

Π

Hence, if the likelihood evaluated at β = 0 is positive, the posterior will be improper.

Use of Markov chain Monte Carlo (MCMC) to simulate from such a posterior requires

caution, see for example [12].

4. Figueiredo [11] shows that replacing the Jeffreys prior in (1) by the prior

P(v?|γ)=exp(-v?/γ)/γ

gives

which is the prior used in the Lasso technique [23]. The algorithms described above

have a simple modification to implement this model. Instead of using
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X

v 2

Figure 1: Graphical representation of factorisation of joint density in GLMs

in the E step at (4) and (16), use

The modifications to the Q functions in (4) and (15) should be clear. This requires the

specification of a hyperparameter γ, something which is not required for the Jeffreys

prior on v. It is possible to give a general class of proper priors which includes as a

special case the Lasso prior and as a limiting case the model (1) (in preparation).

5. The joint density for the GLMs can be represented graphically as in Figure 1. The E

step in the EM algorithms described above does not involve^ because of the conditional

independence of v 2 andy given β. This means that the algorithm can be applied for a

wide variety of different likelihoods.

Another variation is to treat β as missing. With appropriate choice of hyperprior

and likelihoods, this treatment gives algorithms for relevance vector machines, see [24].

However, approximations are usually required to do the E step since this now depends

on y.

6. The algorithm in Section 3 can also be used for quasi-likelihood methods as de-

scribed in [26] and [18].

7. The matrix X of covariates can be replaced by a matrix K with ijth element ktj

and kij = K(JΓ, — Xj) for some kernel function K. This matrix can also be augmented
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with a vector of ones. Some possible kernels, including radial basis function kernels,

are described in [9]. This treatment opens the possibility of fitting general smooth, as

opposed to merely linear, functions of the covariates.

8. Our experience with the algorithm suggests that it is sometimes a little over-enthusiastic

in throwing out variables. It is useful to keep a history of variables included in the model

as iterations proceed, and to consider sets of variables one or two sets back from the

final solution as well. The algorithm can also be used to perform an initial screening

of variables for some other procedure by stopping iterations when some subset size is

approached e.g. 50 variables or when the initial "perfect" fit degrades significantly.

9. By projecting variables not chosen onto the space spanned by a set of chosen vari-

ables and then clustering, equivalence classes of important variables can be identified.

Alternative solutions can be explored by using a sequence of runs in which the variables

chosen in the previous run and those equivalent to them are omitted from consideration

in the next run.

5 Examples

In this section, we present examples of the use of these algorithms for some common

GLMs and for survival analysis. In each case, we use the version of the algorithm in

Section 3.1 with Jeffreys hyperprior (no hyperparameters required). Execution time

was typically less than one minute when run in R on a computer with a Pentium III 500

MHz processor and 256 Mb of RAM.

5.1 Standard linear regression model

The algorithm for linear regression is described in [11]. We include it here as an exam-

ple of a generalised linear model. Consider the sugars data analysed in [3]. The data

consist of 125 training observations, where each observation consists of a (transformed)

spectrum measured at 700 wavelengths. There is a validation set of 21 observations.

The "responses" to be predicted are the percentage composition of three sugars, su-

crose, glucose and fructose, in water. We analyse each sugar separately for illustrative

purposes here.

The standard regression model is well-known to be a generalised linear model with

• Link function: g(μ) = μ

• Derivative of link function: ψ = 1

• Variance function: τ 2 = 1

• Scale parameter φ = σ 2

• Deviance (likelihood function): - f log(σ2) - 0.5 Σ ^ 0/ -μΐ ) 2
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Updating formula for σ 2 given by

N

where μ* is the mean evaluated at β* in step 5 of the algorithm.

For the linear regression model, we substitute the deviance function defined above

for L in (16). Using the above, we can evaluate the terms in (18) as

zr = (y-μr)

(21)

The iterations (21) are basically ridge regressions. An expression for the case when p

is greater than N, which involves inversion of a smaller matrix, can be obtained from

(19).

For sucrose and glucose, the algorithm in Section 3.1 selected 9 variables (wave-

lengths), including a constant term. For fructose, the algorithm selected 5 wavelengths

with no constant term. The chosen wavelengths in nanometres are given below.

Sucrose 1896 1904 1908 1960 1968 2248 2250 2284

Glucose 1882 1908 1950 1958 1968 2008 2280 2332

Fructose 1908 2082 2254 2256 2330

Results for mean square error (MSE) are given in Table 2.

Table 2: Results on training and validation data

Sugar

Sucrose

Glucose

Fructose

Training MSE

0.10

0.09

0.13

Validation MSE

2.34

0.36

0.38

The mean square error for sucrose on the validation set is much larger than that of the

other two sugars. A look at the data suggests that there is a bias in the validation set in

the water absorption region of the spectrum as compared to the training data. Deleting
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the corresponding wavelengths (1748 to 2498 inclusive) and re-running the algorithm

for sucrose reduced the mean square error on the validation set to 1.11 and produced

a model with 5 wavelengths, namely 1406, 1756, 1772, 1792, and 2316. Although

the validation mean square errors are somewhat larger than those reported in [3], the

predictions are quite good and make use of smaller sets of wavelengths than those

chosen by the selection method in [3].

5.2 Logistic regression example

We illustrate logistic regression with the data set of [2]. There are p = 4026 genes and

N = 36 samples. In the following, DLBCL refers to diffuse large B-cell lymphoma. The

samples have been classified into two disease types: GC B-like DLBCL (21 samples)

and Activated B-like DLBCL (15 samples). We use this set to illustrate how the above

methodology may be used for rapidly identifying genes which are potentially diagnos-

tic of different disease types. The data have been used to define the classes, see [2];

however, we simply use the data set to illustrate the method here.

Logistic regression is a generalised linear model with response y here being the

disease class labelled 0 or 1. We also have

• Link function: g(μ) = log(μ/(l -μ))

• Derivative of link function: \/{μ{\—μ))

• Variance function: μ{\ — μ)

• Scale parameter φ = 1

• Deviance (likelihood function): Y^-\{yΛog{μi) + (1 — >>z )log(l — μ, )}

• No updating formula is required for the scale parameter.

For the logistic regression model, we substitute the Deviance function defined above

for L in (16). Using the above, we can evaluate the terms in (18) as

zr=μr\l-μr)-*(y-μr)

and

δr = Δ(γW)[r/Δ(Ml -IhWn +I\-\Yl(y-μr) - ^y) . (22)

The iterations (22) are once again basically ridge regressions. The algorithm iden-

tified 3 relevant genes. The classification accuracy on the training data is given below.

This is a much smaller set of genes than the set used by Alizadeh et al [2] to construct

the classes.
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Table 3: Classification accuracy for the 3 gene logistic regression model

True class 1
True class 2

Predicted class 1
20
2

Predicted class 2
1

13

5.3 Another logistic regression example

The dataset for this example [15] is available from http://www-genome.wi.mit.
edu/MPR/data_set_ALL_AML .html. The training data consist of 38 observations with
7129 variables (genes). The validation set contains 34 observations. The response
variable is the leukemia class: acute myeloid leukemia (AML) or acute lymphoblastic
leukemia (ALL). The data set available over the web includes more genes than those
used in the original analysis of [15]. The dataset contains some controls; however, to
test the algorithm we include all the data in the data set.

The algorithm retains 4 genes out of the 7129 considered. These are

• 1763 Thymosin beta-4 mRNA

• 1779MPOMyeloperoxidase

• 2402 Azurocidin gene

• 6201 Interleukin-8 precursor.

This set of genes gives perfect separation of the classes in the training data. An analysis
of equivalent sets suggests that gene 6201 can be interchanged with gene 6200, namely
Interleukin 8 (IL8) gene. These genes are biologically meaningful in this context.

Table 4 shows results for the selected model applied to the validation set.

Table 4: Validation accuracy for the logistic regression model with 4 selected genes

True ALL
True AML

Predicted ALL
20
3

Predicted AML
0
11

We also performed an analysis similar to [7] whereby the data was randomly di-
vided into training and test sets in the ratio 2:1. For comparison purposes, we used the
3157 genes used in [7]. The variable selection was run for each training set, and pre-
dictions were made for the corresponding test set in a total of 150 runs. All 3157 genes
were considered in each run, there was no preselection of genes. The median number
of misclassifications observed was 2 with a maximum of 5 and minimum of 0. When
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we used a more general prior somewhat between the lasso and (1), the median number
of misclassifications was 1.5 with maximum 3 and minimum 0. The mean number of
variables chosen was 3. For details see [8].

5.4 Poisson regression example

We use the data set in Section 5.2 to also illustrate gene selection in Poisson regression.
We artificially created a new gene (gene number 1) and a Poisson response for each

array with mean given by the expression value of gene 1. This new gene was added to
the previous data matrix. Hence, there are 4027 "genes" and 36 samples in this case.
The response has a Poisson distribution.

Poisson regression is a generalised linear model with

• Link function: g(μ) = log{μ)

• Derivative of link function: l/μ

• Variance function: τ 2 = μ

• Scale parameter φ= 1

• Deviance (likelihood function): X^j{^z log(///)-//,}

• No updating formula is required for the scale parameter.

The algorithm required 5 iterations to correctly identify "gene" 1 as the relevant
gene.

5.5 Cox proportional hazards model

We apply a version of the general algorithm in Section 2 to the survival data of Al-
izadeh et al [2] (available at http://llmpp.nih.gov/lymphoma/data.shtml). A
parametric version of this can also be fitted as a GLM using a Poisson model, see [1].
In this application, two observations (patients DLCL-0051 and DLCL-0052) are omit-
ted because there is no survival information available for them. The data consist of
cDNA microarray measurements on 4026 genes from 40 patients, survival times for
each patient and a censoring indicator.

A Cox proportional hazards model [5] is fitted with an initial 4026 explanatory
variables {i.e. genes) that are rapidly whittled down by the algorithm to just three
explanatory genes. The explanatory genes identified by the algorithm are GENE3797X,
GENE3302X and GENE356X. These are

• Immunoglobulin heavy chain V(H)5 pseudogene L2-9 transcript

• adenosine deaminase - this is a target for some drugs used to treat lymphoma

• AIM2 - involved with interferon induction and cell fate.
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The selected genes are biologically meaningful. More details about this analysis
and a simple prognostic indicator can be found in [25].

6 Conclusion

The algorithms described above seem promising in situations where there is little prior
knowledge concerning the relationship of a large number of variables to a response of
interest. They are fast and can be scaled up to handle large numbers of variables. They
can also provide a useful screening tool to weed out apparently unimportant parameters
or variables prior to an analysis by some other method.

A concern in this context is the production of results which are purely artifacts
due to the large number of variables to choose from. Another concern is the influence
of individual high dimensional observations when the number of samples is relatively
small. As regards the former, permutation tests and the use of validation data sets
have confirmed that the results so far are unlikely to be artifacts. In limited testing to
date with biological arrays, the algorithms have produced biologically meaningful and
apparently new results. A key feature is the consistent identification of smaller sets
of variables with performance similar to the larger sets reported by other analyses. A
similar statement can be made for spectroscopic data. Concerning the stability of the
models selected, leave one out cross-validation calculations have so far demonstrated a
high degree of stability in the chosen models. However, more work is required to test
these ideas.

We are currently exploring other applications, such as logistic multi-class classifi-
cation models.

The algorithms and analysis methods described here are protected by patents which
are owned by CSIRO.
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Minimum Description Length Model Selection
Criteria for Generalized Linear Models

MarkH. Hansen and Bin Yu

Abstract

This paper derives several model selection criteria for generalized linear mod-
els (GLMs) following the principle of Minimum Description Length (MDL). We
focus our attention on the mixture form of MDL. Normal or normal-inverse gamma
distributions are used to construct the mixtures, depending on whether or not we
choose to account for possible over-dispersion in the data. In the latter case, we
apply Efron's [6] double exponential family characterization of GLMs. Standard
Laplace approximations are then employed to derive computationally tractable
selection rules. Each constructed criterion has adaptive penalties on model com-
plexity, either explicitly or implicitly. Theoretical results for the normal linear
model, and a set of simulations for logistic regression, illustrate that mixture MDL
can "bridge" the selection "extremes" AIC and BIC in the sense that it can mimic
the performance of either criterion, depending on which is best for the situation at
hand.

Keywords: AIC; Bayesian methods; BIC; code length; information theory; minimum
description length; model selection; generalized linear models

1 Introduction

Statistical model selection attempts to decide between competing model classes for a
data set. As a principle, maximum likelihood is not well suited for this problem as it
suggests choosing the largest model under consideration. Following this strategy, we
tend to overfit the data and choose models that have poor predictive power. Model
selection emerged as a field in the 1970s, introducing procedures that "corrected" the
maximum likelihood approach. The most famous and widely used criteria are An Infor-
mation Criterion (AIC) of Akaike [1,2] and the Bayesian Information Criterion (BIC)
of Schwarz [15]. They both take the form of a penalized maximized likelihood, but
with different penalties: AIC adds 1 for each additional variable included in a model,
while BIC adds logn/2, where n is the sample size. Theoretical and simulation studies
(cf Shibata [16], Speed and Yu [18], and references therein), mostly in the regression
case, have revealed that when the underlying model is finite-dimensional (specified by
a finite number of parameters), BIC is preferred; but when it is infinite-dimensional,
AIC performs best. Unfortunately, in practical applications we rarely have this level of
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information about how the data were generated, and it is desirable to have selection cri-

teria which perform well independent of the form of the underlying model. That is, we

seek criteria which adapt automatically to the situation at hand. In this paper, we derive

such adaptive model selection criteria for generalized linear models (GLMs) under the

Minimum Description Length (MDL) framework. With MDL we find several generic

prescriptions or "forms" for constructing such selection criteria. In this paper, we focus

on one MDL form that is based on mixtures.

The MDL approach began with Kolmogorov's theory of algorithmic complexity,

matured in the literature on information theory, and has recently received renewed

interest within the statistics community. By viewing statistical modeling as a means

of generating descriptions of observed data, the MDL framework (cf Rissanen [13],

Barron et al. [3], and Hansen and Yu [8]) discriminates between competing model

classes based on the complexity of each description. Precisely, the Minimum Descrip-

tion Length (MDL) Principle recommends that we

Choose the model that gives the shortest description of data.

While there are many kinds of descriptions and many ways to evaluate their complexity,

we follow Rissanen [13] and use a code length formulation based on the candidate

model.

To make this more precise, we first recall that for each probability distribution Q on

a finite set Ά there is an associated code that prepares elements of Ά for transmission

across some (noiseless) communication channel. We consider binary codes, meaning

that each codeword is a string of O's and Γs. It is possible to find a code so that

the number of bits (the number of O's and Γs in a codeword) used to encode each

symbol of a G Ά is essentially - l o g 2 Q(a); that is, -log2Q can be thought of as a

code length function. Huffman's algorithm [5] takes a distribution Q and produces a

so-called prefix code with the right length function.ι Conversely, any integer-valued

function L corresponds to the code length of some binary prefix code if and only if it

satisfies Kraft's inequality

Σ 2-^Ul, (1)

see Cover and Thomas [5] for a proof. Therefore, given a prefix code on Ά with length

function L, we can define a distribution on Ά as follows:

2-L(a)

With Kraft's inequality, we find a correspondence between codes and probability distri-

butions. In what follows, we work with natural logs and take — log Q to be an idealized

code length.

1 While the details are beyond the scope of this short paper, the interested reader is referred to Hansen
and Yu [8] and Cover and Thomas [5].
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One of the early problems in information theory involves transmitting symbols that

are randomly generated from a probability distribution P defined on Ά. Let A G Ά

denote a random variable with this distribution. Now, from the discussion in the previ-

ous paragraph, any code defined on Ά can be associated with an idealized code length

function - logg for some distribution Q. With this setup, the expected code length for

symbols generated from P is given by -ElogQ(A) = - ΣaP(a) l°g£?(α) By Jensen's

inequality, we see that the shortest code length is achieved by a code that has — logP as

its idealized length function. That is, the expected code length is bounded from below

by -ElogP(a) = -ΣaP{a)\ogP{a), the entropy of P. In the literature on information

theory, this fact is known as Shannon's Inequality.

In this paper, we focus on descriptions of data that consist of probability models,

and compare them based on the efficiency of the corresponding code in terms of im-

provements in code length relative to the entropy of the data generating process. When

the competing models are members of a parametric family, using MDL to select a

model, or rather, to estimate a parameter, is equivalent to maximum likelihood estima-

tion (when the cost of transmitting the parameter estimate is fixed). To compare dif-

ferent model classes, different parametric families, or carry out model selection from

among several candidate model classes, efficient codes for each class need to fairly

represent its members. We do not elaborate on this idea, but instead comment that it

is possible to demonstrate rigorously that several coding schemes achieve this fairness

and hence provide valid selection criteria (for, say, i.i.d. or time series observations).

We refer readers to Barron et ah [3] and Hansen and Yu [8].

Among the schemes that yield valid selection criteria, the best known is the so-

called two-stage code, in which we first encode the maximum likelihood estimate

(MLE) of the parameters in the model, and then use the model with the MLE to en-

code the data (say, via Huffman's algorithm described above). Hence this form is a

penalized likelihood, and to first order is exactly the same as BIC. Other forms of MDL

include predictive, mixture and normalized maximum likelihood (NML). The predic-

tive form makes the most sense when the data come in sequentially and has a close

connection to prequential inference; the mixture codes are described in more detail in

the next section; the NML form is new and evolving, and code length expressions are

known only in a few special cases, including the binomial model and Gaussian linear

regression (cf Rissanen [14], Barron et al. [3], and Hansen and Yu [8]).

The rest of the paper is organized as follows. Section 2 gives the details of a mix-

ture code in the context of regression-type models. Section 3 covers the gMDL model

selection criterion (so named because of its use of Zellner's g-prior [20]) from Hansen

and Yu [8] in the variance known and unknown cases to prepare the reader for the new

results in Section 4. The criterion when σ 2 is known appeared originally in George and

Foster [7] in the context of a Bayesian analysis. Section3.3 contains a new theorem

to show the bridging effect of the gMDL criterion between AIC and BIC in a normal

linear regression model.

Section 4 derives a version of the mixture form gMDL for GLMs. In this case,
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normal or normal-inverse gamma distributions are used to construct a mixture model,

depending on whether or not we choose to account for possible over-dispersion in the

data. When the dispersion parameter is known, the resulting criterion appeared first

in Peterson [11] in the context of a Bayesian analysis. To account for dispersion ef-

fects, we use Efron's [6] double exponential family characterization of GLMs as the

likelihood. Standard Laplace approximations are employed to derive computationally

tractable selection rules. Each constructed criterion has adaptive penalties on model

complexity, either explicitly or implicitly. The last section of the paper contains a set of

simulations for logistic regression to illustrate that mixture MDL can "bridge" AIC and

BIC in the sense that it can mimic the performance of either criterion, depending on

which is best for the situation at hand. The performance measures include the probabil-

ity of selecting the correct model and test-error based on a selected model. The latter is

found to be much less sensitive to the model selection criterion than the former due to

the robustness of 0-1 loss in classification.

2 Mixture MDL

In this paper, we consider regression-type models; that is, we would like to characterize

the dependence of a random variable Y G y C R on a vector of potential covariates

(X\,... ,Xκ) GR^ We consider various parametric model classes (or conditional den-

sities) for 7, indexed by a 0-1 binary vector γ = (γi,... ,γ^); each model depends on a

subset of the covariates corresponding to Γs in the model index vector γ. Generically,

we let 9A.Ί denote a simple model class with dimension kΊ = jjj=\ Y/> which depends on

the predictors (X\,...,XK) through the linear combination

Σ β/*7i (2)
j:Ίj=\

where βγ = (βy){y:γ, =i} * s a v e c t o r of parameters. To fit this relationship, our basic data

are observations of the form (Yi,Xi), ί = 1,... ,/i, where X{ — {Xn,... ,Xac) I n ob-

servational studies it makes sense to consider Xt as being random, whereas in designed

experiments the values of the covariates are specified. Let Y — (Y\,..., Yn) G yn denote

the vector of responses and let X/ζ be the n x K full design matrix, [Xκ]ij =Xij ByXγ

we mean a submatrix of X consisting of those columns j for which γ/ = 1. We connect

the data to the model (2) via the conditional density functions /θγ(y|Xy), y G yn, for

some set of parameters θ γ G Θ. (Typically, θ γ will include regression parameters β γ

and possibly a dispersion effect.) In order to assess the suitability of MΊ, we derive a

description length for Y based on MΊ.

For simplicity, we now drop the subscript γ except in places where a reminder seems

necessary. The reader should interpret the model class M, its dimension k, the design

matrix X, and the parameters θ and β as all depending on some subset of the available

predictors. We then judge the appropriateness of this model based on the so-called mix-

ture form of MDL. As its name suggests, this criterion starts with a mixture distribution
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that combines all the members in the class M

m(y\X) = / fQ(y\X)w(θ\X)dQ, y G yn, (3)

where w is a probability density function on θ. This integral has a closed form expres-

sion when fβ( \X) is an exponential family and w is a conjugate distribution.

If y is a finite set of values, we can use the distribution (3) to directly form a

mixture code for strings y G yn. In this setting, we assume that both sender and receiver

know about the covariates X, and we only have to transmit y. As an example, suppose

y — {0,1} so that y is a binary string of length n. We use the model class M and

the distribution (3) to construct a mixture code for all 2n strings J G { 0 , 1 } " . From the

discussion in Section 1, we can apply Huffman's algorithm to build a code that has

the (idealized) length function L(y) = — \og2m(y\X) for all y G yn. This means that

the number of bits required to transmit any y G {0,1}" is essentially —\og2m(y\X).

The MDL principle then distinguishes between candidate model classes based on the

associated length function L(Y), the number of bits required to transmit the observed

data Y. As mentioned earlier, we have chosen to use base e in the log for our derivations.

In Section 1, we only considered building codes for finite sets of symbols. When

Yi E y C K, / = 1,... ,«, is a continuous response, we form an approximate length

function by first discretizing the set y. That is, given a precision δ we obtain the

description length

-logJfQ(y\X)w(β\X)dβ + nlogδ. (4)

Assuming that the precision used for this approximation is the same regardless of model

class M, we again arrive at the expression

-log Ife{y\X)w(θ\X)dθ (5)

as a suitable length function. In the next section, we present a brief review of mixture

MDL for the simple linear model. A full derivation of these results can be found in

Hansen and Yu [8].

When choosing between two model classes, the mixture form of MDL (with fixed

hyperparameters) is equivalent to a Bayes factor (Kass and Raftery [9]) based on the

same distributions on the parameters spaces. As we see in the next section, MDL allows

for a natural, principled mechanism for dealing with hyperparameters that distinguishes

it from classical Bayesian analysis. Also, keep in mind that w is not introduced as a

prior in the Bayesian sense, but rather as a device for creating a distribution for the data

Y from M. This distinction also allows more freedom in choosing w, and has spawned

a number of novel applications in engineering.
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3 Regression

We begin with the simplest GLM, namely the normal linear model MΊ\

Yi= Σ β/*y + ε, . (6)

where the εz are normally distributed with mean zero and variance σ 2. To remind the
reader that our basic model classes will consist of various subsets of the predictor vari-
ables (AΓi, — ,Xκ), we restored the γ notation in the above equation. For simplicity,
however, from this point on, we drop it and consider derivations with respect to a sin-
gle model class, a single choice of γ. Technically, we do not need to assume that the
relationship in (6) holds for some collection of predictors X%, but instead we entertain
model classes because they are capable of capturing the major features observed in the
observed data string Y. For comparison with more general GLMs later, we treat sepa-
rately the case in which σ 2 is known and unknown. In the former case, the parameter
vector θ in the mixture (3) consists only of the coefficients β; while in the latter, θ
involves both β and σ2.

We review this material because relatively straightforward, direct analysis yields the
MDL selection criteria. When we tackle the complete class of GLMs, the derivation
becomes more difficult, but the final forms are reminiscent of those derived in this
section.

3.1 Known error variance σ 2

Here, we take θ = β and let w(β|X) be a normal distribution with mean zero and
variance-covariance matrix o2V. As y — K, we have to appeal to the discretized form
of MDL (4). By using a conjugate distribution, we are able to perform the integration
in (5) exactly. This leads to a code length of the form

L(y\V) = -

I log |F|

where we have dropped terms that depend only on n. We have also made explicit the
dependence of the length function on the variance-covariance matrix V. Clearly, we
can simplify this expression by taking V = c(XtX)~ι so that

-\ogm(y\X,c) = -log(l+c) + —j [yty-——FSS) , (8)

where FSS — ytX(XtX)~ιXty is the usual fitted sum of squares corresponding to the

OLS estimate β = (XtX)~ιXtY. This particular choice of distribution is often attributed
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to Zellner [20] who christened it the g-prior. Because the mixture form reduces to a
relatively simple expression, the g-prior has been used extensively to derive Bayesian
model selection procedures for the normal linear model. Under this prior, it is not hard
to show that the posterior mean of β is yq^β.

In (8) we have highlighted the dependence of the mixture on the scaling parame-
ter c. George and Foster [7] studied various approaches to setting c, establishing that
certain values lead to well-known selection criteria like AIC and BIC.2 Ultimately, they
propose an empirical Bayes approach, selecting an estimate c via maximum likelihood.
Hansen and Yu [8] take a similar approach to the hyperparameter c, but motivate it
from a coding perspective. We review this approach here. Essentially, each choice of c
produces a different mixture distribution and hence a different code. Therefore, to let
c depend on the data, both sender and receiver need to agree on which value of c to
use. Hansen and Yu [8] take a two-stage approach to hyperparameters like c; that is, c
is transmitted first and then once each side knows which code to use, the data are sent.
Of course, communicating c in this way adds to the code length, a charge that we make
explicit by writing

L(y) = L(y\c) + L(c) = - \ogm(y\X,c) +L(c). (9)

Following Rissanen [13], the cost L(c) is taken to be ^log«.3 Minimizing (9) with
respect to c gives

FSS \

and substituting into (8) yields a code length (9) of the form

L(y) = I (10)

ψτ otherwise.

When the minimizing value of c is zero, the prior on β becomes a point mass at zero,
effectively producing the "null" model corresponding to all effects being zero. This
accounts for the second case in the above expression. We should note that the extra
\\ogn penalty is essential to guarantee consistency of the selection method when the
null model is true. The Bayesian criterion of George and Foster [7] is basically the
same, but leaves off this extra term.

2 A similar calibration between Bayesian methods and well-known selection criteria can also be found
in Smith and Spielgelhalter [17].

3The cost j logH can be motivated as follows: for regular parametric families, an unknown parameter
can be estimated at rate \jyfn Hence there is no need to code such a parameter with a precision finer than

/n. Coding c with precision \/y/n gives a cost to the first order - log[l/V«] = \ogn/2.
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3.2 Unknown error variance

We now consider the regression model (6) when σ 2 is unknown. George and Foster [7]
advocate estimating σ 2 then applying the form (10); however, we prefer to assign a
distribution to σ 2 and incorporate it into the mixture. Following Hansen and Yu [8], we
employ a conjugate normal-inverse gamma distribution to form the mixture code; that
is, 1/σ2 has a gamma distribution with shape parameter a; and given σ 2 , β is normal
with mean zero and variance σ 2 F. Setting τ = σ2, these densities are given by

(11)

where a and V are hyperparameters. Under this class of priors, the mixture distribution
(3) has the form

-\ogm{y\X,a,V) = ^ ^ ^

^ ± λ { ^ ^ { i t ) - l t ) (12)

where we have ignored terms that do not depend on our particular choice of model. The
derivation of m(y\X,a, V), the marginal or predictive distribution ofĵ , is standard and
can be found in O'Hagan [10].

Our approach to handling the hyperparameter a is the same as that in the previ-
ous section. Minimizing (12) with respect to a we find that a = (yty — ytX(V~ι +
XtX)-λXty)jn which leaves

-\ogm(γ\X,ά,V) = }- ^

n ( { λ ) ~ 1 ) (13)

As in the known-variance case, we can achieve a simplification in computing the mix-
ture distribution if we again make Zellner's choice of V = c(XtX)~ι. This leaves

(14)

To settle the hyperparameter c, we again minimize the overall code length to find

c = m a x ( F - l , 0 ) with F = ^ , (15)

where F is the usual F-ratio for testing the hypothesis that each element of β is zero,
and S = RSS/(n — k). The truncation at zero in (15) rules out negative values of the
prior variance. Rewriting (15), we find that c is zero unless R2 > k/n, where R2 is the
usual squared multiple correlation coefficient. When the value of c is zero, the prior
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on β becomes a point mass at zero, effectively producing the "null" mixture model4

corresponding to zero regression effects. Substituting the optimal value of c into (14),

we arrive at a final mixture form

gMDL = I (16)
[ flog p r j + i log", otherwise.

Note that we have added the cost to code the hyperparameters a and c, producing an

extra logn and (1/2) logn in the upper and lower expressions, respectively.

3.3 Comparison

As alluded to in the introduction, two widely used model selection criteria are AIC and

BIC. In the case of regression with an unknown variance, they take forms

AIC = ^logRSS+k and BIC = ?-logRSS+ -logn. (17)

Comparing these with (16), we see that the essential difference is in the penalty. Both

AIC and BIC have data independent penalties, while gMDL has a data-dependent

logF/2 for each additional dimension.

By charging less for each new variable, AIC tends to include more terms. When

the underlying model consists of many effects, or more precisely the model is infinite-

dimensional, AIC tends to perform better. If we take the figure of merit to be prediction

error, then AIC has been shown both through theory and simulation studies to be op-

timal in this setting. When the true, data generating mechanism is finite-dimensional

(and is included among the candidates being compared), the stronger penalty of BIC

tends to perform better. For this kind of problem, selection criteria may also be judged

based on consistency (which leads to prediction optimality); that is, whether or not they

ultimately select the correct model as the number of samples tends to infinity. BIC has

been shown to perform optimally in this setting.

We now demonstrate that gMDL with its adaptive penalty enjoys the advantages

of both AIC and BIC in the regression context. We focus on the simple linear model

because the expressions are easy to work with, although we expect the same kind of

result will hold for GLMs. To simplify our analysis, we assume the regressors are

ordered as Xn^Xa^ Following Breiman and Freedman [4], we assume that X{ —

[Xi\:Xi2τ ,Jζy,...) are Gaussian, zero-mean random vectors and let

4The null model is a scale mixture of normals, each N(0,τ) and τ having an inverse-gamma prior.
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Then the finite-dimensional model assumption implies that σ^ = 0 for some &o > 0.
Using similar arguments as those used to prove Theorem 1.4 in Breiman and Freed-
man [4] and the fact that i | \y\ \2 = (σ2 + ofy (1 + op (1)), it is straightforward to establish
the following two results.

Theorem 9

The quantity F in (15) satisήesF = [f ?jf^ + 1](1 +0^(1)) where op{\) -> 0 in prob-

ability uniformly over 0 ^ k < n/2.

Corollary 3
If the model is finite-dimensional and the maximum dimension of the models examined
K=Kn= o(n), then gMDL is consistent and is also prediction-optimal.

The above theorem presents an expansion of the data dependent-penalty of gMDL,
and the corollary establishes that gMDL enjoys the same optimality as BIC when the
model is finite-dimensional. When cτ| > 0 for all k, the underlying model is infinite-
dimensional. In this case, the quantity F/n can be viewed as the average signal to
noise ratio for the fitted model. Adjusting the penalty with (k/2)logF/n, gMDL is
able to adapt to perform well in terms of prediction in both domains, finite- or infinite-
dimensional. The simulation studies in Hansen and Yu (2001) support this adaptivity
of gMDL, since there gMDL has an overall prediction performance better than AIC or
BIC.

In the next section, we show that the newly derived MDL-based criteria for GLMs
are also adaptive.

4 Generalized Linear Models

The characterization of a GLM starts with an exponential family of the form

y^y, (18)

where b\, bι and b?> are known functions. We refer to ψ as the canonical parameter for
the family. Typically, we take Z?2(φ) = φ, and refer to φ as the dispersion parameter. It
plays the role of the noise-variance in the ordinary regression setup of the previous sec-
tion. The family (18) contains many practically important cases, including the normal,
binomial, Poisson, exponential, gamma and inverse Gaussian distributions. With this
model, it is not hard to show that if Y has distribution (18),

E(Y) = μ = ί/,(ψ)
var(7) = σ2 -2 - έ'/(ψ)έ(Φ) { '

As with the normal case above, the GLM framework allows us to study the dependence
of a response variable Y G y on a vector of covariates (ΛΊ,... ,Xκ)- Each model class
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corresponds to some value of the binary vector γ = (γi, . . . ,γ#), and we relate the mean

μ of Y to a subset of the covariates via the linear predictor

f o r η = £ βyXy, (20)

where g is a one-to-one, continuously differentiable transformation known as the link

function. Using (19) and (20) we see that η = g(bι(ψ)).5 Again we let β γ = φj)j:yJ=ι

denote the vector of regression coefficients and kΊ = Xγy its dimension. The unknown

parameters associated with this model are denoted θ γ and include both β γ as well as a

possible dispersion effect φ. We observe data of the form {Y^Xi) for / = 1,... ,Λ where

Xi — (Xi\,... ,Xiκ) and again Xκ is the n x K full design matrix [Xκ]ij = Xij We let

Xy refer to a submatrix of XK consisting of only those columns j for which γ,• = 1. Let

fQy(y\Xy) denote the density for Y based on model class γ.

As with our treatment of the regression context, maintaining the model index γ

needlessly complicates our derivations. From this point on, we again drop it, reminding

the reader that terms like 9vί, X, k, and β all refer to a specific subset of covariates. For

all the GLM cases, we begin with a Laplace approximation to the mixture form which

will be exact for the normal linear model. That is, we start with

β β ) , (21)

where H is the Hessian of /z(β) = log f$(y\X) +logw(β) and β is the posterior mode

of β. In working with this form, we repeatedly make use of the Fisher information

matrix /(β) = XtW(^)X, where W is a diagonal weight matrix. Note that for GLMs,

the observed Fisher information is the same as the Fisher information when we use the

canonical parameterization.

Form (21) is still difficult to work with in practice because there is typically no

closed-form expression for the posterior mode. We now consider several criteria that

make sensible choices for / and w that lead to computationally tractable criteria.

4.1 Direct approach

In this section, we derive a criterion that first appeared in Peterson [11]. As with the

regression context, the original motivation for this form was not MDL, but rather an

approximation to a full Bayesian approach. Our analysis follows closely the case of σ 2

known for regression. Let β be the MLE of β, and assume that the prior w(β) is normal

with mean zero and variance-covariance V. Then, we can approximate β via a single

Newton step

β * β- JH'(β)-1A'(β)

5Taking b' = g~ι means that the canonical parameter ψ and the linear predictor η are the same. This
choice of g is known as the canonical link function.
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using the fact that i/(β) = -(/(β) + F" 1 ) , where /(β) is the Fisher information evalu-

ated at β. We now focus on the case where the prior variance-covariance matrix for β is

simply cJ(β)-"1. For the normal linear model, this leads us to Zellner's g-prior. Unfor-

tunately, for the other important members of this family, the prior variance-covariance

matrix will depend on β. From a strict coding perspective this is hard to accept; it would

imply that sender and receiver both know the coefficient β (or at least /(β)). Nonethe-

less, it is instructive to follow this line of analysis and compare it with the results of the

previous section. For V = cl($)~ι we find that the one-step Newton-Raphson iteration

gives

which agrees with our regression form of MDL when σ 2 is known.
Continuing with the expression (21), we find that

logw(β) «
\i-TC /

(22)

and that after a Taylor expansion of log/β(y|X) around β

(23)

Combining (22) and (23) we arrive at the expression

(24)
Δ Δ Δ

Finally, collecting terms in (21) we find an expression for the code length given c

— \ogm(y\c,X) « -log(l +c) + β /(β)β — \ogfe(y\X).
2 21+c P

We then eliminate the hyperparameter c using the same minimization approach in (9).
This yields

c =
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Substituting this in the mixture form, we find the final MDL criterion

forβV(β)β>£
_

[ -log/o(y|X) otherwise.

The function fo(y\X) represents the log-likelihood when all regression effects are zero.
Again, we have added an extra ^log« term to the top expression to account for the
coding cost of c. This corresponds exactly to the regression context when σ 2 is known.

4.2 Accounting for over-dispersion

In many families, like the Poisson and binomial models, the dispersion parameter is
fixed φ = 1. However, in practice it is often the case that the data do not support
this value, forcing consideration of over-dispersed models. There are several ways to
introduce extra variability into the form (18), many of which are primarily meant as
computational devices. Efron [6] constructs a family to explicitly account for over-
dispersion that admits an analysis for GLMs similar to that for ordinary regression in
the σ2-unknown case. A related technique was independently derived by West [19].

To understand this form, we have to first rewrite the log-likelihood for a GLM
in terms of its mean vector l(y\μ), where μ — (μi,... ,//„). Now, using this notation,
without the restriction (20) on the mean, the maximum value of the log-likelihood is
simply l{y\y). We then define the deviance as the difference

where β is the vector of regression coefficients that yield// through (20). To incorporate
a dispersion parameter, Efron [6] motivates the use of

τ-n/2el(y\μ)/τ+( 1 -1 /τ)l(γ\y)

as an (approximate) likelihood. Technically, this expression should include a normal-
izing constant C(τ,β). Following Efron [6], however, it can be shown that C(τ,β) =
1 + O(n~ι), and hence can be ignored for reasonable sample sizes. Rewriting (25), we
work with

QMψMl M ( 2 6 )

Then, arguing as we did for the σ2 unknown case in regression, we use a normal-inverse
gamma prior with variance-covariance matrix τV. The joint probability of β, τ and y is
given by

f ^ / « ^ ^ * ( 2 7 )
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To integrate out β, we use the Laplace method again which this time yields

τ-i-(

(28)

where /(β) is the Fisher information matrix evaluated at the posterior mode β. Integrat-
ing with respect to τ then yields

-logm(y|α,F) =

1 1 1 _ i
— -logα-h -log F + - log |F + /(β)|. (29)

2 2 2

Following the prescription in the regression context, we eliminate the hyperparameter
a by minimizing the overall code length. In this case, we easily find that

-logm(y\ά,V) = -lo

We have now obtained a usable criterion for model selection. Specifying V, we can
compute β with simple Newton-Raphson iterations. In the regression analysis, we used
Zellner's g-prior for β which led to a closed-form selection criterion. The analog in
this case is V — cl~ι (β). For a GLM, this choice is somewhat unsettling because /(β)
is computed at the MLE. If we were to adhere to a strict MDL setting, it would not
make sense; from a coding perspective, both sender and receiver would have to know
about β, or at least /(β). Recall that for a GLM, the Fisher information matrix takes the
formXίPF(β)X where W is a diagonal weight matrix. One simple alternative is to take
V — c(XtX)~ι, or V = c\, where 1 is the identity matrix. In each of these cases, we
must either approximate the β or iterate to find it. We consider both kinds of selection
criteria.

Following the approximation route, if we choose V — cl~ι (β), we get

C β (30)
1 + c

and

-log(l +c) + -log [ β*/(β)β + £>(y|β) ) . (31)
2 2 \ 1 + c /

Here we have substituted in the one-step Newton-Raphson approximation for β and

have approximated the deviance D(y|β) by a Taylor expansion around β and used a

relation from Raftery [12]. Maximizing with respect to c yields

c = max(F-l,0) (32)
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where

This then gives the form

= / \ log M + § logF + logπ if F > 1

\ flog« + ilog« otherwise,

where D(γ\0) represents the deviance calculated under a model with zero regression
effects.

For the other choices of V~ι = cΣ, there is not a closed-form expression for the
maximizing c. Instead, we can perform a search, but this is best done in conjunction
with finding β. It is also possible to use the approximate β (30) to derive a simple
iteration to find c. In this case, we find

03)
Λβ/(β)(/(β)+cΣj

where

Rc = D(y|β) + cβ*Σβ - c2β'Σ(/(β) + cΣ)- !Σβ. (34)

Convergence of this algorithm is usually fairly fast, although as we will see, it can
depend on the starting values.

5 Simulations

We have chosen 8 different simulation setups to compare AIC and BIC with the new
MDL-based criteria derived in this section. We focus on logistic regression, and con-
sider K = 5 potential covariates. We specify two distributions on X. In the first, each
column consists of n = 100 observations from a standard normal distribution and the
different columns are independent. In the second case, we again use normal covariates,
but now we consider a correlation structure of the form

Here, we took p = 0.75. Then Y was generated by the standard logistic GLM using
one of 8 different coefficient vectors. All 25 = 32 possible models were fit and com-
pared using the various selection criteria. Table 1 gives the classification error rate for
each procedure: Column 4 corresponds to mixture MDL with a normal-inverse gamma
mixing distribution to capture dispersion effects and V~ι — c~ιI($) (Section 4.2); Col-
umn 5 corresponds to mixture MDL with a fixed dispersion parameter φ and hence a
normal mixing distribution again with V~ι — c~!/(β) (Section 4.1); Columns 6 and
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Table 1: Classification errors for the different selection criteria.

Coefficients

3 2 2 0 0

5 1 1 1 1

2 2 2 2 2

3.0 1.5 1.5 0 5 0.0

5 0 0 0 0

2 0 0 0 0

1.5 1.5 1.5 1.5 0.0

8 4 2 1 0

P
0
0.75

0
0.75

0
0.75
0
0.75

0
0.75
0
0.75
0
0.75

0
0.75

Bayes

Rate

0.125

0.087

0.098
0.072

0.115

0.067

0.137

0.093

0.103
0.104

0.220

0.221

0.163

0.101

0.060

0.040

Mix φ

0.138

0.101

0.115
0.087

0.130

0.081

0.153

0.108

0.116

0.116

0.233

0.231
0.177

0.119

0.074

0.057

φ = l
0.138

0.101

0.116
0.087

0.130

0.083

0.152

0.108
0.114

0.115

0.233
0.231

0.177

0.120
0.074

0.058

BIC
0.135

0.104

0.128
0.092

0.131

0.095

0.154

0.112

0.110

0.109

0.228
0.227

0.177

0.129
0.077

0.060

AIC
0.137

0.101

0.118

0.089
0.130

0.086

0.152

0.109

0.114

0.114

0.233

0.232

0.177

0.121

0.074

0.058

1
Iter

0.137

0.100

0.120
0.087

0.130

0.081

0.153

0.108

0.113
0.114

0.230

0.230

0.177

0.118

0.075
0.057

X*X
Iter

0.138

0.104

0.118
0.087

0.131

0.081

0.155

0.111

0.113

0.112

0.230

0.229

0.180

0.124

0.074

0.057

1
search

0.137

0.100

0.118

0.087

0.130

0.081

0.153

0.108

0.113

0.114

0.230

0.230

0.177

0.118
0.074

0.057

X*X
search

0.137

0.101

0.118
0.089

0.130

0.087

0.153

0.109

0.113

0.113

0.230

0.229
0.177

0.122

0.074

0.058

7 are BIC and AIC (17). Columns 8 through 11 also make use of the normal-inverse

gamma distribution but with different choices of the variance-covariance matrix V~λ\

c~λ 1 for 8 and 10, and c~ιXtX for 9 and 11. Columns 8 and 10 differ only in how we

estimate β and c; in the first case the iteration (33) is used, while in the second a full

search is performed to identify both β and the appropriate value of c. The same holds

for Columns 9 and 11, but with the different variance-covariance matrix.

Table 1 shows that most of the selection criteria behave the same, at least in terms

of classification error; this 0-1 error is very robust. In Table 2 we illustrate the types of

models selected by each scheme. The first column identifies the simulations from Ta-

ble 1. The second column presents a model summary of the form x—y where x denotes

the number of variables correctly included in the model and y denotes the number of

excess variables. So, for the first panel of Table 2, the true model (2,0,0,0,0) consists

of only one effect. The heading "1-0" represents the correct model and is marked with

a "*", while the column "1-1" means that one extra term was included. From this table,

we see that the three MDL criteria (Columns 9, 11 and 12) adapt to either AIC or BIC

depending on which performs better in all 8 set-ups. Column 10 seemed to have some

problems, and we believe this is because the iterations (33) failed to converge properly

(possibly due to the approximations used to generate the form). Finally, we see that the

columns using /(β) can perform poorly (those denoted Mixture φ and φ = 1). Recall

that we derived these forms even though their reliance on β violates the basic coding

ideas behind MDL.

We consider the cases in more depth, starting with the first panel of Table 2. Here

"truth" is a small model, (2,0,0,0,0), an ideal case for BIC. Clearly, BIC selects the

right model more often than the other procedures. The mixture MDL procedures that

use variance-covariance matrices other than /(β) also perform quite well. In terms of
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Table 2: Summarizing the number of times different sized models were selected for a sample
of simulation runs given in Table 1.

Coefficients

β = (2,0,0,0,0)

β = (3,2,2,0,0)

*

β = (5,1,1,1,1)

*

Model
Summary

0-1
0-2
0-3
0-4
1-0
1-1
1-2
1-3
1-4

0-1
0-2
1-0
1-1
1-2
2-0
2-1
2-2
3-0
3-1
3-2

1-0
2-0
3-0
4-0
5-0

Mix φ

0
0
0
0

131
70
37
12
0
0
0
0
0
0
0
0
0

111
103
36

0
0
9

56
185

φ = l

0
0
0
0

134
72
37

7
0
0
0
0
0
0
0
0
0

134
93
23

0
1

12
70

167

BIC

0
0
0
0

215
31
4
0
0
0
0
0
0
0
0
1
0

227
20

2

4
35
64
89
58

AIC

0
0
0
0

121
85
40

4
0
0
0
0
0
0
0
0
0

173
71

6

0
2

24
94

130

1
Iter

0
0
0
0

176
55
17
2
0
0
0
0
0
0
0
0
0

176
49
25

0
4

33
79

134

XtX
Iter

0
0
0
0

179
53
18
0
0
0
0
0
0
0
3
0
0

71
31

145

1
19
13
18

199

1
search

0
0
0
0

183
51
15

1
0
0
0
0
0
0
0
0
0

184
61

5

0
3

23
86

138

XtX
search

0
0
0
0

179
51
19

1
0
0
0
0
0
0
0
0
0

180
64

6

0
3

23
89

135

test error, each procedure is about the same. Overall, we can recommend the MDL-

based criteria in terms of their ability to adapt and select concise models.

In the second panel of Table 2, the coefficient vector is (3,2,2,0,0), a middle-

ground case. The /(β) criteria perform rather poorly, as does the X*X case with it-

erations (33) to find c. In the latter case, the poor performance is even reflected in

the prediction error. We intend to examine whether the approximation that led to (33)

caused the problem, or if it was poor starting values for the iterations.

Finally, in the last panel of Table 2, we consider a "full" model with coefficient

vector (5,1,1,1,1), an ideal situation for AIC. Here we see that BIC fails to capture the

correct model form, and the test error is slightly worse as a result. All the MDL criteria

outperform even AIC in terms of identifying the correct model, although this does not

translate into significant test error improvements.
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Risk Assessment: a Forest Fire Example

David R. Brillinger, Haiganoush K. Preisler and John W. Benoit

Abstract

The concern of this paper is obtaining baseline values for the number of forest
fires as a function of time and location and other explanatories. A model is devel-
oped and applied to a large data set from Federal lands in the state of Oregon. To
proceed the data are grouped into small spatial-temporal cells (voxels). Fires are
rare so there are many of these voxels with no fires. In fact there are so many such
cells that in the analyses presented a sample is taken to make the work manage-
able. The paper sets down a likelihood for the sampled data and fits a generalized
additive model involving location, elevation and day of the year as explanatories.

Keywords: Forest fires; generalized additive model; Oregon; risk analysis; sampled
data; wildfires

1 Introduction

Forest fires represent a problem of considerable societal importance. We mention the
following report that appeared in the San Francisco Chronicle of 7/16/2002,

... Nearly two weeks ago, the Forest Service used up the entire $321 million
budgeted for firefighting in 2002. It is expected to spend another $645
million by the end of the year. ... Wildfires have already burned more than
3.3 million acres this year, more than twice the yearly average over the last
decade.

The concern here is the development of a risk model for use in estimating the prob-
ability of a forest fire taking place at a particular location and time as a function of
those and other explanatory variables. The work is implemented for the case of a fine
grid of cells and an accompanying large data set. An analysis is carried out for a re-
gion surrounding the state of Oregon, henceforth referred to as Oregon, and employing:
location, elevation and day of year as explanatories. The elements of the approach are:

1. a spatial-temporal point process and associated covariates,
2. likelihood-based inferential methods developed for such processes,
3. approximation of the point process by a 0-1 valued process on a lattice,
4. a sampling of the 0; i.e. no-fire cells,
5. generalized additive model technology.
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Oregon was chosen for this pilot study because of its approximate rectangular geo-
graphic shape and its high rate of fires. The work presented here has as its goals model
development and the estimation of baseline values for future work. The model contains
but a few explanatory variables. Employing a sample of the no-fire cases rather than all
the no-fire cases available is an unusual aspect of the approach presented.

The sections of the paper are: Introduction, Risk assessment, Previous statistical
work, Model and analysis development, The data, Results and Discussion.

Risk assessment is familiar to Terry Speed. His papers include: reviews of the
procedures that have been employed in the nuclear industry [24], [27], an analysis con-
cerning a ship following a specified sea route [26], and an analysis of risk to levees from
adverse weather conditions [25]. The first mentioned contains the following wonderful
exchange with the Director of Technology, U.S. National Transportation Safety Board,

Dear Professor Speed,

In response to your aerogramme of April 5, 1977, the Chairman's state-
ment concerning the chances of two jumbo jets colliding (6 million to one)
has no statistical validity nor was it intended to be a rigorous or precise
probability statement. The statement was made to emphasize the intu-
itive feeling that such an occurrence has a very remote but not impossible
chance of happening.

Thank you for your interest in this regard.

Sincerely yours ...

From these papers and personal observation it is clear that Terry knows a lot about
taking risks. May he continue to have fun doing so for many years.

2 Risk assessment

Probabilistic risk assessment can be defined as the process of estimating, for some class,
the probabilities of hazardous events taking place within a specified time period and in a
specified context. Such an assessment often proceeds by reducing a particular complex
system to its simpler components. This is followed by the fitting and validation of
stochastic models associated with the components. Typically large doses of substantive
subject matter are required in such modeling and data analysis projects.

This paper is concerned with the case of forest fires. Wildfires are a natural dis-
turbance in virtually all the world's ecosystems and the annual losses are staggering,
see the Chronicle report above. It seems clear that fire occurrence depends on local
conditions such as: location, elevation, wind velocity, precipitation, temperature, air
humidity, topography, litter type, level of suppression amongst other explanatories. In
our work fire ignition will be viewed as a random phenomenon. A pertinent conceptual
model is: when the temperature (or some related latent variable) at a given location
exceeds a threshold, depending on the local conditions, a fire breaks out. The latent
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variable will depend on explanatories such as those listed above. In the work below

the logit transform will be employed. It corresponds to a latent variable with a logistic

distribution.

3 Previous statistical work

Often a Poisson model has been employed for the number of fires, see Dayananda [3],

Poulin-Costello [17], Mandallaz and Ye [8, 9]. In other cases it is a logistic: Chou et

al [2], Poulin-Costello [17], Martell et al [11]. In another approach McKenzie et al

[12] use multiple regression and regression trees. Markov chain models are employed

in Martell [10]. Peng and Schoenberg's works, [22], [16], relate wildfire incidence

to temperature, precipitation, fuel moisture and fire history for Los Angeles County.

These researchers find that time expired since a location has burned previously appears

important. Roads et al [20] use a regression model for fire occurrence with 6 fire

danger indices by fuel type as explanatories. There is also spatial autocorrelation. [18]

provide a review.

4 Model and analysis development

4.1 The spatial-temporal conditional intensity function

To begin suppose that the space-time domain is broken up into voxels (JC,JC + dx] x

(y,y + dy] x(t,t + dt\. Consider the spatial-temporal point process, N, with conditional

intensity function assumed to exist and defined by

λ(x,y,t) = Prob{dN(x,y,t) = l\Ht}/dxdydt

where dN{x,y,t) = N(dx,dy,dt) counts the number of fires in the voxel where Ht is

the history of the process N up to and including time t. Supposing that λ contains a

parameter θ the log-likelihood function will be written

= ί I [log[λ(x^φ)W(x,y,ή - [T f lλ{xM*)dxdydt (1)
JO JxJy JO JxJy

see Fishman and Snyder [5]. Explanatories may appear in λ but are presently sup-

pressed in the notation.

Asymptotics of maximum likelihood estimates based on point process likelihoods

have been developed in Ogata [15], Sagalovsky [21], Rathbun [19], Schoenberg [23].

The last two papers focus on the spatial-temporal case.

Consider next practical approaches to using the log-likelihood (1) in practice.
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4.1.1 Approach 1

The second term of (1) is the awkward one in our case because it covers such a large

area in space-time. It will be approximated. One way to do this is by sampling points

from an independent ofN spatial Poisson process, M(dx,dy,dt)9 of rate π on the space

^ x [0, T]. Then the log-likelihood (1) may be approximated by

Γ [ IΊog[λ(x^φ)}dN(x,y,ή - F [ [λ{x,y,φ)dM{x,y,t)/π. (2)
JO JxJy JO JxJy

Averaging over M, but holding the process N fixed, the expected value of (2) is (1). The

expected number of points in the approximating sum of the second term is π times the

volume of ^ x [0,Γ].

4.1.2 Approach 2

A model that is often simpler to deal with follows. It is an approximation to Approach

1. Replace the spatial-temporal point process, N(dx,dy,dή, by a 0-1 valued process

Nxyj on a lattice with Nx^t = 1 if there is a fire in the corresponding voxel and by 0

otherwise for (x,y) in H^; t = 0 , . . . ,Γ- 1. (This idea was used to advantage in [1].)

Suppose then that

with Ht the history up to and including t. A Bernoulli approximation to the log likeli-

hood (I) is now

Σ Nw l°g( λ^,<) + Σ (1 - # * * ) log (1 ~ λ^<) (3)
xy,t xy,t

In the present case there are many voxels for which Nx^t is 0 and so the second sum

in (3) contains many terms. To deal with this, randomly select 0-voxels with probability

π and include them alone in the analysis. (In what follows there will actually be two-

stage sampling with π = π\ii2 This is to possibly obtain more efficient estimates. The

estimation procedure then involves two types of uncertainty; one from the fire process

itself and a second from the sampling of data points. The latter component will decrease

with increasing π.)

To simplify the notation for the moment, index the voxels by k rather than jc?<y, t. Let

S denote the collection of the voxels that had a fire and the sample of those that did not.

In what follows it will be assumed that the N^ are independent given the explanatories.

This condition will be relaxed in future work. Using the identity

Prob{A\B} = Prob{B\A}Prob{A}/Prob{B},

one has the conditional probability

Prob{Nk=\\Ht-hkinS} = yk = λk/(λk + {l-λk)π)
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with the complimentary probability for the event Nk = 0. Now by elementary algebra

logit yk = logit λk + log 1/π.

Using the indicated assumption of independence the log-likelihood based on the Nk for
k in S is

Σ Wk 1°S( Yk) + (1 -Nk) log{\-Ίk)l (4)
kinS

i.e. a Bernoulli likelihood. Appropriate uncertainty measures are often available for

estimates obtained by maximizing (4), see the Appendix.

In the analyses η = logit λ will be a "linear predictor" based on explanatories.

To obtain estimates one can use a generalized linear model program, such as glm{)

of Splus, with an offset of log(\/π) to carry out an analysis. In fact the generalized

additive model program gam(), [6], will be employed below.

Above an assumption of independence was made. For the present this will be made

reasonable by the inclusion of explanatories. For example, location is meant to handle

the similarity of nearby values.

4.1.3 Approach 3

Another method begins, again, by approximating the log-likelihood (1) by one based on

0-1 variates. Further suppose once again the 0-voxels have been sampled. Let {δx^t}

denote independent Bernoulli variates corresponding to the sampling with parameter

π. They are to be independent of the fire process, N. Consider the approximate log-

likelihood

Σ t ^ 1°S( λ w ) + 0 ~Nχ&) log{\ - λXyy)t) δ^,, / π]

= Σ wk[Nklogλk + (l-Nk)log{l-λk)]. (5)
kinS

The wk are weights that equal 1 at locations with fires and equal 1/π at the sampled

locations with no fire. If π = 1 this reduces to the log-likelihood (3).

4.2 Assessing fit

Suppose a particular link function has been employed, e.g. the logit, and one wishes to

assess it. The fitted linear predictor values may be assigned to the cells of a histogram.

For each cell some of the corresponding N's will be 0 and some will be 1. The "number

of Γs" divided by "the number of Γs" plus "the number of 0's" weighted up by 1/π

provides a nonparametric estimate of the function λ(η) = Prob{N = l |η = 1} with

η representing the linear predictor of the generalized additive employed model. This

estimate may be compared to λ(η|θ) where θ is the maximum likelihood estimate. An

example is provided below, see Figure 6.
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4.3 Predictions

Quantities of substantial interest to the Forest Service managers, for planning purposes,

include probabilities such as

The fitted linear predictor and its statistics may be used to compute pertinent estimates.

Provided some explanatories in the model are leading variables, and they can be rea-

sonably forecast, one would have useful predictions.

The work presented here has in mind obtaining baseline values using models in-

volving location, elevation and day of year only. The next stage of research will study

improvements obtained when leading variables, e.g. based on meteorology, are in-

cluded.

5 The data

In this pilot study fire occurrence data from Federal lands in the state of Oregon were

used. The data consisted of locations and dates of every fire greater than 0.1 acre that

occurred between April 26, 1989 and December 31, 1996. (There were 15,786 such

fires.) The date refers to the day the fire started. The source of the fire location data was

the USDA Forest Service, National Fire Occurrence Data Base [28]. Figure 1 provides

an elevation map of Oregon with federal fire locations for 1990. The dark winding

horizontal line at the top of the figure is the Columbia River. It provides the border of

Oregon with Washington. Figure 2 shows the so-called "Federal Mask", i.e. the Federal

lands in Oregon. Their area accounts for approximately 56% of the state.

Figure 3 is a time series plot of the square roots of fortnightly counts of fires over

the time period of the study. A clear annual effect corresponding to the fire season may

be seen. There is no serious suggestion of a trend.

Data on response variables and explanatories were selected as follows. The fires

were those inside Federal lands, delineated by Figure 2. To get the quantities for be-

ginning data analyses a two-stage sampling procedure was employed for the voxels

without a fire because of the data management problem. In the first stage of the sam-

pling a collection of days was selected, with each day having probability πi = 0 . 1 of

being picked. In the second stage a proportion π2 = 0.0012 of cells inside the Federal

mask was picked. This resulted in a total of 73880 cases of which 15,786 were fire

occurrences Nk of (4) equals 1 and 58094 were with Nk equal 0. The overall rate of fires

experienced for the period of the study was 15786/(2760*209490) = .0000273 per km2

per day. (There were 2760 days and a region of area 209490 km2 in the study.)

To obtain the estimates, the function gam() of Splus, [6], was used to fit a Bernoulli

model with an offset of log 1/π, a linear predictor

η* = logit λk = gi (xk,yk) + g2(dk) + g3 (ek) (6a)
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Elevation map and 1990 Federal fire locations

O -

600

Figure 1: Federal fire locations in 1990. Dark blue corresponds to water and red circles to
fire locations.
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Federal lands mask

200 400 600

Km

Figure 2: The Federal lands in Oregon. The box refers to the region taken for an example in
Section 6. It is referred to as Region B.
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1990 1992 1994 1996

Year

Figure 3: Square root of fortnightly count of Oregon fires in Federal lands 1989-1996.



186 D. R. Brillinger, H. K. Preisler andl W. Benoit

and a probability mass function of

Prob{N = l|η} = ex/?{η}/(π+ (1 -π)exp{τ\}). {6b)

Here {xk,yk) corresponds to the locations (in meters) of coordinates of the k-th re-

sponse, dk corresponds to day in year and e* refers to elevation at the location. The g()

are (nonparametric) smooth functions to be estimated. The functions gι and gι were

splines with g2 having period 1 year, [13]. The term g\ was estimated via the scatterplot

smoother lo.

One of the interesting aspects of the work is that the data set is quite large and awk-

ward. Maps for the state of Oregon were extracted from the CD's, converted to ASCII

files and then a sample was selected in two stages. Locations of fires were recorded

in units of latitude and longitude. These were converted to metric units. Even with

a small fraction (π=0.00012) of the available voxels, each gam run required approxi-

mately 10 minutes to run on a 900MHz computer. This meant that it was not easy to do

exploratory data analysis.

6 Results

6.1 The fit

Figure 4 provides the estimated spatial effect for model (6a,b). It was obtained by the

second approach described above. The results are presented in both perspective and

contour form. Some general features apparent in this map are the low intensity level in

the south-eastern region of Oregon, contour levels -2 and -3. This region is mostly high

desert with few forests. Regions with the historically highest level, contour level 1, of

fire appear to be in the Cascade Mountains.

Figure 5 provides plots of the estimated effect of elevation and day of the year.

