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The impeller outlet width of centrifugal pumps is of significant importance for numbers of effects. In the paper, these effects
including the performance, pressure pulsations, hydraulically generated vibration, and noise level are investigated. For the purpose,
two approacheswere used to predict the vibration and sound radiation of the volute under fluid excitation force. One approach is the
combined CFD/FEM analysis for structure vibration, and then the structure response obtained from the FEM analysis is treated
as the boundary condition for BEM analysis for sound radiation. The other is the combined CFD/FEM/BEM coupling method.
Before the numerical methods were used, the simulation results were validated by the vibration acceleration of the monitoring
points on the volute. The vibration and noise were analyzed and compared at three flow conditions. The analysis of the results
shows that the influences of the sound pressure of centrifugal pumps on the structure appear insignificant.The relative outlet width
𝑏
∗

2
at 𝑛
𝑞
(SI) = 26.7 in this paper should be less than 0.06, based on an overall consideration of the pump characteristics, pressure

pulsations, vibration and noise level.

1. Introduction

The volute pump type is perhaps the most common type of
centrifugal pumps in the world. It is widely applied in indus-
trial and civilian use. In these applications, the vibrations
and noise problems are getting more and more attention.
Both vibrations and noise can affect the centrifugal pump
performance and its life. In centrifugal pumps, the sources
of vibrations and noise may lie in hydraulic or mechanical
aspects [1]. But, under normal operating condition, the blade
passing frequency is the most usual excitation of vibrations
and noise. The blade passing frequency (BPF) is represented
as the product of the number of blades and rotation speed.
Large BPF amplitude (and its harmonics) can lead to a lot of
noise and vibrations, whichmay be the source of components
wear and bearing failure [2].This frequency is a consequence
of the nonuniformity of the flow at the impeller outlet which
is caused by the effects of the rotor-stator interaction.

The nonuniformity of the flow exiting the impeller is
greatly affected by the impeller outlet width, according to the
literature [3]. The turbulent dissipation losses in the collector
increase with the nonuniformity of the flow at the impeller
outlet. As a result, the pump performance and shaft power
are affected. Studies have been conducted in order to improve
the pump performance through optimizing the outlet width
[4–6]. In respect of vibrations and noise, although these
characteristics are expected to vary with the outlet width,
the detailed studies have not been conducted. The current
work is mainly to investigate the effects of the impeller outlet
width on hydraulically generated vibration and noise of a
centrifugal pump.

To do the investigation, the analysis model for vibrations
and noise of centrifugal pumps should be developed at first.
Most previous works have focused on theoretical and exper-
imental studies [7–16]. Recently, the fluid-dynamic calcula-
tions combined with acoustic analogies have been developed.
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In this method, acoustic sources are predicted from CFD
calculations [17, 18] or a discrete vortexmethod [19, 20].Then,
the acoustic response is calculated by means of a boundary
element method (BEM) [18, 21–23]. These studies seem to
have simulated the hydroacoustic noise only, without the
effects of structural vibrations being considered. Kato et al.
[24] and Jiang et al. [25] conducted a fluid-structure weakly
coupled simulation method to investigate the flow induced
noise in pumps. There are three processes in the coupled
simulation. The first step is still to obtain acoustic sources
predicted from CFD simulation.Then, the dynamic response
of structure under the excitation of pressure pulsations is
simulated. Finally, the acoustical simulation is performed.
However, in their simulations, the feedback effects of sound
pressure on the structural vibration were neglected. In order
to take the feedback effects into consideration, the coupled
FEM/BEM algorithm was developed [26, 27]. However,
the coupled approach concerning the vibration and noise
problems of centrifugal pumps has not been reported in
literature.

From the above discussions, we can come to the conclu-
sion that there aremainly two approaches for pump vibration
and noise simulation. One approach is the FEM analysis
for structure vibration, and then the structure response
obtained from the FEM analysis is treated as the boundary
condition for BEM analysis for sound radiation. The other
is the coupled FEM/BEM method. In present study, the two
approaches are used. But for our problem, the excitation
force is from the turbulence flow inside the pump, which is
complicated and nonlinear. As such, the fluid excitation force
on the pump should be computed at first. We combined the
CFD/FEM/BEM technique to predict the pump vibration and
sound radiation under fluid excitation.The complicated fluid
force was extracted and set as a boundary condition for the
FEM, BEM solution, and the coupled FEM-BEM algorithm.

