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Preface

Over three decades have passed since the publication, in 1968, of “Arrays of Cylindri-
cal Dipoles” by R. W. P. King, R. B. Mack, and S. S. Sandler. The present volume is
a revised and enlarged second edition of that work. The objectives of “Cylindrical
Antennas and Arrays” are similar to those of “Arrays of Cylindrical Dipoles”: to
present approximate but efficient theoretical methods for determining current distribu-
tions, input admittances, and field patterns of arrays of cylindrical dipoles; to use such
methods to analyze particular types of arrays; to describe experimental methods for
determining current distributions, input admittances, and field patterns; and to correlate
and compare theoretical and experimental results.

The most fundamental quantities, and the ones most difficult to determine theor-
etically, are the current distributions on the array elements. Rather than postulating
the current distributions, perhaps the most common treatment in the literature of the
1960s, “Arrays of Cylindrical Dipoles” sought to determine the current distributions
on the array elements by solving integral equations. Today’s antenna and engineer-
ing literature is quite different from that of the 1960s: even elementary textbooks
include discussions on determining current distributions from integral or similar
equations.

As an example, consider the simplest configuration discussed in this book, the
single, isolated cylindrical antenna of given length and radius. The integral equation
treated in Chapter 2 is but one of the several integral or integro-differential equations
that are encountered in the present-day literature. Although such equations were
derived many years ago, the reasons for their increased popularity are the easy
accessibility to high-speed computers and the availability of a large number of
numerical methods. As a result of these developments, application of general-purpose
numerical methods to the aforementioned equations is today much more common than
in the 1960s.

Rather than discretizing the integral equations, the “two-term” and “three-term”
theories developed in this book treat them by analytical means. These theories, which
apply to elements that are not too long, are here presented as powerful alternatives to
applying general-purpose numerical methods. Because the final two- and three-term
formulas are quite simple in form, they require less running time when programmed
in a computer. In addition, the analytical methods present a physical basis for
understanding changes in the characteristics of the antenna as the parameters are

xiii
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changed. Furthermore, applying numerical methods to the integral equations in this
book presents difficulties that are often overlooked in the literature.

Chapter 1, which has been completely rewritten, has the same purpose as the first
chapter of the 1968 edition: to introduce the reader to the theory of antennas and
arrays presented in subsequent chapters by discussing some commonly used methods
of studying a single antenna in free space. The chapter concludes with an introductory
discussion of integral equations and the application of numerical methods, a subject
discussed in greater depth in Chapter 13.

Chapters 2–5 develop the two- and three-term theories for the single isolated
antenna, the two-element array, the circular array, and the curtain array, respectively.
In Chapters 3–5, the array elements are assumed to be identical, parallel, and
non-staggered. In Chapters 6 and 7, the two- and three-term theories are extended and
applied to certain types of arrays that do not satisfy the aforementioned conditions.
Apart from editing changes, Chapters 2–7 are the same as those in the first edition.

Chapters 8–13 have no counterparts in “Arrays of Cylindrical Dipoles”. Chapters 8
and 9 analyze vertical and horizontal dipoles and arrays over and on the surface of the
conducting and dielectric earth or sea. Included are asphalt-coated earth and ice-coated
water. A major new addition is long-distance propagation over the spherical surface of
the sea.

In Chapter 10, arrays of identical, parallel, non-staggered elements are discussed
once more, from the point of view of computer implementation of the two-term
formulas. Some restrictions placed on the arrays of Chapters 3–5 are removed in this
chapter, which also serves as an introduction to the study of the large circular array in
Chapters 11 and 12.

In Chapters 11 and 12, a novel type of circular array is studied. The arrays under
consideration differ from conventional circular arrays in that only one or two of the
many array elements are excited and the entire array is tuned to spatial resonance.
Both the integral equations and the two-term theory must be modified and extended to
deal with the phenomena studied in this chapter. The modified theory is used to show
that such arrays possess new, unusual and potentially useful resonant and directive
properties. The analytical nature of the underlying theory is an important advantage
for this study.

Although the two- and three-term theories are analytical in nature, they are not
claimed to be mathematically rigorous. (Nonetheless, very good agreement between
theory and experiment is obtained in Chapters 1–12.) Until shown otherwise [1], the
lack of rigor is a necessity rather than a convenience: most of the integral equations
dealt with in this book have no exact solutions, even in principle. From a theoretical
point of view, then, one cannot do better than to find “reasonable solutions” that satisfy
the integral equations approximately, and the aforementioned lack of rigor must be true
for any method used to “solve” the integral equations. The main purpose of Chapter 13
is to discuss the consequences of this rather peculiar situation when general-purpose
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numerical methods are applied to the integral equations in question. The case of an
isolated antenna is discussed in detail, and extensions to arrays are pointed out. The
special numerical difficulties associated with the circular arrays of the previous two
chapters are also discussed here.

The concluding Chapter 14 discusses experimental methods, with emphasis on the
measurement of antenna impedance. This chapter corresponds to Chapter 8 of the first
edition; it has been significantly revised to discuss modern measurement techniques.

R. B. Mack wrote Chapter 14, G. Fikioris wrote Chapters 1 and 10–13; R. W. P.
King wrote Chapters 8 and 9, and organized the present edition as a whole. In
addition to the contributions of the several individuals named in the Preface to the first
edition, the authors gratefully acknowledge the contribution of Chapter 5 by Sheldon
S. Sandler. Without the extensive and very thorough work of Margaret Owens, both in
preparing and correcting the new manuscripts and in editing Chapters 2–7, the present
arrangement would not be possible. Finally, we thank Tai Tsun Wu for providing the
initial and most fundamental ideas for the work in Chapters 11–13, and for guiding
and inspiring the ensuing researches.

R.W.P.K.
G.J.F.

R.B.M.





Preface to first edition

Studies of coupled antennas in arrays may be separated into two groups: those which
postulate a single convenient distribution of current along all structurally identical
elements regardless of their relative locations in the array and those which seek to
determine the actual currents in the several elements. Virtually all of the early and
most of the more recent analyses are in the first group in which both field patterns and
impedances have been obtained for elements with assumed currents. Pioneer work in
the determination of field patterns of arrays of elements with sinusoidally distributed
currents was carried out for uniform arrays by Bontsch-Bruewitsch [1] in 1926, by
Southworth [2] in 1930, by Sterba [3] and by Carter et al. [4] in 1931. Early studies
of non-uniform arrays are by Schelkunoff [5] in 1943, by Dolph [6] in 1946, and
by Taylor and Whinnery [7] in 1951. The self- and mutual impedances of arrays of
elements with sinusoidally distributed currents were studied especially by Carter [8]
in 1932, by Brown [9] in 1937, by Walkinshaw [10] in 1946, by Cox [11] in 1947, by
Barzilai [12] in 1948, and by Starnecki and Fitch [13] in 1948. A thorough presentation
of the basic theory of antennas with sinusoidal currents was given by Brückmann
[14] in 1939. Actually, the current in any cylindrical antenna of length 2h and finite
radius a is accurately sinusoidal only when it is driven by a continuous distribution
of electromotive forces of proper amplitude and phase along its entire length. It is
approximately sinusoidal in an isolated very thin antenna (a � h) driven by a single
lumped generator primarily when the antenna is near resonance. When antennas are
coupled in an array with each driven by a single generator or excited parasitically,
it is generally assumed that (1) the phase of the current along each element is the
same as at the driving point and (2) the amplitude is distributed sinusoidally. Both of
these assumptions are reasonably well satisfied only for very thin antennas (a � λ)
that are not too long (h ≤ λ/4). Nevertheless, a very extensive theory of arrays has
been developed based implicitly on one or both of these assumptions. Evidently it is
correspondingly restricted in its generality.

The analysis of coupled antennas from the point of view of determining the actual
distributions of current was studied for two antennas by Tai [15] in 1948 and extended
to the N -element circular array by King [16] in 1950. A general analysis of arrays of
coupled antennas has been given by King [17]. Unfortunately, the rigorous solution
of the simultaneous integral equations for the distributions of current in the elements
of an array of parallel elements is very complicated and no simple and practically
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useful set of formulas was obtained. As a consequence, the extensive study of the
electromagnetic fields of antennas and arrays in this earlier work (Chapters 5 and 6
in King [17]) was limited to arrays with currents in the elements that satisfied the
assumptions of constant phase angle and sinusoidal amplitude. Similar restrictions are
implicit in the fields calculated, for example, by Aharoni [18], Stratton [19], Hansen
[20] and many others.

A practical method for obtaining solutions of the simultaneous integral equations for
the distributions of current in the elements of a parallel array in a form that combines
simplicity with quantitative accuracy was proposed by King [21] in 1959. In this
analysis an approximate procedure was developed which provided simple, two-term
trigonometric formulas for the currents in all of the arbitrarily driven or parasitic
elements in a circular array of N elements in a manner that took full account of the
effects of mutual interactions on the distributions of current. These formulas applied
to elements up to one and one-quarter wavelengths long. The application of this new
procedure to actual arrays and the experimental verification of the results were carried
out in an extensive series of investigations by Mack [22]. The generalization of the
method to curtain arrays was developed by King and Sandler [23, 24] in 1963 and
1964. The extension of the method to parasitic elements in arrays of the Yagi type was
verified experimentally by Mailloux [25] in 1966. A modification of the theory and
its application to the optimization of Yagi arrays by the use of a high-speed computer
were devised by Morris [26] in 1965. In 1967 Cheong [27] extended the theory to
unequal and unequally spaced elements. (The several researches were supported in
part by Joint Services Contract Nonr 1866(32), Air Force Contract AF19(604)-4118
and National Science Foundation Grants NSF-GP-851 and GK-273.)

A further improvement in the simplified trigonometric representation of the current
in an isolated antenna was introduced by King and Wu [28] in 1965 and extended to
arrays in the present work.

This book begins with an introductory chapter that reviews the foundations and
limitations of conventional antenna theory. It then proceeds to derive the new two-
and three-term formulas for the isolated antenna in Chapter 2 and for two coupled
antennas in Chapter 3. Chapter 4 provides the complete formulation of the new
theory for the N -element circular array; Chapter 5 for the N -element curtain array
of identical elements. The more difficult problem of treating elements of different
lengths—notably in the Yagi array and the log-periodic antenna—is treated in Chapter
6. Chapter 7 is devoted to planar and three-dimensional arrays that include stag-
gered and collinear elements. Chapter 81 is concerned with the broad problems of
measurement—currents, impedances, field patterns and the correlation of theory with
experiment. In the appendices summaries of programs are given for the computational
analysis of circular, curtain, and Yagi arrays.2

1 The original Chapter 8 corresponds to Chapter 14 of the present (2nd) edition.
2 Much of this material is omitted from the appendices in the 2nd edition.
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1 Introduction

1.1 Linear antennas

Wireless communication depends upon the interaction of oscillating electric currents
in specially designed, often widely separated configurations of conductors known as
antennas. Those considered in this book consist of thin metal wires, rods or tubes
arranged in arrays. Electric charges in the conductors of a transmitting array are
maintained in systematic accelerated motion by suitable generators that are connected
to one or more of the elements by transmission lines. These oscillating charges exert
forces on other charges located in the distant conductors of a receiving array of
elements of which at least one is connected by a transmission line to a receiver.
Fundamental quantities which describe such interactions are the electromagnetic field,
the driving-point admittance, and the driving-point impedance. These can be easily
determined if the distributions of current on the array elements are known. The
determination of the currents on the array elements is the main concern of this book.
In this first chapter, the basic electromagnetic equations are formulated and applied
to a single antenna in free space. The simplest approach of assuming the current
rather than actually determining it is reviewed first. Then, integral equations for the
current distributions are derived, and determining the current by numerical methods
is discussed. These discussions serve as an introduction to the analytical theory of
antennas and arrays based on the solution of integral equations that is presented in
subsequent chapters.

Figures 1.1a and 1.1b show two simple practical radiating systems. In Fig. 1.1a, a
section at the open end of a two-wire transmission line has been bent outward to form
a dipole antenna. In Fig. 1.1b, the inner conductor of a coaxial transmission line is
extended above a ground plane. In both cases, the transmission lines are connected to
generators which oscillate at a frequency f = ω/2π . In a small region (comparable
in extent with the distance between the two conductors of the transmission line), the
antenna and line are coupled. Owing to the complications involved in this coupling,
it is convenient to replace the actual generator/transmission line with an idealized so-
called delta-function generator, which maintains an impressed electric field Ee(z) =
ẑEe

z (z) = V δ(z)ẑ at the surface of the antenna. This is the linear antenna of Fig. 1.1c.
The impressed field is non-zero only at the center z = 0 of the cylindrical surface.
The delta-function generator is an independent voltage source in the sense of ordinary

1
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To generator

(a) (b) (c)

Ground
plane

To generator

2a

Delta-function
generator

z = h

z = 0

z = –h

Figure 1.1 (a) Dipole antenna and two-wire transmission line. (b) Monopole antenna over a ground
plane. (c) Simplified center-driven linear antenna.

circuit theory. The linear antenna of Fig. 1.1c can also serve as a model for other
types of radiating systems. The simplifying assumption of studying the antenna in the
absence of the connecting transmission line is particularly useful when the antenna is
an array element.

The radius of the linear dipole antenna of Fig. 1.1c is a, and its half-length is h. It is
assumed throughout this book that the radius is much smaller than both the wavelength
λ and the length 2h of the antenna. Under such conditions, one can neglect the small
currents on the capped ends of the antenna and assume that only a current Kz(z) =
I (z)/2πa is maintained on the cylindrical surface of the antenna. Other concepts of
circuit theory can be introduced, and are particularly useful to the antenna engineer:
the driving-point admittance Y0 and driving-point impedance Z0 are defined as

Y0 = G0 + j B0 = I (0)

V
= 1

Z0
, Z0 = R0 + j X0 = V

I (0)
= 1

Y0
. (1.1)

G0, B0, R0, and X0 are respectively, the driving-point conductance, susceptance,
resistance, and reactance. When h, a, and f are such that the antenna is at resonance,
one has X0 = 0 and B0 = 0. As an example of the use of these quantities in a practical
situation, consider the problem of designing the antenna so that, at a given frequency
f , there is maximum power transfer from a transmission line of given characteristic
impedance Zc. With the assumption that the transmission line and the antenna can be
studied separately, the problem is reduced to that of determining h and a so that Z0 is
equal to Z∗

c , the complex conjugate of Zc.
The delta function δ(z) is zero except when z = 0. Additional, well-known

properties of the delta function are

δ(z) =
{

0, if z �= 0

∞, if z = 0
,

∫ b

−b
δ(z) dz = 1 (1.2a)
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δ(kz) = 1

|k| δ(z), f (z)δ(z) = f (0)δ(z) (1.2b)

∫ b

−b
f (z)δ(z) dz = f (0) (1.2c)

d

dz
H(z) = δ(z) where H(z) =

{
1, if z > 0

0, if z < 0.
(1.2d)

In (1.2), b is any positive constant, k is any real constant, f (z) is any smooth function
of z, and H(z) is the step function.

The next section introduces the fundamental equations of electromagnetic theory
that are useful in the antenna problems considered in this book. More details can be
found in [1], and in more concise form in [2, Chapter 1].

1.2 Maxwell’s equations and the potential functions

The interaction of charges and currents is governed by Maxwell’s equations which
define the electromagnetic field. With an assumed time dependence e jωt , they are

∇ × B = µ0(J + jωε0E), ∇ · B = 0 (1.3a)

∇ × E = − jωB, ∇ · E = ρ/ε0, (1.3b)

where the electric vector E is in volts per meter (V/m), the magnetic vector B in tesla
(T). SI units are used throughout this book. The volume density of current J in amperes
per square meter (A/m2) is the charge crossing unit area per second. The volume
density of charge ρ is in coulombs per cubic meter (C/m3). J and ρ satisfy the equation
of continuity,

∇ · J + jωρ = 0. (1.3c)

In the interior of perfect conductors, J = 0 and ρ = 0. In (1.3), ε0 and µ0 are the
absolute permittivity and permeability of free space. They have the numerical values
ε0 = 8.854 × 10−12 farads per meter (F/m) and µ0 = 4π × 10−7 henrys per meter
(H/m), and are related to the velocity c of light and the characteristic impedance ζ0 of
free space by

c = 1√
µ0ε0

, ζ0 =
√
µ0

ε0
. (1.4)

Transmission lines and antennas are made from highly conducting materials such
as brass or copper. In most cases, it is an excellent approximation to assume that the
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conductors are perfect. The relevant boundary conditions at an interface between a
perfect conductor and air are

n̂ × E = 0, n̂ · E = η/ε0 (1.5a)

n̂ × B = µ0K, n̂ · B = 0. (1.5b)

In (1.5), n̂ is the unit normal to the conductor–air interface. Its direction is outward
from the conductor to the air. K is the surface density of current in amperes per meter
(A/m) and η is the surface density of charge in coulombs per square meter (C/m2)
on the perfect conductor. The left-hand equation in (1.5a) states that the component
of the electric field in air tangent to the surface of the perfect conductor must be
zero. The left-hand equation in (1.5b) states that the tangential magnetic field in air
is proportional to the surface density of current on the conductor.

It is convenient to introduce the scalar and vector potentials φ, A. The defining
relationships between the potentials and the electromagnetic-field vectors are obtained
with the aid of Maxwell’s equations. With the vector identity ∇ · (∇ × C) = 0 (where
C is any vector) and the equation ∇ · B = 0, the magnetic field may be expressed in
the form

B = ∇ × A. (1.6)

If (1.6) is substituted in (1.3b), it follows that

∇ × (E + jωA) = 0. (1.7)

The identity ∇ × (∇ψ) = 0, where ψ is a scalar function, then permits the definition
of φ in the form

−∇φ = E + jωA. (1.8)

The substitution of (1.6) and (1.8) into the remaining Maxwell equations leads
to coupled partial differential equations for A and φ. They can be decoupled if the
following condition relating A and φ is imposed:

∇ · A = − jωµ0ε0φ or ∇ · A = − j
β2

0

ω
φ, (1.9)

where the free-space wave number β0 (also denoted by k in this book) is given by

β0 = ω
√
µ0ε0 = ω

c
= 2π

λ
(1.10)

and λ is the free-space wavelength. Equation (1.9) is known as the Lorentz condition.
The resulting equations for A and φ are

(∇2 + β2
0 )A = −µ0J, (∇2 + β2

0 )φ = −ρ/ε0. (1.11)
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Figure 1.2 Perfect conductor in air.

The solutions to (1.11) can be derived with the use of the retarded Green’s function.
They are

A(r) = µ0

4π

∫
J(r′)

e− jβ0|r−r′|

|r − r′| dV ′ (1.12a)

and

φ(r) = 1

4πε0

∫
ρ(r′)

e− jβ0|r−r′|

|r − r′| dV ′, (1.12b)

where the volume integrations extend over the entire region occupied by currents or
charges. In most cases considered in this book, the conductors are perfect so that only
surface current densities K and surface charge densities η are present. In such cases,
the volume integrals in (1.12) reduce to surface integrals. In the limit of infinitely thin
wire antennas, the surface integrals in turn reduce to line integrals.

1.3 Power and the Poynting vector

The complex Poynting vector is defined as

S = 1

2µ0
E × B∗, (1.13)

where the asterisk denotes the complex conjugate. The integral of the normal com-
ponent of Re{S} over a closed surface � is the time-average, total power transferred
from within �. The time average is over a period T = 2π/ω. Several useful identities
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involving the Poynting vector are now derived. The geometry of interest is shown in
Fig. 1.2. A perfect conductor surrounded by air is shown. The conductor–air interface
is the closed surface �0, and n̂0 is the unit outward normal. Assume that there is
an impressed electric field Ee tangent to the surface of the conductor. As a result, a
surface current density K exists on the conductor’s surface. This, in turn, maintains
an electromagnetic field E and B in the air. The total electric field on the conductor’s
surface is E + Ee, and the boundary conditions on the surface of the perfect conductor
are

n̂0 × (E + Ee) = 0, n̂0 × B = µ0K. (1.14)

Suppose that �1 is a closed (mathematical) surface in the air surrounding the perfect
conductor, and that n̂1 is the corresponding unit normal vector. Let τ01 be the volume
lying between �0 and �1, and consider the quantity∫
τ01

∇ · S dV . (1.15)

First, with (1.13), the vector identity

∇ · (E × B∗) = B∗ · (∇ × E)− E · (∇ × B∗) (1.16)

and the Maxwell equations on the left in (1.3a, b), it is seen that∫
τ01

∇ · S dV = − jω
∫
τ01

( 1
2 µ

−1
0 |B|2 − 1

2 ε0|E|2) dV . (1.17)

The boundaries of the volume τ01 are the surfaces �0 and �1. Application of the
divergence theorem to the quantity in (1.15) yields∫
τ01

∇ · S dV = −
∫
�0

(n̂0 · S) d� +
∫
�1

(n̂1 · S) d�. (1.18)

A comparison of (1.17) and (1.18) yields the identity∫
�1

(n̂1 · S) d� =
∫
�0

(n̂0 · S) d� − jω
∫
τ01

( 1
2 µ

−1
0 |B|2 − 1

2 ε0|E|2) dV . (1.19a)

If one takes the real part of this equation, no volume integral appears:

P ≡
∫
�0

(n̂0 · Re{S}) d� =
∫
�1

(n̂1 · Re{S}) d�. (1.19b)

Equation (1.19b) states that P , the total time-average power entering �0, is the same
as the total time-average power leaving �1.

The next identity of interest is obtained by expressing
∫
�0
(n̂0 · S) d� in (1.19a) in

terms of Ee and K. With (1.13), the vector identity n̂0 · (E × B∗) = −E · (n̂0 × B∗),
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and the boundary conditions (1.14), it is seen that
∫
�0
(n̂0 · S) d� = ∫

�0

1
2 Ee · K∗ d�

so that (1.19a) can be written as∫
�0

1
2 Ee · K∗ d� = jω

∫
τ01

( 1
2 µ

−1
0 |B|2 − 1

2 ε0|E|2) dV +
∫
�1

(n̂1 · S) d�. (1.20a)

The real part of this expression is

P ≡
∫
�0

Re{ 1
2 Ee · K∗} d� =

∫
�1

(n̂1 · Re{S}) d�. (1.20b)

In (1.20), �1 is any surface completely surrounding the air–conductor interface �0.
Equations (1.20a, b) can be extended to surfaces �1 that pass through the surface of
the perfect conductor, provided that Ee = 0 on any part of �0 excluded by �1. This
follows from the boundary condition n̂0×E = 0 on the part of �0 excluded by �1 and
the fact that all fields are zero within the volume occupied by the perfect conductor.

Equation (1.20b) states that the time-average power transferred to the perfect
conductor from the “generator” (i.e. the impressed electric field Ee) is all radiated
into free space. Equations (1.20a, b) possess analogues for the case of imperfect
conductors; these involve a volume integral instead of a surface integral, and include a
term due to the ohmic losses in the conductors. It is important to note that in both
(1.19) and (1.20), only integrations of n̂ · S over closed surfaces appear; it is not
mathematically justified to attach meaning to an integral of n̂ · S over only a part
of a closed surface.

Consider the limiting case of an infinitely thin, perfectly conducting wire lying on
the z-axis between −h and h. The impressed electric field is Ee

z (z), and the current on
the wire is I (z). In this limit, (1.20b) reduces to

P ≡
∫ h

−h
Re{ 1

2 Ee
z (z)I ∗(z)} dz =

∫
�1

(n̂1 · Re{S}) d�. (1.20c)

1.4 The field of thin linear antennas: general equations

Now consider the linear antenna of Fig. 1.1c and assume that a � h and β0a � 1.
Both cylindrical coordinates ρ,�, z and spherical coordinates r,�,� are to be used
throughout this book. Rotational symmetry obtains, so that all cylindrical or spherical
field components are independent of �. There is a surface current density Kz(z) on the
cylindrical surface ρ = a, and also a current on the small capped ends of the antenna.
The latter currents can be neglected when calculating the field of the antenna. The total
current I (z) and the charge per unit length q(z) are defined to be

I (z) = 2πaKz(z), q(z) = 2πaη(z). (1.21)
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z
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Θ
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ΘP(r, , )Φ

Figure 1.3 Coordinate system for calculations in the far zone.

They are related by the one-dimensional equation of continuity

d I (z)

dz
= − jωq(z). (1.22)

I (z) is even with respect to z and q(z) is odd.
When calculating the field of the antenna, one can assume that the current is located

at the axis z = 0, which is the same as replacing the antenna of radius a by an
infinitely thin antenna. With this assumption, but without reference to a particular
current distribution I (z), formulas for calculating the field are given in this section
and some general characteristics of the field are discussed. The coordinate system is
shown in Fig. 1.3.

It is seen from (1.12a) that A = ẑAz(ρ, z). Equations (1.12a, b) reduce to

Az = µ0

4π

∫ h

−h
I (z′)

e− jβ0 R

R
dz′ (1.23a)

and

φ = 1

4πε0

∫ h

−h
q(z′)

e− jβ0 R

R
dz′, (1.23b)

where R = |r − ẑz′| is the distance from a point z′ on the infinitely thin antenna to the
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observation point r. The one-dimensional Lorentz condition is

∂Az

∂z
= − j

β2
0

ω
φ. (1.23c)

The E and B fields are obtained from (1.6) and (1.8) with (1.23a) and (1.23c). In the
cylindrical coordinates ρ,�, z, they are B = �̂��B� and E = ρ̂ρρEρ + ẑEz , where

B� = −∂Az

∂ρ
(1.24a)

Eρ = − jω

β2
0

∂2 Az

∂ρ∂z
(1.24b)

Ez = − jω

β2
0

(
∂2 Az

∂z2
+ β2

0 Az

)
. (1.24c)

In the spherical coordinates r,�,� with origin at the center of the antenna, the electric
field is given by

Er = Ez cos�+ Eρ sin� (1.25a)

E� = −Ez sin�+ Eρ cos�. (1.25b)

At sufficiently great distances from the antenna (r2 � h2 and (β0r)2 � 1), the field
reduces to a simple form known as the radiation or far field. It is given by

Br
� = Er

�/c, (1.26a)

where

Er .= Er
��̂��, Er

� = jωµ0

4π
sin�

∫ h

−h
I (z′)

e− jβ0 R

R
dz′. (1.26b)

The distance R from an arbitrary point on the antenna to the field point is given in
terms of r and z′ by the cosine law, namely (Fig. 1.3),

R =
√

r2 + z′2 − 2r z′ cos�. (1.27a)

In the radiation zone, r2 � z′2. If the binomial expansion is applied to (1.27a) and only
the linear term in z′ is retained, the following approximate form is obtained for R:

R
.= r − z′ cos�, (β0r)2 � 1. (1.27b)

The phase variation of exp(− jβ0 R)/R is replaced with the linear phase variation given
by (1.27b), i.e. by exp(− jβ0r + jβ0z′ cos�). The amplitude 1/R of exp(− jβ0 R)/R
is a slowly varying function of z′ and is replaced by 1/r , where r is the distance to the
center of the antenna. With these approximations, (1.26b) can be written as

Er
� = jζ0 I (0)

2π

e− jβ0r

r
F0(�, β0h), (1.28a)
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where ζ0 = √
µ0/ε0

.= 120π ohms and

F0(�, β0h) = β0 sin�

2I (0)

∫ h

−h
I (z′)e jβ0z′ cos� dz′. (1.28b)

The term F0(�, β0h) contains all the directional properties of a linear radiator of
length 2h. It is called the field characteristic, field factor, or element factor, and will be
computed for some commonly used current distributions. The magnetic field Br in the
far zone is at right angles to Er and also perpendicular to the direction of propagation
r. It is given by (1.26a). Thus

Br = �̂��Br
�, Br

� = jµ0 I (0)

2π

e− jβ0r

r
F0(�, β0h). (1.28c)

Note that the field in the far zone depends on F0(�, β0h) which is a function of the
particular distribution of current in the antenna.

It is instructive to consider the instantaneous value of the field in (1.28a), which is
obtained by multiplication with e jωt and selection of the real part. Except for a phase
factor,

Er
�(r, t) = Re E�(r)e jωt ∼ sin(ωt − β0r)

r
= sinω(t − r/c)

r
. (1.29a)

Note that the field at the point r at the instant t is computed from the current at r = 0 at
the earlier time (t − r/c). This is a consequence of the finite velocity of propagation c.

The equiphase and equipotential surfaces of E and B are spherical shells on which
r is equal to a constant. There are an infinite number of such shells that have the
same phase (differ by an integral multiple of 2π ) but only one that has both the
same amplitude and the same phase. The velocity of propagation is the outward
radial velocity of the surfaces of constant phase where the phase is represented by
the argument of the sine term in (1.29a), that is

phase = � = ωt − β0r. (1.29b)

For a constant phase

d�

dt
= 0 = ω − β0 dr

dt
. (1.29c)

It follows that

dr

dt
= ω

β0
= c = 3 × 108 m/s. (1.29d)

Since the phase repeats itself every 2π radians, a wavelength is the distance between
two adjacent equiphase surfaces. For example, if one surface is defined by r = r1 and
the other by r = r2, then

ωt − β0r1 = 2π and ωt − β0r2 = 4π (1.30a)



11 1.5 Field of electrically short antenna

z = 0

z = h

z = –h

I(0)

I(z) = I(0) 1 –
z

h

Figure 1.4 Linear antenna with triangular distribution of current.

or

r2 − r1 = 2π

β0
= λ, (1.30b)

where λ is the wavelength in air. The physical picture of the fields in the far zone is
quite simple. The electric and magnetic vectors are mutually orthogonal and tangent to
an outward traveling spherical shell. Thus, both components of the field are transverse
to the radius vector r; they have the same phase velocity c = 3 × 108 m/s, the velocity
of light.

1.5 The field of the electrically short antenna; directivity

If the current on a thin linear antenna is known, the far-field pattern can be easily
determined from the equations in the previous section. When the antenna is electrically
short, i.e. β0a � β0h � 1, the plausible assumption that the current distribution is
triangular can be made. This assumed current distribution is adequate for calculating
the field, even quite close to the antenna.

A diagram of the triangular distribution is shown in Fig. 1.4, where the magnitude
of the current is plotted along an axis perpendicular to the antenna. In order to find a
simple expression for the radiation field, the exponent in (1.28b) can be approximated
by 1. Thus,

F0(�, β0h)
.= β0 sin�

2

∫ h

−h

(
1 − |z′|

h

)
dz′ = β0h sin�

2
; (β0h)2 � 1. (1.31)

Equation (1.31) shows that the radiation field of a short linear antenna is proportional
to sin�. Polar and rectangular graphs of the field are shown in Figs. 1.5a and 1.5b,
normalized with respect to the maximum at � = 90◦.
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Figure 1.5 Field and power patterns of short linear antenna. (a) Field pattern, polar plot. (b) Field
pattern, rectangular plot. (c) Power pattern, polar plot. (d) Power pattern, rectangular plot.

The field quite near an electrically short antenna is readily evaluated from (1.23a)
with I (z) = I (0)(1 − |z|/h) and R

.= r . This gives

Az
.= µ0hI (0)

4π

e− jβ0r

r
. (1.32)

The components of the field can be evaluated in the spherical coordinates r,�,� from
(1.6) and (1.3a). The results are

B�
.= µ0hI (0)

4π

(
jβ0

r
+ 1

r2

)
e− jβ0r sin� (1.33a)

Er
.= ζ0hI (0)

4π

(
2

r2
− j2

β0r3

)
e− jβ0r cos� (1.33b)

E�
.= jζ0hI (0)

4π

(
β0

r
− j

r2
− 1

β0r3

)
e− jβ0r sin�. (1.33c)

These may be expressed in terms of the dipole moment pz = I (0)h/jω if desired.
The electromagnetic power transferred across a closed surface in the far zone is given
by the integral of Re{Sr } ∼ sin2 �. An angular graph of Re{Sr } is called a power
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pattern. Polar and rectangular graphs of the power pattern are shown in Figs. 1.5c
and 1.5d. Note that because of symmetry, both the field pattern and power pattern are
independent of the coordinate �.

The half-power beam width �hp is defined as the angular distance between half-
power points on the radiation pattern referred to the principal lobe. The value of �hp

for the short linear antenna is 90◦. Another parameter useful in defining the directive
properties of an antenna is the absolute directivity D. This parameter is a measure of
the total time-average power transferred across a closed surface in the direction of the
principal lobe. The time-average power transferred across a closed surface � is the
integral of the normal component of S. Thus, in the far zone,

P =
∫
�

Sr d�. (1.34)

The directivity D is the ratio of P with Sr set at its maximum value Smax
r to the actual

value of P . For a short dipole with |Sr | ∼ sin2 �, the value of D is

D = 4π∫ 2π

0

∫ π

0
sin2 � sin� d�

= 3

2
. (1.35)

A nearly omnidirectional pattern requires a large value of �hp and a nearly unity value
of D. A more directional pattern requires a smaller value of �hp and a larger value
of D.

1.6 The field of antennas with sinusoidally distributed currents; radiation
resistance

It is customary to assume that the current distribution on a linear antenna is sinusoidal,
i.e.

I (z) = I (0) sinβ0(h − |z|)
sinβ0h

= Im sinβ0(h − |z|). (1.36)

For this current, the field characteristic F0(�, β0h) is given by (1.28b) with (1.36),

F0(�, β0h) = cos(β0h cos�)− cosβ0h

sinβ0h sin�
. (1.37a)

An alternative field characteristic Fm(�, β0h) is referred to the maximum value of the
sinusoid, namely, Im = I (0)/sinβ0h which occurs at h − λ/4 when β0h ≥ π/2.

Fm(�, β0h) = cos(β0h cos�)− cosβ0h

sin�
. (1.37b)

The function Fm(�, β0h) is shown graphically in Fig. 1.6 for several values of h. It is
seen that the pattern corresponding to β0h = π/2 (h = λ/4) is only slightly narrower
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Figure 1.6 Field factor of linear antenna.

than the pattern for (β0h)2 � 1 which is shown in Fig. 1.5b. Note that as β0h is
increased beyond π , minor lobes appear which successively become the major lobe
and point in directions other than � = π/2.

The theoretical model of an infinitely thin antenna with a sinusoidal distribution
of current is a convenient one: the complete electromagnetic field can be evaluated
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exactly in terms of elementary functions, even for observation points arbitrarily close
to the antenna. This is accomplished with the substitution of the current (1.36) in the
general integral (1.23a) for the vector potential, and subsequent use of the resulting
expression in (1.24). The indicated differentiations can be carried out directly without
evaluating the integral. The result is

B�(ρ, z) = j Imµ0

4πρ
[e− jβ0 R1h + e− jβ0 R2h − 2 cosβ0h e− jβ0r ] (1.38a)

Eρ(ρ, z) = j Imζ0

4πρ

[
z − h

R1h
e− jβ0 R1h + z + h

R2h
e− jβ0 R2h − 2z

r
cosβ0h e− jβ0r

]
(1.38b)

Ez(ρ, z) = − j Imζ0

4π

[
e− jβ0 R1h

R1h
+ e− jβ0 R2h

R2h
− 2 cosβ0h

e− jβ0r

r

]
(1.38c)

Bρ(ρ, z) = Bz(ρ, z) = Eφ(ρ, z) = 0, (1.38d)

where

r =
√
ρ2 + z2, R1h =

√
ρ2 + (h − z)2, R2h =

√
ρ2 + (h + z)2 (1.38e)

are the distances from the observation point to the center and the two ends of the
antenna, respectively.

When β0h = π/2, the interpretation of (1.38) in terms of spheroidal waves is
available in [1, pp. 297–310] or [3, Chapter V]. It is easily checked that, when r
is large, (1.38a–d) reduce to the radiation field given by (1.28a, c) with (1.37a).
Furthermore, (1.38) are seen to reduce to the field (1.33) of the electrically short
antenna when β0h � 1.

The total, time-average power P is equal to the integral of the normal component of
Re{S} = (1/2µ0)Re{E × B∗} over a closed surface surrounding the antenna, where
E and B are given by (1.38). Although any closed surface completely surrounding the
antenna will correctly give P , it is convenient to select a large sphere for the integration
surface and use the expressions (1.28) and (1.37) for the radiation field in spherical
coordinates. The complete formula for P determined in this manner can be found, for
example, in [2, p. 140]. It is easy to see that the expression for P has the form

P = 1
2 |Im |2 Re

m or P = 1
2 |I (0)|2 Re

0 (1.39)

where the quantities Re
m and Re

0 = Re
m/ sin2 β0h depend only on β0h. The units of

Re
m and Re

0 are ohms. By definition, Re
m (Re

0) is the radiation resistance referred to Im

(I (0)). Re
m is equal to 73.1 ohms when β0h = π/2, and 199 ohms when β0h = π .

In general, Re
0 is not the driving-point resistance of a center-driven antenna. To see

why this is true, let us examine in more detail the model of an infinitely thin antenna
with a sinusoidal distribution of current. In particular, in what way can one maintain,
at least in principle, the sinusoidal current distribution (1.36) on the infinitely thin,
perfectly conducting wire?
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From (1.38c), it is seen that the exact tangential electric field Ez(0, z) on the wire’s
axis is non-zero along the entire length of the wire. This is the axial field maintained
by the sinusoidal current distribution, and not the total axial field. Since the total axial
field is zero, there must be an externally maintained field Ee

z = −Ez(0, z) on the
perfectly conducting wire. It is given by

Ee
z (z) =

j Imζ0

4π

[
e− jβ0(h−z)

h − z
+ e− jβ0(h+z)

h + z
− 2 cosβ0h

e− jβ0|z|

|z|

]
; −h < z < h

(1.40)

and is non-zero along the whole length of the wire. It follows that it is not possible to
excite a sinusoidal current simply by a single delta-function generator with Ee

z (z) =
V δ(z). Instead, a continuous distribution of electromotive forces is necessary.

Equations (1.40), (1.36), and the power identity (1.20c) provide another equivalent
way to determine the time-average power P radiated by the infinitely thin antenna, by
integrating Re{ 1

2 Ee
z (z)I ∗(z)} along the length of the antenna. Note that the integrand

is finite. As before, Re
0 is the coefficient of 1

2 |I (0)|2 in the resulting expression.
The foregoing discussion clearly shows that Re

0 and the driving-point resistance R0

of a center-driven antenna are two different quantities. In some cases, however, it is
true that R0

.= Re
0. This will be seen in the next section.

1.7 Impedance of antenna: EMF method

In this section, the “induced EMF method” [4] is discussed. This is an approximate
method used for calculating the impedance of a center-driven antenna with non-zero
radius.

Let I (z) = 2πaKz(z) be the current on an antenna center-driven by a delta-function
generator, and let Ez(a, z) be the tangential electric field at the surface ρ = a. Consider
the quantities

− 1

|I (0)|2
∫ h

−h
Ez(a, z)I ∗(z) dz (1.41a)

or

− 1

I 2(0)

∫ h

−h
Ez(a, z)I (z) dz. (1.41b)

These are both equal to Z0, the driving-point impedance of the antenna. This is seen
to be true by the substitution of the boundary condition Ez(a, z) = −V δ(z) in (1.41)
and the subsequent use of the property (1.2c) of the delta function and the definition
Z0 = V/I (0).
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The “induced EMF method” consists of determining the driving-point impedance
of the antenna from the formula

Z0
.= − 1

|I (0)|2
∫ h

−h
Ez(a, z)I ∗(z) dz (1.41c)

where one uses the sinusoidal current distribution I (z) = [I (0)/ sinβ0h] sinβ0(h −
|z|) on the right-hand side, and the associated value of Ez(a, z) from (1.38c). It is easily
seen from (1.38c) that the integral in (1.41c) is proportional to |I (0)|2. Therefore,
the final quantity obtained does not involve I (0); it is an integral expression which
depends only on β0a and β0h. Since I (z) is in phase with I (0) for all z, the same
result is obtained if (1.41b) is used instead of (1.41a).

The resulting integral expression for Z0 can be evaluated by numerical integration,
expressed [5] in terms of integrals tabulated in standard mathematical handbooks [6],
or written in the form

Z0
.= jζ0

2π

1

sin2 β0h
{sinβ0h [Ca(h, h)− cosβ0h Ca(h, 0)]

− cosβ0h [Sa(h, h)− cosβ0h Sa(h, 0)]}, (1.42a)

where the integrals Ca(h, z) and Sa(h, z), which occur frequently in antenna theory,
are defined by

Ca(h, z) =
∫ h

0
cosβ0z′

[
e− jβ0 R1

R1
+ e− jβ0 R2

R2

]
dz′ (1.42b)

Sa(h, z) =
∫ h

0
sinβ0|z′|

[
e− jβ0 R1

R1
+ e− jβ0 R2

R2

]
dz′ (1.42c)

and where

R1 =
√
(z − z′)2 + a2, R2 =

√
(z + z′)2 + a2. (1.42d)

A short table of these integrals for the case a/λ = 0.007 022 is given in [2, Appendix
1].

Note that the value of Z0 so obtained is infinite when β0h = π , 2π, . . . . Therefore,
the method cannot be used to determine the driving-point impedance of antennas with
these lengths. Note also that, in the limit β0a → 0, the value of R0 = Re{Z0} reduces
to Re

0, where Re
0 is the radiation resistance obtained in the previous section.

From a theoretical point of view, the valid objection can be raised that two different
models are involved in (1.41). These are the antenna in which a sinusoidal current
distribution is maintained (by a continuous distribution of electromotive forces),
and the antenna center-driven by a delta-function generator. Only under special
circumstances can the first model be regarded as being similar to the second, or,
indeed, to the more practical antennas of Figs. 1.1a and 1.1b. For the first model, there
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Figure 1.7 Distribution of amplitude and phase of current in half-wave dipole.

is no single pair of terminals, so that the quantity in (1.41) is not the driving-point
impedance of an antenna. For the second model, the quantity in (1.41) is indeed the
driving-point impedance but (1.41c) is an identity, and not a means of determining
Z0. The electric field maintained by the currents in the first case violates the boundary
condition Ez(a, z) = 0 (z �= 0) satisfied by the corresponding field in the case of the
center-driven antenna.

In order to further understand the two models, it is instructive to consider the
permissible choices of �1 in (1.20b). In other words, for what types of surfaces �1

does one correctly obtain the time-average power radiated? The answer is different
for the two models: For the case of the center-driven antenna, �1 can be any closed
surface that encloses the delta-function generator at z = 0. It need not enclose the
entire antenna. However, for the antenna with a sinusoidal distribution of current, it is
necessary to enclose the entire antenna in order to correctly obtain P , the time-average
power.

From an engineering point of view, the induced EMF method is best discussed by
comparison with measurement. In order to obtain useful results, it is necessary that the
assumed sinusoidal current distribution be close to the true current distribution, and
that the antenna be electrically thin. Figures 1.7 and 1.8 show the measured amplitude
and phase of the current for a base-driven monopole over a ground plane together with
the sinusoidal current for β0h = π/2 and π , respectively. The parameter � is related
to h/a by � = 2 ln(2h/a). In Fig. 1.7, the experimental data are taken from [7]. The



19 1.7 EMF method

0

0.1

0.2

0.3

0

mA/VI(z)
V

(z)ΘI

z/λ

Sinusoidal theory
Measured points (Mack)

Ω = 9.92
h = πβ0

0.4

0.5

0.5 1.0 1.5 2.0 2.5 –90°–60°–30° 0° 30° 60°

Figure 1.8 Distribution of amplitude and phase of current in full-wave dipole.

theoretical curve is in the form

I (z)

V
=
∣∣∣∣ I (z)

V

∣∣∣∣ e j�I (z) = I (0)

V
cosβ0z = 2

Z0
cosβ0z (1.43)

where Z0 has been calculated from (1.41c) to be Z0 = 73 + j41 ohms. The factor
of 2 in the last equation in (1.43) is included so that I (z)/V corresponds to that of
a monopole over a ground plane. In Fig. 1.8, the measurements have been made by
Mack. The value of |Im/V | = |I (λ/4)/V | in the theoretical curve is such that the
total power radiated by the antenna with the sinusoidal current (as calculated from
P = Re

m |Im |2 with Re
m = 199 ohms) is the same as the total power radiated by the

base-driven monopole. The latter power can be found from the measured driving-point
conductance G0 = 1.023 millisiemens (mS) as P = G0|V |2.

In Fig. 1.7, the general agreement between the measured values and the sinusoidal
approximation is fair, with more current near the top of the actual antenna than is
indicated by the cosine curve. The driving-point admittance as calculated by the
induced EMF method agrees quite well with the measured value. The phase differs
somewhat from the constant required by the sinusoidal distribution of current. For
the full-wave antenna of Fig. 1.8, the sinusoidal current fails completely near the
driving point, where, instead of |I (0)/V | = 0, |I (0)/V | is about three-quarters its
maximum value along the antenna. The measured phase, instead of being constant,
changes significantly along the antenna.

Some additional comments about the half-wave antenna are now made. More
discussions along these lines can be found in [8]. For β0h = π/2, the measured
current is fairly close to that predicted by the induced EMF method. It follows that the
near-field B� should also be fairly close. This is not true, however, for all near-field



20 Introduction

0

0.05

0.10

0.15

0

(z)Θq

z/λ

Sinusoidal theory
Measured (Morita)

Ω = 9.92
h = πβ0

0.20

0.25

0.5 1.0 1.5 –50°–100° 0°

Relative scale
cq(z)

V

–150°

/2

Figure 1.9 Normalized distribution of charge in amplitude and phase for a half-wave dipole.

quantities. It follows from preceding discussions that the Ez components are different.
That the Eρ components should also be different is illustrated in Fig. 1.9, where the
measured [7] charge per unit length q(z)/V = |q(z)/V |e j�q (z) along the half-wave
antenna is shown together with that predicted by the sinusoidal theory. The theoretical
curve was calculated from (1.43) by the equation of continuity (1.22). Here, the
agreement is quite poor.

The sinusoidal current distribution sinβ0(h − |z|) has been seen to be inadequate
in many cases. Nevertheless, it is attractive because of its simplicity. In Chapter 2,
linear antennas satisfying β0a � β0h < 3π/2 and β0a � 1 are considered. For
such antennas, an improved representation of the current will be introduced. In this
representation, sinβ0(h −|z|) is the first term, and the remaining terms are also simple
trigonometric functions.

1.8 Integral equations for the current distribution

In the three preceding sections, the current distribution I (z) along the length of the
linear antenna has been assumed. A more scientific and more difficult method for
investigating the properties of a center-driven linear antenna is to determine I (z) from
the boundary condition satisfied by Ez on the surface of the antenna. If this condition
is imposed, an integral equation for I (z) results. A history of the development of the
integral equation, as well as many additional references, can be found in [3, 9, 10].

This section first introduces the model of the center-driven tubular dipole. Two
integral equations will be derived, one of which is exact for this model and will be
called the exact integral equation. The second integral equation is approximate and
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Figure 1.10 Center-driven tubular dipole: top view and cross section.

will be called the approximate integral equation. Both forms are referred to as Hallén’s
integral equation in recent literature.

Figure 1.10 shows a center-driven tubular dipole. It is a perfectly conducting, open-
ended tube with walls of negligible thickness. A delta-function generator is located
at an infinitesimal gap between z = 0− and z = 0+, so that the scalar potential
φ(ρ, z) satisfies φ(a, 0+) − φ(a, 0−) = V . From (1.8) and the boundary condition
Ez(a, z) = 0 (z �= 0), it is seen that, on the surface of the tube at ρ = a,

Ez(a, z) = −V δ(z); −h < z < h. (1.44)

There is a rotationally symmetric surface current density Kz, out(z) on the outside of
the tube, and a similar surface current density Kz, in(z) on the inside of the tube. The
total current I (z) is defined by I (z) = 2πa[Kz, out(z)+ Kz, in(z)]. I (z) is even in z; it
vanishes at the ends z = ±h of the dipole by the continuity of Kz(z).

Denote by Az(a, z) the rotationally symmetric vector potential on the surface of
the tube. An integral equation for I (z) can be derived by calculating Az(a, z) in two
different ways and equating the results as follows.

The first step is to note that, at any observation point r, Ez(r) is related to Az(r) by
equation (1.24c). (This equation holds as long as only z-directed currents are present.)
When the observation point is on the surface of the dipole, (1.44) can be substituted in
(1.24c). Thus, Az(a, z) satisfies the differential equation

∂2 Az(a, z)

∂z2
+ β2

0 Az(a, z) = − jβ2
0

ω
V δ(z); −h < z < h. (1.45)

The solution to this equation consists of a particular solution plus the general
solution of the homogeneous equation. The latter is C1 cosβ0z + C2 sinβ0z where C1
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and C2 are constants to be determined. From the properties (1.2) of the delta function,
a particular solution is readily verified to be (− j V/2c) sinβ0|z|. Since Az(a, z) is even
in z, the coefficient C2 is identically zero and the solution to (1.45) is

Az(a, z) = − j V

2c
sinβ0|z| + C1 cosβ0z. (1.46)

It is seen that the derivative of Az(a, z) is discontinuous. This is a consequence of the
step-function behavior of the scalar potential at z = 0.

The second way to calculate Az(a, z) is from the integral (1.12a). At any observation
point r, the vector potential is given by integrating over the surface of the tube:

Az(r) = µ0

4π

∫ h

−h

∫ π

−π

I (z′)
2πa

e− jβ0|r−r′|

|r − r′| a d�′ dz′. (1.47)

When ρ = a, the distance between r and r′ is given by (see Fig. 1.10)

|r − r′| =
√
(z − z′)2 + 4a2 sin2[(�−�′)/2]. (1.48)

Although � appears in the integral for Az(a, z), it is apparent that Az(a, z) is
independent of �, so that one can take � = 0 with no loss of generality. Equating
(1.46) with the integral expression for Az(a, z), the equation

4π

µ0
Az(a, z) ≡

∫ h

−h
K (z − z′)I (z′) dz′

= − j2πV

ζ0
sinβ0|z| + C cosβ0z; −h < z < h (1.49)

is obtained. In (1.49), K (z) is given by

K (z) = Kex(z) = 1

2π

∫ π

−π

exp
(− jβ0

√
z2 + 4a2 sin2(�/2)

)
√

z2 + 4a2 sin2(�/2)
d�; |z| < 2h (1.50)

and the constant C = 4πC1/µ0 is to be determined from the condition that

I (h) = 0. (1.51)

In equation (1.49), which is to hold for all values of z between −h and h, the
unknown current I (z) appears inside the integral sign. This is the desired exact
integral equation. The quantity K (z − z′) = Kex(z − z′) that multiplies the unknown
is called the kernel of the integral equation. It depends only on the difference z − z′,
and not on z and z′ separately.

The same steps may be followed to derive the so-called approximate integral
equation. On the basis that the antenna is electrically thin, β0a � 1, one makes the
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assumption that the current is located at the axis z = 0 of the antenna. Thus, in place
of (1.47), one has the integral expression (1.23a) for the z-directed vector potential,
where

R = |r − ẑz′| =
√
(z − z′)2 + a2 (1.52)

when the observation point r is on the antenna’s surface. Equating this integral
expression with (1.46) results in the approximate integral equation. It is the same as
(1.49), but with the “approximate” or “reduced” kernel

K (z) = Kap(z) =
exp

(
− jβ0

√
z2 + a2

)
√

z2 + a2
; |z| < 2h (1.53)

in place of the exact kernel of (1.50).
In this chapter, as well as in the related Chapter 13, the symbol Iex(z) will denote the

unknown current when the exact kernel Kex(z) is used in (1.49). The corresponding
quantity when Kap(z) is used will be denoted by Iap(z). A symbol K (z) [I (z)] with
no subscripts can denote either Kex(z) [Iex(z)] or Kap(z) [Iap(z)].

The most pronounced advantage of the approximate integral equation is that Kap(z)
is simpler in form than Kex(z), which involves an integration. The approximate integral
equation will be used almost exclusively throughout this book. Despite the similarity
of the two integral equations, their mathematical properties are very different. Such
properties are discussed in detail in [10] and in Section 13.2 of this book.

Equations (1.49) and (1.51) can be written in various equivalent forms, one of which
is∫ h

−h
K (z − z′)I (1)(z′) dz′ = − j2πV

ζ0
sinβ0|z|; −h < z < h (1.54a)

and∫ h

−h
K (z − z′)I (2)(z′) dz′ = cosβ0z; −h < z < h, (1.54b)

where the unknowns I (1)(z) and I (2)(z) are related to I (z) and C by

I (z) = I (1)(z)+ C I (2)(z), C = − I (1)(h)

I (2)(h)
. (1.55)

This form is slightly more convenient for the application of numerical methods. These
are discussed in the next section and in Chapter 13.

1.9 Direct numerical methods

Methods for solving (1.49) approximately were proposed as early as the 1930s
[11]. When high-speed computers appeared, solving (1.49) by numerical methods,
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especially moment methods [12], became popular. When applying moment methods
to integral equations, the basic idea is to seek an approximate solution in the form
of a linear combination of a finite number of basis functions. The coefficients of the
basis functions are the unknowns. They are determined by approximating the integral
equation by a system of algebraic equations which are then solved by computer.

In this section, numerical methods are introduced by describing the application of a
particular method to (1.49). The method to be applied is Galerkin’s [13] method with
pulse functions, which is a form of the method of moments in [12]. Generalizations
and additional information can be found in many standard antenna and engineering
textbooks. A more critical discussion of the application of numerical methods to (1.49)
is beyond the scope of an introductory chapter and is contained in Chapter 13.

As mentioned previously, it is convenient to deal first with equations (1.54a, b). One
writes I (1)(z) and I (2)(z) as the sum of basis functions with unknown coefficients.
Basis functions that are non-zero on only a part of the interval of interest [in our
case (−h, h)] are called subsectional basis functions. Perhaps the simplest choice of
subsectional basis functions are the pulse functions un(z) which result by dividing
(−h, h) into 2N + 1 segments of length zp so that

(2N + 1)zp = 2h. (1.56)

The nth pulse function un(z) is constant on the nth segment and zero elsewhere:

un(z) =
{

1, if (n − 1
2 )zp < z < (n + 1

2 )zp

0, otherwise
(1.57)

for n = −N , −(N − 1), . . . , N (see Fig. 1.11). The choice of an odd number of
segments is convenient, but not necessary.

“Staircase”-type approximate solutions to (1.54a, b) are sought by setting

I (1)(z)
.=

N∑
n=−N

I (1)n un(z), I (2)(z)
.=

N∑
n=−N

I (2)n un(z), (1.58)

where I (1)n and I (2)n are coefficients to be determined. The substitution of (1.58) into
(1.54) yields

N∑
n=−N

I (1)n

∫ h

−h
K (z − z′)un(z

′) dz′ .= − j2πV

ζ0
sinβ0|z|; −h < z < h (1.59a)

and

N∑
n=−N

I (2)n

∫ h

−h
K (z − z′)un(z

′) dz′ .= cosβ0z; −h < z < h. (1.59b)

Note that the integrands in (1.59) are non-zero over the nth segment only.
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Figure 1.11 Pulse functions un(z).

Equations (1.59) cannot be satisfied for all z, and one must satisfy them approxi-
mately. This can be done by selecting a second set of functions vl(z), l = −N , . . . , N
(called testing functions), multiplying (1.59) by vl(z), and integrating from z = −h
to z = h. In the case of Galerkin’s method, the set of testing functions is taken to be
the same as the set of basis functions. Multiplication of (1.59) by ul(z) and integration
from z = −h to z = h yield

N∑
n=−N

Aln I (1)n = B(1)
l ,

N∑
n=−N

Aln I (2)n = B(2)
l ; l = 0,±1, . . . ,±N , (1.60)

where

Aln =
∫ (l+1/2)zp

(l−1/2)zp

∫ (n+1/2)zp

(n−1/2)zp

K (z − z′) dz′ dz; −N ≤ l, n ≤ N (1.61)

B(1)
l = − j2πV

ζ0

∫ (l+1/2)zp

(l−1/2)zp

sinβ0|z| dz

=




− j8πV

ζ0β0
sin2(β0zp/4), if l = 0

− j4πV

ζ0β0
sin(β0zp/2) sin(β0zp|l|), if l = ±1, . . . ,±N

(1.62a)

and

B(2)
l =

∫ (l+1/2)zp

(l−1/2)zp

cosβ0z dz

= 2

β0
sin(β0zp/2) cos(β0zpl); l = 0, ±1, . . . ,±N . (1.62b)
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Equations (1.60) are two systems of algebraic equations with unknowns I (1)−N ,

I (1)−(N−1), . . . , I (1)N and I (2)−N , I (2)−(N−1), . . . , I (2)N .
The procedure just described is Galerkin’s method with pulse functions applied to

the two integral equations (1.54). Having solved the systems in (1.60) by computer,
one can determine C from [see (1.55)]

C
.= −I (1)N /I (2)N . (1.63a)

The final numerical solution is therefore

I (z)
.=

N∑
n=−N

Inun(z) =
N∑

n=−N

[I (1)n + C I (2)n ]un(z). (1.63b)

The symbols Iex,n and Iap,n will denote the values of In obtained with the exact kernel
and the approximate kernel, respectively.

The double integral in (1.61) can be reduced to a single integral by setting z − lzp

= x , z′ − nzp = x ′, and by using the identity

∫ zp/2

−zp/2

∫ zp/2

−zp/2
f (x − x ′) dx ′ dx =

∫ zp

0
(zp − z)[ f (z)+ f (−z)] dz. (1.64)

From the resulting equation and from K (z) = K (−z), it is seen that the Aln depend
on |l − n| only, and not on l and n separately. Denoting Aln = Anl by Al−n , one has
the simpler expression

Al = A−l =
∫ zp

0
(zp − z)[K (z + lzp)+ K (z − lzp)] dz (1.65)

for the matrix coefficients. In (1.65), the index l takes the values 0, ±1, ±2, . . . ,±2N .
Thus, one must first solve the two (2N + 1) × (2N + 1) systems (1.60) for I (1)n

and I (2)n . These systems are symmetric since Aln = Anl and Toeplitz [14] because
Aln depends only on the difference l − n. Whereas the vector elements on the right-
hand side can be found from (1.62), it is necessary to compute the matrix elements Al

by numerical integration. This is a simple task for modern computers. Note that the
expression (1.50) for the exact kernel is an integral, so that when the exact kernel is
used, (1.65) is actually a double integral. Here, one can exploit the properties of the
integrand and use standard techniques [15] to reduce the computer time required for
the numerical integration. The solutions to the systems in (1.60) satisfy I (1)n = I (1)−n

and I (2)n = I (2)−n , so that each system is equivalent to a (N + 1) × (N + 1) system. It
can also be shown that (1.60) and (1.63a) are equivalent (in the absence of roundoff
errors in the computer) to one (N + 1)× (N + 1) system of equations with unknowns
I0, I1, . . . , IN−1, and C .

When applying the method, one can scale h, a, and zp by the wavelength λ = 2π/β0.
Figures 1.12a and 1.12b show the results obtained for h/λ = 0.25, a/λ = 0.007 022,
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Figure 1.12 Numerical results obtained with method of Section 1.9; h/λ = 0.25, a/λ = 0.007 022,
N = 20. (a) Re{Iex,n/V } (solid line) and Re{Iap,n/V } (dots). (b) Im{Iex,n/V } (solid line) and
Im{Iap,n/V } (dots).

and N = 20. Here, zp/λ is about 0.012. In Fig. 1.12a, the component of current
Re{In/V } in phase with the driving voltage is shown as a function of n, for both the
approximate and the exact kernels. The values of Re{Iap,n/V }, n = 0, 1, . . . , 20,
are shown as dots. The corresponding values for the case of the exact kernel have
been joined by straight lines. For this choice of N , the values agree quite well. Good
agreement between the results obtained with the exact and the approximate kernels is
also seen in Fig. 1.12b, where the components Im{In/V } are shown. The driving-point
admittance obtained for this antenna with N = 20 is Y0 = Iex,0/V = 10.1 − j2.91
mS for the case of the exact kernel, and Y0 = Iap,0/V = 9.72− j2.76 mS for the case
of the approximate kernel.

When applying this numerical method to integral equations, the numerical solution
ordinarily becomes closer to the true solution as N is increased, where 2N + 1 is the
number of pulse functions. In practice, the true solution is not known and one often
resorts to the empirical criterion of making N larger until the solution has converged
to a satisfactory final value.
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Figure 1.13 Numerical results obtained with method of Section 1.9; h/λ = 0.25, a/λ = 0.007 022.
(a) R0 = Re{V/Iex,0} (solid line) and R0 = Re{V/Iap,0} (dots) as function of N .
(b) X0 = Im{V/Iex,0} (solid line) and X0 = Im{V/Iap,0} (dots) as function of N .

Figures 1.13a and 1.13b show the driving-point resistance R0 and reactance X0

obtained by the numerical method as a function of N for N = 1, 2, . . . , 100. One
may be surprised to see that the values of R0 and X0 agree for small values of N only.
Whereas the values for the case of the exact kernel are relatively stable when N is
large, a perhaps puzzling behavior is observed in the case of the approximate kernel:
both R0 and X0 seem to converge to zero. Corresponding graphs for the driving-point
conductance G0 and susceptance B0 (shown in Figs. 1.14a and 1.14b) reveal that the
quantity B0 is to blame: For large values of N in Fig. 1.14b, the values of B0 are much
larger than those obtained with the exact kernel. (In Fig. 1.14b, the values of B0 for
N ≥ 72 in the case of the approximate kernel are not shown. These values continue to
rise rapidly, with B0 = 0.1 S when N = 100.) The values of G0 in Fig. 1.14a, on the
other hand, agree quite well with those obtained with the exact kernel.

It is seen from these figures that, in the case of the approximate kernel (at least
for the specific parameters h/λ and a/λ under consideration), the choice of N is very
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Figure 1.14 Numerical results obtained with method of Section 1.9; h/λ = 0.25, a/λ = 0.007 022.
(a) G0 = Re{Iex,0/V } (solid line) and G0 = Re{Iap,0/V } (dots) as function of N .
(b) B0 = Im{Iex,0/V } (solid line) and B0 = Im{Iap,0/V } (dots) as function of N . Values of
Im{Iap,0/V } for N ≥ 72 are not shown.

important and the empirical criterion mentioned above cannot be used. These results
indicate that the application of numerical methods to (1.49) presents difficulties. Such
difficulties have been discussed in the literature from many points of view [16–21].
In Chapter 13 of this book, the interested reader will find detailed explanations
for the behavior observed in Figs. 1.13 and 1.14. The discussion there concerns
both integral equations. The situation is simpler in the case of the exact kernel; in
this case, the behavior of the numerical solutions can be readily inferred from the
mathematical properties of the integral equation. Knowledge of these properties also
leads to improvements of the numerical method. Even with the exact kernel, however,
difficulties exist.

Despite the difficulties associated with solving (1.49) numerically, useful results can
be obtained by numerical methods. Many such results are available in the literature.
Chapter 2 introduces an alternative method for determining the current on a linear
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antenna: I (z) is represented as a linear combination of a fixed number (two or three)
of trigonometric functions. The unknown coefficients are determined by exploiting the
properties of the kernel and the right-hand side of the integral equation. Chapters 3–7
and 10–12 extend this method to arrays of cylindrical dipoles. In this case, one needs to
solve a system of algebraic equations to obtain the unknown coefficients. Because the
number of unknown coefficients per dipole is small, the systems of equations that result
are generally much smaller than those resulting from the application of numerical
methods.



2 An approximate analysis of the cylindrical
antenna

2.1 The sinusoidal current

The distribution of current along a thin center-driven antenna of length 2h (or along
a base-driven antenna of length h over an ideal ground plane) is assumed to have the
sinusoidal form

Iz(z) = Iz(0)
sinβ0(h − |z|)

sinβ0h
(2.1)

in Sections 1.6 and 1.7. Actually, this is the correct distribution along a section of
lossless coaxial line of length h that is short-circuited at z = 0 and terminated at
z = h in an infinite impedance. This is illustrated in Fig. 2.1a where the infinite
impedance is obtained by means of an additional short-circuited quarter-wave section
of coaxial line. In this case the current is entirely reactive, the electromagnetic field
is completely confined within the coaxial shield in the form of axial standing waves
and there is no radiation. When the ideal “open” end at z = h is replaced by an
actual one as shown in Fig. 2.1b, the distributions of current and charge are changed
in a manner that resembles a crowding of the entire pattern toward the open end. In
addition to a large reactive component, the current now also includes a very small
resistive part. The associated electromagnetic field is still primarily a standing wave
within the coaxial sleeve, but it does extend outside especially near the open end and
there is some radiation. From the point of view of the transmission line the differences
between currents and fields for Figs. 2.1a and 2.1b are interpreted as end-effects. If
the outside shield is removed as in Fig. 2.1c these “end-effects” extend all the way
to the generator and the distributions of current and charge are significantly changed
over the entire length. The resistive component is now comparable in magnitude to the
reactive part and the associated electromagnetic field includes a large radiation field
that extends to infinity in the form of outward traveling waves. It is, of course, not
at all surprising that the distributions of current along the conductors of radius a and
length h are not the same in the three quite different situations represented in Figs.
2.1a–c. The boundary conditions are not alike except at r = a, 0 ≤ z ≤ h, where the
tangential electric field vanishes.

31
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Perfect conductor

(c)(b)(a)

z = 0

z = h

z = h
4
λ+

2a2bIdeal
Z∞

(z) 1
2 z) (z)

Figure 2.1 (a) Coaxial line terminated in Z∞ at z = h. (b) Coaxial line terminated in open end.
(c) Base-driven monopole over perfectly conducting ground screen.

2.2 The equation for the current

As discussed in Section 1.8, the determination of the actual current distribution along
the antenna in Fig. 2.1c requires the derivation and solution of an integral equation.
The derivation proceeds from the boundary condition Ez(z) = −V e

0 δ(z) on the surface
ρ = a, −h ≤ z ≤ h, of the perfectly conducting, center-driven tubular antenna. The
electric field Ez(z) is expressed in terms of the vector potential defined in (1.23a) in the
formula (1.24c). On the surface of the antenna where Ez(z) = −V e

0 δ(z), the following
differential equation applies:
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(
d2

dz2
+ β2

0

)
Az(z) =

− jβ2
0

ω
V e

0 δ(z), (2.2)

which has the solution

Az(z) = − j

c
(C1 cosβ0z + 1

2 V e
0 sinβ0|z|) (2.3)

if the symmetry conditions, Iz(−z) = Iz(z), Az(−z) = Az(z) are imposed. The
second term in (2.3) is a particular solution to (2.2), and C1 is a yet undetermined
constant. With (1.23a) the integral equation for the current is

4π

µ0
Az(z) =

∫ h

−h
Iz(z

′)
e− jβ0 R

R
dz′ = − j4π

ζ0
[C1 cosβ0z + 1

2 V e
0 sinβ0|z|], (2.4)

where V e
0 is the EMF of the delta-function generator, ζ0 = √

µ0/ε0
.= 120π ohms, and

R =
√
(z − z′)2 + a2. By definition the driving voltage of the delta-function generator

is lim
z→0

[φ(z) − φ(−z)] = V e
0 . The constant C1 must be evaluated from the condition

Iz(±h) = 0. Note that the “approximate kernel”, discussed in Section 1.8, is used in
(2.4).

Although it is not difficult to derive the integral equation (2.4), the problem of
finding analytical solutions for the current is very complicated. What is needed is an
approximate solution that is both sufficiently simple to be useful in the evaluation of
the electromagnetic field and sufficiently accurate to provide quantitatively acceptable
values not only of the details of the field but of the driving-point impedance. (In
anticipation, it is well to note that a generalization of the method in order to make it
useful in the solution of the simultaneous integral equations that occur in the analysis
of arrays is also going to be required.)

The procedure to be followed in obtaining a useful approximate solution of (2.4) is
straightforward and simple. It involves the replacement of the integral equation (2.4) by
an approximately equivalent algebraic equation. In order to accomplish this a careful
study must be made of the integral in (2.4).

2.3 Properties of integrals

The integrand in (2.4) consists of two parts: (1) the current Iz(z) which is to be
determined and about which nothing is known except that it vanishes at the ends
z = ±h, is continuous through the generator at z = 0, and satisfies the symmetry
condition Iz(−z) = Iz(z); (2) the kernel

K (z, z′) = e− jβ0 R

R
, R =

√
(z − z′)2 + a2, (2.5)
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which may be separated into its real and imaginary parts,

K R(z, z′) = cosβ0 R

R
; K I (z, z′) = −sinβ0 R

R
. (2.6)

The dimensionless quantities K R(z, z′)/β0 and K I (z, z′)/β0 are shown graphically in
Fig. 2.2 as functions of β0|z − z′|. A comparison in the lower figure shows that their
behaviors are quite different. K R(z, z′)/β0 has a sharp high peak precisely at z′ = z;
its magnitude 1/β0a is very large compared with 1 since it has been postulated that
β0a � 1. On the other hand, K I (z, z′)/β0 varies only slowly with β0|z − z′| and never
exceeds the value 1. It is seen in the upper part of Fig. 2.2 that sinβ0 R/β0 R is very
well approximated by cos(β0 R/2) in the range 0 ≤ β0|z − z′| ≤ π . Moreover, the
value of cos(β0 R/2) is hardly affected if the small quantity β0a is neglected and β0 R
is approximated by β0|z − z′|.
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These facts suggest the following approximations for the two parts of the integral in
(2.4):

JR(h, z) =
∫ h

−h
Iz(z

′)
cosβ0 R

R
dz′ = �1(z)Iz(z)

.= �1 Iz(z) (2.7)

JI (h, z) = −
∫ h

−h
Iz(z

′)
sinβ0 R

R
dz′ = −β0

∫ h

−h
Iz(z

′) cos 1
2β0(z − z′) dz′. (2.8)

The reasoning behind the approximation in (2.7) is simple. Since the kernel is quite
small except at and very near z′ = z, where it rises to a very large value, it is clear
that the current near z′ = z is primarily significant in determining the value of the
integral at z. In other words, the integral is approximately proportional to Iz(z). The
proportionality constant �1 is best determined where Iz(z) is a maximum.

The integral in (2.8) may be transformed as follows:

JI (h, z) = −β0

∫ h

−h
Iz(z

′) cos 1
2β0(z − z′) dz′

= −β0

∫ h

0
Iz(z

′)[cos 1
2β0(z − z′)+ cos 1

2β0(z + z′)] dz′

= −2β0 cos 1
2β0z

∫ h

0
Iz(z

′) cos 1
2β0z′ dz′.

It follows that for antennas that do not greatly exceed β0h = π in electrical half-length,
specifically, β0h ≤ 5π/4,

JI (h, z)
.= JI (h, 0) cos 1

2β0z; JI (h, 0) = −2β0

∫ h

0
Iz(z

′) cos 1
2β0z′ dz′. (2.9)

A further refinement in the approximation (2.7) is suggested by the fact that, while
the integral on the left becomes quite small at the ends of the antenna where z = ±h,
the right-hand side vanishes identically at these points since Iz(±h) = 0. Evidently a
better approximation than (2.7) is the following:

4πµ−1
0 [Az(z)− Az(h)] =

∫ h

−h
Iz(z

′)[K R(z, z′)− K R(h, z′)] dz′ .= �2 Iz(z), (2.10)

where the left-hand side is simply the vector potential difference between the point
(a, z) and the end (a, h) of the antenna; �2 is a new constant.
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2.4 Rearranged equation for the current

In order to make use of (2.10), the integral equation (2.4) may be modified by
subtracting 4πµ−1

0 Az(h) from both sides. The result is

4πµ−1
0 [Az(z)− Az(h)] =

∫ h

−h
Iz(z

′)Kd(z, z′) dz′

= − j4π

ζ0
[C1 cosβ0z + 1

2 V e
0 sinβ0|z| + U ], (2.11)

where

U = − jζ0

4π

∫ h

−h
Iz(z

′)K (h, z′) dz′ (2.12)

and the difference kernel is

Kd(z, z′) = K (z, z′)− K (h, z′). (2.13)

The constant C1 can now be expressed in terms of U and V e
0 by setting z = h. Since

the left-hand side of (2.11) then vanishes, the right-hand side can be solved for C1 to
give

C1 = −
1
2 V e

0 sinβ0h + U

cosβ0h
. (2.14)

If this value of C1 is substituted into (2.11) the following equation is obtained:∫ h

−h
Iz(z

′)Kd(z, z′) dz′ = j4π

ζ0 cosβ0h

[ 1
2 V e

0 sinβ0(h − |z|)+ U (cosβ0z − cosβ0h)
]
.

(2.15)

The integral equation (2.15) with (2.12) is a rearrangement of the original equation
(2.4). No approximations are involved.

2.5 Reduction of integral equation to algebraic equation

The next and most important step is to make use of the information contained in (2.9)
and (2.10) in order to reduce (2.15) to an approximately equivalent algebraic equation.
The procedure is simple and straightforward. With (2.9) and (2.10) it is clear that the
integral in (2.15) may be approximated as follows:∫ h

−h
Iz(z

′)Kd(z, z′) dz′ .= Iz(z)�2 + j JI (h, 0)
(
cos 1

2β0z − cos 1
2β0h

)
. (2.16)
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If this is substituted in (2.15), the resulting equation can be solved explicitly for Iz(z).
It is seen to have the following zero-order form:

Iz(z)
.= [Iz(z)]0 = IV

[
sinβ0(h − |z|)+ TU (cosβ0z − cosβ0h)

+ TD
(
cos 1

2β0z − cos 1
2β0h

)]
, (2.17a)

where IV , TU and TD are complex coefficients. With the identity

sinβ0(h − |z|)
cosβ0h

= −(sinβ0|z| − sinβ0h)+ tanβ0h (cosβ0z − cosβ0h)

an alternative form of (2.17a) is

Iz(z)
.= [Iz(z)]0 = − I ′V [(sinβ0|z| − sinβ0h)+ T ′

U (cosβ0z − cosβ0h)

− T ′
D(cos 1

2β0z − cos 1
2β0h)], (2.17b)

where I ′V , T ′
U , and T ′

D are complex coefficients.

This is a very significant result. It shows that an approximation of the current
consists of three terms, each of which represents a different distribution. One of the
terms is the simple sinusoid. As for the completely shielded transmission line, the
sinusoidal component of the current is maintained directly by the generator; it does
not include the components that are induced by coupling between different parts of the
antenna. The currents induced by the interaction between charges moving in the more
or less widely separated sections of the antenna appear in two parts. One of these,
the shifted cosine, is maintained by that part of the interaction that is equivalent to a
constant field acting in phase at all points along the antenna. The other part, the shifted
cosine with half-angle arguments, is the correction that takes account of the phase lag
introduced by the retarded instead of instantaneous interaction.

Thus, the new three-term approximation augments the conventionally assumed
sinusoidal distribution with components represented by a shifted cosine and a shifted
cosine with half-angle arguments, each with a complex coefficient.

It is quite possible to evaluate the coefficients �2, JI (h, 0) and U that are involved
in IV , TU , and TD – obtained when (2.16) is substituted in (2.15). However, it is
preferable to use the arguments and approximations introduced up to this point merely
to determine the form of the distribution of current. The three new coefficients, IV ,
TU and TD , may be evaluated directly if (2.17a) is substituted in the integral equation
(2.15) and the principles involved in (2.9) and (2.10) are invoked.
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The substitution of (2.17a) in the integral in (2.15) involves the following parts
obtained from the real part Kd R(z, z′) of the difference kernel Kd(z, z′) defined in
(2.13):

∫ h

−h
sinβ0(h − |z′|)Kd R(z, z′) dz′ .= �d R sinβ0(h − |z|) (2.18a)

∫ h

−h
[cosβ0z′ − cosβ0h]Kd R(z, z′) dz′ .= �dUR(cosβ0z − cosβ0h) (2.18b)

∫ h

−h
[cos 1

2β0z′ − cos 1
2β0h]Kd R(z, z′) dz′ .= �dDR(cos 1

2β0z − cos 1
2β0h). (2.18c)

These expressions follow from (2.10). In order to enhance the accuracy, each part of
the current is separately treated and supplied with its own coefficient. The evaluation
of these coefficients is considered below.

The integrals obtained with the imaginary part Kd I (z, z′) of the difference kernel
are easily approximated by the application of (2.9). Thus,

∫ h

−h
sinβ0(h − |z′|)Kd I (z, z′) dz′ .= �d I (cos 1

2β0z − cos 1
2β0h) (2.19a)

∫ h

−h
(cosβ0z′ − cosβ0h)Kd I (z, z′) dz′ .= �dUI(cos 1

2β0z − cos 1
2β0h) (2.19b)

∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)Kd I (z, z′) dz′ .= �dDI(cos 1

2β0z − cos 1
2β0h). (2.19c)

The three constants �d I , �dUI and �dDI are evaluated later. Finally, if the distribution
(2.17a) is substituted in (2.12), the result is

U = − jζ0 IV

4π
[�V (h)+ TU�U (h)+ TD�D(h)], (2.20)

where

�V (h) =
∫ h

−h
sinβ0(h − |z′|)K (h, z′) dz′ (2.21a)

�U (h) =
∫ h

−h
(cosβ0z′ − cosβ0h)K (h, z′) dz′ (2.21b)

�D(h) =
∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)K (h, z′) dz′. (2.21c)

With (2.18a–c) and (2.19a–c) the integral on the left-hand side in (2.15) is reduced to
a mere sum of terms with suitable coefficients. And the integral equation as a whole has
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been replaced by an algebraic equation that involves the three distributions sinβ0(h −
|z|), cosβ0z − cosβ0h, and cos 1

2β0z − cos 1
2β0h. It is

(
IV�d R − j2πV e

0

ζ0 cosβ0h

)
sinβ0(h − |z|)

+
(

IV TU�dUR − j4πU

ζ0 cosβ0h

)
(cosβ0z − cosβ0h)

+ IV ( j�d I + j�dUITU +�d DTD)(cos 1
2β0z − cos 1

2β0h) = 0, (2.22)

where �d D = �dDR + j�dDI .

2.6 Evaluation of coefficients

The algebraic equation (2.22) is satisfied for all values of z when the coefficient
of each of the three distributions vanishes. This step yields three equations for the
determination of the coefficients IV , TU and TD in (2.17a). They are:

IV = j2πV e
0

ζ0�d R cosβ0h
(2.23a)

TU [�dUR cosβ0h −�U (h)] − TD�D(h) = �V (h) (2.23b)

TU�dUI − jTD�d D = −�d I . (2.23c)

The last two equations are easily solved for TU and TD . The results are:

TU = Q−1[�V (h)�d D − j�D(h)�d I ] (2.24a)

TD = − j Q−1{�d I [�dUR cosβ0h −�U (h)] +�V (h)�dUI} (2.24b)

Q = �d D[�dUR cosβ0h −�U (h)] + j�D(h)�dUI . (2.25)

The several � functions in (2.24)–(2.25) are defined with (2.18a–c) and (2.19a–c)
at the value of z that gives the maximum of the current distribution function. Since,
in the range of interest, β0h < 3π/2, the maximum of sinβ0(h − |z|) is at z = 0
when β0h ≤ π/2 but at z = h − λ/4 when β0h ≥ π/2, whereas the maxima of
(cosβ0z − cosβ0h) and (cos 1

2β0z − cos 1
2β0h) are at z = 0, the following definitions

are appropriate:
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�d R = �d R(zm),

{
zm = 0, β0h ≤ π/2

zm = h − λ/4, β0h > π/2
(2.26)

�d R(z) = cscβ0(h − |z|)
∫ h

−h
sinβ0(h − |z′|)[K R(z, z′)− K R(h, z′)] dz′ (2.27)

�dUR = (1 − cosβ0h)−1
∫ h

−h
(cosβ0z′ − cosβ0h)[K R(0, z′)− K R(h, z′)] dz′

(2.28)

�d D = (1 − cos 1
2β0h)−1

∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)[K (0, z′)− K (h, z′)] dz′

(2.29)

�d I = (1 − cos 1
2β0h)−1

∫ h

−h
sinβ0(h − |z′|)[K I (0, z′)− K I (h, z′)] dz′ (2.30)

�dUI = (1 − cos 1
2β0h)−1

∫ h

−h
(cosβ0z′ − cosβ0h)[K I (0, z′)− K I (h, z′)] dz′.

(2.31)

These integrals may be evaluated directly by high-speed computer or reduced to the
tabulated generalized sine and cosine integral functions given by (1.42b–d) and the
exponential integral,

Ea(h, z) =
∫ h

−h

e− jβ0 R1

R1
dz′ =

∫ h

0

[
e− jβ0 R1

R1
+ e− jβ0 R2

R2

]
dz′. (2.32)

2.7 The approximate current and admittance

The final approximate expression for the current in an isolated cylindrical antenna for
which β0h < 3π/2 and β0a � 1 is

Iz(z) =
j2πV e

0

ζ0�d R cosβ0h
[sinβ0(h − |z|)+ TU (cosβ0z − cosβ0h)

+ TD(cos 1
2β0z − cos 1

2β0h)]. (2.33)

The associated driving-point admittance is

Y0 = j2π

ζ0�d R cosβ0h
[sinβ0h + TU (1 − cosβ0h)+ TD(1 − cos 1

2β0h)]. (2.34)
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Since these formulas become indeterminate when β0h = π/2, it is convenient to
use the alternative forms obtained from (2.17b) when β0h is at or near π/2. They are

Iz(z) =
− j2πV e

0

ζ0�d R
[(sinβ0|z| − sinβ0h)+ T ′

U (cosβ0z − cosβ0h)

− T ′
D(cos 1

2β0z − cos 1
2β0h)] (2.35)

Y0 = j2π

ζ0�d R
[sinβ0h − T ′

U (1 − cosβ0h)+ T ′
D(1 − cos 1

2β0h)] (2.36)

where

T ′
U = −TU + sinβ0h

cosβ0h
, T ′

D = TD

cosβ0h
. (2.37)

T ′
U and T ′

D are both finite when β0h = π/2.
When the antenna is electrically short, so that β0h < 1, the trigonometric functions

can be expanded in series and the leading terms retained. The current is then given by

Iz(z) =
j2πV e

0

ζ0�d R

[
β0h

(
1 − |z|

h

)
+ 1

2β
2
0 h2T

(
1 − z2

h2

)]
. (2.38)

This distribution includes triangular and parabolic components. The admittance is

Y0 = j2π

ζ0�d R
[β0h + 1

2β
2
0 h2T ], (2.39)

where T = TU + TD/4.

2.8 Numerical examples; comparison with experiment

Numerical computations have been made for typical antennas for which extensive
measurements are available. For these antennas a/λ = 7.022 × 10−3. The parameters
for the two critical lengths, β0h = π/2 with � = 2 ln 2h/a = 8.54 and β0h = π with
� = 9.92 are listed below:

β0h = π

2
: �d R = 6.218, T ′

U = 3.085 + j3.581,

T ′
D = 1.061 + j0.025 (2.40a)

β0h = π : �d R = 5.737, TU = −0.117 + j0.114,

TD = −0.106 + j0.108. (2.40b)

The corresponding normalized currents in amperes per volt, admittances in siemens
and impedances in ohms are as follows.
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For β0h = π/2,

Iz(z)

V e
0

= {9.597 cosβ0z − 0.067 cos 1
2β0z + 0.047 − j[2.680(sinβ0|z| − 1)

+ 8.269 cosβ0z − 2.843 cos 1
2β0z + 2.010]} × 10−3 (2.41a)

Y0 = (9.577 − j4.756)× 10−3, Z0 = 83.76 + j41.60. (2.41b)

For β0h = π ,

Iz(z)

V e
0

= {0.331(cosβ0z + 1)+ 0.314 cos 1
2β0z

− j[2.905 sinβ0|z| − 0.340(cosβ0z + 1)− 0.308 cos 1
2β0z]} × 10−3

(2.42a)

Y0 = (0.976 + j0.988)× 10−3, Z0 = 506.0 − j512.2. (2.42b)

Note that when a sinusoidal distribution of current is assumed the corresponding
impedances are for β0h = π/2, Z0 = 73.1+ j42.5 (see Section 1.7); and for β0h = π ,
Z0 = ∞.

Graphs of Iz(z)/V e
0 = [I ′′z (z) + j I ′z(z)]/V e

0 are presented in Figs. 2.3 and 2.4 for
β0h = π/2 and π together with measured values. The approximate theoretical curves
are seen to agree very well with measured values not only for β0h = π/2, but also for
β0h = π .

As can be seen from Figs. 2.3 and 2.4, and especially from the latter, the theoretical
currents at the driving point and, hence, the admittances differ somewhat from the
measured values. In order to achieve a more accurate admittance, higher-order terms
are required in the expressions for the current. Simple trigonometric functions cannot
take adequate account of the rapid change in the current near the driving point when the
antenna is not near resonance. Since higher-order terms are necessarily complicated,
their introduction would defeat the primary purpose of this formulation, namely, to
maintain a reasonably simple representation. Fortunately, there is a useful alternative.
Since the only large error in the current occurs in the quadrature component of the
current very near the driving point, it is possible to introduce a lumped susceptance Bc

across the terminals which will correct the driving-point current and the susceptance
while leaving the otherwise well-approximated current unchanged. Actually, since the
use of a lumped corrective network is required in any case to take account of the
local geometry of the junction between the feeding line and the antenna if quantitative
accuracy is desired, the addition of Bc to the susceptance BT of the terminal-zone
network is no significant complication. In practice, it may be convenient to measure
the apparent driving-point susceptance at β0h = π and use the difference between this
and the approximate theoretical value as the total lumped susceptance BT + Bc to be
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Figure 2.3 Current in upper half of half-wave dipole.

used with all theoretical values based on the approximate theory for any given ratio of
a/λ.

2.9 The radiation field

The electric field in the radiation zone of an antenna with a distribution of current Iz(z)
is given by the integral

Er = �̂��Er
�; Er

� = jωµ0

4π
sin�

e− jβ0 R0

R0

∫ h

−h
Iz(z

′)e jβ0z′ cos� dz′. (2.43)
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The far field maintained by the distribution (2.33) is obtained when

Iz(z) =
j2πV e

0

ζ0�d R cosβ0h
[sinβ0(h − |z|)+ TU (cosβ0z − cosβ0h)

+ TD(cos 1
2β0z − cos 1

2β0h)] (2.44)

is substituted in (2.43). The result may be expressed as follows:

Er
� = −V e

0

�d R

e− jβ0 R0

R0
f (�, β0h), (2.45a)

where

f (�, β0h) = [Fm(�, β0h)+ TU Gm(�, β0h)+ TD Dm(�, β0h)] secβ0h. (2.45b)



45 2.9 The radiation field

The several field functions are

Fm(�, β0h) = β0

2

∫ h

−h
sinβ0(h − |z′|)e jβ0z′ cos� sin� dz′

= cos(β0h cos�)− cosβ0h

sin�
(2.46)

Gm(�, β0h) = β0

2

∫ h

−h
(cosβ0z′ − cosβ0h)e jβ0z′ cos� sin� dz′

= sinβ0h cos(β0h cos�) cos�− cosβ0h sin(β0h cos�)

sin� cos�
(2.47)

Dm(�, β0h) = β0

2

∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)e jβ0z′ cos� sin� dz′

=
[

2 cos(β0h cos�) sin 1
2β0h − 4 sin(β0h cos�) cos 1

2β0h cos�

1 − 4 cos2 �

− sin(β0h cos�) cos 1
2β0h

cos�

]
sin�. (2.48)

For the alternative current

Iz(z) =
− j2πV e

0

ζ0�d R
[(sinβ0|z| − sinβ0h)+ T ′

U (cosβ0z − cosβ0h)

− T ′
D(cos 1

2β0z − cos 1
2β0h)], (2.49)

which is useful when β0h is at and near π/2, the far field is

Er
� = V e

0

�d R

e− jβ0 R0

R0
f ′(�, β0h), (2.50a)

where

f ′(�, β0h) = Hm(�, β0h)+ T ′
U Gm(�, β0h)− T ′

D Dm(�, β0h). (2.50b)

The new field function is

Hm(�, β0h) = β0

2

∫ h

−h
(sinβ0|z′| − sinβ0h)e jβ0z′ cos� sin� dz′

= [1 − cosβ0h cos(β0h cos�)] cos�− sinβ0h sin(β0h cos�)

sin� cos�
. (2.51)

Gm(�, β0h) and Dm(�, β0h) are as in (2.47) and (2.48).
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For the specific cases considered above, the coefficients are:

For β0h = π/2,

Hm

(
�,

π

2

)
=

cos�− sin
(π

2
cos�

)
sin� cos�

(2.52a)

Gm

(
�,

π

2

)
=

cos
(π

2
cos�

)
sin�

= Fm

(
�,

π

2

)
(2.52b)

Dm

(
�,

π

2

)
=

√
2

2

{
2 cos

(π
2

cos�
)
− 4 sin

(π
2

cos�
)

cos�

1 − 4 cos2 �

−
sin
(π

2
cos�

)
cos�

}
sin�. (2.52c)

For β0h = π ,

Fm(�, π) = cos(π cos�)+ 1

sin�
(2.53a)

Gm(�, π) = sin(π cos�)

sin� cos�
(2.53b)

Dm(�, π) = 2 cos(π cos�) sin�

1 − 4 cos2 �
. (2.53c)

In the formulas (2.45a) and (2.50a), the field is referred to the driving voltage V e
0 .

It can be referred to the current Iz(0) at the driving point with the simple substitution
of Iz(0)/Y0 for V e

0 where Y0 is the admittance given by (2.34) or (2.36). The field in
(2.45a) is then expressed as follows:

Er
� = jζ0 Iz(0)

2π

e− jβ0 R0

R0
f I (�, β0h), (2.54a)

where

f I (�, β0h) = Fm(�, β0h)+ TU Gm(�, β0h)+ TD Dm(�, β0h)

sinβ0h + TU (1 − cosβ0h)+ TD(1 − cos 1
2β0h)

. (2.54b)

The alternative form (2.50a) becomes

Er
� = jζ0 Iz(0)

2π

e− jβ0 R0

R0
f ′
I (�, β0h), (2.55a)

where

f ′
I (�, β0h) = − Hm(�, β0h)+ T ′

U Gm(�, β0h)− T ′
D Dm(�, β0h)

sinβ0h − T ′
U (1 − cosβ0h)+ T ′

D(1 − cos 1
2β0h)

. (2.55b)
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Figure 2.5 The functions Fm(�, π), Gm(�, π), Dm(�, π) and the field components f (�, π) =
fr (�, π)+ j fi (�, π) when a/λ = 7.022 × 10−3.

As a numerical illustration, the three functions Fm(�, π), Gm(�, π) and
Dm(�, π) are shown graphically in Fig. 2.5 for a full-wave antenna. They all have
nulls at � = 0 and maxima at � = 90◦. However, Gm(�, π) and Dm(�, π) have
relatively much greater values at small values of � than Fm(�, π).

If use is made of the numerical values of TU and TD given in (2.40b) for a cylindrical
antenna with a/λ = 7.022 × 10−3 [for which the distribution of current is given in
(2.42a) and the admittance and impedance in (2.42b)] the field factor

f (�, π) = fr (�, π)+ j fi (�, π) (2.56)

may be evaluated. The real and imaginary parts fr (�, π) and fi (�, π) are shown
in Fig. 2.5 together with the magnitude | f (�, π)|. If | f (�, π)| and Fm(�, π) are
divided by their respective maximum values at � = π/2, two normalized functions
are obtained. These resemble one another quite closely except for � < 30◦ where the
first one is significantly greater. However, since the field is quite small when � < 30◦,
no serious error is made in calculating the far field if the following approximations are
used when β0h ≤ π :

Gm(�, β0h)
.=

Gm

(π
2
, β0h

)
Fm

(π
2
, β0h

) Fm(�, β0h)

=
(

sinβ0h − β0h cosβ0h

1 − cosβ0h

)
Fm(�, β0h) (2.57a)
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Dm(�, β0h)
.=

Dm

(π
2
, β0h

)
Fm

(π
2
, β0h

) Fm(�, β0h)

=
(

2 sin 1
2β0h − β0h cos 1

2β0h

1 − cosβ0h

)
Fm(�, β0h) (2.57b)

Hm(�, β0h)
.=

Hm

(π
2
, β0h

)
Fm

(π
2
, β0h

) Fm(�, β0h)

=
(

1 − cosβ0h − β0h sinβ0h

1 − cosβ0h

)
Fm(�, β0h). (2.57c)

These approximations are equivalent to the use of the far-field distribution associated
with a sinusoidal current, but normalizing this to the value at � = π/2 obtained from
the three-term form of the current.

2.10 An approximate two-term theory

For all purposes when β0h ≤ π/2 and for determining the far-field and driving-point
impedance when β0h ≤ 5π/4, the difference between the distribution functions F0z =
cosβ0z − cosβ0h and H0z = cos 1

2β0z − cos 1
2β0h is small and the formulation may

be simplified further by consolidating the two terms. If F0z is substituted everywhere
for H0z , the current is well approximated as follows when β0h ≤ 5π/4:

Iz(z) =
j2πV e

0

ζ0�d R cosβ0h
[sinβ0(h − |z|)+ T (cosβ0z − cosβ0h)] (2.58)

or, in the form useful near β0h = π/2,

Iz(z) =
− j2πV e

0

ζ0�d R
[sinβ0|z| − sinβ0h + T ′(cosβ0z − cosβ0h)], (2.59)

where T and T ′ are obtained by forming TU +TD and T ′
U −T ′

D but with the substitution
�d D = �dU , �D(h) = �U (h). The function T is simply

T = �V (h)− j�d I cosβ0h

�dU cosβ0h −�U (h)
. (2.60)
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T ′ is given by

T ′ = − T + sinβ0h

cosβ0h

= [�V (h)−�U (h) sinβ0h] secβ0h +�dU sinβ0h − j�d I

�U (h)−�dU cosβ0h
(2.61a)

= [�dU + Ea(h, h)] sinβ0h − j�d I − Sa(h, h)

Ca(h, h)− [�dU + Ea(h, h)] cosβ0h
. (2.61b)

Since �U (h) = �V (h) = Ca(h, h) when β0h = π/2, this reduces simply to

T ′ =
�dU − j�d I − Sa

(
λ

4
,
λ

4

)
+ Ea

(
λ

4
,
λ

4

)

Ca

(
λ

4
,
λ

4

) (2.62)

when β0h = π/2.
For the numerical cases considered in Section 2.8 for a/λ = 7.022 × 10−3, the

results for the two-term theory are:

β0h = π/2: �d R = 6.218, T ′ = 2.65 + j3.79;
Y0 = (10.17 − j4.43)× 10−3 siemens

}
(2.63)

β0h = π : �d R = 5.737, T = −0.172 + j0.175;
Y0 = (1.021 + j1.000)× 10−3 siemens.

}
(2.64)

These are seen to be in good agreement with the values obtained with the more accurate
three-term theory. A more extensive list of numerical values of �d R , T , T ′ and Y0 =
G0 + j B0 is in Table 1 of Appendix I.

As with the three-term theory, the quadrature component of the current near the
driving point is not adequately represented by simple trigonometric functions so that
the same expedient previously described must be used in order to obtain quantitative
agreement with measured values of the susceptance. The lumped value of Bc to be
used with the two-term theory differs only slightly from that for the three-term theory.
For a/λ = 7.022 × 10−3, it is Bc = 0.72 millisiemens. This value must be added
to the two-term susceptance B0 + BT (where BT is the terminal-zone correction
for a particular transmission-line-antenna junction) in order to obtain the measurable
apparent susceptance Bsa = B0 + 0.72 + BT . It is seen in Fig. 2.6 that B0 + 0.72 is in
good agreement with the King–Middleton second-order values of B0 and the apparent
measured values corrected for the terminal-zone effects, Bsa − BT .
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Figure 2.6 King–Middleton second-order admittance Y = G + j B. Two-term zero-order
admittance Y0 = G0 + j B0, and measured.

2.11 The receiving antenna

The general method of analysis introduced in this chapter as a means of analyzing
the center-driven cylindrical antenna can be extended readily to the center-loaded
receiving antenna in an incident plane-wave field. For the purposes of this book1 –
which includes the properties of receiving arrays – it is sufficient to treat only the
simple case of normal incidence with the electric vector parallel to the z-axis which

1 A more detailed analysis of the receiving antenna is in [1], Chapter 4.
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is the axis of the antenna. The antenna is, therefore, in the plane wave front of the
incident wave which may be assumed to travel in the positive x direction. That is
E inc

z (x) = E inc
z e− jβ0x where E inc

z is the constant amplitude. The boundary condition
that requires the total tangential electric field to vanish on the surface of the antenna
gives(

d2

dz2
+ β2

0

)
Az(z) = − jβ2

0

ω
E inc

z = −β2
0 Ainc

z (2.65)

instead of (2.2). In (2.65), Az(z) is the vector potential due to the currents in the receiv-
ing antenna itself. Ainc

z is the constant amplitude of the vector potential maintained on
the surface of the antenna by the distant transmitter. Note that E inc

z = − jωAinc
z . Since

the axis of the antenna lies in the wave front, even symmetry obtains with respect to
z for both the current and the associated vector potential so that Az(−z) = Az(z),
Iz(−z) = Iz(z). It follows that, on an unloaded receiving or scattering antenna, the
vector potential on the surface of the antenna due to the currents in the antenna satisfies
the equations

4πµ−1
0 Az(z) =

∫ h

−h
Iz(z

′)
e− jβ0 R

R
dz′ = − j4π

ζ0
[C1 cosβ0z + U inc], (2.66)

where C1 is an arbitrary constant to be evaluated from the condition Iz(h) = 0 and

U inc = E inc
z

β0
= − jωAinc

z

β0
. (2.67)

This integral equation is like (2.4) with an added constant term on the right and with
V e

0 = 0. If the same rearrangement is carried out as for (2.11), the result is

4πµ−1
0 [Az(z)− Az(h)] =

∫ h

−h
Iz(z

′)Kd(z, z′) dz′

= − j4π

ζ0
[C1 cosβ0z + U + U inc], (2.68)

where U , as defined in (2.12), is proportional to the vector potential at z = h, ρ = a
due to the currents in the antenna; U inc, as defined in (2.67), is proportional to the
vector potential maintained on the surface of the antenna by the distant transmitter.
The sum U + U inc is proportional to the total vector potential on the surface of the
antenna.

Since the integral equation (2.68) is just like (2.11) with V e
0 = 0, it follows that the

rearranged equation corresponding to (2.15) is∫ h

−h
Iz(z

′)Kd(z, z′) dz′ = j4π(U + U inc)

ζ0 cosβ0h
(cosβ0z − cosβ0h). (2.69)
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The approximate solution of this equation is like (2.33) with V e
0 = 0. It is obtained

with �d D = �dU , �D(h) = �U (h). It is

Iz(z) = j4πU inc

ζ0 Q
[�d D(cosβ0z − cosβ0h)− j�dUI(cos 1

2β0z − cos 1
2β0h)], (2.70)

where Q is defined in (2.25), �d D in (2.29) and �dUI in (2.31). This solution for the
unloaded receiving antenna corresponds to the three-term form (2.33) for the driven
antenna. Corresponding to the simpler two-term approximation (2.58) for the driven
antenna is the expression

Iz(z) = j4πE inc
z

ωµ0

[
cosβ0z − cosβ0h

�dU cosβ0h −�U (h)

]
. (2.71)

In (2.71), U inc has been set equal to E inc
z /β0, its value when the normally incident

plane wave has its electric component parallel to the axis of the receiving antenna.
When the axis of the antenna is oriented at an arbitrary angle with respect to the
incident E-vector, the distribution of current is much more complicated. In particular,
if the antenna does not lie in the plane wave front (surface of constant phase) of the
incident field, the current and the vector potential have components with both even and
odd symmetries with respect to z.

If the antenna is cut at z = 0 and a load ZL is connected in series with the halves of
the antenna, the current in the antenna is readily obtained. Note first that, if a generator
with voltage V e

0 is connected across the terminals at z = 0 instead of the load, the
resulting current in the antenna is

Iz(z) = V e
0 v(z)+ U incu(z), (2.72)

where v(z) is Iz(z)/V e
0 as obtained from (2.44) and u(z) is Iz(z)/U inc as obtained

from (2.71). If now V e
0 is replaced by the negative of the voltage drop across a load

ZL that is connected across the terminals of the antenna, that is,

V e
0 = −Iz(0)ZL , (2.73)

V e
0 is readily eliminated between (2.73) and (2.72). With Z0, the driving-point

impedance of the same antenna when driven, the result can be expressed as follows:

Iz(z) = U inc
[

u(z)− v(z)u(0)
ZL Z0

ZL + Z0

]
. (2.74)

This is the current at any point z in the center-loaded receiving antenna. The current in
the load at z = 0 is simply

Iz(0) = U incu(0)
Z0

Z0 + ZL
(2.75)
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since v(0) = 1/Z0. When ZL = 0, this gives Iz(0) = U incu(0). The voltage drop
across the load is

Iz(0)ZL = U incu(0)
Z0 ZL

Z0 + ZL
. (2.76)

When ZL → ∞, this is the open-circuit voltage across the terminals at z = 0. That is

V (ZL → ∞) = lim
ZL→∞

Iz(0)ZL = U incu(0)Z0 = [Iz(0)Z0]ZL=0. (2.77)

It is now clear that with (2.67) and (2.75) the current in the load is given by

Iz(0) = V (ZL → ∞)

Z0 + ZL
= E inc

z u(0)Z0

β0(Z0 + ZL)
. (2.78)

This is the current in a simple series circuit that consists of a generator with EMF equal
to the open-circuit voltage across the terminals of the receiving antenna in series with
the impedance of the antenna and the impedance of the load. The same conclusion is
readily obtained by the application of Thévenin’s theorem.

The quantity

u(0)Z0/β0 = 2he

(π
2

)
, (2.79)

which occurs in (2.78) and is dimensionally a length, is known as the complex effective
length of the receiving antenna with actual length 2h. With (2.79), the current in the
load is

Iz(0) =
2he

(π
2

)
E inc

z

Z0 + ZL
. (2.80)

Note that (2.78), (2.79) and (2.80) apply only when the axis of the receiving antenna is
parallel to the incident electric vector and, therefore, also perpendicular to the direction
of propagation of the incident wave. Similar but more general expressions that involve
the orientation of the antenna relative to the incident wave and the direction of the
electric vector in the plane wave front are available in the literature.2

2 See, for example, [1], Chapter 4, Section 4.
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3.1 The method of symmetrical components

An array is a configuration of two or more antennas so arranged that the superposition
of the electromagnetic fields maintained at distant points by the currents in the
individual elements yields a resultant field that fulfils certain desirable directional
properties. Since the individual elements in an array are quite close together – the
distance between adjacent elements is often a half-wavelength or less – the currents
in them necessarily interact. It follows that the distributions of both the amplitude and
the phase of the current along each element depend not only on the length, radius,
and driving voltage of that element, but also on the distributions in amplitude and
phase of the currents along all elements in the array. Since these currents are the
primary unknowns from which the radiation field and the driving-point admittance are
computed, it is essential that they be determined accurately and not arbitrarily assumed
to have identical distributions, as in uniform array theory.

In order to introduce the properties of arrays in a simple and direct manner, it is
advantageous to study first the two-element array in some detail. The integral equation
(2.15) for the current in a single isolated antenna is readily generalized to apply to
the two identical parallel and non-staggered elements shown in Fig. 3.1. It is merely
necessary to add to the vector potential on the surface of each element the contributions
by the current in the other element. Thus, for element 1, the vector potential difference
is

4πµ−1
0 [A1z(z)− A1z(h)]

=
∫ h

−h
[I1z(z

′)K11d(z, z′)+ I2z(z
′)K12d(z, z′)] dz′

= j4π

ζ0 cosβ0h
[ 1

2 V10 sinβ0(h − |z|)+ U1(cosβ0z − cosβ0h)]. (3.1)

54
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Figure 3.1 Two identical parallel antennas.

Similarly, for element 2:

4πµ−1
0 [A2z(z)− A2z(h)]

=
∫ h

−h
[I1z(z

′)K21d(z, z′)+ I2z(z
′)K22d(z, z′)] dz′

= j4π

ζ0 cosβ0h
[ 1

2 V20 sinβ0(h − |z|)+ U2(cosβ0z − cosβ0h)]. (3.2)

In these expressions

K11d(z, z′) = e− jβ0 R11

R11
− e− jβ0 R11h

R11h
= K11(z, z′)− K11(h, z′) (3.3a)

K12d(z, z′) = e− jβ0 R12

R12
− e− jβ0 R12h

R12h
= K12(z, z′)− K12(h, z′) (3.3b)

with

R11 =
√
(z − z′)2 + a2, R11h =

√
(h − z′)2 + a2 (3.4a)

R12 =
√
(z − z′)2 + b2, R12h =

√
(h − z′)2 + b2. (3.4b)

K22d(z, z′) and K21d(z, z′) are obtained from the above formulas when 1 is substituted
for 2 and 2 for 1 in the subscripts.
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The two simultaneous integral equations (3.1) and (3.2) can be reduced to a single
equation in two special cases. These are (a) the so-called zero-phase sequence when
the two driving voltages are identical so that the two currents are the same, and (b) the
first-phase sequence when the two driving voltages and the resulting two currents are
equal in magnitude but 180◦ out of phase. Specifically, for the zero-phase sequence,

V10 = V20 = V (0), I1z(z) = I2z(z) = I (0)z (z), (3.5)

so that the equations (3.1) and (3.2) both become∫ h

−h
I (0)z (z′)K (0)

d (z, z′) dz′

= j4π

ζ0 cosβ0h
[ 1

2 V (0) sinβ0(h − |z|)+ U (0)(cosβ0z − cosβ0h)], (3.6)

where

U (0) = − jζ0

4π

∫ h

−h
I (0)z (z′)K (0)(h, z′) dz′ (3.7)

and

K (0)(z, z′) = e− jβ0 R11

R11
+ e− jβ0 R12

R12
,

K (0)
d (z, z′) = K (0)(z, z′)− K (0)(h, z′).


 (3.8)

Similarly, for the first-phase sequence,

V10 = −V20 = V (1), I1z(z) = −I2z(z) = I (1)z (z), (3.9)

so that the two equations again become alike and equal to∫ h

−h
I (1)z (z′)K (1)

d (z, z′) dz′

= j4π

ζ0 cosβ0h
[ 1

2 V (1) sinβ0(h − |z|)+ U (1)(cosβ0z − cosβ0h)], (3.10)

where

U (1) = − jζ0

4π

∫ h

−h
I (1)z (z′)K (1)(h, z′) dz′ (3.11)

and

K (1)(z, z′) = e− jβ0 R11

R11
− e− jβ0 R12

R12
,

K (1)
d (z, z′) = K (1)(z, z′)− K (1)(h, z′).


 (3.12)
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Note that the two phase sequences differ only in the sign in K (0)(z, z′) and K (1)(z, z′).
If (3.6) can be solved for the zero-phase-sequence current I (0)z (z) and (3.10) for the

first-phase-sequence current I (1)z (z), the currents I1z(z) and I2z(z) maintained by the
arbitrary voltages V10 and V20 can be obtained simply by superposition. This follows
directly if V (0) and V (1) are so chosen that

V (0) = 1
2 [V10 + V20], V (1) = 1

2 [V10 − V20]. (3.13)

In this case,

V10 = V (0) + V (1), V20 = V (0) − V (1) (3.14)

so that

I1z(z) = I (0)z (z)+ I (1)z (z), I2z(z) = I (0)z (z)− I (1)z (z). (3.15)

3.2 Properties of integrals

The two integral equations (3.6) and (3.10) for the phase-sequence currents are
formally exactly like the equation (2.15) for the isolated antenna. They differ only
in the kernels of the integrals on the left and in the definitions (3.7) and (3.11) of the
functions U . Each of these is now the algebraic sum of two terms that are identical
except that the radius a appears in the first term, the distance b between the elements
in the second term.

The two elements may be considered close together when β0b < 1 and b < h. In
this case, since b satisfies substantially the same conditions as a, the behavior of the
integrals that contain b corresponds closely to that of the integrals that contain a. These
are discussed in the preceding chapter. When the separation of the two elements is such
that β0b > 1 but not so great that β0

√
b2 + h2 differs negligibly from β0b, the vector

potentials maintained by the currents on the one antenna at points along the surface
of the other differ significantly from one another in phase due to retarded action. A
detailed investigation1 has been made of the four current distributions involved in
(2.33) and (2.35) which lead to the integrals

S1(z) = sinβ0h Cρ(h, z)− cosβ0h Sρ(h, z) (3.16a)

S2(z) = −Sρ(h, z)+ sinβ0h Eρ(h, z) (3.16b)

C(z) = Cρ(h, z)− cosβ0h Eρ(h, z) (3.16c)

D(z) = Dρ(h, z)− cos 1
2β0h Eρ(h, z), (3.16d)

1 See [1], pp. 1456–1458.
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where Cρ(h, z) and Sρ(h, z) are defined in (1.42b–d) with a replaced by ρ, Eρ(h, z)
is defined in (2.32) with a replaced by ρ, and

Dρ(h, z) =
∫ h

0
cos 1

2β0z′
(

e− jβ0 R1

R1
+ e− jβ0 R2

R2

)
dz′, (3.17a)

where

R1 =
√
(z − z′)2 + b2, R2 =

√
(z + z′)2 + b2. (3.17b)

Accurately calculated three-dimensional graphs2 of S1(z), S2(z), C(z), and D(z) for
β0h = π , π/2, and 1.2 show that the real parts of all four of these functions quite
accurately correspond to cylindrical waves when b ≥ h and −h ≤ z ≤ h and that they
are reasonable approximations when β0b ≥ 1, −h ≤ z ≤ h. The respective amplitudes
are S1(0), S2(0), C(0), and D(0). It follows that for most purposes the distribution of
current induced by the real part of any of the four functions (3.16a–d) in a parallel
dipole when this is at distances b that satisfy the inequality β0b ≥ 1 can be assumed
to be like that induced by a normally incident plane wave, namely cosβ0z − cosβ0h.
In special cases, such as that of the resonant circular array analyzed in Chapter 11,
the more severe condition b ≥ h may have to be enforced. The distribution of current
induced by the imaginary part of any of the four functions is closely approximated by
cos 1

2β0z − cos 1
2β0h for all values of β0b when β0h ≤ 5π/4.

In order to verify the correctness of these conclusions the difference integral

Sb(h, z)− Sb(h, h) =
∫ h

−h
sinβ0|z′| Kd(z, z′) dz′ (3.18)

has been evaluated for β0h = π over a range of values of β0b extending from 0.04
to 4.5. The real and imaginary parts are shown in Fig. 3.2 together with the three
trigonometric functions, sinβ0z, (cosβ0z +1) and cos 1

2β0z, to which the sine, shifted
cosine and shifted cosine with half-angle arguments reduce when β0h = π . For
convenience in the graphical comparison, −(cosβ0z + 1) and − cos 1

2β0z are shown.
It is evident from Fig. 3.2 that the real part of the difference integral approximates
sinβ0z when β0b < 1, 1 + cosβ0z when β0b ≥ 1. On the other hand, the imaginary
part resembles the shifted cosine with half-angle arguments, in this case cos 1

2β0z, for
all values of β0b.

As a consequence of these observations, the following approximate representation
of the integrals in (3.6) and (3.10) is indicated. For β0b < 1,

∫ h

−h
Iz(z

′)
(

cosβ0 R12

R12
− cosβ0 R12h

R12h

)
dz′ = �12(z)Iz(z)

.= �12 Iz(z), (3.19a)

2 For examples, see [1], Figs. 1, 2, and 3.
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Figure 3.2 The functions Sb(h, z)− Sb(h, h) compared with three trigonometric functions.

where �12 is a constant. For β0b ≥ 1,∫ h

−h
Iz(z

′)
(

cosβ0 R12

R12
− cosβ0 R12h

R12h

)
dz′ ∼ cosβ0z − cosβ0h. (3.19b)

For all values of β0b∫ h

−h
Iz(z

′)
(

sinβ0 R12

R12
− sinβ0 R12h

R12h

)
dz′ ∼ cos 1

2β0z − cos 1
2β0h. (3.19c)

3.3 Reduction of integral equations for phase sequences to algebraic
equations

The relations (3.19a, b, c), combined with the results of Chapter 2, indicate that the
current in each of the two coupled elements in both phase sequences must have leading
terms that are well approximated by the following zero-order, three-term formula:

I (m)
z (z)

.= [I (m)
z (z)]0 = I (m)

V [sinβ0(h − |z|)+ T (m)
U (cosβ0z − cosβ0h)

+ T (m)
D (cos 1

2β0z − cos 1
2β0h)], (3.20)

where m = 0 or 1 and I (m)
V , T (m)

U and T (m)
D are complex coefficients that must be

determined.
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The substitution of (3.20) into the integral in (3.6) and (3.10) involves the following
parts obtained from the real part K (m)

dR (z, z′) of the difference kernel K (m)
d (z, z′)

defined in (3.8) and (3.12) for m = 0 and 1:

β0b < 1,
∫ h

−h
sinβ0(h − |z′|)K (m)

dR (z, z′) dz′ .= �
(m)
dR sinβ0(h − |z|) (3.21a)

β0b ≥ 1,
∫ h

−h
sinβ0(h − |z′|)K (m)

dR (z, z′) dz′ .= �dR sinβ0(h − |z|)

+�
(m)
d�R(cosβ0z − cosβ0h). (3.21b)

For all values of β0b,3∫ h

−h
(cosβ0z′ − cosβ0h)K (m)

dR (z, z′) dz′ .= �
(m)
dU R(cosβ0z − cosβ0h) (3.22a)

∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)K (m)

dR (z, z′) dz′ .= �
(m)
d DR(cos 1

2β0z − cos 1
2β0h). (3.22b)

The corresponding integrals obtained with the imaginary part K (m)
dI (z, z′) of the

difference kernel K (m)
d (z, z′) are valid for all values of β0b. They are:

∫ h

−h
sinβ0(h − |z′|)K (m)

dI (z, z′) dz′ .= �
(m)
dI (cos 1

2β0z − cos 1
2β0h) (3.23a)

∫ h

−h
(cosβ0z′ − cosβ0h)K (m)

dI (z, z′) dz′ .= �
(m)
dU I (cos 1

2β0z − cos 1
2β0h) (3.23b)

∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)K (m)

dI (z, z′) dz′ .= �
(m)
d DI (cos 1

2β0z − cos 1
2β0h). (3.23c)

The several � functions introduced in the above expressions are defined as follows:

3 Strictly according to (3.19b) the integral in (3.22b) should be treated separately with different behaviors when
β0b < 1 and β0b ≥ 1. However, since the distributions cosβ0z − cosβ0h and cos(β0z/2) − cos(β0h/2) are
quite similar when β0h ≤ 5π/4, and since considerable complication is avoided by not making this separation,
the relation (3.22b) is used for both real and imaginary parts of the kernel and for all spacings.
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The following apply for all values of β0b:

�
(m)
dI = (1 − cos 1

2β0h)−1
∫ h

−h
sinβ0(h − |z′|)K (m)

dI (0, z′) dz′ (3.26)

�
(m)
dU R = (1 − cosβ0h)−1

∫ h

−h
(cosβ0z′ − cosβ0h)K (m)

dR (0, z′) dz′ (3.27a)

�
(m)
dU I = (1 − cos 1

2β0h)−1
∫ h

−h
(cosβ0z′ − cosβ0h)K (m)

dI (0, z′) dz′ (3.27b)

�
(m)
d D = (1 − cos 1

2β0h)−1
∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)K (m)

d (0, z′) dz′. (3.28)

For each pair of real and imaginary parts, the notation �d = �dR + j�dI will be
used.

When (3.20) is substituted in U (m) as defined in (3.7) and (3.11), the notation of
(2.20)–(2.21c) applies in the form

U (m) = − jζ0

4π
I (m)
V [�(m)

V (h)+ T (m)
U �

(m)
U (h)+ T (m)

D �
(m)
D (h)], (3.29)

where

�
(m)
V (h) =

∫ h

−h
sinβ0(h − |z′|)K (m)(h, z′) dz′ (3.30)

�
(m)
U (h) =

∫ h

−h
(cosβ0z′ − cosβ0h)K (m)(h, z′) dz′ (3.31)

�
(m)
D (h) =

∫ h

−h
(cos 1

2β0z′ − cos 1
2β0h)K (m)(h, z′) dz′ (3.32)

with m = 0, 1.
If the approximate formulas for the several parts of the integrals when β0b < 1

are substituted in (3.6) and (3.10), an algebraic equation is obtained that is just like
(2.22) for the single antenna but with superscripts (m) on I , T , �, V and U . It follows
that (2.23a), (2.24), (2.25) and (2.26) give the solutions for I (m)

V , T (m)
U and T (m)

D if
superscripts (m) are affixed to all �’s and V (m) replaces V e

0 .
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When β0b ≥ 1, the equation corresponding to (2.22) has the following slightly
different form:

(
I (m)
V �dR − j2πV (m)

ζ0 cosβ0h

)
sinβ0(h − |z|)

+
(

I (m)
V �

(m)
d�R + I (m)

V T (m)
U �

(m)
dU R − j4πU (m)

ζ0 cosβ0h

)
(cosβ0z − cosβ0h)

+ I (m)
V ( j�(m)

dI + j�(m)
dU I T (m)

U +�
(m)
d D T (m)

D )(cos 1
2β0z − cos 1

2β0h) = 0. (3.33)

If the coefficients of the trigonometric functions are individually equated to zero and
(3.29) is substituted for U (m), three relations corresponding to (2.23a–c) are obtained.
They are readily solved to give

I (m)
V = j2πV (m)

ζ0�dR cosβ0h
(3.34)

T (m)
U = {�(m)

d D [�(m)
V (h)−�

(m)
d�R cosβ0h] − j�(m)

D (h)�(m)
dI }/Q(m) (3.35)

T (m)
D = − j{�(m)

dI [�(m)
dU R cosβ0h −�

(m)
U (h)]

+ �
(m)
dU I [�(m)

V (h)−�
(m)
d�R cosβ0h]}/Q(m) (3.36)

Q(m) = �
(m)
d D [�(m)

dU R cosβ0h −�
(m)
U (h)] + j�(m)

D (h)�(m)
dU I . (3.37)

As throughout this chapter, m = 0, 1.

3.4 The phase-sequence currents and admittances

With the three coefficients I (m)
V , T (m)

U and T (m)
D determined, the phase-sequence

currents and the admittances may be written down directly. When β0b < 1, they are

I (m)
z (z) = j2πV (m)

ζ0�
(m)
dR cosβ0h

[sinβ0(h − |z|)+ T (m)
U (cosβ0z − cosβ0h)

+ T (m)
D (cos 1

2β0z − cos 1
2β0h)] (3.38)

Y (m) = j2π

ζ0�
(m)
dR cosβ0h

[sinβ0h + T (m)
U (1 − cosβ0h)+ T (m)

D (1 − cos 1
2β0h)]

(3.39)
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with

T (m)
U = [�(m)

V (h)�(m)
d D − j�(m)

D (h)�(m)
dI ]/Q(m) (3.40)

T (m)
D = − j{�(m)

dI [�(m)
dU R cosβ0h −�

(m)
U (h)] +�

(m)
V (h)�(m)

dU I }/Q(m) (3.41)

Q(m) = �
(m)
d D [�(m)

dU R cosβ0h −�
(m)
U (h)] + j�(m)

D (h)�(m)
dU I . (3.42)

The functions �(m) are defined in (3.24), (3.26)–(3.28) and (3.30)–(3.32). For the
zero-phase sequence, m = 0; for the first-phase sequence, m = 1.

As for the single antenna, these formulas for I (m)
z (z) and Y (m)

0 become indeterminate
when β0h = π/2. Convenient alternative forms when β0h is at or near π/2 are

I (m)
z (z) = − j2πV (m)

ζ0�
(m)
dR

[(sinβ0|z| − sinβ0h)+ T ′(m)
U (cosβ0z − cosβ0h)

− T ′(m)
D (cos 1

2β0z − cos 1
2β0h)] (3.43)

Y (m) = j2π

ζ0�
(m)
dR

[sinβ0h − T ′(m)
U (1 − cosβ0h)+ T ′(m)

D (1 − cos 1
2β0h)] (3.44)

where, as in (2.37),

T ′(m)
U = −T (m)

U + sinβ0h

cosβ0h
, T ′(m)

D = T (m)
D

cosβ0h
. (3.45)

T (m)
U and T (m)

D are given in (3.40) and (3.41).
When β0b ≥ 1, the general form of the expressions for the phase-sequence current

and admittance are similar to those for β0b < 1. They are

I (m)
z (z) = j2πV (m)

ζ0�dR cosβ0h
[sinβ0(h − |z|)+ T (m)

U (cosβ0z − cosβ0h)

+ T (m)
D (cos 1

2β0z − cos 1
2β0h)] (3.46)

Y (m) = j2π

ζ0�dR cosβ0h
[sinβ0h + T (m)

U (1 − cosβ0h)+ T (m)
D (1 − cos 1

2β0h)]

(3.47)

with T (m)
U and T (m)

D given by (3.35) and (3.36) with (3.37). Similarly, when β0h is near
π/2 and β0b ≥ 1,

I (m)
z (z) = − j2πV (m)

ζ0�dR
[(sinβ0|z| − sinβ0h)+ T ′(m)

U (cosβ0z − cosβ0h)

− T ′(m)
D (cos 1

2β0z − cos 1
2β0h)] (3.48)

Y (m) = j2π

ζ0�dR
[sinβ0h − T ′(m)

U (1 − cosβ0h)+ T ′(m)
D (1 − cos 1

2β0h)]. (3.49)
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The parameters T ′(m)
U and T ′(m)

D are defined as in (3.45); T (m)
U and T (m)

D are given by
(3.35) and (3.36).

Note that the currents and admittances when β0b ≥ 1 differ from those when β0b <

1 not only in the T (or T ′) parameters but also in the appearance of �dR for the isolated
antenna instead of �(m)

dR for the coupled pair.

3.5 Currents for arbitrarily driven antennas; self- and mutual admittances
and impedances

With the phase-sequence currents I (0)z (z) and I (1)z (z) determined, it is straightforward
to obtain the expressions for the currents I1z(z) and I2z(z) in the two antennas when
they are driven by the arbitrary voltages V10 and V20. If

V (0) = 1
2 (V10 + V20), V (1) = 1

2 (V10 − V20) (3.50)

it follows that, when β0b ≥ 1,

I1z(z) = I (0)z (z)+ I (1)z (z) = V10v(z)+ V20w(z) (3.51a)

I2z(z) = I (0)z (z)− I (1)z (z) = V10w(z)+ V20v(z), (3.51b)

where

v(z) = j2π

ζ0�dR cosβ0h
[sinβ0(h − |z|)+ 1

2 (T
(0)

U + T (1)
U )(cosβ0z − cosβ0h)

+ 1
2 (T

(0)
D + T (1)

D )(cos 1
2β0z − cos 1

2β0h)] (3.52a)

w(z) = j2π

ζ0�dR cosβ0h
[ 1

2 (T
(0)

U − T (1)
U )(cosβ0z − cosβ0h)

+ 1
2 (T

(0)
D − T (1)

D )(cos 1
2β0z − cos 1

2β0h)]. (3.52b)

Alternatively, when β0h is near π/2,

v(z) = − j2π

ζ0�dR
[(sinβ0|z| − sinβ0h)+ 1

2 (T
′(0)

U + T ′(1)
U )(cosβ0z − cosβ0h)

− 1
2 (T

′(0)
D + T ′(1)

D )(cos 1
2β0z − cos 1

2β0h)] (3.52c)

w(z) = − j2π

ζ0�dR
[ 1

2 (T
′(0)

U − T ′(1)
U )(cosβ0z − cosβ0h)

− 1
2 (T

′(0)
D − T ′(1)

D )(cos 1
2β0z − cos 1

2β0h)]. (3.52d)
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The corresponding expressions when β0b < 1 are easily obtained from (3.38). The
driving-point currents may be expressed in the form

I1z(0) = V10Ys1 + V20Y12 (3.53a)

I2z(0) = V10Y21 + V20Ys2, (3.53b)

where Ys1 and Ys2 are the self-admittances, Y12 and Y21 are the mutual admittances.
They are given by

Ys1 = Ys2 = v(0) = 1
2 (Y

(0) + Y (1)) (3.54)

Y21 = Y12 = w(0) = 1
2 (Y

(0) − Y (1)). (3.55)

Specifically,

Ys1 = Ys2 = v(0) = jπ

ζ0�dR cosβ0h
[2 sinβ0h + (T (0)

U + T (1)
U )(1 − cosβ0h)

+ (T (0)
D + T (1)

D )(1 − cos 1
2β0h)] (3.56)

Y12 = Y21 = w(0) = jπ

ζ0�dR cosβ0h
[(T (0)

U − T (1)
U )(1 − cosβ0h)

+ (T (0)
D − T (1)

D )(1 − cos 1
2β0h)]. (3.57)

When β0h = π/2, the self- and mutual admittances are

Ys2 = Ys1 = jπ

ζ0�dR
[2 sinβ0h − (T ′(0)

U + T ′(1)
U )(1 − cosβ0h)

+ (T ′(0)
D + T ′(1)

D )(1 − cos 1
2β0h)] (3.58)

Y21 = Y12 = − jπ

ζ0�dR
[(T ′(0)

U − T ′(1)
U )(1 − cosβ0h)− (T ′(0)

D − T ′(1)
D )(1 − cos 1

2β0h)].

(3.59)

The associated self- and mutual impedances are the coefficients of the currents in
the equations

V10 = I1z(0)Zs1 + I2z(0)Z12 (3.60a)

V20 = I1z(0)Z21 + I2z(0)Zs2. (3.60b)

It is readily shown that

Zs1 = Ys2/D = 1
2 (Z (0) + Z (1)); Zs2 = Ys1/D = 1

2 (Z (0) + Z (1)) (3.61a)

Z12 = −Y21/D = 1
2 (Z (0) − Z (1)); Z21 = −Y12/D = 1

2 (Z (0) − Z (1)), (3.61b)
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where D = Ys1Ys2 − Y12Y21 = (Zs1 Zs2 − Z12 Z21)
−1. If lumped impedances Z1 and

Z2 are connected in series with V10 and V20, Zs1 and Zs2 in (3.60a, b) are replaced by
Z11 = Zs1 + Z1 and Z22 = Zs2 + Z2.

This completes the general formulation for the currents and admittances of two
parallel antennas driven by the arbitrary voltages V10 and V20.

3.6 Currents for one driven, one parasitic antenna

If antenna 2 is parasitic instead of driven and is center-loaded by an arbitrary
impedance Z2, the driving voltage V20 may be replaced by the negative of the voltage
drop across the load. Thus,

V20 = −I2z(0)Z2 = −I2z(0)/Y2. (3.62)

If (3.62) is substituted in (3.53b), the result is

I2z(0) = V10
Y21

1 + Ys2 Z2
= −V10

Z21

Zs2(Zs1 + Z2)+ Z12 Z21
, (3.63)

so that

V20 = −V10

(
Y21

Y2 + Ys2

)
= V10

Z21 Z2

Zs2(Zs1 + Z2)+ Z12 Z21
. (3.64)

It follows from (3.51a, b) that

I1z(z) = V10

[
v(z)−

(
Y21

Y2 + Ys2

)
w(z)

]
(3.65a)

I2z(z) = V10

[
w(z)−

(
Y21

Y2 + Ys2

)
v(z)

]
. (3.65b)

The driving-point admittance and impedance are

Y1in = I1z(0)

V10
= Ys1 − Y21Y12

Y2 + Ys2
(3.66a)

Z1in = 1

Y1in
= Zs1(Zs2 + Z2)+ Z12 Z21

Zs2 + Z2
. (3.66b)

Note that when Z2 = 0 or Y2 = ∞,

Y1in = Ys1; I1z(z) = V10v(z); I2z(z) = V10w(z). (3.67a)
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Alternatively, when Z2 = ∞ or Y2 = 0,

Z1in = Zs1; I1z(z) = V10

[
v(z)− Y21

Ys2
w(z)

]
;

I2z(z) = V10

[
w(z)− Y21

Ys2
v(z)

]
.




(3.67b)

The parasitic element is tuned to resonance when Y2 = j B2 and B2 = −Bs2 in
Ys2 = Gs2 + j Bs2. With this choice, Y21/(Y2 + Ys2) is maximized so that

I1z(z) = V10

[
v(z)− Y21

Gs2
w(z)

]
(3.68a)

I2z(z) = V10

[
w(z)− Y21

Gs2
v(z)

]
. (3.68b)

Since the coefficient Y21/Gs2 is of the order of magnitude of one, the coefficients of
v(z) and w(z) are comparable. It follows that the distributions of I1z(z) and I2z(z) are
roughly similar, whereas when Z2 = 0 as in (3.67a), they are quite different unless
β0h is near π/2.

3.7 The couplet

Perhaps the most interesting two-element array is the couplet in which the distance
between the elements is λ/4 and the currents at the driving points are equal in
amplitude but differ in phase by a quarter period. That is

I2z(0) = j I1z(0). (3.69)

It follows from (3.60a, b) that with Z12 = Z21 and Zs2 = Zs1,

V10 = I1z(0)[Zs1 + j Z12] (3.70a)

V20 = I2z(0)[Zs1 − j Z12] = I1z(0)[Z12 + j Zs1]. (3.70b)

Hence,

Z1in = Zs1 + j Z12, Z2in = Zs1 − j Z12. (3.70c)

The distributions of current are obtained from (3.51a, b). Thus

I1z(z) = V10

[
v(z)+ Z12 + j Zs1

Zs1 + j Z12
w(z)

]
(3.71a)

I2z(z) = V10

[
w(z)+ Z12 + j Zs1

Zs1 + j Z12
v(z)

]
. (3.71b)



68 The two-element array

Instead of specifying the driving-point currents I1z(0) and I2z(0) as in (3.69), the
driving voltages may be assigned so that

V20 = j V10. (3.72)

It then follows from (3.53a, b) that

I1z(0) = V10(Ys1 + jY12) (3.73a)

I2z(0) = V20(Ys1 − jY12) = V10(Y12 + jYs1). (3.73b)

The driving-point admittances are

Y1in = Ys1 + jY12, Y2in = Ys1 − jY12. (3.74)

The currents are obtained from (3.51a, b) with (3.61a, b). Thus,

I1z(z) = V10

[
v(z)+ Y12 + jYs1

Ys1 − jY12
w(z)

]

= V10

[
v(z)− Z12 − j Zs1

Zs1 + j Z12
w(z)

]
(3.75a)

I2z(z) = V10

[
w(z)+ Y12 + jYs1

Ys1 − jY12
v(z)

]

= V10

[
w(z)− Z12 − j Zs1

Zs1 + j Z12
v(z)

]
. (3.75b)

The currents are not the same when I1z(0) and I2z(0) are specified as when V10 and
V20 are assigned. Note that

[I1z(z)]I − [I1z(z)]V = 2V10 Z12w(z) (3.76a)

[I2z(z)]I − [I2z(z)]V = 2V10 Z12v(z). (3.76b)

If the currents differ significantly, the field patterns cannot be the same.

3.8 Field patterns

The radiation field of an array of two parallel elements is the vector sum of the
fields maintained by the currents in the individual elements. In terms of the spherical
coordinates R, �, �, that have their origin midway between the centers of the two
elements, the individual electric fields are readily expressed in the form (2.45a, b) for
the currents (3.51a, b). Thus
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Er
�1 = − 1

�dR

e− jβ0 R1

R
[V10 f (�, β0h)+ V20g(�, β0h)] (3.77a)

Er
�2 = − 1

�dR

e− jβ0 R2

R
[V10g(�, β0h)+ V20 f (�, β0h)], (3.77b)

where

R1 = R + b

2
cos� sin� (3.78a)

R2 = R − b

2
cos� sin� (3.78b)

f (�, β0h) = [Fm(�, β0h)+ 1
2 (T

(0)
U + T (1)

U )Gm(�, β0h)

+ 1
2 (T

(0)
D + T (1)

D )Dm(�, β0h)] secβ0h (3.79)

g(�, β0h) = [ 1
2 (T

(0)
U − T (1)

U )Gm(�, β0h)+ 1
2 (T

(0)
D − T (1)

D )Dm(�, β0h)] secβ0h.

(3.80)

The field functions Fm(�, β0h), Gm(�, β0h) and Dm(�, β0h) are defined in (2.46),
(2.47) and (2.48). Alternatively, when β0h is near π/2, the fields for the currents
(3.52c, d) are:

Er
�1 = 1

�dR

e− jβ0 R1

R
[V10 f ′(�, β0h)+ V20g′(�, β0h)] (3.81a)

Er
�2 = 1

�dR

e− jβ0 R2

R
[V10g′(�, β0h)+ V20 f ′(�, β0h)] (3.81b)

f ′(�, β0h) = Hm(�, β0h)+ 1
2 (T

′(0)
U + T ′(1)

U )Gm(�, β0h)

− 1
2 (T

′(0)
D + T ′(1)

D )Dm(�, β0h) (3.82)

g′(�, β0h) = 1
2 (T

′(0)
U − T ′(1)

U )Gm(�, β0h)− 1
2 (T

′(0)
D − T ′(1)

D )Dm(�, β0h). (3.83)

The function Hm(�, β0h) is defined in (2.51).
The resultant radiation field of the arbitrarily driven two-element array is

Er
� = Er

�1 + Er
�2 = −1

�dR

e− jβ0 R

R
{[V10 f (�, β0h)

+ V20g(�, β0h)]e− j (β0b/2) cos� sin�

+ [V10g(�, β0h)+ V20 f (�, β0h)]e j (β0b/2) cos� sin�}. (3.84)

When β0h is near π/2, − f ′(�, β0h) and −g′(�, β0h) may be substituted, respec-
tively, for f (�, β0h) and g(�, β0h).
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3.9 The two-term approximation

As pointed out in Section 2.10, the difference between the distribution functions
F0z = cosβ0z − cosβ0h and H0z = cos 1

2β0z − cos 1
2β0h is relatively unimportant

in the determination of the far-field and the driving-point admittance of an isolated
antenna when β0h ≤ 5π/4. This is also true of the far-field and driving-point
admittances of two coupled antennas provided the interaction between them is not
sensitive to small changes in the current distributions. When both elements are driven
by comparable voltages and when the distance between them is sufficiently great
so that β0b ≥ 1, it may be assumed that the substitution of cosβ0z − cosβ0h for
cos 1

2β0z − cos 1
2β0h can produce no important change in the admittances or the

far-field. When one element is parasitic and unloaded, the three-term approximation
is automatically reduced to two terms since the distribution sinβ0(h − |z|) is excited
only by a generator or an equivalent voltage drop across a load. Correspondingly, the
two-term approximation is reduced to a single term. However, this is quite adequate
for many purposes. In anticipation, it may be added at this point that when an array
consists of one driven antenna and many parasitic elements, at least two terms are
desirable in the representation of the current distributions. This is considered in a later
chapter.

As for the single antenna, the two-term approximations are quickly obtained from
the three-term formulas by the simple substitution of cosβ0z − cosβ0h for cos 1

2β0z −
cos 1

2β0h and the representation of the resulting coefficient (TU + TD) by T . It is
implicit that �d D → �dU , �D(h) → �U (h). Thus, the phase-sequence currents and
admittances (3.46) and (3.47) become, for β0b ≥ 1,

I (m)
z (z) = j2πV (m)

ζ0�dR cosβ0h
[sinβ0(h − |z|)+ T (m)(cosβ0z − cosβ0h)] (3.85)

Y (m) = j2π

ζ0�dR cosβ0h
[sinβ0h + T (m)(1 − cosβ0h)], (3.86)

where

T (m) = T (m)
U + T (m)

D = −�
(m)
V (h)− (�

(m)
d�R + j�(m)

dI ) cosβ0h

�
(m)
U (h)−�

(m)
dU cosβ0h

. (3.87)

Similarly, when β0h is near π/2, (3.48) and (3.49) reduce to

I (m)
z (z) = − j2πV (m)

ζ0�dR
[(sinβ0|z| − sinβ0h)+ T ′(m)(cosβ0z − cosβ0h)] (3.88)

Y (m) = j2π

ζ0�dR
[sinβ0h − T ′(m)(1 − cosβ0h)], (3.89)
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where

T ′(m) = − T (m) + sinβ0h

cosβ0h

= [�(m)
V (h)−�

(m)
U (h) sinβ0h] secβ0h +�

(m)
dU sinβ0h − j�(m)

dI −�
(m)
d�R

�
(m)
U (h)−�

(m)
dU cosβ0h

= [�(m)
dU + Ea(h, h)] sinβ0h − j�(m)

dI − Sa(h, h)−�
(m)
d�R

Ca(h, h)− [�dU + Ea(h, h)] cosβ0h
. (3.90)

Note that when β0h = π/2, �(m)
U (λ/4) = �

(m)
V (λ/4).