Unsurprisingly, the latter indicates amongst other things more fires in the summer as

was evident in Figure 3. The elevation effect increases for those less than 2000m. The

approximate 95% bounds are obtained by the jackknife procedure as discussed in the

Appendix. Generally the bounds are small as might be expected given the large amount

of data involved. The uncertainty bounds for the higher elevations are wide because

there are not many high locations in the data set.

Figure 6 implements the method of Section 4.2 for assessing the appropriateness

of the model (6a,b). It is a plot of the empirical relative frequencies of fires as points.

These are computed after grouping the data into classes based on the linear predictor.

Also provided, as a solid line, are the estimated probabilities from model (6a,b) and,

as dashed lines, approximate binomial confidence bounds. The fit appears reasonable,

but one does notice points above the curve on the right. This departure may disappear

when other explanatories are included in the model.
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Estimated spatial effect
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Figure 4: Estimated spatial effect, g\, for model (6a,b).
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Estimated seasonal effect

Day

Estimated elevation effect

1000 1500

Elevation (m)

Figure 5: Estimated effects §2 of day in year and §3 of elevation for the model (6a,b). The
dashed lines provide approximate marginal 95% bounds computed by a jackknife procedure.
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Probability of fire per 1KmΛ2 per day

I I
iS d

-12 -10

Fitted (logit-scale)

Figure 6: Observed relative frequencies of fire, after grouping the data into classes based on
the fitted linear predictor, ή. The solid curve is the fitted logistic curve. The dashed lines are
smoothed approximate 95% limits obtained via a binomial approximation.
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6.2 An example

Forest managers are interested in estimates of the number of fires likely to occur in
a given region during a given fire period. Amongst other things these estimates will
help them allocate resources. As an example, using the output above, estimated fire
probability values were produced for the shaded region within the box of Figure 2. This
is the Heppner Ranger District of the Umatilla Forest in Oregon. It will be referred to
as Region B. It is taken as representative of the sort of region of interest in wildfire risk
estimates for the U.S. generally.

Figure 7 and Table 1 present some of the results. The solid line in Figure 7 gives
the estimate of the monthly rates obtained by fitting the model with location, elevation,
and day of year as explanatories. The shaped region gives approximate 95% marginal
confidence limits for the estimate. These are obtained in the same jackknife computa-
tions as produced the errors bounds of Figure 5. In this case the linear predictions are
perturbed by ±2SE and converted to probabilities by the transform (6b). The resulting
fire rates are seen to peak in the summer season with an estimated value of 6.74 fires
for the month of August.

The dots in Figure 7 refer to the naive estimate of the rates of fires obtained by
dividing the total number of fires for a month by the number of years of observation.
The vertical lines give approximate 95% limits employing a Poisson approximation.
One notes differences, but it may be remarked that the only physical characteristics of
Region B being used in the present estimation are its elevations.

To be specific, managers are interested in things like

Prob{i or more fires in July}, i = 1, 2, ,...

Table 1 provides estimates of such together with approximate 95% confidence limits
for the estimates. The count is based on the sum of Bernoulli variables. When the
probabilities of the Bernoullis differ the distribution is called the Poisson-Binomial,
[7]. These authors show that this distribution is well approximated by a Poisson in the
case that the largest of the individual pixel probabilities is small. This seems to be the
case in the present situation where the risk of fire is low, particularly since the pixels
are small. For example the estimated probability of 7 or more fires in July for Region
B is .324 with an approximate confidence interval of (.176,.520).

Here the only serious explanatory employed beyond location is elevation. The goal
of future work is prediction using leading explanatories. It will be interesting to see the
extent to which the confidence interval shrinks as these are brought into the model.

7 Discussion

The model, (6a,b), for the breaking out of wildfires has been set down and fit. The
model was motivated by threshold considerations and is of nonparametric character.
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Empirical and Fitted Fire Rate for Region B
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Figure 7: The solid central line gives the fitted rate of fires by month. The shaded region
gives =L 2 SE limits. The points are the monthly empirical rates of fires. Vertical lines are ±
2 SE limits for the points.
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i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

probability

.989

.956

.887

.774

.628

.470

.324

.206

.121

.066

.033

.016

.007

.003

.003

.001

.000

.000

.000

.000

confidence interval

(.967,-996)

(.895,.983)

(.771,.948)

(.610,.883)

(.441,-784)

(.291,.658)

(.176..520)

(.097,.386)

(.049,-268)

(.023,-174)

(.010,-106)

(.004,-060)

(.001,-032)

(.001,-016)

(.000,-007)

(.000,.003)

(.000,.001)

(.000,.001)

(.000..000)

(.000,-000)

Table 1: Estimated probability of ι or more fires and approximate 95% confidence limits for
the month of July and Region B.
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The assumptions include smooth dependence of the risk probability on location, eleva-

tion, day of the year. A logistic link function is employed.

There are many sources of variability present in addition to the random nature of

wildfires. The simplest is that arising from using a sample of the no-fire voxels. The

sampling was two-stage without replacement. Finite population correction factors were

ignored in computing uncertainty estimates, but they are negligible. The sampling frac-

tion, π, will be increased in future studies.

The principal source of the variability that shows itself in Figure 7 and Table 1 is

possibly that arising from missing explanatories. To the extent possible this will be

dealt with in future studies. Additional data sources to be included then are weather

data from the Weather Information Management System [14], fire danger indices from

NIFMID [14] and more topographic data, e.g., aspect and distance to nearest population

center.

This has been a pilot study with the purpose of obtaining baseline values. These

will be used as standards for later forecasting models.

One difficulty needs to be mentioned. In using gam() it was found that the results

of prediction runs depended on which other predictions were carried out at the same

time. This may be due to the accumulation of roundoff error. Studies are continuing.

The results presented in this paper are for runs of all the predictions being carried out at

the same time. The reason for this choice is that the computing time required was less

than, say, running one prediction at a time.
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Appendix

The use of the jackknife for the model (6a,b) may justified by assumptions that K is
large, that the values

k), k= \,...,K

may be treated as an i.i.d. sample from some distribution and that the statistics com-
puted are approximately additive in some i.i.d. variates. The variances estimated are
overall as opposed to conditional. One reference to the jackknife is Chapter 11 in Efron
and Tibshirani [4] where it is discussed as an approximation to the bootstrap.

In the implementation employed, the standard errors of the estimates of gi (*,>>),
g2(d), and g?>(e) are obtained by splitting the 7 years of data into 7 random segments
of 365 days. The values obtained do not differ greatly from those produced by gam.



On the Likelihood of Improving the Accuracy of
the Census Through Statistical Adjustment

David A. Freedman and Kenneth W. Wachter

Abstract

In this article, we sketch procedures for taking the census, making adjust-
ments, and evaluating the results. Despite what you read in the newspapers, the
census is remarkably accurate. Statistical adjustment is unlikely to improve on the
census, because adjustment can easily put in more error than it takes out. Indeed,
error rates in the adjustment turn out to be comparable to—if not larger than—
errors in the census. The data suggest a strong geographical pattern to these errors
even after controlling for demography, which contradicts a basic premise of ad-
justment. Complex demographic controls built into the adjustment mechanism
turn out to be counter-productive.

Proponents of adjustment have cited "loss function analysis" to compare the
accuracy of the census and adjustment, generally to the advantage of the latter.
However, these analyses make assumptions that are highly stylized and quite fa-
vorable to adjustment. With more realistic assumptions, loss function analysis is
neutral or favors the census. At the heart of the adjustment mechanism, there is
a large sample survey—the post enumeration survey. The size of the survey can-
not be justified. The adjustment process now consumes too large a share of the
Census Bureau's scarce resources, which should be reallocated to other Bureau
programs.

Keywords: Census; adjustment; heterogeneity; correlation bias; demographic analysis;
dual-system estimation; non-sampling error; loss function analysis

1 Introduction

The census has been taken every ten years since 1790. Counts are used to appor-
tion Congress and redistrict states. Furthermore, census data are the basis for allocating
federal tax money to cities and other local governments. For such purposes, the geo-
graphical distribution of the population matters rather than counts for the nation as a
whole. Data from 1990 and previous censuses suggested there would be a net under-
count in 2000; the undercount would depend on age, race, ethnicity, gender, and—most
importantly—geography. This differential undercount, with its implications for sharing
power and money, attracted considerable attention in the media and the court-house.

There were proposals to adjust the census by statistical methods, but this is advis-
able only if the adjustment gives a truer picture of the population and its geographical
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distribution. The census turns out to be remarkably good, despite the generally bad
press reviews. Statistical adjustment is unlikely to improve the accuracy, because ad-
justment can easily put in more error than it takes out.

In this article, which is an expanded version of Freedman and Wachter [15], we
sketch procedures for taking the census, making adjustments, and evaluating results.
(A sketch is what you want: detailed descriptions cover thousands of pages.) We have
new data on errors in the adjustment, and on geographical variation in error rates. We
discuss alternative adjustments, and point out critical flaws in oft-cited methods for
comparing the accuracy of the census and adjustment. We close with pointers to the
literature, including citations to the main arguments for and against adjustment, and a
summary of the policy recommendations that follow from our analysis.

2 The Census

The census is a sophisticated enterprise whose scale is remarkable. In round num-
bers, there are 10,000 permanent staff at the Bureau of the Census. Between October
1999 and September 2000, the staff opened 500 field offices, where they hired and
trained 500,000 temporary employees. In spring 2000, a media campaign encouraged
people to cooperate with the census, and community outreach efforts were targeted at
hard-to-count groups.

The population of the United States is about 280 million persons in 120 million
housing units, distributed across 7 million "blocks," the smallest pieces of census ge-
ography. (In Boston or San Francisco, a block is usually a block; in rural Wyoming, a
"block" may cover a lot of pastureland.) Statistics for larger areas like cities, counties,
or states are obtained by adding up data for component blocks.

From the perspective of a census-taker, there are three types of areas to consider.
In "city delivery areas" (high-density urban housing with good addresses), the Bureau
develops a Master Address File. Questionnaires are mailed to each address in the file.
About 70 percent of these questionnaires are filled out and returned by the respondents.
Then "Non-Response Followup" procedures go into effect: for instance, census enu-
merators go out several times and attempt to contact non-responding households, by
knocking on doors and working the telephone. City delivery areas include roughly 100
million housing units.

"Update/leave" areas, comprising less than 20 million households, are mainly sub-
urban and have lower population densities; address lists are more difficult to construct.
In such areas, the Bureau leaves the census questionnaire with the household while up-
dating the Master Address File. Beyond that, procedures are similar to those in the city
delivery areas.

In "update/enumerate" areas, the Bureau tries to enumerate respondents—by in-
terviewing them—as it updates the Master Address File. These areas are mainly rural,
and post-office addresses are poorly defined, so address lists are problematic. (A typical
address might be something like Smith, Rural Route #1, south of Willacoochee, GA.)
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Perhaps a million housing units fall into such areas. There are also special populations
that need to be enumerated—institutional (prisons and the military), as well as non-
institutional "group quarters." (For instance, 12 nuns sharing a house in New Orleans
are living in group quarters.) About 8 million persons fall into these two categories.

3 Demographic Analysis

Demographic analysis estimates the population using birth certificates, death cer-
tificates, and other administrative record systems. The estimates are made for national
demographic groups defined by age, gender, and race (Black and non-Black). Estimates
for sub-national geographic areas like states are currently not available. According to
demographic analysis, the undercount in 1970 was about 3 percent nationally. In 1980,
it was 1 to 2 percent, and the result for 1990 was similar. The undercount for Blacks
was estimated at about 5 percentage points above non-Blacks, in all three censuses.

Demographic analysis starts from an accounting identity:

Population = Births — Deaths + Immigration — Emigration.

However, data on emigration are incomplete. And there is substantial illegal immigra-
tion, which cannot be measured directly. Thus, estimates need to be made for illegals,
but these are (necessarily) somewhat speculative.

Evidence on differential undercounts depends on racial classifications, which may
be problematic. Procedures vary widely from one data collection system to another. For
the census, race of all household members is reported by the person who fills out the
form. In Census 2000, respondents were allowed for the first time to classify themselves
into multiple racial categories: this is a good idea from many perspectives, but creates a
discontinuity with past data. On death certificates, race of decedent is often determined
by the undertaker. Birth certificates show the race of the mother and (usually) the race
of father; procedures for ascertaining race differ from hospital to hospital. A computer
algorithm is used to determine race of infant from race of parents.

Prior to 1935, many states did not have birth certificate data at all; and the further
back in time, the less complete is the system. This makes it harder to estimate the pop-
ulation aged 65 and over. In 2000, demographic analysis estimates the number of such
persons starting from Medicare records. Despite its flaws, demographic analysis has
generally been considered to be the best yardstick for measuring census undercounts.
Recently, however, proponents of adjustment have favored another procedure, the DSE
("Dual System Estimator").

4 DSE—Dual System Estimator

The DSE is based on a special sample survey done after the census—a PES ("Post
Enumeration Survey"). The PES of 2000 came to be called ACE ("Accuracy and Cov-
erage Evaluation Survey"): acronyms seem to be unstable linguistic compounds. The
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ACE sample covers 25,000 blocks, containing 300,000 housing units and 700,000 peo-
ple. An independent listing is made of the housing units in the sample blocks, and
persons in these units are interviewed after the census is complete. This process yields
the "P-sample."

The "E-sample" comprises the census records in the same blocks, and the two sam-
ples are then matched up against each other. In most cases, a match validates both the
census record and the PES record. A P-sample record that does not match to the census
may be a "gross omission," that is, a person who should have been counted in the cen-
sus but was missed. Conversely, a census record that does not match to the P-sample
may be an "erroneous enumeration," in other words, a person who got into the census
by mistake. For instance, a person can be counted twice in the census—because he sent
in two forms. Another person can be counted correctly but assigned to the wrong unit
of geography: she is a gross omission in one place and an erroneous enumeration in the
other.

Of course, an unmatched P-sample record may just reflect an error in ACE; like-
wise, an unmatched census record could just mean that the corresponding person was
found by the census and missed by ACE. Fieldwork is done to "resolve" the status of
some unmatched cases—deciding whether the error should be charged against the cen-
sus or ACE. Other cases are resolved using computer algorithms. However, even after
fieldwork is complete and the computer shuts down, some cases remain unresolved.
Such cases are handled by statistical models that fill in the missing data. The number
of unresolved cases is relatively small, but it is large enough to have an appreciable
influence on the final results (Section 9).

Movers—people who change address between census day and ACE interview—
represent another complication. Unless persons can be correctly identified as movers
or non-movers, they cannot be correctly matched. Identification depends on getting
accurate information from respondents as to where they were living at the time of the
census. Again, the number of movers is relatively small, but they are a large factor
in the adjustment equation (Section 9). More generally, matching records between the
ACE and the census becomes problematic if respondents give inaccurate information
to the ACE, or the census, or both. Thus, even cases that are resolved though ACE
fieldwork and computer operations may be resolved incorrectly. We refer to such errors
as "processing error."

The statistical power of the DSE comes from matching, not from counting better.
In fact, the E-sample counts came out a bit higher than the P-sample counts, in 1990
and in 2000: the census found more people than the post enumeration survey.! As the
discussion of processing error shows, however, matching (like so many other things) is
easier said than done.

Some persons are missed both by the census and by ACE. Their number is estimated
using a statistical model, assuming that ACE is as likely to find people missed by the
census as people counted in the census—"the independence assumption." Following
this assumption, a gross omission rate estimated from the people found by ACE is
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extrapolated to the sort of people who are unlikely to be found, although the gross
omission rate for the latter group may well be different. Failures in the independence
assumption lead to "correlation bias." Data on processing error and correlation bias
will be presented later.

5 Small-Area Estimation

The Bureau divides the population into "post strata" defined by demographic and
geographic characteristics. For Census 2000, there were 448 post strata. One post
stratum, for example, consisted of Asian male renters age 30-49, living anywhere in
the United States. Another post stratum consisted of Blacks age 0-17 (male or female)
living in owner-occupied housing in big or medium-size cities with high mail return
rates, across the whole country. Persons in the P-sample are assigned to post strata
on the basis of information collected during the ACE interview. (For the E-sample,
assignment is based on the census return.)

Each sample person gets a "weight." If the Bureau sampled 1 person in 500, each
sample person would stand for 500 in the population and be given a weight of 500.
The actual sampling plan for ACE is more complex, so different people get different
weights, ranging from 10 to 6000.2 To estimate the total number of gross omissions in
a post stratum, the Bureau simply adds the weights of all ACE respondents who were
identified as (i) gross omissions and (ii) being in the relevant post stratum.

To a first approximation, the estimated undercount in a post stratum is the difference
between the estimated numbers of gross omissions and erroneous enumerations.3 The
Bureau computes an "adjustment factor"; when multiplied by this factor, the census
count for a post stratum equals the estimated true count from the DSE. About two-thirds
of the adjustment factors exceed 1: these post strata are estimated to have undercounts.
The remaining post strata are estimated to have been overcounted by the census; their
adjustment factors are less than I.4

How does the Bureau adjust small areas like blocks, cities, or states? Take any
particular area. Each post stratum has some number of persons counted by the census
in that area. (The number may be zero.) This census number is multiplied by the ad-
justment factor for the post stratum. The process is repeated for all post strata, and the
adjusted count is obtained by adding the products; complications due to rounding are
ignored for now. The adjustment process makes the "homogeneity assumption," that
undercount rates are constant within each post stratum across all geographical units.
This is not plausible, and was strongly contradicted by census data on variables related
to the undercount. Failures in the homogeneity assumption are termed "heterogeneity."
Ordinarily, samples are used to extrapolate upwards, from the part to the whole. In cen-
sus adjustment, samples are used to extrapolate sideways, from 25,000 sample blocks
to each and every one of the 7 million blocks in the United States. That is where the
homogeneity assumption comes into play.

The political debate over adjustment is often framed in terms of sampling: "sam-
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pling is scientific." However, from a technical perspective, sampling is not the issue.
The crucial questions are about the size of processing errors, and the validity of statis-
tical models for missing data, correlation bias, and homogeneity—in a context where
the margin of allowable error is relatively small.

6 State Shares

All states would gain population from adjustment. Some, however, gain more
than others. In terms of population share, gains and losses must balance—a subtle
point often overlooked in the political debate. In 2000, even more than 1990, share
changes were tiny. According to Census 2000, for example, Texas had 7.4094 per-
cent of the population. Adjustment would have given it 7.4524 percent, an increase of
7.4524 — 7.4094 = .0430 percent, or 430 parts per million. The next biggest winner
was California, at 409 parts per million; third was Georgia, at 88 parts per million.

Ohio would have been the biggest loser, at 241 parts per million; then Michigan, at
162 parts per million. Minnesota came third in this sorry competition, at 152 parts per
million. The median change (up or down) is about 28 parts per million. These changes
are tiny, and most are easily explained as the result of sampling error in ACE. "Sampling
error" means random error introduced by the luck of the draw in choosing blocks for the
ACE sample; you get a few too many blocks of one kind or not quite enough of another:
the contrast is with "systematic" or "non-sampling" error like processing error.

The map (Figure 1) shows share changes that exceed 50 parts per million. Share
increases are marked "+"; share decreases, " - " . The size of the mark corresponds to
the size of the change. As the map indicates, adjustment would have moved population
share from the Northeast and Midwest to the South and West. This is paradoxical, given
the heavy concentrations of minorities in the big cities of the Northeast and Midwest—
and political rhetoric contending that the census shortchanges such areas ("statistical
grand larceny," according to New York's ex-Mayor Dinkins). One explanation for the
paradox is correlation bias. The older urban centers of the Northeast and Midwest may
be harder to reach, both for census and for ACE.
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Figure 1: ACE adjustment: State share changes exceeding 50 parts per million5

7 The 1990 Adjustment Decision

Table 1: Errors in the adjustment of 1990

The adjustment 4-5.3
Processing error -3 .6

Corrected adjustment +1.7
Correlation bias +3.0

Demographic analysis +4.7

A brief look at the 1990 adjustment decision provides some context for discussions
of Census 2000. In July 1991, the Secretary of Commerce declined to adjust Census
1990. At the time, the undercount was estimated as 5.3 million persons (Table 1). Of
this, 1.7 million persons were thought by the Bureau to reflect processing errors in the
post enumeration survey, rather than census errors. Later research has shown the 1.7
million to be a serious underestimate. Current estimates range from 3.0 million to 4.2
million, with a central value of 3.6 million. (These figures are all nation-wide, and net.)
Thus, the bulk of the 1990 adjustment resulted from errors not in the census but in the
PES. Processing errors generally inflate estimated undercounts, and subtracting them
leaves a corrected adjustment of 1.7 million. (There is an irritating numerical coinci-
dence here, as 1.7 million enters the discussion with two different roles.) Correlation
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bias, estimated at 3.0 million, works in the opposite direction, and brings the under-
count estimate up to the demographic analysis figure of 4.7 million.6 The message is
simple: on the scale of interest, most of the estimated undercount is noise.

8 Evaluating Census 2000

We see widespread—although by no means universal—agreement on two chief
points. First, Census 2000 succeeded in reducing differential undercounts from their
1990 levels. Second, there are serious questions about the accuracy of proposed statis-
tical adjustments. Mistakes in statistical adjustments are nothing new. Studies of the
1980 and 1990 data have quantified, at least to some degree, the three main kinds of
error: processing error, correlation bias, and heterogeneity. In the face of these errors,
it is hard for adjustment to improve on the accuracy of census numbers for states, coun-
ties, legislative districts, and smaller areas. Statistical adjustment can easily put in more
error than it takes out, because the census is already very accurate.

In 1990, there were many studies on the quality of the adjustment. For 2000, eval-
uation data are only beginning to be available. However, the Bureau's preliminary
estimates, based largely on the experience of 1990, suggested that processing error in
ACE contributes about 2 million to the estimated undercount of 3.3 million.7 (Errors in
ACE will be discussed in more detail, below.) Errors in the ACE statistical operations
may from some perspectives have been under better control than they were in 1990.
But error rates may have been worse in other respects. There is continuing research,
both inside the Bureau and outside, on the nature of the difficulties. The Bureau inves-
tigated a form of error called "balancing error"—essentially, a mismatch between the
levels of effort in detecting gross omissions or erroneous enumerations. We think that
troubles also occurred with a new treatment of movers (discussed in the next section)
and duplicates. Some 25 million duplicate persons were detected in various stages of
the census process, and removed.8 But how many slipped through?

Besides processing error, correlation bias is an endemic problem that make it ex-
tremely difficult for adjustment to improve on the census. Correlation bias is the ten-
dency for people missed in the census to be missed by ACE as well. Correlation bias in
2000 probably amounted, as it did in 1990, to millions of persons. These people cannot
be evenly distributed across the country. If their distribution is uneven, the DSE creates
a distorted picture of census undercounts. Heterogeneity is also endemic: undercount
rates differ from place to place within population groups treated as homogeneous by ad-
justment. Heterogeneity puts limits on the accuracy of adjustments for areas like states,
counties, or legislative districts. Studies of the 1990 data, along with more recent work
discussed below, show that heterogeneity remains a serious concern.9
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9 The Adjustment Decision: March 2001

In March 2001, the Secretary of Commerce—on the advice of the Census Bureau—
decided to certify the census counts rather than the adjusted counts for use in redistrict-
ing (drawing congressional districts within state).10 The principal reason was that, ac-
cording to demographic analysis, the census had overcounted the population by perhaps
2 million people. Proposed adjustments would have added another 3 million people,
making the overcounts even worse. Thus, demographic analysis and ACE pointed in
opposite directions. The three population totals are shown in Table 2 . u

Table 2: The population of the United States

Demographic analysis 279.6 million
Census 2000 281.4 million
ACE 284.7 million

If demographic analysis is right, there is a census overcount of .7 percent. If ACE
is right, there is a census undercount of 1.2 percent. Demographic analysis is a partic-
ularly valuable benchmark, because it is independent (at least in principle) of both the
census and the post enumeration survey that underlies proposed adjustments. While
demographic analysis is hardly perfect, it was a stretch to blame demographic analysis
for the whole of the discrepancy with ACE. Instead, the discrepancy pointed to undis-
covered error in ACE. Evaluations of the ACE data are ongoing, so conclusions must be
tentative. However, there was some information on missing data and on the influence
of movers available in March 2001, summarized in Table 3.12

Table 3: Missing data in ACE, and impact of movers

Non-interviews

P-sample
E-sample

Imputed match status

P-sample
E-sample

Inmovers and outmovers

Imputed residence status
Outmovers
Inmovers
Mover gross omissions

3 million
6 million

3 million
7 million

6 million
9 million

13 million
3 million

These figures are weighted to national totals, and should be compared to (i) a total
census population around 280 million, and (ii) errors in the census that may amount to a
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few million persons. For some 3 million P-sample persons, a usable interview could not
be completed; for 6 million, a household roster as of census day could not be obtained
(lines 1 and 2 in the table). Another 3 million persons in the P-sample and 7 million in
the E-sample had unresolved match status after fieldwork: were they gross omissions,
erroneous enumerations, or what? For 6 million, residence status was indeterminate—
where were they living on census day? (National totals are obtained by adding up the
weights for the corresponding sample people; non-interviews are weighted out of the
sample and ignored in the DSE, but we use average weights.) If the idea is to correct
an undercount of a few million in the census, these are serious gaps. Much of the
statistical adjustment therefore depends on models used to fill in missing data. Efforts
to validate such models remain unconvincing, despite some over-enthusiastic claims in
the administrative and technical literature.13

The 2000 adjustment tried to identify both inmovers and outmovers, a departure
from past practice. Gross omission rates were computed for the outmovers and ap-
plied to the inmovers, although it is not clear why rates are equal within local areas.
For outmovers, information must have been obtained largely from neighbors. Such
"proxy responses" are usually thought to be of poor quality, inevitably creating false
non-matches and inflating the estimated undercount. As the table shows, movers con-
tribute about 3 million gross omissions (a significant number on the scale of interest)
and ACE failed to detect a significant number of outmovers. That is why the number
of outmovers is much less than the number of inmovers. Again, the amount of missing
data is small relative to the total population, but large relative to errors that need fixing.
The conflict between these two sorts of comparisons is the central difficulty of census
adjustment. ACE may have been a great success by the ordinary standards of survey
research, but not good enough for adjusting the census.

10 Gross or Net?

Errors can reported either "gross" or "net," and there are many possible ways to re-
fine the distinction. Given the uncertainties, we find that error rates in the adjustment are
comparable to—if not larger than—error rates in the census, whether gross or net. For
context, proponents of adjustment have lately favored measuring errors in the census
on a gross basis rather than net, citing concerns about geographical imbalances. Some
places may have an excess number of census omissions while other places will have
an excess number of erroneous inclusions. Such imbalances could indeed be masked
by net error rates. However, adjustment is hardly a panacea for geographical imbal-
ance. The adjustment mechanism allows cancellation of errors within post strata—the
homogeneity assumption at work. Much of the gross error is netted out, post stratum
by post stratum; the rest is spread uniformly across geography within post strata. Ad-
justment fixes geographical imbalances in the census only if you buy the homogeneity
assumption: location is accident, demography is destiny.

Proponents of adjustment have also objected to a comparison between undercount
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estimates and estimated processing error (as in Section 7), on the grounds that net errors

can after all be negative. We are unsympathetic to this complaint. For most areas with

substantial populations—all states and 433/435 congressional districts—the adjustment

is positive. Furthermore, estimated processing error is positive for all states and all

congressional districts.14 For such areas, adjustment adds to the population totals, and

these increments mainly result from errors in the adjustment rather than errors in the

census. All that said, a comparison of gross error rates will be instructive: see Table 4,

where rows are numbered to match the paragraphs below.

Table 4: Errors in the census and ACE. Millions of persons. March figures.

Census

ACE
Census

Census

ACE

Positive

Error

1.00

1.75

.10
3.1

Negative

Error

4.26

.90
2.51

6.4

Gross

Error

5.26

2.65

2.61

9.5
12.8

Para-

graph

(i)
(ϋ)
(iii)

(iv)

(v)

Sign convention. A "positive" error makes a population estimate too

high, while a negative error makes the estimate too low. Thus, corre-

lation bias counts as a negative error for ACE. Generally, processing

error in ACE is positive.

(i) ACE would have added 4.26 million persons nationwide in certain post strata,

and subtracted 1.00 million in other post strata. The net change is 4.26 — 1.00 = 3.26

million but the gross is 4.26 + 1.00 = 5.26 million. In effect, these are net and gross

errors in the census, as estimated by ACE.1 5

(ii) For comparison, the Bureau's estimated biases in ACE (as of March 2001) add

1.75 million persons to the adjustment in certain post strata and subtract .90 million

in other post strata, for a net error of 1.75 - .90 = .85 million and a gross error of

1.75 + .90 = 2.65 million.16 The latter is about half the proposed gross adjustment.

Thus, proponents of adjustment must think there are 5.26 million gross errors in the

census that are detected by ACE and can be fixed by adjustment. But half of these

represent errors in the adjustment mechanism itself, rather than errors in the census—

even on the March figures for biases in ACE, which were largely based on extrapolation

from 1990.

(iii) This comparison, however, is far too generous to ACE, because biases in ACE

are counted against the census. Instead, we can estimate errors in the census from a

bias-corrected ACE, sticking with the March figures for bias. On this basis, gross error

rates in the census are virtually the same as those in ACE. In line (iii), for instance,

the negative error for the census can be computed from the data in lines (i) and (ii), as
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4.26 - 1.75 = 2.51 million, and similarly for the positive error.π The gross error in the

census is 2.61 million; in ACE, 2.65 million.

(iv) Some number of persons were left out of Census 2000 and some were counted

in error. Even if ACE had been done with surgical precision, there is no easy way to

estimate the size of these two errors separately. Many people were counted a few blocks

away from where they should have been counted: they are both gross omissions and

erroneous enumerations. Many other people were classified as erroneous enumerations

because they were counted with insufficient information for matching; they should also

come back as gross omissions in the ACE fieldwork. With some rough-and-ready al-

lowances for this sort of double-counting, the Bureau estimated that 6-8 million people

were left out of the census while 3-4 million were wrongly included, for a gross error

in the census of 9-12 million; the Bureau's preferred values are 6.4 and 3.1, for a gross

of 9.5 million.18 Much of this nets out within post strata: see line (i).

(v) For comparison, gross errors in ACE amount to 11.7 million after weighting to

national totals, with an additional 1.1 million for correlation bias: here, cancellation is

not allowed within post strata.19 Doubtless, the 11.7 million double-counts some errors;

and in any event, much of the error will net out within post strata. Still, on this basis,

gross error rates in ACE are substantially larger than those in the census.

It is puzzling to see proponents of adjustment reciting gross error rates for the cen-

sus, like those in line (iv) of the table, as if such data justified their position.20 Errors

that cancel within post strata cannot matter to the adjusters, or at least to those who care

about logical consistency, because such errors—according to their theories—affect the

accuracy neither of the census nor of the adjustment. Moreover, gross error rates in

ACE are comparable to, if not larger than, gross error rates in the census.

11 Error Rates in ACE: October 2001

In October 2001, the Bureau decided not to adjust the census as a base for post-

censal population estimates. This sounds even drier than redistricting, but $200 billion

a year of tax money are allocated using such estimates. The decision was made after

further analysis of the data, carried out between March and October. The Bureau added

2.2 million to the demographic analysis; and processing error in ACE went from 2 mil-

lion to 5-6 million. Moreover, the Bureau confirmed that gross errors in ACE were well

above 10 million, with another 15 million cases whose status remains to be resolved.21

Any way you slice it, a large part of the adjustment comes about because of errors in

the adjustment process rather than the census.

Before the October decision, we tried to reconcile the figures in Table 2 for the pop-

ulation of the United States—279.6 million from demographic analysis, 281.4 million

from the census, and 284.7 million from ACE. There are good (albeit post hoc) argu-

ments for increasing the demographic analysis figure, perhaps by 2 million; the census

seemed about right to us, or even a little high; and in our view, the net processing er-

ror in ACE was probably 5-6 million, partially offset by correlation bias amounting to
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2-3 million. In short, the Bureau's preliminary estimates for processing error in ACE

needed to be doubled or tripled, and so did Bureau estimates for correlation bias. In

the main, these forecasts are confirmed by the October decision document: U. S. Cen-

sus Bureau [25]. Bureau estimates for correlation bias, however, are still based on a

fiction—that is there is no correlation bias for women.22

12 Heterogeneity in 2000

Table 5: Measuring heterogeneity. In the first column, post stratification is

either (i) by the Bureau's 448; or (ii) by the 64 post-stratum groups, that is, col-

lapsing age and sex; or (iii) by the 16 evaluation post strata. "Π" means whole-

person substitutions, and "LA" is late census adds. In the last two columns,

"P-S" stands for post strata; these are of three different kinds, according to

rows of the table.

Proxy & Post

Stratification

II448

1164

II 16

LA 448

LA 64

LA 16

Level

.0208

.0208

.0208

.0085

.0085

.0085

Across

states

.0069

.0069

.0069

.0036

.0036

.0036

Standard Deviation

Across

P-S
.0134

.0131

.0133

.0070

.0069

.0056

Within P-S

across states

.0201

.0128

.0089

.0118

.0074

.0046

Note. The level does not depend on the post stratification, and neither does the

SD across states. These two statistics do depend on the proxy.

In this section, we show that substantial heterogeneity remains in the data, de-

spite the Bureau's elaborate post stratification; in fact, the post stratification seems

on the whole to be counter-productive. We measure heterogeneity as in Freedman

and Wachter [13], with "whole-person substitutions" and "late census adds" as "prox-

ies" (surrogates) for undercount.23 For example, 2.08% of the census count came from

whole-person substitutions ("II" in the first line of the table, for obscure historical rea-

sons). We compute these substitution rates, not only for the whole country, but for each

state and DC: the standard deviation (SD) of the 51 rates is .69 of 1%. We also compute

the rate for each post stratum: across the 448 post strata, the SD of the substitution rates

is 1.34%: the post strata do show considerably more variation than the states.

On the other hand, we can think of each state as being divided into "chunks" by

the post strata, as in the sketch below. (Alabama, for instance, is divided into 251
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chunks by the post strata; post stratum #1 is divided into 7 chunks by states.) We
compute the substitution rate for each chunk with a non-zero census count, then take
the SD across chunks within post stratum, and finally the root-mean-square over post
strata. We get 2.01%. If rates were constant across states within post strata, as the
homogeneity assumption requires, this SD should be 0. Instead, it is larger than the SD
across post strata, and almost as large as the overall imputation level.

We made similar calculations for two coarser post stratifications, (i) The Bureau
considers its 448 post strata as coming from 64 PSGs, a PSG being a "post-stratum
group " (Each PSG divides into 7 age-sex groups, giving back 64 x 7 = 448 post strata.)
We use the 64 PSGs as post strata in the second line of Table 5. (ii) The Bureau groups
PSGs into 16 EPS, or "evaluation post strata." We use these as post strata in the third
line of Table 5. Remarkably, there is less rather than more variability within post-
stratum group than within post stratum—and even less within evaluation post stratum;
the air of paradox may be dispelled by Freedman and Wachter [13, p. 482].2 Results
for late census adds (LA) are similar, in lines 4-6 of the table. If the proxies are good,
refining the post stratification is counter-productive: with more post strata, there is more
heterogeneity rather than less.

13 Alternative Post Stratifications

The Bureau computed "direct DSEs" for the 16 evaluation post strata, by pooling
the data in each: we constructed an adjustment factor, as the direct DSE divided by
the census count.25 We adjusted the United States using these 16 factors rather than the
Bureau's 448. For states and congressional districts, there is hardly any difference: the
scatter diagram in Figure 2 shows results for congressional districts. There are 435 dots,
one for each congressional district. The horizontal axis shows the change in population
count that would have resulted from adjustment with 448 post strata; the vertical, from
adjustment with 16 post strata. There is little to choose between the two. (For some
geographical areas with populations below 100,000, however, the two adjustments are
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likely to have different consequences.)

TWO ADJUSTMENTS COMPARED. 435 CONGRESSIONAL DISTRICTS
DIFFERENCE BETWEEN ADJUSTED COUNT AND CENSUS COUNT
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ADJUSTMENT BASED ON 448 POST STRATA

Figure 2: Changes to congressional district populations. The production adjust-
ment, with 448 post strata, is plotted on the horizontal. An alternative, based
only on the 16 evaluation post strata (EPS), is plotted on the vertical.

For example, take CD 1 in Alabama, with a 2000 census population of 646,181.
Adjustment with 448 post strata would have increased this figure by 7630; with 16 post
strata, the increase would have been 7486. The corresponding point is plotted at (7630,
7486). The correlation between the 435 pairs of changes is .87, as shown in the third
line of Table 6.26 For two out of the 435 districts, adjustment by 448 post strata would
have reduced the population count:, their points are plotted just outside the axes, at the
lower left.

Within a state, districts are—by court order—almost exactly equal in size when
redistricting is done shortly after census counts are released. Over the decade, of course,
people move from one district to another. Variation in population sizes at the end of the
decade is therefore of considerable policy interest. In California, for one example, 52
districts were drawn to have equal populations according to Census 1990. According
to Census 2000, the range in their populations is 583,000 to 773,000.
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Table 6: Comparing the production adjustment based on 448 post strata to one
based on 16 evaluation post strata. Correlation coefficients for changes due to
adjustment.

Changes in state population counts .99
Changes in state population shares .90
Changes in congressional district counts .87
Changes in congressional district shares .85

Table 6 and Figure 2 show that the Bureau's elaborate post stratification does not
remove much heterogeneity. Whatever there was with 448 remains with 16, and that is
a lot (Table 5). Experience from 1990 and 2000 teaches a sad lesson. Heterogeneity
is not to be removed by the sort of post stratification that can be constructed by the
Bureau. The impact of heterogeneity on errors in adjustment is discussed by Freedman
and Wachter [13, pp. 479-81]: heterogeneity is likely to be much more of a problem
than sampling error.

14 Loss Function Analysis

Proponents of adjustment often rely on a statistical technique called "loss function
analysis." In effect, this technique attempts to make summary estimates of the error lev-
els in the census and the adjustment, generally to the advantage of the latter. However,
the apparent gains in accuracy—like the gains from adjustment—tend to be concen-
trated in a few geographical areas, and heavily influenced by the vagaries of chance. At
a deeper level, loss function analysis turns out to depend more on wishful assumptions
than on data.

For example, adjustment makes the homogeneity assumption: census errors occur
at a uniform rate within post strata across wide stretches of geography. Loss function
analysis assumes that and more: error rates in the census are uniform, and so are error
rates in ACE. A second example: loss function analysis depends on models for correla-
tion bias, and the Bureau's model assumes there is no correlation bias for women. The
idea that only men are hard to reach—for the census and the post enumeration survey—
is unlikely on its face. It is also at loggerheads with the data from 1990. See Wachter
and Freedman [29]. For such reasons, we cannot believe that loss function analysis will
clarify remaining issues about use of adjusted census data.

The discussion now becomes progressively—but unavoidably—more technical. (Read-
ers can skip to Section 15 or 16, without losing the thread of the argument.) Loss
function analysis tries to compare accuracy of census and adjusted figures for defined
geographical areas. By way of example, take counts for states. The main ingredients
for the comparison are the following.

(a) Census counts.
(b) Production adjustment counts.
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(c) Variances in production adjustment counts.
(d) Biases in production adjustment counts.

However, the quantities in (d) must themselves be estimated, and estimates have vari-
ances. Thus, we amend (d) and add (e).

(d) Estimated biases in production adjustment counts.
(e) Variances in estimated biases.

In 1990, estimates for the variances in (c) were questionable. That issue may not
arise for 2000, but estimates for the variances in (e) remain problematic. Here is why.
As noted above, much of the evaluation data used by the Bureau in March 2001 comes
from the 1990 Evaluation Followup, a sample survey done several months after the
post enumeration survey was completed. This survey was based on 919 block clusters;
the 1990 PES, on 5290; the 2000 ACE, on 11,303. On this basis, variances should be
11,303/919 = 12 times bigger than the ACE variances. Instead, they are about 4 times
smaller. The variances for estimated biases are, by such a reckoning, too small by a
factor of 4 x 12 = 48. Other calculations give much larger factors, but 48 is surely
enough to make the point.27

Where did the missing variance go? Processing error can be estimated from Eval-
uation Followup in fine-grain geographical detail. However, the sample is small, so
variances for direct estimates would be huge. Instead, errors are aggregated to broad
population groups (16 evaluation post strata in 2000) and then shared back down to con-
stituent post strata, using proportionality assumptions. Finally, errors are spread across
state or substate areas assuming constant error rates within post strata across geogra-
phy, for correlation bias as well as processing error. Thus, variance in estimated errors
is converted to bias by the sharing and spreading—but that particular bias is ignored in
loss function analysis.

The statistical theory of loss function analysis. If we use survey data to estimate
a parameter, loss can be defined as squared error. Risk is expected squared error, that
is, averaged over hypothetical replications of the survey. Loss function analysis tries to
make unbiased estimates of risk, as the variance of the estimator plus the square of its
bias. Bias has to be estimated, and the variance of the bias estimator has to be accounted
for. Unbiased estimators of bias, and unbiased estimators of their variances, are needed
to make the calculation work.

For the intended application, consider two competing "estimators" of the population
of California at census day in the year 2000: the census itself, and the adjustment based
on ACE. The Bureau estimated a risk from the census: variance is nil, and bias is
estimated primarily from ACE with some refinement from evaluation studies in 1990.
We replicated the Bureau's calculation, and found the estimated risk to be 167 billion;
units are "squared people." Likewise, there is an estimated risk for adjustment, which is
12.2 billion. Adjustment seems to make the smaller error. This process can be repeated
for each state and DC. Summing the results gives a total estimated risk of 362 billion
for the census, compared to 46 billion for adjustment. See line 1 of Table 7: a billion is
109, and 3 6 2 - 4 6 = 316.
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Table 7: Loss function analysis for counts. States. Weights inverse to census
counts.

Wtd

No
No
Yes
Yes

Cov

1
25

1
25

Diff

316
316
193
193

SE

139
432
95

303

Scale

109

109

102

102

The Bureau preferred to divide the estimated risk for each state by its population,
at least in its March report. We measure population by the census count: for California,
this is 33.1 million.28 The census risk for California is 167 billion/33.1 million = 5050
while the adjustment risk is 12.2 billion/33.1 million = 369. (Here, = means "approx-
imately equal.") In total over all 51 states (and DC), we get 24,558 for the census risk
and 5208 for the risk from adjustment.29 The difference is 24,558 - 5208 = 19,350,
which is rounded to 193 x 102 in line 3 of Table 7; "wtd" indicates division by popula-
tion counts.

In Table 7, biases are estimated from the Bureau's "preferred" model.30 If "Cov"
is 25, the Bureau's covariance matrix for estimated biases is multiplied by 25, which
brings the variances closer to what might be anticipated on the basis of sample size, as
discussed above. Let "Cen" be estimated census loss and "Adj" be estimated adjustment
loss. Then "Diff" in the table is Cen — Adj, which is the estimated gain in accuracy
from adjusting. Diff is estimated from sample data, ACE and Evaluation Followup, and
is therefore subject to sampling error. The "SE" column gives the standard error for
Diff, and gauges the likely magnitude of sampling error in this estimate.

The last column indicates the units. Thus, in the first line of Table 7, the estimated
gain in accuracy from adjustment is

(316 ± 139) x lO 9 .

Diff is over twice its SE, and such a large value for Diff is hard to explain as the result
of sampling error alone. (Diff is "statistically significant.") However, the calculation
rides on Bureau estimates for the sampling variability in the biases—which are too low.
Correcting these, as in the second line of Table 7, makes Diff noticeably smaller than
its SE, and readily explained as the result of chance. Correcting the covariance matrix
for the biases does not change Diff itself, but has a pronounced effect on its estimated
SE.
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Table 8: Loss function analysis for shares. States. Weights inverse to census
shares.

Wtd

No
No
Yes
Yes

Cov
1

25
1

25

Diff

306
306
57
57,

SE

297
778
63

153

Scale

10-9

10-9

10-7

10-7

Table 8 turns to state shares; weights are inversely proportional to census population
shares. Diff is at the chance level. For congressional districts, the Bureau's loss function
uses shares within state, but weights states by the square of the census count. This
seems both cumbersome and unnatural—at least to us. We replicated the Bureau's
analysis, but also examined numerical accuracy with the squared error loss function
and no weights (Table 9).

Table 9 treats congressional districts as 435 areas across the country, with popu-
lations ranging from 500,000 to 1,000,000. As before, the estimated gain in accuracy
from adjustment is significant if we use Bureau variances for the bias estimates, but
insignificant when we correct for under-estimation. The District of Columbia does not
come into Table 9, and state boundaries play no special role.

Table 9: Loss function analysis for counts. Congressional districts, unweighted.

Wtd

No
No

Cov
1

25

Diff

137
137

SE

65
202

Scale

o
 

o
oo

 
oo

Tables 7 and 9 show that the statistical significance of loss function analysis for
counts is strongly dependent on the modeling—among other things, on the homogene-
ity assumption for biases. Table 8 shows that, for shares, Diff is at the chance level.
Still, Diff is positive in all the summary tables. Perhaps that means adjustment is better
than the census? We think not. The Bureau's March estimates for processing error
and correlation bias were on the low side. Table 10 doubles the Bureau's allowance
for processing error, post stratum by post stratum; it doubles the Bureau's allowance
for correlation bias in states likely to have had unusually high levels of correlation bias
in the 1990 adjustment (Wachter and Freedman [29] Table 5). This brings processing
error to 4 million and correlation bias to 1.5 million; it allows for some geographical
variation in rates of correlation bias, a possibility which is excluded by the Bureau's
model. The corrected loss function analysis favors the census.
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Table 10: Loss function analysis for counts. States. Partial correction for under-
estimated processing error and correlation bias. Some differentials in correla-
tion bias. Weights inverse to census counts.

Wtd

No
No
Yes
Yes

Cov

1
25

1
25

Diff

-185
-185
-214
-214

SE

99
421

65
295

Scale

108

108

102

102

Table 11 gives detail for "Diff" in lines 3 and 4 of Table 8. Five states (CA, IA, MN,
MO, TX) account for over half the estimated loss from the census. For the third line of
Table 7, four states (CA, FL, GA, TX) account for over half the estimated loss from the
census. Unweighted results (line 1 in Tables 7 and 8) are dominated by two states—CA
and TX. In short, estimated gains from adjustment are concentrated in a few states, and
subject to large uncertainties. Unbiased estimates of risk can be negative; that happens
in Tables 7-10, and is explicit in Table 11.

Table 11: Estimated losses in accuracy from the census and from adjustment.
State shares. Weights inverse to census shares. Parts per 10 million. Detail for
"Diff" in lines 3 and 4 of Table 8. Alabama—Minnesota.

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
DC
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota

Cen

-0.6
1.0

-1.3
-0.4
12.6
-1.1
-0.2

0.7
7.7
2.8
7.3
1.1

-0.6
3.2
4.9

10.1
5.2

-0.2
1.5

-1.8
8.0
3.7
3.1

18.2

Adj

0.6
0.8
1.7
1.0
2.5
1.1
0.4
0.4
2.5
3.2
2.1
2.4
1.0
0.8
0.7
1.5
0.7
1.1
1.0
2.9
7.1
0.8
1.1
0.8
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Table 11, Continued: Estimated losses in accuracy from the census and from
adjustment. State shares. Weights inverse to census shares. Parts per 10 million.
Detail for "Diff" in lines 3 and 4 of Table 8. Mississippi—Wyoming.

Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
Total

Cen

-0.9
12.2
-1.4

4.1
0.3

-0.3
-1.5
-1.0
-0.9

0.2
3.2
9.1

-0.6
-0.7

2.9
0.3
1.0
3.4

-0.1
15.4
-1.0
-1.0

2.2
-0.9

1.0
5.0

-0.5
134.3

Adj

0.7
0.5
3.2
0.5
0.8
0.8
1.3
3.1
2.2
0.8
0.7
1.1
1.4
0.7
2.9
0.5
1.9
0.9
0.6
2.5
1.1
1.4
1.7
3.1
2.9
0.6
0.9

76.9

Given the levels of ACE processing error reported in U. S. Census Bureau [25], loss
function analysis is an academic exercise. However, this sort of analysis seems to have
played a salient role in Bureau deliberations over the 1990 adjustment, and was even a
factor in the decision for Census 2000: see U. S. Census Bureau [24].31 We think it is
time to stop using loss function analysis. The assumptions are too fanciful.

15 Artificial Population Analysis

In essence, loss function analysis justifies the homogeneity assumption by making
an even stronger assumption: not only are error rates in the census constant within
post strata across geography, so are error rates in ACE. Proponents of adjustment may
cite report B14: using proxy variables for overcounts and undercounts, that report cre-
ates artificial populations where truth is known. Bias in loss function analysis that
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results from failures in the homogeneity assumption can then be measured—for the ar-
tificial populations. However, some proxies favor adjustment and some do not: Fay and
Thompson [10, p. 82], Freedman and Wachter [13, pp. 484-5] .

Detailed results in B14 are rather mixed. Moreover, the B14 artificial populations
are, well, artificial. Overcounts and undercounts are measures of difficulty in data
collection. Intuition and data analysis suggest the following two criteria for proxies.

(i) The proxies for overcount and undercount should be positively correlated, but
not perfectly correlated.
(ii) Proxies should be correlated with other indicators of poor data quality.

Bureau report B14 used four artificial populations, and Table 1 in that report lists
the proxies. Populations #2 and #4 violate condition (i), using the same proxy for
overcounts as for undercounts:

non-substituted persons in #2, non-mailbacks in #4.
With artificial population #3, there must be an inverse rather than a direct relationship
between the two proxies, also violating condition (i):

persons with 2 or more allocations,
persons with non-allocated age and birth-date.

With artificial population #1, the proxies violate condition (ii), because they relate to
goodness rather than badness of data:

non-substituted persons,
persons with non-allocated age and birth-date.

In consequence, the impact of heterogeneity on loss function analysis remains to be
determined.32

16 Pointers to the Literature

Reviews and discussions of the 1980 and 1990 adjustments can be found in Sur-
vey Methodology 18 (1992) 1-74 and Statistical Science 9 (1994) 458-537. Journal
of the American Statistical Association 88 (1993) 1044-1166 has a lot of useful de-
scriptive material. Although tilted toward adjustment, the collection does include an
insightful paper on heterogeneity—Hengartner and Speed [18]—and a comment on the
imputation model by Wachter [27]. Other exchanges worth noting include Jurimetrics
34 (1993) 59-115 and Society 39 (2001) 3-53: these are easy to read, and informa-
tive. Pro-adjustment arguments are made by Anderson and Fienberg [1, 2], but see
Stark [23] and Ylvisaker [30]. Prewitt [21] may be a better source, although he too
must be taken with several grains of salt. Proponents of adjustment often cite Za-
slavsky [31] to demonstrate the comparative advantages of adjustment; however, that
paper makes all the mistakes discussed in Section 14 above, and others too. Cohen,
White, and Rust [7] try to answer arguments on the 1990 adjustment, but miss many
points.33 Skerry [22] has an accessible summary of the arguments, leaning against ad-
justment. Darga [8, 9] is the sternest of critics. Freedman, Stark and Wachter [12]
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have a probability model for census adjustment, which may help to clarify some of the
issues.

17 Policy Implications

Census adjustment has become an expensive program for the Bureau, especially in
terms of senior management time. The cost of ACE is driven in part by its complexity,
and in part by the sample size. The large sample is needed because there are so many
post strata, so the sample is spread very thin. However, given the results in Tables 5-6,
the number of post strata would be very hard to justify. Moreover, the large sample size,
while helpful on the sampling error side, must contribute to non-sampling error. Bigger
samples are harder to manage, and non-sampling error is the critical issue (Sections
4-12).

The sample size for the post enumeration survey should therefore be scaled back
dramatically. If 448 post strata are cut back to 16, as suggested by Sections 12-13, the
size of the sample can be reduced by a factor of 448/16 = 28 while maintaining the
average number of households per post stratum. The sample can therefore be reduced
from 300,000 households to 300,000/28 = 10,000, although that seems too optimistic.
If the program is to be continued, the focus should be research and evaluation not
adjustment, and a sample in the range 10,000-25,000 households should be adequate.34

If the adjustment program is scaled back, the savings could well be used elsewhere:

Demographic Analysis (DA)
American Community Survey (ACS)
Maintaining the Master Address File (MAF)
Community outreach between census years
Research into counting methods
Non-response followup.

Putting a few million dollars into demographic analysis now would make a big
difference in 2010. Despite its flaws, DA allows reasonably accurate estimates for the
sizes of major population groups, and these estimates could readily be improved—if
resources were made available. DA is a more promising tool for census evaluation than
ACE.

Decennial census long form data (income, education, occupation, country of origin,
and so forth) are collected on a sample of about 1/6 of the respondents. The ACS
will collect such data with a rolling sample survey, by interviewing 3% of the nation's
households each year. The data will be available continuously, rather than every 10
years. From many perspectives, answers to ACS questionnaires are likely to be of
better quality. Furthermore, the burden on the census will be markedly reduced. (The
coverage of the ACS, however, is not likely to be as good as the census.)

The accuracy of a mail-out-mail-back census depends on having a list of addresses
that is nearly complete, with few duplicates. Building such a list every 10 years is a
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huge undertaking. Building it once and then maintaining it might be more productive.
With ACS in place, maintaining the MAF seems like a promising activity.

Given the decades of effort spent in developing post enumeration surveys for census
adjustment, the decision not to adjust must have been a wrenching one for the Bureau.
We are confident they made the right decision. Statistical adjustments were considered
in 1980, twice in 1990, and twice again in 2000. These adjustments could not improve
the accuracy of the census. The adjustment technology does not work well enough to
use. It is time to move on.

Endnotes

1. The Census Bureau provided detailed summary data on the census and the adjust-
ment, by memorandum of understanding with the National Academy of Science and
congressional oversight bodies. We were given access to these data; many of our
results—like coverage comparisons—are computed from these data. The sum of P-
sample non-movers and inmovers is about 1.6 million persons less than the number of
E-sample persons (upweighted to national totals).

2. B2 p. 30 and App. 5. Also see R32, Attachment 2, Table 2. "B2" and "R32" are
Bureau reports. For bibliographic details, see U. S. Census Bureau [24].

3. The procedure for estimating gross omissions is called "capture-recapture" in the
statistical literature: capture is in the census, recapture is in the post enumeration sur-
vey. Erroneous enumerations are one major complication, and there are others. For a
discussion of the 1990 procedures, see Hogan [19]. As yet, there is nothing comparable
for 2000; report Q37 may be the best source.

4. Computed from data described in note 1.

5. Computed from data described in note 1.

6. See Wachter and Freedman [29], with cites to the literature; Breiman [4] is a primary
source for alternative error estimates.

7. See B13 and B14 for data sources, and note 14 for methods. The positive component
of processing error totals 2.14 million across all post strata, and the negative component
. 15 million: 2.14 — .15 = 2 million. Line (ii) of Table 4 combines processing error with
correlation bias, giving a smaller net error.

8. B3 Table 8 shows 10.7 million housing units with two forms, and .5 million with
three or more. Another 2.4 million forms were flagged as duplicates very late in the
process (Bl p. 2). We are reckoning 2 persons per form, although this is rather rough.

9. On heterogeneity in 1990, see Freedman and Wachter [13], Wachter and Freed-
man [28]. Data for 2000 are presented here, in Table 5. On correlation bias in 1990,
see Wachter and Freedman [29].
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10. The U. S. Supreme Court had already precluded the use of adjustment for reappor-
tionment, that is, allocating congressional seats among the states; previously, it had up-
held Secretary Mosbacher's decision not to adjust Census 1990. See 517 U. S. 1 (1996),
525 U. S. 316 (1999), available on-line at h t t p : / / s u p c t . law.Cornel l . edu/supct / .
For discussion, see Brown et al [5]. The Bureau's recommendation is explained in
U. S. Census Bureau [24].

Other litigation. Efforts by Los Angeles and the Bronx among others to compel ad-
justment have been rejected by the courts (City of Los Angeles et al. v. Evans et al,
Central District, California); appeals are pending in the Ninth Circuit. Utah has sued
to preclude the use of imputations but their suit was denied by the Supreme Court
(Utah et al v. Evans et al., h t t p : / / s u p c t . law. Cornel l . edu/supct / ) . Members of
the House have also sued to compel release of block-level adjusted counts; this case
is pending (Waxman et al. v. Evans et al, Central District, California), along with a
similar case in the Southern District of Texas (Cameron County et al v. Evans et al).

11. B4, Appendix Table 1, Cols. 1-4. We can replicate the census and ACE figures
from the data described in note 1.

12. On missing data, see Bl p. 4 and B6 p. 29; report B7 is useful too. Results for
movers were computed from data described in note 1.

13. Bl p. 39. Also see Belin and Rolph [3], with a response by Freedman and
Wachter [13]. In brief, the "validation" is a coincidence of two rates. One rate is com-
puted from all PES data that required imputation. The other is a benchmark computed
from all cases re-interviewed and resolved in Evaluation Followup, a smaller survey
done many months after the Post Enumeration Survey, designed to check the quality
of the PES. Only stronger cases were sent to Evaluation Followup, and of these, only
the strongest could be found and resolved. Thus, the benchmark rate is computed from
only 25% of the data, and by no means a random 25% either.

14. The Bureau has provided two sets of "targets" for each of the post strata, computed
(i) with correlation bias, and (ii) without correlation bias. Each set comprises 1,000
replicates. The average target in set (i) represents their idea of the adjustment factors,
corrected for processing error. The difference between the mean target in set (i) and the
corresponding adjustment factor represents the estimated net effect of processing error,
post stratum by post stratum. Similarly, the difference between the means of the two
sets represents the allowance for correlation bias, post stratum by post stratum.

These target adjustment factors were developed for 416 "collapsed" post strata, e.g.,
post strata 06-2, 06-4, and 06-6 are pooled due to small sample size; we take the target
for a pooled post stratum and treat it as the (common) target for the components.

The targets summarize the Bureau view on errors in ACE, as of March 2001. Error
estimates were largely derived from 1990 data. See B13 and B19. In turn, the 1990
data mainly derive from the Evaluation Followup (note 13).

The biases for states and congressional districts were computed from the targets; ad-
justments were computed from other data described in note 1. By way of example, take
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CD 1 in Alabama, whose population according to Census 2000 was 646,181. Adjust-
ment would have added 7630 to this figure, of which 3983 is due to processing error.
(This CD is the first in our data file.)

15. If the adjustment factor for a post stratum is greater than 1.00, adjustment adds
to the population; in total, such post strata add 4.26 million to the census count: ap-
parently, the census is below the true population for such post strata, and has made a
negative error. If the adjustment factor is less than 1.00, adjustment subtracts from the
population; in total, such post strata would subtract 1.00 million from the census: ap-
parently, the census is above the true population for such post strata, and has made a
positive error.

16. See note 14 on the sources of the data, and the targets. We take the mean target in
set (i), with correlation bias, for each post stratum; subtract this from the corresponding
adjustment factor; and multiply by the census count for the post stratum. The sum of
the positive numbers is 1.75 million; the sum of the negatives, .90 million.

17. The "negative error" in the census comes from omissions, estimated by ACE as
4.26 million; but 1.75 million of this figure reflects errors in ACE, rather than census
errors. The positive error in the census can be computed from lines (i) and (ii) as
1.00-.90 = .10.

18. Briefing by Census Bureau staff to congressional oversight committees, 21 March
2001.

19. Gross errors in ACE were discussed in Bureau report B19, and were also provided
to us in computer-readable format (note 1); disentangling the sign conventions in the
computer file seemed more trouble than it was worth, so we report gross error only.
Gross errors reported by Freedman and Wachter [15, p. 31] were derived from B19
p. 80, and do not net out processing error within post strata.

20. Anderson and Fienberg [1,2]; Fienberg [11].

21. The Bureau's decision is explained in U. S. Census Bureau [25]; funding alloca-
tion is mentioned on p. 3. As Figure 1 suggests, however, the impact of adjustment on
the distribution of funds would have been minor, at least in relative terms. Also see
U. S. Commerce Department [26, Appendix 15]. See U. S. Census Bureau [25, p. 6]
on DA; p. 10 reports that there were 3-4 million undetected duplications, which must
be added to the previous figure of 2 million for processing error, giving the range 5-6
million; p. 11 discusses the 15 million cases that remain in doubt; and p. 12 mentions
10 million gross errors in mover status, with many other large gross errors mentioned
elsewhere. The report notes on p. 13 that missing data create "considerable" uncer-
tainty; the quantification at 500,000 is optimistic, as discussed on p. 14. The numbers
may change when further analysis is done. Balancing error is no longer considered a
serious problem by the Bureau.

22. Arguments for increasing DA estimates were made by Jeff Passel at the Urban
Institute and Bureau demographers, although the two groups reach somewhat different
conclusions. Our own estimates were presented at a conference on census adjustment
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in Berkeley, on 24 September 2001. For details on correlation bias and data from 1990,
see Wachter and Freedman [29]. The Bureau has so far not recognized the problem (Bl
p. 45). While B12 p. 16 grants our premises, it denies the arithmetic. We return to this
point when discussing loss function analysis.