The contents of this paper are organized as follows.
Section 2 introduces the experimental setup in this study.
Section 3 presents the CFD model and methodology.
Section 4 provides the volute structural and acoustical
simulation methods. Section 5 first provides the comparison
between the results from the two approaches and
experimental data and then presents the discussions of
the effects of the outlet width on hydraulically generated
vibration and noise.

2. Experimental Setup

In this study, a single entry, single volute centrifugal pump
with 5 blades was used as the experimental machine. The
impeller is designed to operate at 2900 rpm. The designed
flow rate is 50m3/h, and the designed head is 30m. And
its corresponding specific speed 𝑛

𝑞
(SI) is 26.7. The study

comprises four impellers with different outlet width. These
impellers will be termed A, B, C, and D, respectively. General
pump geometric values for A, B, C, and D are identified in
Table 1.

The experiments were carried out in a close hydraulic test
rig, as shown in Figure 1. A more detailed description of the

Table 1: Main pump parameters.

Parameter Description Value
𝑑
1
(m) Inlet diameter of impeller 0.036

𝑑
2
(m) Outlet diameter of impeller 0.168

𝑧 (—) Number of blades 5
𝛽
2
(∘) Outlet blade angle 33

𝛾 (∘) Total blade wrap angle 115
𝑏
2A (m) Impeller outlet width of Impeller A 0.006
𝑏
2B (m) Impeller outlet width of Impeller B 0.008
𝑏
2C (m) Impeller outlet width of Impeller C 0.01
𝑏
2D (m) Impeller outlet width of Impeller D 0.012
𝑑
3
(m) Radius to cutwater 0.184

𝑏
3
(m) Volute width 0.02

𝑑
4
(m) Discharge nozzle diameter 0.05

test facility and the experimental procedure can be found
in our previous work [28]. In present study, the vibration
measurements are carried out by using four PCB 352A60
accelerometers with the sensitivity of 10mv/(m/s2). These
accelerometers were fixed on four positions of the volute
exterior surface, as shown in Figure 2.

3. Fluid Simulation

Thepumpmodel details are exposed in [28]. Figure 3 presents
an example of the mesh and the interfaces of the pump.
The commercial software CFX was applied to solve the
transient fully 3D Reynolds-averaged Navier-Stokes equa-
tions in the whole pump. Turbulence was simulated with
a k-𝜔 SST model. The standard wall function was used to
calculate boundary layer variables. In the study, the 𝑦+ on
the impeller and volute surfaces is well below 16, satisfying
the requirements of the turbulence model and wall function.
The boundary conditions are set as a constant total pressure
at the inlet and a mass flow rate at the outlet. The transient
calculations were initialized from the steady solutions. The
average residual convergence criterion was set to be 1E-5.The
CFD results were recorded after five impeller revolutions to
achieve a stabilized solution. The simulations in this study
were carried out on a cluster of twelve Intel Xeon 5600 nodes.
The grid dependence study was carried out through five grid
topologies. Further details about theCFDmodel can be found
in our previous work [28].

4. Volute Structural and Acoustical
Simulation Method

The methods for vibration and sound simulation used in the
study are illustrated in Figure 4.The approaches consist of the
following steps.

A The fluid model and structure model are prepared.
B CFD computation is carried out by using CFX and the

nonlinear fluid excitation force on the pump is stored
in a time-series.
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Figure 1: A close hydraulic test rig.
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Figure 2: Location of the accelerometers.

C The structure model is imported into Ansys software.
The modal analysis is carried out under constraint.

D The time-series fluid excitation force is imported into
Ansys by using the APDL tool in the software. The
time-series force is treated as the boundary condition.
And the structure response is simulated.

Steps (A)∼(D) are the FEM analyses for vibration.

E The outer surface of the pump structure is extracted
and meshed, which is treated as BEM mesh for
acoustic simulation.

