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Preface

Over three decades have passed since the publication, in 1968, of “Arrays of Cylindri-
cal Dipoles” by R. W. P. King, R. B. Mack, and S. S. Sandler. The present volume is
a revised and enlarged second edition of that work. The objectives of “Cylindrical
Antennas and Arrays” are similar to those of “Arrays of Cylindrical Dipoles™: to
present approximate but efficient theoretical methods for determining current distribu-
tions, input admittances, and field patterns of arrays of cylindrical dipoles; to use such
methods to analyze particular types of arrays; to describe experimental methods for
determining current distributions, input admittances, and field patterns; and to correlate
and compare theoretical and experimental results.

The most fundamental quantities, and the ones most difficult to determine theor-
etically, are the current distributions on the array elements. Rather than postulating
the current distributions, perhaps the most common treatment in the literature of the
1960s, “Arrays of Cylindrical Dipoles” sought to determine the current distributions
on the array elements by solving integral equations. Today’s antenna and engineer-
ing literature is quite different from that of the 1960s: even elementary textbooks
include discussions on determining current distributions from integral or similar
equations.

As an example, consider the simplest configuration discussed in this book, the
single, isolated cylindrical antenna of given length and radius. The integral equation
treated in Chapter 2 is but one of the several integral or integro-differential equations
that are encountered in the present-day literature. Although such equations were
derived many years ago, the reasons for their increased popularity are the easy
accessibility to high-speed computers and the availability of a large number of
numerical methods. As a result of these developments, application of general-purpose
numerical methods to the aforementioned equations is today much more common than
in the 1960s.

Rather than discretizing the integral equations, the “two-term” and “three-term”
theories developed in this book treat them by analytical means. These theories, which
apply to elements that are not too long, are here presented as powerful alternatives to
applying general-purpose numerical methods. Because the final two- and three-term
formulas are quite simple in form, they require less running time when programmed
in a computer. In addition, the analytical methods present a physical basis for
understanding changes in the characteristics of the antenna as the parameters are
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changed. Furthermore, applying numerical methods to the integral equations in this
book presents difficulties that are often overlooked in the literature.

Chapter 1, which has been completely rewritten, has the same purpose as the first
chapter of the 1968 edition: to introduce the reader to the theory of antennas and
arrays presented in subsequent chapters by discussing some commonly used methods
of studying a single antenna in free space. The chapter concludes with an introductory
discussion of integral equations and the application of numerical methods, a subject
discussed in greater depth in Chapter 13.

Chapters 2-5 develop the two- and three-term theories for the single isolated
antenna, the two-element array, the circular array, and the curtain array, respectively.
In Chapters 3-5, the array elements are assumed to be identical, parallel, and
non-staggered. In Chapters 6 and 7, the two- and three-term theories are extended and
applied to certain types of arrays that do not satisfy the aforementioned conditions.
Apart from editing changes, Chapters 2—7 are the same as those in the first edition.

Chapters 8—13 have no counterparts in “Arrays of Cylindrical Dipoles”. Chapters 8
and 9 analyze vertical and horizontal dipoles and arrays over and on the surface of the
conducting and dielectric earth or sea. Included are asphalt-coated earth and ice-coated
water. A major new addition is long-distance propagation over the spherical surface of
the sea.

In Chapter 10, arrays of identical, parallel, non-staggered elements are discussed
once more, from the point of view of computer implementation of the two-term
formulas. Some restrictions placed on the arrays of Chapters 3—5 are removed in this
chapter, which also serves as an introduction to the study of the large circular array in
Chapters 11 and 12.

In Chapters 11 and 12, a novel type of circular array is studied. The arrays under
consideration differ from conventional circular arrays in that only one or two of the
many array elements are excited and the entire array is tuned to spatial resonance.
Both the integral equations and the two-term theory must be modified and extended to
deal with the phenomena studied in this chapter. The modified theory is used to show
that such arrays possess new, unusual and potentially useful resonant and directive
properties. The analytical nature of the underlying theory is an important advantage
for this study.