23. Some persons are counted in the census with no personal information, in which
case all their personal characteristics are imputed. "Late census adds" are persons who
file a census form too late to be run through the ACE process. These may or may not
be "data-defined," i.e., have enough characteristics for matching. Our late adds include
the non-data-defined late adds, whereas our Us exclude those records.

As a further complication (note 8), 2.4 million forms were found to be duplicates late
in the process; of these, about 1.4 million were taken completely off the table, but 1.0
million were put into the ACE process as late adds. These forms correspond to 2.3
million people, and in 2000, the late adds were basically just these people. (Neither
imputes or late adds are eligible for matching in ACE; such records are subtracted from
the census, on the theory that the corresponding persons—if they really exist—will
come back as gross omissions.) For details and an attempted explanation of the logic,
see Q43.

For consistency, Table 5 only covers the "ACE target population," i.e., persons living in
group quarters or institutions are excluded, as is remote rural Alaska.

24. Freedman and Wachter [13, p. 482] make the connection with analysis of variance,
identifying the inequalities that must hold—and those that can be violated. As indicated
there, results may depend on weights. Table 5 is unweighted: all states are treated
as equals, likewise for post strata and "chunks." Undoubtedly, some of the effect in
Table 5 is due to random variation in the smallest chunks—by the time you spread the
population over 448 post strata, 50 states (and D. C) , some of the cells have to be
tiny. However, the variance correction in equation (4) of Wachter and Freedman [28]
does not affect the pattern in the table, although estimated heterogeneity is reduced.
Similarly, we can restrict attention to chunks with a census population in excess of
100, for instance. Or, we can restrict attention, say, to PSGs #1-60 or even to #1-48,
#53-60: this markedly reduces the variation due to small chunks without changing the
pattern in Table 5. (The excluded PSGs have small populations, and cut across 50 states
as well as D.C.) The table does not seem to be an artifact of small-sample variation.

Congressional districts. We were able to compute the analog of Table 5 for congres-
sional districts. The SD across districts is about 1.5 times the SD across states. The
SD within post strata across districts is about 3.5 times the SD within post strata across
states, for the 448 post strata. Going to 64 or 16 post strata does not change the SD
within post strata across districts. These results apply to both proxies.

25. See B19. We used the census count for the ACE target population, as defined at the
end of note 23.

26. Some additional summary statistics may be of interest, for instance, for adjustments
to congressional districts in Table 6 and Figure 2 (counts). The average district had a
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census population of 646,000 in 2000; adjustment by 448 post strata would have added
7500 persons on average, compared to 7200 from the 16 evaluation post strata; the SDs
are 3800 and 3000. From the perspective of "loss function analysis," the coarser post
stratification is to be preferred (last paragraph of note 30 below).

27. A "block cluster" contains one block in densely populated areas, and many con-
tiguous blocks in the hinterland. On average, there seem to be about two blocks per
cluster. See, e.g., pp. 1048, 1088-89 in Hogan [19] for 1990 sample sizes and B l l p. 3
for 2000 data. There are published discussions of problems with Bureau estimates of
variance for bias estimators: see, e.g., Freedman et al [17, pp. 268-69], Freedman and
Wachter [13, pp. 532-33]. These papers explain loss function analysis in some detail;
also see Mulry and Spencer [20], Brown et al. [5]. For 2000, see B13 and B19.

The factor of 4 comes from comparing the traces of the covariance matrices for the ad-
justment factors and the targets (note 14). For a discussion of the process for generating
the targets, see B13 and B19; Fay and Thompson [10, p. 77] may be clearer, or Mulry
and Spencer [20, p. 1089], although these refer to the 1990 adjustment. On the 1990
variances, see Freedman etal [16].

28. We are using the ACE target population as defined at the end of note 23. (This is due
to a quirk in our computer code.) The full census population of California (including
group quarters and institutions) is 33.9 million.

29. The ratio is 24,558/5,208 = 4.715, compared to 4.895 in B13, Table 1A, line
1. We also replicated the other results in line 1, to the same precision. We have not
replicated the targets themselves; preliminary calculations suggest some incongruities
(Don Ylvisaker, personal communication), but to resolve these, additional data would
be needed.

30. The Bureau's "preferred model" for correlation bias corresponds to line 1 of Ta-
ble 1A in B13; this version of correlation bias is built into the set of targets and hence
the estimated biases (note 14) that underlie Tables 7-11.

Weights. See B13 p. 5, where the loss function for state counts is weighted inversely to
population; for shares, weights are inverse to population share. We follow the Bureau,
but weight by the census rather than the adjusted census or bias-corrected adjusted cen-
sus, to avoid random weights. Due to the aforementioned quirk in our code (notes 28),
we weight by census counts for the ACE target population in Tables 7 and 10, rather
than the full census count. (Our code for shares uses the full census count.) For rea-
sons that are at best obscure, the Bureau's loss function for congressional districts uses
shares within-state, but weights the states proportional to the square of their census
count. We followed suit in replication, but not in Table 9.

Terminology. The ACE target population (defined at the end of note 23) has nothing to
do with the targets in note 14.

The model behind loss function analysis. The model, and the procedure for estimating
the SE of DiflF, are discussed in Freedman et al. [17]; also see Freedman and Wachter
[14, pp. 368-70] or Brown et al. [5, pp. 372-75]. For state counts, say, let C be the



Census Adjustment 225

51 x 448 matrix whose (/,y)th entry is the census count for state i intersected with

post stratum j . Let φ be the 448 x 1 vector of adjustment factors, and ψ the 448 x 1

vector of estimated biases in <j>. Write E(φ) = φ and E(ψ) = ψ. The little model behind

loss function analysis assumes that ψ is unbiased, so that ψ is the "true" bias in the

adjustment factors, and true population counts for the states are given by C(φ - ψ);

estimators are jointly normal, with φ independent of ψ; finally cov(φ) and cov(ψ) are

taken as given.

The adjusted state counts (ACE target population) are given by Cφ; likewise, the biases

in these counts are estimated by Cψ. The covariances are

(1) cov(Cφ) = Ccov(φ)C' and cov(Cψ) = Ccov(ψ)C'.

Of course, when (1) is applied to data, the covariance matrices cov(φ) and cov(ψ)

would be replaced by sample-based estimates. The estimated census risk is

(2) C e n = | | C ( φ - ψ - 1) | | 2 -tracecov(Cφ)-tracecov(Cψ).

The estimated risk from adjustment is

(3) Adj = | |Cψ| | 2 + tracecov(Cφ) - tracecov(Cψ).

Notice that tracecov(Cψ) cancels when computing Diff = Cen — Adj.

The census population, adjustment factors, and their covariances were supplied by the

Bureau (note 1). Biases are computed from the targets (note 14), and their covariance is

the empirical covariance of the 1000 sets of targets provided by the Bureau. In Tables

7-11, we are using the targets that correspond to the "preferred model" for correlation

bias (see the beginning of this note; the "preferred model" is for correlation bias, not

loss function analysis more generally).

The SE of Diff. Index the the 50 states and DC by k = 1,..., 51. Let μk be the error in

the census population count for area k. Let Xk be the production dual system estimate

for μk\ thus, X — C(φ - 1). The bias in Xk is denoted β*; this is estimated as β = Cψ.

Let G — cov(X) and H — cov(β), which are assumed known. The estimated risk from

the census for area k is (Xk - β*)2 - Ga —Hkk> while the estimated risk from adjustment

is β 2 + Gkk - Hkk- The estimated risk difference is

(4) ^ = (^-β,)2-β^

By a tedious but routine calculation,

(5) oov(RhRj) = iwjGij + 2G2

The displayed covariance can be estimated from sample data as

(6) Kij = 4{Xt - fc)(A) - foόij - 2G2 - AGijHij + 4XiXjHφ
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and var(Diff) can be estimated as ΣijKij When (4) and (6) are applied to data, the

covariance matrices G and H would be replaced by sample-based estimates, whose

variability is ignored in (5).

Issues. Of course, G and H are derived from cov(φ) and cov(ψ) respectively—equation

(1). The calculations take these matrices as known, or at least estimated in a reasonable

way. In fact, our calculations suggest that trace cov(ψ) is too small by a factor of 50 or

more, cov(ψ) being the Bureau's estimate for cov(ψ). But scaling cov(ψ) by a constant

factor may not be a reliable correction. A more sensible thing to do is to make direct

estimates of bias, and compute cov(ψ) by jackknifing. (This would require much more

data than we have.) The calculations also assume that estimates for the biases in the

DSE are unbiased, which is rather questionable.

At some level, the Bureau must have been aware of the problems with cov(ψ) when

it considered adjusting the post-censals in 1992. If it believed in its own estimates for

cov(ψ), it would have adjusted not by φ but by φ - ψ. See Fay and Thompson [10,

p. 74].

Footnote to a footnote. Loss function analysis "shows" that adjustment by the 16 EPS

(Section 13) is comparable to or even better than the production adjustment (448 post

strata). We adjust starting from the direct DSEs for the EPS (defined in Section 12),

and evaluate using the Bureau's preferred targets. An exact comparison waits on the

1 6 x 1 6 covariance matrix for the direct DSEs, which we do not have; but a factor of

1.5 on estimated MSEs for state counts, unweighted, is plausible—within the peculiar

conventions of loss function analysis.

31. On 1990, see Mulry and Spencer [20] or Fay and Thompson [10]. The Under-

count Steering Committee cited loss function analysis throughout its report on the 1990

adjustment (U. S. Commerce Department [26] Appendix 4).

32. Also see U. S. Census Bureau [25, p. 17],

33. Some examples give the flavor.

Processing error. Cohen, White, and Rust [7, Chap. 4] defend the adjustment of 1990

without mentioning Breiman's [4] estimates of processing error, although they do take

up one of his minor points (pp. 73-74).

Heterogeneity. According to Cohen et al. (p. 78), Bureau staff were in the early 1990s

"well aware" of problems with the synthetic assumption. This may be so, after the ad-

justment decisions were made: Fay and Thompson [10]. While those decisions were

being made, however, the facts were less evident. For instance, the Bureau's Under-

count Steering Committee was "convinced from the data, that, in general, block parts

are homogeneous within post-strata"; they saw "no evidence to indicate there are any

serious flaws" in the homogeneity assumption at the state level. U. S. Commerce De-

partment [26, Appendix 4 p. 7].

The imputation model Cohen et al. (p. 72) defend the putative validation in 1990

(note 13) as "strong evidence." They ignore data showing the flimsiness of this evidence

(Freedman and Wachter [13] pp. 535-56).
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Correlation bias. Cohen et ah (p. 82) argue that relatively few people are added to the
counts by statistical modeling. The point is that more people need to be added—but
not in the places expected by the modelers. On the same page, Cohen et al. respond to
a minor point in Darga [8], relating to correlation bias—but fail to address the major
finding: adjustment would have had a perverse effect on many sex ratios.

Smoothing and loss function analysis. Variances for adjustment factors in 1990 are
discussed in Freedman et al. [16]. The variances were obtained from a "smoothing
model." Cohen et ah (pp. 58-62) defend the model, although they do not state the cru-
cial assumptions, nor do they respond to our points. Similarly, Cohen et al. (pp. 68-85)
defend loss function analysis, without responding to the points raised in Section 14—
and in our previous publications (Freedman et ah [17]; Freedman and Wachter [13]).
Also see Brown et ah [5, pp. 364-65, pp. 371-75].

Citro, Cork, and Norwood [6, p. 33] find that the Bureau's decision not to adjust was
"justifiable," but the "fact that the Bureau did not recommend adjusting the census
counts to be provided for redistricting does not carry any implications for the usefulness
of statistical adjustment methods based on dual-system estimation."

34. The 16 evaluation post strata could probably be reconfigured with advantage.
Among other things, one of the major variables used to define the post strata—the
mail back rate—turned out to have paradoxical features: many post strata with high
mail back rates had high rather than low measured undercounts.

Sampling error in the PES is relatively easy to quantify, and is not the major problem,
at least at the national level. For example, the standard error for the national undercount
estimate of 3.3 million is around 400,000. See B19 Table 20. Reducing the sample size
by a factor of 30 would increase the SE to roughly \/30 x .4 = 2 million. (Of course, our
calculations only give rough guidelines.) On this basis, sampling error would still be
dominated by uncertainties due to non-sampling error (see Tables 1-4 and Section 11).
The extent to which non-sampling error could be reduced with a smaller PES remains
to be seen.

In 2000, ACE matched outmovers rather than inmovers. This treatment of movers
came about by historical accident (Brown et al. [5] p. 367). The Bureau had planned
to do sample-based non-response followup (SNRFU). With SNRFU, inmovers cannot
be matched back to the census blocks they came from: the records may not be in the
census because the people were not selected into the SNRFU sample. The Supreme
Court over-ruled the Bureau on SNRFU, as part of the decision cited in note 10, but
outmovers stayed in the plan, probably due to inertia. If there is a PES in 2010, let it
match inmovers not outmovers—like the PES of 1990.

Authors' footnote. We thank Liza Levina, Chad Schafer and Don Ylvisaker for many
useful comments. Both of us testified for the United States against adjustment, in the
Census cases of 1980 and 1990. We have also testified in Congressional hearings, and
consulted for the Department of Commerce on the adjustment decision.
Finally, a word about Terry Speed. Terry is a wonderful friend and colleague, who
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for years has helped us by answering all kinds of questions, not least about census
adjustment - although that is only one of his many interests.

David A. Freedman, Department of Statistics, University of California, Berkeley,
freedman@stat.berkeley.edu
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A Brief Introduction to Genetics

DarleneR. Goldstein

Abstract

This very brief introduction to genetics is included to provide greater accessi-
bility to the papers in this volume. More extensive details are available in genetics
textbooks and the literature.

Keywords: DNA sequencing; genetic map; genome; microarray; molecular biology;

physical map

1 Introduction

What follows is a very brief introduction to genetics concepts to provide greater acces-

sibility to the papers in this volume. More extensive details are available in genetics

and molecular biology textbooks, e.g. [2, 3, 4, 6, 8].

2 Genomes

The genome of an organism consists of the biological information content of a cell. This

information is necessary for all cellular processes required by the organism. With the

exception of some viruses, genomes are comprised of deoxyήbonucleic acid, or DNA.

DNA is a double-stranded, linear polymer consisting of a sugar-phosphate backbone

attached to subunits called nucleotides. There are four nucleotides: thepurines, adenine

(A) and thymine (T), and the pyrimidines, cytosine (C) mάguanine (G). Although DNA

can form other tertiary structures, the best known is that of the double helix. The

two strands of the double helix are held together by weak hydrogen bonds between

complementary bases on the strands. Base pairing occurs as follows: A pairs with its

complementary base Γ, and G pairs with C. The sequence complementarity provides a

mechanism for DNA replication: each strand may serve as a template for sythesis of a

new DNA molecule. Ribonucleic acid, or RNA, is similar to DNA but (i) contains the

sugar ribose rather than deoxyribose, (ii) uses the base uracil (U) instead of thymine

(Γ), and (iii) is usually single-stranded rather than double-stranded.

Genomic DNA is distributed along chromosomes in the cell nucleus. A gene is

a segment of DNA that codes for a protein. Proteins perform a large number of di-

verse functions, serving as enzymes or antibodies, providing storage or transportation

for other molecules, and providing structure (e.g. collagen). Proteins are made up of
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subunits called amino acids; there are 20 amino acids. The set of rules associating the
DNA sequence of a gene with the amino acid sequence of a protein is called the genetic
code.

Genes occur at particular sites, or loci along a chromosome. A gene may exist in
multiple versions, called alleles. The two alleles at a genetic locus comprise the geno-
type at that locus. If both alleles are the same, the genotype is homozygous; otherwise,
the genotype is heterozygous. A locus may refer more generally to genetic units other
than genes; for example, to sequences of DNA smaller than genes. Genetic entities
such as these following normal hereditary laws are referred to as markers. Loci rep-
resented by more than one allelic variant in a population are said to be polymorphic.
Examples of types of polymorphic marker systems include restriction fragment length
polymorphisms, or RFLPs, and single nucleotide polymorphisms, or SNPs.

Gene expression is the process whereby the genetic information in a gene is made
available to the cell. When a gene is expressed, it is said to be "turned on." Gene
expression occurs in two major steps: transcription of the gene DNA sequence into
messenger RNA (mRNA), followed by translation of the mRNA into protein. A number
of intermediate steps also occur during expression, the details are omitted here.

Gene expression depends on not only allele status (genotype), but also chromoso-
mal structure, DNA modifications, and gene-gene interactions (epistasis). An example
of these other effects is imprinting, the phenomenon that genes are differently expressed
depending on whether they came from the mother or father.

3 Molecular Laboratory Techniques

Advances in genetic knowledge have been made possible by innovative techniques in
the molecular biology laboratory. Important techniques involve manipulations of DNA:
hybridization, copying, cutting or binding, labeling and visualization.

Hybridization refers to the annealing of complementary strands of DNA. The two
strands of DNA can be denatured (separated) by heating; upon cooling, the strands
bind, restoring the original molecule.

This hybridization property of DNA can be exploited to amplify (copy) sequences
of DNA. The process for amplifying DNA is the polymerase chain reaction, or PCR.
PCR is used to amplify specific DNA sequences when the ends of the sequence are
known. In PCR, the source DNA is denatured into single strands, short sequences com-
plementary to one end of each strand are added in great excess, then the temperature is
lowered so that the short sequences hybridize with their complementary sequences. The
genomic DNA remains denatured, because the complementary strands are at too low a
concentration to encounter each other during the period of incubation. The hybridized
ends then serve as primers for DNA synthesis, which begins upon addition of a sup-
ply of nucleotides and a temperature resistant polymerase, an enzyme for synthesizing
DNA. When the synthesis cycle is complete, there are approximately twice as many
DNA molecules as there were at the start. Repeated cycles (25 - 30) of denaturing and
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synthesis quickly provide many copies of the original DNA.
When a bacterium is invaded by a DNA-containing organism (e.g. a virus), it can

defend itself with restriction enzymes, also called restriction endonucleases. Restric-
tion enzymes recognize a specific short sequence of DNA and cut both strands at that
sequence. They are used in the laboratory as "molecular scissors" for cutting large DNA
molecules into smaller fragments. Restriction fragments may also be joined with the
enzyme DNA ligase. This ability to join fragments is an important step in the creation
of artificial cloning vectors, DNA molecules able to replicate inside a host. Bacterial
artificial chromosomes (BACs) and yeast artificial chromosomes (YACs) are high ca-
pacity cloning vectors capable of cloning large fragments of DNA. These are used in
large scale DNA sequencing projects.

Southern [9] showed that is possible to detect a specific DNA fragment within a
mixed pool of fragments. Crucial to this process is DNA labeling, which enables the
location and visualization of a particular DNA molecule. DNA may be labeled radioac-
tively, then visualized by X-ray (autoradiography). Labeling for many procedures is
also done with nonradioactive alternatives, most commonly with fluorescent markers.

4 Linkage and Genetic Maps

Most cells of diploid individuals, that is individuals whose cell nuclei contain two of
each chromosome, contain a homologous pair of each autosome, or non-sex chromo-
some, and two sex chromosomes. However, gametic cells (sperm or egg) are an excep-
tion to this general rule, as they contain only one chromosome of each autosomal pair
and one sex chromosome (haploid). Gametes are produced via a reduction divison pro-
cess called meiosis. During meiosis, a diploid gametic precursor cell replicates DNA
once and divides twice, producing four gametes.

It is also during meiosis that crossing over occurs. For each chromosome, after
DNA replication, the two sets of chromosomal pairs (the four chromatids) become
aligned, at which time pairs of nonidentical homologous chromosomes form regions
of contact (chiasmata). Because physical exchange of chromosomal DNA occurs in
these regions, the gametic chromosomes of an individual are generally not exact copies
of the originals, but rather are combinations of the original pair.

It is one of these new combinations which is then passed on to offspring. The
combination of alleles (at different loci) an offspring receives from one parent is called
a haplotype. A recombination between two loci has occurred when the exchange of
DNA is such that the resulting haplotype passed to an individual contains alleles at the
two loci contributed by different grandparents. It is on the basis of haplotypes passed
from parent to offspring that recombinations can be recognized. However, recombi-
nations can only be distinguished from nonrecombinations when at least one parent is
heterozygous at each locus.

Pairs of (gene or marker) loci on different chromosomes, or so far apart on the same
chromosome that there is the same chance of recombination as nonrecombination, are
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said to be unlinked. Two loci are linked when they are not passed on independently.
When loci are in linkage equilibrium, the haplotype frequency is the product of the
individual allele frequencies in the population; when this rule does not hold, the loci
are in linkage disequilibrium.

The probability of recombination, or recombination fraction, measures the extent of
linkage between loci, thereby providing a means for creating a genetic map. A measure
of genetic distance is given by the expected number of crossovers on a single strand
between two loci; the unit for this distance is the Morgan (M); distances are more
commonly specified as centimorgans (cM; 100 cM= 1 M).

5 Physical Maps and Genome Sequencing

Genetic maps show the position of genes and other types of genetic loci in terms of
genetic distance. These maps are constructed using techniques such as cross-breeding
experiments and analysis of pedigrees (families). Prior to large scale, whole genome
level sequencing, a genetic map should be supplemented by & physical map, constructed
by direct examination of DNA molecules.

Techniques for physical mapping include: restriction mapping, which locates rela-
tive positions of cut sites for restriction enzymes on a DNA molecule, fluorescent in situ
hybridization (FISH), whereby marker locations are mapped by hybridizing the marker
to intact chromosomes; and sequence tagged site (STS) mapping, where positions of
short sequences are mapped by PCR and hybridization analysis of genome fragments.
Since STS is quick and not too technically demanding, it has been used for creating
detailed maps of large genomes.

A single experiment is capable of directly sequencing DNA molecules with lengths
of up to around 750 bp (base pairs, or nucleotides). Therefore, the sequence of an entire
chromosome, which has length measured in mega-base pairs (Mb), must be constructed
from smaller sequences. Shotgun sequencing is the standard approach used for smaller
genomes. With this method, long DNA molecules are broken into fragments of sizes
that can be sequenced directly. The fragments are individually sequenced, and the
entire original sequence is reconstructed using computational algorithms to search for
overlaps between contiguous DNA sequences (contigs). This approach does have some
problems, though. When a genetic map is available, sequencing can proceed using
variations of shotgun method: the clone-contig approach [7] or directed shotgun [10].

6 Microarray Technologies

Measuring the amounts of mRNA can provide information on which genes are being
expressed, or used by, a cell. Microarrays provide a means to measure gene expres-
sion. Common areas currently under study with microarray experiments include: dif-
ferential gene expression, that is, which genes are expressed differently between two
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(or more) sample types; similar gene expression patterns (profiles) across treatments;

tumor sub-class identification using gene expression profiles; classification of malig-

nancies into known classes; and identification of genes associated with clinical out-

comes, such as response to treatment or survival time. There are several microarray

technologies in current use, but the two most widely used are cDNΛ (complementary

DNA) microarrays and high-density (short) oligonucleotide gene chips produced by the

company Afϊymetrix.

cDNA microarrays consist of thousands of individual cDNAprobe sequences printed

in a high-density array on a glass microscope slide. The relative abundance of these

spotted DNA sequences in two DNA or RNA samples may be assessed by monitoring

the differential hybridization of the two samples to the sequences on the array. For

mRNA samples, the two samples (targets) are reverse-transcribed into cDNA, labeled

using different fluorophores ("dyes"), usually Cyanine 5 (Cy5), which fluoresces at red

wavelengths, and Cyanine 3 (Cy3), which fluoresces at green wavelengths. The labeled

samples are then mixed in equal proportions and hybridized with the arrayed DNA se-

quences. After this competitive hybridization, the slides are scanned and fluorescence

measurements are made separately for each dye at each spot on the array. The ratio of

red to green fluorescence intensity for each spot is indicative of the relative abundance

of the corresponding DNA probe in the two nucleic acid target samples. See [1] for

a more detailed introduction to the biology and technology of cDNA microarrays and

oligonucleotide chips.

Aflymetrix gene chip arrays use a photolithography approach to synthesize probes

directly onto a silicon chip. In addition to a number of short sequences used to probe

each gene, the perfect match (PM) probes, there is an equal number of negative controls,

the mismatch (MM) probes. A single labeled sample is hybridized to the array, so that

absolute rather than relative measures of gene expression are obtained. Further details

are available in [1, 5].
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Common Long Human Inversion Polymorphism on
Chromosome 8/J
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Abstract

In an analysis of human crossover interference, we identified apparent triple

recombination events, in a short region on chromosome 8/?, on the maternally-

derived chromosomes in four individuals (two from each of two families). While

this may have indicated an error in marker order, the inverted order was incon-

sistent with recombination events in other individuals. We were thus led to the

hypothesis of an inversion polymorphism in the region, which was subsequently

confirmed by fluorescent in situ hybridization (FISH). The inversion spans ap-

proximately 12 cM on the female genetic map and 2.5 - 5.3 Mb on the physical

map. The allele frequency of the inverted order (D8S1130 telomeric; D8S351

centromeric) in 50 individuals of European ancestry was 21%. This is only the

second known common, long inversion polymorphism in the human genome.

Keywords: CEPH; FISH; inversion; polymorphism

1 Introduction

Inversions in gene order along chromosomes have frequently been observed by com-

paring related species [14, 24, 25], including great apes [16, 21, 22, 29]. Human inver-

sion mutations occur at a low, but detectable frequency. Paracentric (not involving the

centromere) inversions that are large enough to be detectable by standard cytogenetic

analysis occur at a frequency of 1 - 5 per 10,000 individuals [23]. The frequency of

human submicroscopic inversions is unknown, although inversions have been identified

as the cause of specific heritable disorders (see, for example, [1, 8, 15, 19, 20]). Chro-

mosomal inversions are of particular clinical interest because recombination within the

inverted region in heterozygotes can lead to segmental aneusomies and concomitant

abnormalities.

The only well characterized common human inversion polymorphism is the 48 kb

inversion of the Emery-Dreiftiss muscular dystrophy and filamin genes on the X chro-

mosome [26]. This inversion is present in populations of European descent at a fre-

quency of about 18%. Page and colleagues also recently made a preliminary report

of a potentially common 3 Mb inversion polymorphism on chromosome Ύp flanked
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by inverted 300 kb repeats [27]. Here we describe a common, paracentric inversion
polymorphism spanning > 2.5 Mb in chromosome band 8/?23.1 - Sp22.

2 Materials and Methods

We considered high-density genotype data on eight of the CEPH reference families
[6]. These families, which were recruited in order to form the first human genetic
maps, are largely three-generation families, with 10-15 siblings each. They have been
genotyped at > 8,000 short tandem repeat polymorphisms (STRPs, also known as mi-
crosatellites). The genotype data are publicly available (see the Marshfield web site,
http://research.marshfieldclinic.org/genetics).

Initial marker order was taken from [3]. Haplotypes were constructed with use of
the chrompic option of the CRI-MAP program [12]. The physical length of the inverted
region was estimated based on the December 22, 2001, version of the University of
California, Santa Cruz, draft human sequence (see ht tp: //genome.ucsc. edu).

Fluorescent in situ hybridization (FISH) was carried out as previously described
[5]. A minimum of five spreads were examined for each individual. BAC clones were
obtained from Genome Systems (St. Louis, Missouri, USA).

3 Results and Discussion

In an examination of the sites of meiotic recombination in eight of the CEPH reference
families, as part of an analysis of human crossover interference [4], we observed that
the maternally inherited chromosomes in two offspring from each of CEPH families
1362 and 1413 show similar and highly unlikely crossover patterns (Figure 1). Even
in the absence of crossover interference, the probability of four triple crossovers within
12 cM is vanishingly small. All four of these chromosomes revert to single crossovers
when the region between and including D8S351 and D8S1130 is inverted. However,
the inverted order of markers is inconsistent with recombination events in other CEPH
families (see Figure 1).

Fluorescent in situ hybridization (FISH) was used to confirm and extend the initial
evidence for inversion. BAC clones encompassing D8S351 and D8S1130 near the ends
of the inverted segment (see Figure 1) were used as probes. We arbitrarily defined
the normal allele as having the marker order in Figure 1, and the inverted allele as
having the markers between D8S351 and D8S1130 inverted. Shown in Figure 2 are
representative metaphase results from two individuals with each of the three possible
genotypes, including the mother (1362-02) (panel c) of CEPH family members of 1362-
10 and 1362-11, who is homozygous for the inverted order (relative to the order shown
in Figure 1). CEPH individuals 1362-10, 1413-03, and 1413-02 (mother of 1413-03 and
1413-09) were also found to be homozygous for the inverted order (data not shown).
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Figure 1: Maternal haplotypes for a small portion of chromosome 8/? for six CEPH family
children (identified by family - individual). Filled symbols indicate alleles from the maternal
grandfather, open symbols alleles from the maternal grandmother, and blank spaces indicate
missing data (due mostly to homozygous markers in the mother). The order of markers is
telomeric (left) to centromeric (right). BACs encompassing the two markers shown in boxes
were used in the FISH experiments.

Metaphase FISH carried out on 50 unrelated individuals of European ancestry re-

vealed 33 homozygotes with the order shown in Figure 1,13 heterozygotes, and 4 ho-

mozygotes for the inverted order (inversion frequency 21%; 95% confidence interval,

assuming Hardy-Weinberg equilibrium, 13 - 30%). The genotype frequencies showed

no significant deviation from Hardy-Weinberg equilibrium.

The inversion polymorphism appears to be either extremely old or the result of re-

current mutations. With only a single, relatively recent, inversion mutation event, and

assuming no recombination in heterozygotes, there should only be one common "in-

verted" haplotype. With at least two inversion events occurring upon different haplo-

type backgrounds, recombination events in parents homozygous for the inversion could

produce many different haplotypes. Although we don't know which orientation is an-

cestral, construction of haplotypes in the CEPH families using available genotyping

data revealed several different haplotypes for each orientation. All three haplotypes for

the order shown in Figure 1 were quite different with multiple (up to 17) repeat differ-

ences between alleles (data not shown). Similarly, all six haplotypes for the inverted

order were very different. Since short tandem repeats (microsatellites) nearly always

mutate by gain or loss of one or two repeat units [2, 28], it is unlikely that a single in-
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Figure 2: Metaphase FISH results from CEPH family individuals (lymphoblastoid cell
lines) and other individuals (peripheral blood lymphocytes). Probes were DNA from BAC
17304 (encompassing D8S351) labeled with Spectrum Green and BAC 257O3 (encompass-
ing D8S1130) labeled with Spectrum Orange, a) CEPH individual 102-01, homozygous
for the order shown in Figure 1. b) CEPH individual 1331-02, heterozygous for the inver-
sion, c) CEPH individual 1362-02, homozygous for the inverted order, d) e) f) Individuals
homozygous for the Figure 1 order, heterozygous, and homozygous for the inverted order,
respectively.

version mutation event occurred within the last few hundred thousand years. Although
we cannot rale out a single event that occurred longer ago, we favor the alternative that
at least two inversion mutation events occurred relatively recently.

We further characterized the inversion through examination • of relevant genome
maps. The geoetic length of the inverted region is approximately 12 and 2 cM on
the female and male genetic maps, respectively [3]. Using the December 22, 2001,
version of the University of California-Santa Cruz draft human sequence, the length of
the inverted region was estimated to be at least 2.5 Mb and possibly as long as 5.3 Mb.
The sequence assembly in this region of Sp is still crude with many gaps, both large and
small, and other uncertainties. Sites of the inversion breakpoints are not yet precisely
known. From both the CEPH and FISH results, the inversion breakpoints appear to
be at similar locations in all individuals; however, the precision of these approaches is
limited.
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The inversion is likely mediated by two clusters of olfactory receptor genes that
flank the inverted segment at both ends [9]. Olfactory receptor genes are found on
nearly every human chromosome [11]. The flanking repeated sequences are apparently
in inverted orientation (Matsumoto et al., in preparation). The 48 kb emerin/filamin
inversion on the X chromosome is also flanked by 11 kb inverted repeat sequences
[26]. Intrachromatid recombination between inverted non-adjacent repeat sequences
results in the inversion of the intervening segment. As the human genomic sequence
becomes finished, it may be possible to identify additional inversion polymorphisms
through searches for intrachromosomal inverted repeats with high sequence similarity.

The 8/7 inversion may have substantial clinical impact. For example, Giglio et al.
[9] studied eight mothers of children with the inverted duplication 8it p rearrangement,
and found that all were heterozygous for the inversion described herein. Inv dup (8/?)
is a well-known chromosomal abnormality of maternal origin that causes multiple ab-
normalities including mental retardation [7, 13, 17]. The frequency of inv dup (8/?) has
been estimated at 1/15,000 [9]. It may be that women heterozygous for the chromosome
8/? inversion that we identified are more likely to bear children with the inv dup (8/?)
rearrangement. Giglio et al. [10] recently identified another inversion polymorphism,
on chromosome 4pl6, which is also flanked by clusters of olfactory receptor genes.
These two chromosomal inversions, on chromosomes 4 and 8, appear to be involved in
the recurrent t(4;8)(pl6;p23) translocation.

Heterozygotes for the chromosome 8/? inversion may also have slightly reduced fer-
tility compared to homozygotes of either genotype due to unbalanced gametes produced
through recombination within the inverted region. The rearrangement may also affect
the expression of genes near the inversion breakpoint. Such effects are well known for
translocations [18]. Genes within or adjacent to the inverted segment include several
defensins, GATA-binding protein 4 (GATA4), cathepsin B (CTSB), tankyrase (TNKS),
and methionine sulfoxide reductase A (MSRA).

Submicroscopic inversions are difficult to identify. Use of improbable meiotic prod-
ucts as an inversion signature (see Figure 1) becomes much more difficult as the size of
the inversion decreases. For inversion of only two or three adjacent markers, the phase
patterns will masquerade as genotyping errors or mutations. Also, a recombination
event is required within the inverted region for detection, and it may be necessary for
the parent to be homozygous for the inversion for recombination to occur. A better ap-
proach to detect inversion polymorphisms is likely to be comparison of various genome
maps, especially including sequence assemblies, which are prepared using DNA from
different donors. Our results clearly demonstrate that differences in marker order be-
tween various genome maps should not automatically be dismissed as errors.
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The Roles of Mutation Rate and Selective Pressure
on Observed Levels of the Human Mitochondrial

DNA Deletion mtDNA4977

William C. Navidi, Simon Tavarέ andNorman Arnheim

Abstract

The mitochondrial deletion mtDNA4977 has been found at high levels in indi-
viduals with certain neuromuscular and neurological diseases, and at lower levels
in older normal individuals. We use experimental estimates of the mutation rate of
mtDNA4977 and of the half-life of mitochondrial genomes to construct a model of
mitochondrial replication and mutation that is consistent with observed levels of
the deletion. We conclude that deleted genomes have a slight selective advantage,
at least in some tissues. Our results suggest that for an individual to attain a clini-
cally significant level of the deletion, between 0.2% to 0.5% of the mitochondrial
genomes in the original oocyte must have been deleted.

Keywords: branching process; Kearns-Sayre syndrome; mitochondria; selection

1 Introduction

The human mitochondrial mutation mtDNA 4 9 7 7 is a 4977 base pair deletion originating

between two 13 bp direct repeats in normal mtDNA. This deletion is associated with the

neuromuscular and neurological diseases progressive external ophthalmoplegia (PEO),

Kearns-Sayre syndrome (KSS) and Pearson's marrow/pancreas syndrome. Symptoms

of these sporadic diseases range from mild to severe, depending on the level to which

the deleted molecules have accumulated. For a review of diseases associated with mu-

tations in mitochondrial DNA, see DiMauro and Wallace [10], Wallace [26], DiMauro

[9] and Bianchi et al [3]. MITOMAP (http://www.mitomap.org) is a very useful

resource for human mitochondrial data and references.

The mtDNA 4 9 7 7 deletion has also been found at low levels in normal adults and

appears to accumulate with age, primarily in non-mitotic tissues (Cortopassi et al [8],

Arnheim and Cortopassi [1], Corral-Debrinski et al [7], Hattori et al [14], Yen et al

[27], Zhang et al [28]). The level of accumulation is found to vary among different

tissues and even within tissues. For example, studies on the brains of old normal in-

dividuals has shown that the substantia nigra, caudate and putamen can have hundreds

of fold higher levels of mtDNA 4 9 7 7 than the cerebellum (Corral-Debrinski et al [7],

Soong et al [25]).
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The degree of accumulation of mtDNA 4 9 7 7, whether at the high levels found in

patients with disease, or at the low levels found in normal adults, is determined by the

mutation rate, by selective factors that may favor deleted molecules, and by the initial

level of deletions present at conception. We describe models that enable us to discuss

quantitatively the roles played by each of these factors in the accumulation of deletions

in both growing and stable populations of cells.

2 A Stochastic Model for Deletions

The mitochondrial genomes in a human cell are distributed among many mitochondria,

with an average of between four and ten genomes per mitochondrion. Mitochondria

can turn over by being engulfed by lysosomes. In what follows we refer to this turnover

as mitochondrial death.

Let GL>I and α>2 represent the probabilities that a nonmutant and a mutant, respec-

tively, die before replication. Let λ represent the mutation rate, defined as the proba-

bility that replication of a nonmutant sequence produces a mutant. We assume that a

mutant always gives rise to mutants upon replication.

Define one generation to be the length of time between replications of a nonmutant

molecule. Let 2r be the mean number of descendants of a single mutant molecule after

one generation, conditional on survival to replication of the original molecule. Then

the unconditional expectation of the one generation clone size of a single mutant is

2r(l — 0)2), and that of a single nonmutant is 2(1 — ct>i).

We define the selective advantage v of mutants over nonmutants in terms of the

ratio of the expected one-generation clone sizes: v = r(l — G>2)/(1 — G>I). Notice that

any value of v can be obtained by setting r = 1, and choosing Cΰi and 002 appropriately.

For the sake of simplicity, we assume henceforth that r = 1, and that any selective

advantage is due to differences in the death rates α>i and α>2.

We model the evolution of the population of mitochondria as a two-type Galton-

Watson process, the two types being nonmutant (type 1) and mutant (type 2). We

calculate the probability px (x,y) that a parent of type i (i — 1,2) produces x nonmutants

and y mutants in a single mitochondrial genome replication. We have

/>i(0,0) = ω h pi(2,0) = (l -α>i)(l - λ ) , ^ ( 1 , 1 ) - (1 - ω ^ λ

/?2(0,0) = (02, p 2(0,2) = 1 - CQ2, (1)

andPi(x,y) = 0 for other values of x zndy.

Let M denote the 2 x 2 matrix whose ijth element mI7 is the mean number of off-

spring of type j produced by a parent of type i in a single replication. From (1) we

have

( ( l - ω , ) ( 2 - λ ) ( l - ω , ) λ \

v 0 2(1-0)2) w
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Given values mg-\, ng-\ for the expected number of mutant and nonmutant genomes,
respectively, after g- 1 generations, the values mg,ng can be computed as

(ng, mg) = (ng- i, mg_1 )Af. (3)

By repeatedly applying (3) starting from g = 1 and values for no, mo, we can com-
pute mg and ng for any value of g. We approximate the proportion of mutants in the
population after g generations by mgj (mg + ng). For theoretical results in this spirit, see
Olofsson and Shaw [19].

3 Constant-size Populations

We can use our model to evaluate the possible roles that both mutation and selection
could play in the accumulation of deletions over time. We first investigate the rela-
tionships between mutation rate, selective advantage, and the proportion of mutants
expected in regions of the brain. For example, the level of mtDNA4977 deletions in
the substantia nigra has been estimated to be as high as 0.5% in an 80-year-old normal
individual (Soong et al. [25]).

As before, let α>i and Cύ2 represent the probabilities that a nonmutant and a mutant,
respectively, die before replication, and let λ represent the probability that a replication
of a nonmutant genome produces a mutant genome. Let mo, «o be the initial number of
mutants and nonmutants, respectively, present at birth, and let mg, ng be the expected
numbers of mutants and nonmutants after g mitochondrial generations.

From (2) and (3), the quantities mg and ng satisfy the recursive equations

mg = 2(l-ω2)/Wg-i+λ(l -ωi)/ig_i (4)

ng = ( 2 - λ ) ( l - c o 1 ) ^ _ 1 . (5)

We use the ratio

v = {l-ω2)/(\-ωι) (6)

to express the selective advantage of mutants over nonmutants. Values of v greater
than 1 correspond to an advantage for mutants, and values less than 1 correspond to an
advantage for nonmutants.

Since the brain is primarily a non-dividing tissue, the number of genomes G =
mg + ng is assumed to be constant across generations. It follows that in each generation
g, the death rates cΰi and α>2 satisfy the following equations:

1-coi = G/2(vmg_i+«g_!) (7)

l - ω 2 = v(l-cΰi). (8)

Given values of v, mo, and no, we can calculate values of mg and ng for any value of
g by repeatedly calculating (ύ\ and α>2 from equations (7) and (8) and substituting into
equations (4) and (5).
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In our calculations, we took the mitochondrial generation time to be 45 days, based

on experimental estimates of turnover in the rat brain (Gross et al 1969). Table 3 gives

values for the expected proportion mβso/G of mutants after 650 generations (about

80 years) as a function of the selective advantage v for three values of λ, assuming no

mutants were present at birth. The values of λ we chose bracket the estimate of Shenkar

et al [23]), who estimated the mutation rate of mtDNA 4 9 7 7 in cultured human cells to

be 5.95 x l θ " 8 ± 2.28 x 10" 8.

It is clear that only a small selective advantage is needed to produce a large pro-

portion of mutants, and that the value of the mutation rate has less impact. The second

column in Table 3 shows that this is consistent with a selective advantage in the range of

1.012. Estimates of mtDNA 4 9 7 7 levels in putamen of old individuals may be as high as

12% (Corral-Debrinski et al [7]) which would be consistent with a selective advantage

in the range of 1.018.

The model yields a different conclusion regarding the cerebellar grey matter. Of

thirteen regions of the brain studied by Soong et al [25], this had the smallest frac-

tion of deleted genomes, with the proportion being only 0.0013% in an 82 year old

individual. Table 3 shows that this would be consistent with the absence of a selective

advantage in the cerebellar grey matter, if we were to assume that the mutation rates in

this region is the same as in the substantia nigra.

Of course, differences in mutation rates in different tissues can also explain dif-

ferences in accumulation. Table 3 gives values for the expected proportion of mutants

after 650 generations as a function of mutation rate, assuming no selective advantage.

Comparing Tables 3 and 3 shows that an increase of about two orders of magnitude in

the mutation rate (from 6 x 10~8 to 5 x 10~6) is needed to produce the same result as a

selective advantage of 1%, i.e. v = 1.01.

4 Growing Populations

The mtDNA 4 9 7 7 deletion accumulates to at least a level of 40% of the mitochondrial

genomes in muscle cells of the vast majority of children with KSS (Shanske et al [22]).

We develop a model to investigate the roles of selective pressure and mutation rate on

the accumulation of mtDNA 4 9 7 7 in these children. In order to accomplish this we need

to take into consideration three phases of the child's development.

The first phase begins with a single fertilized oocyte (zygote) containing approxi-

mately 150,000 mitochondrial genomes (Chen et al [6]). This cell divides until there

are about 125 descendants, 40 of which comprise the inner cell mass and are destined

to become the embryo (Hardy et al [13]). We assume that a cell needs a minimum of

about 7500 mitochondrial genomes to survive. It follows that the number of mitochon-

dria in the 125 cells must be about 7500 x 125. Therefore the number of mitochondria

in the original oocyte (150,000) must have multiplied by a factor of 6.25 (= 7500 x 125

/ 150,000).

In the second phase the 40 embryo cells replicate to form a fetus which we estimate

contains approximately 2.5 x 1012 cells at birth. During these two mitotic phases the
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Table 1: Expected proportions of mutants after 650 mitochondrial generations for various
values of the mutation rate and selective advantage.

Selective

advantage (v) λ = 1.0 x 10" 8 λ = 5.95 x 10" 8 λ = 1.0 x 10- 7

1.022

1.020
1.018
1.016
1.014

1.012

1.010

1.008

1.006

1.004

1.002

1.000

0.24010
0.08866
0.02930
0.00936

0.00299
0.00097

0.00032

0.00011

0.00004

0.00002
0.00001
0.00000

0.65278

0.36663
0.15224

0.05327

0.01755
0.00574

0.00191

0.00066
0.00024

0.00009
0.00004

0.00002

0.75960
0.49313

0.23185

0.08640
0.02914

0.00961
0.00320

0.00110

0.00040
0.00015
0.00007

0.00003

rate of mitochondrial turnover is likely to be insignificant. The third phase covers the

period after birth where we only consider mitochondrial turnover and not cell replica-

tion. Our goal is to express the proportion of genomes that have the deletion in the

muscle cells of a child 10 years of age as a function of the number of deleted genomes

in the oόcyte and the selective advantage v of deleted over non-deleted genomes, as-

suming a constant mutation rate.

Let JV be the number of deleted genomes in the oόcyte. In the first phase, these

N molecules multiply to a level of approximately 6.25N deleted molecules that are

distributed among 125 cells. We assume that the distribution is random, so that the

number of deleted molecules in a single one of the cells has a binomial distribution

with parameters 6.25N and 1/125. We approximate this with a Poisson distribution

with mean// = 6.25N/125 = N/20.

To model the second and third phases, we focus on a single embryo cell and use the

stochastic model described in equations (4) and (5). To apply the model, we specified

values for the mutation rate λ, the death rates (Oi and 0)2, the initial number mo of

mutants and no of non-mutants, and the number of generations g. We used the value

5.95 x 10~8 for λ, as estimated by Shenkar et al. [23]). For the second (mitotic)

phase, we assumed there is no mitochondrial turnover, so that a>i = 0L>2 = 0. Note that

this implies an absence of a selective advantage in the mitotic phase. As explained

below, the degree of selective advantage in the second mitotic phase has little impact

on the final level of deletions, so this assumption is not crucial. We assumed that the

cell contained a total of mo -h «o = 7500 mitochondrial genomes. As described above,

the quantity TWO has a Poisson distribution with mean μ = N/20. We assumed that
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Table 2: Expected proportions of mutants after 650 generations for various values of the
mutation rate assuming no selective advantage.

Mutation rate
1.0 xlO"8

5.0 x 10~8

1.0 xlO"7

5.0xl0~7

1.0 xlO- 6

5.0 x 10-6

1.0 xlO-5

5.0 x 10~5

1.0 xlO- 4

5.0 x 10"4

1.0 xlO"3

5.0 x 10"3

1.0 xlO"2

Expected proportion
of mutants

0.00000
0.00002
0.00003
0.00016
0.00032
0.00162
0.00324
0.01612
0.03198
0.15000
0.27753
0.80349
0.96154

the second phase begins with 40 cells and ends with 2.5 x 1012 cells. It follows that
the number of mitochondrial generations g satisfies the equation 40 x 2g = 2.5 x 1012.
This provides the estimate g = 36, to the nearest integer.

For the third phase, we used the method (described earlier for the brain) for a con-
stant size population, in which we consider mtDNA turnover. We specify a value for
the selective advantage v, then compute ωi and α>2 from equations (7) and (8). To es-
timate the number of generations g1, we used an experimental estimate of a half-life
of one week for mitochondria in muscle cells (Gross eΐ ah [12]), which corresponds
to a mean turnover time of about 10 days. Therefore 10 years corresponds to gι « 350
mitochondrial generations. The initial numbers of mutants and nonmutants for the third
phase were of course the final numbers for the second phase.

Given values for the initial number N of deleted mitochondria in the oόcyte and
the selective advantage v, we computed the fraction of deleted mitochondria deriving
from a single inner mass cell for all feasible values of mo, as described above. We then
averaged this fraction over the Poisson distribution of mo to obtain expected fraction
d(N,v) of deleted mitochondria. For many different values of N, we computed the
value of v for which d(N,v) = 0.5. This fraction is chosen to reflect the observed levels
of deletions seen in skeletal muscle of a child with Kearns-Sayre syndrome.

Figure 1 presents the results for values of N ranging from 0 to 75,000. The latter
number corresponds to the situation in which one half of the original genomes have the
deletion. Figure 2 presents the results for values of N ranging from 0 to 1000. In order
to check the impact of our assumptions concerning the lack of turnover in the mitotic
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phase, we redid the calculations setting cΰi to 0.1, and assuming the selective advantage

was the same in both the mitotic and constant-size phases. The results (not shown) were

nearly identical to those presented.

It is clear from Figure 1 that unless the initial level of deletions in the oδcyte is

nearly one-half, the deleted molecules must have a selective advantage in order to reach

the levels of 50% observed in a child. Figure 2 shows that a selective advantage of 4%

would result in the proportion of deletion reaching one-half when there were no initial

oόcyte deletions, and deletions arose post-zygotically by mutations alone. Our earlier

analysis of deletion levels in the brain estimates selective values in the range 1.2% to

1.8%, suggesting that a selective advantage of 4% is implausible. If we assume that

the selective advantage is indeed in the range 1.2% to 1.8%, then the number of initial

deletions leading to a level of 50% after ten years is of the order of 300 to 750, or

between 0.2% and 0.5% of the oόcyte's mitochondrial genomes.

There is some empirical evidence about the frequency of deleted molecules in

oocytes (cf. Chen et al [6], Brenner et al [4], Barritt et al [2]). For example,

Chen et al [6] observed that in a sample of 15 oocytes, approximately one half had no

detectable deletions, while the rest had an average of roughly 50 deletions each. The

maximum number of deletions observed was in the range 100-200. Figure 2 shows

that if the selective advantage were greater than about 2%, this initial level of deletions

in an oόcyte would lead to a level of 50% deletions by age ten, and thus a disease

prevalence of about 7%. However, the observed prevalence of the disease is between

1/100,000 and 1/500,000 (Larsson et al [16]). It follows that the selective advantage

of the deleted molecules must be less that 2%, and we conclude that KSS is due to the

very rare (frequency of around 1/100,000) oocytes that have 350-700 deletions, with

selective advantage in the range 1.2% - 1.8%.

5 Discussion

We have used a model of mitochondrial replication and mutation to evaluate the possi-

ble roles that both mutation and selection could play in the accumulation of deletions

over time, in both expanding and stable mitochondrial populations. We note however

that the mechanism by which mutant mtDNA accumulate in patients with mitochon-

drial diseases is a matter for debate (cf. Marchington et al [17], Reynier et al [21],

Jansen [15], Shoubridge [24], Brown et al [5], Elson et al [11], Qintana-Murci et al

[20]), and that more details of this process will be needed for a definitive quantitative

analysis.

We begin with the stable population case. Using experimental estimates of the

half-life of a mtDNA genome (Gross et al [12]) and of the mtDNA 4 9 7 7 mutation rate

(Shenkar et al [23]), we have shown that starting from a collection of brain cells that

do not divide, each of which begins with no mutant mitochondria, after 650 generations

(80 human years) we would expect no more than 0.002% mutant genomes if the mutants

had no selective advantage.
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Figure 1: Value of selective advantage v (y axis) required to give d(N,v) = 0.5 for different
values oϊN (x axis).

That deleted genomes do have a replicative selective advantage is plausible a pri-

ori, since mtDNA4977 is two-thirds the size of normal mtDNA genomes. Using the es-

timates of the half life and the mutation rate as above, we calculate that even a selective

advantage of as little as 1.2% could result in the levels observed in the substantia nigra

of old individuals (Table 3). Experimental estimates of this selective advantage based

on differences in the rates of completion of mtDNA circles during replication showed

no evidence of any difference between deleted and undeleted genomes (Moraes and

Schon [18]), but such studies could not have detected an advantage on the order of a

few percent.

mtDNA4977 accumulation to the reported levels in some brain regions (0.5% to

12%) as a result of mutation alone would require a mutation rate about three orders of

magnitude higher than the experimental estimate. It has been argued that the mutation

rate may be high in the substantia nigra (as well as the caudate and putamen), due to the

extra burden of oxidative damage that might result from the high levels of metabolism

of the neurotransmitter dopamine by MAO-B (Soong et ah [25], Corral-Debrinski et

ah [7]). This enzyme generates H2O2, which can react with iron deposits inside cells

to produce hydroxyl radical leading to DNA damage. On the other hand, some brain

regions show deletion levels hundreds of times smaller than in the substantia nigra and

putamen. If mutation rates were the same, it is not clear how selective pressures could

vary greatly among cells in different regions of the brain.

We applied our method to determining the extent to which mutations in oδcytes and

selective pressure contribute to the deletion levels observed in the mitochondria of chil-
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Figure 2: Value of selective advantage v (y axis) required to give d(N,v) = 0.5 for different
values of N (JC axis).

dren with Kearns-Sayre syndrome. We described a hypothesis that quantifies the effects

of the initial levels of deletions in oόcytes, the mutation rates, and the selective advan-

tage of mutants. Although the number of mutant genomes in a person is random, we

have based our analysis on expected values. We have estimated the selective advantage

and the number of initial deletions necessary for the mean number of deletions after 10

years to amount to 50% of the total number of mitochondrial genomes. Of course, a

few individuals will have deletion levels several standard errors above the mean. The

standard error of the number of deletions produced in the second and third stages, how-

ever, is of the order of the square root of the mean, which is negligible in proportion

to the mean. We conclude therefore that Kearns-Sayre syndrome cannot result solely

from an unusually large number of mutations in the second and third stages.

This method can be generalized to situations involving several mutant types, with

point mutations as well as deletions, and using time intervals other than the mitochon-

drial generation time. For example, the element in the second row and first column

of the matrix (2) represents the rate of back point mutations multiplied by the mutant

death rate.

The method outlined above is applicable in a wide variety of biological settings.

Constant-size non-mitotic populations can be modelled by choosing values for Cΰi and

($2 which indicate that on average half the genomes die each generation. Growing

populations are modelled by choosing smaller values for these death rates. A selective

advantage (for mutants, say) can be incorporated by choosing α>2 < Cύi, indicating that

mutants are more likely to replicate before dying than non-mutants are.
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Dedication

It is a pleasure to dedicate this article to Terry Speed, friend, collaborator and teacher,

on the occasion of his 60th birthday. The fields of statistics and genetics have been

tightly bound together since their inception, and Terry's seminal contributions to the

statistical analysis of molecular data stand in the forefront of this long tradition. Above

all, Terry has shown us that one need not sacrifice mathematical rigor to obtain biolog-

ical relevance. In this, he has set a standard toward which we continue to strive.

William C. Navidi, Department of Mathematics, Colorado School of Mines,

wnavidi@mines.edu

Simon Tavarέ, Program in Molecular and Computational Biology, University of South-

ern California, stavare@usc. edu

Norman Arnheim, Program in Molecular and Computational Biology, University of

Southern California, arnheim@molbio.usc.edu
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DNA-Protein Binding and Gene Expression
Patterns

Hongyu Zhao, Baolin Wu andNing Sun

Abstract

Although many clustering methods have been applied to analyze gene ex-
pression data, genes in the same cluster may have neither common functions nor
common regulation. As a result, computational approaches have been developed
to identify motifs in the regulatory regions of a cluster of genes or of genes with
similar gene expression levels that are responsible for DNA-protein binding and
similar gene expression levels. However, these motifs are neither sufficient nor
necessary for a transcription factor to bind to the promoter region of a gene with
these motif patterns. More recently, molecular methods have been developed to
directly measure DNA-protein binding at the genomic level. In this article, we
first evaluate the predictive power of computational approaches to predict DNA-
protein binding from a study involving nine transcription factors in the cell cycle.
We then compare how much variation in gene expression levels can be explained
either by the observed DNA-protein binding or by the binding predicted through
computational approaches. We find that current computational approaches may
be limited both in predicting DNA-protein binding as well as in predicting gene
expression levels. We also observe indirectly that the correspondence between
gene expression levels and protein levels may be rather poor, which suggests that
there may be difficulty in modeling genetic networks purely through gene expres-
sion data. To better understand gene expression patterns, an integrated approach
to incorporating different kinds of information should be developed.

Keywords: gene expression; DNA-protein binding; motif; microarray

1 Introduction

With the completion of the Human Genome Project, large-scale gene expression exper-
iments have become common practice in the scientific community. Such experiments
normally have different objectives: (1) to identify differentially expressed genes, (2)
to identify genes expressed in a coordinated manner across a set of conditions, (3) to
identify gene expression patterns that distinguish different samples {e.g. normal ver-
sus tumor tissues), and (4) to define global biological pathways. Genomics research is
different from traditional molecular biology in that traditional approaches focus on the
study of individual genes considered in isolation, whereas functional genomics allows
researchers to determine the principles underlying complex biological processes {e.g.
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development) by examining the expression patterns of large numbers of genes in par-
allel, taking into consideration temporal, as well as anatomical, patterns. Identification
and characterization of regulatory ds-elements and trans-foctors of a gene is essential
for understanding the mechanisms of the control of gene expression, which can further
shed light on gene function.

Currently, three types of statistical methods are under active development for gene
expression data, including methods to identify differentially expressed genes (e.g. [8,
20] for cDNA arrays and [9, 22] for Aflymetrix arrays), methods to identify clusters
of genes with correlated expression patterns, e.g. [3, 10, 16, 21, 31], and methods to
use gene expression patterns to distinguish phenotypes and predict clinical outcomes,
e.g. [7, 13, 15, 32]. Although clustering methods have given some insight into gene
function, similar gene expression patterns imply neither similar functions nor similar
regulation for a group of genes. In addition, clustering results strongly depend on the
set of experiments used to define similarities among genes, and results from different
clustering algorithms may disagree with each other [12].

In contrast to standard statistical treatments of microarray data where data are
mostly treated as a two-dimensional matrix, bioinformatics tools have been developed
to use other information, mostly sequence information, to assist in the interpretation
of gene expression patterns. For example, motif searches have been integrated in gene
expression analysis in yeast studies, e.g. [4, 5, 24, 30]. The rationale is that genes
having similar expression patterns are more likely to share common regulatory motifs
in their promoter regions. These methods represent integration of expression data with
sequence information. A more ambitious goal has been taken by some researchers to
develop computational methods to reconstruct genetic networks, e.g. correlation metric
construction [2], Boolean networks [1,23,28], and Bayesian networks [11, 14]. Unfor-
tunately, most of these computational methods were not developed specifically for the
analysis of gene expression data; therefore, it is difficult to incorporate biological infor-
mation in these methods. They may generate results that are both hard to interpret and
to verify, and they impose assumptions that are likely to be violated in real biological
systems. This computational approach is in contrast to biologically driven approaches
to dissecting pathways [18]. It has become clear that "the combination of predictive
modeling with systematic experimental verification will be required to gain a deeper
insight into living organisms, therapeutic targeting and bioengineering" [6].

Although many computational approaches have been proposed to identify DNA-
protein binding motifs from gene expression patterns, such analyses may only provide
indirect inference on binding. In addition, binding motifs are neither necessary nor suf-
ficient for a given transcription factor to bind to the regulatory region of a gene [29].
Regulatory networks cannot be accurately deduced from expression profiles, partly be-
cause it is difficult to distinguish direct and indirect effects. Recently, experimental
procedures have been developed to directly identify the in vivo genome binding sites
for known transcription factors [19, 26]. Using this method, Simon et al [29] studied
genomic targets of nine known cell cycle transcription activators: Swi4, Swi6, Mbpl,
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Fkhl, Fkh2, Mcml, Nddl, Ace2, and Swi5. MBF (Swi4 and Swi6) and SBF (Mbpl

and Swi6) control late Gl (cell cycle gap 1 phase) genes. Mcml, together with Fkhl

or Fkh2, recruits the Nddl protein in late G2 (cell cycle gap 2) and controls G2/M (cell

cycle gap 2 and mitosis phases) genes. Mcml is involved in M/Gl genes, whereas

Swi5 and Ace2 control late M and early Gl genes [29]. Although Simon et al [29]

were able to infer binding motifs for each factor based on their data, they noted that the

putative binding motifs are neither sufficient nor necessary to identify binding sites for

a transcription factor.

In this article, using both gene expression data and binding data, we study how

much DNA binding information explains gene expression levels through two approaches.

In the first approach, we directly model expression levels as a function of the empir-

ically measured binding of known transcription factors. In the second approach, we

first infer putative motifs for each transcription factor based on the binding data, then

predict binding based on these putative motifs, and finally model expression levels as

a function of the predicted binding. Therefore, the second approach is an "indirect"

computational method. We found that although the existing computational approaches

yield significant associations between gene expression levels and predicted binding, the

proportion of variation explained by these computational methods are much lower than

those explained by empirically measured binding data. Our results suggest that better

computational models and methods are needed to identify binding motifs and then to

predict DNA-protein binding in the analysis and interpretation of gene expression data.

2 Methods

2.1 Gene expression data

We analyze cell cycle gene expression data reported in Spellman et al. [30], where

yeast cell cultures were synchronized by three independent methods: α factor arrest,

elutriation, and arrest of a cdcl5 temperature-sensitive mutant. Approximately 800

genes, >10% of all yeast protein-coding genes, were identified as cell cycle regulated.