As an example, the phase-sequence currents have been evaluated specifically for
two antennas for which � = 2 ln(2h/a) = 10, β0h = π and β0b = 1.5. For these

�dR = 5.834, �
(0)
d�R = −0.245, �

(1)
d�R = 0.245 (3.91a)

�
(0)
dI = −0.633 − 0.524 = −1.157;

�
(1)
dI = −0.633 + 0.524 = −0.109

}
(3.91b)

�
(0)
dU = 7.848 − j3.939, �

(1)
dU = 7.352 − j0.661. (3.91c)

The amplitude functions are

T (0)
(
λ

2

)
= −0.216 + j0.274, T (1)

(
λ

2

)
= −0.177 + j0.066.

With these values the two-term zero-phase-sequence and first-phase-sequence currents
(in amperes when V0 is in volts) in the two antennas are

I (0)2z (z) = I (0)1z (z) = V (0){0.783(cosβ0z + 1)

− j[2.805 sinβ0|z| − 0.617(cosβ0z + 1)]} × 10−3 (3.92a)

−I (1)2z (z) = I (1)1z (z) = V (1){0.189(cosβ0z + 1)

− j[2.805 sinβ0|z| − 0.506(cosβ0z + 1)]} × 10−3. (3.92b)

These currents are shown graphically in Fig. 3.3 in the form Iz = I ′′z + j I ′z , where I ′′z is
in phase, I ′z in phase quadrature with V0. The corresponding driving-point admittances
and impedances are

Y (0) = (1.566 + j1.234) millisiemens,

Y (1) = (0.378 + j1.012) millisiemens,

}
(3.93a)

Z (0) = 394 − j310 ohms, Z (1) = 324 − j867 ohms. (3.93b)
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Figure 3.3 Zero- and first-phase-sequence currents on two-element array. � = 10, β0b = 1.5.

The two-term approximations of the general formulas (3.51a, b) are

I1z(z) = V10v(z)+ V20w(z) (3.94a)

I2z(z) = V10w(z)+ V20v(z), (3.94b)

where now

v(z) = j2π

ζ0�dR cosβ0h
[sinβ0(h − |z|)+ 1

2 (T
(0) + T (1))(cosβ0z − cosβ0h)]

(3.95a)

w(z) = jπ

ζ0�dR cosβ0h
(T (0) − T (1))(cosβ0z − cosβ0h). (3.95b)

When β0h is near π/2,

v(z) = − j2π

ζ0�dR
[(sinβ0|z| − sinβ0h)+ 1

2 (T
′(0) + T ′(1))(cosβ0z − cosβ0h)] (3.95c)

w(z) = − jπ

ζ0�dR
(T ′(0) − T ′(1))(cosβ0z − cosβ0h). (3.95d)
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The self- and mutual admittances (3.56) and (3.57) become

Ys1 = Ys2 = jπ

ζ0�dR cosβ0h
[2 sinβ0h + (T (0) + T (1))(1 − cosβ0h)] (3.96)

Y21 = Y12 = jπ

ζ0�dR cosβ0h
(T (0) − T (1))(1 − cosβ0h). (3.97)

Similarly, when β0h is near π/2, (3.58) and (3.59) reduce to

Ys1 = Ys2 = jπ

ζ0�dR
[2 sinβ0h − (T ′(0) + T ′(1))(1 − cosβ0h)] (3.98)

Y21 = Y12 = − jπ

ζ0�dR
(T ′(0) − T ′(1))(1 − cosβ0h). (3.99)

The two-term self- and mutual admittances for the special case a/λ = 7.022×10−3,
β0h = π are shown in Fig. 3.4 as a function of b/λ. The self-susceptance is expressed
in the corrected form B11 + 0.72. Agreement with measured values is seen to be very
good. Numerical values of �dR, T (m), T ′(m), Y (m), Ysi = Y11 and Y12 are in Tables
2–4 of Appendix I for three values of β0h and a range of b/λ = d/λ.

For the special case � = 10, β0h = π , β0b = 1.5, the two-term self- and mutual
impedances defined in (3.61) with the two-term expressions (3.96) and (3.97) are

Zs2 = Zs1 = 1
2 (Z (0) + Z (1)) = 359 − j588 ohms (3.100a)

Z21 = Z12 = 1
2 (Z (0) − Z (1)) = 35 + j278 ohms. (3.100b)

If antenna 1 is driven and antenna 2 is an unloaded parasitic element, (3.67a) applies.
The two-term formulas for the currents may be obtained directly from (3.94a, b) with
V20 = 0. Then, in the special case � = 10, β0h = π , β0b = 1.5,

I1z(z) = V10{0.486(cosβ0z + 1)− j[2.805 sinβ0|z| − 0.566(cosβ0z + 1)]} × 10−3

(3.101a)

I2z(z) = V10(0.287 + j0.055)(cosβ0z + 1)× 10−3. (3.101b)

The corresponding driving-point admittance and impedance are

Y1in = (0.972 + j1.33) millisiemens, Z1in = 436 − j508 ohms. (3.102)

The currents in the driven and parasitic antennas are shown in Fig. 3.5a. They differ
from each other greatly in both distribution and amplitude. Indeed, contributions to
the far-field by the currents in the parasitic element are insignificant and the horizontal
field pattern is almost circular. Note that this behavior is entirely different from what
it would be if the two elements were half-wave instead of full-wave dipoles. In the
former, the current in the parasitic element is comparable and essentially similar in
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Figure 3.4 Self- and mutual admittances of two-element array; b is the distance between elements;
β0h = π .

distribution to that in the driven element. The reason for this difference is that the
half-wave elements are near resonance, the full-wave elements near anti-resonance.
This condition can be changed by inserting a lumped susceptance B2 (or an equivalent
transmission line) in series with the full-wave parasitic element at its center and tuning
this susceptance to make the entire circuit resonant. When this is done the distribution
functions v(z) and w(z) given by (3.95a, b) give

I1z(z) = V10{0.369(cosβ0z + 1)− j[2.805 sinβ0|z| − 0.494(cosβ0z + 1)]} × 10−3

(3.103a)

I2z(z) = V10{[0.064(cosβ0z + 1)− 0.320 sinβ0|z|]
+ j[1.712 sinβ0|z| − 0.343(cosβ0z + 1)]} × 10−3. (3.103b)
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Figure 3.5 Currents on full-wave antenna with (a) a/λ = 7.022 × 10−3 untuned parasite, � = 10;
(b) tuned parasite, � = 10.

These currents are shown in Fig. 3.5b. They are very nearly alike in both distribution
and amplitude, so that the horizontal field pattern of the tuned full-wave parasitic
array must correspond closely to that of the half-wave array with an unloaded parasitic
element.
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The two-term formulas for the currents in the couplet are given by (3.71a, b) with
v(z) and w(z) as in (3.95a, b). For the special case � = 10, β0h = π , β0b = 1.5,
(3.70a, b) give

V20 = V10

(
Z12 + j Zs1

Zs1 + j Z12

)
= (−0.966 + j1.267)V10 = 1.59V10e− j146.3◦ . (3.104)

With this value, the explicit formulas for the current in an array are

I1z = V10{0.129(cosβ0z + 1)− j[2.805 sinβ0|z| − 0.884(cosβ0z + 1)]} × 10−3

(3.105a)

I2z = V20{0.400(cosβ0z + 1)− j[2.805 sinβ0|z| − 0.397(cosβ0z + 1)]} × 10−3.

(3.105b)

In order to obtain expressions for the current that are comparable from the point of
view of maintaining an electromagnetic field, it is necessary to use the same reference
for amplitude and phase. If I2z is referred to V10 instead of V20, the following formula
is obtained in place of (3.105b):

I2z = V10{[3.554 sinβ0|z| − 0.884(cosβ0z + 1)]

+ j[2.710 sinβ0|z| + 0.129(cosβ0z + 1)]} × 10−3. (3.105c)

The corresponding driving-point admittances and impedances are

Y10 = (0.258 + j1.768) millisiemens, Y20 = (0.801 + j0.784) millisiemens

(3.106a)

Z10 = 80.8 − j554 ohms, Z20 = 638 − j624 ohms. (3.106b)

The ratio of the power supplied to antenna 1 to that supplied to antenna 2 is
|V20|2G20/|V10|2G10 = 7.9. The currents represented by (3.105a) and (3.105b)
are shown in the upper diagram in Fig. 3.6 in the form I1z/V10 and I2z/V20. The
distribution of I2z/V10 is shown in the bottom diagram in Fig. 3.6. It differs greatly
from I1z/V10 (shown in the upper graph) even though the input currents at z = 0
satisfy the assigned relation, I20 = j I10.

The radiation field of the full-wave couplet may be expressed as follows:

Er
� = Er

�1 + Er
�2 = K [A1e j (β0b/2) cos� + A2e− j (β0b/2) cos�], (3.107)

where

A1 = V10[(0.129 + j0.884)Gm(�, π)− j2.805Fm(�, π)] (3.108a)

A2 = V10[(−0.884 + j0.129)Gm(�, π)+ (3.554 + j2.710)Fm(�, π)] (3.108b)
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Figure 3.6 Currents in full-wave couplet; I20 = j I10; β0b = 2πb/λ = 1.5; � = 10.

and where K is a constant. Note that in the equatorial plane, � = π/2, and
Gm(π/2, π) = π , Fm(π/2, π) = 2. The field pattern calculated from the magnitude
of (3.107) with (3.108a, b) for the couplet of full-wave elements is shown in Fig.
3.7 together with the corresponding pattern for the ideal couplet with identical
distributions of current in the two elements. (This latter is quite closely approximated
by the pattern of a couplet of half-wave elements.) Both patterns are normalized to
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Figure 3.7 Horizontal pattern of full-wave couplet with I20 = j I10; � = 2 ln(2h/a) = 10,
β0h = π , β0b = 1.5.

unity at � = 0. It is seen that the deep minimum at � = 180◦ in the ideal pattern
(this would be a null if β0b = π/2 had been used instead of β0b = 1.5) is replaced
by a minor maximum with an amplitude that is about one-half that of the principal
maximum at � = 0. Thus, the characteristic property of the ideal couplet of providing
a null in one direction does not exist in actual couplets when β0h = π or, in fact, for
any other value of β0h that is not near π/2 or that is not an odd multiple thereof.
Significantly, this makes the cardioid pattern of the half-wave couplet a relatively
narrow-band property!



4 The circular array

The two-element array, which was investigated in the preceding chapter, may be
regarded as the special case N = 2 of an array of N elements arranged either at
the vertices of a regular polygon inscribed in a circle, or along a straight line
to form a curtain. Owing to its greater geometrical symmetry, the circular array
is advantageously treated next. Indeed, the basic assumptions which underlie the
subsequent study of the curtain array (Chapter 5) depend for their justification on the
prior analysis of the circular array.

The real difficulty in analyzing an array of N arbitrarily located elements is that
the solution of N simultaneous integral equations for N unknown distributions of
current is involved. Although the same set of equations applies to the circular array,
they may be replaced by an equivalent set of N independent integral equations in
the manner illustrated in Chapter 3 for the two-element array. Since the N elements
are geometrically indistinguishable, it is only necessary to make them electrically
identical as well. One way is to drive them all with generators that maintain voltages
that are equal in amplitude and in phase. When this is done all N currents must also
be equal in amplitude and in phase at corresponding points. But this is only one of
N possibilities. If the N voltages are all equal in magnitude but made to increase
equally and progressively in phase from element 1 to element N , a condition may be
achieved such that each element is in exactly the same environment as every other
element. There are N such possibilities since the phase sequence closes around the
circle when the phase shift from element to element is an integral multiple of 2π/N .
Any increment in phase given by 2πm/N with m = 0, 1, 2, . . . , N − 1 may be
used. Specifically, when N = 2, the two possibilities are 0 and π . This means that
the two driving voltages and the two currents may be equal in magnitude and in phase
(0, 0) or equal in magnitude and 180◦ out of phase (0, 180◦). Similarly, when N = 3,
there are three possibilities, 0, 2π/3 and 4π/3. The voltages and currents around
the circle may now be equal in magnitude with phases (0, 0, 0), (0, 120◦, 240◦) or
(0, 240◦, 480◦).

The analysis of the circular array involves the solution of N simultaneous equations
similar in form to (2.15). The case N = 2 is solved in Chapter 3 by rearranging the
two simultaneous equations for the currents I1z(z) and I2z(z) into two independent
equations. These were derived by adding and subtracting the two original equations.
When the elements were driven by voltages which were equal in magnitude and
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either in phase or 180◦ out of phase, the resulting currents were independent and
named, respectively, the zero- and first-phase-sequence currents. The solution for
the phase-sequence currents was then carried out and, after a simple algebraic
transformation, the actual currents in the elements were derived. The solution for
arbitrary driving conditions could also be obtained from the two phase-sequence
solutions. A generalization of this procedure is followed in the analysis of the circular
array.

The arrays considered here consist of N identical, parallel, non-staggered, center-
driven elements that are equally spaced about the circumference of a circle. This means
that the elements are at the vertices of an N -sided regular polygon. Arrays of this
type are frequently called single-ring arrays in the literature. Their analysis formally
parallels step-by-step the analysis of the two-element array in Chapter 3. However,
contributions to the vector potential on the surface of each antenna by the currents in all
of the elements must be included and this leads to a set of N coupled integral equations
for the N currents in the elements. The complete geometrical symmetry of the array
permits the use of the method of symmetrical components to reduce the coupled set of
integral equations to a single integral equation for each of N possible phase-sequence
currents. All other quantities that are required to design and describe the array can be
calculated from the solution of essentially one equation with N somewhat different
kernels.

The coordinate system and parameters that are used to specify an array are shown
in Fig. 4.1 for five elements. The diameter of each element is 2a, its length is 2h, the
distance between the kth and the i th elements is bki , the distance between adjacent
elements – the length of the side of a regular polygon with the elements at its vertices
– is d , and the radius of the circle is ρ.

As indicated in Sections 3.9 and 2.10, the two-term approximation is generally
adequate when h ≤ 5λ/8 and b ≥ λ/2π . Since it is much simpler and has been used
to compute the theoretical results discussed in this chapter, the currents, admittances,
and fields in the following sections are determined in the two-term form. Later when
matrix notation is introduced, both the two- and the three-term forms of the theory are
presented in compact form. This serves both as a summary of the theory of circular
arrays and as an introduction to the analysis of more general arrays in Chapters 5
and 6.

4.1 Integral equations for the sequence currents

The vector potential difference at the surface of each element in a circular array of
N elements is easily obtained as a generalization of (3.1). Since all elements are thin
and parallel to the z-axis, only z-components of the current and the associated vector
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Figure 4.1 Coordinate system for circular arrays.

potential at the surface of each element are significant. Thus, the vector potential
difference on the surface of element 1 is

4πµ−1
0 [A1z(z)− A1z(h)]

=
∫ h

−h
[I1z(z

′)K11d(z, z′)+ I2z(z
′)K12d(z, z′)+ · · · + IN z(z

′)K1Nd(z, z′)] dz′

= j4π

ζ0 cosβ0h
[ 1

2 V10 sinβ0(h − |z|)+ U1(cosβ0z − cosβ0h)], (4.1a)

where

U1 = − jζ0

4π

∫ h

−h
[I1z(z

′)K11(h, z′)+ I2z(z
′)K12(h, z′)+ · · ·

+ IN z(z
′)K1N (h, z′)] dz′. (4.1b)
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Similarly, the vector potential difference on the surface of element 2 is

4πµ−1
0 [A2z(z)− A2z(h)] =

∫ h

−h
[I1z(z

′)K21d(z, z′)+ I2z(z
′)K22d(z, z′)+ · · ·

+ IN z(z
′)K2Nd(z, z′)] dz′

= j4π

ζ0 cosβ0h
[ 1

2 V20 sinβ0(h − |z|)

+ U2(cosβ0z − cosβ0h)], (4.1c)

where

U2 = − jζ0

4π

∫ h

−h
[I1z(z

′)K21(h, z′)+ I2z(z
′)K22(h, z′)+ · · ·

+ IN z(z
′)K2N (h, z′)] dz′. (4.1d)

The vector potential difference on the kth element is

4πµ−1
0 [Akz(z)− Akz(h)] =

∫ h

−h

N∑
i=1

Ii z(z
′)Kkid(z, z′) dz′

= j4π

ζ0 cosβ0h
[ 1

2 Vk0 sinβ0(h − |z|)

+ Uk(cosβ0z − cosβ0h)], (4.1e)

k = 1, 2, . . . , N

where

Uk = − jζ0

4π

∫ h

−h

N∑
i=1

Ii z(z
′)Kki (h, z′) dz′. (4.1f)

In these expressions the kernels are

Kkid(z, z′) = Kki (z, z′)− Kki (h, z′) = e− jβ0 Rki

Rki
− e− jβ0 Rkih

Rkih
(4.1g)

with

Rki =
√
(zk − z′i )2 + b2

ki (4.1h)

Rkih =
√
(h − z′i )2 + b2

ki , bkk = a. (4.1i)

Vk0 is the applied driving voltage at the center of element k (or the voltage of an
equivalent generator if the element is parasitic with an impedance connected across its
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terminals), and Uk is the effective driving function characteristic of that part of all the
currents that maintains a vector potential of constant amplitude equal to that at z = h
along the entire length of the antenna. To reduce the set of N simultaneous equations in
(4.1e) to N independent equations, the symmetry conditions characteristic of a circular
array must be imposed and the phase-sequence voltages and currents introduced.

Assume that all of the driving voltages are equal in magnitude and have a uniformly
progressive phase such that the total phase change around the circle is an integral
multiple of 2π . Each multiple of 2π is one of the N phase sequences designated by a
superscript (m); these range from zero to N −1. In the zero phase sequence, all driving
voltages are the same; in the first phase sequence, the driving voltages of adjacent
elements differ by exp( j2π/N ); in the mth phase sequence, the driving voltages of
adjacent elements differ by exp( j2πm/N ), and the voltages of the kth and the i th
elements are related by

Vi = Vke j2π(i−k)m/N . (4.2a)

Because of the symmetry of a circular array, the currents in the elements must be
related in the same manner as are the driving voltages. That is,

Ii (z
′) = Ik(z

′)e j2π(i−k)m/N . (4.2b)

Note that with these driving voltages both the geometric and the electrical environ-
ments of each element in the array are identical. Therefore, when (4.2a) and (4.2b) are
substituted into the set of coupled integral equations, Ii (z′) can be removed from the
summation, the remaining kernel is the same regardless of the element to which it is
referred, and each equation in the set reduces to∫ h

−h
I (m)(z′)K (m)

d (z, z′) dz′

= j4π

ζ0 cosβ0h
[ 1

2 V (m) sinβ0(h − |z|)+ U (m)(cosβ0z − cosβ0h)], (4.3a)

where m = 0, 1, . . . N − 1 and

U (m) = − jζ0

4π

∫ h

−h
I (m)(z′)K (m)(h, z′) dz′ (4.3b)

K (m)(h, z′) =
N∑

i=1

e j2π(i−1)m/N
[

e− jβ0 R1ih

R1ih

]
(4.3c)

K (m)
d (z, z′) =

N∑
i=1

e j2π(i−1)m/N
[

e− jβ0 R1i

R1i
− e− jβ0 R1ih

R1ih

]
. (4.3d)

For later use, it is convenient to separate this difference kernel into two parts that
depend, respectively, on the real and imaginary parts of the exponential functions.
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That is

K (m)
d (z, z′) = K (m)

d R (z, z′)+ j K (m)
d I (z, z′), (4.3e)

where

K (m)
d R (z, z′) =

N∑
i=1

e j2π(i−1)m/N Re

[
e− jβ0 R1i

R1i
− e− jβ0 R1ih

R1ih

]
(4.3f)

K (m)
d I (z, z′) =

N∑
i=1

e j2π(i−1)m/N Im

[
e− jβ0 R1i

R1i
− e− jβ0 R1ih

R1ih

]
. (4.3g)

The method of solution for (4.3a) parallels that of (3.6) and (3.10); the discussion
of Section 3.2 and the steps of Section 3.3 are applicable if note is taken of Section
3.9, which relates the two-term to the three-term theory. In fact, the solution is formally
given by (3.85) and (3.86) with m = 0, 1, 2, . . . , N −1. This is discussed in somewhat
greater detail in a later section (Section 4.6) rather than at this point in order to avoid
complications in these initial stages of the analysis. Thus, the mth phase-sequence
current in the two-term form is given by

I (m)(z) = j2πV (m)

ζ0�d R cosβ0h
[sinβ0(h − |z|)+ T (m)(cosβ0z − cosβ0h)], β0h �= π

2
(4.4a)

I (m)(z) = j2πV (m)

ζ0�d R
[1 − sinβ0|z| − T ′(m) cosβ0z], β0h = π

2
. (4.4b)

The � and T functions which occur in (4.4a, b) are defined as follows when β0d ≥ 1:

T (m) = �
(m)
V (h)− [�(m)

d� + j�(m)
d I ] cosβ0h

�
(m)
dU cosβ0h −�

(m)
U (h)

(4.5a)

T ′(m) =
�d R + E�

(
λ

4
,
λ

4

)
− S�

(
λ

4
,
λ

4

)

C�

(
λ

4
,
λ

4

) (4.5b)

�d R = Re

[
sinβ0h Cd�1

(
h, h − λ

4

)
− cosβ0h Sd�1

(
h, h − λ

4

)]
, h ≥ λ

4
(4.6a)

= Re[Cd�1(h, 0)− cotβ0h Sd�1(h, 0)], h <
λ

4
(4.6b)
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�
(m)
V (h) = sinβ0h C (m)

� (h, h)− cosβ0h S(m)
� (h, h) (4.7)

�
(m)
U (h) = C (m)

� (h, h)− cosβ0h E (m)
� (h, h) (4.8)

�
(m)
d� = (1 − cosβ0h)−1[sinβ0h C (m)

d�2(h, 0)− cosβ0h S(m)
d�2(h, 0)] (4.9)

�
(m)
d I = Im{(1 − cosβ0h)−1[sinβ0h C (m)

d�1(h, 0)− cosβ0h S(m)
d�1(h, 0)]} (4.10)

�
(m)
dU = (1 − cosβ0h)−1[C (m)

d� (h, 0)− cosβ0h E (m)
d� (h, 0)] (4.11)

C (m)
d� (h, z) = C (m)

� (h, z)− C (m)
� (h, h), S(m)

d� (h, z) = S(m)
� (h, z)− S(m)

� (h, h)

E (m)
d� (h, z) = E (m)

� (h, z)− E (m)
� (h, h) (4.12)

C (m)
� (h, z) =

N∑
i=1

e j2π(i−1)m/N Cbi , Cbi =
∫ h

−h
cosβ0z′

e− jβ0 Rbi

Rbi
dz′ (4.13a)

S(m)
� (h, z) =

N∑
i=1

e j2π(i−1)m/N Sbi , Sbi =
∫ h

−h
sinβ0|z′| e− jβ0 Rbi

Rbi
dz′ (4.13b)

E (m)
� (h, z) =

N∑
i=1

e j2π(i−1)m/N Ebi , Ebi =
∫ h

−h

e− jβ0 Rbi

Rbi
dz′ (4.13c)

Rbi =
√
(z − z′)2 + b2

i , bi = a for i = 1. (4.14)

The subscript d�1 indicates that only element 1 (i = 1) is to be included and effects
of all other elements are ignored; the subscript d�2 indicates that only the effects of
elements other than element number 1 are to be included (i = 2, . . . , N ).

In order to evaluate (4.4a, b) it is convenient to lump the various coefficients into
new parameters defined as follows:

s(m) = j2π

ζ0�d R cosβ0h
, c(m) = s(m)T (m) (4.15a)

s′(m) = j2π

ζ0�d R
, c′(m) = s′(m)T ′(m) (4.15b)

so that, when normalized to V (m), (4.4a, b) become

I (m)(z)

V (m)
= s(m) sinβ0(h − |z|)+ c(m)(cosβ0z − cosβ0h), β0h �= π

2
(4.16a)

= s′(m)(1 − sinβ0|z|)− c′(m) cosβ0z, β0h = π

2
. (4.16b)
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The sequence admittances are given by the normalized sequence currents in amperes
per volt evaluated at z = 0. Thus,

Y (m) = I (m)(0)

V (m)
= s(m) sinβ0h + c(m)(1 − cosβ0h), β0h �= π

2
(4.17a)

= s′(m) − c′(m), β0h = π

2
. (4.17b)

For a circular array of N elements there are N sequences but only (N + 1)/2 are
different if N is odd or (N/2) + 1 if N is even. This is the same as the number of
different self- and mutual admittances.

The sequence currents form a set of functions that are characteristic of the ge-
ometrical and electrical properties of the array. Thus, �d R and the T (m) or T ′(m)

function depend upon the number of elements in the array, their spacing, and the length
and thickness of the elements. Once these parameters have been specified, the set of
sequence currents can be calculated. Distributions of current in the elements, their
driving-point admittances, and the far-zone fields of the arrays with arbitrary driving
conditions can be determined from the set of sequence currents with the relations
given in Section 4.2. Short tables of �d R and T (m) or T ′(m) are given in Appendix I;
additional values are available [1]. It may be noted parenthetically that in the notation
of [1], the terms ‘quasi-zeroth-order’ and ‘zeroth-order admittances’ refer identically
to what is called the ‘two-term approximation’ in this book.

4.2 Sequence functions and array properties

Imagine the array to be excited simultaneously with currents in all of the N possible
phase sequences. Then the driving voltage and current for the kth element are

Vk =
N−1∑
m=0

V (m)e j2π(k−1)m/N (4.18a)

Ik(z) =
N−1∑
m=0

I (m)(z)e j2π(k−1)m/N , (4.18b)

where V (m) is the mth phase-sequence voltage and I (m)(z) is the corresponding phase-
sequence current. Similarly, from (4.18b) and (4.17), the self- and mutual admittances
are

Y1k = 1

N

N−1∑
m=0

Y (m)e j2π(k−1)m/N . (4.19)
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If the elements of the array are driven by arbitrary voltages Vi which produce
corresponding currents Ii (z) along the elements, the sequence voltages and currents
are readily obtained from the relations

V (m) = 1

N

N∑
i=1

Vi e
− j2π(i−1)m/N (4.20a)

I (m)(z) = 1

N

N∑
i=1

Ii (z)e
− j2π(i−1)m/N . (4.20b)

With (4.18b) and (4.16) the normalized current distribution along the kth element can
conveniently be expressed as follows:

Ik(z)

V1
= sk sinβ0(h − |z|)+ ck(cosβ0z − cosβ0h), β0h �= π

2
(4.21a)

= s′k[1 − sinβ0|z|] − c′k cosβ0z, β0h = π

2
(4.21b)

where the complex amplitude functions sk and ck are

sk =
N−1∑
m=0

V (m)

V1
s(m)e j2π(k−1)m/N (4.22a)

ck =
N−1∑
m=0

V (m)

V1
c(m)e j2π(k−1)m/N . (4.22b)

The corresponding expressions for s′k and c′k are similar. The radiation-zone electric
field for each element is given by (2.43); the total field is a superposition of the fields
maintained by each element. When the currents in the form (4.21a, b) are substituted
in (2.43), the resulting expressions for the field are

Er
�

K K1V1
= F(�, β0h)

N∑
i=1

si e
jβ0ρ sin� cos(φi−�)

+ G(�, β0h)
N∑

i=1

ci e
jβ0ρ sin� cos(φi−�), β0h �= π

2
(4.23a)

= −H
(
�,

π

2

) N∑
i=1

s′i e
jβ0ρ sin� cos(φi−�)

− G
(
�,

π

2

) N∑
i=1

c′i e
jβ0ρ sin� cos(φi−�), β0h = π

2
, (4.23b)

with

K1 = e− jβ0 R

R
, K = jζ0

2π
, β0ρ = π d/λ

sin(π/N )
, φi = (i − 1)2π/N .
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F(�, β0h), G(�, β0h) and H(�, π/2) are given by (2.46), (2.47), and (2.52a),
respectively. These are the so-called element factors and there is one for each type
of current distribution. The sums in (4.23a, b) are the array factors. The complex
amplitude coefficients are not simply related to one another and the array factors
generally cannot be summed in a closed form to yield something equivalent to the
familiar sin N x/ sin x patterns. In (4.23) the driving voltage V1 appears since the other
driving voltages have been referred to the voltage of element 1. Any other element
could have been used for this normalization.

The steps required to make use of this theory in the analysis of a particular array
can now be summarized. If the driving voltages are specified, sequence voltages are
computed from (4.20a), sk and ck from (4.22a, b), the current distributions from (4.21a,
b), and far-zone fields from (4.23a, b). Driving-point admittances are found either from
the current evaluated at z = 0, namely

Ykin = Ik(0)

Vk
= Ik(0)

V1

V1

Vk
(4.24a)

or from the coupled circuit equations and the self- and mutual admittances

Ykin =
N∑

i=1

Vi

Vk
Yki . (4.24b)

If the driving-point currents are specified, sequence currents can be found from
(4.20b), (4.16a) or (4.16b) solved for V (m), and the remaining steps carried out as
when the driving voltages are specified. Numerical results for a particular array can be
obtained from the tables of Appendix I or [1].

4.3 Self- and mutual admittances

For a circular array with uniformly-spaced elements, self- and mutual admittances are
defined in terms of the sequence admittances by (4.19). The more general definition
(discussed in Chapter 14) of self- and mutual admittances as the coefficients of
the driving-point voltages in the coupled circuit equations also applies. For the pth
element,

Ip(0) =
N∑

i=1

Vi Ypi (4.25)

from which it follows that the self-admittance Ypp of the pth element is the
driving-point admittance of that element when all other elements are present and
short-circuited at their driving points. The mutual admittance Ypk (p �= k) between
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element p and element k is the driving-point current of element p per unit driving
voltage of element k with all other elements present and short-circuited at their driving
points. Thus, the mutual admittances characterize the degree in which power that is
fed to one element of the array is transferred to the remaining elements.

Among the properties of circular arrays that are revealed by a study of their self-
and mutual admittances are resonant spacings at which all of the elements interact
vigorously and, in larger arrays, spacings at which at least some of the mutual
admittances are very small compared with the self-admittance. In arrays containing
only a few elements, the resonant spacings are most important for elements with
lengths near h = λ/4; in larger arrays they are most important for elements with
somewhat greater lengths. When the elements in an array are at the resonant spacings,
their currents are essentially all in phase and their properties are very sensitive to
small changes in frequency. Although calculations of the driving-point admittances
generally must include all of the mutual admittances when the array consists of
only a few elements, there are ranges of spacings in larger arrays over which at
least some of the mutual admittances are much smaller than the self-admittance.
In larger arrays there is also a range of spacings over which many of the mutual
admittances are nearly the same in magnitude and phase. These properties are
illustrated in Figs. 4.2–4.7, which show graphically examples of self- and mutual
admittances in millisiemens for a range of values of d/λ, the distance between adjacent
elements.

With the exception of the self-susceptance shown in Fig. 4.3b, the theoretical
results are all evaluated from the two-term theory and were computed from (4.19),
(4.17b), and the functions in (4.5)–(4.14). The theoretical self-susceptance in Fig. 4.3b
is shown in the corrected form B11 + 1.16 with B11 calculated from the two-term
theory. The correcting susceptance 1.16 includes the term 0.72 needed to correct the
two-term susceptance and an additional susceptance that takes account of the particular
end-effects of the coaxial measuring line. The measured results in Figs. 4.2, 4.3 and
4.4 were obtained from load admittances apparently terminating the coaxial line.
They were measured by the distribution-curve method discussed in Chapter 14. The
experimental apparatus consisted of combined slotted measuring lines and monopoles
driven over a ground-screen. The actual measured results have been divided by two
and an approximate terminal-zone correction of YT = j0.286 millisiemens as obtained
from Fig. 14.3b has been combined with B11 so that the final results apply to an ideal
center-driven dipole with all contributions to the admittance by an associated driving
mechanism eliminated.

An array of four elements of length h = λ/4 (Fig. 4.2) has a resonant spacing
near d/λ= 0.54. At this spacing all conductances have sharp positive maxima while
the suceptances are all essentially zero. If the length of the elements is increased
to h = 3λ/8, a similar resonance occurs in the range between d/λ= 0.37 and 0.40,
but the maxima are not as sharp. With eight elements (Fig. 4.5) there are several
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Figure 4.2 (a) Measured and theoretical self- and mutual conductances for circular array; N = 4,
h/λ = 1/4, a/λ = 0.007 022.

resonances but only the first two, which occur near d/λ= 0.35 and 0.50, are
sharply defined. Also, from Fig. 4.5 it is seen that the conductances all have the
same sign at the first resonance but not at the second. For twenty elements with
length h = λ/4 it is seen from Fig. 4.6 that a number of resonances occur, but that
they no longer have large amplitudes. On the other hand, when the length of the
elements is near h = 3λ/8, the resonances are sharply defined and a small change
in spacing (or frequency) produces large changes in the admittances as shown in
Fig. 4.7.

Note also that, whereas the four- and eight-element arrays have only one spacing
each at which some of the mutual conductances or susceptances are small compared
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to the self-conductance or susceptance, there is a considerable range of spacings
for a twenty-element array over which only Y12 is important and all other mutual
admittances are small compared to Y11. For close spacings, many of the mutual
admittances have essentially the same value in Figs. 4.5 and 4.6. Also, at small
spacings the self-susceptance and the mutual susceptance between adjacent elements
become very large compared to either the remaining susceptances or the conductances.
This indicates that it is these quantities which cause difficulties in matching arrays
of closely-spaced elements. These susceptances can be controlled at least partially
by an adjustment of the lengths of the elements. Additional, more extensive graphs
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and tables of self- and mutual admittances are in the literature [2]. All of the results
discussed here are for elements with the radius a/λ = 0.007, but since the parameters
of an array change quite slowly with the thickness of the elements, the qualitative
behavior should be the same for thicknesses that do not violate the requirement of
‘thin’, i.e. β0a ≤ 0.10. Note, however, that the self-impedances of the individual
elements change significantly with their radius – especially when h is not near
λ/4.
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Figures 4.2 and 4.3 indicate that, except near the sharp resonances, the results
from the two-term theory are in good agreement with the measured values for all
conductances and mutual susceptances. Part of the differences between measured
and computed conductances at the sharp resonant maxima for h = λ/4 may be due
to the difficulty encountered in obtaining accurate measurements over this region.
The self-susceptance and its correction were discussed in Chapter 2. In Fig. 4.2, no
correction has been applied to B11; the use of the correction 0.72 millisiemens that
was indicated in Chapter 2 would yield better agreement for d/λ < 0.40. In Fig.
4.3, the correction applied to B11 is 1.16 millisiemens. As previously discussed, this
includes both the term 0.72 and an additional empirically determined susceptance that
takes account of the end-correction for the coaxial measuring line actually used. It
was determined from a comparison of theoretical and measured results for a single
element (Fig. 2.6). Since the correction to B11 is a constant, it is evident that the
correct variation of B11 with d/λ is given by the theory. In a practical application, the
characteristics of a given array are determined from the theory, a single model of the
elements of the array is constructed, and its driving-point admittance measured. The
difference between theoretical and measured driving-point susceptances for the single
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element may be used as a correction for the computed driving-point admittances in the
array.

It is sometimes convenient to characterize element intercoupling by self- and mutual
impedances instead of admittances. For a general array, the conversion from an
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admittance basis to an impedance basis requires an inversion of the admittance matrix.
For a circular array, the sequence admittances and impedances are reciprocals, that is,

Z (m) = 1/Y (m) (4.26)

Z1i = 1

N

N−1∑
m=0

e− j2π(i−1)m/N Z (m) (4.27)

so that the reciprocal of only one complex number is required for each sequence.

4.4 Currents and fields; arrays with one driven element

One of the simplest examples of the application of the two-term theory is provided by
ring arrays with one element driven and the remaining elements short-circuited at their
driving points. In the following examples, the radius of the elements is taken to be
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a/λ = 0.007 and the radiation patterns are all measured or computed in the equatorial
plane, � = π/2. The relative radiation patterns are computed from

Pd B = 10 log10

∣∣∣∣Er
�(�,�) · Er∗

� (�,�)

Er
�m · Er∗

�m

∣∣∣∣ , (4.28)

where Er
�m is the maximum value of the field in the plane � = π/2. An asterisk

indicates the complex conjugate, Er
�(�,�) is given by (4.23), and Pd B is the relative

magnitude of the Poynting vector in decibels (dB).
Figure 4.8a contains two examples of the radiation patterns of five-element arrays.

One pattern is for d = λ/4 and h = λ/4 and has a back-to-front ratio of about −14 dB
with half-power beam widths of about 100◦. The second pattern is also for d = λ/4
but h = 3λ/8; it has a very smooth angular variation with a back-to-front ratio of
about −20 dB and beam widths of about 140◦. Agreement between the theoretical and
measured results is well within 1 dB except near the deeper minimum in the backward
direction near � = 180◦. Similar patterns for h/λ = 0.5 and two values of d/λ are in
Fig. 4.8b.
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Corresponding currents in the elements of the two arrays with the patterns given in
Fig. 4.8a are shown in Figs. 4.9 and 4.10. As a consequence of the symmetry, only
three of the currents are different for each five-element array. The radiation patterns
depend only on the relative distributions of current. If the currents in Figs. 4.9 and
4.10 were simply normalized to their maximum values, it is evident that agreement
between theoretical and measured results would be very good and, therefore, measured
patterns well represented by the theory. In order to permit detailed comparison of the
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experimental and theoretical models, the relative amplitude and phase of the current
along each element were measured and normalized to the measured self- and mutual
admittances. Thus,

Ik(z)

V1
= |Ik(z)|

V1
e j�k(z)

= |Ik(z)|
V1

[cos�k(z)+ j sin�k(z)] = Re Ik(z)+ j Im Ik(z)

V1
, (4.29)
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where the real and imaginary parts are, respectively, in phase and in phase quadrature
with the driving voltage. The relatively small amplitude of the current |I3(z)|/V1 in
Fig. 4.9 prevented an accurate measurement of phase in this case.

The experimental model that was used for the measurement of both field patterns
and currents consisted of five monopoles over a ground plane combined with a
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measuring line for each. The equipment and procedures for measuring amplitude and
phase are discussed in Chapter 14. The sk and ck coefficients for use in (4.21) and
(4.23) can be computed from the values of �d R and T in the tables of Appendix I with
the use of (4.15a, b) and (4.22a, b). Numerical data for the two five-element arrays
under discussion are

N = 5, d = λ/4, h = λ/4:

s′1 = j2.6824; s′2 = s′3 = s′4 = s′5 = 0;
c′1 = −4.2084 + j9.2159; c′2 = c′5 = −0.8072 − j4.6906;
c′3 = c′4 = 0.6835 − j0.3656;


 (4.30)

N = 5, d = λ/4, h = 3λ/8:

s1 = − j3.6571; s2 = s3 = s4 = s5 = 0;
c1 = 0.7504 + j1.1391; c2 = c5 = 0.4492 + j0.4419;
c3 = c4 = 0.1890 + j0.1678.


 (4.31)
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Note that the currents in the parasitic elements are represented by shifted cosine
components only.

The radiation patterns in Fig. 4.8a suggest that spacings can be found at which the
pattern is a smooth function of � and has a deep minimum near � = 180◦. Examples
of such patterns are shown in Fig. 4.11 for N = 4, 5, 10 and 20 and h = 3λ/8.
As N increases, such patterns occur when the circumference of the circle containing
the array approaches 2λ. For them, the phase of the electric field is also a smooth
slowly changing function of the azimuth angle � as shown in Fig. 4.11. The phase
was computed from (4.23a) in the form

Er
�(π/2,�)

K K1V1
= Re

[
Er
�(π/2,�)

K K1V1

]
+ j Im

[
Er
�(π/2,�)

K K1V1

]

=
∣∣∣∣Er

�(π/2,�)

K K1V1

∣∣∣∣ e j�(π/2,�) (4.32a)

�(π/2,�) = tan−1 Im Er
�(π/2,�)

Re Er
�(π/2,�)

. (4.32b)
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4.5 Matrix notation and the method of symmetrical components

In the preceding sections the N simultaneous integral equations for the N currents in
a circular array were replaced by N independent integral equations by a procedure
known as the method of symmetrical components. This procedure was introduced as a
generalization of the corresponding treatment of the two coupled equations analyzed
in Chapter 3. It is now appropriate to systematize the general formulation with the
compact notation of matrices.
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The general method of symmetrical components became well known in its ap-
plication to problems in multi-phase electric circuits. Loads on three-phase power
systems, for example, must generally be balanced to give equal currents in all three
branches. Under some conditions unequal loads are placed across the supply lines.
The calculation of the resulting branch currents is usually made in terms of three
phase-sequence components. The zero phase-sequence currents are all in phase. The
first sequence contains three equal phasors which have 120◦ progressive phase shifts.
These phasors rotate in the counter-clockwise direction in the complex plane as time
increases. The angular velocity is ω. The second phase sequence has three phasors with
equal magnitude and a progressive −120◦ phase shift. Since the currents generated
by the three sets of phase-sequence voltages do not interact with one another, they
may be calculated separately and later combined to give the actual currents. A similar
procedure applies to an N -phase system.

The equations which relate the currents and voltages in N coupled circuits have the
following matrix form:

[Z ]{I } = {V }, (4.33)

where

{I } =




I1

I2
...

IN



, {V } =




V1

V2
...

VN




(4.34)

[Z ] =




Z11 Z12 Z13 . . . Z1N

Z21 Z22 . . . Z2N
...

Z N1 . . . Z N N


 . (4.35)

The usual reciprocity of off-diagonal impedances is assumed, i.e., Zi j = Z ji . In
addition, [Z ] is a circulant matrix, so that all rows are cyclic permutations of the first
row.

In order to illustrate the application of the method of symmetrical components, this
set of equations will not be solved in the usual manner by setting {I } = [Z ]−1{V }.
Instead, the phase-sequence voltages and impedances will be calculated first by means
of the following transformation matrices:




V (0)

V (1)

...

V (N−1)




= 1

N




1 1 1 . . . 1

1 p−1 p−2 . . . p−(N−1)

1 p−2 p−4 . . . p−2(N−1)

...
...

...
...

1 p−(N−1) p−2(N−1) . . . p−(N−1)(N−1)







V1

V2

V3

...

VN



,

(4.36)
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where p = e j2π/N , or

{V (m)}[P]−1{V }. (4.37)

Similarly, for the impedances

{Z (m)} = [P]{Z}, (4.38)

where

{Z (m)} =




Z (0)

Z (1)

...

Z (N−1)


 (4.39)

{Z} =




Z11

Z12

Z13
...

Z1N




(4.40)

[P] =




1 1 1 . . . 1

1 p p2 . . . p(N−1)

1 p2 p4 . . . p2(N−1)

...
...

1 p(N−1) p2(N−1) . . . p(N−1)(N−1)


 . (4.41)

The phase-sequence currents are given by the algebraic equations

I (m) = V (m)/Z (m), m = 0, 1, . . . (N − 1). (4.42)

The original currents Ii , i = 1, 2, 3, . . . N are given by

{I } = [P]{I (m)}, (4.43)

where

{I } =




I1

I2
...

IN



. (4.44)

As a trivial example of the method, consider two coupled circuits with the same
self-impedances. The matrix equation is[

Z11 Z12

Z12 Z11

]{
I1

I2

}
=
{

V1

V2

}
. (4.45)
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With p = e j2π/N = e jπ = −1, the matrix P−1 defined by (4.36) is

[P]−1 = 1
2

[
1 1

1 −1

]
. (4.46)

The phase-sequence voltages and impedances as obtained from (4.37) and (4.38) are{
V (0)

V (1)

}
= 1

2

[
1 1

1 −1

]{
V1

V2

}
= 1

2

{
V1 + V2

V1 − V2

}
(4.47)

and{
Z (0)

Z (1)

}
=
[

1 1

1 −1

]{
Z11

Z12

}
=
{

Z11 + Z12

Z11 − Z12

}
. (4.48)

The resulting phase-sequence currents I (m), m = 1, 2, are given by

I (0) = 1
2 (V1 + V2)/(Z11 + Z12) (4.49)

and

I (1) = 1
2 (V1 − V2)/(Z11 − Z12). (4.50)

The desired currents Ii , i = 1, 2 (which are generated by the actual driving voltages
V1 and V2) are given by (4.43) with (4.49) and (4.50). They are{

I1

I2

}
=
[

1 1

1 −1

]{
I (0)

I (1)

}
=
{
(V1 Z11 − V2 Z12)/(Z2

11 − Z2
12)

(V2 Z11 − V1 Z12)/(Z2
11 − Z2

12)

}
. (4.51)

These equations are, of course, the same as those obtained directly from (4.45). Note
that in the method of symmetrical components the matrix inversion is performed in a
number of straightforward steps. In the analysis of circular arrays it allows a large
matrix to be inverted for each phase sequence by obtaining the reciprocal of one
complex number.

4.6 General formulation and solution

In Section 4.1, the solutions for the N independent integral equations for the phase-
sequence currents in a circular array of identical elements were obtained by a logical
generalization of the parallel analysis for the two-element array in Chapter 3. A more
complete formulation and solution with special reference to the complications of the
N -element array is now in order.

With the matrix notation introduced in Section 4.5, the integral equations (4.3a) for
the N phase-sequence currents may be expressed as follows∫ h

−h
I (m)
z (z′)K (m)

d (z, z′) dz′

= j4π

ζ0 cosβ0h
[ 1

2 V (m) sinβ0(h − |z|)+ U (m)(cosβ0z − cosβ0h)], (4.52)
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where

{I (m)
z } = [P]−1{Iz} (4.53a)

{V (m)} = [P]−1{V } (4.53b)

{K (m)
d (z, z′)} = [P]{Kd(z, z′)} (4.54)

and

U (m) = − jζ0

4π

∫ h

−h
I (m)
z (z′)K (m)(h, z′) dz′. (4.55)

In order to reduce the integral equation (4.52) to an approximately equivalent
algebraic equation in the manner described in Chapter 3, it is necessary to introduce
approximate expressions for the several parts of the integral. The procedure and the
reasoning behind it are in principle the same as described in Sections 3.2 and 3.3
for two elements. However, for N elements in a circle the kernel consists of a sum
of N instead of two terms. In the interest of simplicity, the introductory discussion
in Section 4.1 assumed that all elements are separated by distances sufficiently great
so that β0bki ≥ 1 for all values of k and i . Although this condition is satisfied in
most circular arrays, there are exceptions. One is the cage antenna in which the N
parallel elements are distributed around an electrically small circle so that the condition
β0bki < 1 is satisfied for all k and i . An intermediate case arises when the circle is
electrically large, but the elements are quite closely spaced so that one or more on
each side of every element satisfies the inequality β0bki < 1, but all of the others are
far enough away so that β0bki ≥ 1. Since the behavior of the parts of the integrals
that relate closely spaced elements is different from the parts that represent widely
spaced ones, it is necessary to treat them separately. Since for each phase sequence
all elements are in identical environments, element no. 1 is conveniently selected for
reference. Let it be assumed that n elements on each side of element 1 are sufficiently
near so that for them β0b1i < 1, 1 ≤ i ≤ n, N − n + 1 ≤ i ≤ N and that for all other
elements, β0b1i ≥ 1, n < i < N − n + 1. Let the sum over all the 2n + 1 elements
for which β0b1i < 1 be denoted by �1, the sum over all other elements in the circle
by �2. Similarly, let K (m)

d�1(z, z′) be the part of the sum in (4.3d) which includes the

2n + 1 elements for which β0b1i < 1, K (m)
d�2(z, z′) the rest of the sum. It now follows

by analogy with (3.21a, b) that

∫ h

−h
sinβ0(h − |z′|)K (m)

d�1R(z, z′) dz′ .= �
(m)
d�1R sinβ0(h − |z|) (4.56a)

∫ h

−h
sinβ0(h − |z′|)K (m)

d�2R(z, z′) dz′ .= �
(m)
d�2R(cosβ0z − cosβ0h), (4.56b)



109 4.6 General formulation and solution

where K (m)
d�1R(z, z′) and K (m)

d�2R(z, z′) are the appropriate parts of K (m)
d R (z, z′) as

defined in (4.3f). On the other hand, all remaining parts of the integral are independent
of β0b1i , so that they are the same as in (3.22a)–(3.23c) but with K (m)

d R (z, z′) and

K (m)
d I (z, z′) as given in (4.3f) and (4.3g).
The �-functions introduced in (4.56a, b) are defined as follows:

�
(m)
d R ≡ �

(m)
d�1R = �

(m)
d�1R(zm);

{
zm = 0, β0h ≤ π/2
zm = h − λ/4, β0h > π/2

}
(4.57a)

�
(m)
d�1R(z) = cscβ0(h − |z|)

∫ h

−h
sinβ0(h − |z′|)K (m)

d�1R(z, z′) dz′ (4.57b)

�
(m)
d�R ≡ �

(m)
d�2R = (1 − cosβ0h)−1

∫ h

−h
sinβ0(h − |z′|)K (m)

d�2R(0, z′) dz′. (4.58)

These are generalizations of (3.24a, b) and (3.25a, b). The other �-functions, specif-
ically �

(m)
dU = �

(m)
dU R + j�(m)

dU I , �(m)
d D = �

(m)
d DR + j�(m)

d DI and �
(m)
d I are the same as

defined in (3.26)–(3.28) but with the N -term kernel given in (4.3e). Note that when all
elements are sufficiently far apart to satisfy the inequality β0b1i > 1, 1 < i ≤ N , only
i = 1 with b11 = a contributes to �

(m)
d R which is then equal to �d R for the isolated

element.
With the notation introduced in (4.57a) and (4.58), the equation (3.33) applies

directly to the N -element array. The same equation with �
(m)
d R substituted for �d R is

correct when some elements are sufficiently close together so that β0b1i < 1, i > 1.
It follows that the entire formal solution in Sections 3.3 and 3.4 is valid for the
phase sequences of the N -element array. The N independent phase-sequence currents
I (m)(z), m = 0, 1, . . . N , may be expressed as the solution of a column matrix
equation.

A summary of the relevant equations is given below.

Phase-sequence currents

{I (m)
z (z)} = j2π

ζ0�d R cosβ0h
[{V (m)M0z} + {V (m)T (m)

U F0z} + {V (m)T (m)
D H0z}],

(4.59)

where M0z = sinβ0(h − |z|), F0z = cosβ0z − cosβ0h, and H0z = cos 1
2β0z −

cos 1
2β0h.


T (m)

U

T (m)
D


 = [�(m)

T ]−1




�
(m)
V (h)−�

(m)
d�R cosβ0h

− j�(m)
d I


 (4.60a)

[�(m)
T ] =

[
�

(m)
T 11 �

(m)
T 12

�
(m)
T 21 �

(m)
T 22

]
. (4.60b)
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[�(m)
T ]−1 is the reciprocal of [�(m)

T ].

�
(m)
T 11 = �

(m)
dU R cosβ0h −�

(m)
U (h)

�
(m)
T 12 = −�

(m)
D (h)

�
(m)
T 21 = j�(m)

dU I

�
(m)
T 22 = �

(m)
d D



. (4.61)

The phase-sequence admittance is given by setting z = 0 in (4.59), thus:

Y (m) = I (m)
z (0)

V (m)
. (4.62)

The phase-sequence impedance is the reciprocal of the phase-sequence admittance,

Z (m) = 1

Y (m)
. (4.63)

The mutual impedances Z1i , 1 < i ≤ N , may be calculated from the phase-sequence
impedances by multiplying by the inverse (4.36) of the phase-sequence matrix P .
Thus,

{Z} = [P]−1{Z (m)}. (4.64)

When the identical elements of a circular array are equally spaced around a circle,
symmetry reduces the number of different admittances or impedances to (N + 1)/2 if
N is odd and (N/2)+ 1 if N is even. For example,

Z12 = Z1N ; Z13 = Z1(N−1); Z14 = Z1(N−2) etc. (4.65)

When the expression for the phase-sequence currents becomes indeterminate for
β0h = π/2 and for a range near this value, the alternative form given in (3.43)–(3.45)
is useful. It is

{I (m)
z (z)} = − j2π

ζ0�d R
{V (m)S0z + V (m)T ′(m)

U F0z − V (m)T ′(m)
D H0z}, β0h ∼ π

2
,

(4.66)

where

S0z = sinβ0|z| − sinβ0h

= sinβ0|z| − 1 when β0h = π

2
(4.67)

and

{T ′(m)
U } = −{(T (m)

U + sinβ0h)/ cosβ0h}
{T ′(m)

D } = {T (m)
D / cosβ0h}


 . (4.68)
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The two-term approximation used earlier in this chapter is quickly obtained from the
three-term formulas. As stated in Section 3.9, the procedure involves the substitution
of F0z for H0z and T (m) for T (m)

U + T (m)
D . This implies that �d D → �dU , �D(h) →

�U (h). The two-term forms for the phase-sequence currents and admittances (cf.
(3.85)–(3.87)) are

{I (m)
z (z)} = j2π

ζ0�d R cosβ0h
{V (m)M0z + V (m)T (m)F0z} (4.69)

and

{Y (m)} =
{

I (m)
z (0)

V (m)

}
, (4.70)

where

{T (m)} = −
{
�

(m)
V (h)− (�

(m)
d�R + j�(m)

d I ) cosβ0h

�
(m)
U (h)−�

(m)
dU cosβ0h

}
. (4.71)

When β0h is at or near π/2 the alternative formulas (3.88)–(3.90) are applicable. They
are

{I (m)
z (z)} = − j2π

ζ0�d R
{V (m)S0z + V (m)T ′(m)F0z} (4.72)

{Y (m)} =
{

I (m)
z (0)

V (m)

}
, (4.73)

where

{T ′(m)} = −
{

T (m) + sinβ0h

cosβ0h

}
, β0h ∼ π

2
. (4.74)

Note that (4.69) and (4.72) are the same as (4.4a) and (4.4b).



5 The circuit and radiating properties of
curtain arrays

In Chapters 2 and 3 an accurate theory is presented for a single antenna and for a
two-element array. The present chapter is concerned with the analysis of the general
N -element curtain array. This is a linear array with the centers of all elements along a
straight line and with their axes all perpendicular to and in a plane containing the line.

5.1 Comparison of conventional and two-term theories

The analysis of arrays is conventionally formulated under the implicit assumption that
distributions of current along all elements are identical. It follows that self- and mutual
impedances depend only on the geometry of the elements. Circuit equations can then
be written to relate the driving-point voltages and currents through an impedance
matrix. Thus,

{V } = [Z ]{I } (5.1)

where

{V } =




V01

V02

...

V0N



, {I } =




I01

I02

...

I0N




(5.2)

and

[Z ] =




Z11 Z12 Z13 . . . Z1N

Z21 Z22 Z23 . . . Z2N

...

Z N1 Z N2 Z N3 . . . Z N N



. (5.3)

The bracketed terms are N × N matrices; the terms in braces are column matrices.
The usual reciprocity of off-diagonal impedances in (5.3) holds (i.e. Z12 = Z21 etc.).
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Equation (5.1) relates the quantities that can be assigned at the driving point of the
antenna, namely the voltages and currents. The simple matrix relation between V ’s and
I ’s shows that it is immaterial whether the voltages or the currents are specified, since
the ratio between each voltage and current is unchanged. The phase and magnitude
of the currents in the individual elements are normally specified so as to produce a
particular radiation pattern. The assumption of identical distributions of current on all
elements involves the tacit assumption that the phase and amplitude of the current at
all points in each element are completely determined by their values at the driving
point.

The preceding remarks may, at first glance, seem like a repetition of well-known
facts. However, the assumptions implied in the conventional formulation are not
satisfactory approximations for actual arrays except when the elements are very
thin and have lengths near λ/2. Even for this special case difficulties arise when
the elements are very closely spaced. Fortunately, a more realistic theory can be
developed that is generally applicable to arrays with elements that are less than 3λ/4
in half-length. The new theory is somewhat more complicated than the conventional
approach. However, for engineering purposes it is more important that a theory agree
with experiment than that it be mathematically simple. As with most new approaches,
much of the complexity disappears with continued use and understanding. At the
outset the fundamental processes will be explained without reference to the details
of the theory.

An example of the notation of a three-element array is shown in Fig. 5.1. The
conventional assumption is that regardless of the driving conditions each element has
the same distribution of current. For example,

Ii (z) = I0i
sinβ0(h − |z|)

sinβ0h
, i = 1, 2, 3. (5.4)

Equation (5.4) shows that once the currents are assigned at any point, e.g. at z = 0, the
entire current is completely specified. The more accurate theory requires the individual
currents to have distributions determined by their electrical environments. Specifically,
they are represented by the following formula:

Ii (z) = j Ai sinβ0(h − |z|)+ Bi (cosβ0z − cosβ0h), (5.5)

where i = 1, 2, 3, and Ai is real and Bi is complex. In (5.5) the A coefficients are
directly proportional to the respective driving voltages. That is,

Ai = CV0i , i = 1, 2, 3, (5.6)

where C is a constant. On the other hand, the complex B coefficients depend on
contributions not only from the individual element but also from all of the remaining
elements. For example, there are contributions to B1 from V01 and also from V02 and
V03.
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b13

b12

dz

R11
R12 R13

dz′ dz′ dz′ z′

V03 0V02V01

z

h

2a

2h

1 2 3

Figure 5.1 Three-element array.

5.2 Two-term theory of curtain arrays

The theoretical solution of the general problem of the curtain array will now be
examined in detail. The essential basis for this theory was given in Chapter 2. Since the
two-term theory described in Section 2.10 yields results of sufficient accuracy, it will
be used for the curtain array to reduce the complexity of the formulation. However, the
more accurate three-term representation involves only added algebraic complications.

The integral equation (2.4) may be written as follows for the kth antenna of an
N -element array:

4πµ−1
0 Azk(z) =

∫ h

−h

N∑
i=1

Izi (z
′)Kki (z, z′) dz′

= − j
4π

ζ0
(Ck cosβ0z + 1

2 V0k sinβ0|z|), (5.7)
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where

Kki (z, z′) = e− jβ0 Rki

Rki
, (5.8)

Rki =
√
(zk − z′i )2 + b2

ki , bkk = a, ζ0
.= 120π ohms. (5.9)

The notation is illustrated in Fig. 5.1 for a three-element array. If the array has N
elements, it is necessary to solve N simultaneous integral equations of the form (5.7),
where k = 1, 2, 3, . . . N . Following the procedure used in Chapter 2, an approximate
zero-order solution will be obtained for the general linear array. That is, given the
N driving voltages, a solution will be obtained for the currents in the N elements.
Alternatively, given the N driving-point currents, the N driving voltages will be
determined.

As a first step in the solution, the constant part of the vector potential is removed
from the right-hand side of (5.7) by the introduction of the vector potential difference

Wzk(z) = Azk(z)− Azk(h).

The result is

4πµ−1
0 Wzk(z) =

∫ h

−h

N∑
i=1

Izi (z
′)Kkid(z, z′) dz′ (5.10)

= − j
4π

ζ0
[Ck cosβ0z + 1

2 V0k sinβ0|z|]

−
∫ h

−h

N∑
i=1

Izi (z
′)Kki (h, z′) dz′, (5.11)

where

Kkid(z, z′) = e− jβ0 Rki

Rki
− e− jβ0 Rkih

Rkih
. (5.12)

The constants of integration Ck are expressed in terms of quantities Uk that are pro-
portional to the Azk(h) by means of the relation Wzk(h) = 0. The final rearrangement
of the integral equation (5.7) is [cf. (2.15)]∫ h

−h

N∑
i=1

Izi (z
′)Kkid(z, z′) dz′ = j

4π

ζ0 F0(h)
(Uk F0z + 1

2 V0k M0z), (5.13)

where

F0z = F0(z)− F0(h) = cosβ0z − cosβ0h (5.14)

M0z = F0(z) sinβ0h − sinβ0|z| F0(h) = sinβ0(h − |z|) (5.15)

Uk =
N∑

i=1

Uki = − j
ζ0

4π

∫ h

−h

N∑
i=1

Izi (z
′)Kki (h, z′) dz′. (5.16)
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The difference kernel (5.12) may be separated into its real and imaginary parts as
follows [cf. (2.5) et seq.]:

Kkid R(z, z′)+ j Kkid I (z, z′) = Kkid(z, z′), (5.17)

where

Kkid R = Kki R(z, z′)− Kki R(h, z′)

Kkid I = Kki I (z, z′)− Kki I (h, z′)

}
. (5.18)

For the single element, the integrals corresponding to those in (5.13) were separated
into two groups depending on the manner in which their leading terms varied as
functions of z. The same principle of separation may be applied to the integrals for
the curtain array. As before, one group varies approximately as M0z , the other as F0z .
The following functional forms for the integrals in (5.13) are important general criteria
for the separation:∫ h

−h
Izi (z

′)Kki R(z, z′) dz′ ∼ Izi (z) when β0bki < 1 (5.19)

∫ h

−h
Izi (z

′)Kki R(z, z′) dz′ ∼ F0z when β0bki ≥ 1 (5.20)

∫ h

−h
Izi (z

′)Kki I (z, z′) dz′ ∼ F0z for any I (z′) and all β0bki . (5.21)

The current in each element can now be expressed in two parts in the form

Izi (z) = Iui (z)+ Ivi (z) (5.22)

where, by definition, the leading terms behave approximately as follows:

Ivi (z) ∼ M0z, Iui (z) ∼ F0z . (5.23)

Some appreciation of the importance of the general functional forms in (5.23) may
be obtained from an investigation of the integral equation (5.13). If attention is
directed to the right-hand side of (5.13), it is seen that the equation contains two
apparent sources, the coefficients of F0z and M0z . The function Uk has a constant
amplitude over the entire length of the kth element and is generated primarily by
the distributed currents on each element in the array. The other source function is
the potential difference V0k , as in a transmission line or in an isolated antenna; it is
localized at z = 0. The form of the integral equation (5.13) suggests that the current
on each element can be separated into two parts, the one apparently generated by
the Uk , the other by the V0k . The part of the current due to Uk is closely related
to the current in an unloaded receiving antenna that is located in the wave front of
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an incident plane-wave field that has the same amplitude and phase over the entire
length of the element. For this the leading term varies as F0z . Except when the
elements are very closely spaced (as in an open-wire line), the sinusoidal parts of
the currents (i.e. M0z) are maintained primarily by the individual driving potentials
V0k . Thus, the current due to each of the V0k is essentially the same as in an isolated
antenna.

When (5.22) is substituted in (5.13), groups of integrals occur that may be expressed
as follows for all k and i in the ranges 1 to N :

∫ h

−h
Iui (z

′)Kkid(z, z′) dz′ =
(

Bi

Bk

)
�kidu Iuk(z)− Dkidu(z) (5.24)

∫ h

−h
Ivi (z

′)Kkid(z, z′) dz′ =
(

j Ai

Bk

)
�kidv Iuk(z)− Dkidv(z); β0bki ≥ 1 (5.25)

∫ h

−h
Ivi (z

′)Kkid R(z, z′) dz′ =
(

Ai

Ak

)
�kid R Ivk(z)− Dkid R(z); β0bki < 1 (5.26)

∫ h

−h
Ivi (z

′)Kkid I (z, z′) dz′ =
(

j Ai

Bk

)
�kid I Iuk(z)− Dkid I (z); β0bki < 1. (5.27)

It is assumed that the functions �ki are defined so that the difference terms Dki (z) are
small enough to be negligible in a solution of zero order. The coefficient ( j Ai/Bk) in
(5.27) is the ratio of the amplitude of Ivi (z) to that of Iuk(z). When (5.24)–(5.27) are
substituted in (5.13) and only the leading terms are retained, the following separation
into two groups of equations may be carried out:

k+m∑
i=k−m

(
Ai

Ak

)
�kid R Ivk(z) = j

2π

ζ0 F0(h)
V0k M0z (5.28)

N∑
i=1

(
Bi

Bk

)
�kidu Iuk(z)+

[
k−m−1∑

i=1

+
N∑

k+m+1

](
j Ai

Bk

)
�kidv Iuk(z)

+ j
k+m∑

i=k−m

(
j Ai

Bk

)
�kid I Iuk(z) = j

4π

ζ0 F0(h)
Uk F0z . (5.29)

The index m in the sums is defined by

β0bkm < 1, β0bk,m+1 ≥ 1 (5.30)

where bkm is the distance between the centers of the elements m and k. In most curtain
arrays the spacing of the elements is sufficiently great so that all elements with m �= k
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satisfy the right-hand inequality in (5.30) and only β0bkk = β0a < 1. When this is
true, (5.28) and (5.29) reduce to

Ivk(z) = j
2πV0k

ζ0�d R F0(h)
M0z (5.31)

and

N∑
i=1

{(
Bi

Bk

)
�kidu +

(
j Ai

Bk

)
[�kidv(1 − δik)+ j�kid I δik]

}
Iuk(z) = j4πUk

ζ0 F0(h)
F0z,

(5.32)

where

δik =
{

0, i �= k

1, i = k.

The notation �d R = �kkd R is used, since with identical elements all the �kkd R are
identical and equal to �d R for the isolated antenna.

It follows directly from (5.31) that the leading term in Ivk(z) is always M0z for each
value of k. Similarly from (5.32) the leading term in Iuk(z) is of the form F0z . Hence,
it is possible to set

Ivi (z) = j Ai M0z, Iui (z) = Bi F0z (5.33)

or

Izi (z) = j Ai M0z + Bi F0z . (5.34)

Since �d R is real, it is clear from (5.31) that Ai is real when V0k is real and from (5.32)
that Bi is in general complex, or

Bi = Bi R + j Bi I . (5.35)

Note that the constant ( j Ai/Bk), introduced in (5.25) and (5.27), is the ratio of the
coefficients of the two terms in (5.34).

With the zero-order current formally determined, the constant Uk may be obtained
from the substitution of (5.34) in (5.16). It is given by

Uk = − j
ζ0

4π

N∑
i=1

[ j Ai�kiv(h)+ Bi�kiu(h)], (5.36)

where

�kiv(h) =
∫ h

−h
M0z′ Kki (h, z′) dz′ (5.37)

�kiu(h) =
∫ h

−h
F0z′ Kki (h, z′) dz′. (5.38)
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If (5.36), (5.33), and (5.34) are substituted in (5.31) and (5.32) the result is

Ak = 2π

ζ0�d R F0(h)
V0k (5.39)

N∑
i=1

Bi [�kidu F0(h)−�kiu(h)]

= j
N∑

i=1

Ai {�kiv(h)− [�kidv(1 − δik)+ j�kid I δik]F0(h)} (5.40)

where k = 1, 2, 3, . . . N . The physical significance of the zero-order solution is
evident from (5.39) and (5.40). The coefficients of the ‘transmitting part’ of the
current are given by (5.39). The N driving voltages generate the expected sinusoidal
distribution of current on each element. The coefficients of the ‘receiving part’ of
the current are given by (5.40). The N currents act as distributed sources to generate
distributions of the receiving type which are present in all the elements of the array.
Equation (5.40) permits the prediction in each driven element of the shifted-cosine
component of the current that is due to coupling between currents distributed along
the element itself and along all other elements in the array. Conventional array theory
is concerned only with (5.39), since all currents are assumed to have the same
sinusoidal distribution. In the special case of an array with thin half-wave elements,
the real and imaginary parts of the current in each element do have approximately
the same distribution. It follows that conventional array theory should work quite
well for an array of very thin half-wave elements. On the other hand, in the more
general case, the real and imaginary parts of the current in each element have
different distributions so that (5.40) is needed along with (5.39) to determine the actual
currents.

An important case to which conventional theory has no application is the array
of full-wave elements in which the currents are near anti-resonance, and their real
and imaginary parts have quite different distributions. Before some particular parallel
arrays are analyzed, (5.40) is best expressed in matrix form. A general expression will
be given for the �ki (z) functions, and rigorous expressions will be derived for the
radiation field.

Equation (5.40) is a set of linear algebraic equations with N unknowns that may be
solved for the Bi in terms of the Ai . The N values of the Ai are expressed in terms of
the N driving voltages V0i by (5.39). In order to express (5.40) in matrix form, let the
following quantities be defined:

�kiu = �kidu F0(h)−�kiu(h) (5.41)

�kiv = �kiv(h)−�kidvF0(h)(1 − δik)− j�kid I F0(h)δik . (5.42)
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Also let

[�u] =




�11u �12u . . . �1Nu

�21u �22u . . . �2Nu

...

�N1u �N2u . . . �N Nu




(5.43)

[�v] =




�11v �12v . . . �1Nv

�21v �22v . . . �2Nv

...

�N1v �N2v . . . �N Nv




(5.44)

{A} =




A1

A2

...

AN



, {B} =




B1

B2

...

BN



. (5.45)

The bracketed terms are N × N matrices; the terms in braces are column matrices.
From the substitution of (5.41)–(5.45) in (5.40), it follows that

[�u]{B} = [�v]{ j A} (5.46)

and from (5.39)

{A} = 2π

ζ0�d R F0(h)
{V0} (5.47)

with {V0} defined as in (5.2).
The solutions of two important problems in linear array theory are readily obtained

from (5.46) and (5.47). Case I is concerned with specifying the driving-point1 currents
and determining the N potentials V0k required to maintain these currents. In Case II
the N potentials V0k are specified and the corresponding driving-point currents are
determined.

In the zero-order current distribution (5.34), the coefficients Bi are the amplitudes of
the shifted cosine currents due to the distributed interaction of all elements of current
in the array. The Ai coefficients are determined completely by the voltages of the

1 The term ‘base current’ is also used for driving-point current.
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individual generators. The distribution of the current in the i th element (5.34) may be
separated into its real and imaginary parts as follows:

Izi (z) = j{Ai sinβ0(h − |z|)+ Bi I (cosβ0z − cosβ0h)}
+ Bi R(cosβ0z − cosβ0h) (5.48)

= I ′′zi (z)+ j I ′zi (z). (5.49)

At z = 0, the real and imaginary parts of the driving-point current are

I ′′zi (0) = Bi R(1 − cosβ0h) (5.50a)

I ′zi (0) = Ai sinβ0h + Bi I (1 − cosβ0h). (5.50b)

The driving-point impedance and admittance under the two driving conditions can be
computed from the following general formulas obtained by combining (5.46)–(5.50).
(Note: A special form is convenient when β0h is at or near π/2.)

Case I Input currents specified

{V0} = 1

c1(1 − cosβ0h)
[�w]−1[�u]{Iz(0)}, (5.51)

where

c1 = j2π/(ζ0�d R cosβ0h);

[�w] = [�v +�u sinβ0h/(1 − cosβ0h)]. (5.52)

Case II Driving voltages specified

{Iz(0)} = c1(1 − cosβ0h)[�u]−1[�w]{V0}. (5.53)

The matrix components in (5.51) and (5.53) as well as numerical values of the
driving-point impedances and admittances under different driving conditions are given
in tables in Appendices II and III. These tables were extracted from a more complete
table [1]. The forms of the current for specified driving-point voltages and currents are
not generally the same since the Ai and Bi coefficients differ for the two cases.

The symmetry properties of the impedance matrix in (5.1) and its counterpart in
(5.51) are not identical. The assumption of identical current distributions implies that
the mutual impedance between any two elements in an array is only a function of the
size and spacing of the elements. Thus, with identical elements in an array, elements
with the same center-to-center spacing have the same value of mutual impedance. For
example, in an array with elements equally spaced, Z12 = Z23 = Z34 and Z13 =
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Z24 = Z46. The mutual impedance for elements near the center of the array is then
the same as for corresponding elements near the ends of the array. The more accurate
theory correctly shows that the coupling properties of an element in the array depend
on the distribution of current and the location of every element in the array. Elements
near the edges of an array are coupled differently from elements near the center.

The general �(z) functions, obtained from the defining integrals (5.24)–(5.27), are

�kidu(z) = 1

cosβ0z − cosβ0h
{[Cb(h, z)− Cb(h, h)]

− cosβ0h [Eb(h, z)− Eb(h, h)]} (5.54)

�kid R(z) = 1

sinβ0(h − |z|) Re{[Cb(h, z)− Cb(h, h)] sinβ0h

− [Sb(h, z)− Sb(h, h)] cosβ0h} (5.55)

�kid I (z) = 1

cosβ0z − cosβ0h
Im{[Cb(h, z)− Cb(h, h)] sinβ0h

− [Sb(h, z)− Sb(h, h)] cosβ0h} (5.56)

�kidv(z) = 1

cosβ0z − cosβ0h
{[Cb(h, z)− Cb(h, h)] sinβ0h

− [Sb(h, z)− Sb(h, h)] cosβ0h} (5.57)

�kiv(h) = Cb(h, h) sinβ0h − Sb(h, h) cosβ0h (5.58)

�kiu(h) = Cb(h, h)− Eb(h, h) cosβ0h, (5.59)

where in subscripts b = bki , and

Sb(h, z) =
∫ h

0
sinβ0z′

[
e− jβ0 R1

R1
+ e− jβ0 R2

R2

]
dz′ (5.60)

Cb(h, z) =
∫ h

0
cosβ0z′

[
e− jβ0 R1

R1
+ e− jβ0 R2

R2

]
dz′ (5.61)

Eb(h, z) =
∫ h

0

[
e− jβ0 R1

R1
+ e− jβ0 R2

R2

]
dz′ (5.62)

R1 =
√
(z − z′)2 + b2

ki , R2 =
√
(z + z′)2 + b2

ki . (5.63)

The functions Sb, Cb and Eb are found in King2 and are tabulated for a wide range
of values of h, z and b by Mack [3]. In order to obtain satisfactory overall agreement,
the � functions are evaluated at the point of maximum current. This ensures a good
approximation for the determination of both the far field and the input power. However,

2 [2], p. 94.
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Figure 5.2 Coordinate system locating one element with respect to the center 0 of a parallel array.

the input susceptance may be somewhat in error. This does not present any practical
difficulty since appropriate corrections may be applied at the driving point (cf. Section
2.8).

The far-zone electric field depends upon the location of each element and its current
distribution. Thus, for the geometry of Fig. 5.2, which defines Ri ,

E�(�,�) = j
ωµ0 sin�

4π

N∑
i=1

e− jβ0 Ri

Ri

∫ h

−h
Ii (z

′)e jβ0z′ cos� dz′. (5.64)

For the conventional sinusoidal distribution of current, the electric field is given by

E�(�,�) = j
ζ0

2π

N∑
i=1

e− jβ0 Ri

Ri
Ii (0)Fm(�, β0h), (5.65)

where

Fm(�, β0h) = cos(β0h cos�)− cosβ0h

sin�
. (5.66)
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The more accurate far-zone electric field is

E�(�,�) = j
ζ0

2π

N∑
i=1

e− jβ0 Ri

Ri
[ j Ai Fm(�, β0h)+ Bi Gm(�, β0h)], (5.67)

where

Gm(�, β0h) = sinβ0h cos(β0h cos�) cos�− cosβ0h sin(β0h cos�)

sin� cos�
. (5.68)

5.3 Example: the three-element array

Consider a three-element array with elements that are a full wavelength long (2h = λ)

and separated by a quarter wavelength (bi,i+1 = λ/4). The conventional approach to
this problem is doomed to failure when β0h = π , since an assumed sinusoidal current
(i.e. Iz(z) ∼ sinβ0|z|) is zero at the driving point. This gives rise to a zero admittance
or an infinite impedance for each element in the array. This difficulty does not exist
with the current obtained from (5.5) with β0h = π . This is

Ii = j Ai sinβ0|z| + Bi (cosβ0z + 1). (5.69)

At z = 0, the current is finite and is given by the coefficient Bi for each element in
the array. In order to demonstrate the difference between the two antenna theories, the
conventional approach will be used for β0h = 3.157 and compared to the results of
the two-term theory for β0h = π .

Consider now the three-element array shown in Fig. 5.1. Either the driving-point
voltages or the driving-point currents may be specified. Conventionally the phases
of the equal driving-point currents are specified to produce a radiation pattern. The
electric field E� in the far zone can be expressed in the simple form

E� = jζ0 Iz0(0)

2π

e− jβ0 R

R
F0(�, β0h)A(�,�), (5.70)

where F0(�, β0h) is the vertical field function of an isolated element and A(�,�)

is the array factor. A uniform array with equally spaced elements and with |Izi (0)| =
|Iz0(0)| for all values of i has the array factor

A(�,�) = sin N x

sin x
≡ A(�,�; N , n, t), (5.71)

where x = π(n sin� cos� − t), n is the distance between elements in fractions of a
wavelength, and t is the time delay from element to element in fractions of a cycle. The
expanded form of (5.71) in which all five variables and parameters are explicit is useful
when several array factors are superimposed. For the array of Fig. 5.1, the number
of elements is N = 3, and n is chosen to be 1

4 . Now let attention be directed to the
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Figure 5.3 Arrays factors which comprise actual three-element array factor.

horizontal pattern in the equatorial or H -plane defined by � = π/2. The three driving-
point currents are equal in magnitude but the phase delay t between elements may be
varied to produce a particular pattern. For example, a value of t = 1

4 will produce an
endfire radiation pattern with the maximum value of the directivity D toward the right
in Fig. 5.1.

The actual radiation pattern of the three-element endfire array with specified base
currents differs from the ideal pattern shown on the left of Fig. 5.3. The several
components of current on the elements which are discussed later in this section, are
equivalent to separate sources producing different radiation patterns. The additional
patterns in the middle and right of Fig. 5.3 fill in the deep nulls and reduce the
back-to-front ratio of the ideal pattern. The electric field for the three-element array
with the expanded form of the array factor in (5.71) is given by the sum

E� ∼ A(π/2,�; 3, 1
4 ,

1
4 )+ (−0.53 + j0.57)A(π/2,�; 2, 1

2 , 0)

+ (−0.07 + j0.50)A(π/2,�; 2, 1
2 ,

1
2 ).

The individual normalized field patterns

ap(�,�; N , n, t) = A(�,�; N , n, t)

N
= sin N x

N sin x

are shown in Fig. 5.3.
The ideal radiation pattern as determined from (5.70) depends on the vertical field

factor F0(�, β0h) of an isolated element. Consider now an array with full-wave
elements (β0h = π ). The particular value of F0(�, β0h) is given by (5.66). Thus,

F0(�, π) = cos(π cos�)+ 1

sin�
(5.72)

F0

(π
2
, π
)
= 2. (5.73)
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As an illustrative comparison of the results of the present theory with other methods,
an examination of the driving-point impedances for the three-element array with
β0h = π/2 and β0h = π is given. An extension of the “induced EMF method”,
discussed in Section 1.7 for the case of a single isolated antenna, is frequently used for
the calculation of mutual impedance.3 As in the case of a single antenna, the method
assumes sinusoidal currents. The resulting formula for the mutual impedance is the
same as in (1.42) but with a replaced by b. For β0h = π/2, and with ζ0 = 120π ohms,
the self- and mutual impedances obtained with the EMF method are

Z11 = 73.12 + j41.28 ohms, � = 2 ln(2h/a) = 10
Z12 = 40.79 − j28.35 ohms, β0b = π/2
Z13 = −12.53 − j29.93 ohms, β0b = π


 (5.74)

Z12 = Z21 = Z23 = Z32, Z13 = Z31, Z11 = Z22 = Z33. (5.75)

The driving-point currents are specified in the following way to produce an endfire
pattern:

{I } =




I01

I02

I03


 = I01




1

− j

−1



. (5.76)

The substitution of (5.76) and (5.74) into (5.1) yields the following driving-point
impedances for the three elements:

Z01 = Z11 − j Z12 − Z13 = 57.3 + j30.42 ohms = V01/I01

Z02 = Z11 = 73.12 + j41.28 ohms = V02/I02

Z03 = Z11 + j Z12 − Z13 = 114.0 + j112.0 ohms = V03/I03


 . (5.77)

The same results are, of course, obtained when the driving voltages are assigned
instead of the currents by the substitution of V for I in (5.76), since no changes are
possible in the assumed distributions of current and, hence, in the mutual coupling.

It is now in order to examine the results obtained by the two-term theory which
takes full account of the changes in the distributions of current due to the presence of
any number of coupled elements. The driving-point impedances for the three elements
are readily computed.4 They are

Z01 = 67.51 + j24.14 ohms, � = 2 ln
2h

a
= 10

Z02 = 78.47 + j31.23 ohms

Z03 = 145.61 + j96.91 ohms


 . (5.78)

3 See, for example, [4], pp. 535–556. 4 [1], p. 84.
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These values are comparable with those in (5.77) (with differences not exceeding about
30%) simply because the current in half-wave dipoles is predominantly sinusoidal with
only relatively small changes due to finite radius and mutual coupling.

The situation is quite different when the elements are not near resonance. This is
well illustrated with the same three-element array but now with β0h near π instead
of π/2. The conventional application of the EMF method with assumed sinusoidal
currents on all elements yields meaningless results. Since the currents at all three
driving points are identically zero all driving-point impedances are infinite – which
is, of course, absurd.

Once again it is in order to introduce the results from the two-term theory which
actually determines the distributions of the currents on all three elements and the
associated driving-point impedances. The following values are readily calculated5 for
the driving-point currents specified in (5.76):

Z01 = 612 − j591 ohms Y01 = (0.845 + j0.817)× 10−3 siemens

Z02 = 160 − j590 ohms Y02 = (0.429 + j1.578)× 10−3 siemens

Z03 = 61.5 − j435 ohms Y03 = (0.318 + j2.252)× 10−3 siemens


 . (5.79)

When normalized to I01, the voltages required to maintain the currents specified in
(5.76) when β0h = π and β0b = π/2, i.e. I02 = − j I01, I03 = −I01, are V01/I01 =
612− j591 volt/ampere, V02/I01 = −590− j160 volt/ampere, and V03/I01 = −61.5+
j435 volt/ampere. The power supplied to element k by its generator is

Pk = |I0k |2 R0k = |V0k |2G0k . (5.80)

The ratios of the powers supplied to the three-element array are

P1/P3 = 9.82, P2/P3 = 2.51. (5.81)

Evidently element 1 receives almost ten times the power that is supplied to the
terminals of element 3.

The two-term theory gives the following values6 of Z0i and Y0i , i = 1, 2, 3 when
the driving-point voltages are specified (V02 = − j V01, V03 = −V01) instead of the
currents:

Z01 = 675 − j484 ohms Y01 = (0.979 + j0.701)× 10−3 siemens

Z02 = 359 − j479 ohms Y02 = (1.003 + j1.336)× 10−3 siemens

Z03 = 170 − j426 ohms Y03 = (0.808 + j2.024)× 10−3 siemens


 . (5.82)

5 [1], p. 203. 6 [1], p. 221.
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Clearly, the results for Cases I and II are not the same as seen from a comparison of
(5.79) and (5.82). This difference is due to the unequal distributions of the currents in
the elements which cause non-uniform coupling. This effect will become clearer when
the currents in the individual elements are examined.

The conventional currents in the three-element endfire array with β0h = 3.157 are

Ii (z) = I0i sin(3.157 − β0|z|), i = 1, 2, 3

driving-point currents specified (5.83)

Ii (z) = Vi Yi sin(3.157 − β0|z|), i = 1, 2, 3

driving voltages specified. (5.84)

The form of the currents in (5.83) and (5.84) is identical for each element. Both the real
and imaginary parts have the same distribution. The currents in the two-term theory
are given by (5.69) with (5.46) and (5.47). They are shown in Figs. 5.4 and 5.5 for
the two different driving conditions. When the currents at z = 0 are specified, the
distributions differ widely in form from element to element. Note that the currents are
shown both with respect to the individual driving voltages and with respect to V02. In
the computation of radiation patterns the currents must all be normalized with respect
to a single driving voltage. The large differences in the real and imaginary parts of
the currents in Fig. 5.4 practically disappear when the driving voltages are specified in
Fig. 5.5.

5.4 Electronically scanned arrays

Previous sections of this book have demonstrated the general invalidity of the assump-
tion of equal current distributions in the elements of an array. A most significant
result of the two-term theory is that the expected conventional radiation pattern
is not achieved since the contributions by the individual elements to the radiation
pattern are different. The results of the two-term theory for the broadside and endfire
arrays show an appreciable difference not only between the driving-point impedances
for the broadside and endfire arrays, but between the conventional and two-term
theories. The experimental determination of the individual driving-point impedances is
a complicated problem and a theoretical prediction of the individual circuit properties
would certainly be an aid in the efficient operation of an array.

A comparison of the corresponding expressions for the far fields based on the
conventional method and the more accurate two-term approach helps to illustrate some
of the problems in the theory of scanned arrays. Consider an array in which the currents
at the driving points of the elements are specified in both amplitude and phase. For the
present, let the amplitudes be equal and the phases required to change linearly from
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Figure 5.4 Three-element endfire array; driving-point currents specified. Drawn with respect to (a)
individual driving voltages, (b) V02 (λ/4 spacing, β0h = π , � = 10).

element to element across the array. For example, the base current might increase in
phase by 30◦ toward one end of the array. Expressed in general terms

Ii = I0e− jδi = I0e− j2π i t (5.85)

where t is the time delay between elements in fractions of a period.
With the currents at z = 0 specified in (5.85) and under the assumption of identical

distributions of current, the far-zone electric field has the form

Er
� =

{
jζ0 I0

2π

e− jβ0 R0

R0
F0(�, β0h)

}
1 +

1
2 (N−1)∑

i=1

[e− j (δi−β0 Si ) + e j (δi−β0 Si )]


 .

(5.86)

The second term in braces in (5.86) is the familiar array factor given by (5.71). If
the distance between the elements is small enough, the radiation pattern has only one
principal maximum in the visible ranges of � and �. The first maximum of (5.70)
occurs when x = 0. Thus, to direct the main beam in a specific direction (�m,�m)
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Figure 5.5 Three-element endfire array; driving voltages specified. Drawn with respect to (a)
individual driving voltages, (b) V02 (λ/4 spacing, β0h = π , � = 10).

in space, the time delay between the currents in the elements must be set equal to a
particular value tm such that

n sin�m cos�m − tm = 0,

or

tm = n sin�m cos�m . (5.87)

For example, in an array with half-wave spacing (n = 1
2 ) for which the main beam

is to point in the direction �m = π/2 (H -plane) and �m = 60◦, the required phase
shift given by (5.87) is tm = 1

4 of a period. In a single curtain array it is not possible
with ordinary elements to have any control over the beam pointing in the � direction.
The control of the main beam in the � direction could be achieved by a planar array
formed by an array of collinear elements.

Now let the conventional requirement, that the distributions of current be equal, be
removed. Let the currents at z = 0 again be specified so that, on the basis of the
conventional theory, the main beam will point in a desired direction. However, and
this obvious fact is often overlooked, the specification of the currents at each driving
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point usually does not determine the entire current along each element. A variety of
distributions of current may be associated with any given value at z = 0. In general,
the radiation pattern can be considered the superposition of two parts. One part is
the pattern of an array of elements with equal distributions of current; the other the
pattern of the same array with dissimilar distributions of current. Conventional theories
assume that the first part is the entire pattern.

The beam-pointing properties of a scanning array are affected by the interaction
between the currents in the elements. The simple array factor in (5.71) characterizes
an ideal array in which the exact phase and amplitude of the current are specified
for each element. This specification applies not only at z = 0 but all along each
element. The phase of the current is of primary importance in the determination of the
direction of the main beam. In an actual array the variation in phase along the length
of each individual element differs from element to element. In practice, this variation
is responsible for a beam-pointing error of non-negligible value. Furthermore, with
this phase variation perfect phase cancellation and addition are impossible. Perfect
nulls in the radiation pattern will disappear and side-lobe levels will be modified
significantly. The side-lobe level and the angular width of the main beam are also
affected by changes in the magnitudes of the currents from element to element across
the array.

As a specific example, consider the three-element array with full-wave elements
(β0h = π ) and half-wave spacing (β0b = π/2). The driving-point currents are
specified to produce a maximum field in the direction indicated by the conventional
theory. The driving-point impedance is to be calculated for each element as a function
of the scanning angle. The actual position of the maximum, as given by the two-term
theory, is to be compared with the corresponding angular position predicted by the
conventional theory. The difference is the beam-pointing error �.

The general matrix relation (5.51) between the driving-point voltages and currents
may be reduced to the following symbolic form:

{V0} = [�T ]{I0}, (5.88)

where

{V0} =




V01

V02
...

V0N



, {I0} =




I01

I02
...

I0N




(5.89)

and

[�T ] =




�T 11 �T 12 . . . �T 1N

�T 21 �T 22 . . . �T 2N
...

�T N1 �T N2 . . . �T N N


 = 1

c1(1 − cosβ0h)
[�w]−1[�u], (5.90)
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where [cf. (5.52)]

[�w] = [�v +�u sinβ0h/(1 − cosβ0h)]

c1 = j2π/ζ0�d R cosβ0h.

The elements of �T may be derived from the machine-tabulated values of �u and
�v in the tables [Appendix II]. From the tabulated values for the two different sets
of driving conditions [Appendix III] and a knowledge of the symmetry properties of
the �u and �v values, the �T values may also be calculated. In the present example
calculations similar to those given in Appendix III yield the following information for
the case β0h = π , β0b = π/2:

When

{I0} = I01




1

− j

−1




(5.91)

then

{V0} = I01




612 − j591

−590 − j160

−61.5 + j435



. (5.92)

Also when

{I0} = I01




1

1

1




(5.93)

then

{V0} = I01




435 − j346

309 − j37.9

435 − j346



. (5.94)

The specifications in (5.91) and (5.93) are the conventional ones for the endfire and
broadside arrays. For β0h = π , β0b = π/2, the time delay between elements as given
by (5.87) is

tm = n cos�m = 1
4 cos�m . (5.95)
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Table 5.1. Relative values of driving-point currents Ii , i = 1, 2, 3 for
different values of �m

�m 0 30◦ 60◦ 75◦ 90◦

I1 1 1 + j0 1 + j0 1 + j0 1
I2/I1 − j 0.209– j0.978 0.707– j0.707 0.919– j0.395 1
I3/I1 −1 −0.913– j0.409 −0.707– j0.707 0.687– j0.726 1

The driving-point currents in the N elements can now be expressed in terms of the
angle �m with the aid of (5.85). The result is

Ii = I1e− j2π(i−1)n cos�m = I1e− j (π/2)(i−1) cos�m , n = 1
4 , i = 1, 2, 3.

(5.96)

Table 5.1 is useful for the computation of the driving-point impedances for different
values of the angle �m .

Before the driving-point impedances can be computed the elements of the matrix
�T must be found. They can be computed directly from the basic matrix equations
in terms of �u and �v , or they may be computed from the tables of driving-point
impedances for different driving conditions. For example, from the two sets of
information contained in (5.92) and (5.94), the symbolic matrix multiplication (5.88)
yields

�T 11 +�T 12 +�T 13 = 435 − j346

2�T 21 +�T 22 = 309 − j37.9

�T 11 − j�T 12 −�T 13 = 612 − j591

− j�T 22 = −590 − j160

−�T 11 − j�T 12 +�T 13 = −61.5 + j435



, (5.97)

where

[�T ] =




�T 11 �T 12 �T 13

�T 21 �T 22 �T 21

�T 13 �T 12 �T 11


. (5.98)

The symmetry properties of the elements of (5.98) were deduced from those of the
component matrices involved in (5.88). The elements of (5.98) may be compared to
the impedance matrix whose elements are the self- and mutual impedances computed
under the conventional assumptions. For example, �T 11 could be compared to Z11, the
self-impedance of the first antenna. The result shown symbolically in (5.98) indicates
that the off-diagonal terms are not necessarily equal (e.g. �T 12 �= �T 21) and that the
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Figure 5.6 Variation of driving-point resistance and reactance with beam-pointing angle �m for
three-element array (λ/4 spacing, β0h = π , � = 10).

diagonal terms may differ (e.g. �T 11 �= �T 22). The numerical values of the matrix
elements of �T are

�T 11 = 347 − j567

�T 22 = 160 − j590

�T 12 = 77.9 + j275

�T 21 = 74.3 + j276

�T 13 = 10.4 − j53.7



. (5.99)

Consider the specific case �m = 75◦, where the driving-point currents are given in
Table 5.1 and the elements of the �T matrix are given by (5.99). Thus,


V01

V02

V03


 =


 �T 11 �T 12 �T 13

�T 21 �T 22 �T 21

�T 13 �T 12 �T 11






1 + j0

0.919 − j0.395

0.687 − j0.726


 I1. (5.100)

To compute, for example, Z02 = (V02/I2), the quantity (V02/I1) is computed from
(5.100) or (V02/I1) = �T 21(1 + j0) + �T 22(0.919 − j0.395) + �T 21(0.687 −
j0.726) = 240 − j193 ohms. The driving-point impedance Z02 is found from the
substitution of the relation I2 = (0.919 − j0.395)I1 in this expression with the
result, Z02 = 297 − j82.8 ohms. The variation of the driving-point resistance and
reactance with the beam-pointing angle �m is shown in Fig. 5.6. It is seen that even if
the beam-pointing angle is restricted to moderate departures from a normal position,
significant changes in the impedance function occur. These will be apparent in the
mismatch between the generator and the antenna. Note also that from symmetry, the
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continuation of R01 and X01 in the range 90◦ ≤ �m ≤ 180◦ is the mirror image of
R03 and X03 about �m = 90◦.

The driving-point currents have been specified according to the criteria of the
conventional theory. This specification does not control the distribution of either the
phase or the amplitude of the current away from the driving point. As a result, the
location of the maximum of the main beam may differ from that predicted by the
ideal angle in (5.87). This difference is the beam-pointing error � and represents the
difference between the ideal scanning angle �m and the actual angle �a .

The far-zone electric field is given by (5.67). The computation of this field requires
all currents to be normalized with respect to a single driving voltage. Thus, with the
kth element as a reference, (5.67) may be rearranged to give

Er
�(�) = jζ0

2π

e− jβ0 R0

R0

N∑
i=1

Ci e
− jβ0b[(N−2i+1)/2] cos� sin� (5.101)

where

C1 = ξi

[ − j

60�d R
Fm(�, β0h)+ Yi

2
Gm(�, β0h)

]
(5.102)

and

ξi = V0i/V0k . (5.103)

The conventional theory equates the C coefficient in (5.101) to the driving-point
currents [cf. (5.65)]. These, in turn, are chosen to produce a given radiation pattern.
The two-term theory has shown that the currents in the elements as well as the radiation
pattern cannot be specified merely by adjusting the currents at the driving point.
Moreover, the direction of the main beam may differ considerably from the value
predicted by the conventional theory.

The true location of the principal lobe is found from the location of the major
maximum of |Er

�(�)| or of |Er
�(�)|2. For the special case � = π/2, β0b = π/2,

N = 3, and β0h = π/2, the electric field in the far zone is

Er
�(�) = K (C1e− ju + C2 + C3e ju), (5.104)

where

K = jζ0

2π

e− jβ0 R0

R0

u = β0b cos� = π

2
cos�

� = π

2
(H -plane).
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Figure 5.7 Variation of beam-pointing error with beam-pointing angle for three-element array (λ/4
spacing, β0h = π , � = 10).

The square of the absolute value of Er
�(�) is formed from (5.104) with the result

Er
�Er∗

� = K K ∗C2C∗
2 [C∗

12C32e j2u + (C∗
12 + C32)e

ju + (1 + C12C∗
12 + C32C∗

32)

+ (C12 + C∗
32)e

− ju + C12C∗
32e− j2u], (5.105)

where

C12 = C1

C2
and C32 = C3

C2
. (5.106)

With the substitution x = e ju , (5.105) is seen to be an algebraic equation of fourth
degree. Thus,

|Er
�(x)|2 = Ca x4 + Cbx3 + Ccx2 + Cd x + Ce. (5.107)

The true location of the principal lobe is determined from the equation obtained when
(5.107) is differentiated with respect to x and equated to zero. The computed beam-
pointing error for the three-element array as determined from the conventional theory
is shown in Fig. 5.7. This graph shows an appreciable plus and minus variation over
most of the visible range of �.
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The expression for the square of the absolute value of the far-field for the N -element
array is

|Er
�(x)|2 = K K ∗∑

i

∑
n

Ci C
∗
n x (i−n). (5.108)

The location of the extremes of (5.108) is given by

∂

∂x
|Er

�(x)|2 = K K ∗ j
∑

i

∑
n

(i − n)Ci C
∗
n x (i−n) = 0, x = x0, x1, x2, . . . .

(5.109)

5.5 Examples of the general theory for large arrays

Thus far the simple array with N = 3 and β0b = π/2 has been examined for a
variety of driving-point conditions. Calculations have also been made for arrays with a
larger number of elements. For these the lengths 2h of the elements were varied from
a quarter to a full wavelength. The driving-point voltages or currents were specified
according to conventional array theory to produce a broadside or endfire radiation
pattern.

The driving-point currents required for an ideal broadside array are

Iz1(0) = Iz2(0) = Iz3(0), etc. (5.110)

or, in matrix form,

{Iz(0)} = Iz1(0)




1

1
...


 . (5.111)

Alternatively, the driving voltages may be assigned as follows:

{V } = V1




1

1

1
...



. (5.112)

The relatively large sinusoidal parts of the currents on the antennas are determined
directly from (5.47) by the specification of the voltages. However, the relations (5.50a)
and (5.50b) between the coefficients A, BR , BI and the currents at z = 0 do not in
general suffice to determine the distributions of current along the elements.

The driving-point impedances for broadside arrays are shown in Figs. 5.8–5.10.
Driving-point currents and voltages are specified for arrays of up to 25 elements
(N ≤ 25) for quarter- and half-wavelength spacings (β0b = π/2 and β0b = π ).
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In Figs. 5.8a–d are shown graphs of the resistances and reactances of the individual
elements of a broadside array when the driving-point currents are specified. In Figs.
5.8a and 5.8b the distance between the adjacent antennas is one-quarter wavelength;
the lengths of the elements are, respectively, a quarter and a half wavelength. In
Figs. 5.8c and 5.8d the spacing of the elements has been increased to a half wave-
length.

Since the main beam of a broadside array is at right angles to the curtain of antennas,
it is to be expected that the effect of mutual coupling will be much less than for an
endfire array. However, when the elements are separated by only a quarter wavelength,
differences in the interactions between the currents in differently situated elements are
sufficient to produce small but significant changes in the resistances even when the
elements are as short as a quarter wavelength (Fig. 5.8a). In this case there is only a
very small variation in the reactance. When the length of the elements is increased
to a half wavelength with the same quarter wavelength spacing, both resistance and
reactance vary greatly from element to element (Fig. 5.8b). Note that the change in
the reactance from the central element in the array to one at the extremities may be as
large as from near 100 ohms to near zero.

As is to be expected, an increase in the spacing of the elements to a half wavelength
substantially reduces the changes in resistance and reactance due to differences in
mutual interaction. When 2h = λ/4 both resistance and reactance are substantially
constant across the array (Fig. 5.8c). When 2h = λ/2 significant differences in both
resistance and reactance exist, but they are much smaller than for the more closely
spaced array (Fig. 5.8b). In all cases, the obviously different environment of elements
at the extremities of the array is responsible for the largest differences in the
impedances. For the two lengths, 2h = λ/4 and 2h = λ/2, there is little difference
between the results obtained with specified voltages and with specified driving-point
currents.

Graphs of the resistances of the individual antennas in a broadside array of three-
quarter and full wavelength elements are shown in Figs. 5.9a–d when the driving-point
currents are specified. Similar curves for the same array with the voltages specified
are in Figs. 5.10a–d. Especially noteworthy when 2h = 3λ/4 are the large differences
between the resistances and reactances of the elements when the driving-point voltages
are specified instead of the driving-point currents (Figs. 5.9a, c and 5.10a, c). When
2h = λ the reactance and to a lesser extent the resistance of the elements at the
extremities of the array differ greatly from the others (Figs. 5.9b, d and 5.10b, d).
As an example of typical digital results prepared for this study, a table of impedances
is given in Appendix III.

The radiation patterns in the equatorial or H -plane are shown in Fig. 5.11 for a
broadside array of 15 elements. The ideal patterns are fairly well approximated when
the amplitude and phase of the current along each antenna are specified near the point
of maximum amplitude. For the array of half-wave dipoles this occurs essentially
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Figure 5.11 Field patterns in the H -plane for a 15-element broadside array.

when the driving-point currents are specified, for the full-wave dipoles when the
voltages are specified. On the other hand, when the current is not specified at the
maximum, the actual pattern differs considerably from the ideal especially in the
region of the minima (nulls). This is true when the driving-point currents are specified
for the full-wave elements and when the voltages are specified for the half-wave
elements.

In endfire arrays the currents are adjusted to produce the main beam of the radiation
pattern along the line of the elements. For the unilateral endfire array there is a single
major lobe in the direction � = 0; for the bilateral endfire array there are two major
lobes, one in the direction � = 0, the other in the opposite direction, � = 180◦.
Whereas in the broadside array the interaction between all but the next adjacent
elements is quite small owing to extensive cancellation of the fields of the several
elements in both directions along the line of the array, exactly the opposite is true for
the endfire array. In the unilateral endfire array there is a cumulative reinforcement of
the fields due to the several elements in one direction from one end of the array to the
other, a more or less complete cancellation in the opposite direction. In the bilateral
array the cumulative reinforcement is in both directions. It is to be expected, therefore,
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that mutual coupling between neighboring and even quite widely separated elements
must play a major role in determining the amplitude, phase, and distribution of each
current.

In an ideal endfire array the currents must all be equal in amplitude and vary
progressively in phase by an amount equal to the electrical distance between the
elements. The specifications for a unilateral endfire array are

{Iz(0)} = Iz1(0)




1

− j

−1

...



, β0b = π

2
. (5.113)

For the bilateral array,

{Iz(0)} = Iz1(0)




1

−1

1

...



, β0b = π. (5.114)

Alternatively, the voltages may be specified in the same manner. Thus, for the
unilateral array

{V } = V1




1

− j

−1

...



, β0b = π

2
. (5.115)

For the bilateral array,

{V } = V1




1

−1

1

...



, β0b = π. (5.116)

The resistances and reactances of the individual elements in a unilateral endfire
array are shown in Figs. 5.12a and 5.12b, respectively with 2h = λ/4 and 2h = λ/2.
The driving-point currents were specified according to (5.113). Corresponding values
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for the bilateral array are in Figs. 5.12c and 5.12d. Note that these are symmetrical with
respect to the center of the array. For the shorter elements (2h = λ/4), the reactances
of all elements are reasonably alike; the resistances also vary little except for the two
elements at the ends of the unilateral array. When the elements are a half-wavelength
long, the resistances and reactances both vary greatly along the unilateral array (Fig.
5.12b), moderately along the bilateral array (Fig. 5.12d). It is interesting to note that in
the unilateral array the impedance of the forward element (in the direction of the beam)
is greatest, that of the rear element smallest. Since the amplitudes of the driving-point
currents are all the same, the power supplied to each element is proportional to its
resistance. It follows from Fig. 5.12b that the power supplied to and radiated from the
forward element is approximately five times that supplied to and radiated from the rear
element. Note that the resistance and the reactance of all but the last two elements in
each array are significantly greater than for an isolated antenna. In effect, each element
after the forward one acts partly as a driven element, partly as a parasitic reflector for
the element in front of it.

The resistances of the antennas in a unilateral endfire array with elements of length
2h = 3λ/4 (Fig. 5.13a) decrease continually from the forward element to that in the
rear in a manner resembling that for the half-wave elements (Fig. 5.12b). However, the
range of magnitudes is much greater. The corresponding values for the same array but
constructed of full-wave elements (2h = λ) are in Fig. 5.13b. They are startlingly
different. The resistances of all elements are now reasonably alike except for that
of the rear element, which is much greater. Evidently, the rear element is supplied
and radiates the most power – approximately four to six times as much as any other
element. This suggests that all but the rear element act in part as driven radiators and
in part as parasitic directors for the elements behind them, especially the rear one.
Note that for the bilateral array of full-wave elements (Fig. 5.13d) the resistances of
the elements increase from the center outward, whereas for the corresponding array of
half-wave elements (Fig. 5.12d) the resistances decrease from the center outward. If
the voltages are specified according to (5.115) and (5.116) instead of the driving-point
currents, the graphs of Figs. 5.13a–d are replaced by those of Figs. 5.14a–d. The two
sets are seen to differ considerably.

The radiation patterns in the equatorial or H -plane are shown in Figs. 5.15 and 5.16
respectively for the unilateral and bilateral endfire arrays. The ideal pattern is fairly
well approximated when the current along each antenna is specified near its point of
maximum according to the criteria for an ideal array. For the half-wave dipoles this
is true essentially when the driving-point currents I (0) are specified, for the full-wave
dipoles when the voltages are assigned. On the other hand, when the current is not
specified at its maximum value, the actual pattern differs considerably from the ideal,
especially in its minor lobe structure and the region of the minima (nulls). This is
true when the driving-point currents are specified for the full-wave dipoles, when the
voltages are specified for the half-wave dipoles. In general, the departure from the ideal
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Figure 5.15 Field patterns in the H -plane for a 15-element unilateral endfire array.

patterns is greater for the unilateral endfire array (Fig. 5.15) than for the broadside
array (Fig. 5.11) since the effect of mutual interaction is greater.

5.6 The special case when β0h = π/2

The general functional form for the currents in the elements given by (5.34) with (5.46)
and (5.47) presents some difficulties when β0h = π/2. For both circular and curtain
arrays the expression for the currents becomes indeterminate in the form 0/0 when
β0h = π/2. This behavior is illustrated for the curtain array in the following matrix
equation for the currents:

{Iz(z)} = j2π

ζ0�d R cosβ0h
{V0} sinβ0(h − |z|)

+ j2π

ζ0�d R cosβ0h
[�u]−1[�v]{V0}(cosβ0z − cosβ0h). (5.117)
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Figure 5.16 Radiation patterns in the H -plane for a 15-element bilateral endfire array.

From the form of the � functions at β0h = π/2 it follows that

lim
β0h→π/2

[�u]−1[�v] = −[I], (5.118)

where [I] is the identity matrix. The indeterminate form for the currents in the
elements follows directly when (5.118) is used in (5.117). It is

{Iz(z)} = j2π cosβ0z

ζ0�d R · 0
{V0} − j

2π cosβ0z

ζ0�d R · 0
{V0} = 0

0
, β0h = π

2
. (5.119)

Two alternatives are available for avoiding this difficulty: (a) the formula for the
currents may be rearranged as in Section 2.7; or (b) a special formulation for β0h =
π/2 may be used. The former method has the advantage that it is applicable over a
range near β0h = π/2, whereas the latter method is valid only at β0h = π/2. Both
methods are presented here, although the numerical results were calculated based on
the special form for β0h = π/2. Numerical calculations have shown the results of the
two approximate forms that are useful when β0h = π/2 to be approximately the same.
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The expression for the currents when β0h is near π/2 follows directly from the
results of Section 2.7. In matrix form

{Iz(z)} = − j2π

ζ0�d R
({V0}(sinβ0|z| − sinβ0h)+ [�′

u]−1[�′
v]{V0}(cosβ0z − cosβ0h)),

(5.120a)

where the elements of the matrices are

�′
kiu = −�kiu cosβ0h (5.120b)

�′
kiv = �kiv +�kiu sinβ0h. (5.120c)

When β0h = π/2,

{Iz(z)} = − j2π

ζ0�d R
({V0}(sinβ0|z| − 1)+ [�′

u]−1[�′
v]{V0} cosβ0z). (5.121)

For β0h = π/2, the elements of the �′
u and �′

v matrices are

�′
kiu = �kiu(h) (5.122a)

and

�′
kiv = �kidu −�kidv(1 − δik)− j�kid I δik . (5.122b)

The alternative approach begins with the special form for the integral equation valid
at β0h = π/2. It was this latter method which was used for the original curtain-array
calculations [5]. The final form is similar to (5.121) with slightly different values for
the constant �d R and the �′

u and �′
v matrices. In this method the � functions are

computed with the following cosine and shifted-sine currents:

Izi (z) = − j Ai S0z + Bi F0z, (5.123)

where S0z = sinβ0|z|− sinβ0h and F0z = cosβ0z − cosβ0h. The final expression for
the current with β0h = π/2 is

{Iz(z)} = − j2π

ζ0�
h
d R

{V0}(sinβ0|z| − 1)− j
2π

ζ0�
h
d R

[�u]−1[�h
v ]{V0} cosβ0z, (5.124)
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where

�h
kiv = �h

kidv(1 − δik)+ j�h
kid I δik −�h

kiv(0) (5.125a)

�kiu = −�kidu +�kiu(0) (5.125b)

and

�h
d R = −Re{[Sb(h, 0)− Eb(h, 0)] − [Sb(h, h)− Eb(h, h)]} (5.126a)

�h
kid I = Im{[Sb(h, 0)− Eb(h, 0)] − [Sb(h, h)− Eb(h, h)]} (5.126b)

�h
kidv = [Sb(h, 0)− Eb(h, 0)] − [Sb(h, h)− Eb(h, h)] (5.126c)

�kidu = Cb(h, 0)− Cb(h, h) (5.126d)

�h
kiv(0) = Sb(h, 0)− Eb(h, 0) (5.126e)

�kiu(0) = Cb(h, 0) (5.126f)

β0h = π/2, b ≡ bki , bkk = a.

Numerical calculations show that the results obtained with (5.124) are comparable
with those obtained with (5.121).

5.7 Summary

In this chapter a complete theory of curtain arrays of practical antennas has been
presented. Mutual coupling among all elements is included in a manner that takes
account of changes in the amplitudes and the phases of the currents along all elements
as determined by their locations in an array. The theory is quantitatively useful for
cylindrical elements with electrical half-lengths in the range β0h ≤ 5π/4 and electric
radii with values β0a ≤ 0.02. This includes lengths over the full range in which the
principal lobe in the vertical field pattern is in the equatorial plane; it provides a 5 to 1
frequency band for electrical half-lengths included in the range π/4 ≤ β0h ≤ 5π/4.

In this chapter no measurements have been cited to verify the quantitative cor-
rectness of the two-term theory in determining distributions of current, driving-point
impedances or admittances, and field patterns of typical curtain arrays. This is due
in part to the relative difficulty in carrying out accurate measurements of the self-
and mutual impedances for curtain arrays owing to the lack of the symmetry which
underlies the corresponding measurements with the circular array. The primary reason,
however, is the adequacy of the experimental verification of all phases of the theory
as applied to the two-element array – the simplest curtain array (Chapter 3), general
circular arrays (Chapter 4) and to curtain arrays of parasitic elements (Chapter 6). As
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in the case of the circular array, the most sensitive and, at the same time, the most
convenient experimental verification of the theory is in its application to an array in
which only one element is driven while all others are parasitic. The first section in the
next chapter is concerned specifically with the application of the theory developed in
this chapter to a curtain array of twenty elements of which only one is driven and a
comparison of theoretically and experimentally determined currents, admittances, and
field patterns.



6 Arrays with unequal elements: parasitic and
log-periodic antennas

The general theory of curtain arrays which is developed in the preceding chapter
requires all N elements to be identical geometrically, but allows them to be driven
by arbitrary voltages or loaded by arbitrary reactors at their centers. If some of these
voltages are zero, the corresponding elements are parasitic and their currents are
maintained entirely by mutual interaction. In arrays of the well-known Yagi–Uda type,
only one element is driven, so that the importance of an accurate analytical treatment
of the inter-element coupling is increased. In a long array the possible cumulative
effect of a small error in the interaction between the currents in adjacent elements
must not be overlooked. As an added complication, the tuning of the individual
parasitic elements is accomplished by adjustments in their lengths and spacings. This
introduces the important problem of arrays with elements that are different in length
and that are separated by different distances. In the Yagi–Uda array the range of these
differences is relatively small. On the other hand, in frequency-independent arrays of
the log-periodic type the range of lengths and distances between adjacent elements is
very great.

In this chapter the analytical treatment of arrays with elements that are different
in length and unequally spaced is carried out successively for parasitic arrays of
the conventional Yagi–Uda type and for driven log-periodic arrays. However, the
formulation is sufficiently general to permit its extension to arrays of other types, both
parasitic and driven, that involve geometrically different elements.

6.1 Application of the two-term theory to a simple parasitic array

The simplest parasitic array consists of N geometrically identical antennas each of
length 2h and radius a arranged in a curtain of parallel non-staggered elements with
spacing b. Element 1 is driven, all others are parasitic. Such an array is illustrated in
Fig. 6.1. The directional properties of the electromagnetic field maintained by the array
depend on the relative amplitudes and phases of the currents in all of the elements.
The currents in the parasitic elements are all induced by their mutual interaction. The
current in the driven antenna is determined in part by the driving generator, in part by
the mutual interaction with the currents in the other elements. The coupling between

153



154 Arrays with unequal elements

1 2 3 4 5 6 N

V0V0V
h

b

L

z

x

y

Radius a

+

–

Figure 6.1 Parasitic array of identical elements.

the currents in any pair of elements of given length depends primarily on the distance
between them.

The general theory of curtain arrays formulated in the preceding chapter may be
applied directly by setting V0i = 0, 1 < i ≤ N . The currents in the N elements are
given by (5.34). They are

Iz1(z) = j A1 sinβ0(h − |z|)+ B1(cosβ0z − cosβ0h) (6.1)

Izi (z) = Bi (cosβ0z − cosβ0h), i = 2, 3, . . . N , (6.2)

where from (5.47)

A1 = 2π

ζ0�d R cosβ0h
V01 (6.3)

and the Bi are obtained from (5.46). With V01 specified, the currents at the centers of
the elements are obtained from (5.53). The driving-point admittance of element 1 is

Y01 = Iz1(0)/V01. (6.4)

The field pattern of the array is obtained from (5.67) with the appropriate values of
Ai and Bi . As only A1 differs from zero the applicable formula is

E�(�,�) = jζ0

2π

{
j A1

e− jβ0 R1

R1
Fm(�, β0h)+

N∑
i=1

Bi
e− jβ0 Ri

Ri
Gm(�, β0h)

}
, (6.5)

where Fm(�, β0h) and Gm(�, β0h) are defined in (5.66) and (5.68). In (6.5) the field
is evaluated in the far zone of each element so that the distances Ri are measured to
the centers of the elements. The far field of the array implies in addition that Ri

.= R1

in amplitudes and Ri = R1 − (i − 1)b sin� cos� in phase angles.
Numerical computations have been made by Mailloux [1] for an array of 20

elements with a/λ = 0.006 35 and b/λ = 0.20. Several values of h/λ were chosen in
the range for endfire operation between 0.16 and 0.204.
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Figure 6.2 Components of current (mA) on driven dipole in 20-element parasitic array (Mailloux),
(a) in phase with driving voltage, (b) in phase quadrature with driving voltage. b/λ = 0.20,
a/λ = 0.006 35.

The calculated distributions of current along the driven element are shown in Fig.
6.2 together with measured values. The agreement is excellent for h/λ = 0.16 and
0.18. The agreement when h/λ = 0.20 is not so close. However, the theoretical curves
for antennas with h/λ increased by only 0.004 – a distance of less than a/λ = 0.006 35
– are in excellent agreement with the experimental data for h/λ = 0.20. Evidently,
as resonance is approached the current amplitude becomes increasingly sensitive to
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Figure 6.3 Driving-point admittance of 20-element parasitic array (Mailloux). b/λ = 0.20,
a/λ = 0.006 35.

small changes in length. The theoretical and experimental driving-point admittances
are shown in Fig. 6.3. As for the current distribution in general, the agreement is very
good for h/λ = 0.16 and 0.18, but the theoretical value at h/λ = 0.204 is in better
agreement with the measured value for h/λ = 0.20 than is the theoretical value for
h/λ = 0.20.

The normalized theoretical distributions of current along all parasitic dipoles are the
same. The experimental values were also found to be remarkably alike. Theoretical
and experimental distributions of the magnitude of the current along a typical parasitic
element are shown in Fig. 6.4. It is seen that the theoretical currents differ somewhat
from the measured values. Measured changes in the phase of the current along the
parasitic elements were very small.

The amplitudes of the currents at z = 0 along each of the twenty elements are shown
in Fig. 6.5. The agreement with measured values is again excellent for h/λ = 0.16 and
0.18. As before, the theoretical curve for h/λ = 0.204 is in much better agreement
with the measured curve for h/λ = 0.20 than is the theoretical curve for h/λ = 0.20.
The corresponding phases are shown in Fig. 6.6.

It is interesting to note that when h/λ = 0.16 and 0.18 the amplitudes of the currents
in all of the parasitic elements except those nearest the driven antenna are quite small
and substantially equal and the phase shift from element to element is linear. On
the other hand, as h/λ approaches resonance the amplitudes of the currents increase
greatly and they oscillate in magnitude from element to element. The small constant
amplitude and linear phase shift that are characteristic of the shorter elements suggest
a traveling wave along the array; the large oscillating amplitudes near resonance are
characteristic of a standing wave.
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Figure 6.4 Normalized current amplitudes on a typical parasitic element in a 20-element array
(Mailloux). b/λ = 0.20, a/λ = 0.006 35.
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No. 1 driven; comparison of King–Sandler theory with experiment (Mailloux). b/λ = 0.20,
a/λ = 0.006 35, frequency 600 MHz.

The theoretical and experimental field patterns are shown in Fig. 6.7 for the three
values of h/λ. Although the measurements were made in the far zone of each element
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(E far zone), the length L of the 20-element array was such that the true far-zone
approximations Ri

.= R1 in amplitudes and Ri
.= R1 − (i − 1)b sin� cos� in phases

were not sufficiently well satisfied. Accordingly, the field was evaluated from (6.5)
with the actual distances to the elements for comparison with the measured values.
The true far field was also computed for comparison. The former is designated ‘E far
zone’ in the figures, the latter is labelled ‘far zone’. The agreement between theory and
experiment is seen to be quite good even in the details of the minor lobe structure.

It may be concluded that the two-term theory of curtain arrays developed in Chapter
5 provides remarkably accurate results even for parasitic arrays for which one of the
terms vanishes for each of the N − 1 parasitic elements. This is somewhat surprising
since the single term provides no flexibility in the representation of the distribution of
the currents in the parasitic elements. They are all assumed to be the same and given by
I (z) ∼ cosβ0z − cosβ0h. Moreover, the phase of the current I (z) along each element
is assumed to be the same as that of the current I (0) at the center. This means that
the current distribution function f (z) in I (z) = I (0) f (z) is assumed to be real for all
parasitic elements.

It is unreasonable to suppose that these implied assumptions are generally valid
when longer elements are involved. After all, the investigation in this section has been
limited to relatively short elements with h/λ ≤ 0.2. It would appear that a more
accurate representation of the currents in the parasitic elements is required – this is
suggested in Fig. 6.4 where the actual distributions of current even on the relatively
short elements were not very accurately represented by the single shifted-cosine
term.
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6.2 The problem of arrays with parasitic elements of unequal lengths

In order to provide a more accurate representation of the current in the parasitic
elements of an array, use may be made of the three-term approximation given in (3.20).
This is known to be an improvement over the two-term theory used in Chapter 5 and,
when applied to parasitic elements, it provides two terms with complex coefficients
instead of only a single term. Specifically let

Izk(zk) = Ak M0zk + Bk F0zk + Dk H0zk, (6.6)

where

M0zk = sinβ0(hk − |zk |) (6.7a)

F0zk = cosβ0zk − cosβ0hk (6.7b)

H0zk = cos 1
2β0zk − cos 1

2β0hk . (6.7c)

In parasitic elements the coefficient Ak is zero, but the two terms Bk F0zk + Dk H0zk

remain.
It is anticipated that the distribution (6.6) provides sufficient flexibility to represent

the currents in elements of different lengths when each element is allowed to have its
own length 2hk .

When the several antennas in an array are not all equal in length so that the hi differ,
the problem of solving the N simultaneous integral equations

N∑
i=1

∫ hi

−hi

Izi (z
′
i )Kkid(zk, z′i ) dz′i = j4π

ζ0 cosβ0hk
[ 1

2 V0k M0zk + Uk F0zk] (6.8)

with k = 1, 2, . . . N , is more complicated. The kernel has the form

Kkid(zk, z′i ) = Kki (zk, z′i )− Kki (hk, z′i ) =
e− jβ0 Rki

Rki
− e− jβ0 Rkih

Rkih
, (6.9)

where

Rki =
√
(zk − z′i )2 + b2

ki , Rkih =
√
(hk − z′i )2 + b2

ki . (6.10)

Note that bkk = a. The function Uk is

Uk = − jζ0

4π

N∑
i=1

∫ hk

−hk

Izi (z
′
i )Kki (hk, z′i ) dz′i . (6.11)
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In a parasitic antenna l the driving voltage V0l = 0, so that

N∑
i=1

∫ hi

−hi

Izi (z
′
i )Kkid(zl , z′i ) dz′i = j4π

ζ0 cosβ0hl
Ul F0zl . (6.12)

In order to obtain approximate solutions of the N simultaneous integral equa-
tions (6.8) by the procedure developed in the earlier chapters, use may be made
of the properties of the real and imaginary parts of the kernel. As shown in
Chapter 2,

∫ hk

−hk

G0z′k Kkkd R(zk, z′k) dz′k ∼ G0zk, (6.13)

where G0z′k stands for M0z′k , F0z′k or H0z′k and Kkkd R(zk, z′k) is the real part of the
kernel. On the other hand,

∫ hk

−hk

G0z′k Kkkd I (zk, z′k) dz′k ∼ H0zk (6.14)

for any distribution G0z′k . It follows that

WkkV (zk) ≡
∫ hk

−hk

M0z′k Kkkd(zk, z′k) dz′k
.= �m

kkdV M0zk +�h
kkdV H0zk (6.15)

WkkU (zk) ≡
∫ hk

−hk

F0z′k Kkkd(zk, z′k) dz′k
.= �

f
kkdU F0zk +�h

kkdU H0zk (6.16)

Wkk D(zk) ≡
∫ hk

−hk

H0z′k Kkkd(zk, z′k) dz′k
.= �

f
kkd D F0zk +�h

kkd D H0zk, (6.17)

where the �’s are complex coefficients yet to be determined. Actually, (6.13) with
G = H and (6.14) suggest that the term �h

kkd D H0zk should be an adequate approx-

imation. The term �
f

kkd D F0zk is added in order to provide greater flexibility and
symmetry.

When i �= k and β0b ≥ 1, it has been shown by direct comparison in Chapter 3
that

∫ hi

−hi

G0z′i Kkid R(zk, z′i ) dz′i ∼ F0zk (6.18)

∫ hi

−hi

G0z′i Kkid I (zk, z′i ) dz′i ∼ H0zk, (6.19)
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where G0z′i stands for M0z′i , F0z′i or H0z′i . It follows that with i �= k,

WkiV (zk) ≡
∫ hi

−hi

M0z′i Kkid(zk, z′i ) dz′i
.= �

f
kidV F0zk +�h

kidV H0zk (6.20)

WkiU (zk) ≡
∫ hi

−hi

F0z′i Kkid(zk, z′i ) dz′i
.= �

f
kidU F0zk +�h

kidU H0zk (6.21)

Wki D(zk) ≡
∫ hi

−hi

H0z′i Kkid(zk, z′i ) dz′i
.= �

f
kid D F0zk +�h

kid D H0zk, (6.22)

where the �’s are complex coefficients yet to be determined.
In the formulation developed in the earlier chapters for driven elements of equal

lengths, the coefficients � were defined individually in terms of the two integrals
obtained from the real and imaginary parts of the kernel. In order to take account
of the more varied distributions that may be obtained when the elements are neither
all driven nor all equal in length, the separation into two parts is not made. Instead
the entire integral is represented by a linear combination of the two distributions
that best represent the parts of the integral. The complex coefficients of these
distributions are to be determined by matching the integral and its approximation
at two points along the antenna, instead of at only one such point. It is antici-
pated that by fitting the trigonometric approximations to the integrals at z = 0,
hk/2, and hk (where both must vanish) a good representation may be achieved in
reasonably simple form of all of the different distributions that may occur along
antennas of unequal lengths. It is, of course, assumed that β0hi ≤ 5π/4 for all
hi .

6.3 Application to the Yagi--Uda array

In order to clarify the description of the procedure used to solve the N simultaneous
integral equations for a parasitic array, it will be carried out in detail for the specific and
practically useful Yagi–Uda array. In general, this consists of a curtain of N antennas
of which No. 1 is parasitic and adjusted in length to function as a reflector, No. 2
is driven by a voltage V02 and Nos. 3 to N are also parasitic and adjusted to act as
directors. Such an array is shown in Fig. 6.8 for the special case (treated later) with
2h1 = 0.51λ; 2h2 = 0.50λ; 2hi = 2h, i > 2; b21 = 0.25λ; bi,i±1 = b, i > 2. The
details of these adjustments are examined later.

On the basis of the three-term approximation, the current in the single driven
element has the form

Iz2(z2) = A2 M0z2 + B2 F0z2 + D2 H0z2. (6.23)
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1
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2

λ0.50
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2hV02

bbλ0.25

λ = 0.00337 = . . .a2 =a1

2h

Figure 6.8 A Yagi array with directors of constant length, radius and spacing.

The currents in the parasitic elements are

Izi (zi ) = Bi F0zi + Di H0zi , i = 1, 3, 4, . . . N , (6.24)

where the constants A2, Bi and Di must be evaluated ultimately in terms of V02. The
integral equation for the driven element is

A2

∫ h2

−h2

M0z′2K22d(z2, z′2) dz′2 +
N∑

i=1

Bi F0z′i K2id(z2, z′i ) dz′i

+
N∑

i=1

Di H0z′i K2id(z2, z′i ) dz′i

= j4π

ζ0 cosβ0h2
[ 1

2 V02 M0z2 + U2 F0z2]. (6.25)

The remaining N − 1 integral equations are

A2

∫ h2

−h2

M0z′2Kk2d(zk, z′2) dz′2 +
N∑

i=1

Bi F0z′i Kkid(zk, z′i ) dz′i

+
N∑

i=1

Di H0z′i Kkid(zk, z′i ) dz′i

= j4π

ζ0 cosβ0hk
Uk F0zk, k = 1, 3, 4, . . . N . (6.26)
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With (6.15)–(6.17) and (6.20)–(6.22) these may be expressed in terms of the parame-
ters �. Thus, for (6.25)

A2[�m
22dV M0z2 +�h

22dV H0z2] +
N∑

i=1

Bi [�
f

2idU F0z2 +�h
2idU H0z2]

+
N∑

i=1

Di [�
f

2id D F0z2 +�h
2id D H0z2]

= j4π

ζ0 cosβ0h2
[ 1

2 V02 M0z2 + U2 F0z2]. (6.27)

For (6.26), the N − 1 equations are

A2[� f
k2dV F0zk +�h

k2dV H0zk] +
N∑

i=1

Bi [�
f

kidU F0zk +�h
kidU H0zk]

+
N∑

i=1

Di [�
f

kid D F0zk +�h
kid D H0zk]

= j4π

ζ0 cosβ0hk
Uk F0zk, k = 1, 3, 4, . . . N . (6.28)

These equations will be satisfied if the coefficient of each of the three distribution
functions is individually required to vanish. That is, in (6.27):

A2 = j2πV02

ζ0�
m
22dV cosβ0h2

(6.29)

N∑
i=1

[Bi�
f

2idU + Di�
f

2id D] cosβ0h2 − j4π

ζ0
U2 = 0 (6.30a)

A2�
h
22dV +

N∑
i=1

[Bi�
h
2idU + Di�

h
2id D] = 0. (6.30b)

Similarly in (6.28) with k = 1, 3, . . . N{
A2�

f
k2dV +

N∑
i=1

[Bi�
f

kidU + Di�
f

kid D]

}
cosβ0hk − j4π

ζ0
Uk = 0 (6.30c)

A2�
h
k2dV +

N∑
i=1

[Bi�
h
kidU + Di�

h
kid D] = 0. (6.30d)

Actually, the single equations in (6.30a) and (6.30b) may be combined with the N − 1
equations in (6.30c) and (6.30d) with the aid of the Kronecker δ defined by

δik =
{

0 i �= k

1 i = k
.
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The 2N equations are{
A2(1 − δk2)�

f
k2dV +

N∑
i=1

[Bi�
f

kidU + Di�
f

kid D]

}
cosβ0hk − j4π

ζ0
Uk = 0 (6.31a)

A2�
h
k2dV +

N∑
i=1

[Bi�
h
kidU + Di�

h
kid D] = 0 (6.31b)

with k = 1, 2, . . . N . These equations, together with (6.29), determine the 2N + 1
constants A2, Bi and Di , i = 1, 2, . . . N .

Before these two sets of equations can be solved, it is necessary to evaluate the
functions Uk . This is readily done in terms of the following integrals:

�kiV (hk) =
∫ hi

−hi

M0z′i Kki (hk, z′i ) dz′i (6.32)

�kiU (hk) =
∫ hi

−hi

F0z′i Kki (hk, z′i ) dz′i (6.33)

�ki D(hk) =
∫ hi

−hi

H0z′i Kki (hk, z′i ) dz′i , (6.34)

where

Kki (hk, z′i ) =
e− jβ0 Rkih

Rkih
, Rkih =

√
(hk − z′i )2 + b2

ki . (6.35)

It follows from the definition in (6.11) that

Uk = − jζ0

4π

N∑
i=1

[Ai�kiV (hk)+ Bi�kiU (hk)+ Di�ki D(hk)]. (6.36a)

Since only antenna 2 is driven, Ai = 0, i �= 2 so that

Uk = − jζ0

4π

{
A2�k2V (hk)+

N∑
i=1

[Bi�kiU (hk)+ Di�ki D(hk)]

}
. (6.36b)

The substitution of (6.36b) in (6.31a) gives for these equations

A2[�k2V (hk)− (1 − δk2)�
f

k2dV cosβ0hk] +
N∑

i=1

Bi [�kiU (hk)

−�
f

kidU cosβ0hk] +
N∑

i=1

Di [�ki D(hk)−�
f

kid D cosβ0hk] = 0, (6.37)

with k = 1, 2, . . . N . These equations can be simplified formally by the introduction
of the notation

�k2V = �k2V (hk)− (1 − δk2)�
f

k2dV cosβ0hk (6.38)
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�kiU = �kiU (hk)−�
f

kidU cosβ0hk (6.39a)

�ki D = �ki D(hk)−�
f

kid D cosβ0hk . (6.39b)

With this notation, (6.37) together with (6.31b) gives the following set of 2N equations
for determining the 2N coefficients Bi and Di in terms of A2:

N∑
i=1

[�kiU Bi +�ki D Di ] = −�k2V A2; k = 1, 2, . . . N (6.40)

N∑
i=1

[�h
kidU Bi +�h

kid D Di ] = −�h
k2dV A2; k = 1, 2, . . . N . (6.41)

These equations may be expressed in matrix form after the introduction of the
following notation:

[�U ] =




�11U �12U . . . �1NU
...

�N1U . . . �N NU


 (6.42a)

[�D] =




�11D �12D . . . �1N D
...

�N1D . . . �N N D


 (6.42b)

[�h
dU ] =




�h
11dU �h

12dU . . . �h
1NdU

...

�h
N1dU . . . �h

N NdU


 (6.43a)

[�h
d D] =




�h
11d D �h

12d D . . . �h
1Nd D

...

�h
N1d D . . . �h

N Nd D


 (6.43b)

{�2V } =




�12V

�22V
...

�N2V




{�h
2dV } =




�h
12dV

�h
22dV
...

�h
N2dV




(6.44)

{B} =




B1

B2
...

BN




{D} =




D1

D2
...

DN



. (6.45)
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The matrix forms of (6.40) and (6.41) are

[�U ]{B} + [�D]{D} = −{�2V }A2 (6.46)

[�h
dU ]{B} + [�h

d D]{D} = −{�h
2dV }A2. (6.47)

The N coefficients Bi and the N coefficients Di must be determined from these
equations for substitution in the equations (6.23) and (6.24) for the currents in the
N elements. The coefficient A2, which is a common factor, is obtained from (6.29) in
terms of the single driving voltage V02.

It remains to evaluate the parameters � that occur in the �’s in (6.46) and explicitly
in (6.47).

6.4 Evaluation of coefficients for the Yagi--Uda array

The equations (6.46) and (6.47) involve the elements of the N × N matrices [�U ],
[�D], [�h

dU ] and [�h
d D]. These, in turn, depend on the parameters � introduced in

(6.15)–(6.17) and (6.20)–(6.22) and the parameters �(h) defined in (6.32)–(6.34).
Since each integral is approximated by a linear combination of two terms with
arbitrary coefficients, these can be evaluated by equating both sides in (6.15)–(6.17)
and (6.20)–(6.22) at two values of z. The values chosen are z = 0, and z = hk/2 in
addition to z = hk where both sides must vanish.

Specific formulas for the two values of each of the integrals W defined in (6.15)–
(6.17) and (6.20)–(6.22) are as follows:

WkiV (0) ≡ A−1
i

∫ hi

−hi

IV i (z
′
i )Kkid(0, z′i ) dz′i

.=
∫ hi

−hi

M0z′i Kkid(0, z′i ) dz′i (6.48a)

WkiV

(
hk

2

)
≡ A−1

i

∫ hi

−hi

IV i (z
′
i )Kkid

(
hk

2
, z′i

)
dz′i

.=
∫ hi

−hi

M0z′i Kkid

(
hk

2
, z′i

)
dz′i (6.48b)

WkiU (0) ≡ B−1
i

∫ hi

−hi

IUi (z
′
i )Kkid(0, z′i ) dz′i

.=
∫ hi

−hi

F0z′i Kkid(0, z′i ) dz′i (6.49a)

WkiU

(
hk

2

)
≡ B−1

i

∫ hi

−hi

IUi (z
′
i )Kkid

(
hk

2
, z′i

)
dz′i

.=
∫ hi

−hi

F0z′i Kkid

(
hk

2
, z′i

)
dz′i (6.49b)
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Wki D(0) ≡ D−1
i

∫ hi

−hi

IDi (z
′
i )Kkid(0, z′i ) dz′i

.=
∫ hi

−hi

H0z′i Kkid(0, z′i ) dz′i (6.50a)

Wki D

(
hk

2

)
≡ D−1

i

∫ hi

−hi

IDi (z
′
i )Kkid

(
hk

2
, z′i

)
dz′i

.=
∫ hi

−hi

H0z′i Kkid

(
hk

2
, z′i

)
dz′i . (6.50b)

In all of the above, k = 1, 2, 3, . . . N . These are a set of complex numbers which give
the values of the integrals (6.20)–(6.22) at the two points z = 0 and z = hk/2. They
are readily evaluated numerically by high-speed computer, or they may be expressed
in terms of the tabulated generalized sine and cosine integral functions. Once the W ’s
in (6.48a)–(6.50b) have been obtained for all values of i and k, the coefficients � may
be determined from the equations (6.15)–(6.17) and (6.20)–(6.22). At z = 0 these
become:

�m
kkdV sinβ0hk +�h

kkdV [1 − cos(β0hk/2)] = WkkV (0) (6.51a)

�
f

kidV (1 − cosβ0hk)+�h
kidV [1 − cos(β0hk/2)] = Wki V (0) i �= k (6.51b)

�
f

kidU (1 − cosβ0hk)+�h
kidU [1 − cos(β0hk/2)] = WkiU (0) (6.51c)

�
f

kid D(1 − cosβ0hk)+�h
kid D[1 − cos(β0hk/2)] = Wki D(0). (6.51d)

At z = hk/2, they are

�m
kkdV sin(β0hk/2)+�h

kkdV [cos(β0hk/4)− cos(β0hk/2)] = WkkV

(
hk

2

)
(6.52a)

�
f

kidV [cos(β0hk/2)− cosβ0hk] +�h
kidV [cos(β0hk/4)− cos(β0hk/2)]

= WkiV

(
hk

2

)
i �= k (6.52b)

�
f

kidU [cos(β0hk/2)− cosβ0hk] +�h
kidU [cos(β0hk/4)− cos(β0hk/2)]

= WkiU

(
hk

2

)
(6.52c)

�
f

kid D[cos(β0hk/2)− cosβ0hk] +�h
kid D[cos(β0hk/4)− cos(β0hk/2)]

= Wki D

(
hk

2

)
. (6.52d)
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The solutions of these equations for the �’s are obtained directly. They are

�m
kkdV = �−1

1

{
WkkV (0)

[
cos

(
β0hk

4

)
− cos

(
β0hk

2

)]

− WkkV (hk/2)[1 − cos(β0hk/2)]

}
(6.53)

�h
kkdV = �−1

1 {WkkV (hk/2) sinβ0hk − WkkV (0) sin(β0hk/2)} (6.54)

�
f

kidV = �−1
2 {WkiV (0)[cos(β0hk/4)− cos(β0hk/2)]

− WkiV (hk/2)[1 − cos(β0hk/2)]} i �= k (6.55)

�h
kidV = �−1

2 {WkiV (hk/2)[1 − cosβ0hk]

− WkiV (0)[cos(β0hk/2)− cosβ0hk]} i �= k (6.56)

�
f

kidU = �−1
2 {WkiU (0)[cos(β0hk/4)− cos(β0hk/2)]

− WkiU (hk/2)[1 − cos(β0hk/2)]} (6.57)

�h
kidU = �−1

2 {WkiU (hk/2)[1 − cosβ0hk] − WkiU (0)[cos(β0hk/2)− cos(β0hk)]}
(6.58)

�
f

kid D = �−1
2 {Wki D(0)[cos(β0hk/4)− cos(β0hk/2)]

− Wki D(hk/2)[1 − cos(β0hk/2)]} (6.59)

�h
kid D = �−1

2 {Wki D(hk/2)[1 − cosβ0hk]

− Wki D(0)[cos(β0hk/2)− cosβ0hk]}, (6.60)

where

�1 = sinβ0hk [cos(β0hk/4)− cos(β0hk/2)]

− sin(β0hk/2)[1 − cos(β0hk/2)] (6.61)

and

�2 = [1 − cosβ0hk][cos(β0hk/4)− cos(β0hk/2)]

− [cos(β0hk/2)− cosβ0hk][1 − cos(β0hk/2)]. (6.62)

All of the �’s have been determined. The �(h) coefficients are given in (6.32)–(6.34).
The elements of the � matrices are obtained from (6.38)–(6.39b). This completes the
solution for all of the currents in the elements of the Yagi–Uda array.
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6.5 Arrays with half-wave elements

When an array includes half-wave parasitic elements the formulation in Sections 6.3
and 6.4 is directly applicable. Specifically, when β0hi = π/2 and element i is parasitic,
the current (6.24) has the form

Izi (zi ) = Bi cosβ0zi + Di [cos(β0zi/2)−
√

2/2]. (6.63)

If the length of the driven element 2 is such that β0h2 is near or exactly π/2 (as in
Fig. 6.8), the alternative form for the current given in (2.35) for the isolated antenna is
more convenient since it does not yield an indeterminate form at β0h2 = π/2. That is,
in the notation of (6.23),

Iz2(z2) = A′
2S0z2 + B ′

2 F0z2 + D2 H0z2, (6.64)

where

S0z2 = sinβ0|z2| − sinβ0h2 (6.65)

and

A′
2 = −A2 cosβ0h2 = − j (2πV02/ζ0�

m
22dV ) (6.66a)

B ′
2 = B2 + A2 sinβ0h2 = B2 − A′

2 tanβ0h2. (6.66b)

Note that A′
2 and B ′

2 are finite when β0h2 = π/2. In this case

S0z2 = sinβ0|z2| − 1, B ′
2 = B2 + A2. (6.67)

Since (6.64) is not actually a different distribution from the original in (6.23) but
merely a rearrangement that is more convenient when β0h2 is at or near π/2, it is not
necessary to repeat the formulation in the preceding sections with S0z2 substituted for
M0z2. A simple rearrangement of the 2N equations in (6.40) and (6.41) is all that is
required. This is accomplished by the substitutions (6.66a) and (6.66b) for A2 and B2.
Specifically, let

A2 = −A′
2 secβ0h2, B2 = B ′

2 + A′
2 tanβ0h2 (6.68)

�′
k2V = [�k2V −�k2U sinβ0h2] secβ0h2 (6.69)

� ′h
k2dV = [�h

k2dV −�h
k2dU sinβ0h2] secβ0h2. (6.70)
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Also let B ′
i stand for B1, B ′

2, B3, . . . BN . With this notation, the equations (6.40)
and (6.41) become:

N∑
i=1

[�kiU B ′
i +�ki D Di ] = �′

k2V A′
2; k = 1, 2, . . . N (6.71)

N∑
i=1

[�h
kidU B ′

i +�h
kid D Di ] = � ′h

k2dV A′
2; k = 1, 2, . . . N . (6.72)

In matrix form these are

[�U ]{B ′} + [�D]{D} = {�′
2V }A′

2 (6.73)

[�h
dU ]{B ′} + [�h

d D]{D} = {� ′h
2dV }A′

2, (6.74)

where the four square matrices and the column matrix {D} are defined in (6.42a, b),
(6.43a, b) and (6.45). The other column matrices are

{B ′} =




B1

B ′
2

B3
...