Although the two- and three-term theories are analytical in nature, they are not
claimed to be mathematically rigorous. (Nonetheless, very good agreement between
theory and experiment is obtained in Chapters 1-12.) Until shown otherwise [1], the
lack of rigor is a necessity rather than a convenience: most of the integral equations
dealt with in this book have no exact solutions, even in principle. From a theoretical
point of view, then, one cannot do better than to find “reasonable solutions” that satisfy
the integral equations approximately, and the aforementioned lack of rigor must be true
for any method used to “solve” the integral equations. The main purpose of Chapter 13
is to discuss the consequences of this rather peculiar situation when general-purpose
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numerical methods are applied to the integral equations in question. The case of an
isolated antenna is discussed in detail, and extensions to arrays are pointed out. The
special numerical difficulties associated with the circular arrays of the previous two
chapters are also discussed here.

The concluding Chapter 14 discusses experimental methods, with emphasis on the
measurement of antenna impedance. This chapter corresponds to Chapter 8 of the first
edition; it has been significantly revised to discuss modern measurement techniques.

R. B. Mack wrote Chapter 14, G. Fikioris wrote Chapters 1 and 10-13; R. W. P.
King wrote Chapters 8 and 9, and organized the present edition as a whole. In
addition to the contributions of the several individuals named in the Preface to the first
edition, the authors gratefully acknowledge the contribution of Chapter 5 by Sheldon
S. Sandler. Without the extensive and very thorough work of Margaret Owens, both in
preparing and correcting the new manuscripts and in editing Chapters 2—7, the present
arrangement would not be possible. Finally, we thank Tai Tsun Wu for providing the
initial and most fundamental ideas for the work in Chapters 11-13, and for guiding
and inspiring the ensuing researches.

R.W.PK.
G.JFE
R.B.M.
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Preface to first edition

Studies of coupled antennas in arrays may be separated into two groups: those which
postulate a single convenient distribution of current along all structurally identical
elements regardless of their relative locations in the array and those which seek to
determine the actual currents in the several elements. Virtually all of the early and
most of the more recent analyses are in the first group in which both field patterns and
impedances have been obtained for elements with assumed currents. Pioneer work in
the determination of field patterns of arrays of elements with sinusoidally distributed
currents was carried out for uniform arrays by Bontsch-Bruewitsch [1] in 1926, by
Southworth [2] in 1930, by Sterba [3] and by Carter et al. [4] in 1931. Early studies
of non-uniform arrays are by Schelkunoff [5] in 1943, by Dolph [6] in 1946, and
by Taylor and Whinnery [7] in 1951. The self- and mutual impedances of arrays of
elements with sinusoidally distributed currents were studied especially by Carter [8]
in 1932, by Brown [9] in 1937, by Walkinshaw [10] in 1946, by Cox [11] in 1947, by
Barzilai [12] in 1948, and by Starnecki and Fitch [13] in 1948. A thorough presentation
of the basic theory of antennas with sinusoidal currents was given by Briickmann
[14] in 1939. Actually, the current in any cylindrical antenna of length 24 and finite
radius a is accurately sinusoidal only when it is driven by a continuous distribution
of electromotive forces of proper amplitude and phase along its entire length. It is
approximately sinusoidal in an isolated very thin antenna (a¢ <« h) driven by a single
lumped generator primarily when the antenna is near resonance. When antennas are
coupled in an array with each driven by a single generator or excited parasitically,
it is generally assumed that (1) the phase of the current along each element is the
same as at the driving point and (2) the amplitude is distributed sinusoidally. Both of
these assumptions are reasonably well satisfied only for very thin antennas (a < A)
that are not too long (h < A/4). Nevertheless, a very extensive theory of arrays has
been developed based implicitly on one or both of these assumptions. Evidently it is
correspondingly restricted in its generality.

The analysis of coupled antennas from the point of view of determining the actual
distributions of current was studied for two antennas by Tai [15] in 1948 and extended
to the N-element circular array by King [16] in 1950. A general analysis of arrays of
coupled antennas has been given by King [17]. Unfortunately, the rigorous solution
of the simultaneous integral equations for the distributions of current in the elements
of an array of parallel elements is very complicated and no simple and practically
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useful set of formulas was obtained. As a consequence, the extensive study of the
electromagnetic fields of antennas and arrays in this earlier work (Chapters 5 and 6
in King [17]) was limited to arrays with currents in the elements that satisfied the
assumptions of constant phase angle and sinusoidal amplitude. Similar restrictions are
implicit in the fields calculated, for example, by Aharoni [18], Stratton [19], Hansen
[20] and many others.