In this article, we analyze the time course data from the α factor based synchronization

experiment and gene expression levels of cell cycle regulated genes. The expression

patterns of these genes were studied in detail by Spellman et al. [30] and a number

of clusters of genes based on expression levels were investigated; this investigation

included the identification of motifs for each gene cluster.

2.2 DNA binding data

The DNA binding data used in this article are those collected by Simon et al. [29];

the details of their experiments and statistical analysis of binding data can be found

in Ren et al. [26]. Each experiment was done in triplicate. An estimate of the ratio

of binding intensities of two fluorescents was calculated for each promoter region for

a given transcription factor. This ratio, called the binding ratio here, is a measure of
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the binding intensity of the given transcription factor. A statistical procedure was used
by Simon et al. [29] to evaluate the statistical significance of the binding. In this
article, we use their estimated p-values to assess statistical evidence for binding. These
data revealed that genes encoding several of the cell cycle transcriptional regulators
are themselves bound by other cell cycle regulators. Their data also suggested partial
functional redundancy between homologous activators.

2.3 Motif searches

We use AlignACE [17, 27] to identify motifs that are over-represented in the upstream
regulatory regions of a set of genes. In this article, we apply AlignACE to nine sets
of genes, each of which were bound by the nine transcription factors, respectively. We
then use CompareACE to identify those putative motifs that are similar to known motifs
in yeast. Finally, ScanACE, a program that searches a genome for close matches to a
motif found by AlignACE [17], is used to scan the upstream regions of the cell cycle
regulated genes to identify those containing putative motifs. For each putative motif,
each gene is defined as either having (coded "1") or not having (coded "0") this motif.

3 Results

3.1 Gene clusters based on binding data and gene clusters based on gene
expression data

Transcription factors induce expression levels of cell cycle genes at different stages of
the cell cycle. Simon et al. [29] observed consistency between DNA binding and gene
expression levels. For example, SBF (Swi4 and Swi6) and MBF (Mbpl and Swi6)
are important activators of late Gl genes, and the expression levels for most of the
genes bound by Swi4, Swi6, or Mbpl are highest at the late Gl stage in the cell cycle
[30]. When we cluster the nine transcription factors according to their binding ratios
across the genome, transcription factors active at the same stage of the cell cycle are
clustered together (Figure 1). However, when these factors are clustered according to
their expression levels reported in Spellman et al [30], there is no such ordering among
them (Figure 2). This indicates that gene expression levels of the nine transcription
levels are rather uninformative for correlating their functions in the cell cycle.

3.2 Binding motifs and binding ratios

To investigate how much computational methods can offer in predicting binding ra-
tios, we apply AlignACE to genes bound by the same transcription factor to identify
common motifs in the upstream promoter regions of these genes. We then select those
putative motifs that are similar to known motifs, and run ScanACE on all cell cycle reg-
ulated genes to determine whether these motifs occur in the promoter regions of these
genes. After this step, for each transcription factor, we fit a linear regression model
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Figure 1: Clustering of nine transcription factors based on DNA binding data

with the observed binding ratios for cell cycle regulated genes as the response variable

and the presence or absence of each putative motif in each gene as predictors, i.e.

where yt is the observed binding ratio for the ith gene, My is a binary variable repre-

senting the presence (M ιy = 1) or absence (My = 0) of theyth putative motif for this

transcription factor in the ith gene, and k is the number of putative motifs for this factor.

In addition to this additive model, we also consider interactions among the My, i.e.

k-\

y i =

7=1

k

Σ ijMn + β, .

The results are summarized in Table 1, where all significant predictors for each tran-

scription factor are listed, together with the proportion of variation in binding ratios

explained by these predictors (R2).

There are a few common features across all factors. First, SCB is the most com-

monly shared motif in these factors. Second, there are significant interaction terms for
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Figure 2: Clustering of nine transcription factors based on gene expression data

all the factors, which suggests that these putative motifs may interact with each other to

recruit factors to the promoter regions. It is also clear from this table that the proportion

of variation explained by the putative binding motifs varies across different transcrip-

tion factors, with the variation in the binding ratios for Swi4, Swi6, and Ace explained

most by the putative motifs. But overall, the R2 is rather modest, which suggests that

either there is substantial amount of measurement variation in binding ratios, or the

motif search and binding prediction methods are far from satisfactory, or both.

3.3 Gene expression levels and empirically measured binding ratios

We consider how useful the binding ratios are to predict gene expression levels for cell

cycle regulated genes. We analyze two sets of genes separately. The first set of genes

includes all cell cycle regulated genes defined by Spellman et al [30], whereas the

second set of genes includes only those 298 genes that were found to be significantly

bound (p-value < 0.001) by at least one of the nine transcription factors [29]. At each

time point, for each set of genes, we first fit regression models with gene expression

levels as the response variable and the observed binding ratios as predictors, i.e.
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Table 1: Significant binding motifs as well as significant interactions among these motifs in
the prediction of the binding ratios for each of the nine transcription factors studied. The last
column is the proportion of variation explained by the joint effects of the binding motifs on
the observed binding ratios

TF Significant motifs and interactions Ί&

Swi4 SCB LEU MCB PDR SCB.MCB PDR.MCB 19%

Swi6 MCB STRE SCB:MCB MCB:STRE 14%

Mbp 1 MCB RRPE MCB:RRPE 4%

Fkhl RRPE STRE RRPE.STRE 1%

Fkh2 SCB RPN SCB.RPN 2%

Mem 1 SCB LYS SCB :LYS 4%

Nddl SCB REB SCB REB 6%

Ace2 SCB LEU RAP STRE SCB RAP SCB:STRE LEU RAP 21%

Swi5 SCB STRE SCBrSTRE 6%

where Rtj is the binding ratio between the ith gene and the yth factor, βy is the regression

parameter for the jth factor, and yι is the observed expression level of the /th gene. The

R2 of the model for each of the 18 time points in the cell cycle are plotted in Figures 3

and 4 (solid lines).

It can be seen from these figures that the proportion of variation explained by the

binding ratios is a function of time in the cell cycle, with the most variation explained

at the S/G2 phase. The R2 is increased if we focus on the subset of genes with each

gene bound by at least one of the nine transcription factors. In the above analyses, we

only consider the additive effects of different transcription factors. When interactions

among factors are included in the model, we observe a significant increase in the R2

for all time points. The comparisons between the additive models and the models with

two-way interactions for the second set of genes are summarized in Figure 5, and the

significant individual factors as well as significant interacting factors at each time point

are summarized in Table 2. It can be seen that some interaction terms are significant,

and that including interaction terms does improve the overall proportion of variation

explained by the binding of these nine factors.

3.4 Gene expression levels and computationally predicted binding ratios

To evaluate the power of the predicted binding ratios in explaining gene expression

levels, we fit regression models with the same response variable, i.e. gene expression
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Figure 3: The proportions of variation explained by the observed binding data (solid line)
and by the predicted binding (dotted line) for all cell cycle genes

levels, as above, but we use the predicted binding ratios through putative motifs as pre-
dictors this time. The R2 of the model is plotted in Figures 3 and 4 (dashed line). It is
clear from this figure that the observed binding data provides better information to ex-
plain expression levels. When interactions are included in the models, the overall R2 is
improved, but is still lower than that based on the empirically measured binding ratios.
Therefore, although computational approaches are able to identify binding motifs that
explain a statistically significant proportion of the variation in gene expression levels,
their utility is limited compared to the directly observed binding data. Because we only
consider nine transcription factors here, the unexplained proportion of the variation
may be due to the effects from those transcription factors not included in the analysis,
measurement errors in binding ratios, and sample variation in gene expression levels.
Despite these other uncertainties, it is remarkable that these nine factors could explain
up to 56% of the total variation at certain time points.

3.5 Estimation of transcription factor levels

These binding data also allow us to estimate relative protein expression levels for the
transcription factors if we make the simple assumption that the effects of each tran-
scription factor on inducing other genes' expression levels are proportional to the pro-
tein levels of the transcription factors in the cell. To estimate the protein levels of the
nine transcription factors, we find the regression coefficients in the following regression
model for each time point:



DNA-Protein Binding 267

15

Figure 4: The proportions of variation explained by the observed binding data (solid line)
and by the predicted binding (dotted line) for the 298 genes significantly bound by at least
one of the nine transcription factors

yι = BnL\ + . . . + Bi9L9 + eu

where 5 / ; is the binding ratio between the ith gene and the jth transcription factor for

the zth gene, and yι is the gene expression level for the ith gene. Then the estimated Lj is

the estimated protein expression level. Note that because the binding data only measure

the relative levels, we should interpret the estimated Lj as equal to some constant times

the protein level. Because we normalize the levels for the same protein across different

time points in our summary (Figure 6), this is a reasonable approach to examine how

the protein levels change across time. In Figure 6, we plot the observed gene expression

levels and estimated protein expression levels at all 18 time points for each of the nine

transcription factors. It can be seen from this figure that the correspondence between

gene expression levels and protein levels is rather poor for some genes {e.g. Ace2),

strong for some genes {e.g. Fkhl, Fkh2, and Nddl), and a phase delay for other genes

{e.g. Swi4 and Swi5).

4 Conclusions

We have first studied how well computational approaches can predict empirically ob-

served DNA-protein interactions. Although we found that the computational approaches

can yield results that are statistically significantly associated with the observed data, the
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Figure 5: The proportions of variation explained by the observed binding data when only
additive models are considered (solid line) and when interactions among factors are also
considered (dotted line) for the 298 genes significantly bound by at least one of the nine
transcription factors

correlation is rather modest. Current computational methods search for binding motifs
separately; however, our results suggest the presence of interactions among putative
binding motifs to jointly determine binding ratios. Similar observations were made by
Pilpel et al [25]. This suggests that interaction effects need to be taken into account
in the search for binding motifs. Overall, even after interactions are taken into account,
the proportion of variation in binding ratios explained by binding motifs through lin-
ear models is low. Therefore, there is ample room for methodology developments to
predict DNA-protein binding.

We studied how well gene expression levels can be explained by DNA binding
through two approaches. We found that a significant proportion of expression level
variation across genes can be explained by the empirically measured DNA binding
data. Similarly, computationally predicted binding also explain a significant proportion
of the observed expression variation, but at much lower levels. We also investigated
whether the predicted binding provide extra information to explain gene expression
levels in addition to the observed binding by including both the observed binding and
the predicted binding in the model. We found that the improvement of the model by
the inclusion of the predicted binding was not significant (data not shown). Because it
is well known that other transcription factors are involved in the cell cycle, we expect
that the availability of binding data from other factors will further improve the pre-
diction of the model. We also found that there is statistically significant evidence that
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Table 2: Significant transcription factors and interacting terms in the prediction of gene ex-
pression levels at different time points

Time Significant Terms

1 Nddl, Ace2, Mbpl, Swi4, Mcml:Swi4, Mcml.Swiό, Mbpl.Swiό, Nddl.Mcml

2 Fkhl, Fkh2, Mbpl, Swi4, Mcml:Swi4, Mcml:Swi6, Mbpl:Swi6, Fkhl:Nddl

3 Fkh2, Nddl, Mbpl, Swi6, Nddl:Swi5, Ace2:Swi5, Nddl Mbpl, FkhliNddl, Mcml:Swi6

4 Fkh2, Ace2, Mbpl, Swi6, Fkh2:Ndd2, Nddl:Swi6, Mcml:Swi4

5 Nddl, Mcml, Ace2, Swi5, Mbpl, Swi6, Mbpl:Swi6, Nddl.Mcml

6 Fkh2, Mcml, Ace2, Swi5, Swi6, Mbpl:Swi6

7 Fkh2, Nddl, Mcml, Ace2, Swi5, Swi4, Swi6, Fkhl:Fkh2, Mcml:Swi6, Mbpl:Swi4, Swi5:Swi6

8 Fkhl, Fkh2, Nddl, Mcml, Ace2, Swi6, Fkhl Nddl, Mcml:Swi6, Ace2:Swi5

9 Nddl, Ace2, Swi5, Swi4, Swi6, Mcml:Swi6, Fkhl Nddl, Nddl:Mcml

10 Nddl, Mcml, Ace2, Swi5, Swi4, Swi6, Ace2:Swi4

11 Fkhl, Mcml, Swi5, Swi4, Fkhl:Swi4

12 Fkh2, Mcml, Ace2, Swi5, Swi6, Mcml:Swi6, Fk2:Nddl, Fkh2:Ace2, Nddl:Ace2

13 Ace2, Swi4, Swi6, Ace2:Swi4, Mcml:Swi4, Nddl:Swi5

14 Mbpl, Ace2, Swi4, Ace2:Swi4, Nddl Mcml

15 Fkh2, Mcml, Ace2, Swi5, Swi4, Ace2:Swi4

16 Fkhl, Fkh2, Nddl, Swi6, Mcml:Ace2, Fkh2:Nddl, Ace2:Swi5, Nddl:Swi5, Nddl Swiό

17 Fkh2, Nddl, Ace2, Swi5, Mbpl, Swi6, Fkh2:Nddl, Mcml:Swi6, Mcml:Ace2

18 Nddl, Swi5, Swi6, Fkh2:Mcml, Mcml:Swi6, Fkh2:Swi6

different transcription factors interact with each other to contribute to the levels of gene

expression. The interacting pairs not only include those known to work as a complex or

present at the same stage of the cell cycle, they also include other pairs, suggesting that

the interactions among these factors may be far more complex than currently thought.

In our analysis, we observed that the variation explained by the nine transcription

factors is a function of time in the cell cycle. This indicates the importance of these

nine transcription factors, as a group, varies at different stages of the cell cycle.

From the observed gene expression levels for different genes and the binding ratios

between each gene and each factor, under a simple assumption, we were able to esti-

mate the relative protein levels of the nine transcription factors studied. We found that

although there is good correspondence between expression levels and "protein" levels

for some factors, the correspondence is rather weak for others. There is no general

relationship, and it appears that the relationship is both gene specific and time specific.

The lack of consistency between gene expression data and protein expression data was

noted by Ideker et al. [18]. However, factors with similar functions, e.g. Fkhl and

Fkh2, seem to have similar patterns between the observed gene expression data and

the estimated protein expression levels. From the generally weak correlations between

gene expression data and the estimated protein levels, we expect that computational

models that only use gene expression data to reconstruct biological pathways may have

limited power to make precise quantitative predictions. On the other hand, other types

of data, such as the binding information, will be very useful in such efforts.

Another question that is of biological interest but has not been addressed in this

paper is to examine how much of the gene expression similarities among a group of
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Figure 6: The observed expression levels of the nine transcription factors and their estimated
protein expression levels. The data are normalized so that gene expression levels and protein
expression levels have the same variance for a given transcription factor

genes can be explained by their regulation through a set of transcription factors. We
can study this issue by comparing clusters derived purely from gene expression data and
clusters derived purely from DNA binding data. Consistency between the two types of
clusters would imply that the studied transcription factors may explain the regulation of
these genes well, whereas a poor correlation implies that there are major mechanisms
that drive the gene expression patterns but have not been uncovered or included in the
study.

We have mainly used AlignACE and ScanACE to identify binding motifs for a
group of genes. There are other computer programs available for motif findings and
they may offer results better than we have found here. In addition, we have only con-
sidered those putative motifs that are similar to known motifs for the nine transcription
factors. Although this procedure may exclude some unknown motifs that could play
some role in determining DNA-protein binding, the likelihood of missing motifs with
strong effects is small: these factors have been under intensive study by yeast geneti-
cists, thus we expect that motifs with strong effects would have been identified. We
are currently conducting a more thorough analysis to assess the importance of these
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unmatched putative motifs.
Here we have considered the binding as a continuous measurement using the es-

timated binding ratios from replicate experiments. When we tried to dichotomize the
binding data through the p-values reported by Simon et al. [29] (0 for the absence of
binding and 1 for the presence of binding), the overall fit of the models is not as good
as those we reported above (data not shown). This suggests that the continuous mea-
surements do have more information on the regulation and interactions between genes
and the transcription factors.

The ultimate goal of genomics studies is to understand biological pathways. In this
article, we have shown the limitation of one existing computational method for studying
gene regulation and the need to integrate gene expression data with other types data to
dissect biological pathways. Incorporating DNA binding data is only the first step to
move beyond purely statistical approaches for gene expression analysis.
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Blind Inversion Needs Distribution (BIND):
General Notion and Case Studies

Lei Li

Abstract

A class of scientific measurement problems share a common feature which
we refer to as "blind inversion." That is, we can regard a module of measurement
instruments as a system with quantities to be measured as input and observations
as output. In a blind inversion problem, both the effective system and the input
are unknown to us. Due to either experimental design or the nature of scientific
problem in question, very often the distributional knowledge of the input can be
obtained. Given this piece of information, we apply a two-step scheme - abbre-
viated by BIND - to solve the blind inversion problem. First, we make use of
the distributions of the input and output to estimate the system. Second, we re-
construct the value of each individual input using the system obtained in the first
step. From this perspective, we have another look at two measurement problems
that are part of Professor Speed's recent research in molecular biology. We also
connect the idea with the long-standing predictive deconvolution method used in
seismology and discuss assessment issues of BIND.

Keywords: blind inversion; color-correction; DNA sequencing; electrophoresis; mi-
croarray; seismology

1 Introduction

Scientific discoveries are based on accurate measurements. The innovation of measure-
ment instruments and invention of conceptual models cross each other's track and lead
each other's way throughout the history of science. As instrumental techniques ad-
vance and the collected information expands, new tools of data analysis emerge along
the way. One such famous historical example is Gauss's use of least squares in astron-
omy and geodesy. Not only have ingenious algorithms been applied to the practice of
data analysis, but probabilistic models such as regression models have also been pro-
posed and widely accepted for the purpose of designing and evaluating measurement
processes. Nowadays, it has become common sense that uncertainty is the nature of
any measurement processes.

In the area of biology, human beings' understanding of life has experienced great
breakthroughs at the molecular level since the last century. Based on new understand-
ings, scientists have developed in vitro bio-techniques such as cloning and polymerase
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chain reaction (PCR). Even more excitingly, by incorporating cutting-edge technolo-
gies from physics, chemistry, mechanics, and computer science, modules of genotyp-
ing, DNA sequencing, and monitoring of mRNA abundance have been well integrated.
As a result of these engineering efforts, many current biological projects have scaled
up to the genome level. Consequently, new problems of experimental design, measure-
ment, and analysis arise to challenge researchers in different areas. In this article, we
consider two biological measurement problems relating to laser and dye techniques.

A class of scientific measurement problems share a common feature which we refer
to as "blind inversion." As shown in Figure 1, we can regard a module of measurement
instruments as a system with quantities to be measured as input and observations as
output. A full explanation of the figure can be found in Section 2. Even though in some
cases we are, at least approximately, able to describe the system structure by a para-
metric model, it is sometimes difficult to determine the effective parameters because
of uncontrollable internal or external factors that affect the performance of the instru-
ment. Thus, both the effective system and the input are unknown in a blind inversion
problem. Without further information, the problem is ill-posed because the solution
is not unique. In order to define a well-posed problem, more knowledge is required.
The nature of the blind inversion problem does not allow us to inquire for either sys-
tem parameters or values of individual input. It seems that the only choice goes to the
distributional knowledge of the input.

Although we formulate the input distribution in statistical language, the knowledge,
if there is any, really comes from considerations of the scientific measurement problem
in question. As shown later in our examples, because of either the experimental design
or the nature of the scientific problem, quantities to be measured usually demonstrate
some kind of canonical distributional form.

Given the information of the input distribution, we apply a two-step scheme - ab-
breviated by BIND - to solve the blind inversion problem. First, we make use of the
distributions of the input and output to estimate the system. Second, we reconstruct the
value of each individual input using the system obtained in the first step. It is interesting
to notice that we use observations twice yet in two different ways. An analog to this
dual perspective of the same dataset is the dual nature of light. Sometimes we adopt the
perspective of particles - photons - to understand phenomena such as the photo-electric
effect. At other times we adopt the perspective of waves to analyze phenomena such as
interference, reflection, and refraction. According to the quantum mechanical explana-
tion, the electromagnetic wave is closely associated with a probability distribution; see
Fowles [10].

BIND is more a general notion than a precise solution for a specific problem. We
realized its value from two recent biological measurement problems; however, it is cer-
tain that researchers have already explored similar ideas, consciously or unconsciously,
to solve problems in different scenarios. We point out one such example in the discus-
sion section. Still, we would like to spell it out for a broader awareness.

We arrange the materials in this paper as follows. In Section 2 we illustrate the
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idea of BIND by an artificial example. In Section 3 we show how to apply the BIND
scheme to achieve an adaptive color-correction for DNA sequencing data proposed by
Li and Speed [13]. In Section 4 we have another look at the within-slide normalization
procedure proposed by Yang, Dudoit, Luu, and Speed [26], from the perspective of
BIND. In Section 5 we connect BIND with the predictive deconvolution method in
seismology and discuss assessment issues of BIND.
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Figure 1: The schematic representation of the blind inversion problem and BIND. At the
top, each individual input, which is to be measured, goes through the instrumental system
and the corresponding output is observed. In a blind inversion problem, both input values
and the effective system are unknown. BIND includes three steps. Step 0: identify the distri-
butions of the input and output; Step 1: estimate the system function using the distributional
information; Step 2: reconstruct each individual input value.

2 An illustrative example

Consider the following linear
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where the input vector x(t) = (x\ ( / ^ ^ ( O Λ M Λ M ) ' *S unknown and to be estimated,
the output vector y(t) = (y 1(0?^ ( 0 ^ 3 ( 0 ^ 4 ( 0 ) ' *s observed, and the system matrix
W = [wij] is lower-triangular and non-degenerate. If the system function is given, then
the problem is easily solved by inverting the matrix W = [w/y]. If the system is not
given, then both [w, y] and JC(/) are unknown, and this is a blind inversion problem.
Without further information, it is an ill-posed problem in the sense that the solution is
not unique.

Interestingly, the distributional information of JC(/), if it is available somehow, can
help solve the blind inversion problem. Let us assume that the distribution of the input
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in (1) is white and normal, namely, iV(0,σ2/), where / is an identity matrix of order
four. Consequently, the distribution of output is normal iV(0, Σ), where Σ = WW. From
observations on the output, we construct an empirical estimate of the covariance matrix
by the standard method

where y = γΣ[=\ y{ή ιs the average of the observations. Then we estimate the matrix
by factorizing Σ. The uniqueness of the factorization is the direct result of the lower-
triangular assumption on W. In fact, this is the Cholesky factorization for positive
definite systems; see [11]. Denote the estimated system matrix by W. Then for each
observation of y(t), we can estimate the corresponding input by x(ή = W~λy(t).

There is an interesting "cross-talk" interpretation of this model. Suppose a commu-
nication system has four channels. The first channel provides perfect transmission and
no other channels interfere with it. The second channel is interfered with by the first
channel, namely, the first channel leaks some signal to the second. The third channel
experiences interference from the first and second channels. The fourth channel is the
worst and is interfered with by all the other three channels. This leakage phenomenon
can be described by a linear system such as that in (1), in which the signals on the
sender's side and receiver's side are respectively represented by x(t) and y(ή. The
lower triangular cross-talk matrix W is consistent with the above interference structure.
In order to reconstruct the original signals from the receiver's side, we need to clear the
interference among the channels. If we assume that the signals being transmitted are
independent among the four sources and approximately follow a normal distribution,
then we can use the above procedure to estimate the signals from the sender's side.

Algorithm 1
(BIND) The general scheme of blind inversion has three steps as shown in Figure 1:

Step 0. identify the distributions of the input and output;
Step 1. estimate the system function using the distributional information of the input

and output;
Step 2. invert the system and reconstruct each individual input value.

We refer to this idea as BIND (blind inversion needs distribution) hereafter. Measure
theory (see Billingsley [3]) sheds some light on the need for the inquiry into the distri-
bution of input. In the absence of singularity, the system function is like the Radon-
Nikodym derivative of the output distribution with respect to the input distribution.
Notice that we have equated terms of distribution and measure in this discussion. The
exact meaning of distributional information we refer to here include: first, the support
of the measure or the value space; second, the distribution on this space demonstrated
by the input. Two general issues ought to be addressed. On the one hand, we expect
that the distributional information should be complementary to any partial information
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about the system and sufficient enough to define a well-posed inversion problem. On
the other hand, despite any mathematical formulation, the hypothesis on the input dis-
tribution should be based on scientific considerations of the problem in question, and
we also expect that the hypothesis can be verified to some extent.

3 Color correction of DNA sequencing data

In 1995,1 started to do research under the Terry's supervision at UC Berkeley. Around
that time, the Human Genome Project was in its accelerating stage; the Lawrence
Berkeley and Livermore National Laboratories were part of this joint effort. The key
component of this project and of any other genome project is Sanger sequencing; see
the book edited by Adams, Fields, and Ventor [1] for background in molecular biology.
While working on the crucial problem of physical mapping, David Nelson and Terry
[16] initiated research on DNA sequencing and base-calling. The problem interested
me and later Simon Cawley. Eventually my thesis [12] and part of Simon's [5] grew out
of this research topic. One part of our DNA sequencing work is the correction of the
dye cross-talk effect; see Li and Speed [13]. At the time we proposed our algorithm,
we did not think much about the underlying principle. Now we explain it according to
the BIND scheme. The primary idea of Sanger sequencing lies in its specially-designed
dideoxy enzymatic reactions. Starting with a target DNA segment, the four dideoxy
reactions respectively produce many copies of each possible sub-fragment ending with
A, G, C, and T; see Russell [23]. For example, the four kinds of subfragments of a
DNA fragment ATTCAGCGT are given by {A, ATTCA}, {ATTCAG, ATTCAGCG},
{ATTC, ATTCAGC} and {AT, ATT, ATTCAGCGT}. These sub-fragments are sepa-
rated and ordered according to their sizes by electrophoresis, carried out in either a gel
or a capillary. A slab gel contains many lanes, yet lane-tracking is required to extract
lane signals from raw image data. Capillary electrophoresis, on the other hand, does
not require lane-tracking. In order to differentiate the four kinds of sub-fragments from
the same electrophoresis lane, each kind of sub-fragment in the enzymatic reaction is
labeled with one of four dyes. By design, these four dyes demonstrate different light
spectra with respect to a laser of a specific frequency. The problem is to measure the
dye concentrations of the four kinds at one region. Excited by the laser, the four dyes
emit photons, which are collected in four wavelength bands. However, the observations
- four fluorescence intensities - are not direct measurements of the dye concentrations
of the four kinds. This is where the complication comes in. The dataset used in this ar-
ticle was from slab gel electrophoresis and was provided by the Human Genome Center
at LBNL. In Figure 2 is shown a portion of the fluorescence intensities (top) and the
reconstructed dye concentrations (bottom). In the plot of dye concentrations, there is
a series of peaks of four colors. The rationale of DNA sequencing and base-calling is:
each peak represents one base, and the order of color peaks is consistent with the order
of nucleotide bases on the underlying DNA fragment. The color code in Figure 2 is: A
- red, G - black, C - green, and T - blue. We notice that adjacent peaks of the same
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color overlap and this is where deconvolution is required; see Li and Speed [14]. In

comparison with dye concentrations, peaks in the plot of fluorescence intensities are

not clean in the sense that they have components in all four colors. Next we explain

this phenomenon in some detail.

The spectra of the four dyes used in fluorescence-based DNA sequencing overlap,

and thus the cross-talk phenomenon arises. That is, the observed four fluorescence in-

tensities are a transformed version of the four dye concentrations. The transformation

is not completely linear because of instrumental limitations. For example, overflow

may occur in photon-counters if too many photons are emitted in a short period. Never-

theless, we approximately describe the relationship between the unknowns - four dye

concentrations C(ή, G(ή, A(ή and T(ή - and the observations - four fluorescence

intensities I\{t),h{ή,h{ήiU{ή - at an electrophoretic time t by the following linear

system:

(2)

where [WJJ] is the cross-talk matrix and (61,62,63,64) is the baseline. Note that there

are only 12 free parameters in the cross-talk matrix because the spectra are determined

by relative fluorescence intensities except for scaling. We parameterize the cross-talk

matrix in such a way that its diagonal elements are unity, i.e., wz/ = 1. We simplify

the problem by assuming that the baseline is constant, and we support this assumption

by the following argument. First, the baseline refers to the fluorescence background

of the measured region. It changes slowly along a lane in a relatively small range

with respect to signals. Second, although observations are recorded on a time scale as

shown in Figure 2, our view of their distribution ignores their time-dependence. This

is equivalent to permuting data. According to our simplification, all kinds of variations

except for cross-talk are implicitly aggregated into measurement errors.

The goal of color-correction is to reconstruct the dye concentrations using data

of fluorescence intensities. If the cross-talk matrix is known, then a straightforward

inversion solves the problem. However, the effective cross-talk matrix is unknown

and needs to be estimated. Thus we are facing a blind inversion problem, or more

specifically, an adaptive color-correction problem. According to the general scheme

of blind inversion, first of all, we need to consider the distribution of the input - dye

concentrations.

The following non-overlapping hypothesis is crucial for understanding the prob-

lem. Although dye concentrations change from lane to lane, and from gel to gel, we

discovered that their distributional pattern changes little across lanes. The distri-

bution can be graphically displayed by pairwise scatter plots; one such example is

shown in Figure 3 (the data shown in the figure is explained after Algorithm 2). The

first sub-plot only includes concentrations of C and G fragments. Two distinct cluster
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Figure 2: Top: a segment of raw sequencing data from slab gel electrophoresis; Bottom:
the color-corrected data, or the estimates of the dye concentrations except for a scale. Color
code: A - red, G - black, C - green, and T - blue.

directions are seen along the axes, and almost all other points are in the right-upper
quadrant generated by the two cluster directions. We also observe similar patterns in
the other five 2-D scatter plots. In fact, such a distributional pattern is determined by
the design of Sanger sequencing. Suppose we are in an ideal case by assuming

• Spectrally non-overlapping hypothesis: the four dyes are cross-talk free and
we observe dye concentrations directly;

• Spatially non-overlapping hypothesis: at least in a fairly large range of each
trace, the effective mobilities of the four dyes are approximately identical and
thus we observe non-overlapping peaks of all four kinds.

In the following, we illustrate how these two hypotheses explain the pattern of scat-
ter plots as shown in Figure 3. For example, we map those observations from non-
overlapping C-peaks in Figure 2 (bottom) to points on the cluster directions along the
C-concentration axes in the first, second, and third subplots and non-significant points
close to the apexes of the fourth, fifth, and sixth in Figure 3. We map those obser-
vations from overlapping regions of C-peaks and G-peaks to inner points in the first
quadrant, to points on C-concentration axes in the second and third subplots, to points
on G-concentration axes in the fourth and fifth subplots, and to non-significant points
close to the apex of the sixth quadrant. We map those observations from overlapping
regions of more than two kinds of peaks in the same fashion. This key distributional
pattern can also be verified empirically using data obtained from a specially designed
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experiment. That is, the four differently dye-labeled sub-fragments generated from the
four dideoxy reactions are placed into four different yet adjacent lanes of a slab gel.
Fluorescence intensities are collected in the same four wavelength bands as those in
standard sequencing. This setup uses the same equipment as that in standard sequenc-
ing. In this experiment, the four fluorescence intensities obtained from one lane are
contributed by only one kind of dye, and their sums are expected to be proportional
to the dye concentrations. Here we have ignored the minor baseline issue. The pair-
wise scatter plots of these "substitutes" of dye concentrations, obtained from one such
a cross-talk free experiment, demonstrate the exact pattern in Figure 3; see Figure 1
in [13]. This feature of the distribution provides the basis for our estimation of W and
evaluation of color-correction. An appropriate cross-talk matrix is expected to make the
distribution of the reconstructed dye concentrations match the pattern shown in Figure
3.
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Figure 3: Pairwise scatter plots of the reconstructed dye concentrations.

The non-overlapping hypothesis on distribution of dye concentrations is sufficient
for estimating the cross-talk matrix. Let us examine the distribution of the raw data -
four fluorescence intensities - the output of the system (2). Once again we visualize it
with pairwise scatter plots. Figure 4 depicts the six scatter plots of the 3400 observa-
tions from one slab gel lane. Let us ignore points in the bottom-left corners of the plots,
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which correspond to measurements in valley regions between peaks, or to peaks with

low intensities at a pair of wavelength bands; cf. Figure 2. Most of the other points

lie in a region spanned by two cluster directions - two arms - though they are not as

distinct as those in Figure 3. The upper arm of the 3rd, 5th and 6th scatter plots are

even more vague because the fourth dye is not as stable as others. If we imagine the

complete picture of the distribution in the four-dimensional space, we would find four

cluster directions, each corresponding to one column of the cross-talk matrix and al-

most all other data points lie in the convex cone spanned by them. The pairwise scatter

plots are the six 2-dimensional projections of the 4-D scatter plot.
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Figure 4: Pairwise scatter plots of the four fluorescence intensities of a slab gel dataset.

The data along each of the 12 arms in the pairwise scatter plot contain the informa-

tion for estimating one off-diagonal parameter in the cross-talk matrix. Later, we refer

to them as "typical points". For example, in the first scatter plot in Figure 4, the slope

of the lower boundary should be close to W21, while the slope of the upper boundary

should be close to \/wn- In other words, the information relevant to the parameter w\ι

can be found in the lower "arm" and that relevant to \/w\2 can be found in the upper

"arm" in the first subplot. Our focus is thus reduced to the 12 slopes. An analog to

these "typical points" is the concept of sufficient statistics in statistical modeling. The

connection between the data and the parameters leads us to a natural algorithm of esti-
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mating the cross-talk matrix: first identify the typical points along the 12 boundaries in

the six scatter plots; second, estimate the 12 slopes based on the selected sample points.

Technically, we use a binning technique to select typical boundary points and arobust

regression to estimate boundary slopes. These statistical considerations are necessary

for handling measurement errors and potential outliers. We notice that some inner

points in the 4-D convex cone could possibly mapped to regions close to boundaries

when being projected onto 2-D planes, and they would confound with useful informa-

tion, namely, the typical points. In order to get over this complication, we iterate the

above procedure. As iterations are carried out, we expect our estimates to get closer to

the target cross-talk matrix. The description of the algorithm is given as follows.

Algorithm 2

(Adaptive color-correction)

0. Initialization. Let i = 1. Set the raw data of fluorescence intensities to be the

working dataset and the initial estimate W^ to be the identity matrix. Also set a

small positive number α as the threshold of color-correction and a positive integer

M as the maximum number of iterations.

1. Sampling. Consider the first component. It is helpful to look at the first scatter plot

consisting of the first and second components in Figure 4.

• Selecting informative range. Choose one quantile for the first component.

The two bounds of the informative range forw2\ are defined by this quantile

and the largest value of the first component. Those points in the current

working dataset with their first components in the range are selected in this

iteration for the estimation ofw2\. For example, if we choose 50%, then, it

says we will use those points whose first coordinates are in the upper half;

cf. Figure 2, 3, 4.

• Binning. Divide the range between these two bounds into bins of the same

width.

• Selecting extreme points. Among those points whose first component falls

into a given bin, find the one having the minimum value in the second com-

ponent.

2. Robust regression. Take the points obtained from last step, and run a robust regres-

sion of their second components against the first. The estimated slope is taken to

be the next estimate of W2\. Similarly, the estimate of the slope of the other arm

in the same scatter plot is taken to be the next estimate of w 12.

3. Estimating other parameters. Apply the steps similar to 1 and 2 to estimate the

other five pairs {wi3, w 3i} {w\4, w4i}, {w23, w 3 2}, {w24, w 4 2}, {w34, w4 3} and

assemble them in W.



Blind Inversion Needs Distribution 285

4. Checking the color-correction quality. Calculate the maximum of the absolute

values of the 12 estimated slopes obtained in step 1, 2 and 3. We hereafter refer

to this number as cc-number (initials of color correction). If the cc-number is

below the threshold α, stop; otherwise, go to step 5.

5. Updating. Apply the inverse of this matήx to the working dataset (pointwise) and

call this the new working dataset. Set W® = W(l~1^ * W and normalize each

column ofW® to make the diagonal elements unity. Increase i by 1. Ifi > M,

stop; otherwise, go back to step 1.

The algorithm is stopped once we recognize a satisfactory color correction by checking

the cc-number; see [13] for more details. On exit, W® is the estimate of the cross-talk

matrix and the working dataset contains the reconstructed dye concentrations. Thus,

the procedure does bind the two problems: estimating the cross-talk matrix and color-

correcting the measurement of fluorescence intensities. In fact, the dye concentrations

in Figure 3 were reconstructed using this algorithm from the fluorescence intensities

shown in Figure 4, and the results have been examined. We have experimented with

different regression methods in step 2. We observe that the samples obtained in step

1 are not always on the boundaries. Least squares does not work well because of its

sensitivity to outliers, and in [13] we proposed the use of a robust procedure - least ab-

solute deviations. Later we adopted the least trimmed squares method (LTS) because

of its high breakdown point and relatively high efficiency; see Rousseeuw and Leroy

[22]. Denote the typical samples obtained from step 1 by (JCI ,y\), , (xs,ys). The least

trimmed squares method estimate a straight line with intercept b (an equivalent term to

the baseline in (2)) and slope w by

\y-b-w x\2

{k),£

where \y — b — w JC|?^ represents the k-th ordered squared residual, and the sum only

takes the smallest q squared residuals into account. We have tested LTS with q =

[n/2] + 1 and found that five iterations offered a satisfactory solution. The cross-talk

matrix used in Figure 3 is obtained in this way. Least median squares method (LMS)

[21] is another robust procedure and is statistically inefficient with a convergence rate

O(l/\/N) under the normal assumption. On the other hand, algorithms requiring only

O(N2) running time do exist to compute its exact solution in our univariate regression

case; see Souvaine and Steele [25]. Another remark is that bins in step 1 do not have

to be non-overlapping. However, the bin-width, like the width parameter in kernel

smoothing, is the most important and sensitive tuning parameter in this algorithm.
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4 Within-slide normalization of gene expression data
from microarrays

With the rapid progress of genomic-scale sequencing, complete DNA sequences of

some organisms are available, and other genomes can be sequenced in a fairly reason-

able time period. Genes on DNA sequences - the blueprint of the life - are the basic

biological elements. However, understanding genomic information is much more chal-

lenging. A further study of functionalities of genes necessitates the tracking of their

dynamic expressions in living organisms. The current method to measure the abun-

dance of mRNA for a specific gene makes use of reverse transcription to its comple-

mentary DNA (cDNA), followed by hybridization. The cDNA microarray technique

prints thousands of genes on a microscope slide and produces snapshots of gene ex-

pression profiles at specific times for specific samples; see Schena, Shalon, Davis, and

Brown [24]. A comparison strategy is adopted in cDNA microarray; that is, relative

gene expression levels of one sample are measured with respect to a reference. The

idea is implemented by a dye technique: label cDNAs from a sample and its reference

by two different fluorescent dyes, typically Cy3 (green) and Cy5 (red). Our focus is

the difference on the logarithm (base 2) scale of every pair of expression levels corre-

sponding to the same spot on a slide (probe). Let us denote the logarithm of expression

levels of the sample and reference at the z'-th spot by the pair (Uj, Vj), and denote the

logarithm of their measured fluorescence intensities by (Uj, Vj). Ideally, we expect that

(Uj, Vj)=(Uj, Vj) except for an offset constant. In practice, non-constant measurement

bias occurs because of factors such as physical properties of dyes (heat and light sen-

sitivity, relative half-life), efficiency of dye incorporation, experimental variability in

probe coupling and processing procedure, and scanner settings at the data collection

step. In order to improve the quality of microarray data, a normalization procedure to

adjust the measurement is required.

Sources of variability can be classified into two categories: internal and external

with respect to each slide. The effects of external factors are potentially detectable

and estimable with multiple-slide data if the experiment is well designed. However,

the effects of internal factors are confounded with each slide and thus an adjustment

procedure adaptive to each slide is indispensable for the reconstruction of the raw ex-

pression levels. Yang, Dudoit, Luu, and Speed [26] proposed an ingenious method -

within-slide normalization - to solve the problem. In the following, we have another

look at the problem and their normalization procedure from the perspective of BIND.

Consider a system with (Uj, Vj) as input and (Uj and Vj) as output. Let h = (Ai, hi) be

the transformation function; namely,

Γ Uj = A,(C/y,F/)

\ Fy = A2(C/7,K,).

The goal is to reconstruct the input variables (Uj, Vj) based on the output variables

(Uj, Vj). The system function h = (hi.hi) represents the effect caused by all internal
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factors. In fact, we can also include external factors if we have no other better way to
estimate them. Obviously this is a blind inversion problem. The BIND scheme leads us
to the question: what is the distribution of input, the true expression levels? First, let us
suppose that the sample and the reference are identical and that the difference of their
expression levels is purely caused by random and uncontrolled effect. In this ideal case,
we assume that the random variables {(£//, Vj)J =l,- }) are independent among pairs
and within each pair, and they are distributed according to F(UJ — aj) and F(VJ — aj),
where F(-) is a distribution symmetric about zero and aj is the average expression level
of the j-th gene. If we look at their joint distribution by the scatter plot of U versus V,
then we should see that the points cluster around the straight line V — U. The average
deviation of the points from the straight line measures the precision of the experiment.
We denote this joint distribution by Ψ. If the effective measurement system h is not an
identity one, then the distribution of the output, denoted by Ψ7, could be different from
Ψ. This is exactly what is reported by Dudoit, Yang, Callow and Speed; see Figure 2 in
[7]

Next we go back to real practice. Nowadays each slide contains more than a few
thousand genes. Suppose that only a small proportion α of the genes are differentially
expressed while expressions of the other genes are unchanged except for random fluc-
tuations. Consequently, the distribution of the input in the blind inversion story is a
mixture of the two components. One component consists of those unchanged genes,
and its scatter plot is similar to Ψ. The other component consists of the differentially
expressed genes and is denoted by Γ. Although the cloud shape of Γ in its scatter plot
is difficult to find out, its contribution to the input is at most α. The scatter plot of
the input variables (Uj, Vj) is a superimposition of those of Ψ and Γ weighted respec-
tively by 1 - α and α. We assume that the system function h is a 1-1 transform. Under
h, Ψ and Γ are transformed into distributions denoted respectively by Ψ' and V; that
is, Ψ7 = h(Ψ), Γ = h(Γ). This implies that the distribution of the output (£/,-, Vj) is
(1 - α) Ψ7 + αΓ 7. If we can separate the two components Ψ7 and Γ7, then the transform
h of some specific form could be estimated from the knowledge of Ψ and Ψ7. An ap-
propriate estimate h of the transform should satisfy the following: the distribution of
h " 1 (Ψ7) is similar to that of Ψ, which centers around the line V — U. In other words,
the right transform straightens out the distribution cloud of Ψ7. Yang, Dudoit, Luu, and
Speed [26] first rotate the coordinate system by 45° as follows,

X = ( t / + F ) / 2
Y = U-V.

After the rotation, the conditional distribution of Y given X should be symmetric about
zero. In the scatter plot of {X,Y)> the cloud should horizontally center around zero.
Each measurement pair {Xj,Ϋj) is a transformed version of (Xj,Yj); we denote Xj =
g\(Xj,Yj) Ϋj = g2(Xj,Yj) as in (3). To make the system function estimable, we let
gx (χ,y) = x and gi{x,y) = gi(x), a free function with some kind of smoothness. Thus
the problem becomes a regression problem of Ϋ versus X, either in a parametric or in
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a nonparametric form. Yang, Dudoit, Luu, and Speed [26] proposed to use lowess, a

robust local linear regression technique (see Cleveland [6]), to remove the component of

Γ and estimate the transform function g. Once it is estimated, we apply its inverse g to

the observations and obtain a reconstruction of the expression difference for each probe.

Another stratification strategy is adopted in combination with lowess smoothing in

[26]. That is, the data in one microarray are grouped according to the spatial setup of

array printing so that data within each group share a more similar bias pattern. Next, the

above normalization procedure is applied to each group; this is referred to as within-

print-tip-group normalization in [26]. The above argument provides an interpretation of

the within-slide normalization from the perspective of BIND. As a consequence, we see

that one justification of the procedure lies in the hypothesis on the joint distribution

of the true gene expression levels of a sample and its reference.

5 Discussion

5.1 A BIND story in seismology: predictive deconvolution

Various cases of blind deconvolution are reported in the literature; see Li [15] for a

recent example and for references. We note that they belong to the class of blind in-

version problems, and it is the input distribution that comes to help. We briefly discuss

one example, the method of predictive deconvolution used in seismic trace processing,

because of its scientific merit. The seismic reflection method aims to determine the

distance and directions of remote and inaccessible bodies within the Earth, which is

of great importance to oil exploration and other geophysical applications. The basic

scheme of the seismic data collection process is the following: active sources of energy

such as dynamite, air guns, and chirp signals generators at the surface of the Earth are

used to produce waves of some form; the waves propagate downward from the sources

into the Earth; at the interfaces between geologic layers in the Earth's crust, part of

the waves are transmitted while the rest are reflected; eventually some waves propagate

upward to the surface of the Earth and can be detected by receivers located at vari-

ous distances from the source. The recorded traces of the received waves make up the

seismogram. More background can be found in Robinson [17, 18], and Robinson and

Durrani [19]. One important problem in seismic data processing can be formulated as

follows. Denote the seismic traces by a time series u(k), k = 1, , T. At a stage of the

processing (after signature deconvolution), we can postulate a convolution model:

iι(t)=/(*)*v(*) = Σ/(*- | >(0, (4)

where f(k) is the reverberation waveform and v(k) is the reflectivity function or the re-

flectivity coefficient at each layer. Let £/(z), F{z), and v(z) be the z-transforms of u{k),

/(it), and v(Jt), respectively. Then we have U(z) = F(z)V(z). We can regard Equation

(4) as a linear system, in which v(k) and u(k) respectively play the role of unknown
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input and known output. According to the feedback hypothesis, the reverberation fil-

ter /(£), which characterizes the system, is not only causal but also minimum delay.

Specifically, the feedback hypothesis assumes that the reverberation effect takes a form

of finite feedback filter, namely,

F(z) = -
1 4- a\z + α 2 z 2 + + apzP '

whose zeros are outside of the unit circle on the complex plane. The reverberation

refers to the fact that waves are successively reflected between two interfaces of a layer.

In practice, reverberations are often generated by such a complicated physical situation

with many layers that the effective filter is impossible to be obtained by direct mea-

surement. Thus in order to unravel the seismic traces, we need to estimate both the

system filter F(z) and the input - the reflection coefficient. It is clear that this is a

blind inversion problem. According to the scheme of BIND, we first inquire for the

distribution of the reflection coefficients. Fortunately, several studies showed that the

random hypothesis is approximately valid in many cases; see Robinson [17], page

278 and the references mentioned there. The random hypothesis assumes that the re-

flection coefficients v(k) follow a white noise stochastic process. That is, £[v(£)] = 0,

E[v(k)v(j)] = E[v(k)]E[v(j)] = σ 2 δ 7 ,*, ifkφ j . As a matter of fact, the second order

statistical property of a stationary stochastic process is characterized by its autocorre-

lation coefficients. If we further assume that v(k) is normal, then the distribution of the

input is uniquely determined because the higher-order cumulants of a normal distribu-

tion are zero; see Rosenblatt [20]. We note that the normal assumption is not required

by the algorithm of predictive deconvolution. A consequence of the random hypothe-

sis is that the output, seismic traces, is a zero mean stationary stochastic process whose

second order statistical property is characterized by its autocorrelations, denoted by

Juu{k), k = 0,1, . This set of statistical correlations relates to the reverberation filter

through the Yule-Walker equation:

Ύuuίo) Ύuud) ••• ΎiιiιOfc-1) \ / αi \ / v.-.m \

luu(0)

Ίuu{k-2)

Ίuu{k-2)

Ίuu(0)

α 2
luu(2)

(5)

\akj \ yuu(k)

In practice, we plug into this equation estimates of yuu{k) based on data and apply the

Levinson-Durbin algorithm [8] to obtain an estimate of the filter denoted by ά^. The

Burg algorithm alternatively estimates the filter directly from the data. The determi-

nation of the order p in the filter is a problem of model selection and the technique of

AIC or BIC can be applied. With the estimated filter and starting values w(l), , u(q)

obtained from seismic and numerical considerations, we reconstruct the reflection co-

efficients using the feedback procedure

i=\
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This is the so-called predictive deconvolution. Except for the specific time series tech-
niques involved, it is consistent with the BIND philosophy as used in previous exam-
ples.

5.2 Statistical assessment

5.2.1 Goodness of match with the input distribution

To assess a BIND procedure, we examine the distribution of the reconstructed input
and see if it matches the hypothesis. In the DNA sequencing example, we check the cc-
number achieved at the exit of Algorithm 2 and recognize a satisfactory color correction
if it is below a threshold. A graphical check of the scatter plots of the color-corrected
data like Figure 3 might be expected in some cases. For cDNA microarray example,
we can similarly define a quality number as the maximum absolute value of the regres-
sion line obtained by lowess, in which the parameters are chosen as those in [26]. The
graphical check could be sufficient for many biologists. For the illustrative example
(1), we test the independence of the four components; this can be carried out by the
likelihood ratio test or other tests, see Chapter 9, Anderson [2]. For the seismic trace
example, we check the whiteness of the reconstructed reflection coefficients by exam-
ining the flatness of its periodogram or using other statistical tests; see Brockwell and
Davis [4].

5.2.2 System sensitivity analysis by data self-perturbation

The reconstruction of input in the BIND scheme is associated with the problem of
system estimation. As in any other estimation problem, it is valuable to assess the ac-
curacy of the estimates of the system. One technique in this regard is the bootstrap;
see Efron and Tibshirani [9]. In the DNA sequencing example, we can generate boot-
strap samples by sampling from the raw dataset with replacement and applying the
same color-correction algorithm (with the same set of parameters) to each bootstrap
sample. The bias and standard deviation of the bootstrap estimates reflect systematic
bias and variability of the algorithm with respect to data self-perturbation. It is possible
that these statistics contain some scientific meaning and could provide some guidance
for researchers. For the DNA sequencing example, we show the result of a bootstrap
study with 200 replicates in Table 1. It includes the bias, standard error, and coeffi-
cient of variation for each of the 16 parameter estimates - here we switch from the
parameterization of the cross-talk matrix in (2) to the one whose columns sum to unity.
The estimates are almost unbiased for all the four dyes. The SDs and CVs measure
the stability of the four dyes. For example, the comparatively larger SDs and CVs of
the estimates regarding the fourth dye associated with T indicate that its physical and
chemical properties are not as stable as others. Our collaborator Dr. Kheterpal (she was
with Prof. Mathies' group in the Chemistry Department at UC, Berkeley during our
collaboration) verified this observation. This sensitivity analysis by bootstrap applies
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to other parametric systems such as the example in (1). However, the technique of data
self-perturbation needs special care for systems with a nonparametric form, such as that
in the microarray example and for systems with a spatial structure, such as that in the
seismology example.

Table 1: Accuracy assessment of the estimate by bootstrap (x 10 3)

1

2
3
4

1
2
3
4

C
mean

333
330
241

96 J

bias
-12
0
9
2

SD
14
7
10
6

CV
42
21
42
63

A
mean

70
209
544
176

bias
0
5
-3
-2

SD
10
12
16
6

CV
143
57
30
34

G
mean
203
412
296
88

bias
-1
1
0
0

SD
3
4
4
4

CV
15
10
13
46

T
mean
115
139
183
562

bias
-3
4
-4
3

SD

11
26
17
50

CV
96
187
93
89

5.3 Final remarks

Among the many things I learned from Prof. Terry Speed through the years of my
study under his supervision, the one that impressed me very much was his conscientious
service to the scientific community, especially in genetics and molecular biology, as a
statistician. His broad and dynamically-changing research interests are phenomenal.
His extensive collaborations with biologists constantly bring research life-blood into
his students' study. We also notice that he earned so much respect not only from his
statistician colleagues but also from researchers in other fields.

This article is motivated by Terry's advocacy of considering scientific meanings
in mathematical and statistical modeling. The abstraction of BIND provides a way
to think about a scientific problem mathematically as well as a way to think about math-
ematics scientifically. The BEND scheme hinges on a hypothesis on the distribution of
system input. The verification of this hypothesis requires careful consideration, and it
varies from one problem to another. No matter how BIND is implemented, either by an
algorithm from numerical recipes or by a novel procedure, the bottom line is: the distri-
bution of the reconstructed output should match the hypothesis. It is our hope that the
BIND notion can help statisticians apply their toolbox to more scientific measurement
problems in the future.
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Designing Meaningful Measures of Read Length
for Data Produced by DNA Sequencers

David O. Nelson and Jane Fridlyand

Abstract

Nearly everyone uses "the number of Q20 bases" as a rough measure of the ef-
fective length of a given DNA sequence produced by the base-caller PHRED. This
metric simply counts the number of bases in a read in which the PHRED quality
score is at least 20. While the number of Q20 bases is a simple, easy to implement
rule-of-thumb, it does not have much else going for it: it consistently underesti-
mates the number of usable bases in the read. In this short paper, we develop and
evaluate an alternative metric that uses more of the PHRED quality data in a read
to predict how many bases from that read would make it into the eventual con-
sensus sequence of an assembly. The metric was developed by evaluating a set of
pre-existing, high-quality assembled contigs. The resulting predictor is a simple
function of the histogram of PHRED quality values already produced by sequenc-
ing software and performs nearly as well as a more complex additive model that
uses regression splines.

Keywords: DNA read length; genomics; predicting progress; PHRED; PHRAP

1 Introduction

Large-scale genome sequencing projects have become increasingly common over the
last fifteen years. Many recent papers, starting with Lander and Waterman in 1988 [6],
have described mathematical models for predicting the progress of such sequencing
projects. These different "Lander-Waterman" analyses arise in response to different
approaches to sequencing large genomes. They model the sequencing process as a cov-
erage process like those described by Hall [5] and derive predictions of mean coverage,
depth, expected number of gaps, and the like, as a function of the number of clones
sequenced N, the genome size G, and the length of sequence L obtained from an in-
dividual clone chosen for sequencing. These predictions are then used to estimate the
number of clones required to obtain an assembled genome to a given depth or coverage.
Conversely, statistics on coverage and read length gathered during the sequencing effort
are used with these models to track progress, detect problems, and refine estimates of
the remaining work required.

The approximate genome size G can be determined in advance, and number of
clones sequenced N is easy to obtain from daily production statistics. However, what
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about LΊ The average number of bases sequenced from the end of a clone can be

tuned by changing electrophoresis conditions, run-time, and the sequencer chosen to

sequence the DNA. In fact, deciding on the desired length I is a major factor in planning

sequencing projects, along with the size (or sizes) of sequencing clone and whether or

not both ends are to be sequenced.

On one hand, most Lander-Waterman analyses assume L to be a constant (although

Lander and Waterman do provide some guidance on the degradation in performance due

to random clone sizes) and assume that any overlap between two clones is detected with

probability one for overlaps of a certain size or greater. On the other hand, sequencing

centers that use the most popular combination of base-caller and assembler, PHRED

[4, 3] and PHRAP [7], are faced with a much more complex situation with respect to

read length and overlap detection. PHRED can produce extremely long reads, but also

throttles the process somewhat by providing a probability of error with each base read.

This base-specific probability of error is expressed as a "quality value" for each base i\

qi = - 101og10/?z, where pt is (more or less) the probability that base i is called in error.

PHRED produces integer quality values ranging from zero to approximately fifty, and

those associated with bases at the ends of the read are typically much lower than those

in the middle. PHRAP uses these quality values in the assembly process in a complex

way. A byproduct of an assembly is a "trimmed" read for each read that entered the

assembly, in which some number of bases at the start and end of each read are discarded

during the alignment process.

Most sequencing centers finesse the problem of estimating L for a read by the sim-

ple expedient of counting the number of bases in a read for which q\ ^ 20. This £?20 rule

arose during the initial phases of the Human Genome Project and was adopted by the

public consortium as a common measure of read length. However, for planning future

projects, it would be desirable to derive a better measure of read length, and preferably

one that related to some measure of the useful size of a read.

In this paper, we define the "effective read length" of a read in an assembly as

the length of the trimmed read produced by PHRAP. We believe that this definition

of effective read length provides a more reasonable model for L in Lander-Waterman

analyses of projects that use PHRED and PHRAP as a base-caller and assembler. In this

paper, we explore some of the features of this distribution and build predictors of L as

a function of the set of q^ Our goal is to provide a simple algorithm to estimate L that

is more accurate and precise than the Q20 rule currently in place.

2 Methods

All analyses were done using the statistical computing environment R [8].
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Source of Reads

We analyzed assemblies from fifty-one sequencing projects produced by the Joint Genome

Institute (JGI) in Walnut Creek, California during two time periods spanning the 1998—

2002. Forty-eight of the sequencing projects were cosmids completed during the period

of November 1998-April 1999. These projects were sequenced on ABI 377 slab gel se-

quencers [2]. Three of the sequencing projects were bacterial artificial chromosomes

(BAC's) completed during the period June 2002-August 2002. These projects were se-

quenced on a combination of Molecular Dynamics Megabace 1000 [1] and ABI 3700

class capillary sequencers.

All projects were base-called and assembled using the current versions of PHRED

and PHRAP with default parameters. From each project, we selected only those contigs

which contained at least 300 reads and had coverage between 5 and 60. Five of the

projects had two such contigs; the rest had just one "main" contig.

Data Gathering

We excluded reads that contained vector, as they would need a special treatment in

order to remove the vector sequence and calculate effective read length. In addition,

we excluded those reads that had ends extending outside the trimmed part of the final

contig. We obtained statistics on each read from the output files produced by PHRED,

as well as the standard output file produced by PHRAP. Data obtained for each read

included the length of the untrimmed read; the length of the trimmed read; the inser-

tion, deletion, and substitution error rates in the trimmed part of the read; the expected

number of correct bases in the read, defined as n - Σi 10~^/10, where n is the number

of bases read and the qt are the corresponding quality values; the number of bases in

the read with PHRED quality values in five different histogram bins (0-9, 10-19, 20-

29, 30-39, 40 and above); and the expected number of correct bases in each of those

histogram bins.

3 Results

Distribution of Percent Trimmed

Table 1 summarizes, by quintile of average depth, the characteristics of the 52,097 reads

from fifty-one contigs obtained from the forty-eight slab gel projects. Each row of the

table shows summary statistics for one of five quintiles of depth of coverage in the

slab data set. Summary statistics for each quintile include the number of contigs, the

median number of reads in the contigs, and the median length of the contigs. Cosmids

are around 40,000 bases long, approximately the same size as the median size of each

contig in all five depth quintile.

Table 2 describes the characteristics of the 13,539 reads from five BAC contigs ob-

tained from the three capillary electrophoresis projects. BAC's are considerably longer
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Table 1: Characteristics of 51 cosmid contigs by depth quintile

Quintile

1

2
3
4

5

Depth

[12,14]

(14,16]

(16,18]
(18,21]

(21,46]

Number

of Contigs

14

9
10

8

10

Median

Number of Reads Length of Contig

772
882
945

1,064

1,326

43,458

39,670

41,473

38,790

39,890

Table 2: Characteristics of five BAC contigs sequenced by capillary electrophoresis

Project

THW

TKM

TKP

Contig

I
I

II
I
I

Depth

37
50
50
39
45

Number of Reads

3,934

1,967

2,729

1,012

3,897

Contig Length

177,944

67,818

96,546

40,502

142,666

than cosmids, ranging from 150,000 to 200,000 bases in length. Adding up the con-

tig sizes, we see that the selected contigs represent approximately the length of their

respective clones, and are all sequenced to high depth.

Figure 1 shows the relationship between raw and trimmed read length as a function

of sequencing technology and quartile of raw read length within sequencing technol-

ogy. Note that the read length quartile values differ in slab and capillary technologies,

largely because of the superior read length obtained with current capillary machines.

The quartile bins of raw read length for slab reads were 107-607, 608-657, 658-832,

and 833-2149. For capillary reads, the quartile bins were 187-795, 796-1114, 1115-

1213, and 1214-1578. There is considerable similarity between the distributions of

proportion trimmed, as a function of read length. The longer the raw read is, the larger

the proportion trimmed. Hence, the number of bases trimmed goes up dramatically as

the raw read length increases. The larger spread of proportion trimmed in the highest

quartile of slab gel reads is likely due to the extremely large size of the bin (833-2149,

versus 1214-1578 for the capillary reads). Overall, the median percentage trimmed

was slightly over seven percent, approximately twenty-five percent of the reads had

less than five percent trimmed, seventy-five percent of the reads had less than fifteen

percent of the raw read length trimmed, and 456 reads had over 90 percent trimmed.



Measures q/̂ DNA Read Length 299

Proportion of read trimmed by PHRAP
by sequencer type and read length quartile

J

:-&-

Capillary

DβO O ODOO OO OO

.2 0.4 0.6 0

Proportion of total read length trimmed by PHRAP

Figure 1: Boxplots showing the distribution of of the proportion of the read trimmed
by PHRAP, as a function of the type of sequencer (slab gel vs. capillary) used and the
quartile of raw read length. Within each panel, four boxplots are shown: one for each
quartile of raw read length. The top panel shows the distribution for the reads in the
data set that were produced by a slab gel sequencer, while the bottom panel shows the
distribution for reads in the data set that were produced by capillary sequencer. Note that
the average proportion trimmed increases with increased read length, but is relatively
stable across sequencing technologies.