BN



, {�′

2V } =




�′
12V

�′
22V

�′
32V
...

�′
N2V



, {� ′h

2dV } =




� ′h
12dV

� ′h
22dV

� ′h
32dV
...

� ′h
N2dV



. (6.75)

These equations are to be solved for the 2N coefficients B ′
i and Di in terms of A′

2 =
− j (2πV02/ζ0�

m
22dV ). The � functions that occur in these equations are defined in

the same manner as in Sections 6.3 and 6.4. This is illustrated below for β0hk =
π/2.

When β0hk = π/2, F0zk = M0zk = cosβ0zk . It follows from (6.48) and (6.49) that
Wk2V (0) = Wk2U (0) and Wk2V (hk/2) = Wk2U (hk/2). From (6.32) and (6.33), (6.61)
and (6.62), it follows that �k2V (hk) = �k2U (hk) and �1 = �2. Hence, from (6.53)
and (6.57), (6.54) and (6.58), it follows that �m

22dV = �
f

22dU , �h
22dV = �h

22dU when

k = 2. Similarly, (6.55) and (6.57), (6.56) and (6.58) give �
f

k2dV = �
f

k2dU , �h
k2dV =

�h
k2dU when k �= 2. As a consequence, �′

k2V and � ′h
k2dV become indeterminate in the

form 0/0 when k �= 2. However, the limiting value for each as β0h2 → π/2 is finite.
Thus, (6.69) and (6.70) may be expanded as follows. When k = 2,

�′
22V = −Sa(h2, h2)+ Ea(h2, h2)+�

f
22dU ; (6.76a)
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when k �= 2,

�′
k2V = − Sbk2(h2, hk)+ Ebk2(h2, hk)

+ cosβ0hk

�2

{
[cos 1

4β0hk − cos 1
2β0hk][−Ebk2(h2, 0)

+ Ebk2(h2, hk)+ Sbk2(h2, 0)− Sbk2(h2, hk)]

+ (1 − cos 1
2β0hk)

[
Ebk2

(
h2,

hk

2

)

− Ebk2(h2, hk)− Sbk2

(
h2,

hk

2

)
+ Sbk2(h2, hk)

]}
, (6.76b)

where �2 is defined in (6.62). Similarly, when k = 2,

� ′h
22dV = 1 − √

2

�2

{[
Ca

(
h2,

h2

2

)
− Ca(h2, h2)

] [
1 − 1√

2

]

− [Ca(h2, 0)− Ca(h2, h2)]

[
cos

π

8
− 1√

2

]}

+ 1

�2

{[
−Sa

(
h2,

h2

2

)
+ Sa(h2, h2)+ Ea

(
h2,

h2

2

)
− Ea(h2, h2)

]

+ 1√
2

[Sa(h2, 0)− Sa(h2, h2)− Ea(h2, 0)+ Ea(h2, h2)]

}
; (6.76c)

when k �= 2,

� ′h
k2dV = 1

�2

{
[1 − cosβ0hk]

[
−Sbk2

(
h2,

hk

2

)
+ Sbk2(h2, hk)

+ Ebk2

(
h2,

hk

2

)
− Ebk2(h2, hk)

]

+ [cos 1
2β0hk − cosβ0hk][Sbk2(h2, 0)− Sbk2(h2, hk)

− Ebk2(h2, 0)+ Ebk2(h2, hk)]

}
. (6.76d)

The coefficients B ′
i and Di obtained for β0h2 = π/2 from (6.73) and (6.74) with (6.76)

are to be used in the current distributions

Iz2(z2) = A′
2S0z2 + B ′

2 F0z2 + D2 H0z2 (6.77)

Izi (zi ) = B ′
i F0zi + Di H0zi , i = 1, 3, . . . N . (6.78)

In the original analysis of arrays with half-wave elements [2] and in its application
to arrays of the Yagi type [3], a somewhat different procedure was used. In effect, this
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treated the alternative form (6.64) of the distribution of current along a driven half-
wave element as an independent representation. The entire procedure carried through
in Sections 6.3 and 6.4 was repeated with the distribution function M0z2 replaced by
S0z2. This also involved a simple rearrangement of the integral equations (6.8) so that
when k = 2, the right-hand member is ( j4π/ζ0)[ 1

2 V02S0z2 + C2 F0z2].
The alternative procedure is basically equivalent to that outlined in Section 6.5 but

the two are not identical and involve small quantitative differences when applied to
a particular array. In particular, the values of W22V (0) and W22V (h2/2) from (6.48a,
b) are necessarily somewhat different when, with β0h2 = π/2, S0z2 = sinβ0|z2| − 1
is substituted for M0z2 = cosβ0z2 in the integrals. It follows that the two values of
�m

22dV as defined in (6.53) are also not quite the same when S0z2 is used instead of
M0z2. These differences are small and either procedure should give satisfactory results,
although in the interest of simplicity and consistency the generalization in Section 6.3
is to be preferred.

Reference is here made to the alternative procedure primarily because it was used
by Morris in an extensive quantitative study of the Yagi–Uda array. The results of his
work, described later in this chapter, differ negligibly from those actually given.

6.6 The far field of the Yagi--Uda array; gain

The electric field maintained at distant points by the currents in the N elements of the
Yagi–Uda array is readily determined. For the currents

Iz2(z2) = A2 sinβ0(h2 − |z2|)+ B2(cosβ0z2 − cosβ0h2)

+ D2(cos 1
2β0z2 − cos 1

2β0h2) (6.79a)

Izi (zi ) = Bi (cosβ0zi − cosβ0hi )+ Di (cos 1
2β0zi − cos 1

2β0hi ), i �= 2 (6.79b)

the electromagnetic field is

E�(R2,�,�) = jζ0

2π

{
A2

e− jβ0 R2

R2
Fm(�, β0h2)

+
N∑

i=1

e− jβ0 Ri

Ri
[Bi Gm(�, β0hi )+ Di Dm(�, β0hi )]

}
, (6.80)

where Fm(�, β0h), Gm(�, β0h) and Dm(�, β0h) are defined in (2.46)–(2.48) and Ri

is the distance from the point of calculation to the center of element i . This may be
rearranged as follows:

E�N (R2,�,�) = −V02

�

e− jβ0 R2

R2
fVN(�,�). (6.81a)
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Φ

Θ

b24

b23

b21

R1 R2 R3 R4

To point in
To point in
T
far zone

z

y

x

Figure 6.9 Coordinates for four-element array referred to origin at center of element 2.
b21 = b23 = b34 = b.

Since no ambiguity can arise the symbol � without subscripts and superscripts is used
for �m

22dV as defined in (6.53). The field factor in (6.81a) for the N -element array is
given by

fVN(�,�) =
{

Fm(�, β0h2)+
N∑

i=1

e− jβ0(Ri−R2)[TUi Gm(�, β0hi )

+ TDi Dm(�, β0hi )]

}
secβ0h2. (6.81b)

In obtaining (6.81a, b) the far-field approximation, Ri
.= R2, in amplitudes has been

made. In the spherical coordinates R2,�,� (Fig. 6.9), and with bi,i±1 = b,

Ri − R2 = −(i − 2)b sin� cos�. (6.81c)

The following set of parameters has been introduced:

TUi = Bi/A2, TDi = Di/A2, (6.82)

where A2 = j2πV02/ζ0� cosβ0h2. The quantity E�(�,�)/V02 is the far field per
unit voltage driving element 2.
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An alternative expression for the field per unit input current to the driven antenna 2,
i.e. E�(�,�)/Iz2(0), is readily obtained with the substitution of V02 = Iz2(0)/Y2N

where, from (6.23), the input admittance of antenna 2 when driving the N -element
array is

Y2N = Iz2(0)

V02
= j2π

ζ0� cosβ0h2
[sinβ0h2 + TU2(1 − cosβ0h2)

+ TD2(1 − cos 1
2β0h2)]. (6.83)

The result is

E�N (R2,�,�) = jζ0 Iz2(0)

2π

e− jβ0 R2

R2
fIN(�,�), (6.84a)

where

fIN(�,�)

=




Fm(�, β0h2)+
N∑

i=1

e− jβ0(Ri−R2)[TUi Gm(�, β0hi )+ TDi Dm(�, β0hi )]

sinβ0h2 + TU2(1 − cosβ0h2)+ TD2(1 − cos 1
2β0h2)


 .

(6.84b)

If the driven element is near a half wavelength long, the more convenient alternative
form of the current is

Iz2(z2) = A′
2(sinβ0|z2| − sinβ0h2)+ B ′

2(cosβ0z2 − cosβ0h2)

+ D2(cos 1
2β0z2 − cos 1

2β0h2), (6.85)

where A′
2 = − j2πV02/ζ0�. The currents in the parasitic elements are given by

(6.79b). With the notation

T ′
Ui = B ′

i/A2, B ′
i = B1, B ′

2, B3, . . . BN (6.86)

the formula for the distant field is

E�N (R2,�,�) = V02

�

e− jβ0 R2

R2
f ′
VN(�,�), (6.87a)

where

f ′
VN(�,�) = Hm(�, β0h2)+

N∑
i=1

e− jβ0(Ri−R2)

× [T ′
Ui Gm(�, β0hi )+ TDi Dm(�, β0hi )]. (6.87b)

Hm(�, β0h) is defined in (2.51) and, specifically for β0h = π/2, in (2.52a). As before,
Gm(�, β0h) and Dm(�, β0h) are given in (2.47) and (2.48). Special values for β0h =
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π/2 are in (2.52b, c). If desired E�N (R2,�,�) as given in (6.87a, b) may be referred
to the current Iz2(0) instead of the voltage V02. In this case

Y2N = − j2π

ζ0�
[− sinβ0h2 + T ′

U2(1 − cosβ0h2)+ TD2(1 − cos 1
2β0h2)] (6.88)

so that

E�N (R2,�,�) = jζ0 Iz2(0)

2π

e− jβ0 R2

R2
f ′
IN(�,�), (6.89a)

where

f ′
IN(�,�)

=
Hm(�, β0h2)+

N∑
i=1

e− jβ0(Ri−R2)[T ′
Ui Gm(�, β0hi )+ TDi Dm(�, β0hi )]

− sinβ0h2 + T ′
U2(1 − cosβ0h2)+ TD2(1 − cos 1

2β0h2)
.

(6.89b)

The graphical representations of the normalized field factors | fN (�,�)|/
| fN (π/2, 0)| or | f ′

N (�,�)|/| f ′
N (π/2, 0)| in appropriate planes are the field patterns.

The field pattern in the equatorial (horizontal) plane is given by | fN (π/2,�)|/
| fN (π/2, 0)| as a function of �. Important field patterns in planes perpendicular to
the equatorial plane are with � = 0 and π . In this case | fN (�,

{ 0
π

}
)|/| fN (π/2, 0)|

is shown graphically as a function of �. The ratio of the field in the forward direction
(i.e. toward the directors, � = 0) to the field in the backward direction (i.e. toward the
reflector, � = π ) in the equatorial plane � = π/2 is known as the front-to-back ratio.
It is given by

RF B =

∣∣∣ fN

(π
2
, 0
)∣∣∣∣∣∣ fN

(π
2
, π
)∣∣∣ . (6.90a)

The front-to-back ratio in decibels is

rF B = 20 log10

∣∣∣∣ fN

(π
2
, 0
)/

fN

(π
2
, π
)∣∣∣∣ . (6.90b)

Note that in all of the ratios involving fN (�,�) either fVN(�,�) or fIN(�,�) may
be used.

Since the total power radiated by an array is given by the integral over a great sphere
of the normal component of the Poynting vector

|SR(R,�,�)| = |E�(R,�,�)|2/2ζ0 (6.91)
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the distribution as a function of � and � of |SR(R,�,�)| is of interest. The total
power supplied to the N -element array is

P2N = 1
2 |Iz2(0)|2 R2N = 1

2 |V02|2G2N , (6.92)

where R2N and G2N are, respectively, the driving-point resistance and conductance of
the element 2 when driving the N -element parasitic array. With (6.81a), (6.84a) and
(6.92), (6.91) becomes

|SR(R2,�,�)| = P2N

ζ0�2 R2
2

1

G2N
| fVN(�,�)|2 (6.93a)

= P2N

4π2 R2
2

ζ0

R2N
| fIN(�,�)|2. (6.93b)

A graphical representation of | fN (�,�)/ fN (π/2, 0)|2 is known as a power pattern.
(Note that R2 is a distance, R2N a resistance.)

If ohmic losses in the conductors of the antennas and in the surrounding dielectric
medium (air) are neglected, the total power radiated by an array outside a great sphere
of radius R2 is the same as the total power supplied at the terminals of the driven
element 2. That is

P2N = 1
2 |V02|2G2N = 1

2 |Iz2(0)|2 R2N

=
∫ 2π

0

∫ π

0
|SR(R2,�,�)|R2

2 sin� d� d�. (6.94)

With (6.93) and (6.94), formulas are obtained for R2N and G2N in terms of the far
field. They are

R2N = ζ0

4π2

∫ 2π

0

∫ π

0
| fIN(�,�)|2 sin� d� d� (6.95a)

G2N = 1

ζ0�2

∫ 2π

0

∫ π

0
| fVN(�,�)|2 sin� d� d�. (6.95b)

Actually, both R2N and G2N are already known from

Iz2(0)/V02 = G2N + j B2N

when the medium in which the array is immersed is lossless.
The absolute directivity of the N -element Yagi array is defined in terms of the power

radiated by a fictitious omnidirectional antenna that maintains the same field in all
directions as the Yagi array does in the one direction of its maximum, namely, � =
π/2, � = 0. This power is

PN omni = 4πR2
2

∣∣∣SR

(
R2,

π

2
, 0
)∣∣∣

= P2N
ζ0

πR2N

∣∣∣ fIN

(π
2
, 0
)∣∣∣2 = P2N

4π

ζ0�2G2N

∣∣∣ fVN

(π
2
, 0
)∣∣∣2 . (6.96)
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The ratio PN omni/P2N is the absolute directivity. Thus

DN

(π
2
, 0
)
= PN omni

P2N
= ζ0

πR2N

∣∣∣ fIN

(π
2
, 0
)∣∣∣2 = 4π

ζ0�2G2N

∣∣∣ fVN

(π
2
, 0
)∣∣∣2 .

(6.97)

This formula is often written with R2N expressed explicitly as given in (6.95a). The
quantity

G N

(π
2
, 0
)
= 10 log10 DN

(π
2
, 0
)

(6.98)

is the absolute gain in decibels.
The absolute directivity of the driven element 2 when isolated is

D1

(π
2
, 0
)
= P1 omni

P21
= ζ0

πR21

∣∣∣ f I 1

(π
2
, 0
)∣∣∣2 = 4π

ζ0�2G21

∣∣∣ fV 1

(π
2
, 0
)∣∣∣2 . (6.99)

The relative directivity at constant power of the array referred to the isolated driven
element is

Dr (0) =
DN

(π
2
, 0
)

D1

(π
2
, 0
) =

R21

∣∣∣ fIN

(π
2
, 0
)∣∣∣2

R2N

∣∣∣ f I 1

(π
2
, 0
)∣∣∣2 =

G21

∣∣∣ fVN

(π
2
, 0
)∣∣∣2

G2N

∣∣∣ fV 1

(π
2
, 0
)∣∣∣2 . (6.100)

The corresponding relative gain in decibels is

Gr (0) = G N

(π
2
, 0
)
− G1

(π
2
, 0
)
= 10

[
log10 DN

(π
2
, 0
)
− log10 D1

(π
2
, 0
)]

.

(6.101)

The relative directivity (6.100) is readily expressed in terms of the electric field in
(6.84a). Thus,

Dr (0) =

∣∣∣E�N

(
R2,

π

2
, 0
)∣∣∣2∣∣∣E�1

(
R2,

π

2
, 0
)∣∣∣2

P21

P2N
. (6.102)

The relative directivity at constant power, P21 = P2N , is

Dr (0) =

∣∣∣E�N

(
R2,

π

2
, 0
)∣∣∣2∣∣∣E�1

(
R2,

π

2
, 0
)∣∣∣2 . (6.103)

This is equivalent to (6.100).
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The relative directivity (6.100) or (6.103) is also the relative forward directivity in
the direction � = π/2, � = 0. The relative directivity at constant power P21 = P2N

in the backward direction � = π/2, � = π is defined by

Dr (π) =

∣∣∣E�N

(
R2,

π

2
, π
)∣∣∣2∣∣∣E�1

(
R2,

π

2
, π
)∣∣∣2 = R21

R2N

∣∣∣ fIN

(π
2
, π
)∣∣∣2∣∣∣ f I 1

(π
2
, π
)∣∣∣2 = G21

G2N

∣∣∣ fVN

(π
2
, π
)∣∣∣2∣∣∣ fV 1

(π
2
, π
)∣∣∣2 .

(6.104)

The relative backward gain in decibels is

Gr (π) = 10 log10 Dr (π). (6.105)

Since for a single element rotational symmetry with respect to � gives f1(π/2, 0)
= f1(π/2, π), it follows that

Dr (0)

Dr (π)
=

∣∣∣ fN

(π
2
, 0
)∣∣∣2∣∣∣ fN

(π
2
, π
)∣∣∣2 (6.106)

and

rF B = Gr (0)− Gr (π) (6.107)

in decibels. Note that R2 is a distance, R21 and R2N resistances.

6.7 Simple applications of the modified theory; comparison with
experiment

The theory of arrays developed in the preceding sections is like that formulated
in the earlier chapters in that the complicated simultaneous integral equations for
the currents in the elements are replaced by a set of algebraic equations. This is
accomplished by approximating the integrals with an appropriate combination of
trigonometric functions. In dealing with arrays of driven elements of equal length
it was convenient to use different trigonometric functions for different parts of the
integrals and to match these to the integrals at the point of maximum current, z = zm ,
and at the ends, z = ±h. For use with parasitic elements of unequal length this
procedure is modified. Each integral is approximated by a sum of trigonometric
terms with coefficients matched to the integral at z = 0, ±h/2 and ±h. In order
to illustrate the application of the modified theory and at the same time verify its
accuracy it is convenient to consider the simplest cases, the isolated antenna and the
two-element parasitic array. Since conventional (sinusoidal) theory fails completely
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Figure 6.10 Distribution of current on full-wave antenna; I (z) = I ′′(z)+ j I ′(z); a/λ =
0.007 022, h/λ = 0.5.

when full-wave elements are involved, the examples are selected deliberately to
include such elements.

In Fig. 6.10 are the distributions of current along a full-wave isolated antenna as
computed from the modified theory, and as measured. They may be compared with
the three-term approximation in Fig. 2.4 where the same experimental data are also
shown. The two theoretical representations, while not identical, are nevertheless both
very good approximations of the current. The modified theory does not provide quite
as good an overall fit, but is somewhat better in specifying the susceptance – as would
be expected since all integrals are matched at z = 0 and not only at the maximum
of current. The admittance in the modified theory is Y0 = (0.926 + j1.350) × 10−3

siemens; the value obtained previously is Y0 = (0.976+ j0.988)×10−3 siemens. The
measured value after correction for end effects is (1.025+ j1.676)×10−3 siemens. As
indicated in conjunction with Fig. 2.6 a lumped susceptance B0 = 0.72×10−3 siemens
must be added to the three-term admittance to give Y0 = (0.976 + j1.708) × 10−3

siemens. A similar lumped correction is also required with the modified theory, but it
is smaller, namely B0 = 0.35 × 10−3 siemens. It is clear that when suitably corrected
to give the right susceptance, either theory provides a very acceptable approximation
of the current in a dipole.

The distributions of current in an array of two full-wave elements in which element
1 is center driven and element 2 is parasitic are shown in Fig. 6.11 for four values
of b, the distance between the parallel antennas. The corresponding field patterns in
the equatorial plane are in Fig. 6.12. The distributions of current in Fig. 6.11 may be
compared with measured values in Fig. 6.13. The agreement is seen to be very good.
Equally good agreement has been observed for the field patterns.

As an illustration of the computations for the currents in a two-element array
with elements differing greatly in length, the graphs in Fig. 6.14 are provided. The
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Figure 6.12 Horizontal field patterns of full-wave two-element parasitic array. h/λ = 0.5,
a/λ = 0.007 022.

associated horizontal field patterns are in Fig. 6.15. In the case considered, the driven
element is a wavelength long, the parasitic element has successively the three lengths
h2 = 0.2λ, 0.4λ, and 0.65λ. Large changes in the distributions of current are seen
to occur in the parasitic element as its length is changed while fixed at the specified
distance b = 0.2λ from the driven element. Note that except for the shortest length,
the currents in the parasitic element differ significantly from the sinusoidal. The
current in the driven antenna is only slightly affected by the changes in length of the
coupled parasitic antenna, the largest changes occurring near the driving point so that
the admittance is noticeably modified. Specifically, for the values h2/λ = 0.2, 0.4,
0.65 the admittances are (0.916 + j1.041) × 10−3, (0.790 + j1.480) × 10−3, and
(0.805 + j1.510)× 10−3 siemens.

A typical computer printout for a two-element parasitic array is in Table 6.1.
The coefficients of the trigonometric components of the current, the admittance, the
impedance, the current distributions, the horizontal and vertical field patterns, the
forward gain, the backward gain and the front-to-back ratio are all given.

6.8 The three-element Yagi--Uda array1

The computed distributions of current and the field pattern for a three-element array
consisting of a reflector of length 2h1 = 0.51λ, a driven element of length 2h2 = 0.50λ
and a single director of length 2h3 = 0.45λ are shown in Figs. 6.16 and 6.17. For
this array the radius of all elements was taken as a = 0.003 369λ. The driving-point
impedance of element 2 is Z2 = 27.4 + j1.27 ohms. The computed values of the

1 This section is based on the work of Dr I. L. Morris [3].
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Table 6.1. Computer printout for two-element parasitic array

No. of elements = 2
Half-length of driving antenna = 0.500 0000E 00

Half-length of parasitic antenna = 0.650 0000E 00
Radius = 0.702 2000E−02

Element spacing = 0.200 0000E 00

Coefficients for current distributions
Element No. 1

AR AI BR
−0.249 034E−04 −0.318 019E−02 0.182 919E−03

BI DR DI
0.441 346E−03 0.439 517E−03 0.627 672E−03

Element No. 2

BR
0.707 925E−04

BI DR DI
−0.493 231E−03 0.221 251E−03 0.456 011E−03

Current distributions and input admittances
Element No. 1

Real Imaginary Magnitude Argument
Input admittance =

0.805 356E−03 0.151 036E−02 0.171 167E−02 61.8473
Input impedance =

0.274 884E 03 −0.515 518E 03 0.584 226E 03 −61.8473

Z/H Real Imaginary Magnitude Argument
0. 0.805 356E−03 0.151 036E−02 0.171 167E−02 61.8473
0.1 0.783 297E−03 0.498 302E−03 0.928 363E−03 32.4182
0.2 0.734 272E−03 −0.473 916E−03 0.873 929E−03 −32.7939
0.3 0.661 902E−03 −0.131 281E−02 0.147 023E−02 −63.1562
0.4 0.571 337E−03 −0.193 902E−02 0.202 144E−02 −73.4809
0.5 0.468 802E−03 −0.229 502E−02 0.234 241E−02 −78.3470
0.6 0.361 052E−03 −0.235 064E−02 0.237 821E−02 −81.1558
0.7 0.254 792E−03 −0.210 594E−02 0.212 130E−02 −82.9870
0.8 0.156 115E−03 −0.159 102E−02 0.159 866E−02 −84.2797
0.9 0.700 128E−04 −0.862 943E−03 0.865 779E−03 −85.2440
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Table 6.1. – continued

Element No. 2
Z/H Real Imaginary Magnitude Argument
0. 0.434 100E−03 −0.120 109E−03 0.450 410E−03 −15.4447
0.1 0.423 681E−03 −0.890 176E−04 0.432 931E−03 −11.8492
0.2 0.393 571E−03 −0.202 264E−05 0.393 577E−03 −0.2940
0.3 0.347 053E−03 0.123 120E−03 0.368 245E−03 19.5057
0.4 0.289 068E−03 0.260 242E−03 0.388 955E−03 41.9382
0.5 0.225 521E−03 0.379 298E−03 0.441 278E−03 59.1837
0.6 0.162 456E−03 0.451 620E−03 0.479 950E−03 70.1187
0.7 0.105 249E−03 0.455 010E−03 0.467 024E−03 76.8698
0.8 0.579 298E−04 0.377 819E−03 0.382 234E−03 81.1709
0.9 0.227 404E−04 0.221 326E−03 0.222 491E−03 84.0178

Horizontal field pattern

Phi E E dB
0. 1.000 000 −0.

10.00 0.999 009 −0.0086
20.00 0.997 528 −0.0215
30.00 0.999 831 −0.0015
40.00 1.012 188 0.1052
50.00 1.041 196 0.3507
60.00 1.091 405 0.7597
70.00 1.163 272 1.3136
80.00 1.252 706 1.9570
90.00 1.352 388 2.6220

100.00 1.453 907 3.2507
110.00 1.549 639 3.8046
120.00 1.633 938 4.2647
130.00 1.703 568 4.6272
140.00 1.757 561 4.8982
150.00 1.796 660 5.0893
160.00 1.822 565 5.2137
170.00 1.837 157 5.2829
180.00 1.841 848 5.3051

F gain = 0.4079 dB B gain = 5.7130 dB FTBR = −5.3051 dB

Vertical field pattern

Theta E E dB
10.00 0.068 390 −23.3002
20.00 0.151 670 −16.3820
30.00 0.245 067 −12.2143
40.00 0.345 650 −9.2273
50.00 0.460 228 −6.7405
60.00 0.606 571 −4.3424
70.00 0.782 575 −2.1295
80.00 0.937 397 −0.5615
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Figure 6.15 Horizontal field patterns of arrays of two elements of different lengths. b/λ = 0.2,
a/λ = 0.007 022, N = 2.

phase angle of the current along the reflector are nearly constant; it decreases from
74◦.5 at z/h1 = 0 to 72◦.7 at z/h1 = 0.9. The phase angle of the current along
the driven element decreases from −2◦.66 at z/h2 = 0 to −8◦.47 at z/h2 = 0.9.
The phase angle of the current along the director is almost exactly constant, changing
only from −154◦.3 at z/h3 = 0 to −154◦.0 at z/h3 = 0.9. It is clear from Fig. 6.16
that the current in the reflector is so small that it actually contributes negligibly to the
field.

In order to determine whether the particular length h3 and spacing b23 are the best
values to maintain the largest forward gain G(0) or the maximum front-to-back ratio,
the quantities h3/λ and b23/λ can be varied over a suitable range and the associated
forward gain or front-to-back ratio computed. A computer printout for the front-to-
back ratio is shown in Fig. 6.18. The ordinates are 2h3/λ = 2H/L , in a range from
0.50 to 0.36 in steps of 0.01; the abscissae are b23/λ = B/L in the range from 0.02
to 0.30 in steps of 0.02. The contours are drawn along estimated lines of constant
front-to-back ratio ranging from 1 to 19. It is seen that the maximum value of front-
to-back ratio is close to b23/λ = 0.12 with 2h3/λ = 0.44 Thus, the distributions of
current and the field pattern in Figs. 6.16 and 6.17 do not quite correspond to those
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for maximum front-to-back ratio. A small readjustment in the length of the director
from 2h3 = 0.45λ to 2h3 = 0.44λ and an increase in its spacing b23 from 0.08λ to
0.12λ produce an increase in front-to-back ratio from 24.14 to 30.70. If the parameters
2h3/λ and b23/λ were varied in steps smaller than 0.01 and 0.02, respectively, an
even higher ratio might be obtained within the narrow ranges 2h3/λ = 0.44 ± 0.01,
b23/λ = 0.12 ± 0.02. A more extended set of contours of the front-to-back ratios is
shown in Fig. 6.19b in which the computed numbers have been deleted and only the
contours of constant rF B are shown. It is clear that a number of successive maxima in
front-to-back ratio are obtained as the distance b23 between the director and the driven
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Figure 6.19 Contour diagrams constructed with computer printouts for a one-director Yagi array,
(a) forward gain, (b) front-to-back ratio, (c) input resistance, (d) input reactance.

element is increased. These occur substantially at intervals of λ/2 with 2h3 between
0.44λ and 0.46λ. Similar computer printouts for forward gain, driving-point resistance
and reactance are also shown in Fig. 6.19.

6.9 The four and eight director Yagi--Uda arrays2

The theory developed and illustrated with simple examples in the preceding sections
can be applied to analyze the properties of longer Yagi–Uda arrays. For such arrays
the quantities of principal interest include the distributions of current along all
elements (since these determine the field), the admittance or impedance of the single

2 This section is based on the work of Dr I. L. Morris [3].
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driven element, the far-field pattern, the forward gain and the front-to-back ratio.
For many purposes the determination of conditions that yield a maximum in the
forward gain or in the front-to-back ratio is important. The parameters that may
be varied are the length 2hi and radius ai of each element i , the distances bi j

between the elements i and j and their number N . Thus, there are a total of 3N
parameters.

Because of the large number of possible combinations, an exhaustive study of the
Yagi array would be very costly in both time and money even when a high-speed digital
computer is available. An investigation of reasonable proportions must be restricted to
a choice and range of parameters that is appropriate to a particular purpose.

In general, the purpose of the Yagi–Uda array is to obtain a highly directive field
pattern with large values of the forward gain and front-to-back ratio. It has been shown
implicitly that these desired properties can be achieved with the array pictured in Fig.
6.8. It consists of the following components:

1. A single driven element No. 2 that is a typical half-wave dipole of length 2h2 =
0.5λ but with a finite radius a2 and a distribution of current that is not assumed in
advance to be sinusoidal, but remains to be determined.

2. A single reflecting element No. 1 that is slightly longer (2h1 = 0.51λ) than the
driven antenna is placed at a distance b12 = 0.25λ from it. The field maintained
by the currents induced in a parasitic element of this length and relative location
tends to reinforce the field maintained by the currents in the driven element in the
forward direction (from 1 to 2) and to reduce or cancel it in the opposite or backward
direction (from 2 to 1).

3. The balance of the array consists of N−2 directors that all have the same half-length
hi = h and that are separated by the same distance bi−1,i = b with 3 ≤ i ≤ N .
In order to function as directors, the length h of the N − 2 parasitic elements must
satisfy the inequality h < h2 = 0.5λ if the field maintained by the currents in them
is to reinforce in the forward direction the field maintained by the currents in the
driven element and in the reflector. If it is required that all antennas have the same
radius, ai = a, the 3N parameters have been reduced to three; h, b and N .

Contour diagrams constructed from computer printouts of the forward gain, the
front-to-back ratio, the input resistance and the input reactance are shown in Figs.
6.20 and 6.21 for an array with four identical directors. The parameters are 2h/λ
and b/λ where h = h3 = h4 = h5 = h6 and b = b23 = b34 = b45 = b56.
From these, combinations of h and b may be selected for which the forward gain
or the front-to-back ratio is a maximum. For example, the following pairs of values
are obtained from Fig. 6.20 to give a maximum front-to-back ratio: 2h/λ = 0.413,
0.420, 0.426, 0.424; b/λ = 0.033, 0.139, 0.248, 0.360. These four sets all give a
maximum front-to-back ratio, but the field patterns are quite different. These are shown
in Fig. 6.22 together with corresponding patterns for similarly optimized one- and
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Figure 6.22 Horizontal field patterns for Yagi arrays with maxima in front-to-back ratio.

two-director arrays. From these it is seen that the field patterns for the most closely
spaced condition for maximum front-to-back ratio are practically identical regardless
of the number of directors. This is due to the fact that the directors are all so close to
the driven element that no minor lobes are possible. As the distance between directors
is increased, but limited to values that yield maxima in the front-to-back ratio, minor
lobes appear and the beam width is reduced. The currents at the centers of the elements
for the arrays that maintain the field patterns in Fig. 6.22 are represented in the form
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Figure 6.23 (a) Phasor diagrams for Yagi arrays with maxima in front-to-back ratio; one and two
directors.

of phasor diagrams in Figs. 6.23a, b. The magnitude and angle of I (0) in each element
are shown. Note that for the very closely spaced four-director array with b/λ = 0.033,
the currents in the directors are almost equal and in phase and much smaller than
the current in the driven element. On the other hand, for the largest spacing shown
b/λ = 0.36, the currents in the directors are comparable in magnitude with the current
in the driven element and their phase differences are close to the progressive phase
difference 360◦b/λ = 130◦ of a wave traveling with the velocity of light from element
to element.
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Composite diagrams showing the forward gain, the front-to-back ratio, the input
resistance and the input reactance as functions of b/λ for 1-, 2-, 4- and 8-director
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Figure 6.24 Forward gain (a), and front-to-back ratio (b), for a Yagi array with directors of
constant length, radius and spacing (0.43λ, 0.003 37λ and b, respectively).

arrays with 2h/λ = 0.43, a/λ = 0.003 37 are shown in Figs. 6.24a, b and 6.25a, b.
From these the major quantities of interest are readily obtained.

A computer printout of an 8-director Yagi–Uda array3 with 2h/λ = 0.4 and b/λ =
0.3 is given in the accompanying Table 6.2. The impedance of the driven element when
isolated is Z0 = 88.94 + j39.11 ohms. Graphs of the currents in all of the elements
are shown in Fig. 6.26. The phase angle along each parasitic element is essentially
constant. It is represented in Fig. 6.27 as a function of the distance of the element
from the driven antenna No. 2. The curve drawn through the points has no physical
significance; it serves merely to interrelate the discrete points and thus reveal how
nearly constant the phase change from director to director actually is. The electrical
separation of adjacent directors is 108◦; the average phase difference of the currents

3 The numerical evaluation for the 8-director Yagi array was done by V. W. H. Chang.
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Figure 6.25 Input resistance (a), and reactance (b), for a Yagi array with directors of constant
length, radius and spacing (0.43λ, 0.003 37λ and b, respectively).

is 115◦.6. The horizontal field pattern maintained by the currents in the ten-element
array is shown in Fig. 6.28.

6.10 Receiving arrays

The study of arrays of cylindrical antennas in all of the earlier sections of the book
has been directed specifically to the problem of transmission, which involves the
determination of distributions of current, driving-point admittances and field patterns.
Arrays of antennas are also used to secure desired directional properties for receivers.

In a transmitting array a single element may be driven, as in parasitic arrays of the
Yagi–Uda type, or all the elements may be active as in the broadside or endfire arrays.
In these latter the driving voltage is usually supplied from a single power oscillator
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Table 6.2. Computer printout for eight-director Yagi–Uda array

No. of elements = 10
Half-length of driving antenna = 0.250 0000E−00

Half-length of parasitic antennas = 0.200 0000E−00
Half-length of reflector antenna = 0.255 0000E−00

Radius = 0.336 9000E−02
Spacing between reflector and driving antennas = 0.250 0000E−00

Spacing between parasitic antennas = 0.300 0000E−00

Coefficients for current distributions

Element No. AR AI BR
1 0 0 −0.261 108E−03
2 0.260 791E−04 −0.128 598E−02 0.603 188E−03
3 0 0 0.373 823E−02
4 0 0 −0.247 170E−02
5 0 0 −0.117 657E−02
6 0 0 0.302 159E−02
7 0 0 −0.130 879E−02
8 0 0 −0.176 549E−02
9 0 0 0.264 461E−02

10 0 0 −0.391 583E−03

Element No. BI DR DI
1 0.443 744E−03 0.626 141E−02 0.121 838E−01
2 0.204 197E−01 0.200 499E−01 −0.917 549E−01
3 −0.956 042E−03 −0.339 069E−01 0.757 068E−02
4 −0.290 843E−02 0.207 297E−01 0.252 446E−01
5 0.282 252E−02 0.102 848E−01 −0.238 580E−01
6 0.397 791E−03 −0.256 008E−01 −0.357 119E−02
7 −0.284 188E−02 0.109 612E−01 0.241 588E−01
8 0.176 994E−02 0.149 901E−01 −0.149 562E−01
9 0.139 167E−02 −0.223 427E−01 −0.119 466E−01

10 −0.278 379E−02 0.390 606E−02 0.234 452E−01
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Table 6.2. – continued

Current distributions and input admittances

Element No. 1

Z/H Real Imaginary Magnitude Argument
0. 0.163 470E−02 0.416 262E−02 0.447 210E−02 68.4651
0.1 0.161 797E−02 0.411 786E−02 0.442 432E−02 68.4550
0.2 0.156 780E−02 0.398 398E−02 0.428 136E−02 68.4247
0.3 0.148 433E−02 0.376 216E−02 0.404 439E−02 68.3743
0.4 0.136 779E−02 0.345 436E−02 0.371 530E−02 68.3042
0.5 0.121 849E−02 0.306 328E−02 0.329 672E−02 68.2146
0.6 0.103 685E−02 0.259 232E−02 0.279 199E−02 68.1060
0.7 0.823 442E−03 0.204 556E−02 0.220 508E−02 67.9789
0.8 0.578 922E−03 0.142 768E−02 0.154 059E−02 67.8340
0.9 0.304 115E−03 0.743 922E−03 0.803 683E−03 67.6719

Element No. 2

Z/H Real Imaginary Magnitude Argument
0. 0.644 960E−02 −0.516 874E−02 0.826 517E−02 −38.6555
0.1 0.638 444E−02 −0.533 846E−02 0.832 227E−02 −39.8463
0.2 0.618 129E−02 −0.543 588E−02 0.823 147E−02 −41.2718
0.3 0.584 171E−02 −0.544 297E−02 0.798 446E−02 −42.9171
0.4 0.536 841E−02 −0.533 362E−02 0.756 752E−02 −44.7520
0.5 0.476 516E−02 −0.507 442E−02 0.696 107E−02 −46.7358
0.6 0.403 674E−02 −0.462 572E−02 0.613 943E−02 −48.8223
0.7 0.318 893E−02 −0.394 290E−02 0.507 107E−02 −50.9645
0.8 0.222 841E−02 −0.297 779E−02 0.371 928E−02 −53.1176
0.9 0.116 268E−02 −0.168 029E−02 0.204 333E−02 −55.2423

Element No. 3

Z/H Real Imaginary Magnitude Argument
0. −0.389 258E−02 0.785 263E−03 0.397 100E−02 168.6103
0.1 −0.385 515E−02 0.777 863E−03 0.393 285E−02 168.6082
0.2 −0.374 266E−02 0.755 602E−03 0.381 817E−02 168.6018
0.3 −0.355 451E−02 0.718 302E−03 0.362 636E−02 168.5912
0.4 −0.328 973E−02 0.665 672E−03 0.335 640E−02 168.5765
0.5 −0.294 700E−02 0.597 315E−03 0.300 693E−02 168.5580
0.6 −0.252 470E−02 0.512 741E−03 0.257 624E−02 168.5358
0.7 −0.202 096E−02 0.411 377E−03 0.206 240E−02 168.5102
0.8 −0.143 372E−02 0.292 589E−03 0.146 327E−02 168.4815
0.9 −0.760 799E−03 0.155 698E−03 0.776 567E−03 168.4500
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Table 6.2. – continued

Element No. 4

Z/H Real Imaginary Magnitude Argument
0. 0.225 112E−02 0.281 162E−02 0.360 177E−02 51.2469
0.1 0.222 970E−02 0.278 474E−02 0.356 740E−02 51.2456
0.2 0.216 531E−02 0.270 393E−02 0.346 408E−02 51.2416
0.3 0.205 751E−02 0.256 871E−02 0.329 114E−02 51.2350
0.4 0.190 559E−02 0.237 827E−02 0.304 753E−02 51.2259
0.5 0.170 859E−02 0.213 152E−02 0.273 178E−02 51.2144
0.6 0.146 531E−02 0.182 713E−02 0.234 212E−02 51.2006
0.7 0.117 439E−02 0.146 354E−02 0.187 647E−02 51.1848
0.8 0.834 289E−03 0.103 904E−02 0.133 254E−02 51.1671
0.9 0.443 383E−03 0.551 817E−03 0.707 878E−03 51.1476

Element No. 5

Z/H Real Imaginary Magnitude Argument
0. 0.115 124E−02 −0.260 615E−02 0.284 910E−02 −66.0760
0.1 0.114 022E−02 −0.258 133E−02 0.282 195E−02 −66.0770
0.2 0.110 710E−02 −0.250 670E−02 0.274 030E−02 −66.0799
0.3 0.105 169E−02 −0.238 177E−02 0.260 363E−02 −66.0847
0.4 0.973 653E−03 −0.220 574E−02 0.241 108E−02 −66.0913
0.5 0.872 566E−03 −0.197 751E−02 0.216 147E−02 −66.0997
0.6 0.747 887E−03 −0.169 575E−02 0.185 335E−02 −66.1096
0.7 0.598 995E−03 −0.135 890E−02 0.148 506E−02 −66.1212
0.8 0.425 205E−03 −0.965 221E−03 0.105 473E−02 −66.1340
0.9 0.225 787E−03 −0.512 883E−03 0.560 383E−03 −66.1481

Element No. 6

Z/H Real Imaginary Magnitude Argument
0. −0.280 144E−02 −0.407 170E−03 0.283 087E−02 −171.7418
0.1 −0.277 475E−02 −0.403 259E−03 0.280 390E−02 −171.7424
0.2 −0.269 450E−02 −0.391 507E−03 0.272 279E−02 −171.7442
0.3 −0.256 017E−02 −0.371 848E−03 0.258 703E−02 −171.7473
0.4 −0.237 090E−02 −0.344 178E−03 0.239 575E−02 −171.7516
0.5 −0.212 552E−02 −0.308 354E−03 0.214 777E−02 −171.7569
0.6 −0.182 261E−02 −0.264 202E−03 0.184 166E−02 −171.7633
0.7 −0.146 050E−02 −0.211 518E−03 0.147 573E−02 −171.7707
0.8 −0.103 734E−02 −0.150 081E−03 0.104 814E−02 −171.7790
0.9 −0.551 178E−03 −0.796 550E−04 0.556 904E−03 −171.7880
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Table 6.2. – continued

Element No. 7

Z/H Real Imaginary Magnitude Argument
0. 0.118 905E−02 0.265 022E−02 0.290 474E−02 65.7455
0.1 0.117 774E−02 0.262 496E−02 0.287 706E−02 65.7450
0.2 0.114 373E−02 0.254 901E−02 0.279 384E−02 65.7437
0.3 0.108 680E−02 0.242 187E−02 0.265 454E−02 65.7414
0.4 0.100 657E−02 0.224 275E−02 0.245 827E−02 65.7383
0.5 0.902 524E−03 0.201 056E−02 0.220 384E−02 65.7344
0.6 0.774 037E−03 0.172 395E−02 0.188 974E−02 65.7297
0.7 0.620 375E−03 0.138 136E−02 0.151 427E−02 65.7243
0.8 0.440 727E−03 0.981 069E−03 0.107 552E−02 65.7182
0.9 0.234 232E−03 0.521 244E−03 0.571 454E−03 65.7116

Element No. 8

Z/H Real Imaginary Magnitude Argument
0. 0.164 294E−02 −0.163 338E−02 0.231 672E−02 −44.7710
0.1 0.162 728E−02 −0.161 782E−02 0.229 464E−02 −44.7712
0.2 0.158 020E−02 −0.157 105E−02 0.222 828E−02 −44.7718
0.3 0.150 140E−02 −0.149 275E−02 0.211 720E−02 −44.7727
0.4 0.139 038E−02 −0.138 243E−02 0.196 068E−02 −44.7741
0.5 0.124 645E−02 −0.123 940E−02 0.175 777E−02 −44.7757
0.6 0.106 878E−02 −0.106 281E−02 0.150 727E−02 −44.7777
0.7 0.856 408E−03 −0.851 691E−03 0.120 781E−02 −44.7800
0.8 0.608 252E−03 −0.604 957E−03 0.857 871E−03 −44.7826
0.9 0.323 173E−03 −0.321 454E−03 0.455 822E−03 −44.7854

Element No. 9

Z/H Real Imaginary Magnitude Argument
0. −0.243 969E−02 −0.131 999E−02 0.277 389E−02 −151.6237
0.1 −0.241 646E−02 −0.130 739E−02 0.274 746E−02 −151.6242
0.2 −0.234 660E−02 −0.126 951E−02 0.266 799E−02 −151.6258
0.3 −0.222 965E−02 −0.120 611E−02 0.253 497E−02 −151.6285
0.4 −0.206 487E−02 −0.111 680E−02 0.234 754E−02 −151.6321
0.5 −0.185 124E−02 −0.100 106E−02 0.210 457E−02 −151.6367
0.6 −0.158 748E−02 −0.858 237E−03 0.180 462E−02 −151.6422
0.7 −0.127 214E−02 −0.687 575E−03 0.144 607E−02 −151.6486
0.8 −0.903 608E−03 −0.488 242E−03 0.102 708E−02 −151.6557
0.9 −0.480 150E−03 −0.259 353E−03 0.545 718E−03 −151.6634

Element No. 10

Z/H Real Imaginary Magnitude Argument
0. 0.475 414E−03 0.255 409E−02 0.259 796E−02 79.3463
0.1 0.470 794E−03 0.252 977E−02 0.257 321E−02 79.3483
0.2 0.456 916E−03 0.245 667E−02 0.249 880E−02 79.3545
0.3 0.433 725E−03 0.233 429E−02 0.237 425E−02 79.3647
0.4 0.401 134E−03 0.216 185E−02 0.219 875E−02 79.3787
0.5 0.359 024E−03 0.193 825E−02 0.197 122E−02 79.3965
0.6 0.307 248E−03 0.166 218E−02 0.169 033E−02 79.4177
0.7 0.245 641E−03 0.133 207E−02 0.135 453E−02 79.4421
0.8 0.174 023E−03 0.946 231E−03 0.962 100E−03 79.4695
0.9 0.922 045E−04 0.502 831E−03 0.511 215E−03 79.4994
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Table 6.2. – continued

Real Imaginary Magnitude Argument
Input admittance =

0.644 960E−02 −0.516 874E−02 0.826 517E−02 −38.6555
Input impedance =

0.944 123E 02 0.756 624E 02 0.120 990E 03 38.6555

Horizontal field pattern

Phi E E dB
0. 1.000 000 −0.
5.00 0.986 511 −0.1180

10.00 0.944 099 −0.4996
15.00 0.867 684 −1.2328
20.00 0.751 469 −2.4818
25.00 0.593 565 −4.5306
30.00 0.404 522 −7.8611
35.00 0.232 860 −12.6581
40.00 0.225 985 −12.9184
45.00 0.344 538 −9.2553
50.00 0.415 399 −7.6307
55.00 0.390 921 −8.1582
60.00 0.298 334 −10.5060
65.00 0.247 244 −12.1375
70.00 0.299 673 −10.4671
75.00 0.334 813 −9.5039
80.00 0.292 586 −10.6749
85.00 0.225 493 −12.9373
90.00 0.229 328 −12.7909
95.00 0.260 556 −11.6820

100.00 0.241 345 −12.3473
105.00 0.183 770 −14.7145
110.00 0.156 452 −16.1124
115.00 0.176 931 −15.0439
120.00 0.187 247 −14.5517
125.00 0.166 602 −15.5664
130.00 0.130 073 −17.7163
135.00 0.107 503 −19.3716
140.00 0.118 454 −18.5290
145.00 0.146 355 −16.6919
150.00 0.171 587 −15.3103
155.00 0.187 308 −14.5489
160.00 0.193 479 −14.2673
165.00 0.192 924 −14.2923
170.00 0.189 266 −14.4586
175.00 0.185 684 −14.6245
180.00 0.184 254 −14.6917

F gain = 11.5646 dB B gain = −3.1270 dB FTBR = 14.6917 dB
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Figure 6.27 Phases of currents in elements referred to V02.

by way of a suitable network of transmission lines, transformers and phase shifters.
The design of such a feeding system of transmission lines is beyond the scope of this
book. However, most transmitting arrays with their associated networks have a single
pair of terminals across which the driving voltage is maintained. Since this pair of
terminals is directly obvious in the parasitic arrays which have only a single driven
element, attention in the following discussion is focused specifically on arrays of this
type. Note that all references to the terminals of the driven element in a parasitic array
apply equally to the single pair of input terminals of the transmission-line network that
drives any other array.

Consider a receiving array of antennas in the incident plane-wave field of a distant
transmitter. For convenience let the array be that shown in Fig. 6.8 with a load
impedance ZL instead of the generator connected across the terminals of antenna 2.
In order to determine all of the properties of this system including, for example,
the distributions of current in the elements and the reradiated or scattered field, it is
necessary to formulate the coupled integral equations from the boundary condition
that requires the tangential component of the total electric field to vanish on the
perfectly conducting surface of each element. Fortunately, if interest is restricted to
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Figure 6.28 Field of 10-element Yagi array.

the transmission of information from a distant transmitter to the load ZL , this elaborate
analysis is unnecessary since the current in the load between the given terminals can
be determined by the application of the reciprocal theorem4 to the identical array when
driven by the voltage V e

0 across the same terminals.
The reciprocal theorem applies to two arbitrarily located pairs of terminals, the

one, for example, in an array A, the other in a simple dipole D. First, let the array
be used for transmission, the dipole for reception. A generator with EMF V e

0 and
internal impedance Zg is connected across the terminals of the array; a load ZL

is connected across the terminals of the dipole. The center of the driven element
2 in the array is located at the origin of the spherical coordinates r,�,�; the
receiving dipole is used to measure the field pattern of the array. For this purpose
it is moved along the surface of a great sphere so that its axis is always tangent to
the electric field maintained by the transmitter. The current ID(�,�) in ZL at the
center of the dipole varies as the dipole is moved. From (2.78) with (2.79), it is given
by

ID(�,�) =
2he

(π
2

)
E inc

z

Z0 + ZL
=

−2he

(π
2

)
E�(R2,�,�)

Z0 + ZL
, (6.108)

4 See, for example, [4], p. 690 and [5], p. 216.
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where 2he(π/2) is the effective length of the dipole when its axis is parallel to the
incident electric field and perpendicular to the direction of propagation. Note that when
the axis of the receiving dipole is tangent to the surface of the great sphere parallel to
E inc, the positive direction of the spherical coordinate � is opposite to the positive
direction z along the antenna.

The far-zone electric field maintained by the N -element Yagi array driven by a
generator at the center of element No. 2 is given by (6.84a). It is

E�(R2,�,�) = jζ0 Iz2(0)

2π

e− jβ0 R2

R2
fIN(�,�), (6.109)

where R2 is measured from the center of element No. 2 and the field factor of the
array, fIN(�,�), is given by (6.84b). If the driving-point impedance of the array at
the terminals of element No. 2 is Z02 and the internal impedance of the generator is
Zg , it follows that

Iz2(0) =
V e

0

Z02 + Zg
. (6.110)

With (6.109) and (6.110), (6.108) becomes

ID(�,�) = −
2he

(π
2

)
Z0 + ZL

· jζ0V e
0

Z02 + Zg

e− jβ0 R2

2πR2
fIN(�,�). (6.111)

Now let the generator with its EMF V e
0 and internal impedance Zg be interchanged

with the load ZL so that the dipole is the transmitter, the array the receiver. The dipole
is again moved over the surface of the same great sphere; the array remains fixed at
the origin of coordinates. The current IA(�,�) in the load ZL in the array varies as
the location of the transmitter is changed.

The reciprocal theorem states that if the same voltage V e
0 is applied successively to

both antennas and provided Zg = ZL , then

ID(�,�) = IA(�,�) (6.112)

for all values of � and �. It follows by a rearrangement of (6.111) and with (6.112)
that the current in the load ZL of the Yagi array when used for reception is given by

IA(�,�) = − 2 fIN(�,�)

β0(Z02 + ZL)
· jζ0V e

0

Z0 + Zg

e− jβ0 R2

2πR2
β0he

(π
2

)
(6.113)
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provided ZL = Zg . Since it has been proved5 in general that

β0he

(π
2

)
= f I

(π
2
, β0h

)
, (6.114)

where f I (π/2, β0h) is the field factor of the dipole given in (2.54b) and evaluated at
� = π/2, it follows that (6.113) can be expressed as follows:

IA(�,�) = −2heN (�,�)Er
�

Z02 + ZL
, (6.115)

where

Er
� = jζ0 Iz(0)

2π

e− jβ0 R2

R2
f I

(π
2
, β0h

)
(6.116)

is the field maintained by the dipole at the center of element No. 2 of the array and
where

2heN (�,�) = 2 fIN(�,�)/β0 (6.117)

is by definition the effective length of the Yagi array. It follows that the directional
properties of the Yagi (or any other array) are the same for reception as for transmis-
sion.

The preceding discussion has been concerned with reciprocity with constant applied
voltage. If reciprocity is to be preserved with constant power somewhat different
conditions must be fulfilled. This problem is considered elsewhere.6

6.11 Driven arrays of elements that differ greatly in length

The procedure outlined in Section 6.2 for approximating the integrals in the simulta-
neous integral equations (6.8) for the currents in a parasitic array of unequal elements
is quite adequate when the elements do not differ greatly in length. In the Yagi–Uda
array the lengths 2hi of the individual elements i = 1, . . . N always lie in a range
that extends from slightly greater than λ/2 to approximately λ/3. Unfortunately, when
elements have lengths that encompass the full range permitted by the present theory,
namely, 0 ≤ β0hi ≤ 5π/4, the representations (6.20)–(6.22) for the several integrals
are not adequate under certain conditions. In particular the two-term approximations
on the right in (6.20)–(6.22) do not adequately represent the integrals Wki (zk) on the
left whenever element k is quite long (β0hk ∼ π) but element i is short (β0hi �
π/4). Extensive computations and measurements by W.-M. Cheong [6] have shown
that the two-term approximations in (6.20)–(6.22) with the two-point fitting used in

5 [4], pp. 568–570. 6 [4], p. 694.



209 6.11 Elements of greatly different length

(6.53)–(6.60) are especially unsatisfactory for points on the longer element in the range
|z| > h/2.

A better representation of all of the integrals (6.15)–(6.17) and (6.20)–(6.22) is
obtained when full advantage is taken of the three-term distribution of current given in
(6.6) to approximate the integrals. Specifically, let

WkiV (zk) ≡
∫ hi

−hi

M0z′i Kkid(zk, z′i ) dz′i

.= �m
kidV M0zk +�

f
kidV F0zk +�h

kidV H0zk (6.118)

WkiU (zk) ≡
∫ hi

−hi

F0z′i Kkid(zk, z′i ) dz′i

.= �m
kidU M0zk +�

f
kidU F0zk +�h

kidU H0zk (6.119)

Wki D(zk) ≡
∫ hi

−hi

H0z′i Kkid(zk, z′i ) dz′i

.= �m
kid D M0zk +�

f
kid D F0zk +�h

kid D H0zk . (6.120)

The inclusion of the distribution M0z in the approximate representation of the integrals
WkiU (zk) and Wki D(zk) is a new departure. In all previous discussions it has been
pointed out that the part of the integral that depends on the real part of the kernel
is approximately proportional to the distribution in the integrand when the distance
β0bki < 1 (which usually occurs only when i = k and bkk = a) and that otherwise
the entire integral is proportional to combinations of F0z = cosβ0z − cosβ0h and
H0z = cos(β0z/2)−cos(β0h/2). This means that the distribution M0z = sinβ0(h−|z|)
can appear on the right only when M0z′ appears in the integrand. These statements are
still correct. However, the investigations of Cheong [6] have shown that the current
induced in the relatively long antenna (h ∼ λ/2) by a very short one (h < λ/4)
is not well represented by combinations of F0z and H0z alone. These distributions
are excellent when the amplitude and phase of the inducing field are approximately
constant along the entire length of an antenna. Clearly, this is not at all true of the
field maintained, for example, along a full-wave antenna by the current in an adjacent
quite short element. By including the term in M0z , Cheong has obtained an improved
overall representation of the amplitudes of the currents, especially at points at some
distance from the centers of the longer elements. On the other hand, since M0z has a
discontinuous slope at z = 0 (except when β0h = (2n + 1)π/2), which the actual
induced current cannot have, the slope of an approximate representation that makes
use of M0z is necessarily somewhat in error near z = 0 even though the amplitude is
quite well described. The slope of the current is, of course, proportional to the charge
per unit length. Fortunately, an incorrect slope with a discontinuity at z = 0 does
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not significantly affect the admittance or the far field. These are determined by the
magnitude and phase of the current alone.

Since combinations of F0z and H0z are excellent approximations of the two integrals
in (6.119) and (6.120) except in the special situations just described, it is to be
anticipated that the coefficients �m

kidU and �m
kid D will be small except under those

conditions. In any event, the three-term representation of the current for all elements
including the M0z terms in (6.119) and (6.120), can only serve to improve the
representation of the amplitudes of the currents at the expense of a small error in their
slopes near z = 0.

In order to determine the complex parameters � in (6.118)–(6.120), the approxi-
mate expressions on the right are made exactly equal to the integrals at the three points
zk = 0, zk = hk/3 and zk = 2hk/3 instead of only at the two points zk = 0 and
zk = hk/2 used in Section 6.4. That is, three equations are obtained from each of the
relations (6.118)–(6.120) in the form:

WkiV (0) =
∫ hi

−hi

M0z′i Kkid(0, z′i ) dz′i

= �m
kidV sinβ0hk +�

f
kidV (1 − cosβ0hk)+�h

kidV [1 − cos(β0hk/2)]

(6.121)

WkiV (hk/3) =
∫ hi

−hi

M0z′i Kkid(hk/3, z′i ) dz′i

= �m
kidV sin(2β0hk/3)+�

f
kidV [cos(β0hk/3)− cosβ0hk]

+�h
kidV [cos(β0hk/6)− cos(β0hk/2)] (6.122)

WkiV (2hk/3) =
∫ hi

−hi

M0z′i Kkid(2hk/3, z′i ) dz′i

= �m
kidV sin(β0hk/3)+�

f
kidV [cos(2β0hk/3)− cosβ0hk]

+�h
kidV [cos(β0hk/3)− cos(β0hk/2)]. (6.123)

Each integral when evaluated is a complex number. There are, then, three simultaneous
complex algebraic equations to evaluate the three complex parameters �m

kidV , � f
kidV ,

and �h
kidV for each pair of values i and k. A similar second set of three equations is

obtained with the different complex numbers WkiU (0), WkiU (hk/3) and WkiU (2hk/3)
on the left. These are obtained from the same integrals when M0z′i is replaced by F0z′i .
The simultaneous solution of these three equations for each pair of values i and k yields
the complex parameters �m

kidU , � f
kidU and �h

kidU . A third set of three equations is
obtained with the quantities Wki D(0), Wki D(hk/3) and Wki D(2hk/3) appearing on the
left in (6.121)–(6.123). These quantities are defined by the integrals in (6.121)–(6.123)
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with M0z′i replaced by H0z′i . For each pair of values of i and k this third set of three
equations yields �m

kid D , � f
kid D and �h

kid D . In this manner all values of the parameters
�kid are determined. They have the following forms for each of the subscripts V , U
and D on the �’s and W ’s:

�m
ki = �−1

∣∣∣∣∣∣
Wki (0) 1 − cosβ0hk 1 − cos(β0hk/2)

Wki (hk/3) cos(β0hk/3)− cosβ0hk cos(β0hk/6)− cos(β0hk/2)

Wki (2hk/3) cos(2β0hk/3)− cosβ0hk cos(β0hk/3)− cos(β0hk/2)

∣∣∣∣∣∣
(6.124)

�
f

ki = �−1

∣∣∣∣∣∣
sinβ0hk Wki (0) 1 − cos(β0hk/2)

sin(2β0hk/3) Wki (hk/3) cos(β0hk/6)− cos(β0hk/2)

sin(β0hk/3) Wki (2hk/3) cos(β0hk/3)− cos(β0hk/2)

∣∣∣∣∣∣ (6.125)

�h
ki = �−1

∣∣∣∣∣∣
sinβ0hk 1 − cosβ0hk Wki (0)

sin(2β0hk/3) cos(β0hk/3)− cosβ0hk Wki (hk/3)

sin(β0hk/3) cos(2β0hk/3)− cosβ0hk Wki (2hk/3)

∣∣∣∣∣∣ , (6.126)

where

� =
∣∣∣∣∣∣
sinβ0hk 1 − cosβ0hk 1 − cos(β0hk/2)

sin(2β0hk/3) cos(β0hk/3)− cosβ0hk cos(β0hk/6)− cos(β0hk/2)

sin(β0hk/3) cos(2β0hk/3)− cosβ0hk cos(β0hk/3)− cos(β0hk/2)

∣∣∣∣∣∣ .
(6.127)

The N simultaneous integral equations for the currents in the elements are

N∑
i=1

{
Ai

∫ hi

−hi

M0z′i Kkid(zk, z′i ) dz′i + Bi

∫ hi

−hi

F0z′i Kkid(zk, z′i ) dz′i

+ Di

∫ hi

−hi

H0z′i Kkid(zk, z′i ) dz′i

}

= j4π

ζ0 cosβ0hk
[ 1

2 V0k M0zk + Uk F0zk]; k = 1, 2, . . . N , (6.128)

where

Uk = − jζ0

4π

N∑
i=1

∫ hk

−hk

Izi (z
′
i )Kki (hk, z′i ) dz′i

= − jζ0

4π

N∑
i=1

[Ai�kiV (hk)+ Bi�kiU (hk)+ Di�ki D(hk)] (6.129)
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with �kiV (hk), �kiU (hk) and �ki D(hk) defined in (6.32)–(6.34). If the integrals in
(6.128) are replaced by their approximate algebraic equivalents, the following set of
algebraic equations for the coefficients Ai , Bi and Di is obtained:

N∑
i=1

{Ai [�
m
kidV M0zk +�

f
kidV F0zk +�h

kidV H0zk]

+ Bi [�
m
kidU M0zk +�

f
kidU F0zk +�h

kidU H0zk]

+ Di [�
m
kid D M0zk +�

f
kid D F0zk +�h

kid D H0zk]}

= j4π

ζ0 cosβ0hk
[ 1

2 V0k M0zk + Uk F0zk]. (6.130)

Finally, if (6.129) is substituted for Uk , the set of equations may be arranged as follows:

M0zk

N∑
i=1

[
(Ai�

m
kidV + Bi�

m
kidU + Di�

m
kid D) cosβ0hk − j2π

ζ0
V0k

]

+ F0zk

N∑
i=1

[(Ai�
f

kidV + Bi�
f

kidU + Di�
f

kid D) cosβ0hk

− Ai�ki V (hk)− Bi�kiU (hk)− Di�ki D(hk)]

+ H0zk

N∑
i=1

[Ai�
h
kidV + Bi�

h
kidU + Di�

h
kid D] cosβ0hk = 0 (6.131)

with k = 1, 2, . . . N . These equations are satisfied if the coefficient of each of the
three distribution functions is allowed to vanish. The result is a set of 3N simultaneous
equations for the 3N unknown coefficients A, B and D. They are:

N∑
i=1

[Ai�
m
kidV + Bi�

m
kidU + Di�

m
kid D] = j2π

ζ0

V0k

cosβ0hk
(6.132)

N∑
i=1

[Ai�kiV + Bi�kiU + Di�ki D] = 0 (6.133)

N∑
i=1

[Ai�
h
kidV + Bi�

h
kidU + Di�

h
kid D] = 0 (6.134)

with k = 1, 2, . . . N . In (6.133) the following notation has been introduced:

�kiV ≡ �kiV (hk)−�
f

kidV cosβ0hk (6.135)
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�kiU ≡ �kiU (hk)−�
f

kidU cosβ0hk (6.136)

�ki D ≡ �ki D(hk)−�
f

kid D cosβ0hk . (6.137)

These equations can be expressed in matrix notation. Let

[�] =




�11 �12 . . . �1N
...

�N1 . . . �N N


 , (6.138)

where the matrix elements �ki are defined in (6.135)–(6.137) for each subscript V , U
and D. Also let

[�h] =




�h
11 �h

12 . . . �h
1N

...

�h
N1 . . . �h

N N


 , [�m] =




�m
11 �m

12 . . . �m
1N

...

�m
N1 . . . �m

N N


 ,

(6.139)

where the �h
ki are obtained from (6.126). The following column matrices are needed:

{A} =




A1

A2
...

AN



, {B} =




B1

B2
...

BN



, {D} =




D1

D2
...

DN




(6.140)

{
j2π

ζ0

V0

cosβ0h

}
= j2π

ζ0




V01/ cosβ0h1

V02/ cosβ0h2
...

V0N/ cosβ0hN



. (6.141)

With this notation, the equivalent matrix equations for determining the coefficients Ai ,
Bi and Di are

[�m
dV ]{A} + [�m

dU ]{B} + [�m
d D]{D} =

{
j2π

ζ0

V0

cosβ0h

}
(6.142a)

[�V ]{A} + [�U ]{B} + [�D]{D} = 0 (6.142b)

[�h
dV ]{A} + [�h

dU ]{B} + [�h
d D]{D} = 0. (6.142c)

These equations correspond to (6.29) with (6.46) and (6.47) in the simpler case of the
Yagi array with two-term fitting of the integrals.



214 Arrays with unequal elements

The solutions of (6.132)–(6.134) or (6.142a, b, c) express each of the coefficients
Ai , Bi and Di as a sum of terms in the N voltages V0k , k = 1, 2, . . . N . That is

Ai = j
2π

ζ0

N∑
k=1

V0k

cosβ0hk
αik (6.143)

Bi = j
2π

ζ0

N∑
k=1

V0k

cosβ0hk
βik (6.144)

Di = j
2π

ζ0

N∑
k=1

V0k

cosβ0hk
γik, (6.145)

where the αik , βik and γik are the appropriate cofactors divided by the determinant of
the system.

It follows that with the coefficients Ai , Bi and Di evaluated, the currents in all
elements are available in the form:

Izi (z) = j
2π

ζ0

N∑
k=1

V0k

cosβ0hk
{αik sinβ0(hk − |z|)+ βik(cosβ0z − cosβ0hk)

+ γik[cos(β0z/2)− cos(β0hk/2)]} (6.146)

Izi (0) = j
2π

ζ0

N∑
k=1

V0k

cosβ0hk
{αik sinβ0hk + βik(1 − cosβ0hk)

+ γik[1 − cos(β0hk/2)]}

=
N∑

k=1

V0kYik . (6.147)

In these relations i = 1, 2, . . . N , and

Yik = j
2π

ζ0 cosβ0hk
{αik sinβ0hk + βik(1 − cosβ0hk)+ γik[1 − cos(β0hk/2)]}.

(6.148)

The quantities Yik , with k = i , are the self-admittances of the N elements in the array;
the Yik , with k �= i , are the mutual admittances. They are readily determined from
(6.148). Note that in general the self-admittance of an element when coupled to other
antennas is not the same as the self-admittance of the same element when isolated.

In matrix form, the equations for the N driving-point currents are

{Iz(0)} = [YA]{V0}, (6.149)
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where

{Iz(0)} =




Iz1(0)
Iz2(0)

...

IzN (0)



, {V0} =




V01

V02
...

V0N




(6.150)

and

[YA] =




Y11 Y12 . . . Y1N
...

YN1 . . . YN N


 . (6.151)

The solution for the currents in the N elements of the array is thus completed
in terms of arbitrary voltages. When these are specified, the complete distributions
of current are given in the form (6.146). The driving-point admittances Y0i and
impedances Z0i are given by

Y0i = Izi (0)

V0i
= 1

Z0i
. (6.152)

6.12 The log-periodic dipole array

An interesting and important example of a curtain of driven elements that all have
different lengths and radii and that are unequally spaced is the so-called log-periodic
dipole array illustrated in Fig. 6.29. In spite of the fact that in this array all elements are
connected directly to an active transmission line, its operation when suitably designed
is closely related to that of the Yagi–Uda antenna in which only one element is driven
and all others are parasitic. However, unlike the Yagi antenna, the log-periodic array
has important broad-band properties. These are best introduced in terms of an array
of an infinite number of center-driven dipoles arranged as shown in Fig. 6.29. Let the
half-length of a typical element i be hi , let its radius be ai . The distance between
element i and the next adjacent element to the right is bi,i+1 where i = 1, 2, 3, . . . .
The array is constructed so that the following parameters

hi

hi+1
= τ,

hi+1

bi,i+1
= σ, 2 ln

2hi

ai
= � (6.153)

are treated as constants independent of i . As throughout this book, it is assumed that
hi � ai .

If the dipoles individually approximate perfect conductors, the electrical properties
of the array (such as the driving-point admittances of the elements and the field pattern
of the array) at an angular frequency ω0 depend only on the electrical dimensions
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2ai

2h
i

Vi

bi, i + 1
Element i

Element (i + 1)

Figure 6.29 Seven elements of an infinite log-periodic array.

β0hi , β0bi,i+1, and β0ai where β0 = ω0/c = 2π/λ0 and c is the velocity of light.
If the angular frequency is changed to ωn = τ nω0, where n is a positive or negative
integer, the original electrical properties are determined by τ−nβnhi , τ−nβnbi,i+1 and
τ−nβnai where βn = ωn/c. However, there are along the array antennas with half-
lengths hi+n = τ−nhi for which (hi+n+1/bi+n,i+n+1) = σ and 2 ln(2hi+n/ai+n) =
�. Since β0hi = τ−nβnhi = βnhi+n , it follows that all properties of the array at the
angular frequency ω0 referred to element i are repeated at the angular frequency ωn but
referred to the element i+n. This periodicity of the properties with respect to frequency
is linear with respect to the logarithm of the frequency. That is, since logωn = logω0+
n log τ , it is clear that any property shown graphically on a logarithmic frequency scale
is periodic with period log τ . Accordingly, arrays with this construction are known
as log-periodic dipole arrays [7–10]. Such arrays are generally driven from a two-
wire line in the manner illustrated in Figs. 6.30a, b. The arrangement with reversed
connections in Fig. 6.30b is the one required for endfire operation.

Actual arrays are, of course, never infinite so that the ideal frequency-independent
properties of the infinite array are modified by asymmetries near the ends. These may
be modified by the use of a terminating impedance ZT as shown in Fig. 6.30 which
provides an additional parameter. The value ZT = Zc, where Zc is the characteristic
impedance of the line, is an obvious choice.

6.13 Analysis of the log-periodic dipole array

The theory developed in Section 6.11 for arrays of antennas with unequal lengths,
spacings and radii can be applied directly to the log-periodic dipole array. It is
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(a)

(b)

h1 h2 h3 h4 h5
ZT

b12 b23 b34 b45 b56/2

ZT

Figure 6.30 Log-periodic array driven from a two-wire line with (a) direct connections,
(b) reversed connections.

only necessary to specify the driving-point voltages to the elements in order to
obtain a complete solution for the distributions of current along the elements and
their individual input admittances. The driving-point admittance of the array and the
complete field pattern are then readily obtained over any frequency range for which the
condition β0hi ≤ 5π/4 is satisfied for all elements. Such quantities as the beam width,
the directivity, front-to-back ratio and side-lobe level can, of course, be obtained from
the field pattern.

Consider specifically the array shown in Fig. 6.30b. The driving voltage is applied
to a transmission-line that is connected successively to all of the elements beginning
with the shortest. Between each adjacent pair of elements the connections are reversed
by crossing the conductors of the transmission line in order to achieve the desired
phase relations. The analysis of this circuit is conveniently carried out following the
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(b)
+ –V1 + –V2 + –V3 + –VN

INI1 I2 I3

YT

(c)

+ –V1
+ –V2

+ –V3
+ –VN

It1 It2 It3 ItN

(a)

+ –V1
+ –V2

+ –V3
+ –VN

IZ1(0) IZ2(0) IZ3(0) IZN(0)

Figure 6.31 Schematic diagram of (a) the antenna circuit, (b) the transmission-line circuit, and
(c) the antenna and transmission-line circuits connected in parallel.

method introduced by Carrel [9]. The procedure is simply to determine first the matrix
equation for the antenna circuit shown in Fig. 6.31a, then the matrix equation for the
transmission-line circuit shown in Fig. 6.31b, and finally the matrix equation for the
two circuits in parallel. Note that in Fig. 6.31, a generator is connected across each of
the N terminals.

The matrix equation for the antenna circuit in Fig. 6.31a has already been given
in (6.149). The elements of the admittance matrix [YA] are the self- and mutual
admittances of the antenna array.

The matrix equation for the transmission-line circuit in Fig. 6.31b is readily derived.
Consider a typical section of the line between the terminal pairs i and i + 1 which
are separated by a length of line bi,i+1 as shown in Fig. 6.32. The relations between
the current and voltage at terminals i and those at terminals i + 1 are readily
obtained.7 For temporary convenience let di = bi,i+1; also let φ be any constant

7 [11], p. 83, equations (6) and (7).
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Ii′ Ii′′ Ii + 1′ ′′Ii + 1

Ii Ii + 1

Vi Vi + 1

bi, i + 1

+

–

+

–

Figure 6.32 Section of transmission line between the terminal pairs i and i + 1 when the voltages
Vi and Vi+1 are maintained.

phase-shift introduced between adjacent elements in addition to the value β0di which
is determined by the length of line between elements i and i + 1.

Vi = Vi+1 cos(β0di + φ)+ j I ′i+1 Rc sin(β0di + φ) (6.154a)

I ′′i Rc = j Vi+1 sin(β0di + φ)+ I ′i+1 Rc cos(β0di + φ), (6.154b)

where Rc is the characteristic resistance of the lossless line.
These equations can be rearranged in the form

I ′′i = − jGc[Vi cot(β0di + φ)− Vi+1 csc(β0di + φ)] (6.155a)

I ′i+1 = − jGc[Vi csc(β0di + φ)− Vi+1 cot(β0di + φ)], (6.155b)

where Gc = R−1
c is the characteristic conductance of the lossless line. It follows that

I ′′i+1 = − jGc[Vi+1 cot(β0di+1 + φ)− Vi+2 csc(β0di+1 + φ)] (6.156a)

I ′i+2 = − jGc[Vi+1 csc(β0di+1 + φ)− Vi+2 cot(β0di+1 + φ)]. (6.156b)

The total current in the generator at the terminals i + 1 is

Ii+1 = I ′′i+1 − I ′i+1 = jGc{Vi csc(β0di + φ)− Vi+1[cot(β0di + φ)

+ cot(β0di+1 + φ)] + Vi+2 csc(β0di+1 + φ)}. (6.157)

In particular, when φ = π as in Fig. 6.31b,

Ii+1 = − jGc{Vi cscβ0bi,i+1

+ Vi+1(cotβ0bi,i+1 + cotβ0bi+1,i+2)+ Vi+2 cscβ0bi+1,i+2}. (6.158)

Also

I1 = I ′′1 = − jGc[V1 cotβ0b12 + V2 cscβ0b12] (6.159)
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and

IN = − jGc[VN−1 cscβ0bN−1,N + VN (cotβ0bN−1,N + j yN )] (6.160a)

since

I ′′N = VN YN = VN yN Gc, (6.160b)

where

yN = YN/Gc =
[

YT + jGc tanβ0bT

Gc + jYT tanβ0bT

]
(6.161)

is the normalized admittance in parallel with element N . YT = 1/ZT is the admittance
terminating the final section of line of length bT = bN ,N+1/2.

With (6.158), (6.159) and (6.160), the matrix equation for the transmission line has
the form

{I } = [YL ]{V }, (6.162)

where

{I } =




I1

I2
...

IN



, {V } =




V1

V2
...

VN




(6.163)

and

[YL ] = − jGc

×




cotβ0b12 cscβ0b12 0 0 . . .

cscβ0b12 (cotβ0b12 + cotβ0b23) cscβ0b23 0 . . .

0 cscβ0b23 (cotβ0b23 + cotβ0b34) cscβ0b34 . . .
...

...
...

...

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0

0 0 0

0 0 0
...

...
...

cscβ0bN−2,N−1 (cotβ0bN−2,N−1 + cotβ0bN−1,N ) cscβ0bN−1,N

0 cscβ0bN−1,N (cotβ0bN−1,N + j yN )



.

(6.164)
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The final step in the analysis of the array in Fig. 6.30b is to connect the transmission-
line circuit in Fig. 6.31b in parallel with the antenna circuit in Fig. 6.31a as shown
schematically in Fig. 6.31c. The same driving voltages are maintained across the
N input terminals. Let the total currents in the generators be represented by Iti =
Izi (0) + Ii where Izi (0) is the current entering antenna i and Ii is the current into the
transmission line at terminals i . The matrix equation for the total current is

{It } = ([YA] + [YL ]){V0} = [Y ]{V0}. (6.165)

This gives the N currents supplied by N generators connected across the N sets of
terminals in Fig. 6.31c. In the actual circuit in Fig. 6.30b, there is only one generator,
V01, and all of the total currents Iti are zero except It1. Hence, in (6.165)

{It } =




It1

0
0
...

0



, {V0} =




V01
...

V0N


 (6.166)

[Y ] = [YA] + [YL ]. (6.167)

The voltages V0i driving the N elements are, therefore, given by

{V0} = [Y ]−1{It } (6.168)

in terms of the total current It1. The driving-point admittances of the N elements can
be determined as follows. The substitution of

{V0} = [YA]−1{Iz(0)} (6.169)

in (6.165) yields

{It } = [U + [YL ][YA]−1]{Iz(0)}, (6.170)

where U is the unit matrix. Note that [Z A] = [YA]−1 is the impedance matrix of the
array. The equation (6.170) can be solved for the driving-point currents of the several
elements in terms of the driving-point current in element 1. Thus,

{Iz(0)} = [U + [YL ][YA]−1]−1{It }. (6.171)

These currents with a common phase and amplitude reference value are convenient for
calculating the field pattern and for comparing relative amplitudes. The admittances of
the N elements are

Y0i = G0i + j B0i = Izi (0)/V0i , i = 1, 2, . . . N , (6.172)

where V0i and Izi (0) are given, respectively, by (6.168) and (6.171). The driving-point
admittance of the array at the terminals i = 1 of the first element is

Y1 = G1 + j B1
.= It1/V01. (6.173)
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6.14 Characteristics of a typical log-periodic dipole array8

A complete determination of the properties of the log-periodic dipole array involves
a systematic study in which the several parameters that characterize its operation are
varied progressively over adequately wide ranges. These include the degree of taper of
the array (τ = hi/hi+1), the relative spacing of the elements (σ = hi+1/bi,i+1), the
relative thickness of the elements (� = 2 ln(2hi/ai )), the total number of elements
N , the normalized admittance (yT = YT Rc) terminating the transmission line beyond
the N th element, and the phase shift φ introduced between successive elements in
addition to that specified by the electrical distance β0bi,i+1 between adjacent elements.
Such an investigation could also make use of optimization procedures for the forward
gain, front-to-back ratio, band width, and other properties of practical interest in a
manner similar to that used earlier in this chapter for the Yagi–Uda array. Use of the
formulation of Sections 6.11–6.13, which takes full account of the coupling among
all elements in determining the different distributions of current and the individual
driving-point admittances, should lead to results of considerable quantitative accuracy
to supplement those of earlier, more approximate investigations [7–10]. A complete
analysis of a typical log-periodic dipole array has been made by Cheong [6] with a
high-speed computer. The parameters for this array are τ = 0.93, σ = 0.70, � = 11.4,
N = 12, YT Rc = 1, and φ = π . The results obtained serve admirably to illustrate both
the detailed operation of the log-periodic dipole array and the power of the theory.

Consider first the operation of the array at a frequency9 such that an element k
near its center is a half wavelength long. At this frequency the admittances of the 12
elements when individually isolated lie on a curve in the complex admittance plane
that is very nearly an arc of a circle that extends on both sides of the axis B0 = 0
as shown in Fig. 6.33. Note that element 7 is nearest to resonance with only a small
negative susceptance. The actual admittances Y0i = G0i + j B0i of the same elements
when driven as parts of the log-periodic array lie on a curve that departs significantly
from the circle for the isolated admittances.10 It is roughly circular for the group of
elements from No. 3 to No. 9, but the circle has a much greater radius than that for the
isolated elements. Indeed, it is so great that the conductances of a number of elements
(Nos. 2 and 3) are negative. This large difference in the driving-point admittances is
due to coupling; it indicates a strong interaction between the currents in this group of
elements. Note that element 7 is still very nearly resonant. Since the admittance curve
near its ends bends inward and comes quite close to the circle for the isolated elements,
it must be concluded that the elements near the ends of the array behave much as if

8 This section is based on Chapter 9 of [6]. Parts of Sections 6.14–6.16 were first published in Radio Science
[12].

9 Designated as f14 in a notation described in Section 6.15.
10 Note that only the plotted points are physically meaningful; the continuous curve serves only to guide the eye.
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Figure 6.33 Admittances of elements in a log-periodic dipole array when individually isolated and
when in an array with τ = 0.93, σ = 0.7, � = 11.4, YT Rc = 1, φ = π (operating frequency f14).
•, Isolated admittances; ×, admittances in array.

they were individually isolated. This is possible only if their currents are relatively
small and contribute little to the properties of the array.

In Fig. 6.34 are shown the magnitudes and relative phase angles11 of the complex
voltages V0i that obtain across the input terminals of the elements in the array. The
amplitudes are fairly constant for the shorter capacitive elements but they decrease
rapidly as soon as the elements are long enough to pass through resonance and become
inductive. The phase of the voltages is seen to shift continuously from element to
element along the line. Corresponding curves for the driving-point currents Izi (0) are
also in Fig. 6.34. Note particularly that elements 4, 5 and 6 all carry larger currents
than element 7 which is nearest resonance. Note also that the phase curve for the
current crosses that for the voltage at resonance. The shorter elements have leading
(capacitive) currents, the longer elements lagging (inductive) currents. The relative

11 Note that only the plotted points are physically meaningful; the continuous curve serves only to guide the eye.
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log-periodic dipole array; τ = 0.93, σ = 0.7, � = 11.4, YT Rc = 1, φ = π . •, Driving-point
voltages, V0i ; ×, driving-point currents, Izi (0).



225 6.14 Typical log-periodic array

–0.1

0

0.1

0.2

0.3

0.4
R

el
at

iv
e 

po
w

er

1 2 3 4 5 6 7 8 9 10 11 12

Element numbers

Figure 6.35 Relative power in the 12 elements and the termination. (Operating frequency f14.)

powers12 P0i in each element and in the termination are given in Fig. 6.35. Note
that in the elements 2 and 3, which have a negative input conductance, the power is
negative. This means that power is transferred from the other elements to Nos. 2 and 3
by radiation coupling and then from these back to the feeder. The small rise in voltage
shown in Fig. 6.34 at elements 3 and 4 may be ascribed to elements 2 and 3 acting as
generators and not as loads. It is significant that the maximum power per element is
not in the resonant element 7 but in the shorter elements 5 and 6 which also have larger
currents. This is a consequence of the very much smaller voltage maintained across the
terminals of element 7 as compared with the voltages across the terminals of elements
5 and 6.

The roles played by the several elements in the array may be seen most clearly
from their currents. The distributions of current Izi (z) along all 12 elements are shown
in Fig. 6.36a referred to the driving voltage V01 at the input terminals of the array.
Note these distributions differ greatly from element to element – they are not simple
sinusoids. The quantity Izi (z)/V01 is represented in its real and imaginary parts; it
provides the relative currents that together maintain the electromagnetic field. It is
seen that (as predicted from the admittance curves in Fig. 6.33) the currents in the

12 Note that only the plotted points are physically significant. The continuous curve serves merely to guide the
eye.
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outer elements 1, 2, 9, 10, 11, 12 are extremely small so that their contributions are
negligible. Clearly, the distant electromagnetic field is determined essentially by the
currents in elements 3 to 8 and of these elements 4, 5, 6 and 7 predominate. Note in
particular that the currents in the shorter-than-resonant elements 4, 5 and 6 actually
exceed the current in the practically resonant element 7.

The current distributions are also shown in Fig. 6.36b but each current is now
referred to its own driving voltage. Thus, the quantities represented are Izi (z)/V0i =
[I ′′zi (z) + j I ′zi (z)]/V0i where I ′′zi (z) is the component in phase with V0i , I ′zi (z) the
component in phase quadrature. Note that Izi (0)/V0i = Y0i so that I ′′zi (0)/V0i = G0i

and I ′zi (0)/V0i = B0i . The power in antenna i is P0i = |V0i |2G0i , but since the value
of V0i differs greatly from element to element as seen in Fig. 6.34, the relative powers
in the several elements are not proportional simply to the real parts of the currents
I ′′zi (0) in the terminals. However, the distributions in Fig. 6.36b are instructive since
they show the negative real parts for elements 2 and 3 that transfer power to the feeding
line. They also show that the imaginary parts of the currents in elements 1 to 6 are
capacitive, those in elements 7 to 12 inductive. This means that each of the elements
1 to 6 acts as a director for the elements to its right, whereas each of the elements 7 to
12 acts as a reflector for all elements to its left. Actually, the capacitive components of
current in elements 3, 4 and 5 exceed the conductive components so that relatively little
power is supplied to them from the line, and they behave substantially like parasitic
directors. The inductive component of current predominates in elements 8 to 12 and
these act in major part like parasitic reflectors. However, since the amplitudes of the
currents in elements 9 to 12 are quite small, it is clear that the principal reflector action
comes from element 8. In summary, Figs. 6.36a, b indicate that of the 12 elements
numbers 1, 2, 9, 10, 11 and 12 may be ignored since their currents are small; elements
5, 6, 7 are supplied most of the power from the feeder and behave primarily like
driven antennas in an endfire array; elements 3 and 4 act predominantly like parasitic
directors; and element 8 is essentially a parasitic reflector. Thus, the log-periodic
antenna is very much like a somewhat generalized Yagi–Uda array when driven at
a frequency for which the antenna closest to resonance is not too near the ends and the
array is long enough to include relatively inactive elements at each end. A lengthening
of the array by the addition of one or two or even a great many more elements at either
end or at both ends cannot significantly modify the circuit or field properties of the
array at the particular frequency since these are determined by the active group.

The normalized far-field pattern in the equatorial or H -plane (variable � with
� = π/2) is shown in Fig. 6.37. Note the smoothness of the pattern and the very small
minor lobes. As is to be expected this low minor-lobe level is achieved at the expense
of the beam width. A comparison with the field pattern in Fig. 6.28 for a 10-element
Yagi–Uda array shows that the latter has larger minor lobes but a much narrower beam.
However, the Yagi–Uda array does not have the important frequency-independent
properties of the log-periodic dipole array.
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Figure 6.37 Normalized far field of log-periodic array with currents shown in Fig. 6.36a.

6.15 Frequency-independent properties of the log-periodic dipole array

The principle underlying the properties of the log-periodic dipole array when driven at
the terminals of the shortest element as shown in Fig. 6.30b and operated as illustrated
in the preceding section depends upon the following:

1. A small group of about seven dipoles constitutes the active or radiating part of
the array. These may be described approximately as including: (a) three strongly
driven and radiating elements near resonance; (b) three shorter elements each of
which combines the functions of a rather weakly driven antenna and a highly active
parasitic director; and (c) one longer antenna that acts both as a weakly driven
element and a strong parasitic reflector.

2. All other elements in the array and the terminating admittance YT have such small
currents and so little power that they may be ignored both as loads on the feeding
line and as contributing radiators of the far-zone field.

3. The driving-point admittance of the array at the terminals of the shortest element is
approximately equal to the characteristic conductance Gc of the transmission line.

4. The currents in the active elements maintain a unilateral endfire field pattern with
very small minor lobes.

The effect of a change in frequency is to shift the active group toward the terminated
end with longer elements when the frequency is lowered. As long as the frequency
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Table 6.3. Relation between the relative heights
of the elements, h/λ, and the frequencies fi .

i in fi h1/λ h12/λ fi when hi = 1 m

1 0.0962 0.2138 28.86 MHz
2 0.0998 0.2217 29.94
3 0.1035 0.2299 31.05
4 0.1073 0.2384 32.19
5 0.1113 0.2473 33.39
6 0.1154 0.2564 34.62
7 0.1197 0.2659 35.91
8 0.1241 0.2757 37.23
9 0.1287 0.2859 38.61

10 0.1335 0.2966 40.05
11 0.1384 0.3075 41.52
12 0.1435 0.3188 43.05
13 0.1488 0.3306 44.64
14 0.1543 0.3428 46.29
15 0.1600 0.3555 48.00
16 0.1659 0.3686 49.77
17 0.1721 0.3824 51.63
18 0.1785 0.3966 53.55
19 0.1850 0.4110 55.50
20 0.1918 0.4261 57.54
21 0.1989 0.4419 59.67
22 0.2063 0.4583 61.89
23 0.2139 0.4752 64.17
24 0.2218 0.4928 66.54
25 0.2300 0.5110 69.00
26 0.2385 0.5299 71.55
27 0.2473 0.5494 74.19

range is bounded so that neither the shortest nor the longest element in the array is a
part of the active group, there can be no significant change in either the circuit or the
field properties. The array must behave substantially as if infinitely long. On the other
hand, as the frequency is increased or decreased sufficiently to make the element at
either end of the array a member of the active group, all of the properties of the array
must begin to change. This change becomes drastic when the frequency is varied so
much that none of the N elements is near resonance.

The general behavior of the 12-element log-periodic dipole array as a function of
frequency has been investigated by Cheong [6] using a discrete set of frequencies
fi , i = 1, . . . , 27. These are chosen so that the lowest frequency f1 is below the
resonant frequency of the longest element No. 12 and the highest frequency f27 is
above the resonant value for the shortest element No. 1 as shown in Table 6.3. In
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Figure 6.38 Like Fig. 6.33 but for lower frequency with resonance near element 10. (Operating
frequency f7.) •, Isolated admittances; ×, admittances in array.

order to distribute the frequencies according to the log-periodic scheme of lengths and
spacings, the ratio factor

√
0.93 was chosen so that f j+2/ f j = 0.93 where j is an

integer. This provides an intermediate frequency step f j+1/ f j = √
0.93 to achieve a

closer approximation of a continuous spectrum. The properties of the array described
in the preceding section and represented in Figs. 6.33–6.37 are obtained specifically at
the center frequency f14 in this set for which an element (No. 7) near the middle of the
array is most nearly resonant.

Consider first a decrease in frequency from f14 to f7 so that resonance is moved
from approximately element 7 to approximately element 10. The corresponding
driving-point admittances are shown in the complex admittance plane in Fig. 6.38
together with the admittances of the elements when these are individually isolated. The
admittance circle for the isolated antennas and the admittance curve13 for the array
resemble those in Fig. 6.33 but appear to have been moved in a counter-clockwise

13 Note that only the plotted points are physically significant. The continuous curve serves merely to guide the
eye.



231 6.15 Frequency-independent properties

1 2 3 4 5 6 7 8 9 10 11 12
Element number

R
el

at
iv

e 
ph

as
e 

(d
eg

re
es

)

–180

–90

0

90

180
–20

–15

–10

–5

0
R

el
at

iv
e 

am
pl

itu
de

 (
dB

)

f 7f 7f

Figure 6.39 Like Fig. 6.34 but for lower frequency with resonance near element 10. •,
Driving-point voltages, V0i ; ×, driving-point currents, Izi (0).

direction. The admittances of the short elements from 1 to 6 now form a small spiral
around the values for the same elements when isolated. The previous tight little spiral
of admittances for the longer elements in Fig. 6.33 is completely unwound and the
admittance curve for the array no longer comes near to the circle for the admittances
of the isolated elements. It is clear that in Fig. 6.38 elements 6 to 12 instead of 3
to 9 as in Fig. 6.33 form the active group. This is further confirmed in Fig. 6.39
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Figure 6.40 (a) Like Fig. 6.36a but for lower frequency with resonance near element 10. (b) Like
Fig. 6.36b but for lower frequency with resonance near element 10.
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Figure 6.41 Like Fig. 6.38 but for lower frequency with resonance beyond element 12. (Operating
frequency f3.)

which shows the voltages and currents at the driving points of the elements. The
voltage amplitudes are quite constant from elements 1 to 8, then decrease rapidly. The
associated current amplitudes are small for elements 1 to 6, large for elements 7 to 11
and again small for element 12. Evidently, with reference to Fig. 6.39 (and Fig. 6.34),
the group consisting of director-radiators 6, 7 and 8 (instead of 3, 4, 5), radiators 9, 10,
11 (instead of 6, 7, 8) and reflector-radiator 12 (instead of 9) is primarily responsible
for the properties of the array. These conclusions may also be reached from a study
of the current-distribution curves for Izi (z)/V01 in Fig. 6.40a and for Izi (z)/V0i in
Fig. 6.40b. The former show clearly that the amplitudes of the currents in elements 1
through 5 are negligibly small. The latter indicate the following: the capacitive currents
dominate in elements 6, 7 and 8, in element 9 the capacitive and conductive currents are
practically equal, element 10 is nearly resonant with a very small capacitive current,
element 11 has large inductive and conductive components, and in element 12 the
inductive current exceeds the conductive component. It may be concluded, therefore,
that the decrease in frequency which moved resonance from near element 7 to near
element 10 has not significantly changed the properties of the active group and, hence,
of the array.

If the frequency is decreased still further to f3 at which even element No. 12
is too short to be resonant, the admittance curve is that shown in Fig. 6.41. The
counter-clockwise rotation of the curves has been increased beyond that in Fig. 6.38
so that now none of the elements is either inductive or resonant. The small spiral
formed by the admittances of the short elements around the circle of their isolated
values has two complete turns. It is to be expected, therefore, that elements 1 through
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Figure 6.42 Like Fig. 6.33 but for higher frequency with resonance near element 4. (Operating
frequency f19.) •, Isolated admittances; ×, admittances in array.

7 must have negligible currents. The active group in Fig. 6.41 includes dipoles 8 to 12.
However, none of these is resonant and there are no inductive reflectors. Moreover,
since there must be a significant voltage across the terminals of element No. 12,
considerable power must be dissipated in the terminating admittance YT . Under these
conditions the properties of the array must differ significantly from those existing for
the frequencies determining Figs. 6.33 and 6.38. The frequency-independent behavior
requires at least two radiating and reflecting elements longer than the one nearest
resonance.

If the frequency is increased to f19 so that element No. 4 is most nearly resonant, the
admittance curve takes the form shown in Fig. 6.42. As compared with Fig. 6.33, the
curves have been rotated clockwise with respect to the axis B0 = 0. The admittances
of the longer elements Nos. 8 through 12 in the array are all clustered close to one
end of the circular arc formed by the admittances of the isolated elements. On the
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Figure 6.43 Like Fig. 6.35 but for frequencies f3, f7, f19, and f23.

other hand, not even the shortest element No. 1 is near the other end of the circular
arc. Since a detailed study (in conjunction with Figs. 6.33 and 6.36a) of the currents
and power in the elements longer than resonance has shown that at most two elements
longer than the one nearest resonance carry significant currents, it follows that all
elements from No. 12 down through No. 7 play no significant role in the array. On
the other hand, it is clear from Fig. 6.42 that the admittance of element No. 1 does
not produce a curve that bends inward toward the circular arc of isolated admittances,
but rather outward away from the arc. This is a consequence of the fact that the region
of active elements has been moved too close to the end of the array. It is clear from
Fig. 6.36a that the active region includes at least four elements shorter than the one
nearest resonance. For the frequency f19 leading to Fig. 6.42 there are only three such
elements available. This means that the frequency responsible for Fig. 6.42 is already
somewhat higher than acceptable for the frequency-independent properties of the array
and that the currents in element No. 1 must differ from the expected since one of the
required director-radiators is missing.

The useful range for a frequency-independent behavior lies between the frequencies
at which elements 5 and 10 (or, in general, N −2) are resonant. In the scale of discrete
frequencies used for the 12-element array this range is approximately f7 ≤ f ≤ f17.
The power in the several elements at the frequencies f3, f7, f14, f19 and f23 is shown
in Figs. 6.35 and 6.43. Note that in these figures only the plotted points are significant.
The connecting curves serve only to guide the eye.

A detailed study of the operation of the 12-element array over the full range of
frequencies from f1 to f27 has been made by Cheong [6]. Important results in addition
to those already discussed are contained in Figs. 6.44–6.46. They may be summarized
as follows:
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Figure 6.44 Relative power in the elements and the termination.

1. As shown in Fig. 6.44, curve T , a large fraction of the total power is dissipated
in the terminating admittance YT = Gc, in the ranges f < f5 and f > f26. As a
consequence only a small fraction of power appears in the dipoles so that little
is radiated. It is also clear from Fig. 6.44 that in the range f5 ≤ f ≤ f26 only a
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Figure 6.45 Input admittance Y1 = G1 + j B1 of the log-periodic array.

small part of the power is dissipated in the terminating admittance, most of it
appears in and is radiated from a relatively small group of active dipoles near
resonance.

2. In the range f5 ≤ f ≤ f17 elements which have half-lengths hi in the range 0.18 ≤
hi/λ ≤ 0.255 form the active group. Resonance occurs with hi/λ

.= 0.216.
Elements which have half-lengths hi less than 0.18λ or greater than 0.255λ play
an insignificant part in the operation of the array. On the other hand, outside this
range of frequencies the shorter and longer elements cannot be ignored.

3. As shown in Fig. 6.45 the driving-point admittance of the array, Y1, is reasonably
constant at a value very near the characteristic conductance Gc of the transmission
line over the range f5 ≤ f ≤ f17. Specifically Y1

.= (23.0 + j0.0)× 10−3 siemens
with Gc = 20 × 10−3 siemens. Outside this range of frequencies Y1 varies widely
in both real and imaginary parts.

4. The band of frequencies f5 ≤ f ≤ f17 is characterized by a very stable main lobe
in the forward direction, i.e. toward the shorter elements and the driving point,
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and very small side and back lobes. This is clear from Fig. 6.37 and Fig. 6.46.
Figure 6.47 shows that the ratio of the forward field to the largest side- or back-lobe
level is roughly constant near 15 and that the 3 dB forward beam width remains
quite stable at about 38◦ in the range f5 ≤ f ≤ f17. Outside this band of frequencies
large side and back lobes appear.

It is important to note that all of the computed data apply to a particular array with a
single set of values of the basic parameters τ , σ , �, YT , Rc and φ. A numerical study
of the effects of changes in these parameters and of optimum designs based on the
three-term theory can readily be made if required. Additional information is given in
Cheong [6], Cheong and King [12], and Carrel [9].
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6.16 Experimental verification of the theory for arrays of unequal dipoles

In order to verify experimentally the predictions of the general theory developed in
Section 6.11 for arrays of dipoles with a wide range of lengths and spacings, a series
of measurements on the 12-element log-periodic dipole array would be appropriate.
However, arrays of this type are driven from two-wire lines in a manner that makes ac-
curate measurements of current distributions, admittances, voltages and field patterns
very difficult – especially over a two-to-one or greater range of frequencies. For this
reason a less elaborate array arranged to permit precision measurements was preferred
by Cheong [6].

As a first step, an extensive experimental study was made of two coupled dipoles
over wide ranges of lengths and spacings in order to verify the adequacy of the three-
term representation of the currents. When this had been established, a complete array
of five elements was constructed after the log-periodic design with the longest element
approximately twice as long as the shortest element. This array consisted of monopoles
over a very large ground screen. Each element was the extension of the inner conductor
of a coaxial line of which the outer conductor pierced the metal ground screen. In order
to provide an equivalent for the reversal of the connections between adjacent pairs of
elements, provision was made to permit the insertion of an arbitrary length of coaxial
line in addition to a length equal to the spacing of the elements. Since the added phase
shift had to be exactly π for each different frequency, it was necessary to readjust
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the length of the sections of coaxial line between the elements for each frequency.
Careful measurements were made of the driving-point admittance, the currents and
voltages in amplitude and phase at the base of each element, and the field pattern over a
range of some 17 different frequencies that included resonance for the longest and the
shortest elements. The agreement between theory and measurement was remarkable
in all details, thus confirming the adequacy of the theory for use not only on the five-
element array but on an array of any type that satisfies the requirements of the theory.
Details and extensive graphs are in the work of Cheong [6] and Cheong and King [13].



7 Planar and three-dimensional arrays

The study of dipole arrays in Chapters 3 through 6 has proceeded from simpler to
more complicated configurations. In Chapters 3 and 4 all elements are physically alike
and arranged to be parallel with their centers uniformly spaced around a circle so that
when driven in suitable phase sequences all elements are geometrically and electrically
identical. Chapter 5 is also concerned with parallel elements that are structurally
alike, but they lie in a curtain with their centers along a straight line of finite length;
consequently the electromagnetic environments of the several elements are not all the
same. In Chapter 6 the requirement that the elements in a curtain array be equal in
length is omitted and consideration is given first to arrays of elements that differ
only moderately in length, then to arrays in which not only the lengths but also the
radii of the elements and the distances between them vary widely. The lifting of each
restriction introduces additional complications in the approximate representation of
the currents on the elements by simple trigonometric functions and in the reduction
of the integrals in the simultaneous integral equations to sums of such functions with
suitably defined complex coefficients.

The final generalization, which is carried out in this chapter, is the omission of the
requirement maintained throughout the book until this point, that all elements be non-
staggered. The removal of this condition leads to the discussion of arrays of parallel
elements that are arranged in a plane as in Fig. 7.1 and in three dimensions as shown
in Fig. 7.2. Note that such arrays include arbitrarily staggered elements and collinear
elements which do not occur in the circular and curtain arrays considered in Chapters
3 through 6. When the centers of the elements are displaced from a common plane,
the halves of many antennas are in different electrical environments so that an even
symmetry with respect to their individual centers no longer obtains for the distributions
of current. An important new complication is thus introduced: components of current
with odd symmetries in addition to those with even symmetries.

7.1 Vector potentials and integral equations for the currents

Four typical elements in an array of N parallel dipoles are shown in Fig. 7.3. All
antennas have their axes parallel to the Z -axis of a system of rectangular coordinates
X , Y , Z . The center of the kth element is at Xk , Yk , Zk ; its radius is ak , its half-length

241
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Figure 7.1 Planar array of nine identical elements.

Figure 7.2 Three-dimensional array of 12 identical elements.

hk , and it is center driven by a delta-function generator with EMF V0k . As before, the
antennas are assumed to be perfectly conducting and electrically thin so that β0ak � 1
for k = 1, 2, . . . , N . A local axial coordinate zk has its origin at the center of element k.

The vector potential on the surface of antenna k no longer has the simple form given
in (2.3), since the even symmetry conditions Izk(−zk) = Izk(zk) for the current and
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Figure 7.3 Typical elements in an array of N parallel antennas.

Azk(−zk) = Azk(zk) for the vector potential no longer apply. However, the vector
potential can be resolved into two parts, one with even symmetry, the other with odd
symmetry. Thus

Azk(zk) = Aeven
zk (zk)+ Aodd

zk (zk), (7.1)

where, in the range −hk ≤ zk ≤ hk ,

Aeven
zk (zk) = − j

c
[Ck1 cosβ0zk + 1

2 V0k sinβ0|zk |] (7.2)
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as in (2.3), and

Aodd
zk (zk) = − j

c
Ck2 sinβ0zk . (7.3)

The vector potential on the surface of antenna k is also given by the sum of integrals,

Azk(zk) =
N∑

i=1

µ0

4π

∫ hi

−hi

Izi (z
′
i )Gki (dki , zk, z′i ) dz′i , (7.4)

where

Gki (dki , zk, z′i ) =
e− jβ0 Rki

Rki
(7.5a)

with

Rki =
√
(dki + z′i − zk)2 + b2

ki . (7.5b)

As shown in Fig. 7.3, dki = |Zk − Zi | is the axial distance between the
transverse planes containing the centers of elements k and i , dkk = 0; bki =√
(Xk − Xi )2 + (Yk − Yi )2, i �= k, is the distance between the center of element k

and the projection of the center of element i onto the plane zk = 0; bkk = ak . The
currents Izi (zi ) in the N elements that generate the vector potential on the surface of
antenna k as given in (7.4) include even and odd parts with respect to the centers of
the respective elements. That is,

Izi (zi ) = I even
zi (zi )+ I odd

zi (zi ), (7.6)

where

I even
zi (zi ) = 1

2 [Izi (zi )+ Izi (−zi )], I odd
zi (zi ) = 1

2 [Izi (zi )− Izi (−zi )].

In order to separate the even and the odd parts of the vector potential in (7.4), the
kernel Gki (dki , zk, z′i ) in (7.4) must be separated into its even and odd parts. Thus,

Gki (dki , zk, z′i ) = Geven
ki (dki , zk, z′i )+ Godd

ki (dki , zk, z′i ), (7.7)

where, as is readily shown,

Geven
ki (dki , zk, z′i ) = 1

2 [Kki (zk − dki , z′i )+ Kki (zk + dki , z′i )] (7.8)

Godd
ki (dki , zk, z′i ) = 1

2 [Kki (zk − dki , z′i )− Kki (zk + dki , z′i )]. (7.9)

The function K occurring in (7.8) and (7.9) is the kernel previously used for non-
staggered arrays, namely,

Kki (zk, z′i ) = Kki R(zk, z′i )+ j Kki I (zk, z′i ) =
e
− jβ0

√
(zk−z′i )2+b2

ki√
(zk − z′i )2 + b2

ki

. (7.10)
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Note that when dki = 0, Geven
ki (0, zk, z′i ) = Kki (zk, z′i ) and Godd

ki (0, zk, z′i ) = 0, as
required for the previously analyzed non-staggered array. By means of the obvious
relation,

Kki (zk, z′i ) = Kki (−zk,−z′i ),

it is readily shown that, when (7.6) and (7.7) are substituted in (7.4), the parts of the
integral that involve the products I evenGeven, I oddGodd are themselves even in z, the
parts that contain I evenGodd, I oddGeven are themselves odd in z. It follows that the even
part of the vector potential is given by

4πµ−1
0 Aeven

zk (zk) =
∫ hk

−hk

I even
zk (z′k)G

even
kk (0, zk, z′k) dz′k

+
N∑′

i=1

∫ hi

−hi

I even
zi (z′i )G

even
ki (dki , zk, z′i ) dz′i

+
N∑′

i=1

∫ hi

−hi

I odd
zi (z′i )G

odd
ki (dki , zk, z′i ) dz′i

= − j4π

ζ0
[Ck1 cosβ0zk + 1

2 V0k sinβ0|zk |], (7.11)

where k = 1, 2, . . . N ; ζ0
.= 120π ohms; and

∑′ is the sum with i = k omitted. The
odd part of the vector potential is contained in

4πµ−1
0 Aodd

zk (zk) =
∫ hk

−hk

I odd
zk (z′k)G

even
kk (0, zk, z′k) dz′k

+
N∑′

i=1

∫ hi

−hi

I even
zi (z′i )G

odd
ki (dki , zk, z′i ) dz′i

+
N∑′

i=1

∫ hi

−hi

I odd
zi (z′i )G

even
ki (dki , zk, z′i ) dz′i

= −( j4π/ζ0)Ck2 sinβ0zk (7.12)

where k = 1, 2, . . . N .
The relations on the right in (7.11) and (7.12) are 2N simultaneous integral

equations for the even and odd parts of the currents in the N elements.

7.2 Vector potential differences and integral equations

In order to determine approximate distributions of current from the two sets of N
simultaneous integral equations in the general manner described in earlier chapters, it
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is convenient to introduce the vector potential differences. This is quite straightforward
for the even part of Azk(zk). Thus, if 4πµ−1

0 Aeven
zk (hk) is subtracted from both sides of

(7.11), the result is

4πµ−1
0 [Aeven

zk (zk)− Aeven
zk (hk)] =

∫ hk

−hk

I even
zk (z′k)G

even
kkd (0, zk, z′k) dz′k

+
N∑′

i=1

∫ hi

−hi

I even
zi (z′i )G

even
kid (dki , zk, z′i ) dz′i

+
N∑′

i=1

∫ hi

−hi

I odd
zi (z′i )G

odd
kid (dki , zk, z′i ) dz′i

= −( j4π/ζ0)[ 1
2 V0k(sinβ0|zk | − sinβ0hk)

+ Ck1(cosβ0zk − cosβ0hk)]

= ( j4π/ζ0 cosβ0hk)[ 1
2 V0k sinβ0(hk − |zk |)

+ Uk(cosβ0zk − cosβ0hk)], (7.13)

where k = 1, 2, . . . N and

Uk = − jζ0

µ0
Aeven

zk (hk), Ck1 = −Uk + 1
2 V0k sinβ0hk

cosβ0hk
(7.14)

as in the corresponding equation with dki = 0 for the curtain array. The difference
kernel (with extra subscript d) is defined by

Geven
kid (dki , zk, z′i ) = Geven

ki (dki , zk, z′i )− Geven
ki (dki , hk, z′i ), (7.15)

and a similar equation for Godd
kid (dki , zk, z′i ).

It is not possible to form an equation like (7.13) with Aodd
zk (zk) since this is an odd

function of zk so that if Aodd
zk (zk) − Aodd

zk (hk) is zero at zk = hk , it is −2Aodd
zk (hk) at

zk = −hk . A convenient alternative1 is to subtract the odd function (zk/hk)Aodd
zk (hk)

which is equal to the vector potential at both zk = hk and zk = −hk . Thus, with (7.12),

4πµ−1
0 [Aodd

zk (zk)− (zk/hk)Aodd
zk (hk)]

=
∫ hk

−hk

I odd
zk (z′k)Geven

kkd (0, zk, z′k) dz′k

+
N∑′

i=1

∫ hi

−hi

I even
zi (z′i )Godd

kid (dki , zk, z′i ) dz′i

1 See [1].
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+
N∑′

i=1

∫ hi

−hi

I odd
zi (z′i )Geven

kid (dki , zk, z′i ) dz′i

= −( j4πCk2/ζ0)[sinβ0zk − (zk/hk) sinβ0hk] (7.16)

where k = 1, 2, . . . N and the difference kernels are given by

Geven
kid (dki , zk, z′i ) = Geven

ki (dki , zk, z′i )− (zk/hk)G
even
ki (dki , hk, z′i ) (7.17a)

Godd
kid (dki , zk, z′i ) = Godd

ki (dki , zk, z′i )− (zk/hk)G
odd
ki (dki , hk, z′i ). (7.17b)

For each superscript, the kernel may be expanded into its real and imaginary parts as
follows:

Gkid(dki , zk, z′i ) = Gkid R(dki , zk, z′i )+ jGkid I (dki , zk, z′i ). (7.18)

The desired alternative set of 2N simultaneous integral equations for the even and odd
parts of the currents in the N elements is contained in (7.13) and (7.16).

7.3 Approximate distribution of current

It has been shown in earlier chapters that the first integral in (7.13) is well approxi-
mated by∫ hk

−hk

I even
zk (z′k)G

even
kkd R(0, zk, z′k) dz′k =

∫ hk

−hk

I even
zk (z′k)Kkkd R(zk, z′k) dz′k

∼ I even
zk (zk) (7.19)

and∫ hk

−hk

I even
zk (z′k)G

even
kkd I (0, zk, z′k) dz′k =

∫ hk

−hk

I even
zk (z′k)Kkkd I (zk, z′k) dz′k

∼ H0zk, (7.20)

where

H0zk = cos(β0zk/2)− cos(β0hk/2) (7.21)

provided β0hk ≤ 5π/4. By the same procedure it is readily shown that the first integral
in (7.16) can be separated into analogous parts for which the following relations are
good approximations:∫ hk

−hk

I odd
zk (z′k)Geven

kkd R(0, zk, z′k) dz′k ∼ I odd
zk (zk) (7.22)

∫ hk

−hk

I odd
zk (z′k)Geven

kkd I (0, zk, z′k) dz′k ∼ E0zk, (7.23)
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where

E0zk = sin(β0zk/2)− (zk/hk) sin(β0hk/2). (7.24)

As a consequence of (7.19) and (7.22) it follows that the trigonometric functions
that occur on the right-hand side of (7.13) and (7.16) must also occur as leading terms
in the approximate expressions for the currents, together with (7.21) and (7.24). That
is, appropriate approximate formulas for the even and odd currents in antenna k are
given below. For the even currents

I even
zk (zk) = Ak M0zk + Bk F0zk + Dk H0zk (7.25a)

or the alternative equivalent form:

I even
zk (zk) = A′

k S0zk + B ′
k F0zk + Dk H0zk, (7.25b)

where Ak , A′
k , Bk , B ′

k and Dk are complex coefficients and

M0zk = sinβ0(hk − |zk |) (7.26)

S0zk = sinβ0|zk | − sinβ0hk (7.27)

F0zk = cosβ0zk − cosβ0hk (7.28)

H0zk = cos(β0zk/2)− cos(β0hk/2). (7.29)

For the odd currents

I odd
zk (zk) = Qk P0zk + Rk E0zk, (7.30)

where Qk and Rk are complex coefficients and

P0zk = sinβ0zk − (zk/hk) sinβ0hk . (7.31)

E0zk is defined in (7.24). The above formulas are for k = 1, 2, . . . N . The approximate
formulas (7.25a, b) and (7.30) are obtained specifically from the first integrals in
(7.13) and (7.16). When there are no staggered elements (dki = 0), it is known
that the induced currents are well represented by a linear combination of F0zk and
H0zk . It may be argued that a similar linear combination must also be an acceptable
representation of the even parts of the currents induced in staggered elements. This
follows from the theoretical and experimental studies, referred to in Chapter 6, of
currents in non-staggered elements that differ greatly in length. If the current induced
on a relatively long element (but with β0hk ≤ 5π/4) by an adjacent very short antenna
is well represented by (7.25a, b), it may be concluded that the same must be true of
the current induced in antenna k by other coupled elements which maintain a vector
potential with an even part that varies less in amplitude and phase along antenna k
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than the vector potential generated by the currents in a very short element. Since no
measurements were available of the currents induced by coupled staggered elements,
a numerical check was made of the degree in which the assumed current distributions
satisfy the integral equation. The results were quite satisfactory.

It may be concluded that the current along any element k in an array of N parallel
antennas is approximately

Izk(zk) = Ak sinβ0(hk − |zk |)+ Bk(cosβ0zk − cosβ0hk)+ Dk[cos(β0zk/2)

− cos(β0hk/2)] + Qk[sinβ0zk − (zk/hk) sinβ0hk]

+ Rk[sin(β0zk/2)− (zk/hk) sin(β0hk/2)]. (7.32)

If more convenient, the first two terms may be replaced by those in (7.25b). The first
three terms for the even part of the current are the same in form as for arrays of parallel,
non-staggered elements. They include the term sinβ0(hk − |zk |) which represents
that part of the current excited directly by the generator voltage V0k . No such term
is possible for the odd part of the current in a center-driven dipole. The remaining
problem is to determine the coefficients in (7.32).

7.4 Evaluation of coefficients

The coefficients in the approximate formula (7.32) for the current in a typical element
k in an array of N arbitrarily located parallel elements may be evaluated in various
ways. The method outlined here is the one selected by V. W. H. Chang in his study
of planar and three-dimensional arrays. He preferred to use the following alternative
form for the current:

Izk(zk) = A′
k(sinβ0|zk | − sinβ0hk)+ B ′

k(cosβ0zk − cosβ0hk)

+ Dk[cos(β0zk/2)− cos(β0hk/2)]

+ Qk[sinβ0zk − (zk/hk) sinβ0hk]

+ Rk[sin(β0zk/2)− (zk/hk) sin(β0hk/2)], (7.33)

where k = 1, 2, . . . N . Instead of substituting the even and odd parts into the integral
equations (7.13) and (7.16) he used the simpler integral equation for the total current
obtained when (7.4) is equated to (7.1) with (7.2) and (7.3). That is,

N∑
i=1

∫ hi

−hi

Izi (z
′
i )

e− jβ0 Rki

Rki
dz′i = −( j4π/ζ0)[Ck1 cosβ0zk + Ck2 sinβ0zk

+ 1
2 V0k sinβ0|zk |]. (7.34)
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The substitution of (7.33) in the integral in (7.34) yields N equations with 7N
unknowns, namely the 5N coefficients in (7.33) and the 2N constants Ck1 and Ck2

with k = 1, 2, . . . N . The required 7N equations can be obtained by satisfying
(7.34) exactly at seven points along each antenna. The points chosen for zk are hk ,
2hk/3, hk/3, 0, −hk/3, −2hk/3, and −hk . These correspond to the values used in the
evaluation of the coefficients for the array of unequal elements in the last sections of
Chapter 6, but since the currents are now not even functions of zk , the negative values
−hk , −2hk/3 and −hk/3 must also be used.

The number of unknowns can be reduced by the elimination of the constants
Ck1 and Ck2. The former is conveniently evaluated at zk = hk where the current
vanishes; the latter can be obtained from the equation at zk = 2hk/3. Thus, with the
notation

Uk1 =
N∑

i=1

∫ hi

−hi

Izi (z
′
i )Gki (dki , hk, z′i ) dz′i (7.35)

Uk2 =
N∑

i=1

∫ hi

−hi

Izi (z
′
i )Gki (dki , 2hk/3, z′i ) dz′i (7.36)

(7.34) evaluated at zk = hk and 2hk/3 yields

( j4π/ζ0)Ck1 = [Uk1 sin(2β0hk/3)− Uk2 sinβ0hk] csc(β0hk/3) (7.37)

( j4π/ζ0)(Ck2 + V0k/2) = [Uk2 cosβ0hk − Uk1 cos(2β0hk/3)] csc(β0hk/3). (7.38)

Note that in the range β0hk ≤ 5π/4, these expressions remain finite.
With (7.37) and (7.38), Ck1 and Ck2 can be eliminated from (7.34) to obtain

N∑
i=1

sin(β0hk/3)
∫ hi

−hi

Izi (z
′
i )Gki (dki , zk, z′i ) dz′i

+
N∑

i=1

sinβ0(
2
3 hk − zk)

∫ hi

−hi

Izi (z
′
i )Gki (dki , hk, z′i ) dz′i

−
N∑

i=1

sinβ0(hk − zk)

∫ hi

−hi

Izi (z
′
i )Gki (dki ,

2
3 hk, z′i ) dz′i

= j4πV0k

ζ0
sin(β0hk/3) sinβ0zk H(−zk), (7.39)

where H(−zk) is the Heaviside function defined by H(−zk) = 0, zk > 0; H(−zk) =
1, zk ≤ 0.
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The next step is to substitute the current (7.33) in the integrals in (7.39). This leads
to quantities of the following form:

ξki j (zk) = sin(β0hk/3)
∫ hi

−hi

J j
zi (z

′
i )Gki (dki , zk, z′i ) dz′i

+ sinβ0(
2
3 hk − zk)

∫ hi

−hi

J j
zi (z

′
i )Gki (dki , hk, z′i ) dz′i

+ sinβ0(hk − zk)

∫ hi

−hi

J j
zi (z

′
i )Gki (dki , 2hk/3, z′i ) dz′i , (7.40)

where k = 1, 2, . . . N , i = 1, 2, . . . N and j = 1, 2, . . . 5. The notation

J 1
zi (z

′
i ) = S0zi = sinβ0|zi | − sinβ0hi (7.41a)

J 2
zi (z

′
i ) = F0zi = cosβ0zi − cosβ0hi (7.41b)

J 3
zi (z

′
i ) = H0zi = cos(β0zi/2)− cos(β0hi/2) (7.41c)

J 4
zi (z

′
i ) = P0zi = sinβ0zi − (zi/hi ) sinβ0hi (7.41d)

J 5
zi (z

′
i ) = E0zi = sin(β0zi/2)− (zi/hi ) sin(β0hi/2) (7.41e)

is used. Note that for any specified value of zk in a fixed array, (7.40) defines a set of
N complex numbers that can be evaluated by high-speed computer. With (7.40) and
(7.41a–e), (7.39) becomes:

N∑
i=1

[A′
iξki1(zk)+ B ′

iξki2(zk)+ Diξki3(zk)+ Qiξki4(zk)+ Riξki5(zk)]

= j (4πV0k/ζ0) sin(β0hk/3) sinβ0zk H(−zk), (7.42)

with k = 1, 2, . . . N . Five sets of N equations can be obtained from (7.42) if zk is
successively made equal to the five values hk/3, 0, −hk/3, −2hk/3 and −hk . These
contain the M = 5N unknown coefficients given by the column matrix

{A} = tr(A1, . . . AN , B1, . . . BN , D1, . . . DN , Q1, . . . QN , R1, . . . RN ) (7.43)

where tr indicates the transpose. Let

[�] =




�11 . . . �1M

...
...

�M1 . . . �M M


, (7.44)

where M = 5N and

�k+(m−1)N ,i+( j−1)N = ξki j (z
m
k ) (7.45)
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with j = 1, 2, . . . 5; m = 1, 2, . . . 5; k = 1, 2, . . . N ; i = 1, 2, . . . N . The notation
z1

k = hk/3, z2
k = 0, z3

k = −hk/3, z4
k = −2hk/3, z5

k = −hk is used. Also let the
following column matrix of 5N terms be defined:

{W } = tr(0 . . . 0, 0 . . . 0, W1 . . . WN , T1 . . . TN , S1 . . . SN ), (7.46)

where

Wk = −( j4πV0k/ζ0) sin2(β0hk/3) (7.47a)

Tk = −( j4πV0k/ζ0) sin(β0hk/3) sin(2β0hk/3) (7.47b)

Sk = −( j4πV0k/ζ0) sin(β0hk/3) sinβ0hk (7.47c)

with k = 1, 2, . . . N .
With this matrix notation the 5N equations for the N coefficients of the currents in

terms of the N driving voltages V0k with k = 1, 2, . . . N are given by the single matrix
equation

[�]{A} = {W }. (7.48)

If (7.48) is solved for the 5N coefficients given by (7.43), the N currents Izk(zk),
k = 1, 2, . . . N given in (7.33) are known in terms of the N voltages V0k . The currents
at the driving points are then given by the matrix equation

{Iz(0)} = [Y ]{V0}, (7.49a)

where

{Iz(0)} =




Iz1(0)
...

IzN (0)


 , {V0} =




V01
...

V0N


 . (7.49b)

The square matrix

[Y ] =




Y11 Y12 . . . Y1N
...

...

YN1 . . . YN N


 (7.49c)

is the admittance matrix. The terms Yii are the self-admittances, the terms Yi j , i �= j
are the mutual admittances.

The N driving voltages can be expressed in terms of the currents at the driving
points in the form

{V0} = [Z ]{Iz(0)}, (7.49d)

where [Z ] = [Y ]−1 is the impedance matrix.
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The driving-point admittance of element k is defined by

Y0k = Izk(0)/V0k . (7.49e)

7.5 The field patterns

The radiation field of an array of arbitrarily located parallel elements is the superpo-
sition of the fields generated by the individual elements. The far field of element i in
such an array is given by

Er
�i = jωµ0

4π

e− jβ0 Ri

Ri

∫ hi

−hi

Izi (z
′
i )e

jβ0z′i cos� sin� dz′i , (7.50a)

where Ri is the distance from the center of the antenna i at Xi , Yi , Zi to the point of
calculation P , and � is the angle between the Z -axis and the line 0P from the origin
of coordinates near the center of the array.

If the distribution of current (7.33) is substituted in (7.50a), the field of element i
can be expressed in the following integrated form:

Er
�i = jζ0

4π

e− jβ0 Ri

Ri
[A′

i Hm(�, β0hi )+ B ′
i Gm(�, β0hi )

+ Di Dm(�, β0hi )+ Qi Qm(�, β0hi )+ Ri Rm(�, β0hi )], (7.50b)

where the individual field factors are as follows:

Hm(�, β0hi ) = β0 sin�

2

∫ hi

−hi

(sinβ0|z′i | − sinβ0hi )e
jβ0z′i cos� dz′i

= {cos�− [1 − cosβ0hi cos(β0hi cos�)]} sec� csc� (7.51a)

Hm(0, β0hi ) = Hm(π, β0hi ) = 0 (7.51b)

Hm

(π
2
, β0hi

)
= 1 − cosβ0hi − β0hi sinβ0hi (7.51c)

Gm(�, β0hi ) = β0 sin�

2

∫ hi

−hi

(cosβ0z′i − cosβ0hi )e
jβ0z′i cos� dz′i

= [cos� sinβ0hi cos(β0hi cos�)

− cosβ0hi sin(β0hi cos�)] sec� csc� (7.52a)

Gm(0, β0hi ) = Gm(π, β0hi ) = 0 (7.52b)

Gm

(π
2
, β0hi

)
= sinβ0hi − β0hi cosβ0hi (7.52c)
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Dm(�, β0hi ) = β0 sin�

2

∫ hi

−hi

[cos(β0z′i/2)− cos(β0hi/2)]e jβ0z′i cos� dz′i

=
[

sin�

cos�(1 − 4 cos2 �)

]
[2 cos� sin(β0hi/2)

× cos(β0hi cos�)− cos(β0hi/2) sin(β0hi cos�)] (7.53a)

Dm

(π
2
, β0hi

)
= 2 sin(β0hi/2)− β0hi cos(β0hi/2) (7.53b)

Dm

(π
3
, β0hi

)
= Dm

(
2π

3
, β0hi

)
=

√
3

4
(β0hi − sinβ0hi ) (7.53c)

Qm(�, β0hi ) = β0 sin�

2

∫ hi

−hi

[sinβ0z′i − (z′i/hi ) sinβ0hi ]e
jβ0z′i cos� dz′i

= ( j/β0hi )[−β0hi cos2 � cosβ0hi sin(β0hi cos�)

− sin2 � sinβ0hi sin(β0hi cos�)

+ β0hi cos� sinβ0hi cos(β0hi cos�)] csc� sec2 � (7.54a)

Qm(0, β0hi ) = Qm

(π
2
, β0hi

)
= Qm(π, β0hi ) = 0 (7.54b)

Rm(�, β0hi ) = β0 sin�

2

∫ hi

−hi

[sin(β0z′i/2)− (z′i/hi ) sin(β0hi/2)]e jβ0z′i cos� dz′i

=
[

j sin�

β0hi cos2 �(1 − 4 cos2 �)

]
{sin(β0hi cos�)

× [−2β0hi cos2 � cos(β0hi/2)− sin(β0hi/2)

+ 4 sin(β0hi/2) cos2 �] + β0hi sin(β0hi/2)

× cos� cos(β0hi cos�)} (7.55a)

Rm

(π
2
, β0hi

)
= 0 (7.55b)

Rm

(π
3
, β0hi

)
= −Rm

(
2π

3
, β0hi

)
= j

√
3

4
[β0hi + sinβ0hi

− (8/β0hi ) sin2(β0hi/2)]. (7.55c)
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Figure 7.4 Point P in the far field of an array of parallel elements of which element i at Xi , Yi , Zi
is typical.

The radiation field of N parallel antennas is the sum of the contributions from each
element. In the far-field approximation

e− jβ0 Ri

Ri
= e− jβ0 R0

R0
e jβ0(ri ·R̂0), (7.56)

where ri is the vector drawn from the origin near the center of the array to the center of
antenna i and R̂0 is the unit vector along the line 0P where P is the point of calculation
as shown in Fig. 7.4. With (7.56) the far field of the array is

Er
� = jζ0

4π

e− jβ0 R0

R0

N∑
i=1

e jβ0(ri ·R̂0)[A′
i Hm(�, β0hi )+ B ′

i Gm(�, β0hi )

+ Di Dm(�, β0hi )+ Qi Qm(�, β0hi )+ Ri Rm(�, β0hi )]. (7.57)

If the point P where the field is calculated is located by the spherical coordinates
R0, �, � and the center of element i is at Xi , Yi , Zi , then

ri · R̂0 = Xi sin� cos�+ Yi sin� sin�+ Zi cos�. (7.58)
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7.6 The general two-element array2

In the introductory analysis of the two-element array in Chapter 2 only parallel
non-staggered antennas are considered. As a consequence of the resulting even
symmetry for the currents in the elements and the vector potentials, a three- or even
two-term representation is adequate. The more general five-term approximation of
the currents introduced in this chapter includes the previous three terms to describe
the even currents and two additional terms to represent the odd currents generated
by asymmetrical coupling when the elements are collinear as shown in Fig. 7.5 or
staggered as in Fig. 7.6.

The general formulas for the currents, driving-point admittances and field patterns
derived in the preceding sections are readily specialized for the two-element array.

2 The computations in this section were planned and programmed by V. W. H. Chang.
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Table 7.1a. Symmetrical and anti-symmetrical admittances in millisiemens of parallel,
non-staggered array of two elements; a/λ = 0.007 022

h/λ = 0.50 h/λ = 0.25

b12/λ Y s Y a Y s Y a

0.05 0.813 + j1.397 0.071 + j0.941 4.939 − j0.820 4.831 − j53.897

0.10 1.028 + j1.668 0.146 + j1.122 5.572 − j0.290 4.344 − j24.150

0.15 1.197 + j1.749 0.230 + j1.286 6.258 + j0.112 4.385 − j15.386

0.25 1.448 + j1.627 0.408 + j1.531 7.853 + j0.809 4.758 − j8.655

0.50 1.079 + j0.932 0.865 + j1.774 14.321 − j1.496 6.129 − j3.340

0.75 0.635 + j1.374 1.244 + j1.570 8.960 − j7.101 8.318 − j1.318

1.00 0.872 + j1.657 1.066 + j1.141 7.211 − j3.839 11.577 − j2.517

1.25 1.157 + j1.537 0.728 + j1.359 8.543 − j2.095 9.503 − j5.707

1.50 1.053 + j1.226 0.877 + j1.602 10.725 − j2.875 7.777 − j3.918

Table 7.1b. Symmetrical and anti-symmetrical admittances in millisiemens of collinear array of
two elements; a/λ = 0.007 022

h/λ = 0.50 h/λ = 0.25

d12 − 2h

λ
Y s Y a Y s Y a

0 1.050 + j1.581 0.816 + j1.139 5.549 − j1.953 15.281 − j6.078

0.05 1.042 + j1.505 0.808 + j1.338 7.508 − j1.868 11.013 − j6.483

0.10 1.035 + j1.465 0.844 + j1.409 8.444 − j1.913 9.529 − j5.821

0.15 1.026 + j1.437 0.875 + j1.440 9.100 − j2.104 8.858 − j5.208

0.25 0.999 + j1.403 0.919 + j1.461 9.850 − j2.764 8.412 − j4.288

0.50 0.941 + j1.409 0.966 + j1.446 9.521 − j4.026 8.832 − j3.243

0.75 0.945 + j1.435 0.965 + j1.422 8.923 − j3.800 9.415 − j3.404

1.00 0.958 + j1.435 0.950 + j1.422 9.042 − j3.445 9.300 − j3.785

1.25 0.959 + j1.426 0.950 + j1.431 9.295 − j3.518 9.045 − j3.699

1.50 0.953 + j1.425 0.956 + j1.432 9.238 − j3.708 9.103 − j3.517

Comparative examples of the admittances of coupled full-wave and half-wave el-
ements when driven symmetrically with V01 = V02 = 1 volt and anti-symmetrically
with V01 =−V02 = 1 volt as a function of the distance between centers are given in
Tables 7.1a, b, c for antennas with a/λ= 0.007 022. These tables give the symmetrical
admittance Y s = Gs + j Bs and the anti-symmetrical admittance Y a = Ga + j Ba . The
associated self- and mutual admittances are Y1s = (Y s + Y a)/2 and Y12 =−(Y s −
Y a)/2.

Table 7.1a applies to the non-staggered antennas considered in Chapter 2; the
variable parameter is b12/λ, the normalized distance between centers. Table 7.1b is
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Table 7.1c. Symmetrical and anti-symmetrical admittances in millisiemens of parallel, staggered
array of two elements; a/λ = 0.007 022

h/λ = 0.50 h/λ = 0.25

b12

λ
= d12

λ
Y s Y a Y s Y a

0.05 0.825 + j1.318 0.086 + j0.608 4.692 − j0.775 11.923 − j76.274
0.10 1.040 + j1.720 0.786 + j0.801 5.456 − j0.470 8.631 − j29.120
0.15 1.189 + j1.832 0.236 + j0.984 6.336 − j0.297 7.399 − j16.489
0.25 1.363 + j1.681 0.420 + j1.379 8.372 − j0.097 6.669 − j 8.084
0.50 1.035 + j1.110 0.965 + j1.673 11.077 − j4.641 7.804 − j 2.856
0.75 0.785 + j1.474 1.089 + j1.414 8.235 − j3.925 10.159 − j 3.106
1.00 1.008 + j1.489 0.906 + j1.350 9.340 − j2.908 8.903 − j 4.302
1.25 0.976 + j1.380 0.939 + j1.484 9.483 − j4.115 8.862 − j 3.166
1.50 0.918 + j1.400 0.989 + j1.419 8.729 − j3.561 9.650 − j 3.650

–10

0

50

100

150

200

Sy
m

m
et

ri
ca

l r
es

is
ta

nc
e 

an
d 

re
ac

ta
nc

e 
(o

hm
s)

0 0.2 0.4 0.6 0.8 1.0

b12

λb12/ or (d12 – 2h)/λ/λ/ for collinear array

d12
b12 d12 2h

Collinear

Staggered
Non-staggered

h

s (staggered)

Rs )

Rs (collinear)

R00 = 94.5

XsXsX (collinear)
X0X0X = 37.3

XsXsX (staggered)g XsXsX (nonstag.)

Figure 7.7 Resistance and reactance of symmetrically driven array of two parallel half-wave
dipoles when non-staggered, staggered with b12 = d12, and collinear; a/λ = 0.007 022,
h/λ = 0.25, V02 = V01.
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Figure 7.8 Like Fig. 7.7 but for anti-symmetrically driven elements, V02 = −V01.

for the collinear pair with the distance (d12 − 2h) between the adjacent ends as
the parameter (d12 is the distance between centers). The admittances in Table 7.1c
are for the staggered pair as the center of element 2 is moved along a 45◦ line
so that b12 = d12. The impedances Zs = 1/Y s and Za = 1/Y a corresponding to the
admittances in Tables 7.1a, b, c are shown graphically in Figs. 7.7 and 7.8, respectively,
for the symmetrically and anti-symmetrically driven pairs. In these figures R0 and X0

are the resistance and reactance for infinite separation. The interaction between the
elements is seen to be greatest for the non-staggered pair, smallest for the collinear
arrangement. The self- and mutual impedances are given by Zs1 = (Zs + Za)/2 and
Z12 = (Zs − Za)/2; they are listed in Tables 7.2a, b.