A practical method for obtaining solutions of the simultaneous integral equations for
the distributions of current in the elements of a parallel array in a form that combines
simplicity with quantitative accuracy was proposed by King [21] in 1959. In this
analysis an approximate procedure was developed which provided simple, two-term
trigonometric formulas for the currents in all of the arbitrarily driven or parasitic
elements in a circular array of N elements in a manner that took full account of the
effects of mutual interactions on the distributions of current. These formulas applied
to elements up to one and one-quarter wavelengths long. The application of this new
procedure to actual arrays and the experimental verification of the results were carried
out in an extensive series of investigations by Mack [22]. The generalization of the
method to curtain arrays was developed by King and Sandler [23, 24] in 1963 and
1964. The extension of the method to parasitic elements in arrays of the Yagi type was
verified experimentally by Mailloux [25] in 1966. A modification of the theory and
its application to the optimization of Yagi arrays by the use of a high-speed computer
were devised by Morris [26] in 1965. In 1967 Cheong [27] extended the theory to
unequal and unequally spaced elements. (The several researches were supported in
part by Joint Services Contract Nonr 1866(32), Air Force Contract AF19(604)-4118
and National Science Foundation Grants NSF-GP-851 and GK-273.)

A further improvement in the simplified trigonometric representation of the current
in an isolated antenna was introduced by King and Wu [28] in 1965 and extended to
arrays in the present work.

This book begins with an introductory chapter that reviews the foundations and
limitations of conventional antenna theory. It then proceeds to derive the new two-
and three-term formulas for the isolated antenna in Chapter 2 and for two coupled
antennas in Chapter 3. Chapter 4 provides the complete formulation of the new
theory for the N-element circular array; Chapter 5 for the N-element curtain array
of identical elements. The more difficult problem of treating elements of different
lengths—notably in the Yagi array and the log-periodic antenna—is treated in Chapter
6. Chapter 7 is devoted to planar and three-dimensional arrays that include stag-
gered and collinear elements. Chapter 8! is concerned with the broad problems of
measurement—currents, impedances, field patterns and the correlation of theory with
experiment. In the appendices summaries of programs are given for the computational
analysis of circular, curtain, and Yagi arrays.?

' The ori ginal Chapter 8 corresponds to Chapter 14 of the present (2nd) edition.
2 Much of this material is omitted from the appendices in the 2nd edition.
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In the preparation of the manuscript, S. S. Sandler was responsible for Chapters 1
and 5, R. B. Mack for Chapters 4 and 8, and R. W. P. King for Chapters 2, 3, 6, and 7
and for the co-ordination of the several parts.

The authors are happy to acknowledge the important contributions of Drs Robert
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1.1

Introduction

Linear antennas

Wireless communication depends upon the interaction of oscillating electric currents
in specially designed, often widely separated configurations of conductors known as
antennas. Those considered in this book consist of thin metal wires, rods or tubes
arranged in arrays. Electric charges in the conductors of a transmitting array are
maintained in systematic accelerated motion by suitable generators that are connected
to one or more of the elements by transmission lines. These oscillating charges exert
forces on other charges located in the distant conductors of a receiving array of
elements of which at least one is connected by a transmission line to a receiver.
Fundamental quantities which describe such interactions are the electromagnetic field,
the driving-point admittance, and the driving-point impedance. These can be easily
determined if the distributions of current on the array elements are known. The
determination of the currents on the array elements is the main concern of this book.
In this first chapter, the basic electromagnetic equations are formulated and applied
to a single antenna in free space. The simplest approach of assuming the current
rather than actually determining it is reviewed first. Then, integral equations for the
current distributions are derived, and determining the current by numerical methods
is discussed. These discussions serve as an introduction to the analytical theory of
antennas and arrays based on the solution of integral equations that is presented in
subsequent chapters.