Current Measures of Effective Read Length

We now examine how well two common measures of read length predict the actual

number of bases used by PHRAP: the QIQ rule and the "expected correct", or Ec rule.

First, we examine the QIQ rule.

Recall that the QIQ rule simply counts the number of bases with a PHRED quality

score of 20 or more. Figure 2 shows a scatter plot of the relationship between Q20 and

the number of bases actually used. This plot shows clearly the extent to which Q20

dramatically underestimates the actual number of bases used by PHRAP. Superimposed

on the scatter plot is a scatter plot smoother fit and a line dividing the region where Q20

overestimates from the region where it underestimates. Note the almost total lack of
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Number of bases actually used by PHRAP
as a function of the number of reported "Q 20" bases

(sample of 5000 reads)

1000-

500-

0-

.: "Z>
^>

Capillary

•

J

loess fit
Line y = >c —

Slab

WMf
, r *

800 0 200
Number of "Q 20" bases

Figure 2: The relationship between the number of "Q 20" bases in a read and the actual
number of bases used in the assembly. The £20 rule almost universally underestimates
the number of usable bases in a read, irrespective of sequencing technology. Note that
for ease in graphing, only 5000 randomly sampled points are plotted.

points where Q20 underestimates the read length. This result is not too surprising, as
PHRAP goes to great lengths to use the bases at the ends of the read, where the quality
scores are typically low. In addition, the graph does indicate that some other metric
that uses more of the information in the PHRED histogram cannot help but improve the
performance of a read length predictor.

A second obvious choice for read length estimator is the expected number of correct
bases, which can be written as

1=1

where n is the number of bases in the untrimmed read. This estimator subtracts off
a read-specific constant from the untrimmed read length in an attempt to estimate the
number of trimmed bases.

Figure 3 shows a scatter plot much like Figure 2, only plotting the number of bases
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Number of bases actually used by PHRAP
as a function of the expected number of "correct" bases

(sample of 5000 reads)

loess fit
Line y = x —

Capillary Slab

Ak
+

1000 1500 0 500

Expected Number of "correct" bases

Figure 3: The relationship between the expected number of correct bases, as estimated
by PHRED quality scores, and the actual number of bases used in the assembly. Note
that the "expected number" rule performs better, but often overestimates the number of
usable bases in a read.

used against Ec. Here we see the opposite effect of that observed with the Q20 rule: Ec

tends to overestimate the number of bases used by PHRAP. Despite that overestimation,

the tight clustering of points around the line jy = x indicates that this estimator is clearly

superior to the Q20 rule, especially for the capillary reads. Perhaps some combination

of the two estimators should be considered. We now examine that possibility.

Additive Combinations of Histogram Values

We now consider a simple generalization of the above two estimators. The Q20 rule

can be written as a simple affine combination of the histogram counts produced as a

byproduct of the sequencing process flow at the JGΓ.

220 = wo + w\N\ + W10N10 + W20N20 + W30N30 + W40N40,

where N\9N\o, Λ/20, N30, and N40 are the number of bases in the read with PHRED quality

values in [0,9), [10,19), [20,29), [30,39), and [40,50], respectively, and w0, wu wl0,
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0> W30> and W40 are weights. For the £20 rule, WQ = w\ = w\o = 0, and W20 = W30 =

W40 = 1. The Ec estimator can also be easily approximated by linear combination

of these histogram counts, with the weights wj approximating error probabilities for

bases in histogram bin j . We will now generalize to additive combinations of smooth

functions of histogram counts as predictors of read length.

0 200 600

N.01.09

0 200 400 600 800

N.10.19

0 50 150 250

N.20.29

0 100 200 300 400

N.30.39

0 200 400 600

N.40.pius

0 200 600 1000

Fitted G A M model

Figure 4: The five smooth terms in a GAM estimate of the number of bases used by
PHRAP, along with a plot of the deviance residuals versus fit. The five terms correspond
to smooth functions of the number of bases in each of the five histogram bins described in
Methods. In addition, a two-factor term adjusting for sequencing technology was also
included. The labels "N.01.09" through "N.40.plus" correspond to the five histogram
bins of PHRED values produced by local sequencing software (0-9, 10-19, 20-29, 30-
39, and 40 or more). Each y axis label is of the form s(x,d), where s() is an estimated
smoothing spline, x is the count in the corresponding histogram bin, and d is the approx-
imate degrees of freedom in the estimated spline. Only the 5000 random points plotted
in Figures 2 and 3 were used in the fit.

Figure 4 shows the result of fitting a generalized additive model to the read length

data described above. The model fit was of the form

^• = 00 + OLiXi + Σfj inij) + ε/
j
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where yt is the number of bases used by PHRAP for read i, JCZ is an indicator variable

that is one whenever the read was performed on a slab instrument, n^ is the number

of bases in histogram bin j for read /, the fj are penalized regression splines [9] with

knots to be determined by cross-validation, and ε, is Gaussian error. Five of the panels

in Figure 4 show estimates of the / ) , along with standard errors, while the lower right

panel shows a plot of deviance residuals versus fitted values. All of the terms in the

model were highly significant, and the adjusted R2 of the fit was 0.88.

From Figure 4 we see that, except for the histogram bin corresponding to bases with

q < 10, the resulting splines are reasonably linear. The spline for the q < 10 bin, on

the other hand, looks more complex. The conclusion we draw is that more detail about

the structure of the q < 10 quality values will be needed to make a substantial improve-

ment. However, as a first approximation, the spline looks like it might be adequately

approximated by a quadratic.

Consequently, we refit the data to a linear model with a quadratic term for the q < 10

histogram term:

^ ^ α o + OΛ + β o ^ + β i ^ ' + Σ γ y i i v + ε, (1)

(In order to keep the quadratic coefficient to a reasonable size, we scaled the q < 10

histogram value by dividing by 100). The results of the fit are shown in Table 3. We

Table 3: Results of linear model (quadratic term forN.01.09)

Term

Intercept

Slab

N.01.09/100

( J V . 0 1 . 0 9 / 1 0 0 ) 2

N.10.19

N.20.29

N.30.39

N.40.plus

Residual S.D.

Adjusted R2

Estimate

-101.90

35.00

79.00

-9.59

0.79

1.57

1.01

1.15

76

0.87

S.E.

7.58

4.36

2.19

0.29

0.02

0.03

0.02

0.01

t Ratio

-13.45

8.03

36.07

-32.98

40.04

51.83

61.52

107.61

Pr(> |/|)

^ 1(J

< 10- 1 4

< io- 5

< 10-15

< 10-15

< 10"15

<io- 1 5

< lo-15

see that the linear coefficients for bases with q < 20 are around 0.79, while the bases

with q ^ 20 have coefficients somewhat above one. We also see that a large number of

bases with low quality decreases the effective read length.

The fit in Table 3 was based on a training of 5000 points. In order to evaluate the

prediction error, we examined the distribution of the absolute value of the difference
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between the predicted number of bases and actual number of bases on a test set consist-
ing of the other 60,636 reads in the data set. Table 4 summarizes that distribution, and
compares it with the prediction error for four other estimators: the generalized additive
model described above, a linear model without a quadratic term for the q < 10 bases,
Ec, and Q2o

Table 4: Absolute prediction error quantiles for estimators of effective read length

Model
Additive Model
Linear Model
(with quadratic term)
(no quadratic term)
Ec
£?20

Quantile
25%

10

12
19
10

115

50%
24

26
39
22

201

of Prediction Error
75%

52

56
71
62

309

95%
159

161
173
365
462

99%
298

302
323
703
594

We see that, except for extremely large errors, the 020 estimator is dominated by
each of the other estimators analyzed. We see that the Ec estimator is quite competitive
with the linear model, at least until the read length gets extremely large.

4 Conclusions

We can draw several conclusions from the above analyses. First, the Q20 predictor
grossly underestimates the effective length of a sequencing read. Except for the extreme
cases, all of the other predictors discussed dominate it under all circumstances in which
they were compared. Second, the Ec and the linear model predictors have comparable
prediction error: on average, about sixty bases. However, the Ec estimator has two
disadvantages when compared to the estimators derived from a linear model. First,
the errors for Ec appear to be biased: on average, Ec overestimates the read length.
Second, Ec requires the entire set of PHRED quality scores. If we restrict our attention
to estimators based on histograms only, Table 4 shows that the best estimator based
only on a linear combination of histogram values is dominated by the linear model
with an added quadratic term, as expected. Finally, we note that the appropriate simple
linear combination of PHRED histogram bins is quite competitive with the much more
complex generalized additive model. The main benefit of adding a quadratic term seems
to be to decrease prediction error in the extreme case of a long, low-quality read.

The boxplots in Figure 1 show a considerable amount of skewness in the distri-
bution of percent trimmed. Although this skewness is transmitted somewhat to the
number of bases in the consensus, log-transforming the outcome y\ in Equation 1 does
not improve the prediction error at all.
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In these analyses, we have not explored any effects due to mis-called bases. Other
statistics gathered for these analyses include the percent of indels (insertions/deletions)
and substitution errors in the trimmed read. Our analysis (not shown) indicates that this
component of effective read length is small (under a few percent), and is dominated by
PHRAP's trimming process.

It seems clear that the relationship between the PHRED quality values and the size
of the region PHRAP trims from the raw read is both simple and quite complex. It
is simple in the sense that, in most cases, the expected number of bases Ec closely
matches what PHRAP uses. However, an examination of Figure 3 shows that as the
raw read gets longer, the situation becomes quite complex, and the size of the region
trimmed becomes more of a function of serial correlations between quality values. This
situation is exactly what various kinds of "moving window" trimming algorithms try
to capture. It would be interesting to explore the extent to which statistically-based
moving window algorithms might outperform the marginal approach outlined above in
the situation of long, low-quality reads.

Acknowledgments

This work was performed under the auspices of the U. S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory under contract
number W-7405-ENG-48.

David O. Nelson, Joint Genome Institute, Lawrence Livermore National Laboratory,
daven@llnl.gov

Jane Fridlyand, Comprehensive Cancer Center, University of California, San Fran-
cisco,
j anef@cc.ucsf.edu

References

[1] Amersham Biosciences. Megabace web site, http://www.megabace.com.

[2] Applied Biosystems. ht tp: / /www.appliedbiosystems.com/products.

[3] Brent Ewing and Phil Green. Basecalling of automated sequencer traces using
Phred. II. Error probabilities. Genome Research, 8:186-194, 1998.

[4] Brent Ewing, LaDeana Hillier, Michael C. Wendt, and Phil Green. Basecalling
of automated sequencer traces using Phred. I. Accuracy assessment. Genome Re-
search, 8:175-185, 1998.



306 D. O. Nelson and! Fridlyand

[5] Peter Hall. Introduction to the Theory of Coverage Processes. John Wiley and
Sons, 1988.

[6] Eric S. Lander and Michael S. Waterman. Genomic mapping by fingerprinting
random clones: A mathematical analysis. Genomics, 2:231-239, 1988.

[7] University of Washington. Phrap web site, http://www.phrap.org.

[8] R Project. R web site, http://www.r-project.org.

[9] Simon N. Wood. Modelling and smoothing parameter estimation with multiple
quadratic penalties. Journal of the Royal Statistical Society B, 62(4):413-428,
2000.



Extensions to a Score Test for Genetic Linkage with
Identity by Descent Data

Sandrine Dudoit and Darlene R. Goldstein

Abstract

Genetic analysis aims to determine which underlying genes affect traits, their
chromosomal locations and variants, and, ultimately, their modes of action at the
biochemical level. Linkage analysis is an initial step in elucidating the genetic
mechanisms affecting a trait of interest. This paper reviews genetic linkage anal-
ysis, with an emphasis on the score test approach developed by Dudoit and Speed
[8, 10]. Two extensions of the test under current investigation are also presented:
use of the test with larger sets of relatives than pairs, and generalization to allow
for missing DNA identity by descent (IBD) information.

Keywords: allele sharing; complex traits; identity by descent; linkage analysis; pedi-

gree; score test

1 Introduction

A central problem in genetic analysis is to determine which gene(s), if any, affect partic-

ular phenotypes, the chromosomal locations of these genes, their different alleles and,

ultimately, their biochemical modes of action. Linkage analysis is an initial step in elu-

cidating the genetic mechanisms affecting a trait of interest. Its goal is to determine the

chromosomal location of the gene(s) influencing the trait. Linkage analysis proceeds

by tracking patterns of coinheritance of the trait of interest and other traits or genetic

markers, relying on the varying degree of recombination between trait and marker loci

to map the loci relative to one another.

Mendel's second law of inheritance hypothesizes that different "factors" (traits or

genes) segregate to gametes (sperm or egg) independently. Actually, independent as-

sortment of gene pairs only occurs when the genes are on different chromosomes or are

so far apart on the same chromosome that there is the same chance of recombination as

nonrecombination. Such pairs of genes are said to be unlinked. Two genes are linked

when they do not segregate independently. A measure of the degree of linkage is the

recombination fraction, the chance of recombination occurring between two loci, de-

noted almost universally in the genetics literature as θ. For unlinked genes, θ = 1/2; for

linked genes, 0 < θ < 1/2. The following gives a brief introduction to linkage analysis;

more substantial detail is provided by Ott [30], McPeek [27], and Speed [32].
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Data for linkage analysis consist of sets of related individuals (pedigrees) and in-

formation on the genetic marker and/or trait genotypes (the two alleles at a locus) or

phenotypes (the outward manifestation of a trait), usually selected on the basis of phe-

notype (e.g. a disease, such as diabetes, or a quantitative trait, such as glucose toler-

ance). For this setup, the recombination fraction is most commonly estimated by the

method of maximum likelihood, the likelihood being determined by an appropriate ge-

netic model for the coinheritance of the loci. The conventional measure of support for

the hypothesis of linkage between two loci at recombination fraction θ versus that of

no linkage is given by the lod score

where L(θ) « f(X_ | θ) denotes the likelihood for θ given the observed dataX Positive

values of Z are evidence of linkage, while negative values indicate no linkage. With

lod score linkage analysis, the null hypothesis of no linkage (Ho : θ = 1/2) is rejected

for sufficiently large values of Z(QMLE)> often taken to be 3. Linkage analysis based on

the lod score is referred to in the genetics literature as "parametric" or "model-based"

linkage analysis, as the mode of inheritance must be specified using some parametric

model.

Genetic linkage mapping has been successful at mapping genes for traits following

Mendelian inheritance patterns, typically recessive or dominant diseases. Identifying

genes affecting complex traits, or traits not following these simple modes of inheritance,

has proven to be more challenging. Lod-score linkage analysis for complex traits is

difficult to carry out due to many complicating factors. Chief among these is that the

mode of inheritance is rarely known. "Nonparametric," or "model-free," approaches

thus have appeal, since they do not require a genetic inheritance model to be specified.

Such methods usually focus on identical by descent (IBD) allele sharing at a locus

between a pair of relatives. DNA at a locus is shared by two relatives identical by

descent if it originated from the same ancestral chromosome. In families of individuals

possessing the trait of interest, there is association between allele sharing at loci linked

to trait susceptibility loci and the trait (see e.g. Dudoit and Speed [9] for examples).

This association may be used to localize trait susceptibility genes. For loci unlinked to

trait susceptibility loci, IBD sharing of DNA is not associated with the occurrence of the

trait. Early work on linkage analysis using IBD data from sib-pairs can be found in Day

and Simons [6] for qualitative traits, and in Haseman and Elston [20] for quantitative

traits.

Testing for linkage with IBD data has developed along different lines, depending

on the type of trait. For qualitative traits, the test is based on IBD sharing conditional

on phenotypes, e.g. affected sib-pair methods (see [21] for a review). On the other

hand, for quantitative trait loci (QTL), linkage analysis is based on examination of

phenotypes conditional on sharing. A very widely used procedure in QTL mapping

in humans is the Haseman-Elston method [20], implemented for sib-pairs and other
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relative pairs in the SIBPAL and RELPAL programs of the computer package S.A.G.E.

[11]; many extensions of it are also available [1, 2, 3, 12, 16, 17, 24, 28, 29]. In this

method, the squared difference in phenotype values for the two relatives is regressed

on the (estimated) proportion of alleles they share IBD. The method can also be used

with qualitative traits (binary coding), but is clearly not appropriate for analysis of

relatives where the phenotypic difference is fixed by design (e.g. affected sib-pairs). A

disadvantage of the standard Haseman-Elston method is that it uses only differences in

the phenotypes rather the full joint phenotypic data, incurring possible information loss

[36].

The pattern of IBD sharing at a locus within a pedigree is summarized by an in-

heritance vector, which completely specifies the ancestral source of DNA [25]. For

sibships of size k, it is convenient to label paternally derived alleles at the locus (1,2)

and maternally derived alleles (3,4). The inheritance vector at a given locus is the vec-

tor* = (x\ ,x2, ...,*2*_i >χ2k), where for sib i, JC2I-I is the label of the paternally inherited

allele (1 or 2) and JC2, is that of the maternally inherited allele (3 or 4) at the locus. Note

that the labels 1, 2, 3, and 4 for the parental DNA only have meaning within a sibship,

and may therefore correspond to different sequences of DNA in different sibships.

Inheritance vectors for sibships may be grouped into IBD configurations which

can be thought of as orbits of groups acting on the set of possible inheritance vectors

(Dudoit and Speed [8], Ethier and Hodge [13]). For a pair of sibs, when paternal and

maternal allele sharing are not distinguished, the 16 possible inheritance vectors give

rise to three IBD configurations Cy. the sibs may share 0, 1, or 2 alleles IBD at the locus

(Table 1). In the case of affected sib-trios, that is, all three sibs are affected with the trait

under study, there are four IBD configurations (Table 2); in the case of a quantitative

trait on sib-trios, the number of IBD configurations is 10 (Table 3).

Table 1: Sib-pair IBD configurations

Alleles IBD

0
1

2

IBD
IBD

IBD

Inheritance vectors

(1,3, 2,4), (1,4,

(1,3, 1,4), (1,4,

(1,3, 2, 3), (1,4,

(1,3,1,3), (1,4,

2,

1,
2,
1,

3),
3),
4),
4),

(2, 3, 1,

(2, 3, 2,

(2, 3, 1,

(2, 3, 2,

4),
4),
3),
3),

(2,
(2,
(2,
(2,

4,
4,
4,
4,

1,3)
2,3)

1,4)

2,4)

\Cj\

4
8

4

2 Score Test for Linkage

2.1 General Form of the Score Test

Dudoit and Speed [8, 10] proposed a score test to detect linkage with IBD data on sets of

relatives. This approach represents a unified likelihood-based approach to the linkage
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Table 2: Affected sib-trio IBP configurations

Representative

IBD configuration Cy Pair-wise IBD sharing" inheritance vector | Cy

ϊ 2 X 2 (1,3,1,3,1,3) T

2 2,1,1 (1,3,1,3,1,4) 24

3 1,1,0 (1,3,1,4,2,3) 24

4 2,0,0 (1,3,1,3,2,4) 12

a'Number of alleles shared IBD between sibs 1 and 2,1 and 3, 2 and 3, respectively for the
representative vector; this order may not be the same for each vector in the configuration

Table 3: Sib-trio IBD configurations for quantitative traits

Representative

IBD configuration C, Pair-wise IBD sharing0 inheritance vector | C7 |

ί 2,2,2 (1,3,1,3,1,3) 4

2 2,1,1 (1,3,1,3,1,4) 8

3 2,0,0 (1,3,1,3,2,4) 4

4 1,1,0 (1,3,1,4,2,3) 8

5 1,0,1 (1,3,1,4,2,4) 8

6 1,1,2 (1,3,1,4,1,4) 8

7 0,0,2 (1,3,2,4,2,4) 4

8 0,2,0 (1,3,2,4,1,3) 4

9 1,2,1 (1,3,1,4,1,3) 8

10 0 1 _U (1,3,2,4,1,4) 8

^Number of alleles shared IBD between sibs 1 and 2, 1 and 3, 2 and 3, respectively

analysis of qualitative and quantitative traits using IBD data on pedigrees. The likeli-

hood for the recombination fraction θ, conditional on the phenotypes of the relatives, is

used to form a score test of the null hypothesis of no linkage (θ = 1/2).

The probability vector of IBD configurations, conditional on pedigree phenotypes,

at a marker locus linked to a trait susceptibility locus at recombination fraction θ can

be written as

where π represents the conditional probability vector for IBD configurations at the trait

locus and the number of IBD configurations is m. Γ(θ) denotes the transition matrix

between IBD configurations at loci separated by recombination fraction θ, and has

infinitesimal generator Q. The probability vector π will in general depend on (possibly

very many) unknown genetic parameters. Under the null hypothesis that the marker
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and trait susceptibility loci are unlinked, the IBD sharing distribution at the marker is

given by the stationary distribution of T(Q), which is

) = ~

where | Cj | is the number of inheritance vectors in IBD configuration Cy and K is the

number of inheritance vectors. For general pedigrees, K is 2 raised to the number of

relevant meioses, e. g., for sib-pairs, K = 24.

For a given pedigree type, the form of the score test statistic is determined by the

second largest eigenvalue λ 2 and corresponding eigenvector(s) of Q. The eigenvalues

and their multiplicities give information regarding the form the score statistic takes.

The eigenvalues are negative even integers. If λ 2 = -2κ, the score test is based on the

κ'Λ derivative of the log-likelihood. If λ 2 has multiplicity 1, then the score statistic is

independent of the genetic model for the trait. In sibships, λ 2 = - 4 , with multiplicity

depending on the group that defines the IBD configurations (Dudoit and Speed [8]).

For sibships, because the first derivative in the Taylor series expansion of the log-

likelihood about the null value θ = 1/2 is 0, the score statistic is based on the second

derivative Γ"(l/2) = 8P_4, where P_4 is the projection matrix for the eigenvalue - 4

and having rank the multiplicity of - 4 .

The score test approach is motivated by a large number of advantages, including: it

is locally most powerful for alternatives close to the null; unlike a number of tests for

linkage, the score test does not depend on assumptions such as population genotypes

being in Hardy-Weinberg equilibrium - any genotype distribution can be used; con-

ditioning on phenotypes eliminates selection bias introduced by nonrandom ascertain-

ment, which is how samples are commonly obtained in practice; combining differently

ascertained pairs is straightforward, which is important because otherwise some portion

of the data may not be used. And as is seen below, the power and apparent robustness

properties make the test an attractive alternative to nonparametric tests.

2.2 Score Test for Pairs of Relatives

The linkage information from IBD and phenotype data on n sib-pairs is combined into

the score statistic

where π ; / = πy(φiI,φ2,;v) is the conditional probability, given phenotypes (φi,, Φ2/) and

genetic model parameters v, that sib-pair 1 shares j alleles IBD 0 = 0, 1,2) at the trait

locus (which could be one of several unlinked loci contributing to the trait); NjΊ is 1 if

sib-pair i shares j alleles IBD at the marker locus and 0 otherwise; and the sum is over

all sib-pairs in the sample. The null IBD distribution at the marker is (1/4, 1/2, 1/4) for

sharing (0, 1,2) alleles.
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For half-sib, avuncular, and grandparental pairs, the form of the test statistics is

the constant of proportionality and its sign differs for these relative types, but cancels in

standardization. For these relative pairs, the null IBD distribution at the marker is (1/2,

1/2) for sharing (0, 1) alleles. For pairs of cousins, the score test statistic is given by

ScousΦ) = 1 2 Σ ( π l l - π ό / / 3 ) ( ^ i ί - Λ b , /3).

In this case, the null IBD sharing probabilities are (3/4, 1/4) for (0, 1) alleles.

For these types of relative pairs, the form of the score test statistic is fairly simple

and readily interpretable. The statistic can be viewed as a weighted combination of

IBD scores for each pair type, where the weights are given by differences in sharing

probabilities conditional on phenotypes. For qualitative traits in sib-pairs, the weights

depend on the genetic model but are constant in the phenotype and hence factor out.

Thus, no genetic model is required. In general, however, this is not the case and a

genetic model must be assumed in order to compute the weights.

The power and robustness properties of the score test were extensively studied via

simulation of sib-pair and general relative pair data on a quantitative trait (Goldstein,

Dudoit and Speed [18, 19]). For these studies, data were generated under a biallelic

major gene model for the quantitative trait φ consisting of a single gene effect g with

residual variation e, so that φ = μ + g + e, with μ the overall mean. Genotypic effect

values are g = a (> 0) for an A\A\ individual, g = d for an A\Ai individual, and g

= - α for an A2A2 individual (see e.g. Falconer and Mackay [14]). The error term e

has mean 0 and variance σ^, constant across genotypes. The joint distribution of the

error terms for a pair of relatives was assumed to be bivariate normal, with correlation

p. Thus, in the population the trait is distributed as a mixture of bivariate normals,

with mixing probabilities equal to the genotype frequencies. The heritability of a trait

due to the genetic locus is the proportion of genetic variance to total variance: H =
σ g / ( σ g 4 " σ e ) The parameters d, p, p, and H were varied, along with the selection

strategy used to obtain pairs. Each simulated data set was analyzed with every model

under consideration (one correct, the others wrong). This set of models was chosen as

it is widely used in simulation studies of methods for analyzing quantitative traits.

In many realistic simulation scenarios, the score test approach showed large power

gains over commonly used nonparametric tests, even when the assumed model for

analysis deviated greatly from the true generating model. Based on the simulations,

a generic additive model was recommended when little is known about the true under-

lying model.

Although the focus here has been on pairs of relatives, Dudoit [7] showed that

the same score test approach is more generally applicable to any set of relatives. In

practice, families included in studies of genetic traits often consist of more than a single
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pair of relatives. In addition, these simulation studies, like most, have considered only

the case when complete IBD information is available. Yet realistically, the genetic

information necessary to determine IBD status may be incomplete for some individuals.

Thus, further investigation of test properties and feasibility of implementation for these

situations is warranted.

3 Some Extensions of the Score Test

The score test approach is quite general, and its implementation for pairs of relatives

may be generalized in a number of ways. For example, the model for phenotypes may

be expanded to include covariates. We consider here a few other extensions that we

are currently researching: first, derivation and implementation of the test for larger

pedigrees and an examination of test feasibility and properties in this case; second,

modification of the test to accomodate data with incomplete IBD information.

3.1 Score Test for Sib Trios

The next largest pedigree to consider, after small "pedigrees" of pairs of individuals,

would contain three individuals. Here we consider sib-trios, in both the case of a qual-

itative trait and for a quantitative trait.

For a qualitative trait, sib-trios may have the same trait values, as do affected sib-

trios (ASTs), or they may instead be discordant (DSTs), where one has a different

value than the other two. The IBD configurations for ASTs are given in Table 3. The

infinitesimal generator for the IBD configuration transition matrix Γ(θ) is

QAST =

- 6 6 0 0
1 - 4 2 1
0 2 - 4 2
0 2 4 - 6

which has eigenvalues λ = 0, - 4 , - 8 , - 8 (Dudoit and Speed [8]). The score statistic is

where Nj denotes the number of ASTs with IBD configuration Cy at the marker. Al-

though the form of the statistic here is a little more complicated than that for sib-pairs

SSib, it is not overly so. For DSTs, however, there are seven IBD configurations, and the

eigenvalue λι = - 4 has multiplicity two, leading to a score statistic that is the sum of

two statistics similar to SAsτ, but with seven rather than four terms in each factor.

To complete the picture for sib-trios, we have derived the score test statistic in the

case of a quantitative trait (QST) as well. In this case, there are 10 IBD configurations
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(Table 3); the infinitesimal generator Q here is

QQST =

• - 6

1
0
0
0
1
0
0
1
0

2
-6

2
1
1
1
0
0
1
0

0
1

-6
1
1
0
0
0
0
0

0
1
2

-6
1
0
0
2
1
1

0
1
2
1

-6
1
2
0
0
1

2
1
0
0
1

- 6
2
0
1
1

0
0
0
0
1
1

-6
0
0
1

0
0
0
1
0
0
0

-6
1
1

2
1
0
1
0
1
0
2

-6
1

0
0
0
1
1
1
2
2
1

-6

with eigenvalues 0 (multiplicity 1), -4 (multiplicity 3), and - 8 (multiplicity 6). The
three orthonormal (unit norm with respect to the inner product (, )α) right eigenvectors
corresponding to λ2 = — 4 are

v = (2,0,-2,-1,-1,1,0,0,1,0)

w = Λ/2(-1,0, 1,1,0,-1,-1,1,0,0).

Thus, the score statistic for n QSTs is based on the second largest eigenvalue of Q and
is given by

n ( 10 \ / 10

+ 8 Σ Σ*j*β Σ

8Y(-7
1=1

- 2N3i - N4i + N6i + 2N7i + NΪOi)

So for quantitative traits, even with only one extra individual, the form of the score
statistic is already much more complicated, and correspondingly much less interpretable,
than it is for pairs. In addition, specification of a joint phenotypic model is more cum-
bersome for larger pedigrees, and may also be unstable due to the larger number of IBD
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configurations. Furthermore, even once a model is specified, exact calculation of the

statistic also becomes more difficult.

In nonparametric linkage analysis, the problem of dealing with larger sets of rela-

tives than pairs has been approached in a number of different ways [26, 33, 34, 35]; for

reviews, see [5, 15]. A widely used method to handle the issue is to consider the set

of relatives only pairwise, typically by considering all possible pairs [22]. We have be-

gun to compare exact treatment of QSTs with approximations based on pairwise score

statistics. We hope to arrive at a weighting scheme based on pairs which will provide

a good approximation to the exact treatment, yet is simpler and faster to compute and

interpret.

3.2 Score Test with Missing IBD Information

Computing the score statistic relies on availability of complete inheritance vectors, so

that there is sufficient genotypic information to determine IBD allele sharing status. In

practice, however, the available genotype data may be limited to information on the

allele states (identity by state, or IBS) and thus there is some information missing. IBD

status may also be missing due to failure of the genotyping method for some individuals

or unavailability of connecting individuals in the pedigree. It is therefore desirable to

modify the score test to allow for the case of incomplete genotypic information.

When IBD information is incomplete, partial information obtained from marker

data may be summarized by the inheritance distribution, a conditional probability dis-

tribution over possible inheritance vectors at the marker locus [23, 24]. Now, rather

than counting the number of pedigrees with IBD configuration Cj, let

rjΊ = P(Pedigree has IBD configuration Cj at the marker | A/, ),

where Mz denotes available marker information. Then a natural test statistic S(v) may

be obtained from the complete data score statistic 5(v), by replacing the IBD indicators

by their expectation given the marker data. When the trait and marker loci are in linkage

equilibrium, then

for marker data M and phenotypes φ. Kruglyak et al. [23] use a similar statistic

with a "perfect data" approximation, which consists of substituting the null variance

of the complete data statistic, Varo[S(v) | φ], for the null variance Varo[S(v) | φ] of

the incomplete data statistic. This approximation is conservative, as Varo[S(v) | φ] ^

In fact, the true inheritance distribution {r7 , } will rarely be known; rather, it must be

estimated from the data, for example with the program GENEHUNTER [23]. Call these

estimated probabilities {r,,}. Then the incomplete data statistic for sib-pairs (ignoring
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the multiplicative constant 16) is

l - πO l )(r2/ - rOz ).
ι=l

The null expectation and variance of iS(v) may be estimated using sample moments of

ϊn — ̂ 0/ from the data. This approach may be problematic, though, as there must be a

sufficient number of sib-pairs with the same missing genotype pattern to give reliable

estimates. This aspect is even worse with larger pedigrees.

We believe that multiple imputation provides a more promising approach to estima-

tion of the linkage score statistic with missing IBD data. Rubin [31] details multiple

imputation procedures in the context of survey nonresponse; for multiple imputation in

genetics problems, see Clayton [4]. With single imputation, one value is chosen for the

missing information. With multiple imputation, missing data are replaced with at least

two values representing the distribution of possibilities. Multiple imputation methods

allow standard complete data methods to be applied, have increased efficiency over sin-

gle imputation methods, and also more realistically reflect the increase in uncertainty

due to the missing information. Thus, we are currently working to extend the applica-

bility of the score test using multiple imputation to estimate missing IBD sharing.

Sampling from the imputation distribution [MmiSsing \ Mobserved] of the marker in-

formation under the null T times yields multiple copies of "complete" data. Each of

these produces a statistic S^\ t = 1,..., T (we now suppress the dependence of 5 on ge-

netic model v to avoid cumbersome notation below). Then we can define the multiple

imputation "score" statistic S* as the average value of S^ over the T copies:

1 f = l

Under the null, E(S*) = 0 and

Var(S*) = V-{l^Eobserved{Var{^^^

where V = Varo[S | φ] is the complete data score statistic variance under the null [4].

The second term may be estimated using the sample variance of the imputation statistics

This method of extending the score test for linkage may be viewed as a compro-

mise between the conservative "perfect data" approximation and exact calculation by

enumeration of all possible states for the missing marker data. Such evaluation quickly

becomes infeasible when several markers, each with large numbers of alleles, are used,

as is common in linkage studies. There will be a reduction of power attributable to miss-

ing information, but preliminary simulations using the multiple imputation approach are

encouraging. We are working toward a more complete implementation with the aim of

broadening the class of problems to which the score test approach may be applied.
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Cost Efficiency of Genetic Linkage Studies Using
Mixtures of Selected Sib-pairs

Man Han and Rudy Guerra

Abstract

Sib-pairs are relatively easy to collect and use of extreme quantitative pheno-
types provide high statistical power. Thus, selected sib-pair (discordant, concor-
dant) study designs are among the most useful in quantitative genetic linkage anal-
ysis. Dudoit and Speed [5, 6] proposed a score test for linkage that allows analysis
of any sample, random or selected, by conditioning on phenotype and analyzing
genotype. Selected sampling strategies have largely focused on studies collecting
data on a single type of sib-pair. Using the score test statistic, we demonstrate that
sampling designs based on a mixture of sib-pair types are more cost efficient than
the traditional single selection scheme. In particular, there is no need to discard a
large fraction of screened individuals. Cost efficient designs are based on a mix-
ture of concordant and discordant sib-pairs, with the selection threshold of con-
cordant sib-pairs more stringent than that of discordant pairs. General guidelines
for the thresholds are given as a function of mode of inheritance, allele frequency,
and residual correlation, as well as the cost ratio of phenotyping to genotyping.
Since in many cases the mode of inheritance is not completely known, robustness
with respect to assumed genetic models is also addressed.

Keywords: linkage; sample size; selected sample; sib-pair; study design

1 Introduction

It is well known that quantitative genetic linkage analysis based on random sampling

of sib-pairs usually has low statistical power to detect non-Mendelian, quantitative, or

complex disease loci. For example, Blackwelder and Elston [3] showed in simula-

tions that even when heritability is moderate (30%) at a single locus, the power of the

Haseman-Elston [11] linkage test based on random sampling of sib-pairs is low. Signif-

icant improvement in power can be achieved when an unselected sibling is regressed on

the proportion (π) of alleles shared identical-by-descent (IBD) with a selected sibling

[4]. Eaves and Meyer [7] provide evidence of additional power increases depending on

the types of sib-pairs selected: discordant, with the sib-pair representing both tails of

the phenotypic distribution; or concordant high (low), where both siblings are selected

from the upper (lower) tail of the phenotypic distribution. However, see Allison et al.

[1] for some limitations on the general utility of selected sib-pairs. Risch and Zhang
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[13] also argue for selected sib-pair designs, but unlike previous authors they propose

conditioning on the sampled (observed) phenotypes to analyze IBD sharing among the

sib-pairs. Their discussion, however, is limited to study designs sampling a fixed type

of sib-pair.

Dudoit and Speed [5, 6] generalize the work of Risch of Zhang [13] in three re-

spects. First, although Dudoit and Speed also analyze IBD data, they specifically test

for linkage in the traditional sense of evaluating a null hypothesis involving a recom-

bination fraction (Ho : θ = 0.5), whereas Risch and Zhang evaluate a null hypothesis

involving average allele-sharing (Ho : π = 0.5). Second, Dudoit and Speed condition on

observed phenotypes, while Risch and Zhang condition on phenotypic deciles. Lastly,

the mean IBD statistic of Risch and Zhang is interpretable only for a fixed sib-pair type

(e.g., all discordant sib-pairs using a fixed threshold); the Dudoit and Speed score test

statistic is not restricted to a fixed sampling scheme. By definition, both approaches

reflect the actual sampling (conditioning on phenotype) and stochastic nature of the

outcome (allele-sharing). In this sense they depart from making assumptions that are

clearly violated under methods that model or analyze the phenotype, while viewing

allele-sharing as "fixed" design variables. Both approaches are seemingly limited by

having to specify knowledge of the gene action underlying the phenotype-genotype as-

sociation. Robustness studies by Risch and Zhang [13], Zhao, Zhang, and Rotter [15],

and Goldstein, Dudoit, and Speed [8], however, show that various characteristics of the

approaches are fairly insensitive to misspecifying the mode of inheritance.

One drawback of selected study designs is that a large number of sib-pairs usually

need to be screened in order to obtain the minimum sample size (number of sib-pairs)

for the desired power. The more stringent the selection thresholds, the more screening

that has to be done. Zhao et al [15] evaluate cost efficiency across extremely discordant

(ED), concordant high (CH), and concordant low (CL) sib-pair study designs. Consid-

ering the three types of designs separately, they conclude that ED sib-pair studies are

the most cost efficient and robust against incorrect mode of inheritance and allele fre-

quencies. They note, however, that more cost efficient studies may be possible by using

all three types of selected sib-pairs.

Gu et al. [10] and Gu and Rao [9] report increased power over ED designs by

combining all three types of sib-pairs into a single test statistic. In addition, they show

that using all three types of sib-pairs is more cost effective than using just ED pairs.

One issue that has yet to be fully addressed, in these and other investigations, is that

the three types of sib-pairs may not be equally available in the population. Indeed, their

prevalence is highly dependent on the underlying mode of inheritance. Ignoring this

fact may lead to inefficient study designs, especially at screening where a lot of time and

resources may be required to obtain certain extreme phenotypes that are relatively rare

under the true gene action. Related to this idea is that better power and cost efficiency

may be achieved by allowing different thresholds for the various sib-pair types.

In summary, there are not yet available general optimal sampling designs, defined

by power or cost efficiency, for genetic linkage studies using selected sib-pairs. In this
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paper we use the score test of Dudoit and Speed [5, 6] to develop such optimal sampling

strategies.

2 Methods

Following standard major locus models {e.g., Haseman and Elston [11]; Amos and

Guerra [2]), we assume a locus A with two alleles, A\ and A^ with population allele

frequencies p,q(=l -p)9 respectively. Letxu andx2, be the sib-pair phenotypic values

of sib-pair /. The sib-pair phenotypes are modeled as:

x\i =

*2i =

where μ is an overall mean of x; gβ is the genetic effect due to trait locus A; eμ rep-

resents combined residual genetic and environmental contributions with variance o2

e.

The genetic effect gβ equals a, d, and — a according to genotypes A\A\, A\Aι, and

A2A2, respectively. To account for residual genetic and environmental correlations, we

assume that the sib-pair model error {eu.eii) is distributed as a bivariate normal distri-

bution with zero mean vector and correlation coefficient p. The additive and dominant

components of genetic variation at locus A are defined as σ^ = 2pq[a — d(p — q)]2 and

ad = (2pqd)2. The heritability due to locus A is defined as H = σ^/(σ^ + σ^), where

5
Under the null hypothesis of no linkage between a marker locus and trait locus, the

proportion of genes shared IBD at the marker locus is expected to be 1/2 regardless

of the type of sib-pairs collected. When linkage is present mean IBD sharing among

ED (CH/CL) pairs is expected to be less (more) than 1/2. The test statistic used by

Risch and Zhang [13] is the sample average for IBD sharing; it has an (asymptotic)

null Gaussian distribution with mean zero and variance 1/8. The Gaussian distribution

under the alternative hypothesis of linkage depends on the selection scheme.

Gu et al. [10] proposed the extremely discordant and concordant (EDAC) test statis-

tic, which combines ED, CH, and CL sib-pairs. It is defined as

τ=

where h and / are indices of high and low tail thresholds [e.g. (10%,10%)=(10,10)],

respectively; n0 is the number of CL pairs, n\ the number of ED pairs, and ^2 the

number of CH pairs. Xu is the number of alleles shared IBD from the father and X21

is the number of alleles shared IBD from the mother. Consequently, Xu +^21 is the

number of allele shared IBD from the parents. The test statistic is thus a difference
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between average proportion IBD-sharing among concordant sib-pairs and that among

discordant sib-pairs. Under the null hypothesis, T is asymptotically distributed as a

Gaussian random variable with mean 0 and variance σ 2 (Γ) = (n\ + nι 4- no)/(Sn\ (nι +

wo)). A one-sided test statistic is given by T/c(T). Formulas for calculating sample

size for ED pairs (and therefore for CH and CL pairs) are provided in Gu eί al [10].

In general, when a (test) statistic is formed through a linear combination of several

available statistics, the number of observations entering each individual statistic and the

weights in the combination typically have practical meaning and interpretation. In the

present context, both factors may be motivated by mode of inheritance considerations.

Risch and Zhang [13], for example, note that ED pairs are universally most useful

among all possible types of sib-pairs; whereas CH or CL pairs are useful depending

on mode of inheritance and allele frequency, when only a single type of sib-pair is

used. Risch and Zhang [13, 14] and Zhao et al [15] also discuss appropriate thresholds

for selection sampling. Consider, for example, sampling top 10% and bottom 10%

discordant sib-pairs. Under moderate to high positive residual correlation these extreme

discordant pairs are relatively more difficult to find than concordant sib-pairs. It is

possible to take advantage of the positive correlation by requiring a more stringent

selection threshold tσ recruit more informative concordant pairs. Continuing with our

example, we might set a threshold of (10,10) for ED pairs, while selecting top 5% CH

pairs and bottom 5% for CL pairs. This flexibility may allow for increased statistical

power and better cost efficiency by better selecting more informative sib-pairs. The

score test of Dudoit and Speed allows for a broad range of selection strategies.

Dudoit and Speed [5, 6] proposed a score test for evaluating a null hypothesis of no

linkage, Ho : θ = 1/2, against an alternative, H\ : 0 ^ θ < 1/2. The test can be used

with the major gene model defined above. The statistic is

where v represents genetic parameters, such as values of a, d, p, al, p, and mode of

inheritance (recessive, dominant, additive); %2i is the conditional probability that the

ith sib-pair shares 2 genes IBD at the trait locus, given sib-pair phenotype (3CI, ,JC2I);

πo; is similarly defined as the probability of sharing 0 genes IBD at the trait locus. Nβ

is an indicator variable, equal to 1 if sib-pair i shares j (j — Qorΐ) genes IBD and 0

otherwise.

Under the null hypothesis, S is asymptotically normal with mean 0 and variance

c2{S) = \Σί=\(π2i-πθi)2 The null hypothesis is rejected at level α when S/a(S) > z α .

Under the alternative hypothesis, S is asymptotically distributed as a normal random

variable, N{μA,G
2

A), where

n

MA = Σ (π2; ~ πo/) (τ2/ - τo, ),
ι = l

n

G2A = Σ (π2< ~ πo>-)2 (τ2«τ2i + τo, τo, + 2τ o ,τ 2 i )
( = 1
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12/ is the conditional probability that the ith sib-pair shares 2 genes IBD at the marker

locus, given sib-pair phenotype (JCIZ ,JC2, ) ; TO/ is similarly defined as the probability of

sharing 0 genes IBD at the marker locus; τ = 1 - τ.

The conditional asymptotic power of 5, given the phenotypes, is denoted as

Γ(θ,v;X) = 1 -Φ I —Vi _ , (l)

where X is a n x 2 matrix representing the n sib-pair phenotypes, and Φ is standard

normal cumulative distribution function such that Φ(zα) = 1 — α. The unconditional

power may be estimated by the average of a set of conditional powers generated under

the same model.

The score test is derived through an approximation of the maximum likelihood

ratio test and is locally most powerful [5,6]. One criticism of the test is that it requires

specification of a mode of inheritance model for the weights (π) to be determined. (The

observed data are the counts, N.) As has been noted, however, the test appears to be

sufficiently robust with respect to mode of inheritance assumptions (Goldstein, Dudoit

and Speed [8]). The important feature of the test is that it faithfully reflects the non-

random sampling that is typical of most genetic epidemiologic studies. We refer readers

to the original papers for more technical details.

3 Sample Size Approximation

Although "randomly selected" sib-pairs may be of some utility - and would likely be

available through the screening process - in this article we focus on using only ED,

CH, and CL sib-pairs. Since the score test is conditional on observed data, there are

no closed-form formulas for sample size calculations associated with the unconditional

power based on (1); however, it is possible to approximate the power function for a

given sampling selection. Under the assumption that the trait and marker loci are in

complete linkage (θ = 0), we have π y / = τ ; / and expression (1) becomes

( ZaJ\μA-μA

with

n

MA = Σ ( π 2 / - π o , )2, (3)
ι = l

n
CA = Σ (π2ί ~ πoί)2 (π2ίϋ2ι + πo,-πoι + 2πo,π2, ). (4)
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To determine the sample sizes, the probability parameters (π) need to be estimated. To

this end, define selection schemes (5), TxBy, TxTx, BxBx, where T and B indicate "top"

(upper) and "bottom" (lower) tails of the phenotypic distribution, x and y tail areas. For

example, the selection scheme Γ10510 requires sib-pair phenotype {x\,x-i) to satisfy

max(x\ ,*2) > P90 and min(x\, X2) < p\o, where ph is the hth percentile of the (marginal)

phenotypic distribution.

By definition, π 2 = P(sib-pair shares 2 trait genes IBD | x\ ,JC2). Under a given se-

lection scheme (5), π 2 can be estimated by

= / / Kπ 2

This is equivalent to the estimation of Dι in equation (1) of Risch and Zhang [13].

Similarly, ίfco can also be used to estimate πo

Let n be the total selected sample size, n = n£D + "CH + "CL, where Π££>, ncH and

na are the sample sizes of selected ED, CH and CL sib-pairs, respectively. For a

specified genetic model and selection scheme, let PED, PCH> and PQL be the probability

of randomly selecting an ED, CH, and CL sib-pair from the phenotype distribution;

define YED ~ PEDI {PED + Pen + PCL)> the proportion of ED pairs in the population

of ED, CH, and CL sib-pairs. Proportions ΓCH and rci are similarly defined. Lastly,

let iίEDi and HE DO be estimates (as defined above) of π 2 and πo, respectively, for ED

sib-pairs. Denote similar estimates for CH and CL sib-pairs.

The mean (//̂ ) of the estimated score statistic can thus be estimated as

Πfrn ncH nCL

\2
ED CH CL

MA = X (π2, - πO z )
2 + X (π2, - π 0 / ) 2 + £ (π2l- - π0i)

2

1=1

~ K>CHθ)2 + ^ED{^CL2 ~ KCLθ)

1=1 1=1 1=1

) 2

( ^ £ D 2 - ft£ZX)) •+• rai{πCH2 ~ KCHθ) + ^ED^CLl ~ KCLθ) }

d^ nW.

In a similar way, the variance (σ^) of the test statistic can be estimated, say nU.

Substituting parameter estimates in the conditional power function (2) we obtain

Power = 1 - β = f 1 - Φ
nU

and the corresponding sample size n is given by

Z*\l\W-Z^y/O
n —

W

The sample sizes for ED, CH, and CL sib-pairs are then calculated as

respectively.
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We emphasize that when the selection schemes are determined, the number of ED,

CH and CL sib-pairs to be selected are calculated according to their selection prob-

ability under an assumed genetic model. This method of selection makes use of the

extreme sib-pairs relatively readily available in the population and minimizes wasting

resources attempting to find sib-pairs that may be difficult to collect under the genetic

model. Although the sample size calculation is an approximate one, simulations show

that the observed power is always at least as great as the nominal power; see below.

Since the score test weights ED, CH and CL sib-pairs according to a working ge-

netic model, it may be more powerful than the EDAC test whereby the three types of

sib-pairs are treated equally. Therefore, for fixed power and type I error probability, the

score test may require smaller sample sizes than the EDAC approach.

Example 1

Table 1 shows sample sizes corresponding to H = 0.3, 1 — β = 0.8 and α = 0.001

under a T\0B 10 selection scheme for ED, T5T5 for CH, and B5B5 for CL sib-pairs.

Under all parameter configurations considered (p = 0.2, 0.4; p — 0.1, . . . ,0.9; reces-

sive, dominant, and additive models), the two tests indicate the same qualitative pattern

of sample size requirements. For example, when p = 0.4 and p — 0.3 under a recessive

model, both tests require ΠED ^ nci ^ ^CH- However, the score test always requires

smaller sample sizes in terms of the total (n) and specific sib-pairs (nED, «c// or na

Table 2 gives the average percent reduction in total sample size of the score test relative

to the EDAC test. Higher reductions are obtained in the presence of higher residual cor-

relation. The smallest average reduction (10%) is observed under additive gene action

with lower residual correlation. Table 1 shows that ED sib-pairs are less informative

when the sib-pairs have a relatively higher degree of (positive) residual correlation;

compare nED sample sizes at p = 0.2 to p = 0.4 under each test. This makes sense

since a higher degree of (positive) correlation would tend to make the phenotypes more

similar. Indeed, both the score test and EDAC test have ncH and ncL each larger than

nED when p = 0.4. The score test is also less sensitive then EDAC with respect to

the given increase in residual correlation. Associated with an increase from p = 0.2 to

p = 0.4 under the recessive model, the average (across p) percent increase in total sam-

ple size (n) for the score test is 28%; under the dominant model the average increase

is 24% and under the additive it is 20%. The corresponding results for the EDAC test

are 74%, 49%, and 50% under recessive, dominant, and additive models, respectively.

Relatively larger sample sizes for extreme discordant sib-pairs are generally observed

under a dominant model with lower residual correlation (p = 0.2), and nEβ ~ nCH > HCL

under an additive model with p = 0.2. In most other cases concordant sib-pairs are re-

quired more so that discordant pairs. The observed pattern of overall results remained

the same when other selection schemes were considered (data not shown). •
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Table 1: Sample sizes requirements for score test and EDAC test. H = 0.3, power = .8
and α = 0.001, with selection scheme Tl OB 10 for ED, T5T5 for CH and B5B5 for CL
sib-pairs. Number of ED, CH and CL sib-pairs denoted by ne£j, nch and ncu respectively;

P
0.1
0.3

Rec 0.5
0.7
0.9
0.1
0.3

Dom 0.5
0.7
0.9
0.1
0.3

Add 0.5
0.7
0.9

Score Test
p = 0.2

229(99,75,55)
60(19,27,14)
128(38,51,39)
165(46,60,59)
111(29,32,50)
103(36,41,26)
138(52,43,43)
117(45,31,41)
63(24,13,26)
231(101,55,75)
90(30,38,22)
105(34,39,32)
112(34,39,39)
112(31,36,45)
94(24,25,45)

EDAC Test

p = 0.2

580(251,190,139)
102(32,46,24)
146(44,58,44)
165(46,60,59)
139(36,40,63)
116(41,46,29)
143(54,44,45)
131(50,35,46)
93(35,20,38)
578(253,137,188)
108(36,46,26)
109(35,41,33)
112(34,39,39)
119(33,38,48)
126(32,34,60)

Score Test
p = 0.4

329(52,145,132)
64(10,31,23)
160(18,74,68)
241(22,110,109)
134(13,54,67)
118(18,55,45)
194(28,83,83)
141(23,56,62)
64(14,22,28)
330(57,130,143)
100(14,49,37)
128(16,59,53)
139(15,62,62)
139(14,60,65)
110(11,43,56)

EDAC Test

p = 0.4

1036(165,456,415)
152(23,73,56)
257(28,120,109)
311(29,141,141)
245(23,99,123)
164(25,77,62)
211(31,90,90)
183(30,73,80)
118(25,40,53)
970(168,382,420)
148(21,72,55)
155(19,71,65)
166(18,74,74)
184(18,79,87)
209(20,82,107)

4 Relative Importance of ED, CH, CL Sib-pairs

It is well known [13,6] that extreme discordant sib-pairs are generally most powerful

when a single selection scheme is used. Gu et al [10] argue that concordant sib-

pairs available in the screening pool provide an important additional source of linkage

information and should be included in the selected sample. However, several practical

questions remain unanswered, including the following. What are the relative merits

of the various sib-pair types in a given study design? More specifically, how are the

individual sample sizes {ΠED^CH^CL) related to linkage information. For a given

level of power, are studies carried out with ED pairs alone more or less cost efficient

than those that include mixtures of concordant and discordant sib-pairs? How should

the thresholds for the different sib-pair types be chosen?

Example 2

As a motivating example, consider an additive model with heritability H = 0.3,

allele 041) frequency p = 0.2, and sib-pair residual correlation p = 0.4. Under this

model a selection scheme of T15B15 for ED, T10T10 for CH, and B10B10 for CL pairs



Cost Efficiency Using Mixtures of Sib-pairs 329

Table 2: Percent decrease in score test total sample size (w) relative to EDAC test. Model
parameters as in Table 1.

P
.1
.3
.5
.7
.9

Ave

Recessive

p = 0.2

61
41
12
0

20
27

p = 0.4

78
58
38
23
45
48

Dominant

p = 0.2

11
3
11
32
60
23

p = 0.4

28
8

23
46
66
34

Additive

p = 0.2

17
4
0
6

25
10

p = 0.4

32
17
16
25
47
27

corresponds to selection probabilities P(ED) = 0.0103,P{CH) = 0.030, and P{CL) =

0.027. At 80% power and type I error probability α = 0.001, the required sample sizes

are n£D = 28, ncu = 81, and na = 73. Figure 1 shows the relative importance of each

kind of pair. In plot (a) the number of ED pairs is fixed at 28, and numbers of CH

and CL pairs vary from zero to the require sample size. When both ncH and ncL are

zero, the power is 38%. The power gradually increases as more CH pairs are added,

but the CL pairs do not affect power very much. Plot (b) clearly shows the importance

of ED pairs with ncH fixed at 81. Using the required 81 CH pairs alone yields a power

of 26%. The relative importance of both ED and CH pairs is jointly exhibited in plot

(c) where there are 73 concordant low pairs. Under this particular model, ED pairs

affect power the most; CH pairs contribute as well, but the usefulness of CL pairs is

very limited (73 CL pairs alone has power of nearly zero). As shown in plot (d), the

sample size needed to achieve power of 0.8 using only ED pairs is 52. The expected

number of randomly screened sib-pairs to obtain 52 ED pairs is 52/(0.0103) = 5048;

the expected number of randomly screened sib-pairs to obtain the mixed sample is

182/(0.0103 + 0.03 + 0.027) = 2704. Note that the last calculation is not based on an

optimal selection scheme, which may further reduce the screening size. •

Example 2 makes evident that adding more sib-pairs (concordant or discordant) in

the sample provides an increase in the power of the test, albeit possibly small. This is

generally true for the score test regardless of the mode of inheritance, allele frequency

and residual correlation. The EDAC test, however, occasionally loses power when CH

pairs are combined with ED pairs.

Example 3

In Example 2, the CL sib-pairs were least important in their contribution to the

power of test, but this is not always the case. Consider a dominant model with H = 0.3,

allele (^i) frequency p = 0.8, and p = 0.4. The selection scheme is as in Example 2,
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Figure 1: Power of score test for various combinations of sample sizes under selection scheme
T15B15 for ED, T10T10 for CH and B10B10 for CL pairs. Nominal power = 0.8 and α =
0.001. True genetic parameters include H=0.3, p=0.2, p = 0.4, additive gene action, (a)
Power of test for fixed number of ED pairs, ned = 28. (b) Power of test for fixed number of
CH pairs, nch = 81. (c) Power of test for fixed number of CL pairs, nc\ — 73. (d) Power of
test using only ED pairs.

Π5515 for ED, Π 0 Π 0 for CH and 510510 for CL pairs. Under this dominant model

the selection probabilities for ED, CH and CL pairs are 0.0146, 0.0265, and 0.0295,

respectively. At 80% power with α = 0.001, the sample sizes for ED, CH and CL pairs

are 43, 78, and 87, respectively. Contrary to the results of the previous example, the CL

pairs are the most important in terms of power contribution, whereas both ED and CH

pairs have a limited role; see plots (a), (b) and (c) of Figure 2. Using CL sib-pairs alone

the test has moderate power at 68%. As shown in plot (d), a study with only T15515 ED

sib-pairs requires approximately 225 pairs to achieve the desired power of 80%. The

expected number of sib-pairs screened for this ED-only study is 223/0.0146 = 15273,

compared with 208/(0.0146 + 0.0265 + 0.0295) = 2946 for a mixture study. •
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The examples illustrate the potential savings in screening by using mixed sib-pair
types in the score test. We also see that some sib-pair types are less useful than others
in determining the power of the test.

5 Optimal Mixture of Sib-pairs

In this section we address the issue of optimal selection thresholds for ED, CH and CL
sib-pairs in the selected sample in order to minimize the total cost of phenotyping and
genotyping. Given a desired power and type I error probability, our goal is to find the
optimal selection scheme for the score test such that the cost of the test is minimized.

We assume that sib-pairs are randomly chosen from the population and that the
ratio (R) of phenotyping-to-genotyping cost ranges as 0.02, 0.1, 1, 10, 50. Eight selec-
tion thresholds for ED sib-pairs are considered: T10B10, T10B20, T10B25, T15B15,
T15B25, T20B20, T25B25 and T30B70. Since moderate to high (positive) residual
correlation makes it difficult to find an ED sib-pair, more stringent thresholds for this
type of sib-pair are not considered here. Among these selection schemes, some are
symmetric (e.g., T10B10) and some are asymmetric (e.g., T10B25). We consider seven
symmetric selection schemes for CH (CL) pairs: T1T1, T3T3, T5T5, T10T10, T15T15,
T20T20, T25T25 (B1B1, B3B3, B5B5, B10B10, B15B15, B20B20, B25B25). For now
we assume equivalent tail areas for CH and CL sib-pairs (e.g., T5T5 and B5B5). The
more stringent thresholds for concordant pairs are chosen since they are relatively eas-
ier to recruit than ED pairs under positive residual correlation. Thus, the total number
of selection schemes considered is 56 (8 x 7). This seems to be wide enough coverage
to be practically useful. Heritability H is fixed at 0.1 or 0.3, allele frequency p ranges
from 0.1 to 0.9 (by 0.2), residual correlation (p) takes values 0.1 or 0.4. The total num-
ber of genetic models considered is 2 x 2 x 5 x 3 = 60 (heritability x correlation x p
x gene action).

The total cost of interest is the sum of the cost for phenotyping all screened sib-
pairs required to obtain the total sample size and the cost of genotyping the selected
sib-pairs. The total cost (TC) is calculated as TC = 2RN+2n (Zhao et al. [15]), where
n — n£D + KCH + ncL N is the expected total number of screened sib-pairs calculated as
n/[P(ED) +P(CH) + P(CL)]; R the cost ratio of phenotyping to genotyping. Without
loss of generality, the cost of genotyping one individual is assumed to be 1 unit in the
calculation of total cost. For each of the 60 genetic models, the optimal (minimum
cost) sampling is obtained by searching all 56 stated selection schemes for a fixed cost
ratio (R) of phenotyping to genotyping. For purposes of comparison with what might
be considered accepted convention, we also report results for ED-only study designs;
minimum cost is found among the eight ED selection schemes.
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Figure 2: Power of score test for various combinations of sample sizes under selection scheme
T15B15 for ED, T10T10 for CH and B10B10 for CL pairs. Nominal power = 0.8 and α =
0.001. True genetic parameters include H=0.3, p=0.8, p = 0.4, dominant gene action, (a)
Power of test for fixed number of ED pairs, ned = 43. (b) Power of test for fixed number of
CH pairs, nch = 78. (c) Power of test for fixed number of CL pairs, ncι = 87. (d) Power of
test using only ED pairs.
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Example 4

We first consider the case where phenotyping cost is very low compared to the cost of
genotyping, R = 0.02, and H = 0.3. Optimal selection schemes with corresponding
sample sizes and total costs (in thousand units) are listed in Table 3. Analogous results
for an ED-only study are given in the right part of the table. Column 3 shows the optimal
selection scheme for the given parameters; since both types of concordant pairs have
equal tail areas their selection schemes are summarized as Tx/Bx. Column 4 shows
the required sample sizes for the optimal sampling; column 5, the total cost (thousand
units) when mixed (m) sib-pairs are used. Columns 6 - 8 show results for ED-only
optimal studies. The dominant case is not reported since it is equivalent to a recessive
case with upper and lower thresholds switched and p replaced by 1 — p.