The current distribution along the lower element of a collinear pair when the
adjacent ends are separated by a distance d12 − 2h = 0.1λ is shown in Fig. 7.9 for
both symmetrically and anti-symmetrically driven full-wave elements. Note that in
both cases the currents are asymmetrical with respect to the center of the element.
When the excitation is symmetrical (V01 = V02), the current in the outer half is the
greater; when the excitation is anti-symmetrical (V01 = −V02), the current in the inner
half is the greater.

The current distribution for a pair of coupled full-wave antennas in the staggered
position with b12/λ= d12/λ= 0.1 is shown in Fig. 7.10 for symmetric excitation
(V01 = V02) in broken line. Since the two elements are very close together, the
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Figure 7.9 Currents in element No. 1 of a symmetrically and anti-symmetrically driven pair of
collinear antennas. Iz1(z) = I ′′z1(z)+ j I ′z1(z), V02 = ±V01 = ±1 volt, a/λ = 0.007 022,
h/λ = 0.5, d12/λ = 1.1. (Element 1 is below element 2.)

interaction is great. When center driven with equal and opposite voltages, the two
conductors form a slightly displaced two-wire line with a large and only slightly
asymmetrical reactive current I ′z1(z) that is almost sinusoidal, and a very small
in-phase component I ′′z1(z). Since the current induced in each element by that in
the other is essentially 180◦ out of phase, the coupling reinforces the currents
excited by the generator voltages. When center driven by equal and co-directional
generators the distribution of current is extremely asymmetrical. The half of each
element that is removed from the other has a very large approximately sinusoidal
reactive current I ′zi (z), whereas the adjacent halves have only a small and oppositely
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Figure 7.10 Like Fig. 7.9 but for two staggered elements with b12/λ = d12/λ = 0.1.

directed reactive component. The in-phase component I ′′zi (z) is much greater than
when the antennas are anti-symmetrically driven and the asymmetry is in the opposite
directions.

The distributions of current for the symmetrically and anti-symmetrically driven
staggered pair are sketched approximately to scale in Figs. 7.11a, b. Note that the
more closely coupled adjacent halves of the elements have the greater current when the
excitation is asymmetrical, very much the smaller when the excitation is symmetrical.
In the former case the coupling between the elements reinforces the generators, in the
latter it opposes them.

It is interesting to note that the distribution along the symmetrically driven pair in
Fig. 7.11a resembles that along a sleeve dipole.3 This is to be expected since the two
elements are very closely coupled.

7.7 A simple planar array4

The application of the general theory developed earlier in this chapter to planar
arrays is conveniently illustrated with the three by three nine-element array shown

3 See, for example, R. W. P. King, [2], p. 413, Fig. 30.7e.
4 The computations in this section are those of V. W. H. Chang. Parts of Sections 7.7–7.10 were first published

in Radio Science [3].
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Figure 7.11 Currents in two-element staggered array driven (a) symmetrically with V02 = V01 and
(b) anti-symmetrically with V02 = −V01. The distributions of current are taken from Fig. 7.10.

in Fig. 7.12. This involves non-staggered, staggered and collinear elements, so that
the effects of the different types of coupling on otherwise identical elements can be
studied.

Consider first the broadside array in which all elements are driven with equal
voltages, that is, V0i = 1 volt, i = 1, 2, . . . 9. Since conventional theory is unable
to treat full-wave elements, let an array of nine elements with h/λ = 0.5 be analyzed.
Let the lateral distances between elements be b/λ = 0.25 and the axial distance
between adjacent ends be (d − 2h)/λ = 0.1 where d is the distance between centers
of adjacent collinear elements. With this symmetric excitation, elements 1, 2 and 3
are like elements 7, 8 and 9 in the even parts of these currents, but the algebraic sign
of the odd parts is reversed. The coefficients of the five trigonometric functions in
the current distribution given in (7.33) are listed in Table 7.3 for all of the elements.
The associated driving-point admittances and impedances are also listed. Note that
these differ significantly. The four different distributions of current are shown in Fig.
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Figure 7.12 Planar array of nine identical, equally-spaced elements.

7.13 in the form Izi (zi ) = I ′′zi (zi ) + j I ′zi (zi ) where I ′′zi (zi ) is in phase with V0i ,
I ′zi (zi ) in phase quadrature. Note that the currents for elements 7, 8 and 9 are like
those for 1, 2 and 3 but with −zi substituted for zi . Elements 4, 5 and 6 have even
currents. The contribution by the odd currents in elements 1, 2 and 3 is seen to be
large.

When the same nine-element array is driven to obtain a unilateral endfire pattern
with V01 = V04 = V07 = 1, V02 = V05 = V08 = − j , V03 = V06 = V09 = −1 volt, the
coefficients for the trigonometric functions in the current distribution (7.33) are listed
in Table 7.4. Note that there are now six different sets of coefficients since elements
1 and 3 and their counterparts are no longer electrically identical. The driving-point
admittances and impedances are also given in Table 7.4. They are seen to have a wider
range of values than in the broadside array. Note that the resistances of the elements
in the collinear trio in the backward direction (1, 4, 7) are much greater than the
corresponding resistances in the forward trio (3, 6, 9). This is characteristic of endfire
arrays of full-wave elements. The six different currents are shown in Figs. 7.14 and
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Table 7.3. Nine-element planar array – broadside; a/λ = 0.007 022, h/λ = 0.5, b/λ = 0.25,
d/λ = 1.1, V0i = 1 volt, i = 1, 2, . . . 9

Coefficients of trigonometric functions in milliamperes per volt

i A′
i B′

i Di Qi
a Ri

a

1, 3, 7, 9 0.006 − j3.626 0.763 − j0.739 0.287 + j2.849 0.197 + j0.444 −0.008 + j0.134
2, 8 0.010 − j3.580 1.065 − j0.643 0.197 + j3.164 0.317 + j0.604 0.279 + j0.199
4, 6 0.007 − j3.615 0.832 − j0.590 0.176 + j2.596 0 + j0 0 + j0
5 0.010 − j3.567 1.176 − j0.443 0.087 + j2.821 0 + j0 0 + j0

a Reverse signs for i = 7, 8, 9.

Admittances in millisiemens and impedances in ohms

i Y0i = G0i + j B0i Z0i = R0i + j X0i

1, 3, 7, 9 1.759 + j1.371 353.7 − j275.7
2, 8 2.328 + j1.878 260.2 − j209.9
4, 6 1.840 + j1.416 341.3 − j262.8
5 2.440 + j1.955 249.6 − j200.0

Table 7.4. Nine-element planar array – endfire; a/λ = 0.007 022, h/λ = 0.5, b/λ = 0.25,
d/λ = 1.1, V01 = V04 = V07 = 1, V02 = V05 = V08 = − j , V03 = V06 = V09 = −1 volt

Coefficients of trigonometric functions in milliamperes per volt

i A′
i B′

i Di Qi
a Ri

a

1, 7 0.053 − j3.674 0.321 − j0.426 0.391 − j2.060 0.206 + j0.463 0.288 + j0.213
2, 8 −3.675 − j0.006 −0.282 − j0.501 2.375 − j0.027 0.500 − j0.151 0.196 − j0.168
3, 9 0.042 + j3.668 −0.724 − j0.152 0.480 − j2.201 −0.119 − j0.562 −0.223 − j0.124
4 0.053 − j3.664 0.381 − j0.299 0.321 + j1.845 0 + j0 0 + j0
5 −3.665 − j0.005 −0.129 − j0.546 2.137 + j0.010 0 + j0 0 + j0
6 0.044 + j3.657 −0.735 − j0.344 0.463 − j1.918 0 + j0 0 + j0

a Reverse signs for i = 7, 8, 9.

Admittances in millisiemens and impedances in ohms

i Y0i = G0i + j B0i Z0i = R0i + j X0i

1, 7 1.034 + j1.208 409.0 − j477.8
2, 8 1.030 + j1.811 237.2 − j417.2
3, 9 0.966 + j2.506 134.0 − j347.4
4 1.084 + j1.250 396.0 − j456.7
5 1.083 + j1.879 230.2 − j399.5
6 1.008 + j2.607 129.0 − j333.7
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Figure 7.13 Currents in a planar array of nine elements in broadside. Izi (zi ) = I ′′zi (zi )+ j I ′zi (zi ),
V0i = 1 volt; a/λ = 0.007 022, h/λ = 0.5, b/λ = 0.25, d/λ = 1.1.

7.15. The currents in elements 7, 8 and 9 are like those in 1, 2 and 3 but with −zi

substituted for zi . Note that the currents in the rear collinear trio (1, 4, 7) are greater
and contribute more to the far field than the currents in the forward trio of the elements
(3, 6, 9). The far-field patterns in the horizontal or H -plane and the vertical or E-plane
are shown in Fig. 7.16 for both the broadside and the endfire arrays. The horizontal
pattern of the broadside array is bidirectional with maxima at � = 90◦ and 270◦,
the endfire pattern is unidirectional with a broad maximum in the direction � = 0◦.
The vertical patterns in the direction � = 0 are seen to be very sharp as would be
expected when three full-wave elements (which correspond to six half-wave elements)
are stacked. (Note that the vertical pattern shown for the broadside array is not in the
direction of the maximum at � = 90◦.)

When the length of the elements is a half wavelength instead of a full wavelength,
it is usually desirable to assign the driving-point currents Izi (0) instead of the
voltages V0i . If the array shown in Fig. 7.12 is constructed of half-wave elements
with h/λ = 0.25, b/λ = 0.25, (d − 2h)/λ = 0.1, and the currents are assigned
for a broadside pattern with Izi (0) = 2.5 milliamperes for i = 1, 2, . . . 9, the
coefficients for the trigonometric functions in the expression (7.33) for the currents
in the elements are those given in Table 7.5. The required driving voltages V0i are also
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Figure 7.16 Horizontal (� = 90◦) and vertical (� = 0◦) patterns of a nine-element planar array of
full-wave antennas; broadside and endfire excitation.

listed together with the associated driving-point admittances and impedances. Note
that the voltages differ considerably, as do the impedances. This is due entirely to
mutual coupling.

The fact that the driving-point currents are all maintained equal and in phase
by a suitable choice of voltages does not mean that the several distributions of
current are therefore equal and in phase. The very different interactions among
the several elements necessarily lead to distributions of current that are quite
dissimilar in both amplitude and phase. This is shown graphically in Fig. 7.17
for the real and imaginary parts of the currents. The real parts are seen to be
more nearly triangular than cosinusoidal; the imaginary parts are quite large and
distributed so differently from the real part that the phase angle is very far from
constant. This means that even for half-wave elements the conventional assumption
that all currents are cosinusoidally distributed and constant in phase along each
element is of questionable validity for determining impedances and minor lobe
structures.
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Table 7.5. Nine-element planar array – broadside; a/λ = 0.007 022, h/λ = 0.25, b/λ = 0.25,
d/λ = 0.6, Izi (0) = 2.5 × 10−3 amperes; i = 1, 2, . . . 9

Coefficients of trigonometric functions in milliamperes

i A′
i B′

i Di Qi
a Ri

a

1, 3, 7, 9 −0.810 − j1.304 −4.422 − j2.913 20.869 + j5.492 −0.392 + j0.650 2.679 − j6.099
2, 8 −1.233 − j2.300 −5.529 − j5.054 23.204 + j9.404 −0.202 + j1.214 0.897 − j11.409
4, 6 −1.194 − j1.213 −5.759 − j2.193 24.120 + j3.342 0 + j0 0 + j0
5 −1.188 − j2.419 −7.570 − j4.620 27.976 + j7.513 0 + j0 0 + j0

a Reverse signs for i = 7, 8, 9.

Admittances in millisiemens, impedances in ohms, EMF’s in volts

i Y0i = G0i + j B0i Z0i = R0i + j X0i V0i

1, 3, 7, 9 8.203 + j4.310 95.5 − j50.2 0.239 − j0.125
2, 8 4.817 + j2.320 168.6 − j81.1 0.421 − j0.203
4, 6 6.369 + j5.538 89.4 − j77.7 0.223 − j0.194

5 3.713 + j2.663 177.8 − j127.5 0.445 − j0.319
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Figure 7.17 Normalized currents in the nine elements of a planar array.
Izi (zi ) = I ′′zi (zi )+ j I ′zi (zi ), Izi (0) = 2.5 milliamperes with i = 1, 2, . . . 9. a/λ = 0.007 022,
h/λ = 0.25, b/λ = 0.25, d/λ = 0.6.



270 Planar and three-dimensional arrays

0 30 60 90 120 150 180
0

0.25

0.50

0.75

1.0

Θ and Φ (degrees)

= 90°
Φ
Θ

= 90°

E
Θ

(Θ
,Φ

)/
E

Θ
2

(9
0°

, 9
0°

)

Figure 7.18 Horizontal (� = 90◦) and vertical (� = 90◦) patterns of a planar array of nine
elements with currents shown in Fig. 7.17; a/λ = 0.007 022, h/λ = 0.25, b/λ = 0.25, d/λ = 0.6;
Izi (0) = 2.5 milliamperes, i = 1, 2, . . . 9.

The far-field pattern of the nine-element broadside planar array of half-wave
elements is shown in Fig. 7.18 in the horizontal plane (� = 90◦) and the vertical
plane in the direction of the maximum horizontal field (� = 90◦).

The general five-term theory is also valid for arrays that include parasitic elements.
For example, in the nine-element planar array, the upper and lower rows may be
parasitic with only elements 4, 5 and 6 driven and all constants the same as for
the array described in Table 7.5 except that V01 = V02 = V03 = V07 = V08 = V09 = 0,
V04 = V05 = V06 = 1 volt. The coefficients of the trigonometric functions in the distri-
bution of current (7.33) are as given in Table 7.6. The admittances and impedances for
the three driven elements are also tabulated. The distributions of the real and imaginary
parts of the current referred to the driving voltage are shown in Fig. 7.19. The currents
in the collinear parasitic elements are, of course, much smaller than in the driven
elements and their distributions are quite different. Note, however, that the current
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Table 7.6. Nine-element planar array, with three elements driven; a/λ = 0.007 022, h/λ = 0.25,
b/λ = 0.25, d/λ = 0.6; V01 = V02 = V03 = V07 = V08 = V09 = 0, V04 = V05 = V06 = 1 volt

Coefficients of trigonometric functions in milliamperes per volt

i A′
i B′

i Di Qi
a Ri

a

1, 3, 7, 9 0.020 − j0.038 −0.554 − j0.197 −1.305 − j3.260 −2.225 − j3.406 16.467 − j33.106
2, 8 0.026 − j0.045 −0.519 − j0.340 −1.735 − j4.588 −2.145 − j2.471 16.336 − j27.315
4, 6 −0.386 − j5.485 −8.106 − j14.193 54.503 + j29.666 0 + j0 0 + j0
5 −0.309 − j5.731 −7.211 − j18.733 45.860 + j62.562 0 + j0 0 + j0

a Reverse signs for i = 7, 8, 9.

Admittances in millisiemens and impedances in ohms

i Y0i = G0i + j B0i Z0i = R0i + j X0i

4, 6 8.244 − j0.019 121.3 + j0.3
5 6.530 + j5.322 92.0 − j75.0
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Figure 7.19 Currents in the nine elements of a planar array. Izi (zi ) = I ′′zi (zi )+ j I ′zi (zi ),
V01 = V02 = V03 = V07 = V08 = V09 = 0, V04 = V05 = V06 = 1 volt. a/λ = 0.007 022,
h/λ = 0.25, b/λ = 0.25, d/λ = 0.6.

in the middle element No. 5 has quite a different distribution from that of the other two
driven elements Nos. 4 and 6.
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7.8 A three-dimensional array of twenty-seven elements5

As a final example of the application of the five-term theory consider a three-
dimensional array consisting of three stacked, three-element, broadside curtains ar-
ranged in endfire as shown in Fig. 7.20. Let the lateral distances between the adjacent
identical elements be bx/λ = by/λ = 0.25, the axial distance between adjacent ends
(d − 2h)/λ = 0.1; also let a/λ = 0.007 022. If the antennas are individually a full
wavelength long (h/λ = 0.5), the desired unidirectional endfire pattern is well realized
when the driving voltages (which directly excite the large sinusoidal components of the
currents) are assigned the following values: V1+3n = 1, V2+3n = − j , V3+3n = −1 volt
with n = 0, 1, 2, . . . 8. The unidirectional beam is to be in the positive x direction.
With this choice of parameters the five coefficients for the trigonometric components
of the current in (7.33) have been computed and listed in Table 7.7. The associated
driving-point admittances and impedances are also given. These are seen to vary
widely as a necessary consequence of differences in the induced currents. Since the
power in each element is given by P0i = 1

2 V 2
0i G0i , and V 2

0i = V0i V ∗
0i = 1, the relative

powers are proportional to the driving-point conductances. It is seen from Table 7.7
that the nine elements in the plane x = −bx (which are the rear elements if the forward
direction along the positive x-axis is that of the maximum beam), receive the largest
amount of power from the generators (9.78V 2

0 ); the nine elements in the plane x = 0
the next largest amount (5.78V 2

0 ); and the nine forward elements in the plane x = bx

the smallest amount (4.51V 2
0 ). However, the power is reasonably well divided among

the elements. It is greatest in the middle elements 10, 13, 16 of the rear plane (3.89V 2
0 )

where induced currents are relatively small; it is least in the middle elements 12, 15,
18 of the forward plane (1.26V 2

0 ) where induced currents are relatively large.
The computed currents in 18 of the elements are shown graphically in Figs. 7.21a,

b, c. The currents in elements 7, 8, 9, 16, 17, 18, 25, 26, 27 are obtained, respectively,
from those in elements 1, 2, 3, 10, 11, 12, 19, 20, 21 with the substitution of −zi for zi .
Both the real and imaginary parts of the currents on differently situated but otherwise
identical elements are seen to vary widely. Those in the outer tiers of elements with
centers in the planes z = ±d exhibit a large asymmetry owing to the one-sidedness of
the coupling.

If the full-wave elements in the array are replaced by half-wave elements (h/λ =
0.25) with the same axial distance (d − 2h)/λ = 0.1 between adjacent ends and all
other conditions, including the driving voltages unchanged, the coefficients for the
trigonometric components of the currents are computed to have the values listed in
Table 7.8. The associated driving-point admittances and impedances are also given in
Table 7.8. Note their very wide range.

5 The computations in this section are those of V. W. H. Chang.
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Figure 7.20 Three-dimensional array of 27 identical, equally-spaced elements.

As with the full-wave elements, the power in the nine elements in the rear plane
(x = −bx ) is greatest (35.56V 2

0 ), in the nine elements in the middle plane next
greatest (4.90V 2

0 ), and in the nine elements in the forward plane least (0.94V 2
0 ).

The distribution of power is seen to be very uneven. Indeed, the currents induced in
the central forward elements 12, 15, 18 are now so great that these act as negative
resistances or generators. The assigned voltage at the terminals of these elements can
be maintained only if loads are connected across their terminals instead of generators.
This is also true of the central element 14 in the middle plane. In evaluating the
powers in the elements in the three planes, the negative values were subtracted since
they represent power dissipated in a load, not radiated power. Note that the powers in
elements 11 and 17 are not negative but very small. The entire admittance is very low,
the input impedance correspondingly high. It might be supposed that these elements
contribute negligibly to the radiation field. But this is not necessarily true. The fact that
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Figure 7.21 (a) Currents in elements Nos. 1, 4, 10 and 13 of the 27-element array shown in Fig.
7.20. V1+3n = 1, V2+3n = − j , V3+3n = −1 volt, n = 0, 1, 2, . . . 8; a/λ = 0.007 022, h/λ = 0.5,
bx/λ = by/λ = 0.25, d/λ = 1.1. (b) Like (a) but for elements 2, 5, 11 and 14.

Iz11(0) is near zero does not mean that Iz11(z11) is everywhere equally small. It may
be quite large.
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Figure 7.21 (c) Like (a) but for elements 3, 6, 12 and 15.

The currents in the elements of the 27-element array of half-wave dipoles when
the driving voltages are assigned to be V1+3n = 1, V2+3n =− j , V3+3n =−1 volt with
n = 0, 1, . . . 8 are shown in Fig. 7.22. Note that the currents on the elements in the
rear plane (top figure) are greater than those in the middle plane (lower left) and
still greater than those in the forward plane (lower right). Specifically, the current
in element 11 is very small at z = 0, but quite comparable with the other currents
out along the antenna. It is seen from Fig. 7.22 that even with half-wave elements
the conventional assumption that the distributions of current along all elements are
identical and cosinusoidal is not well satisfied. Since this assumption also implies that
the phase of each current is the same along the antenna as at the driving point, it is
of interest to examine the relative phases referred to a common reference, namely
V01. This is done in Fig. 7.23 where the phase angles of the currents along all
elements are shown. For the elements in the rear plane where induced currents are
not of major significance, the phase angle varies relatively little from z = 0 to
z = ±h, much as in an isolated antenna. On the other hand, when induced currents
constitute the major parts of the currents in an element, the phase angle varies very
widely – as much as 153◦ in the middle element 14. It is clear that when large
currents are induced in some elements of an array, as in endfire arrangements which
maintain a maximum field along the antennas, an assumed current with constant
phase cannot be expected to represent even approximately the actual currents in an
array.
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Figure 7.22 Like Figs. 7.21a, b, c but with h/λ = 0.25 and d/λ = 0.6.

Since with half-wave antennas the principal component of the current has its
maximum value at z = 0, the progressive phases in the currents required for a
specified field pattern can be approximated more closely when the maxima of the
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Figure 7.23 Phases of the currents in Fig. 7.22 all referred to V01.

currents, i.e. the values Izi (0), are assigned instead of the voltages. Let the values
I1+3n(0) = 2.5× 10−3, I2+3n(0) = − j2.5× 10−3, I3+3n(0) = −2.5× 10−3 amperes
be specified for the same 27-element array. The corresponding coefficients for the
currents as evaluated by computer are in Table 7.9 together with the required driving
voltages and the associated admittances and impedances for the elements. Note that
the voltages range from V02 = −0.006 − j0.236 to V15 = −1.173 + j0.403 volts.
The complete distributions of current are in Figs. 7.24a, b, c in the normalized form:
Izi (zi )/Izi (0) = I ′′zi (zi )/Izi (0)+ j I ′zi (zi )/Izi (0).

With the driving-point currents specified, the power in each element is conveniently
determined from P0i = 1

2 |Izi (0)|2 R0i . It is seen to be proportional to R0i as given in
Table 7.9. The distribution of power to the elements with the driving-point currents
assigned is quite different from when the voltages are specified. Note that the nine
elements in the rear plane (x =−bx ), which with voltages specified received the
greatest power, now receive the least (411.8I 2

0 ), the middle plane (x = 0) is again
intermediate (523.6I 2

0 ), and the elements in the forward plane (x = bx ), which with
voltages assigned received the least power, now receive the greatest (1484.8I 2

0 ).
However, the division of power is not as extreme as before and there are no elements
that have negative resistances and, therefore, feed power into a load instead of
receiving power from a generator. A comparison of the relative powers in all of
the elements is shown schematically in Fig. 7.25 in which boxes are located in
the three-dimensional pattern of the array. The upper number in each box is the
conductance G0i when the conditions of Table 7.8 with voltages specified obtain; it
is proportional to the power P0i in each element. The lower number in each box is
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the resistance R0i for the same array when the conditions of Table 7.9 are maintained
with input currents assigned; it is proportional to the power P0i in each element. The
relative distribution of power is seen to be reversed.

The distributions of current in Fig. 7.24a, b, c all have the same value at zi = 0
and the components in phase with the input current are similarly distributed along the
antenna in a rough sense. They range from a flattened cosine to a triangle. However,
the quadrature currents are by no means negligible (they are presumed not to exist in
conventional array theory). Indeed, they are of major significance in those elements
which radiate most of the power. Note in particular the very large quadrature currents
in all of the elements in the forward plane x = bx which are shown in Fig. 7.24c. (The
currents in elements 9, 18 and 24 are like those in 3, 12 and 21 with −zi substituted for
zi .) These have distributions quite different from the conventionally assumed cosine
curve. Evidently the phases are also as far from constant as those shown in Fig. 7.23
for the same array with assigned voltages.

The purpose of an array is to maintain a useful far field. The computed far-field
patterns of the 27-element endfire array shown in Fig. 7.20 are in Fig. 7.26 for all
the cases considered in this section, that is, for h/λ = 0.5 with voltages assigned,
h/λ = 0.25 with voltages and currents assigned. The horizontal patterns in the
equatorial plane � = 90◦ all have the principal maximum in the desired direction,
� = 0, � = 90◦. They also have a minor maximum in the backward direction,
� = 180◦, � = 90◦. This is smallest with the array of half-wave elements
with specified input currents, it is largest with the half-wave elements with voltages
specified. The array of full-wave elements with voltages specified has a backward lobe
of intermediate height. The vertical patterns for the array of half-wave elements are
essentially the same when currents or voltages are specified. The former has a very
slightly broader main beam and a correspondingly slightly lower minor lobe level.
The array of full-wave elements has the narrowest main beam in the vertical pattern –
the array is, of course, axially twice as long. On the other hand, its minor lobe level
is correspondingly somewhat higher. Note that since very good approximations of
actual currents on all of the elements are used, there are no nulls as would have been
obtained with assumed sinusoidal currents with constant phase along each antenna.
The details of the minor lobe structure derived from the five-term approximations
of the several currents should have an accuracy comparable to that of the major
lobe.

If all of the 27 elements are driven in phase, an approximately circular pattern with
some undulations is obtained as would be expected; of interest is the fact that in this
case, too, a number of the elements have negative driving-point conductances and
resistances. This indicates that the induced currents in these elements predominate
so that they act as generators and not as loads when connected to a transmission
line. Elements with negative resistances are likely to occur in most arrays with large
numbers of rather closely coupled elements.
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Figure 7.24 (a) Currents in elements Nos. 1, 4, 10 and 13 of the 27-element array shown in Fig.
7.20. I1+3n(0) = 2.5 mA, I2+3n(0) = − j2.5 mA, I3+3n(0) = −2.5 mA, with n = 0, 1, 2, . . . 8.
a/λ = 0.007 022, h/λ = 0.25, bx/λ = by/λ = 0.25, d/λ = 0.6. (b) Like (a) but for elements 2, 5,
11 and 14.



283 7.8 Three-dimensional array

–0.25

–0.20

–0.15

–0.10

–0.05

0

0.10

0.25

–1.0

λ
z

0.05

1.0–0.8 0.60.40.2–0. 02

(c)

)/I/I/ ziI (0)

IziI′ zi)// zi (0)

i = 6 and 15

–0.6 –0.4 0.8

0.15

0.20

i = 3, 21
6, 24

15
12

Figure 7.24 (c) Like (a) but for elements 3, 6, 12 and 15.

Main beam

25 2626 2727

16 17 18

22 2323 2424

99

13 14 15

19 2020 2121

10 11 12

33

8.75
75.9

66

7.48
120.9

8.755
75.9

1.74
94.9 4

0.144
151.1

1.74
94.4

0.64
2

–
400.4

0.644
273.2

7.64
75.7 0

1.46
100.2

0.62
303.2

5.90
128.2 1

–
1

–
5

7.644
75.0 100.2

0.6262
303.2

8.75
75.9

1.74
94.4

0.64
273.2

7.48
120.2 9

0.14
151.1

–0.511
4

8.755
75.9 94.4

0.646
273.2

Figure 7.25 Schematic diagram showing the relative powers supplied to the half-wave
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millisiemens) which is proportional to power supplied when the V0i are specified. The lower
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Figure 7.26 Horizontal (� = 90◦) and vertical (� = 0◦) patterns of a three-dimensional endfire
array of 27 elements; a/λ = 0.007 022, bx/λ = by/λ = 0.25, (d − 2h)/λ = 0.1; V1+3n = 1,
V2+3n = − j , V3+3n = −1 volt or I1+3n(0) = 2.5 mA, I2+3n(0) = − j2.5 mA,
I3+3n(0) = −2.5 mA, with n = 0, 1, 2, . . . 8.

7.9 Electrical beam scanning

The major lobe in the endfire patterns shown in Fig. 7.27 is in the direction � = 90◦,
� = 0◦. This is readily switched electrically to the direction � = 90◦, � = 90◦

simply by interchanging the phases of the voltages or currents in the broadside rows
(parallel to the y-axis in Fig. 7.20) and the endfire rows (parallel to the x-axis). For
example, the assigned voltages would be V0i = 1 volt, 1 ≤ i ≤ 9; V0i = − j volt,
10 ≤ i ≤ 18; V0i = −1 volt, 19 ≤ i ≤ 27 or, if the driving-point currents are assigned,
Izi (0) = 2.5 mA, 1 ≤ i ≤ 9; Izi (0) = − j2.5 mA, 10 ≤ i ≤ 18; Izi (0) = −2.5 mA,
19 ≤ i ≤ 27.
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Figure 7.27 Horizontal (� = 90◦) and vertical patterns of 27-element three-dimensional endfire
array with beam in the directions � = 0◦ and � = 45◦. Driving voltages specified as in Table 7.10;
a/λ = 0.007 022, h/λ = 0.5, bx/λ = by/λ = 0.25, d/λ = 1.1.

More generally, the direction of the beam is specified by the far-field formula (7.57)
in which the field factor of each individual antenna i is given by the square bracket, and
the combination of these into a pattern for the array is determined by the phase factors
exp( jβ0ri · R̂0). The contribution to the pattern by each element is greatest when the
amplitudes A′

i , B ′
i , Di , Qi and Ri all include the common factor exp(− jβ0ri · R̂0).

When this is true the contributions from all the elements arrive in phase in the direction
specified by particular values of �, � in (ri · R̂0) as given in (7.58). This is, evidently,
a necessary condition for a maximum in the field pattern. However, it is not a sufficient
condition since the directional properties of the individual elements, as given by the
square bracket in (7.57) for element i , are also involved. These may differ considerably
from element to element owing to differences in the distributions of current so that no
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simple formula for the direction �m , �m of the main lobe on the field pattern can be
written down. In the special case of maxima in the equatorial plane (�m = 90◦) the
presence of the common phase factor

exp(− jβ0ri · R̂0) = exp[− jβ0(Xi cos�m + Yi sin�m)],

is sufficient to fix the main beam in the direction �m . For example, when �m = 0, the
factor is exp(− jβ0 Xi ). This means that when voltages are assigned, these must have
the relative phases exp( jβ0bx ), 1, exp(− jβ0bx ), respectively, for the elements in the
planes Xi = −bx , Xi = 0, and Xi = bx . When bx = λ/4 as in the arrays considered
in this chapter, the phases are exp[ j (π/2)] = j , 1, and exp[− j (π/2)] = − j ; or, if
j is removed as a common factor, the relative phases are given by 1, − j , −1, which
are the values used in Table 7.7. When the beam is switched to �m = 90◦, the phase
factor is exp(− jβ0Yi ) so that the voltages in the planes Yi = −by = −λ/4, Yi = 0,
Yi = by = λ/4 must have the relative phases exp[ j (π/2)], 1, and exp[− j (π/2)].
When driving-point currents instead of voltages are assigned, the coefficients apply to
them unchanged.

If the direction of the maximum beam is to be �m = 90◦, �m = 45◦, the coefficients
are given by

exp(− jβ0ri · R̂0) = exp[− jβ0(Xi + Yi )
√

2/2].

For the three-dimensional array of 27 elements shown in Fig. 7.20, the elements are
located at Xi = −bx = −λ/4, Xi = 0, Xi = bx = λ/4 and Yi = −by = −λ/4,
Yi = 0, Yi = by = λ/4. Thus, the following relative phases must be assigned to the
driving voltages (or currents if these are specified instead of the voltages):

Xi = Yi = −λ

4
: exp( jπ

√
2/2)

Xi = −λ

4
, Yi = 0; Xi = 0, Yi = −λ

4
: exp( jπ

√
2/4)

Xi = λ

4
, Yi = −λ

4
; Xi = 0, Yi = 0; Xi = −λ

4
, Yi = λ

4
: 1

Xi = 0, Yi = λ

4
; Xi = λ

4
, Yi = 0: exp(− jπ

√
2/4)

Xi = Yi = λ

4
: exp(− jπ

√
2/2).

Alternatively, if exp( jπ
√

2/2) is removed as a common factor, the five phase coef-
ficients are, respectively, 1, exp(− jπ

√
2/4), exp(− jπ

√
2/2), exp(− j3π

√
2/4) and

exp(− jπ
√

2). With reference to Fig. 7.20, the required assigned voltages are listed in
exponential form near the top of Table 7.10 and in complex numerical form later in the
table. If these assigned voltages are used in the computer program, the coefficients for
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the currents in the 27 elements of the same array analyzed in Table 7.7, but with the
beam rotated 45◦, are as listed in Table 7.10. Note that the number of different currents
is greater than when the main beam is in the direction � = 0 or � = 90◦. The currents
in the elements with centers in the plane Z = d are, of course, the same as those in the
plane Z = −d with zi replaced by −zi . The associated admittances and impedances
are also given together with the numerical values of the assigned voltages.

Since the voltage magnitudes are |V0i | = 1 volt, the relative powers to the elements
are proportional to the driving-point conductances. In general, these are quite compa-
rable in magnitude and range to those in Table 7.7 but the larger values are shifted to
the new elements in the backward direction (� = 225◦), the smaller values to the new
elements in the forward direction (� = 45◦).

The horizontal field pattern in the plane � = 90◦ and the vertical pattern in the plane
� = 45◦ are shown in Fig. 7.27 together with the corresponding patterns from Fig.
7.26. It is seen that in the horizontal plane the main lobe has been rotated substantially
unchanged through 45◦, but that the minor lobe structure is somewhat different. The
change in the vertical pattern is so small that it can be distinguished only near the peak
of a minor lobe. Evidently, the rather narrow beam of a three-dimensional array of
full-wave elements in collinear, broadside, and endfire combinations is readily rotated
by appropriate changes in the phases of the driving voltages. A similar rotation of the
corresponding array of half-wave elements is readily achieved with precisely the same
changes in the phases of the assigned driving-point currents.

7.10 Problems with practical arrays

The theory developed in this and the preceding chapters provides a complete, practical
tool for the quantitative determination of the properties of very general arrays when
the active elements are driven by a concentrated EMF at their centers. In practice,
antennas are driven from transmission lines that maintain the desired voltage across
the terminals of the antennas, but also introduce the complications that accompany
transmission-line end-effects and the coupling between the antenna and the line. There
is also the possibility of unbalanced currents on open-wire lines or on the outside
surfaces of coaxial lines. These latter can be excited by asymmetrical conditions
at the junctions of antennas and feeding lines, or by the intense near fields in an
array whenever transmission lines are not in a neutral plane of these fields. Since
such currents induced along transmission lines usually contribute significantly to the
radiation field and can, therefore, constitute a non-negligible part of the load, both
the circuit and field properties of an array can be modified greatly whenever they
are excited. Important aspects of the problems relating to end-effects and coupling
effects between antennas and transmission lines as well as techniques of measurement
are considered in Chapter 14. However, questions relating to the maintenance of the



289 7.10 Problems with practical arrays

required voltages for antennas with positive conductances and loads for those with
negative conductances in large arrays are not analyzed since they involve the specific
geometry of each array. A problem of this sort in which elements with both positive
and negative resistances play important roles is treated in detail at the end of Chapter
6 where the log-periodic array is analyzed. This antenna includes not only radiating
elements with specified geometrical properties but also a feeding line with definite
electrical characteristics. Since it is in the neutral plane, the problems of unbalanced
currents are avoided, but those relating to the transfer of power from the radiating
elements to the line and vice versa constitute a major aspect of the analysis.



8 Vertical dipoles on and over the earth or sea

8.1 Introduction

In their practical application in radio broadcasting, communicating with ships and
submerged submarines, and in cellular telephone transmission, dipole antennas are
in proximity with the surface of the earth or sea. More generally, the earth may be
coated with a layer of asphalt or concrete and the water may have a layer of ice.
In a common engineering approximation, the earth or sea is treated as a perfectly
conducting reflector or, in the far field, the earth-reflected field is assumed to be
correctly given by the plane-wave reflection coefficient. As shown in Fig. 8.1, the
far field of a short dipole at the height d over the earth or sea [1] is represented as
the superposition of a direct field and an earth-reflected field. The former travels the
distance r1 = [ρ2 + (z − d)2]1/2 from the source to the point of observation at the
point ρ, z. The latter is reflected as a plane wave from the surface so that it travels the
distance r2 = [ρ2 + (z + d)2]1/2. The plane-wave reflection coefficient is

fer (�) = N 2 cos�− (N 2 − sin2 �)1/2

N 2 cos�+ (N 2 − sin2 �)1/2
, (8.1)

where, with the time dependence e−iωt ,

N 2 = k2
2

k2
0

= ε2r + iσ2

ωε0

k2
2 = k2

0

(
ε2r + iσ2

ωε0

)
, k2

0 = ω2µ0ε0 = ω2

c2
. (8.2)

Here, k0 is the wave number of air and k2 = β2 + iα2 is the complex wave number of
the earth or sea. Note that when k2 → ∞ as for a perfect conductor, fer (�) = 1. In
the spherical coordinates r0,�,�, the far field in the air of a dipole with the current I
and the effective length 2he is given by

Er
0�(r0,�) = cBr

0�(r0,�)

= − iωµ0(2he I )

2π

eik0r0

r0
A(�) sin�, (8.3)
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Figure 8.1 Vertical electric dipole at height d in air (region 0) over the earth (region 2). Taken from
King and Sandler [1, Fig. 1]. c© 1994 I.E.E.E.

where

A(�) = 1
2 [e−ik0d cos� + fer (�)eik0d cos�]. (8.4)

When fer (�) = 1 for a perfect conductor,

A(�) = cos(k0d cos�). (8.5)

The field on the surface of the earth or sea is obtained with � = π/2, where

A(π/2) = 1
2 [1 + fer (π/2)]

= lim
�→π/2

[
N 2 cos�

N 2 cos�+ (N 2 − sin2 �)1/2

]

=
{

0, N < ∞,

1, N = ∞.
(8.6)

Since N = ∞ only when σ2 = ∞, i.e. the earth is a perfect conductor, it follows that
the field on the surface of the earth is zero for all physically available types of earth
or water. But this is contrary to fact. Vertical receiving antennas on the surface of the
earth or sea receive strong signals at large distances from the source!

The reason that (8.3) with (8.4) gives incorrect results when � is at and near π/2 is
that the assumption that the far field of a vertical dipole is a plane wave and is reflected
from the earth or sea as such is not true. The electromagnetic field near and along the
air–earth or air–sea boundary actually includes an inhomogeneous wave known as the
Norton surface wave or, more generally, as a lateral wave. It is not included in (8.3)
with (8.4) so that the correct answer is not obtained when � is at or near π/2.
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8.2 The complete electromagnetic field of a vertical dipole over the earth
or sea with or without a coating

The electromagnetic field of a center-driven electric dipole with the length 2h and the
approximate current distribution

Iz(z) = Iz(0)
sin k0(h − |z|)

sin k0h
, k0h < π (8.7)

is conveniently expressed in terms of a dipole with the constant current I and a length
2he – called the effective length – that has the same electric moment. This is defined
as follows:

2he I =
∫ h

−h
Iz(z) dz = 2Iz(0)

sin k0h

∫ h

0
sin k0(h − z) dz

= 2Iz(0)k
−1
0

1 − cos k0h

sin k0h
. (8.8)

With Iz(0) = I , the effective length is

2he = 2k−1
0

1 − cos k0h

sin k0h
. (8.9)

When k2
0h2 � 9, sin k0h ∼ k0h and 1 − cos k0h ∼ k2

0h2/2, so that

2he = h. (8.10)

With the dipole represented by (2he I ), the complete field of any dipole with an
electrical length k0h < π can be expressed in terms of the field of an infinitesimal
unit dipole with (2he I ) = 1 ampere meter (A m).

The analytical determination of the electromagnetic field in the air (region 0, wave
number k0) over the earth or sea (region 2, wave number k2) when this is coated with
a thin layer of dielectric (region 1, wave number k1, thickness l) as shown in Fig. 8.2
is complicated and is not carried out here. It is available in [2]. Subject only to the
conditions

k2
0 � |k2

1 | � |k2
2 |, |k1l| ≤ 0.6 (8.11)

and with the definition of the small quantity ε (not a permittivity when written without
a subscript)

ε = k0

k2
− ik0l (8.12)

the following formulas give the electromagnetic field of a short vertical dipole located
at any height d over the air–dielectric surface. The cylindrical components of the field
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Figure 8.2 Unit vertical electric dipole at height d over plane boundary z = −z′ = 0 between air
and a sheet of dielectric with thickness l over a conducting (or dielectric) half-space. Taken from
King and Sandler [2, Fig. 1]. c© 1994 American Geophysical Union.

are defined at any radial distance ρ and height z′ from the source. The electric moment
of the dipole with the length 2h is 2he I where I is the current at its center. The field is

B0φ′(ρ, z′) = −µ0(2he I )

4π

[
eik0r1

(
ρ

r1

)(
ik0

r1
− 1

r2
1

)
+ eik0r2

(
ρ

r2

)(
ik0

r2
− 1

r2
2

)

− 2k2
0ε eik0r2

(
π

k0r2

)1/2

e−i PF(P)

]
(8.13)

E0ρ(ρ, z′) = −ωµ0(2he I )

4πk0

{
eik0r1

(
ρ

r1

)(
z′ − d

r1

)(
ik0

r1
− 3

r2
1

− 3i

k0r3
1

)

+ eik0r2

(
ρ

r2

)(
z′ + d

r2

)(
ik0

r2
− 3

r2
2

− 3i

k0r3
2

)

− 2ε eik0r2

[(
ρ

r2

)(
ik0

r2
− 1

r2
2

)
− k2

0ε

(
π

k0r2

)1/2

e−i PF(P)

]}
(8.14)

E0z′(ρ, z′) = ωµ0(2he I )

4πk0

×
{

eik0r1

[
ik0

r1
− 1

r2
1

− i

k0r3
1

−
(

z′ − d

r1

)2( ik0

r1
− 3

r2
1

− 3i

k0r3
1

)]

+ eik0r2

[
ik0

r2
− 1

r2
2

− i

k0r3
2

−
(

z′ + d

r2

)2( ik0

r2
− 3

r2
2

− 3i

k0r3
2

)]

− 2k2
0ε eik0r2

(
π

k0r2

)1/2(
ρ

r2

)
e−i PF(P)

}
. (8.15)
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In these formulas, r1 = [ρ2 + (z′ − d)2]1/2 and r2 = [ρ2 + (z′ + d)2]1/2. Also,

P = k0r2

2

(
εr2 + z′ + d

ρ

)2

, ε = k0

k2
− ik0l (8.16)

F(P) = 1
2 (1 + i)−

∫ P

0

eit

(2π t)1/2
dt. (8.17)

The integral in (8.17) is the Fresnel integral. Note that all three components of the
electromagnetic field in the air, z′ ≥ 0, are independent of the wave number k1 of
the dielectric layer. Only its thickness is involved in the small parameter ε. This is
a consequence of the fact that all but one of the so-called “trapped” waves in the
dielectric layer are cut off by the condition |k1l| ≤ 0.6 and the one possible mode,
TM01, has the same components as the lateral wave in the air above the dielectric
layer. Furthermore, the trapped waves are plane waves that are not strongly excited
by a vertical dipole as are lateral waves. Note that when l = 0 and ε = k0/k2, the
formulas (8.13)–(8.15) for the three-layered region reduce to formulas for the two-
layered region consisting of regions 0 and 2.

The complete field in the air, given by (8.13)–(8.15), is conveniently studied in
ranges, each with simple characteristic properties. These can be visualized with the
help of Fig. 8.3, which shows the radial dependence of the electric field of a vertical
electric dipole over sea water [3] in the important special case when both the dipole
and the point of observation are in the air very close to the boundary surface, i.e. with
z′ ∼ 0 and d ∼ 0 in (8.14) and (8.15). With these values, the formulas reduce to

E0ρ(ρ, 0) = −ωε

k0
B0φ′(ρ, 0)

= ωµ0ε(2he I )

2πk0
eik0ρ

[
ik0

ρ
− 1

ρ2
− k2

0ε

(
π

k0ρ

)1/2

e−i P0F(P0)

]
(8.18)

E0z′(ρ, 0) = ωµ0(2he I )

2πk0
eik0ρ

[
ik0

ρ
− 1

ρ2
− i

k0ρ3
− k2

0ε

(
π

k0ρ

)1/2

e−i P0F(P0)

]
,

(8.19)

where now

P0 = k0ρε
2

2
. (8.20)

In their radial dependence, these formulas can be separated into four ranges. They
include the near field defined by

0 < k0ρ < 1: En
0ρ(ρ, 0) = −ωε

k0
Bn

0φ′(ρ, 0) = −ωµ0ε(2he I )

2πk0

eik0ρ

ρ2
(8.21)

En
0z′(ρ, 0) = −ωµ0(2he I )

2πk0
eik0ρ

(
1

ρ2
+ i

k0ρ3

)
. (8.22)
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A m) at boundary between region 2 (sea water, ε2r = 80, σ2 = 3.5 S/m) and region 0 (air); z′ = −z.
Taken from King [3, Fig. 2]. c© 1990 American Geophysical Union.

The intermediate range is defined by k0ρ ≥ 1 and |P0| ≤ 1 or

1 ≤ k0ρ ≤
∣∣∣∣ 2

ε2

∣∣∣∣: Ei
0ρ(ρ, 0) = −ωε

k0
Bi

0φ′(ρ, 0) = iωµ0ε(2he I )

2π

eik0ρ

ρ
(8.23)

Ei
0z′(ρ, 0) = iωµ0(2he I )

2π

eik0ρ

ρ
. (8.24)

The transition range is bounded by the conditions

1 < |P0| ≤ 4 or

∣∣∣∣ 2

ε2

∣∣∣∣ < k0ρ ≤
∣∣∣∣ 8

ε2

∣∣∣∣. (8.25)
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The far field is defined by

4 < |P0| < ∞ or

∣∣∣∣ 8

ε2

∣∣∣∣ < k0ρ < ∞. (8.26)

When (8.26) is satisfied, the Fresnel-integral terms reduce to a remarkably simple
asymptotic form. This cancels the factor e−i P0 and then cancels the 1/ρ term in (8.18)
and (8.19). As shown in detail in [4, Eq. (3.4.35)], the entire bracketed terms in (8.18)
and (8.19) reduce simply to −1/ε2ρ2. It follows that the far field for the surface wave
is defined by∣∣∣∣ 8

ε2

∣∣∣∣ ≤ k0ρ < ∞: Er
0ρ(ρ, 0) = −ωε

k0
Br

0φ′(ρ, 0) = −ωµ0(2he I )

2πk0

eik0ρ

ερ2
(8.27)

Er
0z′(ρ, 0) = −ωµ0(2he I )

2πk0

eik0ρ

ε2ρ2
. (8.28)

In the transition range between the intermediate and far fields, i.e. when 1 ≤ |P0| ≤ 4
or |2/ε2| ≤ k0ρ ≤ |8/ε2|, the amplitude of the field curves smoothly from the 1/ρ
dependence to the 1/ρ2 dependence as the lateral wave increases from negligible to
dominant. These ranges are shown in later sections for specific applications.

It is now appropriate to examine the properties of the field at all points in the air,
i.e. for all values of ρ and z′. The condition d 2 � ρ2 will be retained. A schematic
diagram of the four ranges of the field is shown in Fig. 8.4. The contour P = 1 bounds
the 1/r0 intermediate field and the transition range; the contour P = 4 bounds the
transition range and the 1/r2

0 far field. For most purposes, it is convenient to eliminate
specific reference to the transition range and divide it equally between the intermediate
and far fields. When this is done, the 1/r0 decrease characteristic of the intermediate
range is extended to include half of the transition range. Similarly, the remainder of
the transition region is made part of the far field where the dependence on distance is
1/r2

0 . With this approximation, the extended intermediate and far fields are

1 ≤ k0ρ ≤
∣∣∣∣ 5

ε2

∣∣∣∣,
∣∣∣∣ 5

ε2

∣∣∣∣ ≤ k0ρ < ∞. (8.29)

8.3 The field in the air in the intermediate range

In the intermediate range defined by k0r0 ≥ 1 and |P| ≤ 1, the near-field terms are
negligible and the Fresnel-integral terms are small compared to the 1/r0 terms. In this
range, the components of the field are more convenient in the spherical coordinates
r0,�,� than in the cylindrical coordinates ρ, φ′, z′. The relations between them are
ρ = r0 sin� and z′ = r0 cos�. When the dipole is at d = 0 on the surface of the
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0 . ε = (k0/k2)− ik0l.

layered region or directly on the earth or sea, or if it is at heights d that are small
compared to the radial distance to the point of observation so that d 2 � r2

0 , and when,
in addition, dz′ � r2

0 where r0 = (ρ2 + z′2)1/2, it follows that

r1 = [ρ2 + (z′ − d)2]1/2 ∼ (r2
0 − 2z′d)1/2 = r0 − d cos� (8.30a)

r2 = [ρ2 + (z′ + d)2]1/2 ∼ (r2
0 + 2z′d)1/2 = r0 + d cos�. (8.30b)

These values are used in phases. In amplitudes,

r1 ∼ r2 ∼ r0

is an adequate approximation. With these formulas and with the near-field and the
Fresnel-integral terms omitted because they are negligibly small in the intermediate
range, (8.13)–(8.15) become

Bi
0�(r0,�) = −µ0(2he I )

2π
eik0r0

ik0

r0
sin� cos(k0d cos�) (8.31)

Ei
0�(r0,�) = Ei

0ρ(ρ, z′) cos�− Ei
0z′(ρ, z′) sin�

= − iωµ0(2he I )

2π

eik0r0

r0
sin�

[
cos(k0d cos�)

+ id

r0
cos� sin(k0d cos�)− ε cos� eik0d cos�

]
. (8.32)

Here the terms multiplied by the small quantities ε and d/r0 can usually be neglected.
This leaves the leading term

Ei
0�(r0,�) = cBi

0�(r0,�) = − iωµ0(2he I )

2π

eik0r0

r0
sin� cos(k0d cos�). (8.33)
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This is the same as the far field of a vertical dipole at the height d over a perfectly
conducting plane as given by (8.3) with k1 = ∞ and fer (�) = 1. In the intermediate
range, the properties of the layered region are evidently irrelevant so long as the
conditions (8.11) are satisfied. However, whereas the radial component of the electric
field Ei

0r (r0,�) = 0 when the dipole is over a perfect conductor, it has a finite value
when the dipole is over a region that satisfies (8.11). Specifically,

Ei
0r (r0,�) = Ei

0ρ(ρ, z′) sin�+ Ei
0z′(ρ, z′) cos�

= ωµ0(2he I )

2π

eik0r0

r0

[
d

r0
sin(k0d cos�)+ iε eik0d cos�

]
sin2 �. (8.34)

When both d/r0 and k0d are small, the significant radial field is

Ei
0r (r0,�) = iωµ0(2he I )

2π

eik0(r0+d cos�)

r0
ε sin2 �, (8.35)

where ε is defined in (8.16). Note that the radial component also decreases as 1/r0,
and has the factor sin2 �, not sin� as does the transverse component.

With d ∼ 0,

Ei
0�(r0,�) = − iωµ0(2he I )

2π

eik0r0

r0
sin� (8.36)

Ei
0r (r0,�) = iωµ0(2he I )

2π

eik0r0

r0
ε sin2 �. (8.37)

8.4 The far field in the air

When the condition |P| ≥ 4 is satisfied, the far-field terms of the direct and image
fields can be combined with the far field of the Fresnel-integral term. In its asymptotic
form with

P = k0r2

2

(
εr2 + z′ + d

ρ

)2

(8.38)

T = k2
0ε

(
π

k0r2

)1/2

e−i PF(P)

→ ik0ρ

r2
2

ε

ε + (z′ + d)/r2
+ ε

r2
2

(
ρ/r2

ε + (z′ + d)/r2

)3

. (8.39)
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With (8.39), (8.13)–(8.15) have the following far-field forms:

Br
0φ′(ρ, z′) = −µ0(2he I )

4π

{
eik0r1

ik0ρ

r2
1

+ eik0r2

[
ik0ρ

r2
2

− 2T

]}

= −µ0(2he I )

4π

{
eik0r1

ik0ρ

r2
1

+ eik0r2

[
ik0ρ

r2
2

(
(z′ + d)/r2 − ε

(z′ + d)/r2 + ε

)

− 2ε

r2
2

(
ρ/r2

ε + (z′ + d)/r2

)3]}
. (8.40)

Since the angle of incidence on the surface z′ = 0 in the far field is �i with

cos�i = z′ + d

r2
, sin�i = ρ

r2
(8.41)

the plane-wave reflection coefficient for the layered surface at z′ = 0 is

fer (�
i ) = cos�i − ε(1 − ε2 sin2 �i )1/2

cos�i + ε(1 − ε2 sin2 �i )1/2
∼ cos�i − ε

cos�i + ε
, (8.42)

where ε = (k0/k2)− ik0l and |ε|2 � 1. When l = 0, ε = N−1 = k0/k2.
With (8.41) and (8.42), (8.40) becomes

Br
0φ′(ρ, z′) = −µ0(2he I )

4π

{
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ik0ρ

r2
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+ eik0r2

[
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r2
2

fer (�
i )− 2ε
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)3]}
. (8.43)

Similarly,

Er
0ρ(ρ, z′) = −ωµ0(2he I )
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]}

= −ωµ0(2he I )
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)
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(8.44)

Er
0z′(ρ, z′) = ωµ0(2he I )
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. (8.45)
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The formulas (8.43), (8.44), and (8.45) give the complete far field at any height z′ of a
vertical electric dipole located at any height d subject only to the conditions

k2
0 � |k1|2 � |k2|2, |P| ≥ 4, |k1l| ≤ 0.6. (8.46)

The field and the dipole are over a layered region consisting of a dielectric with the
thickness l (region 1) on a half-space (region 2). It is significant to note that each of
these far-field formulas consists of three terms. They are the direct field, the plane-
wave reflected field, and the lateral-wave field.

It is possible to express the field in the spherical coordinates r0,�,� with the
substitutions

r0 = (ρ2 + z′2)1/2, sin� = ρ

r0
, cos� = z′

r0
(8.47)

if the additional restriction

d 2 � r2
0 (8.48)

is made. With it,

r1 ∼ r0 − d cos�, r2 ∼ r0 + d cos� (8.49)

in phases, and

r1 ∼ r2 ∼ r0 (8.50)

in amplitudes. It follows that
ρ

r1
∼ ρ

r2
∼ ρ

r0
= sin� (8.51)

z′ − d

r1
∼ z′ − d

r0
= cos�− d

r0

cos�i = z′ + d

r2
∼ z′ + d

r0
= cos�+ d

r0
. (8.52)

With these substitutions and

1
2 [1 + fer (�

i )] = cos�+ d/r0

ε + cos�+ d/r0
, 1

2 [1 − fer (�
i )] = ε

ε + cos�+ d/r0

(8.53)
(8.43)–(8.45) become

Br
0φ′(r0,�) = −µ0(2he I )

2π
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{
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(
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ε
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r2
0

(
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)3

eik0d cos�
}

(8.54)
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Er
0ρ(r0,�) = −ωµ0(2he I )
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(8.55)

Er
0z′(r0,�) = ωµ0(2he I )
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. (8.56)

The two cylindrical components of the electric field can be combined to obtain the
spherical components. After extensive algebraic manipulation,

Er
0�(r0,�) = Er

0ρ(r0,�) cos�− Er
0z′(r0,�) sin� (8.57)

= −ωµ0(2he I )
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. (8.58)

Since the terms εd/r0 and d 2/r2
0 are negligibly small,

Er
0�(r0,�) ∼ −ωµ0(2he I )
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. (8.59)
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Similarly, with (8.55) and (8.56),

Er
0r (r0,�) = Er

0ρ(r0,�) sin�+ Er
0z′(r0,�) cos� (8.60)

= ωµ0(2he I )
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. (8.61)

The formulas (8.54), (8.59), and (8.61) give the three components Br
0�(r0,�),

Er
0�(r0,�), and Er

0r (r0,�) of the far field of a vertical electric dipole with the electric
moment 2he I located at any height d. The field is defined at any point r0,�; as it
is rotationally symmetric, the coordinate � does not appear. It contains terms with
dependences on � in the form sinn � with n = 1, 2, 4, and 5. Graphs of these functions
are in Fig. 8.5. The conditions are: k2

0 � |k2
1 | � |k2

2 |, |k1l| ≤ 0.6, and d 2 � r2
0 . When

the dielectric layer is absent, l = 0 and ε = (k0/k2)− ik0l becomes ε = k0/k2.

In many applications the antenna is on the surface of the earth, either as a base-
insulated dipole or as a monopole base-driven against a buried ground system. In this
case, d/r0 ∼ 0, k0d ∼ 0, and

Br
0�(r0,�) = −µ0(2he I )
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[
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(8.62)
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Er
0r (r0,�) = −ωµ0(2he I )
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. (8.64)
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Figure 8.5 The field factors sin� for the space wave and sin2 �, sin4 �, and sin5 � for the lateral
wave.

The field on the surface of the earth is given by � ∼ π/2, r0 = ρ, so that

Br
0�(r0, π/2) = µ0(2he I )

2π

eik0ρ

ε2ρ2
(8.65)

Er
0�(r0, π/2) = ωµ0(2he I )

2πk0

eik0ρ

ε2ρ2
(8.66)

Er
0r (r0, π/2) = −ωµ0(2he I )

2πk0

eik0ρ

ερ2
. (8.67)

Note that these formulas consist entirely of the lateral-wave terms. The direct and
image fields cancel.

8.5 Base-driven and grounded monopoles

An important antenna in radio communication is the base-driven and base-grounded
monopole. In the AM broadcast band (0.55–1.6 MHz), for example, the monopole
is on the earth and driven against a radial ground system of bare conductors. In the
maritime radio band (1.5–30 MHz), the monopole may be erected on the upper deck
of the ship and be driven against the steel hull which is, of course, grounded in the
water – lake or sea.
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When the condition |k2|2 � k2
0 is well satisfied so that the radial distance ρ =

2|k2
2 |/k3

0 to the outer boundary of the intermediate field is at least several hundred
meters, the vertical component of the electric field near the monopole is the same as if
it were over a perfect conductor. This means that the distribution of current in the base-
driven monopole is the same as it would be if it were the upper half of a center-driven
dipole isolated in the air. Its impedance is half that of the dipole. If there are several
monopoles in a directive array, the properties of the array can be obtained directly
from those of the corresponding dipole array. The total radiated power is one-half that
radiated by the corresponding dipole array with equal driving-point currents.

The driving-point impedance of the grounded monopole is the sum of the impedance
of the monopole over a perfect conductor and the impedance of the ground network.
That is,

Z in = Z0 + Zg, (8.68)

where Z0 is the impedance of the monopole and Zg is the impedance of the ground
network. This latter is readily evaluated with the theory of the bare dipole in a
conducting medium. If the earth is not too dry so that σ2 > ωε0ε2r , the current in
a monopole in an infinite medium with the wave number k2 ∼ (iωµ0σ2)

1/2 is well
approximated by

Ix (x) ∼
V e

0

Z

sin kI (h − x)

sin kI h
, (8.69)

where

Z = R − i X = �

4πσ2
kI cot kI h (8.70)

kI = βI + iαI =
(

iωµ0σ2 − 4π ziσI

�

)1/2

(8.71a)

� = 2 ln(h/a)− 2. (8.71b)

The internal impedance per unit length of the monopole is zi = r i −i xi . At frequencies
that are sufficiently high so that (ωµ0)

2 � (4πr i/�)2, the internal impedance
zi of the copper monopole can be neglected and the monopole treated as perfectly
conducting. In this case,

kI = k2 = (iωµ0σ2)
1/2 = (1 + i)

(
ωµ0σ2

2

)1/2

= β2 + iα2. (8.72)

In the AM broadcast band, the frequency is high enough to treat the conductor as
perfect, so that

Z ∼ �

4πσ2

(
ωµ0σ2

2

)1/2

(1 + i) cotβ2h (1 + i)

= �

4π

(
ωµ0

2σ2

)1/2

(1 + i)

(
cosβ2h coshα2h − i sinβ2h sinhα2h

sinβ2h coshα2h + i cosβ2h sinhα2h

)
. (8.73)
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A study of the behavior of the current in and impedance of a bare antenna in a
dissipative medium such as wet or moist earth shows that the current amplitude
decreases to negligibly small values at electrical distances from the driving point
that exceed β2x = π/2. It follows that a monopole length that exceeds β2h = π/2
serves no useful purpose. Because the surrounding medium is conducting, a cylindrical
conductor serves both as a radiating antenna and as an electrode for transferring the
current from the conducting antenna to the conducting earth.

With β2h = π/2,

Z = �

4π

(
ωµ0

2σ2

)1/2

(1 + i)(−i tanhπ/2)

= 0.917(1 − i)
�

4π

(
ωµ0

2σ2

)1/2

. (8.74)

At a frequency f = 0.55 MHz and with σ2 = 0.04 S/m for moist earth,

k0 = 0.0115 m−1, k2 = 0.294(1 + i)m−1 (8.75)

so that

h = π

2β2
= 5.34 m. (8.76)

If the radius of the monopole is a = 2.5 mm, h/a = 2136 and � = 13.3. It follows
from (8.74) that

Z = 7.1(1 − i) ohms. (8.77)

The formulas (8.70), (8.73), and (8.74) give half the impedance of a center-driven
dipole in the infinite dissipative medium. Because the mutual interaction between the
two halves of a dipole is extremely small when the dipole is in such a medium, it
contributes negligibly and the impedance of the dipole is well approximated by the sum
of the impedances of two independent monopoles, i.e. the impedance of the monopole
when driven against any other element is simply half the impedance of the dipole. In
the present case, the horizontal monopole in the dissipative earth is driven against a
vertical monopole in the air. More specifically, a radial group of N such horizontal
monopoles, all connected in parallel, are driven against the vertical monopole in the
air.

Actually, the formulas (8.70), (8.73), and (8.74) apply to a monopole in an infinite
dissipative medium. In a radial ground network, each element is close to the surface
of the earth so that the electric field and the associated currents in the conducting
earth are reflected at the air boundary. Since |k2|2 � k2

0, the reflection coefficient
fr = (k2 − k0)/(k2 + k0) ∼ 1. This means that the reflected electric field is in phase
with the incident electric field and the reflected magnetic field is in phase opposition
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with the incident magnetic field. Hence, the complete reflected field is equal to the
field of an identical codirectional image monopole at a distance 2d from the actual
monopole if d is its distance from the air–earth boundary. As the electrical distance
|k2d| is small, the reflected electric field when combined with the direct field from the
monopole is essentially that of two identical monopoles separated by a distance 2d. In
effect, the monopole with its image constitutes a single monopole with the effective
radius ae = (2da)1/2, the associated quantity

�e = 2 ln(h/ae)− 2 (8.78)

and a current I1x (x) that is twice that in the actual monopole. That is,

I1x (x) = 2Ix (x) =
V e

0

Ze

sin k2(h − x)

sin k2h
(8.79)

Ze = �e

4π

(
ωµ0

2σ2

)1/2

(1 + i) cotβ2h (1 + i). (8.80)

The driving-point impedance in the presence of the boundary is

Z1 = V e
0

I1(0)
= 2Ze = 2Z�e

�
. (8.81)

The impedance of N such monopoles in parallel is

Zg = Z1

N
= 2Z�e

N�
, (8.82)

where Z is the impedance of a single monopole in an infinite medium, as given by
(8.70), (8.73) or (8.74). Note that with N = 10, the radial conductors are sufficiently
far apart in the conducting earth that mutual impedances can be neglected.

With d = 0.15 m,

ae = 0.087 m (8.83)

�e = 6.23 (8.84)

so that

Z1 = 2Z�e

�
= 0.937Z = 6.66(1 − i) ohms. (8.85)

With ten buried radial conductors,

Zg = 0.666(1 − i) ohm. (8.86)

It is this value that is substituted in (8.68) to determine the driving-point impedance Z in

of the monopole base-driven against the radial ground network. Note that Zg is very
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small compared to the driving-point impedance of a monopole in air over a perfect
conductor. If this has h = λ0/4 = 136.6 m and the radius a = 1.24 cm, it follows that
the expansion parameter � = 2 ln(2h/a) = 20. Then, with Table 30.1 in [5, p. 168],
Z0 = 39.3 − i21.8 ohms and the driving-point impedance of the grounded antenna is

Z in = Z0 + Zg = 40.0 − i22.5 ohms. (8.87)

Note that the impedance of the ground network is small enough to be negligible.
This means that the properly grounded monopole behaves like the monopole over a
perfect conductor for all circuit and field properties within the intermediate-zone range
provided |k2|2 � k2

0. The complete fields in the extended intermediate and far zones
are

1 ≤ k0ρ ≤
∣∣∣∣ 5

ε2

∣∣∣∣: Ei
0�(r0,�) = − iωµ0(2he I )

2π

eik0r0
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sin� (8.88)
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0r (r0,�) = iωµ0(2he I )

2π

eik0r0

r0
ε sin2 � (8.89)

∣∣∣∣ 5

ε2

∣∣∣∣ ≤ k0ρ: Er
0�(r0,�) = −ωµ0(2he I )

2πk0
eik0r0

{
ik0

r0

(
sin� cos�

ε + cos�

)

− sin3 �(ε sin2 �− ε2 cos�)

r2
0 (ε + cos�)3

}
(8.90)

Er
0r (r0,�) = −ωµ0(2he I )

2πk0

ε sin4 �

r2
0 (ε + cos�)2

eik0r0 (8.91)

with ε = (k0/k2) − ik0l. When there is no surface layer of pavement, l = 0 and
ε = k0/k2.

The radial components given by (8.89) and (8.91) are due to the lateral wave. In the
far field, the transverse component is clearly separated into a space-wave term (that
includes the plane-wave reflection coefficient as a factor and decreases with distance
as 1/r0) and a lateral-wave component (that decreases as 1/r2

0 ). The former vanishes
when � = π/2, the latter has its maximum there. The corresponding formula (8.88)
for the intermediate range consists of only one term with its amplitude proportional
to 1/r0. However, the contribution from the plane-wave reflection coefficient is zero
when � = π/2, whereas in (8.88) the amplitude is at its maximum when � = π/2.
Evidently, (8.88) combines the contributions of the plane-wave reflection coefficient
and the lateral wave into one simple term in the intermediate range where the Fresnel-
integral term is negligible.

The vertical field patterns for the intermediate range of |Ei
0�(r0,�)| ∼ sin� and

of |Ei
0r (r0,�)| ∼ |k0/k2| sin2 � are shown in Fig. 8.6. The pattern for Ei

0�(r0,�)

applies to a vertical electric dipole on the surface of all types of earth or water. The
four patterns for Ei

0r (r0,�) apply to (a) sea water with σ2 = 4 S/m, ε2r = 80; (b) wet
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Figure 8.6 The vertical field characteristics of a vertical electric dipole on the boundary between
air and earth or water. Broken line: the function sin� for |Ei

0�(r0,�)| over all types of earth and

water. Solid lines: the function |k0/k2| sin2 � for |Ei
0r (r0,�)| over (a) sea water, (b) wet earth, (c)

dry earth, and (d) lake water.

Table 8.1. Numerical values of |Er
0�(r0,�)|max and |Er

0�(r0, π/2)| for vertical dipole in air over
different mediaa

Region 2 σ2 (S/m) ε2r �max |Er
0�(r0,�)|max (V/m) |Er

0�(r0, π/2)| (V/m)

Sea water 4.0 80 78.5◦ 2.36 × 10−5 1.73 × 10−6

Wet earth 0.4 12 73.0◦ 2.20 × 10−5 1.73 × 10−7

Dry earth 0.04 8 66.0◦ 1.87 × 10−5 1.74 × 10−8

Lake water 0.004 80 65.5◦ 1.80 × 10−5 1.93 × 10−8

Frequency f = 10 MHz, radial distance r0 = 500 km. See Fig. 8.7.
a Taken from King [3, Table 1]. c© 1990 American Geophysical Union.

earth with σ2 = 0.4 S/m, ε2r = 12; (c) dry earth with σ2 = 0.04 S/m, ε2r = 8; and (d)
lake water with σ2 = 0.004 S/m, ε2r = 80. In all cases, the frequency is f = 10 MHz.

The corresponding patterns for the far field Er
0�(r0,�) as obtained from (8.90)

are shown in Figs. 8.7 and 8.8 in conjunction with Table 8.1. Graphs of the far field
Er

0r (r0,�) as obtained from (8.91) are shown in Fig. 8.9 in conjunction with Table
8.2. In all cases, the frequency is f = 10 MHz.

8.6 Vertical antennas on the earth for communicating with submarines in
the ocean

Shore-based antennas for communicating with submarines are located close to the sea
coast at various points around the world. Examples are at Annapolis, MD, and Cutler,
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Figure 8.7 Complete field of |Er
0�(r0,�)| for vertical dipole in air on boundary between air and

(a) sea water, (b) wet earth, (c) dry earth, and (d) lake water; the dashed curve is for σ2 = ∞.
Frequency f = 10 MHz, radial distance r0 = 500 km. Numerical values are in Table 8.1. Taken
from King [3, Fig. 3]. c© 1990 American Geophysical Union.
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Figure 8.8 Enlarged section of Fig. 8.7 near � = 90◦. Taken from King [3, Fig. 4]. c© 1990
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Figure 8.9 Complete field of |Er
0r (r0,�)| for vertical dipole in air on boundary between air and (a)

sea water, (b) wet earth, (c) dry earth, and (d) lake water. Frequency f = 10 MHz, radial distance
r0 = 500 km. Numerical values are in Table 8.2. Taken from King [3, Fig. 5]. c© 1990 American
Geophysical Union.

Table 8.2. Numerical values of |Er
0r (r0, π/2)|

for vertical dipole in air over different mediaa

Region 2 σ2 (S/m) ε2r |Er
0r (r0, π/2)| (V/m)

Sea water 4.0 80 2.04 × 10−8

Wet earth 0.4 12 6.44 × 10−9

Dry earth 0.04 8 2.04 × 10−9

Lake water 0.004 80 2.15 × 10−9

Frequency f = 10 MHz, radial distance r0 = 500 km. See Fig. 8.9.
a Taken from King [3, Table 2]. c© 1990 American Geophysical Union.

ME, along the Atlantic coast. In order to penetrate to useful depths in the ocean, these
antennas must radiate at very low frequencies. Since vertical antennas on the earth are
limited for practical reasons to heights of the order of h = 1200 ft (366 m), frequencies
in the range from 14 kHz to 28.5 kHz involve electrical lengths in the range k0h =
0.107 to 0.218, where k0 = ω/c is the wave number of air. Grounded base-driven
monopoles with such small electrical lengths have triangular current distributions and
driving-point impedances given by

Z = R + j X = 10k2
0h2 − j

30(�− 2 − 2 ln 2)

k0h
ohms, (8.92)
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where j = −i and

� = 2 ln(2h/a) and 2 + 2 ln 2 = 3.39. (8.93)

For f = 14 to 28.5 kHz and with h/a = 75 and � = 10,

R = 0.114 to 0.475 ohm, X = −1853 to −909.6 ohms. (8.94)

Owing to the very large reactance, the electrically short monopole is not a practical
antenna for radiating the very large amounts of power needed to communicate with
submerged submarines at large distances in the sea.

In order to reduce the high reactance and increase the very low radiation resistance,
it is necessary to increase the length of the antenna. As this cannot be done vertically
upward, the only alternative is to do so horizontally. The resulting antenna is known as
an inverted L antenna. However, in the case at hand, the vertical section is electrically
so short that the horizontal wire with its image in the earth is simply a two-wire
transmission line with an open end. If the length of the horizontal wire is a quarter
wavelength with an open end, the line is resonant and the impedance seen by the
generator in the vertical section is a pure resistance given by R = 15k2

0b2 = 60k2
0h2

where b = 2h is the spacing of the two-wire line. Instead of extending the horizontal
wire a full quarter wavelength, it can be much shorter if it is end-loaded with
capacitance to ground. This capacitance can consist of large metal panels or areas of
wire mesh. Several such radial sections can be arranged in a rotationally symmetric
manner and connected in parallel to the feeding transmission line. The resulting
umbrella-like structure is known as a top-loaded antenna. Since the top-loading is
roughly equivalent to a flat metal disk, it has the general properties of a radial
transmission line driven at its center by a generator in series with a vertical conductor
that connects the disk to a radial ground network. The total power radiated from under
the outer edge of the disk is simply the power radiated by a dipole with the length
h and carrying a current with the uniform amplitude Iz(0). The external or radiation
resistance of such a dipole is

Re = 40k2
0h2, (8.95)

where h is the length of the monopole. Since the actual top-loading panels are lower
at the edge than at the center and are supported by grounded metal towers, each with
its guy wires, the electromagnetic field of the currents in them partly cancel the field
of the current in the central monopole. This reduces the radiated field and the effective
length which determines its amplitude. The field actually generated by the top-loaded
monopole can be measured at suitable distances and the effective length determined
for each frequency. It is necessarily smaller than either the length h of the central
monopole or the height of the outer edges of the top-loading.

Since the capacitive top-loading usually does not extend out radially far enough to
make the antenna resonant, a variable inductance can be connected in series with the



312 Vertical dipoles over earth or sea

monopole at the driving point to tune it to resonance and provide a resistive impedance.
This resistance is the sum of the radiation resistance Re, the resistance Rg of the
ground network, and the resistance Rc of the inductance coil. Thus,

RA = Re + Rg + Rc, (8.96)

where

Re = 40k2
0h2

e . (8.97)

The ground resistance, if this is due to N radial wires, is approximated by the real part
of (8.82) if the wires are not too close together. Since the entire system is tuned to
resonance, the total reactance including Xg is zero.

At frequencies in the kilohertz range, the intermediate zone is very extensive.
Specifically at f = 20 kHz over sea water (wave number k2), the conditions |P0| ≤ 1,
k0r0 ≥ 1 become |ρk3

0/2k2
2 | ≤ 1 or

ρ ≤
∣∣∣∣2k2

2

k3
0

∣∣∣∣ = 2µ0σ2c3

ω2
= 1.74 × 107 km. (8.98)

Clearly, the intermediate zone includes the entire useful range so that the formulas
(8.36) and (8.37) give the entire electromagnetic field when 2he for a dipole with the
length 2h is replaced by he for a monopole with the length h. Specifically,

Ei
0�(r0,�) = cBi

0�(r0,�) = − iωµ0he I

2π

eik0r0

r0
sin� (8.99)

Ei
0r (r0,�) = iωµ0he I

2π

(
k0

k2

)
eik0r0

r0
sin2 �. (8.100)

The VLF antenna at Cutler, ME, consists of two vertical monopoles, each with the
height 298 m and separated by a distance 1870 m. Each monopole is top-loaded by
six symmetrically arranged diamond-shaped panels of wire mesh that extend radially
outward 935 m. Each panel is supported by the central monopole and three grounded
towers. The outermost one is 243 m high. The panels sag significantly between the
masts so that the average height is only 201 m. The entire structure is on a peninsula
that extends into the Atlantic Ocean. It has a roughly rectangular shape only slightly
greater than the area 3740 × 1870 m under the top-loading of the two monopoles.
Each monopole has its own ground system that begins with radial conductors but is
interconnected and finally led into the surrounding ocean. Measurements of the vertical
electric field indicate that the effective height of the antenna with either one element
driven or both driven in parallel is near 150 m. This is half the length of the monopoles
and substantially smaller than the outer edge of the panels or their average height. With
he = 150 m and f = 19.4 kHz, k0 = 4.063 × 10−4 m−1 and

Re = 40k2
0h2

e = 0.150 ohm. (8.101)
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The measured resistance of the tuning coil was Rc = 0.014 ohm and the total driving-
point resistance of one monopole was R0 = 0.200 ohm. It follows that the ground
resistance must be

Rg = R0 − Rc − Re = 0.036 ohm. (8.102)

The very extensive ground system ending in salt water makes this quite low resistance
reasonable. The radiating efficiency of the antenna is high, namely

E = Re

R0
= 0.75 or 75%. (8.103)

When operating at full power, each monopole carries a current of 2600 A and radiates
a megawatt of power. The array radiates twice that power. The vertical electric field at
ρ = 500 km on the surface of the sea is

|Ei
0�(500 km, π/2)| = ωµ0he I

2πρ
= 19 mV/m. (8.104)

The radial electric field on the surface of the sea is

|Ei
0r (500 km, π/2)| =

∣∣∣∣k0

k2
Ei

0�(500 km, π/2)

∣∣∣∣. (8.105)

Here,

k0

k2
= 1

c

(
ω

µ0σ2

)1/2

= 0.51 × 10−3.

Hence,

|Ei
0r (500 km, π/2)| = 9.89 µV/m. (8.106)

The signal received by a submarine at the depth z is

|E2ρ(ρ, z)| = |Ei
0r (ρ, π/2)| e−α2z, (8.107a)

where

α2 =
( |k2|2

2

)1/2

=
(
ωµ0σ2

2

)1/2

= 0.56 m−1. (8.107b)

At a depth of z = 20 m, the field is

|E2ρ(500 km, 20 m)| = 1.35 × 10−10 V/m (8.108a)

or

20 log10 |E2ρ | = −197.4 dB. (8.108b)
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At z = 40 m,

|E2ρ(500 km, 40 m)| = 1.85 × 10−15 V/m (8.109a)

or

20 log10 |E2ρ | = −294.7 dB. (8.109b)

This is a large enough signal to be readily detectable by a submarine with a trailing-
wire antenna and a sensitive receiver.

The VLF antenna at Annapolis, MD, differs from the Cutler, ME, antenna in that it
consists of a single tower that is 1200 ft high and insulated from the ground instead
of being connected to a ground network. It is driven by three transmission lines at the
300-ft, 600-ft, and 900-ft heights. These lines lead from the antenna to the transmitter
on the ground at some distance from the base of the tower. The top-loading consists
of three symmetrical panels that are supported by 600-ft towers. In addition, there is
a much longer parallel-wire type of top-loading that extends out beyond one of the
three panels. Measurements of the vertical electric field give an effective length of
he = 125 m. The radiation efficiency is only 35%.

8.7 High-frequency dipoles over the earth; cellular telephone

Frequencies in the range from 100 to 1800 MHz are used for various types of
communication including especially the cellular telephone at frequencies from 900
to 1800 MHz. The antennas involved are dipoles or monopoles on elevated ground
planes of finite size. These may be at heights as great as d = 30 m. Owing to the
high frequency, the far-field condition |P0| ≥ 4 is satisfied in the practical range
of distances. Also, the radial distances ρ are large compared with the height d of
the dipole so that the condition d 2 � ρ2 is well satisfied. Accordingly, the appli-
cable formula for Er

0�(r0,�), which is the only component of interest, is (8.59).
That is,

Er
0�(r0,�) = −ωµ0(2he I )

2πk0
eik0r0

{
ik0

r0
sin�

[
(cos�+ d/r0) cos(k0d cos�)

ε + cos�+ d/r0

− i[ε − (d/r0) cos2 �] sin(k0d cos�)

ε + cos�+ d/r0

]

+ ε

r2
0

(
sin�

ε + cos�+ d/r0

)3

(ε cos�− sin2 �)eik0d cos�
}
. (8.110)
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When the dipole is over earth or water, ε = k0/k2; when there is an electrically thin
layer of asphalt or concrete on the earth or a layer of ice on the water, ε = (k0/k2) −
ik0l. The only restrictions on (8.110) are

|k2| ≥ 3k0, |k1l| ≤ 0.6, d 2 � r2
0 . (8.111)

The three wave numbers are

k0 = ω

c
, k1 = k0ε

1/2
1r , k2 = β2 + iα2 = k0ε

1/2
2r

(
1 + iσ2

ωε0ε2r

)1/2

; (8.112)

r0 = (ρ2 + z′2)1/2 and � is measured from the vertical z′-axis. In most cases,

d

r0
� | cos�+ ε| (8.113)

so that (8.110) reduces to

Er
0�(r0,�) = −ωµ0(2he I )

2πk0
eik0r0

{
ik0

r0

(
sin� cos�

cos�+ ε

)

×
[

cos(k0d cos�)− iε sin(k0d cos�)

cos�

]

+ ε

r2
0

(
sin�

cos�+ ε

)3

(ε cos�− sin2 �)eik0d cos�
}
. (8.114)

In this expression, the term with 1/r0 as a factor is the space wave. Its value is zero
when � = π/2 on the boundary surface. The factor containing d takes account of
the height of the dipole. It reduces to unity when d = 0. The term with 1/r2

0 as a
factor is the lateral wave. Its maximum occurs when � = π/2. This is proportional to
(sin5 �)/ε2r2

0 . Over most of the earth’s surface, ε2 = k2
0/|k2|2 � 1 so that 1/ε2 =

k2
2/k2

0 is very large. The factor sin5 � shows that the surface wave is confined to a
narrow beam close to the surface where � = π/2. Only over dry sand is the condition
|k2| ≥ 3k0 not satisfied so that 1/ε2 = k2

2/k2
0 is not large and for all practical purposes

there is no surface wave. This means that |Er
0�(r0, π/2)| ∼ 0.

Graphical representations of the vertical field patterns of a vertical electric dipole at
the height d = 2 m are shown in a series of figures at the radial distances r0 = 100,
500, and 1000 m, for sea and lake water, two types of earth, and dry sand. Specifically,
Figs. 8.10, 8.12, and 8.14 show polar graphs of |Er

0�(r0,�)| at f = 100 MHz.
The field in the range 80◦ ≤ � ≤ 90◦ is shown in logarithmic graphs in Figs.
8.11, 8.13, and 8.15. Similar graphs at f = 500 MHz are in Figs. 8.16–8.19, and
at f = 1000 MHz in Figs. 8.20–8.23. A close study of Figs. 8.10, 8.12, and 8.14
shows that the three sets of diagrams are identical for all values of � not too close
to � = π/2 or 90◦ except for the radial scale which decreases with increasing
r0 exactly as 1/r0. Specifically, 1 V/m on Fig. 8.10 with r0 = 100 m appears as
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Figure 8.10 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 100 MHz; r0 = 100 m. Taken from King and
Sandler [1, Fig. 2]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0,�)|max at �

1. Sea water 4.000 80 4.34 × 100 at 90◦
2. Wet earth 0.400 12 8.05 × 10−1 at 49◦
3. Dry earth 0.040 8 6.62 × 10−1 at 50◦
4. Lake water 0.004 80 7.60 × 10−1 at 47◦
5. Dry sand 0.000 2 9.97 × 10−1 at 74◦
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Figure 8.11 Rectangular graphs of the range 80◦ ≤ � ≤ 90◦ in Fig. 8.10; f = 100 MHz,
r0 = 100 m. Taken from King and Sandler [1, Fig. 5]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 4.34 × 100

– – – Wet earth 0.400 12 4.37 × 10−1

– · – Dry earth 0.040 8 6.45 × 10−2

— — Lake water 0.004 80 4.80 × 10−1

· · · · · Dry sand 0.000 2 1.20 × 10−2

0.2 V/m on Fig. 8.12 with r0 = 500 m, and as 0.1 V/m on Fig. 8.14 with r0 =
1000 m.

In Fig. 8.10, the top curve for sea water with r0 = 100 m has a large peak at � =
90◦; the peak is much smaller in Fig. 8.12 with r0 = 500 m and does not appear in
Fig. 8.14 with r0 = 1000 m. This peak is part of the contribution of the lateral wave
which decreases with distance as 1/r2

0 . In order to show its part of the field more
clearly, completely separate diagrams are shown in Figs. 8.11, 8.13, and 8.15 for the
range 80◦ ≤ � ≤ 90◦. Note that the scale between � = 88◦ and � = 90◦ is greatly
expanded and the amplitude of the field is represented on a logarithmic scale. The large
peak at � = 90◦ for sea water is clearly shown in Figs. 8.11, 8.13, and 8.15 together
with the 1/r2

0 decrease in amplitude. These figures also show that there is a significant
contribution from the lateral wave for all media except dry sand for which the small
ratio |k2|/k0 = 2 makes the field at � = 90◦ only a little greater than the 1/r2

0 near
field. Since the space wave decreases to zero at � = 90◦ over all types of earth or
water and the contribution by the lateral wave rises to a maximum there, the transition
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Figure 8.12 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 100 MHz; r0 = 500 m. Taken from King and
Sandler [1, Fig. 3]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0,�)|max at �

1. Sea water 4.000 80 1.74 × 10−1 at 90◦
2. Wet earth 0.400 12 1.61 × 10−1 at 49◦
3. Dry earth 0.040 8 1.32 × 10−1 at 50◦
4. Lake water 0.004 80 1.52 × 10−1 at 47◦
5. Dry sand 0.000 2 2.00 × 10−1 at 74◦
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Figure 8.13 Rectangular graphs of the range 80◦ ≤ � ≤ 90◦ in Fig. 8.12; f = 100 MHz,
r0 = 500 m. Taken from King and Sandler [1, Fig. 6]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 1.74 × 10−1

– – – Wet earth 0.400 12 1.75 × 10−2

– · – Dry earth 0.040 8 2.58 × 10−3

— — Lake water 0.004 80 1.92 × 10−2

· · · · · Dry sand 0.000 2 4.80 × 10−4

from the one to the other involves a more or less sharp minimum. This moves closer to
� = 90◦ as r0 increases because the space wave decreases as 1/r0, the surface wave
as 1/r2

0 .
The cellular radiotelephone operates in the 0.9 to 1.8-GHz range of frequencies.

Transmitting and receiving antennas in the form of center-driven or loaded dipoles
are placed on high towers that are located several miles apart along major highways.
The area surrounding each of these antennas is called a cell. Radiotelephone antennas
are either attached to hand-held transceivers or are mounted on the metal top or the
rear deck of an automobile. The hand-held instruments include a monopole mounted
on a typical telephone receiver that now also contains a transmitter. When in use, the
monopole extends upward beside and above the head. The metal case serves as the
lower part of the antenna. Typically, currents of the order of 0.1 A in the antenna are
needed for transmission to the nearest tower. The monopoles on the metal top or rear
deck of an automobile are base-driven by a coaxial line with the car top or rear deck
serving as the ground plane.
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Figure 8.14 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 100 MHz; r0 = 1000 m. Taken from King and
Sandler [1, Fig. 4]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0,�)|max at �

1. Sea water 4.000 80 8.57 × 10−2 at 48◦
2. Wet earth 0.400 12 8.05 × 10−2 at 49◦
3. Dry earth 0.040 8 6.62 × 10−2 at 50◦
4. Lake water 0.004 80 7.60 × 10−2 at 47◦
5. Dry sand 0.000 2 9.98 × 10−2 at 74◦
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Figure 8.15 Rectangular graphs of the range 80◦ ≤ � ≤ 90◦ in Fig. 8.14; f = 100 MHz,
r0 = 1000 m. Taken from King and Sandler [1, Fig. 7]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 4.34 × 10−2

– – – Wet earth 0.400 12 4.37 × 10−3

– · – Dry earth 0.040 8 6.45 × 10−4

— — Lake water 0.004 80 4.80 × 10−3

· · · · · Dry sand 0.000 2 1.20 × 10−4

The electromagnetic field generated by any of these antennas is simply that of a
vertical dipole with an appropriate effective length he. The dipole antenna is at a height
d over the surface of the earth. The electric field generated by such an antenna is given
by (8.110) or (8.114). It is illustrated for a typical hand-held or car-mounted dipole in
Figs. 8.20–8.23.

8.8 Vertical dipoles over a two-layered region

All of the formulas in this chapter involve the small parameter ε = (k0/k2) − ik0l,
where l is the thickness of a dielectric layer (region 1) located between the air
(region 0) and the earth or sea (region 2). When there is no such layer, l = 0 and
ε = k0/k2 as in the applications in Section 8.7. In this section, applications that involve
an electrically thin layer on region 2 are considered.
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Figure 8.16 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 500 MHz; r0 = 100 m. Taken from King and
Sandler [1, Fig. 8]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0,�)|max at �

1. Sea water 4.000 80 4.91 × 100 at 73◦
2. Wet earth 0.400 12 4.89 × 100 at 86◦
3. Dry earth 0.040 8 5.47 × 100 at 86◦
4. Lake water 0.004 80 4.48 × 100 at 63◦
5. Dry sand 0.000 2 7.72 × 100 at 86◦
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Figure 8.17 Rectangular graphs of the range 80◦ ≤ � ≤ 90◦ in Fig. 8.16; f = 500 MHz,
r0 = 100 m. Taken from King and Sandler [1, Fig. 9]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 9.87 × 10−1

– – – Wet earth 0.400 12 1.12 × 10−1

– · – Dry earth 0.040 8 4.87 × 10−2

— — Lake water 0.004 80 4.80 × 10−1

· · · · · Dry sand 0.000 2 1.20 × 10−2

Vertical dipoles over asphalt-coated earth

When the earth is asphalt- or cement-coated with a layer that is l = 0.15 m thick with
ε1r = 2.65 over earth with σ2 = 0.04 S/m and ε2r = 8, the three wave numbers for
f = 100 MHz are: k0 = 2.09 m−1, k1 = k0ε

1/2
1r = 3.41 m−1, and k2 = k0ε

1/2
2r (1 +

iσ2/ωε0ε2r )
1/2 = 7.43 + i2.85 = 7.96ei0.366 m−1. Also, k1l = 0.51 < 0.6 and

ε = 0.26e−i0.366 − i0.315 = 0.478e−i1.03. The far field is limited by ρ ≥ |8/k0ε
2| =

16.8 m. The far-field patterns of a vertical dipole at the height d = 2 m over the asphalt-
coated earth are shown in Figs. 8.24, 8.25, and 8.26, respectively, at the radial distances
r0 = 100, 500, and 1000 m. The polar graphs in Figs. 8.24a, 8.25a, and 8.26a show the
space wave; the logarithmic graphs in Figs. 8.24b, 8.25b, and 8.26b show the complete
field in the range 80◦ ≤ � ≤ 90◦ where the lateral wave is dominant.
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Figure 8.18 Like Fig. 8.17 for r0 = 500 m. Taken from King and Sandler [1, Fig. 10]. c© 1994
I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 3.95 × 10−2

– – – Wet earth 0.400 12 4.49 × 10−3

– · – Dry earth 0.040 8 1.95 × 10−3

— — Lake water 0.004 80 1.92 × 10−2

· · · · · Dry sand 0.000 2 4.80 × 10−4

Vertical dipoles over the Arctic ice

Communication on the Arctic ice involves a vertical dipole at a height d in the air
over a layer of ice with the thickness l on salt water. At f = 7 MHz, the relative
permittivity of ice is of the order of ε1r ∼ 3.2. For sea water, ε2r = 80 and σ2 = 4 S/m.
The relevant wave numbers are: for air, k0 = 0.147 m−1; for ice, k1 = 0.262 m−1; and
for sea water, k2 = 14.87eiπ/4 = 10.52(1+ i)m−1. With l = 2.5 m, k1l = 0.658, which
slightly exceeds the condition k1l ≤ 0.6, but is an acceptable value. Note that the small
quantity ε= (k0/k2)− ik0l = 0.01e−iπ/4 − i0.368. Evidently, ε∼ − ik0l =−i0.368
and the sea behaves like a perfect conductor under the ice. The far field occurs
when ρ ≥ |8/k0ε

2| = 8/k3
0l2 = 401 m. The far-field patterns of a vertical dipole at

the height d = 2 m over the Arctic ice are shown in Figs. 8.27, 8.28, and 8.29
at the radial distances r0 = 500, 1000, and 5000 m, respectively. As the distance
increases, the magnitude of the space wave decreases more slowly than that of the
lateral wave, so that the transition from the former to the latter moves nearer to
�= 90◦.
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Figure 8.19 Like Fig. 8.17 for r0 = 1000 m. Taken from King and Sandler [1, Fig. 11]. c© 1994
I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 9.87 × 10−3

– – – Wet earth 0.400 12 1.12 × 10−3

– · – Dry earth 0.040 8 4.87 × 10−4

— — Lake water 0.004 80 4.80 × 10−3

· · · · · Dry sand 0.000 2 1.20 × 10−4

Vertical dipoles on microstrip

Microstrip consists of a thin dielectric layer coating a highly conducting base on which
strip transmission lines and antennas are located. Elements of these are horizontal
electric dipoles. These are treated in Chapter 9. Vertical connections to the base are
vertical electric dipoles. Since the dielectric substrate is thin and k2 is very large,
ε ∼ −ik0l. Graphs of both E0z′(ρ, 0) and E0ρ(ρ, 0) as functions of ρ for a vertical
dipole in the air on the surface z′ = −z = 0 of the dielectric layer with the thickness
l = 0.1 mm are shown in Fig. 8.30 at f = 10 GHz. The range k0ρ ≤ 1 is the
near field. It involves a 1/ρ2 decrease with increasing ρ for E0ρ(ρ, 0) and a 1/ρ3

decrease for E0z′(ρ, 0). The range 1 ≤ k0ρ ≤ 2/k2
0l2 is the intermediate range, where

both E0ρ(ρ, 0) and E0z′(ρ, 0) decrease approximately as 1/ρ. Similar graphs with
f = 5.15 GHz and f = 4.21 GHz and l = 4.445 mm are shown in Figs. 8.31 and 8.32.
These extend to a much greater range so that a part of the far field where k0ρ > 8/k2

0l2

is included. In it, the field has a 1/ρ2 dependence. Far-field patterns of |E0�(r0,�)|
for f = 5.15 GHz and l = 4.445 mm are shown in Figs. 8.33, 8.34, and 8.35 with
ρ = 0.3, 3, and 30 m, respectively.
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Figure 8.20 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 1000 MHz; r0 = 100 m. Taken from King and
Sandler [1, Fig. 12]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0,�)|max at �

1. Sea water 4.000 80 9.38 × 100 at 68◦
2. Wet earth 0.400 12 1.14 × 101 at 88◦
3. Dry earth 0.040 8 1.21 × 101 at 88◦
4. Lake water 0.004 80 9.54 × 100 at 88◦
5. Dry sand 0.000 2 1.65 × 101 at 88◦
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Figure 8.21 Rectangular graphs of the range 80◦ ≤ � ≤ 90◦ in Fig. 8.20; f = 1000 MHz,
r0 = 100 m. Taken from King and Sandler [1, Fig. 13]. c© 1994 I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 6.45 × 10−1

– – – Wet earth 0.400 12 8.39 × 10−2

– · – Dry earth 0.040 8 4.82 × 10−2

— — Lake water 0.004 80 4.80 × 10−1

· · · · · Dry sand 0.000 2 1.20 × 10−2

8.9 Propagation over the spherical earth

All of the formulas and applications discussed so far in this chapter apply strictly to
a planar earth. Since the radius of the earth is a = 6378 km, it is to be expected
that the planar formulas are a good approximation for a substantial distance along the
surface of the earth. For propagation over the sea, much greater distances are involved
especially in communicating with submarines and with surface-wave, over-the-horizon
radar. These make use of relatively low frequencies and electrically short vertical
dipoles on the surface of the earth very close to the sea.

The electric and magnetic fields due to a vertical dipole on the spherical earth are
conveniently expressed in the spherical coordinates r,�,�, where r is the radial
distance from the center of the earth, � is the angle measured from the radial line
through the dipole, and � is the circumferential angle about this radial line. The three
components of the field are E�(r,�), Er (r,�), and B�(r,�). Note that rotational
symmetry obtains with respect to the z′-axis from the center of the earth through the
dipole. In the planar limit, E� → Eρ , Er → Ez′ , and B� → Bφ′ .
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Figure 8.22 Like Fig. 8.21 for r0 = 500 m. Taken from King and Sandler [1, Fig. 14]. c© 1994
I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 2.58 × 10−2

– – – Wet earth 0.400 12 3.36 × 10−3

– · – Dry earth 0.040 8 1.93 × 10−3

— — Lake water 0.004 80 1.92 × 10−2

· · · · · Dry sand 0.000 2 4.80 × 10−4

The distance along the surface of the earth between the dipole and a point of
observation also on the surface of the earth is ρs = a�. The cylindrical radial distance
from the z′-axis to the point of observation is ρ = a sin�. The difference between the
two is ρs − ρ = a(�− sin�) ∼ a(�−�+�3/6 · · · ) ∼ a�3/6.

A first-order correction for the curvature of the earth is the substitution of ρs = a�
for ρ = a sin� in the planar formulas. For propagation over the sea and conducting
earth, the direct field in the earth is negligible so that the following formulas for the
surface wave give the complete field over the spherical earth:1

B0�(a,�) ∼ −µ0(he I )k0

4π

eik0ρs+iπ/4

(πρsρc)1/2
I2(η2, g) (8.115)

E0r (a,�) ∼ k2

k0
E0�(a,�) ∼ − ω

k0
B0�(a,�). (8.116)

1 [6] p. II.78.
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Figure 8.23 Like Fig. 8.21 for r0 = 1000 m. Taken from King and Sandler [1, Fig. 15]. c© 1994
I.E.E.E.

σ2 (S/m) ε2r |Er
0�(r0, 90◦)|

—— Sea water 4.000 80 6.45 × 10−3

– – – Wet earth 0.400 12 8.39 × 10−4

– · – Dry earth 0.040 8 4.82 × 10−4

— — Lake water 0.004 80 4.80 × 10−3

· · · · · Dry sand 0.000 2 1.20 × 10−4

Here,

g = k0

k2

(
k0a

2

)1/3

, ρc = a

(
k0a

2

)−1/3

, η2 = ρs

ρc
= �

(
k0a

2

)1/3

. (8.117)

I2(η2, g) is a complicated integral that is well approximated, when η2 � 1, by the
simple exponential formula

I2(η2, g) = 2π i

ξ1 + g2
eiη2ξ1 = Ae−αη2eiβη2, (8.118)

where ξ1 = β + iα is obtained from the numerically evaluated Table 8.3 for any value
of g. Note that

A = 2π i

β + g2 + iα
= 2π

[(β + g2)2 + α2]1/2
exp

[
i

(
π

2
− tan−1 α

β + g2

)]
.
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Figure 8.24 Electric far field of vertical dipole at height d over asphalt-coated earth. (a) Polar
graph, 0◦ ≤ � ≤ 90◦. (b) Rectangular graph, 80◦ ≤ � ≤ 90◦. ε1r = 2.65, l = 0.15 m;
σ2 = 0.04 S/m, ε2r = 8; f = 100 MHz, d = 2 m, r0 = 100 m.
|Er

0�|max = |Er
0�(100 m, 60◦)| = 0.813 V/m; |Er

0�(100 m, 90◦)| = 2.3 × 10−2 V/m. Taken from
King and Sandler [2, Fig. 2]. c© 1994 American Geophysical Union.

The amplitude |A| and constants α and β for |g| = 0.05, 1, and 20 are given below,
together with the associated frequency for sea water:

|g| = 0.05: f = 0.265 MHz, |A| = 6.0, α = 0.87, β = 0.56, (8.119a)

|g| = 1: f = 9.65 MHz, |A| = 2.46, α = 1.05, β = 1.33, (8.119b)

|g| = 20: f = 351 MHz, |A| = 0.0157, α = 1.99, β = 1.20. (8.119c)
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Figure 8.25 Like Fig. 8.24 with r0 = 500 m. |Er
0�|max = |Er

0�(500 m, 60◦)| = 0.162 V/m;

|Er
0�(500 m, 90◦)| = 9.21 × 10−4 V/m. Taken from King and Sandler [2, Fig. 3]. c© 1994

American Geophysical Union.

Note that when ξ1 � g2, I2 ∼ (2π i/ξ1)eiη2ξ1 and when ξ1 � g2, I2 ∼
(2π i/g2)eiη2ξ1 .

For communicating with submerged submarines at f = 20 kHz, the quantity of
interest is the component of the electric field tangent to the surface of the sea, i.e.
E0�(a,�). With (8.115)–(8.119), this is given by the following formula for the field
of a base-driven monopole with the effective height he:

|E0�(a,�)| =
∣∣∣∣ωµ0(he I )k0

4πk2

eik0ρs

(πρsρc)1/2
Aeiξ1η2

∣∣∣∣ . (8.120)
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Figure 8.26 Like Fig. 8.24 with r0 = 1000 m. |Er
0�|max = |Er

0�(1000 m, 60◦)| = 0.0811 V/m;

|Er
0�(1000 m, 90◦)| = 2.3 × 10−4 V/m. Taken from King and Sandler [2, Fig. 4]. c© 1994

American Geophysical Union.

Here,

ρc = a

(
k0a

2

)−1/3

= 579.3 km. (8.121)

Note that k0 = (4π/3) × 10−4 m−1 and k2 = (ωµ0σ2/2)1/2(1 + i) =
(ωµ0σ2)

1/2eiπ/4 = 0.795eiπ/4 = 0.56(1 + i)m−1 = β2 + iα2. It follows that
|g| = |(k0/k2)(k0a/2)1/3| = 0.0058, ξ1 = 0.515 + i0.881 = β + iα, and
|A| = |2π/(ξ1 + g2)| ∼ |2π/ξ1| = 6.16. With a = 6378 km and ρs = 5000 km,



335 8.9 Propagation over the spherical earth

E )( in V/mΘΘ 0,

Θ = 0°

Θ = 90°
0 0.002 0.004

(a)

0.006 0.008 0.01

Θ (degrees)

10–4

10–3

10–2

)
in

V
/m

Θ
0,

80 85 88 89 89.95 90

(b)

10–5

10–6

Figure 8.27 Electric far field of vertical dipole at height d over ice-coated sea water. (a) Polar
graph, 0◦ ≤ � ≤ 90◦. (b) Rectangular graph, 80◦ ≤ � ≤ 90◦. ε1r = 3.2, l = 2.5 m; σ2 = 4 S/m,
ε2r = 80; f = 7 MHz, d = 2 m, r0 = 500 m. |Er

0�|max = |Er
0�(500 m, 60◦)| = 1.06 × 10−2 V/m;

|Er
0�(500 m, 90◦)| = 1.72 × 10−3 V/m. Taken from King and Sandler [2, Fig. 8]. c© 1994

American Geophysical Union.

η2 = ρs/ρc = 8.63 and � = ρs/a = 5000/6378 = 0.784. With these values,

|E0�(a, 0.784)| = 6.81 × 10−15(he I ). (8.122)

It follows that, for a unit dipole,

20 log10 |E0�| = −283.3 dB. (8.123)
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Figure 8.28 Like Fig. 8.27 with r0 = 1000 m.
|Er

0�|max = |Er
0�(1000 m, 60◦)| = 5.32 × 10−3 V/m; |Er

0�(1000 m, 90◦)| = 4.29 × 10−4 V/m.
Taken from King and Sandler [2, Fig. 9]. c© 1994 American Geophysical Union.

The antenna at Cutler, ME, has an effective length he = 150 m and carries a maximum
current of 2600 A. Hence, he I = 3.9 × 105 A m and

|E0�(a, 0.784)| = 2.65 × 10−9 V/m (8.124)

20 log10 |E0�| = −171.5 dB. (8.125)

The planar earth values are −225 dB and −112.8 dB, respectively. These are the values
at the surface of the sea. At the depth (a − r) in the sea,

|E2�(a − r, 0.784)| = |E0�(a, 0.784)|e−α2(a−r)



337 8.9 Propagation over the spherical earth

rE )( in V/mΘΘ 0,

Θ = 0°

Θ = 90°
0 0.0002

(a)

0.0004 0.0006 0.0008 0.001

Θ (degrees)

10–4

10–3

)
in

V
/m

Θ
0,

80 85 88 89 89.95 90

(b)

10–5

10–6

10–7

Figure 8.29 Like Fig. 8.27 with r0 = 5000 m.
|Er

0�|max = |Er
0�(5000 m, 60◦)| = 1.06 × 10−3 V/m; |Er

0�(5000 m, 90◦)| = 1.72 × 10−5 V/m.
Taken from King and Sandler [2, Fig. 10]. c© 1994 American Geophysical Union.

where α2 = 0.56 m−1. If a submarine with a trailing-wire antenna can detect a field
of the order of E2� ∼ 5.6 × 10−17 V/m or 20 log10 |E2�| ∼ −325 dB, the submarine
can be no deeper than 31.6 m. Thus,

20 log10 |E2�(31.6, 0.784)e−31.6α2 | = 20 log10 5.47 × 10−17 = −325.2 dB. (8.126)

With the planar earth formula, the 325-dB limit of detectability is reached at (a −r) =
43.6 m instead of the actual 31.6 m.
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Figure 8.30 The complete electric field of a vertical dipole on the dielectric substrate of microstrip;
f = 10 GHz, l = 0.1 mm. Taken from King and Sandler [2, Fig. 11]. c© 1994 American
Geophysical Union.
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Figure 8.31 Like Fig. 8.30 with f = 5.15 GHz, l = 4.445 mm. Taken from King and Sandler [2,
Fig. 12] but with corrected value for frequency. c© 1994 American Geophysical Union.
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Figure 8.32 Like Fig. 8.30 with f = 4.21 GHz, l = 4.445 mm. Taken from King and Sandler [2,
Fig. 13] but with corrected value for frequency. c© 1994 American Geophysical Union.

A second important application of the formulas for the spherical earth is over-the-
horizon radar using the surface wave. Because radar using ionospheric reflection is
unable to detect low-flying missiles closer than 1000 km, the surface wave must be
used for these shorter distances. Since the target is close to the surface of the sea and
the shore-based transceiver involves an array of grounded monopoles or base-insulated
dipoles, the conditions z′ ∼ d ∼ 0 are satisfied.

At a frequency of f = 9.65 MHz, |g| = 1, k0 = 2π f/c = 0.202 m−1, k2 =
(ωµ0σ2)

1/2eiπ/4 = 17.45eiπ/4 = 12.35(1 + i) = β2 + iα2; ρc = a(k0a/2)−1/3 =
73.88 km. At ρs = 500 km, η2 = ρs/ρc = 6.76 and � = ρs/a = 0.0784. The vertical
electric field for a unit dipole is

|E0r (a, 0.0784)| = ωµ0 Ae−η2α

4π(πρsρc)1/2
= 3.62 × 10−8 V/m. (8.127)

The tangential electric field for a unit dipole is

|E0�(a, 0.0784)| =
∣∣∣∣k0

k2
E0r (a, 0.0784)

∣∣∣∣ = 4.2 × 10−10 V/m. (8.128)

For a grounded vertical monopole with the length h, the electric moment is he I ; for a
base-insulated dipole with the length 2h, the electric moment is (2he I ).
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Figure 8.33 Electric far field Er
0�(r0,�) of a vertical dipole on the dielectric substrate of

microstrip. (a) Polar graph, 0◦ ≤ � ≤ 90◦. (b) Rectangular graph, 80◦ ≤ � ≤ 90◦. f = 5.15 GHz,
l = 4.445 mm, d = 0, r0 = 0.3 m. |Er

0�|max = |Er
0�(0.3 m, 55◦)| = 1.35 × 104 V/m;

|Er
0�(0.3 m, 90◦)| = 2.89 × 103 V/m. Taken from King and Sandler [2, Fig. 14]. c© 1994 American

Geophysical Union.

The surface-wave, over-the-horizon radar array may consist of a broadside curtain of
base-driven, grounded vertical monopoles. Since all elements are in the intermediate
zone, their current distributions and impedances are the same as if they were over
a perfect conductor. An alternative to the radial ground system is a radial array of
traveling-wave horizontal-wire or Beverage antennas. This is discussed in Chapter 9.
A novel array of base-insulated vertical dipoles is the resonant circular array described
and analyzed in Chapter 11. Both the horizontal-wire antenna and the resonant circular
array with two elements driven to produce a pancake-like field pattern are especially
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Figure 8.34 Like Fig. 8.33 with r0 = 3 m. |Er
0�|max = |Er

0�(3 m, 55◦)| = 1.35 × 103 V/m;
|Er

0�(3 m, 90◦)| = 28.9 V/m. Taken from King and Sandler [2, Fig. 15]. c© 1994 American
Geophysical Union.

suited to excite the lateral wave required for over-the-horizon radar to detect low-flying
targets within 1000 km of the coast line.

8.10 Conclusion

In this chapter the properties of vertical electric dipoles in the air over a conducting
or dielectric half-space with or without an electrically thin dielectric layer have been
described. Analytical formulas for the complete electromagnetic field in the air have
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Figure 8.35 Like Fig. 8.33 with r0 = 30 m. |Er
0�|max = |Er

0�(30 m, 55◦)| = 135 V/m;
|Er

0�(30 m, 90◦)| = 0.289 V/m. Taken from King and Sandler [2, Fig. 16]. c© 1994 American
Geophysical Union.

been discussed in terms of near, intermediate, and far fields. The far field includes a
surface-wave term that dominates near the boundary surface. Applications range from
communication with submarines in the kilohertz range of frequencies to microstrip
circuits at 5–10 GHz.



9 Dipoles parallel to the plane boundaries of
layered regions; horizontal dipole over, on,
and in the earth or sea

9.1 Introduction

Dipole antennas located parallel to the plane boundaries of a layered region have
numerous important applications over a wide range of frequencies. Examples include
horizontal-wire (Beverage) antennas in air close to the earth, insulated antennas on or
below the surface of the earth or sea, cellular telephone transceivers close to the human
head, and patch antennas on microstrip.

The electromagnetic field of a dipole antenna parallel to the surface of a layered
region is more complicated than the field of the same dipole when perpendicular
to the boundaries. This is a consequence of the fact that all six components of the
electromagnetic field are involved. In the cylindrical coordinates ρ, φ′, z′ shown in
Fig. 9.1, there are three components of electric type, namely, Eρ , Ez′ , and Bφ′ , and
three components of magnetic type, namely, Bρ , Bz′ , and Eφ′ . The dipole with the
length 2h and electric moment 2he I is located at the height d ′ in the air (region 0, wave
number k0) over the surface of the electrically thin layer (region 1, wave number k1,
thickness l). This coats a dielectric or conducting half-space (region 2, wave number
k2 = β2 + iα2). The vertical z′ = −z axis passes through the center of the dipole. The
field in the air, z′ ≥ 0, is expressed in terms of the coordinates ρ, φ′, z′. The fields in
the dielectric layer, 0 ≤ z ≤ l, and in the conducting or dielectric half-space, z ≥ l,
are expressed in terms of ρ, φ, z. Note that z = −z′ and φ = −φ′. The complete field
subject only to the conditions

9k0 ≤ 3k1 ≤ |k2|, k1l ≤ 0.6 (9.1)

is given by

E0ρ(ρ, φ
′, z′) = ωµ0(2he I )

4πk0
cosφ′

×
(

eik0r1

[
2

r2
1

+ 2i

k0r3
1

+
(

z′ − d ′

r1

)2
(

ik0

r1
− 3

r2
1

− 3i

k0r3
1

)]
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Figure 9.1 Unit horizontal electric dipole at height d ′ over plane boundary (z = 0) between air and
a sheet of dielectric with thickness l over a conducting or dielectric half-space.
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z′ + d ′
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(9.2)

E0φ′(ρ, φ′, z′) = −ωµ0(2he I )

4πk0
sinφ′

×
(
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In these formulas,

k0 = ω

c
, k1 = k0

√
ε1r , k2 = k0

√
ε2r

(
1 + iσ2

ωε0ε2r

)1/2

(9.8)

r1 =
√
ρ2 + (z′ − d ′)2, r2 =

√
ρ2 + (z′ + d ′)2, ε = k0

k2
− ik0l (9.9)

P2 = k0r2

2

(
εr2 + z′ + d ′

ρ

)2

, F(P2) = 1
2 (1 + i)−

∫ P2

0

eit

√
2π t

dt. (9.10)

Note that ε without subscript is the small quantity defined in (9.9); ε1r and ε2r are the
relative permittivities of regions 1 and 2, respectively.

The field in the electrically thin dielectric layer (region 1) is

B1φ(ρ, φ, z) ∼ B0φ(ρ, φ, 0) (9.11)

E1ρ(ρ, φ, z) ∼ E0ρ(ρ, φ, 0)

[
k1(l − z)+ i(k1/k2)

k1l + i(k1/k2)

]
(9.12)

E1z(ρ, φ, z) ∼ k2
0

k2
1

E0z(ρ, φ, 0) (9.13)

E1φ(ρ, φ, z) ∼ E0φ(ρ, φ, 0)

[
k1(l − z)+ i(k1/k2)

k1l + i(k1/k2)

]
(9.14)

B1ρ(ρ, φ, z) ∼ B0ρ(ρ, φ, 0) (9.15)

B1z(ρ, φ, z) ∼ B0z(ρ, φ, 0). (9.16)

The field in region 2 is

B2φ(ρ, φ, z) ∼ B0φ(ρ, φ, 0)eik2(z−l) (9.17)

E2ρ(ρ, φ, z) ∼ k0

k2ε
E0ρ(ρ, φ, 0)eik2(z−l) (9.18)

E2z(ρ, φ, z) ∼ k2
0

k2
2

E0z(ρ, φ, 0)eik2(z−l) (9.19)

E2φ(ρ, φ, z) ∼ k0

k2ε
E0φ(ρ, φ, 0)eik2(z−l) (9.20)

B2ρ(ρ, φ, z) ∼ B0ρ(ρ, φ, 0)eik2(z−l) (9.21)

B2z(ρ, φ, z) ∼ B0z(ρ, φ, 0)eik2(z−l). (9.22)

The six components of the field consist of three of electric type, namely, Eρ , Ez , and
Bφ which are usually dominant, and three of magnetic type, namely, Bρ , Bz , and Eφ .
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As for the vertical dipole, the field of the horizontal dipole can be described in terms
of the near field, the intermediate field, and the far field. These are defined exactly as
for the vertical dipole in Section 8.2.

The practical applications of the horizontal electric dipole in the presence of a
layered region are primarily those in which the dipole is close to the surface compared
to the radial distance ρ to the point of observation, i.e. d ′ � ρ. When this is true, the
direct and perfect-image fields virtually cancel. It follows that
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In these formulas, r2, ε, P2, and F(P2) are the same as defined in (9.9) and (9.10).
When |P2| ≥ 4, the far-field formulas in the spherical coordinates r0,�,� are

useful. Since d ′ � ρ, it follows that r2 ∼ r0 and d/r2 ∼ 0. In this case, z′/r0 = cos�
and ρ/r0 = sin� so that
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When this value is substituted in the formulas for the three components, these become
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9.2 Horizontal traveling-wave antennas over earth or sea; Beverage
antenna (l = 0, ε = k0/k2)

Horizontal-wire antennas close to the earth or sea are efficient generators of lateral
waves. Although the field of a unit horizontal dipole close to the earth is smaller by
the factor |k0/k2| than the field of a unit vertical dipole close to the earth, it is possible
to make the horizontal-wire antenna very long and terminate it so that the current in
it is a traveling wave. This can yield an electric moment that is very much greater
than that of a vertical electric dipole. When the traveling-wave antenna is at the small
height d ′ � ρ, k0d ′ < 1, over the earth, it can be a bare wire supported on insulating
posts. The termination at each end can consist of a suitable resistor in series with a
quarter-wave horizontal monopole, or it can consist of a vertical ground connection
(Beverage antenna) [1]. These two possibilities are illustrated in Fig. 9.2. Since it
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Figure 9.2 Wave antennas. (a) Conventional Beverage antenna; (b) horizontal-wire antenna;
(c) coordinates. Taken from King [1, Fig. 1]. c© 1983 I.E.E.E.

has been shown1 that the terminations – whether horizontal or vertical – contribute
negligibly to the electromagnetic field since they are very much shorter than the main
horizontal wire, only the field of this latter need be determined.

The wave number of the current in the bare x-directed wire at the height d ′ in the
air over the earth is not the wave number k0 of the current in an isolated antenna in
the air. The proximity of the earth greatly modifies the wave number so that it has the
value kL given by

1 [2] Chapter 18.
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kL = k0

{
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where K1 and I1 are modified Bessel functions and the following condition is imposed:

k0d ′ ≤ 0.2π. (9.37)

When

0 ≤ |k2d ′| ≤ 0.8, (9.38)

the wave number kL is well approximated by the following simpler expression:

kL ∼ k0

[
1 − ln(k2d ′)+ γ − 1

2 − i( 1
2π − 4

3 k2d ′)
ln(2d ′/a)

]1/2

, (9.39)

where γ = 0.5772.
When (9.37) is satisfied, the antenna behaves like a transmission line with the

characteristic impedance

Zc = ζ0kL

2πk0
ln

2d ′

a
= 60kL

k0
ln

2d ′

a
. (9.40)

In these formulas, a is the radius of the wire. The current in the wire has the general
transmission-line form

Ix (x) = −iV0

Zc

sin[kL(h − x)+ iθh]

cos(kL h + iθh)
, (9.41)

where θh = coth−1(Zh/Zc). When Zh , the terminating impedance at x = h, is equal
to the characteristic impedance, i.e. Zh = Zc, θh = ∞ and

Ix (x) = V0

Z in
eikL x = Ix (0)e

ikL x . (9.42)

The impedance of the antenna at the driving point x = 0 is

Z in = Z + Z0 + Zg, (9.43)

where Z = Zc is the impedance of the terminated long wire with the length hm , Z0

is the impedance of the terminating sections at x = 0 and x = h, and Zg is the
impedance of the generator at x = 0 (see Fig. 9.2). For traveling-wave operation,
Z0 + Zg = Z0 + ZL = Zc (where ZL is the lumped impedance in series with Z0
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at x = h) so that Z in = 2Zc. With the horizontal-wire antenna, Z0 is the impedance
of an open-ended section of the horizontal-wire line with the length l so that Z0 =
i Zc cot kLl. With the Beverage antenna, Z0 is the impedance of each of the grounded
vertical conductors at x = 0 and x = h.

The components of the electric far field of the traveling-wave current in the
horizontal-wire antenna with the length h adjusted to maximize the field with h = hm

are

Er
0r (r0,�0,�0) = Ix (0)he(�0,�0)[Er

0r (r0,�0, 0)]h cos�0 (9.44)

Er
0�(r0,�0,�0) = Ix (0)he(�0,�0)[Er

0�(r0,�0, 0)]h cos�0, (9.45)

where

he(�0,�0) = i[1 − ei(kL−k0 sin�0 cos�0)hm ]

kL − k0 sin�0 cos�0
(9.46a)

and

(βL − k0)hm = π − tan−1
(

αL

βL − k0

)
. (9.46b)

Since αL is usually small,

hm ∼ π

βL − k0
. (9.46c)

The associated magnetic field is

Br
0�(r0,�0,�0) = Ix (0)he(�0,�0)[Br

0�(r0,�0, 0)]h cos�0. (9.47)

In these formulas, r0, �0, and �0 are spherical coordinates referred to the origin
at ρ = 0, z′ = 0, on the surface of the earth directly below the generator at
x = 0 in the horizontal-wire antenna. Also, the subscript h denotes the field of
a unit horizontal electric dipole at x = 0, z′ = d ′. The three components are
given by (9.33), (9.34), and (9.35) with the subscript 0 added to � and � and with
ε = k0/k2.

In order to display the characteristics of a horizontal-wire antenna, the numerical
values of the several parameters can be calculated from the appropriate formulas [3].
For this purpose, consider antennas designed for use at f = 10 MHz over earth (σ2 =
0.04 S/m, ε2r = 8) and sea water (σ2 = 4 S/m, ε2r = 80). For operation over the earth,
the field for the two heights d ′ = 15 and 45 cm are studied; for operation over the
sea, the height d ′ = 4 cm is used. The several parameters and quantities of interest for
these three cases are shown in Table 9.1.

The magnitude of the electric far field |Er
0�(r0,�0,�0)| as obtained from (9.45)

is shown in Figs. 9.3, 9.4, and 9.5, respectively, for the three cases A, B, and C
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Table 9.1. Properties of horizontal-wire antenna with maximizing length hm, radius a, and
height d ′, at f = 10 MHza

Case A (dry earth) B (dry earth) C (sea water)

a (m) 0.003 0.003 0.003
k0 (m−1) 0.2094 0.2094 0.2094
σ2 (S/m) 0.04 0.04 4
ε2r 8 8 80
k2 (m−1) 1.7827ei0.73 1.7827ei0.73 17.7721ei0.78

k2 = β2 + iα2 (m−1) 1.3284 + i1.1888 1.3284 + i1.1888 12.6365 + i12.4967
d ′ (m) 0.15 0.45 0.04
k0d ′ 0.03141 0.09423 0.00838
k2d ′ 0.2674ei0.73 0.8022ei0.73 0.7109ei0.78

kL = βL + iαL (m−1) 0.2407 + i0.0129 0.2223 + i0.0079 0.2336 + i0.0129
βL − k0 (m−1) 0.0313 0.0129 0.0242
ZL = RL − i X L (ohm) 317.6 + i17.0 363.3 + i12.9 219.5 + i12.1
hm (m) 87.85 = 2.93λ0 201.96 = 6.73λ0 109.57 = 3.65λ0
he(π/2, 0) (m) 38.47ei1.10 78.25ei0.929 44.47ei0.987

he(π/2, 0)/he(π/2, π) 15.33e−i0.17 38.93e−i0.788 18.55e−i0.783

he(0, 0) (m) 5.13ei1.32 4.00ei1.354 3.38ei1.38

he(0, 0)/he(π/2, 0) 0.13ei0.22 0.05ei0.425 0.076ei0.393

|(k0/k2)he(π/2, 0)| (m) 4.52 9.19 0.52
hev (m) (vertical monopole) 4.78 4.78 4.78

a Taken from King [3, Table I]. c© 1992 American Institute of Physics.

listed in Table 9.1. Graphs in the xz′-plane are shown for the distances r0 = 50,
100, 500, and 1000 km with Ix (0)= 10 A. Graphs in the xy-plane are shown only
for r0 = 50 km. The maximum of the field occurs at �0 = 76.4 and 79.5◦ in cases
A and B over earth, at �0 = 83.4◦ in case C over sea water. (The corresponding
maxima for the vertical monopole as obtained in Chapter 8 are �0 = 66 and 78◦.)
The horizontal-wire antenna generates a narrow directive beam along the antenna axis
that is tilted upward from the earth by only a small angle. The vertical monopole
generates a rotationally symmetric pattern that is tilted upward at a much greater
angle. The surface wave, with its maximum along the surface �0 =π/2, is com-
parable in magnitude for the horizontal-wire antenna and the vertical monopole
when both are over the earth. Over the sea, the small factor k0/k2 makes the
surface wave due to the horizontal-wire antenna much smaller than that due to the
vertical monopole. A complete experimental verification of the current distribution
and the field pattern as determined from the above formulas has been reported by
Rama Rao [4].

The horizontal field pattern of the terminated horizontal-wire or Beverage antenna is
unidirectional and quite directive. The directivity is greatly increased when horizontal-
wire antennas are arranged in an array of parallel elements all at the same height above
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the surface of the earth and all driven in phase with currents of the same amplitude.
If the distance s between adjacent elements is a half-wavelength or more (s ≥ λ0/2,
λ0 = 2π/k0), the mutual interaction is negligible and the current in and driving-point
impedance of each element is the same as when isolated. The array is, therefore,
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uniform and the far field is that of a single element as given by (9.44) or (9.45)
multiplied by the array factor of a uniform array, namely,

A(�,�) = sin(Nπn sin� cos�)

sin(πn sin� cos�)
. (9.48)

Here N is the number of elements in the array and n is the distance between adjacent
elements in fractions of the wavelength in air.

9.3 The terminated insulated antenna in earth or sea

The amplitude of the current in a bare antenna immersed in the earth or sea is rapidly
attenuated due to ohmic losses and radiation. When the copper conductor with the
radius a is insulated with a dielectric layer with the radius b or thickness b − a,
its properties change greatly. If the wave number kd = ω

√
εdr/c of the insulating

dielectric layer is small compared with the magnitude of the wave number k2 =
β2 + iα2 of the ambient medium and the transverse dimension is electrically small, i.e.

|k2| ≥ 3kd , |k2a| < |k2b| < 1 (9.49)

the current in the conductor is distributed as in a transmission line with the wave
number kL and characteristic impedance Zc.

A schematic diagram of the end-driven terminated insulated antenna [5] is shown in
Fig. 9.6. The traveling-wave current is given by

Ix (x) = Ix (0)e
ikL x . (9.50)

When the antenna is at the depth d below the air–earth or air–sea surface and the
conditions

|k2d| < 1, d2 � b2 (9.51)

are satisfied, the wave number kL is given by

kL = kd

{
1 + 1

ln(b/a)

[
i

(
2πr0

ωµ0
+ π

2

)
+ ln

2

|k2b| + ln
1

|k2d| − 0.90

]}1/2

(9.52)

and the characteristic impedance by

Zc = ωµ0kL

2πk2
d

ln
b

a
. (9.53)

In (9.52), r0 is the internal resistance per unit length of the copper conductor.
The impedance of the antenna at the driving point is

Z in = Z + Z0 + Zg, (9.54)
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Figure 9.6 Insulated antennas. (a) Completely insulated dipole; (b) terminated insulated antenna.
Ambient medium: earth, sea water. Taken from King [5, Fig. 1]. c© 1986 I.E.E.E.

where Z is the impedance of the insulated length h of the antenna, Z0 is the impedance
of the bare monopole in series with the impedance Zg of the generator. At the end
x = h, the termination consists of a lumped impedance ZL in series with the bare
monopole with impedance Z0. For matched operation, Z0 + Zg = Z0 + ZL = Zc so
that Z = Zc and Z in = 2Zc.

The electromagnetic far field generated in the air by an insulated antenna at the
depth d in the earth or sea is the field of a unit electric dipole at ρ = 0, multiplied by
the quantity

he = i[1 − ei(kL−k0 sin�0 cos�0)h]

kL − k0 sin�0 cos�0
. (9.55)

The maximizing value of he is given by (9.55) with

h = hm ∼ π

βL − k0
, (9.56)

where βL is the real part of kL = βL + iαL and k0 is the real wave number of air.

The traveling-wave terminated insulated antenna can be arranged in highly directive
arrays. N identical elements are located at the same depth d with adjacent elements
separated by the distance s ∼ λ2/4 where λ2 = 2π/β2. Note that β2 is the real part of
k2 = β2 + iα2, and k2 is the wave number of the ambient medium. The far field in the
air of the array is the far field of a single element multiplied by the array factor

A(N , n) = sin(Nπn sin�0 cos�0)

sin(πn sin�0 cos�0)
. (9.57)
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N is the number of parallel elements, n is the distance between elements in fractions
of a wavelength in air, i.e. n = s/λ0 where λ0 = 2π/k0 and k0 is the wave number of
air. Specifically,

Er
0�(r0,�0,�0) = [Er

0�(r0,�0,�0)]h

× i Ix (0)[1 − ei(kL−k0 sin�0 cos�0)h]

kL − k0 sin�0 cos�0
A(N , n) (9.58)

Er
0r (r0,�0,�0) = [Er

0r (r0,�0,�0)]h

× i Ix (0)[1 − ei(kL−k0 sin�0 cos�0)h]

kL − k0 sin�0 cos�0
A(N , n). (9.59)

Here,

[Er
0�(r0,�0,�0)]h = ωµ0

2πk0
cos�0 eik2deik0r0

[
ik0

r0

(
cos�0

1 + (k2/k0) cos�0

)

− k2

k0r2
0

sin2 �0 [sin2 �0 − (k0/k2) cos�0]

[1 + (k2/k0) cos�0]3

]
(9.60)

[Er
0r (r0,�0,�0)]h = ωµ0

2πk0
cos�0 eik2d eik0r0

r2
0

sin3 �0

[1 + (k2/k0) cos�0]2
. (9.61)

The formulas with the subscript h apply to the unit horizontal dipole at the depth d in
the earth or sea. Note that they are the same as for the unit horizontal dipole on the
surface of the earth or sea in air except for the factor eik2d . When the dipole is below
the surface in the earth, the electromagnetic waves travel vertically upward from the
dipole to the surface and then propagate as lateral waves parallel to and near the surface
in the air.

A comparison of the terminated insulated antenna at a depth d in the earth described
in this section with the terminated traveling-wave horizontal-wire antenna described
in the preceding section shows great similarity. The reason is quite simple. The
horizontal wire is actually an air-insulated antenna lying on the surface of the earth.
The conductor is eccentrically located in the infinite air insulation.

9.4 Arrays of horizontal and vertical antennas over the earth

Vertical monopoles on the surface of the earth are usually grounded by means of
a network of bare conductors as described in Chapter 8. For most communication
purposes at broadcast frequencies, this is entirely satisfactory and the loss of power
in the ground system is of no consequence. When the purpose of the antenna or array
of antennas is over-the-horizon radar, long-range detection of a target over the sea
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requires ionospheric reflection and involves all of the complications that go with it.
The actual frequency to be used at any given time must be determined by a separate
ionosphere-monitoring system. Each of the six frequency bands in the 5 to 28 MHz
range has its own 12-element subarray complete with backscreen and ground screen.
The separate receiving arrays are quite different. The design and properties of this
highly specialized system are not described as the end of the cold war has made
it largely inoperative. Furthermore, the ionospheric-reflection method is not useful
for the detection of low-flying targets nearer than 500 to 1000 km. For this range,
use must be made of the surface wave. The field of the grounded vertical monopole
includes a substantial surface wave. This can be increased and all ground losses
eliminated if the ground system is replaced by radial traveling-wave antennas either of
the horizontal-wire (Beverage) type or in the form of buried insulated traveling-wave
antennas.

Consider an omnidirectional array consisting of a vertical monopole base-driven
against 10 radial horizontal-wire antennas. The arrangement is shown in Fig. 9.7. Each
of the horizontal elements has a length hm = 201.96 m, is at the height d ′ over the
earth, and is terminated at the optimum length in an impedance Zh = Z0 + ZL = Zc.
Here Z0 is the impedance of a quarter-wave section and ZL is a lumped impedance.
With d ′ = 45 cm, the electrical height k0d ′ at f = 10 MHz is k0d ′ = 0.094, which is
sufficiently small so that coupling among the 10 elements is negligible and each can
be treated as if isolated. Since the impedance of a single element as given in Table 9.1,
case B, is

ZL = Zc = 363.3 + i12.9 ohms (9.62)

the combined impedance of the 10 equally spaced elements in parallel is

Za = ZL

10
= 36.3 + i1.3 ohms. (9.63)

With a proper choice of the height hv and radius av of the vertical monopole, its
impedance Zv can approximate the complex conjugate of Za in (9.63) very closely. For
example, with k0hv = 1.477 and av/λ0 = 0.007 022, Zv = 36.6 − i0.13 ohms. With
this choice, the impedance of the monopole in series with the 10-element horizontal
array is

Z = R − i X = Zv + Za = 72.9 + i1.2 ohms. (9.64)

The entire array is conveniently driven from a 72-ohm coaxial line that is buried in the
earth and extends vertically upward so that the extension of its inner conductor is the
vertical monopole and the 10 radial horizontal antennas are connected to the shield.
This is illustrated in Fig. 9.7.

The input current to the monopole is

Iz′(0) = −Ix (0) = V

Z
. (9.65)
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Figure 9.7 Omnidirectional antenna with 10 radial elements. (a) Top view; (b) side view. Taken
from King [3, Fig. 6]. c© 1992 American Institute of Physics.

The power in the array is

P = I 2
z′(0)R = I 2

x (0)× 72.9. (9.66)

The power dissipated in each resistive termination is

P1 = |0.1Ix (0)e
−αL h |2 RL = I 2

x (0)× 0.01 × e−3.2 RL = 0.0004I 2
x (0)RL . (9.67)

Since the power in the monopoles with the impedance Z0 in series with ZL is radiated,
the power dissipated as heat is in

RL = Rh − R0, (9.68)

where Rh = Rc, and R0 is the resistance of an open-ended section of the horizontal
antenna. This has the impedance Z0 = Zc cot kLl, where kL = βL + iαL = 0.2223 +
i0.0079 and βLl = π/2 so that l = π/0.4446 ∼ 7.07 m. It follows that

Z0 = Zc
cos( 1

2π + iαLl)

sin( 1
2π + iαLl)

= Zc tanhαLl ∼ ZcαLl,

R0 ∼ αLl Rc = 0.0079 × 7.07 × 363.3 = 20.3 ohms.



362 Dipoles parallel to layered regions

Hence, RL = 363.3 − 20.3 = 343.0 ohms and

P1 = I 2
x (0)× 0.0004 × 343.0 = 0.137I 2

x (0). (9.69)

The power dissipated in the terminations of all 10 elements is

Pa = 10P1 = 1.37I 2
x (0). (9.70)

The total power radiated is

P = (72.9 − 1.37)I 2
x (0) = 71.5I 2

x (0). (9.71)

The radiation efficiency is 71.5/72.9 = 98%. Note that this does not mean that 98%
of the power is in the space wave. Both the vertical monopole and the horizontal wires
generate strong surface waves which transfer power exclusively into the earth or sea
as they propagate outward. Since it is entirely by means of the surface wave that low-
flying targets can be detected, the power in the surface wave is useful power.

The electric far field of the horizontal-wire antennas in the omnidirectional array is
obtained from (9.45) for each of the 10 radial wires. It is

[Er
0�(r0,�0,�0)]ha = 0.1Ix (0)

9∑
n=0

i(1 − ei[kL−k0 sin�0 cos(�0+nπ/5)]hm )

kL − k0 sin�0 cos(�0 + nπ/5)

× cos(�0 + nπ/5)[Er
0�(r0,�0, 0)]h . (9.72)

Since the field in the backward direction of any of the 10 wires and the beam
width in the horizontal plane are both small, the field of the horizontal array is well
approximated by

[Er
0�(r0,�0,�0)]ha = 0.1Ix (0)

(
i[1 − ei(kL−k0 sin�0 cos�0)hm ]

kL − k0 sin�0 cos�0

)
[Er

0�(r0,�0, 0)]h

× [cos�0 + 2 cos(�0 + π/5)+ 2 cos(�0 + 2π/5)]. (9.73)

This is approximately circular with a value near that in the direction �0 = 0, so that
the final approximation is

[Er
0�(r0,�0,�0)]ha ∼ [Er

0�(r0,�0, 0)]ha

= 0.324Ix (0)

(
i[1 − ei(kL−k0 sin�0)hm ]

kL − k0 sin�0

)
[Er

0�(r0,�0, 0)]h .

(9.74)

The electric field of the vertical monopole with Iz′(0) = −Ix (0) is

[Er
0�(r0,�0)]vm = −Ix (0)hev[Er

0�(r0,�0)]v, (9.75)
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where hev is the effective length and [Er
0�(r0,�0)]v is the field of a unit vertical

monopole at a height d ′ ∼ 0 as given by (8.64).
The complete field of the monopole and horizontal omnidirectional array is

[Er
0�(r0,�0)]A = [Er

0�(r0,�0)]vm + [Er
0�(r0,�0, 0)]ha

= −Ix (0)hev[Er
0�(r0,�0)]v + 0.324Ix (0)

×
(

i[1 − ei(kL−k0 sin�0)hm ]

kL − k0 sin�0

)
[Er

0�(r0,�0, 0)]h . (9.76)

When the explicit formulas for the far fields of unit vertical and horizontal dipoles are
substituted in the above expression, it becomes

[Er
0�(r0,�0)]A = ωµ0

2π
Ix (0)e

ik0r0

[
k2

k0
hev sin�0 + 0.324

×
(

i[1 − ei(kL−k0 sin�0)hm ]

kL − k0 sin�0

)][
ik0

r0

(
cos�0

k0 + k2 cos�0

)

− k2

k2
0r2

0

(
sin2 �0 [sin2 �0 − (k0/k2) cos�0]

[1 + (k2/k0) cos�0]3

)]
. (9.77)

The effective length of a monopole with height h ∼ λ0/4 is hev ∼ 2h/π ∼ λ0/2π =
k−1

0 = 4.78 m. In the plane �0 = π/2, r0 = ρ and the field reduces to

[Er
0�(ρ, π/2)]A = −ωµ0

2π
Ix (0)e

ik0ρ

×
(

k2

k2
0

+ 0.324
i[1 − ei(kL−k0)hm ]

kL − k0

)(
k2

k2
0ρ

2

)
. (9.78)

With Table 9.1, case B, k2/k2
0 = 40.65ei0.73 = 30.29 + i27.11 and

heh(π/2, 0) = i[1 − ei(kL−k0)hm ]

kL − k0
= 78.25ei0.929 = 46.84 + i62.68 (9.79)

so that

[Er
0�(ρ, π/2)]A = −65.81ei0.806 ωµ0k2

2πk2
0

Ix (0)
eik0ρ

ρ2
. (9.80)

This is substantially greater than the field of the monopole alone, namely,

[Er
0�(ρ, π/2)]vm = −40.65ei0.73 ωµ0k2

2πk2
0

Ix (0)
eik0ρ

ρ2
. (9.81)
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Figure 9.8 Directional fan antenna with 10 traveling-wave elements in a 60◦ angle and one vertical
monopole. (a) Top view; (b) side view. Taken from King [3, Fig. 7]. c© 1992 American Institute of
Physics.