Figures 1.1a and 1.1b show two simple practical radiating systems. In Fig. 1.1a, a
section at the open end of a two-wire transmission line has been bent outward to form
a dipole antenna. In Fig. 1.1b, the inner conductor of a coaxial transmission line is
extended above a ground plane. In both cases, the transmission lines are connected to
generators which oscillate at a frequency f = w/2x. In a small region (comparable
in extent with the distance between the two conductors of the transmission line), the
antenna and line are coupled. Owing to the complications involved in this coupling,
it is convenient to replace the actual generator/transmission line with an idealized so-
called delta-function generator, which maintains an impressed electric field E¢(z) =
iEg (z) = V&8(z)z at the surface of the antenna. This is the linear antenna of Fig. 1.1c.
The impressed field is non-zero only at the center z = O of the cylindrical surface.
The delta-function generator is an independent voltage source in the sense of ordinary
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(a) ~ B - ©  ~zen
2a —»| |«—
T . Ground
0 generator plane
r/ / N <= 0
Delta-function
generator
U Uz=-h

To generator l

Figure 1.1 (a) Dipole antenna and two-wire transmission line. (b) Monopole antenna over a ground
plane. (c) Simplified center-driven linear antenna.

circuit theory. The linear antenna of Fig. 1.1c can also serve as a model for other
types of radiating systems. The simplifying assumption of studying the antenna in the
absence of the connecting transmission line is particularly useful when the antenna is
an array element.

The radius of the linear dipole antenna of Fig. 1.1c is a, and its half-length is A. It is
assumed throughout this book that the radius is much smaller than both the wavelength
A and the length 2/ of the antenna. Under such conditions, one can neglect the small
currents on the capped ends of the antenna and assume that only a current K,(z) =
1(z)/2ma is maintained on the cylindrical surface of the antenna. Other concepts of
circuit theory can be introduced, and are particularly useful to the antenna engineer:
the driving-point admittance Y and driving-point impedance Z are defined as

1%
Y():Go—l—jBo:T:Z—, Zo=Ry+ jXo=—==—. (1.1)

Go, Bo, Ro, and X are respectively, the driving-point conductance, susceptance,
resistance, and reactance. When 4, a, and f are such that the antenna is at resonance,
one has Xy = 0 and By = 0. As an example of the use of these quantities in a practical
situation, consider the problem of designing the antenna so that, at a given frequency
f, there is maximum power transfer from a transmission line of given characteristic
impedance Z.. With the assumption that the transmission line and the antenna can be
studied separately, the problem is reduced to that of determining /# and a so that Zj is
equal to Z}, the complex conjugate of Z..

The delta function §(z) is zero except when z = 0. Additional, well-known
properties of the delta function are

{Q ifz#0 b
6(z) = / §(z)dz =1 (1.2a)
b

00, ifz=0" _



1.2

1.2 Maxwell’s equations and potential functions

1
8(kz) = T 5(2), F(@)8(2) = f(0)8(z) (1.2b)
b
/b f(2)8(z)dz = f(0) (1.2¢)
dH _s " Hir) — 1, ifz>0 12d
gz 1@ =0@ where H@=1," 0y (1.2d)

In (1.2), b is any positive constant, k is any real constant, f(z) is any smooth function
of z, and H (z) is the step function.

The next section introduces the fundamental equations of electromagnetic theory
that are useful in the antenna problems considered in this book. More details can be
found in [1], and in more concise form in [2, Chapter 1].

Maxwell’s equations and the potential functions

The interaction of charges and currents is governed by Maxwell’s equations which
define the electromagnetic field. With an assumed time dependence e/*’, they are

V x B = uoJ + joeE), V-B=0 (1.32)
V xE = —jwB, V.E = p/e, (1.3b)

where the electric vector E is in volts per meter (V/m), the magnetic vector B in tesla
(T). ST units are used throughout this book. The volume density of current J in amperes
per square meter (A/m?) is the charge crossing unit area per second. The volume
density of charge p is in coulombs per cubic meter (C/m?). J and p satisfy the equation
of continuity,

V.-J+ jwp =0. (1.3¢)

In the interior of perfect conductors, J = 0 and p = 0. In (1.3), €p and pg are the
absolute permittivity and permeability of free space. They have the numerical values
€0 = 8.854 x 10~!2 farads per meter (F/m) and po = 4w X 1077 henrys per meter
(H/m), and are related to the velocity c¢ of light and the characteristic impedance &g of
free space by

: o= |2 (1.4)
NI € '

Transmission lines and antennas are made from highly conducting materials such

CcC =

as brass or copper. In most cases, it is an excellent approximation to assume that the
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conductors are perfect. The relevant boundary conditions at an interface between a
perfect conductor and air are

=>

nxE=0, -E =n/¢ (1.5a)
n x B = oK, n-B=0. (1.5b)

In (1.5), 1 is the unit normal to the conductor—air interface. Its direction is outward
from the conductor to the air. K is the surface density of current in amperes per meter
(A/m) and 7 is the surface density of charge in coulombs per square meter (C/m?)
on the perfect conductor. The left-hand equation in (1.5a) states that the component
of the electric field in air tangent to the surface of the perfect conductor must be
zero. The left-hand equation in (1.5b) states that the tangential magnetic field in air
is proportional to the surface density of current on the conductor.