We first consider the recessive model. Here mixed samples require smaller total
sample sizes and are generally more cost efficient than ED-only samples. At lower
allele frequencies (approximately 0.3 or less), mixed samples are much more cost ef-
ficient than ED-only samples, independent of residual correlation. At the higher allele
frequencies, discordant sib-paifs are generally more informative than are concordant
pairs in that the ED pairs constitute the majority of the total sample size. Concordant
high pairs are slightly more (less) informative than concordant low pairs at the lower
(higher) allele frequencies; they are equally informative at p « 0.5. At higher residual
correlation (p = 0.4), the optimal thresholds for discordant pairs become less stringent
with increasing allele frequency. This relationship holds less so under weaker resid-
ual correlation (p = 0.1). This is what we might expect, since at higher degrees of
(positive) residual correlation, ED pairs are observed as such because of linkage effects
overriding the residual correlation. On the other hand, with higher residual correlation
it is less clear whether concordant pairs are phenotypically similar because of genes
or residual factors, which may or may not reflect genetic factors. Thus, ED pairs are
relatively more important and the relaxing thresholds under p = 0.4 reflect the need to
collect them. Conversely, the concordant thresholds are relatively more extreme in or-
der to distinguish the genetic signal from the "noise" in the residual correlation. Under
the additive case, the mixed and ED-only samples are about equally cost efficient, with
the exception at very high allele frequencies (0.9 or higher). And, as in the recessive
case, a higher degree of residual correlation is associated with less (more) stringent op-
timal thresholds for discordant (concordant) sib-pairs. The recessive and additive cases
also share in common the fact that in most cases the concordant pairs represent a small
fraction of the total sample size. •

Example 5

When phenotyping and genotyping costs are about the same (R « 1, Table 4), the total
costs increase compared to the case R < 1 not only because of higher costs per individ-
ual, but also because the total sample sizes increase as well. Characteristics of study
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Table 3: Optimal selection schemes found from all 56 possible selection combinations for
recessive (top) and additive (bottom) model with H = 0.3. The cost ratio of phenotype-to-
genotype is R = 0.02. Power = 0.8, α = 0.001.

Recessive Model

P

0.1

0.4

P
0.1
0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

ED, CH/CL

T10B10,Tl/Bl
T10B10.T5/B5

T10B25, T5/B5

T15B15.T1/B1

T15B15,T5/B5

T10B10.T1/B1

T10B25, T5/B5

T15B25.T1/B1

T25B25,T1/B1

T20B80, T3/B3

n(ned,nch,ncϊ)

53(43,9,1)

63(26,26,1)

125(85,23,17)

113(109,2,2)

134(84,17,33)

24(12,9,3)

68(25,24,19)

86(78,4,4)

114(108,3,3)

105(68,16,21)

COST

0.234

0.237

0.412

0.477

0.444

0.172

0.216

0.353

0.357

0.359

ED

T10B25

T10B25

T10B25

T15B15

T15B15

T10B20

T10B25

T15B25

T25B25

T20B20

n

8604

163

113

111

138

1004

76

82

110

91

COST

26.4

0.58

0.441

0.476

0.565

5.92

0.387

0.355

0.352

0.38

Additive Model
P

0.1

0.4

P
0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

ED,CHCL

T10B25,T3B3

T10B20/Γ3B3

T15B15J3B3

T15B15/Γ5B5

T10B10/Γ5B5

T10B25.T1B1

T15B25,T1B1

T20B20/ΠB1

T20B20J1B1

T15B15,T3B3

n(ned,nc/,,ncι)

95(79,11,5)

100(81,11,8)

114(95,9,10)

126(80,19,27)

92(33,19,40)

50(43,4,3)

69(63,3,3)
75(68,3,4)

77(69,4,4)

77(33,18,26)

COST

0.307

0.367

0.413

0.423

0.374

0.229

0.263
0.284

0.307

0.236

ED

T10B25

T10B20

T15B15

T15B15

T15B15

T10B25
T15B25

T20B20

T20B20

T20B20

n

106
96

108

112
153

50
67

71

74

97

COST

0.366

0.389

0.425

0.464

0.617

0.251
0.264

0.283

0.312

0.404

design and costs when R = 1, compared to R = 0.02, include a more prominent role

of concordant sib-pairs, less stringent optimal thresholds, and higher gains in sample

sizes and costs by the mixed sampling scheme. By relaxing the thresholds, we are able

to recruit the desired number of sib-pair types without the need to screen prohibitively

large numbers of sib-pairs. •

The impact of residual correlation on the optimal mixture selection scheme is sum-

marized in Table 5. The selection schemes for ED sib-pairs are listed in column 1 from

most stringent (top) to least stringent (bottom); selection schemes for CH and CL are

given in the first row from most stringent (left) least stringent(right). The top (bottom)

panel gives results for p = 0.1 (p = 0.4). The entry is the frequency of the intersecting

combination of ED and CHCL pairs defining an optimal design among 56 choices. For
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Table 4: Optimal selection schemes found from all 56

recessive (top) and additive (bottom) models with H =

genotype is R = 1. Power = 0.8, α = 0.001.

Recessive Model

possible selection combinations for

0.3. The cost ratio of phenorype-to-

P

0.1

0.4

P
0.1

0.3
0.5
0.7
0.9

0.1

0.3
0.5

0.7

0.9

ED,CHCL

T10B10.T1B1

T10B25,T10B10

T15B25.T20B20

T30B30/Γ25B25

T25B25/Π5B15

T10B20/ΠB1

T15B25/Π0B10

T30B30/Π5B15
T30B30.T25B25

T30B30/Π5B15

n(ned,nch,ncι)

53(43,9,1)

105(42,40,23)
311(73,129,109)

492(178,157,157)

308(150,64,94)

43(31,9,3)
134(38,52,44)

300(120,93,87)

450(95,178,177)

308(118,89,101)

COST

6.44

3.5

4.78

4.67

4.9

6.27

3.64

4.18
4.11

4.22

ED
T10B25

T10B25

T30B30

T30B30

T25B25

T10B25

T15B25

T30B30

T30B30

T30B30

n

8604

163

445

306
352

1255

125
208
157

229

COST

475

13

9.03

6.92

10.7

177

11.3

6.63

5.58
7.44

Additive Model

P

0.1

0.4

P
0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

ED,CHCL

T10B25/Π5B15

T25B25,T20B20

T25B25,T20B20

T25B25,T20B20

T25B25/Π5B15

T15B25/Π0B10

T30B30J15B15

T30B30,T15B15

T30B30/Π5B15

T30B30,T15B15

n(ned,nch,ncι)

197(53,85,59)

380(153,118,109)

379(144,117,117)

394(141,121,132)

337(166,71,100)

151(43,58,50)

285(122,84,79)
287(116,85,86)

301(114,92,95)

338(131,97,110)

COST

4.28

4.64

4.77

5.1

5.31

3.97

3.72

3.88

4.2

4.6

ED
T10B25

T30B30

T30B30

T30B30

T25B25

T15B25

T30B30

T30B30

T30B30

T30B30

n

106

381

468

381

405

75

176

170

176

259

COST

7.87

6.99

7.32

8.16

12.1

6.51

4.91

5.18

5.18

8.28

example, among the 150 parameter configurations defining a genetic model, there were

16 that had as an optimal design T10B10 ED, T1T1 CH and B1B1 CL sib-pair types.

When residual correlation increases (decreases), the marginal counts of discordant pairs

shift toward less (more) stringent thresholds. This general pattern corroborates the

specific results seen in Tables 3 and 4. Considering discordant and concordant selection

jointly, we observe that the majority of counts occur along the diagonal at p = 0.1,

while most of the counts are located below the diagonal at p = 0.4. Consequently, in

the presence of positive residual correlation we should not plan studies that combine

extreme discordant pairs with less extreme concordant sib-pairs.

Similar summary counts in Table 6 are stratified by low (R = 0.02,0.1) and high

(R = 1,10,50) phenotype-to-genotype costs . When phenotyping cost is relatively low,
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Table 5: Counts of optimal mixture selection schemes among all 150 possible selection
combinations when residual correlation p = 0.1 (top) and p = 0.4 (bottom). Other param-
eters are H = 0.1,0.3, /? = 0.1,0.3,0.5,0.7, 0.9, the cost ratio of phenotype-to-genotype
R — 0.02,0.1,1,10,50, under recessive, dominant, and additive gene action. Power = 0.8,
α is 0.001. Under CHCL is shown the selection scheme for CH and CL pairs; for example,
Tl 0B10 means T10T10 for CH pairs, and Bl 0B10 for CL pairs.

ED
T10B10
T10B20
T10B25
T15B15
T15B25
T20B20
T25B25
T30B30
Sum

ED
T10B10
T10B20
T10B25
T15B15
T15B25
T20B20
T25B25
T30B30
Sum

T1B1
16
0
4
2
0
0
0
0

22

T1B1
14
1

11
1
2
8
2
0

39

T3B3
0
1
1
1
0
0
0
0
3

T3B3
0
0
1
4
0
1
0
1
7

T5B5
14
2
2
3
0
1
0
0

22

T5B5
1
0
3
1
6
3
10
0

24

p = 0.1
CHCL

T10B10
2
0
14
11
2
5
3
0

37

p = 0.4
CHCL

T10B10
0
0
0
0
5
3
3
6
17

T15B15
0
0
1
0
5
0
5
1

12

T15B15
0
0
0
0
0
0
1

27

28

T20B20

0
0
0
0
8
0
11
5

24

T20B20
0
0
0
0
0
0
0
12

12

T25B25

0
0
0
0
0
0
0

30
30

T25B25
0
0
0
0
0
0
0

23
23

Sum
32

3
22
17
15
6

19
36

150

Sum
15

1
15
6

13
15
16
69

150

fairly stringent discordant and concordant sib-pairs (upper left region) should be col-

lected. Conversely, when phenotyping cost is relatively high, less stringent conditions

are indicated. Of course, these observations are general guidelines; more specific de-

signs are possible with more information other than just the phenotype-to-genotype cost

ratio. However, in cases when very little is known about the underlying genetic factors,

one may not know more than the costs involved.

Lastly, we summarize the comparison of costs between the optimal mixed sam-

ple and optimal ED-only sample; Figure 3 gives an overview. The y-axis represents

ED mixed cost ratio, and the x-axis indexes an ordered set of parameters as given be-

low:

for £=(0.02, 0.1, 1, 10,50)
for #=(0.1,0.3)
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Table 6: Counts of optimal mixture selection schemes among all 150 possible selection com-
binations when phenotype-to-genotype cost ratio R = 0.02, 0.1 (top) and R = 1, 10, 50 (bot-
tom). Other parameters are H = 0.1, 0.3; p = 0.1, 0.3, 0.5, 0.7, 0.9; p = 0.2, 0.4; recessive,
dominant, and additive gene action. Nominal power = 0.8 and α = 0.001. Under CHCL is
shown the selection scheme for CH and CL pairs; for example, T10B10 means T10T10 for
CH pairs, and Bl 0B10 for CL pairs.
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3
0
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0
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6
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5
4
3
6
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0
0
0
0
0
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0
0

0

T15B15

0
0
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0
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0
0
0
0
0
0
0
0

0
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0
0
0
0
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0
11
17

36
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0
0
0
0
0
0
0
0

0
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0
0
0
0
0
0
0

53
53

Sum
33

3
21
20
10
17
15

1

120

Sum

14
1

16
3

18
4

23
104

180

for Mode=(recessive, additive)

for p=(0.1,0.3)
for/HO.1,0.3,0.5,0.7,0.9)

For example, the first 5 points correspond to R=0.02, i/=0.1, recessive gene action,

p=0.1 and p=0Λ, 0.3, 0.5, 0.7 or 0.9; the next 5 points correspond to R=0.02, i/=0.1,

recessive gene action, p=0.3 and p=0Λ, 0.3, 0.5, 0.7 or 0.9, and so on. Although the

costs for both designs increase as R increases, the ratio ED mixed is generally between

1 and 2. In plot (a), the 10 pairs of high-low peaks correspond to the 20 combinations

of R, mode-of-inheritance, and p. Within each pair the decrease reflects increases in

p; across pairs the peak magnitudes reflect changes in mode-of-inheritance. When the

model is recessive with infrequent allele (1 — /?), the optimal cost from the test with



338 J. Han and R. Guerra

(a)

12 § !

ϋ o :

Z. ω

•

j

i! t ι

•
! ίί

•

1 :
• l'ι

1 1:
ί •

i
50 100

Index (All data)

150 200

(b)

o
O r- ί

50 100

Index (Data with ratio less than 10)

150 200

Figure 3: The ratio of lowest cost from the test using ED sib-pairs alone to the lowest cost
of the mixture test. The lowest cost is chosen from all possible selection schemes under each
genetic models: H = 0.1,0.3, recessive, additive, p = 0.1,0.4, and/? = 0.1, 0.3, 0.5, 0.7, 0.9.
Power = 0.8 and α = 0.001. (a) Plot of ratios of all available data, (b) Plot of ratios below
10.

ED pairs alone can attain 20 - 100-fold increases over the mixed sample. A similar

conclusion holds for a dominant model with frequent allele (/?). More information

about the low ratios is shown in plot (b), where the high ratios (greater than 10) are not

shown. In some cases the ratios are close to 1, especially when R = 0.02 or R = 0.1.

6 Discussion

Extremely discordant and extremely concordant (high or low) sib-pairs are among the

most useful sib-pairs in genetic linkage analysis of quantitative trait loci (Risch and
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Zhang [13]). Essentially, selecting sib-pairs mimics a designed experiment whereby

known genotypes are typically compared by phenotypic averages {e.g., analysis of

variance). Comparing averages (first moments) is much more powerful than analyz-

ing variances (second moments), as is the basis of the Haseman and Elston [11] robust

sib-pair method for linkage. By selecting extreme discordant or concordant sib-pairs

we are enriching the sample with individuals that are more likely to be in the tails of

the phenotypic distribution because of genotype rather than chance.

Gu et al [10] extended the mean IBD test of Risch and Zhang to incorporate the

three types of pairs into a single test (EDAC). In this paper, we show the advantages of

the score test for linkage, developed by Dudoit and Speed [5,6], when multiple selec-

tion schemes are possible. Under the mixed selection strategy, the score test provides

more power than the EDAC test by weighting each kind of sib-pair according to its

linkage information under an assumed genetic model. As the basis for inclusion is the

underlying biological mechanisms, it is not surprising that the score test performs better

than an alternative that combines test statistics largely on the basis of statistical princi-

ples, although the latter has been shown to significantly increase power over unselected

sib-pairs.

Compared with the ED-only selection scheme, the mixture selection scheme not

only makes better use of the screening process it is also more cost efficient. Con-

siderable savings in cost are seen under recessive and dominant modes of inheritance.

Residual correlation between sib-pairs plays a key role in the optimal design of selected

samples. At higher degrees of correlation (perhaps larger than 0.3-0.4) discordant pairs

become increasingly difficult to obtain. Therefore, the threshold for ED pairs should be

accordingly relaxed. Conversely, the threshold for concordant pairs may be more strin-

gent. The results shown in Tables 3, 4 and 5 provide some useful guidelines when the

cost ratio (R) of phenotype-to-genotype is known. More specific guidelines are possible

when there is knowledge of residual correlation.

We have assumed that the trait locus and marker locus are in complete linkage, but

this is not an unrealistic assumption as more and more genetic markers are available for

many organisms. Also, we have set a conservative type I error probability of α = 0.001,

as discussed Lander and Kruglyak [12], to more closely resemble a "search" for trait

loci, whether by a scan or a relatively large panel of candidate genes. An error rate

of α = 0.01 or α = 0.0001 gives the same basic patterns in optimal designs as dis-

cussed in the text. The IBD mean test of Risch and Zhang and more general methods as

developed by Dudoit and Speed are needed to more faithfully reflect the reality of ge-

netic epidemiology studies. Analyzing genotypes conditional on phenotypes provides

a realistic framework under which to study genetic traits. The specific assumptions un-

derlying the Dudoit-Speed score test allow one to evaluate the appropriate use of the

method in any given situation. This is an important step when assessing the validity of

study results, especially in observational studies.
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Dedication

This paper is dedicated to Terry Speed. As thesis advisor he provided unending support
and motivation; learning from him was truly inspirational. At this particular time in the
development of statistical methods for statistical genetics and bioinformatics we are
indeed fortunate to have Terry play a major role in shaping the field. As an occasional
lone voice in the desert, he reminds us that we are trying to solve real problems that
more often than not require thinking outside the box. This is perhaps the most important
thing I learned from him - solve the problem. I am privileged to have his attention as
friend, colleague, and advisor. - Rudy Guerra

Rudy Guerra, Program in Biostatistics, Department of Statistics, Rice University, Hous-
ton rguerra@rice.edu

Man Han, Biostatistics, PPD, Inc., Austin j i an . han@austin. ppdi . com
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Multipoint Fine-scale Linkage Disequilibrium
Mapping: Importance of Modeling Background

LD

Andrew L. Strahs and Mary Sara McPeek

Abstract

In linkage disequilibrium (LD) mapping, use of information on multiple mark-
ers simultaneously is expected to lead to greater power to detect association and
smaller confidence intervals (CIs) for the location of the variant of interest than
would be obtained from single-point analysis. Among the important challenges
facing case-control LD mapping methods are (i) even when an appropriate con-
trol sample is available, there may be background LD in the control sample which
must be taken into account in the analysis, especially when fine-scale data are col-
lected, and (ii) in practice, genotype rather than haplotype data are often available,
limiting the applicability of some methods. Furthermore, in cases when genotype
data can, in principle, be incorporated, it can be computationally challenging.
We focus on simultaneous solution of these problems in the context of the De-
cay of Haplotype Sharing (DHS) method. We develop a computationally efficient
method that allows for genotype or haplotype data on many loci and incorporates
background LD based on a Markov model of order η. The case of a Markov model
of order 2 is implemented in free software. In addition, we demonstrate that fail-
ure to adequately model background LD can potentially have a major effect on
the analysis, and we develop and apply methods for assessing the adequacy of the
model for background LD.

Keywords: Decay of Haplotype Sharing; linkage disequilibrium; fine-scale mapping;

background linkage disequilibrium; cystic fibrosis; hidden Markov model

1 Introduction

Linkage disequilibrium (LD) has been shown to be useful for fine-mapping of trait-

associated variants [6, 10, 11, 15]. While early approaches generally treated each

marker separately, haplotype-based LD mapping methods have the potential to provide

considerable additional information when dense marker data are available in a region.

There are several approaches that combine results across loci in various ways without

explicitly modeling dependence among loci [4, 7, 17, 23, 31, 32]. Among approaches

that explicitly model dependence across loci, Service et al. [29] and MacLean et al
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[20] perform haplotype-based tests for association, in which they use multilocus mod-
els for haplotypes descended from an ancestor, taking into account recombination and
mutation. They require haplotype data, assume background linkage equilibrium, and
do not consider effects of population structure. There are several methods that per-
form haplotype-based tests of association in trios consisting of parents and an affected
offspring, conditional on the transmitted and non-transmitted haplotypes in the parents
{e.g. [2, 3, 36]). Lam et al [16] use a parsimony method to build an evolutionary tree
of disease haplotypes assuming a disease mutation occurs in an intermarker interval.
They then compute the likelihood of the tree using a model for recombination and mu-
tation. They obtain a posterior distribution for the location of the variant. Their method
assumes haplotype data. Background linkage disequilibrium is taken into account by a
Markov-type method in which the lag at any stage is chosen to coincide with the longest
match in the control database.

McPeek and Strahs [22] form a confidence interval (CI) for the location of the
variant, in which they make use of a multilocus decay-of-haplotype-sharing (DHS)
model for haplotypes descended from an ancestor, taking into account recombination
and mutation. They propose a quasi-likelihood approach to take into account population
structure in the affecteds. Assuming a conditional coalescent model for the population
structure, McPeek and Strahs [22] derive an approximate correction factor for the like-
lihood, and they model background LD by a Markov chain with lag 1. Morris et al. [25]
concentrate on biallelic markers in a Bayesian framework and obtain the posterior dis-
tribution of the location of the trait-associated variant using Markov chain Monte Carlo
(MCMC). They use a similar approach to that of McPeek and Strahs [22] to correct for
population structure. Rannala and Reeve [28] also employ a Bayesian framework and
obtain the posterior density of the position of the trait-associated variant by employing
MCMC to integrate over coalescent genealogy trees, using biallelic marker data and in-
formation about candidate genes from an annotated human genome sequence. Neither
Morris et al [25] nor Rannala and Reeve [28] consider background LD.

Liu et al. [18] also obtain the posterior distribution of the location of the trait-
associated variant using MCMC. Their model for population structure groups the dis-
ease haplotypes into clusters corresponding to different ancestral haplotypes and as-
sumes a star-shaped genealogy for the haplotypes within each cluster given the ances-
tral haplotype. They model background LD by a Markov chain with lag 1. Zhang and
Zhao [34] extend McPeek and Strahs [22] by implementing a stepwise mutation model
for mutation in microsatellite markers. They extend the conditional coalescent model
of McPeek and Strahs [22] to allow variable population size. Morris et al. [24] ob-
tain the posterior distribution of location of the trait-associated variant and incorporate
a shattered coalescent model for genealogies of the disease haplotypes using MCMC.
They also model background LD using a Markov chain with lag 1.

In this study, we simultaneously tackle two of the major difficulties that arise in
multipoint LD mapping with data on random samples of cases and controls: (1) LD is
generally present in the controls as well as in the affecteds, and this background LD
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can have a major impact on the analysis; (2) data are typically in the form of genotypes

with unknown phase, rather than haplotypes. Dealing with both of these issues simulta-

neously presents particular computational challenges, and a focus of our work has been

development of an efficient algorithm to handle them.

To deal with the second problem, that data are typically in the form of (unphased)

genotypes, one possible solution is to try to reconstruct haplotypes based on population

information, using one of the available methods [9, 12, 18, 19, 30]. We prefer instead

to incorporate uncertainty about the haplotypes into the analysis. The likelihood frame-

work of DHS makes an extension from haplotype to genotype data straightforward in

principle: one need only sum the likelihoods of all possible sets of haplotypes compati-

ble with the observed genotype data. This approach is implemented by Zhang and Zhao

[35]. However, with more than a small number of loci, this straightforward approach

quickly becomes computationally infeasible. We introduce a more computationally

efficient approach using a hidden Markov model (HMM), in which we incorporate a

Markov model, with lag η , for LD in the controls.

Methods for LD mapping generally consider two statistical problems, detection of

association (i.e. hypothesis testing) and localization (i.e. construction of a CI for the

variant of interest). If background LD, i.e. LD present in the controls as well as in the

affecteds, is not adequately captured by the model, it may be falsely attributed to the

presence of a variant associated with the trait. For the detection problem, unmodeled

background LD could result in excess false positive detections of association. For the

localization problem, unmodeled background LD could result in CIs that fail to have

the appropriate probability of covering the true location. For the detection problem,

a number of approaches have been developed that aim to produce valid hypothesis

tests in the presence of background LD [2, 8, 27, 36]. Here we instead focus on the

localization problem, which is not treated by these papers. In this context, McPeek

and Strahs [22] model background LD in control haplotypes by use of a Markov chain

model of lag η = 1. In analyzing the data set of Kerem et al [15], we find that a

Markov chain of lag η = 2 is preferable, as shown in the subsection "Importance of

modeling background LD" of the Results section. Incorporation of Markov models for

background LD is more challenging when genotype data are used instead of haplotype

data, because implementation of a Markov model requires one to keep track of phase

information. In this study, we devise a HMM to simultaneously incorporate genotype

data and a Markov model with lag η = 2 for background LD.

These new methods make it feasible to perform multipoint LD mapping on data

sets consisting of (unphased) genotypes for a large number of markers. We use sim-

ulated examples to compare fine-mapping based on genotype and haplotype data, and

we use the CF data set [15] to demonstrate the importance of the improved modeling

of background LD.
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2 Methods

DHS method for haplotype data

As developed in McPeek and Strahs [22], the DHS likelihood under the model for

a single observed haplotype hObs drawn from the population of affecteds, when there is

one ancestral haplotype h a n c , is

L(x,h a n c,τ" I,/?;ho bs) = (1 - p)l{x,Knc,τ~λ\\ϊohs) +/?/)nuii(hobs), (1)

where x is the location of the variant; τ is number of generations to the ancestor, or,

equivalently, τ " 1 is a measure of the amount of linkage disequilibrium and is equal to

the expected genetic distance from the variant to either edge of the ancestral segment

in an observed haplotype; p is a heterogeneity parameter representing the probability

that the haplotype hObs is not descended from the ancestral haplotype h a n c ; and Pnuii(h)

is the frequency of haplotype h in the control population. Furthermore,

he Ue Γ I

= Σ Σ s(τ~\-./\0 x Π m(k,τ,hΆnc(k),hobs(k)) x
1=07=0 L k=-j

) , . . . ,h o b s (/ r e )) x

is the likelihood assuming that observed haplotype hObs is a τth-generation descendent

of ancestral haplotype h a n c In the above expression, m(£,τ,α,β) models the mutation

process; it is the probability that allele β is observed at locus k, given that the hap-

lotype's τth generation ancestor at locus k had allele a. i and j index markers, with

marker 0 corresponding to the putative location x of the variant, and with markers on,

say, the distal side of x numbered with consecutive negative integers decreasing in the

direction away from the centromere and with markers on the proximal side of x num-

bered with consecutive positive integers increasing in the direction of the centromere.

(Note that the integer labels for the markers are defined relative to the putative position

x of the variant, which varies across the region during the analysis.) Here, — Ue is the

index corresponding to the "left edge" of the data set {i.e. the marker farthest from the

centromere), and lre is the index corresponding to the "right edge" of the data set {i.e.

the marker closest to the centromere). In the above expression, we sum over all possi-

ble choices of the marker intervals containing the two (unobserved) breakpoints of the

ancestral segment. Moreover,

is the probability that hObs inherits the variant and the ancestral segment, intact, between

loci — j and / inclusive but that it is no longer intact at locus —j — 1 nor at locus / + 1.
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Here, djj is the genetic distance between loci i and j . McPeek and Strahs [22] discuss

how to incorporate multiple ancestral haplotypes into this likelihood expression.

To combine likelihoods across observed haplotypes, one must make some assump-

tions about how the haplotypes are related. Under the assumption of independent re-

combinational histories (i.e. a star-shaped phylogeny), one can multiply the likelihoods

across haplotypes. This approach is generally anti-conservative when this assumption

does not hold. McPeek and Strahs [22] propose a quasi-likelihood approach to take

into account population structure, which in principle could be applied to any chosen

population model. For the case in which the affecteds are presumed to be only very dis-

tantly related with little else known about the population structure, McPeek and Strahs

[22] propose a conditional coalescent model for the phylogeny relating the affected in-

dividuals, conditional on the time to the common ancestor. With complete data, they

calculate and maximize a quasi-likelihood with respect to this model, and with incom-

plete data, they calculate and maximize a similar expression with the complete data

likelihoods replaced by incomplete data likelihoods. We employ the same approach

here. In the case of the conditional coalescent model or any other exchangeable pop-

ulation model, the parameter estimates obtained in this way are the same as under the

assumption of independence, but with the standard errors for the parameters inflated

and the log-likelihood deflated. When DHS is used to fine-map, this widens the CI for

the location of the trait-associated variant. In practice, then, to implement the condi-

tional coalescent model, we proceed as if the observations were independent, and then

implement the appropriate correction to the log-likelihood and standard errors at the

end. The approximate correction factor in the conditional coalescent case is

n-2

k=\

which corrects a typo in McPeek and Strahs [22] (factor of (-1) 1 vs. ( -1) I + 1 ) . The

DHS model can also be extended to the case when population structure is known [33].

In that case, the shape of the likelihood curve and, in particular, the maximum, will

generally not be the same when population structure is taken into account as when

independence is assumed.

The formulae of this section give a mathematical representation of the likelihood.

However, for computational efficiency in calculating and maximizing the likelihood,

we reformulate the probability model as a hidden Markov model (HMM) in the sub-

section "HMM for haplotype data, with Markov(η) model for background LD" below.

Uncertainty in ancestral haplotype is incorporated in CI construction

To construct a CI for the location of the variant, McPeek and Strahs [22] invert an
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(approximate) likelihood-ratio test. At each putative location x, their approximate log-

likelihood is maximized over h a n c , 1/τ and /?, assuming that the variant is located at x.

(The properties of the profile likelihood are discussed in McCullagh and Nelder [21].)

The CI is then based on a comparison of the highest maximized log-likelihood to the

maximized log-likelihoods at other locations. We emphasize that inference about vari-

ant location is not performed conditional on the maximizing value of ancestral haplo-

type. The mapping approach of McPeek and Strahs [22] does, in fact, take into account

the uncertainty in ancestral haplotype.

Mode of inheritance, mutation, and background LD

Implicit in the method given in the previous sub-section is the assumption of a

multiplicative model for the mode of inheritance, similar to that described by Morris et

al. [25]. Where β* corresponds to allele k,

P{affected | (GUG2) = (ij)} = β, β,

for an individual with genotype (i,j) at the variant. The multiplicative model has the re-

cessive model as a special case, but also allows heterogeneity. This model is convenient

when one does not have the information of how the haplotypes are paired. When that

information is available, one could easily implement some other mode of inheritance in

the analysis.

The mutation model we use is the same as that given by McPeek and Strahs [22].

For biallelic loci, this amounts to assuming the same rate of mutation between the two

alleles. We assume the same mutation rate at all markers. These assumptions can be

easily modified [34].

When choosing mutation rates to use in the DHS analysis, it may not be appropriate

to use a rate as low as the value of « 10~9 - 10~8 given for SNP loci by Nielsen

[26]. The reason is that only SNPs that are polymorphic across the individuals in the

data set are chosen for analysis. Therefore, the ascertainment process for the data set

insures the existence of at least 1 mutation at the SNP within the time-frame of the

coalescence of the study sample at that SNP. Thus, conditional on a SNP being in the

data set, its mutation rate over the time since the most recent common ancestor of the

variant is substantially increased over the unconditional mutation rate given by Nielsen

[26]. The extent of the increase depends on assumptions about the population history,

but the conditional mutation rate could be several orders of magnitude larger than the

unconditional mutation rate. Specification of a larger mutation rate would be expected

to lead to a more conservative analysis. In our analysis of the CF data set, we use a

mutation rate of 1 x 10~4 mutations per meiosis per marker. Note that in contrast to

SNPs, microsatellites would be less affected by this selection effect. The mutation rate

of a microsatellite is typically sufficiently high that its conditional mutation rate, over

the time period since the most recent common ancestor of the variant, conditional on it

being polymorphic in the study sample is very close to its unconditional mutation rate.
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In expression (1), the model for background LD enters the likelihood through

Pnuiι{h), which gives the frequency of haplotype h in the control population. In princi-

ple, one could think of leaving the control haplotype frequencies unconstrained (beyond

the requirement that they sum to 1) when estimating them from data. However, with m

loci, the number of parameters is 2m - 1 for SNP data (with many more for microsatel-

lite data), and the size of the control sample available to estimate these parameters is

typically small. Our approach is to constrain the control haplotype frequency distri-

bution to be Markov (η), i.e. for a given lag η, we require Pnuii{h(t) = it\h(t — s) =

i,-,,... ,h(f - 1) = i,_i} =Pnuιι{h{ή = i , | h ( / - η ) = i,_η,... ,h( f- 1) = z,_i} for all

s such that η ^ s < / + le, and all choices it-s,...,/, for alleles, where h(/) is the allele

at locus / in the haplotype h. Such a Markov model can be useful as a simple tool for

capturing the local dependence structure among loci on haplotypes randomly selected

from a control population. McPeek and Strahs [22] implement the case η — 1 when

complete haplotype data are available. Here, we implement the cases η = 1 and η = 2,

when either haplotype or genotype data are available, by means of a HMM.

HMMfor haplotype data, with Markov(r\) model for background LD

For computational efficiency in calculating and maximizing the likelihood, we re-

formulate, as a HMM [1], the probability model of sub-section "DHS method for hap-

lotype data". The HMM we give here differs from the one given in McPeek and Strahs

[22]. Although the underlying likelihood is the same, the HMM given here has com-

putational advantages over the previous version. These advantages are related to the

extension of the HMM to allow background LD to be modeled by a Markov model

with lag η > 1, which is given at the end of this sub-section. In section "Extension of

HMM to genotype data", we extend this HMM to the case when only genotype data are

available.

Suppose that, as in the previous subsection, the putative location of the variant of

interest is labeled marker 0, and the markers are numbered with consecutive positive

integers increasing in the direction of the centromere and consecutive negative inte-

gers decreasing in the direction away from the centromere. We define a discrete-time

Markov chain {Qι,0 ^ / ̂  /re}, where / indexes loci on the centromeric side of the

variant. The state space of {Qι} is {A,N}, where A stands for "ancestral" and N stands

for "non-ancestral." We define the event {Qι — A} to occur when the entire segment be-

tween locus / and the variant of interest (locus 0) is inherited, unbroken by crossovers,

from the ancestral haplotype. Note that {Q\ — A} holds in this case even if one or

more mutations have occurred at locus / (or elsewhere in the segment) in the time since

the ancestor. We define {Qι = N} = {Qι = A}c. The initial distribution of {£>/} is

P{Qo = N} = p = 1 - P{Qo — A}. The transition probability matrix for {Qι} is given

in Table la. In fact, we find it convenient to reverse the conditioning of Q. That is, we

define the initial distribution to be P{Qιre =A} = (1- p)e-τdv« = 1 - P{Qιre = N},

and we use the one-step transition probability matrix P{Qι\Qι+\} given in Table lb.
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The resulting process {£?/} has the same distribution as before. The computational

convenience of the reverse conditioning is related to the modeling of background LD

and is explained below after the observation distribution is introduced. We can define

a mirror-image Markov chain for the loci on the distal side of the variant, with the two

chains conditionally independent given Qo.

Table la: Transition probability matrix P{Qι\Qι-1)

Current State Probability that Next State Entered Is

A N
A e-tdiJ+\ \ _ e-tdu+\

N 0 1

Table lb: Transition probability matrix P{Qι\Qι+\)

Current State Probability that Next State Entered Is

A N

A 1 0

Consider the observation sequence {0/,O ^ / ̂  lre] associated with the Markov chain

{Qι,0 < / sζ lre}, where 0/ is the observed allele at locus /. Our formulation of the

distribution of 0/ conditional on Qι depends on our model for background LD as well

as on our model for mutations. For simplicity of exposition, we first assume background

linkage equilibrium. In that case,

pιn\n\-ί ™(ι^anc{l),Oι) ifβ/ = A
n ° / | y / ) " l//(o / ) ifβ/ = tf, w

where //(α) is the frequency of allele α at locus / in the controls. We can allow the

observed allele at locus / to be missing by setting P{Oι \ Q{\ = 1 when 0/ is missing.

This will yield the appropriate likelihood calculation for the case when the event that

Oι is missing is independent of Q\.

We now relax the assumption of background linkage equilibrium. Assuming a

Markov(l) model for background LD, the observation distribution for 0 < / < lre is

given by

ύ Qι - Ni

where /// + i (α |β) is the conditional frequency, in the controls, of allele α at locus /

given allele β at locus / + 1. If O/ is missing, we set P{Oι \ Qι,Oι+\} = 1, and i
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is missing, we set P{Oι \ Qι,Oι+\} equal to expression (2). P{Oιre\Qιre} remains the
same as in expression (2). Under our model, when 0 ̂  / < lre, P{Oι \ Qι,Qι+\, 0/+i} =
P{Oι I Qι,Oι+\}, which does not depend on g/+i. Note that if we had conditioned
in the other direction, P{Oι \ QhQt^uOι-\} would depend on g/_ l s and this is the
reason for our choice of the direction of conditioning. This is particularly useful for
implementing a Markov model of lag η > 1 for the background LD. In that case, the
observation distribution for 0 ̂  / ̂  lre - η becomes

-ί ™(',τ,lw(/),0/) ifQ ι =A
t //,...,/+η(<?/ I O/+1,... ,6>/+η) if Qι = N,

andP{O/ I β/,fi/+i,... , g/ + η ,0/ + l i . . . ,0/+ η} = P{Ot \ QhOM,... ,0 / + η } does not
depend on Qι+\,...,g/+η. This allows us to extend the model for background LD to
Markov of lag η > 1 without increasing the size of the state space of the hidden Markov
chain.

The joint process {Qι, 0/} was so far defined for 0 ̂  / ̂  lre. There is a correspond-
ing mirror-image process defined on — l\e ^ / ̂  0. When background linkage equilib-
rium is assumed, these two processes are conditionally independent given {Qo,Oo}.
When background LD is modeled by a Markov model of lag η > 0, the two processes
are conditionally independent given {£?o,Φb 7 ^ + η _ i } , for any choice of k with
- η + 1 ̂  k ̂  η - 1. In practice, however, we generally take the position of the vari-
ant (/ = 0) to be in between markers, rather than at a marker, so that Oo is always
missing (this is discussed further in Appendix A). We have developed extensions to the
Baum algorithms for likelihood calculation and maximization that are applicable to our
model, as outlined in Appendix A.

Extension ofHMM to genotype data

In practice, unambiguously-determined haplotype data are often unavailable. In-
stead, genotype data, in which phase is unknown, are commonly available. We de-
scribe an extension of the HMM of the previous sub-section to this case, which allows
computationally efficient analysis of data sets involving genotype data on many loci.

Consider the model for multilocus genotype data from a single individual. To sim-
plify the exposition, we first assume background linkage equilibrium. In that case,
we consider the Markov chain {Rf,0 ^ / ̂  /„,} = {(g^,gf),0 ^ / ̂  /re}, where
{βf^O ^ / ̂  /re} is the Markov chain of the previous subsection defined for the in-
dividual's maternally-inherited haplotype, while {Qf ,0 ζ / ̂  lre] is the Markov chain
of the previous subsection defined for the individual's paternally-inherited haplotype,
with {Qff} independent of {Qf}. The state space of {/?/} is {A,N}2, the transition
probabilities of {Λ/} are the products of the transition probabilities for the independent
chains {ζtf} and {fif}, and the initial distribution of {Λ/} is similarly obtained from
the initial distributions of {Q^} and {ζ?f}. The observation Of is the genotype data
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for the individual at locus /. The two possible phases for the genotype are a priori

equally likely, so the observation distribution takes a simple form, given in Appendix

B. As before, there is a corresponding mirror image process to {ζ?/, Of\ that is defined

on — lie ^ I ̂  0, with the two processes conditionally independent given {Qo, Go}.

We now extend the method to allow the background LD to be modeled by a Markov

chain with lag η > 1. In order to implement a Markov model of lag η , we need to retain,

at each locus /, the information of the phase of the genotype at / with respect to the

genotypes a t / - f l , . . . , / + η . When the genotype at locus / is recorded in a computer file,

an arbitrary order of the two alleles at locus / is chosen, and we introduce the random

variable Φ/ which represents the arbitrary order of the alleles in the recorded genotype.

We assume that Φ/ = (M,P) or (P,M) with chance 1/2 each, where {Φ/ = (M,P)}

denotes the event that the first allele listed in the file is the maternal allele and the second

allele listed is the paternal allele, and vice versa for {Φ/ = (P,M)}. For each / we define

(β/,β?) = (βf,βf) if */ = (M,P) and (Q},0) = (βf.βf) if Φ7 = (P,M). That is,
Q\ is the ancestral state corresponding to the ith recorded allele in the genotype, / = 1,2.

Furthermore, we define Iμ+\ to be the indicator of the event {Φ/ = Φ/+i}, that is, the

indicator of the event that the genotypes at loci / and / + 1 happen to be recorded so that

their phase with respect to one another is correct. We define the hidden Markov chain

{Rf,(K K U by Rfu = (QJκ,Ql) € {A,N}2 andRf = {Q),QJ,I,,l+ι) for (K / < lre,
except that when Q) = Qj = A, the information of 7/5/+i is not needed, so we collapse

the two states (A,A, 1) and (A,A,Q) into a single state. The state space for {Rf,0 < / <

lre] is thus {(A,A)} U [{(A,N),(N,A),{N,N)} x {0,1}]. The initial distribution and

transition probabilities for this chain are easily determined, assuming that {Q^} and

{Qf} are independent copies of the Markov chain in the previous sub-section, with the

Φ/ i.i.d as given above. The observation distribution is given in Appendix B.

Note that in order to accommodate a Markov model of lag 1 for the background

LD, we have increased the size of the state space from 4 to 7. Interestingly, we are able

to accommodate a Markov model of lag 2 without any change in the state space. This

is because, in the calculation of the observation distribution by the Baum algorithm,

both Rf and Rf+ι are available to condition on, as well as θf+x and O^_2>
 s o there is

no need to store extra information. As in sub-section "HMM for haplotype data, with

Markov(η) model for background LD," we extend to our model the Baum algorithms

for likelihood calculation and maximization (see Appendix A).

Choice ofr\for modeling background LD

For modeling background LD, we have defined a nested sequence of Markov mod-

els indexed by the lag η . The question arises as to how η should be chosen in prac-

tice. The usual trade-offs apply. In our case, if η is too small, background LD may

be erroneously identified as LD with a trait-associated variant, while if η is too large,

overfitting will quickly become a problem, as the number of parameters increases ex-

ponentially with η .
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We view the choice of η as a problem of model selection. We consider two criteria,

the Akaike information criterion (AIC) (Akaike 1972) and the Bayesian information

criterion (BIC) (Schwartz 1978). Comparable formulations of these criteria are^/C =

—2L + 2k and BIC = — 2L + klogn, where L is the log-likelihood and k is the number

of parameters. For AIC and BIC, the model that minimizes the criterion would be

selected. The likelihood component L will always increase with η ; both procedures

include a penalty for the number of parameters, which offers some protection against

overfitting.

In addition to these generic model selection techniques, we also perform an infor-

mal diagnostic, suggested by Paul Van Eerdewegh (personal communication), which is

more specific to our method. To perform this diagnostic, which we call "mapping in

controls", we plug the control haplotypes/genotypes into the mapping program in place

of the affecteds' haplotypes/genotypes. We use the same control haplotypes to fit the

Markov(η) model for background LD. To assess the results of mapping in controls, we

generate the resulting log profile likelihood plot for the location of the variant. Because

the same data are used both to estimate the parameters of the model for background LD

and for mapping, if the model for background LD is adequate, the procedure should

"recognize" these data as fitting the model. The existence of a pronounced peak in the

resulting plot would suggest the presence of LD in the controls that is not adequately

modeled by the Markov (η) model. If this peak coincides with the peak in the affecteds,

then this suggests that the peak in the affecteds may be spurious or at least higher than

is warranted. To remedy this, we would try increasing the lag η to capture more of the

background LD.

3 Results

Importance of modeling background LD

We demonstrate the importance of modeling background LD in the CF data set of

Kerem etal [15]. The data set includes 94 haplotypes from affected individuals and 92

haplotypes from normal individuals. Pairs of haplotypes in individuals are not identi-

fied. Each haplotype consists of 23 biallelic markers within a 2-Mb region covering the

gene. All physical distances are converted to genetic distances by use of the equivalence

1Mb « 1 cM. Note that if the mutation rate were assumed to be 0, then the DHS results

would be invariant under a rescaling of distance, i.e. 1Mb « k cM for any k. When the

mutation rate is low, the DHS results would be expected to be robust to deviation of k

from 1. We further note that experiments (results not shown) have demonstrated that

the method is relatively robust to misspecifications of genetic distances while errors in

map order of the marker loci may have a more serious effect.

To demonstrate the importance of modeling background LD in the CF data set of

Kerem et al [15], we first perform mapping in the controls. Figure 1 gives the profile

log-likelihood curves for the control haplotypes for LE (η = 0), η = 1 and η = 2. For
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both η = 0 and η = 1, the plot for mapping in the controls is sharply peaked, suggesting

that background LD that is present in the controls could be driving some of the mapping

results in the affecteds. In contrast, the plot for η = 2 is completely flat, suggesting that

there is little unmodeled background LD detected in the controls, but leaving open the

possibility that the Markov(2) model could be overfitting the data. Table 2 gives the

results of the AIC and BIC model selection procedures, where we have added constants

to AIC and BIC so that each has value 0 for η = 0. The results indicate that the model

with η = 2 is strongly preferred over η = 0 and η = 1 by both the AIC and BIC criteria.

This leaves open the possibility that a value of η > 2 may be optimal according to the

AIC and/or BIC criteria. However, the results of our diagnostic in Figure 1 suggest that

additional unmodeled background LD, if present, is having little effect on the proce-

dure.

Table 2: Model Selection for background LD in CF data set of Kerem et al. [15]

log-lik. #param. AIC BIC

-1208.325 23 0 0

-739.951 45 -892.748 -837.269

-628.621 87 -1031.408 -870.013

Figure 2 shows the results of LD mapping when each of the three models for back-

ground LD is used. In the case of η = 0 (linkage equilibrium), the resulting profile log-

likelihood curve for the affecteds resembles the profile log-likelihood for the controls

given in Figure 1, suggesting that the mapping results in this case may be misleading

due to unmodeled background LD. In fact, neither the 95% CI assuming independence

of recombinational histories nor that assuming the conditional-coalescent model con-

tain the true location of the variant. The resemblance between the curves for cases and

controls is less strong for the case of η = 1 and non-existent for the case of η = 2. In

both of these cases, the CIs cover the true location of the variant. In this data set, LD

around the Δ508 mutation in the affecteds is very strong relative to the background LD,

but if the LD signal were weaker, as might be expected in many data sets, the model for

background LD would presumably become even more critical.

Mapping results for genotype vs. haplotype data

The cystic fibrosis (CF) data set of Kerem et al [15] has almost complete haplotype

information for affecteds and controls. By randomly combining haplotypes into geno-

types and then throwing away the phase information, we can compare the results of LD

mapping based on haplotype data with the results when only genotype data are avail-

able. Figure 3 gives the profile likelihood curve for one random pairing of affecteds'

haplotypes to form genotypes for 47 individuals, where we treat phase as unknown.

Here, a Markov model with lag η = 2 is used to capture background LD in the analysis.

For comparison, figure 2 gives the same plot assuming haplotype data are available.
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Figure 1: Results of mapping-in-controls diagnostic for DHS analysis of CF data set of
Kerem et al. [15], where background LD is modeled as Markov(η) with η = 0 (upper left),
η = 1 (upper right), η = 2 (lower left). Curve gives log profile likelihood vs. (putative)
location* of variant, where x is expressed as distance from D21S1885. The dotted vertical
line is the estimated variant location in controls, the unbroken vertical line is the true variant
location, the dotted horizontal line is the 95% CI when independence of recombinational
histories is assumed, and the unbroken horizontal line is the 95% CI when a conditional-
coalescent model is assumed. The assumed mutation rate is 10~4 mutations per marker per
meiosis. The hash marks give the locations of the biallelic markers. (Because the curve is flat
for η = 2, we omit the CIs, both of which cover the entire region.)
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Figure 2: Results of LD mapping for CF haplotype data by the DHS method, where
background LD is modeled as Markov(η) with η = 0 (upper left), η = 1 (upper right), η = 2
(lower left). Curve gives log profile likelihood vs. (putative) location x of variant, where x
is expressed as distance from D21S1885. The dotted vertical line is the estimated variant
location based on affecteds' haplotypes. The unbroken vertical line, unbroken and dotted
horizontal lines, and the hash marks have the same meaning as in Figure 1.
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The curves are nearly identical (after rescaling of the vertical axis), and the CIs for

genotype data are only slightly wider, reflecting a slight decrease in information about

the location of the variant due to the missing phase. This is expected because CF has a

recessive mode of inheritance and low heterogeneity. This lack of heterogeneity means

that many loci are homozygous and little information about phase is lost.

Figure 3: Results of LD mapping for CF genotype data based on a random pairing of
affecteds' haplotypes Curve gives log profile likelihood vs. (putative) location x of variant,
where x is expressed as distance from D21S1885, and where background LD is modeled as
η = 2. The dotted vertical line is estimated location based on affecteds' unphased genotype
data. The unbroken vertical line, unbroken and dotted horizontal lines, and the hash marks
have the same meaning as in Figure 1.

To add more heterogeneity, we sample 47 affecteds' haplotypes without replace-

ment and pair each with a randomly chosen control haplotype. This mimics the case

of a rare dominant trait. We then assume we have only (unphased) genotype infor-

mation for these 47 pseudo-individuals. The resulting log-likelihood curve, and the

log-likelihood curve for the same data assuming haplotypes are available, are given in

figure 4. In this case, the difference in the CIs between the cases when only genotype

data are available and when haplotype data are available is somewhat more noticeable.
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For this simulated example, the assumption of a multiplicative model for the mode of

inheritance does not hold, but, at least in this case, the DHS method appears to be

relatively robust to the deviation from that assumption.

Illllllll II I

Figure 4: Results of LD mapping for CF genotype data with added heterogeneity (left)
with results assuming haplotype data with added heterogeneity shown (right) for comparison.
In each case, the curve gives log profile likelihood vs. (putative) location x of variant, where JC
is expressed as distance from D21S1885, and where background LD is modeled as η = 2. In
the top plot, the dotted vertical line is estimated location based on unphased genotype data,
while in the bottom plot, the dotted vertical line is estimated location based on haplotype
data. The unbroken vertical line, unbroken and dotted horizontal lines, and the hash marks
have the same meaning as in Figure 1. The details of the added heterogeneity are given in the
text.

4 Discussion

In LD mapping, the presence of unmodeled background LD can have potentially serious

consequences. LD that is common to both cases and controls may be mistaken for LD

in cases that is due to the presence of a trait-associated variant. This is particularly

likely to happen when markers are densely-spaced. For instance, in the CF data set

of Kerem et ah [15], when background LD is inadequately modeled (η = 0 or 1)

and the mapping-in-controls diagnostic is performed, the highest peak based on the

DHS analysis corresponds to the most densely-genotyped region. That background

LD would tend to be stronger among closely-spaced markers is to be expected under

a model in which LD is broken up by recombination, leading to a sharp drop-off in

LD with distance. As a result, if background LD is not appropriately modeled when

performing localization, then the tendency will be for the estimated location of the
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variant to fall in the most densely-genotyped region or in a region of very low marker

information adjacent to the most densely-genotyped region. In addition to the effects

of marker spacing, the degree of polymorphism of the markers is also a factor. The lag

η of the Markov model may need to be greater with less polymorphic loci. Thus, for

example, larger η may be required to adequately model background LD in SNP data

than in microsatellite data of the same marker density.

The conclusions regarding importance of adequately modeling background LD

would be expected to hold not only for the DHS method, but for other methods with a

similar case-control approach, including those of Service et al [29], Morris et al [25],

Liu et al [18], and Morris et al. [24]. Our results address the effects of background LD

on the localization problem. For the problem of detecting association with a variant,

when such methods are applied, the presence of unmodeled background LD could be

expected to increase the chance of false positive detection of association.

We extend the DHS methodology of McPeek and Strahs [22], who allow for haplo-

type data and model background LD using a Markov model with lag 1. For haplotype

data, we develop a computationally efficient method that allows a Markov model for

background LD with lag η . We also extend the method to allow use of (unphased)

genotype data, which are much more commonly available than haplotype data. In prac-

tice, the order of the Markov model for background LD is limited by the size of the

sample of controls needed to estimate the frequency parameters and by the increas-

ing computational demands of higher order models, especially for genotype data. We

have implemented, in free software, the DHS method for both haplotype and geno-

type data, with background LD modeled as Markov(η) where η < 2. These methods

are implemented, for both haplotype and genotype data, using an efficient HMM. The

genotype-data DHS HMM incorporates uncertainty about phase into the likelihood and

allows the method to operate on data sets with a large numbers of marker loci. In addi-

tion to the CF data set which includes 23 markers, we have applied the methodology to

data sets with (unphased) genotype data on 80+ markers (data not shown).

We demonstrate the importance of modeling background LD using the CF data

set. For that data set, our results indicate that when background LD is assumed absent

(η = 0) or is modeled by a Markov (η = 1) model, additional unmodeled background

LD present in the controls could be driving some of the mapping results in the affecteds.

The model selection criteria AIC and BIC both prefer the Markov model with η = 2

to those with η = 1 or η = 0. Based on the mapping-in-controls diagnostic, there is

no detectable unmodeled background LD in the controls when the model with η = 2

is used. When mapping (with affecteds) is performed, the 95% CI for location does

not cover the true variant when η = 0 is used, while the CIs do cover the true location

in the cases η = 1 and η = 2. In the CF example, there is little heterogeneity among

the affecteds, so the model for background LD plays less of a role in the analysis than

it would in a situation of greater heterogeneity. Thus, we might reasonably expect

the effects of background LD to be more important in other data sets. In practical

situations, one could apply the AIC and BIC model selection criteria to compare models
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of background LD, and one could apply the mapping-in-controls diagnostic to assess

the adequacy of the chosen model.

We have extended our methods to allow for unphased genotype data as well as for

haplotype data. While in some cases, genotype data on close family members may

provide considerable haplotype information, our extension to unphased genotype data

may be particularly useful when it is difficult to obtain genetic data from close relatives,

as may happen when studying diseases with a late age of onset, such as Type 2 diabetes.

In addition to allowing for haplotype or unphased genotype data, the DHS method can

also be extended to allow for trio data [33].

There have been some interesting recent results regarding the possible nature of

background linkage disequilibrium [5, 14]. These results suggest that high-resolution

haplotype structure, at least in certain regions of the human genome, takes a relative

simple form. This consists of disjoint haplotype blocks (of tens to hundreds of kb),

where within each block there is very strong LD with only a few {e.g. ~2-7) commonly-

occurring haplotypes. Between the blocks are regions over which there is lower LD

(possibly representing recombination hotspots, at least in some cases [13]). Many ques-

tions remain about the extrapolation of these observations to the human genome as a

whole and to various human populations, from the select regions, populations, and data

sets that have so far been studied. There is currently some interest in a large-scale ef-

fort to explore this hypothesis and to take advantage of it for LD mapping (e.g. see

h t t p : //www.genome.gov/page.cfm?pageID=1000167β). The Markov models con-

sidered by [5] are extensions of the models we consider here. In order to characterize

this block structure, if it exists, a tremendous amount of data would need to be col-

lected and an enormous number of parameters estimated (including start and end points

of blocks, common haplotypes in blocks and their frequencies, associations between

common haplotypes in different blocks, and also characteristics of the regions of low

LD between blocks). Were such information available, these more detailed models for

background LD could be incorporated in a natural way in the DHS model. Further-

more, the DHS likelihood for a single haplotype could itself be modified to incorporate

a model of block structure for fine-resolution haplotypes.

Another interesting extension would be to combine the DHS method with a method

such as the structured association method of Pritchard et al. [27], which uses genotypes

at unlinked markers to infer population substructure which is then used to test associ-

ation at the locus of interest. The information of population substructure could pre-

sumably also be used for the localization problem with multilocus data. Alternatively,

an idea similar to that of genomic control [8] might be adaptable to the localization

problem.
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Appendix A: Likelihood calculation and maximization

We have developed extensions to the Baum algorithms for likelihood calculation and

maximization that are applicable to our model. We first define yι{i), for a given sam-

pled haplotype, as the probability that Q\ — i at locus /, conditional on the observed

haplotype and the parameter values (all of the following probabilities are conditional

on the parameter values), i.e.,

yι(i)=P{Q, = i\O},

which by the definition of conditional probability is P{Qι — i',O}/P{O}. The numera-

tor is computed as the product of two complementary recursively generated variables,

a "forward variable" α and a "backward variable" β. For /, —//e ^ / < 0,

P{Qι = i,O} =

P{Oι+x,..., O,re_,, O,re I O-,u,. ..,O,,Q, = i}

= P{O-,le, O-ιle+ι, ...,OhQι = i} x

i,...,O,re_i,Oίre \Oh...,O/-η+i,Q, = i}

where

and

β/(i) = P { 0 / + i , . . . ,0/,. I 0/,0/- η + i ,β/ = i}.

The definitions for the forward and backward variables on the centromeric side of

locus 0 are mirror images of the previous case, i.e., for /, 0 < / ^ lre,

e ,O-/ f c + i , . . . ,O/-i I 0/,... ,
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and

We note that the left and right sides of the chain are dependent, conditional on Qo,
only for Qo = N. In this case, the likelihood of the haplotype is just PΛU//(h0^). For

= /-//#f-//β+i(h(-//e),h(-//e+l))x

We note that we "skip over" locus 0 in this product, e.g., we include (recall that Go
is missing) P{OX \ O0,O-U... ,0_η} rather than P{0\ \ O0,O-h... ,O_η_!}, as a
Markov model of order η generally implies. Were we to include the latter, the like-
lihood given Qo = N would depend on the marker interval within which the variant
is assumed to lie, although, according to our model, the haplotype is drawn from the
normal population. Thus, we use

to compute γo(/).

Where h indexes the sampled haplotypes, c* = ΣhY/,h(̂ ) and b* = ΣhΎ/,h(̂ ) x

h(i)ίκnc(i)> t h e n (c-/,.^-/,.v ^ i i ^ I i ^ o ^ ΐ ^ ΐ ^ ^ L ^ L ) i s t h e conditional ex-
pectation of the complete data sufficient statistic for (1/τ,/?) given the data and current
model. The model parameters are then re-estimated by maximizing the complete data
log-likelihood, substituting this statistic for the complete data sufficient statistic.

The extension to genotype data is straightforward. The primary differences are (1)
the state space of the Markov chain is larger and (2) c* is formed by summing over the
genotypes, rather than the haplotypes.

Appendix B: Genotype HMM Observation Distributions

Assuming linkage equilibrium,

P{Of = (α,β) I Rf} = \/2P{df = a | Q?}P{Of = β | fif}
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for the case when both α Φ β and Q™ φ Qj, and

P{θf = (α, β) I Rf} = P{OY = a \ QT}P{θf = β | βf}

if either α = β or Qf = Qf, where Of1 is defined to be the allele at locus / on the

maternally-inherited haplotype, Of is defined to be the allele at locus / on the paternally-

inherited haplotype, and P{θf \ Qf} and P{θf \ ζtf} are given by expression (2).

Let Of = (θ},0f) be the alleles of the genotype at locus /, given in order Φ/. For

a Markov model of lag 1, the observation distribution is given by

P{Of \R?,Of+l} =P(θ}\Qλ

hO
ι

l+ι)P(Of\Qi,Oj+ι)Iυ+ι

+P(Oj\Qj,Oj+ι)P(Oj\QJ,Oj+i)(l-Iυ+ι)

for 0 < / < lre, where P(Oι\Qι, O/+i) is given by expression (3). When Q\ = Qf = A,

this equation reduces toP(θf\Q] = Qf =A,θf+ι) =P{Oj\QJ =A)P(θf\0 =A). For
a Markov model of lag 2, the observation distribution is given by

p(oj \Q), o}+1, όf+2)P(d}\Qί, df+u

P(Oj\Q},Of+uOf+2)P(0}\Q},θ}+uθ}+2)(l -Iυ

+ P(0}\Q},0Ϊ+u0}+2)P(0}\Qi},0}+ι,d}+2)(l -//,

for 0 ^ / < Ire - 1, where P(Oι\Qι,Oι+\,Oι+2) is as given by expression (4). When

Qj = Qj —^> this equation reduces to

P(Of\Q] = Q}=A,Rf+l,Of+l,Of+2)=P(O]\Q} =A)P(O}\Q}=A).

Andrew L. Strahs, Department ofBiostatistics, Harvard School of Public Health, Boston,

astrahs@hsph.harvard.edu

Mary Sara McPeek, Department of Statistics, University of Chicago, Chicago,

mcpeek@galton.uchicago.edu

References

[1] L. E. Baum. An inequality and associated maximization technique in statistical

estimation for probabilistic functions of Markov processes. Inequalities, 3:1-8,

1972.



364 A. L Strahs and M. S. McPeek

[2] C. Bourgain, E. Genin, H. Quesneville, and F. Clerget-Darpoux. Search for mul-

tifactorial disease susceptibility genes in founder populations. Annals of Human

Genetics, 64:255-265, 2000.

[3] D. Clayton and H. Jones. Transmission/disequilibrium tests for extended marker

haplotypes. American Journal of Human Genetics, 65:1161-1169, 1999.

[4] A. Collins and N. E. Morton. Mapping a disease locus by allelic association.

American Journal of Human Genetics, 95:1741-1745, 1998.

[5] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S. Lander. High-

resolution haplotype structure in the human genome. Nature Genetics, 29:229-

232,2001.

[6] A. de la Chappelle and F. A. Wright. Linkage disequilibrium mapping in iso-

lated populations: the example of Finland revisited. Proceedings of the National

Academy of Sciences, USA, 95:12416-12423, 1998.

[7] B. Devlin, N. Risch, and K. Roeder. Disequilibrium mapping: composite likeli-

hood for pairwise disequilibrium. Genomics, 36:1-16, 1996.

[8] B. Devlin and K. Roeder. Genomic control for association studies. Biometrics,

55:997-1004, 1999.

[9] L. Excofϊier and M. Slatkin. Maximum-likelihood estimation of molecular hap-

lotype frequencies in a diploid population. Molecular Biology and Evolution,

12:921-927, 1995.

[10] J. Hastbacka, A. de la Chapelle, I. Kaitila, P. Sistonen, A. Weaver, and E. Lan-

der. Linkage disequilibrium mapping in isolated founder populations: diastrophic

dysplasia in Finland. Nature Genetics, 2:204-211, 1992.