Evidently, the use of the array of horizontal wave antennas with a vertical monopole
in place of the usual grounding network not only increases the space wave but uses the
power dissipated in a grounding network to generate a large and useful addition to the
surface wave.

An alternative to the omnidirectional array is the directional fan antenna illustrated
in Fig. 9.8. It is like the omnidirectional antenna except that the 10 radial horizontal-
wire antennas are equally spaced in an arc of 60◦ or π/3 radians instead of 360◦ or
2π radians. Even at the much closer spacing, the coupling among the 10 elements
is small because they are close to the earth. Consequently, a good approximation of
the complete field of the horizontal elements is the sum of the contributions of the 10
elements with each treated as if isolated. It is

[Er
0�(r0,�0,�0)]ha = 0.1i Ix (0)[Er

0�(r0,�0, 0)]h

×
9∑

n=−9

1 − ei[kL−k0 sin�0 cos(�0−nπ/54)]hm

kL − k0 sin�0 cos(�0 − nπ/54)

× cos(�0 − nπ/54), n = odd. (9.82)

The complete field of the array is

[Er
0�(r0,�0,�0)]A = [Er

0�(r0,�0)]vm + [Er
0�(r0,�0,�0)]ha, (9.83)

where [Er
0�(r0,�0)]vm is given in (9.75). This provides a broad unidirectional beam

from the horizontal wires and an omnidirectional field from the vertical element. It
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can serve as a self-contained array or an element in a broadside array directed from
the Atlantic seaboard toward the ocean or from the coast of the Gulf of Mexico
toward the Gulf. It is an efficient surface-wave antenna for detecting low-flying
targets but also radiates an upward-directed space wave for use in ionospheric
reflections.

If the use of an array of horizontal-wire antennas in conjunction with a vertical
monopole is inconvenient, it can be replaced by a similar array of insulated traveling-
wave antennas in the earth or sea a small distance d from the surface. The properties of
such elements are discussed in Section 9.3. For the present application, the insulation
must be thick and have a wave number kd close to that of air, so that styrofoam is
appropriate with kd ∼ k0. With f = 10 MHz, σ2 = 0.04 S/m, ε2r = 8, d = 50 cm,
b = 20 cm, and a = 1 mm,

kL = 0.229 + i0.0284 m−1, Zc = 347.7 + i43.1 ohms. (9.84)

The optimum length for the insulated wire when terminated in Zc is

hm = π

βL − k0
= 160.3 m. (9.85)

The associated effective length is

|he| =
∣∣∣∣1 + e−αL hm

kL − k0

∣∣∣∣ = 29.3 m. (9.86)

The terminating impedances Z A consist of bare monopoles with the electrical length
β2l = π/2 in the earth or l = π/2β2 = 1.18 m in series with lumped impedances
ZL such that Zh = Z0 + ZL = Zc = 347.7 + i43.1 ohms. The impedance of the
10 radial elements in parallel is 34.77 + i4.31 ohms. The driving-point impedance
of the 10-element array in series with the vertical monopole is Z in = Zv + Zc =
36.6− i0.13+34.77+ i4.31 = 71.37+ i4.18 ohms. This value corresponds closely to
the impedance with the horizontal-wire array. As the actual and effective lengths of the
buried insulated antennas are substantially smaller than those of the horizontal-wire
antennas, the contribution to the electromagnetic field by the currents in the radial
array is also smaller. But the general properties of the array are much the same
whether the radial array consists of horizontal wires in the air or insulated wires in
the earth.

9.5 Horizontal antennas over the spherical earth

All of the formulas in this chapter apply to horizontal antennas close to the surface of
a planar earth. When the point of observation is also close to the surface with z′ ∼ 0
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or � ∼ π/2, r0 ∼ ρ, a correction for the spherical earth can be made [6]. Under these
conditions, the intermediate and far fields are contained in

[E0ρ(ρ, φ
′, 0)]h ∼ −ωµ0k0

2πk2
2

cosφ′ eik0ρ

(
ik0

ρ
− T

)
(9.87)

[E0z′(ρ, φ
′, 0)]h ∼ −ωµ0

2πk2
cosφ′ eik0ρ

(
ik0

ρ
− T

)
(9.88)

[B0φ′(ρ, φ′, 0)]h ∼ µ0k0

2πk2
cosφ′ eik0ρ

(
ik0

ρ
− T

)
, (9.89)

where

T = k3
0

k2

(
π

k0ρ

)1/2

e−i P0F(P0), P0 = k3
0ρ

2k2
2

. (9.90)

The corresponding formulas for the vertical dipole also with d ∼ 0, z′ ∼ 0, are

[E0ρ(ρ, 0)]v = ωµ0

2πk2
eik0ρ

(
ik0

ρ
− T

)
= −k2

k0
[E0ρ(ρ, 0, 0)]h (9.91)

[E0z′(ρ, 0)]v = ωµ0

2πk0
eik0ρ

(
ik0

ρ
− T

)
= −k2

k0
[E0z′(ρ, 0, 0)]h (9.92)

[B0φ′(ρ, 0)]v = −µ0

2π
eik0ρ

(
ik0

ρ
− T

)
= −k2

k0
[B0φ′(ρ, 0, 0)]h . (9.93)

The above formulas give the intermediate field when T ∼ 0 and the far field when

T ∼ ik0

ρ
+ k2

2

k2
0ρ

2
. (9.94)

Evidently, any of the three components of the horizontal dipole are given by the
corresponding component of the vertical dipole with the simple formula

H = −k0

k2
V cosφ′. (9.95)

This also applies to the field when expressed in the spherical coordinates r0,�,� with
r0 → ρ, � → π/2.

In the spherical coordinates r,�,� with the center of the earth as origin and the
angle � measured from the radial line through the center of the dipole, the following
relations apply:

[E0ρ(ρ, 0)]v = [E0�(a,�)]v, [E0z′(ρ, 0)]v = [E0r (a,�)]v

[B0φ′(ρ, 0)]v = [B0�(a,�)]v, (9.96)
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where r = a is the radius of the earth. The corresponding relationships for the
horizontal dipole are

[E0ρ(ρ, φ
′, 0)]h = [E0�(a,�,�)]h = −k0

k2
[E0�(a,�)]v cos� (9.97)

[E0z′(ρ, φ
′, 0)]h = [E0r (a,�,�)]h = −k0

k2
[E0r (a,�)]v cos� (9.98)

[B0φ′(ρ, φ′, 0)]h = [B0�(a,�,�)]h = −k0

k2
[B0�(a,�)]v cos�. (9.99)

With (8.115) and (8.116) in Chapter 8, it follows that

[E0ρ(ρ, φ
′, 0)]h = −k0

k2

(
− ω

k2

)
[B0�(a,�)]v cos�

= −µ0ωk2
0

4πk2
2

eik0ρs+iπ/4

√
πρsρc

I2(η2, g) cos� (9.100)

[E0z′(ρ, φ
′, 0)]h = −k0

k2

(
− ω

k0

)
[B0�(a,�)]v cos�

= −µ0ωk0

4πk2

eik0ρs+iπ/4

√
πρsρc

I2(η2, g) cos� (9.101)

[B0φ′(ρ, φ′, 0)]h = −k0

k2
[B0�(a,�)]v cos�

= µ0k2
0

4πk2

eik0ρs+iπ/4

√
πρsρc

I2(η2, g) cos�. (9.102)

Here,

g = k0

k2

(
k0a

2

)1/3

, ρc = a

(
k0a

2

)−1/3

, η2 = ρs

ρc
= �

(
k0a

2

)1/3

. (9.103)

The evaluation of I2(η2, g) is given in (8.118).
As a specific example, consider the array of horizontal traveling-wave antennas and

vertical monopole treated in the preceding section, erected on the earth but transmitting
over sea water. The component of the field [Er

0�(r0,�0)]A for the array includes
the fields of the unit dipoles, namely [Er

0�(r0,�0)]vm for the vertical monopole and
[Er

0�(r0,�0, 0)]ha for each horizontal element. The generalization is valid only for
points on the surface, so that it is necessary to set �0 ∼ π/2, r0 ∼ ρ. In terms of the
coordinates (r,�,�) with the center of the earth as origin and r = a, the vertical field
of the array is given by (9.76) in the form

[Er
0r (a,�, 0)]A = Ix (0){−hev[Er

0r (a,�)]v + 0.324heh[Er
0r (a,�, 0)]h}, (9.104)
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where � = ρs/a. With (9.98) and (9.101) with � = 0,

[Er
0r (a,�, 0)]A = Ix (0)

(
k2

k0
hev + 0.324heh

)
[Er

0r (a,�, 0)]h

= −ωµ0k0 Ix (0)

4πk2

(
k2

k0
hev + 0.324heh

)
eik0ρs+iπ/4

√
πρsρc

I2(η2, g),

(9.105)

where, at f = 10 MHz,

hev = 4.78 m (9.106a)

heh = i[1 − ei(kL−k0)hm ]

kL − k0
= 46.84 + i62.68 m. (9.106b)

With these values,

[Er
0r (a,�, 0)]A = −65.81ei0.806 ωµ0k0 Ix (0)

4πk2

eik0ρs+iπ/4

√
πρsρc

I2(η2, g). (9.107)

At f = 10 MHz,

ρc = 6378 × 103

(
0.2094 × 6378 × 103

2

)−1/3

= 73.0 × 103 m = 73 km. (9.108)

For sea water, k2 = 17.77ei0.78 m−1 and

g = 0.2094

17.77ei0.78

(
0.2094 × 6378 × 103

2

)1/3

= 1.03e−i0.78. (9.109)

For these values,

|I2(η2, g)| ∼ 2.46e−1.05ρs/ρc (9.110)

so that

∣∣[Er
0r (a,�, 0)]A

∣∣ = 161.8

∣∣∣∣ωµ0k0 Ix (0)

4πk2

∣∣∣∣ e−1.05ρs/ρc

√
πρsρc

. (9.111)

This is the vertical electric field at any distance ρs = a� along the surface of the
sea due to the omnidirectional array consisting of a vertical monopole and a radial
10-element array of horizontal-wire antennas at a height d ′ = 45 cm over the earth
close to the sea coast.

At a distance ρs = 500 km, (9.111) gives∣∣[Er
0r (a,�, 0)]A

∣∣ = 2.67 × 10−8 Ix (0). (9.112)
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If the driving-point current in the vertical monopole is Iz(0) = −Ix (0) = 100 A,∣∣[Er
0r (a,�, 0)]A

∣∣ = 2.67 µV/m. (9.113)

The planar earth formula (9.80) gives∣∣[Er
0�(ρ, π/2)]A

∣∣ = 1.34 × 10−4 V/m = 134 µV/m. (9.114)

It is seen that at a distance of 500 km over the sea, the effect of the earth’s curvature is
to reduce the field by roughly a factor 50 below the value for a plane earth.

9.6 Horizontal electric dipoles for remote sensing on and in the earth,
sea, or Arctic ice

Horizontal electric dipoles have a wide range of applications in remote sensing.
Antennas for this purpose are located on satellites at altitudes of the order of 800 km,
on aircraft flying at various heights, and directly on the surface of the earth, sea, or ice.
They are used to map the surface of the earth, monitor the properties and motions of
ice sheets, and locate objects buried in the earth or snow and submarines submerged in
the ocean or under the Arctic ice. A detailed description of these interesting and in part
highly complicated systems is beyond the scope of the book. However, they all involve
the electromagnetic field of a dipole antenna parallel to the surface of the earth and the
electromagnetic field backscattered from that surface and from objects of arbitrary
shape and size at different depths under the surface. A signal from the transmitting
antenna induces currents in the earth or sea and in buried or submerged objects. The
direction and magnitude of these currents are determined by the polarization of the
incident field and the shape, electrical size, orientation, depth, and electrical properties
of a buried or submerged object. These currents radiate the scattered field which can be
received by the transmitting antenna switched to the receiving mode as in monostatic
radar or by a separate receiving antenna as in bistatic radar.

When the transmitting and receiving antennas are on the surface of the earth, sea,
or ice in a bistatic arrangement, the field transmitted into the earth and that received
from a buried scattering object cannot be determined by plane-wave theory. The two
components of the electric field in the earth due to an insulated horizontal dipole on
the surface of the earth are given by (9.2) and (9.3) with z′ = d ′ = 0, φ′ = −φ and
ε = k0/k2, and multiplied by eik2z where z is directed downward into the earth. They
are

E2ρ(ρ, φ, z) = −ωµ0k0(2he I )

2πk2
2

[
ik0

ρ
− 1

ρ2
− i

k0ρ3

− k3
0

k2

(
π

k0ρ

)1/2

e−i P0F(P0)

]
eik0ρeik2z cosφ (9.115)
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E2φ(ρ, φ, z) = ωµ0k0(2he I )

2πk2
2

[
2

ρ2
+ 2i

k0ρ3

+ ik2
0

k2ρ

(
π

k0ρ

)1/2

e−i P0F(P0)

]
eik0ρeik2z sinφ, (9.116)

where

P0 = k3
0ρ

2k2
2

, F(P0) = 1
2 (1 + i)−

∫ P0

0

eit

√
2π t

dt. (9.117)

It is this field that propagates downward into the earth and induces currents in
any buried objects in the earth. A detailed analysis of the current induced in an
insulated metal rod at a depth d below the surface in different locations relative to the
transmitting dipole has been made.2 The field re-radiated by these currents at points
on the surface has also been determined. It is this field that is detected by a horizontal
receiving antenna moved about on the surface of the earth in the vicinity of the buried
rod. The results show a significant change in the electric field over the volume occupied
by the rod and that this is sufficiently localized to permit an accurate bounding of the
area above the rod in a detail that clearly defines its shape and orientation. It is to be
emphasized that the field re-radiated by the buried object and maintained along the
air–earth surface is a pure lateral wave. Complete formulas for the field in air due to a
horizontal electric dipole at a depth d in the earth or sea are in Chapter 5 of [2].

A similar application with a horizontal electric dipole in the sea close to the surface
as the transmitter and a movable crossed dipole also in the sea just below the surface
as a receiver has been analyzed [9] and shown to permit the detection of submarines
at depths up to 100 m. A generalization of the method to permit the transmitting and
receiving antennas to be laid on the surface of the Arctic ice has been made [10].

In the synthetic aperture radar (SAR), the backscattered field is received and
recorded successively and over a range of frequencies. It is then processed to form
an image. In one system, the radar transmits in a series of narrow bands of about
1 MHz that step up in frequency from 20 to 90 MHz at about 100-µs intervals. The
returns are then integrated to produce images. This process of combining the returns
from a wide narrow-band series gives the radar the effect of a large band width. Very
extensive signal processing is required and this is based on plane-wave theory. Of
primary importance is coherence, that is, the phase of the reflected field is defined
well enough and contains the information needed to characterize the target. Can the
synthetic aperture radar accurately reconstruct the image of a target buried in the earth
if the signal processing assumes that the scattered field is a plane wave that obeys the
well-known laws of reflection and refraction? Can the essential coherence be achieved
with the plane-wave assumption?

2 See [2], Chapter 7, [7] and [8].
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Consider an electrically short insulated metal rod buried at a depth d in the earth.
The rod has the length 2h and the effective length 2he. If the current induced in the
rod by the field incident from the horizontal antenna of the aircraft flying parallel to
the x-directed rod at the height z′ and radial distance ρ is I , the component of the
electric field scattered or re-radiated by the rod parallel to the antenna on the aircraft is

E0ρ(ρ, 0, z′) = −ωµ0(2he I )

2πk2
eik2deik0r0

×
{

k0

k2

[
ik0

r0
− 1

r2
0

− i

k0r3
0

− r2

ρ
T

]
−
(

z′

r0

)(
ik0

r0
− 1

r2
0

)}
.

(9.118)

The magnetic field is

B0φ′(ρ, 0, z′) = µ0k0(2he I )

2πk2
eik2deik0r0

(
ik0

r0
− 1

r2
0

− i

k0r3
0

− r2

ρ
T

)
, (9.119)

where

r0 =
√
ρ2 + z′2, r2 =

√
ρ2 + (z′ + d)2 (9.120)

T = k3
0

k2

(
π

k0r2

)1/2

e−i P2F(P2), P2 = k3
0r2

2k2
2

(
k0r2 + k2(z′ + d)

k0ρ

)2

(9.121)

F(P2) = 1
2 (1 + i)−

∫ P2

0

eit

√
2π t

dt. (9.122)

It is this field that is received by the aircraft at the height z′ and radial distance ρ.
It is very different from that assumed by plane-wave theory. In its simplest form,
this assumes that the induced current in the buried dipole generates a plane wave
that propagates directly to the receiving antenna in the air. That is, the signal has the
simple form of a free-space plane wave, namely,

E0ρ ∼ eik0r2 cosφ′, (9.123)

where r2 is given in (9.120). This ignores the properties of the earth. A more complete
form assumes the emitted plane wave travels to the earth–air boundary which it
reaches with an angle of incidence �2. At the surface, it is refracted according to the
plane-wave law of refraction and continues in the air at the angle of transmission �0,
so that k2 sin�2 = k0 sin�0. The transmission coefficient is

fmt = 2k0 cos�0

k2 cos�2 + k0 cos�0
. (9.124)
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The field in the air using the refracted plane-wave approximation is

E0ρ ∼ fmt e
i(k2rd+k0r0) cosφ′, (9.125)

where rd is the distance of travel in the earth from the buried rod at the depth d to
the earth–air surface and r0 is the distance of travel in the air from that surface to the
aircraft antenna at the height z′.

A detailed comparison of the signals received and processed by a synthetic aperture
radar based on the accurate field in (9.118) and each of the two plane-wave assump-
tions, (9.123) and (9.125), has been made by Gilbert et al. [11]. Their calculations
are for f = 600 MHz and f = 5 GHz with d = 0.5 m and z′ = 3 and 30 m. They
conclude that:

“when the receiving antenna is very close to the ground above a buried source, the use of plane
wave approximations to correlate signals will lead to severely degraded images compared to images
correlated with accurate analytical solutions to the Maxwell equations [(9.118) and (9.119)]. In
contrast, for many other cases of interest, when the receiving antenna is sufficiently high (over 30 m
altitude), the quality of images correlated with a plane wave approximation is quite good apart from
some loss in image intensity.”

For maximum quality of the image, it is clearly desirable to use the accurate
formulas rather than plane-wave approximations under all circumstances. This is
essential when the transceiver is near the surface of the earth. When z′ ≥ ρ, the
condition P2 ≤ 1 is generally satisfied so that the Fresnel-integral term is negligible.
Thus, when k0ρ ≥ 1 and P2 ≤ 1, the intermediate-zone field is

Ei
0ρ(ρ, φ

′, z′) = iωµ0k0(2he I )

2πk2

eik2deik0r0

r0

(
z′

r0
− k0

k2

)
cosφ′ (9.126)

Bi
0φ′(ρ, φ′, z′) = − iµ0k2

0(2he I )

2πk2

eik2deik0r0

r0
cosφ′. (9.127)

Note that in the spherical coordinates r0,�,�, z′/r0 = cos�.

9.7 Horizontal electric dipoles and patch antennas on microstrip

The dipole

As stated in Section 8.8, the horizontal electric dipole is the basic element of strip
transmission lines and antennas on microstrip. The complete electromagnetic field in
cylindrical coordinates of such a dipole with the electric moment (2he I ) is given by
(9.2)–(9.7) with (9.8)–(9.10). For microstrip with a dielectric layer with the thickness l,

ε = k0

k2
− ik0l ∼ −ik0l. (9.128)
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The wave number k2 of the conducting base is generally so large that |k0/k2| � k0l
or |k2l| � 1. In effect, the base acts like a perfect conductor. At sufficiently large
electrical distances with the dipole on the surface of the dielectric so that d ′ = 0 and

k0r0 > 1 (9.129)

the point of observation is in the intermediate zone or beyond. The outer limit of the
intermediate field is

|P0| ≤ 1, |P0| = k0r0

2

∣∣∣∣−ik0lr0 + z′

ρ

∣∣∣∣
2

= k0r0

2

∣∣∣∣−ik0l + cos�

sin�

∣∣∣∣
2

, (9.130)

where � is measured from the z′ axis and ρ/r0 = sin�, z′/r0 = cos�. It follows that
for the intermediate zone,

k0r0 ≤ 2

∣∣∣∣ sin�

−ik0l + cos�

∣∣∣∣
2

= 2 sin2 �

k2
0l2 + cos2 �

. (9.131)

Since k2
0l2 � 1,

k0r0 ≤ 2 tan2 �, � �= π/2 (9.132a)

k0r0 ≤ 2

k2
0l2

, � = π/2. (9.132b)

Since k0l is approximately constant over the frequency range in which microstrip is
useful, a typical value is general. Specifically, with f = 10 GHz, l = 0.1 mm, k0l =
2π × 1010 × 10−4/(3 × 108) ∼ 2 × 10−2 and

k0r0 ≤ 5 × 103.

This is so large that no microstrip circuit can extend beyond the intermediate zone and
the far zone in which the field decreases as 1/r2 is never reached. The relevant range
lies beyond the near field with k0r0 ≥ 1 entirely in the intermediate range.

The components of the intermediate range include three of electric type, namely,

Ei
0ρ(ρ, φ

′, z′) = −iωµ0(2he I )

2π
(ik0l)

eik0r0

r0

(
z′

r0
+ ik0l

)
cosφ′ (9.133)

Ei
0z′(ρ, φ

′, z′) = iωµ0(2he I )

2π
(ik0l)

eik0r0

r0

(
ρ

r0

)
cosφ′ (9.134)

Bi
0φ′(ρ, φ′, z′) = −ik0µ0(2he I )

2π
(ik0l)

eik0r0

r0
cosφ′ (9.135)
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and three of magnetic type, namely,

Bi
0ρ(ρ, φ

′, z′) = −ik0µ0(2he I )

2π
(ik0l)

eik0r0

r0

(
z′2

r2
0

)
sinφ′ (9.136)

Bi
0z′(ρ, φ

′, z′) = ik0µ0(2he I )

2π
(ik0l)

eik0r0

r0

(
ρ

r0

)(
z′

r0

)
sinφ′ (9.137)

Ei
0φ′(ρ, φ′, z′) = iωµ0(2he I )

2π
(ik0l)

eik0r0

r0

(
z′

r0

)
sinφ′. (9.138)

In the spherical coordinates r0,�,�, these are

Ei
0r (r0,�,�) = −iωµ0(2he I )

2π
(ik0l)

eik0r0

r0
cos� sin� (9.139)

Ei
0�(r0,�,�) = −iωµ0(2he I )

2π
(ik0l)

eik0r0

r0
(1 + ik0l cos�) cos� (9.140)

Bi
0�(r0,�,�) = −ik0µ0(2he I )

2π
(ik0l)

eik0r0

r0
cos� (9.141)

Bi
0r (r0,�,�) = 0 (9.142)

Bi
0�(r0,�,�) = −k0

ω
Ei

0�(r0,�,�)

= −iµ0k0(2he I )

2π
(ik0l)

eik0r0

r0
sin� cos�. (9.143)

For completeness and possible special cases, the far-field formulas are also given.
The far-field condition is

|P0| ≥ 4 or k0r0 ≥
∣∣∣∣∣ 8 sin2 �

cos2 �+ ε cos�+ ε2

∣∣∣∣∣ . (9.144)

The formulas for the field of electric type are obtained from (9.33)–(9.35) with ε =
−ik0l. They are

Er
0r (r0,�,�) = ωµ0(2he I )

2πk0
cos� eik0r0

sin3 �

r2
0 [1 + (i/k0l) cos�]2

(9.145)

Er
0�(r0,�,�) = ωµ0(2he I )

2πk0
cos� eik0r0

[
ik0

r0

(
k0l cos�

k0l + i cos�

)

− sin2 �(ik0l sin2 �− k2
0l2 cos�)

k2
0l2r2

0 [1 + (i/k0l) cos�]3

]
(9.146)
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Figure 9.9 Microstrip patch antenna end-driven by microstrip transmission line. Taken from King
[12, Fig. 1]. c© 1992 American Geophysical Union.

Br
0�(r0,�,�) = µ0(2he I )

2π
cos� eik0r0

[
ik0

r0

(
k0l cos�

k0l + i cos�

)

− ik0l sin2 �

k2
0l2r2

0 [1 + (i/k0l) cos�]3

]
. (9.147)

As the field of magnetic type includes no lateral wave, the intermediate field for it
extends on into the far field.

Patch antennas

In order to increase the electric moment of horizontal electric dipoles on microstrip,
they can be enlarged into flat patches that can be rectangular, square, or circular in
shape. Such a patch antenna can be driven from a vertical post that pierces the dielectric
layer or from a strip transmission line that connects to one end. A schematic diagram
of the end-driven rectangular patch antenna [12] is shown in Fig. 9.9. The current on
such a patch antenna has not been determined analytically. In practice, it is obtained
by numerical methods or simply postulated in terms of a reasonable approximation.
Since the radiation field is not sensitive to the details of the current distribution, a
usually adequate determination can be made with the latter method.

The current-density distribution appropriate for the rectangular patch antenna shown
in Fig. 9.9 has the form

Jx (x
′′, y′′) = Ix (0)

2w
cos kL x ′′. (9.148)
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The length of the patch is 2h and the width is 2w with

−h ≤ x ′′ ≤ h, −w ≤ y′′ ≤ w. (9.149)

In (9.148), kL = k0
√
ε1r eff is the wave number that would characterize the patch as

a segment of a microstrip transmission line, Ix (0) is the total current traversing the
center line x ′′ = 0 of the patch, and h is so chosen that kL h = π/2. The transverse
distribution of the x-directed current is assumed to be uniform. Actually, the transverse
distribution has large peaks at the edges |y′′| = w and a minimum at the center
y′′ = 0. In addition, there is a y′′-directed current. Since this is in opposite directions
on the top and bottom surfaces of the patch, its contribution to the radiation field is
negligible. Since the impedance of the patch as a termination for the strip transmission
line is very large – near anti-resonance – the driving-point current is small compared to
Ix (0), and the assumed current (9.148) should be a good approximation. Formulas for
the characteristic impedance of the microstrip transmission line and the real effective
permittivity ε1r eff as given by Hoffman [13] are

Zc = 60√
ε1r eff

ln

(
4l

w
+ w

2l

)
ohms, 0 ≤ 2w

l
≤ 1 (9.150a)

Zc = 120π√
ε1r eff

[
2w

l
+ 2.42 − 0.22

l

w
+
(

1 − l

2w

)6
]−1

ohms,
2w

l
> 1

(9.150b)

ε1r eff = ε1r + 1

2
+ ε1r − 1

2

(
1 + 5l

w

)−1/2

, kL = k0
√
ε1r eff. (9.151)

These apply to a microstrip transmission line with the width 2w on a dielectric
substrate with the thickness l and the relative permittivity ε1r .

The radiation field of the assumed current distribution in the rectangular patch is
obtained by integration using the intermediate-zone formulas (9.140) and (9.143).
These have the differential elements

d E0�(r,�,�) = −iωµ0

2π
(ik0l)

eik0r

r
(1 + ik0l cos�) cos�

× Jx (x
′′, y′′) dx ′′ dy′′ (9.152)

d E0�(r,�,�) = iωµ0

2π
(ik0l)

eik0r

r
sin� cos� Jx (x

′′, y′′) dx ′′ dy′′. (9.153)

Here,

r =
√
(x ′ − x ′′)2 + (y′ − y′′)2 + z′2 (9.154)

is the distance from the element Jx (x ′′, y′′) dx ′′ dy′′ at z′′ = 0 to the point of
observation at x ′, y′, z′. In the radiation zone, r ∼ r0 =

√
x ′2 + y′2 + z′2 is adequate
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in amplitudes. In phases, the more accurate formula

r ∼
√

r2
0 − 2x ′x ′′ − 2y′y′′ ∼ r0 − x ′′ x ′

r0
− y′′ y′

r0

= r0 − x ′′ cos� sin�− y′′ sin� sin� (9.155)

must be used. The integral to be evaluated for all components is

J = eik0r0 J (x ′′)J (y′′), (9.156)

where

J (x ′′) =
∫ h

−h
cos kL x ′′ e−ik0x ′′ cos� sin� dx ′′ = 2kL cos(k0h cos� sin�)

k2
L − k2

0 cos2 � sin2 �
(9.157)

J (y′′) =
∫ w

−w

e−ik0 y′′ sin� sin� dy′′ = 2 sin(k0w sin� sin�)

k0 sin� sin�
. (9.158)

With these values, the field factor for the patch antenna is

P(�,�) = Ix (0)

2w
J (x ′′)J (y′′)

= Ix (0)

[
2kL cos(k0h cos� sin�)

k2
L − k2

0 cos2 � sin2 �

][
sin(k0w sin� sin�)

k0w sin� sin�

]
. (9.159)

The leading components of the radiation field are

Ei
0�(r0,�,�) = ω

k0
Bi

0�(r0,�,�)

= −iωµ0

2π
(ik0l)

eik0r0

r0
cos� P(�,�), 1 ≤ k0ρ ≤ 4

k2
0l2

(9.160)

Ei
0�(r0,�,�) = −ω

k0
Bi

0�(r0,�,�)

= iωµ0

2π
(ik0l)

eik0r0

r0
sin� cos� P(�,�), 1 ≤ k0ρ. (9.161)

These are valid throughout the intermediate zone which includes the far field for E0�

and B0� but excludes the range |P0| > 1 close to the plane z′ = 0 when this is
occupied by microstrip. In practice, the microstrip is finite and the field beyond its
edges is modified by edge reflection and diffraction.

Of particular interest is the field in the E-plane when � = 0. In this case,

P(�, 0) = Ix (0)

[
2kL cos(k0h sin�)

k2
L − k2

0 sin2 �

]
(9.162)

Ei
0�(r0,�, 0) = ω

k0
Bi

0�(r0,�, 0) = −iωµ0

2π
(ik0l)

eik0r0

r0
P(�, 0). (9.163)
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When � = π/2, the H-plane pattern is given by

P(�, π/2) = Ix (0)

kL

[
2 sin(k0w sin�)

k0w sin�

]
(9.164)

and

Ei
0�(r0,�, π/2) = −ω

k0
Bi

0�(r0,�, π/2)

= iωµ0

2π
(ik0l)

eik0r0

r0
cos� P(�, π/2). (9.165)



10 Application of the two-term theory to general
arrays of parallel non-staggered elements

The purpose of this chapter is threefold:

1. To summarize those parts of the two-term theory of Chapters 2–5 which concern
arrays with large inter-element spacing. The notation used in this chapter is new
and suitable for a general-purpose computer program.

2. To remove the restriction for N ≥ 3 that the N elements need to be placed on a
circle (Chapter 4) or equispaced along a straight line (Chapter 5). The elements
must still be parallel, non-staggered, and identical.

3. To prepare for the analysis of the large circular array developed in the next two
chapters, for which the new notation of this chapter is particularly well-suited.

Section 10.1 contains a concise derivation of the formulas. Section 10.2 contains the
complete formulas in their final form. In Section 10.3, special cases, extensions and
computational aspects are discussed. Finally, Section 10.4 derives a special form for
the case kh = π/2.

[D] denotes the N × N matrix with components Dnl (1 ≤ n, l ≤ N ) and {t} denotes
the vector (N × 1 column matrix) with components t1, t2, . . . , tN . The linear algebra
terms used here may be found in any standard linear algebra textbook.

10.1 Brief derivation of the formulas

The two-term formulas for the N coupled integral equations

N∑
n=1

∫ h

−h
In(z

′)Knl(z − z′) dz′

= − j4π

ζ0

(
Cl cos kz + Vl

2
sin k|z|

)
; −h < z < h, l = 1, . . . , N

(10.1)

where the constants Cl are determined from the conditions

I1(±h) = I2(±h) = · · · = IN (±h) = 0 (10.2)

379
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are briefly derived here for a general array in free space. Here, “general array” means
an array of parallel, identical, non-staggered, center-driven, perfectly conducting
cylindrical dipoles satisfying the conditions

ka � 1, a � h, min bnl � h, kh < 3π/2. (10.3)

In (10.1)–(10.3), I1(z), I2(z), . . . , IN (z) are the unknown current distributions on the
surface of the N dipoles, h is the half-length of each dipole, and a is its radius. Vl is
the voltage driving element l, with Vl = 0 if the element is non-driven. The dipoles’
centers lie on the plane z = 0; k = 2π/λ = ω

√
µ0ε0 is the free-space wave number

and ζ0 = √
µ0/ε0

.= 376.73 ohms. The Knl(z) are the kernels of the integral equations.
The self-interaction kernels K11(z), K22(z), . . . , KN N (z) are all equal. They depend
on the radius ka of the elements and are given by

Kll(z)

k
= K11(z)

k
= cos k

√
z2 + a2

k
√

z2 + a2
− j

sin k
√

z2 + a2

k
√

z2 + a2
, l = 1, . . . , N . (10.4)

The mutual interaction kernels Knl(z), n �= l, depend on the distance kbnl between
the axes of element l and element n. They are given by

Knl(z)

k
= Kln(z)

k
=

cos k
√

z2 + b2
nl

k
√

z2 + b2
nl

− j
sin k

√
z2 + b2

nl

k
√

z2 + b2
nl

, n �= l. (10.5)

These kernels must be modified for the special case of a large resonant circular array.
This modification is discussed in Section 11.8. As discussed in Section 3.2, the third
condition in (10.3) can, for many purposes, be replaced by minβ0bnl ≥ 1.

First, the integral equations are rearranged in a form suitable for applying the two-
term theory approximations: Formula (10.1) for z = h is

j4π

ζ0
Ul ≡

N∑
n=1

∫ h

−h
In(z

′)Knl(h − z′) dz′ = − j4π

ζ0

(
Cl cos kh + Vl

2
sin kh

)
. (10.6)

If this is subtracted from (10.1), the following equivalent system of integral equations
is obtained:

N∑
n=1

∫ h

−h
In(z

′)Kdnl(z, z′) dz′ = − j4π

ζ0

(
Cl cos kz + Vl

2
sin k|z| + Ul

)
, (10.7)

where

Kdnl(z, z′) = Knl(z − z′)− Knl(h − z′) (10.8)

are the difference kernels. In this and the next section, it is assumed that kh �= π/2; this
restriction is discussed in Section 10.3 and removed in Section 10.4. Formula (10.6)
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may then be used to write the constants Cl in terms of the constants Ul :

Cl = −
1
2 Vl sin kh + Ul

cos kh
(10.9)

so that the final exact form of the integral equations is found by substituting (10.9) into
(10.7) as

N∑
n=1

∫ h

−h
In(z

′)Kdnl(z, z′) dz′

= j4π

ζ0 cos kh

[
Vl

2
sin k(h − |z|)+ Ul(cos kz − cos kh)

]
, l = 1, . . . , N

(10.10)

which are to be solved together with the conditions

j4π

ζ0
Ul =

N∑
n=1

∫ h

−h
In(z

′)Knl(h − z′) dz′, l = 1, . . . , N . (10.11)

Both sides of the integral equation (10.10) are proportional to the vector potential
difference Azl(z)− Azl(h) and vanish at z = ±h.

Subject to the conditions (10.3), the approximate two-term theory current distribu-
tions are of the form

In(z) = s[Vn sin k(h − |z|)+ tn(cos kz − cos kh)], n = 1, . . . , N , (10.12)

where the coefficients s and tn are to be determined.
Thus, one part of the current on each element is the sine term sin k(h − |z|). The

discontinuity in the derivative of this term at the driving point is due to the existence
of the idealized delta-function generator there. In the limit ka → 0, the sine current
distribution is the exact current distribution on an isolated element. The coefficient
s will turn out to be purely imaginary and to depend on kh and ka only. Thus, the
sin k(h−|z|) part of the current is purely reactive. It is said to be maintained directly by
the generator driving element n since its coefficient sVn is directly proportional to the
driving voltage Vn and is independent of the number, location, and driving conditions
of the rest of the elements in the array.

The second term in the current (10.12) is the shifted cosine (cos kz − cos kh). Its
coefficient tn will turn out to depend linearly on all the driving voltages in the array,
namely,

tn = Tn1V1 + Tn2V2 + · · · + TnN VN , n = 1, . . . , N (10.13)

where the Tnl are independent of the driving voltages. If element n is non-driven
(Vn = 0), the distribution of current along its length consists only of the shifted
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cosine (cos kz−cos kh). This is exactly the current distribution on an isolated receiving
element in the limit ka → 0.

In terms of the unknowns s and tn , the constant Ul is found by substituting (10.12)
into (10.11),

Ul = ζ0s

j4π

[ N∑
n=1

Vn�V nl +
N∑

n=1

tn�Unl

]
, l = 1, . . . , N , (10.14)

where

�V nl =
∫ h

−h
sin k(h − |z′|)Knl(h − z′) dz′; 1 ≤ n, l ≤ N (10.15)

and

�Unl =
∫ h

−h
(cos kz′ − cos kh)Knl(h − z′) dz′; 1 ≤ n, l ≤ N (10.16)

are known constants.
In order to write the left-hand side (LHS) of (10.10) into the form of the right-hand

side (RHS), and to reduce the problem of finding the coefficients s and tn to one of
solving a system of linear algebraic equations, the two-term theory approximations
are made. These are∫ h

−h
sin k(h − |z′|)Re{Kdll(z, z′)} dz′ .= �d R sin k(h − |z|), l = 1, . . . , N

(10.17)∫ h

−h
sin k(h − |z′|) Im{Kdll(z, z′)} dz′ .= �d I (cos kz − cos kh), l = 1, . . . , N

(10.18)∫ h

−h
sin k(h − |z′|)Kdnl(z, z′) dz′ .= �dV nl(cos kz − cos kh), n �= l (10.19)

∫ h

−h
(cos kz′ − cos kh)Kdnl(z, z′) dz′ .= �dUnl(cos kz − cos kh), 1 ≤ n, l ≤ N .

(10.20)

In these approximate formulas, the functions of z on the LHS as well as those on the
RHS are even and vanish at z = ±h. In the case kh < 3π/2, the maxima of the
functions of z on the RHS occur at z = zmax = 0. The exception is when π/2 <

kh < 3π/2. In this case, the maxima of the functions on the RHS of (10.17) occur
at z = ±zmax = ±(h − λ/4). If the coefficients of proportionality are determined by
enforcing the functions on the RHS to coincide with those on the LHS at ±zmax, a
good approximation results. Thus, the coefficients are given by
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�d R =




1

sin kh

∫ h

−h
sin k(h − |z′|)Re{Kdll(0, z′)} dz′, kh < π/2 (10.21)

∫ h

−h
sin k(h − |z′|)Re{Kdll(h − λ/4, z′)} dz′, π/2 < kh < 3π/2

(10.22)

�d I = 1

1 − cos kh

∫ h

−h
sin k(h − |z′|) Im{Kdll(0, z′)} dz′ (10.23)

�dV nl = 1

1 − cos kh

∫ h

−h
sin k(h − |z′|)Kdnl(0, z′) dz′, n �= l (10.24)

�dUnl = 1

1 − cos kh

∫ h

−h
(cos kz′ − cos kh)Kdnl(0, z′) dz′. (10.25)

Note from (10.21) and (10.22) that as a function of kh, �d R is continuous at kh = π/2.
If (10.12) with (10.17)–(10.20) and (10.14) are substituted into the integral equa-

tions (10.10) and the coefficients of sin k(h − |z|) and (cos kz − cos kh) are equated,
the following equations result. By equating the coefficients of sin k(h − |z|), it is seen
that

s = j2π

ζ0�d R cos kh
(10.26)

which gives s in terms of the known coefficient �d R . Equating the coefficients of the
shifted cosine term, we obtain

N∑
n=1

Dln tn =
N∑

n=1

PlnVn, 1 ≤ l ≤ N , (10.27)

where

Dln = Dnl = cos kh �dUnl −�Unl , l = 1, . . . , N , n = 1, . . . , N

(10.28)

Pln = Pnl = − cos kh �dV nl +�V nl , 1 ≤ n �= l ≤ N (10.29)

Re{Pll} = Re{P11} = Re{− j�d I cos kh +�V 11}, l = 1, . . . , N (10.30)

Im{Pll} = Im{P11} = Im{− j�d I cos kh +�V 11}, l = 1, . . . , N . (10.31)

Equation (10.27) is a system of linear equations. The unknowns are the coefficients tn .
It is convenient to substitute (10.15), (10.16), and (10.21)–(10.25) into (10.28)–(10.31)
and express the coefficients Dnl and Pnl as integrals involving the kernels Knl(z). The
final complete formulas obtained in this manner are listed in the next section.
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10.2 The complete two-term theory formulas

Assuming that kh �= π/2 as in the previous section, the currents are

Il(z) = j2π

ζ0�d R cos kh
[Vl sin k(h − |z|)+ tl(cos kz − cos kh)], l = 1, . . . , N .

(10.32)

Equation (10.32) can also be written in matrix form as

{I (z)} = j2π

ζ0�d R cos kh
[{V } sin k(h − |z|)+ {t}(cos kz − cos kh)]. (10.33)

In (10.32) and (10.33),

�d R =




1

sin kh

∫ h

−h
sin k(h − |z′|)[Re{K11(z

′)} − Re{K11(h − z′)}] dz′,

kh ≤ π/2 (10.34)∫ h

−h
sin k(h − |z′|)[Re{K11(h − λ/4 − z′)− Re{K11(h − z′)}] dz′,

π/2 ≤ kh < 3π/2 (10.35)

and the coefficients tl are determined by solving the N × N system of linear algebraic
equations

N∑
l=1

Dnl tl =
N∑

l=1

Pnl Vl , 1 ≤ n ≤ N . (10.36)

The system (10.36) can be written in matrix form as

[D] {t} = [P] {V }. (10.37)

The matrix components are

Dnl = 1

1 − cos kh

∫ h

−h
(cos kz − cos kh)

× [cos kh Knl(z)− Knl(h − z)] dz, 1 ≤ n, l ≤ N . (10.38)

Excluding the principal diagonal, the components of the matrix on the RHS are given
by

Pnl = −1

1 − cos kh

∫ h

−h
sin k(h − |z|)

× [cos kh Knl(z)− Knl(h − z)] dz, n �= l. (10.39)
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The components of the principal diagonal of the matrix on the RHS are

Pll =
∫ h

−h
sin k(h − |z|)Re{K11(h − z)} dz

− j
1

1 − cos kh

∫ h

−h
sin k(h − |z|)[cos kh Im{K11(z)} − Im{K11(h − z)}] dz.

(10.40)

These formulas readily follow from the equations in the previous section. The ker-
nels Knl(z)= Kln(z), 1≤ n, l ≤ N , appearing in (10.34), (10.35), and (10.38)–(10.40)
are given in (10.4) and (10.5). The relation (10.13) between [T ] and {t} may be written
in matrix notation as

{t} = [T ] {V }, (10.41)

where

[T ] = [D]−1[P]. (10.42)

10.3 Remarks and programming considerations

The formulas of the previous section may be easily programmed in the form given
above. The inputs of the program are the parameters N , kh, ka, kbnl (1 ≤ n, l ≤ N ),
and the driving voltages V1, V2, . . . , VN . Alternatively, the parameters N , kh, ka, kbnl ,
and the driving-point currents I1(0), I2(0), . . . , IN (0) may be inputs to the program.
Some observations and numerical considerations are given below.

1. The matrix elements Dnl and Pnl in (10.38)–(10.40) are complex. They depend on
N , kh, ka, and kbnl , and they are independent of the driving voltages. Their real
(imaginary) part depends only on the real (imaginary) part of the corresponding
kernel Knl(z). Thus, for n �= l, each matrix element is completely determined by
the distance kbnl and by kh. When n = l, the matrix element depends on the self-
interaction kernel (10.4) and is completely determined by the radius ka and by kh.

2. It follows that the matrices [D] and [P] are complex and symmetric and that all
elements on their principal diagonals are equal.

3. The real and imaginary parts of the matrix elements are easily obtained by
numerical integration of the real and imaginary parts of equations (10.38)–(10.40).
The change of variables kz = x is convenient. In order to determine all elements
Dnl and Pnl for a general array, a total of 2(N 2−N +2) different real integrals must
be calculated numerically. If the program uses general-purpose adaptive integrators
(subroutines), one can specify the desired accuracy for the numerical integrations.
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Generally, the elements (integrals) on or close to the principal diagonal are those
that must be computed with the highest relative accuracy. The elements far from
the diagonal are smaller in absolute value; slight errors in these elements will not
appear in the final results.

4. In the case where the base voltages V1, V2, . . . , VN are specified, the program
should first compute the coefficients �d R and tl . �d R is found from (10.34) or
(10.35) by numerical integration. Once the matrix elements Dnl and Pnl have been
found as described above, the program may compute the complex vector [P]{V } on
the RHS of (10.37) and use a standard routine to solve the complex N × N linear
system (10.37) for the coefficients tl .

Quantities which may be easily determined once �d R and tl are found are the
following:

(a) The current distributions I1(z), I2(z), . . . , IN (z) from equation (10.32).

(b) Equation (10.32) and the definition

Yl,in = 1/Zl,in = Il(0)/Vl , l = 1, . . . , N (10.43)

may be used to compute the driving-point admittances1 Y1,in, Y2,in, . . . , YN ,in

of the elements. Yl,in is completely determined by the voltage ratios V1/Vl ,
V2/Vl , . . . , VN/Vl , and by N , kh, ka, and kbnl .

(c) Consider the case where only one element is driven and the rest are (present
but) non-driven. Suppose that element n is driven by a voltage Vn (Vp = 0
for p �= n). The single driving-point admittance in this case is often called the
self-admittance Ynn and the normalized midpoint currents Il(0)/Vn , n �= l, are
often called the mutual admittances Yln . The matrix [Y ] with elements Yln is
completely determined by N , kh, ka, and kbnl . It is easily seen to be related to
the matrix [T ] of (10.42) by

[Y ] = j2π

ζ0�d R cos kh

{
sin kh[I N×N ] + (1 − cos kh)[T ]

}
, (10.44)

where [I N×N ] is the N × N identity matrix. The driving-point admittances in
the case when all elements are driven by voltages V1, V2, . . . , VN are related to
Yln by

Yl,in =
N∑

n=1

Yln
Vn

Vl
, l = 1, . . . , N . (10.45)

The above equations are useful when one wishes to compute the driving-point
admittances for many different sets of driving voltages {V }. Standard tech-
niques for solving systems with multiple RHS vectors are useful in order to

1 Note that what is referred to in this book as the driving-point admittance (impedance) is often referred to in the
literature as the active admittance (impedance).
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determine [T ] from (10.42). Note that for general arrays with N ≥ 3, [T ]
and [Y ] are not necessarily symmetric and that the elements on their principal
diagonals are not necessarily equal.

(d) Suppose that the center of the axis of dipole l is located at (ρl , φl) in polar
coordinates and that the spherical coordinates of a far-field observation point
are (r, θ, φ). The radiation field is found from �d R and tl by the equation

E(r, θ, φ) = θ̂θθEθ

= θ̂θθ
−1

�d R cos kh

e− jkr

r

N∑
l=1

[Vl F(θ)+ tl G(θ)]e jkρl sin θ cos(φ−φl ),

(10.46)

where

F(θ) = cos(kh cos θ)− cos kh

sin θ
(10.47)

G(θ) = sin kh cos(kh cos θ) cos θ − cos kh sin(kh cos θ)

sin θ cos θ
(10.48)

are the “element factors” for the sine and shifted-cosine currents, respectively.
With the radiation field determined, the gain and directivity of the array may be
easily found.

5. The case where the driving-point currents I1(0), I2(0), . . . , IN (0) are given and
the base voltages V1, V2, . . . , VN are desired may also be treated by a program in a
similar manner. The relation between {V } and {I (0)} is found from (10.33), (10.41),
and (10.42) to be

[Q]{V } = ζ0�d R cos kh

j2π
[D]{I (0)}, (10.49)

where

[Q] = sin kh [D] + (1 − cos kh)[P]. (10.50)

In this case, the program should first compute �d R , [D], and [P] as before, then
compute [Q] from (10.50), find the vector on the RHS of (10.49), and then solve
the system (10.49) of linear algebraic equations for the unknown vector {V }. The
matrix [Q] has the same form as [P] and [D] (see the second observation of this
section).

6. For the special case of a curtain array (Chapter 5), the distances bnl are given
by bnl = |l − n|b, where b is the distance between adjacent elements. Here, the
matrices [D], [P] and [Q], in addition to being symmetric, are Toeplitz (i.e. the
matrix elements on all diagonals are equal). The full matrices are determined by the
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elements of the first row. In order to determine all elements Dnl , Pnl , and Qnl for a
curtain array, only 4N different real integrals need to be calculated numerically. If
a routine especially designed for complex Toeplitz systems is used to solve (10.37)
or (10.49), further reduction in computer time and storage is accomplished. For
N ≥ 3, the matrices [T ] and [Y ] are in general neither symmetric nor Toeplitz.

7. For the special case of a circular array, the matrices [D], [P], and [Q] are
(symmetric and) circulant so that the solution of the system (10.37) or (10.49)
may be written as a superposition over the N phase sequences. A brief, general
discussion of symmetric circulant matrices is given in Section 4.5.

All elements in a circular array have the same self-admittance and the mutual
admittances satisfy Ynl = Yln . Also, for a given circular array, Yln = Ypq if bln =
bpq . When the array is driven in its mth phase sequence (Vl = V1e j2π(l−1)m/N ), the
driving-point admittance Y (m)

l of any element in the array does not depend on the
element number l; it is denoted by Y (m) in Chapters 4, 11, and 12, and referred to
as the mth phase-sequence admittance. For the large circular arrays considered in
Chapters 11 and 12, the formulas must be modified as discussed in Sections 11.8
and 12.8. Furthermore, special numerical considerations must be taken into account.
These are discussed in Section 13.5.

8. Arrays of vertical monopoles over a ground plane and arrays of horizontal,
non-staggered dipoles over a ground plane are discussed here. The ground plane
is assumed to be of infinite extent and perfectly conducting in both cases.

(a) The case of N vertical monopoles of length h over a ground plane (located at
the plane z = 0) reduces by virtue of the theorem of images to that of a general
array of N dipoles of length 2h in free space: If driving voltages are given
and currents are desired, one first solves the latter problem and multiplies the
resulting current distributions by a factor of 2. For z > 0, these are the desired
current distributions on the monopoles.

(b) The theorem of images also applies to the case of N horizontal, non-staggered
dipoles over a ground plane. Suppose that the ground plane is located at the
plane x = 0, and that the N dipoles are in the half-space x > 0. Their centers
lie on the plane z = 0. The bnl (1 ≤ n, l ≤ N ) are the axis-to-axis distances.
The problem is equivalent to that of 2N parallel, non-staggered dipoles in free
space. The original dipoles are numbered as 1, 2, . . . , N , and the images are
numbered as N + 1, N + 2, . . . , 2N , so that the image of dipole l is the dipole
l + N (l = 1, 2, . . . , N ). The voltage driving dipole l is the opposite of that
driving dipole l + N , namely,

V 2N
l+N = −V 2N

l , l = 1, 2, . . . , N , (10.51)

where the superscript 2N has been affixed to show that the equivalent array has
2N elements.
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Denote by cnl = cln the axis-to-axis distance between element l and the image
of element n (1 ≤ n, l ≤ N ). If the original dipoles are sufficiently far from the
ground plane, specifically,

min cll � h (10.52)

[and if the conditions (10.3) are also satisfied], then the problem may be treated
as described above, where there are 2N dipoles instead of N . It is possible,
however, to reduce the problem to that of solving N linear equations instead of
2N as follows.

The matrices [D] and [P] appearing in the 2N × 2N system (10.37) for the 2N
coefficients t2N

l separate into four N × N submatrices, namely,

[D] =
[

[Db] [Dc]
[Dc] [Db]

]
(10.53)

[P] =
[

[Pb] [Pc]
[Pc] [Pb]

]
, (10.54)

where [Db] and [Pb] depend only on the distances bnl and are the same as if the
N original dipoles (the ones above the plane x > 0) were alone in free space.
The components of the matrices [Dc] and [Pc] are given by

Dcnl = 1

1 − cos kh

∫ h

−h
(cos kz − cos kh)[cos kh Kcnl(z)− Kcnl(h − z)] dz,

1 ≤ n, l ≤ N (10.55)

Pcnl = −1

1 − cos kh

∫ h

−h
sin k(h − |z|)[cos kh Kcnl(z)− Kcnl(h − z)] dz,

1 ≤ n, l ≤ N , (10.56)

where

Kcnl(z)

k
= Kcln(z)

k
=

cos k
√

z2 + c2
nl

k
√

z2 + c2
nl

− j
sin k

√
z2 + c2

nl

k
√

z2 + c2
nl

,

1 ≤ n, l ≤ N (10.57)

and the Kcnl are similar in form to the kernels Knl but involve the distances cnl .
Thus, the matrices [Dc] and [Pc] involve only the distances cnl from dipole to
image.

From (10.37), (10.53), and (10.54), it is easily seen that

t2N
l+N = −t2N

l , l = 1, 2, . . . , N (10.58)
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and that
N∑

l=1

(Dbnl − Dcnl) t2N
l =

N∑
l=1

(Pbnl − Pcnl)V
2N

l , 1 ≤ n ≤ N . (10.59)

Formula (10.59) is the desired N × N system for the N coefficients t2N
1 ,

t2N
2 , . . . , t2N

N . With these determined, the currents are found from

Il(z) = j2π

�d Rζ0 cos kh
[V 2N

l sin k(h − |z|)+ t2N
l (cos kz − cos kh)],

l = 1, . . . , N . (10.60)

The components of the N × N composite matrices [Db]− [Dc] and [Pb]− [Pc]
are completely determined by the corresponding distances kbnl and kcnl (or, by
ka and kcll in the case of diagonal elements). The matrices are complex and
symmetric. Furthermore, they are Toeplitz in the special case of a curtain array
above a ground plane, where bnl = |l − n|b and cnl =

√
c2 + (l − n)2b2; (c/2

is the distance from the dipoles’ axes to the ground plane).

9. Because of the presence of cos kh in the denominator of (10.32), the two-term
solution apparently is infinite when kh = π/2. It is shown in the next section
that this is not the case. Although each of the terms in (10.32) become infinite
when kh = π/2, their sum remains finite. By rearranging the terms in the two-term
theory, an equivalent form will be obtained, none of the terms of which vanish at
kh = π/2. This equivalent form may be used in the case where kh = π/2. In most
applications, however, it is adequate to replace the value kh = π/2 by another value
close to π/2 and use the formulas listed in Section 10.2.

10.4 Alternative form for the solution and the case kh = π/2

For the purposes of this section, we will temporarily affix the argument kh to the vector
{t} and the matrices [D] and [P].

If the vector

{t ′(kh)} = −1

cos kh
(sin kh {V } + {t (kh)}) (10.61)

is defined, then in terms of this vector, equation (10.33) takes the equivalent form

{I (z)} = j2π

ζ0�d R
[{V }(sin kh − sin k|z|)− {t ′(kh)}(cos kz − cos kh)]. (10.62)

When kh = π/2 (but not at any other value of kh), {t ′(π/2)} is simply the derivative
of {t (kh)} evaluated at kh = π/2:

{t ′(π/2)} = d

d(kh)
{t (π/2)}. (10.63)
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This is seen by noting from (10.38)–(10.40) that when kh = π/2, the relation
[D(π/2)] = −[P(π/2)] holds so that the solution {t (π/2)} to the system (10.37)
when kh = π/2 may be found by inspection. It is

{t (π/2)} = −{V }. (10.64)

The definition (10.61) for {t ′(kh)} is thus indeterminant when kh = π/2 and its
limiting form is (10.63).

For any value of kh, the system for {t ′(kh)} is readily derived by solving (10.61) for
{t (kh)} and substituting into the system (10.37). It is seen that

[D(kh)] {t ′(kh)} = [P ′(kh)] {V }, (10.65)

where

[P ′(kh)] = −1

cos kh
(sin kh [D(kh)] + [P(kh)]) . (10.66)

Note that [P ′(kh)] is not the derivative of [P(kh)] when kh = π/2. Using (10.66) and
(10.38)–(10.40), it is found that the explicit expressions for the components P ′

nl of the
matrix [P ′] ≡ [P ′(kh)] are

Re{P ′
ll} =

− sin kh

1 − cos kh

∫ h

−h
(cos kz − cos kh)[Re{K11(z)} − Re{K11(h − z)}] dz

−
∫ h

−h
(sin kh − sin k|z|)Re{K11(h − z)} dz (10.67)

Im{P ′
ll} =

1

1 − cos kh

∫ h

−h
(sin kh − sin k|z|)

× [cos kh Im{K11(z)} − Im{K11(h − z)}] dz (10.68)

and

P ′
nl =

1

1 − cos kh

∫ h

−h
(sin kh − sin k|z|)

× [cos kh Knl(z)− Knl(h − z)] dz, 1 ≤ n �= l ≤ N . (10.69)

It is seen that there are no apparent infinities when kh = π/2. The mathematically
equivalent form (10.62) and (10.65) with (10.67)–(10.69) of the two-term theory is
useful numerically when kh = π/2.



11 Resonances in large circular arrays of
perfectly conducting dipoles

11.1 Introduction

In this and the following chapter, a study of large circular dipole arrays with one or
two elements driven is presented. The top view of such an array is shown in Fig. 11.1a,
and a realization of a large circular array with one element driven [1] by monopoles
over a ground plane is shown in Fig. 11.1b.

The main reason for initiating the study was the belief that such arrays should
possess very narrow resonances if the many parameters of the problem are properly
chosen. It was further believed that some particular shapes of non-circular closed-loop
arrays might produce a superdirective field pattern. The large circular array of this
chapter is the simplest form of the more general closed-loop array. The latter is a
subject of ongoing research.

It was seen in Chapter 4 that circular arrays of a small number of elements possess
noticeable resonances; previous studies also supported the idea of the existence of
very narrow resonances in large circular arrays. For instance, it was known that the
long Yagi array may be thought of as a surface-wave structure [2]. Such a structure
does not radiate broadside, and it was observed experimentally that this property is
preserved if the array is bent into a semi-circle of sufficiently large radius [3].

Essential initial considerations concerning resonances in large circular arrays came
from studies in quantum mechanics. It was found by T. T. Wu and A. Grossmann
that an infinite linear array of Fermi pseudopotentials possesses resonances of zero
width [4, 5] and that a large circular array of pseudopotentials possesses resonances
the width of which is exponentially small in the number N of pseudopotentials in
the array [5]. Roughly speaking, a Fermi pseudopotential is a point interaction in
the context of the Schrödinger equation, characterized by a single parameter with
the dimension of length. These considerations are contained in [6]; this paper also
mentions the important possible connection between resonance and superdirectivity in
a large closed-loop array.

The belief in the existence of narrow resonances in a large circular array of dipoles
with only one element driven led to numerical calculations using the two-term theory
in its original form (Chapter 4). Narrow resonances associated with flower-shaped
far-field patterns were discovered and illustrated graphically [7] in N = 60 and

392
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Coaxial transmission line
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(from generator)

Figure 11.1 (a) Circular array with N = 96 elements. (b) Circular array of monopoles over ground
plane. Driven element is extension of inner conductor of coaxial transmission line. Part (b) taken
from Fikioris et al. [1, Fig. 2]. c© 1994 EMW Publishing.

N = 90 element circular arrays when the dipoles are electrically quite thick and short.
If λ is the free-space wavelength, the values of the individual element parameters are
h/λ = 0.18 and a/λ = 0.028. The quantity d/λ is the varying parameter where
d is the spacing between adjacent elements. Resonances were discovered for this
rather unusual combination of h/λ and a/λ after unsuccessful attempts were made
to discover resonances in arrays with values of the individual element parameters
commonly used in other applications.

In [7], each resonance is associated with a particular phase sequence m (m = N/2,
N/2 − 1, . . . ), where resonances with larger m occur at higher frequencies. The
complete graphical picture of the basic properties of a N = 90 element circular array
operating at its last (m = 45) resonance is shown in the several parts of Fig. 11.2. These
include the conductance G1,l , the susceptance B1,l , and the magnitude and phase angle
of the admittance Y1,l = G1,l + j B1,l . Of special interest is the normalized power
pattern consisting of 90 sharp peaks separated by 90 sharp nulls.

After the publication of [7], it was found that the two-term theory in its original form
gave meaningless results in other cases. This consideration as well as others led D. K.
Freeman and T. T. Wu to re-examine the kernels used in the integral equations and
to propose a new set of kernels [8, 9]. However, use of these kernels in the two-term
theory formulas presents difficulties. The kernels are not of a simple form so that
numerical calculations would require a large amount of computer time, and more
importantly, such kernels would make an analytical study of the two-term theory
formulas difficult. A simpler alternative was found: the “modified” kernels are as
simple as the original ones and possess many of the properties of the kernels proposed
in [8] and [9]. The modified kernels result very simply from the original ones by
setting a = 0 in the imaginary part of the self term. They are incorporated into the
two-term theory employed in this chapter. Whereas this modification is unimportant in
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Figure 11.2 Properties of a 90-element circular array, as calculated by the (unmodified) two-term
theory of Chapter 4; N = 90, m = 45, h/λ = 0.18, a/λ = 0.028, and d/λ = 0.437 432 095. (a)
Self- and mutual conductances G1,l as a function of element number l. (b) Self- and mutual
susceptances B1,l as a function of element number l. (c) Magnitudes of self- and mutual
admittances |Y1,l | as a function of element number l. (d) Phases of self- and mutual admittances
arg(Y1,l ) as a function of element number l. (e) Normalized far-field power pattern |E(φ)|2. Taken
from Fikioris et al. [7, Fig. 9]. c© 1990 American Institute of Physics.

ordinary antenna problems, it is crucial for the accurate description of the phenomenon
of resonances in large circular arrays.

This chapter is organized as follows: in Section 11.2, the two-term formulas with the
modified kernel are presented in an alternative form. This form is especially suitable
for the detailed study to follow and is also suitable for numerical implementation in a
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computer. This form and the properties of the modified kernel when N is large are the
starting points for the analytical study of the large circular array of lossless elements
in Sections 11.3–11.6. This study, supplemented by numerical investigations whenever
necessary, shows that a large circular array with one element driven may possess very
narrow resonances if the parameters are properly chosen. The mth “phase-sequence
resonance” occurs when the mth phase-sequence conductance is large. At resonance,
all currents are large and their distribution around the circle may be thought of as a
standing-wave mode. Design guidelines are derived that help in choosing the number
of elements N , the spacing d/λ, and the individual element parameters a/λ and h/λ
in order to excite a desired resonance. The behavior of the circular array at or near
a narrow resonance is explored. One important conclusion is that the driving-point
susceptance always becomes zero near a narrow resonance; in a practical application,
the matching of the array to a generator may be accomplished with a transformer.
Simple approximate formulas for the radiation field are derived which show that the
resonant array is highly directive in the vertical plane with field patterns that involve
many sharp, pencil-like beams. The main conclusions in these sections are listed as a
series of properties.

In Section 11.7, it is shown that it is possible to excite a resonant traveling-wave
distribution of current around the array by driving two elements instead of one. The
choice of N and of the second driven element must be properly made. The resulting far-
field pattern is omnidirectional with a pancake-like shape. After the general conditions
needed in order to be able to excite a traveling wave are developed and the meaning of
“resonance” when two elements are driven is clarified, the properties of the array over
earth are discussed. Applications as a surface-wave generator are proposed. Finally,
Section 11.8 is an appendix that discusses the various kernels mentioned throughout
this chapter, including, in particular, a detailed discussion about the modified kernels
and their relationship to the original kernels.

The analysis in this chapter assumes lossless elements. It is extended to circular
arrays of highly conducting dipoles in Chapter 12. In ordinary antenna problems, it
is an excellent approximation to assume that highly conducting dipoles are perfectly
conducting when admittances and radiation fields are to be calculated. In closed-loop
arrays of many elements, such an approximation is no longer valid. It will be seen that
the effect of the ohmic losses on both the width of the resonant peaks and the field
pattern may be significant.

Interest in this chapter is in circular arrays of perfectly conducting dipoles satisfying
the conditions

ka � 1, ka � kh < π/2, d � h, (11.1)

where λ = 2π/k is the free-space wavelength, k = ω(µ0ε0)
1/2, a is the radius of the

elements, and h is their half-length. Also, N (� 1) is the number of elements in the
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array, and d = 2R sin(π/N ) is the distance between adjacent elements. It is assumed
throughout most of this chapter that N is even, but the formulation for N odd is similar.

11.2 The two-term theory and the modified kernel

Assume that element 1 of the circular array is driven by a voltage V1 and that the
rest of the elements l = 2, . . . , N are parasitic. The two-term formulas for the N
currents Il(z), l = 1, 2, . . . , N , are readily obtained from equations (10.32)–(10.42)
for the general array of Chapter 10 by observing that the matrices [D] and [P] are
circulant and applying the method of symmetrical components. The detailed derivation
is contained in [10]. The currents are a superposition of the N/2 + 1 phase-sequence
currents I (m)(z), m = 0, 1, . . . , N/2, where I (m)(z) is the current on element 1 when
all elements are driven by voltages V (m)

l = (V1/N )e j2π(l−1)m/N . The final formulas
are:

Il(z) =




j2πV1

ζ0�d R cos kh
[sin k(h − |z|)+ T1(cos kz − cos kh)], l = 1,

j2πV1

ζ0�d R cos kh
Tl(cos kz − cos kh), l = 2, 3, . . . , N ,

(11.2)

where ζ0 = (µ0/ε0)
1/2 .= 376.73 ohms. The parameter �d R is real and independent

of N and d/λ. It is given by (10.34). The coefficients Tl = T1,l of the shifted-cosine
part of the current are complex and depend on all the parameters of the problem. They
are obtained by superimposing the phase-sequence coefficients T (m):

Tl = 1

N

{
T (0) − (−1)l T (N/2) + 2

N/2−1∑
m=1

T (m) cos

[
2π(l − 1)m

N

]}
, (11.3)

where

T (m) = P(m)
R + j P(m)

I

D(m)
R + j D(m)

I

= P1R + P(m)
�R + j P(m)

I

D1R + D(m)
�R + j D(m)

I

, m = 0, 1, . . . , N/2. (11.4)

In (11.4), the parameters in the numerator and the denominator are all real. The
subscript I means that the parameter depends only on the imaginary part of the
modified phase-sequence kernel. Hence, P(m)

I and D(m)
I are independent of the radius

a/λ. The subscript 1R means that the parameter depends only on the self-term of the
real part of the kernel and is therefore independent of N , m and d/λ. The subscript �R
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means that the quantity depends only on the mutual terms of the real part of the kernel
and is therefore independent of a/λ. The full formulas for the various parameters are

P1R =
∫ h

−h
sin k(h − |z|)K1R(h − z) dz (11.5)

P(m)
�R = −1

1 − cos kh

∫ h

−h
sin k(h − |z|)[cos kh K (m)

�R (z)− K (m)
�R (h − z)] dz (11.6)

P(m)
I = −1

1 − cos kh

∫ h

−h
sin k(h − |z|)[cos kh K (m)

I (z)− K (m)
I (h − z)] dz (11.7)

D1R = 1

1 − cos kh

∫ h

−h
(cos kz − cos kh)[cos kh K1R(z)− K1R(h − z)] dz (11.8)

D(m)
�R = 1

1 − cos kh

∫ h

−h
(cos kz − cos kh)[cos kh K (m)

�R (z)− K (m)
�R (h − z)] dz (11.9)

D(m)
I = 1

1 − cos kh

∫ h

−h
(cos kz − cos kh)[cos kh K (m)

I (z)− K (m)
I (h − z)] dz.

(11.10)

The various parts of the modified kernel (the use of which is justified in Section 11.8
and in [9] and [10]) are

K1R(z) = cos k R1(z)

R1(z)
(11.11)

K (m)
�R (z) =

N/2+1∑
l=2

ξl cos

[
2π(l − 1)m

N

]
cos k Rl(z)

Rl(z)
(11.12)

K (m)
I (z) = − sin kz

z
−

N/2+1∑
l=2

ξl cos

[
2π(l − 1)m

N

]
sin k Rl(z)

Rl(z)
, (11.13)

where

ξl =
{

1, l = N/2 + 1

2, otherwise
(11.14)

and

Rl(z) = (z2 + b2
1l)

1/2; b1l =




a, l = 1

d sin[(l − 1)π/N ]

sin(π/N )
, l �= 1.

(11.15)
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Note that the radius a does not appear in (11.13). Finally, the relation between T (m)

and the phase-sequence admittances is

Y (m) = G(m) + j B(m)

= j2π

ζ0�d R cos kh
[sin kh + T (m)(1 − cos kh)] (11.16)

and the self- and mutual conductances G1,l (susceptances B1,l ) are determined only
by the phase-sequence conductances G(m) (susceptances B(m)) by the relation

Y1,l = G1,l + j B1,l

= 1

N

{
Y (0) − (−1)lY (N/2) + 2

N/2−1∑
m=1

Y (m) cos

[
2π(l − 1)m

N

]}
. (11.17)

With the original imaginary part of the self term of the kernel, [i.e. sin k R1(z)/R1(z) in
place of sin kz/z in (11.13)], it is easily seen that (11.2)–(11.17) reduce to (4.4)–(4.14).

The modified kernel (11.11)–(11.13) has been evaluated asymptotically for large N
and d/λ fixed with d/λ < m/N ≤ 1

2 (see [8, 9], and also Section 11.8). K (m)
�R (z) is

well approximated by the kernel of the infinite linear array [replace b1l by ld in (11.12)
and let N → ∞ while keeping m/N fixed]; it is therefore roughly independent of N
for large N and fixed m/N . The imaginary part K (m)

I (z) must be approximated more
carefully because the imaginary part of the kernel of the infinite linear array is exactly
zero. The asymptotic formula for K (m)

I (z) is

K (m)
I (z)

k
∼ −1

4π1/2

1

N 1/2

1

[(m/N )2 − (d/λ)2]3/4
exp[−2N (m/N )g(xm)]

+ {same with m → N − m}, (11.18)

where

xm = d/λ

m/N
; g(x) = cosh−1

(
1

x

)
− (1 − x2)1/2, 0 < x < 1. (11.19)

The approximation is better when z/λ is small and when d/λ is not very close to m/N .
These are the cases of interest. When m � N/2, only the first term needs to be kept;
in the extreme case of m = N/2, the second term simply contributes a factor of 2. The
function g(x) appearing in the exponential is positive and decreasing, with g(0) = ∞.
The following properties of K (m)

I (z) are noted:

Property 1: K (m)
I (z) is approximately independent of z when d/λ < m/N .

Property 2: K (m)
I (z) is exponentially small in N for fixed d/λ and fixed m/N with

d/λ < m/N .

Property 3: K (m)
I (z) is a rapidly decreasing function of d/λ when N and m/N are

fixed with d/λ < m/N .
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Figure 11.3 Typical plot of D(m)
R as function of d/λ; N = 90, m = 45, h/λ = 0.2, and

a/λ = 0.05. Taken from Fikioris et al. [1, Fig. 3]. c© 1994 EMW Publishing.

With the use of Property 1, approximations for P(m)
I and D(m)

I are obtained when
h/λ is not too large. Thus,

D(m)
I ∼ −2(sin kh − kh cos kh)

K (m)
I (0)

k
; d/λ < m/N (11.20)

P(m)
I ∼ 2(1 − cos kh)

K (m)
I (0)

k
; d/λ < m/N (11.21)

so that D(m)
I and P(m)

I are slowly varying functions of kh that also possess the
Properties 2 and 3 above.

11.3 Phase-sequence resonances

Throughout this section, d/λ is the variable and a/λ, h/λ, and N are fixed. In an
experimental study, it is much simpler to vary the frequency and keep the geometrical
parameters a, h, and d fixed. The physical picture is very similar in the two cases.

A typical plot of D(m)
R = D1R + D(m)

�R as a function of d/λ is given in Fig. 11.3. It is

seen that D(m)
R is a quantity of order 1 that has two zeros in the range 0 < d/λ ≤ 0.5.

The array is defined to be at its mth phase-sequence resonance when D(m)
R is exactly

zero. It will be seen that when this occurs, G(m) and G1,1 are almost exactly at their
maximum and B1,1 is very close to its zero. In Fig. 11.3, the smaller root is not in
the region of validity of the two-term theory since d/λ < h/λ. Since the position
of the resonance is determined only by the real part of the kernel, a particular m/N
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phase-sequence resonance will occur at roughly the same value of d/λ for all large N .
Here, it is assumed that the resonant spacing d/λ is independent of N so that it is
meaningful to examine resonant currents as N becomes larger while keeping m/N
and d/λ fixed. Denote by δm/N the position of the larger root, so that D(m)

R = 0
when d/λ = δm/N . It is seen from (11.4) and (11.16) that, at the mth phase-sequence
resonance,

T (m)
res = P(m)

I

D(m)
I

− j
P(m)

R

D(m)
I

(11.22)

G(m)
res = 2π

ζ0�d R cos kh

P(m)
R

D(m)
I

(11.23)

B(m)
res = 2π

ζ0�d R cos kh

[
sin kh + (1 − cos kh)

P(m)
I

D(m)
I

]
, (11.24)

where P(m)
R , P(m)

I , and D(m)
I are evaluated at d/λ = δm/N .

The quantity P(m)
R is of order 1. Because of Properties 2 and 3 and equations (11.20),

(11.21), and (11.17), if δm/N < m/N , it is seen that

Property 4: At the mth phase-sequence resonance, the phase-sequence conductance
G(m)

res is extremely large in N . The self- and mutual conductances G1,l

around the array are also extremely large and they vary around the array
according to

G1,l ∝ G1,1 cos

[
2π(l − 1)m

N

]
, l = 1, 2, . . . , N . (11.25)

This distribution of current around the array may be recognized as a
standing wave.

Property 5: G(m)
res and the G1,l ’s will be much larger when the resonant spacing d/λ =

δm/N occurs at a smaller value.

It should be pointed out that the conductances are actually predicted by (11.18), (11.20)
and (11.23) to be exponentially large in N . This is a consequence of the assumption
that the resonant spacing d/λ = δm/N does not depend on N and may or may not be
true within the two-term theory.

On the other hand, B(m)
res and the B1,l ’s are not large when the array is exactly at

resonance. In the special case when cos[2π(l − 1)m/N ] = 0 (this requires N to be
a multiple of 4), the current on element l is very small compared to that on all other
elements. Figure 11.4 shows the normalized conductances G1,l as a function of the
element number l for the m/N = 3

8 phase-sequence resonance with N = 72. With
a/λ = 0.05 and h/λ = 0.2, this occurs at d/λ

.= 0.2269. The data in Fig. 11.4 as well
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Figure 11.4 Normalized self- and mutual conductances G1,l as function of element number l for
m/N = 3

8 phase-sequence resonance; N = 72, h/λ = 0.2, a/λ = 0.05, and d/λ = 0.226 88. Taken
from Fikioris et al. [1, Fig. 4]. c© 1994 EMW Publishing.

φ = 0

Figure 11.5 Normalized far-field power pattern |Eθ (π/2, φ)|2 at θ = π/2 plane of dipoles’ centers
for m = 27 phase-sequence resonance; N = 72, h/λ = 0.2, a/λ = 0.05, and d/λ = 0.226 88.
Taken from Fikioris et al. [1, Fig. 5]. c© 1994 EMW Publishing.

as those of Figs. 11.5 and 11.6 and of Table 11.1 were obtained with the full two-term
theory formulas (11.2)–(11.17) with the imaginary part of the kernel evaluated from
(11.13) using quadruple precision and with T (m)

res given by (11.22). In Fig. 11.4, the
current distribution of Property 4 is recognized; in this case, the currents divide up into
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θ = 0

θ = /2π

Figure 11.6 Normalized far-field power pattern |Eθ (θ, 0)|2 at φ = 0 for m = 27 phase-sequence
resonance; N = 72, h/λ = 0.2, a/λ = 0.05, and d/λ = 0.226 88.

Table 11.1. Resonant spacings d/λ = δm/N ;a values of imaginary part of kernel K (m)
I (0)/k at

z = 0, d/λ = δm/N ; and driving-point conductances G1,1 at resonanceb

h/λ a/λ = 0.01 a/λ = 0.03 a/λ = 0.05

0.14 no root no root δm/N = 0.479

K (m)
I (0)

k
= −0.25

G1,1 = 14.7 mS

0.16 no root δm/N = 0.480 δm/N = 0.439

K (m)
I (0)

k
= −0.18

K (m)
I (0)

k
= −4.8 × 10−3

G1,1 = 10.5 mS G1,1 = 81.6 mS

0.18 δm/N = 0.494 δm/N = 0.431 δm/N = 0.370

K (m)
I (0)

k
= −0.47

K (m)
I (0)

k
= −2.1 × 10−3 K (m)

I (0)

k
= −3.9 × 10−7

G1,1 = 4.8 mS G1,1 = 109 mS G1,1 = 4.8 × 105 mS

0.20 δm/N = 0.437 δm/N = 0.336 δm/N = 0.273

K (m)
I (0)

k
= −4.1 × 10−3 K (m)

I (0)

k
= −7.0 × 10−10 K (m)

I (0)

k
= −2.3 × 10−16

G1,1 = 54 mS G1,1 = 2.1 × 108 mS G1,1 = 6.3 × 1014 mS

aRoots δm/N are sought in interval h/λ < d/λ < m/N = 1
2 ; number of elements N = 90 and

phase sequence m = N/2 = 45.

bTaken from Fikioris et al. [1, Table 1]. c© 1994 EMW Publishing.

five groups. Other combinations are possible. Note that G1,1 is repeated at the end of
Fig. 11.4 as G1,73 for reasons of symmetry.

The parameter D(m)
R = D1R + D(m)

�R depends on a/λ only through D1R and on

d/λ only through D(m)
�R . D1R is zero when the elements are self-resonant. By plotting

D1R for various values of h/λ, it is seen that D1R is a decreasing function of a/λ, at
least when a/λ < 0.07 and a/λ � h/λ < 0.22. (It can be shown, in fact, following
a procedure similar to that in Appendix II of [11], that the variation with a is linear
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in the quantity � = 2 ln(2h/a), but the approximation is poor when h/a becomes
small.) Hence, making the dipoles electrically thicker will result in decreasing the
amplitude of a curve like that in Fig. 11.3, thereby shifting the resonant spacing δm/N

to a smaller value of d/λ. The resonant currents will therefore become much larger.
When the elements are electrically very thin, the array can have no narrow resonances
at all, because the resonant root occurs at a value d/λ > m/N .

The effect of changing the length h/λ is much more involved since both D1R

and D(m)
�R depend on h/λ in a complicated way. However, extensive numerical

calculations show that the position of the root δm/N decreases when h/λ increases,
at least when a/λ and h/λ are in the above-mentioned ranges. Table 11.1 shows
the resonant spacings δm/N , the values of K (m)

I (0) evaluated at d/λ = δm/N , and
the self-conductance G1,1 for 90-element arrays at their m = N/2 phase-sequence
resonance as a/λ and h/λ vary. The conclusion is that

Property 6: If a specific phase-sequence resonance is desired, making the dipoles
electrically longer or thicker will require an electrically smaller circle
and will result in much higher resonant currents around the array, at least
when a/λ and h/λ are in the ranges

a/λ < 0.07 and a/λ � h/λ < 0.22.

It is seen from Table 11.1 that the currents are predicted to be extremely large when the
perfectly conducting elements are long and thick. Very large currents can be realized
in practice only with superconducting elements; in the case of highly conducting
elements (for example, elements made from brass or aluminum), the currents are
severely limited. The effect of ohmic losses is considered in Chapter 12.

It is natural to believe that values of a/λ and h/λ that yield narrow resonances in
circular arrays will yield narrow resonances in non-circular closed-loop arrays as long
as the minimum radius of curvature is large enough.

11.4 Behavior near a phase-sequence resonance

Consider again that a/λ, h/λ, and N are fixed, and that d/λ is varied but stays
very close to a resonant spacing δm/N so that the array is very close to its mth
phase-sequence resonance. The function D(m)

R is usually a quantity of order 1, but

near resonance it is of the order of magnitude of the very small quantity D(m)
I ; it is the

controlling quantity in (11.4). It is a good approximation to assume that P(m)
R , P(m)

I ,

and D(m)
I are constant and that D(m)

R varies linearly with d/λ so that the dependence
of T (m) on d/λ is explicitly

T (m)(d/λ) = P(m)
R + j P(m)

I

α(m)(d/λ− δm/N )+ j D(m)
I

, (11.26)
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where α(m) is the slope of D(m)
R near its zero. Using P(m)

R � P(m)
I , it is seen

from (11.26) that Re{T (m)} has extrema when D(m)
R

.= ±D(m)
I or d/λ − δm/N

.=
±D(m)

I /α(m) with the corresponding values

Re{T (m)} = ± P(m)
R

2D(m)
I

= ∓1

2
Im{T (m)

res } = ∓ Im{T (m)}. (11.27)

From the relations (11.16) between T (m), G(m), and B(m) and (11.17) between B1,l

and B(m), it is seen that

Property 7: B(m) and the B1,l ’s are very rapidly varying near a narrow resonance.
When the spacing d/λ is such that G(m) has decreased to half its maxi-
mum value, B(m) is roughly equal to G(m): B(m) = ±G(m) = ± 1

2 G(m)
res .

Hence, B(m) and the B1,l ’s have a zero very close to resonance. The B1,l ’s
vary around the array as cos[2π(l − 1)m/N ].

It is therefore possible to design an array near resonance with a purely resistive
driving-point impedance, but this property is extremely sensitive to slight changes in
the parameters.

The Q of the resonant array may be estimated from the curve of G1,1 as a function
of d/λ as

Qr
.= δm/N

(d/λ)2 − (d/λ)1
. (11.28)

(The actual definition involves the frequency.) In (11.28), the (d/λ)2 and (d/λ)1 are the
spacings at which the power is reduced to one-half the maximum at constant voltage,
i.e. when D(m)

R = ±D(m)
I . Using P(m)

R � P(m)
I and (11.26), it is seen that

Qr
.= δm/N |α(m)|

2|D(m)
I |

. (11.29)

Formula (11.29) provides a simple way to estimate the Q. If, in (11.26), P(m)
I is

neglected compared to P(m)
R , a simpler formula for the behavior of the quantities near

a narrow resonance as a function of d/λ (or as a function of frequency) is obtained,
which predicts a small, constant self-resistance and a linearly varying self-reactance
that becomes zero at resonance. This formula is used in Section 11.7 below.

It is not simple numerically to calculate quantities near resonance from the full
formulas (11.2)–(11.17). In addition to the numerical complications created by the
smallness of K (m)

I (z) and D(m)
I , the calculation of D(m)

R requires high precision. The

reason is that D(m)
R is the difference between two nearly equal, complicated integrals

of order 1. A more detailed discussion of these and similar numerical difficulties is
provided in Section 13.5.
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11.5 Radiation field at or near a phase-sequence resonance

With the two-term theory currents, and with the origin of the spherical coordinates
(r, θ, φ) placed at the center of the array, the radiation field is given by (10.46)–(10.48)
with tl = V1T1l = V1Tl .

E(r, θ, φ) = θ̂θθEθ

= θ̂θθ
−V1

�d R cos kh

e− jkr

r

×
{

F(θ)e jk R sin θ cos(φ−φ1) + G(θ)

N∑
l=1

Tle
jk R sin θ cos(φ−φl )

}
, (11.30)

where (R, π/2, φl) = (R, π/2, 2π(l −1)/N ) is the location of element l, R = d/(2×
sinπ/N ) is the radius of the circular array, and

F(θ) = cos(kh cos θ)− cos kh

sin θ
(11.31)

G(θ) = sin kh cos(kh cos θ) cos θ − cos kh sin(kh cos θ)

sin θ cos θ
. (11.32)

In (11.30), the first term represents radiation from the sine current of the driven
element; the second term is radiation from the shifted-cosine currents of all elements;
F(θ) and G(θ) are the “element factors” for the sine and shifted-cosine currents,
respectively. At or near a narrow resonance, we have the standing-wave distribution
Tl

.= T1 cos[2π(l − 1)m/N ]. It will be seen that the first term in (11.30) may
be neglected. Thus, if one defines the array factor for the mth phase-sequence
resonance as

A(m)(θ, φ) = 1

T1

N∑
l=1

Tle
jk R sin θ cos(φ−φl ) (11.33a)

=
N∑

l=1

cos

[
2π(l − 1)m

N

]
e jk R sin θ cos(φ−φl ) (11.33b)

the radiation field is given approximately by

Eθ = −V1

�d R cos kh

e− jkr

r
G(θ)T1 A(m)(θ, φ). (11.34)

The array factor is the radiation field due to a circular array of isotropic radiators with
the mth phase-sequence resonance currents around the array, element 1 having unit
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current. The sum in (11.33b) may be written exactly as follows (see [12] for a detailed
derivation):

A(m)(θ, φ) = N jm Jm[N (d/λ) sin θ] cos(mφ)

+ N
∞∑

p=1

j N p−m JN p−m[N (d/λ) sin θ ] cos[(N p − m)φ]

+ N
∞∑

p=1

j N p+m JN p+m[N (d/λ) sin θ ] cos[(N p + m)φ]. (11.35)

Because of the condition d/λ < m/N ≤ 1
2 , the arguments of the Bessel functions

are always smaller than the orders. When N is large, only two terms in (11.35) are
significant, namely,

A(m)(θ, φ) ∼ N jm Jm[N (d/λ) sin θ] cos(mφ)

+ N j N−m JN−m[N (d/λ) sin θ ] cos[(N − m)φ]. (11.36)

As with the imaginary part of the kernel, the first term is adequate when m � N/2
and the second term is equal to the first one when m = N/2. Assuming for simplicity
that m � N/2 and using the asymptotic formula for the Bessel functions, one obtains

A(m)(θ, φ) ∼ jm N

(2πm)1/2

1

[1 − (xm sin θ)2]1/4

× exp[−N (m/N )g(xm sin θ)] cos(mφ), m � N/2, (11.37)

where xm and g(x) are the same as in (11.19). Hence, the array factor is an
exponentially small quantity and, in fact, it shares Properties 2 and 3 of the imaginary
part of the kernel. Also, it has a zero of order m at θ = 0. From (11.37), the field
formula (11.34), and the expressions (11.20)–(11.22) for T1

.= (2/N )T (m)
res , it is seen

that:

Property 8: The magnitude of the radiation field at any fixed point in space is
extremely large in N .

This verifies that radiation from the sine current of element 1 is negligible and justifies
the usefulness of the array factor. The largeness of the field should be expected since,
for lossless elements, integration of |Eθ |2 over a large sphere should give the total
radiated power 1

2 G1,1|V1|2, which is large.

Property 9: The horizontal field pattern (θ = π/2) consists of 2m spikes.

Property 10: The vertical field pattern is very narrow, with a maximum at θ = π/2.

Figures 11.5 and 11.6 show the horizontal and vertical far-field power patterns for the
N = 72 array of Fig. 11.4 as calculated from (11.30)–(11.32). It is seen that Properties
9 and 10 hold.
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The narrowness of the vertical beam can be estimated by neglecting variations of
the field in (11.34) due to the slowly varying G(θ) and defining vertical directivity as
the maximum of the array factor divided by its mean value, namely,

DV = |A(m)(π/2, φ)|
1
2

∫ π

0
|A(m)(θ, φ)| sin θ dθ

. (11.38)

Subject to the approximation (11.36), the integral can be carried out analytically and
the resulting DV is independent of φ when m � N/2. Thus,

DV = 2Jm[N (d/λ)]

π J(m−1)/2[ 1
2 N (d/λ)]J(m+1)/2[ 1

2 N (d/λ)]
; m � N/2. (11.39)

With the asymptotic expression for the Bessel functions and after some manipulation,
it can be shown that

DV ∼ (2N/π)1/2[(m/N )2 − (d/λ)2]1/4. (11.40)

Hence,

Property 11: For a specific phase-sequence resonance m/N , making N larger will
result in a narrower vertical field pattern, and in more spikes in the
horizontal plane.

Property 12: For fixed N and for a specific phase-sequence resonance m, making the
dipoles thicker or longer will result in a smaller resonant spacing δm/N ,
a much narrower resonance, and a slightly more directive vertical field
pattern.

The vertical directivity may therefore be made arbitrarily large by making N large
(although the increase is slow, roughly as the square root of N ). The field strength
at any point in space increases very rapidly. The input impedance may be a pure
resistance. However, the physical dimensions of the array increase (linearly with N )
and the band width decreases very rapidly.

The array factor’s smallness has an interesting consequence. For resonant non-
circular arrays, an array factor A(θ, φ) may be defined exactly as in (11.33a). This
array factor will depend on the array’s geometry and the relative current distribution
around the array. It will be a sum of N terms of order 1, each term depending
on the location of element l and its relative current (admittance). If a sufficiently
large non-circular array with one element driven is thought of as a perturbation
of some corresponding circular array, then it is logical to assume that the current
distribution around the array will not be significantly affected and will again be of
the standing-wave type. Hence, each term in the sum for A(θ, φ) will be close to each
term in the sum for the circular array. However, any very small quantity that can be
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written as the sum of terms of order 1 is extremely sensitive to perturbations of these
terms. Therefore, the array factor (field pattern) for the non-circular array will not be
close to that of the circular array. This means that a wide variety of field patterns may
be obtained by resonant non-circular arrays, perhaps even a superdirective pattern. The
possibility of using a resonant non-circular array to obtain a highly directive field was
proposed in [6].

A far-field pattern consisting of many sharp spikes equally spaced around a circle
is unusual and would seem to have no useful purpose. There is, however, one very
interesting potential application. Assume that N = 90 and m = 45 so that there are
90 spikes. If the array of 90 elements is mounted rigidly on a circular disk passing
through the center of each element, and if the single driven element is center-driven
by a transmission line that extends from the element to the center of the disk and
then vertically downward, the entire structure can be rotated about the vertical axis
through the center of the disk. When the angular velocity is one revolution in 1 1

2 min
or 90 s, the array, operating at a fixed frequency and constant amplitude, emits a
sharp pulse once each second in all directions in its horizontal plane. Thus it is a
radio beacon that could be used in place of flashing lights along the sea coast. By
selecting different angular velocities, each beacon can be made uniquely identifiable.
As compared with the conventional flashing lights, which vanish in dense fog, the
radio beacon is equally useful in all kinds of weather. Although it sends out short,
sharp pulses, it is a structurally and electrically simple, steady-state device.

11.6 Refinements for numerical calculations

Two further improvements to the two-term theory are now presented. These do not
change the properties given before but are useful for numerical calculations whenever
high precision is necessary. These improvements apply specifically to tubular dipoles
(or monopoles over a ground plane) with walls of zero thickness.

Whereas the real part of the self-term of the kernel K1R(z) given in (11.11) assumes
interaction from axis to perimeter, the more accurate but more complicated form (see
Section 11.8 and Chapter 1)

K1R(z) = 1

2π

∫ π

−π

cos{k[z2 + 4a2 sin2(φ/2)]
1/2}

[z2 + 4a2 sin2(φ/2)]
1/2

dφ (11.41)

assumes that the interaction is from a point on the perimeter to another point on the
perimeter. The use of (11.41) instead of (11.11) provides higher accuracy.

The second improvement comes from the observation that the trigonometric func-
tions sin k(h−|z|) and cos kz−cos kh are not adequate to describe the charge build-up
near the ends z = ±h of the tubular dipole. It is known that I (z) behaves like√

h − |z| for |z| close to h for both the driven [13] and the parasitic elements. A simple
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improvement to the current that takes into account this behavior is achieved [9, 14] by
modifying the shifted cosine to

pS(z) =
{

cos kz − γ1, |z| < z0

γ2
√

kh − k|z|, z0 < |z| < h,
(11.42)

where the constants γ1, γ2, and z0 are found by matching pS(z) and its first two
derivatives at z = z0. The resulting equations are

tan kz0 = 2(kh − kz0) (11.43)

γ1 = cos kz0[1 − 4(kh − kz0)
2] (11.44)

γ2 = 2 sin kz0

√
kh − kz0. (11.45)

Formula (11.43) is a transcendental equation for kz0 that has exactly one solution when
kh < π/2. The two-term theory solution then becomes (11.2)–(11.15) with cos kz −
cos kh in (11.2) and (11.8)–(11.10) replaced by pS(z) as given by (11.42)–(11.45).
This solution gives excellent agreement between theoretically predicted and measured
resonant frequencies in the two experimental studies that have been performed
[10, 15].

In the extended theory in Chapter 12 that takes into account the effect of a finite
but large conductivity of the elements, the current distributions on the elements are
assumed to be the same as in the lossless case and the refinements of this section may
be included in the extended theory for lossy elements. The values of driving-point
admittance obtained from such a theory will be seen to agree very well with those
measured.

11.7 Resonant array with two driven elements

In Sections 11.2–11.6, it was seen that properly dimensioned large circular arrays of
electrically short, perfectly conducting vertical dipoles possess very narrow resonances
when only one element is driven and the rest are parasitic. At each resonance, the
currents on all elements are large and are distributed as a standing wave around the
circle. The driving-point reactance is zero. The associated field pattern consists of
many pencil-like beams.

In recent studies [16, 17], the complete electromagnetic field generated by a vertical
electric dipole located in the air above planar earth (salt water, lake water, wet earth,
dry earth) has been formulated in simple integrated expressions. Included is the special
case when both the vertical dipole and the observation point are on or close to the
surface of the earth.

In applications such as broadcast, ground-wave over-the-horizon radar [18], shore-
to-ship communication and microwave beacons, it is required to generate a significant
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electromagnetic field (surface wave) close to the air–earth boundary at θ = π/2. In
addition to the field close to θ = π/2, a typical transmitting antenna generates a
significant field at smaller angles θ . This field is unwanted. Furthermore, the upward
generated field may reflect off the ionosphere and interfere with the surface wave
propagating near θ = π/2. In this section, a structurally simple antenna array that
is especially suited to generate an omnidirectional surface wave will be described.
Instead of directing the outward-traveling electromagnetic field upward toward the
ionosphere, the array directs the field along the surface of the earth in a pancake-shaped
field pattern. The array is a large circular array as before but in this case two elements
are driven instead of one. Each driven element has a driving-point impedance that is
purely resistive. A description and analysis of the array are followed by a determination
of its complete far field both when the array is in free space and when the array is over
planar earth. The generation of a pancake-shaped field pattern by a large circular array
with many parasitic elements was first proposed in [19].

In this section, a time dependence e−iωt is assumed instead of the e jωt of the
previous sections. Also, it is assumed that the frequency f = c/λ = ω/2π is the
varying parameter instead of d/λ of the previous sections.

The basic idea here is to design a resonant circular array with two elements (1 and
n) driven that has a traveling-wave distribution of current, namely,

Il(0) = I1(0) exp

[
−i

2π(l − 1)m

N

]
, l = 1, . . . , N (11.46)

instead of the standing wave of (11.25). The resulting array-factor pattern is omnidi-
rectional with a pancake-like shape. The vertical directivity increases as the width of
the resonance decreases. The problem will be studied in general; conditions on N , m
and n will be developed so that (11.46) is possible; the meaning of “resonance” when
two elements are driven will be clarified.

Excitation of a traveling wave with two driven elements

The midpoint currents Il(0) on the dipoles when elements 1 and n are driven by
voltages V1 and Vn , respectively, are given by (10.43) and (10.45) so that

Il(0) = Yl,1V1 + Yl,nVn, l = 1, . . . , N , (11.47)

where the self- and mutual admittances Yl, j satisfy Y j,l = Yl, j , Y j, j = Y1,1, and
Y j,l = Y1, j−l+1 = Y1, j−l+1±N . The last equality follows from the symmetry of the
circular array with one element driven. At or near a narrow resonance (as long as the
self-conductance is large), the admittances follow the distribution (11.25) so that

Il(0) = Y1,1

{
V1 cos

[
2π(l − 1)m

N

]
+ Vn cos

[
2π(l − n)m

N

]}
, l = 1, . . . , N .

(11.48)
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As a function of frequency (see Section 11.4)

Y1,1( f ) = G1,1( f )− i B1,1( f )

= G1,1( fm)

1 − i2Q( f − fm)/ fm
,

| f − fm |
fm

� 1, (11.49)

where Q is the quality factor of the resonance curve.
In this section, interest is primarily in cases where G(m) is large enough so that

contributions from the rest of the phase sequences are negligible in (11.48). However,
the small contributions from the rest of the phase sequences are included in numerical
and graphical results.

Defining

tmn = 2π(n − 1)m

N
(11.50)

it is seen that if the ratio Vn/V1 is chosen so that

Vn = −V1eitmn , (11.51)

then the currents satisfy (11.46) with the current on element 1 given by

I1(0) = −V1 Y1,1 i sin tmneitmn . (11.52)

It follows that the choice (11.51) is not sufficient for a traveling-wave distribution of
current around the array; in addition, the condition

sin tmn �= 0 (11.53)

must be satisfied. This is a restriction on the choice n of the second driven element for
given N and m.

The two driving-point admittances are given by

Y1,in = G1,in − i B1,in = I1(0)

V1
= wmnY1,1 (11.54)

Yn,in = Gn,in − i Bn,in = In(0)

Vn
= w∗

mnY1,1, (11.55)

where

wmn = umn − ivmn = sin2 tmn − i sin tmn cos tmn (11.56)

and the asterisk denotes the complex conjugate. It follows from umn > 0 that the total
power supplied to the array, namely,

Ptotal,in = 1
2 G1,in|V1|2 + 1

2 Gn,in|Vn|2 = 1
2 (G1,in + Gn,in)|V1|2 (11.57)
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is positive as one would expect. However, the individual powers supplied may include
one that is negative. This means that it is necessary to extract power from one of the
elements in order to excite a traveling-wave distribution of current. Although this may
be done by center-loading the element (as opposed to driving it by a generator), a case
like this is undesirable and can be avoided as will be shown below.

As when one element is driven, the far-field pattern is adequately described by the
array factor. With the currents (11.46), this is

A(m)(θ, φ) =
N∑

l=1

e−i[2π(l−1)m/N ]e−ik R sin θ cos(φ−φl ), (11.58)

where (R, π/2, φl) is the location of element l in spherical coordinates. This may be
evaluated asymptotically for large N as in the case where only one element is driven.
The details are in [20]. The final result is

A(m)(θ, φ) ∼ N

2π
e−imφ

∫ 2π

0
e−ik R sin θ cosφ′

e−imφ′
dφ′

+ N

2π
ei(N−m)φ

∫ 2π

0
e−ik R sin θ cosφ′

ei(N−m)φ′
dφ′ (11.59a)

or

A(m)(θ, φ) ∼ Ngm(θ)e
−imφ + NgN−m(θ)e

i(N−m)φ, (11.59b)

where

gm(θ) = (−i)m Jm[N (d/λ) sin θ ]. (11.60)

It is seen from (11.59a) that each term in (11.59a) or (11.59b) is proportional to
the radiation field due to a continuous circular traveling wave of current. One is a
clockwise traveling wave and the other is a counter-clockwise traveling wave. If m �
N/2, the first term dominates and the resulting radiation field has a pancake-shape,
with vertical directivity the same as in (11.40) so that |A(m)(θ, φ)| = A(m)(θ). In
the extreme case m = N/2 (which is not allowed because (11.53) is not satisfied),
the second term would have the same magnitude as the first term and the resulting
radiation field would consist of 2m pencil-like beams.

Choice of the parameters

If N is chosen to be a multiple of 4, then for certain n there exist values of m such that

cos tmn = 0 ⇐⇒ vmn = 0 and umn = 1. (11.61)

With such a choice of N , n, and m, (11.54)–(11.56) give

Y1,in = Yn,in = Y1,1 (11.62)
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so that, at or near a narrow resonance, the two driving-point admittances are equal to
the self-admittance and all desirable properties of the circular array with one element
driven are preserved: The two driving-point susceptances become zero at the same
frequency and the driving-point conductances are very large at that frequency. Hence,
it is desirable to use as a second driven element one that would have a very small
current if only element 1 were driven.

If, furthermore, the second driven element is chosen to be a quarter-way around the
circle, i.e. n = N/4 + 1, then umn = 1 and vmn = 0 for all odd m; with this choice
of second driven element, it is possible to excite many phase-sequence resonances; the
required voltage ratio is either eiπ/2 or e−iπ/2.

The choice of m depends on various opposing factors. For given large N , if m
is chosen to be too large, the following disadvantages apply: (i) the second term in
(11.59) might contribute and the field pattern will not have a true pancake-shape,
although the value of the ratio |gN−m(π/2)/gm(π/2)| decreases very rapidly with
decreasing m; and (ii) the antenna might be too frequency-sensitive. On the other hand,
the advantages of using a large value of m include a slight increase in directivity as well
as smaller contributions from the other phase sequences; these contributions can cause
departures from the omnidirectional pancake-like field pattern. The advantage in being
able to excite many different phase-sequence resonances with the same construction
allows the choice of m to be made to fit a particular application.

Finally, it must be pointed out that when N , m and n are not chosen to satisfy
(11.61), a very different frequency dependence may result. Figures 11.7 and 11.8
show the two driving-point admittances as calculated by (11.54)–(11.56) and (11.49)
when Q = 1000, N = 90, m = 43, and n = 24 (this choice of n corresponds to
using as a second driven element one that would have the largest possible current
if only element 1 were driven at the resonant frequency f43). It is seen that the
driving-point conductances both become negative very close to “resonance”, that the
driving-point susceptances become larger than the conductances, and that all values
are much smaller than the resonant self-conductance G1,1( fm).

A specific example is now given for an operating frequency of about 30 MHz. The
number of elements is chosen to be N = 96, so that there are many combinations
of m and n that satisfy (11.61). The choice a = 0.28 m, h = 1.9 m, and d = 3.1 m
is appropriate for 30 MHz. This choice of a, h, and d corresponds to an approximate
scaling of the N = 90 element experiment1 over a ground plane with one element
driven by a coaxial line. The diameter of the 30-MHz array is 2R

.= 95 m. Table 11.2
shows the phase-sequence resonances that may be excited by using elements 1 and 25
(= N/4 + 1) as driven elements, the required voltage ratio V25/V1, the theoretically
predicted resonant frequencies fm , the values of the driving-point conductance at
resonance G1,in( fm) = I1(0)/V1 = Gn,in( fm) = G1,1( fm), the ratio of the two

1 [10] Chapter 8.
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Figure 11.7 Normalized driving-point conductance G1, in( f )/G1,1( fm) (solid line) and
driving-point susceptance B1, in( f )/G1,1( fm) (dashed line) of element 1 as function of relative
frequency ( f − fm)/ fm ; Q = 1000, N = 90, m = 43, and n = 24. Taken from Fikioris et al. [20,
Fig. 2]. c© 1996 I.E.E.
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Figure 11.8 Normalized driving-point conductance G24, in( f )/G1,1( fm) (solid line) and
driving-point susceptance B24, in( f )/G1,1( fm) (dashed line) of element 24 as function of relative
frequency ( f − fm)/ fm ; Q = 1000, N = 90, m = 43, and n = 24.

array-factor terms in (11.59b) at θ = π/2 and φ = 0, and the vertical directivity
of the array factor DV as given by (11.40). The values of fm and G1,1( fm) were
calculated using the full formulas of Section 11.2, and including the two refinements
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Table 11.2. Phase-sequence resonances m;a required voltage ratios V25/V1; predicted resonant
frequencies fm; resonant driving-point conductances G1, in( fm) = I1(0)/V1 = G25, in( fm);
ratios |gN−m(π/2)/gm(π/2)| of two array-factor terms in (11.59) at θ = π/2; and vertical
directivities DV

b

m
V25

V1

fm
(MHz)

G1, in( fm)

(mS)

∣∣∣∣ gN−m(π/2)

gm(π/2)

∣∣∣∣ DV

47 i 30.652 2 × 1010 1 × 10−1 4.78
45 −i 30.589 4 × 108 2 × 10−3 4.60
43 i 30.460 1 × 107 3 × 10−5 4.41
41 −i 30.262 5 × 105 4 × 10−7 4.21
39 i 29.987 3 × 104 5 × 10−9 4.01
37 −i 29.624 2 × 103 6 × 10−11 3.78
35 i 29.154 3 × 102 6 × 10−13 3.54

aExcited when number of elements N = 96, radius a = 0.28 m, half-length h = 1.9 m, element
separation d = 3.1 m, and number of second driven element n = 25.
bTaken from Fikioris et al. [20, Table 1]. c© 1996 I.E.E.

in Section 11.6. It is seen that the second term in (11.59) will have a noticeable effect
only in the first case of Table 11.2.

Far field of array in free space

The far field of the omnidirectional array is the product of the field of a single isolated
antenna multiplied by the array factor. The far field of a vertical dipole in space that is
electrically short and has the effective half-length he is

Er
θ = −iωµ02he I (0)

4π

eik2r0

r0
sin θ, (11.63)

where k2 is the free-space wave number. The far field of the circular array is thus

Er
θ = −iωµ02he I1(0)

4π

eik2r0

r0
A(m)(θ) sin θ, (11.64)

where A(m)(θ) is given by the magnitude of the first term in (11.59b).
Figures 11.9 and 11.10 show the normalized far-field power pattern |Er

θ (θ, φ)|2
in the plane θ = π/2 of the dipoles’ centers for the cases m = 37 and m = 45
of Table 11.2, respectively. Figures 11.9 and 11.10 were obtained using (11.47)
and the full formulas in Sections 11.2 and 11.6 so that the effects of the rest of
the phase sequences are included. The small oscillatory departure from the smooth
omnidirectional field in the m = 37 case is due to the contributions from the rest of the
phase sequences. The slight ripples in the m = 45 case are due to the contribution of
the term corresponding to the second term in (11.59). The intermediate cases m = 41
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Figure 11.9 Normalized far-field power pattern |Er
θ (π/2, φ)|2 as function of polar angle φ in plane

θ = π/2 of dipoles’ centers for m = 37 case of Table 11.2. Taken from Fikioris et al. [20, Fig. 3].
c© 1996 I.E.E.

and m = 43 appear as smooth circles and are not shown here. Figure 11.11 shows the
normalized far-field power patterns in the elevation plane φ = 0 as a function of the
polar angle θ . The m = 45 case is seen to be slightly more directive.

The array over the earth or sea

Suppose that the resonant array is located in region 2 (air) over region 1 (salt water,
wet earth, lake water, dry earth), at a small distance d0 over the air–earth boundary.
Medium 1 is characterized by a complex wave number k1 = ω

√
µ0

√
ε1 + i(σ1/ω), so

that

|k1|2
k2

2

=
√
ε2

1r + σ 2
1

4π2 f 2ε2
0

, (11.65)

where (i) for salt water, ε1r = 80 and σ1 = 4 S/m, so that |k1|2/k2
2 = 2400; (ii) for

wet earth, ε1r = 12 and σ1 = 0.4 S/m, so that |k1|2/k2
2 = 240; (iii) for lake water,

ε1r = 80 and σ1 = 0.004 S/m, so that |k1|2/k2
2 = 80; and (iv) for dry earth, ε1r = 8

and σ1 = 0.04 S/m, so that |k1|2/k2
2 = 25.

Consider a vertical electric dipole in region 2 (air) over region 1. If the electrical
distance k2ρ from the dipole to the point of observation satisfies k2ρ < 2|k1|2/k2

2,
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Figure 11.10 Normalized far-field power pattern |Er
θ (π/2, φ)|2 as function of polar angle φ in

plane θ = π/2 of dipoles’ centers for m = 45 case of Table 11.2. Taken from Fikioris et al. [20,
Fig. 4]. c© 1996 I.E.E.
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Figure 11.11 Normalized far-field power pattern |Er
θ (θ, 0)|2 as function of polar angle θ in plane

φ = 0 of dipoles’ centers for m = 37 and m = 45 cases of Table 11.2. Each pattern is normalized to
its maximum at θ = π/2. Taken from Fikioris et al. [20, Fig. 5]. c© 1996 I.E.E.

then the z-component of the electric field E2z in region 2 is the same as when region 1
is a perfect conductor [21]. The range k2ρ < 2|k1|2/k2

2 includes both the intermediate
and the near regions, the latter being defined by the stricter condition k2ρ < 1. In
the m = 37 case of Table 11.2, the smallest element-to-element electrical distance is
k2ρ = k2d = 1.95, and the largest element-to-element electrical distance is k2ρ =
k2(2R) = 59.5. At least in cases (i)–(iii), therefore, all elements in the array are in
each other’s intermediate region and it is correct to assume that region 2 is perfectly
conducting when estimating mutual-coupling effects. Note that these depend entirely
on E2z .

In order to provide an estimate of the coupling between the array in region 2 and
its perfect image in region 1, the behavior of the z-directed electric field of an array in
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free space is investigated. The current distribution along the length of all elements in
the resonant array is cos kz − cos kh. Two simplifying assumptions are made: (i) that
the elements have infinitesimal thickness; and (ii) that the current distribution along
their length is sin k(h − |z|). Thus, the currents are taken to be

Il(z)

Il(0)
= sin k(h − |z|)

sin kh
, (11.66)

where Il(0) is given in (11.46). These approximations are adequate for our purposes
since the dipoles are electrically short (kh < π/2) and the two distributions sin k(h −
|z|) and cos kz−cos kh are quite similar. Now use is made of the exact formulas (1.38)
for the field of an infinitesimally thin dipole with a sin k(h − |z|) distribution. The
origin of the cylindrical coordinates (ρ, φ, z) is placed at the center of the array, and
the location of the center of dipole l is (R, φl , 0) = (R, 2π(l − 1)/N , 0) in cylindrical
coordinates. From (1.38c), it follows that the z-component elz of the electric field due
to dipole l in the circular array is given everywhere by

elz(ρ, φ, z) = iωµ0 Il(0)

4π sin kh

(
eik2rtl

k2rtl
+ eik2rbl

k2rbl
− 2 cos kh

eik2rcl

k2rcl

)
, (11.67)

where rtl , rbl , and rcl are, respectively, the distances from the observation point to the
top (z = h), bottom (z = −h), and center (z = 0) of dipole l in the array.

Upon using (11.46) and setting ρ = R, it follows that the total z-directed electric
field of the resonant array is given by

4π sin kh

iωµ0 I1(0)
Ez(R, φ, z) =

N∑
l=1

exp

[
−i

2π(l − 1)m

N

](
eik2rtl

k2rtl
+ eik2rbl

k2rbl
− 2 cos kh

eik2rcl

k2rcl

)
. (11.68)

The formulas for the distances rtl , rbl , and rcl in the case where ρ = R are

rtl = rtl(φ, z) =
√

4R2 sin2 φ − φl

2
+ (h − z)2 (11.69)

rbl = rbl(φ, z) =
√

4R2 sin2 φ − φl

2
+ (h + z)2 (11.70)

rcl = rcl(φ, z) =
√

4R2 sin2 φ − φl

2
+ z2. (11.71)

The magnitude of the normalized z-component of the electric field as calculated
from (11.68)–(11.71) is plotted in Fig. 11.12 for the m = 37 case of Table 11.2
as the distance z varies from −12 to −2 m. It is seen that Ez decays rapidly and
monotonically away from the array. The rate of decay is much more rapid than for
a single isolated element. This phenomenon is related to the rapid decrease of the field
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Figure 11.12 Magnitude of normalized z-component |[(4π sin kh)/ iωµ0 I1(0)]Ez(R, φ, z)| of
electric field as function of z for φ = 0 and for m = 37 case of Table 11.2. Taken from Fikioris et
al. [20, Fig. 6]. c© 1996 I.E.E.

(surface wave) observed in infinite linear arrays [2]. This rapid decrease indicates that
the coupling between the resonant array and its image is negligible even if the array is
placed at a small distance above the surface of the earth.

Field of the array over earth or sea

General formulas for the three cylindrical components of the electromagnetic field of
a vertical electric dipole with unit electric moment are given in [16, 17] subject only to
the condition that the wave number of air (k2) be small compared to the magnitude of
the complex wave number (k1) of the earth or sea. That is,

|k2
1 | � k2

2 or |k1| ≥ 3k2. (11.72)

The formulas are valid at all points in the air, z > 0, with the dipole at any height d0.
When the three conditions

k2ρ ≥ 8|k2
1 |/k2

2, d2
0 � r2

0 , |k2d0/k1r0| � 1 (11.73)

are satisfied, the procedure carried out to obtain the formulas for the cylindrical
components may be extended to the spherical component Er

θ (r0, θ). The result is

Er
θ (r0, θ) = −ωµ02he I0

2πk2
eik2r0

{
ik2

r0
sin θ

[
(cos θ + d0/r0) cos(k2d0 cos θ)

cos θ + d0/r0 + k2/k1

− i(k2/k1 − d0/r0 cos2 θ) sin(k2d0 cos θ)

cos θ + d0/r0 + k2/k1

]
+ k2

k1r2
0

×
(

sin θ

cos θ + d0/r0 + k2/k1

)3(k2

k1
cos θ − sin2 θ

)
eik2d0 cos θ

}
, (11.74)
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where

r0 = (ρ2 + z2)1/2, (11.75)

he is the effective half-length of the dipole, and I0 is the current at its center. Of
particular interest here is the far field Er

θ (r0, θ) in spherical coordinates when the
dipole is quite close to the surface so that k2d0 ∼ 0 and d0/r0 ∼ 0. In this case,
(11.74) reduces to

Er
θ (r0, θ) = −ωµ02he I0

2πk2
eik2r0

[
ik2

r0

(
k1 sin θ cos θ

k2 + k1 cos θ

)

− k2
1[sin2 θ − (k2/k1) cos θ ] sin3 θ

k2
2r2

0 [1 + (k1/k2) cos θ ]3

]
. (11.76)

In (11.74) and (11.76), the 1/r0 term is that obtained from the plane-wave reflection
coefficient. It vanishes along the boundary defined by θ = π/2. The 1/r2

0 term is the
lateral wave that propagates in the air close to the boundary and continuously transfers
energy into the earth or sea. Although it decreases with radial distance as 1/r2

0 , it is
multiplied by the very large factor k2

1/k2
2. The far field for the surface wave when

(z + d0)/r0 � 1 is defined by the first condition in (11.73).
An alternative form is useful when the vertical heights z of the observation point are

small compared to the radial distance from the transmitter. Specifically, when

|k1z| < k2r0, sin θ = ρ

r0
, cos θ = z

r0
� 1 (11.77)

(11.76) reduces to

Er
θ (r0, θ) = −ωµ02he I0

2πk2

k1

k2

eik2r0

r2
0

(
ik2z − k1

k2

)
. (11.78)

This formula shows that for observation points at any fixed height z < |k2r0/k1|, the
incident electric field is proportional to 1/r2

0 . This includes both the surface-wave term
and the space-wave term. Note that the latter vanishes when z = 0 so that the entire
field along the surface is due to the lateral wave.

The far field of the resonant circular array of dipoles at a small height d0 ∼ 0 over
the earth or sea is given by (11.74), (11.76), or (11.78) multiplied by A(m)(θ) as given
by the magnitude of the first term in (11.59). The pancake-like pattern represented
by A(m)(θ) is enhanced by the low-altitude field represented by (11.74), (11.76), or
(11.78). In particular, the important field close to the surface of the earth is maximized
and virtually no field is maintained at upward angles that are not close to θ ∼ π/2.

11.8 Appendix: the various kernels for the circular array

In the course of this chapter, four different kernels for the mth phase-sequence integral
equation are mentioned. In this appendix, their relationship and applicability are
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discussed. Consider the coupled integral equations for the current distributions Il(z) in
an array of identical, perfectly conducting, parallel, non-staggered tubular dipoles of
radius a and half-length h (the array may or may not be circular, and more than one
element may be driven):

4πµ−1
0 Azl(z) ≡

∑
n

∫ h

−h
In(z

′)Knl(z − z′) dz′ = − j4π

ζ0

(
Cl cos kz + Vl

2
sin k|z|

)
.

(11.79)

In (11.79), the constants Cl are determined from the conditions Il(h) = 0, Azl(z) is
the z-directed vector potential on the surface of dipole l, and Vl is the voltage driving
element l, with Vl = 0 if the element is parasitic. Each term in the sum on the left-hand
side of the integral equation is the vector potential on element l due to the current In(z′)
on element n; the kernel Knl associated with each vector potential is a “self-interaction
kernel” if n = l so that Knl(z) = Kll(z) = K11(z) or a “mutual interaction kernel” if
n �= l. The various mth phase-sequence kernels referred to in this chapter result from
the following four sets of kernels for the general array.

1. The original kernels, employed in Chapters 1–7:

Kll(z) = exp[− jk(z2 + a2)
1/2

]

(z2 + a2)
1/2

(11.80a)

Knl(z) =
exp[− jk(z2 + b2

nl)
1/2

]

(z2 + b2
nl)

1/2
, n �= l (11.80b)

where bnl is the distance between the axis of dipole l and the axis of dipole n.

2. The improved kernels of [8] and [9]:

Kll(z) = 1

2π

∫ π

−π

exp{− jk[z2 + 4a2 sin2(φ′/2)]
1/2}

[z2 + 4a2 sin2(φ′/2)]
1/2

dφ′ (11.81a)

Knl(z) = 1

4π2

∫ π

−π

∫ π

−π

e− jk Rnl (z,φ,φ′)

Rnl(z, φ, φ′)
dφ′ dφ; n �= l, (11.81b)

where

Rnl(z, φ, φ
′) = [z2 + (a sinφ − a sinφ′)2 + (a cosφ − a cosφ′ − bnl)

2]1/2

(11.81c)

is the distance between a point on the surface of dipole l and the surface of dipole
n. It is illustrated in Fig. 11.13.

3. The modified kernels introduced in Section 11.2. The mutual interaction kernels
Knl(z) are in (11.80b) and the self-interaction kernel is

Kll(z) = cos[k(z2 + a2)
1/2

]

(z2 + a2)
1/2

− j
sin kz

z
. (11.82)
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Figure 11.13 The distance BC is the projection of Rnl (z, φ, φ
′) onto the z = 0 plane.

4. The refined modified kernels discussed in Section 11.6. The mutual interaction
kernels are again the same as in (11.80b) and the self-interaction kernel is

Kll(z) = 1

2π

∫ π

−π

cos{k[z2 + 4a2 sin2(φ′/2)]1/2}
[z2 + 4a2 sin2(φ′/2)]1/2

dφ′ − j
sin kz

z
. (11.83)

The improved kernels (11.81a), (11.81b) are, by the nature of their derivation,
inherently more accurate than the rest. However, they are significantly more compli-
cated so that adequate simpler alternatives are needed. Note that the imaginary parts
of (11.80b), (11.82), and (11.83) are equal to the corresponding imaginary parts of
(11.81a), (11.81b) with the radius a set to zero, so that statements concerning the
imaginary parts of the improved kernels may be specialized to obtain corresponding
statements for the imaginary parts of the modified or refined modified kernels. This is
not true, however, for the real parts.

For arrays of a small number of elements N , where narrow resonances do not occur,
the original kernels (11.80a), (11.80b) are adequate. A discussion of the relationship
between (11.80a) and (11.81a) in the case N = 1 (where the latter kernel is exact) is
given in Chapter 1 and in [22]. It is believed that the use of any of the sets of kernels
in approximate solutions to the integral equations such as the two-term theory would
not make a noticeable difference when N is small. Significant differences exist when
N is large and narrow resonances occur. The case of a non-driven infinite linear array
and that of a large circular array will be examined in turn.

Case 1

It is shown in [8] and [9] that a non-driven infinite linear array of equispaced elements
(here, bnl = |n − l|d) may possess resonances of zero width where the currents satisfy
I (β)l (z) = I (β)0 (z)e jβl . Thus, the integral equation for I (β)0 (z) is∫ h

−h
I (β)0 (z′)K (β)(z − z′) dz′ = − j4π

ζ0
C0 cos kz, (11.84)
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where

K (β)(z) =
∞∑

l=−∞
K0l(z)e

jβl = K00(z)+ 2
∞∑

l=1

K0l(z) cosβl. (11.85)

It is shown in [8] and [9] that K (β)(z) is real for all z when d/λ < β/2π < 1
2 and

when the improved kernels (11.81a), (11.81b) are used. It follows that this is also true
when the modified and refined modified kernels are used. Hence, with these kernels,
(11.84) is a real equation and this suggests the possibility of real solutions I (β)0 (z)

with I (β)0 (h) = 0 for proper choices of d/λ, h/λ, and a/λ. However, K (β)(z) is not
real if the original kernels (11.80a), (11.80b) are used, so that (11.80a), (11.80b) are
inadequate in this case.

Case 2

Next consider the integral equations for the currents I (m)
l (z) in the mth phase sequence

for a large circular array. The driving voltages (and, therefore, the currents) satisfy
V (m)

l = V (m)
1 exp[ j2π(l − 1)m/N ] and the integral equation for I (m)

1 (z) is

∫ h

−h
I (m)
1 (z′)K (m)(z − z′) dz′ = − j4π

ζ0

(
C (m)

1 cos kz + V (m)
1

2
sin k|z|

)
, (11.86)

where

K (m)(z) =
N∑

l=1

K1l(z)e
j2π(l−1)m/N = K11(z)+

N/2+1∑
l=2

ξl K1l(z) cos

[
2π(l − 1)m

N

]
(11.87)

and ξl is defined in (11.14). Here, the distances bnl are bnl = b1,l−n+1 = d sin(|l −
n|π/N )/ sin(π/N ). It is shown in [8] and [9] that Im{K (m)(z)} is exponentially small
in N for all z when d/λ < m/N < 1

2 and when the improved kernels (11.81a),
(11.81b) are used; an asymptotic formula for Im{K (m)(z)} is derived. The asymptotic
formula (11.18) for Im{K (m)(z)} when the modified or refined modified kernels are
used may then be obtained from the results of [8] and [9]; Im{K (m)(z)} is exponentially
small in this case as well – the only difference is a small overall multiplicative factor
of J 2

0 (ka). If the original kernels (11.80a), (11.80b) were used, Im{K (m)(z)} would
not be exponentially small. As seen earlier in this chapter, this property is crucial for
an accurate description of the resonances.

The preceding analysis shows: (i) that (11.82) or (11.83) together with (11.80b) are
simpler, adequate alternatives to (11.81a), (11.81b); and (ii) that (11.80a), (11.80b) are
not adequate for the cases of an infinite linear array or of a large circular array. In fact,
one can find cases in which the original theory gives meaningless results. For example,
application of the two-term theory for a large circular array with N = 90, h/λ = 0.2,
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and a/λ = 0.05 yields the negative driving-point conductance G1,1 = −97 mA/V. It
is believed that statements (i) and (ii) above are also valid for large non-circular arrays.

Note that all discussions up to this point concern the imaginary parts of the kernels
only; (11.82) differs from (11.83) only in the real part. It seems logical to retain the
“exact” real part of the self-interaction kernel for calculations where high precision
is needed, especially since the resulting two-term theory formulas are not much
more complicated numerically. In any case, the refined modified kernels (11.83) and
(11.80b) (together with the square-root end correction of Section 11.6) are the ones
that give the best agreement between two-term theory calculations and experiment
(see Section 12.7).



12 Resonances in large circular arrays of
highly conducting dipoles

In Chapter 11, the phenomenon of resonances in large circular arrays of dipoles is
discussed. It is assumed throughout that the dipoles are perfectly conducting. The
effect of ohmic losses is considered in this chapter. It is assumed here that one dipole
is driven. The case where two dipoles are driven is a very simple extension. In Sections
12.1–12.6, an array of highly conducting dipoles in free space is examined. The
two-term theory is extended so that it applies to this theoretical model. The model
is mathematically equivalent to the physically unrealizable one of an array consisting
of highly conducting monopoles over a ground plane which is perfectly conducting:
one can determine the currents in the latter model by multiplying those of the former
by a factor of 2.

The case of a circular array of highly conducting monopoles over a highly con-
ducting ground plane is examined briefly in Section 12.7. An approximate method
is outlined which allows calculation of the admittances in this case by slightly
modifying the theory of Sections 12.1–12.6 in which a lossless ground plane is
assumed. The model of Section 12.7 closely approximates experimental conditions.
The theoretical curve (driving-point admittance as a function of frequency) obtained
after the effect of the imperfectly conducting ground plane is taken into account is
compared in this section to a corresponding experimental curve and the agreement is
very good. Finally, Section 12.8 is an appendix which contains the formulas for the
large circular array of highly conducting dipoles in a form convenient for computer
implementation.

12.1 Introduction

In the previous chapter, it was seen that the resonances in a lossless array become
rapidly narrower and the currents around the array become much larger as the varying
parameter f or d/λ (or, as the integer parameter m characterizing the resonance)
becomes larger. Also, the resonances become rapidly narrower as N becomes larger;
or, to be more precise, a particular m/N resonance becomes rapidly narrower as the
number N of elements becomes larger. As a numerical example, the driving-point
conductance is predicted by the theory for lossless elements to be of the order of

425
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1010 mS for the m = 45 resonance of the N = 90 element experiment.1 With the
aid of the theory presented here, the two situations described above (“fixed-N array”
and “fixed-m/N array”) are examined for the case of a lossy array. It is seen that
the behavior of the resonant lossy array is quite different from that of the perfectly
conducting case.

The interest here is in large arrays where the elements are highly conducting (for
example, a N = 90 element circular array of brass dipoles at microwave frequencies).
After integral equations for the current distributions are developed, an approximate
two-term solution is proposed in which the current distributions along the elements
are written as a linear combination of sin k(h − |z|) and (cos kz − cos kh), just as
in the lossless case. When the conductivity of the dipoles is small, the situation is
quite different. The problem of a single isolated dipole of small conductivity has
been studied in the past, both theoretically [2–4] and experimentally [5]. It was found
that the current distribution along the element changes significantly from the lossless
case.

The starting points for the derivation of the integral equations are the well-known
concepts of skin effect and internal impedance [6]. Suppose that a current-carrying
cylinder has radius a, conductivity σ , and permeability µ0. The skin depth ds is defined
as

ds = 1√
π f σµ0

, (12.1)

where f = ω/2π is the operating frequency. Under the condition

ds � a or a
√
ωµ0σ � 1 (12.2)

the current is principally confined to a thin layer of thickness ds near the surface of
the cylinder. The distribution of the current density Jz(ρ), (and, also, of the vector
potential and axial electric field) inside the cylinder as a function of the radial distance
ρ is given by

Jz(ρ) = Jz(a)

√
a

ρ
e−(a−ρ)/ds e− j(a−ρ)/ds . (12.3)

The ratio of the axial electric field Ez(a) at the surface ρ = a at a given cross-section
to the total current Iz = ∫ a

0 Jz(ρ)2πρ dρ across that cross-section is called the internal
impedance per unit length zi . It is given by

zi = r i + j xi = Ez(a)

Iz
= 1 + j

2πadsσ
= (1 + j)

1

2πa

√
π f µ0

σ
. (12.4)

1 [1] Chapter 8.
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The same formula for the internal impedance per unit length holds for a tubular
conductor of radius a and wall thickness a − a1 provided that the wall thickness is
much larger than the skin depth, i.e.

ds � a − a1 and ds � a. (12.5)

If, however, the wall thickness is very small compared to the skin depth,

a − a1 � ds � a, (12.6)

then the internal impedance per unit length is purely resistive and is given by

zi = r i = 1

2πa(a − a1)σ
. (12.7)

12.2 Integral equations

Consider a circular array of N identical, parallel, non-staggered, lossy dipoles of length
2h and radius a. Element 1 is center-driven by a voltage V1 and elements 2, 3, . . . , N
are parasitic. Integral equations that take the ohmic losses into account are readily
derived from the boundary condition for the tangential electric field Ezl(z) on the
surface of any dipole l, namely,

Ezl(z) = −V1δl,1δ(z)+ zi Il(z), (12.8)

where zi is the internal impedance per unit length, Il(z) is the current on dipole l, and

δl,n =
{

1, l = n

0, otherwise.
(12.9)

The detailed derivation is contained in [1]. The final form of the integral equations is2

N∑
n=1

∫ h

−h
In(z

′)
[
Knl(z − z′)+ δl,n KL(z − z′)

]
dz′

= − j4π

ζ0

(
Cl cos kz + δl,1

V1

2
sin k|z|

)
; −h < z < h, l = 1, . . . , N ,

(12.10)

where

KL(z)

k
= − j2π zi

kζ0
sin k|z|. (12.11)

2 [1] equation (6.16).



428 Circular arrays of imperfect conductors

The only difference between the integral equations (12.10) for lossy elements and the
integral equations (10.1) of Chapter 10 for lossless elements is that the self-interaction
kernel now includes the additional term KL(z) proportional to the internal impedance
per unit length. This form of the integral equations was derived especially for the case
of a large circular array.

The integral equations (12.10) may be decoupled via the method of symmetrical
components just as in the lossless case, so that the mth phase-sequence integral
equation becomes∫ h

−h
I (m)(z′)

[
K (m)(z − z′)+ KL(z − z′)

]
dz′

= − j4π

ζ0

(
C (m)

1 cos kz + V (m)
1

2
sin k|z|

)
, (12.12)

where V (m)
1 = V1/N .

The case of tubular dipoles with walls much thicker than the skin depth is of
particular interest. In this case, zi is given by (12.4) so that r i = xi and the real
and imaginary parts K RL(z) and K I L(z) of KL(z) are equal in magnitude. They are
given by

K RL(z)

k
= −K I L(z)

k
= �

2
sin k|z|, (12.13)

where

�

2
= 2πr i

kζ0
= λr i

ζ0
= ds

2a
= 1√

2

1

a
√
ωµ0σ

= 1

2a/λ

√
ε0 f

πσ
(12.14)

is the dimensionless parameter determining the change in both the real and the
imaginary parts of the kernel. The notation � is in accordance with the literature
[4, 5].

For brass dipoles (σ = 1.4 × 107 S/m), the skin depth is ds = (π f µ0σ)
−1/2 =

2.69×10−6 m at f = 2.5 GHz and, for a radius of a = 3.175×10−3 m, the parameter
�/2 has the value

�

2
= 1

2a/λ

√
ε0 f

πσ
= 4.23 × 10−4. (12.15)

It is seen that �/2 � 1 so that the real and imaginary parts of K11(z)/k in (12.10)
are negligibly affected as functions of kz by the presence of ohmic losses (at least if the
dipoles are not many wavelengths long), and the integral equations remain essentially
the same. Thus, highly conducting elements may be treated as though they were
perfectly conducting in ordinary antenna array problems involving a small number
of elements.
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If the material is not highly conducting, then a significant change can result.
For example, in the experimental study of [5], imperfectly conducting dipoles were
constructed by coating a dielectric cylinder with a thin layer of resistive paint. The
value of �/2 in this experiment ranged from 0.62 to 2.23. In this case, the imaginary
part of the kernel and the integral equations change significantly. (The real part of the
kernel stays the same here because the thickness of the coating is much smaller than
the skin depth so that zi is given by (12.7) and is purely resistive.)

For a large circular array, the situation is quite different from both of the cases
described above. The mth phase-sequence kernel now includes the term KL(z) =
K RL(z) + j K I L(z) of (12.13). It was seen in Section 11.2 that the imaginary part
K (m)

I (z) of the lossless kernel is small when N is large and d/λ < m/N . In this case,
the presence of losses in the elements can make a noticeable difference even in the case
of highly conducting elements (�/2 � 1). By contrast, the real part K1R(z)+K (m)

�R (z)
of the lossless mth phase-sequence kernel is of order 1 for large N , so that K RL(z) may
be neglected when �/2 � 1.

The effect of the frequency on a large circular array of highly conducting dipoles
may be deduced directly from the integral equations. Except for the new term in
the integral equations (12.12) involving �/2, the integral equations scale (i.e. they
do not change if the frequency is changed provided that the electrical parameters
h/λ, a/λ, and d/λ remain the same). The case where the electrical parameters are
fixed is the one of interest when narrow resonances in circular arrays are desired;
resonances are known to occur only if the electrical parameters are chosen from
the limited ranges described in Section 11.3. The effect of ohmic losses becomes
more pronounced when �/2 becomes larger. It is seen from the last expression in
(12.14) that �/2 is an increasing function of the frequency when h/λ, a/λ, and
d/λ are fixed. Thus, if an array of fixed h/λ, a/λ, and d/λ is to be implemented at
two different frequencies (physically larger values of h, a, and d are required at the
lower frequency), the effect of ohmic losses will be more pronounced at the higher
frequency.

12.3 Two-term theory

Assume that the circular array satisfies the conditions (11.1). The theory presented here
incorporates the change in the self-part of the kernel directly in the two-term theory in
Section 11.2 without making any other changes. Thus, the current distributions on the
elements are assumed to remain the same as in the lossless case. The solution is still
given by (11.2)–(11.17) but with K (m)

I (z) replaced by K (m)
I (z)+K I L(z). Equivalently,

one may replace the parameters P(m)
I and D(m)

I by P(m)
I + PI L and D(m)

I + DI L ,
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respectively. The additional parameters PI L and DI L are proportional to �/2. They
are given by

PI L = −1

1 − cos kh

∫ h

−h
sin k(h − |z|)[cos kh K I L(z)− K I L(h − z)] dz (12.16)

DI L = 1

1 − cos kh

∫ h

−h
(cos kz − cos kh)[cos kh K I L(z)− K I L(h − z)] dz. (12.17)

With the expression (12.13) for K I L(z), the integrations in (12.16) and (12.17) may
be performed. The resulting formulas for the new parameters are

PI L = �

2

1

1 − cos kh
(−kh + 1

2 sin 2kh) (12.18)

DI L = −�

2

1

1 − cos kh
(2 cos kh − kh sin kh − 1 − cos 2kh). (12.19)

Thus, the driving-point admittance is given by

Y1,1 = I1(0)

V1

= j2π

ζ0�d R cos kh

[
sin kh + 1

N

N/2∑
m=0

ξ (m)T (m)(1 − cos kh)

]
, (12.20)

where

T (m) = P(m)
R + j (P(m)

I + PI L)

D(m)
R + j (D(m)

I + DI L)
(12.21)

and where, for simplicity, N is assumed to be even.
Similar formulas may be obtained if the square-root end correction of Section 11.6

is taken into account. The complete formulas for both cases are derived in Section
6.5 of [1], and are summarized in Section 12.8 in a form suitable for computer
implementation. The qualitative behavior of large resonant circular arrays is of concern
in the next section; for this purpose, the simpler version of the two-term theory outlined
above is adequate.

12.4 Qualitative behavior

The behavior of a fixed-N array and that of a fixed-m/N array and their differences
from the lossless case will now be discussed. The first observation is that the positions
of the resonances will remain the same as in the lossless case since the parameter
D(m)

R which determines these positions remains unchanged. Although the remaining
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results of this section may be obtained by studying the lossy two-term theory formulas
directly, it is instructive to use the formulas to derive equivalent circuits for the two
situations described above and study the equivalent circuits.

If the circular array is at or near its mth phase-sequence resonance, i.e. D(m)
I + DI L

is small and D(m)
R is close to its zero, then the formula (12.20) for the self-admittance

may be approximated by the methods of Sections 11.3 and 11.4. The details are in
Section 6.4 of [1]. If fm is the resonant frequency, the following approximate formula
is obtained:3

Y1,1( f ) = G1,1( f )+ j B1,1( f )
.= 1/(R(m)

rad + Rloss)

1 + j2Q( f − fm)/ fm
, (12.22)

where

R(m)
rad = N

ξ (m)

D(m)
I

H (m)
(units: ohms) (12.23)

Rloss = N

ξ (m)

DI L

H (m)
(units: ohms) (12.24)

Q = |α(m)| fm

2(D(m)
I + DI L)

(dimensionless). (12.25)

In (12.23)–(12.25), α(m) is the slope of D(m)
R near its zero, ξ (m) is given by (12.47) and

H (m) = 2π(1 − cos kh)

ζ0�d R cos kh
P(m)

R (12.26)

is a quantity which depends on the real part of the mth phase-sequence kernel. Equation
(12.22) is the same as the formula for the input admittance of a high-Q series RLC
circuit when its operating frequency is close to its resonant frequency.4 Thus, (12.22)
shows that a circular array at or near its mth phase-sequence resonance is roughly
equivalent to a high-Q RLC circuit. “Equivalence” should be understood in the sense
that the driving-point conductance and susceptance in the two cases have the same
frequency response. The equivalent circuit for the resonant circular array has two
resistances in series and is pictured in Fig. 12.1.