It is convenient to introduce the scalar and vector potentials ¢, A. The defining
relationships between the potentials and the electromagnetic-field vectors are obtained
with the aid of Maxwell’s equations. With the vector identity V - (V x C) = 0 (where
C is any vector) and the equation V - B = 0, the magnetic field may be expressed in
the form

B=V xA. (1.6)
If (1.6) is substituted in (1.3b), it follows that
V x (E+ jowA) =0. (1.7)

The identity V x (Vi) = 0, where ¢ is a scalar function, then permits the definition
of ¢ in the form

—~V¢ =E + joA. (1.8)

The substitution of (1.6) and (1.8) into the remaining Maxwell equations leads
to coupled partial differential equations for A and ¢. They can be decoupled if the
following condition relating A and ¢ is imposed:

2
V-A=—joupcp or V-Az—jﬁ—0 , (1.9)
10

where the free-space wave number Sy (also denoted by k in this book) is given by

w 27

Bo = w/1o€0 = iy

and A is the free-space wavelength. Equation (1.9) is known as the Lorentz condition.
The resulting equations for A and ¢ are

(1.10)

(VP4 BDA=—wod, (V24 B5)¢ = —p/eo. (1.11)
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Figure 1.2 Perfect conductor in air.

The solutions to (1.11) can be derived with the use of the retarded Green’s function.
They are
r'|

—jBolr—
A@r) = @/J(r/) ¢ av (1.12a)
4 r — 1’|

and
r—r'|
/

1 e—Jhol
¢(r) = 4—/p(r’)—d
T €Q r —

v/, (1.12b)
r|

where the volume integrations extend over the entire region occupied by currents or
charges. In most cases considered in this book, the conductors are perfect so that only
surface current densities K and surface charge densities 1 are present. In such cases,
the volume integrals in (1.12) reduce to surface integrals. In the limit of infinitely thin
wire antennas, the surface integrals in turn reduce to line integrals.

1.3

Power and the Poynting vector

The complex Poynting vector is defined as

1
S=—E x B*, (1.13)
2po

where the asterisk denotes the complex conjugate. The integral of the normal com-
ponent of Re{S} over a closed surface X is the time-average, total power transferred
from within 2. The time average is over a period T = 2w /w. Several useful identities
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involving the Poynting vector are now derived. The geometry of interest is shown in
Fig. 1.2. A perfect conductor surrounded by air is shown. The conductor—air interface
is the closed surface X, and Ny is the unit outward normal. Assume that there is
an impressed electric field E¢ tangent to the surface of the conductor. As a result, a
surface current density K exists on the conductor’s surface. This, in turn, maintains
an electromagnetic field E and B in the air. The total electric field on the conductor’s
surface is E 4+ E¢, and the boundary conditions on the surface of the perfect conductor
are

ng x (E+E®) =0, ng x B = oK. (1.14)

Suppose that X is a closed (mathematical) surface in the air surrounding the perfect
conductor, and that nj is the corresponding unit normal vector. Let g1 be the volume
lying between ¢ and X1, and consider the quantity

/ V.-SdV. (1.15)
701

First, with (1.13), the vector identity
V.- ExBH=B*-(VxE)—E-(VxB (1.16)

and the Maxwell equations on the left in (1.3a, b), it is seen that
/ V-Sa’V:—jw/ (G 1g'B? =L e|EP) av. (1.17)
701 o1

The boundaries of the volume 7(; are the surfaces ¥ and X;. Application of the
divergence theorem to the quantity in (1.15) yields

/ V-SdV=— | (mg-S)dx+ | (n;-S)dX. (1.18)

701 ) >

A comparison of (1.17) and (1.18) yields the identity

/ (fi; - S)dT =/ (fp-S)dE — jo [ (G pug'BP - LelEPav. (1.19a)
PN N 701

If one takes the real part of this equation, no volume integral appears:

P= (g - Re{SH dX = (n; - Re{S}H dX. (1.19b)

o 2

Equation (1.19b) states that P, the total time-average power entering X, is the same
as the total time-average power leaving ;.