[11] J. Hastbacka, A. de la Chapelle, M. M. Mahanti, G. Clines, M. P. Reeve-Daly,

M. Daly, B. A. Hamilton, K. Kusumi, B. Trivedi, and A. Weaver. The diastrophic

dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-

structure linkage disequilibrium mapping. Cell, 78:1073-1087, 1994.

[12] M. Hawley and K. Kidd. Haplo: a program using the EM algorithm to estimate

the frequencies of multi-site haplotypes. Journal of Heredity, 86:409—411, 1995.

[13] A. J. Jefϊfreys, L. Kauppi, and R. Neumann. Intensely punctate meiotic recom-

bination in the class II region of the major histocompatibility complex. Nature

Genetics, 29:217-222, 2001.

[14] G. C. L. Johnson, L. Esposito, B. J. Barratt, A. N. Smeith, J. Heward, G. Di Gen-

ova, H. Ueda, H. J. Cordell, I. A. Eaves, F. Dudbridge, R. C. J. Twells, F. Payne,

W. Hughes, S. Nutland, H. Stevens, P. Carr, E. Tuomilehto-Wolf, J. Tuomilehto,



Importance of Modeling Background Linkage Disequilibrium 365

S. C. L. Gough, D. G. Clayton, and J. A. Todd. Haplotype tagging for the identi-
fication of common disease genes. Nature Genetics, 29:233-237, 2001.

[15] B. Kerem, J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox,
A. Chakravarti, M. Buchwald, and L.-C. Tsui. Identification of the cystic fibrosis
gene: genetic analysis. Science, 245:1073-1080, 1989.

[16] J. C. Lam, K. Roeder, and B. Devlin. Haplotype fine mapping by evolutionary
trees. American Journal of Human Genetics, 66:659-673, 2000.

[17] L. Lazzeroni. Linkage disequilibrium and gene mapping: an empirical least-
squares approach. American Journal of Human Genetics, 62:159-170, 1998.

[18] J. S. Liu, C. Sabatti, J. Teng, J. B. Keats, and N. Risch. Bayesian analysis of hap-
lotypes for linkage disequilibrium mapping. Genome Research, 11:1716-1724,
2001.

[19] J. C. Long, R. C. Williams, and M. Urbanek. An E-M algorithm and testing
strategy for multiple-locus haplotypes. American Journal of Human Genetics,
56:799-810, 1995.

[20] C. J. MacLean, R. B. Martin, P. C. Sham, H. Wang, R. E. Straub, and J. S. Kendler.
The trimmed-haplotype test for linkage disequilibrium. American Journal of Hu-
man Genetics, 66:1062-1075, 2000.

[21] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and Hall,
1989.

[22] M. S. McPeek and A. L. Strahs. Assessment of linkage disequilibrium by the de-
cay of haplotype sharing, with application to fine-scale genetic mapping. Ameri-
can Journal of Human Genetics, 65:858-875, 1999.

[23] A. P. Morris and J. C. Whittaker. Fine scale association mapping of disease loci
using simplex families. Annals of Human Genetics, 64:223-237', 2000.

[24] A. P. Morris, J. C. Whittaker, and D. J. Balding. Fine-scale mapping of disease loci
via shattered coalescent modeling of genealogies. American Journal of Human
Genetics, 70:686^707, 2000.

[25] A. P. Morris, J. C. Whittaker, and D. J. Balding. Bayesian fine-scale mapping of
disease loci, by Hidden Markov Models. American Journal of Human Genetics,
67:155-169,2002.

[26] R. Nielsen. Estimation of population parameters and recombination rates from
single nucleotide polymorphisms. Genetics, 154:931-942, 2000.



366 A. L Strahs andM. S. McPeek

[27] J. K. Pritchard, M Stephens, N. A. Rosenberg, and P. Donnelly. Association map-
ping in structured populations. American Journal of Human Genetics, 67:170-
181,2000.

[28] B. Rannala and J. Reeve. High-resolution multipoint linkage-disequilibrium map-
ping in the context of a human genome sequence. American Journal of Human
Genetics, 69:159-178, 2001.

[29] S. Service, D. Temple Lang, N. Freimer, and L. Sandkuijl. Linkage-disequilibrium
mapping of disease genes by reconstruction of ancestral haplotypes in founder
populations. American Journal of Human Genetics, 64:1728-1738, 1999.

[30] M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method for haplotype
reconstruction. American Journal of Human Genetics, 68:978-989, 2001.

[31] J. D. Terwilliger. Fine-scale genetic mapping based on linkage disequilibrium:
theory and applications. American Journal of Human Genetics, 56:777-787,
1995.

[32] M. Xiong and S.-W. Guo. Fine-scale genetic mapping based on linkage disequi-
librium: theory and applications. American Journal of Human Genetics, 60:1513—
1531,1997.

[33] J. Zhang. Linkage disequilibrium mapping by the decay of haplotype sharing in a
founder population. PhD thesis, University of Chicago, 2001.

[34] S. Zhang and H. Zhao. Linkage disequilibrium mapping in populations of variable
size using the decay of haplotype sharing and a stepwise-mutation model. Genetic
Epidemiology, 19(Suppl l):S99-S105, 2000.

[35] S. Zhang and H. Zhao. Linkage disequilibrium mapping with genotype data.
Genetic Epidemiology, 22:66-77, 2002.

[36] H. Zhao, S. Zhang, K. R. Merikangas, M. Trixler, D. B. Weldenauer, F. Sun,
and K. K. Kidd. Transmission/disequilibrium tests using multiple tightly linked
markers. American Journal of Human Genetics, 67:936-946, 2000.



Some Considerations for the Design of Microarray
Experiments

John H. Maindonald, Yvonne E. Pittelkow and Susan R. Wilson

Abstract

Issues relevant for the design of gene expression experiments using spotted
cDNA microarrays and gene chip microarrays are overviewed. Emphasis is placed
on the uses of replication, and on the importance of identifying major sources of
variation.

Keywords: microarrays; oligonucleotide; design of experiments; variability; replica-
tion; gene expression

1 Introduction

Microarrays are new and evolving technologies that enable large numbers of genes,
up to the order of tens of thousands, to be evaluated simultaneously. Our aim is to
give a brief overview of principles of experimental design, and to comment on their
application to microarray experiments. A major theme is that, for purposes of design,
the different sources of variation in gene expression %re not well understood.

The objective of a microarray experiment might be to investigate genes which are
differentially up or down regulated in cells between, say, a control group and cells
which have undergone some treatment, or between cells of animals of different genetic
background {e.g., control mice compared to knockout mice) or between cells in healthy
tissue and diseased tissues, or between cells at different time points {e.g., developmental
biology). Many studies search for genes that have similar expression profiles, often in
an attempt to determine genes involved in biological pathways, or in development, or
genes involved in regulatory functions. The focus would then be on the analysis of
dependency structure. Time course experiments may investigate how the pattern of
expression or relative expression changes over the cycle of cell division, or following
administration of a drug. Finally, interest may be in estimation of gene expression
levels.

The primary goal of the experiment should be clear, as this gives focus to the in-
vestigation, desirable even if a major part of the analysis will be a general search for
interesting patterns of expression. Many experiments have multiple aims; these must
be prioritized. Both in its scale and in the processes that are under investigation, the
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biology has a large element of novelty, with implications for statistical design and anal-

ysis. Vingron [52], commenting on the "big science" issues that such large-scale tech-

nologies raise, draws attention to "a major upcoming challenge for the bioinformatics

community to adopt a more statistical way of thinking and to interact more closely with

statisticians." Bioinformaticians need to educate themselves in statistics. "Not so much

with the goal of mastering all of statistics but with the goal of sufficiently educating

ourselves in order to pull in the statisticians."

Our focus here is on design issues for comparative studies for two types of ar-

ray platform - two-channel cDNA spotted microarrays [17, 20, 24], and high density

oligonucleotide microarray chips produced by Afϊymetrix [1] for expression analysis,

which we refer to as gene chip microarrays. For both types of array, DNA sequences

are laid out in a grid on a solid substrate. Occasionally we refer to the spotted microar-

rays as slides, recognising however that glass is just one of several possible substrates,

and we refer to Afϊymetrix oligonucleotide microarrays as chips. Much of our discus-

sion of spotted cDNA microarrays applies also to oligonucleotide spotted microarrays

(distinct from Afϊymetrix oligonucleotide arrays, which are produced by photolithog-

raphy rather than spotting), which we do not explicitly discuss. We note that gene

chip microarrays can in principle, with suitable calibration, yield absolute expression

measures. Each individual spotted microarray slide is by contrast used to yield rela-

tive expression measures, for example between a treatment and a reference, or between

one treatment and another. We note also that, perhaps inevitably for technology that

is rapidly changing and developing, there is no single established nomenclature that

distinguishes clearly between the different types of arrays. A feature that distinguishes

microarray experiments from more conventional experiments described in the biosta-

tistical literature is the very large number of parallel measurements on typically only

a few cases. Summary measurements are typically provided for each of a large num-

ber of genes or of Expressed Sequence Tags (ESTs), which are partial gene sequences.

The small number of cases is, in part, a function of the (initial) high costs of the mi-

croarrays, especially chips, limitation of available sample, and the (apparent) failure

to involve scientists with statistical training in the early stages of the development of

microarrays.

The processing of microarray data raises a variety of statistical, mathematical and

computational issues, see for example [12, 19,45, 47,49]; some of these are alluded to

in passing.

The remainder of the paper is organized as follows: Section 2 gives examples of ex-

periments, Section 3 considers outcome measures, Section 4 notes experimental design

principles and discusses their application to microarray experiments, Section 5 consid-

ers sources of variation, Section 6 discusses the design of microarray slides and chips,

and Section 7 summarizes the discussion.
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2 Examples of Experiments

2.1 Spotted Microarrays

In a typical spotted microarray experiment, samples from a treatment and from a ref-
erence are combined in equal proportions and hybridized to cDNA probes that have
been spotted on a slide. A key question is whether the comparisons that are of interest
will be made directly or indirectly. In an indirect comparison, each treatment that is
of interest is compared with a reference sample, and the responses of the treatments
relative to this reference sample are then compared. In a direct comparison, treatments
are directly compared with each other.

For example, Callow et ah [6] used the indirect comparison approach to search
for genes that were differentially expressed between liver tissue from apolipoprotein
apoAI-knockout (test) mice and liver tissue from C57B1/6 (control) mice. Each of 8
test mice was compared with the reference sample, and each of 8 control mice was also
compared with the reference sample. For a reference sample, material from the same
eight control mice was pooled.

For each of the 16 mice, cDNA, labeled to reflect the source of the mRNA, was
prepared by reverse transcription of mRNA. The experiment we describe used Cy5
("red") and Cy3 ("green") dyes, with Cy5 for individual mice and Cy3 for the reference.
The cDNA from each mouse was combined with the cDNA from the reference sample
and hybridized to a slide. This experiment resulted in 8 comparisons between control
mice and reference, and 8 comparisons between test mice and reference.

Preparation of a spotted microarray slide involves choosing and fixing a large num-
ber of spots on a slide, with each spot containing a number of strands of DNA or cDNA
that are intended to uniquely hybridize, or bind, to the corresponding gene in the la-
beled cDNA sample. In this experiment around 6000 spots, one or two per gene, were
laid down (spotted) on each of 16 microarray slides (one per "treatment"). After sep-
arate labeling, the mixed sample was hybridized to the slide in specially humidified
chambers. Laser-induced fluorescence imaging was then used to detect dye intensities.
This gave two images of the slide, one for the treatment (test or control) and one for the
reference. Image analysis software, together with some post-processing, was then used
to derive a background-corrected relative intensity measure for each spot.

Results, for each spot on each of the 16 slides, were expressed as the logarithm
of a ratio of the intensity value for each mouse to the intensity value for the pooled
reference. Two-sample /-tests, with an adjustment for the large number of comparisons
made, were then used to compare the log-ratios from the test mice and the control mice.
The study identified eight spots, corresponding to four genes, that were under-expressed
in test mice relative to controls.
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2.2 Gene chip expression microarrays

In a typical gene chip microarray experiment, prepared cRNA sample is hybridized to
the probes on a chip. The chip is then scanned to obtain fluorescence intensity readings
of stains incorporated during the laboratory procedures. Image processing software is
then used to compute intensity values for each probe.

In contrast to typical spotted microarray experiments, only one sample is hybridized
to a chip, allowing, in principle, the estimation of absolute expression values. Because
of the high cost of these chips, efficient use is important.

The main characteristics of gene chip microarrays are:

1. Thousands of short oligonucleotide probes (commonly 25-mer, i.e., 25 bases in
length) are synthesized in situ on a glass substrate, using photolithographic tech-
niques. Multiple paired sets of probes (commonly 11, 16 or 20) are used for
each gene or EST. The probe sequences are chosen according to specific criteria
described in Lockhart et al. [35].

2. One probe in a pair has the exact sequence from the gene or EST, while in the
other member of the pair the middle base is changed to its complement. The mis-
matched probes (MM) provide a probe-specific control or nonspecific hybridi-
sation control. The collection of perfect match (PM) probes and mismatched
probes (MM) corresponding to one gene or EST makes up a probe set.

3. User control over the choice and layout of probes requires the construction of
custom arrays, whose cost is beyond the resources of many laboratories.

We note that probes are not chosen at random, nor are they independent, although
some analyses make this assumption.

In an experiment described by Efron et al [14], the aim was to study transcriptional
responses to ionising radiation in the context that some cancer patients have severe life-
threatening reactions to radiation treatment. It is important to understand the genetic
basis of this sensitivity so that patients with high rates of sensitivity can be identified
before being allocated treatment. The design was a factorial experiment with two levels
each of two factors, namely (i) RNA was taken from two wild-type human lymphoblas-
toid cell lines; (ii) the growing state was either irradiated or unirradiated; in addition
RNA samples were labeled and divided into two identical aliquots for independent hy-
bridizations. Each microarray provided expression estimates for 6810 genes/ESTs.

Another type of gene chip microarray experiment is described by Golub et al. [23].
Their aims were essentially class prediction (assigning tumours to known classes) and
class discovery (identifying new cancer classes). They analysed leukemia data of 38
bone marrow samples obtained at time of diagnosis: 27 acute lymphoblastic leukemia
(ALL) and 11 acute myeloid leukemia (AML).
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3 Issues Concerning Outcome Measures

As noted, spotted microarrays typically yield two intensity measurements for each spot,
which are combined into a single ratio or logratio. Gene chip microarrays yield one
intensity measurement for each probe. The information from each probe set is generally
combined into a single expression index for the probe set. The outcome measure is, in
either case, essentially multivariate.

Evidence for the form of the link between expression summary measures and mRNA
concentration (or number of molecules) is sparse; however see [8, 25, 28, 32] for gene
chip microarrays. When an antibody amplification step is employed, the link is more
tenuous, due to nonlinearity in its action. It is important to note that even with replicate
slides or chips that use different subsamples from the same sample, and where labora-
tory procedures have been carried out as similarly as possible, the scanned images can
show considerable differences. The normalization or scaling techniques that attempt to
make intensity measures comparable between slides or chips are different for the two
technologies; see [28] for chips, [55] for slides.

Saturation effects, i.e. intensity readings close to or above the upper detection limit
of the scanner, are an extreme form of nonlinearity. At high mRNA concentration
or high laser power, all intensity measurements may be inaccurate due to saturation.
Where one of two estimates being compared is affected by saturation, the estimated
difference is attenuated. If both are affected by saturation, the difference will be mean-
ingless [26]. Due to the large number of genes or probes, each with a potentially dif-
ferent saturation level, global avoidance of all such regions may not be feasible, and
detection strategies are required.

For both technologies, negative controls {i.e. spots or probe sets that should never
show a signal) or positive controls {i.e. should always show a signal), can be useful
checks.

3.1 Spotted Microarrays

Each slide may be used either for a comparison between treatment and reference, or
for a comparison between two treatments. In either case, there is one intensity ratio or
log-ratio for each spot.

There are typically separate background corrections for the red and the green sig-
nals. Both foreground and background signals will differ, depending on the scanner
settings and on the image analysis software used [54]. Important considerations are
the identification of the spot boundary, the choice of the region used to estimate back-
ground and the form of the background adjustment. Negative intensity estimates that
can result from background subtraction are a nuisance for later data processing, and
should be avoided.

Ramdas et al. [41] noted that signal quenching associated with excessive dye con-
centrations led to nonlinearity in signal intensities. Spot size and morphology can affect
intensity measurements. Thus, the routine use of the intensity ratio or logarithm of the
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intensity ratio as the comparative expression measure is open to question. If, for ex-
ample, the intensity measurements were changing additively, then differences could be
used. On the other hand, if the intensity measurements were changing proportionately
then differences in the log values would be used. Currently this is the scale that is
widely chosen. If there are three (or more) treatments, then an experiment that has all
pairwise comparisons allows us in principle to check that the chosen scale is appropri-
ate. It is prudent to check, to the extent that this is possible, that measurements are in a
range where response is linear.

3.2 Gene chip microarrays

In statistical terms, the data from each chip is a single multivariate response vector,
with complex dependencies inherent from the biology and the technology. As men-
tioned earlier, generally a summary measure or estimate of expression is computed
from the multiple probes in each probe set, following suitable background estimation
and chip normalization (calibration). A number of different summary measures or ex-
pression indices are in use. Some are based on differences between the probe intensity
(PM) and its nonspecific hybridization (MM) control; examples include the ASymetrix
trimmed average difference (AvDiff, [1]), the model-based expression indices of Li and
Wong [33], and the average median filtered differences of Alon et al [2]. Since as many
as a third of the MM control probes can have intensity readings higher than their paired
PM probe, truncation, filtering or transformation are often used to accommodate the
negative values of PM- MM differences. Some measures do not use the nonspecific
hybridization control probes except to calculate a background estimate [28, 34, 39].
Other possibilities include the log of the ratio of the PM probe to MM probe [1,32, 39],
the robust multi-array average (RMA) approach [28], and empirical Bayes estimation
[14]. Other summary measures are also found in the biological literature (e.g. [21]).

4 Experimental Design

This section is organized as follows: An introductory subsection discusses aims and
principles of experimental design, then bias and replication are discussed in more de-
tail; 4.1 discusses pooling, which is an issue for both types of array; finally 4.2 discusses
special issues for spotted microarrays, including the choice between direct and indirect
comparison, and dye bias. There are many excellent texts and papers that discuss gen-
eral principles of experimental design, including [5, 9, 10, 15,42, 36]. Here we discuss
these in the context of microarrays.

Design questions relevant to the aim of the experiment that should be clear before
proceeding include:

1. What are the "treatments"?

2. What are the experimental units?
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3. What are the experimental measurements?

4. What is measured, and what do the measurements mean?

5. What comparisons are of interest? (Note that interactions are a form of compari-
son.)

For microarray experiments, "treatments" refer not only to defined procedures, for
example treatment by a drug, but also to qualitatively different units, such as tissues
from healthy and unhealthy organs, or tissues from wild type model organisms and
genetically modified organisms.

For example, in the Callow et al [6] experiment the comparison was between
test (knockout) mice and control mice. In the Efron et al. [14] experiment, the main
interest was in the comparison between irradiated and unirradiated cells, allowing for a
possible difference in effect between cell lines, i.e., for a possible interaction between
the irradiation effect and cell line.

Cox and Reid [10, p. 4] define an experimental unit as the "smallest subdivision of
the experimental material such that any two different experimental units might receive
different treatments". The sample may be from a single organism, or it may be a pooled
sample of material from several organisms.

In the Callow et al [6] experiment, it is convenient to regard the separate red and
green labeled samples that are mixed and hybridized onto a slide as a pair of experi-
mental units, yielding separate intensity information that will (usually), for analysis, be
combined into a single log intensity ratio. In Efron et al [14], the experimental units
are, strictly, the four separate mRNA samples, each of which is repeated.

A broad over-riding aim of experimental design is to use resources in the manner
that will best achieve the intended purpose and produce conclusions that are widely
valid {i.e., that are not restricted to too specific a set of conditions). However, this
needs to be balanced against the need for simplicity and robustness of design. We be-
gin with a list of broad aims and principles of statistical experimental design, using
experiments with spotted microarrays for illustrative purposes, followed by further dis-
cussion of some of the issues. Later, we consider special issues for the design of spotted
microarray experiments.

Broadly, the aims are to find designs that:

1. Allow generalization of results to the relevant wider population;

2. Avoid bias, or systematic error;

3. Minimize the effects of random error, for a given cost;

4. Allow an assessment of the accuracy of estimates of effects that are of interest;

5. Are robust, in the sense that they will still give useful results even if there are
occasional failures in the experimental protocol, or if some assumptions that mo-
tivated the design prove to be false.
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Basic devices that are available to achieve these aims are:

1. Controlling for all "fixed" effects for which this is possible. For example, the
expression of genes in some tissues will be different depending on whether the
tissue is from a male or female;

2. Blocking, or local control, to allow an accurate assessment of effects under vary-
ing experimental conditions. In two-channel spotted microarray experiments,
each pair of samples is a block. In general, it is desirable to match the treatment
and control samples as closely as possible;

3. Randomisation of treatment allocations with respect to factors that cannot be
controlled. For example, in a two channel spotted microarray experiment, it is
inherently desirable to randomise the allocation of dyes to treatments, in such a
way that each treatment occurs equally often with each dye;

4. Replication of experimental units, at least to an extent that an estimate of accu-
racy is possible. In principle, replication may be further increased to achieve a
pre-specified accuracy. Additionally, by reducing the opportunity for one unsat-
isfactory replicate to damage results, replication makes experiments more robust;

5. The use of repeats, e.g., repeated spots, within experimental units, where this
makes a useful contribution to reducing variability between experimental units.
As with replication of experimental units, this has the additional effect that ex-
periments are more robust;

6. Giving first priority in use of experimental resources to controlling the effects
that have the largest implications for results. For example, once appropriate
forms of correction have been applied, the dye effect may, for the present spotted
microarray technology, be inconsequential; i.e., any remaining bias from this
source may be dwarfed by other sources of variability.

Avoiding Bias

The best way to deal with bias is to modify instrumentation or experimental procedures
to avoid it. Where a bias is associated with instrumentation, it may be possible to find
an analytical adjustment that verifiably removes or reduces the bias. If neither of these
approaches is completely successful, and the necessary information is available, one of
devices 1-3 above can be used.

A major difficulty in discussing methods of avoiding bias in microarray experiments
is that there is insufficient systematic information available about the biases involved.
At present, the exception for spotted microarrays is the bias arising from differences
between the dyes used to label the different samples [13]. There is some evidence of day
effects, i.e. changes in response from one day to another, for both types of microarray.
Concerning other sources of bias, until appropriate experiments are performed it might
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be prudent to make the laboratory situations as uniform as possible during the course of
an experiment and to randomise treatment allocation over any potential sources of bias
that are not otherwise controlled.

Replication

A discussion of replication and decisions on the optimal level of replication are inti-
mately linked with understanding the sources of error, which we address in a later sec-
tion. In the context of replication, it is useful to consider a hierarchy of corresponding
variation, as in Yang and Speed [56], with the following levels:

1. Separate slides/chips to (separately) obtain measurements on samples from dis-
tinct biological sources - biological replicates;

2. Separate slides/chips to probe each of several replicate preparations of RNA from
the same biological source (sometimes, and rather misleadingly, also referred to
as biological replicates);

3. Technical replicates that use distinct slides/chips to obtain measurements on dif-
ferent target samples of RNA from the same preparation;

4. For spotted microarrays, replicate spots on the slide.

Biological replication is essential when the intention is to make claims about a
broader population of patients, plants or animals. Since biological organisms can vary
substantially, such replication would be necessary even if the measurement device gave
exactly reproducible results when repeated on an individual. Note in this context the
broad distinction between technical reproducibility and biological reproducibility. Note
also that in the above hierarchy, variation at any lower level contributes to variation at
all higher levels.

Since the reasons for replication are not transparent to all, we repeat them here in
the microarray context: (i) to allow generalization to the wider biological population
(and replication at the biological level is essential for this); (ii) to provide information
that will make it possible to do a better experiment next time; (iii) to reduce varia-
tion (and increased replication at the biological level will certainly do this, but may
be an unnecessarily expensive method if a similar improvement could be achieved by
increased replication further down the hierarchy); (iv) to allow identification of major
sources of variability, in the hope that something might be done about some of them
(and in this context we might want to consider crossed, i.e. nonhierarchical, sources of
variation); (v) to allow identification of outliers, at levels where that may be important;
(vi) to make experiments more robust.

The calculation of the number of replicates required to be able to detect a difference
of a given size (power calculations) is challenging in microarray experiments, not only
because the newness of the field means that even rough guides to variance estimates for
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given probe sequences are unknown but also because estimates will change between
probe sequences.

Above, we distinguish "technical replicates" from biological replicates. When
replication is used to reduce variance (because analysis can be based on the mean or
other summary measure) it is important that the replicates be as independent as possible.
For example, using different sample preparation hybridized to chips/slides is probably
preferable here to using duplicate chips/slide but the same mRNA sample.

At least for spotted microarrays, a further level of replication is possible, namely
replicate spots on the same slide, as recommended in Tseng et al. [51]. However, the
placement of these duplicate spots needs to be carefully considered to avoid potential
systematic bias; see Yang and Speed [56]. Removal of one apparently contaminated
spot may enable remaining spots to be used in further analysis [51].

For gene chip microarrays, limited available sample material and the relatively high
cost of chips often limit the number of biological or technical replicates. While noting
that there are no firm standards on the number of replicates required in a microarray
chip experiment, Novak et al. [40] mention that they commonly design their initial ex-
periments to include three replicates for each biological state, including control. Li and
Wong [33] recommend 10 replicates for estimating standard errors used for detecting
outliers in gene chip microarray studies. Glynne at at [22] recommend between two
and five replicates.

The value of replication in a spotted microarray experiment was shown by Lee et al.
[31] who, limiting their attention to the red signal, carried out an experiment in which
32 out of 288 genes were expected to be strongly expressed, while the remaining genes
should not have been expressed. They used a mixture model to identify genes that were
expressed. Although the assumptions required for their analysis can be questioned,
their qualitative conclusion holds, in particular that results from individual replicates
are unreliable, and of unknown accuracy. With two replicates, there is some indication
of the extent of irreproducibility; however, Lee et al recommend doing at least three
replicates.

In general, and depending on the tissue, experiments with human tissue are likely
to require more extensive replication than experiments with tissue from highly inbred
strains of laboratory animals.

Multiple independent estimates of treatment effects

Designs that allow multiple independent estimates of treatment effects may allow re-
duced replication, or even no replication. For example, for spotted microarrays consider
the "all possible pairs" experimental design with three treatments A, B and C. There
are two estimates of the contrast between A and B: one that is obtained directly by
comparing B with A, and the other that is obtained by subtracting the A versus C effect
from the B versus C effect. Thus, if each pairwise comparison is made only once, there
is one degree of freedom that can be used for the estimation of "noise"; we prefer this
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term to the commonly used term "error". If the design has two replicates of each of the
three two-way comparisons, there are four degrees of freedom for estimation of noise.

With four or more treatments, there are several alternatives to designs in which all
comparisons are with a reference. The design that has each of the six possible com-
parisons between four treatments has three degrees of freedom for estimation of noise
for evaluating each treatment comparison. An alternative is the loop design [30] that
compares A with B, B with C, C with D, and D with A. This design has one degree
of freedom for estimation of noise. The comparisons that must be made indirectly, be-
tween A and C and between B and D, are on average less precise than the comparisons
that can be made directly. Where there are many treatments, some comparisons in a
loop design will involve many links, with a consequent loss of precision. Modifica-
tion of loop designs to add comparisons that avoid many connecting links is therefore
desirable.

Considerations that will affect the choice between the different designs include:
the number of slides that are required; the precision of the comparisons that are of
chief interest; the amount of available mRNA, for treatments and where relevant for the
reference; the robustness of the design; and the ease of carrying out the analysis.

Factorial designs

Following the structuring of comparisons in terms of main effects and interactions of
factors, it may be possible to incorporate into the noise term high order interactions
that are not statistically significant, thus increasing the available degrees of freedom for
estimating the relevant noise variance. This should be considered at the design stage,
although often it is left to the analysis stage.

For example, Efron et al [14] used an initial exploratory analysis to satisfy them-
selves that the effect of radiation was similar for both levels of cell line, for both
aliquots. Hence, they felt able to assume that the three interactions involving irradiation
were zero, giving three degrees of freedom for estimating the relevant noise variance.
This does, however, ignore the implications for variance structure of the nesting that
arises from the way that aliquots were formed in this experiment, namely by splitting
samples in two.

For a general discussion of factorial design issues, see Cox [9, pp.94-96] and Cox
andReid[10,pp.99-101].

4.1 Pooling - an issue for both technologies

If there is insufficient RNA from the tissues under investigation from one individual,
then it is common practice to prepare RNA from, say, several individuals from a pure
(inbred) line, kept as far as possible in a common environment. Other reasons for
pooling include provision of adequate quantities of a standard that can be maintained
consistently over time, and to "reduce" variation. An alternative to pooling is am-
plification. Depending on how it is done, however, amplification can bias abundance
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relationships [4, 29]. At the same time amplification can, for spotted microarrays, lead
to results that are more consistent between slides.

A concern is that pooling might increase or modify potential masking effects that
may arise from the hybridization of RNA to itself or to other strands of RNA. Self-
hybridization is an aspect of secondary structure as described in Zuker [57]. Con-
sistently with comments in Yang and Speed [56], we have been unable to find direct
experimental evidence on this point. If masking is not a serious problem and pooling
is indeed a form of averaging, then it should be used wherever possible, for treatments
as well as for any control. Replication will then require the use of replicate pooled
samples, with different individuals used for the different pooled samples. Or is pooling
perhaps more problematic for treatment samples than for reference samples, e.g., for
knockout or transgenic organisms? There is a clear demand for better knowledge of
effects at this level.

For gene chip microarray experiments, Novak et al. [40] suggested that pooling
to reduce biological variation is of limited value. On the other hand, Bakay et al. [3]
concluded that pooling is of value. Such conflicting claims are due, in part, to the
different methods used to examine variability, but the issue is clearly unresolved.

4.2 Some special issues for spotted microarrays

The issues that we discuss here are special to spotted microarrays because each slide
gives comparative information - either between two treatments, or between a treatment
and a reference.

The design used by Callow et al. [6], described above, is analogous to the conven-
tional completely randomised design. Note that the use of a common reference sample
creates a correlation between the two sets of comparisons with the reference. Addition-
ally, for this experiment one of the comparisons is between the reference and individual
mouse samples that are correlated with the reference. An alternative is a design in
which each slide gives a direct comparison between a test mouse and a control mouse.
Such a direct comparison will, with 8 slides, be more precise than the indirect compar-
ison that used 16 slides, while requiring less mRNA from each control mouse and the
same amount of mRNA from each test mouse. Often, though not in the Callow et al..
experiment, the comparison with reference will have intrinsic interest. The choice is
then between the design that has all pairwise comparisons, and the design that has only
the comparisons between treatments and reference.

We have noted that a direct paired comparison of the two treatments should be more
precise than the indirect comparison (see also Dudoit et al [13]; Yang and Speed [56];
Kerr and Churchill [30]). Applying such a design to the Callow et al. experiment,
each slide compares a test mouse with a control mouse. A consequence of the corre-
lations alluded to above is that, as demonstrated in [50], the improvement in precision
is not as great as a naive analysis might suggest. Paired comparison designs are a sim-
ple type of block design, with each pair of samples (mice) that are compared forming
a block. Readers who are familiar with classical experimental design will recognise
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this as a "paired comparison" experiment, though now with many such comparisons
made using a single slide. Fisher [15] discusses such experiments. They are the sub-
ject of David's [11] book; see also Cox [9]. These designs have been widely used in
food tasting and other sensory evaluation experiments [18]. They are a special case of
more general balanced incomplete block designs. For technical details, see Yang and
Speed [56] who also discuss and compare many different experimental designs.

The precision of the comparisons that are of interest is not the only consideration.
Depending on the experimental context and aim, the experiment in which all compar-
isons are with a baseline has the following merits: assuming that dye bias affects all
comparisons with the reference equally, though perhaps differently for different probe
sequences, the swapping of dyes is unnecessary; the comparison between treatments
and reference may have an intrinsic interest of its own; limitations in the amount of
available mRNA, for one or all of the treatments, may require the use of a design that
compares treatments with a reference [56]; use of a reference that is common over
different experiments allows treatment effect comparisons across those experiments.

Dye bias

It is now well known that the dye bias varies nonlinearly with the average intensity of
the signals [13]. The loess correction, which is one of several corrections that Dudoit et
al. [13] discuss, seems to work well, but like other such corrections can at best ensure
that the bias over all spots is on average reduced to zero. It is in principle possible
that the strength of the binding may vary with the sequence of bases to which the dye
binds, thus leading to variation between different differentially expressed genes. A
cautious approach therefore requires the routine use of dye flips, i.e., each dye occurs
equally often with each treatment. This allows an analysis that averages out any bias
that remains after the correction.

5 Sources of Variation

The following scheme, adapted from Cox and Reid [10, p. 10], gives a framework
for discussion of sources of variation in microarray experiments. Inevitably, it cannot
capture the complex ways in which sources of variation may interact:

1. Intrinsic or baseline noise (or "error"), i.e., variation that is inherent in the sub-
jects of the experiment

(a) Errors associated with the biological, genetic/environmental sources (e.g.
SNP or different animals or cultures)

(b) Errors associated with hybridization process (which may be probe depen-
dent);
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2. Intermediate noise, i.e., variation associated with the process that leads from
treatment to response

(a) Laboratory (RNA extraction, amplification and labeling)

(b) Biological sample sources (tissue, homogeneity, contamination);

3. Measurement error, i.e., error associated with the instrumentation

(a) Chip/slide manufacture (including for spotted microarrays the size and shape
of spots)

(b) Scanning

(c) Algorithms, including the image processing and scaling procedure used

(d) Defects arising in the manufacturing process, or in the subsequent handling

of slides or chips.

References addressing these sources of variation include [25,28, 32, 37,38, 39,40,46,
56].

A hierarchy of levels of variation can be envisaged, as detailed in Yang and Speed [56],
and might be formalized in a multi-level model, with components of variance attached
to each level of the hierarchy. Such models provide a useful framework for thinking
about sources of noise, and in addition have a role in the examination of the effects of
individual genes. They allow us, e.g., to compare the improvement in precision that
arises from the use of multiple spots for the one probe sequence with the improvement
from increased technical or biological replication, a point that is demonstrated in the
next section. We note that from its beginning, the analysis of variance has been multi-
level; see Speed [48]. Many of the models that Fisher [15] analysed had multiple levels
of variation.

From a design perspective, we require an estimate of technical variability because
we wish to know the contribution that it makes to the variability of biological mea-
surements. Where technical variability is a substantial component, it will be necessary
to break it down further, so that we can identify the major sources of noise and take
whatever steps are possible to reduce their effect. For a variety of biological and tech-
nical measurement reasons, the relative contributions of different noise sources may
vary between probe sequences.

Note that:

1. There are several different components of the experimental procedure. If one of
these components is, relative to the others, a major component of the variation,
attempts should be made to identify it;

2. Comparisons made within individuals, e.g., a cell line from an individual versus
a knockout cell line created from the same individual, can be more precise than
when the sample and the knockout sample are from different individuals. Experi-
mental procedure becomes more than ever important for controlling the variation
that remains;
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3. If interest is in getting an accurate estimate of variation, for purposes of general-
izing (e.g., to mice generally of a particular strain), then the demand is for repeat
results from several individuals, i.e., for genuine biological replication. Then al-
though the standard errors of treatment comparisons can be estimated, it will not
be possible to distinguish between variation that arises from experimental pro-
cedure and the effects of variation between individuals. The distinction between
these two sources of variation may be useful in deciding whether effort on the
improvement of laboratory procedure is justified.

6 The Design ofMicroarray Chips and Slides

There are two aspects of microarray experiment design - the design of the array/chip,
and the allocation of the mRNA samples to the array/chip. Because the fabrication of
a custom gene chip is expensive, most users accept one of a set of standard gene chip
microarray designs. By contrast, users of spotted microarrays do often design their own
slides. They then face important issues that include the choice of genes (or ESTs), the
number of repeats of each probe sequence, and the relative positioning of repeats. In
addition, each gene may be represented by more than one probe sequence. A major
advantage of fabricated oligonucleotide sequences, for spotted arrays as well as for
chips, is in the opportunities that they offer for selecting and testing probe sequences.
This is an important ongoing research area, which is however beyond the scope of this
paper; we refer the reader to Rouillard et al [44].

The remaining discussion will comment on the number and possible prioritization
of genes represented on the slide or chip, and the use of repeats. Our comments have di-
rect relevance to cDNA microarray slides, where there is ordinarily one probe sequence,
perhaps repeated, for each gene or EST, but the principles are general.

Many probes, or few probes

It is tempting to include as many probes for genes as possible on a slide. However, as
the number of different genes represented on the slide increases, so also does the po-
tential for false positives when, say, analysing a comparative experiment. To avoid this
situation, the criteria for establishing differential expression becomes more stringent
for statistical tests as the number of tests are increased. For example a / critical value
that equals 2.1 for a single /-test (for a single gene) may, depending on the adjustment
used and on the choice of reference distribution, increase to 4.5 when there are 5000
such tests.

An attractive design option can be to divide probes into two groups - a smaller
"likely" group, and a much larger "possible" group. Statistical comparisons can then be
done separately for the two groups, with a much less stringent criterion for establishing
differential expression used for probes in the smaller group. The highest priority for
the use of repeated spots will be given to the smaller group of genes chosen for careful
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scrutiny. Such a classification of genes into two groups builds in prior knowledge, with

implications for the subsequent statistical inference.

Repeated spots

What is the effect on precision from repeating probes multiple times on a single slide,

by comparison with repeating slides?

Writing mt, for the between array mean square, and mw for the within array mean

square, and with k spots per probe sequence, and assuming a simple form of multi-level

model where the between spots (within array) component of variance is σ 2 , while the

between array component of variance is σ 2, it follows that:

E[mb] =

E[mw] = σ 2 .

Thus E[mb]/E[mw] equals 1 if o\ = 0, and is otherwise greater than one.

The variance of the mean x over all k spots on each of n slides is

n kn

If al = 0, then var[x] = g^, and the repeating of spots is just as effective, for increasing

precision, as the repeating of slides.

The Callow et al. [6] data are interesting in this connection. Out of 5544 non-blank

spots, 175 were duplicates of the same probe sequence, while 6 were triplicates. For

each of these probe sequences, we can thus use an analysis of variance calculation to

determine both a within array (between spot) mean square, and a between array mean

square.

Individual sample ratios are too inaccurate and variable, ranging from 0.11 to 11.2,

to give useful indications for experimental design. We can however use a quantile-

quantile plot (Figure 1) to study the pattern of change of the ratio over many different

genes, and assess the extent to which these ratios behave like independent ratios from

an F-distribution with 14 and 16 d.f.

The smallest 156 values are consistent with the assumption that the ratios follow

the theoretical F-distribution corresponding to o\ = 0, independently between probe

sequences. Included among these 156 probe sequences are the only two out of the 181

that were identified as differentially expressed.

Thus for these duplicated or replicated data, for the majority of probe sequences,

increasing the number of spots on a slide gives the same improvement in precision as

increasing the number of slides by the same factor. There is no way to know whether

the same would be true for the probe sequences that were not repeated. Data from a

less homogeneous biological population, e.g., tissues from distinct human sources, are

inherently likely to show stronger evidence of biological variation. In some types of
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Figure 1: Quantile-quantile plot that compares ordered ratios of between to within slide
mean squares, for 181 probe sequences that appear more than once, to quantiles of the F-
distribution with 14 and 16 d.f. The line y = x is superimposed on the plot. The two points
that correspond to genes identified as differentially expressed are marked with a vertical bar

study, for some probe sequences, increasing the number of spots per gene may be a
highly effective way to improve precision.

Note that in more traditional applications of multi-level models, the relevant vari-
ances are rarely known with sufficient accuracy that they give a secure basis for use
in setting priorities in the future use of experimental resources. For microarray ex-
periments, the combining of information across large numbers of probe sequences can
provide such a secure basis. This is an area that requires further investigation.

Published information on mean square ratios such as just given, for a range of dif-
ferent experimental conditions and probe sequence sets, would greatly assist the design
of future experiments.

Some special issues for gene chip microarrays

Important chip design issues that require further investigation include the following:

1. There is some evidence that the use of mismatch probes in expression indices
reduces precision; see [28, 39]. Further research is required on the optimal
assessment of nonspecific hybridization and background.

2. Some probes appear consistently unresponsive, arguing for their removal or re-
placement.

3. The inclusion of control probe sets can assist quality control and calibration.
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In designing experiments, consideration should be given to the inclusion of "spikes"

of known concentration in the sample, to allow for more accurate normalization be-

tween chips.

7 Discussion

While statistical methodology is now seen as an important part of microarray exper-

iments, its penetration into this area remains, in many respects, superficial. This is

especially true for experimental design. Effort at the design phase of a microarray ex-

periment will often save considerable effort and frustration at the analysis stage; see

Yang and Speed [56] for further discussion. Good experimentation can be seen as a

sequential learning process in that what has been learned from one experiment can con-

tribute to the design of the next experiment.

This paper outlines many of the issues that require consideration when designing

a microarray experiment. There has been emphasis on replication and sources of error

because of their pivotal role in analysis and subsequently inference. For example, in

a comparative experiment researchers should consider that an observed difference is

'real' only if it is greater than what could be expected by chance. The estimate of the

size of that difference is a function of all the noise that has contributed to the difference,

and is obtained from replicates. Too often, the need for replication has been overlooked

in microarray experiments. Yet recall Fisher's [16] comment over seventy years ago

concerning plant experimentation:

No one would now dream of testing the response to a treatment by com-

paring two plots, one treated and the other untreated.

It is unusual when measuring with, say, a tape measure, to make replicate measure-

ments on the same object. The accuracy of the instrument is commonly high relative to

the variability of the object that is measured. Hopefully, technological improvements

will lead to arrays with correspondingly high levels of technical reproducibility. In the

meantime, there are large potential gains that may come from a better understanding

both of the technology and of quantitative aspects of gene expression. Experiments that

will assist in an understanding of the technical characteristics of this methodology and

the sources of variation and bias should be a priority.

Combining information from the different platforms and laboratories also is im-

portant (see, for example, Glynne et al. [22]). As yet, we are not aware of studies

that directly investigate the extent to which results from a microarray experiment can

be reproduced by other workers in other laboratories. If, however, results from some

microarray studies point in one direction and some in another, it may be necessary to

undertake a statistical overview analysis, or meta-analysis, such as is done in clinical

medicine (see for example, Chalmers and Altman [7]). In a related context, Ionnidis

et al [27] examined the extent to which genetic association studies stand up when re-

peated by other researchers, and found that results from the first study often suggest
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a stronger effect than is found in later studies, and show poor correlation with subse-

quent research on the same association. This observation may be in part a manifestation

of the so-called "file drawer problem" [43], that positive results are more likely to be

published than negative results. Epistatic effects such as are discussed in Wilson [53]

provide another likely explanation.

The challenges that arise from the massively parallel measurement of gene expres-

sion are new. At the analysis stage, what choice of designs will ease the task of in-

terpreting and summarizing the potentially huge number of individual results? This is

clearly an area for further research. Meanwhile, we recommend the use of designs that

are both reasonably robust against unexpected behavior, and that are also capable of

revealing effects that have not been anticipated.
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Measures of Gene Expression for Affymetrix High
Density Oligonucleotide Arrays

Rafael A. Irizarry

Abstract

High density oligonucleotide expression array technology is widely used in
many areas of biomedical research for quantitative and highly parallel measure-
ments of gene expression. In Affymetrix GeneChip array technology, each gene
is typically represented by a set of 11-20 pairs of oligonucleotides, separately
referred to as probes, arrayed on a silicon chip. After chip measurements are
preprocessed, a fluorescence intensity value for each probe is obtained. A nec-
essary step for defining a measure of expression (ME) is to summarize the probe
intensities for a given gene. In this paper, we review the ideas that motivate a sum-
mary statistic, referred to as the robust multi-array average (RMA)9 that improves
the default Affymetrix approach and provides substantial benefits to users of the
GeneChip technology.

Keywords: Affymetrix GeneChip arrays; background correction; gene expression;

normalization; summary measure

1 Introduction

High density oligonucleotide expression array technology is widely used in many ar-

eas of biomedical research for quantitative and highly parallel measurements of gene

expression. Affymetrix GeneChip arrays use oligonucleotides of length 25 base pairs

to probe genes. In this technology, each gene is typically represented by a set of 11-20

pairs of oligonucleotides, separately referred to as probes, arrayed on a silicon chip.

Details of this array technology are described by [1] and [10]. Briefly, though, RNA

samples are prepared according to a specific protocol. A fluorescently labeled RNA

sample is hybridized to probes on the chip. After some processing steps, the array is

scanned with a laser. This scan produces an image that is analyzed to produce an inten-

sity value for each probe (see [9] for more details). These intensities quantify the extent

of the hybridization between the labeled target sample and the oligonucleotide probe. A

final step to obtain a measure of gene expression (ME) is to summarize the intensities

for a given gene in order to quantify the amount of corresponding mRNA species in

the sample. The intensities obtained for each probe are denoted by PMijn and MMijni

i = 1,...,/, j = 1,... ,Λ, and n = 1,... ,N9 with i representing different RNA samples,

j representing the probe pair number (this number is related to the physical position of
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the oligonucleotide in the gene), and n representing the different genes. The number of

genes N usually ranges from 8,000 to 20,000, the number of arrays / is usually small

but may be as large as a few hundred, and the number of probe pairs within each gene

Jn usually ranges from 11 to 20. Throughout the text, indices are suppressed when there

is no ambiguity.

Several researchers have found problems with the ME provided by the first version

of the Affymetrix system [1] and have suggested alternatives, the most cited example

being that of Li and Wong [7]. In their most recent version, Affymetrix provides an

alternative as well [2]. There are papers in the literature that compare ME by assessing

variances, see [8] for an example. Typically, ME are obtained from arrays hybridized to

RNA aliquots (technical replicates). Throughout the text, we denote the ME obtained

for a given gene by £,, with i = 1,...,/ representing arrays. When there are replicate

arrays, we define the sample variance as σ 2 = Σί=\ (£/ - E)2 with E representing the

average. ME that, in general, have smaller σ are considered better. However, without

an accompanying assessment of the ability to detect signal (which can be thought of

as assessing bias), this could produce misleading results. For example, a ME that is

always Ek = 0 cannot be considered appropriate because of its small variance.

Irizarry et al [6] carried out a comparison study of ME using two data sets: (i)

part of the data from an extensive spike-in study conducted by GeneLogic and the Ge-

netics Institute involving about 95 HGU95A human GeneChip arrays, and (ii) part of a

dilution study conducted by GeneLogic involving 75 HGU95A GeneChip arrays. Four

ME are compared: (0 the Affymetrix commercial software MicroArray Suite MAS

4.0 default (AvDiff) (ii) their updated software MAS 5.0 default, (Hi) the Li and Wong

[7] multiplicative model-based ME, and (iv) a summary based on a log-scale additive

model, referred to as the log-scale robust multi-array average (RMA). This study seems

to be the first to compare ME and also to check the reliability of the technology with

data for which both bias and variance can be assessed. They find that in general the

technology works well, and also that RMA outperforms the other three ME. In this

paper, we give a brief overview of these findings, propose a statistical framework for

data using these arrays, and demonstrate with an example why RMA works better.

2 Methods

2.1 Background Correction

Several processes can affect the intensities read from each probe. Apart from the

specific hybridization directly related to the quantity to be measured, there is also

background (or optical noise), nonspecific hybridization, and cross-hybridization. The

Affymetrix strategy for extracting the signal of interest from the observed PM (perfect

match) intensity is to subtract the corresponding MM (mismatch) probe intensity. In

MAS 4.0, an ME for a gene is formed by considering the average difference (AvDiff)

of the PM and MM in the probe set. More precisely, an ME for a gene is formed by
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defining

AvDiff = N^1 £ (PMj - MMj) (1)

with A the subset of probes for which dj = PMj - MMj are within 3 SDs away from
the average of rf(2),..,rf(y_i), where d(7 ) is the j t h smallest difference. NA represents
the number of probes in A. The MAS ME and the ME from the Li and Wong reduced
model, discussed in more detail in Section 2.4, are also based on PM - MM. Dividing
instead of subtracting, i.e. using PM/MM, has also been suggested.

The rationale for using the PM - MM quantities is that they correct the effects that
bias the PM quantities. Another measure offered in MAS 4.0 software is an average
based on the log of ratios PM/MM. There may be biological or physical motivation for
considering differences (or ratios). We believe, though, that it is important to corrobo-
rate such assumptions empirically.

Figure 1 shows intensities of the PM, MM, PM/MM and PM - MM values for each
of the 20 probes representing the BioB-5 probe set in a set of 12 arrays. BioB-5 has
been spiked-in on the 12 different arrays at concentrations of 0.5, 0.75, 1, 1.5, 2, 3,
5, 12.5, 25, 50, 75, and 150 picoMolar. All arrays had a common background cRNA
from an acute myeloid leukemia (AML) tumor cell line. All plots in Figure 1 are on
the log scale except for lc. The low values of the PM - MM are plotted on a linear
scale because there are several negative values (in fact about 1/3 of the non-spiked in
probes have PM - MM < 0). The 20 different probe pairs are represented with different
symbols and colors. As expected, the PM values are growing in proportion to the
concentration. Notice also that the lines representing the 20 probes are close to being
parallel showing that there is a strong additive (in the log scale) probe-specific effect.
The fact, seen in Figure lb, that the additive probe-specific effect is also detected by the
MM provides motivation for subtracting these values from the PM. However, in Figures
lc and Id the parallel lines are still seen in PM - MM, demonstrating that subtracting
is not enough to remove the probe effect. The lack of parallel lines in Figure le shows
that dividing by MM removes, to some degree, the probe effect. However, since the
MM also grow with concentration, and therefore detect signal as well as non-specific
binding, results in an attenuated signal. Notice in particular that using PM/MM would
make concentrations of 25 and 150, a six-fold difference, indistinguishable. The PM —
MM demonstrate some attenuation for the high concentration spike-ins but clearly not
as much as PM/MM. Since subtracting probe-specific MM adds noise with no obvious
gains in signal detection, and because PM/MM results in a biased signal, [6] propose
background correction approaches which are different from subtracting or dividing by
MM. We now give a brief review.

The horizontal lines in Figure 1 represent the median intensity obtained from an
array for which no spike-in for BioB-5 was added. The dashed lines represent the first
and third quartiles. For the lower concentrations, it is hard to distinguish the measured
intensities from this median value. Notice also that the signal is attenuated for the
lower concentrations. A possible explanation is that background correction is needed.
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Figure 1: PM, MM, PM/MM, PM - MM, and b{PM) intensities, for each of the 20 probes
representing BioB-5 in 12 arrays where the probe set has been spiked-in, plotted against
concentration. Except for l(c), axes are on the log scale. Different probes are represented by
the different colors and symbols. The horizontal line represents the median of the 20 BioB-5
probes from an array where no spike-in was added. The dashed lines are at the 25th and 75th
quantiles.

To see this, consider a hypothetical case with two arrays where the signals of a probe

set is twice as big in one of the arrays, but an additive signal of 100 units occurs due
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to non-specific binding and/or background noise in both arrays. In this case, the ob-

served difference in the signals would be about Iog2(100 + 2s) — Iog2(100 + s) instead

of Iog2(2s) - Iog2(s) = 1. For small values of s, the incorrect difference would instead

be close to 0.

(a) concentration of 0

150 200 250 300

MM

0 1 5 .

010-

005-

000-

ftIf
1

(b) concentration of 0.5

t l ί l l l l ] ^^
50 100 150 200 250 300

MM

(c) concentration of 0.75 (d) concentration of 1

.025.

.020-

.015-

.010-

.005-

.000-

100 150 200 250

MM
50 100 150 200 250 300

MM

Figure 2: Histograms (density scale) of log2(Λ/M) for an array in which no probe set was
spiked along with the 3 arrays in which BioB-5 was spiked-in at concentrations of 0.5, 0.75,
and 1 picoMolar. The observed PM values for the 20 probes associated with BioB-5 are
marked with crosses and the average with an arrow.

Figure 2 shows histograms of MM for an array in which no probe set was spiked,

along with the 3 arrays in which BioB-5 was spiked-in at concentrations of 0.5, 0.75,

and 1 picoMolar. The observed PM values for the 20 probes associated with BioB-5

are marked with crosses and the average with an arrow. All the average PM values are

close to 100. Thus, based solely on the average, a difference would be hard to detect.

Figures 2 and 3 suggest that the MM to the left of the mode of the histogram are similar

to the left half of a normal distribution. This suggests that the MM are a mixture of (/)

probes for which an intensity is read due to non-specific binding and background noise

and (//) probes detecting transcript signal (cross-hybridization) just like the PM. The

distance of the average PM from the average background noise does in fact increase

with concentration. This suggests that background correction of the data is necessary.

As noted earlier, PM-MM is not a solution we recommend.

The approach suggested by [6] is to use a global, instead of probe specific, back-
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Figure 3: (a) Histogram of log2(MΛ/) for spike-in concentration 12.5 picoMolar array in
the varying concentration series, (b) QQ plot of the MM left of the mode of histogram (a)
compared to a log-normal distribution with mean and SD estimated from the data.

ground correction. We assume that the observed intensity for each PM probe is the sum

of a specific binding component and a background component (which may include non-

specific binding). Denote these by PM = S+B. Because we are interested in S9 we use

b(PM) = E[5|PM]. We refer to b as a background correcting transformation. Irizarry et

al [6] assume B is normally distributed and that S follows an exponential distribution.

This assumption is convenient because in this case there is a closed-form solution to

E[S\PM]. The solution depends on the mean and variance of the normal distribution

and the rate of the exponential distribution. These parameters can be estimated from

the PM and MM probe level data. Figure If shows the background-corrected PM for

the BioB-5 probes. After background transformation, the low concentration values can

be distinguished from the values obtained for the array with no spike-in (represented

by the horizontal line). In addition, the fact that the slope is larger for the low concen-

trations in Figure If than in Figure la demonstrates that the signal is less attenuated

for low intensities. However, the intensity values for PM and b(PM) do not grow as

a straight line (in the log scale). Further improvements may be obtained with array

normalization.

2.2 Normalization

In many of the applications of high density oligonucleotide arrays, the goal is to learn

how RNA populations differ in expression in response to genetic and environmental

differences. For example, large expression of a particular gene or genes may cause an

illness resulting in variation between diseased and normal tissue. Observed expression

levels also include variation introduced during sample preparation and array manufac-

ture and processing. Unless arrays are appropriately normalized, comparisons of data

from different arrays can lead to misleading results. One approach is quantile normal-

ization [6], which forces the empirical distributions of probe intensities from all arrays
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to be equal. The approach works well in practice, see [3] for details.

2.3 Statistical Models

Figure If demonstrates that the background corrected probe intensities follow an ad-

ditive model in the log scale. Irizarry et al. [6] propose the following model for each

probe set

\og2{b(PMij)}=μi + a J + ε i j , i = l , . . . , / , y = l , . . . , . / , ( 2 )

with μι representing the log scale ME for array /, α 7 a probe affinity effect, and ε/y

representing an independent identically distributed error term with mean 0. For iden-

tifiability of the parameters, we assume that Yέ) α 7 = 0 for all n. This assumption is

equivalent to saying that Afϊymetrix technology has chosen probes with expected in-

tensities that on average are representative of the associated gene expression.

Under model (2), an unbiased estimate of///, the log scale ME for each array, can

be obtained using the average

μi=J-ι^\og2{b(PMiJ)}. (3)

Model (2) lends itself to various practical extensions. For example, to compare two

populations of RNA species for which there are technical replicates assumed to have

the same expected RNA expression, we can write

Here i denotes replicate and a the population. The natural estimate of μa would be based

on / times more data than (3). If instead of technical replicates there were biological

replicates, a term Z z ;, representing a random effect, could be added to the model.

Li and Wong [7] demonstrate that estimation procedures that remove outliers re-

duce the variance of ME estimates. Model (2) can be easily extended to a context that

motivates robust estimates of μ. We refer to the ME obtained from estimating μ in

model (2) using a robust method, such as the median polish approach used by [4] or

robust linear regression, as KM A (robust multi-array average).

2.4 Measures of Expression

Figure 4 shows a standard deviation versus average probe intensities scatter-plot from

a random sample of PM and MM obtained from five replicate arrays. Figure 4a shows

that the SD increases from roughly 50 to 5000, a factor of 100 fold, as the average

increases on its entire range. Figure 4b shows that after a log transformation of the

intensities there is only a 1.5 fold increase. This makes the log scale a more natural

scale for operations such as averaging. Apparently Afϊymetrix has also noticed this and,
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unlike the MAS 4.0 ME AvDiff, their MAS 5.0 ME is based on a log scale average.

Specifically, for each probe set the MAS 5.0 signal (measure) is defined as

signal = exp{Tukey Biweight(log(PM/ - C7}))}

with CTj = MMj ϊϊPMj > MM/, if PMj < MMj, then CTj is a quantity derived from

the MM that is never bigger than its PMpair. See [5] for more details.

(a) SD vs. Avg for PM (b) SD vs. Avg for log2(PM)

500 1000 2000 5000 10000 20000

Avq

Figure 4: Standard deviations (SDs) plotted against averages from 5 MGU74A mouse arrays
for a random sample of 2000 defective probe sets for (a) PM and (b) Iog2(/W). The curves
are loess fits.

Li and Wong [7] propose using the following model to obtain ME:

(4)

with φy representing the probe-specific affinities and independent identically distributed

mean 0 normally distributed errors 8/y. For each probe set, an ME is defined as the

maximum likelihood estimate of θ, , i = 1,...,/ obtained from fitting the multiplicative

model. The estimation procedure includes rules for outlier removal. For computational

speed, Li and Wong [7] use an iterative procedure that leads to estimates of the form

(5)

which is basically a weighted version of (1), although their algorithm does remove

outliers. This means that probes that are in general high will have a larger influence

on θ, . If in fact (2) is a better approximation than (4), then (5) leads to an expression

measure with larger variance than RMA (see [6]).

3 Results and Discussion

There is no gold standard to compare and test summaries of probe level data. For

this reason, data from spike-in experiments have been used to assess the technology
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and to motivate normalization procedures. In a similar way, [6] used data from spike-

in and dilution experiments to assess the MAS 4.0, MAS 5.0, Li and Wong [7], and

RMA expression measures. These data are especially useful because here there is an

expected result. Irizarry et al. [6] demonstrate through examples that RMA provides

more precise estimates of expression, as well as better specificity and sensitivity for

detection of differential expression, than the other three measures. In this section, we

give some specific examples that demonstrate why RMA performs better.

Figure 5 shows MVA plots: log ratios (or log fold changes) Mn = \og(Eιn/E2n)

versus average expression An = \og{y/E\nE2n) = (log£Ίn + log£2w)/2 for ME E\n and

Ein for all genes, n=l,...^V on two arrays. The arrays being compared here are part

of the spike-in experiment described in [6]. We show MVA plots for ME obtained

using MAS 5.0, Li and Wong [7], and RMA. To be able to fit the Li and Wong model

and to use a median polish for RMA, we compute ME using all 33 arrays that were

part of the experiment. Because MAS 5.0 is an improved version of MAS 4.0 [2, 6],

MAS 4.0 is not shown in Figure 5. The two arrays have 11 control genes spiked-in

at different concentrations, but for illustrative purposes we show only DapX-M, which

has been spiked in at concentrations of 2 picoMolar and 1 picoMolar on the two arrays

respectively. The log ratio for DapX-M should be about 1, corresponding to a fold

change of about 2. All other genes represented in the MVA plots should have log ratios

of 0 (fold changes of 1, or equal expression) because the samples hybridized to the

arrays represent the same biological assay. In the figures, genes having bigger observed

fold changes than DapX-M (false positives) are represented with big dots. Only RMA

has no false positives here. All measures result in an observed log fold change for

DapX-M of over 2, which is quite different from 1. Error associated with adding the

spike-in to the hybridization sample may account for this difference.

The barplots in Figure 5 show the PM and MM values for DapX-M and for two

other genes that produce false results. One had a large fold change (false positive)

estimated from the Li and Wong model (4), the other had a large fold change estimated

from MAS 5.0. The barplots show why subtracting the MM can cause problems. Notice

in particular the 11th probe in DapX-M, where the MM are several times higher than

the PM. They also demonstrate why giving large weight to probes with high values can

produce misleading results. For example, probe 13 in the set 33007^at, which is not

called an outlier by the Li and Wong algorithm, will have a large weight. Numerical

results obtained from these genes are given in Table 1. Table 1 shows that different

results can be obtained by using the different ME. The values shown in the barplot

for probe set 33658_at suggest that there is no fold change occurring for that gene.