F TheBEMmesh is imported into the Sysnoise software.
The pump structure response and modal data are
imported into the Sysnoise software.

G Define the sound material properties and constraint.

Inlet domainImpeller

AB

F

C D E

domain
Leakage flow

Volute and
outlet duct

Figure 3: Details of pump mesh and interfaces.

H In Sysnoise, the normal velocity distribution on the
outer surface nodes of the structure is transferred to
the surface nodes of the BEMmodel.

0 The vibration velocity data on the BEMmesh is set as
boundary condition, and then the acoustic simulation
is carried out by using Sysnoise.

Steps (E)∼(0 ) are the BEM analyses for acoustic. But
for the coupled FEM-BEM algorithm, more steps are need
on the basis of steps (A)∼(0 ). For the coupled method, the
additional steps are as follows.

1 Import the FEMmesh into the Sysnoise software.
2 Define the solidmaterial properties and constraint for

the FEMmodel in Sysnoise.
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Figure 4: Volute structural and acoustical simulation method.

3 In the software Sysnoise, the pump outer surface is
treated as a coupled surface. This surface is used to
exchange data between the FEM model and BEM
model. In this case, the coupled surface is the same
with the BEMmesh;

4 Calculate the response of the coupled surface under
vibration excitation from the FEM model and sound
pressure excitation from the BEMmodel.

From the contents mentioned above, the difference
between the two approaches is that the coupling surface
between the FEM model and BEM model was built in
the coupled FEM-BEM methods in order to consider the
feedback effects of the sound pressure on the pump structure.

4.1. Volute Vibration Simulation Method. The equation that
governs the dynamic response of the structure can be written
in the following form:

[M] { ̈𝛿} + [C] { ̇𝛿} + [K] {𝛿} = {P (t)} , (1)

where [M] is the mass matrix, [C] is the damping matrix, [K]
is the stiffnessmatrix, {𝛿} is the nodal structural displacement
vector, and {P(t)} is the external excitation force vector
applied on the nodal structure which is a function of time.
The damping matrix [C] can be a linear combination of the
stiffness and mass matrices according to Rayleigh’s theory.
The formula is

[C] = 𝛼 [M] + 𝛽 [K] , (2)

where 𝛼, 𝛽 represent the mass and stiffness proportional
damping constants, respectively. The two constants can be

given as a function of the natural frequency and the damping
ratio, as the following equations:

𝛼 =
2 (𝜁
𝑖
𝑤
𝑗
− 𝜁
𝑗
𝑤
𝑖
)
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𝑗
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𝑖
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𝛽 =
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𝑖
𝑤
𝑖
)

(𝑤
𝑗
+ 𝑤
𝑖
) (𝑤
𝑗
− 𝑤
𝑖
)
,

(3)

where 𝑤
𝑖
and 𝑤

𝑗
are the 𝑖th and 𝑗th mode natural frequency,

respectively; 𝜁
𝑖
and 𝜁
𝑗
are the 𝑖th and 𝑗thmode damping ratio,

respectively. In present study, both modes are assumed to
have the same damping ratio (𝜁 = 𝜁

𝑖
= 𝜁
𝑗
) and the damping

ratiowas estimated to be 0.04 [29, 30]; then; (3) can bewritten
as

𝛼 = 𝜁
2𝑤
𝑖
𝑤
𝑖

(𝑤
𝑖
+ 𝑤
𝑗
)

𝛽 = 𝜁
2

(𝑤
𝑖
+ 𝑤
𝑗
)
. (4)

The excitation force {P(t)} is calculated by transferring the
hydrodynamic load on the CFD mesh to the structure mesh.
To realize this process, a discrete data transfer including
three steps was developed in this study, as shown in Figure 5.
Step 1 is mesh searching used to find matching CFD surface
elements for each structure node, which can be very time-
consuming. To get over this problem, a bucket algorithm
developed by Bonet and Peraire [31] was used to reduce the
search complexity. The step 2 is mesh matching, which is to
find a nearest CFD mesh element to a structure mesh node.
The CFD mesh shape can be defined as