Fixed-N array

This rough equivalence gives a simple picture of the qualitative behavior of an array
where the frequency is varied to obtain a series of narrow resonances at frequencies
fm where m ≤ N/2 (fixed-N array). The array is equivalent to a finite sequence

3 [1] equation (6.40). 4 [1] equation (6.35).
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V1

+

–

L

C

Rrad
(m)

I1(0) Rloss

Figure 12.1 Equivalent circuit for circular array at or near its mth phase-sequence resonance.

of RLC circuits. The resonant frequency of the mth RLC circuit is fm . The behavior of
the array may be determined by studying the dependence of the parameters of the RLC
circuits on m. It may be shown that R(m)

rad decreases rapidly as m increases. Rloss, on
the other hand, is approximately independent of m. The case when m = N/2 (when
N = even) is an exception: When m = N/2, Rloss increases by a factor of 2 because
of the presence of ξ (m) in (12.23). Hence the finite sequence of high-Q RLC circuits
is obtained by rapidly decreasing R(m)

rad as m (or the frequency f ) increases. Assuming

that Q � 1, one can define two regions depending on the relative size between R(m)
rad

and Rloss:

1. The region of rapid increase, in which R(m)
rad � Rloss or �/2 � |K (m)

I | � 1. Here,

the ohmic losses do not matter. Since R(m)
rad + Rloss

.= R(m)
rad , the increase of G1,1

and Q with m is, just as in the lossless case, very rapid.
2. The saturation region, in which R(m)

rad � Rloss or |K (m)
I | � �/2 � 1. Here, the

ohmic losses are dominant. Since R(m)
rad + Rloss

.= Rloss which is independent of m,
G1,1 = G1,1 sat stays constant as a function of m. In the case when m = N/2, the
resonant G1,1 drops to the value 1

2 G1,1 sat.

Fixed-m/N array

A similar analysis may be carried out for the case of a fixed-m/N array. R(m)
rad decreases

rapidly as N increases. The parameter H (m) is roughly independent of N when m/N is
fixed. Thus, the value of the resistance Rloss increases linearly as N increases. Hence,
a “fixed-m/N array” is equivalent to a series of RLC circuits. For each N , the RLC
circuit is obtained by rapidly decreasing R(m)

rad and linearly increasing Rloss. Assuming
again that Q � 1, two regions are distinguished:
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Figure 12.2 Driving-point conductance G1,1( f ) as function of frequency for N = 90,
h = 0.858 in, 2a = 1/4 in, 2R = 40 in, and σ = 1.4 × 107 S/m.

1. The region of rapid increase, in which R(m)
rad � Rloss or �/2 � |K (m)

I | � 1. Here,

the ohmic losses do not matter. Since R(m)
rad + Rloss

.= R(m)
rad , the increase of G1,1

and Q with N is, just as in the lossless case, very rapid.
2. The region of decrease as 1/N , in which R(m)

rad � Rloss or |K (m)
I | � �/2 � 1.

Here, the ohmic losses are dominant. Since R(m)
rad + Rloss

.= Rloss which varies
linearly with N , G1,1 and Q decrease as 1/N .

The factor of N in the expression (12.23) for Rloss comes from the superposition
of the phase sequences; the resonant phase-sequence conductances G(m)

res eventually
become constant as N increases.

12.5 Numerical results

Figures 12.2 and 12.3 show numerical results for the driving-point conductance
G1,1( f ) and susceptance B1,1( f ) for the parameters

N = 90, h = 0.858 in, 2a = 1/4 in, 2R = 40 in, σ = 1.4 × 107 S/m, (12.27)

of the experimental circular array in Chapter 8 of [1]. The frequency interval is
2.4 GHz < f < 2.7 GHz. The results were obtained using the complete formulas
given in Section 12.8, including the “exact” real part of the self term and the square-
root end-corrected current for greater accuracy. Dipole admittances were multiplied
by a factor of 2, so that the results correspond to the admittances of an array of brass
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Figure 12.3 Driving-point susceptance B1,1( f ) as function of frequency for N = 90, h = 0.858 in,
2a = 1/4 in, 2R = 40 in, and σ = 1.4 × 107 S/m.
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Figure 12.4 Like Fig. 12.2 but in frequency interval 2.65 GHz < f < 2.68 GHz.

monopoles over a perfectly conducting ground plane. Table 12.1 shows the resonant
frequencies fm and the values of resonant driving-point conductance G1,1( fm). For
comparison, the values G ′

1,1( fm) obtained for the same parameters but assuming
lossless elements are in the last column of Table 12.1. It is seen that the effect of
the ohmic losses is negligible in the first few resonances and drastic in the later
resonances.
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Table 12.1. Resonant frequencies fm;a resonant driving-point
conductances G1,1 for σ = 1.4 × 107 S/m; and resonant
driving-point conductances G′

1,1 for σ = ∞

m fm (GHz) G1,1 (mS) G′
1,1 (mS)

29 2.4260 28.33 28.62
30 2.4623 47.47 48.77
31 2.4950 89.75 95.92
32 2.5241 183.96 216.44
33 2.5497 373.34 552.37
34 2.5722 653.61 1572.42
35 2.5919 901.02 4946.67
36 2.6090 1026.01 1.711 × 104

37 2.6238 1066.35 6.488 × 104

38 2.6365 1074.19 2.694 × 105

39 2.6473 1073.11 1.224 × 106

40 2.6562 1070.71 6.086 × 106

41 2.6634 1069.38 3.312 × 107

42 2.6689 1070.83 1.974 × 108

43 2.6728 1079.90 1.289 × 109

44 2.6752 1120.60 9.118 × 109

45 2.6759 637.16 1.824 × 1010

a N = 90, h = 0.858 in, 2a = 1/4 in, and 2R = 40 in.

In Fig. 12.4, the results of Fig. 12.2 for G1,1( f ) are shown in the frequency
interval 2.65 GHz< f < 2.68 GHz only where the resonances m = 40–45 occur. It
is interesting that the last two resonances (m = 44 and m = 45) overlap. The same
phenomenon would occur for the equivalent composite circuit of the circular array
(many high-Q RLC circuits connected in parallel) if the resonant frequencies of two
of the RLC circuits were very close.

12.6 Field pattern

The radiation field may be determined from the phase-sequence coefficients T (n) if
formula (12.45) for Tl in Section 12.8 is substituted into (11.30). One obtains

E(r, θ, φ) = θ̂θθEθ = θ̂θθ
−V1

�d R cos kh

e− jkr

r

{
F(θ)e jk R sin θ cos(φ−φ1)

+ G(θ)

N/2∑
n=0

ξ (n)

N
T (n)A(n)(θ, φ)

}
, (12.28)
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where A(n)(θ, φ) is the array factor for the nth phase sequence (11.33b), and F(θ) and
G(θ) are defined in (11.31) and (11.32). The field in the lossy case might be different
from that of the lossless case for the following reason.

The properties of A(n)(θ, φ) were discussed in Section 11.5. In particular, it was
seen that for sufficiently large n, the array factor is a small quantity. If a lossless array
is at its n = mth phase-sequence resonance, A(m)(θ, φ) is small, T (m) is large, and
the product T (m) × A(m)(θ, φ) remains large. Thus, the term in (12.28) for n = m
dominates and the complete radiation field possesses the properties of Section 11.5.
If the elements are lossy, it has been seen that T (m) may be much smaller than in the
lossless case. If T (m) × A(m)(θ, φ) is sufficiently large, the field of the lossy array
will be essentially the same as that of the lossless array. If T (m) × A(m)(θ, φ) is small,
contribution from other terms in equation (12.28) will be of importance and Eθ (r, θ, φ)
will be different than in the lossless case.

In general, the effect of ohmic losses is more pronounced when m and N are larger.
For the omnidirectional array of Section 11.7, numerical calculations based on (12.28)
and the formulas in Section 12.8 show that the radiation field is significantly changed
in the first few cases of Table 11.2 if the elements are made from copper. However,
the omnidirectional radiation field in the m = 37 case with copper elements is the
same (Figs. 11.9 and 11.11) as if the elements were perfectly conducting. A similar
conclusion holds for a 90-element microwave beacon application [7].

12.7 The effect of a highly conducting ground plane

Introduction

In Sections 12.1–12.6, the problem of resonant circular arrays of highly conducting
dipoles was addressed and a two-term theory taking the finite conductivity of the
dipoles into account was developed. It was remarked that a circular array of highly con-
ducting dipoles of length 2h is equivalent to an array of highly conducting monopoles
of length h over a perfectly conducting ground plane of infinite extent. In practice,
both the monopoles and the ground plane have a large (but finite) conductivity. In the
N = 90 element experiment in Chapter 8 of [1], for example, the monopoles are made
of brass and the ground plane is made of aluminum. The conductivities of the two
materials are σM = 1.4 × 107 S/m and σG = 3.5 × 107 S/m, respectively. When the
number of elements in the array is large and the array is at or near a narrow resonance,
the finite conductivity of the ground plane will make a noticeable difference. In this
section, an approximate method is outlined so that the ohmic losses of the ground
plane may be taken into account as a perturbation to the theory of Sections 12.1–12.6
which assumes a lossless ground plane. The current distributions on the monopoles are
assumed to remain the same.
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Consider a circular array consisting of N monopoles of length h, radius a, and
conductivity σM over an infinite ground plane of conductivity σG located at z = 0.
Element 1 is driven and the rest are parasitic. N is large and the array is at or near its
mth phase-sequence resonance so that the currents on the monopoles are the shifted
cosine currents, namely,

Il(z)

I1(0)
= cos kz − cos kh

1 − cos kh
cos

2π(l − 1)m

N
; l = 1, . . . , N , 0 < z < h, (12.29)

where, without loss of generality for what follows, the current I1(0) on the base of
element 1 is set to unity.

In the case σG = ∞, a surface current JS(ρ, φ) exists on the ground plane which
may be determined from the tangential magnetic field H by the equation

JS = ẑ × H. (12.30)

In the case of a highly conducting ground plane, there is a quasi-surface current
distributed on a thin layer under the surface z = 0. In the treatment of problems
involving highly conducting materials (for example, when losses in waveguides are
calculated), it is usual to assume that the tangential magnetic field is the same as if the
surface were perfectly conducting and that the quasi-surface current is a true surface
current given by (12.30). Due to the finite conductivity, there is a total time-average
power PG dissipated as heat on the ground plane. If JS is known, PG may be found
from the equation

PG =
∫ ∫

1
2 Re{ZG}|JS|2 d S =

∫ ∫
1
2

√
π f µ0

σG
|JS|2 d S, (12.31)

where ZG is the surface impedance of the ground plane. Formula (12.31) is an
approximate equation adapted from the problem of a plane wave incident on a highly
conducting surface. The integrand is the power dissipated as heat per unit surface
area.

Outline of the procedure

A brief description of the method and of the approximations involved is presented
here. Detailed calculations and formulas are contained in Chapter 7 of [1].

(A) The first problem is the calculation of the surface currents JS on the ground
plane for the circular array. This is simple in principle if the field due to a single
monopole with a rotationally symmetric current is known.
If the magnetic field due to an isolated monopole placed at the origin is
h = φ̂φφhφ(ρ), then the surface currents due to an array of monopoles may be
determined by superposition. The difficulty is that there are no simple formulas
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y = –2d y = –d y = 0 y = d y = 2d . . .. . .

Region 1, x < – a

Region 3, x > a

2a

Figure 12.5 Infinite linear array.

for hφ(ρ) for an isolated monopole of thickness a with a cos kz − cos kh current
distribution. A simple formula for hφ(ρ) does exist for the case of an infinitely
thin monopole with a sin k(h − z) current and is given in (1.38a).
For the monopole lengths kh < π/2 of interest, the distributions sin k(h − z) and
cos kz − cos kh are quite similar. Thus, the simplifying assumption is made that
the monopoles of the array are infinitely thin and that their current distribution is
sin k(h − z) so that the monopole currents (12.29) are replaced by

Il(z)

I1(0)
= sin k(h − z)

sin kh
cos

2π(l − 1)m

N
, l = 1, . . . , N . (12.32)

(B) Once the surface currents are known, one may attempt to calculate the time-
average power PG dissipated as heat on the ground plane from (12.31). The
integration extends to infinity. Consider, however, any array consisting of a finite
number of monopoles with ẑ-directed currents over a perfectly conducting ground
plane. In the far zone, the magnetic field at z = 0 is parallel to the ground plane
and decreases as 1/ρ. The resulting surface currents will also decrease as 1/ρ.
Therefore, the integral in (12.31) diverges. The divergence of the integral is a
result of the approximation that the currents on the imperfectly conducting ground
plane are the same as if it were perfectly conducting. This divergence reveals that
the approximation is not valid in the far zone. It is believed, however, that the
approximation is valid near the array.

(C) Consider the infinite linear array, taken as the limit of the large circular array as
N → ∞. If y is the axis of the array and x is the direction perpendicular to
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Region 1, ρ > R + a

Region 2
Region 3,
ρ < R – a

R + a

R – a

2∆φ

Figure 12.6 Circular array of N = 8 elements.

the array (Fig. 12.5), it is seen from the analysis in [1] that the surface currents
decrease exponentially when |x | is large and that they are periodic in y with
period Nd. Thus, an integration of the form (12.31) is meaningful in the case
of the infinite linear array if the integration is carried over a period in y; the
integration over a period in y corresponds to the φ-integration for the large
circular array.

(D) The formulas for JS for the infinite linear array derived in [1] are appropriate
for numerical evaluation when the observation point is not very close to the axis
of the array; they are not suitable when the observation point approaches this
axis.
For the reasons outlined above, PG is calculated as the sum PG2 + PG13 resulting
from separating the plane z = 0 into three regions. These regions are illustrated
in Fig. 12.6. The original circular array is shown in this figure to consist of
N = 8 monopoles of radius a. PG2 is computed directly for the circular array
as the contribution from the shaded region 2 of Fig. 12.6. This calculation is
straightforward. Since it is assumed that the monopoles are infinitely thin, a small
area near each monopole l is excluded when integrating to determine PG2. Since
R/2a � 1 (R/2a = 160 in the experimental study), the particular choice of this
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small area is not important. For numerical convenience, it is chosen to be

R − a < ρ < R + a, φl −�φ < φ < φl +�φ; �φ = sin−1 a

R
(12.33)

so that region 2 consists of the subregions

R − a < ρ < R + a, φl +�φ < φ < φl+1 −�φ; l = 1, . . . , N .

(12.34)

PG13, on the other hand, is computed from the infinite linear array of
Fig. 12.5 as the contributions for regions 1 (x <−a, −Nd/2< y < Nd/2) and
3 (x > a, −Nd/2< y < Nd/2). The properties of the ground plane currents
mentioned above (namely, the exponential decrease for large |x | and the peri-
odicity in the y direction) are verified by this calculation, which is somewhat
involved.

(E) The time-average power PM dissipated on the surface of the monopoles and the
time-average power PG = PG2 + PG13 dissipated on the surface of the ground
plane when element 1 has unit current at its base are computed in the manner
described above. The final equations have the form

PG = 1
2

√
π f µ0

σG
ψG; PM = 1

2

√
π f µ0

σM
ψM , (12.35)

where the coefficients ψG and ψM are independent of the conductivities σG and
σM (but depend on m).
An “effective conductivity of the monopoles” σ

(m)
M,eff is defined for each phase-

sequence resonance m by the equation

1
2

√
π f µ0

σ
(m)
M,eff

ψM = 1
2

√
π f µ0

σM
ψM + 1

2

√
π f µ0

σG
ψG = PM + PG . (12.36)

The total loss PG + PM in the case where the ground plane is imperfectly
conducting is equal to the loss in the case where the ground plane is perfectly
conducting and the monopoles have the perturbed conductivity σ

(m)
M,eff. Equations

(12.35)–(12.36) may be solved for σ (m)
M,eff to obtain

σ
(m)
M,eff = σM

(
PM

PM + PG

)2

. (12.37)

The perturbation to the theory of the Sections 12.1–12.6 results by replacing σM

by σ
(m)
M,eff at each resonance.

Although the method described above involves several simplifying assumptions, the
theoretical results obtained (driving-point conductance and susceptance) agree very
well with the experimental results.
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Table 12.2. Resonant frequencies fm; powers PM , PG2, and PG13 dissipated on
monopoles and on regions 2 and 1, 3; and effective conductivities σ (m)

M,eff for
parameters of experiment a

m fm (GHz) PM (W/A2) PG2 (W/A2) PG13 (W/A2) σ
(m)
M,eff (S/m)

29 2.4260 0.2567 0.0276 0.2277 0.3520 × 107

30 2.4623 0.2602 0.0276 0.2171 0.3718 × 107

31 2.4950 0.2634 0.0276 0.2078 0.3903 × 107

32 2.5241 0.2662 0.0277 0.1996 0.4074 × 107

33 2.5497 0.2688 0.0277 0.1923 0.4233 × 107

34 2.5722 0.2711 0.0278 0.1859 0.4378 × 107

35 2.5919 0.2731 0.0278 0.1802 0.4511 × 107

36 2.6090 0.2748 0.0279 0.1752 0.4630 × 107

37 2.6238 0.2763 0.0279 0.1709 0.4736 × 107

38 2.6365 0.2777 0.0279 0.1672 0.4829 × 107

39 2.6473 0.2788 0.0280 0.1640 0.4910 × 107

40 2.6562 0.2797 0.0280 0.1614 0.4977 × 107

41 2.6634 0.2805 0.0280 0.1593 0.5033 × 107

42 2.6689 0.2811 0.0281 0.1577 0.5075 × 107

43 2.6728 0.2815 0.0281 0.1565 0.5106 × 107

44 2.6752 0.2817 0.0281 0.1559 0.5124 × 107

45 2.6759 0.5636 0.0562 0.3113 0.5130 × 107

a [1] Chapter 8.

The effective monopole conductivity and numerical results

Table 12.2 shows the values of the resonant frequencies fm , the time-average powers
PM , PG2, and PG13 dissipated on the monopoles and on regions 2 and 1, 3 of the
ground plane, and the effective monopole conductivity σ

(m)
M,eff for the parameters of

the experiment in Chapter 8 of [1]. The parameters N , h, a, d = 2R sin(π/N ), and
σM = σ are given in (12.27). The conductivity σG of aluminum is given by σG =
3.5 × 107 S/m.

It is seen from Table 12.2 that PG2 is significantly less than PG13, which is the same
order of magnitude as PM . As a result, σ (m)

M,eff is significantly smaller than σM .
Table 12.3 shows the resulting values of the resonant self-conductance G1,1. The

corresponding values in the case σG = ∞ from Table 12.1 are repeated here
for comparison. It is seen that the effect of the imperfectly conducting ground
plane is minimal in the first (broadest) resonances but noticeable in the last reso-
nances.

A continuous frequency-response curve for G1,1 or B1,1 may be conveniently
obtained by using an interpolated value of σ

(m)
M,eff at each frequency. Figures 12.7

and 12.8 show the frequency-response curves G1,1( f ) and B1,1( f ) thus ob-
tained.
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Table 12.3. Resonant frequencies fm; resonant driving-point
conductances G1,1 for parameters of experiment;a and
resonant driving-point conductances G′

1,1 for σG = ∞

m fm (GHz) G1,1 (mS) G′
1,1 (mS)

29 2.4260 28.04 28.33
30 2.4623 46.34 47.47
31 2.4950 84.95 89.75
32 2.5241 163.37 183.96
33 2.5497 296.00 373.34
34 2.5722 449.60 653.61
35 2.5919 558.33 901.02
36 2.6090 609.27 1026.01
37 2.6238 628.74 1066.35
38 2.6365 636.60 1074.19
39 2.6473 641.02 1073.11
40 2.6562 644.84 1070.71
41 2.6634 649.49 1069.38
42 2.6689 657.24 1070.83
43 2.6728 675.68 1079.90
44 2.6752 734.49 1120.60
45 2.6759 476.01 637.16

a [1] Chapter 8.

In Fig. 12.9, the conductance G1,1( f ) is shown in the frequency interval where the
m = 40–45 phase-sequence resonances occur. The frequency interval is 2.65 GHz
< f < 2.68 GHz. When compared to the corresponding curve of Fig. 12.4 which
assumes σG = ∞, it is seen that the additional losses introduced by the ground plane
cause the m = 45 phase-sequence resonance to merge with the m = 44 resonance.
Thus, the last peak of Fig. 12.9 actually corresponds to two phase-sequence resonances
namely, m = 44 and m = 45.

Comparison of theory and experiment

In this section, the theoretical results are compared to experimental results. The
experimental study is described in detail in Chapter 8 of [1]. The ground plane is made
from aluminum and the monopoles are made from brass. The experimental setup is
that of Fig. 11.2. Experimental results are obtained in [1] in four different ways, each
corresponding to a different location of the measuring voltage probe in the coaxial
line of Fig. 11.2. The resulting frequency-response curves are distinguished by the
superscripts AB, AC , BC , and B D.

In Figs. 12.10 and 12.11, the theoretical frequency-response curve of Fig. 12.7
is shown together with the experimentally determined frequency-response curve
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Figure 12.8 Driving-point susceptance B1,1( f ) for parameters of experiment [1, Chapter 8].

G AC
1,1 ( f ) [7]. Figure 12.10 is in the frequency interval 2.4 GHz < f < 2.6 GHz and

Fig. 12.11 is in the frequency interval 2.6 GHz < f < 2.7 GHz. (Note the difference
in the horizontal scales in the two figures.) The last peak on the right in Fig. 12.11
belongs to the experimental curve. It is identified with both the m = 44 and m = 45
resonance since the theory predicts that the m = 44 and m = 45 resonances merge
(Fig. 12.9). The two curves are very much alike except for a small frequency shift. The
same is true when the experimentally determined driving-point susceptance B AC

1,1 ( f )
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Figure 12.10 Experimentally determined driving-point conductance G AC
1,1 [1, Chapter 8] together

with corresponding theoretical curve GT
1,1 (from Fig. 12.7) in frequency interval

2.4 GHz < f < 2.6 GHz. Taken from Fikioris [7, Fig. 7a]. c© 1998 I.E.E.

and the theoretically computed B1,1( f ) (from Fig. 12.8) are compared in Figs. 12.12
and 12.13.

In Table 12.4, the theoretically predicted resonant frequencies fm of Table 12.3
are compared with the experimentally determined resonant frequencies f exper

m –
which were found as the average of the resonant frequencies (frequencies at which
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1,1 [1, Chapter 8] together

with corresponding theoretical curve GT
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Figure 12.12 Experimentally determined driving-point susceptance B AC
1,1 [1, Chapter 8] together

with corresponding theoretical curve BT
1,1 (from Fig. 12.8) in frequency interval

2.4 GHz < f < 2.6 GHz.

G1,1 attains its maxima) for the four probe locations. The resonant frequencies
for the four probe locations differ from their averaged values shown in Table 12.4
at most in the last significant digit. It is seen that the relative difference between
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1,1 [1, Chapter 8] together

with corresponding theoretical curve BT
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the theoretical and experimental fm is very small, of the order of a fraction of
1%. Note that the differences become smaller at the last resonances and that the
theoretical resonant frequencies are always smaller than the experimentally determined
ones.

The theoretically predicted resonant driving-point conductance G1,1 of Table 12.3
and the experimentally determined values Gexper

1,1 (obtained by averaging the results
for the four probe locations) are compared in Table 12.5. In general, the agreement is
very good. The largest discrepancy (about 17%) occurs at the m = 44–45 resonance.
Usually, the agreement is within a few percent. The differences observed here are
attributed mainly to the experiment; in particular, to imperfections in construction,
to sensitivity to mechanical adjustments, and to the difficulty of obtaining accurate,
swept-frequency measurements in high-SWR lines. Such difficulties are discussed in
detail in Chapter 14.

12.8 Appendix: formulas for the large circular array of highly conducting
dipoles

In this appendix, the two-term theory formulas for a circular array of parallel, non-
staggered, highly conducting dipoles with one dipole driven (Sections 12.1–12.6) are
written in a form convenient for computer implementation. The parameters of the array
are assumed to satisfy the conditions (11.1); N may be even or odd.
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Table 12.4. Theoretical ( fm) and experimental ( f
exper
m )

resonant frequencies and percentage errora

m fm (GHz) f
exper
m (GHz)

Percentage
error

29 2.4260 2.4311 0.214
30 2.4623 2.4681 0.236
31 2.4950 2.5009 0.237
32 2.5241 2.5298 0.227
33 2.5497 2.5554 0.224
34 2.5722 2.5777 0.215
35 2.5919 2.5970 0.199
36 2.6090 2.6137 0.182
37 2.6238 2.6288 0.189
38 2.6365 2.6413 0.183
39 2.6473 2.6519 0.176
40 2.6562 2.6602 0.153
41 2.6634 2.6678 0.165
42 2.6689 2.6728 0.146
43 2.6728 2.6765 0.139

44–45 2.6752 2.6791 0.147

a Taken from Fikioris et al. [8, Table 2]. c© 1994 EMW Publishing.

Table 12.5. Theoretical (G1,1) and experimental
(G

exper
1,1 ) resonant driving-point conductances

m G1,1 (mS) G
exper
1,1 (mS)

29 28.04 31.2
30 46.34 51.0
31 84.95 91.9
32 163.37 177.
33 296.00 317.
34 449.60 479.
35 558.33 644.
36 609.27 671.
37 628.74 619.
38 636.60 644.
39 641.02 670.
40 644.84 713.
41 649.49 658.
42 657.24 687.
43 675.68 679.

44–45 734.49 612.
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The formulas of this section reduce to those of Sections 11.2 and 11.6 when the
dipoles are perfectly conducting. When the dipoles are perfectly conducting and
extremely narrow resonances occur, special numerical considerations are necessary
to implement the formulas; such considerations are discussed in Section 13.5.

There are two choices p(z) of current distributions, namely, the simpler distribution
pC (z) = cos kz − cos kh and the square-root end-corrected current pS(z) of Sec-
tion 11.6. (The current on the driven element includes the additional term sin k(h −
|z|)). Also, there are two choices K1R(z) for the real part of the self-interaction kernel.
These are the “approximate” self-term (11.11) and the “exact” self-term (11.41),
denoted here by K A

1R(z) and K E
1R(z), respectively. See Section 11.8 with regard to

the various kernels.
The simpler version of the two-term theory (“approximate” K1R(z) and shifted-

cosine current) is adequate for a qualitative analysis such as that in Sections 11.3–11.5
and 12.4. If high precision is necessary (for example, when comparing theory and
experiment in Section 12.7), the refinements of Section 11.6 (“exact” K1R(z) and end-
corrected p(z)) should be taken into account.

The currents Il(z) on the elements are given by:

Il(z) =




j2πV1

ζ0�d R cos kh
[sin k(h − |z|)+ T1 p(z)]; l = 1

j2πV1

ζ0�d R cos kh
Tl p(z); l = 2, 3, . . . , N .

(12.38)

Equation (12.38) and the formulas for the admittances that follow are for dipole
admittances. If currents and admittances for monopoles over a perfectly conducting
ground plane are desired, the corresponding dipole quantities should be multiplied by
a factor of 2. The current p(z) is given by

p(z) =
{

pC (z), shifted cosine

pS(z), end-corrected current,
(12.39)

where

pC (z) = cos kz − cos kh (12.40)

and the end-corrected current is given by

pS(z) =
{

cos kz − γ1, k|z| ≤ kz0

γ2
√

kh − k|z|, kz0 ≤ k|z| ≤ kh,
(12.41)

where kz0 is the (unique) solution of the transcendental equation

tan kz0 = 2(kh − kz0) (12.42)
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in the interval 0 < kz0 < kh (kh < π/2) and

γ1 = cos kz0 [1 − 4(kh − kz0)
2] (12.43)

γ2 = 2 sin kz0

√
kh − kz0. (12.44)

In (12.38), the parameter �d R is given by (10.34).
The coefficients Tl of the shifted cosine are obtained by superimposing the phase-

sequence coefficients T (m):

Tl = 1

N

 N/2!∑
m=0

ξ (m)T (m) cos

[
2π(l − 1)m

N

]
, (12.45)

where

T (m) = P(m)

D(m)
= P(m)

R + j (P(m)
I + PI L)

D(m)
R + j (D(m)

I + DI L)

= P1R + P(m)
�R + j (P(m)

I + PI L)

D1R + D(m)
�R + j (D(m)

I + DI L)
, m = 0, 1, . . . ,  N/2!

(12.46)

and

ξ (m) =
{

1, m = 0 or m = N/2

2, otherwise
(12.47)

 N/2! =
{

N/2, N = even

(N − 1)/2, N = odd.
(12.48)

The various parts of the symmetrical components P(m) and D(m) are given by integrals
involving corresponding parts of the mth phase-sequence kernel,

P1R =
∫ h

−h
sin k(h − |z|)K1R(h − z) dz (12.49)

P(m)
�R = − 1

1 − cos kh

∫ h

−h
sin k(h − |z|)[cos kh K (m)

�R (z)− K (m)
�R (h − z)] dz (12.50)

P(m)
I = − 1

1 − cos kh

∫ h

−h
sin k(h − |z|)[cos kh K (m)

I (z)− K (m)
I (h − z)] dz (12.51)

D1R = 1

1 − cos kh

∫ h

−h
p(z)[cos kh K1R(z)− K1R(h − z)] dz (12.52)

D(m)
�R = 1

1 − cos kh

∫ h

−h
p(z)[cos kh K (m)

�R (z)− K (m)
�R (h − z)] dz (12.53)
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D(m)
I = 1

1 − cos kh

∫ h

−h
p(z)[cos kh K (m)

I (z)− K (m)
I (h − z)] dz. (12.54)

The integrated formula for the loss parameter PI L is

PI L = �

2

1

1 − cos kh
(−kh + 1

2 sin 2kh), (12.55)

where �/2 is defined in (12.14). An integrated formula for the loss parameter DI L is

DI L =
{

DC
I L , shifted cosine

DS
I L , end-corrected current,

(12.56)

where

DC
I L = −�

2

1

1 − cos kh
(2 cos kh − kh sin kh − 1 − cos 2kh) (12.57)

DS
I L = −�

2

1

1 − cos kh

{
2 cos(kh − kz0)

[
γ1 + γ2

√
kh − kz0

]− kz0 sin kh

− 1
2 cos(kh − 2kz0)+ ( 1

2 − 2γ1) cos kh − γ2
√

2π C

(√
2

π

√
kh − kz0

)}
.

(12.58)

In (12.58), C(x) is the Fresnel integral defined as

C(x) =
∫ x

0
cos

(π
2

t2
)

dt. (12.59)

As noted before, there are two choices for the real part of the self-interaction kernel,
namely,

K1R(z) =
{

K A
1R(z), approximate real part

K E
1R(z), exact real part,

(12.60)

where

K A
1R(z) =

cos k
√

z2 + a2
√

z2 + a2
(12.61)

and

K E
1R(z) =

1

2π

∫ π

−π

cos
{

k[z2 + 4a2 sin2(φ/2)]
1/2
}

[z2 + 4a2 sin2(φ/2)]
1/2

dφ. (12.62)

The mutual interaction part of the mth phase-sequence kernel is

K (m)
�R (z) =

 N/2!+1∑
l=2

ξl cos

[
2π(l − 1)m

N

]
cos k Rl(z)

Rl(z)
(12.63)
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and the imaginary part of the mth phase-sequence kernel is

K (m)
I (z) = −sin kz

z
−

 N/2!+1∑
l=2

ξl cos

[
2π(l − 1)m

N

]
sin k Rl(z)

Rl(z)
, (12.64)

where

ξl =
{

1, l = 1 or l = N/2 + 1

2, otherwise
(12.65)

and

Rl(z) = (z2 + b2
1l)

1/2, b1l = d sin[(l − 1)π/N ]

sin(π/N )
. (12.66)

Finally, the relation between T (m) and the phase-sequence admittances is

Y (m) = G(m) + j B(m) = j2π

ζ0�d R cos kh
[sin kh + T (m) p(0)] (12.67)

and the self- and mutual conductances G1,l (susceptances B1,l ) are determined by the
phase-sequence conductances G(m) (susceptances B(m)) by the relation

Y1,l = G1,l + j B1,l = 1

N

 N/2!∑
m=0

ξ (m)(G(m) + j B(m)) cos

[
2π(l − 1)m

N

]
. (12.68)

The necessary modifications for the case of highly conducting monopoles over a
highly conducting ground plane are outlined in Section 12.7; the complete formulas
for this case are contained in Chapter 7 of [1].



13 Direct numerical methods: a detailed
discussion

13.1 Introduction

This chapter discusses numerical methods as applied to the integral equations used in
this book. The emphasis is on the integral equations for the current in a single isolated
element, although some remarks on the coupled integral equations in the case of arrays
and on the special case of resonant circular arrays of lossless elements (see Chapter
11) are contained in Section 13.5.

In Section 1.8, the model of an isolated, center-driven, perfectly conducting tubular
dipole was introduced and two integral equations for the current I (z) were derived.
Both are often referred to as “Hallén’s integral equation”, and separately as the “exact
integral equation” and the “approximate integral equation”. They are

4π

µ0
Az(a, z) ≡

∫ h

−h
K (z − z′)I (z′) dz′ = − j2πV

ζ0
sin k|z| + C cos kz, −h < z < h

(13.1)

in which K (z) can be either the exact or the approximate kernel, namely,

K (z) =


Kex(z) = 1

2π

∫ π

−π

exp
[− jk

√
z2 + 4a2 sin2(�/2)

]
√

z2 + 4a2 sin2(�/2)
d�, |z| < 2h or (13.2a)

Kap(z) =
exp
(− jk

√
z2 + a2

)
√

z2 + a2
, |z| < 2h. (13.2b)

In (13.1), Az(a, z) is the z-directed vector potential on the surface of the tubular
dipole, V is the driving voltage located at an infinitesimal gap at z = 0, and the
constant C is to be determined from the condition that

I (h) = 0. (13.3)

The notation in this chapter is identical with that in Sections 1.8 and 1.9, except that
k is used instead of β0 to denote the wave number. Thus, the symbol Iex(z) will denote

452
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the unknown current when the exact kernel Kex(z) is used in (13.1). The corresponding
quantity when the approximate kernel Kap(z) is used will be denoted by Iap(z). The
symbol K (z) [I (z)] with no subscripts can denote either Kex(z) [Iex(z)] or Kap(z)
[Iap(z)].

In Section 1.9, a direct numerical method was applied to the integral equations.
This was Galerkin’s [1] method with pulse functions, which is a form of the method of
moments in [2]. The numerical results of Figs. 1.13 and 1.14 indicated that difficulties
are involved with this procedure, at least when the approximate kernel is used. In
this chapter, such difficulties are discussed in detail. When possible, improvements to
the numerical procedure are proposed. The discussion is based on the mathematical
properties of the two integral equations. These are the subject of the following section.

13.2 Properties of the integral equations

When z = 0 in (13.2a), the integral diverges. Thus, the exact kernel has a singularity
at z = 0. This is easily shown to be an integrable, logarithmic singularity. On the
other hand, the approximate kernel in (13.2b) is well-defined at z = 0 and, in fact, has
derivatives of all orders there. Since ka � 1, Re{Kap(z)} is highly peaked at z = 0.
As long as ka � k|z| < 2kh, the two kernels resemble each other as functions of kz,
and their difference becomes vanishingly small in the limit ka → 0.

Such a similarity between the two kernels does not guarantee that the solutions of
the corresponding integral equations will be close. In fact, the two integral equations
have quite different mathematical properties.

Consider the approximate integral equation first. For any function I (z) (satisfying
mild admissibility conditions), the left-hand side of (13.1) is differentiable with

∂

∂z

∫ h

−h
Kap(z − z′)I (z′) dz′ =

∫ h

−h

∂Kap(z − z′)
∂z

I (z′) dz′. (13.4)

The right-hand side of (13.1), however, is not differentiable at z = 0. This argument
shows that the approximate integral equation can have no solution. The approximate
integral equation requires a line current located on the z-axis to maintain a field with a
delta-function behavior at ρ = a, z = 0, and this is not possible.

For the exact integral equation, the argument above does not hold. Note, in
particular, that it is not legitimate to interchange the order of differentiation and
integration as in (13.4). In fact, one can show [3] that the exact integral equation has a
unique solution. Some properties of this solution may be derived without solving the
integral equation.

It is instructive to consider first the antenna of infinite length. Although this antenna
cannot be realized in practice, it is a useful device for obtaining information about
the finite antenna. The current I (∞)(z) on the antenna of infinite length satisfies an
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integral equation similar to (13.1), where either the exact or the approximate kernel
can be used. When the exact kernel is used, this integral equation can be solved
explicitly. Studying an explicit expression for the current I (∞)

ex (z) is less complicated
than studying an integral equation in which the unknown appears implicitly. In this
respect, the infinite antenna is much simpler than the finite antenna.

The integral equation for I (∞)
ex (z) is derived and solved in Section 13.6, which is an

appendix to this chapter. (The procedure that gives the solution in the case of the exact
kernel yields a contradiction in the case of the approximate kernel, verifying that the
approximate integral equation has no solution.) Once I (∞)

ex (z) is found, its behavior
close to the driving point is investigated. It is shown in Section 13.6 that

I (∞)
ex (z)

V
= j

4ka

ζ0
ln

1

|z| + O(1), as z → 0. (13.5a)

The coefficient in (13.5a) is purely imaginary. This means that there is an infinite
driving-point susceptance. This can be understood from a physical point of view: there
is a non-zero voltage maintained at the two circular knife edges at z = 0. As these are
separated by an infinitesimal distance, there is an infinite capacitance.

The finite antenna will exhibit a similar behavior. One does not expect that the
singularity at the driving point will be affected by the length of the antenna. This
is indeed true, and it can be shown [3] that

Iex(z)

V
= j

4ka

ζ0
ln

1

|z| + O(1), as z → 0, (13.5b)

i.e. that (13.5a) holds unaltered for the finite antenna of length 2h.
Whereas Im{Iex(z)/V } becomes infinite at the driving point, the component of

current in phase with the driving voltage is finite there. In Section 13.6 it is shown
that for the infinite antenna

Re

{
I (∞)
ex (z)

V

}
= 4k

πζ0

∫ k

0

cos ζ z

(k2 − ζ 2)
[
J 2

0 (a
√

k2 − ζ 2)+ Y 2
0 (a

√
k2 − ζ 2)

] dζ, (13.6)

where J0 (Y0) is the Bessel function of the first (second) kind of order zero [4].
Although the approximate integral equation has no solution, it is still a useful

equation. One should not attempt to find exact solutions but should only seek currents
which satisfy the equation approximately. This situation is unusual and constitutes
a difficulty associated with the approximate integral equation. The exact integral
equation itself is not without difficulties because its solution becomes infinite at the
driving point. Since no approximations were made in Section 1.8 when deriving the
equation, the infinity is due to the model of the center-driven tubular dipole and, in
particular, to the very convenient but overly idealized concept of the delta-function
generator. The current in the more realistic model of a base-driven monopole over a
ground plane is certainly not infinite at ρ = a, z = 0.
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It has been shown that the approximate integral equation for a center-driven antenna
does not have a solution. It can also be shown (following a procedure different from
the one used for the center-driven antenna) that the integral equation for the current on
a receiving antenna (see Section 2.11) has no solution when the approximate kernel is
used.

In light of the mathematical properties of the integral equations just discussed, the
next sections examine the behavior of the solutions obtained by the numerical method
of Section 1.9.

13.3 On the application of numerical methods

Galerkin’s method with pulse functions was applied to (13.1) in Section 1.9. The final
numerical solution was obtained in the form of the “staircase”-type approximation

I (z)
.=

N∑
n=−N

Inun(z) =
N∑

n=−N

[I (1)n + C I (2)n ]un(z), (13.7)

where the 2N + 1 pulse functions un(z) are defined in (1.57). Each pulse function has
width zp where

(2N + 1)zp = 2h. (13.8)

In (13.7), I (1)n and I (2)n , n = 0, ±1, ±2, . . . , ±N , are the solutions of the (2N +
1)× (2N + 1) Toeplitz systems

N∑
n=−N

Al−n I (1)n = B(1)
l and

N∑
n=−N

Al−n I (2)n = B(2)
l , l = 0, ±1, . . . , ±N ;

(13.9)

C is determined from

C
.= −I (1)N /I (2)N ; (13.10)

the matrix coefficients Al , l = 0, ±1, ±2, . . . , ±2N , are given by

Al = A−l =
∫ zp

0
(zp − z)[K (z + lzp)+ K (z − lzp)] dz; (13.11)

and integrated expressions for B(1)
l and B(2)

l are given in (1.62a, b). In Section 1.9,
the matrix coefficient Al−n is also denoted by Aln . In this chapter, only the former
notation will be used.

This section examines the behavior of the numerical solutions obtained by this
method. The empirical criterion of making N larger until the solution has converged to
a satisfactory final value is also discussed in detail. The symbols Iex,n/V and Iap,n/V
are used to distinguish the values of In obtained with the exact and the approximate
kernels. The simpler case of the exact kernel is discussed first.
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The case of the exact integral equation

A valid numerical method must reproduce the true solution of the integral equation.
For the case of the exact integral equation, the logarithmic singularity of Im{Iex(z)/V }
must be reproduced. Thus, when applying the criterion of making N larger until the
solution has converged, one should ignore the values of Im{Iex,n/V } when n is very
small. In particular, the input susceptance converges to ∞ and the input resistance
and reactance converge to zero so that the empirical “convergence” criterion should
not be used for these quantities. In the plots of Figs. 1.13a, b, the effects mentioned
above have not yet appeared. In Fig. 1.14b, however, a slight increase in the value of
B0 = Im{Iex,0/V } can be distinguished.

In the appendix (Section 13.6), the numerical method of Section 1.9 is applied to
the infinite antenna. Here, the entire real axis is discretized into segments of length zp,
where kzp is small. An approximate solution I (∞)

ex (z) is sought in the form

I (∞)
ex (z)

.=
∞∑

n=−∞
I (∞)
ex,n un(z), −∞ < z < ∞. (13.12)

There is an infinite number of unknowns I (∞)
ex,n , n = 0, ±1, . . . , and an infinite number

of equations. It is shown in Section 13.6 that these equations can be solved exactly for
non-zero pulse width zp. Once this is done, and with the distance nzp from the driving
point held fixed, the limit of the numerical solution as zp → 0 is determined. It is
shown that this limit coincides with the exact solution of the integral equation.

The case of the approximate integral equation

The issue of applying the numerical method of Section 1.9 to the approximate integral
equation is now examined. The main questions addressed are two:

1. What does one obtain when one applies the numerical method to the integral
equation?

2. Under what conditions are numerical solutions obtained with the approximate
kernel close to those obtained with the exact kernel, and in what sense?

It was shown in Section 13.2 that the approximate integral equation has no solution.
For this reason, the answers to these questions are by no means obvious.

Here, application of the numerical method to the integral equation for the infinite
antenna is particularly illuminating. This is carried out in Section 13.6. For the infinite
antenna, the following are shown in Section 13.6.

1. The limit of the numerical solution as zp → 0 does not exist. This is to be expected
since the integral equation has no solution.
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2. The limit of the real part does exist. Specifically, it is shown that when the distance
nzp from the driving point is held fixed,

lim
zp→0

Re

{
I (∞)
ap,n

V

}

= 4k

πζ0

∫ k

0

J0(a
√

k2 − ζ 2) cos(ζnzp)

(k2 − ζ 2)
[
J 2

0 (a
√

k2 − ζ 2)+ Y 2
0 (a

√
k2 − ζ 2)

] dζ. (13.13)

Comparing (13.13) to the corresponding equation (13.6) for the case of the exact
kernel, it is seen that the only difference is the small factor J0(a

√
k2 − ζ 2) in the

integrand. Thus, the real part in (13.13) is very close to the corresponding quantity
for the exact integral equation, and the two quantities become identical in the limit
ka → 0.

3. For small pulse width, and specifically when the conditions

zp/a � 1 and nzp/a = O(1) (13.14)

are satisfied, one has asymptotically

I (∞)
ap,n

V
∼ j

1

ζ0

π3

32
√

2
kzp

√
zp

a
(−1)n exp(aπ/zp)

1

cosh[(nzp/a)π/2]

×
[

1 − 5

2π

zp

a
+ 5

4
n

(
zp

a

)2

tanh[(nzp/a)π/2]

]
, (13.15)

where the quantity in brackets is simply a correction factor. Equation (13.15) reveals
that, when the pulse width is small, the numerical method yields an exponentially
large, purely imaginary “driving-point admittance”, and a large, purely imaginary,
rapidly oscillating “current”, at least for points on the antenna not too far from the
driving point.

With the analytical results for the infinite antenna at hand, assume that zp � a
and consider the case of the finite antenna. The condition zp � a here is the same as
N � h/a. It is true for the finite antenna that:

1. The limit of the numerical solution as N → ∞ does not exist.

2. Near the driving point, the real part Re{Iap,n/V } obtained with the approximate
kernel is close to Re{Iex,n/V } obtained with the exact kernel.

3. Near the driving point, the values of Im{Iap,n/V } are large and oscillate rapidly.
In fact, these values are very closely approximated by the corresponding values of
Im{I (∞)

ap,n /V } for the case of the infinite antenna and the asymptotic formula (13.15).

It seems difficult to prove the last two assertions, or even to state them in a
more precise manner. They have been verified, however, by extensive numerical
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Figure 13.1 Numerical results obtained with method of Section 1.9; h/λ = 0.25, a/λ = 0.006, and
N = 200. (a) Re{Iex,n/V } (solid line) and Re{Iap,n/V } (dots). (b) Im{Iex,n/V } (solid line) and
Im{Iap,n/V } (dots). For Im{Iap,n/V }, only values with n ≥ 32 are shown; insert shows all values
with n ≥ 170.

calculations. Figures 13.1a, b and Table 13.1 show typical numerical results, obtained
for N = 200, h/λ = 0.25, and a/λ = 0.006 so that a/zp = 4.8, which is moderately
large. In Fig. 13.1a, Re{In/V } is shown. The values Re{Iex,n/V }, n = 0, 1, . . . , N ,
have been joined by straight lines, whereas the values Re{Iap,n/V } are shown as points.
Except in the vicinity of z = h (or n = 200), the two solutions are seen to be
quite close. In Fig. 13.1b, the imaginary parts are compared. A behavior resembling a
logarithmic singularity is apparent in the solution for the case of the exact kernel. For
the case of the approximate kernel, only the values of Im{Iap,n/V } for n larger than 32
are shown. The remaining values (near the driving point) are larger and out of scale.
They are listed in Table 13.1, where they are compared to results obtained from the
asymptotic formula (13.15) for the infinite antenna. The agreement is very good up to
about n = 20, so that the two quantities are close even when n is larger than a/zp. For
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Table 13.1. Comparison of Im{Iap,n/V } for finite antenna as calculated by numerical method of

Section 1.9 and I (∞)
ap,n /j V for infinite antenna as calculated by asymptotic formula (13.15);

h/λ = 0.25, a/λ = 0.006, and N = 200

n Im{Iap,n/V } (S) I (∞)
ap,n /j V (S) n Im{Iap,n/V } (S) I (∞)

ap,n /j V (S)

0 2.18 × 101 1.99 × 101 16 4.39 × 10−1 4.37 × 10−1

1 −2.08 × 101 −1.93 × 101 17 −3.40 × 10−1 −3.26 × 10−1

2 1.82 × 101 1.75 × 101 18 2.49 × 10−1 2.42 × 10−1

3 −1.50 × 101 −1.50 × 101 19 −1.96 × 10−1 −1.80 × 10−1

4 1.20 × 101 1.23 × 101 20 1.40 × 10−1 1.34 × 10−1

5 −9.32 × 100 −9.75 × 100 21 −1.14 × 10−1 −9.91 × 10−2

6 7.16 × 100 7.57 × 100 22 7.78 × 10−2 7.34 × 10−2

7 −5.47 × 100 −5.80 × 100 23 −6.72 × 10−2 −5.44 × 10−2

8 4.15 × 100 4.40 × 100 24 4.23 × 10−2 4.03 × 10−2

9 −3.15 × 100 −3.32 × 100 25 −4.05 × 10−2 −2.98 × 10−2

10 2.38 × 100 2.50 × 100 26 2.20 × 10−2 2.20 × 10−2

11 −1.81 × 100 −1.88 × 100 27 −2.52 × 10−2 −1.63 × 10−2

12 1.36 × 100 1.41 × 100 28 1.04 × 10−2 1.20 × 10−2

13 −1.03 × 100 −1.05 × 100 29 −1.65 × 10−2 −8.87 × 10−3

14 7.73 × 10−1 7.86 × 10−1 30 3.80 × 10−3 6.54 × 10−3

15 −5.92 × 10−1 −5.87 × 10−1 31 −1.16 × 10−2 −4.83 × 10−3

Table 13.2. Driving-point admittances Iex,0/V and Iap,0/V obtained by numerical method of
Section 1.9 for exact and approximate integral equations; zp/λ ∼ 0.006 and a/λ = 0.02

h/λ N Iex,0/V (S) Iap,0/V (S)

0.25 40 9.15 × 10−3 + j9.17 × 10−4 7.44 × 10−3 + j0.933
0.75 121 7.34 × 10−3 + j2.49 × 10−3 6.32 × 10−3 + j0.935

choices of parameters leading to larger values of a/zp, the agreement becomes better.
(See, however, the discussion on the effect of roundoff errors in the next section.)

For the case of the approximate kernel, an oscillatory behavior is also observed in
the curves of both Figs. 13.1a, b near the endpoint z = h. The oscillations here are
smaller than those of the imaginary part near the driving point. Naturally, this effect
does not occur in the case of the center-driven infinite antenna. It was found, however,
that similar oscillations do occur when the numerical method is applied to the integral
equation for the finite, unloaded receiving antenna (see Section 2.11). Therefore, this
effect cannot be attributed to the delta-function generator.

When zp/λ � a/λ, it follows from the third assertion that the initial values of
Im{Iap,n/V } are independent of the length h/λ of the antenna and depend only on a/λ
and zp/λ. This point is further illustrated in Table 13.2. For both integral equations,
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the driving-point admittances obtained for h/λ = 0.25 and h/λ = 0.75 are shown.
The dipole radius is a/λ = 0.02. For the shorter length, N = 40; for the longer length,
N has been chosen to be 121 so that zp/λ is the same for both cases (roughly 0.006).
Here a/zp is roughly 3.3. It is seen that Im{Iap,0/V } is nearly identical for the two
antenna lengths.

The similarity of the driving-point conductances Re{Iex,0/V } and Re{Iap,0/V } is
now discussed in more detail, assuming that zp/λ is small and the same for both.
When h/λ is fixed, numerical calculations verify that, as in the case of the infinite
antenna, the difference between the two real parts becomes smaller when a/λ becomes
smaller. When a/λ is fixed, both real parts exhibit a strong dependence on h/λ, and
so does their difference. Numerical calculations with h/λ ≤ 0.5 show that, with the
exception of a region near resonance, the two solutions are closer when h/λ becomes
larger. The reason for this is that the difference between the two kernels becomes less
pronounced when h/λ is large. In the region near resonance, the value of h/λ is more
critical (see Chapter 2). Near resonance, or when h/λ is small and a/λ is large, the
difference between Re{Iex,0/V } and Re{Iap,0/V } may be significant. In the first case
of Table 13.2, for example, the difference is about 19%. If N is increased to 60, this
difference slightly increases.

In practice, both the real and the imaginary parts are of equal importance. Having
examined the behavior of the solution when N is large, the problem of choosing N
is addressed. Here, the criterion of making N larger until the solution has converged
cannot be used. Since oscillations appear near the driving point when zp/λ � a/λ or
N � h/a, it is necessary to choose a pulse width zp/λ � a/λ or N � h/a when
Im{I (z)/V } is desired. With h/λ and a/λ as in the first case of Table 13.2, h/a is only
12.5, and oscillations are noticeable for N as low as 15. The choice of N should be
based on the important parameter h/a rather than on the commonly used criterion of
the number of points per wavelength. The optimal value of N should be considered to
be the one that gives results closest to results obtained with the exact kernel. A priori
determination of this value is not possible. Indeed, the criterion of closeness of the
solutions may itself be formulated in a number of different ways. For example, the
solutions may be considered close when the driving-point conductances are close, or
when Im{Iex,n/V } is close to Im{Iap,n/V } for 1 � n � N .

13.4 Additional remarks

The behavior of the numerical solutions was discussed in detail in the previous section.
Here, some additional comments for both the exact and the approximate integral
equations are made. For the former case, two improvements of the direct numerical
method are proposed.
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Roundoff errors

For the case of the approximate integral equation, the unavoidable appearance of
oscillations when N � h/a is a consequence of the properties of the approximate
kernel and the right-hand side of the integral equation. Such oscillations would appear
in a hypothetical computer with an infinite wordlength and no roundoff error. Roundoff
error can also be an important effect. It is discussed here briefly, for both the exact
and the approximate integral equations. The focus is on the properties of the matrix
in (13.9) with elements Al−n; the fact that the approximate integral equation has no
solution is not pertinent to these properties.

The matrix in (13.9) results from the discretization of a Fredholm integral equation
of the first kind. It is typical of such matrices to be ill-conditioned [5] so that difficulties
may be present when solving the systems of algebraic equations in (13.9). The usual
rule of thumb that more ill-conditioning occurs when the kernel is smoother [6–8] is
applicable in this case: Kex(z) is logarithmically singular at z = 0 for any value of ka,
and therefore serious ill-conditioning does not occur. In other words, a typical modern
computer can easily solve the systems of equations in (13.9) for the case of the exact
kernel, even if N is quite large.

For the case of the approximate kernel, the situation is different. Although Kap(z)
is an analytic function of z, its real part is highly peaked at z = 0 when ka � 1. Nu-
merical investigations (specifically, estimations of the L1 condition number [9]) show
that the parameter a/zp or Na/h may be taken as a rough measure of ill-conditioning.
When this parameter is small, ill-conditioning is not prohibitive. When this parameter
becomes larger, the matrix becomes rapidly ill-conditioned. For given h/λ and a/λ,
as N is increased, roundoff error will quickly become the dominant factor. When
roundoff error is dominant, the results obtained depend on the particular software and
hardware used.

Exact integral equation: improvements

For the exact integral equation, the quantities I (1)(z) and I (2)(z) in (1.54a, b)
behave like (h2 − z2)−1/2 as z → ±h, whereas the total current vanishes like
(h2 − z2)1/2 (see, for example, [10, 11]). Thus, the second equation in (1.55)
should be written more precisely as C = − limz→h I (1)(z)/I (2)(z). It is notewor-
thy that the intermediate solutions I (1)(z) and I (2)(z) in (1.54) are not square-
integrable.

The aforementioned behavior creates a minor difficulty in the application of the
numerical method to the exact integral equation if C is determined from (13.10).
Equation (13.10) involves large values so that, as N is made larger, C (and, with
it, the entire numerical solution) converges rather slowly. The convergence may be
slightly accelerated by noting that the square-root behavior of I (z) near z = h implies
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limzp→0 [I (h − zp/2)]/[I (h − 3zp/2)] = 1/
√

3. Thus, instead of (13.10), C may be
calculated from

C
.= −

√
3 I (1)N − I (1)N−1√
3 I (2)N − I (2)N−1

. (13.16)

Such a refinement is meaningful only in the case of the exact kernel. For the parameters
of Table 13.2, the driving-point conductances are changed to 8.46 × 10−3 siemens
and 6.94 × 10−3 siemens for h/λ = 0.25 and h/λ = 0.75, respectively. When
zp/λ is small, use of (13.16) instead of (13.10) effectively amounts to an increase
in h/λ. In the examples just given, the antenna lengths are slightly larger than
the resonant lengths for the radius a/λ = 0.02, and therefore the Iex,0/V values
decrease.

A significantly better method for finding the solution to the exact integral equation
is to solve (13.1) with (13.2a) numerically for the quantity Iex(z)+ j4kaV ζ−1

0 ln k|z|,
which, as discussed in Section 13.2, is bounded at z = 0. The relation between such
quantities and the apparent admittance of a base-driven monopole over a ground plane
is discussed in [12–17].

Approximate integral equation: application of other numerical methods

For the case of the approximate kernel, other forms of the method of moments are
discussed here briefly. A large number of subsectional basis functions is assumed. One
cannot expect to obtain the same answers by applying different numerical methods, so
that quantitative results such as the approximate formula (13.15) apply only when the
particular numerical procedure of Section 1.9 is used. In a qualitative sense, however,
many of the results of Section 13.3 hold for other numerical methods. For instance,
one can use Galerkin’s method with an even number 2N of pulse functions. This is the
same as writing (1.54a) in the form

∫ h

0
[K (z − z′)+ K (z + z′)]I (1)(z′) dz′ = i

2ζ0
V sin k|z|, 0 < z < h (13.17)

[and similarly for (1.54b)], and using N pulse functions in (0, h). When N � h/a,
large, rapidly oscillating solutions are obtained. Such solutions are also obtained when
the point-matching technique [2] is used to determine the coefficients of the N pulse
functions, or when Galerkin’s method is employed with overlapping triangles [2] (with
half-triangles at the endpoints z = 0 and z = h) as basis functions.
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(z)K1z

1Φ

Dipole 1

(z)K2z

2Φ

Dipole 2

Figure 13.2 Top view of two-element array.

13.5 Notes on arrays of cylindrical dipoles

In the two previous sections, the application of numerical methods to the integral
equations for the case of a single isolated antenna was discussed. With the exact kernel,
the main difficulty is the fact that Im{I (0)/V } = ∞, a feature that will eventually
show up in a direct numerical solution. For the case of the approximate kernel, the
situation is more complicated and was discussed in detail.

A main subject of study in this book is the array of parallel, identical, non-staggered,
center-driven cylindrical dipoles. In this case, there is no exact integral equation
similar to (13.1) since the model of an array of such dipoles with only z-directed,
azimuthally independent currents is inconsistent. This is discussed in [18, 19], where
a method to overcome this difficulty is also proposed. The difficulty is easily
understood from Fig. 13.2, where the top view of a two-element array is shown.
If the separation between dipoles is large, one assumes that the currents have no
circulating component and that each current is independent of the position �1 or
�2 around the respective element. The z-component E1z of the electric field on
dipole 1 is here a sum of two terms, one due to the current on the dipole itself,
the other due to the current on dipole 2. By the initial assumption, the first term
is independent of �1. For z �= 0, the boundary condition requires E1z = 0 and,
therefore, the second term is also independent of �1. It is obvious from Fig. 13.2,
however, that the electric field on dipole 1 due to the �2-independent current on
dipole 2 must depend on �1. This contradiction shows that the theoretical model is
inconsistent.

Since the coupled integral equations of Chapters 3–5 have no exact counterpart,
comparisons like those performed in Figs. 13.1a, b are not easy to implement.
However, if a numerical method similar to the one in Section 1.9 is applied to these
coupled integral equations and the pulse width is small, one can expect effects such as
those discussed previously. The problem of choosing N is more severe than the much
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simpler case of the isolated antenna studied here. It is also more difficult to distinguish
between effects due to roundoff and effects inherent in the process of discretizing a
system of integral equations with no solution.

Resonant circular arrays of perfectly conducting dipoles

The problem of determining the currents on a large resonant circular array of lossless
dipoles presents special difficulties. It was shown in Chapter 11 (see, in particular,
Table 11.1) that proper choices of the parameters lead to very large currents and
extremely narrow resonances. Inherently, such phenomena are very sensitive to small
changes in the parameters. Therefore, unless special considerations are taken into
account, methods that are sufficient for conventional arrays will be highly susceptible
to truncation and roundoff errors. As an indication of the complications that might arise
if other methods are applied, the considerations required to implement the two-term
theory formulas (11.2)–(11.17) in a computer [20] are discussed here. In order to make
the following discussion meaningful, it is necessary that the modified kernel be used,
as discussed in Section 11.8.

The underlying reason for the occurrence of extremely narrow resonances is the
exponential smallness of the imaginary part of the modified phase-sequence kernel
K (m)

I (z)/k. Because this quantity is small, the quantity D(m)
I in (11.10) is also small.

As defined in (11.13), K (m)
I (z)/k is the sum of N/2 terms of order 1. Therefore, if

calculated directly, the sum must be evaluated with high precision. Alternatively, or
in cases where extended computer precision is inadequate, the asymptotic formula
(11.18) can be used. The calculation of D(m)

I by numerical integration then becomes
a simple task, and there is no need to require high accuracy when evaluating
(11.10) numerically. Note that high accuracy in the numerical integrations would
be necessary if the order of integration in (11.10) and summation in (11.13) were
interchanged.

In (11.2)–(11.17), an important quantity that is especially susceptible to errors is
D(m)

R = D1R + D(m)
�R . By the discussion in Section 11.3, this quantity becomes

exactly zero at the mth phase-sequence resonance. If one programs the formulas
(11.2)–(11.17) without taking this into account and attempts to find resonances by
varying the frequency, there is no hope that the value zero can be obtained in a
computer. Instead, a small non-zero value for D(m)

R will be obtained. As a consequence,
the value of G(m) (or G1,1) obtained by the computer will be smaller than the very
large value actually predicted by the theory. The remedy here is simple: one first
determines the resonant frequency with a standard root-finding method. Subsequently,
one calculates the maximum value of G(m) (or G1,1) by setting D(m)

R to zero at the
determined frequency. The numerical tradeoff for doing this is relatively unimportant:
the maximum value predicted by the two-term theory is obtained, but at a slightly
different value of the frequency.
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These considerations apply to the case of extremely narrow resonances. When the
resonant currents are smaller, the numerical difficulties are less pronounced; away
from the mth phase-sequence resonance, a highly accurate calculation of K (m)

I (z)/k

and D(m)
I is not at all important. Interestingly, it is much simpler to program the

formulas of Section 12.8 for resonant circular arrays of highly conducting dipoles;
the smallness of the various quantities is in this case less important.

It was possible to identify and subsequently remove the source of the numerical
difficulties because of the relative simplicity of the two-term theory solution in (11.2)–
(11.17). For approaches such as the direct numerical solution of integral equations for
the current distributions, identifying and removing the numerical difficulties may not
be a simple task.

13.6 Appendix: the infinite antenna

Many questions concerning the center-driven, finite antenna of length 2h are conve-
niently addressed by first resolving analogous questions for the center-driven infinite
antenna, for which h = ∞. The basic reason is that the integral equation for the
current on the infinite antenna can be solved exactly. Questions of this type include the
behavior of the solutions obtained by the numerical method of Section 1.9.

In this appendix, the infinite antenna is studied in some detail, starting from
first principles. A time dependence e−iωt instead of e jωt is assumed. Additional
information about the infinite antenna, as well as many discussions on the relation
between the finite and infinite antennas can be found in [3]. Note that in [3], a factor of
1/4π has been absorbed into the kernel and the right-hand side of the integral equation.

Integral equation and its solution

The integral equation for the current I (∞)(z) on the infinite tubular antenna can be
derived by following the steps of Section 1.8. The left-hand side of the integral
equation is the expression for 4π Az(a, z)/µ0 resulting from integrating over the length
of the antenna, where either the exact or the approximate kernel can be used. To
determine the right-hand side, note that the most general even solution (1.46) to the
differential equation (1.45) can be written as

Az(a, z) =
(

C1

2
+ V

4c

)
eik|z| +

(
C1

2
− V

4c

)
e−ik|z|.

In this case, C1 is determined by setting the coefficient of e−ik|z| to zero. One way to
understand this condition is to note that the vector potential must represent an outgoing
wave from the origin. Alternatively, note that the expression for Az(a, z) remains valid
when the antenna is surrounded by a lossy medium for which Im{k} > 0. Here, the
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second term is exponentially increasing for large |z|, so that its coefficient must vanish.
Thus, the desired integral equation for the current I (∞)(z) on the infinite antenna is

4π

µ0
Az(a, z) ≡

∫ ∞

−∞
K (z − z′)I (∞)(z′) dz′ = 2π

ζ0
V eik|z|, −∞ < z < ∞, (13.18)

where K (z) stands for either Kex(z) or Kap(z) [eqs. (13.2a) or (13.2b), with −i in
place of j].

In this appendix, the use of Fourier transforms is made. The symbols K̄ (ζ ), K̄ex(ζ ),
and K̄ap(ζ ) stand for the respective Fourier transforms

K̄ (ζ ) =




K̄ex(ζ ) =
∫ ∞

−∞
Kex(z)e

iζ z dz or (13.19a)

K̄ap(ζ ) =
∫ ∞

−∞
Kap(z)e

iζ z dz. (13.19b)

When ζ and k are real, these are easily determined as follows.
The Fourier transform of the approximate kernel can be found from integrals

tabulated in [21, p. 472] to be

K̄ap(ζ ) =




iπH (1)
0 (a

√
k2 − ζ 2), if |ζ | < k

2K0(a
√
ζ 2 − k2), if |ζ | > k,

(13.20)

where H (1)
0 = J0 + iY0 is the Hankel function of order zero and K0 is the modified

Bessel function of order zero [4]. To determine the Fourier transform of the exact
kernel, substitute (13.2a) into (13.19a), interchange the order of integration, and use
(13.20) to obtain

K̄ex(ζ ) =




i

2

∫ π

−π

H (1)
0

(
2a sin(|�|/2)

√
k2 − ζ 2

)
d�, if |ζ | < k

1

π

∫ π

−π

K0
(
2a sin(|�|/2)

√
ζ 2 − k2

)
d�, if |ζ | > k.

(13.21)

These can both be evaluated with the help of integrals tabulated in [21, pp. 738–739],
and one obtains

K̄ex(ζ ) =




iπ J0(a
√

k2 − ζ 2)H (1)
0 (a

√
k2 − ζ 2), if |ζ | < k

2I0(a
√
ζ 2 − k2)K0(a

√
ζ 2 − k2), if |ζ | > k,

(13.22)

where I0 is the modified Bessel function of order zero.
The properties of the special functions in (13.20) and (13.22) that will be used

throughout this appendix can be found in [4]. Note that both K̄ex(ζ ) and K̄ap(ζ ) are
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real when ζ is real and |ζ | > k. Note also that K̄ap(ζ ) is exponentially small when ζ

is real and large, whereas K̄ex(ζ ) decreases only as 1/ζ for large ζ :

K̄ex(ζ ) = 1

aζ
+ O

(
1

ζ 3

)
, as ζ → +∞. (13.23)

Equations (13.20) and (13.22) can be analytically continued to complex ζ . In the
complex ζ -plane, the branch cut originating from ζ = k lies in the upper-half ζ -plane,
and the one originating from ζ = −k lies in the lower-half ζ -plane [3].

First assume that K = Kex in (13.18). This integral equation can be solved by
first determining the Fourier transform Ī (∞)

ex (ζ ) and then using the Fourier inversion
formula

I (∞)
ex (z) = 1

2π

∫ ∞

−∞
Ī (∞)
ex (ζ )e−iζ z dz. (13.24)

Ī (∞)
ex (ζ ) can be found by taking the Fourier transform of (13.18) with respect to z and

noting that the convolution integral on the left-hand side transforms to the product
K̄ex(ζ ) Ī (∞)

ex (ζ ). The only difficulty here is that the transform of the right-hand side
does not exist when k is real. To overcome this, it is initially assumed that k has a
small positive imaginary part. In other words, the integral equation is first solved for
the case of a lossy surrounding medium, and the solution is then extended to the case
where the antenna is in free space.

With Im{k} > 0, the Fourier transform of the right-hand side of (13.18) is∫ ∞

−∞
2πV

ζ0
eik|z|eiζ z dz = 4π

ζ0

iV k

k2 − ζ 2
(13.25)

so that the current on the antenna is

I (∞)
ex (z) = i2kV

ζ0

∫ ∞

−∞
e−iζ z

(k2 − ζ 2)K̄ex(ζ )
dζ

= i4kV

ζ0

∫ ∞

0

cos ζ z

(k2 − ζ 2)K̄ex(ζ )
dζ, −∞ < z < ∞. (13.26)

The restriction Im{k} > 0 can now be removed, and the solution can be extended to
real k if the path of integration in (13.26) passes below the point ζ = k (and above the
point ζ = −k). This path is shown in Fig. 13.3a.

Suppose now that K = Kap in (13.18), and that one attempts to solve the integral
equation by Fourier transformation. The integral corresponding to (13.26) diverges in
this case because the exponentially small quantity K̄ap(ζ ) appears in the denominator.
Thus one is led to a contradiction. This shows that when the approximate kernel
is used, the integral equation cannot have a solution which possesses a Fourier
transform.
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(b) θ -plane

Branch
line

kzp
0 π

(a) ζ -plane

Branch
line

– k

k0

Figure 13.3 (a) Path of integration in (13.26) when k is real. (b) Path of integration in (13.43) when
k is real.

Although the solution (13.26) for the case of the exact kernel has a complicated
form, it reveals some basic properties of the current I (∞)

ex (z) on the infinite antenna. It
is easily seen that the current is finite for all z except z = 0. When z = 0, the integral
diverges logarithmically and, in fact,

I (∞)
ex (z)

V
= −i

4ka

ζ0
ln

1

|z| + O(1), as z → 0. (13.27)

Equation (13.27) is a direct consequence of (13.23). Note that the coefficient in (13.27)
is purely imaginary.

Although Im{I (∞)
ex (z)/V } is infinite at the driving point, the component of current

in phase with V is finite for all z, including z = 0. It is given by

Re

{
I (∞)
ex (z)

V

}
= 4k

πζ0

∫ k

0

cos ζ z

(k2 − ζ 2)
[
J 2

0 (a
√

k2 − ζ 2)+ Y 2
0 (a

√
k2 − ζ 2)

] dζ.

(13.28)

Equation (13.28) is obtained from (13.26) as follows. Assume initially that z �= 0 and
write (13.26) as

I (∞)
ex (z)

V
= h1(z, ε)+ h2(z, ε)+ h3(z, ε)

=
(∫ k−ε

0
+
∫

Lε

+
∫ ∞

k+ε

)
i4k

ζ0

cos ζ z

(k2 − ζ 2)K̄ex(ζ )
dζ, (13.29)
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where ε > 0 and where Lε is a path that starts at k − ε, ends at k + ε, and lies in the
lower-half ζ -plane. Then use (13.22) to separate the integral h1(z, ε) into its real and
imaginary parts. The real part is

Re{h1(z, ε)} = 4k

πζ0

∫ k−ε

0

cos ζ z

(k2 − ζ 2)
[
J 2

0 (a
√

k2 − ζ 2)+ Y 2
0 (a

√
k2 − ζ 2)

] dζ.

(13.30)

An examination of the behavior of the integrand near ζ = k shows that the limit of
Re{h1(z, ε)} exists as ε → 0. Furthermore, from (13.22), it is seen that the integrand
of h2(z, ε) behaves according to

cos ζ z

(k2 − ζ 2)K̄ex(ζ )
= cos kz

2k

1

(ζ − k) ln(ζ − k)
+ O

(
1

(ζ − k)[ln(ζ − k)]2

)
(13.31)

as ζ → k in the lower-half ζ -plane. As a direct consequence of (13.31) and of the
symmetric limits of integration, limε→0 h2(z, ε) exists and equals zero. One can thus
write

I (∞)
ex (z)

V
= Re{h1(z, 0)} + lim

ε→0
[i Im{h1(z, ε)} + h3(z, ε)]. (13.32)

As h3(z, ε) is purely imaginary, Re{h1(z, 0)} can be identified with Re{I (∞)
ex (z)/V },

and, with (13.30), (13.28) has been derived. The restriction z �= 0 may be removed in
the real part of I (∞)

ex (z)/V only.

Numerical method

In this section, the numerical method of Section 1.9 is applied to the infinite antenna.
More precisely, an approximate solution of (13.18) is sought in the form

I (∞)(z)
.=

∞∑
n=−∞

I (∞)
n un(z), −∞ < z < ∞, (13.33)

where the pulse functions un(z) are given by (1.57). Here, the entire real axis is divided
into segments of length zp, where kzp is small. The usual convention for the symbols
I (∞)
ex,n , I (∞)

ap,n , and I (∞)
n is employed.

As in the previous section, it is initially assumed that Im{k} > 0. The procedure of
Section 1.9 (i.e. the substitution of (13.33) into (13.18), multiplication by ul(z), and
integration from z = −∞ to z = ∞) yields in this case an infinite system of equations,
namely,

∞∑
n=−∞

Al−n I (∞)
n = B(∞)

l , l = 0,±1,±2, . . . , (13.34)
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where the matrix elements Al are given by (13.11) and where

B(∞)
l = 2πV

ζ0

∫ (l+1/2)zp

(l−1/2)zp

eik|z| dz

=




i8πV

ζ0k
sin2(kzp/4)+ 4πV

ζ0k
sin(kzp/2), if l = 0

4πV

ζ0k
sin(kzp/2) ei |l|kzp, if l = ±1, ±2, . . . .

(13.35)

The solution of the infinite Toeplitz system (13.34) can be found in closed form in
the following manner: multiply each side by eilθ , where −π < θ ≤ π , and sum with
respect to l. Then, interchange the order of summation, and introduce the Fourier series

Ā(θ) =
∞∑

l=−∞
Ale

ilθ , −π < θ ≤ π (13.36)

B̄(θ) =
∞∑

l=−∞
B(∞)

l eilθ , −π < θ ≤ π (13.37)

and

Ī (θ) =
∞∑

l=−∞
I (∞)
l eilθ , −π < θ ≤ π. (13.38)

One obtains Ā(θ) Ī (θ) = B̄(θ) so that the Fourier coefficients I (∞)
n are given by

I (∞)
n = 1

2π

∫ π

−π

Ī (θ)e−inθ dθ = 1

2π

∫ π

−π

B̄(θ)

Ā(θ)
e−inθ dθ (Im{k} > 0). (13.39)

Since it has been assumed that Im{k} > 0, the sum in (13.37) converges and, with
(13.35), it is straightforward to show that

B̄(θ) = −iV

ζ0

8π

k
sin2(kzp/4)

cos(kzp/2)+ cos2(θ/2)

sin[(θ + kzp)/2] sin[(θ − kzp)/2]
, −π < θ ≤ π.

(13.40)

The substitution of (13.11) into (13.36) and the application of the Poisson summation
formula [22] lead to

Ā(θ) =
∞∑

m=−∞

∫ ∞

−∞

∫ zp

0
(zp − z)[K (z − xzp)+ K (z + xzp)] dz eix(θ−2mπ) dx

(13.41)

from which it is seen that

Ā(θ) = zp

∞∑
m=−∞

K̄

(
2mπ − θ

zp

)
sin2(θ/2)

[mπ − (θ/2)]2
, (13.42)
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where K̄ – the Fourier transform of the kernel – is given by (13.20) or (13.22).
The expression (13.40) is also meaningful for real k except for k = ±θ/zp. Thus,

(13.39) can be analytically continued to real k if the path of integration in (13.39)
passes below the point θ = kzp and above the point θ = −kzp. The final exact
expression for the coefficients I (∞)

n can therefore be written as

I (∞)
n = 1

π

∫ π

0

B̄(θ)

Ā(θ)
cos nθ dθ, −∞ < n < ∞ (k real), (13.43)

where the path of integration passes below the branch point at θ = kzp. This path is
shown in Fig. 13.3b. Thus far, the results hold for both the exact and the approximate
kernels.

First, interpret K (z) as Kex(z). From (13.42) and (13.40),

Ā(θ) ∼ zp K̄ex(θ/zp)[sin(θ/2)/(θ/2)]2 (13.44)

and

B̄(θ) ∼ − i2πV

kζ0

(kzp)
2

θ2 − (kzp)2

1 + cos2(θ/2)

[sin(θ/2)/(θ/2)]2
(13.45)

as zp → 0, uniformly for all θ . Substituting into (13.43), changing the variable ζ =
θ/zp, and taking the limit as zp → 0 with nzp fixed give

I (∞)
ex,n ∼ i4kV

ζ0

∫ ∞

0

cos ζnzp

(k2 − ζ 2)K̄ex(ζ )
dζ, (13.46)

where the path passes below ζ = k. Therefore, as one might expect, the limit of
the numerical solution for zero pulse width is precisely the exact solution (13.26) of
the integral equation. In particular, the numerical method reproduces the logarithmic
singularity at the driving point.

Numerical method: the case of the approximate integral equation

The more interesting case of the approximate kernel is now examined. If K̄ = K̄ap in
(13.42), then, as expected, (13.43) has no limit as zp → 0: the integral corresponding
to (13.46) diverges because it is seen from (13.20) that

K̄ap(ζ ) ∼
√

2π

a|ζ | e−a|ζ | (13.47)

for a|ζ | � 1. The nature of the divergence will now be examined. Specifically, the
asymptotic behavior of (13.43) is investigated subject to the conditions

zp/a � 1 and nzp/a = O(1). (13.48)
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Note that the first condition implies kzp � 1. It is observed from (13.42), (13.20), and
(13.47) that

Ā(θ) ∼ 4zp sin2(θ/2)

[
K̄ap(θ/zp)

1

θ2
+ K̄ap[(2π − θ)/zp]

1

(2π − θ)2

]
(13.49)

as zp/a → 0, uniformly for 0 ≤ θ ≤ π . The right-hand side of (13.49) consists
of the terms m = 0 and m = 1 in the summation (13.42); the neglected terms are
exponentially smaller than those retained.

Substituting (13.49) into (13.43) and setting φ = π − θ give

I (∞)
ap,n ∼ (−1)n

4π zp

∫ π

0

B̄(π − φ)/cos2(φ/2)

K̄ap[(π − φ)/zp]/(π − φ)2 + K̄ap[(π + φ)/zp]/(π + φ)2

× cos nφ dφ, (13.50)

where the path of integration passes above the point φ = π − kzp.
Because of the conditions (13.48), the main contribution to this integral comes from

a narrow region near φ = 0. It is therefore legitimate to neglect the contribution
∫ π

1
and replace the upper limit π in (13.50) by 1. Once this is done, (13.47) can be applied
for both K̄ap[(π − φ)/zp] and K̄ap[(π + φ)/zp]. Note that this approximation was not
possible in the whole original interval. Note also that the choice of 1 for an upper limit
makes no difference in the sense that any other choice of O(1) will lead to the same
final result (13.57). The aforementioned approximations and the change of variable
x = φ(a/zp) in the resulting integral lead to

I (∞)
ap,n ∼ 1√

2π
kzp

√
zp

a
(−1)neπa/zp f (zp/a, ka, nzp/a), (13.51)

where f is the integral

f (zp/a, ka, nzp/a) =
∫ a/zp

0
g(x; zp/a, ka) cos[(nzp/a)x] dx (13.52)

in which

g(x; zp/a, ka) = 1

4π

B̄[π − (zp/a)x]/
(
kz2

p cos2[(zp/a)x/2]
)

ex [π − (zp/a)x]−5/2 + e−x [π + (zp/a)x]−5/2
. (13.53)

The function f depends on its argument zp/a because a/zp is the upper limit of
integration in (13.52), and also because g depends on zp/a. It can be verified from
(13.40) that, apart from the factor V/ζ0, g is indeed a function of x , zp/a, and
ka.

The next step is to approximate f by the first two terms in its Taylor-series
expansion about the point zp/a = 0, while keeping ka and nzp/a fixed. It is readily
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checked that this can be carried out by expanding g in powers of zp/a and integrating
from x = 0 to x = ∞ in (13.52). With (13.40), it is found that the expansion of g is

g(x; zp/a, ka) = −iV

ζ0

π5/2

16

1

cosh x

(
1 − 5

2π

zp

a
x tanh x

)
+ O

(
(zp/a)2 ). (13.54)

When (13.54) is substituted into (13.52) and the upper limit of integration is set to ∞,
two integrals occur. With y = nzp/a, these are [21, pp. 503–505]∫ ∞

0

cos yx

cosh x
dx = π

2 cosh(πy/2)
(13.55)

and∫ ∞

0

x tanh x

cosh x
cos yx dx = d

dy

∫ ∞

0

tanh x

cosh x
sin yx dx

= d

dy

πy

2 cosh(πy/2)

= π

2 cosh(πy/2)

[
1 − π

2
y tanh(πy/2)

]
. (13.56)

The substitution of the resulting formula for f (zp/a, ka, nzp/a) into (13.51) yields
the final result:

I (∞)
ap,n ∼ −iV

ζ0

π3

32
√

2
kzp

√
zp

a
(−1)n exp(aπ/zp)

1

cosh[(nzp/a)π/2]

×
[

1 − 5

2π

zp

a
+ 5

4
n

(
zp

a

)2

tanh[(nzp/a)π/2]

]
, (13.57)

where the quantity in brackets is simply a correction factor.
Thus, when the pulse width is small, the numerical method yields an exponentially

large, purely imaginary “driving-point admittance”, and a large, purely imaginary,
rapidly oscillating “current”, at least for points on the antenna not too far from the
driving point.

On the other hand, it can be shown that as zp → 0, Re{I (∞)
ap,n /V } exists and is finite

for all n. Specifically, with nzp fixed,

lim
zp→0

Re

{
I (∞)
ap,n

V

}
= 4k

πζ0

∫ k

0

J0(a
√

k2 − ζ 2) cos(ζnzp)

(k2 − ζ 2)[J 2
0 (a

√
k2 − ζ 2)+ Y 2

0 (a
√

k2 − ζ 2)]
dζ,

(13.58)

so that the numerical method yields a finite real part of the current. It is seen from
(13.28) that this real part is very close to the corresponding quantity for the exact
integral equation, and that the two quantities become identical in the limit ka → 0.

The derivation of (13.58) from (13.43) is similar to the derivation of (13.28) from
(13.26) The intermediate formulas are lengthy, and only an outline of the procedure is
given here.
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Assume initially that both zp and n are non-zero, and divide both sides of (13.43)
by V . Change the variable ζ = θ/zp, and split the resulting integral as in (13.29). The
parameter ε > 0 plays the same role, and the upper limit of integration in the third
integral is π/zp instead of ∞. Determine the real part of the integral

∫ k−ε

0 , and note
that this real part has a limit as ε → 0. As ζ → k in the lower-half ζ -plane, only the
m = 0 term in the sum for Ā(ζ zp) is important, so that the integrand in

∫ k+ε

k−ε
again

behaves according to (13.31). In this case, the coefficient of the leading term depends
on zp.

In this manner, a relation of the form

I (∞)
ap,n

V
= Re{h1(n, zp, ε = 0)} + lim

ε→0
[i Im{h1(n, zp, ε)} + h3(n, zp, ε)] (13.59)

with h3(n, zp, ε) purely imaginary is obtained. Thus, the quantity Re{h1(n, zp, 0)} is
the real part of I (∞)

ap,n /V for non-zero zp. The remaining task – to show that the limit
limzp→0 Re{h1(n, zp, ε = 0)} exists and equals the right-hand side of (13.58) – is
easily carried out, because the terms with m �= 0 in the sum for Ā(ζ zp) vanish when
zp = 0.

The infinite antenna: summary

The integral equation for the current on an antenna of infinite length, center-driven
by a delta-function generator has been derived. This integral equation has two forms
depending on the choice of kernel. For the case of the exact kernel, the integral
equation was solved explicitly. Having done this, it was easy to deduce that the current
is logarithmically singular at the driving point. The coefficient of the logarithm was
determined, and was found to be purely imaginary when the driving voltage is real.
On the other hand, the component of current in phase with the driving voltage is finite
along the entire length of the antenna, including the driving point.

For the case of the approximate kernel, the integral equation has no solution. Nev-
ertheless, the question “What does one obtain when one applies a numerical method
to this equation?” is meaningful and, thus, Galerkin’s method with pulse functions
was applied to the integral equation. An infinite system of equations resulted; this
system was solved exactly for non-zero pulse width, and the solution was developed
asymptotically for the case in which the pulse width is much smaller than the radius
of the infinite antenna. The asymptotic study predicts that one obtains a large, purely
imaginary “driving-point admittance”, and rapid oscillations in the imaginary part of
the current near the driving point. It also predicts that the real part is close to the
corresponding real part obtained with the exact kernel, and that the two quantities
become identical in the limit of zero antenna radius.
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Theory and experiment have run hand-in-hand leading the way toward new concepts
and new radiating and receiving structures throughout the history of antennas. Some-
times new antennas were developed through experiment with supporting analysis
coming later and perhaps pointing the way to optimization. In other instances, the
analysis pointed the way with experiment showing that the analytical model could be
achieved in the physically real world. Regardless of the origin of the idea, the most
effective results have occurred when the theoretical analysis and the experimental
measurements come together. For the experimental and theoretical results to agree,
both must describe a model that has exactly the same electromagnetic boundary
conditions. Since it is rarely possible to have identical models in the theoretical and the
real world, the models must be critically examined, their differences identified, and at
least approximately taken into account. Theoretical concepts such as “less than” and
“thin” must be reconciled in each experimental model. Similarly, the measurement
process must be critically examined to understand exactly what is being measured.
Are sampling probes extracting enough power to distort the interference pattern on
the transmission line? Are the fields being sampled too close to a discontinuity?
Are loop probes being excited only in their basic mode? Finally, there is always the
basic question in antenna experiments: “To what in the world are the elements really
coupling?”

Measurement procedures on uniform sections of transmission lines have been
discussed many times [1–7]. Measurements on the uniform sections of lines include
the effects of discontinuities at the end or driving point of the line, such as those that
occur when the transmission lines are attached to dipoles or monopoles over ground
planes. The theoretical models usually assume the antenna elements to be isolated in
free space and do not account for the effects of the attached transmission lines. Hence,
measurements of such quantities as driving-point impedances that are made on the
uniform sections of lines will not agree with the results calculated from theoretical
analyses unless these differences in the experimental and theoretical models are taken
into account [8–10].

Some of the basic considerations in measurements of the impedances or admittances
and the current distributions of dipole arrays and arrays of monopoles on ground planes
as well as the general properties of probes are discussed in the following sections.
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Equations relating impedances and admittances with the measured quantities are given
in Section 14.4. Considerable emphasis is placed on the measurement of driving-point
impedances or admittances. These are quantities that can be especially difficult to
reconcile with theoretical results because their values depend on the exact ratio of
the fields at a single point on the transmission line, and this is a point where the
differences between the experimental and analytical models are greatest. In addition,
the elements in the experimental model will be coupled not only to each other but to the
feeding structures and generally to anything else in their vicinity, which may seriously
modify the currents and voltages at the driving point. Although the discussions are not
restricted to any particular frequency range, applications have been primarily in the
100 MHz to 3 GHz range.

14.1 Transmission lines with coupled loads

If the termination of a transmission line is to be described as a lumped circuit element
and to be characterized in a useful manner as an impedance or admittance, it should
ideally be independent of the circuit to which it is attached. However, this ideal
condition is rarely met for real dipoles and monopoles because they are coupled to
their feeding lines over at least small regions near the driving points. Except for the
model of a monopole over a ground plane, for which a formal solution is available
[11], the complete analysis of antennas coupled to their feeding lines has proven
too complicated for theoretical analysis. In principle, moment methods [12] or other
computer modeling methods can be used to account for the difficult regions of coupling
or discontinuity, but the physical phenomena in the junction region must be well
understood in order to construct an accurate model and the limits of the model should
be explored and explicitly delineated. Therefore, the measurement line or feeding line
on which measurements are to be made is usually treated as a uniform line outside of
a small region over which the line–load coupling takes place. This small region near
the line–load junction is called the terminal zone and the coupling effects are called
terminal-zone effects or end effects.

Properties of the terminal zones can be determined from the differential equations
for the voltage and current along the transmission line. In the usual method of
deriving these equations, the line is divided into identical infinitesimal sections, each
section is represented by a lumped capacitance, an inductance, and a resistance,
and Kirchhoff’s laws of ordinary circuits are assumed to apply to each section. The
results obtained by this method apply only to infinite, unloaded lines. They can
contain no information about the terminal zone which requires a derivation based on
a more complete theoretical model. Detailed steps of the more exact derivation are
given in Chapters 2 of [9] and [10]. Regardless of the particular transmission-line
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model and termination used in the derivation, the following generalized equations are
obtained:

∂2V (w)

∂w2
− γ 2(w)V (w) = 0 (14.1a)

I1L(w) = 1

z(w)

∂V (w)

∂w
. (14.1b)

The distance, w, is measured along the transmission line from the line–load
junction. V (w) is the scalar potential difference or voltage between conductors of the
transmission line at w, I1L(w) is the total current in one of the conductors at w, and
the line is assumed to be perfectly balanced so that I2L(w) = −I1L(w).

In the following definitions, W (w) is the vector potential difference between the
conductors at w, and a subscript p indicates the component of the vector potential
parallel to the transmission line. A subscript L denotes that part of a quantity which is
determined only from currents and charges in the line, and a subscript T denotes that
part which is determined only from currents and charges in the termination or load.
The various quantities in (14.1a, b) are

γ (w) =
√

z(w)y(w)a1(w)φ1(w); propagation “constant” (14.2)

a1(w) = WpL(w)+ WpT (w)

WpL(w)
; coefficient of inductive coupling (14.3)

φ1(w) = VL(w)

VL(w)+ VT (w)
; coefficient of capacitive coupling (14.4)

z(w) = r(w)+ jωle(w) impedance per unit length (14.5)

.= jωle(w)

= jω[le
L(w)+ le

T (w)];

y(w) = g(w)+ jωc(w) admittance per unit length (14.6)

.= jωc(w);

y−1(w) = y−1
L (w)+ y−1

T (w)

β2 = ω2µε; (14.7)

Zc(w) =
√

z(w)

y(w)

.=
√

le(w)

c(w)
; “characteristic” impedance (14.8)
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µ and ε are the permeability and permittivity of the material in which the transmission-
line conductors are embedded; µ = µrµ0, ε = εrε0, where µ0, ε0 are the values for
free space.

Vector and scalar potentials are calculated from the Helmholtz integrals of currents
and charges over all conductors. These integrals are defined in (1.12a, b). A detailed
discussion of the transmission-line parameters is in [9] and [10], where it is shown that
differences in the potential of equipotential rings located just outside the conductors
of the transmission line at a distance w from the line–load junction are given
approximately by

Wp(w) = WpL(w)+ WpT (w)
.= le(w)I1L(w) (14.9)

V (w) = VL(w)+ VT (w)
.= qL(w)

c(w)
, (14.10)

where qL(w) is the charge per unit length along one of the transmission-line conduc-
tors. Those parts due only to currents and charges in the line are

WpL(w)
.= le

L(w)I1L(w) (14.11)

VL(w)
.= qL(w)

cL(w)
. (14.12)

With these approximations, (14.3) and (14.4) become

a1(w)
.= le(w)/ le

L(w) (14.13)

φ1(w)
.= c(w)/cL(w). (14.14)

When coupling between the line and its termination is expressed in terms of
the vector potential, it is inductive; if there is no inductive coupling, a1(w) = 1.
Note that if all conductors of a termination are perpendicular to all conductors of
the transmission line, there is no inductive coupling between them. When coupling
between the line and its termination is expressed in terms of the scalar potential, it is
capacitive; if there is no capacitive coupling, φ1(w) = 1.

Because the form of γ (w) differs for each line and termination, (14.1a, b) have
no general solution. For most specific lines and loads, they are too complicated to
yield useful analytical solutions, although numerical computer techniques could be
used to obtain results for each specific case. The development of an approximate but
more general procedure that provides some physical insight and is especially useful
for experimental work is outlined in the following discussion.

A detailed examination of the parameters in (14.2)–(14.14) reveals that the non-
uniformities decrease rapidly with distance from the line–load junction. Along the
transmission line, a1(w) and φ1(w) usually differ negligibly from one and z(w) and
y(w) are sensibly constant at distances from the line–load junction that exceed ten
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times the center-to-center spacing between the conductors of a two-wire line, or ten
times the difference in radii between outer and inner conductors of a coaxial line. This
is a rough measure of the extent of the terminal zone. For most transmission lines it
is less than 0.1λ. At greater distances from the line–load junction, all parameters are
constant and (14.1a, b) reduce to the usual linear form:

d2V (w)

dw2
− γ 2V (w) = 0 (14.15a)

I1L(w) = 1

z0

dV (w)

dw
(14.15b)

since

z(w) = z0 = r0 + jωle
0 (14.16a)

y(w) = y0 = g0 + jωc0 (14.16b)

γ 2(w) = γ 2 = z0 y0 (14.16c)

γ = α + jβ. (14.16d)

Thus, except within a small terminal zone, conventional transmission-line theory
applies and the usual measuring techniques are valid. Changes that occur in the line
parameters over short distances near the line–load junction appear as lumped induc-
tances and capacitances in series and in parallel with the actual terminating impedance.
When a load impedance is determined in the usual manner from measurements on
the uniform part of the line, the quantity determined is always a combination of the
actual load impedance with the inductances and capacitances caused by changes of the
line parameters within the terminal zone. Approximate account can be taken of such
changes if it is assumed that the uniform line parameters of an infinite unloaded line
apply everywhere including the terminal zone, and the differences that occur within the
terminal zone between the actual parameters and the assumed ones are represented by a
balanced network of equivalent lumped series inductances and shunting capacitances,
as shown in Figs. 14.1a or 14.1b. The lumped elements are defined as follows:

LT =
∫ d

0
[le(w)− le

0] dw (14.17a)

CT =
∫ d

0
[c(w)− c0] dw, (14.17b)

where le(w) = le
L(w) + le

T (w) is the true inductance per unit length, c−1(w) =
c−1

L (w) + c−1
T (w) is the true reciprocal capacitance or elastance per unit length, and

le
0 and c−1

0 are the corresponding quantities for an infinite line. Everywhere along
an infinite line or outside of the terminal zone of a terminated line, the ratio of
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Figure 14.1 (a) Terminal-zone region and network. (b) Alternative representation for terminal-zone
network.

the tangential component of the vector potential difference to the current and the
ratio of the scalar potential difference to the charge per unit length are constant and
given by

Wp(w)/I1L(w) = le
0 (14.18a)

V (w)/q1L(w) = 1/c0. (14.18b)

With (14.13) and (14.14), the integrals for LT and CT are

LT =
∫ d

0
[le

L(w)a1(w)− le
0] dw (14.19a)

CT =
∫ d

0
[cL(w)φ1(w)− c0] dw. (14.19b)

One advantage of the procedure of assuming line parameters to be uniform
throughout the terminal zone and representing terminal-zone non-uniformities by a
network of lumped elements is that useful approximate expressions for LT and CT

can frequently be derived from considerations of the static and induction fields or quite
easily be calculated for specific configurations using computer modeling techniques.
Also, CT and LT can be obtained from measurements. If the load is characterized
by its impedance and the terminal-zone network is like Fig. 14.1a, the actual load
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impedance ZL , and the apparent load impedance Za (or the apparent load admittance
Ya), are related by

Ya = 1

Za
= 1

ZL + jωLT
+ jωCT (14.20)

ZL = Za

1 − jωCT Za
− jωLT = 1

Ya − jωCT
− jωLT . (14.21)

If the load is characterized by its admittance and the network of Fig. 14.1b is used,

Za = Y−1
a = 1

YL + jωCT
+ jωLT (14.22)

YL = 1

Za − jωLT
− jωCT = Ya

1 − jωLT Ya
− jωCT . (14.23)

The terminology used here is that of the lower-frequency transmission lines. Prob-
lems involving waveguides and some of those involving coaxial lines are conveniently
solved in terms of propagating and evanescent modes [13, 14]. The latter decay rapidly
with distance from a discontinuity and it is this distance which defines the extent of
the terminal zone.

14.2 Equivalent lumped elements for terminal-zone networks

Whenever an antenna that is ideally approximated by an independent impedance
ZL is attached to a transmission line, the impedance that appears to be loading
the transmission line is Za , not ZL . The apparent impedance, Za , is a combination
of ZL and a terminal-zone network consisting of a series reactance XT = ωLT ,
and a shunting susceptance, BT = ωCT . This network takes account of changes
in the parameters of the line as its end is approached and of coupling between the
transmission line and the antenna.

LT and CT can be evaluated theoretically, or determined from the measured values
of Za and ZL . For many transmission lines, ZL can be obtained by repeating the
measurement of Za as the distance between the conductors of the transmission line is
decreased successively, and then extrapolating the results to a fictitious “zero” spacing.
The extrapolated value of Za is ZL .

One common use of a terminal-zone network is to transform driving-point
impedances which have been calculated from an established theory into those
which can be measured on a particular transmission line. For this purpose, a single
model of the desired antenna and its attached transmission line can be constructed,
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Ya = Ga + j Ba measured, and ZL = RL + j X L computed from the theory. Then,
from (14.20),

ωCT = Ba ±
√
(Ga/RL)− G2

a (14.24a)

ωLT = −X L ±
√
(RL/Ga)− R2

L . (14.24b)

For some models, YL may be more convenient to compute than ZL . From (14.22),

ωCT = −BL ±
√
(GL/Ra)− G2

L (14.25a)

ωLT = Xa ±
√
(Ra/GL)− R2

a . (14.25b)

The resulting values of ωLT and ωCT can then be used for all other elements of the
same kind in the array, as long as the element spacing is not so small that the terminal
zones are directly coupled to one another.

The sign to be used in (14.24) and (14.25) is usually the one which makes the
magnitudes of ωLT and ωCT smallest; in any case, their correct values are the ones
that satisfy the imaginary parts of (14.20) and (14.22). Equations (14.24) and (14.25)
may involve small differences between quite large numbers so that high accuracy
is required in Ya or Za . Therefore account must be taken of adapters, bends, or
connectors which are between the antenna and the point where the measurements are
made.

Theoretical determinations of LT and CT can be based on (14.17) or (14.19).
Expressions for the inductances and capacitances in the integrands of (14.17) are
themselves integrals of the static or induction fields for the particular load and trans-
mission line that is being analyzed. An evaluation of these integrals is readily carried
out by computer with numerical methods no more complicated than Simpson’s rule.
Some examples of approximate formulas that are applicable to dipoles as end-loads on
two-wire lines and to monopoles as end-loads on coaxial lines are summarized in the
following paragraphs. Many additional examples will be found in [13–18].

Symmetrical dipole as a load on two-wire lines

This model is shown in Fig. 14.2. Approximate expressions for LT and CT are

LT
.= µ

2π
(b − a), −CT /c0b

.= 1.5/ ln(b/a), (14.26)

where a is the radius of the conductors and b is the distance between the conductors
of the transmission line. These expressions are derived under the assumption that the
conductors are thin compared to their separation, a � b. They are accurate to within
about 20% for b/a = 3 and improve in accuracy as b/a increases. Expressions with
higher accuracy have been derived.1

1 [10], p. 50.
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Figure 14.2 Network for terminal zone of dipole as end-load of two-wire line.

The inductance given by (14.26) accounts for non-uniformities near the end of the
transmission line. Most theoretical models assume the antenna to extend from z = 0
to z = ±h, whereas in some experimental models a section of the antenna may be
missing between z = ± 1

2 b. Account can be taken of this missing section by subtracting
from the measured input reactance the difference in zero-order input reactance between
an antenna of length (h − b/2) and one of length h [19]. That is,

Xg = ωLg = −ζ0ψ

2π
[cotβ0(h − b/2)− cotβ0h] (14.27)

ψ =




|Ca(h, 0) sinβ0h − Sa(h, 0) cosβ0h|
sinβ0h

, β0h < π/2 (14.28a)

|Ca(h, h − λ/4) sinβ0h − Sa(h, h − λ/4) cosβ0h|, β0h > π/2. (14.28b)

The integral functions Ca(h, z) and Sa(h, z) are defined as

Ca(h, z) =
∫ h

−h
cosβ0z′

e− jβ0 R1

R1
dz′

=
∫ h

0
cosβ0z′

∣∣∣∣e− jβ0 R1

R1
+ e− jβ0 R2

R2

∣∣∣∣ dz′ (14.28c)

Sa(h, z) =
∫ h

−h
sinβ0z′

e− jβ0 R1

R1
dz′

=
∫ h

0
sinβ0z′

∣∣∣∣e− jβ0 R1

R1
+ e− jβ0 R2

R2

∣∣∣∣ dz′ (14.28d)

with

R1 =
√
(z − z′)2 + a2, R2 =

√
(z + z′)2 + a2. (14.28e)

The total correction for end-effect is a shunt susceptance BT = ωCT with CT given
by (14.26) and a reactance X E/2 in series with each conductor where

X E = XT + Xg = ω(LT + Lg) (14.29)

with LT given by (14.26) and Lg by (14.27). The location of CT in the network shown
in Fig. 14.2 is arbitrary. It may be connected across the terminals of the dipole or across
the line between Lg and LT if more convenient.
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Figure 14.3 (a) Monopole over a ground plane. (b) Experimentally determined capacitive end
correction for monopole over a ground screen driven by a coaxial line.

Monopole over a ground plane fed by a coaxial line2

In this model the outer conductor of the coaxial line ends at the surface of the
ground plane, and the inner conductor continues through the ground plane to form the
monopole shown in Fig. 14.3a. When the coaxial line and monopole are perpendicular
to the ground plane, currents on the ground plane are not coupled inductively to the
antenna or to the transmission line; hence, LT = 0. As the current on the inner
conductor is continuous at the line–load junction, Lg = 0. Hence, the terminal network
consists only of a shunting capacitance that is given in Fig. 14.3b. When considered on

2 [9], p. 430; also Trans. I.R.E., AP-3, 66, April 1955.
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an admittance basis, this model is especially simple since the terminal-zone correction
applies only to the susceptance

GL + j (BL + ωCT ) = Ga + j Ba (14.30)

so that Ga = GL and Ba and BL differ only by an additive constant for any particular
combination of a coaxial transmission line and monopole antenna.

Change in conductor radius or spacing of two-wire lines3 or coaxial lines4

Applications frequently occur in which the conductors of the dipole or monopole
must have diameters different from those of the attached feeding lines, or the base
separation at the driving point must be different from the spacing between the
conductors of the feeding lines. End-effects associated with these various changes
have been analyzed separately in the literature and the results can be applied directly,
provided the conductors of the dipole are extended to form a short section of two-wire
line, or the monopole and the associated hole in the ground plane are extended to
form a short section of coaxial line. This section of line should be at least twice
as long as the terminal zone to prevent coupling between the different terminal
regions.

Consider first a two-wire line (Fig. 14.4a) with constant spacing between the axes
of its conductors but with conductors of radius al for y ≤ s and ar for y ≥ s. The
current in each conductor is continuous and in only one direction near the junction at
y = s; therefore, LT = 0 and the terminal-zone network consists only of a shunting
susceptance. The value of BT = ωCT for the two-wire line is one-half of that obtained
for a coaxial line (Fig. 14.4b) which has a corresponding change in radius of the inner
conductor, as long as the ratios b/al and b/ar are the same for the two-wire line and
the coaxial line.5

Consider next a two-wire line (Fig. 14.4c) with conductors of constant radius a
but with a distance bl between their axes y ≤ s and br for y ≥ s. Short sections of
conductors normal to the axis of the transmission line join the two parts at y = s.
The junction and its terminal-zone network are shown in Fig. 14.4c. Approximate
formulas for calculating LT l , LT y , CT l , CT r and CT c are straightforward but quite
long.6 Terminal-zone networks for many other combinations and junctions are given
in [9, 13–18].

3 [9], p. 368 and p. 411.
4 [9], p. 377; [13], p. 380; [17], pp. 111, 112.
5 Formulas and graphs for determining BT due to changes in the radius of both inner and outer conductors of a

coaxial line are in [9], pp. 368–377 and [17], pp. 111, 112.
6 They are given respectively by (8), (13), (29), (38), and (39) of [9], pp. 411–418.
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Figure 14.4 Terminal-zone networks for changes in conductors of two-wire lines and coaxial lines.
Within terminal zone of length d

.= λ/10, line parameters are non-uniform. (a) Change in radius of
two-wire line conductors; (b) change in radius of inner conductor of coaxial line; (c) change in
spacing of two-wire line.
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14.3 Voltages, currents, and impedances of uniform sections of lines

Whenever an array is driven from a single generator, the various non-parasitic elements
are connected to the generator through a network of transmission lines that supply at
the several terminals currents and voltages which have the necessary amplitudes and
phases to produce the desired radiation pattern. In addition, they must give correct
impedance matches for a maximum transfer of power. A detailed consideration of
the design of power-dividers, phasing and matching networks is beyond the scope
of this book.7 Experimental procedures for evaluating an array and for measuring
the impedances and admittances of the elements are based on the solutions of the
linearized transmission-line equations. A short review of relevant forms of the solution
and their properties is given in this section.

Near line–load junctions and the ends of a transmission line the propagation
“constant” γ is usually a function of position along the line. A practical procedure for
taking account of terminal-zone effects with lumped networks and uniform sections
of line has already been discussed. Outside the terminal zones the line is essentially
uniform and the simple wave equations with constant coefficients, (14.15a) and
(14.15b), apply. Solutions of these equations may have many forms. One of the most
useful is

V (w) = Aeγw + Be−γw, (14.31)

where γ = α + jβ and α is the attenuation constant in nepers per unit length, β the
phase constant in radians per unit length. This solution is fitted to a particular line and
load when the terminal conditions at the ends of the line are used to determine A and B.
Note that these conditions must be specified within the terminal zones at the line–load
junction or the line–generator junction. Hence, the apparent terminal impedance must
be used in determining A and B. If the line is terminated at w = 0 by an apparent
impedance Za with current I (0) and voltage drop V (0), it follows that

V (0) = I (0)Za . (14.32)

With (14.32), (14.31) and (14.15b) A and B are readily evaluated and the following
expressions obtained:

V (w) = I (0)

2
[(Za + Zc)e

γw + (Za − Zc)e
−γw] (14.33a)

I (w) = I (0)

2Zc
[(Za + Zc)e

γw − (Za − Zc)e
−γw], (14.33b)

where Zc is the characteristic impedance of the transmission line.

7 See, for example, [8–10], [14], and [18].
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These solutions suggest that an incident wave, traveling in the −w direction from
the generator at w = s toward the load at w = 0, strikes the load and is partially or
completely reflected back toward the generator. The incident and reflected parts are

V +(w) = I (0)

2
(Za + Zc)e

γw; incident wave (14.34a)

V −(w) = I (0)

2
(Za − Zc)e

−γw; reflected wave. (14.34b)

The ratio of the reflected wave to the incident wave is called the reflection coefficient
and designated by #. At a distance w from the line–load junction,

#(w) = V −(w)

V +(w)
= I−(w)

I+(w)
= (Za − Zc)

(Za + Zc)
e−2γw. (14.35a)

At w = 0,

#a = Za − Zc

Za + Zc
= Yc − Ya

Yc + Ya
= |#a|e jψa (14.35b)

is the reflection coefficient of the load. Yc = 1/Zc is the characteristic admittance of
the line. Therefore,

#(w) = #ae−2γw. (14.35c)

It follows that

V (w) = V (0)

(1 + #a)
[eγw + #ae−γw] = I (0)Zc

(1 − #a)
[eγw + #ae−γw] (14.36)

I (w) = I (0)

(1 − #a)
[eγw − #ae−γw] = V (0)Yc

(1 + #a)
[eγw − #ae−γw]. (14.37)

The superposition of the incident and reflected waves yields an interference pattern
called a standing wave along the transmission line. When Za = Zc, #a = 0, V −(0) =
0, the line is matched. For pure traveling waves outside the terminal zones the line
appears to be infinite in length. When |Za| � |Zc|, as when the load is a short circuit,
#a → −1, and the incident wave is reflected with a 180◦ shift in phase. The voltage
and current distributions are pure standing waves given by

V (w) = I (0)Zc sinh γw, I (w) = I (0) cosh γw. (14.38)

When Za � Zc, as with an open circuit, the entire incident wave is again reflected but
with no change in phase so that #a = 1. The distributions of current and voltage are
given by (14.38) with the sinh and cosh interchanged.
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The impedance looking toward the load at any point w is given by

Z(w) = V (w)/I (w) = Zc

∣∣∣∣∣1 + #ae−2γw

1 − #ae−2γw

∣∣∣∣∣ (14.39)

and the admittance is Y (w) = 1/Z(w).

Alternative expressions in terms of the hyperbolic functions are

V (w)/V (0) = cosh γw + (Ya/Yc) sinh γw (14.40a)

I (w)/I (0) = cosh γw + (Za/Zc) sinh γw (14.40b)

V (w)/[I (0)Zc] = sinh γw + (Za/Zc) cosh γw (14.41a)

I (w)/[V (0)Yc] = sinh γw + (Ya/Yc) cosh γw (14.41b)

Z(w)/Zc = Za/Zc + tanh γw

1 + (Za/Zc) tanh γw
. (14.42)

The preceding equations for current, voltage and impedance express V (w) and I (w)

in terms of V (0) and I (0) at the load. They do not involve the actual driving voltage
of the generator. A complete solution is obtained by imposing boundary conditions at
both ends of the line8 in terms of a generator with apparent internal impedance Zg and
voltage V e at w = s or y = s − w = 0 and a load with an apparent impedance Za at
w = 0 or y = s. Specifically

y = 0: V0 = V e − I0 Zg

y = s: Vs = Is Za .

The elimination of A and B in (14.31) yields

V (y) = V e Zc

Zc + Zg

e−γ y + #ae−γ (2s−y)

1 − #g#ae−2γ s
(14.43a)

I (y) = V e

Zc + Zg

e−γ y − #ae−γ (2s−y)

1 − #g#ae−2γ s
, (14.43b)

where #g is the reflection coefficient corresponding to Zg .

8 [9], p. 75.
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The introduction of functions to describe separately the attenuation and the phase
characteristics of the terminations makes it possible to express currents and voltages
in a completely hyperbolic form. These terminal functions are defined as follows:

ρ + jφ = coth−1 Z

Zc
= tanh−1 Y

Yc
(14.44a)

or

ρ + jφ′ = coth−1 Y

Yc
= tanh−1 Z

Zc
. (14.44b)

The corresponding expressions for the currents and voltages are:

V (w)

V e
= sinh(ρg + jφg) cosh[(αw + ρa)+ j (βw + φa)]

sinh[(αs + ρg + ρa)+ j (βs + φg + φa)]
(14.45a)

I (w)

V e
= sinh(ρg + jφg) sinh[(αw + ρa)+ j (βw + φa)]

sinh[(αs + ρg + ρa)+ j (βs + φg + φa)]
. (14.45b)

The effects of a termination are now shown to be equivalent to those of a section of
transmission line with a total loss specified by ρ and a total phase shift specified by φ.
Note that the denominator of (14.45a, b) includes the total loss and total phase shift of
the line plus its terminations at both ends. Impedance and admittance are given by

Z(w) = coth[(αw + ρa)+ j (βw + φa)] (14.46a)

Y (w) = tanh[(αw + ρa)+ j (βw + φa)]. (14.46b)

The terminal functions and the reflection coefficient are related as follows:

# = |#| e jψ = e−2(ρ+ jφ)

|#| = e−2ρ = coth ρ − 1

coth ρ + 1
, ψ = −2φ (14.47)

ρ = 1
2 ln 1/|#| = coth−1 1 + |#|

1 − |#| . (14.48)

For most transmission lines that are useful as feeders for an array or for measuring
sections, the line losses are very small and can often be neglected. Under these
conditions

γ
.= jβ, Zc

.= Rc =
√

le/c

and (14.36) and (14.37) give

V (w)
.= V (0)e jβw

1 + #a
[1 + |#a|e− j (2βw−ψa)] (14.49a)

I (w)
.= I (0)e jβw

1 − #a
[1 − |#a|e− j (2βw−ψa)] (14.49b)
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and

#(w) = |#a|e− j (2βw−ψa). (14.49c)

These have the following maxima and minima:

|Vmax(w)| =
∣∣∣∣ V (0)

1 + #a

∣∣∣∣ [1 + |#a|], |Imin(w)| =
∣∣∣∣ I (0)

1 − #a

∣∣∣∣ [1 − |#a|],

2βw − ψa = 0, 2π, · · · = 2nπ (14.50a)

|Vmin(w)| =
∣∣∣∣ V (0)

1 + #a

∣∣∣∣ [1 − |#a|], |Imax(w)| =
∣∣∣∣ I (0)

1 − #a

∣∣∣∣ [1 + |#a|],

2βw − ψa = π, 3π, · · · = (2n + 1)π, n = 0, 1, 2 . . . . (14.50b)

The ratio of the maximum-to-minimum of either the current or the voltage on a lossless
line is called the standing wave ratio and abbreviated SWR.

SWR = |Vmax(w)/Vmin(w)| = |Imax(w)/Imin(w)| = (1 + |#a|)/(1 − |#a|) (14.51a)

= |Za + Zc| + |Za − Zc|
|Za + Zc| − |Za − Zc| = |Yc + Ya| + |Yc − Ya|

|Yc + Ya| − |Yc − Ya| = coth ρ. (14.51b)

The distributions of voltage and current are periodic and repeat every half wavelength;
the adjacent maxima and minima of voltage or current are separated by a quarter wave-
length; the current maxima occur at voltage minima and vice versa. The impedance
and admittance looking toward the load also repeat every half wavelength. At maxima
and minima of the current or voltage the impedance and admittance are real with the
following values [from (14.39)]:

Voltage maxima or current minima

2βw − ψa = 0, 2π, 4π, . . .

Z(w) = Rc

[
1 + |#a|
1 − |#a|

]
Y (w) = Gc

[
1 − |#a|
1 + |#a|

]
= Rc[SWR]; = Gc/[SWR]. (14.52a)

Voltage minima or current maxima

2βw − ψa = π, 3π, 5π, . . .

Z(w) = Rc

[
1 − |#a|
1 + |#a|

]
Y (w) = Gc

[
1 + |#a|
1 − |#a|

]
= Rc/[SWR]; = Gc[SWR]. (14.52b)
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The relative distributions of current and voltage for lossless lines are:

V (w)/V (0) = cosβw + j (Ya/Gc) sinβw (14.53a)

I (w)/I (0) = cosβw + j (Za/Rc) sinβw (14.53b)

V (w)/[I (0)Rc] = (Za/Rc) cosβw + j sinβw (14.53c)

I (w)/[V (0)Gc] = (Ya/Gc) cosβw + j sinβw. (14.53d)

The corresponding impedance is

Z(w) = Rc

[
(Za/Rc)+ j tanβw

1 + j (Za/Rc) tanβw

]
. (14.54a)

The admittance is given by an identical expression with Za and Rc replaced by Ya and
Gc.

The input power to a section of line is P = V I ∗ = |V |2/Z with the asterisk
denoting the complex conjugate. At a voltage or current maximum (14.52a, b) give

P = |Vmax|2/Rc[SWR] = |Imax|2 Rc/[SWR]. (14.54b)

Equation (14.54b) is sometimes of help in measuring the relative power in the branches
of a feeding network.

Useful properties of a quarter-wave section of transmission line follow from (14.53).
If I (0) and V (0) are the required driving-point current and voltage and if βw = π/2,

V
(π

2

)
= j Rc I (0), I

(π
2

)
= j V (0)/Rc, Z

(π
2

)
= R2

c Ya . (14.54c)

The preceding expressions have traditionally been considered to be primarily functions
of the distance from the line–load junction w, but since

βw = 2πw

λ
= 2π f w

c
, (14.54d)

where c is the velocity of propagation, they are equally functions of the frequency.

14.4 Theoretical basis of impedance measurements

Over the past 15 to 20 years, developments in electronic instrumentation have
produced a revolution in the design and construction of instruments for measuring
impedances. For many decades, phase-stable RF signals were possible only at a single
frequency and mechanical components of the experiment were varied to determine the
behavior of a system. However, the development of synthesized RF sources that are
very stable in frequency, phase, and output, and that can be readily changed in precise,
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small or large frequency steps over wide frequency bands has made the frequency
the easiest and most cost effective parameter to vary. The change to frequency as
the independent variable of choice has been further supported by the development
of high-quality, wide-band directional couplers and network analyzers that combine
many individual instruments into integrated packages, and the use of computers to
control the instruments, aid in their calibration, and process the data. Because of
their compatibility with the integrated electronics and inherently higher data rates,
directional couplers and various other impedance bridges have largely replaced slotted
lines as the preferred instruments for measuring impedances. In effect, the complicated
electronics is replacing the artful machining work required to build high-quality slotted
lines.

For the investigation of monopoles over a ground plane, a special type of coaxial
transmission line has proven very useful.9 Measurements along these lines can be
made either by multiple-probe techniques10 or by converting the line into a slotted
line. In the latter technique, a loop current probe or voltage probe protrudes from a slot
in the inner conductor of the coaxial line and the RF information is carried in a second
coaxial line inside the inner conductor that forms the antenna above the ground plane,
thus removing the connecting cables and equipment from the fields being measured.
The slotted conductor is extended above the ground plane, permitting the probe to be
used both for measuring the current or charge distribution along the antenna as well as
the driving-point impedance.

Variations of this approach can be used with dipoles driven by two-wire lines and
for the probing of surface fields of more complex shapes. Because of the utility
of this technique, two different slotted-line impedance-measurement procedures –
the distribution-curve and the resonance-curve methods – will be discussed. These
procedures can also be easily automated. The motion of the probe can be controlled
by a computer through the addition of a D/A converter and a stepping motor, and the
RF output from the probe can be sent directly to a network analyzer and back to the
computer for processing. If only the impedance is of interest, a multiple-probe method
will be simpler and offer much higher data rates. General details of the measurement
techniques, the instruments, and the errors and calibration of network analyzers are
discussed in the literature [1–4]. The objective here is to review the theoretical basis
for the techniques, and to summarize pertinent equations for calculating impedances
from the measured quantities.

The directional-coupler and bridge methods determine the magnitude of #a by
measuring the change in amplitude and phase of the reflected voltage at a fixed point
on the line when a short circuit is replaced by the unknown load. The multiple-probe
method determines the load admittance by comparing the ratio of voltages at two
or more fixed points on the line. No matched load or short circuit is required at

9 See [20], and [10], pp. 129 and 228. 10 [2] p. 109, and [4] p. 122.
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Figure 14.5 Dual probe method of measurement.

the line–load junction, but the probes must have identical electrical properties, or be
calibrated relative to one of them. Alternatively, with modern phase-stable RF sources
that can be reset in frequency to a few cycles or better, the need for calibration can
be avoided by using a single probe in different fixed positions, as discussed in Section
14.8. In the distribution-curve method, the total length of the transmission line and
its excitation point remain fixed while a loosely coupled probe is moved along the
line to locate a current or voltage minimum and the SWR. In the resonance-curve or
Chipman method, a movable short circuit is used to tune the line with its terminations
to resonance by adjusting the total length of the line. A small loop probe projecting
from the short circuit is used to locate a resonant maximum and measure the SWR.
A particular advantage of the resonance-curve method is that it can be used with a
receiving antenna as well as with a transmitting antenna. These measurement methods
are schematically illustrated in Figs. 14.5, 14.6, and 14.7.

Multiple-probe method

Let the voltage measured at position w1 be V1 and that measured at w2 be V2. Both the
amplitude and the phase of the voltages must be measured. The probes are assumed
to be identical, or it is assumed that a single probe is moved from w1 to w2. Equation
(14.53c) written for V2 and again for V1 and solved for Za and Ya yields

Za = j Rc

[
sinβw2 − VR sinβw1

VR cosβw1 − cosβw2

]
(14.55a)

Ya = jYc

[
cosβw2 − VR cosβw1

sinβw2 − VR sinβw1

]
, (14.55b)

where VR = V2/V1 is the ratio of two measured complex numbers.
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Figure 14.6 Distribution-curve method of measurement.
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Figure 14.7 Resonance-curve method of measurement.



496 Techniques and theory of measurements

Similarly, the reflection coefficient #a follows from (14.36),

#a = e j2βw2

[
1 − |V2/V1|e j[ψV −β(w2−w1)]

|V2/V1|e j[ψV +β(w2−w1)] − 1

]
, (14.55c)

where ψV = ψ2 − ψ1, and ψ2, ψ1 are the measured phases of V2 and V1.
The unknown load admittance follows from (14.35b) and (14.35c):

Ya

Yc
= 1 − #a

1 + #a
. (14.55d)

The probe separation, w2 − w1, should not be a multiple of a half-wavelength within
the frequency range of interest. Additional probe positions can be used to avoid this
situation. If a single probe is moved between the positions, care must be exercised
to avoid the introduction of errors from flexing cables. The probe holder must be
designed to provide good and repeatable contact with the outer conductor. Also, covers
with good repeatable contact must generally be provided for the empty positions. The
application of a variation of this technique to the measurement of the sharp resonances
in circular arrays is discussed in Section 14.8.

Directional-coupler method

From (14.35a) and (14.49c) for lossless transmission lines, the reflection coefficient at
any point w along the line is

#(w) = |#(w)|e jψV =
∣∣∣∣V −(w)

V +(w)

∣∣∣∣ e jψV a = |#a|e j (ψa−2βw). (14.56a)

Thus,

|#a| =
∣∣∣∣V −(w)

V +(w)

∣∣∣∣ (14.56b)

and

ψa = ψV a + 2βw. (14.56c)

With a properly calibrated vector voltmeter that is based on a dual directional coupler,
the phase and amplitude of V −(w) and V +(w) can be measured directly. However, the
calibration requires a matched load to be placed at the line–load junction. Generally,
this is not practical with the experimental models that are used to investigate monopole
antennas over ground planes.

Let the reflected voltage only be measured, first with a short circuit at the ground-
plane surface, and then with the unknown load. For the short circuit,

#s(w) =
∣∣∣∣V −

s (w)

V +(w)

∣∣∣∣ e j (ψs−2βw). (14.57a)
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From the unknown load,

#a(w) =
∣∣∣∣V −

a (w)

V +(w)

∣∣∣∣ e j (ψa−2βw). (14.57b)

Using the short-circuited properties of #,

#s = −1 = e j (2n+1)π (14.57c)

it follows that∣∣∣∣#a(w)

#s(w)

∣∣∣∣ = |#a(w)| =
∣∣∣∣V −

a (w)

V −
s (w)

∣∣∣∣ (14.58a)

ψa = ψd + (2n + 1)π, (14.58b)

where

ψd = ψa − ψs = ψa − (2n + 1)π. (14.58c)

The magnitude of the reflection coefficient is commonly expressed in dB,

|#a|dB = 20 log10

∣∣∣∣V −
a (w)

V −
s (w)

∣∣∣∣ . (14.58d)

The ultimate accuracy of this technique rests on the directivity of the directional
coupler. Couplers with directivities of 30–40 dB or better over very wide frequency
bands are available. Calibration procedures have been devised to reduce the effects of
internal reflections and increase measurement accuracy when the couplers are used as
part of vector network analyzers.11,12

Distribution-curve method

Assume that a voltage probe is used to measure the SWR and the location of a voltage
minimum. Let wn be the distance from the line–load junction to the nth voltage
minimum; in Fig. 14.6, n = 1. If transmission-line losses are negligible over the
section of line used in the measurements, the impedance at a voltage minimum is
Rc/[SWR]. From (14.52b) and (14.54a),

1

[SWR]
=
[

Za/Rc + j tanβwn

1 + j (Za/Rc) tanβwn

]
.

11 [1] Chapters 10 and 11, and [3] Chapter 6.
12 A continuing discussion of procedures related to vector network analyzers may be found in HP 8510/8720

News, Hewlett-Packard Co., 1400 Fountaingrove Pkwy., Santa Rosa, CA 95403-1799.
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When this equation is solved for Za = Ra + j Xa , the result is

Za = Ra + j Xa =




Rc

[
1 − j[SWR] tanβwn

[SWR] − j tanβwn

]
Voltage probe (14.59a)

Rc

[SWR]2 + tan2 βwn
{[SWR](1 + tan2 βwn)

+ j (1 − [SWR]2) tanβwn}. (14.59b)

β = 2π/λ, n is the number of the minimum corresponding to wn , λ is the wavelength
along the transmission line.

If a current probe is used and wn is the distance from the line–load junction to a
current minimum,

Za = Ra + j Xa =




Rc

[
[SWR] − j tanβwn

1 − j[SWR] tanβwn

]
Current probe (14.59c)

Rc

1 + [SWR]2 tan2 βwn
{[SWR](1 + tan2 βwn)

+ j ([SWR]2 − 1) tanβwn}. (14.59d)

The reflection coefficient is defined by (14.35b) with magnitude and phase given by

|#a| = [SWR] − 1

[SWR] + 1
(14.60a)

ψa =
{

2[βwn − (n + 1
2 )π ] Voltage probe (14.60b)

2[βwn − nπ ] Current probe. (14.60c)

If the admittance is to be determined and a voltage probe is used, (14.59c) and (14.59d)
apply with Ga + j Ba substituted for Ra + j Xa and with Gc substituted for Rc. If a
current probe is used for admittance measurements, (14.59a) and (14.59b) apply with
the indicated substitutions.

High SWR’s are difficult to measure because the SWR minimum may be in the
noise level of the measuring system or its maximum-to-minimum range may exceed
the linear range of the detecting system. For these cases the curve width method may
be more convenient.13 In this method the width of the distribution curve is measured at
half power points and the terminal functions can be obtained from (14.47) and (14.48).
The relations are

ρa = coth−1 1 + |#a|
1 − |#a| = coth−1 SWR = 1

2 ln
SWR + 1

SWR − 1
(14.61a)

.= π�w/λ, �w = curve width (14.61b)

13 [2], pp. 102–104 and [9], pp. 266–269.
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φa = −ψa/2 =
{
(n + 1

2 )π − βwn Voltage probe (14.62a)

nπ − βwn Current probe. (14.62b)

Real and imaginary parts of impedances or admittances in terms of the terminal
functions can be found from (14.44a, b). The results are

Za = Ra + j Xa = Zc

{
sinh 2ρa

cosh 2ρa − cos 2φa
− j

sin 2φa

cosh 2ρa − cos 2φa

}
(14.63a)

Ya = Ga + j Ba = Yc

{
sinh 2ρa

cosh 2ρa + cos 2φa
+ j

sin 2φa

cosh 2ρa + cos 2φa

}
. (14.63b)

Frequently the total distance wn from the line–load junction to a convenient
minimum is difficult to measure accurately. Since on a lossless line the impedance
is repeated at intervals of λ/2 or βw = π radians, it is necessary only to determine the
location of a minimum with respect to an integral number of half wavelengths from
the junction. If the load being investigated is removed and a short circuit is placed
at the junction, a voltage null will appear at the junction and along the line at each
half wavelength from the junction. Let wv be the distance from the nth voltage null
with the short circuit as a load to the nearest voltage minimum with the antenna as a
load. Distances toward the generator are positive, those toward the load are negative.
Then,

βwn = nπ ± βwv (14.64)

and

tan(nπ ± βwv) = tan nπ ± tanβwv

1 ± tan nπ tanβwv

= ± tanβwv

so that wv , the shift in the location of a minimum when the unknown impedance is
substituted for the short circuit, can be used directly in (14.59a) and (14.59b) if due
regard is given to the sign. Similar results hold for a current minimum and (14.59c)
and (14.59d). In terms of the minimum shift, the phase of the terminal functions and
of the reflection coefficient is

φa = −ψa/2 =
{
π/2 ∓ βwv Voltage probe (14.65a)

∓βwv Current probe. (14.65b)

The various distances are illustrated in Fig. 14.6.

Resonance-curve method

Let the solution of (14.45) be written for a balanced generator located at an arbitrary
point y = yg along the transmission line instead of at y = 0. Also let the hyperbolic
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functions be separated into their real and imaginary parts.14 Then the magnitudes of
currents and voltages along the line are:

|I | = V e

Rc

√
sinh2(αyg + ρg)+ sin2(βyg + φg)

×
√

sinh2(αw + ρa)+ sin2(βw + φa)√
sinh2(αs + ρg + ρa)+ sin2(βs + φg + φa)

|V | = V e

√
sinh2(αyg + ρg)+ sin2(βyg + φg)

×
√

sinh2(αw + ρa)+ cos2(βw + φa)√
sinh2(αs + ρg + ρa)+ sin2(βs + φg + φa)




yg ≤ y ≤ s

|I | = V e

Rc

√
sinh2(αwg + ρa)+ sin2(βwg + φa)

×
√

sinh2(αy + ρg)+ sin2(βy + φg)√
sinh2(αs + ρg + ρa)+ sin2(βs + φg + φa)

|V | = V e

√
sinh2(αwg + ρa)+ sin2(βwg + φa)

×
√

sinh2(αy + ρg)+ cos2(βy + φg)√
sinh2(αs + ρg + ρa)+ sin2(βs + φg + φa)




0 ≤ y ≤ yg

where wg = s − yg is the distance from the load to the generator. The first two
equations give current and voltage distributions between the load at y = s and the
generator as illustrated in Fig. 14.7. The last two equations give the distributions
between the generator and the end of the line at y = 0. If the distance yg or wg

between the appropriate ends of the line and the generator, and the distance w or y
between the appropriate ends of the line and the probe are held constant, while the
total length s is changed, the current and voltage vary in the same manner,

I (w) ∼ V (w) ∼ [sinh2(αs + ρg + ρa)+ sin2(βs + φg + φa)]
−1/2. (14.66)

The line is resonant when (14.66) has its maximum value. Maxima and minima of
(14.66) are defined by

(βs + φg + φa) =




nπ − 1
2 sin−1

[
α

β
sinh 2(αs + ρg + ρa)

]
Maxima

(n + 1
2 )π + 1

2 sin−1
[
α

β
sinh 2(αs + ρg + ρa)

]
Minima.

14 See Chapter 4 of [9].
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For lossless lines, α/β = 0, and

(βsmax + φg + φa) = nπ Maxima (14.67a)

(βsmin + φg + φa) = (n + 1
2 )π Minima. (14.67b)

With a short circuit at w = 0, φa = π/2; this value is commonly used as a reference.
Let ss be a convenient resonant length with a short circuit as the termination at w = 0
and let s1 be the corresponding resonant length with the unknown impedance at w = 0.
When (14.67a) is written successively for both loads and the one is subtracted from
the other, the result is

φa = π/2 + β(ss − s1). (14.68)

For lines with very small losses, αs ≪ 1, the ratio of maximum-to-minimum in
(14.66) is

SWR
.= coth(ρg + ρa). (14.69)

This equation illustrates an important additional requirement in the resonance-curve
method that does not occur in the distribution-curve method. In the distribution-curve
method, only the parameters that characterize the generator are involved in the
measurements; in the resonance-curve method, ρg must be known or the generator
must be lightly coupled so that ρg � ρa for the loads under investigation. When
these conditions are satisfied, ρa is given by (14.69), and impedances or admittances
can be computed directly from (14.63a) or (14.63b). The magnitude of the reflection
coefficient can be calculated from (14.60a) and its phase, ψa , from

ψa = −2φa = β(s1 − ss)− π. (14.70)

With the resonance-curve method, it is frequently more convenient to measure the
curve width than the SWR, and sometimes it is simpler to measure the curve widths at
power levels other than 1/2. For low-loss transmission lines and symmetrical resonance
curves, it can be shown that

ρa
.= π√

p2 − 1

�s

λ
,

where �s is the width of the resonance curve at a level 1/p of the maximum.
The bridge methods, directional-coupler methods, slotted-line methods, and

resonant-line methods all use a short circuit at the line–load junction as a reference.
If the feeding line is coaxial, this may be simply a conducting plug that makes good
and repeatable contacts with the inner and outer conductors at a known position. If
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the feeding line is an unshielded two-wire line, the short circuit may be a conducting
disk that makes good contact with both conductors and that has a radius of at least five
times the center-to-center spacing of the conductors.

When measurements are made on open two-wire lines, the principal difficulty that
is encountered is keeping the lines balanced so that I2(w) = −I1(w). This requires
that perfect symmetry be maintained everywhere in the vicinity of the lines. A small
probe placed midway between the conductors and connected to a sensitive detector is
usually necessary to monitor the condition of balance. When the lines are perfectly
balanced, nothing is received on the monitor probe.

A probe is required in several of the measurement procedures and additional probes
may be convenient for monitoring at various points. The probes must be loosely
coupled in order to avoid distorting the interference pattern along the transmission
line.15 Generally the probe should be tuned to provide maximum sensitivity with
minimum intrusion into the line. Any distortion or loading introduced by the probe
is most pronounced at a current maximum with a current probe and at a voltage
maximum with a voltage probe. When a probe is too tightly coupled to the transmission
line, the measured SWR is less than the true one and maxima are shifted from points
midway between adjacent minima. A simple test for excessive probe coupling is
to measure a moderate SWR with probes of different sizes. If there is no change
in the measured SWR, the probes are not introducing significant errors. Another
useful test is to measure the location of a maximum, the adjacent minima, and the
curve width at half maximum power with a short circuit as the termination. If the
probe is introducing no errors, power variations about the maximum should be like
cos2 βw [from (14.53)] and the maximum should fall exactly midway between the
minima. This test is particularly severe because only the probe is absorbing power
from the line. A movable short circuit that maintains good electrical contact during
its motion as required in the resonance-curve method is very difficult to construct.
If the load being investigated has only a small loss, the resonance-curve maximum
is especially sensitive to erratic electrical contacts. When there is sufficient room
between the inner and outer conductors, a “non-contacting” short circuit can be
used [21].

14.5 The measurement of self- and mutual impedance or admittance

At the driving points of the several elements in an array, currents and voltages are
related by the usual coupled circuit equations. Let Vk be the driving voltage across the
terminals of element k in an array of N elements; let Ik(0) be the current in the same

15 [2] p. 93.
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terminals. Then, if a Kirchhoff equation is written for each element, the following set
is obtained:

V1 = I1(0)Z11 + I2(0)Z12 + · · · Ik(0)Z1k + · · · Ip(0)Z1p + · · · IN (0)Z1N

...

Vk = I1(0)Zk1 + I2(0)Zk2 + · · · Ik(0)Zkk + · · · Ip(0)Zkp + · · · IN (0)Zk N (14.71)

...

VN = I1(0)Z N1 + I2(0)Z N2 + · · · Ik(0)Z Nk + · · · Ip(0)Z N p + · · · IN (0)Z N N .

The coefficient Zkp, p �= k, is the mutual impedance between element k and element
p. As long as the array is in an isotropic medium such as air, Zkp = Z pk . Zkk is the
self-impedance of element k. The input or driving-point impedance of element k is

Zkin = Vk

Ik(0)
= I1(0)

Ik(0)
Zk1 + · · · Zkk + · · · Ip(0)

Ik(0)
Zkp + · · · IN (0)

Ik(0)
Zk N . (14.72)

If the elements are fed by transmission lines, Zkin is the apparent load impedance
of the transmission line. The driving terminals of an antenna coincide with the line–
load junction between it and its feeding transmission line. The self-impedance of an
element is the input impedance at the terminals of that element when the driving-point
currents of all other elements in the array are zero – that is, when all other elements
are open-circuited at their driving points. The mutual impedance between element k
and element p is the open-circuit voltage at the driving point of element p per unit
current at the driving terminals of element k, with the driving points of all elements
but k open-circuited.

The relations that involve the admittances are the duals of (14.71). They are

I1(0) = V1Y11 + V2Y12 + · · · VkY1k + · · · VpY1p + · · · VN Y1N

...

Ik(0) = V1Yk1 + V2Yk2 + · · · VkYkk + · · · VpYkp + · · · VN Yk N

...

IN (0) = V1YN1 + V2YN2 + · · · VkYNk + · · · VpYN p + · · · VN YN N




(14.73)

Ykin = Ik(0)

Vk
= V1

Vk
Yk1 + V2

Vk
Yk2 + · · · Ykk + · · · Vp

Vk
Ykp + · · · VN

Vk
Yk N . (14.74)

The self-admittance of an element is its input admittance when the driving-point
voltages of all other elements in the array are zero – that is, when all other elements
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are short-circuited at their driving points. The mutual admittance between element k
and element p is the short-circuit current at the driving point of element p per unit
voltage at the terminals of element k, when the terminals of all elements except k are
short-circuited.

Self- and mutual impedances or admittances depend upon the geometrical config-
uration of each element, the relative orientation and location of the elements in the
array, and the total number of elements. Once the self- and mutual impedances or
admittances have been determined for an array, they can be used in equations like
(14.72) and (14.74) to predict the driving-point impedances or admittances for any set
of driving voltages or currents that may be applied to the array.

In principle, there is no difficulty in determining self- and mutual impedances.
If known sets of currents or voltages are maintained at the terminals of the several
elements and a sufficient number of input impedances or admittances are mea-
sured, (14.72) or (14.74) can be inverted and the self- and mutual impedances
evaluated. There are, however, two practical difficulties. The first is that the only
set of excitation coefficients useful in measuring self- and mutual impedances is
that which can be adjusted with high accuracy independently of the driving-point
impedances. The second difficulty is that so many quantities must be determined.
In a linear array of N identical, equally spaced elements there are N/2 different
self-impedances and N 2/4 different mutual impedances if N is even; (N + 1)/2
different self-impedances and (N 2 − 1)/4 different mutual impedances if N is odd.
For N = 100 there are 2550 different quantities to be determined. Fortunately,
many of the mutual impedances are sufficiently small so that they can be neglected
and many of the self-impedances are alike within tolerable limits. The measuring
procedure should provide a rapid indication of such possible simplifications as
well as relatively simple steps for determining the significant self- and mutual
impedances.