However, the MAS 5.0 ME gives a log ratio of 1/40. The variance added by subtracting

the MM values causes MAS 5.0 to incorrectly assign a large fold change to this gene.

A possible explanation for why RMA outperforms the Li and Wong model is that

model (2) fits the data better than (4). The following example supports this explanation.

The method of Li and Wong provides not only an estimate of 0/ but a nominal SE for

this estimate, denoted here with d, . Under (2), one can obtain a naive nominal estimate
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Figure 5: MVA plots indicating the position of the DapX-M which was spiked in at a con-
centration of 2:1. Barplot for the three genes highlighted in the MVA-plots.

for the SE of μ using an analysis of variance approach. Because there are five replicates,

one can also obtain an observed SE of any estimate by simply considering SD;. If the

model is close to the actual mechanism giving rise to the data, the nominal and observed

SE should agree. Figure 6 plots the log ratio of nominal to observed variance versus

expression measure. These show that in general, the observed and nominal standard

errors are closer when using (2) instead of (4).
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Table 1: ME obtained using RMA, the Li and Wong model, and MAS 5.0 for three different
genes shown in Figure 5. Only DapX-M should be found to have true fold change.

Gene

DapX-M

DapX-M

DapX-M

33007-at

33007_at

33007-at

33658_at

33658_at

3365 8_at

ME
RMA

LiWong

MAS 5.0

RMA

LiWong

MAS 5.0

RMA

LiWong

MAS 5.0

Array 1

296.0

414.1

256.9

85.4

2595.6

8.4

10.0

25.3

0.3

Array 2

46.1

61.1

49.8

74.6

11.7

3.9

9.9

22.7

12.0

Obs. Iog2 ratio

2.7

2.8

2.4

0.1

7.8

1.1

0.0

0.1

-5.4

Obs. fold change

6.4

6.8

5.2

1.1

222.0

2.2

1.0

1.1

1/40

(a) Li and Wong model (b) RMA

•» -

S

-6
 

-4
 

-2 _—

-5 0 5 10
logίExpression Estimate)

15

CO -

V

ϊ-

-6
 

-4
 

-2

-5

• - • . ' . " . - • ' - •

0 5 10 15
log(Expression Estimate)

Figure 6: (a) \og(σ2/SD2) plotted against log expression of the Li and Wong ME; (b)
log^/SD1) plotted against RMA

Irizarry et al [6] developed RMA, a summary of Aflfymetrix GeneChip probe level

data, that provides a measure of gene expression, which gives an improved measure

compared to other standard measures. The above serves as a specific example demon-

strating why RMA works better.
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These data are especially useful because we can define outcomes for which there is an
expected result.

Rafael A. Irizarry, Department ofBiostatistics, Johns Hopkins University, rafa@jhu.edu

References

[1] Affymetrix. Affymetrix Microarray Suite User Guide. Affymetrix, Santa Clara,
CA, version 4 edition, 1999.

[2] Affymetrix. Affymetrix Microarray Suite User Guide. Affymetrix, Santa Clara,
CA, version 5 edition, 2001.

[3] B.M. Bolstad, R.A. Irizarry, M. Astrand, and T.P. Speed. A comparison of nor-
malization methods for high density oligonucleotide array data based on variance
and bias. Bioinformatics. In press.

[4] D. Holder, R. F. Raubertas, V. B. Pikounis, V. Svetnik, and K. Soper. Statistical
analysis of high density oligonucleotide arrays: a SAFER approach. In Proceed-
ings of the ASA Annual Meeting, Atlanta, GA 2001, 2001.

[5] E. Hubbell. Estimating signal with next generation Affymetrix software.
In GeneLogic Workshop on Low Level Analysis of Affymetrix GeneChip^
data, 2001. http://www.stat.berkeley.edu/users/terry/zarray/Affy/
GL_Workshop/genelogic2001.html.

[6] R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis,
U. Scherf, and T. P. Speed. Exploration, normalization, and summaries of high
density oligonucleotide array probe level data. Biostatistics. In press.

[7] C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: Ex-
pression index computation and outlier detection. Proceedings of the National
Academy of Science USA, 98:31-36, 2001.

[8] C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: model
validation, design issues and standard error application. Genome Biology, 2:1-11,
2001.

[9] R. Lipshutz, S. Fodor, T. Gingeras, and D. Lockhart. High density synthetic
oligonucleotide arrays. Supplement to Nature Genetics, 21:20-24, 1999.

[10] D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee,
M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. Expres-
sion monitoring by hybridization to high-density oligonucleotide arrays. Nature
Biotechnology, 14:1675-1680, 1996.



Normalization for Two-color cDNA Microarray
Data

Yee Hwa Yang and Natalie P. Thome""

Abstract

There are many sources of systematic variation in microarray experiments
which affect the measured gene expression levels. Normalization is the term used
to describe the process of removing such variation. Two-color cDNA microarray
experiments are comparative in nature; therefore, commonly used normalization
methods focus on adjusting the value of log-intensity ratios between the red and
the green channels. This paper reviews some normalization procedures required
to ensure that observed differences across spots both within and between slides are
reliably measured. In addition, the paper investigates the possibility of obtaining
meaningful single-channel information from two-color microarray experiments
after careful single-channel normalization.

Keywords: cDNA microarray; normalization; dye bias; robust smoother; single-channel
normalization

1 Introduction

Microarray experiments measure the expression of thousands of genes simultaneously
and generate large and complex multivariate datasets. One of the challenges imposed
by the enormous growth in this area of biology is the development of computational
and statistical tools for processing such datasets. Pre-processing steps such as image
analysis and normalization are important aspects of microarray experiments, since they
can have a potentially large impact on subsequent data analyses such as clustering or
the identification of differentially expressed genes. This paper is concerned with the
normalization of two-color cDNA microarray data and examines various procedures
applicable to different types of datasets. Normalization is essential to extract reliable
measures of the fluorescence intensities and to ensure that the observed differences in
intensity indeed reflect differential gene expression and not artefactual bias inherent to
the experiment.

We begin in Section 2 with a brief introduction to the biology and technology of
cDNA microarrays. This is followed by a discussion in Section 3 on the motivation be-
hind the two main types of normalization procedures: two-channel and single-channel.

*Both authors contributed equally to this work.
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Sections 4 and 5 review a number of two-channel and single-channel normalization
methods respectively. In particular, Section 5 investigates the possibility of getting use-
ful information from the normalization and analysis of single-channel data from cDNA
microarrays. Finally, Section 6 discusses the implications for assessing these different
normalization procedures and outlines some of the open questions that remain on this
topic.

2 Background on DNA microarrays

DNA microarrays are part of a new class of biotechnologies which allow the monitoring
of expression levels for thousands of genes simultaneously. Applications of microar-
rays range from the study of gene expression in yeast under different environmental
stress conditions [6, 10, 13, 22] to the comparison of gene expression profiles for tu-
mors from cancer patients [2, 3, 9, 12, 18, 19]. In addition to the enormous scientific
potential of microarrays to help in understanding gene regulation and gene interactions,
microarrays are being used increasingly in pharmaceutical and clinical research. Our
focus here is on complementary DNA (cDNA) microarrays, where thousands of dis-
tinct DNA sequences representing different genes are printed in a high-density array
on a glass microscope slide using a robotic arrayer. The relative abundance of each of
these genes in two RNA samples may be estimated by fluorescently labeling the two
samples, mixing them in equal amounts, and hybridizing the mixture to the sequences
on the glass slide. More fully, the two samples of messenger RNA (mRNA) from cells
(known as target) are reverse-transcribed into cDNA, and labeled using differently flu-
orescing dyes (usually the red fluorescent dye Cyanine 5 and the green fluorescent dye
Cyanine 3). The mixture then reacts with the arrayed cDNA sequences (known as
probes following the definitions adopted in "The Chipping Forecast", a January 1999
supplement to Nature Genetics). This chemical reaction, known as competitive hy-
bridization, results in complementary DNA sequences from the targets and the probes
base-pairing with one another. The slides are scanned at wavelengths appropriate for
the two dyes, giving fluorescence measurements for each dye for each spot on the array.
The underlying assumption in microarray analysis is that these red and green fluores-
cence intensities for a typical spot represent the amount of mRNA (gene expression)
from the corresponding gene in the respective samples. We refer the reader to Schena
[21] for a more detailed introduction to the biology and technology of cDNA microar-
rays.

3 Normalization

Microarray experiments are performed to investigate relationships between different
biological samples based on their genes expression. A general approach is to identify
genes with relative differential expression between different target samples. The rela-
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tive expression from each array is usually measured as the ratio of the red and green
fluorescence intensities for each spot. This ratio represents the relative abundance of
the corresponding DNA probe in the two mRNA samples. Although these ratios, or
fold-changes, provide an intuitive measure of relative expression, they have the disad-
vantage of treating up- and down- regulated genes differently. Using a log (base 2) scale
for intensity is preferred for a number of reasons, including: variation of log-ratios is
less dependent on absolute magnitude, and taking the log of the ratio evens out the
highly skewed distribution, providing a more realistic sense of variation. For the rest of
this review, we base our discussion on log-ratios and log-intensities.

In general, before performing statistical analysis, it is necessary to identify and
adjust for artefactual systematic variation in intensities between samples on the same
slide and also between slides; that is, variation which cannot be attributed to true bio-
logical differences between mRNA samples. This process is known as normalization.
We define normalization methods based on adjusting the log-ratios as two-channel nor-
malization. The need for normalization can be seen most clearly in Figure 1, which
shows a plot of a self-self hybridization. Here, two identical mRNA samples are la-
beled with different dyes and hybridized to the same slide. The data are represented by
an M versus Λ plot, or MA plot, where the log-ratios are given by M = log2(/?/G) and
average log-intensity by A = log2 y/RG. Because there is no true differential expression
in a self-self hybridization, one would expect the red and green intensities to be equal.
However, we observe from Figure 1 that the red intensities tend to be lower than the
green intensities. This systematic variation may be a consequence of different labeling
efficiencies and scanning properties of the Cy3 and Cy5 dyes; different scanning pa-
rameters, such as PMT (photo multiplier tube) settings; print-tip, spatial, or PCR plate
effects. Furthermore, the imbalance in the red and green intensities is usually not con-
stant across the spots within and between arrays, and can vary according to overall spot
intensity A, location on the array, plate origin, and possibly other variables. Section 4
describes procedures for two-channel normalization.

The advantage of relying on the log-ratio for measuring relative gene expression
within two samples on the same slide rather than considering log-intensity values for
individual channels is because log-ratios are considered to be more stable than the ab-
solute intensities across slides. Absolute log-intensities are often confounded by spot-
spot variation inherent to printed microarrays. This is demonstrated in Figure 2, where
we show the spatial plots of an experiment comparing stages ElS' and El8 of the ol-
factory epithelium (OE) in embryonic mice. Panels (a) and (b) show spatial plots of
log-intensities from the red channel (Cyanine 5) and green channel (Cyanine 3) respec-
tively. Panel (c) shows the same spatial plot of log-ratios. We observe reproducible
spatial effects of the single channels within a slide that are effectively canceled out
by the log ratios. This demonstrates the stability of log-ratios in general compared to
log-intensities, and provides a clear warning that analysis of single-channel data should
proceed with great care.

The main disadvantage of an analysis based solely on log-ratios is that it constrains
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researchers to comparative investigations. At times the nature of the research problem
requires single-channel analysis, for example, when the aim is to identify genes that
are expressed in a certain sample, or perhaps at particular time points in a time series
experiment. In this case, the quantity of interest is a separate log-intensity measurement
for each channel. Compared to log-ratios, separate log-intensities are usually less stable
in cDNA microarrays.
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Figure 1: Self-self hybridization illustrating systematic variation. Colored lines indicate the
loess fit for each of 4 print-tips used to spot the array.

Given the breadth and nature of systematic variation observed in log-ratios, there
is an inevitable step-up in complexity of biases for single-channel data. Therefore, the
problem of normalization to make the channels from multiple arrays comparable is a
more challenging one. Section 5 presents some procedures for single-channel normal-
ization and a discussion on the assessment of single-channel normalization methods.

4 Two-channel normalization

The process of two-channel normalization can be separated into two main components:
location and scale. In general, methods for location and scale normalization adjust
the center and spread, respectively, of the distribution of log-ratios. The normalized
intensity log-ratios Mnorm are generally given by

M-l
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(a) (b) (c)

Figure 2: Illustration of the spatial effects that exist in the log-intensities from single-channels
that are not observed in the log-ratios. Shown are spatial plots from a single slide in the OE
dataset. (a) Spatial plot of red channel, (b) Spatial plot of green channel, (c) Spatial plot of
log-ratios.

where / and s denote the location and scale normalization values respectively.

Location normalization

The location value / can be obtained by a wide range of methods. The most com-
monly used method is global normalization with / equal to a constant c and s = 1; that
is, log-ratios are corrected by subtracting a constant c with Mnorm — M — c. Common
choices for this constant c are the median or the mean of the log-intensity ratios (M)
for a specified set of genes assumed not to be differentially expressed. There are also
many other estimation methods for the constant c. For example, Chen et al. [5] propose
an iterative method based on ratio statistics for estimating normalization constants. In
another approach, Kerr et al. [16] and Wolfinger et al [23] propose an ANOVA model
for the single channels and perform normalization by including a dye main effect and
treatment and array interaction terms in the model. This is followed by adjusting every
gene on the array by the same fitted value obtained from model. Figure 3(a) shows an
MA plot of a mutant swirl versus wild type comparison of zebrafish prior to normaliza-
tion. The goal of the swirl experiment is to identify genes with altered expression in
the mutant compared to wild type zebrafish. In this instance, the vast majority of genes
on the microarray should show no difference in expression level. This figure depicts
a clear dye bias which appears to be dependent on spot intensity. All global methods
which subtract the same constant c from every log-ratio on the array do not correct such
intensity-dependent biases.

It follows that location normalization methods which account for such biases are
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often necessary. The intensity-dependent bias is noticeable in an MA plot (Figure 3(a))
as a distinct curve in the scatter plot varying with spot intensity. The log-ratios can be
normalized by Mmrm = M — c(Λ), where c(A) is a function of average spot intensity A.
Several intensity-dependent methods have been proposed for location normalization. In
Yang et al [24, 25], estimates of c(A) are made using the local scatter plot smoother
function loess [7, 8] within the software package R. Kepler et al [15] propose a sim-
ilar approach using a different local regression method. Finkelstein et al [11] present
an iterative linear normalization, also known as a robust linear regression, which can
be viewed as a constrained version of the robust locally-weighted intensity-dependent
normalization.

Figure 3(b) shows boxplots of log-ratios stratified by print-tip groups after intensity-
dependent normalization. This figure shows that after intensity-dependent normaliza-
tion, other systematic biases still remain. We can generalize further to account for other
bias by fitting different intensity-dependent curves to different regions of the array:
Mnonn = Λί — Q(A), where i indexes different regions of the array. For example, Yang
et al [24] to use i to index print-tip groups. Often, systematic differences result from
such differences between the print-tips as slight variations in length or in the size of
the tip opening, or variable tip deformation after many hours of printing. In addition,
because each tip prints DNA spots on different areas of the slide, print-tip groups are
proxies for spatial effects on the slide. Figure 3(c) shows an MA plot after print-tip
group loess normalization.

Scale normalization: within and between slides

The effect of location normalization is to center log-ratios around zero by account-
ing for intensity- and spatially-dependent bias. In addition, it is important to consider
scale normalization, since large scale differences between multiple slides can lead some
slides giving undue weight to an average of log-ratios across slides. One common
method of scale normalization is to divide each intensity by the total of the intensities
on the slide, so that all slides then have the same total intensity. Yang et al [24] instead
propose a robust estimate of scale, such as the median absolute deviation (MAD), for
both within-slide and multiple-slide (across slide) scale adjustment. Yang et al [24]
also discuss that the need for scale normalization is often determined empirically, as
there is a trade-off between the gains achieved by scale normalization and the pos-
sible increase in variability introduced by this additional step. In cases where scale
differences appear fairly small, it may thus be preferable to perform only a location
normalization.

Comparing different methods

We can compare different within-slide normalization methods by examining their ef-
fects on the location and scale of the normalized log-ratios Mmrm. Figure 3(d) shows
density plots of the log-ratios for different normalization methods. Without normaliza-
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tion (black curve), the log-ratios are centered around -0.5 indicating a bias toward the
green (Cy3) dye. A global median normalization (red curve) shifts the center of the log-
ratio distribution to zero but does not affect the spread. The dependence of the log-ratio
M on the overall intensity A is also still present. Both the intensity-dependent (green
curve) and within print-tip group (blue curve) location normalization methods reduce
the spread of the log-ratios compared to a global normalization. It is important to note
that these approaches implicitly assume that relatively few genes are differentially ex-
pressed, or there is no systematic relationship between differential gene expression and
intensity or location of the spots on the slide.

Control genes

For most of the methods described, the set of genes to use for the normalization must
be decided. In general, the set of genes most appropriate for normalization depends on
the nature of the experiment, the amount of observed variation in gene expression, and
possibly also on the normalization method applied to the data. Frequently, biological
comparisons made on microarrays are of a very specific nature, and differences in gene
expression are only detected in a small proportion of genes. In these experiments, it is
usual to use most of the genes on the array. Instead of using all genes for normaliza-
tion, one may use a selected subset of constantly expressed genes. These include the
traditional "housekeeping genes", spiked controls, genomic DNA, Microarray Sample
Pooled (MSP) titration series [24] and rank-invariant genes. Further details on the effect
of different sets of control genes on normalization procedures are provided in [24].

5 Single-channel normalization

Single-channel normalization aims to remove systematic intensity bias, that is, intensity
not due to real gene expression, from the red (Cy5) and green (Cy3) channels separately,
both within and between arrays. This normalization allows comparisons of absolute
intensities between arrays.

Jin et al. [14] performed a factorial experiment on age, sex and genotype (two
levels for each factor) of Drosophila melanogaster flies, where age was the only fac-
tor compared within slides. The main effects for the remaining factors were estimable
only via single-channel analysis, not by analysis of the log-ratios. Notably, a different
experimental design would have enabled all main effects and interactions to be esti-
mated from log-ratios while still maintaining a reasonable level of replication for each
comparison type. Here we draw attention to the fact that complex multi-factor designs
may not facilitate the estimation of all contrasts of interest from log-ratios alone. In
such cases, it may be desirable to recover information from single-channel analysis.
Indeed, future complex microarray experiments may be specifically designed to incor-
porate both log-ratio and log-intensity single-channel analysis methods. In time series
experiments, absolute intensity estimates at each time could tell us which genes are



410 Y H. Yang andN. P. Thome

O O o

••»••»,
ϊ : * * * * * » o

Print-tip

(a) (b)

CM -

o -

7 -

(1.1) -
(2.1) -
(3.1) -
(4.1) - 11

11

» .

• (1Λ) -

• (43)

- (1.4)
- (2.4)
- - P.4)
- • (4.4)

ΆMi1."** *• *
. - . t'

β 8 10 12 14
A

(c) (d)

Figure 3: Illustration of two-channel normalization using the swirl dataset. (a) MA plot be-
fore normalization; the green curve corresponds to the loess fit for the entire dataset. (b)
Boxplots, stratified by print-tip group, of log-ratios after intensity-dependent (loess) nor-
malization, but before within print-tip group normalization, (c) MA plot after within print-tip
group normalization, (d) Density plots of the log-ratios for different normalization proce-
dures. The solid black curve represents the density of the log-ratios without normalization.
The red, green, and blue curves represent the densities after global median normalization,
intensity-dependent location normalization, and within print-tip group location normaliza-
tion, respectively.
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expressed or not at any given time, or allow estimation of between array single-channel

comparisons of time points.

Analysis methods that use ANOVA to model the log-intensities rather than the log-

ratios have been investigated by Kerr et ah [16] and Wolfinger eί α/. [23]. As mentioned

in Section 4, these ANOVA models essentially perform constant global normalization

and are therefore inadequate for correcting the nonlinear and spatial systematic vari-

ation observed, e.g. in Figure 2. Analysis methods that model single-channel inten-

sities have been proposed for "one-color" technologies such as nylon filter arrays and

Afϊymetrix GeneChip. Unlike the cDNA arrays, these technologies generate only a

single channel of absolute expression data from each array. Various methods have been

proposed [1,4,17,20] to normalize multiple Afϊymetrix arrays. In this section, we look

at extending some of these methods for single-channel normalization of cDNA arrays.

We illustrate the problem of single-channel normalization with a time series dataset

examining the olfactory epithelium (OE) of embryonic mice with all possible pair-

wise dye-swap comparisons of stages E13, E14, till E18. In this paper, we do not

explicitly investigate the biological problem of which genes are expressed over time,

but rather use the dataset for illustrative purposes only. In addition to the balanced,

highly replicated design of this experiment, this dataset is appealing because it contains

many controls of different known concentrations. Every print-tip group on every slide

includes two different Microarray Sample Pooled (MSP) titration controls of 5 and 6

concentrations respectively [24]. We later outline possible uses for this in assessing

single-channel normalization methods.

Single-channel normalization of two-color cDNA microarray experiments can be

considered as a two stage process: within-array normalization followed by between-

array (between all channels from multiple arrays) normalization.

In addressing the within-array single-channel normalization problem we see that

many parallels can be drawn from the two-channel location normalization approach,

such as removing systematic imbalances between the log/? and logG intensities and

correcting for spatial effects within slides. For dye bias correction, we can adjust the

log-red and log-green intensity by logRp = log/? — \ci{A) and logG^ = logG+ \ci(A)

where Cj(A) denotes the normalization adjustment estimated from "print-tip loess" nor-

malization within each slide. We notice that in addition to normalizing spatial effects

based on the log-ratios, we must also address spatial effects of the absolute intensity of

both channels. This is evident in Figure 2, where we see that even though there is no ob-

servable systematic spatial variation in the log-ratios we can still observe reproducible

spatial effects of the single-channels. We refer to such arrays as having systematic

spatial variation in intensity within slides. Efforts are underway to investigate spatial

normalization methods which will be robust to extreme local intensity values.

The second stage of single-channel normalization, between-array single-channel

normalization, is concerned with comparability of the distributions of log-intensities

between arrays. Like the two-channel problem, we wish for the single-channels to have

similar scale and location values. At this stage, we do not distinguish which channel is
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red and which green, and assume that red-green imbalances were removed by within-
array normalization.

For the OE dataset in Figure 4 we see that the distributions of all 60 channels from
the 30 arrays are quite varied. The density curves differ in location, variation and
shape. Interestingly, the red and green channels within arrays are very close in distri-
bution (data not shown). To adjust for the difference in distribution between channels
from multiple arrays, we consider methods developed for Asymetrix technology. In
particular, we adapt the quantile normalization method proposed in Bolstad et al [4].
This method extends the idea of normalizing for equivalent medians or quartiles of
the single-channels by requiring every quantile across channels be equivalent, and thus
forcing each channel to share a common distribution. The distribution is estimated by
averaging across channels for each quantile. We refer the reader to Bolstad et al [4]
for further details on this method and an algorithm for its implementation. Of particular
concern with the use of this method is that replacing quantile values with an average
might attenuate log-intensity values, particularly in the tails of the distribution where
real expression is potentially affected.

In assessing the performance of these methods, we recommend constructing MA
plots based on normalized log-intensities to check that dye-biases have been removed.
Figure 5 displays MA plots for a typical array from the OE dataset showing the effect
of different single channel normalization methods. Panel (a) shows the data before any
normalization. Between-array quantile normalization (Panel (c)), based on the entire
OE dataset, appears to be just as effective at removing intensity dependent dye-bias as
the within-array "print-tip loess" single-channel normalization shown in panel (b). We
advise using boxplots of the red and green channels to assess red-green imbalances and
to check the location and scale of log-intensity distributions after different levels of nor-
malization. It is beneficial to highlight any previously known differentially expressed
genes on the MA plots to check that they remain distinguishable after normalization.

In the OE dataset, the intensity values of MSP titration controls should remain con-
stant across all 60 channels regardless of what is hybridized. Thus, we can easily deter-
mine whether normalization decreases the variability of these control measurements in
the single-channels. However, determining bias before and after normalization is more
challenging. To measure bias we must be able to compare observed intensities with
something known; that is, some truth must be available. The truth regarding absolute
intensities for the MSP titration controls is unknown, but there is some knowledge about
their relative absolute intensities based on the concentrations of the titration series. We
can check (data not shown) that the ratios of intensities between different controls get
closer to what we expect. Currently in progress is a variance-bias assessment of the
performance of the normalization methods on OE and other similar datasets.
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Figure 4: Single-Channel Quantile Normalization. Density plots of each of 30 red and green
log-transformed single-channels from the OE dataset. The densities of red and green channels
within slides are usually very similar. The solid black curve represents the density of all
channels after quantile normalization.
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Figure 5: MA plots with loess curve for a typical array from the OE data (a) before nor-
malization, (b) after single-channel quantile normalization and (c) after "print-tip group"
single-channel normalization.
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6 Discussion

We have reviewed various normalization approaches applicable to different types of mi-
croarray experiments. Most of the normalization work to date is based on two-channel
normalization procedures that adjust the log-ratios. However, we have also considered
the problem of normalizing single-channels from two-color cDNA microarrays. We
have also raised the question of how to assess single-channel normalization is prefer-
able, and what aspects to consider when comparing normalization methods. We neither
advocate nor promote the notion of single-channel data analysis in general, but instead
suggest that satisfactory normalization of single-channel data is what is lacking for it to
be considered a promising option for researchers.

We demonstrate that single-channel analysis is potentially useful in certain cir-
cumstances where the nature of the research problem suggests single-channel analysis.
Though analyzing microarray data based solely on single-channels is not a new concept
[4, 20], limited attention has been given to single-channel normalization of two-color
cDNA microarrays. As a place to begin, we have adapted existing procedures from both
two-color cDNA and from single-color (e.g. Affymetrix) normalizations. The investi-
gation into single-channel normalization raises many other issues of interest, including,
in particular, the implications for normalization of log-ratios, for experimental design
and analysis and for the replication required for reasonable precision of between array
single-channel contrasts.

In any microarray experiment it is important to adjust for the inherent artefactual
bias, as well as to understand the assumptions behind any procedure used. In addition,
it should be checked that systematic errors are reduced after normalization and that any
observed gene expression differences are meaningful (scientific validation). Diagnostic
plots such as MA plots, spatial plots, density and boxplots can assist in the decision
of the level of adjustment needed for both single- and two-channel normalization, and
can be used to check that artefacts have been removed by normalization. For exam-
ple, investigators may decide whether to perform within-slide scale normalization for a
dataset by examining boxplots of log-ratios stratified by different print-tip groups.

In general, one should be careful that the gains achieved by further levels of nor-
malization do not introduce a large increase in variability. An important problem
that should be addressed is to define formal criteria to assess the effectiveness of var-
ious normalization procedures. That is, the issues of bias and variance should be
addressed simultaneously. In practice, it is relatively easy to show whether a new
normalization method decreases variance. However, it is more challenging to estab-
lish that this reduction in variance did not come at the cost of attenuating absolute
and relative intensity values (increased bias). To fully address this issue, it is im-
portant to obtain a specially constructed dataset with known levels of absolute and
differential gene expression, as well as a reasonable number of replications. Exam-
ples of such datasets are available for Affymetrix technology h t tp : / /qo lo tus02 .
genelogic . com/datasets. nsf / and some initial analyses of these data are available
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at h t t p : //www. s t a t . Berkeley. EDU/users/ terry/ zarray/Af f y /af f y_index. html.
In conclusion, until such datasets are available for two-color cDNA microarrays, or un-
til further understanding of the effects of different normalization procedures is gained,
it is important to apply normalization algorithms with caution.
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Classification of Tissue Samples Using Mixture
Modeling of Microarray Gene Expression Data

Shili Lin and Roxana Alexandridis

Abstract

Accurate classification of tissue samples is an essential tool in disease diagno-
sis and treatment. The DNA microarray technology enables disease classification
based only on gene expression analysis, without prior biological insights. We
present a classification method based on modeling the distribution of the gene
expression profile of a test sample as a mixture of distributions, each of which
characterizes the levels of gene expression within a class. Class assignment for
a test sample is based on the predictive probabilities of class memberships. We
believe that this general modeling framework is a flexible scheme for multi-type
classification. Since most of the thousands of genes whose expression levels are
measured do not contribute to the separation between types of tissue samples, we
also explore several measures for gene selection, including T, NPT, BW, NPBW,
and a mixture modeling approach based on Markov chain Monte Carlo (MCMC)
estimation of parameters. For a classifier based on a gene selection measure, such
as the T classifier, the number of genes selected is achieved by cross-validation.
The methods are applied to a leukemia dataset; our results are comparable with
the best results achieved in a comparative study done by Professor Terry Speed
and colleagues.

Keywords: microarray; gene expression; classifier; mixture; EM; MCMC

1 Introduction

DNA microarrays are biotech chips that enable researchers to measure the expression
levels of thousands of genes simultaneously; see Schena [15] and The Chipping Fore-
cast [5]. These measurements are obtained by quantifying the hybridization of the
mRNA extracted from tissue samples to an array of spotted cDNA (cDNA arrays) or
oligonucleotide probes (oligonucleotide arrays) immobilized on the surface of the chip.
Details can be found in Schena et al [16] for cDNA arrays and Lockhart et al [9] for
oligonucleotide arrays.

After proper image analysis, data processing and normalization (which entails non-
trivial efforts, see for example, Dudoit et al [4], Schadt et al [14], Newton et al [11],
and Yang et al [17]), a single number, referred to as the level of expression, is obtained
for each gene on a microarray.
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Statistical methods are needed to address many of the questions for which re-
searchers seek answers from microarray gene expression data, such as (1) identifying
genes differentially expressed under two or more conditions, (2) grouping genes with
similar expression patterns, (3) finding genes that differentiate one tissue from another,
and (4) molecular classification of tissue samples, including class discovery and class
prediction. We focus on statistical methods for addressing this last issue.

Accurate classification of tissue samples is an essential tool in disease diagnosis
and treatment. DNA microarray technologies enable classification based only on gene
expression analysis, without requiring prior biological insight; successful cancer clas-
sification by Golub et al. [6] provides an excellent example. The idea is to classify
a tissue sample into one of K known classes/types, where a sample, also called gene
expression profile, is a vector whose components are the levels of gene expressions in
a given tissue. Therefore, the problem of classification can be defined as follows: given
a set of training samples, i.e., samples whose class memberships are known, and a set
of test samples, predict the class assignments of the test samples.

Most of the thousands of genes that make up the gene expression profile of a tissue
sample do not contribute to the distinction between classes. Considering such irrele-
vant genes introduces noise to the classification process, and increases computational
hurdles due to the extremely large dimensionality of the data. The combined contri-
bution of many nonsignificant genes could downplay or even cancel the effects of the
significant ones [8]. In addition, with a large number of genes whose expression levels
are used for classification purposes, the interpretability of the results becomes an issue.
When only a few genes are found helpful for separating classes, insight might be gained
into the biological significance of these genes, as shown in Golub et al. [6].

For binary classification problems, Ben-Dor et al. [2] suggest a gene selection al-
gorithm with a single threshold value chosen by cross-validation. Golub et al. [6] select
the genes that provide best distinction between the "standardized" means of two classes
(although their standardization is not the typical kind of standardization in statistics).
Dudoit et al. [3] propose to select genes that display the largest ratios of between-group
to within-group sums of squares, which is applicable to gene selection for multi-type
classification problems.

Numerous methods have been proposed to classify tissue samples based on gene
expression data. Some are restricted to binary classification, such as the weighted vot-
ing scheme of Golub et al. [6], while others are applicable to multi-type classifications.
Techniques of machine learning, such as nearest neighbor classifiers [3], and cluster
analysis methods, including hierarchical clustering [1,12], have been entertained. Clas-
sification trees or aggregation of classifiers built from perturbed versions of the training
set using boosting, bagging or convex pseudo-data methods of perturbing the training
set [3], are some other examples.

There are yet other classification techniques that are applicable to multi-type clas-
sification problems; these are based on modeling the class densities, such as the linear
and quadratic discriminant analysis of Dudoit et al [3], or the naive Bayes methods of
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Keller et al. [8]. For a comprehensive review of the methods, see Keller et al [8] and

Dudoit et al [3].

In this article, we propose a classification method based on modeling the gene ex-

pression profile of a test sample as arising from a mixture of distributions, each of

which characterizes the expression profiles within a class. We believe that this general

modeling framework is a flexible scheme for multi-type classification. It could also be

extended to accommodate class discovery in addition to classification to known classes.

We also explore several measures for gene selection, including a mixture modeling ap-

proach based on Markov chain Monte Carlo (MCMC) estimation of parameters.

2 A Multi-type Classification Method

Mixture modeling of test samples

Let K denote the number of known classes (or sub-types, e.g., leukemia sub-types)

for which training samples exist. We use Y^ = (Ykn ? '" > YkiβY to denote the column

vector of gene expressions of the zth sample from class k, where G is the number of

genes. Hence {Yfai = 1, , 7*} is the collection of data from class k, where 7* is the

sample size, k = 1, ,K. For each / = 1, , 7*, we assume 7& ~ /*(• I ®k), where θ*

is the vector of parameters of the component density function, which can be estimated,

for example, from the training samples.

Let {Xi = (Xfi, • ,XiG)f, i = 1, , T} denote the gene expression data from T test

samples, whose class membership assignments are unknown and the subject of interest.

We model Xt as i.i.d. observations from a mixture distribution with component density

functions fk but unknown component weights π*, k = 1, ,£", χf= 1 π^ = 1. That is,

k=\

where θ is the vector of unknown parameters including the π^.

Two likelihood formulations are considered. If we assume that the parameters of

each component density are to be estimated from the corresponding training samples,

then the likelihood formulation is based on known component densities. The parame-

ter vector is thus θ = {n^k = 1, ,K}, with the constraint J$=ι π* = 1, and will be

estimated using the test samples only. The likelihood function is

(1)
k=l

Alternatively, we can estimate the parameters θ* in each component density to-

gether with the component weight π* using data from training samples and test samples

jointly. The parameter vector is thus θ = {π*, θ*, k = 1, ,K}, again with the constraint
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Lj π* = 1. The likelihood function is then

Jfc=li=l

Under the latter formulation, data from the test samples also contribute to the es-

timation of the parameters in each component density. In the next section, we focus

on estimation of the parameters under this formulation. Parameter estimations under

formulation (1) can be carried out similarly.

EM estimation of parameters

We .assume that each component density is multivariate normal with mean vector

μk = (μia, ,μκ?) and variance-covariance matrix Σ*, that is, θ* = {μ^Σ*}. We fur-

ther assume that the expression levels among different genes are independent, therefore

Σ* = diag(σ^, , a2

kG) is a diagonal matrix of the variances. To find the maximum

likelihood estimates (MLEs) of the parameters in (2) with normal component densities,

the EM algorithm is highly suited [10].

Let Z, , which takes a value from the set {1,2, ,ΛΓ}, denote the unobserved class

assignment for test sample i = 1,---,Γ. Then {(Λ^Z,-),/ = I,--,T}l){{Yki,k),k =

\,-,K,i= 1, , Tk\ can be regarded as a representation of the complete data. The

corresponding complete data likelihood is

ί = l * = 1

where /(Z, = k) is the indicator function that takes the value 1 if Z, = k and 0 otherwise.

The EM iterates for the parameters are easily obtained and are given by:

T

ί = l

k=l,---,K,g=l,- -,G,

where
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From a starting parameter configuration Q(°\ we compute the sequence of estimates

θ ^ iteratively using equations (3)-(5) until convergence. The resulting parameter con-

figuration is the estimated MLEs and is denoted by θ. Note that the estimates of the

component density parameters involve data from the test samples as well as those from

the training samples, as pointed out earlier.

A Classification Scheme

For each sample to be classified, we compute the predictive probabilities that it be-

longs to each of the known classes given the observed expression data and the param-

eter estimates. Then the sample is assigned to the class that has the largest predictive

probability. That is, we compute

i = k I xj) - πkfk(Xi i Θ*U = l, ,*. (6)

Then

For a test set with T samples with known underlying class assignments z,-,/ =

1, , T, the quantities r = Σ,Li I{Zi = Zi)/T and e = jj=\ I{Ά Φ z, ) give the prediction

accuracy rate and the number of samples that are misclassified, respectively.

3 Methods for Building Classifier

Gene selection measures and cross-validation

Gene selection measures are summary statistics used to order or select genes ac-

cording to the perceived importance in discriminating among known classes. Four

measures are described below and their performances are evaluated. Other gene se-

lection measures are also considered; see the Discussion section for details.

T: This measure is applicable to two-class discriminant problems only. The measure

Tg is simply the two sample /-statistic for each gene g = 1, , G. That is,

where ΫLg = ΣjLi Y\ig/Ά and S2

lg = Σj=ι {Y\ig ~ Ϋ\.g)2/{Ά - 1) are the sample mean

and sample variance of class 1, respectively, and similarly for ?2.g and S\g. Then the N

genes with the largest absolute Tg values are selected to form the T classifier of size N.

We discuss how to select N through cross-validation below.

NPT: This is the non-parametric counterpart of T, and thus is also applicable only

to two-class problems. LetRg= rank{7i/ g,/= 1, — , 7Ί,l2^,j:= 1, — , T }̂ denote the

vector of the ranks of all the samples, among both classes, of gene g. The NPT measure

is defined as the difference of the average rank of the samples in class one (R\.g) and

that in class two CR2.g), that is, NPTg = R\.g- Ri.g,g = 1, -, G. The N genes with the
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largest absolute NPTg values are selected to form the NPT classifier of size N. This

classifier is more robust than T to outlying expression levels.

BW: This is a classifier based on the ratio of between-class sum of squares to within-

class sum of squares, as proposed by Dudoit et ah [3]. This classifier is applicable to

multi-type classification problems. The BW classifier is equivalent to the T classifier

for two-class problems when the sample sizes in the two classes are equal, and hence,

it may be viewed as a generalization of the T classifier. Specifically, define

nw τ
* τL\Σlλ{γkig-γk.s)

2

where Ϋk.g is the sample mean of class k, and ?. g is the overall mean of all samples

across all classes. Then the N genes with the largest BWg values are selected to form

the BW classifier of size N.

NPBW: This is the non-parametric counterpart of the BW classifier, which is also

applicable to multi-type problems. The gene selection measure NPBWg is similarly

defined as in BWg but with the individual expression levels or the means replaced by

their corresponding ranks (across all samples) and the corresponding average ranks.

Like NPT, this classifier is robust to outlying expression levels.

For each type of classifier, after the genes are ordered according to their relative

importance in discriminating among known classes, the number of genes N to use for

classifying new samples must be selected. This task is accomplished by Leave-One-Out

Cross-Validation (LOOCV). For each competing classifier, we estimate the parameters

of the mixture model using data from the training samples, but leaving one out as a

test sample. Since the true class assignment of the test sample is known, we can score

whether correct assignment is made. After cycling through all the training samples

one at a time, the prediction accuracy rate may be computed. A classifier with high

prediction accuracy rate from LOOCV will be used as a candidate for classification of

new samples.

An MCMC classifier

An alternative approach to gene selection for a two-class classifier is through mix-

ture modeling and MCMC estimation and model selection. Suppose {Ϋk.g^l ) are the

sample mean and variance of gene g in class k = 1,2;g = 1, , G. If the sample size Tk

is reasonably large, then Ϋ^g ~ N{μkg,S\ jTk) approximately. Hence,

follows a normal distribution with mean μ\g — μιgi approximately. For a gene that is

not differentially expressed in the two classes, μ\g — μig = 0. Thus, one may model Yg

as from a mixture of (univariate) normal distributions (N(μχ, Gχ), λ = 1, , Λ) with an

unknown number (Λ > 1) of components, with one of the components having mean zero
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(referred to as the null component), representing those genes that are not differentially

expressed.

The MCMC reversible jump method of Green [7] and Richardson and Green [13]

is used to estimate the parameters of the model, including the number of components of

the mixture. Then for each gene g, we compute the predictive probability that it belongs

to each component of the mixture given Yg and the estimated model, using a formula

similar to (6). The gene is assigned to a component other than the null component if the

predictive probability for that component is the largest and also larger than the weight

of the null component. The collection of genes assigned to components other than the

null component forms the MCMC classifier.

Following Richardson and Green [13], weak informative priors, chosen for com-

putational convenience, are used for the model parameters. The priors for the means

and variances of the component densities are assumed to be independent normals {μχ ~

7V(ξ,κ2)) and inverse gammas (σ£ ~ 7G(α,β)), respectively. The hyperparameters ξ

and K are chosen to be the midpoint and half of the range (R) of the data interval, re-

spectively, to make the prior for μχ to be rather flat. For Oχ, we let α = 2 and allow β

to further follow a gamma distribution G(/, h) with / = 0.2, and h = 10/7?2, to make σ^

similar but without being informative in their absolute size. The prior for the number

of components (Λ) is assumed to be uniform between 1 and the pre-specified maxi-

mum number of components, taken to be 10 in our application. For the component

weights, the prior is taken to be Dirichlet D( 1,1, , 1). Further details can be found in

Richardson and Green [13].

4 Leukemia dataset

The Leukemia dataset of Golub et al [6] is the result of monitoring the expression

levels of 7129 genes in two types of acute leukemia using Afϊymetrix high-density

oligonucleotide array technology. The dataset consists of a training set which con-

tains 27 samples of acute lymphoblastic leukemia (ALL), and 11 samples of acute

myeloblastic leukemia (AML), and a test set comprising 20 ALL and 14 AML sam-

ples. The ALL samples could be further classified as ALL-B or ALL-T, depending on

whether they arise from a B or T cell lineage. The 27 ALL training samples contain 19

ALL-B, and 8 ALL-T samples, while the 20 ALL test samples contain 19 ALL-B and

one ALL-T sample. We refer to the problem of discriminating between ALL and AML

as the two-class problem. Discriminating among ALL-B, ALL-T, and AML is referred

to as the three-class problem.

5 Results

Checking the normality assumptions

In our mixture modeling of test samples, we assume that each component density
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of the mixture follows a normal distribution. Therefore, we first checked whether this

assumption is reasonable for the leukemia dataset. We assigned the test samples to the

appropriate classes, because the true underlying class assignments for these samples

are in fact known. Then, for the samples in each class, we computed the standardize

expression levels (by subtracting the sample mean and dividing by the sample standard

deviation within each class) for each gene, and they are plotted against normal scores.

For the three-class problem, the results are shown in Figure 1. There are some obvious

departures from normality, although they do not seem to be sufficiently bad to cast

serious doubt on the validity of the assumption. The normality plots for the two-class

problem are similar.

2 *"

<

LU

- 4 - 2 0 2 4

Quantiles of Standard Normal

-2 0 2

Quantiles of Standard Normal

- 4 - 2 0 2 4

Quantiles of Standard Normal

Figure 1: Normal probability plots for the samples in three classes, ALL-B, ALL-T, and
AML.

Predictions for the two-class problem

For each of the four types of classifiers (Γ, NPT, BW, and NPBW) and a range of

classifier sizes (1-200 genes), predictions of class assignments were carried out both for

the training samples (through LOOCV) and the test samples using the mixture modeling

approach. Figure 2(a) plots the prediction accuracy rates for the LOOCV of the training

samples. The mixture modeling approach with the two types of non-parametric classi-

fiers (NPT and NPBW) perform similarly; prediction accuracy rates of 1 are achieved

in most of the range when the numbers of genes in the classifiers are more than 30. The

mixture procedure does not perform as well with the parametric classifiers (T and BW),

but the accuracy rates are still about 95% in most of the range. In summary, the results

from LOOCV indicate that the prediction accuracy rates using the mixture modeling

approach is not very sensitive to the type of classifier (among the four types that are

considered here) nor the number of genes in a classifier, as long as the number is not

very small.

Figure 2(b) plots the prediction accuracy rates for the test samples. Prediction accu-

racy rates of 1 are achieved only for the T classifiers with 19, 20, and 22 genes. Similar

to the results in LOOCV, the performances of the procedures are not very sensitive to
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the number of genes in the classifier as long as the number is not too small. Apart from
BW, the results are not very sensitive to the types of classifiers in a wide range. The
BW classifiers have not performed as well as the others.

A simulation study similar to that of Dudoit et al. [3] was carried out to further eval-
uate the performance of the mixture modeling procedure and to compare the four types
of classifiers, including the effect of the size of a classifier. A total of 200 simulations
(replications) were performed. For each simulation, 2/3 of the samples in each class (31
out of 47 ALL and 17 out of 25 AML) were randomly selected as the training samples,
while the remaining served as the test samples. Each of the four types of classifiers with
the sizes ranging from 1-200 was considered. The prediction results from the mixture
procedures with all four types of classifiers are given in Figures 2(c) and 2(d). Specif-
ically, the summary statistics for the number of test samples misclassified among the
200 replications for the T classifiers are plotted in Figure 2(c). For classifiers that are
not very small, the results show that (1) there are no prediction errors in more than 25%
of the replications, and (2) there are at most one prediction error in more than 75% of
the replications. The performances for the three other types of classifiers are similar;
full results are available from our web site (URL provided at the end of the article). The
medians of the numbers of genes classified incorrectly (among 200 replications) for all
four types of classifiers are plotted in Figure 2(d). We observe consistent results in all
four classifier types for a wide range of classifier sizes.

We further examine the results from the simulation study by looking at each replica-
tion separately, instead of looking at the summary statistics, hoping to gain more insight
into the relative performances of the four types of classifiers. Four pairs of classifiers
are examined: T and NPT, BW and NPBW, T and BW, NPT and NPBW. One could
examine other pairs, or higher number of classifiers jointly, but these four pairs seem
the most appropriate ones to consider. For each pair and each replication, we classify
the outcome into one of three categories: classifier 1 is better (the same, or worse) than
classifier 2, depending on whether the number of samples incorrectly assigned under
classifier 1 is smaller (the same, or larger) than that under classifier 2. The results are
given in Table 1. Classifier T is slightly better than classifier NPT, while classifier
NPBW is slightly better than classifier BW, consistently for the three sizes of the classi-
fiers examined. Furthermore, T seems to be better than BW, while their nonparametric
counterparts perform almost exactly the same.

The results shown thus far are obtained under the mixture modeling formulation
(2); that is, data in both the training samples and the test samples contribute to the
estimation of mixture component density parameters as well as the mixing proportions.
Results using formulation (1) are similar, especially for LOOCV as expected, although
not quite as good in predicting the original test samples, which is not surprising either
since there are almost as many test samples as there are training samples. The full
results can be obtained from our web site.

MCMC classifier. A total of 100,000 iterations were performed. The first 50,000 it-
erations were discarded to allow for convergence; the remaining realizations were then
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Figure 2: Prediction accuracy rates, or equivalently, the number of samples misclassified, for
the training samples (through LOOCV) (a), the original test samples (b), and the simulated
test samples (c and d), of the leukemia two-class problem. Figure 2(c) gives the summary
statistics for classifiers based on T, and figure 2(d) plots the medians for Γ, NPT, BW, and
NPBW.

used for inference. About 95% of the iterations picked three as the number of com-

ponents for the mixture, with the second component corresponding to the distribution

for genes that do not exhibit differential expressions (the null component), i.e., with

mean=0 for the component density. By applying our gene selection criterion, 23 genes

were selected for the MCMC classifier. Class predictions for the test samples (using

mixture formulation (2)) were then performed using the MCMC classifier. Out of the

34 samples in total, only one is classified incorrectly, giving a prediction accuracy rate
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Table 1: Comparisons of classifiers for the two-class problem using the simulated data based
on the leukemia dataset

#Genes

25

50

100

Cl

T
BW
T
NPT
T
BW
T
NPT
T
BW
T
NPT

Cl
NPT
NPBW

BW
NPBW

NPT
NPBW

BW
NPBW

NPT
NPBW

BW
NPBW

Cl>C2α

59
7

76
0

64
15
72
4

58
7
87
2

Cl=C2b

96
143
95

200

102
161
99
196
100
149
86
197

CKC2 C

45
50
29
0

34
24
29
0

32
44
27
1

αThis column gives the number of replications that result in smaller number

of misclassified samples under classifier 1 than classifier 2.
όThis column gives the number of replications that result in the same number

of misclassified samples under both classifiers.
cThis column gives the number of replications that result in larger number

of misclassified samples under classifier 1 than classifier 2.

of 97%. On the other hand, under mixture formulation (1), in which only the training

samples are used to estimate the component densities, five test samples are classified

incorrectly.

Predictions for the three-class problem

Since T and NPT are applicable only to binary classification problems, they are

not considered for further discriminating between ALL-B and ALL-T. For each multi-

type feasible classifier {BW and NPBW) and a wide range of sizes (1-200 genes), the

mixture modeling approach under formulation (2) were applied to classify the training

samples (through LOOCV) as well as the test samples. Figure 3(a) and 3(b) plot the

prediction accuracy rates for the LOOCV of the training samples and the test samples,

respectively. Behavior similar to that observed in Figures 2(a) and 2(b) (for the two-

class problem) is apparent in these figures. Namely, the prediction accuracy rates are

not very sensitive to the type of classifier, nor the size of the classifier, and the class

assignments of the samples are predicted quite accurately. NPBW performs better in

smaller classifiers, especially in predicting the test samples, while BW does slightly

better in LOOCV of the training samples. Overall, though, the performances of the two

types of classifiers are similar.

A similar simulation study to that for the two-class problem was carried out. For
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Figure 3: Prediction accuracy rates for the training samples (through LOOCV) (a), the orig-
inal test samples (b), and the simulated test samples (c and d), of the leukemia three-class
problem. Summary statistics for classifiers based on BW and NPBW are shown in (c) and
(d), respectively.

each of the 200 replications, 2/3 of the samples in each class were randomly selected

to form the training samples, and the remaining were assigned as test samples. For

each classifier, the mixture approach under formulation (2) was applied to predict the

class assignments of test samples. Summary statistics for the number of test samples

classified incorrectly are plotted in Figure 3(c) for the BW classifiers, and 3(d) for

the NPBW classifiers. Again, the mixture modeling approach yields good results for

classifiers that are not too small, and NPBW performs slightly better for very small

classifiers.
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Table 2: Comparisons of classifier Cl {BW) and classifier C2 (NPBW) for the three-class
problem using the simulated data based on the leukemia dataset

#Genes

10
25
50
100
150
200

C l > C 2 a

36
91
103
90
63
49

C H C 2 "

25
69
79
99
118
133

C K C 2 C

139
40
18
11
19
18

a>b>c See the footnotes of Table 1.

We further compare the performances of the two types of classifiers by examining

each replication individually, in addition to the summary statistics across replications.

For each replication, the outcome is classified into one of three categories: BW yielding

smaller (same, larger) number of misclassified samples than NPBW. The results are

shown in Table 2. We observe that, for smaller classifiers, there is a larger discrepancy

between the two classifiers. Since NPBW is more robust to outlying expression levels, it

is not surprising to see that it outperforms BW for the smallest classifier considered. As

the number of genes in the classifiers increases, the two types of classifier become more

similar, although BW continued to slightly outperform NPBW for larger classifiers.

The results shown thus far for the three-class problem are obtained using the mix-

ture modeling formulation (2). Results using formulation (1) are similar, although not

quite as good in predicting the original test samples, as what was observed for the two-

class problem (full results available from our web site).

6 Discussion

In this article, we propose a method for classification of tissue samples by modeling

the (multivariate) distribution of gene expression levels in a test sample as a mixture

of distributions, each characterizing the distribution of the levels of gene expressions

in a known class. This method can be paired with many gene selection methods {i.e.,

methods for building classifiers) to reduce the dimensionality of the problem. Several

classifiers are studied; results on T, NPT, BW, NPBW, and the MCMC classifier are

presented in the current article, while results on several other binary classifiers can be

found at our web site. Among the classifiers that are applicable to two-class problems,

T performs well compared to the others in terms of prediction accuracy rates for the test

samples (Γ achieving 100% accuracy rates for three classifier sizes) and the simulated

samples in the leukemia dataset using the mixture modelling approach for classification.

The MCMC classifier also performs well, with one prediction error out of a total of 34
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test samples. Although the work on the MCMC classifier is still very preliminary,
we are encouraged by these promising results, and effort is underway to extend it to
handle multi-type classification problems. For multi-type feasible classifiers, BW is
generally better than NPBW for predicting the training samples (through LOOCV) and
the simulated samples, although NPBW is better in predicting the test samples, and
NPBW classifiers were usually better than BW classifiers for smaller classifiers, again
for the leukemia dataset. Note that the sizes of the classifiers that perform well are
usually larger for the three-class problem than for the two-class problem, although they
are all quite small (< 200) compared to the original number of genes. For predictions
using the mixture modeling approach without first doing gene selection, three and four
test samples are misclassified for the two-class and three-class problem, respectively,
confirming the importance of gene selection.

Due to the lack of true test samples in the leukemia dataset, we were able to explore
prediction accuracy rates for the test samples for a range of classifier sizes. In a real
data analysis situation, however, we would proceed with the classification procedure
proposed in this article in the following fashion. First, one would perform LOOCV
with the training samples for a wide range of classifiers and sizes. Then a small set of
classifiers that had performed well would be selected for classifying the test samples.
We strongly recommend using more than one classifier so that consistency of predic-
tion results can be checked. If several classifiers that had performed equally well in
cross-validation had also produced consistent results in classifying the test samples, it
would be an indication of satisfactory results, although there is no guaranteer that all
assignments were correct. On the other hand, if discrepancies occur, then the biologists
might be able to study the samples that caused the discrepancies more closely using
other information.

Mixture modeling of test samples is a flexible means for multi-type classification
of tissue samples. We have investigated two alternative formulations of the likelihood.
It is not surprising to see that the one utilizing both the training samples and the test
samples for parameter estimations (formula (2)) outperforms the one based on training
samples only to estimate the parameters of the component densities, in many cases.
Compared to other methods that have also been proposed for multi-type classifications,
our approach performs at least as well with the leukemia dataset. For example, for
predicting class membership of test samples, our approach yielded results with no pre-
diction errors with medium-size classifiers (both BW and NPBW). The naive Bayes
approach of Keller et al. [8] also yielded no misclassifications, for a small number of
classifiers. Among the approaches discussed in Dudoit et al. [3], the best results had
one misclassification of the simulated test samples, for both the median and the third-
quartile, out of a total of 200 replications. Our simulation study using BW (for most of
the classifiers ranging from 40 to 160 genes) resulted in zero and one misclassifications
for the median and third-quartile, respectively, also out of 200 replications. Although
one dataset and a limited simulation study do not warrant general conclusions, the re-
suits that we have obtained thus far show that the mixture modeling approach, coupled
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with a gene selection measure such as BW (or its non-parametric counterpart if extreme
observations are present), is promising. We plan to further evaluate its performance,
especially its ability for classifying with larger numbers of classes.

The mixture formulation is also flexible in that it can be extended to handle situa-
tions where there are no training samples (class discovery problems) or when there are
training samples but some of the test samples do not belong to any of the known classes
(joint analysis of classification and class discovery). The key is to modify the mixture
likelihood so that it allows for components that do not correspond to any known classes.

In our demonstration of the usage of the mixture modeling approach, each com-
ponent density is assumed to be multivariate normal. This assumption was made for
convenience. This assumption was also made in other methods, such as the methods
based on maximum likelihood discriminant analysis [3]. Although good results were
obtained from our analyses of the leukemia dataset, we could have used other distri-
butions that fit the data better, as our figures show that there are obvious departures
from normality. If the EM procedure for obtaining maximum likelihood estimates is no
longer feasible, other methods for obtaining the MLEs may be used, including MCMC
methods. Furthermore, we assume that the genes in a classifier are independent. Again,
this assumption can be lifted, as the likelihood formulation is completely general; the
component densities can be true multivariate distributions.

Electronic-Database Information

The URL for the supplementary material is: http://www.stat.ohio-state.edu/
~statgen/PAPERS/GeneExpression.html.

Acknowledgments

Shili Lin would like to thank Professor Terry Speed for his mentoring and encourage-
ment during her years at Berkeley and beyond. This work was supported in part by
NSF grant DMS-9971770 (to S. Lin).

Shili Lin, Department of Statistics, Ohio State University, Columbus,
shili@stat.ohio-state.edu

Roxana Alexandridis, Department of Statistics, Ohio State University, Columbus,
roxana@stat.ohio-state.edu

References

[1] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C.
Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore,



434 S. Lin and R. Alexandridis

J. Hudson Jr, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C.
Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson,
M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt. Distinct
types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature, 403:503-511, 2000.

[2] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini.
Tissue Classification with Gene Expression Profiles. Journal of Computational
Biology, 7:559-584, 2000.

[3] S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of Discrimination Methods
for the Classification of Tumors Using Gene Expression Data. Journal of the
American Statistical Association, 97:77-87, 2002.

[4] S. Dudoit, Y. H. Yang, M. J. Callow, and T. P. Speed. Statistical methods for iden-
tifying differentially expressed genes in replicated cDNA microarray experiments.
Statistica Sinica, 12:111-139, 2002.

[5] The Chipping Forecast. Supplement to Nature Genetics, 21:1-60, 1999.

[6] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular Classification of Cancer: Class Discovery and Class Prediction
by Gene Expression Monitoring. Science, 286:531-537, 1999.

[7] P. J. Green. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82:711-732, 1995.

[8] A. D. Keller, M. Schummer, L. Hood, and W. L. Ruzzo. Bayesian Classification
of DNA Array Expression Data. Technical report, UW-CSE-2000-08-01, Depart-
ment of Computer Science and Engineering, University of Washington, 2000.

[9] D. J. Lockhart, H. L. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee,
M. Mittmann, C. Wang, M. Kobayashi, and H. Horton. Expression monitoring
by hybridization to high-density oligonucleotide arrays. Nature Biotechnology,
14:1675-1680, 1996.

[10] G. J. McLachlan and T. Krishnan. The EM algorithm and extensions. John Wiley
& Sons, Inc. New York, 1997.

[11] M. A. Newton, C. M. Kendziorski, C. S. Richmond, F. R. Blattner, and K. W. Tsui.
On Differential Variability of Expression Ratios: Improving Statistical Inference
about Gene Expression Changes from Microarray Data. Journal of Computational
Biology, 8:37-52, 2001.



Classification Based on Mixture Modeling 435

[12] D. A. Notterman, U. Alon, A. J. Sierk, and A. J. Levine. Transcriptional Gene
Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue
Examined by Oligonucleotide Arrays. Cancer Research, 61:3124-3130, 2001.

[13] S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown
number of components. Journal of the Royal Statistical Society, Series B, 59:731-
758, 1997.

[14] E. E. Schadt, C. Li, C. Su, and W. H. Wong. Analyzing High-Density Oligonu-
cleotide Gene Expression Array Data. Journal of Cellular Biochemistry, 80:192-
202, 2000.

[15] M. Schena, editor. DNA Microarrays: A Practical Approach. Oxford University
Press, 1999.

[16] M. Schena, D. Shalon, R. W. Davis, and P. Or Brown. Quantitative Monitoring
of Gene Expression Patterns with a Complementary DNA Microarray. Science,
270:467-470, 1995.

[17] Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed. Normalization for cDNA microar-
ray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty, editors,
Microarrays: Optical Technologies and Informatics, Proc. SPIE, volume 4266,
pages 141-152, 2001.




	Science and Statistics:A Festschrift for Terry Speed
	Preface
	Photo of Terry Speed
	List of Contributors
	Acknowledgements
	Table of Contents
	Poisson-Kingman Partitions
	Diffusions on the Simplex from Brownian Motionson Hypersurfaces
	Investigating the Structure of TruncatedLevy-stable Laws
	Designs on Association Schemes
	Ordered Triple Designs and Wreath Products ofGroups
	Pearson's Goodness of Fit Statistic as a Score TestStatistic
	A Bayesian Approach to Variable Selection whenthe Number of Variables is Very Large
	Minimum Description Length Model SelectionCriteria for Generalized Linear Models
	Risk Assessment: a Forest Fire Example
	On the Likelihood of Improving the Accuracy ofthe Census Through Statistical Adjustment
	A Brief Introduction to Genetics
	Common Long Human Inversion Polymorphism onChromosome 8/J
	The Roles of Mutation Rate and Selective Pressureon Observed Levels of the Human MitochondrialDNA Deletion mtDNA
	DNA-Protein Binding and Gene ExpressionPatterns
	Blind Inversion Needs Distribution (BIND):General Notion and Case Studies
	Designing Meaningful Measures of Read Lengthfor Data Produced by DNA Sequencers
	Extensions to a Score Test for Genetic Linkage withIdentity by Descent Data
	Cost Efficiency of Genetic Linkage Studies UsingMixtures of Selected Sib-pairs
	Multipoint Fine-scale Linkage DisequilibriumMapping: Importance of Modeling BackgroundLD
	Some Considerations for the Design of MicroarrayExperiments
	Measures of Gene Expression for Affymetrix HighDensity Oligonucleotide Arrays
	Normalization for Two-color cDNA MicroarrayData
	Classification of Tissue Samples Using MixtureModeling of Microarray Gene Expression Data