NE
𝑗
(𝜀, 𝜂) = ∑

𝑖

rE
𝑖,𝑗
B
𝑖
(𝜀, 𝜂) , (5)

where rE
𝑖,𝑗
represents CFDmesh element nodes, B

𝑖
(𝜀, 𝜂) is the

element basis functions, and (𝜀, 𝜂) is the CFD mesh element
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Figure 5: Data transfer between fluid and structure mesh.
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Figure 6: Relation between the source and target meshes.

coordinates. The surface elements for CFD calculations are
quadrilateral, as shown in Figure 6. The distance from a
structure node (NS

𝑘
) to any node on the CFD mesh element

can be written in the following formula:

d (𝜀, 𝜂) =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

NS
𝑘
−∑

𝑖

rE
𝑖,𝑗
B
𝑖
(𝜀, 𝜂)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

. (6)

The nearest CFDmesh element node (𝜀
𝑘
, 𝜂
𝑘
) should meet the

following equation:

Min
𝜀=𝜀𝑘
𝜂=𝜂𝑘

(𝑑 (𝜀, 𝜂)) 󳨐⇒

{{{{{

{{{{{

{
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𝜕𝜀|
𝜀=𝜀𝑘
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𝜕𝑑

𝜕𝜂
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(7)

Figure 7: Source mesh of the volute.

Step 3 is the data transfer from fluid surface elements to
structure nodes. The data transfer function was defined as
[32]

𝑝
S
𝑘
(𝜀
𝑘
, 𝜂
𝑘
) = ∑

𝑖

𝑝
E
𝑖
B
𝑖
(𝜀
𝑘
, 𝜂
𝑘
) , (8)

where 𝑝E
𝑖
is the pressure on the CFD mesh element nodes

and 𝑝S
𝑘
(𝜀
𝑘
, 𝜂
𝑘
) is the pressure transferred from fluid to the

structure nodes. Figure 7 shows the CFD mesh used in the
data transfer process. Figure 8 presents the structure mesh of
the pump volute, which consists of 59201 elements and 15785
nodes.

The material used in the simulation is iron, with the
properties elastic module 𝐸 = 211GPa, the density 𝜌 =

7870 kg/m3, the poisson ration ] = 0.29. The excitation force
{P(t)} was set as the boundary condition. The constraints
were imposed as follows: the nodes of the foundation bolt
hole were completed fixed, with 𝑢

𝑥
= 𝑢
𝑦
= 𝑢
𝑧
= 0; the

displacement of nodes on the bearing holes was 𝑢
𝑥
= 𝑢
𝑦
=

𝑢
𝑧
= 0; 𝑢

𝑧
= 0 on the inlet flanges; 𝑢

𝑥
= 0 on the outlet

flanges. The boundary set was shown in Figure 8.

4.2. Volute Acoustic Simulation. The boundary element
method (BEM) in the Sysnoise software was applied to per-
form the volute acoustic simulation. The governing equation
for radiated sound pressure in the surrounding air induced
by vibration of the volute structure can be written in the
following form:

𝑐 (r)𝑝 (r)

= ∫
Ω

{𝑝 (r
0
)
𝜕G (r,r

0
)

𝜕n
+ 𝑖𝑤𝜌
0
un (r)G (r,r0)} 𝑑Ω,

(9)

where r is a position vector of receiver, r
0
is a position

vector on the boundary surface, 𝑝(r
0
) is acoustic pressure

on the boundary surface, 𝑖𝑤𝜌
0
un(r) is the surface normal
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Figure 8: Structure mesh of the volute.