An important especially simple array consists of identical elements uniformly
spaced about the circumference of a circle. Since all elements have the same self-
impedance, symmetry reduces the total number of unknowns to N/2 if N is even or
(N + 1)/2 if N is odd. Self- and mutual admittances can be measured as follows.
Let element k be driven, all others short-circuited at their driving points. Measure the
apparent input admittance of element k. From (14.74)

Ykin1 = Ykk . (14.75)

Next, let elements k and p be driven with the voltages Vp = −Vk ; let the terminals of
all other elements be short-circuited. Again measure the apparent input admittance of
element k. Then

Ykin2 = Ykk − Ykp, Ykp = Ykin1 − Ykin2. (14.76)
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Thus, for the circular array, all mutual admittances can be found by successively
driving element k and one other element with equal voltages in opposite phases, and
each time measuring the input admittance of only element k. The driving voltages
Vk = −Vp produce a null in the electromagnetic field along the perpendicular
bisector of a chord joining elements k and p. This property can be used to obtain
the correct voltages by locating a probe at the center of the array and adjusting the
phase and amplitude of element p or k until no signal is observed in the probe.
A 30–40 dB range of receiving sensitivity provides an accurate adjustment of the
voltages. The short circuits in the elements other than p and k can be placed at the
driving terminals or at the ends of lossless sections of transmission lines which are
electrically one-half wavelength long. This length is critical and must take account of
phase shifts in connectors, terminal zones, etc. For monopoles driven over a ground
plane by coaxial lines in the manner shown in Fig. 14.3a, the short circuits can consist
of very thin plugs in the ends of the coaxial lines. End-effects are quite simple for
this model since the terminal-zone network consists of a shunting capacitance. If the
measured apparent input admittances given in (14.75) and (14.76) are Yka1 and Yka2,
then

Ykk = Yka1 − jωCT (14.77a)

Ykp = Yka1 − Yka2. (14.77b)

Note that the end-effect contributes only to the self-susceptance.
The self- and mutual impedances of a circular array can be measured with analogous

procedures. To determine the self-impedance, drive one element, open-circuit all
others so that all the driving-point currents are zero, and measure the input impedance
of the driven element. To determine the mutual admittances, drive the elements
successively in pairs with a receiving probe at the center of the circle to aid in
setting Ip(0) = −Ik(0), and measure the input impedance of a driven element.
Equations (14.75) and (14.76) apply with the corresponding impedances substituted
for admittances. On an impedance basis, the experimental model of monopoles
driven by coaxial lines offers little simplification in terminal-zone effects, and the
actual load or input impedances are obtained from the measured apparent ones
with (14.21).

In a linear, planar or more general array, the self-admittances or impedances can
be measured by the method used for circular arrays, i.e. by driving the element of
interest, loading the other elements with short circuits for admittances or open circuits
for impedances, and measuring the input admittance or impedance of the driven
element. Difficulties arise in measuring mutual admittances by the method of driving
the elements in pairs so that Ip(0) = −Ik(0) or Vp = −Vk , since, in general, there
is no simple null in the field at which a receiving probe can be located to aid in the
adjustment of the current or voltage. For example, in a seven-element curtain array
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of identical equispaced elements, there are four self- and eight mutual impedances
which must be determined. Among the eight mutual impedances only Z17, Z26 and
Z35 correspond to pairs of elements symmetrically placed about the center of the array.
For these elements, a null at the center ensures that each pair is driven by voltages with
equal amplitudes and opposite phases.

The open circuit–short circuit method is a traditional procedure for measuring self-
and mutual impedances. The self-impedances are measured as already discussed by
driving the element of interest and open circuiting the driving points of all other
elements. If element k is the driven element, (14.72) becomes

Zkin1 = Vk/Ik(0) = Zkk . (14.78)

To determine a given mutual impedance a short circuit is substituted for the open
circuit in the appropriate element, and the input impedance of the driven element is
again measured. If element k is driven and element p is short-circuited, the applicable
pair of equations is

Vk = Ik(0)Zkk + Ip(0)Zkp (14.79a)

0 = Ik(0)Zkp + Ip(0)Z pp. (14.79b)

From (14.79a)

Zkin2 = Vk

Ik(0)
= Zkk + Ip(0)

Ik(0)
Zkp. (14.79c)

The use of (14.79b) to eliminate the current ratio in (14.79c), the subsequent solution
for Zkp, and the expression of Zkk and Z pp in terms of their measured values, Zkin1

and Zpin1, yield

Zkp = ±
√

Zpin1(Zkin1 − Zkin2). (14.80)

Mutual admittances may be determined in the same manner by an interchange of
open and short circuits and the substitution of the appropriate admittances in (14.80).
A satisfactory method of providing the required open circuits is to short-circuit the
feeding line at an electrical quarter wavelength from the line–load junction.

An alternative procedure16 for determining mutual impedances is based on the
measurement of both the relative amplitude and phase of the driving-point currents or

16 See [10], p. 349.
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voltages. Let element k in an array be driven and all other elements be open-circuited.
The complete set (14.71) then becomes

V1 = Ik(0)Z1k

...

Vk = Ik(0)Zkk

...

Vp = Ik(0)Z pk

...

VN = Ik(0)Z Nk .

(14.81)

It follows that

Zkin = Vk

Ik(0)
= Zkk (14.82a)

Vp

Vk
= Z pk

Zkk
. (14.82b)

The relative amplitudes of the voltages immediately indicate which mutual impedances
are large enough to be important, and the relative phases need be measured only for
these.

Let the open circuits in the elements other than k be provided by identical sections
of transmission line that are terminated in short circuits. It follows from (14.54a) that
the transmission line may be either λ/4 or 3λ/4 in length, and (14.53) suggests that the
apparent voltages across the loads can be measured by a probe placed at a distance w =
λ/2 from the line–load junction. Thus, if a section of transmission line is assembled
with a short circuit at w = 3λ/4 and a probe at w = λ/2, the apparent driving-point
voltages can be measured by interchanging this measuring section with the other loads.
When the short circuit is removed, the measuring section can be incorporated in the
line feeding the driven element and used to measure Vk . Note that the probe must be
loosely coupled to the line and the electrical distances carefully adjusted. A coaxial
measuring section for use with this procedure is shown in Fig. 14.8.

For the measurement of admittances, one element is driven while the others are
short-circuited. From (14.73) it is seen that

Ykin = Ik(0)/Vk = Ykk (14.83a)

Ip(0)/Ik(0) = Ypk/Ykk . (14.83b)
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Figure 14.8 Coaxial measuring section. For apparent open-circuited load voltages: wp = λ/2,
ws = 3λ/4. For apparent open-circuit load currents: wp = λ/4, ws = λ/2.

If a current probe is used in the measuring section, it must be placed at w = λ/2, with
the short circuit at w = λ. However, from (14.53c) with βw = π/2, it is seen that

V (λ/4) = j I (0)Rc (14.84)

so that a voltage probe may be used at w = λ/4 and the short circuit placed at w =
λ/2.

14.6 Theory and properties of probes

Successful techniques for sampling fields, currents and charges must be based on
the responses of physically real probes, not ideal infinitesimal electric and mag-
netic doublets. Electric-field or charge probes are usually one-dimensional, short
thin dipoles or monopoles that have a simple behavior without serious errors. The
usual magnetic-field or current probes, on the other hand, are small loops that have
complicated behavior because they are two-dimensional and can be excited in more
than one mode. For electrically small loops only the first two modes are important.
Because of the manner in which current is distributed around the loop, they are called
the circulating or transmission-line mode and the dipole mode, respectively. In the
transmission-line mode, there is a continuous current circulating around the loop;
currents on opposite sides are equal but in opposite directions in space. In the dipole
mode, currents on opposite sides are equal but in opposite directions around the loop,
hence in the same direction in space; there is no net circulating current and the probe
resembles a small folded dipole. As is shown below, currents in the transmission-line
mode are related to the amplitude of the magnetic field at the center of the loop;
currents in the dipole mode are related to the amplitude of the electric field at the center
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of the loop. Generally, currents in both modes can maintain a potential difference
across a load. Hence, when the objective is to measure magnetic fields, the presence
of dipole-mode currents in the loop may introduce an error that must be eliminated or
corrected.

Charge or electric-field probes

To examine the properties of a small charge or electric field probe17 consider the short,
thin, center-loaded dipole in a linearly polarized field of Ei volts per meter shown in
Fig. 14.9a (see also Fig. 14.10a). In the figure Ei and Ei

p are in the plane wave front
perpendicular to the propagation vector k; Ei

p and k are in the plane containing the
axis of the antenna. The equivalent circuit, Fig. 14.9b (see also Fig. 14.10b), consists
of a Thévenin generator of voltage Vg(ZL = ∞) in a series combination with the
load impedance ZL and the input impedance of the antenna Z0. Vg(ZL = ∞) is the
open-circuit voltage at the terminals. It is given by

Vg(ZL = ∞) = −2he(�)Ei cosψ, (14.85)

where he(�) is the complex effective half-length of a short dipole and Ei cosψ =
Ei

p is the projection of Ei onto the plane containing the axis of the antenna and the
direction of advance of the incident plane wave through the center of the antenna. The
load current is

IL = Vg(ZL = ∞)

Z0 + ZL
= −2he(�)Ei cosψ

Z0 + ZL
= Sc Ei

p, (14.86)

where

Sc = −2he(�)

Z0 + ZL

is a sensitivity constant. As indicated in (14.86), the load current is proportional to
the average tangential electric field along the dipole. Directions of the field can be
determined by rotating the probe until IL is maximum. If the incident electric field is
elliptically polarized, it can be resolved into two linearly polarized components along
the major and minor axes of the ellipse and an open-circuit voltage defined for each.
The total current is the algebraic sum of the currents due to each generator.

For many applications a short monopole over a conducting surface is an effective
electric field probe. Such a probe is easily made by extending the inner conductor of
a coaxial line. Equations (14.85)–(14.86) still apply if the appropriate value of Z0 is
used. For a monopole of length h over a ground plane, the input admittance is twice
that of a dipole of the same thickness and length 2h. With either dipole or monopole

17 See [10], p. 184 and p. 475, [22] and [23].
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Figure 14.9 Center-loaded receiving dipole for electric field probe. (a) Idealized with no feeding
lines; (b) idealized equivalent circuit.
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Figure 14.10 Center-loaded receiving dipole for electric field probe. (a) Actual with feeding lines;
(b) actual equivalent circuit.

probes, most errors of measurement are introduced because the probe is too long or
bent or both.

Computed and measured sensitivities Sc of some monopole probes are given in Fig.
14.11. Usually, the probe is loaded by a section of transmission line terminated in a
matched detector so that ZL can be calculated from (14.39), (14.42) or (14.46a). The
complex electrical effective half-length of a short dipole is

β0he(�) = 1
2β0h sin�. (14.87a)

The input impedance of a short dipole, β0h ≤ 1, with � = 2 ln(2h/a) = 10 is [10]

Z0 = 18.3β2
0 h2(1 + 0.086β2

0 h2)− j (396.0/β0h)(1 − 0.383β2
0 h2). (14.87b)

When β0h ≤ 0.5 and a � h, the reactance is quite accurately given by

X0
.= −60(�− 3.39)

β0h
(14.87c)

and the resistance by

R0
.= 20β2

0 h2(1 + 0.133β2
0 h2). (14.87d)
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Figure 14.11 Relative sensitivity S = Sc of monopole probes (Whiteside).

If terminal-zone effects are significant, account must be taken of them in determining
the apparent resistance and reactance.

Current or magnetic-field probes

To illustrate the important features of small loops as probes,18 consider an unloaded
square loop of side w, and perimeter l immersed in a linearly polarized electromagnetic

18 [22] p. 270, [23], [24], [25] and [26].
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Figure 14.12 Loop probe in linearly polarized field. (a) Coordinates; (b) even magnetic field; (c)
odd magnetic field; (d) singly-loaded loop; (e) doubly-loaded loop.

field as shown in Fig. 14.12a. A convenient starting point in the analysis is the integral
form of the Maxwell equation, ∇ × E = − jωB together with B = ∇ × A. That is∮

s
E · ds = jω

∫ ∫
S

n̂ · B d S = jω
∮

A · ds, (14.88)

where s is measured along the contour of the loop, S is the plane area bounded by the
contour, n̂ is a unit normal to this area in the right-hand screw sense with respect to
integration around s, E is the complex amplitude of the total electric field and B of
the total magnetic field at any point on the surface S of the loop. The radius of the
wire, a, is assumed small, so that a quasi-one-dimensional analysis is adequate. The
analysis is no more complicated for a rectangular than for a square loop, but the latter
can be shown to have the optimum shape for minimizing averaging errors in a general
incident field. E on the surface of the wire can be related to the total axial current
by E · ds = zi I ds where zi is the internal impedance per unit length of the wire. In
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general, it is convenient to treat the total field in two parts, the incident field and the
reradiated field maintained by the currents induced in the loop, i.e. E = Ei +Er . With
these relations and (1.23a), (14.88) becomes

− jω
∫ ∫

S
n̂ · Bi d S =

∮
s

zi I (s) ds + jωµ0

4π

∮
s

∮
s

I (s′)
e− jβ0 R

R
ds′ · ds, (14.89)

where β0 = 2π/λ and R is the distance from the element ds′ at s′ along the axis of
the wire to the element ds on its surface. At this point, the assumption is usually made
that the loop is sufficiently small to replace Bi by its value at the center of the loop and
I (s) by a constant I . Actually a more careful treatment is often required.

Suppose that Bi can be resolved into an even and an odd part with respect to an axis
through the center of the loop. For example, if the loop lies in the yz plane and Bi is a
function of y only and is directed parallel to the x-axis as in Fig. 14.12, the even and
odd parts of Bi with respect to y are

Bi = Bi
T + Bi

D (14.90)

even: Bi
T (y) = 1

2 [Bi (y)+ Bi (−y)] (14.91)

odd: Bi
D(y) = 1

2 [Bi (y)− Bi (−y)] (14.92)

with the following symmetry conditions:

Bi
T (−y) = Bi

T (y); Bi
D(−y) = −Bi

D(y). (14.93)

The subscripts T and D denote the transmission-line and dipole modes of the induced
currents.

The electric field is related to the magnetic field by the Maxwell equation

Ei = j

ωµ0ε0
∇ × Bi . (14.94)

Since Ei is obtained from the first spatial derivative of Bi , Ei is odd when Bi is even,
and vice versa. That is,

Ei
T (−y) = −Ei

T (y); Ei
D(−y) = Ei

D(y). (14.95)

Note that Bi
T

.= x̂Bi
0 over the area bounded by the loop when β0w � 1; the current,

IT (s), is, then, essentially constant around the loop as indicated in Fig. 14.12b. With
the symmetry conditions (14.91) and (14.94), (14.89) becomes

− jωBi
0S = IT

{∮
s

zi ds + jωµ

4π

∮
s

∮
s

e− jk R

R
ds′ · ds

}
= IT Z0. (14.96)
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The quantity in braces in (14.96) is the impedance Z0 = Y−1
0 of the loop with constant

current.19 Therefore

IT = IT (0) = − jωBi
0Y0S = λSB(cBi

0), (14.97)

where the sensitivity constant SB for the unloaded loop has been introduced. It is
defined by

SB = − jkSY0/λ (14.98)

and depends only on the geometry of the probe. The magnetic field is conveniently
multiplied by c = 3 × 108 m/s to give it the same dimensions as Ei . Note that the
current IT is directly proportional to and, hence, a measure of the incident magnetic
field Bi

0 = Bi
T (0) at the center of the loop.

Bi
D(y) is odd in y and therefore zero at the center of the loop; it makes no

contribution to the surface integral in (14.89). The associated electric field Ei
D in

(14.95) has a non-zero value at the center of the loop and is approximately constant
over the space occupied by the small loop. It maintains equal and co-directional
currents in the two sides of the loop which are parallel to the z-axis and hence parallel
to Ei

D as shown in Fig. 14.12c. These dipole-mode currents are zero at s = ±l/4
(y = 0, z = ±w/2). In so far as they are concerned, the loop could be cut at these
points and treated as an array of two bent receiving antennas. The current at the center
of each side is

ID(0) = heDYD Ei
0 = λSE Ei

0, (14.99)

where heD is the effective length of each half of the array for the dipole mode, YD

is the input admittance at the center of each antenna when both are driven with equal
and co-directional currents, and Ei

0 = Ei
0(0) is the electric field at the center of the

loop. The electric sensitivity constant SE for the unloaded loop has been introduced in
(14.99). It is defined as follows:

SE = heDYD/λ. (14.100)

Note that ID(0) is proportional to and, therefore, a measure of the incident electric
field Ei

0 at the center of the loop.
Transmission-line and dipole-mode currents have the following symmetries with

respect to the anti-clockwise direction:

IT

(
s + l

2

)
= IT (s); ID

(
s + l

2

)
= −ID(s). (14.101)

19 See Chapter 6 of [27].
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Hence, IT (s) corresponds to the zero-sequence current I (0)(s), and ID(s) to the first-
sequence current I (1)(s). Higher-order sequence currents are assumed to be negligible
in a sufficiently small loop. The total currents at points s and s + l/2 in the loop
are

I (s) = IT (s)+ ID(s) (14.102)

I

(
s + l

2

)
= IT (s)− ID(s). (14.103)

A very important fact is now evident. The magnetic field that contributes to the
surface integral is related only to loop currents in the transmission-line (zero-sequence)
mode and not to those in the dipole (first-sequence) mode. Conversely, if the magnetic
field at the center of the loop is to be determined from the current induced in the loop,
measurements must involve currents in the transmission-line mode only.

When a small loop is used as a probe, the quantity of primary concern is the load
current. Let a load ZL be located at s = 0, as shown in Fig. 14.12d. The loaded
loop can be analyzed by replacing the load by a Thévenin generator of voltage V =
−IL(0)ZL , where IL(0) is the current in the load. This generator maintains a current
V Y (s) = −I (0)ZLY (s) where Y (s) is the input admittance when the loop is driven at
the point s. The total current at s = 0 is then

IL(0) = IT (0)+ ID(0)− IL(0)ZLY (0). (14.104)

With (14.97) and (14.99), it follows that

IL(0) = λS(1)
B cBi

0 + λS(1)
E Ei

0, (14.105)

where the sensitivity constants for the singly-loaded loop are defined as follows:

S(1)
B = YL

YL + Y (0)
SB (14.106)

S(1)
E = YL

YL + Y (0)
SE . (14.107)

The importance of the location of the load with respect to the incident fields is
now evident. When the load is located at s = l/2 instead of s = 0 (a change that is
equivalent to rotating the loop through 180◦ about the x-axis), the input admittance of
the loop is still the same but the current is given by (14.103) so that

IL

(
l

2

)
= λS(1)

B cBi
0 − λS(1)

E Ei
0. (14.108)

This equation and (14.105) are useful for determining the relative importance of ID .
If the load current remains constant when the probe is rotated 180◦ about the x-axis,



516 Techniques and theory of measurements

ID is negligible and IL = IT . If the load current does not remain constant, readings of
amplitude and phase may be taken in both positions. Then

IT = λS(1)
B cBi

0 = 1
2

[
IL(0)+ IL

(
l

2

)]
(14.109a)

ID = λS(1)
E Ei

0 = 1
2

[
IL(0)− IL

(
l

2

)]
. (14.109b)

Instead of rotating the probe and taking two readings of amplitude and phase, one may
use two loads with a hybrid junction to evaluate the sum and the difference.

In the simple example of a linearly polarized electric field indicated in Fig. 14.12,
ID is easily eliminated by a simple rotation of the loop until the side containing the
load is perpendicular to the electric field. That is, the load is located at s = ±l/4 in
Fig. 14.12. However, when the electric field is elliptically polarized this expedient is
unavailable and a doubly-loaded probe is probably the simplest solution in spite of the
increased constructional difficulties.

The analysis of a doubly-loaded loop with identical loads ZL at s = 0 and s = l/2,
as shown in Fig. 14.12e, parallels that of the singly-loaded loop. The two load currents
are

IL1 = I (0) = IT (0)+ ID(0)−
[

I (0)Y (0)+ I

(
l

2

)
Y

(
l

2

)]
/YL (14.110a)

IL2 = I

(
l

2

)
= IT (0)− ID(0)−

[
I (0)Y

(
l

2

)
+ I

(
l

2

)
Y (0)

]
/YL . (14.110b)

The driving-point admittances Y (0) and Y (l/2) may be resolved into the zero- and
first-sequence admittances Y (0) and Y (1). These can be introduced as follows:

Y (0) = Y (0) + Y (1); Y

(
l

2

)
= Y (0) − Y (1).

Let

I� = IL1 + IL2 = 2YL

YL + 2Y (0)
IT (0) = λS(2)

B cBi
0 (14.111a)

I� = IL1 − IL2 = 2YL

YL + 2Y (1)
ID(0) = λS(2)

E Ei
0. (14.111b)

The sensitivity constants for the doubly-loaded probe are defined as follows:

S(2)
B = 2YL

YL + 2Y (0)
SB (14.111c)

S(2)
E = 2YL

YL + 2Y (1)
SE . (14.111d)
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In actual practice, the hybrid junctions used to perform the summing and differencing
operations will have good but not infinite isolation, so that the actual measurable
currents are

IB = I� + γ I� = λS(2)
B cBi

0 + γ λS(2)
E Ei

0 (14.112a)

IE = I� + γ ′ I� = λS(2)
E Ei

0 + γ ′λS(2)
B cBi

0, (14.112b)

where γ and γ ′ are the coefficients of cross-coupling between the adding and
subtracting circuits. It is assumed that they are small.

In the measurement of the magnetic field (especially near the end of a dipole
antenna where the polarization of the electric field is highly elliptical) it is particularly
important that those parts of the current in the load that are excited in the dipole mode,
namely ID , be negligible. To provide a measure of the ability of a probe and loading
system to discriminate against such currents, a system error ratio ε(n) can be defined
as the ratio of the output current due to unit parallel electric field (Ei

0 = 1 volt/meter)
to the output current due to unit normal magnetic field (cBi

0 = 1 volt/meter),

ε(1) = S(1)
E /S(1)

B (14.113a)

ε(2) = S(2)
E /S(2)

B , (14.113b)

where the superscript indicates the number of loads in the probe. Note that (14.113b)
applies to the combination of the probe and its summing and differencing circuits. The
actual ratio of the two currents depends on the ratio of the fields Ei

0/cBi
0 and generally

equals ε(n) only in a plane-wave field. For a system to be capable of measuring the
magnetic field with an error of no more than 10%, it is necessary that ε(n) ≤ −20 dB,
where ε(n) in dB = 20 log10 ε

(n).
So far, the discussion has been concerned with square loops, although circular loops

are often more desirable. Actually, a comparable analysis of circular loops follows
precisely the steps outlined for the square loop including the definition of sensitivity
constants, error ratios, etc; differences between the two shapes arise in the theoretical
expressions for evaluating the sensitivity constants.

The final step in the practical analysis of loops as probes is to obtain expressions for
the sensitivity constants. Consider first the square loop. Y0, required in the definition
of SB in (14.98), may be found from (14.96) by an expansion of the exponential in a
power series. The result for a loop of side w and wire radius a is [26]

Y0 = − jπ

ζ0β0w(�− 4.32 + 0.37β2
0w

2)
, (14.114)

where ζ0 = √
µ0/ε0

.= 120π ohms and � = 2 ln(4w/a). Hence

SB = −πw

λζ0(�− 4.32 + 14.6w2/λ2)
. (14.115)
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The unloaded electric sensitivity SE is defined by (14.100) in terms of heD and YD . The
effective length for the dipole mode is found by cutting the loop at s = ±l/4, treating
the two halves as a transmitting array, and applying the Rayleigh–Carson reciprocal
theorem.20 The result is

heD = 2

I0

∫ l/4

0
I (s) ds, (14.116)

where I (s) is the transmitting current when the array is driven with co-directional
currents, and I0 is its value at the driving point. To zero order, this current is

I (z) ≈ j2πV

ζ0(�− 3.17)

sinβ0(w − |z|)
cosβ0w

. (14.117)

With (14.117), (14.116) becomes

heD = cos 1
2β0w − cosβ0w

β0 sin 1
2β0w

. (14.118)

The input admittance is21

YD = j2π tanβ0w

ζ0(�− 3.17)
. (14.119)

It follows that for the square loop,

SE = j

ζ0(�− 3.17)

tanβ0w(cos 1
2β0w − cosβ0w)

sin 1
2β0w

. (14.120)

In order to calculate the sensitivity constants SE , SB for loaded loops, note that Y (1) =
YD/2 and Y (0) ≈ Y0 so that the values from (14.119) and (14.114) can be directly
substituted into the following equations for S(2)

B and S(2)
E : (14.106), (14.107), (14.111c)

and (14.111d).
For a circular loop of diameter w and wire radius a,

Y0 = − j4

ζ0β0w(�− 3.52 + 0.33β2
0w

2)
(14.121)

and

SB = −πw

λζ0(�− 3.52 + 13.0w2/λ2)
, (14.122)

where � = 2 ln(πw/a).

20 [10], p. 568. 21 [10], p. 568.
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The unloaded electric sensitivity is found from the response of the loop to an electric
field that is uniform in the plane of the loop and pointing in the z-direction. The result
is22

I (φ) = Ei
z0

w

jζ0a1
cosφ, (14.123a)

where φ is the angular coordinate measured from the y-axis and a1 is an expansion
parameter calculated by Storer [29]. For w ≤ 0.1λ,

a1
.= −(�− 3.52)(1 − β2

0w
2/4)/πβ0w (14.123b)

and

SE = j2π2w2/λ2

ζ0(�− 3.52)(1 − 9.8w2/λ2)
(14.123c)

for the circular loop. Zero- and first-phase-sequence admittances are again needed for
evaluating the sensitivity constant for the loaded loop. They can be found from Storer’s
results [29]. The expressions are complicated but subject to the conditions w ≤ 0.03λ
and YL > 10Y (1), Y (0) and Y (1) are

Y (0) .= − j2λ[πwζ0(�− 3.52)]−1 (14.124a)

Y (1) .= j4πw[λζ0(�− 3.52)]−1. (14.124b)

Generally (14.114)–(14.124b) provide quite accurate results for loop diameters or
sides w ≤ 0.03λ and serve as a useful guide for w ≤ 0.1λ. When w ≤ 0.03λ, most
of the expressions can be simplified. Note that Y (0) � Y (1). They are summarized in
Table 14.1.

The simplified relations of Table 14.1 reveal that the error ratio ε(1) of singly-loaded
probes is independent of the load and approximately a linear function of the length
of the side for square probes and of the diameter for circular probes. The magnetic
fields measured with a circular loop will have an error less than 10% provided w ≤
0.016λ. At 600 MHz this corresponds to w ∼ 0.5 cm; at 3000 MHz to w ∼ 1 mm. It is
obviously advantageous to make such measurements at frequencies below 1000 MHz.

Sensitivities and error ratios as functions of loop size are shown in Fig. 14.13 for
typical square loops, in Fig. 14.14 for circular loops. The sensitivities are in dB referred
to 1 siemens, the error ratios are in dB referred to 1, and magnitudes are absolute,
phases are relative. Important characteristics of the graphs are the relatively slow
increase in sensitivity as w/λ increases beyond about 0.03 or 0.04, and the minimum
of ε(2) at about w/λ = 0.04, indicating that this size may be a good compromise
for probes. From the curves of Figs. 14.13c and 14.14c, a singly-loaded loop with
dimensions as large as w/λ = 0.1 is seen to respond nearly as well to the electric field
in the dipole mode as to the normal magnetic field in the circulating mode.

22 [28], Chapter 10.
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Table 14.1. Probe characteristics of electrically small loops

Square loop, side w, w ≤ 0.03λ

S(1)B = YL

YL + Y (0)

−πw

λζ0(�− 4.32)
S(1)E = YL

YL + Y (0)

j3π2w2

λ2ζ0(�− 3.17)

ε(1) = − j3π
w

λ

�− 4.32

�− 3.17

Y (0) = − jλ[2wζ0(�− 4.32)]−1 Y (1) = j2π2w[λζ0(�− 3.17)]−1

� = 2 ln(4w/a)

Circular loop, diameter w, w ≤ 0.03λ

S(1)B = YL

YL + Y (0)

−πw

λζ0(�− 3.52)
S(1)E = YL

YL + Y (0)

j2π2w2

λ2ζ0(�− 3.52)

ε(1) = − j2π
w

λ

Y (0) = − j2λ[πwζ0(�− 3.52)]−1 Y (1) = j4πw[λζ0(�− 3.52)]−1

� = 2 ln(πw/a)

Square and circular loops, w ≤ 0.03λ

S(2)B = 2
YL + Y (0)

YL + 2Y (0)
S(1)B S(2)E = 2

YL + Y (0)

YL + 2Y (1)
S(1)E

ε(2) = YL + 2Y (0)

YL + 2Y (1)
ε(1)

A comparison of the theoretical and experimental results in Figs. 14.13–14.14 shows
good agreement and suggests that the theoretical results are adequate guides for the
design of probes. Graphs of the limiting loop sizes and wire thicknesses required to
keep error ratios below given limits are in Fig. 14.15 for singly-loaded loops, in Fig.
14.16 for doubly-loaded loops. In Fig. 14.16, γ , the cross-coupling coefficient between
the adding and subtracting circuits, is assumed to be 1; in an actual system it will be
at least −20 dB, reducing the indicated error ratio by this amount. Since the effects of
changes in wire thickness and load resistance are similar for circular and square loops,
the curves of Figs. 14.15 and 14.16 provide a useful qualitative guide for the former.

14.7 Construction and use of field probes

In many applications probes are used either in a free-standing arrangement or in
conjunction with an image plane.23 In the former, shown in Fig. 14.17, the probe

23 See [10], p. 127 and [30].





522 Techniques and theory of measurements

180

240

270

–30

–10

Ph
as

e 
(d

eg
re

es
) 

ar
g

0 0.05 0.10

Theory
Singly loaded
Doubly loaded

Experiment

ZL

λa/

γ

= 100 ohms

= 2 × 10–3

= –26 dB

–20

210

M
ag

ni
tu

de
 o

f 
(d

ec
ib

el
s)

ε
ε

Loop side (wavelength) w/λ

(c)
0

Figure 14.13 (c) Typical error ratios of square loops.
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Figure 14.15 Maximum dimension of singly-loaded square loop for given error ratio |ε(1)|.
Theoretical curves independent of ZL (Whiteside).

is supported at the end of a long rigid tube which contains the feeder lines to the
receiving equipment. The supporting tube is attached by a movable carriage to a track
on a pivoting arm that permits the accurate placement and orientation of the probe. A
loop is usually mounted with its plane perpendicular to the axis of the supporting tube.
The free-standing arrangement is versatile and useful for measuring near-zone fields
and surface currents on three-dimensional models. A principal disadvantage is that the
supporting tube is always present in the field. Its disturbing effects can be reduced with
quarter-wave sleeves and absorbing material. An alternative procedure incorporates a
rectifying crystal directly in the probe and makes use of resistive wire to measure the
d.c. voltage.

The image-plane arrangement, Fig. 14.18, is well-suited for measuring the surface
currents on symmetrical models that can themselves be mounted on an image plane. It
has the advantage that all cables and supports are contained within the metal walls of
the object under investigation or behind the image plane. The probe is mounted at the
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Figure 14.17 Arrangement for free-space probe measurements.
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Figure 14.18 Arrangement for probe measurements on an image plane.

end of a tube that serves both to move the probe and as the outer conductor of a coaxial
line that connects the probe to its receiving system. The entire assembly is contained
within a second slotted tube that serves to guide the probe at a constant height along
the slot. In an alternative arrangement that permits the probe to move more easily along
curved surfaces, the probe is mounted in a short cylindrical block, and a flexible feed
line is used in conjunction with only the outer slotted tube, which can be bent to guide
the probe along the surface. If the slot is parallel to the direction of the current, it has
no significant effect. If it cuts the lines of flow, it must be covered with conducting tape
except in the immediate vicinity of the probe.

Examples of probes that may be used in a free-standing arrangement are shown in
Fig. 14.19. A balanced charge probe consists of an electrically short dipole formed
by 90◦ bends in the conductors of a two-wire transmission line, or by bends in the
inner conductors of a shielded-pair line or in a pair of adjacent miniature coaxial lines
(Fig. 14.19a). Loop probes (Figs. 14.19b and 14.19c) are made one-half from a solid
brass rod and one-half from a miniature rigid coaxial line. At the junction, which is
the location of the load, a small gap is left in the outer conductor and insulator of
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Figure 14.19 Probes for free-space system. (a) Balanced charge probes; (b) singly-loaded square
loop; (c) doubly-loaded circular loop; (d) bridged loop.

the coaxial line. Typical gap widths are 1–2 mm. The load ZL is the impedance seen
looking into the coaxial line at the gap. For singly-loaded loops, the gap is located
symmetrically with respect to the axis of the supporting tube. Typical dimensions of
the coaxial line are: outer diameter 0.032 inch, wall thickness 0.004 inch, and an inner
conductor of 34 gauge wire. The characteristic impedance is 50 ohms. With doubly-
loaded loops, the vertical supporting tube causes some degradation of the error ratio
and the bridged loop shown in Fig. 14.19d may be more satisfactory. The mechanical
construction must preserve a high degree of symmetry.

Probes for use with the image-plane technique (Fig. 14.20) have the same ba-
sic construction as those just described, except that the charge probes are usually
monopoles and the current probes are half-loops. The half-loops may be either singly-
or doubly-loaded.
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Figure 14.20 Probes for image-plane equipment. (a) Charge probe; (b) current probe; (c) probe
socket.

The probes just described are shielded loops. Open-wire loops could be used instead
of shielded loops,24 but they are less convenient in the elimination of dipole-mode
currents. With shielded loops the currents induced on the outside of the shield maintain
a potential difference across the gap which is small and located at the point where
dipole-mode currents vanish. If the gap is not at this point a dipole-mode voltage is
also developed across the load.

Several simple tests can be used to reveal the sensitivity of loop probes to dipole-
mode currents.25If the current in the load circuit of the probe is constant under a 180◦

rotation of the probe, dipole-mode currents are negligible. If the load current is not
constant, readings must be taken with the probe in each position and averaged. With
the image-plane technique, the probe cannot be rotated but can be tested in a short-
circuited coaxial line. Let the probe current be measured with the probe successively
at w = w0 = λ/4 and w = w1 = λ/2. Then

ε
(1)
dB = 20 log |IL(w0)/IL(w1)|.

When doubly-loaded probes are used with summing and differencing circuits, the
output currents must be balanced because neither the probe nor the attached lines

24 See [9], p. 209. 25 [23], Chapter VII, p. 5.
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and loads are perfectly symmetrical. For this purpose, variable attenuators and phase
shifters (or line stretchers) are used in the feed lines. The differencing circuit may
be balanced by placing the probe so that it is symmetrically excited and adjusting
the attenuators and phase shifters until the difference current is constant under
180◦ rotations of the probe. An alternative procedure is to measure individually the
difference currents I�1 and I�2 due to the probe loads 1 and 2 when the probe is placed
so that it is symmetrically excited. The probe is rotated 180◦ and the new currents I ′�1
and I ′�2 are measured, and the attenuators and phase shifters adjusted until

I�2/I�1 = I ′�1/I ′�2. (14.125)

Similar procedures can be used to balance the summing circuits. If a single hybrid
junction is used to provide the outputs for both the sum and difference, the balancing
adjustment cannot be optimized for both arms simultaneously, but a satisfactory
compromise can usually be found.

The measurement of surface distributions of current and charge on good conductors
actually involves the measurement of magnetic and electric fields near the surface.
Most of the current in a good conductor at high frequencies is concentrated within a
very small distance of the surface, ds , called the skin depth and given by26

ds = (2/ωµσ)1/2. (14.126)

Such a thin layer of current is well approximated by the surface density K on a perfect
conductor and is related to the total magnetic field at the surface by the boundary
condition

n̂ × B = t̂Bt = −Kµ0. (14.127)

Similarly, the surface charge η is related to the total electric field by

n̂ · E = En = −η/ε0, (14.128)

where n̂ is an outward unit normal from the surface. On thin cylinders, K and η have
no angular variation around the cylinder, so that the total axial current and charge
per unit length are I(z) = 2πaK(z) and q(z) = 2πaη(z). Except near the ends or
edges of conductors distributions of Bt and En are often unchanged at very small
fractions of a wavelength from the surface, so that probes placed sufficiently near the
surface and moved parallel to it sample fields which are proportional to K and η. In
the image-plane method, the effective center of the probe is usually quite near the
surface; in the free-standing method, it is at least a probe radius away. At distances
from a surface that are less than a few probe diameters, a probe is tightly coupled to its

26 [23], Chapter VII, p. 5.
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Figure 14.21 (a) Elliptically polarized electric field near quarter-wave monopole over an image
plane; (b) probe orientations for measurements of Figs. 14.22 and 14.23.

image so that its distance from the surface must be kept constant. Since the coupling
between a probe and an ideal image does not exist near edges and corners, meaningful
measurements cannot be made.

The most difficult fields to measure are linearly polarized magnetic fields associated
with elliptically polarized electric fields. Figures 14.21–14.23 show the effects of
size and orientation of probes in such fields and illustrate the effective use of singly-
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Figure 14.22 Relative magnetic field measured with small probe (square loop) (Whiteside).

and doubly-loaded loops to make measurements. The near-zone elliptically polarized
electric field of a quarter-wave monopole over an image plane is shown in confocal
coordinates in Fig. 14.21a.27 In Fig. 14.22 are graphs of measurements made along
the coordinate ke = 2 with a singly-loaded square loop with w/λ = 0.013, oriented
in the four positions indicated in Fig. 14.21b. Owing to its small size, this loop
was relatively insensitive to dipole-mode fields and its orientation with respect to

27 See Chapter 5 in [10].



533 14.7 Construction and use of field probes

0 30 60 90

Asymptotic angle (degrees) arc sin kh

R
el

at
iv

e 
ph

as
e 

ar
g 

B
 (

de
gr

ee
s)

R
el

at
iv

e 
m

ag
ni

tu
de

  B

0

100

200

0

50

100

0 30 60 90

Single load Double load

ke
w

= 2.0

λ = 0.100

Probe orientation

Right
Left
Out
In

Figure 14.23 Relative magnetic field measured with large probe (square loop) (Whiteside).

the electric field was not critical. In contrast, for a loop with w/λ = 0.1, the
orientation is seen in Fig. 14.23 to be very important. When the probe is oriented in the
positions marked “In” and “Out” the dipole-mode current excited by the component
Eε maintains a voltage across the load, that excited by Eρ does not. In the positions
marked “Right” and “Left”, the dipole-mode currents due to Eρ maintain a voltage
across the load, those due to Eε do not. Since Eε is nearly proportional to B�,
whereas Eρ is not, no significant error is introduced in a relative measurement with



534 Techniques and theory of measurements

the probe in the “In” and “Out” positions, a very large error in the “Right” and
“Left” positions. The doubly-loaded loop with its summing and differencing circuits
is seen to provide accurate results regardless of orientation even for sizes as large as
w/λ = 0.1.

14.8 The measurement of sharp resonances in circular arrays

The objective of the experiment to be described was to determine if the very sharp
resonances that had earlier been predicted theoretically could be found in a physically
real array. The array consisted of equally spaced monopoles over a ground plane.
Only one of the elements was driven. The experimental investigation presented
special difficulties because of the very high values of conductance at the resonant
points of the array and its rapid change with frequency due to the sharpness of the
resonance. Theoretical investigations predicted maximum conductance values of 700–
800 millisiemens with adjacent resonant maxima separated by as little as 2.4 MHz.
The theoretical investigations also indicated that the number, length, thickness, and
spacing of the array elements would be very critical. Conductive losses in the elements
and the transmission line as well as contact resistance between the elements and
the ground plane and end effects of the transmission line had to be considered
to obtain good agreement between results from the experimental and theoretical
models.

The measurement procedure

The measurement procedure adopted [31,32] was a variation of the multiple-probe
method with a single probe used at four different probe stations. A complete set
of measurements of the admittance terminating the transmission line was taken
in very small frequency steps with the probe at one station, and then at another
station. This traced out the resonance curve of the array, permitting the maximum
of the conductance curve – and hence the resonant frequency – to be accurately
located. The probe was then moved to a different station and the measurements
repeated at the same set of frequencies. This procedure minimized possible er-
rors due to moving the probe to its different stations and gave a relatively high
data rate. The RF source and receiver were part of an integrated vector network
analyzer that used a synthesized source providing a resolution of 1 Hz over the
range of 300 kHz to 3 GHz. The measurement procedure was possible because
of the high stability and repeatability of the synthesized signal generator and re-
ceiver.
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Ohmic losses on the transmission line were accounted for by using the hyperbolic
form of (14.55b):

Ya = Yc

[
cosh γw2 − VR cosh γw1

− sinh γw2 + VR sinh γw1

]
, (14.129a)

where γ is the complex propagation constant of the line, defined by

γ =
√
(R + j2π f L) j2π f C . (14.129b)

R is the resistance per unit length due to ohmic losses on the walls of the brass
transmission line that was used,

R = 1

πdsσB

(
1

2a
+ 1

2b

)
. (14.129c)

Here, ds is the skin depth, σB is the conductivity of brass, and a and b are, respectively,
the outer radius of the inner conductor and the inner radius of the outer conductor. L
and C are, respectively, the inductance and conductance per unit length of the line,
given by

L = µ0

2π
ln

b

a
, C = 2πε0

ln(b/a)
. (14.129d)

When ohmic losses are included, the characteristic admittance Yc of the line has a
small imaginary component given by

Yc =
√

j2π f C

R + j2π f L
. (14.129e)

The experimental model [32]

The theoretical calculations indicated that a large number of elements were required
to obtain the very sharp resonances, and 90 elements were chosen of which 89
were parasitic and one driven. The choice of element parameters was based on a
theoretical model but tempered by practical considerations of available ground plane
sizes, the frequency range of the available network analyzer, and reasonable matching
tolerances. The final element parameters were height h = 0.858 inch and diameter
2a = 0.25 inch; the array diameter was 2R = 40 inches, resulting in a spacing between
the elements of approximately d/λ = 0.3 at an average wavelength. With these
parameters, 13 resonances of interest were predicted with the lowest f33 = 2.55 GHz
and the highest f45 = 2.68 GHz.

The parameters of the parasitic elements are shown in Fig. 14.24. The elements were
hollow brass tubes with an inner diameter of 7/32 inch, resulting in a wall thickness
of 1/64 inch that provided an acceptable approximation to the zero thickness of the
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0.650″ 0.858″

Figure 14.24 Parasitic element (from [32]).

theoretical model. The elements were fastened to the ground plane with NC 6-32
screws to insure good contact with the ground plane. They were machined to a length
tolerance of ±0.001 inch. The evanescent fields inside the rods were estimated from
waveguide theory and found to decay rapidly.

The ground plane was a 60 inch by 60 inch piece of 1/4 inch aluminum jigplate.
Although losses in the ground plane were a concern and copper has a higher
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Brass supporting rings
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Ground plane

Styrofoam support

Holes for probe stations

Figure 14.25 The driven element (adapted from [32]). Note that the six possible distances between
the probe-station holes are all different.

conductivity than aluminum, the aluminum jigplate is more rigid, easier to machine,
much lighter, and its oxidation is easier to remove if necessary. The ground plane
containing the array rested on a larger aluminum table of 144 by 93 inches. With the
above array parameters, the smallest distance between the edge of the ground plane and
the array was 10 inches, or about 2.2 times the average wavelength of interest. The NC
6-32 tapped holes for the parasitic elements in the ground plane had radial tolerances
of ± 0.001 inch and angular tolerances of ± 0◦0′1′′. An additional hole of 0.75 inch
equal to the outer diameter of the transmission-line feeder was provided for the driven
element. A very precisely made jig that fitted over three adjacent elements was used
for the final location of each element. The driving-point conductance at resonance was
found to be very sensitive to the exact placement of the driven element.

The driven element was the 0.858-inch extension above the ground plane of the
0.25-inch diameter inner conductor of a coaxial line. The inner diameter of the outer
conductor of the line was 2b = 0.687 inch, resulting in a characteristic impedance of
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Figure 14.26 The probe (from [32]).

Zc = 60 ln(2b/2a) = 60 ohms or Yc = 1/Zc = 17 millisiemens. For the transverse
electromagnetic (TEM) propagation mode, the ohmic losses in the brass walls of the
line were on the order of 2 ohms. The inner conductor was supported by two brass
shorting plugs located before the feeding stub near the lower end of the line and a
styrofoam ring approximately 1 inch from the ground-plane end of the line, near a
voltage minimum. The cutoff frequency for the next higher propagating mode was
8 GHz, well above the operating frequency. Four 1/4-inch holes for probe stations were
provided in the outer conductor. Their distances from the end of the line were chosen
so that the distances between any pair would not be nλ/2 within the frequency interval
of interest, and so that the distance between each of the six possible measurement pairs
would be different. The line is shown schematically in Fig. 14.25.

The probe, shown in Fig. 14.26, extended through a block that had a curved inner
surface to be flush with the inner surface of the outer conductor of the line. Covers for
the three probe stations not in use at any given time were provided with similar curved
inner surfaces.

The measured results are presented in Section 12.7, where they are also compared
to theoretical results. Generally, there was very good agreement between theory and
experiment.



Appendix I
Tables of �d R, T (m) or T ′(m) and self- and mutual
admittances for single elements and circular arrays

Notation

The self- and mutual admittances are written in the form

Y1(m+1) = G1(m+1) + j B1(m+1)

with the self-admittance Y11 given by the row corresponding to m = 0, the first
mutual admittance Y12 by the row corresponding to m = 1, etc. A factor of 10−3

has been suppressed in the admittances; hence, tabulated values are in millisiemens.
The characteristic impedance of free space, ζ0, was taken to be ζ0 = 376.730 ohms.

Table 1. �d R, T (h) or T ′(h) and admittances for isolated antenna; N = 1, a/λ = 7.022 × 10−3

β0h h/λ �d R T (h) or T ′(h) G0 B0 B0 + 0.72
Real Imag.

1.200 0.1910 5.31670 0.27602 −0.74791 4.12999 9.59504 10.315
1.350 0.2150 5.69058 −0.37945 −1.16933 12.28333 9.12585 9.846
1.432 0.2280 5.88844 −0.98304 −0.87529 15.51296 2.93684 3.657
1.501 0.2390 6.05385 −1.13164 −0.36538 13.56922 −2.22898 −1.509
1.570 0.2500 6.21771 2.65166 3.79157 10.17040 −4.43037 −3.710
1.652 0.2630 6.37511 −0.78390 0.20461 7.09591 −4.77136 −4.051
1.796 0.2860 6.54009 −0.51411 0.30471 4.24183 −3.92426 −3.204
1.997 0.3180 6.61380 −0.32658 0.30590 2.63298 −2.72756 −2.008
2.355 0.3750 6.44947 −0.19988 0.26239 1.63816 −1.33809 −0.618
2.751 0.4380 6.05835 −0.16459 0.21601 1.23747 −0.18730 0.533
3.141 0.5000 5.73687 −0.17204 0.17559 1.02096 1.00032 1.720
3.398 0.5410 5.66947 −0.19117 0.15329 0.91729 1.91899 2.639
3.649 0.5810 5.74850 −0.22145 0.14008 0.87181 2.99706 3.717
3.800 0.6050 5.86161 −0.24791 0.14155 0.91248 3.80520 4.525
3.926 0.6250 5.98717 −0.27769 0.15443 1.03854 4.65317 5.373

539
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Table 2. �d R, T ′(m) and admittances of circular array1 of N elements; a/λ = 7.022 × 10−3, h/λ = 0.25,
β0h = π/2, � = 8.54

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T ′(m) Im T ′(m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.21771 1.08745 2.72968 7.32201 −0.23458 6.29694 −7.25537 0.1875 2
1 6.21771 6.32221 1.96537 5.27186 −14.27616 1.02507 7.02079 0.1875 2
0 6.21771 0.89928 3.12073 8.37095 0.27016 6.92620 −5.08924 0.2500 2
1 6.21771 4.89530 2.04351 5.48146 −10.44863 1.44475 5.35939 0.2500 2
0 6.21771 0.74401 3.60819 9.67851 0.68667 7.71191 −3.72010 0.3125 2
1 6.21771 4.02973 2.14188 5.74531 −8.12687 1.96660 4.40677 0.3125 2
0 6.21771 0.68981 4.23444 11.35834 0.83205 8.70338 −2.84976 0.3750 2
1 6.21771 3.43500 2.25488 6.04843 −6.53158 2.65496 3.68181 0.3750 2
0 6.21771 0.88064 5.00919 13.43651 0.32017 9.91292 −2.50992 0.4375 2
1 6.21771 2.99078 2.38197 6.38933 −5.34001 3.52359 2.83009 0.4375 2
0 6.21771 1.53690 5.78029 15.50489 −1.44016 11.13910 −2.91835 0.5000 2
1 6.21771 2.63905 2.52512 6.77331 −4.39654 4.36579 1.47819 0.5000 2
0 6.21771 2.69527 6.08303 16.31694 −4.54733 11.76374 −4.08367 0.5625 2
1 6.21771 2.34955 2.68812 7.21053 −3.62001 4.55321 −0.46366 0.5625 2
0 6.21771 3.78922 5.55813 14.90897 −7.48172 11.31236 −5.22543 0.6250 2
1 6.21771 2.10691 2.87646 7.71574 −2.96914 3.59661 −2.25629 0.6250 2
0 6.21771 4.22845 4.62546 12.40720 −8.65991 10.35762 −5.54486 0.6875 2
1 6.21771 1.90584 3.09727 8.30803 −2.42981 2.04958 −3.11505 0.6875 2
0 6.21771 4.12243 3.84925 10.32511 −8.37552 9.66718 −5.19435 0.7500 2
1 6.21771 1.75053 3.35869 9.00926 −2.01319 0.65793 −3.18117 0.7500 2
0 6.21771 0.65962 1.97164 5.28868 0.91303 5.27747 −9.21309 0.1875 3
1 6.21771 6.32221 1.96537 5.27186 −14.27616 0.00561 5.06306 0.1875 3
0 6.21771 0.33433 2.29021 6.14320 1.78558 5.70204 −6.37056 0.2500 3
1 6.21771 4.89530 2.04351 5.48146 −10.44863 0.22058 4.07807 0.2500 3
0 6.21771 −0.08089 2.69241 7.22203 2.89935 6.23755 −4.45146 0.3125 3
1 6.21771 4.02973 2.14188 5.74531 −8.12687 0.49224 3.67541 0.3125 3
0 6.21771 −0.62328 3.27474 8.78406 4.35423 6.96030 −2.90297 0.3750 3
1 6.21771 3.43500 2.25488 6.04843 −6.53158 0.91188 3.62860 0.3750 3
0 6.21771 −1.33434 4.27609 11.47006 6.26158 8.08291 −1.47282 0.4375 3
1 6.21771 2.99078 2.38197 6.38933 −5.34001 1.69358 3.86720 0.4375 3
0 6.21771 −2.06303 6.38546 17.12817 8.21617 10.22493 −0.19230 0.5000 3
1 6.21771 2.63905 2.52512 6.77331 −4.39654 3.45162 4.20424 0.5000 3
0 6.21771 −0.52523 10.97641 29.44281 4.09124 14.62129 −1.04959 0.5625 3
1 6.21771 2.34955 2.68812 7.21053 −3.62001 7.41076 2.57042 0.5625 3
0 6.21771 7.51808 10.33528 27.72306 −17.48391 14.38485 −7.80740 0.6250 3
1 6.21771 2.10691 2.87646 7.71574 −2.96914 6.66911 −4.83826 0.6250 3

1 Note that T ′(m) = T ′(m)(λ/4).
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Table 2. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T ′(m) Im T ′(m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.21771 7.73778 4.56984 12.25800 −18.07322 9.62469 −7.64428 0.6875 3
1 6.21771 1.90584 3.09727 8.30803 −2.42981 1.31666 −5.21447 0.6875 3
0 6.21771 5.86472 2.79150 7.48783 −13.04899 8.50211 −5.69179 0.7500 3
1 6.21771 1.75053 3.35869 9.00926 −2.01319 −0.50714 −3.67860 0.7500 3
0 6.21771 0.40910 1.61526 4.33274 1.58500 4.23392 −9.94442 0.1875 4
1 6.21771 4.64950 2.06586 5.54141 −9.78933 0.70316 5.84226
2 6.21771 9.12118 0.56670 1.52011 −21.78403 −1.30749 −0.15509
0 6.21771 −0.01844 1.89994 5.09635 2.73183 4.80273 −6.56582 0.2500 4
1 6.21771 3.61790 2.21455 5.94025 −7.02217 0.71557 4.42065
2 6.21771 6.57371 0.83287 2.23406 −14.95077 −1.13752 0.45635
0 6.21771 −0.63097 2.25790 6.05652 4.37485 5.44649 −4.28694 0.3125 4
1 6.21771 2.96320 2.39158 6.41511 −5.26603 0.78932 3.84135
2 6.21771 5.09732 1.08085 2.89924 −10.99055 −0.96862 0.97909
0 6.21771 −1.59127 2.81668 7.55539 6.95074 6.25385 −2.36381 0.3750 4
1 6.21771 2.49201 2.60144 6.97803 −4.00212 1.01286 3.83811
2 6.21771 4.13220 1.30629 3.50394 −8.40172 −0.72418 1.63832
0 6.21771 −3.34395 4.05396 10.87422 11.65209 7.56365 −0.23979 0.4375 4
1 6.21771 2.12940 2.85620 7.66138 −3.02948 1.70415 4.55110
2 6.21771 3.44273 1.51270 4.05763 −6.55232 −0.09773 2.78968
0 6.21771 −6.93658 9.19894 24.67498 21.28884 11.57104 2.89748 0.5000 4
1 6.21771 1.85172 3.17452 8.51526 −2.28462 5.02408 6.60463
2 6.21771 2.91237 1.70695 4.57867 −5.12969 3.05578 5.18210
0 6.21771 12.59562 19.02475 51.03145 −31.10376 18.82977 −9.67092 0.5625 4
1 6.21771 1.67463 3.57861 9.59917 −1.80960 11.48554 −6.78576
2 6.21771 2.47658 1.89731 5.08929 −3.96072 9.23060 −7.86132
0 6.21771 9.49153 3.80603 10.20918 −22.77744 9.42201 −7.31992 0.6250 4
1 6.21771 1.66405 4.07540 10.93173 −1.78124 1.14845 −4.95942
2 6.21771 2.09596 2.09344 5.61538 −2.93977 −1.50973 −5.53868
0 6.21771 6.13225 2.43284 6.52578 −13.76660 9.33672 −5.19927 0.6875 4
1 6.21771 1.93857 4.59131 12.31559 −2.51759 0.08397 −2.94282
2 6.21771 1.74386 2.30763 6.18991 −1.99530 −2.97887 −2.68168
0 6.21771 5.74651 2.36377 6.34051 −12.73189 9.43757 −5.02606 0.7000 4
1 6.21771 2.03672 4.67782 12.54766 −2.78086 0.00652 −2.73032
2 6.21771 1.67501 2.35405 6.31443 −1.81063 −3.11010 −2.24520
0 6.21771 4.63831 2.26944 6.08749 −9.75930 9.77373 −4.78684 0.7500 4
1 6.21771 2.54993 4.87384 13.07345 −4.15749 −0.19326 −2.17155
2 6.21771 1.40005 2.55764 6.86054 −1.07309 −3.29972 −0.62935
0 6.21771 0.21514 1.40228 3.76143 2.10529 3.54866 −10.26034 0.1875 5
1 6.21771 3.38329 1.96748 5.27752 −6.39288 0.85015 6.20351
2 6.21771 8.57189 0.63877 1.71342 −20.31061 −0.74377 −0.02069
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Table 2. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T ′(m) Im T ′(m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.21771 −0.33422 1.66115 4.45583 3.57888 4.20839 −6.53350 0.2500 5
1 6.21771 2.57552 2.16720 5.81324 −4.22614 0.80724 4.69057
2 6.21771 6.18088 0.92448 2.47981 −13.89704 −0.68352 0.36562
0 6.21771 −1.21851 1.99594 5.35384 5.95086 4.92644 −3.95320 0.3125 5
1 6.21771 1.99727 2.40790 6.45887 −2.67505 0.83996 4.15493
2 6.21771 4.79641 1.18564 3.18031 −10.18338 −0.62626 0.79710
0 6.21771 −2.92127 2.65004 7.10840 10.51830 5.86009 −1.54167 0.3750 5
1 6.21771 1.50745 2.71553 7.28405 −1.36117 1.08846 4.44406
2 6.21771 3.89003 1.42112 3.81196 −7.75215 −0.46430 1.58593
0 6.21771 −4.15869 3.23605 8.68029 13.83752 6.43347 −0.37358 0.4000 5
1 6.21771 1.32071 2.86853 7.69445 −0.86027 1.37683 4.92397
2 6.21771 3.60681 1.50951 4.04908 −6.99243 −0.25343 2.18158
0 6.21771 −7.54050 5.70219 15.29540 22.90879 8.19364 2.13276 0.4375 5
1 6.21771 1.04301 3.14776 8.44346 −0.11536 2.68116 6.51145
2 6.21771 3.23949 1.63771 4.39293 −6.00714 0.86972 3.87657
0 6.21771 −9.81216 8.71608 23.37976 29.00223 10.01690 3.62199 0.45313 5
1 6.21771 0.92770 3.28782 8.81917 0.19394 4.29908 7.64959
2 6.21771 3.10265 1.69000 4.53321 −5.64009 2.38234 5.04053
0 6.21771 −3.91456 26.67988 71.56534 13.18266 20.12878 0.97151 0.48438 5
1 6.21771 0.70033 3.62681 9.72844 0.80383 13.95875 4.34305
2 6.21771 2.85149 1.79350 4.81084 −4.96639 11.75953 1.76253
0 6.21771 11.71804 22.64512 60.74263 −28.74975 18.24252 −7.17352 0.5000 5
1 6.21771 0.59141 3.83461 10.28586 1.09600 11.81836 −4.10811
2 6.21771 2.73538 1.84506 4.94912 −4.65492 9.43170 −6.68000
0 6.21771 13.94954 12.57851 33.74024 −34.73548 13.15613 −8.14286 0.51563 5
1 6.21771 0.48991 4.07569 10.93251 1.36826 6.45297 −5.36780
2 6.21771 2.62455 1.89671 5.08769 −4.35766 3.83909 −7.92851
0 6.21771 8.42858 4.54611 12.19435 −19.92622 10.09068 −4.65915 0.5625 5
1 6.21771 0.31035 5.07731 13.61924 1.84991 2.33913 −2.61274
2 6.21771 2.31774 2.05426 5.51030 −3.53468 −1.28730 −5.02080
0 6.21771 5.44546 3.30165 8.85624 −11.92436 11.93591 −3.68524 0.6250 5
1 6.21771 1.26107 7.19498 19.29960 −0.70028 2.17891 −1.64603
2 6.21771 1.95089 2.27860 6.11205 −2.55063 −3.71874 −2.47353
0 6.21771 4.22835 3.18268 8.53713 −8.65964 12.14514 −6.63446 0.6875 5
1 6.21771 4.95667 7.19221 19.29217 −10.61325 1.89086 −2.51209
2 6.21771 1.61255 2.53586 6.80212 −1.64308 −3.69486 1.49950
0 6.21771 3.96685 3.20896 8.60762 −7.95818 10.98986 −7.20681 0.7100 5
1 6.21771 5.73836 5.99691 16.08594 −12.71004 1.41714 −2.73297
2 6.21771 1.49504 2.64128 7.08489 −1.32788 −2.60826 2.35729
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Table 2. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T ′(m) Im T ′(m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.21771 3.64504 3.29276 8.83240 −7.09499 9.21245 −6.73060 0.7500 5
1 6.21771 5.65993 4.08688 10.96254 −12.49968 0.64516 −2.71185
2 6.21771 1.29053 2.85284 7.65238 −0.77932 −0.83519 2.52965
0 14.83942 0.76543 1.60211 1.80064 0.26364 1.12981 −44.14067 0.0625 8
1 8.04324 5.28009 1.57354 3.26285 −8.87507 0.87168 24.88961
2 3.73120 9.62409 0.15395 0.68816 −38.54906 0.01520 −2.53078
3 4.39219 22.19073 −0.04765 −0.18092 −80.46642 −0.34588 −0.42171
4 2.56902 16.03502 −0.04660 −0.30252 −97.60802 −0.41117 0.53006
0 8.48656 0.21045 1.19329 2.34512 1.55166 1.77822 −18.48555 0.1250 8
1 7.82203 2.78655 1.76586 3.76519 −3.80931 0.93309 10.62944
2 6.21771 7.19363 0.75322 2.02043 −16.61362 −0.21774 −0.81075
3 4.61340 10.31149 0.04917 0.17777 −33.66265 −0.33526 0.07470
4 3.94887 10.77021 −0.01094 −0.04619 −41.26493 −0.19327 0.25043
0 6.21771 −0.30497 1.04952 2.81521 3.50041 2.43903 −10.55638 0.1875 8
1 6.21771 1.51389 1.60947 4.31719 −1.37844 0.97192 6.99193
2 6.21771 4.52861 1.20601 3.23497 −9.46505 −0.44869 −0.40912
3 6.21771 8.56067 0.28472 0.76372 −20.28053 −0.28443 0.30903
4 6.21771 10.58235 0.02433 0.06525 −25.70343 −0.10143 0.27310
0 6.21771 −1.61604 1.26374 3.38982 7.01720 3.18540 −6.05024 0.2500 8
1 6.21771 0.86391 1.85441 4.97421 0.36504 0.97095 5.48956
2 6.21771 3.22073 1.58968 4.26410 −5.95683 −0.59988 0.18818
3 6.21771 5.99746 0.61091 1.63868 −13.40505 −0.20834 0.62110
4 6.21771 7.49628 0.12651 0.33936 −17.42544 −0.12105 0.46977
0 6.21771 −3.07274 1.59436 4.27665 10.92459 3.66117 −4.11294 0.28125 8
1 6.21771 0.51587 1.99731 5.35752 1.29862 1.03474 5.39567
2 6.21771 2.76714 1.76689 4.73947 −4.74013 −0.57855 0.72395
3 6.21771 5.16270 0.79124 2.12240 −11.16592 −0.10905 0.98879
4 6.21771 6.44788 0.21396 0.57391 −14.61324 −0.07879 0.82071
0 6.21771 −6.26287 3.48135 9.33828 19.48172 4.68497 −1.79227 0.3125 8
1 6.21771 0.11521 2.16787 5.81502 2.37333 1.62530 6.06000
2 6.21771 2.38182 1.94322 5.21243 −3.70656 −0.02668 1.81987
3 6.21771 4.50764 0.97178 2.60668 −9.40879 0.49098 1.89439
4 6.21771 5.59887 0.32552 0.87318 −12.33586 0.47411 1.72546
0 6.21771 −3.84144 14.56160 39.05962 12.98655 8.83417 −1.45440 0.34375 8
1 6.21771 −0.37948 2.39001 6.41089 3.70027 5.31836 4.99896
2 6.21771 2.03733 2.12667 5.70452 −2.78250 3.60935 1.01128
3 6.21771 3.98168 1.14798 3.07932 −7.99797 4.14048 0.86301
4 6.21771 4.90003 0.45641 1.22425 −10.46134 4.08906 0.69445
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Table 2. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T ′(m) Im T ′(m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.21771 4.74469 8.23353 22.08539 −10.04466 7.22937 −3.18958 0.3750 8
1 6.21771 −1.03911 2.71812 7.29101 5.46964 3.22335 2.03307
2 6.21771 1.71403 2.32753 6.24331 −1.91530 1.40099 −1.88938
3 6.21771 3.54993 1.31820 3.53589 −6.83985 1.89571 −2.31900
4 6.21771 4.31831 0.59990 1.60915 −8.90094 1.81592 −2.50447
0 6.21771 3.60511 5.20813 13.97015 −6.98788 6.92141 −1.54358 0.40625 8
1 6.21771 −1.99948 3.29915 8.84954 8.04573 2.35624 2.53477
2 6.21771 1.39645 2.56053 6.86828 −1.06342 0.28046 −1.55617
3 6.21771 3.18782 1.48290 3.97768 −5.86853 0.63578 −2.38466
4 6.21771 3.82897 0.74937 2.01009 −7.58834 0.50779 −2.63218
0 6.21771 2.61065 4.38490 11.76194 −4.32035 7.89420 0.37131 0.4375 8
1 6.21771 −3.51453 4.63664 12.43719 12.10963 2.58768 3.29992
2 6.21771 1.07151 2.84911 7.64236 −0.19182 −0.13872 −1.30088
3 6.21771 2.87791 1.64397 4.40975 −5.03724 −0.25045 −2.76242
4 6.21771 3.41217 0.89960 2.41305 −6.47035 −0.52927 −3.16489
0 6.21771 0.97143 2.43161 6.52248 0.07664 1.43500 −12.49961 0.1700 20
1 6.21771 −0.58939 0.96375 2.58513 4.26334 1.04357 8.55105
2 6.21771 0.64311 1.12504 3.01778 0.95730 0.30332 −0.63750
3 6.21771 1.72937 1.05916 2.84107 −1.95645 −0.02529 −0.20626
4 6.21771 3.18240 0.70144 1.88152 −5.85400 0.06437 −0.05895
5 6.21771 5.16224 0.26348 0.70676 −11.16468 0.19925 −0.12010
6 6.21771 7.38030 0.04658 0.12494 −17.11434 0.22424 −0.22323
7 6.21771 9.39761 −0.00104 −0.00279 −22.52551 0.20842 −0.27115
8 6.21771 10.99347 −0.00840 −0.02253 −26.80619 0.20638 −0.28878
9 6.21771 12.02388 −0.01052 −0.02823 −29.57014 0.21217 −0.30248

10 6.21771 12.38084 −0.01120 −0.03004 −30.52763 0.21460 −0.30893
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Table 2. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T ′(m) Im T ′(m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.21771 −1.02714 1.71496 4.60017 5.43753 2.85913 −5.81890 0.2500 20
1 6.21771 1.00569 3.01550 8.08869 −0.01526 1.73291 5.81862
2 6.21771 −1.67840 2.02008 5.41861 7.18446 0.20562 −0.80449
3 6.21771 0.34365 1.59237 4.27133 1.76059 −0.01856 −0.36063
4 6.21771 1.51934 1.42374 3.81899 −1.39307 0.09549 −0.41945
5 6.21771 2.71476 1.03755 2.78309 −4.59963 −0.06486 −0.39799
6 6.21771 4.11322 0.53003 1.42174 −8.35082 −0.20028 −0.11090
7 6.21771 5.62312 0.16006 0.42935 −12.40092 −0.23897 0.22478
8 6.21771 6.89325 0.02510 0.06733 −15.80788 −0.25558 0.52470
9 6.21771 7.69158 −0.00100 −0.00270 −17.94931 −0.25782 0.74258

10 6.21771 7.96098 −0.00395 −0.01059 −18.67192 −0.25483 0.82200
0 6.21771 1.05103 3.85805 10.34872 −0.13687 6.02583 −1.62248 0.3400 20
1 6.21771 −2.34603 3.18249 8.53661 8.97530 2.94009 4.10157
2 6.21771 0.65817 3.07359 8.24451 0.91691 −0.50792 −0.95743
3 6.21771 −0.87100 7.04184 18.88884 5.01871 −1.01616 −0.19390
4 6.21771 −0.43591 2.47257 6.63236 3.85164 −0.83124 0.06052
5 6.21771 1.11157 1.93507 5.19058 −0.29926 0.06403 0.32155
6 6.21771 2.22382 1.45216 3.89524 −3.28274 1.02681 0.06635
7 6.21771 3.25400 0.88492 2.37368 −6.04608 1.15323 −0.41290
8 6.21771 4.24964 0.37783 1.01349 −8.71674 0.41960 −0.78701
9 6.21771 5.02288 0.10007 0.26843 −10.79085 −0.57409 −0.95892

10 6.21771 5.31204 0.02995 0.08034 −11.56648 −1.02580 −0.99404
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Table 3. �d R, T (m) and admittances of circular array2 of N elements; a/λ = 7.022 × 10−3, h/λ = 3/8,
β0h = 3π/4, � = 9.34

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T (m) Im T (m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.44947 −0.34647 0.34841 2.17514 −0.42294 1.32680 −1.12131 0.1875 2
1 6.44947 −0.12274 0.07664 0.47845 −1.81968 0.84834 0.69837
0 6.44947 −0.30504 0.39203 2.44750 −0.68161 1.55035 −1.05823 0.2500 2
1 6.44947 −0.18438 0.10463 0.65319 −1.43485 0.89716 0.37662
0 6.44947 −0.24661 0.42127 2.63003 −1.04640 1.72902 −1.11269 0.3125 2
1 6.44947 −0.22537 0.13263 0.82801 −1.17899 0.90101 0.06630
0 6.44947 −0.17613 0.42372 2.64534 −1.48639 1.82429 −1.24458 0.3750 2
1 6.44947 −0.25359 0.16070 1.00324 −1.00277 0.82105 −0.24181
0 6.44947 −0.11086 0.39101 2.44112 −1.89389 1.81048 −1.38879 0.4375 2
1 6.44947 −0.27267 0.18898 1.17984 −0.88369 0.63064 −0.50510
0 6.44947 −0.07291 0.33159 2.07016 −2.13080 1.71430 −1.47116 0.5000 2
1 6.44947 −0.28423 0.21759 1.35844 −0.81153 0.35586 −0.65964
0 6.44947 −0.07068 0.26849 1.67624 −2.14471 1.60735 −1.46392 0.5625 2
1 6.44947 −0.28878 0.24643 1.53846 −0.78313 0.06889 −0.68079
0 6.44947 −0.09430 0.22053 1.37682 −1.99728 1.54683 −1.39861 0.6250 2
1 6.44947 −0.28608 0.27500 1.71683 −0.79995 −0.17001 −0.59867
0 6.44947 −0.12872 0.19294 1.20452 −1.78236 1.54531 −1.32429 0.6875 2
1 6.44947 −0.27546 0.30211 1.88610 −0.86622 −0.34079 −0.45807
0 6.44947 −0.16365 0.18248 1.13923 −1.56431 1.58566 −1.27515 0.7500 2
1 6.44947 −0.25628 0.32549 2.03209 −0.98599 −0.44643 −0.28916
0 6.44947 −0.47138 0.35091 2.19075 0.35693 1.04922 −1.09414 0.1875 3
1 6.44947 −0.12274 0.07664 0.47845 −1.81968 0.57076 0.72553
0 6.44947 −0.44657 0.43938 2.74308 0.20198 1.34982 −0.88924 0.2500 3
1 6.44947 −0.18438 0.10463 0.65319 −1.43485 0.69663 0.54561
0 6.44947 −0.38446 0.54228 3.38553 −0.18574 1.68051 −0.84791 0.3125 3
1 6.44947 −0.22537 0.13263 0.82801 −1.17899 0.85251 0.33108
0 6.44947 −0.24901 0.63644 3.97336 −1.03141 1.99328 −1.01232 0.3750 3
1 6.44947 −0.25359 0.16070 1.00324 −1.00277 0.99004 −0.00954
0 6.44947 −0.02896 0.63299 3.95182 −2.40516 2.10384 −1.39084 0.4375 3
1 6.44947 −0.27267 0.18898 1.17984 −0.88369 0.92399 −0.50716
0 6.44947 0.13984 0.45236 2.82412 −3.45905 1.84700 −1.69403 0.5000 3
1 6.44947 −0.28423 0.21759 1.35844 −0.81153 0.48856 −0.88251
0 6.44947 0.12450 0.23956 1.49557 −3.36327 1.52417 −1.64317 0.5625 3
1 6.44947 −0.28878 0.24643 1.53846 −0.78313 −0.01430 −0.86005
0 6.44947 0.02068 0.12744 0.79560 −2.71512 1.40975 −1.43834 0.6250 3
1 6.44947 −0.28608 0.27500 1.71683 −0.79995 −0.30708 −0.63839

2 Note that T (m) = T (m)(3λ/8).
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Table 3. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T (m) Im T (m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.44947 −0.07859 0.09350 0.58373 −2.09536 1.45198 −1.27594 0.6875 3
1 6.44947 −0.27546 0.30211 1.88610 −0.86622 −0.43412 −0.40971
0 6.44947 −0.15342 0.09624 0.60083 −1.62816 1.55500 −1.20004 0.7500 3
1 6.44947 −0.25628 0.32549 2.03209 −0.98599 −0.47709 −0.21406
0 6.44947 −0.55329 0.35643 2.22523 0.86829 0.92702 −1.05015 0.1875 4
1 6.44947 −0.19581 0.11142 0.69561 −1.36349 0.53340 0.80255
2 6.44947 −0.03909 0.01468 0.09163 −2.34192 0.23141 0.31334
0 6.44947 −0.54954 0.48678 3.03902 0.84487 1.28146 −0.76256 0.2500 4
1 6.44947 −0.24507 0.15105 0.94301 −1.05600 0.70955 0.65699
2 6.44947 −0.12860 0.03216 0.20081 −1.78309 0.33845 0.29345
0 6.44947 −0.48519 0.68375 4.26873 0.44314 1.75057 −0.67078 0.3125 4
1 6.44947 −0.27373 0.19101 1.19247 −0.87708 0.98003 0.45381
2 6.44947 −0.19443 0.05584 0.34860 −1.37211 0.55810 0.20630
0 6.44947 −0.19693 0.91255 5.69715 −1.35650 2.27841 −0.99994 0.3750 4
1 6.44947 −0.28731 0.23157 1.44574 −0.79228 1.29303 −0.07445
2 6.44947 −0.24463 0.08409 0.52501 −1.05872 0.83267 −0.20767
0 6.44947 0.32272 0.70498 4.40129 −4.60077 2.13046 −1.75241 0.4375 4
1 6.44947 −0.28670 0.27216 1.69915 −0.79610 0.91976 −0.94602
2 6.44947 −0.28340 0.11569 0.72225 −0.81668 0.43131 −0.95631
0 6.44947 0.29755 0.22178 1.38458 −4.44362 1.54804 −1.71731 0.5000 4
1 6.44947 −0.27039 0.30999 1.93530 −0.89794 0.11189 −0.95347
2 6.44947 −0.31334 0.15009 0.93700 −0.62975 −0.38725 −0.81938
0 6.44947 0.07700 0.06927 0.43245 −3.06671 1.45636 −1.44191 0.5625 4
1 6.44947 −0.23702 0.33817 2.11123 −1.10623 −0.18452 −0.64456
2 6.44947 −0.33597 0.18749 1.17052 −0.48847 −0.65487 −0.33568
0 6.44947 −0.06893 0.05805 0.36244 −2.15564 1.52608 −1.33380 0.6250 4
1 6.44947 −0.19080 0.34549 2.15694 −1.39480 −0.26640 −0.44142
2 6.44947 −0.35175 0.22874 1.42802 −0.38996 −0.63085 0.06100
0 6.44947 −0.15616 0.08162 0.50959 −1.61108 1.56757 −1.32067 0.6875 4
1 6.44947 −0.14737 0.32377 2.02131 −1.66597 −0.30213 −0.31785
2 6.44947 −0.35980 0.27520 1.71810 −0.33968 −0.45373 0.34529
0 6.44947 −0.16904 0.08762 0.54702 −1.53067 1.56935 −1.31981 0.7000 4
1 6.44947 −0.14096 0.31630 1.97472 −1.70593 −0.30848 −0.29848
2 6.44947 −0.36028 0.28527 1.78094 −0.33673 −0.40537 0.38611
0 6.44947 −0.21007 0.11293 0.70504 −1.27449 1.56698 −1.30361 0.7500 4
1 6.44947 −0.12720 0.28125 1.75587 −1.79184 −0.33652 −0.22955
2 6.44947 −0.35715 0.32854 2.05113 −0.35628 −0.18889 0.48822
0 6.44947 −0.61970 0.36751 2.29438 1.28290 0.86350 −0.99648 0.1875 5
1 6.44947 −0.27081 0.14413 0.89982 −0.89527 0.53394 0.86995
2 6.44947 −0.05584 0.01790 0.11174 −2.23737 0.18150 0.26974
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Table 3. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T (m) Im T (m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.44947 −0.64486 0.55417 3.45972 1.43995 1.28095 −0.64140 0.2500 5
1 6.44947 −0.31193 0.19746 1.23277 −0.63857 0.76674 0.75430
2 6.44947 −0.14433 0.03840 0.23975 −1.68489 0.32265 0.28637
0 6.44947 −0.54344 0.93294 5.82443 0.80675 1.96639 −0.55634 0.3125 5
1 6.44947 −0.33241 0.25558 1.59564 −0.51070 1.23005 0.51358
2 6.44947 −0.20862 0.06537 0.40812 −1.28353 0.69897 0.16796
0 6.44947 0.32595 1.11700 6.97358 −4.62090 2.43923 −1.52249 0.3750 5
1 6.44947 −0.33217 0.32142 2.00669 −0.51224 1.44711 −0.66922
2 6.44947 −0.25667 0.09684 0.60459 −0.98354 0.82007 −0.87999
0 6.44947 0.57666 0.70317 4.39000 −6.18612 2.02805 −1.81601 0.4000 5
1 6.44947 −0.32429 0.35016 2.18607 −0.56143 0.92523 −1.02005
2 6.44947 −0.27237 0.11037 0.68904 −0.88555 0.25574 −1.16500
0 6.44947 0.42187 0.23114 1.44306 −5.21980 1.60258 −1.63129 0.4375 5
1 6.44947 −0.30048 0.39465 2.46383 −0.71005 0.32744 −0.88634
2 6.44947 −0.29276 0.13152 0.82111 −0.75828 −0.40720 −0.90791
0 6.44947 0.31785 0.14604 0.91174 −4.57038 1.56449 −1.52095 0.45313 5
1 6.44947 −0.28518 0.41283 2.57737 −0.80556 0.21681 −0.78337
2 6.44947 −0.30023 0.14063 0.87798 −0.71161 −0.54318 −0.74135
0 6.44947 0.14751 0.07588 0.47375 −3.50693 1.60478 −1.38079 0.48438 5
1 6.44947 −0.24284 0.44530 2.78003 −1.06989 0.11638 −0.63020
2 6.44947 −0.31352 0.15938 0.99503 −0.62863 −0.68189 −0.43286
0 6.44947 0.08327 0.06638 0.41440 −3.10585 1.64758 −1.35482 0.5000 5
1 6.44947 −0.21527 0.45754 2.85645 −1.24202 0.09445 −0.58309
2 6.44947 −0.31937 0.16903 1.05530 −0.59209 −0.71104 −0.29243
0 6.44947 0.03044 0.06516 0.40683 −2.77603 1.69002 −1.35474 0.51563 5
1 6.44947 −0.18355 0.46529 2.90484 −1.44006 0.07902 −0.55239
2 6.44947 −0.32471 0.17888 1.11679 −0.55877 −0.72062 −0.15826
0 6.44947 −0.07925 0.08411 0.52513 −2.09120 1.74275 −1.45800 0.5625 5
1 6.44947 −0.07441 0.44607 2.78486 −2.12141 0.02551 −0.52578
2 6.44947 −0.33765 0.20974 1.30944 −0.47798 −0.63432 0.20918
0 6.44947 −0.15781 0.12414 0.77502 −1.60074 1.56994 −1.56058 0.6250 5
1 6.44947 0.01552 0.31211 1.94857 −2.68287 −0.11828 −0.51643
2 6.44947 −0.34722 0.25448 1.58877 −0.41822 −0.27918 0.49635
0 6.44947 −0.19469 0.16288 1.01690 −1.37050 1.40669 −1.40661 0.6875 5
1 6.44947 −0.02918 0.17778 1.10991 −2.40384 −0.27375 −0.43291
2 6.44947 −0.34575 0.30407 1.89837 −0.42743 0.07886 0.45097
0 6.44947 −0.20126 0.17513 1.09336 −1.32949 1.40201 −1.32741 0.7100 5
1 6.44947 −0.06173 0.15075 0.94115 −2.20057 −0.31778 −0.39124
2 6.44947 −0.34162 0.32311 2.01720 −0.45322 0.16345 0.39020



549 Appendix I

Table 3. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T (m) Im T (m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 6.44947 −0.20643 0.19347 1.20785 −1.29723 1.45463 −1.20877 0.7500 5
1 6.44947 −0.12027 0.12776 0.79763 −1.83511 −0.38310 −0.31211
2 6.44947 −0.32801 0.35800 2.23501 −0.53821 0.25971 0.26788
0 8.34383 −0.02515 0.40052 1.93278 −1.87751 0.51502 −1.13221 0.1500 20
1 8.25111 −0.83304 0.41564 2.02828 2.04386 0.43561 0.84404
2 7.98204 −0.53929 0.24478 1.23478 0.63094 0.25643 0.19158
3 7.56295 −0.37900 0.12488 0.66487 −0.18747 0.09682 −0.09386
4 7.03486 −0.24489 0.03860 0.22095 −0.96914 0.01625 −0.14187
5 6.44947 −0.15155 0.00584 0.03649 −1.63983 −0.00505 −0.16493
6 5.86408 −0.11432 0.00036 0.00248 −2.05918 −0.00889 −0.19133
7 5.33600 −0.11294 −0.00012 −0.00089 −2.27337 −0.01514 −0.21710
8 4.91690 −0.12607 −0.00015 −0.00122 −2.35962 −0.02320 −0.23417
9 4.64783 −0.13954 −0.00015 −0.00131 −2.37952 −0.02871 −0.24255

10 4.55512 −0.14497 −0.00015 −0.00133 −2.37994 −0.03047 −0.24494
0 6.44947 0.35836 0.88997 5.55618 −4.82325 1.53249 −0.96196 0.2800 20
1 6.44947 −0.44839 0.45566 2.84473 0.21335 1.00305 0.09476
2 6.44947 0.09217 0.37118 2.31731 −3.16144 0.17140 −0.59347
3 6.44947 −0.62997 0.63638 3.97298 1.34698 −0.10521 −0.31997
4 6.44947 −0.50165 0.29433 1.83756 0.54586 0.01334 −0.02415
5 6.44947 −0.40107 0.15795 0.98612 −0.08206 0.18889 0.13000
6 6.44947 −0.31037 0.06941 0.43331 −0.64832 0.30382 0.11621
7 6.44947 −0.22595 0.02062 0.12870 −1.17535 0.29188 −0.07330
8 6.44947 −0.16422 0.00380 0.02375 −1.56073 0.16145 −0.34748
9 6.44947 −0.13077 0.00038 0.00240 −1.76954 0.01048 −0.57893

10 6.44947 −0.12053 −0.00003 −0.00016 −1.83351 −0.05450 −0.66864
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Table 4. �d R, T (m) and admittances of circular array3 of N elements; a/λ = 7.022 × 10−3, h/λ = 0.5,
β0h = π , � = 9.92

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T (m) Im T (m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 5.73687 −0.24563 0.26072 1.51595 1.42818 0.90483 1.15817 0.1875 2
1 5.73687 −0.15275 0.05051 0.29370 0.88815 0.61112 0.27001
0 5.73687 −0.21332 0.28152 1.63686 1.24030 1.02739 1.15671 0.2500 2
1 5.73687 −0.18456 0.07187 0.41791 1.07312 0.60948 0.08359
0 5.73687 −0.17004 0.28854 1.67767 0.98868 1.11071 1.09623 0.3125 2
1 5.73687 −0.20704 0.09352 0.54375 1.20379 0.56696 −0.10755
0 5.73687 −0.12443 0.27467 1.59702 0.72347 1.13360 1.00855 0.3750 2
1 5.73687 −0.22249 0.11526 0.67017 1.29364 0.46342 −0.28509
0 5.73687 −0.09046 0.23989 1.39480 0.52596 1.09581 0.93779 0.4375 2
1 5.73687 −0.23212 0.13704 0.79681 1.34962 0.29900 −0.41183
0 5.73687 −0.07897 0.19532 1.13564 0.45915 1.02932 0.91689 0.5000 2
1 5.73687 −0.23642 0.15874 0.92300 1.37462 0.10632 −0.45774
0 5.73687 −0.08921 0.15582 0.90602 0.51869 0.97645 0.94372 0.5625 2
1 5.73687 −0.23541 0.18005 1.04688 1.36875 −0.07043 −0.42503
0 5.73687 −0.11205 0.12974 0.75438 0.65153 0.95933 0.99088 0.6250 2
1 5.73687 −0.22878 0.20024 1.16429 1.33024 −0.20495 −0.33936
0 5.73687 −0.13840 0.11752 0.68333 0.80471 0.97538 1.03084 0.6875 2
1 5.73687 −0.21618 0.21798 1.26743 1.25697 −0.29205 −0.22613
0 5.73687 −0.16285 0.11602 0.67459 0.94690 1.00918 1.04805 0.7500 2
1 5.73687 −0.19765 0.23111 1.34377 1.14920 −0.33459 −0.10115
0 5.73687 −0.32803 0.29439 1.71168 1.90727 0.76636 1.22786 0.1875 3
1 5.73687 −0.15275 0.05051 0.29370 0.88815 0.47266 0.33971
0 5.73687 −0.29727 0.35169 2.04486 1.72846 0.96023 1.29157 0.2500 3
1 5.73687 −0.18456 0.07187 0.41791 1.07312 0.54232 0.21845
0 5.73687 −0.22826 0.40826 2.37378 1.32720 1.15376 1.24493 0.3125 3
1 5.73687 −0.20704 0.09352 0.54375 1.20379 0.61001 0.04114
0 5.73687 −0.10932 0.42957 2.49770 0.63563 1.27935 1.07430 0.3750 3
1 5.73687 −0.22249 0.11526 0.67017 1.29364 0.60918 −0.21934
0 5.73687 0.02165 0.35891 2.08686 −0.12586 1.22683 0.85779 0.4375 3
1 5.73687 −0.23212 0.13704 0.79681 1.34962 1.43002 −0.49183
0 5.73687 0.06652 0.21555 1.25327 −0.38679 1.03309 0.78749 0.5000 3
1 5.73687 −0.23642 0.15874 0.92300 1.37462 0.11009 −0.58714
0 5.73687 0.01613 0.10388 0.60400 −0.09378 0.89925 0.88124 0.5625 3
1 5.73687 −0.23541 0.18005 1.04688 1.36875 −0.14763 −0.48751
0 5.73687 −0.05914 0.05632 0.32744 0.34386 0.88534 1.00145 0.6250 3
1 5.73687 −0.22878 0.20024 1.16429 1.33024 −0.27895 −0.32879
0 5.73687 −0.12272 0.04855 0.28230 0.71352 0.93905 1.07582 0.6875 3
1 5.73687 −0.21618 0.21798 1.26743 1.25697 −0.32838 −0.18115

3 Note that T (m) = T (m)(λ/2).
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Table 4. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T (m) Im T (m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 5.73687 −0.16955 0.05915 0.34394 0.98581 1.01050 1.09474 0.7500 3
1 5.73687 −0.19765 0.23111 1.34377 1.14920 −0.33328 −0.05446
0 5.73687 −0.38958 0.32298 1.87795 2.26516 0.70749 1.28318 0.1875 4
1 5.73687 −0.19076 0.07711 0.44835 1.10916 0.45566 0.40398
2 5.73687 −0.11166 0.00951 0.05532 0.64925 0.25914 0.17403
0 5.73687 −0.36068 0.42208 2.45413 2.09712 0.95895 1.38535 0.2500 4
1 5.73687 −0.21789 0.10779 0.62675 1.26688 0.58149 0.29665
2 5.73687 −0.15660 0.02205 0.12818 0.91051 0.33220 0.11847
0 5.73687 −0.24528 0.54869 3.19030 1.42614 1.25828 1.31478 0.3125 4
1 5.73687 −0.23260 0.13859 0.80581 1.35240 0.73978 0.07449
2 5.73687 −0.19403 0.03976 0.23119 1.12817 0.45247 −0.03762
0 5.73687 0.03603 0.57029 3.31589 −0.20949 1.41026 0.96170 0.3750 4
1 5.73687 −0.23660 0.16917 0.98359 1.37571 0.73948 −0.37859
2 5.73687 −0.22442 0.06156 0.35796 1.30489 0.42667 −0.41400
0 5.73687 0.21558 0.28252 1.64266 −1.25348 1.11283 0.71545 0.4375 4
1 5.73687 −0.22971 0.19830 1.15297 1.33565 0.28499 −0.67437
2 5.73687 −0.24835 0.08646 0.50271 1.44399 −0.04014 −0.62020
0 5.73687 0.09549 0.06553 0.38103 −0.55524 0.90838 0.86177 0.5000 4
1 5.73687 −0.21098 0.22272 1.29499 1.22672 −0.07037 −0.52603
2 5.73687 −0.26639 0.11394 0.66250 1.54890 −0.38661 −0.36495
0 5.73687 −0.03885 0.01820 0.10581 0.22588 0.92235 0.98819 0.5625 4
1 5.73687 −0.18107 0.23615 1.37308 1.05281 −0.18291 −0.34885
2 5.73687 −0.27884 0.14403 0.83744 1.62126 −0.45073 −0.06462
0 5.73687 −0.12339 0.02822 0.16409 0.71746 0.96987 1.02010 0.6250 4
1 5.73687 −0.14652 0.23091 1.34259 0.85195 −0.21653 −0.23539
2 5.73687 −0.28533 0.17718 1.03020 1.65902 −0.37272 0.16814
0 5.73687 −0.17437 0.05243 0.30486 1.01388 0.98500 1.01961 0.6875 4
1 5.73687 −0.12132 0.20555 1.19513 0.70539 −0.23500 −0.15998
2 5.73687 −0.28443 0.21410 1.24487 1.65379 −0.21013 0.31422
0 5.73687 −0.18188 0.05774 0.33572 1.05751 0.98483 1.02087 0.7000 4
1 5.73687 −0.11866 0.19889 1.15643 0.68991 −0.23876 −0.14716
2 5.73687 −0.28312 0.22199 1.29075 1.64615 −0.17160 0.33096
0 5.73687 −0.20546 0.07919 0.46045 1.19464 0.98512 1.03626 0.7500 4
1 5.73687 −0.11730 0.17165 0.99803 0.68205 −0.25588 −0.09792
2 5.73687 −0.27283 0.25522 1.48397 1.58631 −0.01291 0.35421
0 5.73687 −0.44337 0.35405 2.05857 2.57796 0.68373 1.33527 0.1875 5
1 5.73687 −0.23258 0.10524 0.61191 1.35233 0.46530 0.45724
2 5.73687 −0.11985 0.01172 0.06813 0.69687 0.22212 0.16411
0 5.73687 −0.41387 0.51736 3.00811 2.40640 1.00601 1.46290 0.2500 5
1 5.73687 −0.25661 0.14733 0.85663 1.49204 0.65756 0.35440
2 5.73687 −0.16545 0.02654 0.15434 0.96200 0.34349 0.11736
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Table 4. – continued

Sequence Sequence admittance Self- and mutual
admittances

m �d R Re T (m) Im T (m) G(m) B(m) G1(m+1) B1(m+1) d/λ N

0 5.73687 −0.14964 0.75703 4.40167 0.87007 1.43714 1.26009 0.3125 5
1 5.73687 −0.26445 0.19253 1.11942 1.53760 0.93049 −0.01700
2 5.73687 −0.20253 0.04688 0.27258 1.17759 0.55178 −0.17801
0 5.73687 0.35041 0.42661 2.48049 −2.03744 1.22362 0.72145 0.3750 5
1 5.73687 −0.25376 0.24152 1.40429 1.47545 0.53554 −0.66098
2 5.73687 −0.23165 0.07129 0.41452 1.34690 0.09290 −0.71847
0 5.73687 0.30621 0.20277 1.17897 −1.78041 1.03469 0.76885 0.4000 5
1 5.73687 −0.24246 0.26157 1.52085 1.40974 0.26962 −0.63572
2 5.73687 −0.24123 0.08193 0.47638 1.40260 −0.19748 −0.63891
0 5.73687 0.14471 0.04886 0.28409 −0.84143 0.96034 0.92211 0.4375 5
1 5.73687 −0.21531 0.28980 1.68502 1.25190 0.07942 −0.49057
2 5.73687 −0.25353 0.09868 0.57378 1.47410 −0.41754 −0.39120
0 5.73687 0.08545 0.02679 0.15579 −0.49686 0.97479 0.96515 0.45313 5
1 5.73687 −0.19977 0.29980 1.74317 1.16155 0.04731 −0.44113
2 5.73687 −0.25794 0.10593 0.61591 1.49975 −0.45681 −0.28988
0 5.73687 −0.00645 0.01543 0.08970 0.03748 1.02753 0.99888 0.48438 5
1 5.73687 −0.16073 0.31321 1.82113 0.93455 0.01560 −0.37660
2 5.73687 −0.26553 0.12088 0.70284 1.54390 −0.48451 −0.10409
0 5.73687 −0.04103 0.01824 0.10608 0.23859 1.05256 0.99281 0.5000 5
1 5.73687 −0.13765 0.31486 1.83072 0.80033 0.00556 −0.35896
2 5.73687 −0.26871 0.12859 0.74764 1.56240 −0.47880 −0.01815
0 5.73687 −0.06970 0.02385 0.13868 0.40525 1.07040 0.97532 0.51563 5
1 5.73687 −0.11303 0.31186 1.81328 0.65720 −0.00487 −0.34852
2 5.73687 −0.27148 0.13645 0.79337 1.57848 −0.46099 0.06349
0 5.73687 −0.12986 0.04795 0.27882 0.75507 1.05588 0.89736 0.5625 5
1 5.73687 −0.04373 0.26898 1.56397 0.25424 −0.05392 −0.33909
2 5.73687 −0.27718 0.16104 0.93633 1.61162 −0.33461 0.26795
0 5.73687 −0.17222 0.08301 0.48267 1.00134 0.92501 0.89242 0.6250 5
1 5.73687 −0.01972 0.15994 0.92995 0.11463 −0.15783 −0.30843
2 5.73687 −0.27789 0.19628 1.14124 1.61574 −0.06334 0.36289
0 5.73687 −0.18928 0.11386 0.66204 1.10052 0.87378 1.02151 0.6875 5
1 5.73687 −0.07632 0.08466 0.49228 0.44377 −0.24722 −0.22979
2 5.73687 −0.26826 0.23410 1.36115 1.55976 0.14135 0.26930
0 5.73687 −0.19114 0.12315 0.71602 1.11135 0.89069 1.06776 0.7100 5
1 5.73687 −0.10210 0.07336 0.42653 0.59366 −0.27077 −0.19626
2 5.73687 −0.26143 0.24804 1.44218 1.52007 0.18344 0.21805
0 5.73687 −0.19034 0.13638 0.79297 1.10669 0.95087 1.12366 0.7500 5
1 5.73687 −0.14431 0.06840 0.39769 0.83910 −0.30452 −0.13340
2 5.73687 −0.24366 0.27226 1.58301 1.41671 0.22557 0.12492



Appendix II
Tables of matrix elements �u and �v for curtain arrays

This appendix presents a set of five tables of (1) �d R , �u and �v for single elements
as functions of � and h/λ, and (2) �u and �v for off-diagonal elements as functions
of (k − i)(b/λ) and h/λ. The left column, i.e. (k − i)(b/λ), is the electrical distance
between elements k and i . The two columns under each �kiu and �kiv are the real and
imaginary parts.
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Table 1. Elements of �u and �v matrices for h/λ = 0.125

Values for single element (�kku ,�kkv and �kkd R = �d R)
� �d R �kku �kkv

7.00 4.05418 2.64345 0.19772 0.78608 −0.38223
7.50 4.51933 2.97163 0.19776 0.79628 −0.38230
8.00 4.99202 3.30540 0.19778 0.80428 −0.38234
8.50 5.47065 3.64353 0.19779 0.81054 −0.38237
9.00 5.95394 3.98508 0.19780 0.81544 −0.38238
9.50 6.44089 4.32928 0.19781 0.81926 −0.38239

10.00 6.93071 4.67555 0.19781 0.82224 −0.38240
10.50 7.42276 5.02343 0.19781 0.82457 −0.38240
11.00 7.91657 5.37257 0.19781 0.82638 −0.38240
11.50 8.41174 5.72268 0.19781 0.82780 −0.38240
12.00 8.90797 6.07356 0.19781 0.82890 −0.38240
12.50 9.40504 6.42503 0.19781 0.82976 −0.38240
13.00 9.90275 6.77696 0.19781 0.83043 −0.38241
15.00 11.89766 8.18757 0.19781 0.83192 −0.38241

Off diagonal values of �u and �v

(k − i)(b/λ) �kiu �kiv

0.250 0.09815 0.11183 −0.19198 −0.21626
0.500 0.08361 −0.03104 −0.16178 0.05987
0.750 −0.01455 −0.06033 0.02796 0.11660
1.000 −0.04655 0.00834 0.08992 −0.01602
1.250 0.00539 0.03774 −0.01034 −0.07287
1.500 0.03167 −0.00376 −0.06116 0.00722
1.750 −0.00277 −0.02727 0.00532 0.05265
2.000 −0.02393 0.00213 0.04619 −0.00408
2.250 0.00168 0.02131 −0.00323 −0.04114
2.500 0.01921 −0.00136 −0.03708 0.00262
2.750 −0.00113 −0.01748 0.00216 0.03374
3.000 −0.01603 0.00095 0.03095 −0.00182
3.250 0.00081 0.01481 −0.00155 −0.02859
3.500 0.01376 −0.00070 −0.02656 0.00134
3.750 −0.00061 −0.01285 0.00117 0.02480
4.000 −0.01205 0.00053 0.02325 −0.00102
4.250 0.00047 0.01134 −0.00091 −0.02189
4.500 0.01071 −0.00042 −0.02068 0.00081
4.750 −0.00038 −0.01015 0.00073 0.01960
5.000 −0.00965 0.00034 0.01862 −0.00066
5.250 0.00031 0.00919 −0.00059 −0.01773
5.500 0.00877 −0.00028 −0.01693 0.00054
5.750 −0.00026 −0.00839 0.00050 0.01620
6.000 −0.00804 0.00024 0.01552 −0.00046
6.250 0.00022 0.00772 −0.00042 −0.01490
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Table 1. – continued

(k − i)(b/λ) �kiu �kiv

6.500 0.00742 −0.00020 −0.01433 0.00039
6.750 −0.00019 −0.00715 0.00036 0.01380
7.000 −0.00690 0.00017 0.01331 −0.00033
7.250 0.00016 0.00666 −0.00031 −0.01285
7.500 0.00644 −0.00015 −0.01242 0.00029
7.750 −0.00014 −0.00623 0.00027 0.01202
8.000 −0.00603 0.00013 0.01165 −0.00026
8.250 0.00013 0.00585 −0.00024 −0.01129
8.500 0.00568 −0.00012 −0.01096 0.00023
8.750 −0.00011 −0.00552 0.00021 0.01065
9.000 −0.00536 0.00011 0.01035 −0.00020
9.250 0.00010 0.00522 −0.00019 −0.01007
9.500 0.00508 −0.00009 −0.00981 0.00018
9.750 −0.00009 −0.00495 0.00017 0.00956

10.000 −0.00483 0.00009 0.00932 −0.00016
10.250 0.00008 0.00471 −0.00016 −0.00909
10.500 0.00460 −0.00008 −0.00888 0.00015
10.750 −0.00007 −0.00449 0.00014 0.00867
11.000 −0.00439 0.00007 0.00847 −0.00014
11.250 0.00007 0.00429 −0.00013 −0.00828
11.500 0.00420 −0.00006 −0.00810 0.00012
11.750 −0.00006 −0.00411 0.00012 0.00793
12.000 −0.00402 0.00006 0.00777 −0.00011
12.250 0.00006 0.00394 −0.00011 −0.00761
12.500 0.00386 −0.00005 −0.00746 0.00011
12.750 −0.00005 −0.00379 0.00010 0.00731
13.000 −0.00371 0.00005 0.00717 −0.00010
13.250 0.00005 0.00364 −0.00009 −0.00703
13.500 0.00358 −0.00005 −0.00690 0.00009
13.750 −0.00005 −0.00351 0.00009 0.00678
14.000 −0.00345 0.00004 0.00606 −0.00008
14.250 0.00004 0.00339 −0.00008 −0.00654
14.500 0.00333 −0.00004 −0.00643 0.00008
14.750 −0.00004 −0.00327 0.00008 0.00632
15.000 −0.00322 0.00004 0.00621 −0.00007
15.250 0.00004 0.00317 −0.00007 −0.00611
15.500 0.00312 −0.00004 −0.00601 0.00007
15.750 −0.00003 −0.00307 0.00007 0.00592
16.000 −0.00302 0.00003 0.00583 −0.00006
16.250 0.00003 0.00297 −0.00006 −0.00574
16.500 0.00293 −0.00003 −0.00565 0.00006
16.750 −0.00003 −0.00288 0.00006 0.00557
17.000 −0.00284 0.00003 0.00548 −0.00006
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Table 1. – continued

(k − i)(b/λ) �kiu �kiv

17.250 0.00003 0.00280 −0.00006 −0.00540
17.500 0.00276 −0.00003 −0.00533 0.00005
17.750 −0.00003 −0.00272 0.00005 0.00525
18.000 −0.00268 0.00003 0.00518 −0.00005
18.250 0.00003 0.00265 −0.00005 −0.00511
18.500 0.00261 −0.00003 −0.00504 0.00005
18.750 −0.00002 −0.00258 0.00005 0.00497
19.000 −0.00254 0.00002 0.00491 −0.00005
19.250 0.00002 0.00251 −0.00004 −0.00484
19.500 0.00248 −0.00002 −0.00478 0.00004
19.750 −0.00002 −0.00245 0.00004 0.00472
20.000 −0.00241 0.00002 0.00466 −0.00004
20.250 0.00002 0.00239 −0.00004 −0.00460
20.500 0.00236 −0.00002 −0.00455 0.00004
20.750 −0.00002 −0.00233 0.00004 0.00449
21.000 −0.00230 0.00002 0.00444 −0.00004
21.250 0.00002 0.00227 −0.00004 −0.00439
21.500 0.00225 −0.00002 −0.00434 0.00004
21.750 −0.00002 −0.00222 0.00003 0.00429
22.000 −0.00220 0.00002 0.00424 −0.00003
22.250 0.00002 0.00217 −0.00003 −0.00419
22.500 0.00215 −0.00002 −0.00414 0.00003
22.750 −0.00002 −0.00212 0.00003 0.00410
23.000 −0.00210 0.00002 0.00405 −0.00003
23.250 0.00002 0.00208 −0.00003 −0.00401
23.500 0.00206 −0.00002 −0.00397 0.00003
23.750 −0.00002 −0.00203 0.00003 0.00393
24.000 −0.00201 0.00001 0.00388 −0.00003
24.250 0.00001 0.00199 −0.00003 −0.00384
24.500 0.00197 −0.00001 −0.00381 0.00003
24.750 −0.00001 −0.00195 0.00003 0.00377
25.000 −0.00193 0.00001 0.00373 −0.00003
25.250 0.00001 0.00191 −0.00003 −0.00369
25.500 0.00189 −0.00001 −0.00366 0.00003
25.750 −0.00001 −0.00188 0.00002 0.00362
26.000 −0.00186 0.00001 0.00359 −0.00002
26.250 0.00001 0.00184 −0.00002 −0.00355
26.500 0.00182 −0.00001 −0.00352 0.00002
26.750 −0.00001 −0.00181 0.00002 0.00349
27.000 −0.00179 0.00001 0.00345 −0.00002
27.250 0.00001 0.00177 −0.00002 −0.00342
27.500 0.00176 −0.00001 −0.00339 0.00002
27.750 −0.00001 −0.00174 0.00002 0.00336
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Table 1. – continued

(k − i)(b/λ) �kiu �kiv

28.000 −0.00173 0.00001 0.00333 −0.00002
28.250 0.00001 0.00171 −0.00002 −0.00330
28.500 0.00169 −0.00001 −0.00327 0.00002
28.750 −0.00001 −0.00168 0.00002 0.00324
29.000 −0.00167 0.00001 0.00321 −0.00002
29.250 0.00001 0.00165 −0.00002 −0.00319
29.500 0.00164 −0.00001 −0.00316 0.00002
29.750 −0.00001 −0.00162 0.00002 0.00313
30.000 −0.00161 0.00001 0.00311 −0.00002
30.250 0.00001 0.00160 −0.00002 −0.00308
30.500 0.00158 −0.00001 −0.00306 0.00002
30.750 −0.00001 −0.00157 0.00002 0.00303
31.000 −0.00156 0.00001 0.00301 −0.00002
31.250 0.00001 0.00155 −0.00002 −0.00298
31.500 0.00153 −0.00001 −0.00296 0.00002
31.750 −0.00001 −0.00152 0.00002 0.00294
32.000 −0.00151 0.00001 0.00291 −0.00002
32.250 0.00001 0.00150 −0.00002 −0.00289
32.500 0.00149 −0.00001 −0.00287 0.00002
32.750 −0.00001 −0.00147 0.00002 0.00285
33.000 −0.00146 0.00001 0.00283 −0.00002
33.250 0.00001 0.00145 −0.00001 −0.00280
33.500 0.00144 −0.00001 −0.00278 0.00001
33.750 −0.00001 −0.00143 0.00001 0.00276
34.000 −0.00142 0.00001 0.00274 −0.00001
34.250 0.00001 0.00141 −0.00001 −0.00272
34.500 0.00140 −0.00001 −0.00270 0.00001
34.750 −0.00001 −0.00139 0.00001 0.00268
35.000 −0.00138 0.00001 0.00266 −0.00001
35.250 0.00001 0.00137 −0.00001 −0.00264
35.500 0.00136 −0.00001 −0.00263 0.00001
35.750 −0.00001 −0.00135 0.00001 0.00261
36.000 −0.00134 0.00001 0.00259 −0.00001
36.250 0.00001 0.00133 −0.00001 −0.00257
36.500 0.00132 −0.00001 −0.00255 0.00001
36.750 −0.00001 −0.00131 0.00001 0.00254
37.000 −0.00131 0.00001 0.00252 −0.00001
37.250 0.00001 0.00130 −0.00001 −0.00250
37.500 0.00129 −0.00001 −0.00249 0.00001
37.750 −0.00001 −0.00128 0.00001 0.00247
38.000 −0.00127 0.00001 0.00245 −0.00001
38.250 0.00001 0.00126 −0.00001 −0.00244
38.500 0.00125 −0.00001 −0.00242 0.00001
38.750 −0.00001 −0.00125 0.00001 0.00241
39.000 −0.00124 0.00001 0.00239 −0.00001
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Table 1. – continued

(k − i)(b/λ) �kiu �kiv

39.250 0.00001 0.00123 −0.00001 −0.00238
39.500 0.00122 −0.00001 −0.00236 0.00001
39.750 −0.00001 −0.00122 0.00001 0.00235
40.000 −0.00121 0.00001 0.00233 −0.00001
40.250 0.00001 0.00120 −0.00001 −0.00232
40.500 0.00119 −0.00001 −0.00230 0.00001
40.750 −0.00001 −0.00119 0.00001 0.00229
41.000 −0.00118 0.00001 0.00227 −0.00001
41.250 0.00001 0.00117 −0.00001 −0.00226
41.500 0.00116 −0.00000 −0.00225 0.00001
41.750 −0.00000 −0.00116 0.00001 0.00223
42.000 −0.00115 0.00000 0.00222 −0.00001
42.250 0.00000 0.00114 −0.00001 −0.00221
42.500 0.00114 −0.00000 −0.00219 0.00001
42.750 −0.00000 −0.00113 0.00001 0.00218
43.000 −0.00112 0.00000 0.00217 −0.00001
43.250 0.00000 0.00112 −0.00001 −0.00216
43.500 0.00111 −0.00000 −0.00214 0.00001
43.750 −0.00000 −0.00110 0.00001 0.00213
44.000 −0.00110 0.00000 0.00212 −0.00001
44.250 0.00000 0.00109 −0.00001 −0.00211
44.500 0.00109 −0.00000 −0.00210 0.00001
44.750 −0.00000 −0.00108 0.00001 0.00208
45.000 −0.00107 0.00000 0.00207 −0.00001
45.250 0.00000 0.00107 −0.00001 −0.00206
45.500 0.00106 −0.00000 −0.00205 0.00001
45.750 −0.00000 −0.00106 0.00001 0.00204
46.000 −0.00105 0.00000 0.00203 −0.00001
46.250 0.00000 0.00104 −0.00001 −0.00202
46.500 0.00104 −0.00000 −0.00200 0.00001
46.750 −0.00000 −0.00103 0.00001 0.00199
47.000 −0.00103 0.00000 0.00198 −0.00001
47.250 0.00000 0.00102 −0.00001 −0.00197
47.500 0.00102 −0.00000 −0.00196 0.00001
47.750 −0.00000 −0.00101 0.00001 0.00195
48.000 −0.00101 0.00000 0.00194 −0.00001
48.250 0.00000 0.00100 −0.00001 −0.00193
48.500 0.00100 −0.00000 −0.00192 0.00001
48.750 −0.00000 −0.00099 0.00001 0.00191
49.000 −0.00099 0.00000 0.00190 −0.00001
49.250 0.00000 0.00098 −0.00001 −0.00189
49.500 0.00098 −0.00000 −0.00188 0.00001
49.750 −0.00000 −0.00097 0.00001 0.00187
50.000 −0.00097 0.00000 0.00186 −0.00001
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Table 2. Elements of �u and �v matrices for h/λ = 0.250

Values for single element (�kku ,�kkv and �kkd R = �d R)
� �d R �kku �kkv

7.00 4.73675 0.61497 −1.21658 4.73675 −0.00000
7.50 5.21607 0.63565 −1.21746 5.21607 −0.00000
8.00 5.69991 0.65181 −1.21800 5.69991 −0.00000
8.50 6.18729 0.66443 −1.21832 6.18729 −0.00000
9.00 6.67744 0.67427 −1.21852 6.67744 −0.00000
9.50 7.16976 0.68196 −1.21864 7.16976 −0.00000

10.00 7.66377 0.68794 −1.21871 7.66377 −0.00000
10.50 8.15911 0.69261 −1.21876 8.15911 −0.00000
11.00 8.65547 0.69625 −1.21878 8.65547 −0.00000
11.50 9.15263 0.69908 −1.21880 9.15263 −0.00000
12.00 9.65042 0.70129 −1.21881 9.65042 −0.00000
12.50 10.14870 0.70301 −1.21882 10.14870 −0.00000
13.00 10.64736 0.70435 −1.21882 10.64736 −0.00000
15.00 12.64438 0.70734 −1.21883 12.64438 −0.00000

Off diagonal values of �u and �v

(k − i)(b/λ) �kiu �kiv

0.250 −0.47248 −0.67976 0.00000 −0.00000
0.500 −0.49881 0.20887 −0.00000 −0.00000
0.750 0.11054 0.37495 −0.00000 0.00000
1.000 0.29570 −0.06686 0.00000 −0.00000
1.250 −0.04437 −0.24260 0.00000 −0.00000
1.500 −0.20507 0.03146 −0.00000 0.00000
1.750 0.02341 0.17734 −0.00000 0.00000
2.000 0.15607 −0.01807 0.00000 −0.00000
2.250 −0.01436 −0.13929 0.00000 −0.00000
2.500 −0.12573 0.01168 −0.00000 −0.00000
2.750 0.00968 0.11455 −0.00000 0.00000
3.000 0.10517 −0.00816 0.00000 −0.00000
3.250 −0.00696 −0.09721 0.00000 −0.00000
3.500 −0.09036 0.00601 −0.00000 −0.00000
3.750 0.00524 0.08440 −0.00000 0.00000
4.000 0.07918 −0.00461 0.00000 −0.00000
4.250 −0.00409 −0.07457 −0.00000 −0.00000
4.500 −0.07046 0.00365 −0.00000 −0.00000
4.750 0.00328 0.06678 −0.00000 0.00000
5.000 0.06346 −0.00296 0.00000 0.00000
5.250 −0.00269 −0.06046 0.00000 −0.00000
5.500 −0.05772 0.00245 −0.00000 −0.00000
5.750 0.00224 0.05522 0.00000 0.00000
6.000 0.05293 −0.00206 0.00000 −0.00000
6.250 −0.00190 −0.05083 0.00000 −0.00000
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Table 2. – continued

(k − i)(b/λ) �kiu �kiv

6.500 −0.04888 0.00175 −0.00000 −0 00000
6.750 0.00163 0.04707 −0.00000 0.00000
7.000 0.04540 −0.00151 0.00000 0.00000
7.250 −0.00141 −0.04384 0.00000 −0.00000
7.500 −0.04238 0.00132 −0.00000 −0.00000
7.750 0.00124 0.04102 −0.00000 0.00000
8.000 0.03974 −0.00116 0.00000 −0.00000
8.250 −0.00109 −0.03854 −0.00000 −0.00000
8.500 −0.03741 0.00103 −0.00000 0.00000
8.750 0.00097 0.03634 −0.00000 0.00000
9.000 0.03533 −0.00092 0.00000 0.00000
9.250 −0.00087 −0.03438 0.00000 −0.00000
9.500 −0.03348 0.00082 −0.00000 −0.00000
9.750 0.00078 0.03262 −0.00000 0.00000

10.000 0.03181 −0.00074 0.00000 0.00000
10.250 −0.00071 −0.03103 0.00000 −0.00000
10.500 −0.03029 0.00067 −0.00000 −0.00000
10.750 0.00064 0.02959 −0.00000 0.00000
11.000 0.02892 −0.00061 0.00000 0.00000
11.250 −0.00059 −0.02828 0.00000 −0.00000
11.500 −0.02766 0.00056 −0.00000 0.00000
11.750 0.00054 0.02707 0.00000 0.00000
12.000 0.02651 −0.00052 0.00000 −0.00000
12.250 −0.00049 −0.02597 −0.00000 −0.00000
12.500 −0.02545 0.00048 −0.00000 −0.00000
12.750 0.00046 0.02495 −0.00000 0.00000
13.000 0.02447 −0.00044 0.00000 0.00000
13.250 −0.00042 −0.02401 0.00000 −0.00000
13.500 −0.02357 0.00041 −0.00000 −0.00000
13.750 0.00039 0.02314 −0.00000 0.00000
14.000 0.02273 −0.00038 0.00000 0.00000
14.250 −0.00037 −0.02233 0.00000 −0.00000
14.500 −0.02194 0.00035 −0.00000 −0.00000
14.750 0.00034 0.02157 −0.00000 0.00000
15.000 0.02121 −0.00033 0.00000 0.00000
15.250 −0.00032 −0.02087 0.00000 −0.00000
15.500 −0.02053 0.00031 −0.00000 −0.00000
15.750 0.00030 0.02020 −0.00000 0.00000
16.000 0.01989 −0.00029 0.00000 −0.00000
16.250 −0.00028 −0.01958 −0.00000 −0.00000
16.500 −0.01929 0.00027 −0.00000 0.00000
16.750 0.00026 0.01900 0.00000 0.00000
17.000 0.01872 −0.00026 0.00000 −0.00000
17.250 −0.00025 −0.01845 −0.00000 −0.00000
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Table 2. – continued

(k − i)(b/λ) �kiu �kiv

17.500 −0.01818 0.00024 −0.00000 −0.00000
17.750 0.00024 0.01793 −0.00000 0.00000
18.000 0.01768 −0.00023 0.00000 0.00000
18.250 −0.00022 −0.01744 0.00000 −0.00000
18.500 −0.01720 0.00022 −0.00000 −0.00000
18.750 0.00021 0.01697 −0.00000 0.00000
19.000 0.01675 −0.00021 0.00000 0.00000
19.250 −0.00020 −0.01653 0.00000 −0.00000
19.500 −0.01632 0.00020 −0.00000 −0.00000
19.750 0.00019 0.01611 −0.00000 0.00000
20.000 0.01591 −0.00019 0.00000 0.00000
20.250 −0.00018 −0.01572 0.00000 −0.00000
20.500 −0.01552 0.00018 −0.00000 −0.00000
20.750 0.00017 0.01534 −0.00000 0.00000
21.000 0.01515 −0.00017 0.00000 0.00000
21.250 −0.00016 −0.01498 0.00000 −0.00000
21.500 −0.01480 0.00016 −0.00000 −0.00000
21.750 0.00016 0.01463 −0.00000 0.00000
22.000 0.01447 −0.00015 0.00000 0.00000
22.250 −0.00015 −0.01430 0.00000 −0.00000
22.500 −0.01414 0.00015 −0.00000 −0.00000
22.750 0.00014 0.01399 0.00000 0.00000
23.000 0.01384 −0.00014 0.00000 −0.00000
23.250 −0.00014 −0.01369 −0.00000 −0.00000
23.500 −0.01354 0.00013 −0.00000 0.00000
23.750 0.00013 0.01340 0.00000 0.00000
24.000 0.01326 −0.00013 0.00000 −0.00000
24.250 −0.00013 −0.01312 −0.00000 −0.00000
24.500 −0.01299 0.00012 −0.00000 0.00000
24.750 0.00012 0.01286 0.00000 0.00000
25.000 0.01273 −0.00012 0.00000 0.00000
25.250 −0.00012 −0.01260 0.00000 −0.00000
25.500 −0.01248 0.00011 −0.00000 −0.00000
25.750 0.00011 0.01236 −0.00000 0.00000
26.000 0.01224 −0.00011 0.00000 0.00000
26.250 −0.00011 −0.01212 0.00000 −0.00000
26.500 −0.01201 0.00011 −0.00000 −0.00000
26.750 0.00010 0.01190 −0.00000 0.00000
27.000 0.01179 −0.00010 0.00000 0.00000
27.250 −0.00010 −0.01168 0.00000 −0.00000
27.500 −0.01157 0.00010 −0.00000 −0.00000
27.750 0.00010 0.01147 −0.00000 0.00000
28.000 0.01137 −0.00009 0.00000 0.00000
28.250 −0.00009 −0.01127 0.00000 −0.00000
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Table 2. – continued

(k − i)(b/λ) �kiu �kiv

28.500 −0.01117 0.00009 −0.00000 −0.00000
28.750 0.00009 0.01107 −0.00000 0.00000
29.000 0.01098 −0.00009 0.00000 0.00000
29.250 −0.00009 −0.01088 0.00000 −0.00000
29.500 −0.01079 0.00009 −0.00000 −0.00000
29.750 0.00008 0.01070 −0.00000 0.00000
30.000 0.01061 −0.00008 0.00000 0.00000
30.250 −0.00008 −0.01052 0.00000 −0.00000
30.500 −0.01044 0.00008 −0.00000 −0.00000
30.750 0.00008 0.01035 −0.00000 0.00000
31.000 0.01027 −0.00008 0.00000 0.00000
31.250 −0.00008 −0.01019 0.00000 −0.00000
31.500 −0.01010 0.00007 −0.00000 −0.00000
31.750 0.00007 0.01002 −0.00000 0.00000
32.000 0.00995 −0.00007 0.00000 −0.00000
32.250 −0.00007 −0.00987 −0.00000 −0.00000
32.500 −0.00979 0.00007 −0.00000 0.00000
32.750 0.00007 0.00972 0.00000 0.00000
33.000 0.00965 −0.00007 0.00000 −0.00000
33.250 −0.00007 −0.00957 −0.00000 −0.00000
33.500 −0.00950 0.00007 −0.00000 0.00000
33.750 0.00007 0.00943 0.00000 0.00000
34.000 0.00936 −0.00006 0.00000 −0.00000
34.250 −0.00006 −0.00929 −0.00000 −0.00000
34.500 −0.00923 0.00006 −0.00000 0.00000
34.750 0.00006 0.00916 0.00000 0.00000
35.000 0.00909 −0.00006 0.00000 0.00000
35.250 −0.00006 −0.00903 0.00000 −0.00000
35.500 −0.00897 0.00006 −0.00000 −0.00000
35.750 0.00006 0.00890 −0.00000 0.00000
36.000 0.00884 −0.00006 0.00000 0.00000
36.250 −0.00006 −0.00878 0.00000 −0.00000
36.500 −0.00872 0.00006 −0.00000 −0.00000
36.750 0.00006 0.00866 −0.00000 0.00000
37.000 0.00860 −0.00005 0.00000 0.00000
37.250 −0.00005 −0.00854 0.00000 −0.00000
37.500 −0.00849 0.00005 −0.00000 −0.00000
37.750 0.00005 0.00843 −0.00000 0.00000
38.000 0.00838 −0.00005 0.00000 0.00000
38.250 −0.00005 −0.00832 0.00000 −0.00000
38.500 −0.00827 0.00005 −0.00000 −0.00000
38.750 0.00005 0.00821 −0.00000 0.00000
39.000 0.00816 −0.00005 0.00000 0.00000
39.250 −0.00005 −0.00811 0.00000 −0.00000
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Table 2. – continued

(k − i)(b/λ) �kiu �kiv

39.500 −0.00806 0.00005 −0.00000 −0.00000
39.750 0.00005 0.00801 −0.00000 0.00000
40.000 0.00796 −0.00005 0.00000 0.00000
40.250 −0.00005 −0.00791 0.00000 −0.00000
40.500 −0.00786 0.00005 −0.00000 −0.00000
40.750 0.00004 0.00781 −0.00000 0.00000
41.000 0.00776 −0.00004 0.00000 0.00000
41.250 −0.00004 −0.00772 0.00000 −0.00000
41.500 −0.00767 0.00004 −0.00000 −0.00000
41.750 0.00004 0.00762 −0.00000 0.00000
42.000 0.00758 −0.00004 0.00000 0.00000
42.250 −0.00004 −0.00753 0.00000 −0.00000
42.500 −0.00749 0.00004 −0.00000 −0.00000
42.750 0.00004 0.00745 −0.00000 0.00000
43.000 0.00740 −0.00004 0.00000 0.00000
43.250 −0.00004 −0.00736 0.00000 −0.00000
43.500 −0.00732 0.00004 −0.00000 −0.00000
43.750 0.00004 0.00728 −0.00000 0.00000
44.000 0.00723 −0.00004 0.00000 0.00000
44.250 −0.00004 −0.00719 0.00000 −0.00000
44.500 −0.00715 0.00004 −0.00000 −0.00000
44.750 0.00004 0.00711 −0.00000 0.00000
45.000 0.00707 −0.00004 0.00000 0.00000
45.250 −0.00004 −0.00703 0.00000 −0.00000
45.500 −0.00700 0.00004 −0.00000 0.00000
45.750 0.00004 0.00696 0.00000 0.00000
46.000 0.00692 −0.00004 0.00000 −0.00000
46.250 −0.00003 −0.00688 −0.00000 −0.00000
46.500 −0.00685 0.00003 −0.00000 0.00000
46.750 0.00003 0.00681 0.00000 0.00000
47.000 0.00677 −0.00003 0.00000 −0.00000
47.250 −0.00003 −0.00674 −0.00000 −0.00000
47.500 −0.00670 0.00003 −0.00000 0.00000
47.750 0.00003 0.00667 0.00000 0.00000
48.000 0.00663 −0.00003 0.00000 −0.00000
48.250 −0.00003 −0.00660 −0.00000 −0.00000
48.500 −0.00656 0.00003 −0.00000 0.00000
48.750 0.00003 0.00653 0.00000 0.00000
49.000 0.00650 −0.00003 0.00000 −0.00000
49.250 −0.00003 −0.00646 −0.00000 −0.00000
49.500 −0.00643 0.00003 −0.00000 −0.00000
49.750 0.00003 0.00640 −0.00000 0.00000
50.000 0.00637 −0.00003 0.00000 0.00000
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Table 3. Elements of �u and �v matrices for h/λ = 0.375

Values for single element (�kku ,�kkv and �kkd R = �d R)
� �d R �kku �kkv

7.00 4.19919 −3.23123 2.57558 0.21311 −1.80626
7.50 4.67051 −3.60298 2.57993 0.24365 −1.80933
8.00 5.14769 −3.97013 2.58257 0.26761 −1.81119
8.50 5.62962 −4.33386 2.58417 0.28638 −1.81232
9.00 6.11538 −4.69506 2.58514 0.30105 −1.81301
9.50 6.60417 −5.05439 2.58573 0.31251 −1.81343

10.00 7.09538 −5.41231 2.58609 0.32146 −1.81368
10.50 7.58849 −5.76918 2.58631 0.32844 −1.81383
11.00 8.08311 −6.12526 2.58644 0.33388 −1.81393
11.50 8.57890 −6.48075 2.58652 0.33812 −1.81398
12.00 9.07561 −6.83578 2.58657 0.34143 −1.81402
12.50 9.57305 −7.19047 2.58660 0.34401 −1.81404
13.00 10.07105 −7.54490 2.58661 0.34602 −1.81405
15.00 12.06658 −8.96103 2.58664 0.35049 −1.81407

Off diagonal values of �u and �v

(k − i)(b/λ) �kiu �kiv

0.250 0.91495 1.41028 −0.64760 −0.98392
0.500 1.02366 −0.50347 −0.71398 0.36254
0.750 −0.30409 −0.80374 0.22402 0.56460
1.000 −0.65434 0.19794 0.46271 −0.14798
1.250 0.13707 0.54781 −0.10339 −0.38918
1.500 0.46915 −0.09974 −0.33434 0.07566
1.750 −0.07549 −0.40923 0.05748 0.29226
2.000 −0.36234 0.05896 0.25917 −0.04501
2.250 0.04724 0.32477 −0.03613 −0.23255
2.500 0.29408 −0.03866 −0.21074 0.02960
2.750 −0.03220 −0.26857 0.02468 0.19258
3.000 −0.24705 0.02721 0.17724 −0.02088
3.250 0.02329 0.22868 −0.01788 −0.16412
3.500 0.21281 −0.02016 −0.15278 0.01548
3.750 −0.01761 −0.19898 0.01353 0.14288
4.000 −0.18682 0.01552 0.13418 −0.01193
4.250 0.01377 0.17604 −0.01059 −0.12646
4.500 0.16643 −0.01231 −0.11957 0.00946
4.750 −0.01106 −0.15781 0.00851 0.11339
5.000 −0.15003 0.01000 0.10782 −0.00769
5.250 0.00908 0.14298 −0.00698 −0.10276
5.500 0.13656 −0.00828 −0.09815 0.00637
5.750 −0.00758 −0.13068 0.00583 0.09393
6.000 −0.12529 0.00697 0.09006 −0.00536
6.250 0.00642 0.12033 −0.00494 −0.08650
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Table 3. – continued

(k − i)(b/λ) �kiu �kiv

6.500 0.11574 −0.00594 −0.08320 0.00457
6.750 −0.00551 −0.11148 0.00424 0.08015
7.000 −0.10753 0.00513 0.07731 −0.00395
7.250 0.00478 0.10385 −0.00368 −0.07467
7.500 0.10041 −0.00447 −0.07219 0.00344
7.750 −0.00419 −0.09719 0.00322 0.06988
8.000 −0.09417 0.00393 0.06771 −0.00303
8.250 0.00370 0.09133 −0.00285 −0.06567
8.500 0.08866 −0.00348 −0.06375 0.00268
8.750 −0.00329 −0.08613 0.00253 0.06194
9.000 −0.08375 0.00311 0.06023 −0.00239
9.250 0.00294 0.08150 −0.00227 −0.05861
9.500 0.07936 −0.00279 −0.05707 0.00215
9.750 −0.00265 −0.07733 0.00204 0.05561

10.000 −0.07541 0.00252 0.05423 −0.00194
10.250 0.00240 0.07358 −0.00185 −0.05291
10.500 0.07183 −0.00229 −0.05166 0.00176
10.750 −0.00218 −0.07016 0.00168 0.05046
11.000 −0.06857 0.00208 0.04932 −0.00161
11.250 0.00199 0.06705 −0.00153 −0.04822
11.500 0.06560 −0.00191 −0.04718 0.00147
11.750 −0.00183 −0.06421 0.00141 0.04618
12.000 −0.06287 0.00175 0.04522 −0.00135
12.250 0.00168 0.06159 −0.00130 −0.04430
12.500 0.06036 −0.00161 −0.04342 0.00124
12.750 −0.00155 −0.05918 0.00120 0.04257
13.000 −0.05805 0.00149 0.04175 −0.00115
13.250 0.00144 0.05695 −0.00111 −0.04096
13.500 0.05590 −0.00138 −0.04021 0.00107
13.750 −0.00134 −0.05489 0.00103 0.03948
14.000 −0.05391 0.00129 0.03877 −0.00099
14.250 0.00124 0.05297 −0.00096 −0.03809
14.500 0.05205 −0.00120 −0.03744 0.00092
14.750 −0.00116 −0.05117 0.00089 0.03681
15.000 −0.05032 0.00112 0.03619 −0.00086
15.250 0.00109 0.04950 −0.00084 −0.03560
15.500 0.04870 −0.00105 −0.03503 0.00081
15.750 −0.00102 −0.04793 0.00078 0.03447
16.000 −0.04718 0.00099 0.03394 −0.00076
16.250 0.00096 0.04646 −0.00074 −0.03341
16.500 0.04575 −0.00093 −0.03291 0.00071
16.750 −0.00090 −0.04507 0.00069 0.03242
17.000 −0.04441 0.00087 0.03194 −0.00067
17.250 0.00085 0.04377 −0.00065 −0.03148
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Table 3. – continued

(k − i)(b/λ) �kiu �kiv

17.500 0.04314 −0.00082 −0.03103 0.00064
17.750 −0.00080 −0.04253 0.00062 0.03059
18.000 −0.04194 0.00078 0.03017 −0.00060
18.250 0.00076 0.04137 −0.00058 −0.02976
18.500 0.04081 −0.00074 −0.02936 0.00057
18.750 −0.00072 −0.04027 0.00055 0.02896
19.000 −0.03974 0.00070 0.02858 −0.00054
19.250 0.00068 0.03922 −0.00053 −0.02821
19.500 0.03872 −0.00066 −0.02785 0.00051
19.750 −0.00065 −0.03823 0.00050 0.02750
20.000 −0.03775 0.00063 0.02716 −0.00049
20.250 0.00062 0.03729 −0.00047 −0.02682
20.500 0.03683 −0.00060 −0.02649 0.00046
20.750 −0.00059 −0.03639 0.00045 0.02618
21.000 −0.03596 0.00057 0.02586 −0.00044
21.250 0.00056 0.03553 −0.00043 −0.02556
21.500 0.03512 −0.00055 −0.02526 0.00042
21.750 −0.00053 −0.03472 0.00041 0.02497
22.000 −0.03432 0.00052 0.02469 −0.00040
22.250 0.00051 0.03394 −0.00039 −0.02441
22.500 0.03356 −0.00050 −0.02414 0.00038
22.750 −0.00049 −0.03319 0.00038 0.02388
23.000 −0.03283 0.00048 0.02362 −0.00037
23.250 0.00047 0.03248 −0.00036 −0.02336
23.500 0.03123 −0.00046 −0.02311 0.00035
23.750 −0.00045 −0.03180 0.00035 0.02287
24.000 −0.03147 0.00044 0.02263 −0.00034
24.250 0.00043 0.03114 −0.00033 −0.02240
24.500 0.03082 −0.00042 −0.02217 0.00032
24.750 −0.00041 −0.03051 0.00032 0.02195
25.000 −0.03021 0.00040 0.02173 −0.00031
25.250 0.00040 0.02991 −0.00031 −0.02151
25.500 0.02962 −0.00039 −0.02130 0.00030
25.750 −0.00038 −0.02933 0.00029 0.02110
26.000 −0.02905 0.00037 0.02089 −0.00029
26.250 0.00037 0.02877 −0.00028 −0.02069
26.500 0.02850 −0.00036 −0.02050 0.00028
26.750 −0.00035 −0.02823 0.00027 0.02031
27.000 −0.02797 0.00035 0.02012 −0.00027
27.250 0.00034 0.02771 −0.00026 −0.01994
27.500 0.02746 −0.00033 −0.01975 0.00026
27.750 −0.00033 −0.02722 0.00025 0.01958
28.000 −0.02697 0.00032 0.01940 −0.00025
28.250 0.00032 0.02673 −0.00024 −0.01923
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Table 3. – continued

(k − i)(b/λ) �kiu �kiv

28.500 0.02650 −0.00031 −0.01906 0.00024
28.750 −0.00031 −0.02627 0.00024 0.01890
29.000 −0.02604 0.00030 0.01873 −0.00023
29.250 0.00030 0.02582 −0.00023 −0.01857
29.500 0.02560 −0.00029 −0.01842 0.00022
29.750 −0.00029 −0.02539 0.00022 0.01826
30.000 −0.02518 0.00028 0.01811 −0.00022
30.250 0.00028 0.02497 −0.00021 −0.01796
30.500 0.02476 −0.00027 −0.01781 0.00021
30.750 −0.00027 −0.02456 0.00021 0.01767
31.000 −0.02436 0.00026 0.01753 −0.00020
31.250 0.00026 0.02417 −0.00020 −0.01738
31.500 0.02398 −0.00025 −0.01725 0.00020
31.750 −0.00025 −0.02379 0.00019 0.01711
32.000 −0.02360 0.00025 0.01698 −0.00019
32.250 0.00024 0.02342 −0.00019 −0.01685
32.500 0.02324 −0.00024 −0.01672 0.00018
32.750 −0.00024 −0.02306 0.00018 0.01659
33.000 −0.02289 0.00023 0.01646 −0.00018
33.250 0.00023 0.02272 −0.00018 −0.01634
33.500 0.02255 −0.00023 −0.01622 0.00017
33.750 −0.00022 −0.02238 0.00017 0.01610
34.000 −0.02221 0.00022 0.01598 −0.00017
34.250 0.00022 0.02205 −0.00017 −0.01586
34.500 0.02189 −0.00021 −0.01575 0.00016
34.750 −0.00021 −0.02174 0.00016 0.01563
35.000 −0.02158 0.00021 0.01552 −0.00016
35.250 0.00020 0.02143 −0.00016 −0.01541
35.500 0.02128 −0.00020 −0.01530 0.00015
35.750 −0.00020 −0.02113 0.00015 0.01520
36.000 −0.02098 0.00019 0.01509 −0.00015
36.250 0.00019 0.02084 −0.00015 −0.01499
36.500 0.02069 −0.00019 −0.01489 0.00015
36.750 −0.00019 −0.02055 0.00014 0.01478
37.000 −0.02041 0.00018 0.01468 −0.00014
37.250 0.00018 0.02028 −0.00014 −0.01459
37.500 0.02014 −0.00018 −0.01449 0.00014
37.750 −0.00018 −0.02001 0.00014 0.01439
38.000 −0.01988 0.00018 0.01430 −0.00013
38.250 0.00017 0.01975 −0.00013 −0.01420
38.500 0.01962 −0.00017 −0.01411 0.00013
38.750 −0.00017 −0.01949 0.00013 0.01402
39.000 −0.01937 0.00017 0.01393 −0.00013
39.250 0.00016 0.01924 −0.00013 −0.01384
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Table 3. – continued

(k − i)(b/λ) �kiu �kiv

39.500 0.01912 −0.00016 −0.01375 0.00012
39.750 −0.00016 −0.01900 0.00012 0.01367
40.000 −0.01888 0.00016 0.01358 −0.00012
40.250 0.00016 0.01877 −0.00012 −0.01350
40.500 0.01865 −0.00015 −0.01342 0.00012
40.750 −0.00015 −0.01854 0.00012 0.01333
41.000 −0.01842 0.00015 0.01325 −0.00012
41.250 0.00015 0.01831 −0.00011 −0.01317
41.500 0.01820 −0.00015 −0.01309 0.00011
41.750 −0.00014 −0.01809 0.00011 0.01301
42.000 −0.01798 0.00014 0.01294 −0.00011
42.250 0.00014 0.01788 −0.00011 −0.01286
42.500 0.01777 −0.00014 −0.01278 0.00011
42.750 −0.00014 −0.01767 0.00011 0.01271
43.000 −0.01757 0.00014 0.01264 −0.00011
43.250 0.00014 0.01746 −0.00010 −0.01256
43.500 0.01736 −0.00013 −0.01249 0.00010
43.750 −0.00013 −0.01726 0.00010 0.01242
44.000 −0.01717 0.00013 0.01235 −0.00010
44.250 0.00013 0.01707 −0.00010 −0.01228
44.500 0.01697 −0.00013 −0.01221 0.00010
44.750 −0.00013 −0.01688 0.00010 0.01214
45.000 −0.01679 0.00012 0.01207 −0.00010
45.250 0.00012 0.01669 −0.00010 −0.01201
45.500 0.01660 −0.00012 −0.01194 0.00009
45.750 −0.00012 −0.01651 0.00009 0.01188
46.000 −0.01642 0.00012 0.01181 −0.00009
46.250 0.00012 0.01633 −0.00009 −0.01175
46.500 0.01624 −0.00012 −0.01168 0.00009
46.750 −0.00012 −0.01616 0.00009 0.01162
47.000 −0.01607 0.00011 0.01156 −0.00009
47.250 0.00011 0.01599 −0.00009 −0.01150
47.500 0.01590 −0.00011 −0.01144 0.00009
47.750 −0.00011 −0.01582 0.00009 0.01138
48.000 −0.01574 0.00011 0.01132 −0.00008
48.250 0.00011 0.01565 −0.00008 −0.01126
48.500 0.01557 −0.00011 −0.01120 0.00008
48.750 −0.00011 −0.01549 0.00008 0.01115
49.000 −0.01542 0.00011 0.01109 −0.00008
49.250 0.00010 0.01534 −0.00008 −0.01103
49.500 0.01526 −0.00010 −0.01098 0.00008
49.750 −0.00010 −0.01518 0.00008 0.01092
50.000 −0.01511 0.00010 0.01087 −0.00008
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Table 4. Elements of �u and �v matrices for h/λ = 0.50