The next identity of interest is obtained by expressing on Ry - S)dX in (1.19a) in
terms of E¢ and K. With (1.13), the vector identity np - (E x B*) = —E - (ng x B*),
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and the boundary conditions (1.14), it is seen that . 0 (fp-S)dx = |. 0 % E¢-K*dX
so that (1.19a) can be written as

/ IE* . K*dT :jw/ Sy "B —LeE?dV+ | (1 -S)dE.  (1.20a)
2o 701 Z

The real part of this expression is

P= / Re{% E°-K'}dX = () - Re{S}H) dX. (1.20b)
o X

In (1.20), Z; is any surface completely surrounding the air—conductor interface X.
Equations (1.20a, b) can be extended to surfaces ¥ that pass through the surface of
the perfect conductor, provided that E© = 0 on any part of X¢ excluded by X;. This
follows from the boundary condition ng x E = 0 on the part of ¢ excluded by ¥ and
the fact that all fields are zero within the volume occupied by the perfect conductor.

Equation (1.20b) states that the time-average power transferred to the perfect
conductor from the “generator” (i.e. the impressed electric field E€) is all radiated
into free space. Equations (1.20a, b) possess analogues for the case of imperfect
conductors; these involve a volume integral instead of a surface integral, and include a
term due to the ohmic losses in the conductors. It is important to note that in both
(1.19) and (1.20), only integrations of fi - S over closed surfaces appear; it is not
mathematically justified to attach meaning to an integral of n - S over only a part
of a closed surface.

Consider the limiting case of an infinitely thin, perfectly conducting wire lying on
the z-axis between —h and h. The impressed electric field is E¢(z), and the current on
the wire is 7 (z). In this limit, (1.20b) reduces to

h
PE/ Ref{! Eg(z)l*(z)}dzzf () - Re{S)) dX. (1.20¢)
h po}

The field of thin linear antennas: general equations

Now consider the linear antenna of Fig. 1.1c and assume that a < % and Bpa < 1.
Both cylindrical coordinates p, ®, z and spherical coordinates r, ®, ® are to be used
throughout this book. Rotational symmetry obtains, so that all cylindrical or spherical
field components are independent of ®. There is a surface current density K, (z) on the
cylindrical surface p = a, and also a current on the small capped ends of the antenna.
The latter currents can be neglected when calculating the field of the antenna. The total
current / (z) and the charge per unit length g (z) are defined to be

1(z) =2makK;(z), q(z) =2man(z). (1.21)
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X

Figure 1.3 Coordinate system for calculations in the far zone.

They are related by the one-dimensional equation of continuity

d;(Z) = —jwq (). (1.22)
Z

I (z) is even with respect to z and ¢(z) is odd.

When calculating the field of the antenna, one can assume that the current is located
at the axis z = 0, which is the same as replacing the antenna of radius a by an
infinitely thin antenna. With this assumption, but without reference to a particular
current distribution /(z), formulas for calculating the field are given in this section
and some general characteristics of the field are discussed. The coordinate system is
shown in Fig. 1.3.

It is seen from (1.12a) that A = ZA,(p, z). Equations (1.12a, b) reduce to

h —JjBoR
;€
AZ:Z—; O dz' (1.23a)
and
1 h , e_]ﬂOR ,
¢:4M0th(z) o (1.23b)

where R = |r — Z7/| is the distance from a point z’ on the infinitely thin antenna to the
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observation point r. The one-dimensional Lorentz condition is
A B
az w
The E and B fields are obtained from (1.6) and (1.8) with (1.23a) and (1.23c¢). In the
cylindrical coordinates p, @, z, they are B = ®Bg and E = pE,, + ZE, where

(1.23¢)