Figure 9: Acoustic mesh of the volute.

acceleration, 𝑐(r) is a geometry related coefficient, 𝑐(r) = 0.5
if r ∈ Ω, 𝑐(r) = 1 if r ∈ V−Ω, and 𝑐(r) = 0 if r ∉ V.G(r,r

0
) is

Green’s function, which can be written in the following form:

G (r,r
0
) =

𝑒
−𝑖𝑘|r−r0|

4𝜋
󵄨󵄨󵄨󵄨r−r0

󵄨󵄨󵄨󵄨

. (10)

The outer surface of the structure was extracted and
meshed as the acoustic model used in the BEM calculation,
as shown in Figure 9. The acoustical mesh consists of 14706
elements and 13573 nodes. As the maximum valid frequency
of the model investigated in this study was 4366Hz, the
mesh was sufficiently fine for the blade passing frequency
(242Hz), according to the literature [33].The normal velocity
distribution on the outer surface nodes of the structure was
transferred to the surface nodes of the acoustic model, which

was set as the boundary condition of the volute acoustic
simulation.Then, the sound pressure distribution was solved
by using the BEMmethod.

4.3. Volute Structural-Acoustic Coupling Simulation Method.
The acoustic solution is carried out by (9). Considering the
effect of the sound pressure on the structural vibration, (1)
can be written in the following form:

[M] { ̈𝛿} + [C] { ̇𝛿} + [K] {𝛿} + [Lc] {p (r0)} = {P (t)} , (11)

where [M] is the mass matrix, [C] is the damping matrix, [K]
is the stiffnessmatrix, {𝛿} is the nodal structural displacement
vector, {P(t)} is the external excitation force vector, and
[Lc]{p(r0)} is the load applied on the structure nodes by the
sound pressure. The [Lc] is the coupling matrix, which is
defined as

[Lc] = −
𝑛𝑠𝑒

∑

𝑒=1

(∫
Ω

(NS
𝑘
{𝑛
𝑒

}NA
𝑙
) 𝑑Ω) , (12)

where NS
𝑘
is the structure mesh shape function, NA

𝑙
is the

acoustic mesh shape function, {𝑛𝑒} is the normal direction of
the coupling surface elements, and 𝑛

𝑠𝑒
is the number of the

coupling surface elements.

5. Results and Discussions

The vibration and noise induced by inner flow in the
pump with different impeller outlet width were analyzed
and compared at three flow conditions. Before the numerical
methods were used, the simulation results were validated
by the vibration acceleration of the monitoring points. The
detailed analyses and discussions are as follows.

5.1. Experimental Validation. In this experiment, the noise
measurements were not carried out because of a shortage of
the anechoic chamber. However, the vibrationmeasurements
were used to validate the two methods mentioned above.
Figure 10 presents themeasured spectra of vibration accelera-
tions of themeasuring points. It is found that the synchronous
vibration at the shaft frequency Ω of 48Hz dominates the
low frequencies. This can be caused by the excitations from
the mechanical unbalance, hydraulic unbalance, bent rotor,
and excessive run-out of components. There are noticeable
peaks at 3Ω and 4Ω due to loose parts, loose bearing, or
rubbing. The peaks at the blade passing frequency (BPF)
5Ω are clearly visible in the figure. The BPF vibrations are
excited by the rotor-stator interaction. The peak at labeled
A represents the discharge pipe resonance excited by high
pressure pulsation at the pump outlet. It is observed that
the vibration measurements of the sampling point A2 are
greatly affected by the discharge pipe resonance, which may
lead to great errors. In order to validate the two simulation
approaches, the measured vibration accelerations under the
flow condition Φ = 0.162 were used and compared with
the simulation results, as shown in Figure 10. As can be seen
from this figure, there are no significant differences between
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Figure 11: Performance comparisons between the four pumps with different outlet width.

the two vibration simulation approaches. This indicated the
influences of the noise of centrifugal pumps on the structure
appear insignificant. It is found that the BPF amplitudes
at the points A1, A3, and A4 show good agreements with
the experimental results. However, at the low frequency
components and the A component, the differences between
the measured and calculated results are relatively large. That
is because the behaviors of the rotor and pipe resonance
have been neglected. In the simulation only the dynamic
surface pressure on the walls is used. As such, the following
discussions focus on the BPF component.