Values for single element (�kku ,�kkv and �kkd R = �d R)
� �d R �kku �kkv

7.00 2.96068 −3.65469 2.87405 0.48701 −1.64559
7.50 3.42057 −4.16756 2.88308 0.52709 −1.65089
8.00 3.88899 −4.67618 2.88857 0.55866 −1.65410
8.50 4.36420 −5.18191 2.89191 0.58344 −1.65605
9.00 4.84477 −5.68568 2.89393 0.60287 −1.65724
9.50 5.32957 −6.18815 2.89516 0.61807 −1.65796

10.00 5.81769 −6.68975 2.89590 0.62995 −1.65839
10.50 6.30841 −7.19079 2.89635 0.63923 −1.65866
11.00 6.80117 −7.69146 2.89662 0.64647 −1.65882
11.50 7.29552 −8.19189 2.89679 0.65212 −1.65891
12.00 7.79112 −8.69217 2.89689 0.65653 −1.65897
12.50 8.28768 −9.19235 2.89695 0.65996 −1.65901
13.00 8.78501 −9.69246 2.89699 0.66264 −1.65903
15.00 10.77905 −11.69262 2.89704 0.66860 −1.65906

Off diagonal values of �u and �v

(k − i)(b/λ) �kiu �kiv

0.250 1.02173 1.52473 −0.68124 −0.85698
0.500 1.10298 −0.66347 −0.62956 0.40704
0.750 −0.45462 −0.90710 0.29109 0.51517
1.000 −0.76996 0.32113 0.44407 −0.21742
1.250 0.23434 0.66433 −0.16567 −0.39044
1.500 0.58100 −0.17648 −0.34702 0.12866
1.750 −0.13673 −0.51431 0.10187 0.31107
2.000 −0.46021 0.10856 0.28103 −0.08216
2.250 0.08803 0.41571 −0.06739 −0.25573
2.500 0.37862 −0.07267 −0.23423 0.05612
2.750 −0.06093 −0.34732 0.04737 0.21582
3.000 −0.32062 0.05177 0.19993 −0.04046
3.250 0.04450 0.29760 −0.03492 −0.18610
3.500 0.27757 −0.03864 −0.17397 0.03042
3.750 −0.03385 −0.26000 0.02673 0.16327
4.000 −0.24448 0.02989 0.15376 −0.02365
4.250 0.02659 0.23067 −0.02107 −0.14527
4.500 0.21832 −0.02379 −0.13764 0.01889
4.750 −0.02141 −0.20720 0.01702 0.13076
5.000 −0.19714 0.01937 0.12451 −0.01542
5.250 0.01761 0.18800 −0.01403 −0.11882
5.500 0.17966 −0.01607 −0.11362 0.01282
5.750 −0.01473 −0.17202 0.01175 0.10885
6.000 −0.16500 0.01354 0.10446 −0.01082
6.250 0.01250 0.15852 −0.00999 −0.10040
6.500 0.15253 −0.01157 −0.09664 0.00925
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Table 4. – continued

(k − i)(b/λ) �kiu �kiv

6.750 −0.01074 −0.14697 0.00859 0.09315
7.000 −0.14180 0.00999 0.08990 −0.00800
7.250 0.00932 0.13698 −0.00746 −0.08687
7.500 0.13247 −0.00872 −0.08403 0.00698
7.750 −0.00817 −0.12825 0.00654 0.08137
8.000 −0.12429 0.00767 0.07888 −0.00615
8.250 0.00722 0.12056 −0.00578 −0.07653
8.500 0.11706 −0.00680 −0.07431 0.00545
8.750 −0.00642 −0.11374 0.00515 0.07222
9.000 −0.11061 0.00607 0.07024 −0.00487
9.250 0.00575 0.10765 −0.00461 −0.06837
9.500 0.10484 −0.00545 −0.06659 0.00438
9.750 −0.00518 −0.10217 0.00416 0.06491

10.000 −0.09964 0.00493 0.06330 −0.00395
10.250 0.00469 0.09722 −0.00376 −0.06177
10.500 0.09492 −0.00447 −0.06032 0.00359
10.750 −0.00427 −0.09273 0.00342 0.05893
11.000 −0.09063 0.00407 0.05760 −0.00327
11.250 0.00390 0.08863 −0.00313 −0.05633
11.500 0.08672 −0.00373 −0.05512 0.00300
11.750 −0.00357 −0.08488 0.00287 0.05396
12.000 −0.08312 0.00343 0.05284 −0.00275
12.250 0.00329 0.08143 −0.00264 −0.05177
12.500 0.07981 −0.00316 −0.05074 0.00254
12.750 −0.00304 −0.07826 0.00244 0.04976
13.000 −0.07676 0.00292 0.04881 −0.00235
13.250 0.00281 0.07531 −0.00226 −0.04789
13.500 0.07393 −0.00271 −0.04701 0.00218
13.750 −0.00261 −0.07259 0.00210 0.04616
14.000 −0.07130 0.00252 0.04534 −0.00203
14.250 0.00243 0.07005 −0.00196 −0.04455
14.500 0.06885 −0.00235 −0.04379 0.00189
14.750 −0.00227 −0.06768 0.00183 0.04305
15.000 −0.06656 0.00220 0.04233 −0.00177
15.250 0.00212 0.06547 −0.00171 −0.04164
15.500 0.06442 −0.00206 −0.04097 0.00165
15.750 −0.00199 −0.06340 0.00160 0.04033
16.000 −0.06241 0.00193 0.03970 −0.00155
16.250 0.00187 0.06145 −0.00150 −0.03909
16.500 0.06052 −0.00182 −0.03850 0.00146
16.750 −0.00176 −0.05962 0.00142 0.03793
17.000 −0.05875 0.00171 0.03737 −0.00138
17.250 0.00166 0.05790 −0.00134 −0.03683
17.500 0.05707 −0.00161 −0.03631 0.00130



571 Appendix II

Table 4. – continued

(k − i)(b/λ) �kiu �kiv

17.750 −0.00157 −0.05627 0.00126 0.03580
18.000 −0.05549 0.00153 0.03531 −0.00123
18.250 0.00148 0.05473 −0.00119 −0.03482
18.500 0.05400 −0.00144 −0.03435 0.00116
18.750 −0.00141 −0.05328 0.00113 0.03390
19.000 −0.05258 0.00137 0.03345 −0.00110
19.250 0.00133 0.05190 −0.00107 −0.03302
19.500 0.05123 −0.00130 −0.03260 0.00105
19.750 −0.00127 −0.05059 0.00102 0.03219
20.000 −0.04995 0.00124 0.03179 −0.00099
20.250 0.00121 0.04934 −0.00097 −0.03139
20.500 0.04874 −0.00118 −0.03101 0.00095
20.750 −0.00115 −0.04815 0.00092 0.03064
21.000 −0.04758 0.00112 0.03028 −0.00090
21.250 0.00110 0.04702 −0.00088 −0.02992
21.500 0.04647 −0.00107 −0.02957 0.00086
21.750 −0.00105 −0.04594 0.00084 0.02923
22.000 −0.04542 0.00102 0.02890 −0.00082
22.250 0.00100 0.04491 −0.00080 −0.02858
22.500 0.04441 −0.00098 −0.02826 0.00079
22.750 −0.00096 −0.04392 0.00077 0.02795
23.000 −0.04345 0.00094 0.02765 −0.00075
23.250 0.00092 0.04298 −0.00074 −0.02735
23.500 0.04252 −0.00090 −0.02706 0.00072
23.750 −0.00088 −0.04208 0.00071 0.02678
24.000 −0.04164 0.00086 0.02650 −0.00069
24.250 0.00084 0.04121 −0.00068 −0.02623
24.500 0.04079 −0.00082 −0.02596 0.00066
24.750 −0.00081 −0.04038 0.00065 0.02570
25.000 −0.03998 0.00079 0.02544 −0.00064
25.250 0.00078 0.03958 −0.00062 −0.02519
25.500 0.03919 −0.00076 −0.02494 0.00061
25.750 −0.00075 −0.03881 0.00060 0.02470
26.000 −0.03844 0.00073 0.02446 −0.00059
26.250 0.00072 0.03807 −0.00058 −0.02423
26.500 0.03772 −0.00070 −0.02400 0.00057
26.750 −0.00069 −0.03736 0.00056 0.02378
27.000 −0.03702 0.00068 0.02356 −0.00055
27.250 0.00067 0.03668 −0.00054 −0.02334
27.500 0.03635 −0.00065 −0.02313 0.00053
27.750 −0.00064 −0.03602 0.00052 0.02292
28.000 −0.03570 0.00063 0.02272 −0.00051
28.250 0.00062 0.03538 −0.00050 −0.02252
28.500 0.03507 −0.00061 −0.02232 0.00049
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Table 4. – continued

(k − i)(b/λ) �kiu �kiv

28.750 −0.00060 −0.03477 0.00048 0.02213
29.000 −0.03447 0.00059 0.02194 −0.00047
29.250 0.00058 0.03417 −0.00047 −0.02175
29.500 0.03388 −0.00057 −0.02157 0.00046
29.750 −0.00056 −0.03360 0.00045 0.02139
30.000 −0.03332 0.00055 0.02121 −0.00044
30.250 0.00054 0.03304 −0.00044 −0.02103
30.500 0.03277 −0.00053 −0.02086 0.00043
30.750 −0.00052 −0.03251 0.00042 0.02069
31.000 −0.03225 0.00052 0.02052 −0.00041
31.250 0.00051 0.03199 −0.00041 −0.02036
31.500 0.03173 −0.00050 −0.02020 0.00040
31.750 −0.00049 −0.03148 0.00040 0.02004
32.000 −0.03124 0.00048 0.01988 −0.00039
32.250 0.00048 0.03100 −0.00038 −0.01973
32.500 0.03076 −0.00047 −0.01958 0.00038
32.750 −0.00046 −0.03052 0.00037 0.01943
33.000 −0.03029 0.00045 0.01928 −0.00037
33.250 0.00045 0.03007 −0.00036 −0.01914
33.500 0.02984 −0.00044 −0.01899 0.00035
33.750 −0.00043 −0.02962 0.00035 0.01885
34.000 −0.02940 0.00043 0.01871 −0.00034
34.250 0.00042 0.02919 −0.00034 −0.01858
34.500 0.02898 −0.00042 −0.01844 0.00033
34.750 −0.00041 −0.02877 0.00033 0.01831
35.000 −0.02856 0.00040 0.01818 −0.00033
35.250 0.00040 0.02836 −0.00032 −0.01805
35.500 0.02816 −0.00039 −0.01792 0.00032
35.750 −0.00039 −0.02796 0.00031 0.01780
36.000 −0.02777 0.00038 0.01768 −0.00031
36.250 0.00038 0.02758 −0.00030 −0.01755
36.500 0.02739 −0.00037 −0.01743 0.00030
36.750 −0.00037 −0.02720 0.00029 0.01732
37.000 −0.02702 0.00036 0.01720 −0.00029
37.250 0.00036 0.02684 −0.00029 −0.01708
37.500 0.02666 −0.00035 −0.01697 0.00028
37.750 −0.00035 −0.02648 0.00028 0.01686
38.000 −0.02631 0.00034 0.01675 −0.00028
38.250 0.00034 0.02614 −0.00027 −0.01664
38.500 0.02597 −0.00033 −0.01653 0.00027
38.750 −0.00033 −0.02580 0.00027 0.01642
39.000 −0.02563 0.00033 0.01632 −0.00026
39.250 0.00032 0.02547 −0.00026 −0.01621
39.500 0.02531 −0.00032 −0.01611 0.00026
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Table 4. – continued

(k − i)(b/λ) �kiu �kiv

39.750 −0.00031 −0.02515 0.00025 0.01601
40.000 −0.02499 0.00031 0.01591 −0.00025
40.250 0.00031 0.02484 −0.00025 −0.01581
40.500 0.02469 −0.00030 −0.01571 0.00024
40.750 −0.00030 −0.02453 0.00024 0.01562
41.000 −0.02438 0.00029 0.01552 −0.00024
41.250 0.00029 0.02424 −0.00023 −0.01543
41.500 0.02409 −0.00029 −0.01534 0.00023
41.750 −0.00028 −0.02395 0.00023 0.01524
42.000 −0.02380 0.00028 0.01515 −0.00023
42.250 0.00028 0.02366 −0.00022 −0.01506
42.500 0.02352 −0.00027 −0.01497 0.00022
42.750 −0.00027 −0.02339 0.00022 0.01489
43.000 −0.02325 0.00027 0.01480 −0.00022
43.250 0.00026 0.02312 −0.00021 −0.01472
43.500 0.02298 −0.00026 −0.01463 0.00021
43.750 −0.00026 −0.02285 0.00021 0.01455
44.000 −0.02272 0.00026 0.01446 −0.00021
44.250 0.00025 0.02259 −0.00020 −0.01438
44.500 0.02247 −0.00025 −0.01430 0.00020
44.750 −0.00025 −0.02234 0.00020 0.01422
45.000 −0.02222 0.00024 0.01414 −0.00020
45.250 0.00024 0.02210 −0.00019 −0.01407
45.500 0.02197 −0.00024 −0.01399 0.00019
45.750 −0.00024 −0.02185 0.00019 0.01391
46.000 −0.02174 0.00023 0.01384 −0.00019
46.250 0.00023 0.02162 −0.00019 −0.01376
46.500 0.02150 −0.00023 −0.01369 0.00018
46.750 −0.00023 −0.02139 0.00018 0.01361
47.000 −0.02127 0.00022 0.01354 −0.00018
47.250 0.00022 0.02116 −0.00018 −0.01347
47.500 0.02105 −0.00022 −0.01340 0.00018
47.750 −0.00022 −0.02094 0.00017 0.01333
48.000 −0.02083 0.00021 0.01326 −0.00017
48.250 0.00021 0.02072 −0.00017 −0.01319
48.500 0.02062 −0.00021 −0.01312 0.00017
48.750 −0.00021 −0.02051 0.00017 0.01306
49.000 −0.02041 0.00021 0.01299 −0.00017
49.250 0.00020 0.02030 −0.00016 −0.01292
49.500 0.02020 −0.00020 −0.01286 0.00016
49.750 −0.00020 −0.02010 0.00016 0.01279
50.000 −0.02000 0.00020 0.01273 −0.00016
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Table 5. Elements of �u and �v matrices for h/λ = 0.625

Values for single element (�kku ,�kkv and �kkd R = �d R)
� �d R �kku �kkv

7.00 2.81599 −2.06379 1.28068 0.83173 −1.02685
7.50 3.26383 −2.40814 1.28795 0.88239 −1.03206
8.00 3.72310 −2.75320 1.29236 0.92221 −1.03523
8.50 4.19134 −3.09919 1.29505 0.95343 −1.03716
9.00 4.66659 −3.44620 1.29668 0.97785 −1.03833
9.50 5.14730 −3.79420 1.29766 0.99694 −1.03904

10.00 5.63227 −4.14312 1.29826 1.01185 −1.03947
10.50 6.12057 −4.49286 1.29863 1.02348 −1.03973
11.00 6.61145 −4.84330 1.29885 1.03255 −1.03989
11.50 7.10435 −5.19435 1.29898 1.03963 −1.03998
12.00 7.59882 −5.54589 1.29906 1.04514 −1.04004
12.50 8.09452 −5.89783 1.29911 1.04944 −1.04008
13.00 8.59116 −6.25011 1.29914 1.05278 −1.04010
15.00 10.58370 −7.66140 1.29918 1.06024 −1.04013

Off diagonal values of �u and �v

(k − i)(b/λ) �kiu �kiv

0.250 0.45164 0.59842 −0.56525 −0.53538
0.500 0.42851 −0.45552 −0.40583 0.24351
0.750 −0.38272 −0.42507 0.17624 0.28315
1.000 −0.41223 0.29489 0.23084 −0.16312
1.250 0.22288 0.38447 −0.15177 −0.21024
1.500 0.35176 −0.16988 −0.19944 0.13674
1.750 −0.13186 −0.31989 0.12048 0.19073
2.000 −0.29107 0.10445 0.18209 −0.10500
2.250 0.08436 0.26579 −0.09121 −0.17329
2.500 0.24383 −0.06935 −0.16453 0.07932
2.750 −0.05790 −0.22480 0.06922 0.15603
3.000 −0.20826 0.04901 0.14794 −0.06068
3.250 0.04198 0.19382 −0.05348 −0.14033
3.500 0.18113 −0.03635 −0.13324 0.04738
3.750 −0.03176 −0.16993 0.04221 0.12666
4.000 −0.15997 0.02798 0.12058 −0.03778
4.250 0.02484 0.15108 −0.03399 −0.11496
4.500 0.14310 −0.02219 −0.10977 0.03071
4.750 −0.01994 −0.13589 0.02787 0.10497
5.000 −0.12936 0.01801 0.10053 −0.02539
5.250 0.01635 0.12342 −0.02322 −0.09641
5.500 0.11799 −0.01491 −0.09259 0.02131
5.750 −0.01365 −0.11300 0.01962 0.08904
6.000 −0.10842 0.01255 0.08574 −0.01812
6.250 0.01157 0.10419 −0.01678 −0.08265
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Table 5. – continued

(k − i)(b/λ) �kiu �kiv

6.500 0.10027 −0.01070 −0.07977 0.01558
6.750 −0.00993 −0.09663 0.01450 0.07707
7.000 −0.09325 0.00923 0.07454 −0.01353
7.250 0.00861 0.09009 −0.01266 −0.07217
7.500 0.08714 −0.00805 −0.06993 0.01186
7.750 −0.00754 −0.08437 0.01114 0.06783
8.000 −0.08177 0.00707 0.06584 −0.01047
8.250 0.00665 0.07933 −0.00987 −0.06396
8.500 0.07702 −0.00627 −0.06218 0.00932
8.750 −0.00592 −0.07485 0.00881 0.06050
9.000 −0.07279 0.00559 0.05890 −0.00834
9.250 0.00530 0.07085 −0.00791 −0.05739
9.500 0.06900 −0.00502 −0.05594 0.00751
9.750 −0.00477 −0.06725 0.00713 0.05457

10.000 −0.06558 0.00453 0.05326 −0.00679
10.250 0.00431 0.06400 −0.00647 −0.05201
10.500 0.06249 −0.00411 −0.05082 0.00617
10.750 −0.00392 −0.06105 0.00589 0.04968
11.000 −0.05967 0.00375 0.04859 −0.00563
11.250 0.00358 0.05835 −0.00539 −0.04754
11.500 0.05709 −0.00343 −0.04654 0.00516
11.750 −0.00328 −0.05589 0.00495 0.04558
12.000 −0.05473 0.00315 0.04465 −0.00475
12.250 0.00302 0.05362 −0.00456 −0.04377
12.500 0.05255 −0.00290 −0.04291 0.00438
12.750 −0.00279 −0.05153 0.00421 0.04209
13.000 −0.05054 0.00268 0.04130 −0.00406
13.250 0.00258 0.04959 −0.00391 −0.04054
13.500 0.04868 −0.00249 −0.03981 0.00376
13.750 −0.00240 −0.04780 0.00363 0.03910
14.000 −0.04695 0.00231 0.03842 −0.00350
14.250 0.00223 0.04613 −0.00338 −0.03776
14.500 0.04534 −0.00216 −0.03712 0.00327
14.750 −0.00209 −0.04457 0.00316 0.03650
15.000 −0.04383 0.00202 0.03590 −0.00306
15.250 0.00195 0.04312 −0.00296 −0.03532
15.500 0.04242 −0.00189 −0.03476 0.00286
15.750 −0.00183 −0.04175 0.00277 0.03422
16.000 −0.04110 0.00177 0.03370 −0.00269
16.250 0.00172 0.04047 −0.00261 −0.03318
16.500 0.03986 −0.00167 −0.03269 0.00253
16.750 −0.00162 −0.03927 0.00246 0.03221
17.000 −0.03869 0.00157 0.03174 −0.00238
17.250 0.00153 0.03813 −0.00232 −0.03129
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Table 5. – continued

(k − i)(b/λ) �kiu �kiv

17.500 0.03759 −0.00148 −0.03085 0.00225
17.750 −0.00144 −0.03706 0.00219 0.03042
18.000 −0.03655 0.00140 0.03000 −0.00213
18.250 0.00136 0.03605 −0.00207 −0.02959
18.500 0.03556 −0.00133 −0.02920 0.00202
18.750 −0.00129 −0.03509 0.00196 0.02881
19.000 −0.03463 0.00126 0.02844 −0.00191
19.250 0.00122 0.03418 −0.00186 −0.02807
19.500 0.03375 −0.00119 −0.02772 0.00182
19.750 −0.00116 −0.03332 0.00177 0.02737
20.000 −0.03290 0.00113 0.02703 −0.00173
20.250 0.00111 0.03250 −0.00168 −0.02670
20.500 0.03210 −0.00108 −0.02638 0.00164
20.750 −0.00105 −0.03172 0.00160 0.02606
21.000 −0.03134 0.00103 0.02576 −0.00157
21.250 0.00101 0.03097 −0.00153 −0.02546
21.500 0.03061 −0.00098 −0.02516 0.00150
21.750 −0.00096 −0.03026 0.00146 0.02488
22.000 −0.02992 0.00094 0.02460 −0.00143
22.250 0.00092 0.02958 −0.00140 −0.02432
22.500 0.02925 −0.00090 −0.02405 0.00137
22.750 −0.00088 −0.02893 0.00134 0.02379
23.000 −0.02862 0.00086 0.02354 −0.00131
23.250 0.00084 0.02831 −0.00128 −0.02328
23.500 0.02801 −0.00082 −0.02304 0.00125
23.750 −0.00080 −0.02772 0.00123 0.02280
24.000 −0.02743 0.00079 0.02256 −0.00120
24.250 0.00077 0.02715 −0.00118 −0.02233
24.500 0.02687 −0.00076 −0.02210 0.00115
24.750 −0.00074 −0.02660 0.00113 0.02188
25.000 −0.02633 0.00073 0.02167 −0.00111
25.250 0.00071 0.02607 −0.00109 −0.02145
25.500 0.02582 −0.00070 −0.02124 0.00106
25.750 −0.00068 −0.02557 0.00104 0.02104
26.000 −0.02532 0.00067 0.02084 −0.00102
26.250 0.00066 0.02508 −0.00100 −0.02064
26.500 0.02484 −0.00065 −0.02045 0.00099
26.750 −0.00063 −0.02461 0.00097 0.02026
27.000 −0.02439 0.00062 0.02007 −0.00095
27.250 0.00061 0.02416 −0.00093 −0.01989
27.500 0.02394 −0.00060 −0.01971 0.00092
27.750 −0.00059 −0.02373 0.00090 0.01953
28.000 −0.02352 0.00058 0.01936 −0.00088
28.250 0.00057 0.02331 −0.00087 −0.01919
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Table 5. – continued

(k − i)(b/λ) �kiu �kiv

28.500 0.02310 −0.00056 −0.01902 0.00085
28.750 −0.00055 −0.02290 0.00084 0.01885
29.000 −0.02271 0.00054 0.01869 −0.00082
29.250 0.00053 0.02251 −0.00081 −0.01853
29.500 0.02232 −0.00052 −0.01838 0.00080
29.750 −0.00051 −0.02213 0.00078 0.01822
30.000 −0.02195 0.00050 0.01807 −0.00077
30.250 0.00050 0.02177 −0.00076 −0.01792
30.500 0.02159 −0.00049 −0.01778 0.00074
30.750 −0.00048 −0.02141 0.00073 0.01763
31.000 −0.02124 0.00047 0.01749 −0.00072
31.250 0.00046 0.02107 −0.00071 −0.01735
31.500 0.02091 −0.00046 −0.01722 0.00070
31.750 −0.00045 −0.02074 0.00069 0.01708
32.000 −0.02058 0.00044 0.01695 −0.00068
32.250 0.00044 0.02042 −0.00067 −0.01682
32.500 0.02026 −0.00043 −0.01669 0.00066
32.750 −0.00042 −0.02011 0.00065 0.01656
33.000 −0.01996 0.00042 0.01644 −0.00064
33.250 0.00041 0.01981 −0.00063 −0.01631
33.500 0.01966 −0.00040 −0.01619 0.00062
33.750 −0.00040 −0.01951 0.00061 0.01607
34.000 −0.01937 0.00039 0.01595 −0.00060
34.250 0.00039 0.01923 −0.00059 −0.01584
34.500 0.01909 −0.00038 −0.01572 0.00058
34.750 −0.00038 −0.01895 0.00057 0.01561
35.000 −0.01882 0.00037 0.01550 −0.00057
35.250 0.00037 0.01868 −0.00056 −0.01539
35.500 0.01855 −0.00036 −0.01528 0.00055
35.750 −0.00036 −0.01842 0.00054 0.01518
36.000 −0.01829 0.00035 0.01507 −0.00054
36.250 0.00035 0.01817 −0.00053 −0.01497
36.500 0.01804 −0.00034 −0.01486 0.00052
36.750 −0.00034 −0.01792 0.00051 0.01476
37.000 −0.01780 0.00033 0.01466 −0.00051
37.250 0.00033 0.01768 −0.00050 −0.01457
37.500 0.01756 −0.00032 −0.01447 0.00049
37.750 −0.00032 −0.01745 0.00049 0.01437
38.000 −0.01733 0.00031 0.01428 −0.00048
38.250 0.00031 0.01722 −0.00047 −0.01419
38.500 0.01711 −0.00031 −0.01409 0.00047
38.750 −0.00030 −0.01700 0.00046 0.01400
39.000 −0.01689 0.00030 0.01391 −0.00046
39.250 0.00029 0.01678 −0.00045 −0.01383
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Table 5. – continued

(k − i)(b/λ) �kiu �kiv

39.500 0.01667 −0.00029 −0.01374 0.00044
39.750 −0.00029 −0.01657 0.00044 0.01365
40.000 −0.01647 0.00028 0.01357 −0.00043
40.250 0.00028 0.01636 −0.00043 −0.01348
40.500 0.01626 −0.00028 −0.01340 0.00042
40.750 −0.00027 −0.01616 0.00042 0.01332
41.000 −0.01606 0.00027 0.01324 −0.00041
41.250 0.00027 0.01597 −0.00041 −0.01316
41.500 0.01587 −0.00026 −0.01308 0.00040
41.750 −0.00026 −0.01578 0.00040 0.01300
42.000 −0.01568 0.00026 0.01292 −0.00039
42.250 0.00025 0.01559 −0.00039 −0.01285
42.500 0.01550 −0.00025 −0.01277 0.00038
42.750 −0.00025 −0.01541 0.00038 0.01270
43.000 −0.01532 0.00025 0.01262 −0.00038
43.250 0.00024 0.01523 −0.00037 −0.01255
43.500 0.01514 −0.00024 −0.01248 0.00037
43.750 −0.00024 −0.01505 0.00036 0.01241
44.000 −0.01497 0.00023 0.01234 −0.00036
44.250 0.00023 0.01488 −0.00035 −0.01227
44.500 0.01480 −0.00023 −0.01220 0.00035
44.750 −0.00023 −0.01472 0.00035 0.01213
45.000 −0.01464 0.00022 0.01206 −0.00034
45.250 0.00022 0.01456 −0.00034 −0.01200
45.500 0.01448 −0.00022 −0.01193 0.00034
45.750 −0.00022 −0.01440 0.00033 0.01187
46.000 −0.01432 0.00021 0.01180 −0.00033
46.250 0.00021 0.01424 −0.00032 −0.01174
46.500 0.01416 −0.00021 −0.01167 0.00032
46.750 −0.00021 −0.01409 0.00032 0.01161
47.000 −0.01401 0.00021 0.01155 −0.00031
47.250 0.00020 0.01394 −0.00031 −0.01149
47.500 0.01387 −0.00020 −0.01143 0.00031
47.750 −0.00020 −0.01379 0.00030 0.01137
48.000 −0.01372 0.00020 0.01131 −0.00030
48.250 0.00019 0.01365 −0.00030 −0.01125
48.500 0.01358 −0.00019 −0.01119 0.00030
48.750 −0.00019 −0.01351 0.00029 0.01114
49.000 −0.01344 0.00019 0.01108 −0.00029
49.250 0.00019 0.01337 −0.00029 −0.01102
49.500 0.01331 −0.00019 −0.01097 0.00028
49.750 −0.00018 −0.01324 0.00028 0.01091
50.000 −0.01317 0.00018 0.01086 −0.00028



Appendix III
Tables of admittance and impedance for curtain arrays

This set of tables is abridged from the report “Tables for Curtain Arrays” by Ronold
W. P. King, Barbara H. Sandler and Sheldon S. Sandler, Cruft Laboratory Scientific
Report No. 4 (Series 3), Harvard University, May 1964.

The calculations for the individual elements are given for � = 2 ln 2h/a = 8.6138
for β0h = π/4 and for � = 10 for all other electrical lengths. The admittances are
given in millisiemens and the impedances in ohms. The vertical listings begin with the
first element at the top. The unilateral endfire patterns are prescribed to point in the
direction away from the first element toward the last element.
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Table 1. Broadside array (driving-point currents specified); β0h = 0.78539

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.122 + j3.250 11.564 − j307.244 0.122 + j3.250 11.564 − j307.244

N = 4 N = 4
0.123 + j3.135 12.532 − j318.521 0.100 + j3.204 9.690 − j311.824
0.223 + j3.047 23.894 − j326.465 0.078 + j3.170 7.786 − j315.273
0.223 + j3.047 23.894 − j326.465 0.078 + j3.170 7.786 − j315.273
0.123 + j3.135 12.532 − j318.521 0.100 + j3.204 9.690 − j311.824

N = 10 N = 10
0.152 + j3.154 15.277 − j316.276 0.101 + j3.210 9.786 − j311.261
0.202 + j3.084 21.113 − j322.911 0.076 + j3.161 7.615 − j316.127
0.170 + j3.020 18.620 − j330.103 0.083 + j3.185 8.207 − j313.805
0.151 + j3.030 16.446 − j329.235 0.080 + j3.172 7.963 − j315.015
0.166 + j3.078 17.493 − j323.927 0.081 + j3.178 8.058 − j314.481
0.166 + j3.078 17.493 − j323.927 0.081 + j3.178 8.058 − j314.481
0.151 + j3.030 16.446 − j329.235 0.080 + j3.172 7.963 − j315.015
0.170 + j3.020 18.620 − j330.103 0.083 + j3.185 8.207 − j313.805
0.202 + j3.084 21.113 − j322.911 0.076 + j3.161 7.615 − j316.127
0.152 + j3.154 15.277 − j316.276 0.101 + j3.210 9.786 − j311.261

N = 20 N = 20
0.140 + j3.146 14.158 − j317.252 0.101 + j3.211 9.804 − j311.079
0.210 + j3.071 22.183 − j324.119 0.076 + j3.159 7.599 − j316.331
0.184 + j3.029 19.973 − j328.914 0.084 + j3.187 8.233 − j313.549
0.141 + j3.045 15.134 − j327.710 0.080 + j3.169 7.934 − j315.316
0.148 + j3.066 15.754 − j325.408 0.082 + j3.182 8.106 − j314.096
0.180 + j3.057 19.217 − j325.963 0.081 + j3.173 7.998 − j314.970
0.177 + j3.046 18.957 − j327.166 0.082 + j3.179 8.071 − j314.345
0.150 + j3.053 16.056 − j326.795 0.081 + j3.175 8.024 − j314.780
0.151 + j3.058 16.158 − j326.263 0.081 + j3.178 8.052 − j314.506
0.176 + j3.052 18.842 − j326.573 0.081 + j3.176 8.039 − j314.639
0.176 + j3.052 18.842 − j326.573 0.081 + j3.176 8.039 − j314.639
0.151 + j3.058 16.158 − j326.263 0.081 + j3.178 8.052 − j314.506
0.150 + j3.053 16.056 − j326.795 0.081 + j3.175 8.024 − j314.780
0.177 + j3.046 18.957 − j327.166 0.082 + j3.179 8.071 − j314.345
0.180 + j3.057 19.217 − j325.963 0.081 + j3.173 7.998 − j314.970
0.148 + j3.066 15.754 − j325.408 0.082 + j3.182 8.106 − j314.096
0.141 + j3.045 15.134 − j327.710 0.080 + j3.169 7.934 − j315.316
0.184 + j3.029 19.973 − j328.914 0.084 + j3.187 8.233 − j313.549
0.210 + j3.071 22.183 − j324.119 0.076 + j3.159 7.599 − j316.331
0.140 + j3.146 14.158 − j317.252 0.101 + j3.211 9.804 − j311.079
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Table 2. Broadside array (base voltages specified); β0h = 0.78539

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.122 + j3.250 11.564 − j307.244 0.122 + j3.250 11.564 − j307.244

N = 4 N = 4
0.118 + j3.137 11.937 − j318.359 0.100 + j3.204 9.724 − j311.807
0.229 + j3.045 24.512 − j326.608 0.078 + j3.170 7.753 − j315.290
0.229 + j3.045 24.512 − j326.608 0.078 + j3.170 7.753 − j315.290
0.118 + j3.137 11.937 − j318.359 0.100 + j3.204 9.724 − j311.807

N = 10 N = 10
0.153 + j3.157 15.298 − j316.064 0.102 + j3.210 9.848 − j311.209
0.204 + j3.087 21.338 − j322.502 0.075 + j3.161 7.517 − j316.212
0.168 + j3.014 18.457 − j330.739 0.084 + j3.185 8.263 − j313.749
0.148 + j3.026 16.125 − j329.718 0.080 + j3.172 7.931 − j315.051
0.169 + j3.083 17.702 − j323.419 0.082 + j3.178 8.068 − j314.470
0.169 + j3.083 17.702 − j323.419 0.082 + j3.178 8.068 − j314.470
0.148 + j3.026 16.125 − j329.718 0.080 + j3.172 7.931 − j315.051
0.168 + j3.014 18.457 − j330.739 0.084 + j3.185 8.263 − j313.749
0.204 + j3.087 21.338 − j322.502 0.075 + j3.161 7.517 − j316.212
0.153 + j3.157 15.298 − j316.064 0.102 + j3.210 9.848 − j311.209

N = 20 N = 20
0.137 + j3.147 13.778 − j317.153 0.102 + j3.211 9.844 − j311.084
0.215 + j3.071 22.654 − j324.092 0.074 + j3.158 7.449 − j316.530
0.187 + j3.025 20.346 − j329.273 0.084 + j3.187 8.278 − j313.535
0.136 + j3.046 14.591 − j327.645 0.079 + j3.168 7.842 − j315.477
0.146 + j3.069 15.423 − j325.119 0.082 + j3.181 8.116 − j314.110
0.184 + j3.056 19.673 − j326.009 0.080 + j3.172 7.932 − j315.103
0.180 + j3.044 19.327 − j327.375 0.082 + j3.179 8.064 − j314.379
0.146 + j3.054 15.636 − j326.695 0.080 + j3.174 7.966 − j314.901
0.148 + j3.059 15.791 − j326.090 0.081 + j3.178 8.062 − j314.490
0.180 + j3.050 19.235 − j326.688 0.081 + j3.176 8.036 − j314.645
0.180 + j3.050 19.235 − j326.688 0.081 + j3.176 8.036 − j314.645
0.148 + j3.059 15.791 − j326.090 0.081 + j3.178 8.062 − j314.490
0.146 + j3.054 15.636 − j326.695 0.080 + j3.174 7.966 − j314.901
0.180 + j3.044 19.327 − j327.375 0.082 + j3.179 8.064 − j314.379
0.184 + j3.056 19.673 − j326.009 0.080 + j3.172 7.932 − j315.103
0.146 + j3.069 15.423 − j325.119 0.082 + j3.181 8.116 − j314.110
0.136 + j3.046 14.591 − j327.645 0.079 + j3.168 7.842 − j315.477
0.187 + j3.025 20.346 − j329.273 0.084 + j3.187 8.278 − j313.535
0.215 + j3.071 22.654 − j324.092 0.074 + j3.158 7.449 − j316.530
0.137 + j3.147 13.778 − j317.153 0.102 + j3.211 9.844 − j311.084
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Table 3. Endfire array (driving-point currents specified); β0h = 0.78539

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.122 + j3.250 11.564 − j307.244 0.122 + j3.250 11.564 − j307.244

N = 4 N = 4
0.059 + j3.193 5.778 − j313.123 0.168 + j3.367 14.796 − j296.304
0.151 + j3.309 13.761 − j301.623 0.195 + j3.404 16.735 − j292.822
0.150 + j3.308 13.659 − j301.691 0.195 + j3.404 16.735 − j292.822
0.257 + j3.427 21.769 − j290.196 0.168 + j3.367 14.796 − j296.304

N = 10 N = 10
0.063 + j3.203 6.120 − j312.060 0.183 + j3.442 15.431 − j289.678
0.142 + j3.292 13.121 − j303.166 0.217 + j3.498 17.657 − j284.743
0.169 + j3.333 15.135 − j299.277 0.228 + j3.526 18.267 − j282.387
0.192 + j3.399 16.544 − j293.286 0.233 + j3.541 18.520 − j281.159
0.196 + j3.409 16.847 − j292.350 0.235 + j3.548 18.619 − j280.616
0.215 + j3.469 17.814 − j287.133 0.235 + j3.548 18.619 − j280.616
0.209 + j3.457 17.416 − j288.192 0.233 + j3.541 18.520 − j281.159
0.236 + j3.528 18.875 − j282.157 0.228 + j3.526 18.267 − j282.387
0.203 + j3.482 16.706 − j286.198 0.217 + j3.498 17.657 − j284.743
0.309 + j3.580 23.931 − j277.234 0.183 + j3.442 15.431 − j289.678

N = 20 N = 20
0.064 + j3.207 6.188 − j311.699 0.193 + j3.500 15.723 − j284.807
0.141 + j3.288 13.044 − j303.581 0.229 + j3.564 17.992 − j279.463
0.170 + j3.338 15.223 − j298.777 0.243 + j3.599 18.651 − j276.631
0.189 + j3.392 16.416 − j293.886 0.250 + j3.621 18.964 − j274.831
0.199 + j3.418 17.012 − j291.597 0.255 + j3.637 19.145 − j273.590
0.211 + j3.458 17.564 − j288.089 0.258 + j3.649 19.258 − j272.700
0.215 + j3.472 17.802 − j286.910 0.260 + j3.657 19.335 − j272.063
0.224 + j3.507 18.174 − j283.963 0.261 + j3.663 19.385 − j271.619
0.226 + j3.513 18.255 − j283.463 0.262 + j3.667 19.415 − j271.339
0.235 + j3.547 18.571 − j280.729 0.263 + j3.668 19.428 − j271.203
0.234 + j3.546 18.548 − j280.770 0.263 + j3.668 19.428 − j271.203
0.243 + j3.580 18.869 − j278.028 0.262 + j3.667 19.415 − j271.339
0.240 + j3.573 18.740 − j278.613 0.261 + j3.663 19.385 − j271.619
0.251 + j3.611 19.130 − j275.641 0.260 + j3.657 19.335 − j272.063
0.245 + j3.595 18.836 − j276.916 0.258 + j3.649 19.258 − j272.700
0.259 + j3.640 19.423 − j273.359 0.255 + j3.637 19.145 − j273.590
0.245 + j3.610 18.749 − j275.767 0.250 + j3.621 18.964 − j274.831
0.272 + j3.673 20.021 − j270.784 0.243 + j3.599 18.651 − j276.631
0.232 + j3.611 17.682 − j275.761 0.229 + j3.564 17.992 − j279.463
0.344 + j3.706 24.834 − j267.513 0.193 + j3.500 15.723 − j284.807
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Table 4. Endfire array (base voltages specified); β0h = 0.78539

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.122 + j3.250 11.564 − j307.244 0.122 + j3.250 11.564 − j307.244

N = 4 N = 4
0.053 + j3.191 5.215 − j313.290 0.169 + j3.367 14.886 − j296.227
0.149 + j3.309 13.563 − j301.579 0.193 + j3.403 16.646 − j292.899
0.142 + j3.306 12.988 − j301.907 0.193 + j3.403 16.646 − j292.899
0.245 + j3.423 20.806 − j290.646 0.169 + j3.367 14.886 − j296.226

N = 10 N = 10
0.059 + j3.202 5.753 − j312.223 0.187 + j3.446 15.675 − j289.334
0.140 + j3.294 12.839 − j303.024 0.217 + j3.499 17.654 − j284.681
0.161 + j3.329 14.500 − j299.689 0.227 + j3.526 18.207 − j282.464
0.187 + j3.396 16.167 − j293.555 0.232 + j3.540 18.439 − j281.305
0.189 + j3.403 16.230 − j292.965 0.234 + j3.546 18.531 − j280.791
0.210 + j3.464 17.472 − j287.643 0.234 + j3.546 18.531 − j280.791
0.201 + j3.450 16.837 − j288.855 0.232 + j3.540 18.439 − j281.305
0.230 + j3.520 18.527 − j282.918 0.227 + j3.526 18.207 − j282.464
0.198 + j3.477 16.294 − j286.701 0.217 + j3.499 17.654 − j284.681
0.293 + j3.571 22.792 − j278.154 0.187 + j3.446 15.675 − j289.334

N = 20 N = 20
0.061 + j3.206 5.895 − j311.808 0.199 + j3.508 16.092 − j284.146
0.138 + j3.289 12.707 − j303.472 0.231 + j3.567 18.068 − j279.167
0.163 + j3.335 14.649 − j299.156 0.243 + j3.600 18.651 − j276.528
0.184 + j3.389 15.985 − j294.162 0.249 + j3.621 18.933 − j274.843
0.192 + j3.411 16.458 − j292.213 0.254 + j3.636 19.096 − j273.675
0.205 + j3.453 17.166 − j288.556 0.257 + j3.647 19.200 − j272.836
0.208 + j3.464 17.287 − j287.644 0.259 + j3.655 19.270 − j272.234
0.219 + j3.501 17.813 − j284.541 0.260 + j3.660 19.316 − j271.815
0.219 + j3.504 17.772 − j284.267 0.261 + j3.664 19.343 − j271.550
0.229 + j3.539 18.242 − j281.386 0.261 + j3.666 19.356 − j271.421
0.227 + j3.536 18.087 − j281.618 0.261 + j3.666 19.356 − j271.421
0.238 + j3.572 18.568 − j278.749 0.261 + j3.664 19.343 − j271.550
0.233 + j3.563 18.293 − j279.483 0.260 + j3.660 19.316 − j271.815
0.246 + j3.601 18.853 − j276.425 0.259 + j3.655 19.270 − j272.234
0.237 + j3.584 18.398 − j277.783 0.257 + j3.647 19.200 − j272.836
0.254 + j3.629 19.162 − j274.232 0.254 + j3.636 19.096 − j273.675
0.239 + j3.600 18.329 − j276.574 0.249 + j3.621 18.933 − j274.843
0.265 + j3.659 19.715 − j271.845 0.243 + j3.600 18.651 − j276.528
0.228 + j3.605 17.447 − j276.327 0.231 + j3.567 18.068 − j279.167
0.324 + j3.693 23.582 − j268.702 0.199 + j3.508 16.092 − j284.146
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Table 5. Broadside array (driving-point currents specified); β0h = 1.57079

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
10.449 − j3.889 84.059 + j31.286 10.499 − j3.889 84.059 + j31.286

N = 4 N = 4
12.709 + j3.576 72.913 − j20.518 14.944 − j0.824 66.715 + j 3.678
5.807 + j3.319 129.803 − j74.198 18.493 + j1.493 53.723 − j 4.336
5.807 + j3.319 129.803 − j74.198 18.493 + j1.493 53.723 − j 4.336

12.709 + j3.576 72.913 − j20.518 14.944 − j0.824 66.715 + j 3.678
N = 10 N = 10

10.113 + j1.428 96.946 − j13.689 14.720 − j0.850 67.711 + j 3.909
7.202 + j2.746 121.234 − j46.219 18.832 + j1.491 52.771 − j 4.177
5.923 + j5.391 92.343 − j84.042 17.703 + j1.442 56.116 − j 4.572
6.572 + j6.018 82.765 − j75.783 18.161 + j1.434 54.721 − j 4.321
8.176 + j3.532 103.068 − j44.525 17.978 + j1.440 55.268 − j 4.428
8.176 + j3.532 103.068 − j44.525 17.978 + j1.440 55.268 − j 4.428
6.572 + j6.018 82.765 − j75.783 18.161 + j1.434 54.721 − j 4.321
5.923 + j5.391 92.343 − j84.042 17.703 + j1.442 56.116 − j 4.572
7.202 + j2.746 121.234 − j46.219 18.832 + j1.491 52.771 − j 4.177

10.113 + j1.428 96.946 − j13.689 14.720 − j0.850 67.711 + j 3.909
N = 20 N = 20

11.322 + j2.266 84.924 − j16.998 14.668 − j0.855 67.946 + j 3.961
6.558 + j3.070 125.075 − j58.542 18.882 + j1.487 52.634 − j 4.145
6.008 + j4.532 106.088 − j80.025 17.645 + j1.450 56.294 − j 4.625
7.939 + j6.197 78.268 − j61.095 18.234 + j1.427 54.509 − j 4.267
8.713 + j4.980 86.512 − j49.440 17.883 + j1.452 55.553 − j 4.509
6.889 + j3.994 108.645 − j62.989 18.112 + j1.431 54.870 − j 4.336
6.640 + j4.415 104.430 − j69.432 17.957 + j1.447 55.328 − j 4.459
8.040 + j5.486 84.866 − j57.908 18.060 + j1.436 55.023 − j 4.374
8.225 + j5.215 86.717 − j54.984 17.997 + j1.443 55.210 − j 4.427
6.835 + j4.270 105.235 − j65.740 18.027 + j1.440 55.120 − j 4.402
6.835 + j4.270 105.235 − j65.740 18.027 + j1.440 55.120 − j 4.402
8.225 + j5.215 86.717 − j54.984 17.997 + j1.443 55.210 − j 4.427
8.040 + j5.486 84.866 − j57.908 18.060 + j1.436 55.023 − j 4.374
6.640 + j4.415 104.430 − j69.432 17.957 + j1.447 55.328 − j 4.459
6.889 + j3.994 108.645 − j62.989 18.112 + j1.431 54.870 − j 4.336
8.713 + j4.980 86.512 − j49.440 17.883 + j1.452 55.553 − j 4.509
7.939 + j6.197 78.268 − j61.095 18.234 + j1.427 54.509 − j 4.267
6.008 + j4.532 106.088 − j80.025 17.645 + j1.450 56.294 − j 4.625
6.558 + j3.070 125.075 − j58.542 18.882 + j1.487 52.634 − j 4.145

11.322 + j2.266 84.924 − j16.998 14.668 − j0.855 67.946 + j 3.961
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Table 6. Endfire array (driving-point currents specified); β0h = 1.57079

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
10.449 − j3.889 84.059 + j 31.286 10.449 − j3.889 84.059 + j 31.286

N = 4 N = 4
21.021 − j0.091 47.571 + j 0.205 5.122 − j3.827 125.295 + j 93.607
7.128 − j4.119 105.169 + j 60.777 4.399 − j3.396 142.437 + j109.966
7.400 − j4.432 99.455 + j 59.563 4.399 − j3.396 142.437 + j109.966
3.999 − j2.972 161.068 + j119.715 5.122 − j3.827 125.295 + j 93.607

N = 10 N = 10
18.995 − j1.976 52.082 + j 5.419 3.533 − j3.361 148.595 + j141.338
7.821 − j4.265 98.548 + j 53.747 2.986 − j2.896 172.544 + j167.362
6.462 − j4.040 111.269 + j 69.563 2.754 − j2.736 182.750 + j181.551
4.552 − j3.546 136.734 + j106.504 2.640 − j2.661 187.898 + j189.374
4.458 − j3.576 136.500 + j109.499 2.591 − j2.629 190.138 + j192.923
3.461 − j3.112 159.762 + j143.670 2.591 − j2.629 190.138 + j192.923
3.638 − j3.296 150.965 + j136.780 2.640 − j2.661 187.898 + j189.374
2.863 − j2.783 179.606 + j174.555 2.754 − j2.736 182.750 + j181.551
3.232 − j3.222 155.171 + j154.712 2.986 − j2.896 172.544 + j167.362
2.450 − j2.360 211.705 + j203.950 3.533 − j3.361 148.595 + j141.338

N = 20 N = 20
18.250 − j2.610 53.695 + j 7.678 2.755 − j2.976 167.509 + j180.951
8.076 − j4.268 96.793 + j 51.152 2.366 − j2.566 194.207 + j210.621
6.252 − j4.000 113.486 + j 72.618 2.175 − j2.404 206.910 + j228.769
4.693 − j3.602 134.084 + j102.908 2.060 − j2.313 214.737 + j241.090
4.300 − j3.500 139.895 + j113.871 1.984 − j2.254 220.090 + j249.939
3.591 − j3.196 155.387 + j138.288 1.932 − j2.213 223.909 + j256.432
3.467 − j3.172 156.992 + j143.647 1.895 − j2.184 226.647 + j261.167
3.019 − j2.926 170.781 + j165.519 1.870 − j2.165 228.549 + j264.491
2.993 − j2.945 169.756 + j167.026 1.855 − j2.152 229.753 + j266.612
2.659 − j2.729 183.170 + j187.995 1.847 − j2.146 230.338 + j267.646
2.683 − j2.778 179.903 + j186.225 1.847 − j2.146 230.338 + j267.646
2.405 − j2.573 193.846 + j207.450 1.855 − j2.152 229.753 + j266.612
2.465 − j2.651 188.140 + j202.324 1.870 − j2.165 228.549 + j264.491
2.211 − j2.443 203.633 + j225.004 1.895 − j2.184 226.647 + j261.167
2.305 − j2.556 194.603 + j215.766 1.932 − j2.213 223.909 + j256.432
2.053 − j2.325 213.437 + j241.665 1.984 − j2.254 220.090 + j249.939
2.190 − j2.497 198.569 + j226.323 2.060 − j2.313 214.737 + j241.090
1.912 − j2.196 225.537 + j258.968 2.175 − j2.404 206.910 + j228.769
2.119 − j2.521 195.412 + j232.494 2.366 − j2.566 194.207 + j210.621
1.787 − j1.965 253.380 + j278.536 2.755 − j2.976 167.509 + j180.951
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Table 7. Broadside array (driving-point currents specified); β0h = 2.35620

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
1.416 − j1.335 373.800 + j352.429 1.416 − j1.335 373.800 + j352.429

N = 4 N = 4
1.772 − j2.166 226.222 + j276.570 1.688 − j1.860 267.545 + j294.791
2.885 + j0.558 334.125 − j 64.674 1.761 − j2.489 189.461 + j267.725
2.885 + j0.558 334.125 − j 64.674 1.761 − j2.489 189.461 + j267.725
1.772 − j2.166 226.222 + j276.570 1.688 − j1.860 267.545 + j294.791

N = 10 N = 10
2.546 − j1.081 332.848 + j141.276 1.668 − j1.738 287.394 + j299.522
2.273 − j0.367 428.840 + j 69.202 1.706 − j2.798 158.797 + j260.557
4.977 − j1.391 186.363 + j 52.072 1.767 − j2.111 233.130 + j278.516
5.319 − j2.786 147.544 + j 77.279 1.743 − j2.477 189.977 + j270.003
2.547 − j0.541 375.674 + j 79.816 1.766 − j2.302 209.859 + j273.425
2.547 − j0.541 375.674 + j 79.816 1.766 − j2.302 209.859 + j273.425
5.319 − j2.786 147.544 + j 77.279 1.743 − j2.477 189.977 + j270.003
4.977 − j1.391 186.363 + j 52.072 1.767 − j2.111 233.130 + j278.516
2.273 − j0.367 428.840 + j 69.202 1.706 − j2.798 158.797 + j260.557
2.546 − j1.081 332.848 + j141.276 1.668 − j1.738 287.394 + j299.522

N = 20 N = 20
1.768 − j1.569 316.473 + j280.864 1.674 − j1.677 298.066 + j298.738
3.253 + j0.018 307.387 − j 1.730 1.622 − j2.887 147.942 + j263.273
3.757 + j1.121 244.412 − j 72.928 1.797 − j2.006 247.732 + j276.631
2.666 − j1.466 288.002 + j158.418 1.660 − j2.600 174.426 + j273.219
2.367 − j1.387 314.522 + j184.290 1.814 − j2.142 230.212 + j271.886
3.422 − j0.000 292.212 + j 0.020 1.690 − j2.481 187.563 + j275.284
3.590 + j0.494 273.339 − j 37.627 1.802 − j2.227 219.579 + j271.342
2.689 − j1.268 304.189 + j143.435 1.721 − j2.406 196.649 + j274.916
2.397 − j1.327 319.318 + j176.796 1.779 − j2.291 211.463 + j272.272
3.683 + j0.277 269.994 − j 20.304 1.751 − j2.347 204.192 + j273.668
3.683 + j1.277 269.994 − j 20.304 1.751 − j2.347 204.192 + j273.668
2.397 − j1.327 319.318 + j176.796 1.779 − j2.291 211.463 + j272.272
2.689 − j1.268 304.189 + j143.435 1.721 − j2.406 196.649 + j274.916
3.590 + j0.494 273.339 − j 37.627 1.802 − j2.227 219.579 + j271.342
3.422 − j0.000 292.212 + j 0.020 1.690 − j2.481 187.563 + j275.284
2.367 − j1.387 314.522 + j184.290 1.814 − j2.142 230.212 + j271.886
2.666 − j1.466 288.002 + j158.418 1.660 − j2.600 174.426 + j273.219
3.757 + j1.121 244.412 − j 72.928 1.797 − j2.006 247.732 + j276.631
3.253 + j0.018 307.387 − j 1.730 1.622 − j2.887 147.942 + j263.273
1.768 − j1.569 316.473 + j280.864 1.674 − j1.677 298.066 + j298.738
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Table 8. Broadside array (base voltages specified); β0h = 2.35620

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
1.416 − j1.335 373.800 + j352.429 1.416 − j1.335 373.800 + j352.429

N = 4 N = 4
2.378 − j1.235 331.264 + j172.017 1.667 − j1.929 256.499 + j296.734
3.440 − j0.465 285.452 + j 38.575 1.796 − j2.409 198.923 + j266.764
3.440 − j0.465 285.452 + j 38.575 1.796 − j2.409 198.923 + j266.764
2.378 − j1.235 331.264 + j172.017 1.667 − j1.929 256.499 + j296.734

N = 10 N = 10
2.326 − j1.136 347.120 + j169.481 1.638 − j1.901 260.172 + j301.832
3.232 − j0.566 300.210 + j 52.564 1.845 − j2.474 193.668 + j259.699
3.597 − j0.879 262.334 + j 64.099 1.719 − j2.288 209.960 + j279.353
3.509 − j1.021 262.762 + j 76.455 1.782 − j2.366 203.171 + j269.662
3.341 − j0.911 278.568 + j 75.945 1.756 − j2.334 205.799 + j273.575
3.341 − j0.911 278.568 + j 75.945 1.756 − j2.334 205.799 + j273.575
3.509 − j1.021 262.762 + j 76.455 1.782 − j2.366 203.171 + j269.662
3.597 − j0.879 262.334 + j 64.099 1.719 − j2.288 209.960 + j279.353
3.232 − j0.566 300.210 + j 52.564 1.845 − j2.474 193.668 + j259.699
2.326 − j1.136 347.120 + j169.481 1.638 − j1.901 260.172 + j301.832

N = 20 N = 20
2.266 − j1.086 358.924 + j172.045 1.630 − j1.884 262.611 + j303.586
3.186 − j0.506 306.136 + j 48.569 1.850 − j2.475 193.750 + j259.242
3.508 − j0.761 272.249 + j 59.083 1.707 − j2.269 211.723 + j281.430
3.359 − j0.926 276.676 + j 76.317 1.790 − j2.370 202.871 + j268.669
3.197 − j0.897 289.962 + j 81.384 1.738 − j2.309 208.073 + j276.419
3.189 − j0.676 300.102 + j 63.641 1.773 − j2.350 204.593 + j271.231
3.205 − j0.709 297.486 + j 65.803 1.749 − j2.322 206.964 + j274.743
3.184 − j0.826 294.272 + j 76.330 1.765 − j2.341 205.359 + j272.381
3.206 − j0.798 293.755 + j 73.121 1.755 − j2.329 206.355 + j273.839
3.267 − j0.771 289.930 + j 68.405 1.760 − j2.335 205.877 + j273.139
3.267 − j0.771 289.930 + j 68.405 1.760 − j2.335 205.877 + j273.139
3.206 − j0.798 293.755 + j 73.121 1.755 − j2.329 206.355 + j273.839
3.184 − j0.826 294.272 + j 76.330 1.765 − j2.341 205.359 + j272.381
3.205 − j0.709 297.486 + j 65.803 1.749 − j2.322 206.964 + j274.743
3.189 − j0.676 300.102 + j 63.641 1.773 − j2.350 204.593 + j271.231
3.197 − j0.897 289.962 + j 81.384 1.738 − j2.309 208.073 + j276.419
3.359 − j0.926 276.676 + j 76.317 1.790 − j2.370 202.871 + j268.669
3.508 − j0.761 272.249 + j 59.083 1.707 − j2.269 211.723 + j281.430
3.186 − j0.506 306.136 + j 48.569 1.850 − j2.475 193.750 + j259.242
2.266 − j1.086 358.924 + j172.045 1.630 − j1.884 262.611 + j303.586
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Table 9. Endfire array (driving-point currents specified); β0h = 2.35620

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
1.416 − j1.335 373.800 + j352.429 1.416 − j1.335 373.800 + j352.429

N = 4 N = 4
0.768 − j2.562 107.348 + j358.072 1.009 − j0.493 800.083 + j391.021
1.181 − j0.897 536.798 + j407.909 0.932 − j0.393 910.638 + j384.363
0.995 − j1.165 423.857 + j496.201 0.932 − j0.393 910.638 + j384.363
0.811 − j0.485 908.772 + j543.270 1.009 − j0.493 800.083 + j391.021

N = 10 N = 10
0.719 − j1.989 160.692 + j444.648 0.816 − j0.100 1207.569 + j147.854
1.399 − j0.929 496.162 + j329.370 0.718 − j0.035 1390.182 + j 68.698
0.823 − j0.999 491.292 + j596.033 0.671 − j0.010 1489.227 + j 22.603
0.942 − j0.508 822.512 + j443.818 0.646 − j0.004 1547.295 − j 8.699
0.751 − j0.657 754.637 + j659.352 0.635 − j0.010 1573.637 − j 23.788
0.750 − j0.337 1108.900 + j498.327 0.635 − j0.010 1573.637 − j 23.788
0.694 − j0.473 984.268 + j670.369 0.646 − j0.004 1547.295 − j 8.699
0.633 − j0.227 1399.044 + j502.042 0.671 − j0.010 1489.227 + j 22.603
0.656 − j0.359 1173.727 + j642.474 0.718 − j0.035 1390.182 + j 68.698
0.537 − j0.150 1727.200 + j481.071 0.816 − j0.100 1207.569 + j147.854

N = 20 N = 20
1.317 − j1.946 238.516 + j352.369 0.757 + j0.160 1263.562 − j267.384
2.159 − j0.457 443.325 + j 93.749 0.652 + j0.191 1412.576 − j413.497
1.140 − j0.949 518.065 + j431.501 0.595 + j0.206 1500.532 − j519.963
1.353 − j0.279 709.164 + j146.166 0.558 + j0.216 1558.218 − j603.151
1.018 − j0.603 727.155 + j430.732 0.532 + j0.223 1597.740 − j669.409
1.079 − j0.213 892.289 + j176.135 0.514 + j0.228 1625.266 − j721.834
0.886 − j0.440 905.806 + j449.935 0.501 + j0.232 1644.340 − j762.222
0.899 − j0.164 1076.254 + j196.561 0.491 + j0.235 1657.144 − j791.705
0.781 − j0.332 1084.904 + j460.938 0.485 + j0.236 1665.037 − j811.004
0.754 − j0.102 1302.915 + j175.574 0.483 + j0.237 1668.794 − j820.548
0.719 − j0.235 1255.957 + j410.737 0.483 + j0.237 1668.794 − j820.548
0.652 − j0.051 1523.627 + j118.167 0.485 + j0.236 1665.037 − j811.004
0.684 − j0.151 1394.547 + j308.085 0.491 + j0.235 1657.144 − j791.705
0.588 − j0.055 1686.099 + j156.772 0.501 + j0.232 1644.340 − j762.222
0.603 − j0.142 1571.217 + j368.572 0.514 + j0.228 1625.266 − j721.834
0.518 − j0.081 1884.893 + j293.189 0.532 + j0.223 1597.740 − j669.409
0.494 − j0.164 1824.240 + j606.325 0.558 + j0.216 1558.218 − j603.151
0.445 − j0.052 2218.386 + j260.922 0.595 + j0.206 1500.532 − j519.963
0.462 − j0.131 2003.505 + j567.693 0.652 + j0.191 1412.576 − j413.497
0.383 − j0.026 2597.795 + j175.311 0.757 + j0.160 1263.562 − j267.384
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Table 10. Endfire array (base voltages specified); β0h = 2.35620

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
1.416 − j1.335 373.800 + j 352.429 1.416 − j1.335 373.800 + j352.429

N = 4 N = 4
1.587 − j1.820 272.125 + j 312.111 1.004 − j0.597 735.858 + j437.483
1.187 − j0.653 646.777 + j 355.615 0.931 − j0.300 972.956 + j313.400
1.038 − j0.426 824.490 + j 338.479 0.931 − j0.300 972.956 + j313.400
0.739 + j0.188 1271.479 − j 323.466 1.004 − j0.597 735.858 + j437.483

N = 10 N = 10
1.568 − j1.797 275.752 + j 316.025 0.833 − j0.377 996.584 + j451.392
1.220 − j0.689 621.279 + j 350.921 0.734 − j0.054 1355.209 + j 99.818
0.979 − j0.326 919.565 + j 305.944 0.670 + j0.055 1482.051 − j121.931
0.814 − j0.133 1195.813 + j 196.023 0.637 + j0.101 1529.885 − j243.575
0.736 − j0.056 1351.188 + j 103.261 0.624 + j0.120 1545.965 − j297.753
0.658 + j0.033 1516.022 − j 76.287 0.624 + j0.120 1545.965 − j297.753
0.641 + j0.053 1550.594 − j 128.146 0.637 + j0.101 1529.885 − j243.575
0.560 + j0.162 1646.217 − j 476.624 0.670 + j0.055 1482.051 − j121.931
0.605 + j0.072 1631.125 − j 193.964 0.734 − j0.054 1355.209 + j 99.819
0.487 + j0.468 1066.800 − j1025.906 0.833 − j0.377 996.584 + j451.392

N = 20 N = 20
1.881 − j1.656 299.529 + j 263.639 0.742 − j0.258 1201.877 + j418.102
1.445 − j0.580 595.950 + j 239.114 0.650 + j0.057 1526.390 − j132.914
1.149 − j0.242 833.526 + j 175.946 0.584 + j0.171 1576.159 − j462.011
1.004 − j0.058 993.159 + j 57.727 0.545 + j0.229 1560.743 − j655.797
0.837 + j0.001 1194.570 − j 1.535 0.520 + j0.264 1530.486 − j776.945
0.631 + j0.003 1583.581 − j 6.286 0.503 + j0.287 1500.443 − j856.095
0.607 + j0.054 1634.380 − j 145.843 0.491 + j0.303 1475.286 − j908.707
0.507 + j0.076 1929.067 − j 290.680 0.484 + j0.313 1456.283 − j943.151
0.516 + j0.121 1837.440 − j 429.232 0.479 + j0.320 1443.647 − j964.120
0.509 + j0.179 1748.511 − j 615.388 0.477 + j0.323 1437.399 − j974.022
0.491 + j0.195 1757.837 − j 698.636 0.477 + j0.323 1437.399 − j974.022
0.489 + j0.250 1621.102 − j 827.013 0.479 + j0.320 1443.647 − j964.120
0.442 + j0.240 1748.191 − j 947.672 0.484 + j0.313 1456.283 − j943.151
0.361 + j0.248 1880.501 − j1295.187 0.491 + j0.303 1475.286 − j908.707
0.335 + j0.238 1986.679 − j1409.322 0.503 + j0.287 1500.443 − j856.095
0.174 + j0.210 2335.692 − j2818.250 0.520 + j0.264 1530.486 − j776.945
0.249 + j0.214 2307.799 − j1986.459 0.545 + j0.229 1560.743 − j655.797
0.234 + j0.310 1552.071 − j2055.252 0.584 + j0.171 1576.159 − j462.011
0.282 + j0.211 2274.708 − j1702.714 0.650 + j0.057 1526.390 − j132.914
0.253 + j0.559 671.650 − j1484.457 0.742 − j0.258 1201.877 + j418.102



590 Appendix III

Table 11. Broadside array (driving-point currents specified); β0h = 3.14159

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.985 + j1.000 499.710 − j507.494 0.985 + j1.000 499.710 − j507.494

N = 4 N = 4
1.300 + j1.158 428.935 − j382.052 1.122 + j0.538 724.851 − j347.681
2.605 + j0.524 368.900 − j 74.220 1.051 + j0.284 886.543 − j239.267
2.605 + j0.524 368.900 − j 74.220 1.051 + j0.284 886.543 − j239.267
1.300 + j1.158 428.935 − j382.052 1.122 + j0.538 724.851 − j347.681

N = 10 N = 10
1.417 + j1.159 422.724 − j345.951 1.133 + j0.556 711.388 − j349.311
2.785 + j0.718 336.688 − j 86.845 1.031 + j0.271 907.602 − j238.628
2.318 + j0.788 386.673 − j131.498 1.101 + j0.324 835.998 − j246.013
2.325 + j0.865 377.747 − j140.553 1.071 + j0.304 864.154 − j245.716
2.438 + j0.876 363.270 − j130.614 1.082 + j0.311 853.393 − j245.529
2.438 + j0.876 363.270 − j130.614 1.082 + j0.311 853.393 − j245.529
2.325 + j0.865 377.747 − j140.553 1.071 + j0.304 864.154 − j245.716
2.318 + j0.788 386.673 − j131.498 1.101 + j0.324 835.998 − j246.013
2.785 + j0.718 336.688 − j 86.845 1.031 + j0.271 907.602 − j238.628
1.417 + j1.159 422.724 − j345.951 1.133 + j0.556 711.388 − j349.311

N = 20 N = 20
1.410 + j1.161 422.735 − j348.012 1.135 + j0.561 708.268 − j349.951
2.761 + j0.700 340.320 − j 86.216 1.028 + j0.270 910.264 − j239.139
2.337 + j0.773 385.711 − j127.522 1.105 + j0.326 832.672 − j245.894
2.343 + j0.890 372.969 − j141.735 1.066 + j0.302 868.043 − j246.271
2.405 + j0.899 364.852 − j136.406 1.088 + j0.315 848.027 − j245.190
2.409 + j0.834 370.623 − j128.334 1.074 + j0.307 860.805 − j246.146
2.381 + j0.833 374.226 − j130.931 1.084 + j0.312 852.290 − j245.320
2.378 + j0.878 370.031 − j136.654 1.077 + j0.309 857.942 − j245.875
2.390 + j0.879 368.540 − j135.585 1.081 + j0.311 854.451 − j245.464
2.392 + j0.840 372.168 − j130.632 1.079 + j0.310 856.102 − j245.671
2.392 + j0.840 372.168 − j130.632 1.079 + j0.310 856.102 − j245.671
2.390 + j0.879 368.540 − j135.585 1.081 + j0.311 854.451 − j245.464
2.378 + j0.878 370.031 − j136.654 1.077 + j0.309 857.942 − j245.875
2.381 + j0.833 374.226 − j130.931 1.084 + j0.312 852.290 − j245.320
2.409 + j0.834 370.623 − j128.334 1.074 + j0.307 860.805 − j246.146
2.405 + j0.899 364.852 − j136.406 1.088 + j0.315 848.027 − j245.190
2.343 + j0.890 372.969 − j141.735 1.066 + j0.302 868.043 − j246.271
2.337 + j0.773 385.711 − j127.522 1.105 + j0.326 832.672 − j245.894
2.761 + j0.700 340.320 − j 86.216 1.028 + j0.270 910.264 − j239.139
1.410 + j1.161 422.735 − j348.012 1.135 + j0.561 708.268 − j349.951
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Table 12. Broadside array (base voltages specified); β0h = 3.14159

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.985 + j1.000 499.710 − j507.494 0.985 + j1.000 499.710 − j507.494

N = 4 N = 4
1.568 + j0.815 502.274 − j260.992 1.078 + j0.563 728.585 − j380.868
2.530 + j1.186 324.034 − j151.902 1.085 + j0.255 873.469 − j205.141
2.530 + j1.186 324.034 − j151.902 1.085 + j0.255 873.469 − j205.141
1.568 + j0.815 502.274 − j260.992 1.078 + j0.563 728.585 − j380.868

N = 10 N = 10
1.624 + j0.957 457.034 − j269.359 1.059 + j0.600 714.585 − j405.086
2.329 + j1.180 341.631 − j173.109 1.109 + j0.198 873.705 − j156.039
2.562 + j0.859 350.885 − j117.687 1.058 + j0.363 845.679 − j290.370
2.452 + j0.762 371.908 − j115.630 1.092 + j0.285 857.310 − j223.673
2.310 + j0.894 376.473 − j145.732 1.076 + j0.317 855.336 − j252.234
2.310 + j0.894 376.473 − j145.732 1.076 + j0.317 855.336 − j252.234
2.452 + j0.762 371.908 − j115.630 1.092 + j0.285 857.310 − j223.673
2.562 + j0.859 350.885 − j117.687 1.058 + j0.363 845.679 − j290.370
2.329 + j1.180 341.631 − j173.109 1.109 + j0.198 873.705 − j156.039
1.624 + j0.957 457.034 − j269.359 1.059 + j0.600 714.585 − j405.086

N = 20 N = 20
1.626 + j0.929 463.503 − j264.895 1.053 + j0.609 711.428 − j411.334
2.368 + j1.183 337.980 − j168.790 1.115 + j0.190 871.458 − j148.401
2.558 + j0.901 347.775 − j122.478 1.051 + j0.374 844.861 − j300.449
2.400 + j0.756 379.037 − j119.387 1.101 + j0.272 856.088 − j211.894
2.319 + j0.832 382.028 − j136.976 1.065 + j0.334 855.035 − j268.393
2.393 + j0.910 365.151 − j138.824 1.090 + j0.294 855.212 − j230.435
2.428 + j0.879 364.115 − j131.830 1.072 + j0.321 855.872 − j256.175
2.376 + j0.826 375.550 − j130.485 1.084 + j0.303 855.462 − j238.823
2.362 + j0.838 376.066 − j133.411 1.077 + j0.314 855.814 − j249.498
2.408 + j0.883 366.082 − j134.306 1.081 + j0.309 855.664 − j244.371
2.408 + j0.883 366.082 − j134.306 1.081 + j0.309 855.664 − j244.371
2.362 + j0.838 376.066 − j133.411 1.077 + j0.314 855.814 − j249.498
2.376 + j0.826 375.550 − j130.485 1.084 + j0.303 855.462 − j238.823
2.428 + j0.879 364.115 − j131.830 1.072 + j0.321 855.872 − j256.175
2.393 + j0.910 365.151 − j138.824 1.090 + j0.294 855.212 − j230.435
2.319 + j0.832 382.028 − j136.976 1.065 + j0.334 855.035 − j268.393
2.400 + j0.756 379.037 − j119.387 1.101 + j0.272 856.088 − j211.894
2.558 + j0.901 347.775 − j122.478 1.051 + j0.374 844.861 − j300.449
2.368 + j1.183 337.980 − j168.790 1.115 + j0.190 871.458 − j148.401
1.626 + j0.929 463.503 − j264.895 1.053 + j0.609 711.428 − j411.334
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Table 13. Endfire array (driving-point currents specified); β0h = 3.14159

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.985 + j1.000 499.710 − j507.494 0.985 + j1.000 499.710 − j507.494

N = 4 N = 4
0.823 + j1.798 626.331 − j607.101 0.866 + j1.595 262.842 − j484.190
0.438 + j1.615 156.481 − j576.885 0.665 + j1.803 180.000 − j488.263
0.336 + j1.896 90.012 − j511.616 0.665 + j1.803 180.000 − j488.263
0.058 + j2.375 10.328 − j420.763 0.866 + j1.595 262.842 − j484.190

N = 10 N = 10
0.842 + j0.819 610.374 − j593.897 0.822 + j1.788 212.309 − j461.649
0.453 + j1.600 163.769 − j578.767 0.585 + j2.028 131.295 − j455.109
0.470 + j1.926 119.479 − j489.972 0.528 + j2.138 108.895 − j440.821
0.464 + j2.050 104.931 − j464.035 0.504 + j2.187 100.117 − j434.080
0.439 + j2.119 93.669 − j452.559 0.495 + j2.207 96.704 − j431.406
0.424 + j2.191 85.172 − j439.884 0.495 + j2.207 96.704 − j431.406
0.403 + j2.220 79.130 − j436.040 0.504 + j2.187 100.117 − j434.080
0.402 + j2.279 75.038 − j425.585 0.528 + j2.138 108.895 − j440.821
0.363 + j2.280 68.208 − j427.764 0.585 + j2.028 131.295 − j455.109
0.241 + j2.621 34.754 − j378.347 0.822 + j1.788 212.309 − j461.649

N = 20 N = 20
0.842 + j0.819 610.364 − j593.637 0.787 + j1.896 186.738 − j449.810
0.452 + j1.599 163.874 − j579.215 0.544 + j2.129 112.526 − j440.877
0.470 + j1.928 119.354 − j489.435 0.481 + j2.246 91.227 − j425.781
0.463 + j2.047 105.074 − j464.774 0.450 + j2.307 81.435 − j417.597
0.440 + j2.123 93.566 − j451.597 0.431 + j2.344 75.825 − j412.756
0.422 + j2.185 85.189 − j441.258 0.417 + j2.368 72.217 − j409.642
0.407 + j2.229 79.317 − j434.217 0.409 + j2.384 69.844 − j407.524
0.394 + j2.270 74.339 − j427.698 0.402 + j2.395 68.253 − j406.119
0.384 + j2.298 70.687 − j423.376 0.399 + j2.402 67.288 − j405.231
0.374 + j2.329 67.160 − j418.519 0.397 + j2.405 66.835 − j404.819
0.365 + j2.349 64.664 − j415.738 0.397 + j2.405 66.835 − j404.819
0.357 + j2.376 61.925 − j411.645 0.399 + j2.402 67.288 − j405.231
0.350 + j2.387 60.187 − j410.030 0.402 + j2.395 68.253 − j406.119
0.344 + j2.413 57.913 − j406.109 0.409 + j2.384 69.844 − j407.524
0.337 + j2.417 56.628 − j405.766 0.417 + j2.368 72.217 − j409.642
0.334 + j2.446 54.847 − j401.269 0.431 + j2.344 75.825 − j412.756
0.324 + j2.441 53.464 − j402.653 0.450 + j2.307 81.435 − j417.597
0.329 + j2.474 52.816 − j397.207 0.481 + j2.246 91.227 − j425.781
0.304 + j2.461 49.407 − j400.177 0.544 + j2.129 112.526 − j440.877
0.205 + j2.754 26.829 − j361.165 0.787 + j1.896 186.738 − j449.810
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Table 14. Endfire array (base voltages specified); β0h = 3.14159

Admittance Impedance Admittance Impedance
β0b = 1.57080 β0b = 3.14159

N = 1 N = 1
0.985 + j1.000 499.710 − j507.494 0.985 + j1.000 499.710 − j507.494

N = 4 N = 4
1.062 + j0.567 732.748 − j391.436 0.776 + j1.612 242.440 − j503.755
0.912 + j1.492 298.230 − j487.943 0.761 + j1.800 199.335 − j471.228
0.860 + j1.706 235.711 − j467.372 0.761 + j1.800 199.335 − j471.228
0.680 + j2.257 122.374 − j406.108 0.776 + j1.612 242.440 − j503.755

N = 10 N = 10
1.015 + j0.656 694.918 − j449.322 0.636 + j1.827 169.953 − j488.127
0.940 + j1.444 316.569 − j486.420 0.608 + j2.045 133.598 − j449.294
0.826 + j1.754 219.728 − j466.639 0.585 + j2.135 119.452 − j435.688
0.719 + j1.948 166.737 − j451.867 0.570 + j2.180 112.239 − j429.418
0.663 + j2.032 145.060 − j444.764 0.562 + j2.199 109.080 − j426.883
0.595 + j2.136 120.953 − j434.437 0.562 + j2.199 109.080 − j426.883
0.577 + j2.155 116.025 − j433.058 0.570 + j2.180 112.239 − j429.418
0.512 + j2.251 96.063 − j422.314 0.585 + j2.135 119.452 − j435.688
0.547 + j2.186 107.662 − j430.552 0.608 + j2.045 133.598 − j449.294
0.506 + j2.472 79.476 − j388.190 0.636 + j1.827 169.953 − j488.127

N = 20 N = 20
1.012 + j0.660 693.386 − j451.865 0.556 + j1.946 135.869 − j475.068
0.943 + j1.439 318.711 − j486.074 0.530 + j2.155 107.519 − j437.577
0.822 + j1.760 217.821 − j466.334 0.505 + j2.249 95.051 − j423.302
0.723 + j1.940 168.775 − j452.604 0.484 + j2.305 87.325 − j415.556
0.657 + j2.042 142.835 − j443.665 0.468 + j2.340 82.177 − j410.927
0.602 + j2.123 123.550 − j436.002 0.456 + j2.363 78.648 − j407.944
0.567 + j2.172 112.536 − j431.044 0.447 + j2.379 76.234 − j405.963
0.531 + j2.223 101.632 − j425.476 0.441 + j2.390 74.611 − j404.642
0.512 + j2.251 96.033 − j422.381 0.437 + j2.397 73.614 − j403.834
0.485 + j2.291 88.376 − j417.712 0.435 + j2.400 73.133 − j403.451
0.474 + j2.307 85.487 − j415.897 0.435 + j2.400 73.133 − j403.451
0.451 + j2.343 79.227 − j411.531 0.437 + j2.397 73.614 − j403.834
0.446 + j2.349 78.112 − j410.911 0.441 + j2.390 74.611 − j404.642
0.425 + j2.386 72.358 − j406.303 0.447 + j2.379 76.234 − j405.963
0.425 + j2.380 72.675 − j407.110 0.456 + j2.363 78.648 − j407.944
0.403 + j2.423 66.816 − j401.672 0.468 + j2.340 82.177 − j410.927
0.410 + j2.404 68.970 − j404.249 0.484 + j2.305 87.325 − j415.556
0.376 + j2.462 60.644 − j396.977 0.505 + j2.249 95.051 − j423.302
0.417 + j2.388 70.880 − j406.343 0.530 + j2.155 107.519 − j437.577
0.408 + j2.615 58.233 − j373.316 0.556 − j1.946 135.869 − j475.068
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List of symbols

A vector potential, 4, 5

A complex factor, 329

Ai , Ak , A′
k complex coefficients, 113, 120, 162, 164, 248

Aeven
zk (zk), Aodd

zk (zk) even and odd parts of vector potential, 243, 244

A(N , n) array factor, 358

A(�,�) array factor of uniform array, 357

A(m)(θ, φ) array factor for mth phase-sequence current, 405

a radius of antenna, 2

a radius of spherical earth, 367

ae effective radius of monopole with reflected image, 306

a1(w) coefficient of inductive coupling of line and load, 477

B magnetic vector, 3

Br magnetic vector in radiation zone, 10

Bi
D(y) incident magnetic field in dipole mode of loop, 513

Bi
T (y) incident magnetic field in transmission-line mode of loop, 513

Bi , Bn, Br magnetic field in intermediate zone, near field, and far field, 294–6

B(m) mth phase-sequence susceptance, 398

Bc lumped corrective susceptance, 42

Bi , Bi R, Bi I complex coefficient and real and imaginary parts, 113, 120, 121, 162, 163

Bk , B′
k complex coefficients, 248

B1,l self- and mutual susceptances for circular array with one driven ele-
ment, 398

BT lumped susceptance for terminal zone, 42

B(m)
res resonant mth phase-sequence susceptance, 400

B� cylindrical or spherical component of magnetic field, 9

Br
� cylindrical or spherical component of magnetic field in radiation zone, 9

B0 driving-point susceptance, 2

b radius of insulating dielectric layer, 357

bki , bnl axis-to-axis distance between antennas i and k, or n and l, 80, 380

607
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CT lumped capacitance for terminal zone, 479

C(x) Fresnel integral, 450

Ca(h, z),Cb(h, z) integral functions, 17, 122

C,C1,C2 constants in integral equation, 21, 22

c velocity of light, 3, 10

c(m), c′ (m) parameters, 85

ck , c′k complex amplitude functions, 87

cnl axis-to-axis distance between element l and image of element n, 389

c(w) capacitance per unit length of line, 477

cL (w) part of c(w) due to charges in line, 478

c0 capacitance per unit length of uniform line, 479

D directivity, 13

Dbnl , Dcnl matrix elements involving distances bnl and cnl , 389, 390

DI L loss parameter, 430

Dk complex coefficient, 248

Dnl matrix elements for general array, 383, 384

D(m)
R , D(m)

I parameters in T (m), 396, 397

D1R, D(m)
�R self- and mutual parts of D(m)

R , 397

DV vertical directivity of array factor, 407

Dr (0) relative directivity, 178

Dm(�, β0h) field factor, 45

DN (π/2, 0) absolute directivity, 178

Dρ(h, z) integral function, 58

d depth of terminated insulated antenna in earth or sea, 357

d distance between adjacent elements, 80

d height of vertical dipole over earth or sea, 290

d ′ height of horizontal dipole over earth or sea, 343

ds skin depth, 426, 530

d0 height of resonant array over earth or sea, 416

d12 distance between centers of collinear antennas, 259

E electric vector, 3

Ee impressed electric vector, 1, 6

Er electric vector in radiation zone, 9

E radiating efficiency, 313

Ei electric field in intermediate zone, 295

En electric near field, 294



609 List of symbols

Er electric far field, 296

Er , E� spherical components of electric field, 9

Eρ, Ez cylindrical components of electric field, 9

E inc
z incident electric field, 51

E0z component in five-term current, 247, 248

Ea(h, z), Eb(h, z) integral functions, 40, 122

Er
� � component of electric field in radiation zone, 9

[Er
0�(r0,�0)]A electric far field of omnidirectional array, 363

[Er
0r (a,�, 0)]A vertical electric far field of omnidirectional array over spherical

earth, 367

[Er
0�(r0,�0,�0)]A electric far field of directional fan antenna, 364

elz(ρ, φ, z) z-component of electric field due to dipole l in circular array, 418

F0z component in two-term, three-term and five-term current, 109

F(θ) element factor, 387

F0(�, β0h) field characteristic or field factor, 10

F0(�, β0h), Fm(�, β0h) field functions of antenna with sinusoidal current, 13

F(P) Fresnel integral, 294

f operating frequency, 1

fi discrete frequency applied to array, 229

fm resonant frequency for mth phase-sequence resonance, 413

fmt transmission coefficient, 371

fer (�) plane-wave reflection coefficient, 290

f (�, β0h), f ′(�, β0h) field characteristics, 44, 45, 69

f I (�, β0h), f ′I (�, β0h) field characteristics, 46

G(m) mth phase-sequence conductance, 398

Gc characteristic conductance of line, 219

G1,l self- and mutual conductances for circular array with one driven
element, 398

G(m)
res conductance at mth phase-sequence resonance, 400

Gr (0) relative gain, 178

G(θ) element factor, 387

Gm(�, β0h) field factor, 45

G N (π/2, 0) absolute gain, 178

Gki (dki , zk , z′i ) kernel, 244

Geven
ki (dki , zk , z′i ) even part of kernel, 244

Godd
ki (dki , zk , z′i ) odd part of kernel, 244



610 List of symbols

G0 driving-point conductance, 2

g parameter for spherical earth, 329

gm(θ) parameter, 412

g(�, β0h), g′(�, β0h) field functions of array, 69

H (m) parameter, 431

H0z component in three-term and five-term current, 109

H(z) step function, 3

Hm(�, β0h) field factor, 45

h half-length of antenna, 2

h half-length of rectangular patch antenna, 376

he effective half-length of vertical dipole, 292

heD effective length of each half of loop for dipole mode, 514

hm maximizing length of terminated wire, 352

he(π/2) effective half-length of receiving antenna, 53

he(�0,�0) effective length of horizontal-wire antenna, 352

heN (�,�) effective half-length of N -element Yagi array, 208

Im maximum of sinusoidal current, 13

IV , I ′V complex coefficients, 37, 39

I (m)
V complex coefficient for phase sequences, 59, 62

I (z) total current along antenna, 7

I (m)(z) mth phase-sequence current, 62, 84

I (∞)(z) current on infinitely long antenna, 453

Iap(z), Iex(z) currents obtained using approximate and exact kernels, 452, 453

ID(s), IT (s) current induced in loop in dipole and transmission-line
modes, 515

IL (s) load current in loop, 515

I1L (w) current along transmission line, 477

Ix (x) current in monopole in infinite conducting medium, 304

Iz(z) total axial current, 31, 37

Iz(0) current in load of receiving antenna, 52

I even
zi (zi ), I odd

zi (zi ) even and odd parts of current, 244

ID(�,�) current in receiving antenna, 207

I2(η2, g) integral function for spherical earth, 329

J volume density of current, 3

JS surface current on ground plane, 437
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J j
zi (zi ) current functions, 251

JR(h, z), JI (h, z) real and imaginary parts of integral, 35

K surface density of current, 4

Kap(z), Kex(z) approximate and exact kernels, 22, 23, 453

Kcnl (z) kernels involving distances cnl , 389

KL (z) kernel term added for lossy elements, 427

Knl (z) kernels for general array, 380, 421

K RL (z), K I L (z) real and imaginary parts of KL (z), 428

K1R(z) refined real part of self-term kernel, 408

K1R(z), K (m)
�R (z), K (m)

I (z) parts of modified kernel, 397

K A
1R(z), K E

1R(z) real part of approximate and exact self-interaction ker-
nel, 448, 450

K (z, z′) kernel in integral equation, 33

K (0)(z, z′), K (1)(z, z′) kernels for zero- and first-phase sequences, 56

Kd (z, z′) difference kernel, 36

Kdnl (z, z′) difference kernels for general array, 380

Kki (z, z′) kernels involving antennas i and k, 82

Kkid (z, z′) difference kernels involving antennas i and k, 82

K R(z, z′), K I (z, z′) real and imaginary parts of K (z, z′), 34

K (m)
d (z, z′) difference kernel for mth phase sequence, 83, 84

K (0)
d (z, z′), K (1)

d (z, z′) difference kernels for zero- and first-phase sequences, 56

K11(z, z′), K12(z, z′) kernels for coupled antennas, 55

K11d (z, z′), K12d (z, z′), K22d (z, z′), difference kernels for coupled antennas, 55

K21d (z, z′)
Kki (zk , z′i ) kernel, 244

Kki R(zk , z′i ), Kki I (zk , z′i ) real and imaginary parts of Kki (zk , z′i ), 244

k wave number, 452

kd wave number of insulating dielectric layer, 357

kI complex wave number of current in bare antenna with
finite conductivity, 304

kL wave number of current in bare horizontal wire over earth
or sea, 351

kL wave number of rectangular patch antenna, 376

k0 wave number of air, 290

k1 complex wave number of dielectric layer over earth or
sea, 292
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k2 complex wave number of earth or sea, 290

LT lumped inductance for terminal zone, 479

l thickness of dielectric layer above earth or sea, 292

l thickness of dielectric layer on microstrip, 372

le(w) external inductance per unit length of line, 477

le
L (w), le

T (w) parts of le(w) due to currents in line and termination, 477

le
0 external inductance per unit length of uniform line, 479

M0z component in two-term, three-term and five-term current, 109

m phase sequence, 79

N complex index of refraction, 290

N number of elements in array, 79

n distance between adjacent elements in fractions of wavelength, 357

n̂ unit normal, 4

P time-average power, 6

Pbnl , Pcnl matrix elements involving distances bnl and cnl , 389, 390

PG time-average power on surface of ground plane, 437

PG2, PG13 time-average powers on regions 2 and 1, 3 of ground plane, 439

PI L loss parameter, 430

PM time-average power on surface of monopole, 440

Pnl , P ′
nl matrix elements for general array, 383, 384, 391

P(m)
R , P(m)

I parameters in T (m), 396, 397

P1R, P(m)
�R self- and mutual parts of P(m)

R , 396, 397

Ptotal,in total power supplied to resonant array with two driven elements, 411

P0z component in five-term current, 248

P(�,�) field factor for rectangular patch antenna, 377

pz dipole moment, 12

pC (z) shifted-cosine current, 448

pS(z) square-root end-corrected current, 409, 448

Q denominator of T functions, 39

Q quality factor of circular array of lossy elements, 431

Q(m) denominator of T (m) functions, 62

Qk complex coefficient, 248

Qnl matrix elements for general array, 387

Qr quality factor of resonant array, 404
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Qm(�, β0h) field factor, 254

q(z) charge per unit length, 7

qL (w) charge per unit length along transmission line, 478

R distance from arbitrary point to field point, 9

R radius of circular array, 405

Re external or radiation resistance, 311

Rc characteristic resistance of line, 219

Rc resistance of inductance coil, 312

Rg resistance of ground network, 312

Ri distance to center of antenna, 253

Rk complex coefficient, 248

Rki distance between elements on antennas i and k, 82

Rkih distance to end of antenna k from point on antenna i , 82

Rloss resistance due to ohmic losses, 431

Re
m , Re

0 radiation resistances referred to Im and I (0), 15

R(m)
rad radiation resistance of mth phase sequence, 431

Rm(�, β0h) field factor, 254

R0 distance to origin, 255

R0 driving-point resistance, 2

R1h , R2h distances to ends of antenna, 15

R11, R12 distances between elements of coupled antennas, 55

R11h , R12h distances to ends of coupled antennas, 55

R0,�,� spherical coordinates, 255

rF B front-to-back ratio, 179

rbl , rcl , rtl distances from observation point to bottom, center, and top of dipole l in
circular array, 418

r0 internal resistance per unit length, 357

r1, r2 distances traveled by direct and reflected fields, 290

r, θ, φ spherical coordinates, 405

r,�,� spherical coordinates, 7

r0,�,� spherical coordinates, 290

r0,�0,�0 spherical coordinates, 352

S Poynting vector, 5

SB , SE sensitivity constants of unloaded loop, 514

Sc sensitivity constant of short antenna, 509

S0z component in two-term, three-term and five-term current, 110



614 List of symbols

S(1)B , S(1)E sensitivity constants for singly loaded loop, 515

S(2)B , S(2)E sensitivity constants for doubly loaded loop, 516

Sa(h, z), Sb(h, z) integral functions, 17, 122

SWR standing wave ratio, 491

s coefficient, 381, 383

s(m), s′ (m) parameters, 85

sk , s′k complex amplitude functions, 87

T, TD, TU , T ′
D, T ′

U complex coefficients, 37, 39, 41

T (m) phase-sequence coefficients for circular array, 396

Tl coefficients of shifted-cosine part of current, 396

Tnl coefficients for general array, 381

T (m)
D , T (m)

U , T ′ (m)
D , T ′ (m)

U complex coefficients for phase sequences, 59, 62, 63

T (m)
res T (m) evaluated at resonance, 400

tn, tl , t ′n, t ′l coefficients, 381, 384, 390

U function proportional to vector potential at end of antenna, 36

Uk function proportional to vector potential at end of antenna k, 82

Ul constant, 382

umn real part of wmn , 411

u(z) normalized current distribution, 52

un(z) pulse functions, 24

V driving voltage, 1, 2

V (m) mth phase-sequence voltage, 87

V (0), V (1) zero- and first-phase-sequence voltages, 56

V (w) scalar potential difference along transmission line, 477

VL (w), VT (w) parts of V (w) due to charges in line and termination, 478

V e
0 driving voltage of delta-function generator, 33

vmn imaginary part of wmn , 411

v(z) normalized current distribution, 52, 64

Wki D(zk) normalized vector potential difference of cos 1
2β0z − cos 1

2β0h, 209

WkiU (zk) normalized vector potential difference of cosβ0z − cosβ0h, 209

Wki V (zk) normalized vector potential difference of sinβ0(h − |z|), 209

WpL (w), WpT (w) components of vector potential difference due to currents in line and
load, 478

w distance from load along transmission line, 477
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w half-width of rectangular patch antenna, 376

wmn complex coefficient, 411

w(z) normalized current distribution, 64

Xi , Yi , Zi Cartesian coordinates for center of element i , 255

X0 driving-point reactance, 2

Y (m) mth phase-sequence admittance, 62, 398

Y (0), Y (1) zero- and first-phase-sequence admittances of loop, 516

Ya apparent admittance of load terminating line, 481

Yc characteristic admittance of line, 488

Y1in driving-point (input) admittance, 66

Y1,in, Yn,in driving-point admittances of two driven antennas in resonant array, 411

Ykin driving-point (input) admittance of element k, 88

Ykk , Ykp self- and mutual admittances, 504

YL admittance of load terminating line, 481

YL admittance loading loop, 515

Yl,in driving-point admittance of element l, 386

Y1,l self- and mutual admittances for circular array with one driven element, 398

Ys1, Ys2 self-admittances, 65

YT terminating admittance, 220

Y (s) driving-point admittance of loop driven at point s, 515

Y0 admittance of circular loop with constant current, 518

Y0 admittance of square loop with constant current, 514, 517

Y0 driving-point admittance of antenna, 2

Y1 driving-point admittance of log-periodic dipole array, 221

Y12, Y21 mutual admittances, 65

yT normalized terminating admittance, 222

y(w) admittance per unit length of line, 477

y0 admittance per unit length of uniform line, 479

Z impedance of monopole, 304

Z impedance of terminated long wire, 351

Z (m) mth phase-sequence impedance, 95

Za apparent impedance of load terminating line, 481

Zc characteristic impedance of line, 2, 216

Ze impedance of monopole with reflected image, 306

Zg impedance of generator, 206, 351

Zg impedance of ground network, 304, 306
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ZG surface impedance of ground plane, 437

Zin driving-point impedance of grounded monopole, 304

Z1in driving-point (input) impedance, 66

Zkk , Zkp self- and mutual impedances, 503

ZL impedance of load terminating line, 481

ZL load impedance for loop, 515

ZL load impedance of receiving antenna, 52

ZL lumped impedance, 358

Zs1, Zs2 self-impedances, 65

ZT terminating impedance, 216

Z0 driving-point impedance of antenna, 2

Z0 impedance of loop with constant current, 514

Z0 impedance of terminating sections, 351

Z1, Z2 series impedances for antennas, 66

Z11, Z22 impedances of primary and secondary circuits, 66

Z12, Z21 mutual impedances, 65

z cylindrical coordinate, 7

z′ height above source dipole, 293

zi internal impedance per unit length, 304, 512

z p width of pulse function, 24, 455

z(w) impedance per unit length of line, 477

z0 impedance per unit length of uniform line, 479

α attenuation constant of uniform line, 479

α imaginary part of ξi , 329

αik cofactor divided by determinant, 214

αL attenuation constant for current in bare horizontal wire over earth or sea, 361

α2 attenuation constant of earth or sea, 290

β phase constant of uniform line, 479

β real part of ξi , 329

βik cofactor divided by determinant, 214

βL phase constant for current in bare horizontal wire over earth or sea, 361

β0 wave number in air, 4

β2 wave number of earth or sea, 290

#a complex apparent reflection coefficient of load terminating line, 488

#(w) reflection coefficient along transmission line, 488

γ Euler’s constant, 351
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γ propagation constant of uniform line, 479

γ, γ ′ coefficients of cross coupling for loop, 517

γik cofactor divided by determinant, 214

γ (w) propagation constant of line, 477

� determinant, 211

�1,�2 denominators, 169

�s width of resonance curve, 501

δik Kronecker delta, 118

δm/N resonant spacing for mth phase-sequence resonance, 400

δ(z) Dirac delta function, 2

ε small parameter, 292

ε(1), ε(2) error ratios for singly and doubly loaded loops, 517

εdr relative permittivity of dielectric layer, 357

ε1r eff real effective permittivity of microstrip transmission line, 376

ε0 permittivity of free space, 3

ζ0 characteristic impedance of free space, 3, 10

η surface density of charge, 4

η2 parameter for spherical earth, 329

� spherical coordinate, 7

�i angle of incidence on earth surface in far field, 299

�hp half-power beam width, 13

�0 angle of transmission, 371

�2 angle of incidence, 371

λ wavelength in free space, 4

µ0 permeability of free space, 3

ξi ratio of voltages, 135

ξi parameter for spherical earth, 329

ρ radial distance from source dipole, 293

ρ volume density of charge, 3

ρ, ρa, ρg apparent terminal attenuation function in general, for load, and for generator, 490

ρc critical distance for spherical earth, 329

ρs distance along surface of spherical earth, 328

ρ,�, z cylindrical coordinates, 7
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ρ, φ′, z′ cylindrical coordinates, 292, 293

� surface, 5

σ spacing ratio for log-periodic antenna, 215

σG conductivity of ground plane, 436

σM conductivity of monopole, 436

σ
(m)
M,eff effective conductivity of monopole for mth phase sequence, 440

σ2 conductivity of earth or sea, 304

τ length ratio for log-periodic antenna, 215

� cylindrical and spherical coordinate, 7

� dimensionless resistance parameter, 428

�kiu ,�kiv matrix elements, 119

�
(m)
T ki matrix elements, 110

φ phase shift in section of line, 218, 219

φ scalar potential, 4, 5

φ, φa, φg apparent terminal phase function in general, for load, and for
generator, 490, 499, 500

φ1(w) coefficient of capacitive coupling of line and load, 477

�,�e thickness parameters, 304, 306

�d D coefficient, 39, 40

�d DI , �d I , �dU I coefficients, 38, 40

�d DR, �d R, �dU R coefficients, 38, 40

�dV nl , �dUnl coefficients, 382, 383

�V nl , �Unl coefficients, 382

�
f

kidV , �
f

kidU , �
f

kid D coefficients, 169

�h
kidV , �h

kidU , �h
kid D coefficients, 169

�h
kkdV , �m

kkdV coefficients, 169

�
(m)
d D , �

(m)
d I , �

(m)
d R , �

(m)
dU I , coefficients for mth phase sequence, 60, 61

�
(m)
dU R, �

(m)
d�R

�D(h),�U (h),�V (h) coefficients, 38

�kiu(h),�kiv(h) coefficients, 122

�
(m)
D (h),�(m)

U (h),�(m)
V (h) coefficients for mth phase sequence, 61

�kid I (z),�kid R(z),�kidu(z), coefficients, 122

�kidv(z)
ψG , ψM coefficients, 440

� thickness parameter, 18
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admittance, of antenna and arrays. See under name of
antenna or array

apparent load, 481, 494, 499, 535
driving-point, 2
of load, terminating line, 481
per unit length, 477; of uniform line, 479
phase-sequence, three-term, 62, 110; two-term, 111
self- and mutual, of circular array, 86, 88 ff;

measurement of, 502–8; of two-element array,
65, 73

See also impedance
Aharoni, J., xviii
antenna, cage, 108

electrically short, 11–13
infinite, 453, 454, 465 ff
simplified linear, 1–3
with sinusoidal current, 13–20; currents and

charges in, 13, 18–20, graphs of, 18–20; field
of, 13–16; impedance of, 16–18; relation to
center-driven antenna, 18–20

top-loaded, 311 ff
with triangular current, 11–13; field pattern of, 12;

power pattern of, 12
See also Beverage antenna; cylindrical antenna;

dipole; horizontal dipole; horizontal-wire
antenna; loop; monopole; microstrip patch
antenna; receiving antenna; short antenna;
terminated insulated antenna; vertical
antennas; vertical dipole

antenna system, 1, 2
array, broad-band, 215; conventional analysis for, 112,

113; definition of, 54; directional, 353, 356–9;
general, notation for, 379–85, 390, 391;
omnidirectional, 359–63; resonant
non-circular, 407, 408; uniform, 124; see also
arrays; arrays with horizontal and vertical
elements; arrays with staggered elements;
arrays with unequal elements; broadside array;
circular array; collinear array; couplet; curtain
array; endfire array; large circular array;
log-periodic array; parasitic array; planar
array; receiving array; resonant array with two
driven elements; scanned array;
three-dimensional array; Yagi–Uda array

array factor, of circular array, 88; for mth
phase-sequence resonance, 405, 406

of curtain array, 124, 129–31
normalized, of three-element array, 125
of resonant non-circular array, 407, 408
of uniform array, 124

array theory, conventional, 112, 113; comparison with
two-term theory, 112, 113, 123–37; limitations
of, 113, 119, 124

three-term. See three-term theory
two-term. See two-term theory

arrays, circuit equations for, 112, 503; of horizontal
dipoles and vertical monopoles over ground
plane, programming aspects of, 388–90;
practical, 288, 289

arrays with horizontal and vertical elements, over
earth or sea, 359 ff; directional, diagram of,
364; electric far field of, 364

omnidirectional, diagram of, 361; electric far field
of, 363; impedances of, 360; radiation
efficiency of, 362; total power radiated by, 362

with radial array of insulated wires in earth or sea,
365

for spherical earth or sea, 365–9
arrays with staggered elements, 241 ff; admittances

of, 252; approximations of currents in, 247–9;
currents in, 244, 247–9; driving-point currents
in, 252; evaluation of coefficients for, 249–53;
far-zone fields of, 253–5; typical elements in,
243; vector potential on kth element of, 244,
245; vector potential differences for, 245–7;
see also arrays with two staggered elements;
planar array; three-dimensional array

arrays with two staggered elements, 256–63; currents
when symmetrically and antisymmetrically
driven, graph of, 263; diagram of, 256; self-
and mutual impedances of, table of, 260;
symmetrical and antisymmetrical admittances
of, table of, 258; symmetrical and
antisymmetrical impedances of, graphs of,
258, 259

arrays with unequal elements, 153 ff; admittances of,
214, 215; currents in, 214; when elements
differ greatly in length, 208 ff; experimental
verification of theory of, 239, 240; impedances
of, 215; see also log-periodic dipole array;
parasitic array, with elements of unequal
length; Yagi–Uda array
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Barzilai, G., xvii
basis functions, 24
beam width, definition of, 13
Beverage antenna, description of, 349; diagram of,

350; see also horizontal-wire antenna
Bontsch-Bruewitsch, M. A., xvii
boundary conditions, between air and perfect

conductor, 3, 4, 6; at surface of cylindrical
antenna, 20, 21; see also electric field,
boundary conditions for

broadside array, admittances and impedances of,
tables of, 579 ff

driving conditions for, currents specified, 132;
voltages specified, 137

field patterns of, 138, 142
resistances and reactances of, currents specified,

138–40; voltages specified, 138, 141
See also curtain array; planar array;

three-dimensional array
Brown, G. H., xvii
Brückmann, H., xvii

Carrel, R. L., 218, 238
Carter, P. S., xvii
Chang, V. W. H., 249, 256, 262, 272
charge, per unit length, 7, 478; surface density of, 4;

volume density of, 3
charges, in dipoles with sinusoidal currents, graphs of,

20
Cheong, W.-M., xviii, 208, 209, 222, 229, 235,

238–40
circular array, coefficients for currents in, tables of,

539–52
corrected two-term susceptance of, 89; graph of, 93
currents in elements of, 83, 86
diagrams of, 81, 393, 439
driving-point admittances of, 88
effect of ohmic losses in. See large circular array, of

lossy elements
far-zone electric field of, 87
general description of, 79, 80
integral equations for sequence currents in, 80–6,

107
of large number of elements. See large circular

array
with one element driven, 95 ff, 396 ff
phase-sequence currents in, 83; in terms of element

currents, 87; in terms of voltages and
impedances, 107

programming aspects of, 388
radiation patterns of, 95–103; graphs of, 101, 102,

104
resonant spacings in, 89, 90
self- and mutual admittances of, 86, 88–95; graphs

of, 90–100; measurement techniques for, 504,
505; relations between calculated and

measured, 89–95; resonances in, 89, 90; tables
of, 539–52

sequence admittances of, 86; tables of, 539–52
sequence functions of, 86, 87
three-term theory, for sequence admittances, 110;

for sequence currents, 109, 110
with two elements driven. See resonant array with

two driven elements
two-term theory, for currents, 87; for far-zone

fields, 87; for sequence admittances, 86, 111;
for sequence currents, 85, 111

vector potential difference on surface of each
element of, 80–2

voltages in, driving, 86; phase relations between,
83; phase-sequence, in terms of driving
voltages, 87

collinear array, two-element, currents in when
symmetrically and antisymmetrically driven,
graph of, 261; self- and mutual impedances of,
table of, 260; symmetrical and
antisymmetrical admittances of, table of, 257;
symmetrical and antisymmetrical impedances
of, graphs of, 258, 259

conductance. See admittance
continuity, equation of, 3, 8
correction for susceptance, in three-term theory, 42; in

two-term theory, 49, 50, 89
coupled circuits, matrix equation for, 105, 112
couplet, currents in, in terms of driving voltages, 67;

two-term formulas for, 72
description of, 67
driving-point admittances of, 68, 76
field of, full-wave, 76, graph of, 78; ideal, graph of,

78
full-wave, example of, 76–8
See also curtain array of two elements

coupling, between transmission line and load, 476–81
coupling coefficient, capacitive, 477, 478; inductive,

477, 478
Cox, C. R., xvii
current, in antenna and arrays. See under name of

antenna or array
capacitive and inductive components of, 223, 227,

233
distribution of, five-term, 249; relation to far field,

9; sinusoidal, 13–20, 31; three-term, 37, 40,
41, 160; along transmission line, 487–92;
two-term, 48, 52, 87, 114 ff, 154

driving-point, correction for, 42, 49
even and odd, 245–9
integral equations for, 20–3, 32, 33; properties of,

33–5, 453–5; rearranged, 36; reduced, 36–9
in matrix form, for use in programming, 384; when

kh = π/2, 390
phase-sequence, in circular array, 84, 85, 109, 110;

integral equation for, 56, 107; in matrix
notation, 107, 109–11; relation to element



621 Index

currents, 64, 87; three-term, 59, 62, 63, 109,
110; in two-element array, 62, 63, 70;
two-term, 70, 84, 85, 111

sinusoidal assumption, xvii, 13, 31
sinusoidal distribution of, in transmission line and

antenna, 31
surface density of, 4, 7, 21
total, on center-driven dipole, 21; on thin linear

antenna, 7
transmitting and receiving parts of, 119
volume density of, 3

curtain array, admittances and impedances of, 121;
tables of, 579–93

broadside. See broadside array
circuit properties of, graphs of, 139–41, 145–7
currents in, conventional theory, 113; two-term

theory, 114–21
definitions, of � functions, 119, 120, tables of,

553–78; of � functions, 117, 118, 122
endfire. See endfire array
far-zone electric field of, 123, 124
field properties of, 138, 144; graphs of, 142, 148
field with sinusoidal currents, 123
general formulas, driving voltages specified, 121;

input currents specified, 121
integral equation for currents in, 115
matrix elements of, tables of, 553–78
matrix equations for, 119, 120
programming aspects of, 387, 388
simultaneous equations for coefficients for, 117–20
special case when β0h = π/2, 148–51
three-element example. See curtain array of three

elements
two-element example. See curtain array of two

elements
two-term theory of, 114 ff; when β0h = π/2, 148 ff
vector potential difference of, 115

curtain array of three elements, 124 ff; beam pointing
error of, 136; currents in, graphs of, 129, 130;
diagram of, 114; driving-point impedances of,
126, 127; electric field of, 124, 125; full-wave
elements in, 127–30; half-wave elements in,
126, 127; power in elements of, 127; scanning
with, 128 ff; variation of impedance with
beam angle, 134

curtain array of two elements, analysis of, 54 ff
arbitrarily driven, 64–6
current in, three-term, 64, 66; two-term, 72, 73, 76,

graphs of, 75, 77
diagram of, 55
field of, 68, 69; for couplet, 76–8
integral equations for phase-sequence currents of,

56; properties of, 57–9; reduction of, 59–62
phase-sequence admittances of, three-term, 62, 63;

two-term, 70
phase-sequence currents in, integral equations for,

56; three-term, 62, 63; two-term, 70, graph of,
72

self- and mutual admittances of, three-term, 65;
two-term, 73, compared with measurements,
graph of, 74

self- and mutual impedances of, table of, 260;
three-term, 65; two-term, 73

symmetrical and antisymmetrical admittances of,
table of, 257

symmetrical and antisymmetrical impedances of,
graphs of, 258, 259

vector potential difference of, 54, 55
curve width, 498, 501, 502
cylindrical antenna, admittance of, measured, 50

three-term approximation of, 40, 41; comparison
with experiment, 42–4

two-term approximation of, 48; comparison with
experiment, 49, 50; table of, 539

boundary conditions at surface of, 20, 21, 32
charges in, 7, 20
current in, assumed sinusoidal distribution of, 13,

31; graphs of, 18, 19
three-term approximation of, compared with

measurements, 41–4; derivation of, 36–40;
formulas for, 40, 41; graphs of, 43, 44

two-term approximation of, compared with
measurements, 49, 50; formulas for, 48, 49

field factors for, approximations for β0h ≤ π , 47,
48; graphs of, 47; three-term formulas for, 44,
45

integral equation for current in, 33; rearranged, 36
lumped corrective network for susceptance,

three-term theory, 42
two-term theory, 49, 89; comparison with

measured and King–Middleton values, 50

delta function, definition of, 2; as generator for
antenna, 1

dipole, center-driven, diagram of, 21
as charge or electric-field probe, 509
as end-load of two-wire line, 482, 483
sensitivity constant of, 509
short, complex effective length of, 510; input

impedance of, 510
See also horizontal dipole; vertical dipole

dipole mode, of current, description of, 508, 509; in
small loops, 511–16; tests for, 515–17, 529

dipole moment, 12
directional coupler, measurement method, 493, 496,

497
directivity, absolute, definition of, 13; of electrically

short antenna, 13; of Yagi–Uda array, 177, 178
relative, of Yagi–Uda array, 178, 179
vertical, of large resonant circular array, 407; with

two elements driven, 414, table of, 415
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distribution curve, measurement method, 493–5,
497–9

Dolph, C. L., xvii

effective length, of dipole, 53, 207, 290, 292; of loop
in dipole mode, 518; of short dipole, 510; of
Yagi array, 208

efficiency, radiating, 313, 314
electric field, of antennas and arrays. See under name

of antenna or array
boundary conditions for, perfect conductor and air,

3, 4, 6; receiving antenna, 51; transmitting
antenna, 21, 32

of cylindrical conductor, 9
in cylindrical coordinates, 9
definition of, 3
elliptically polarized, 531–4; diagram of, 531
externally maintained, 16
far-zone, of circular array, 87; coordinate system

for, 8; of curtain array, 123, 124, 135; of
cylindrical conductor, 9–11, 43–8; of
three-element array, 135

of grounded monopole, 307–9
of infinitely thin antenna with sinusoidal current,

14, 15
instantaneous, 10
measurement of, 508–11
near-zone, of electrically short antenna, 12
in spherical coordinates, 9
of vertical dipole over earth or sea, 292–303;

graphs of, 308–10, 316–29; tables of, 308, 310
electric moment, of dipole with sinusoidal current,

292
electric vector, 3
electromagnetic field. See electric field; magnetic field
EMF method, for calculating impedance, 16–20, 126,

127; validity of, 17–20
end-correction, for circular array, 89, 93; for single

antenna, 49, 180; see also terminal-zone
network

end effects. See terminal zone; terminal-zone network
endfire array, admittances and impedances of, tables

of, 579 ff
driving conditions for, currents specified, 132, 143;

voltages specified, 143
field patterns of, 144, 148, 149
resistances and reactances of, currents specified,

145, 146; voltages specified, 147
See also curtain array; planar array;

three-dimensional array
equivalent circuit, for receiving antenna, 53, 207, 208
error ratio, for loop probes, 517–20; graphs of, 522,

524; used as parameter, 520, 525, 526
exponential integral, 40

far field. See electric field, far-zone; magnetic field,
far-zone, also under name of antenna or array

field, of antennas and arrays. See electric field;
magnetic field, also under name of antenna or
array

field characteristic. See field factor
field factor, definition of, 10; of five-term current, 253,

254; of sinusoidal current, 13, graph of, 14; of
three-term current, 44–8, graph of, 47; of
triangular current, 11, graph of, 12

field pattern, of antennas and arrays. See field factor,
also under name of antenna or array

Fikioris, G., 393, 394, 399, 401, 402, 414–17, 419,
444, 445, 447

Fitch, E., xvii
five-term theory, 241 ff; distribution of current in,

249; evaluation of coefficients in, 249–53;
field patterns in, 253–5

Freeman, D. K., 393
Fresnel integral, definition of, 294, 450

Galerkin’s method with pulse functions, 24 ff,
455–60, 462; sample results of, graphs of,
27–9, 458, tables of, 459

generator, delta-function, 1, 16, 17, 21, 32, 33
generators, continuous distribution of, 16, 17
Grossmann, A., 392
ground network, 303 ff; impedance of, 304, 306; see

also arrays with horizontal and vertical
elements

Hallén’s integral equation, 21, 452
Hansen, R. C., xviii
Hartig, E. O., 484
horizontal dipole, on microstrip, 372–5;

electromagnetic field of, 373–5
near planar earth or sea, 343 ff; diagram of, 344

electromagnetic field of, in air, 343–5; in
dielectric layer, 346; in earth or sea, 346;
when dipole is on boundary, 347, 348

far field of, conditions for, 348; formulas for,
348, 349

for remote sensing, 369–72; applied to synthetic
aperture radar (SAR), 370–2

over spherical earth, 365 ff; electromagnetic field
of, 367

horizontal-wire antenna, 349 ff; characteristic
impedance of, 351; current in, 351; description
of, 349, 350; diagram of, 350; directional
arrays of, 353, 356, 357; effective length of,
352; far field of, 352, 353, graphs of, 354–6;
parameters for, table of, 353; wave number of
current in, 351

Houdzoumis, V., 330
hybrid junction, for use with loop probes, 516, 517,

530

impedance, of antennas and arrays. See under name of
antenna or array
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apparent load, 481; measurement of, 492 ff
characteristic, of transmission line, general, 477;

lossless, 490
driving-point, 2, 17
internal, per unit length, 304; of conducting

cylinder, 426
of load, terminating line, 480, 481
measurement of, 702–10
per unit length, 477; of uniform line, 479
phase-sequence, 95, 106, 110
self- and mutual, calculation by EMF method,

16–20, 126; of circular array, 94, 95;
comparison of sinusoidal and two-term
theories, 126, 127; measurement of, 502–8; of
two-element array, 65, 73

surface, of lossy ground plane, 437
of transmission line, lossless, 492; lossy, 490; at

SWR maxima or minima, 491
impedance matrix, 112; in curtain array, symmetry

properties of, 112, 121, 122, 133, 134
integral equation, approximate, 22, 23, 452 ff;

numerical results with, graph of, 458, tables
of, 459

for center-driven dipole, 20–3
for current on infinite antenna, 465 ff
exact, 22, 452 ff; numerical results with, graph of,

458, table of, 459
in matrix notation, 107–11
numerical methods for solving, 23–30, 452 ff
for sequence currents of circular arrays, 56, 83;

properties of, 57–9; solution of, 59–62, 84–6
for single receiving antenna, 51; solution of, 52
for single transmitting antenna, 33, 36; properties

of, 33–5; solution of, 36–41
See also integral equations, simultaneous

integral equations, simultaneous, for arrays with
unequal elements, 160, 211; solution of, 160–2

for circular array, 81, 82; in matrix notation, 107,
108; reduction to single equation, 83, 107

for curtain array, 114, 115; solution of, 114 ff
for general array, 379 ff
for planar and three-dimensional arrays, 241–5;

solution of, 245 ff
for two-element array, 54, 55; reduction to single

equation, 56
integrals, generalized sine and cosine, 17, 40

kernel, of integral equation, approximate, 23, 452; for
center-driven dipole, 22, 23; for circular array,
420–4; difference, 55, 82, 380; exact, 22, 452;
improved, 421, 422; modified, 393, 394, 397,
421; refined, 408, 422; self- and mutual
interaction, 380, 421

King, R. W. P., xvii, xviii, 156, 157, 159, 238, 240,
291, 293, 295, 309, 310, 316–29, 332–42, 350,
353–6, 358, 361, 364, 375, 579

King–Middleton second-order values of admittance,
49; graph of, 50

King–Sandler theory for curtain arrays, 114 ff, 156,
157, 159

large circular array, of lossless elements, analysis of,
396 ff

basic properties of, graphs of, 392–4
conditions for, 395
currents in elements of, 396
diagram of, 393
effect of ohmic losses in. See large circular array,

of lossy elements
end correction for current, 408, 409
historical background of, 392–4
modified kernels for, 393, 394, 397, 421;

asymptotic formulas for, 398; imaginary
part of, table of, 402; properties of, 398;
refined real part of self-term, 408, 422

numerical methods applied to, 464, 465
phase-sequence admittance of, 398
phase-sequence coefficients of, 396; behavior

near resonance, 403, 404; parameters in,
397, 399, 402, 403, graph of, 399

phase-sequence resonances in, properties of, 395,
399 ff

quality factor of resonance in, 404
radiation field of, near resonance, 405–9; array

factor for, 405–8; element factors for, 405;
properties of, 406, 407, graphs of, 401, 402

resonant spacings for, 400–3, 407; table of, 402
self- and mutual admittances of, 398, 400; graph

of, 401; table of, 402
two-term theory for, 396 ff; refinements for

numerical calculations, 408, 409
vertical directivity of, 407
See also resonant array with two driven elements

of lossy elements, 425 ff; array factor for nth phase
sequence, 436

current on elements of, 448
driving-point admittance of, 430, 433–5; graphs

of, 433, 434, 443–6; tables of, 435, 442, 447
effect of lossy ground plane, 425, 436–47
effective conductivity of monopoles in, 440, 441;

table of, 441
end-corrected current distribution, 448
equivalent circuit for, derivation of, 431–3; graph

of, 432
field pattern of, 435, 436
formulas for computer implementation, 446–51
integrals equations for, 427–9
kernel, of integral equations, parts of, 450, 451
loss parameters for, 450
measurement of sharp resonances in, 534–8;

comparison with theory, 442–7;
experimental model for, 535–8

phase-sequence admittances of, 451
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phase-sequence coefficients of, 449; parameters
in, 449, 450

qualitative behavior of, 430–3; for fixed-m/N
array, 432, 433; for fixed-N array, 431, 432

quality factor for, 431
radiation resistance, of mth phase sequence, 431
resistance due to ohmic losses, 431
resonant frequencies for, 435, 441, 442, 447
self- and mutual admittances of, 451
surface currents on lossy ground plane, 437–9
time-average power, on lossy ground plane,

437–41, table of, 441; on monopoles, 440,
table of, 441

two-term theory for, 429, 430, 446–51
length, complex effective, 53
log-periodic array, active and inactive elements in,

225 ff
admittance, of elements in, 221–3, 228, 230–5;

input, of array, 221, graph of, 237
analysis of, 216–21
beam width of, graph of, 239
characteristics of 12-element array, 222 ff;

frequency-independent, 228 ff
currents, along elements of, 225, 227; graphs of,

226, 232
description of, 215, 216
diagram of, 216, 217
driving-point admittances of, 222 ff; graphs of, 223,

230, 233, 234
driving-point currents, in elements of, 221, 223,

231, 233; graphs of, 224, 231
field patterns of, 227, 228, 238
frequency-independent properties of, 228 ff; useful

range of, 235
frequency periodicities in, 215, 216
parameters of, 215
relative power distributions in, 225, 227, 235, 236
side lobes in field of, 238, 239
voltages driving elements in, 221, 233; graphs of,

224, 231
loop, bridged, 528

dipole-mode currents in, 508, 509, 514, 515; tests
for, 515–17, 529

doubly-loaded, analysis of, 516, 517; diagrams of,
512, 528; properties of, 519–24, 526

as probe, 511 ff; error ratios of, 517–20, 522, 524;
sensitivity constants of, 514–21, 523; see also
probe

singly-loaded, analysis of, 515, 516; diagrams of,
512, 528; properties of, 520–5

small, circular, 517–20, 523, 524; square, 511–22,
525, 526

transmission-line mode currents in, 508, 514, 515
Lorentz condition, 4, 9

Mack, R. B., xviii, 19, 43, 44, 74, 102, 122, 180, 183
magnetic field, definition of, 3

even and odd parts of, 513
far-zone, 9, 10
of finite cylindrical conductor, 9
of infinitely thin antenna with sinusoidal current, 15
measurement of, 511 ff; in presence of elliptically

polarized electric field, 531–4
near-zone, of electrically short antenna, 12
of vertical dipole over earth or sea, 292–303

magnetic vector, 3
Mailloux, R. J., xviii, 154–9
matrix notation, for circular array, 103–11; for general

array, 384, 385, 390, 391
Maxwell’s equations, 3; boundary conditions for, 3, 4
measurement, of fields, 508–34

of impedances, 492–508; difficulties in, 504
methods of. See measurement methods
of sharp resonances, 534–8

measurement methods, 475 ff; directional-coupler
method, 493, 496, 497; distribution-curve
method, 493–5, 497–9; multiple-probe
method, 493–6, 534; open circuit–short circuit
method, 506–8; resonance-curve method,
493–5, 499–502

method of moments, 24, 453, 462; see also Galerkin’s
method with pulse functions

microstrip, horizontal dipoles on, 372–5; patch
antennas on, 375–8; transmission lines on,
376; vertical dipoles on, 325, 338–42

microstrip patch antenna, 375–8; diagram of, 375;
radiation field of, 376–8

monopole, as electric-field probe, 509–11; relative
sensitivity of, graph of, 511

as end-load on coaxial line, 484, 485
grounded, 303–8; driving-point impedance of,

304–7; see also arrays with horizontal and
vertical elements

terminal-zone correction for, 49, 89, 93, 484, 485
See also cylindrical antenna

Morita, T., 18, 20
Morris, I. L., xviii, 173, 182, 190
multiple probe, measurement method, 493–6, 534
mutual admittance. See admittance, self- and mutual,

also under name of array
mutual impedance. See impedance, self- and mutual,

also under name of array

Norton surface wave, 291
numerical methods, applied to integral equations, for

array of cylindrical dipoles, 463, 464
for general array, 385–90; notation for, 379–85
for infinite antenna, 456, 469 ff
for isolated antenna, 23–30, 452 ff; improvements

for, 461, 462; numerical results of, 458–60;
roundoff errors in, 461

for resonant circular array, 464, 465
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open circuit–short circuit, measurement method,
506–8

parallel non-staggered array. See curtain array
parasitic array, with elements of equal length, 153 ff;

admittance of, 156; current in each element of,
154, graphs of, 155, 157, 158; diagram of,
154; field pattern of, 154, graph of, 159;
programming aspects of, 386, 387

with elements of unequal length, 160 ff; integral
equation for parasitic element, 160, 161;
two-element example of, 179–87, computer
printout of properties of, 184, 185

three-term theory for, 160–9; with half-wave
elements, 170–3

two-term theory for, 153–9
See also parasitic array with two equal elements;

parasitic array with 20 equal elements
parasitic array with two equal elements, admittances

of, 76; currents in, 66, 67, 73, 74, 179 ff,
graphs of, 75, 181, 183; field patterns of, 182;
with tuned parasite, 67, 74, 75; with untuned
parasite, 66, 73, 75

parasitic array with 20 equal elements, 154 ff;
admittances of, graph of, 156

currents, at centers of all elements, graphs of, 157,
158; on driven element, graph of, 155; on
typical parasitic element, graph of, 157

field patterns of, 159
See also Yagi–Uda array

phase sequence, of circular array, 79, 83;
transformation matrices for, 105, 106; of
two-element array, 56

planar array, general, analysis of, 241 ff; currents in
elements of, 244, 247–9; evaluation of
coefficients for, 249 ff; field pattern of, 253–5;
five-term theory for, 247–9; full-wave
elements, broadside, 263–6, 268, endfire,
264–8; half-wave elements, broadside, 266,
268–70; integral equations for, 245–7

nine-element broadside, full-wave elements in, 262
ff; admittances of, table of, 265; coefficients
for currents in, 265; currents in, graph of, 266;
description of, 263; field patterns of, graphs
of, 268; impedances of, table of, 265

half-wave elements in, 266 ff; admittances of,
table of, 269; coefficients for currents in,
269; currents in, graphs of, 269; field
patterns of, graphs of, 270; impedances of,
table of, 269

nine-element endfire, full-wave elements in, 264 ff;
admittances of, table of, 265; coefficients for
currents in, 265; currents in, graphs of, 267;
description of, 264, 266; field patterns of,
graphs of, 268; impedances of, table of, 265

nine-element parasitic, 270 ff; admittances of, table
of, 271; coefficients for currents in, 271;

currents in, graph of, 271; impedances of,
table of, 271

two-element collinear or staggered, 256–63;
admittances of, 257, 258; currents in, 259,
261–3; diagrams of, 256; impedances of,
258–60

potential, scalar. See scalar potential
vector. See vector potential

potentials, field in terms of, 4; integral forms of, 5
power, in antenna with sinusoidal current, 15

in couplet, 76
input, to section of transmission line, 492
in log-periodic array, 225, 227, 235, 236
in three-element array, 127
time-average, across closed surface, 5, 6, 12, 15,

18; on surface of lossy ground plane, 437
power pattern, definition of, 12, 13; for electrically

short antenna, 12
Poynting vector, 5
probe, characteristics of, for small loops, table of,

520; construction of, 520, 525–9; for
measuring charge or electric field, 509–11; for
measuring current or magnetic field, 511–26;
tests of probe coupling, 502

programming considerations, for general array, 385 ff;
matrix elements in, 384, 385; parameters in,
385; special cases in, 386–91

propagation constant, of transmission line, 477; of
uniform line, 479, 487

pseudopotential, Fermi, definition of, 392
pulse functions, 24, 455; graph of, 25

radiation pattern. See field factor; field pattern, also
under name of antenna or array

radiation resistance, 15, 17, 311
Rao, B. R., 353
reactance. See impedance
receiving antenna, 50 ff; boundary conditions for, 51;

complex effective length of, 53; current
distribution on, 52; current in load of, 52, 53;
integral equation for current in, 51

receiving array, discussion of, 198, 205–8; effective
length of, 208

reciprocal theorem, applied to receiving array, 206–8
reflection coefficient, of load, 488; measurement of,

493–7; plane-wave, 290, for layered surface,
299; in terms of terminal functions, 490

regions 0, 2 for two-layered region, 290; diagram of,
291

regions 0, 1, 2 for three-layered region, 292, 343;
diagrams of, 293, 344

resistance. See impedance
resonance curve, measurement method, 493–5,

499–502
resonant array with two driven elements, 409 ff; array

factor for, 412
choice of parameters for, discussion of, 412–15
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conditions for traveling-wave distribution of current
in, 411

current in elements of, 410
driving-point admittances of, 411; frequency

dependence of, 413, graphs of, 414
over earth or sea, 416–20
far field of, for array over earth or sea, 419, 420;

graph of, 419
for array in free space, 415–17; graphs of, 416,

417
kernels, in integral equation for, types of, 420–4
phase-sequence resonances of, 413; table of, 415
resonant frequencies, predicted, 413–15; table of,

415
self- and mutual admittances of, 410
total power supplied to, 411
vertical directivity of, 414; table of, 415

Sandler, B. H., 579
Sandler, S. S., xviii, 156, 157, 159, 291, 293, 316–29,

332–42, 579
scalar potential, 4, 5, 8, 21
scalar potential difference (or voltage), between

conductors of transmission line, 477, 478; for
uniform sections of lines, 479, 480, 487

scanned array, 128 ff; beam pointing error of, 131,
135, graph of, 136; driving-point impedance
of, graph of, 134; field properties of, 135–7

scanning, with three-dimensional array, 284 ff
Schelkunoff, S. A., xvii
self-admittance. See admittance, self- and mutual,

also under name of array
self-impedance. See impedance, self- and mutual, also

under name of array
sensitivity constant, of circular loops, 518, 519; graph

of, 523; table of, 520
of short dipole, 509
of short monopole, graph of, 511
of square loops, 514–18; graph of, 521; table of,

520
sequence admittances, in small circular loop, 519
short antenna, admittance of, 41; current in, 41;

directivity of, 13; field of, 11–13, graph of, 12;
as probe, sensitivity of, 510, graph of, 511

skin depth, definition of, 426
Southworth, G. C., xvii
standing wave, along transmission line, lossless, 491;

uniform, 488
standing wave ratio, 491; measurement of, 494,

497–502; relation to curve width, 498
Starnecki, B., xvii
Sterba, E. J., xvii
Storer, J. E., 519
Stratton, J., xviii
surface distributions, of current and charge,

measurements of, 530
surface wave, array for generating, 409 ff

susceptance, correction for, three-term theory, 42;
two-term theory, 49, 50, 89; see also
admittance

symmetrical components, method of, 54–7, 79–80,
83, 103–7

Tai, C. T., xvii
Taylor, T. T., xvii
terminal functions, 490; obtained from measurements,

498–501
terminal zone, 476 ff; correcting susceptance for, 42,

49, 89, 481; extent of, 478, 479; see also
terminal-zone network

terminal-zone network, 481 ff; diagrams of, 480, 483;
examples of, 482–6; lumped elements in,
479–82

terminated insulated antenna, in earth or sea, 357 ff;
characteristic impedance of, 357; diagram of,
358; directive arrays of, 358, 359;
driving-point impedance of, 357; effective
length of, 358; electromagnetic far field of,
358, 359; wave number of current in, 357

testing functions, 25
three-dimensional array, analysis of, 241 ff; excitation

of, 288, 289; field pattern of, 253–5; integral
equations for, 241–7; scanning with, 284 ff;
see also three-dimensional array of 27
elements

three-dimensional array of 27 elements, diagram of,
273

with driving-point currents specified, 279 ff
with driving voltages specified, 272 ff
field patterns of, 281, 283–8; graphs of, 284, 285
with full-wave elements, 272 ff; currents in, 272,

286, 288, graphs of, 276, 277; relative power
in, 272, 288; tables of properties of, 274, 287

with half-wave elements, 272 ff; currents in, 277–9,
281, graphs of, 278, 279, 282, 283; relative
power in, 273, 279, 281, graph of, 283; tables
of properties of, 275, 280

three-element array. See curtain array of three
elements; Yagi–Uda array, three-element

three-term theory, for isolated cylindrical antenna,
36–41

in matrix notation, for N -element circular array,
107–10

modified, for array with parasitic elements of
unequal length, 160 ff; for driven array with
elements that differ greatly in length, 208 ff

for two-element array, 59–69
transmission line, admittance per unit length of, 477,

479; apparent load terminating, 480, 481;
characteristic impedance of, 477; coupling
coefficients for, 477, 478; current and voltage
distributions in, 487 ff; impedance per unit
length of, 477, 479; input power to, 492;
lossless, 490–2; lumped elements for terminal
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zone, 479–82; measurement procedures for,
475, 476, 492 ff; propagation constant of, 477,
479; reflection coefficient for, 488–91;
resonant, 500; standing wave ratio of, 491;
terminal functions for, 490; terminal zone of,
476 ff; uniform sections of, 475, 479, 487–92;
useful properties of a quarter-wave section of,
492

transmission-line end effects, for change in line
spacing, 485, 486; for dipole and two-wire
line, 482, 483; for monopole over ground
plane, 484, 485

transmission-line equations, generalized, 477;
solutions for voltage and current, 487–90; for
uniform sections of lines, 479, 490

transmission-line measurements, apparent terminal
admittances and impedances, 499; balancing
for, 502; directional-coupler method, 493, 496,
497; distribution-curve method, 493–5, 497–9;
multiple-probe method, 493–6, 534;
probe coupling in, 502; resonance-curve
method, 493–5, 499–502

transmission-line mode, 508, 513–15; in small loop,
515, 516

two-element array. See arrays with two staggered
elements; collinear array, two-element; curtain
array of two elements; parasitic array with two
equal elements

two-term theory, for circular array, 84–6, 111; for
curtain array, 114 ff; for cylindrical antenna,
48–50; for general array, 398 ff; for
two-element array, 70–8; for Yagi–Uda array,
153 ff

two-wire line, test for balance, 502

uniform array, array factor of, 124

vector, electric. See electric vector
magnetic. See magnetic vector

vector potential, for center-driven tubular dipole, 21,
22, 33; for electrically short antenna, 12; even
and odd symmetry in, 243, 244; for infinitely
thin antenna, 8; on kth element of curtain
array, 114, of planar array, 244; for perfect
conductor, 4, 5; for unloaded receiving
antenna, 51

vector potential difference, between conductors of
transmission line, 477, 478; on elements of
unequal length, 161, 162, 209, 210; on kth
element of circular array, 82, of curtain array,
115, of planar array, 245–7; for two parallel
antennas, 54, 55; for uniform sections of lines,
480

vector potential integral, variation with current, 33–5
vertical antennas, on the earth, with ground networks,

303–10; with top-loading panels, 311, 312;
VLF examples of, 312–14

over the earth, electric far field of, 314, 315, graphs
of, 316–29, 332–42; high-frequency example
of, 319

vertical dipole, over planar earth or sea, 290 ff;
conventional theory of, 290, 291

diagram of, 291
with dielectric layer, 292, 321, 323–5; diagram

of, 293; examples of, 323–5; far field of,
graphs of, 332–42

electromagnetic field of, 292 ff; conditions for,
292; in cylindrical coordinates, 293; when
dipole is on boundary, 294–6, 302, 303; in
spherical coordinates, for far field, 301, 302,
for intermediate field, 296, 297

far field of, 298 ff; conditions for, 300; formulas
for, 299–303

over spherical earth or sea, 327 ff; comparison with
planar-earth results, 336, 337; electromagnetic
field of, 327, 328; examples of, 333–41;
parameters for, 329–33, table of, 330, 331

See also vertical antennas
voltages, driving-point, for N -element circular array,

83, 86; relation to sequence voltages, 56, 57,
86; for two-element array, 56, 57; for
uni-directional couplet, 67, 76

sequence, in circular array, 87; relation to arbitrary
driving voltages, 64, 87; in two-element array,
56, 57

Walkinshaw, W., xvii
wave equation, for vector potential, for receiving

antenna, 51; for transmitting antenna, 33
wave number, in air half-space (region 0), 290; in

dielectric layer (region 1), 292; in earth or sea
half-space (region 2), 290; free-space, 4

waves, lateral, 291, 300, 303, 307, 315, 349; trapped,
294

Whinnery, J. R., xvii
Whiteside, H., 511, 525, 526
Wu, T. T., xviii, 392, 393

Yagi–Uda array, 162 ff; analysis of, 160–79
coefficients for, 164–7; with half-wave parasitic

elements, 170, 171
conductance of, 177
contour diagrams of properties of, 190, 192, 193
diagram of, 163
directivity of, 177–9
element currents in, 162, 163; with half-wave

parasitic elements, 172
evaluation of � functions for, 167–9
far field of, 173–6
field factor of, 174–6
front-to-back ratio of, 176; graphs of, 189, 190,

192, 197
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gain of, 178, 179; graphs of, 190, 192, 197
with half-wave parasitic elements in, 170 ff;

calculation of � functions for, 171, 172
input impedance of, graphs of, 190, 193, 198
integral equation, for driven element, 163; for

parasitic elements, 163
ten-element. See Yagi–Uda array, with 8 directors
three-element, 182, 187–90; currents in, 188; field

pattern of, 188; forward gain of, 190;
front-to-back ratio of, 189, 190; input
impedance of, 190; see also Yagi–Uda array,
with 1 director

three-term theory for, 162 ff
with 1 director, 191 ff; field pattern of, 194; forward

gain of, 197; front-to-back ratio of, 197; input
impedance of, 198; phasor diagrams of
currents in, 195

with 2 directors, 191 ff; field pattern of, 194;
forward gain of, 197; front-to-back ratio of,
197; input impedance of, 198; phasor
diagrams of currents in, 195

with 4 directors, 191 ff; field pattern of, 194;
forward gain of, 192, 197; front-to-back ratio
of, 192, 197; input impedance of, 193, 198;
phasor diagrams of currents in, 196

with 8 directors, 196 ff; coefficients for currents in,
199; computer printout for, 199–203; currents
in elements of, 200–2, graphs of, 204, 205;
dimensions of array, 199; field pattern of, 203,
graph of, 206; front-to-back ratio of, 197, 203;
forward gain of, 197, 203; input admittance
and impedance of, 198, 203

Yagi–Uda receiving array, 198, 205–8; current in load,
207; effective length of, 208
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