—0A
By = < (1.24a)
ap
—jw 3*A,
o= (1.24b)
B 9pdz
—jo (3*A,
E, = #( + B2A ) (1.24¢)
0
In the spherical coordinates r, ®, ® with origin at the center of the antenna, the electric
field is given by
E, =E;cos® + E,sin® (1.25a)
Eg =—E;sin® + E,cos 0. (1.25b)

At sufficiently great distances from the antenna (r2 > h? and (,30;’)2 > 1), the field
reduces to a simple form known as the radiation or far field. It is given by

Bl = EL /e, (1.26a)
where

R ; e—JPoR
B = ELO, E = ’Z’:O sin@/ 1(z) dz. (1.26b)

The distance R from an arbitrary point on the antenna to the field point is given in
terms of r and 7’ by the cosine law, namely (Fig. 1.3),

R=+vr2+72—2r7cos®. (1.27a)

In the radiation zone, 7> >> z'2. If the binomial expansion is applied to (1.27a) and only
the linear term in 7’ is retained, the following approximate form is obtained for R:

R=r—7cos®, (Bor)*>> 1. (1.27b)

The phase variation of exp(— jBoR)/ R is replaced with the linear phase variation given
by (1.27b), i.e. by exp(—jBor + jBoz’ cos ®). The amplitude 1/R of exp(—jBoR)/R
is a slowly varying function of 7" and is replaced by 1/r, where r is the distance to the
center of the antenna. With these approximations, (1.26b) can be written as

j%oI(0) e/
T 27

Eg = Fo(O, Boh), (1.28a)
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where ¢y = +/o/€0 = 120 ohms and

Fo(®, Boh) = ——— | 1(z)e/Po7c® g7/, 1.28b

0(®, Boh) 200) ), (z)e z ( )
The term Fyp(®, Boh) contains all the directional properties of a linear radiator of
length 2h. It is called the field characteristic, field factor, or element factor, and will be
computed for some commonly used current distributions. The magnetic field B” in the
far zone is at right angles to E" and also perpendicular to the direction of propagation
r. It is given by (1.26a). Thus

_ jnol (0) e~Por

Note that the field in the far zone depends on Fy(®, Boh) which is a function of the
particular distribution of current in the antenna.

It is instructive to consider the instantaneous value of the field in (1.28a), which is
jot

obtained by multiplication with ¢/“’ and selection of the real part. Except for a phase

factor,

sin(wt — Bor) _ sinw(t —r/c)

EL(r, 1) = Re Eg(r)e/® ~ (1.292)

r r

Note that the field at the point r at the instant ¢ is computed from the current at » = 0 at
the earlier time (¢ — r/c). This is a consequence of the finite velocity of propagation c.

The equiphase and equipotential surfaces of E and B are spherical shells on which
r is equal to a constant. There are an infinite number of such shells that have the
same phase (differ by an integral multiple of 27) but only one that has both the
same amplitude and the same phase. The velocity of propagation is the outward
radial velocity of the surfaces of constant phase where the phase is represented by
the argument of the sine term in (1.29a), that is

phase = ¥ = wt — Bor. (1.29b)

For a constant phase

dWv Bodr

@Y g , (1.29¢)
dt dt

It follows that

d

o =3 %108 ms. (1.29d)
dr  Bo

Since the phase repeats itself every 2 radians, a wavelength is the distance between
two adjacent equiphase surfaces. For example, if one surface is defined by » = r; and
the other by r = r,, then

wt — Bory =2 and ot — Borp = 47w (1.30a)
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z=h R

1(z) =1(0) (1 - %)

1(0)

z=-h"

Figure 1.4 Linear antenna with triangular distribution of current.

or

2
rp—r=—=A, (1.30b)
Bo
where A is the wavelength in air. The physical picture of the fields in the far zone is
quite simple. The electric and magnetic vectors are mutually orthogonal and tangent to
an outward traveling spherical shell. Thus, both components of the field are transverse
to the radius vector r; they have the same phase velocity ¢ = 3 x 108 m/s, the velocity
of light.

1.5

The field of the electrically short antenna; directivity

If the current on a thin linear antenna is known, the far-field pattern can be easily
determined from the equations in the previous section. When the antenna is electrically
short, i.e. fpa K Poh <K 1, the plausible assumption that the current distribution is
triangular can be made. This assumed current distribution is adequate for calculating
the field, even quite close to the antenna.