5.2. Performance Comparisons. Through the experiments,
the detailed performance of the four pumps with differ-
ent impeller outlet width is obtained. Figures 11(a) and
11(b) present the performance comparisons between the
four pumps. According to Figure 11(a), the head coefficient
increases with the increase of impeller outlet width. A big
raise of the head and efficiency is observed when the impeller
outlet width changes from 8mm to 10mm.This indicates the
impeller with outlet width b

2
= 10mm is more suitable for

the pump. As can be seen from Figure 11(b), there are no
significant changes of the efficiency between the pump with
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Figure 12: Pressure amplitudes at BPF on the casing wall under flow condition Φ = 0.162.

b
2
= 10mm and b

2
= 12mm. This is because a sufficiently

large outlet width is likely to cause a big increase of the
nonuniformity of the flow at the impeller outlet. This can
cause more turbulent dissipation losses in the volute.

5.3. Pressure Pulsation on the Casing Wall. The pressure on
the casing wall obtained by the CFD calculations was pro-
cessed by using the Fast Fourier Transform with a Hanning
Window. Figure 12 presents the amplitudes of the pressure
pulsations at BPF on the casing wall. According to the results,
the pressure amplitudes increase with growing outlet width.
When the impeller outlet width increases, the nonuniformity
of the flow at the impeller outlet gets increased, causing
higher pressure pulsations. Significant high levels of pressure
amplitudes aremainly detected in three regions, including the
region around the tongue, the diffuser wall, and the second
hydraulic profile of the volute. This is due to the effect of the
blade-tongue interaction at BPF. At BPF, the blade trailing

edge just passes the tongue leading edge, which causes strong
pressure pulsations around the tongue region. When the
impeller outlet width increases, the excessive pressure pulsa-
tions at the tongue region propagate into the diffuser and the
collector along the flow path. Large vibration displacements
are to be expected at these regions because of the excessive
pressure pulsations. Figures 13(a) and 13(b) show the pressure
amplitudes at BPF under the flow conditions Φ = 0.097 and
Φ = 0.130, respectively. It can be found that the pressure
pulsations at the second profile get larger with decreasing
flow rates. And the pressure pulsations around the tongue
regions get larger with growing flow rates. This phenomenon
will cause great changes in vibration levels at the two regions
over the flow rates.

5.4. Volute Structural Vibration Simulation. Figure 14
presents the vibration velocity at BPF under the flow
conditionΦ = 0.162. It can be found that the largest vibration
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Figure 13: Pressure amplitudes at BPF with b
2
= 8mm under flow conditions (a) Φ = 0.097 and (b) Φ = 0.130.
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Figure 14: Vibration velocity at BPF under flow condition Φ = 0.162.
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Figure 15: Amplitudes of the vibration velocity at BPF under flow conditions (a) Φ = 0.097 and (b) Φ = 0.130.

velocities take place at six regions. These regions include the
region around the tongue, the diffuser wall, the second and
the sixth as well as the eighth hydraulic profile of the volute,
and the inlet flange. These regions are expected because of
the high pressure pulsations according to Figure 12. Also,
an appreciable rise of the vibration velocity is clearly visible
when the impeller outlet width increases. Figures 15(a) and
15(b) show the velocity amplitudes at BPF under the flow
conditions Φ = 0.097 and Φ = 0.130, respectively. In the
figures, the angular coordinate represents the circumferential
position of the monitoring points (yellow points located in
a circle on the casing wall shown in this figure), and the
radial coordinate represents the amplitudes of the vibration
velocity in 𝑦-direction. It can be found that there are two
peaks of the velocity amplitudes occurring at the second
and eighth hydraulic profile of the volute. As can be seen
from Figure 15, obvious reduction at the second hydraulic
profile is clearly visible with the increase of the flow rate.
This is because the pressure pulsations at the second profile
of the volute decreases with growing flow rates according to
Figure 13. Also, an appreciable rise of the velocity amplitude
is clearly visible when the impeller outlet width increases.

5.5. Volute Acoustic Simulation. A spherical acoustic mesh of
radius 0.5m with the volute at its center was used to calculate
the directivity distribution of the sound pressure level that
radiated from the pump. Figure 16 shows the sound pressure
level at BPF under the flow condition Φ = 0.162. It can be
found that as the impeller outlet width increases, the sound
pressure level increases, with themaximummagnitude in the
vertical direction. The big noise in the vertical direction is

caused by the high amplitudes of the pressure pulsations and
vibration level at the pump outlet regions. Figures 17(a) and
17(b) show the directivity distributions of the sound pressure
level at BPF under the flow conditions Φ = 0.097 and Φ =
0.130, respectively. It is found that the sound pressure level
increases with decreasing flow rates. This corresponds with
the influence of the flow rates on the pressure pulsations
and the vibration. As can be seen from Figure 17, although
the sound pressure level increased due to the increase of the
impeller outlet width, the SPL value of the pump with b

2
=

10mm is much larger than the others. This indicates that
the impeller outlet width should be selected under a certain
level. In this case, the level is expected to be less than 10mm,
corresponding to the relative outlet width 𝑏∗

2
(b
2
/d
2
) of 0.06.

According to the literature, the relative outlet width 𝑏∗
2
is

commonly selected from empirical data. The 𝑏∗
2
at 𝑛
𝑞
(SI) =

26.7 is 0.083 according to the literature [3]. And, when the 𝑏∗
2

exceeds 0.06, the pump losses are extremely large, according
to the performance comparisons in Figure 11. Therefore, the
relative outlet width 𝑏∗

2
at 𝑛
𝑞
(SI)= 26.7 in this paper should be

less than 0.06, based on an overall consideration of the pump
characteristics, pressure pulsations, vibration and noise level.

6. Conclusion

The effects of the impeller outlet width on the hydraulically
generated vibration and noise of a centrifugal pump volute
were studied. For this purpose, two approaches were used to
predict the vibration and sound radiation of the volute under
fluid excitation. Before the numerical methods were used, the
simulation resultswere validated by the vibration acceleration
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Figure 16: Sound pressure level at BPF under flow condition Φ = 0.162.
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of the monitoring points on the volute. The vibration and
noise were analyzed and compared at three flow conditions.
The analysis of the results gives the following conclusions.

(1) The combined CFD/FEM simulation method and
the combined CFD/FEM/BEM structural-acoustic
coupling method are compared. The results indicate
that the influences of the soundpressure of centrifugal
pumps on the structure appear insignificant.

(2) TheBPFmagnitudes of the pressure pulsations, vibra-
tion, and noise level of the centrifugal pump volute
get increased with growing impeller outlet width,
with the maximum value occurring at six regions.
The regions with high vibration velocity appear at
the tongue area, the pump outlet, the second and
the sixth as well as the eighth hydraulic profile of
the volute, and the inlet flange. The region with
high SPL mainly appear at the pump outlet in the
vertical direction. The high BPF magnitudes at these
regions are related to the distributions of pressure
pulsations on the casing wall caused by the stator-
rotor interaction. Furthermore, the BPF magnitudes
are increased significantly when the impeller outlet
width exceeds a certain level. In this study, the level
is b
2
= 10mm.The relative outlet width 𝑏∗

2
at 𝑛
𝑞
(SI) =

26.7 in this paper should be less than 0.06, based on
an overall consideration of the pump characteristics,
pressure pulsations, vibration and noise level.

Nomenclature

𝑑
1
: Inlet diameter of impeller, m

𝑑
2
: Outlet diameter of impeller, m

𝑧: Number of blades
𝑏
2
: Outlet width of impeller, m
𝑏
∗

2
: Relative outlet width

𝑑
3
: Radius to cutwater, m

𝑏
3
: Volute width, m
𝑑
4
: Discharge nozzle diameter, m

𝑄: Flow rate, designed flow rate, m3/h
𝐻: Head, designed head, m
𝑛: Rotation speed, r/min
𝑦
+: Dimensionless distance from the wall

BPF: Blade passing frequency, Hz.

Greek Letters

𝛽
2
: Outlet blade angle, ∘

𝛾: Total blade wrap angle, ∘
Ω: Shaft frequency, Hz
Ψ: Head coefficient, gH/(Ω2𝑑2

2
)

Φ: Flow coefficient, Q/(3600Ω𝑏
2
𝑑
2

2
)

𝜂 : Pump efficiency, %.

Subscripts

1: Impeller inlet
2: Impeller outlet.
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