A diagram of the triangular distribution is shown in Fig. 1.4, where the magnitude
of the current is plotted along an axis perpendicular to the antenna. In order to find a
simple expression for the radiation field, the exponent in (1.28b) can be approximated
by 1. Thus,

. Bosin® [ 4 hsin ©

Fo@, poy = P80 [ (1 BNy g S BRRE gz <1
2 —h h 2

Equation (1.31) shows that the radiation field of a short linear antenna is proportional

to sin ®. Polar and rectangular graphs of the field are shown in Figs. 1.5a and 1.5b,

normalized with respect to the maximum at ® = 90°.
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Figure 1.5 Field and power patterns of short linear antenna. (a) Field pattern, polar plot. (b) Field
pattern, rectangular plot. (c) Power pattern, polar plot. (d) Power pattern, rectangular plot.

The field quite near an electrically short antenna is readily evaluated from (1.23a)

with 1(z) = 1(0)(1 — |z|/h) and R = r. This gives
hI(0) e—JPor

4, = PohO) e (1.32)

4 r

The components of the field can be evaluated in the spherical coordinates r, ®, ® from
(1.6) and (1.3a). The results are

hi(0 j 1 .
By = MO (P | 1N i v (1332)
47 r r2
h1(0) /2 i2 ;
g, = QRO (2 J2 )\ g s (1.33b)
4 r2  Bord
i cohl (0 j 1 ;
Eo = JohI©) (B J T e P sin®. (1.33¢)
47 roor2 Bord

These may be expressed in terms of the dipole moment p, = I(0)h/jw if desired.
The electromagnetic power transferred across a closed surface in the far zone is given
by the integral of Re{S,} ~ sin’> ®. An angular graph of Re{S,} is called a power
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pattern. Polar and rectangular graphs of the power pattern are shown in Figs. 1.5¢
and 1.5d. Note that because of symmetry, both the field pattern and power pattern are
independent of the coordinate ®.

The half-power beam width ®y,, is defined as the angular distance between half-
power points on the radiation pattern referred to the principal lobe. The value of ®pp
for the short linear antenna is 90°. Another parameter useful in defining the directive
properties of an antenna is the absolute directivity D. This parameter is a measure of
the total time-average power transferred across a closed surface in the direction of the
principal lobe. The time-average power transferred across a closed surface ¥ is the
integral of the normal component of S. Thus, in the far zone,

P=/ S d¥. (1.34)
>

The directivity D is the ratio of P with S, set at its maximum value S/"** to the actual
value of P. For a short dipole with |S,| ~ sin’ ©, the value of D is

47 3
D= -2
2r pm 2
/ / sin> @ sin ® d©®
0 0

A nearly omnidirectional pattern requires a large value of ®pp and a nearly unity value
of D. A more directional pattern requires a smaller value of ®yp, and a larger value

(1.35)

of D.
1.6  The field of antennas with sinusoidally distributed currents; radiation
resistance

It is customary to assume that the current distribution on a linear antenna is sinusoidal,

ie.

_ 1) sin Bo(h — |z])
sin Boh

For this current, the field characteristic Fo(®, Boh) is given by (1.28b) with (1.36),

Fo(©. foh) cos(Boh cos ®) — cos Boh (1.37a)
) = ; ; . 37a
0 0 sin Bph sin ®

1(2)

= Iy sin o(h — |2]). (1.36)

An alternative field characteristic F,(®, Boh) is referred to the maximum value of the
sinusoid, namely, I, = I(0)/sin Boh which occurs at & — A/4 when Boh > 7 /2.

cos(Boh cos ®) — cos Boh
sin © )
The function F,,,(®, Boh) is shown graphically in Fig. 1.6 for several values of 4. It is

Fn(©, Boh) =

(1.37b)

seen that the pattern corresponding to foh = m /2 (h = 1 /4) is only slightly narrower
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Figure 1.6 Field factor of linear antenna.

than the pattern for (Boh)?> < 1 which is shown in Fig. 1.5b. Note that as Boh is
increased beyond m, minor lobes appear which successively become the major lobe
and point in directions other than ® = 7 /2.

The theoretical model of an infinitely thin antenna with a sinusoidal distribution
of current is a convenient one: the complete electromagnetic field can be evaluated
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exactly in terms of elementary functions, even for observation points arbitrarily close
to the antenna. This is accomplished with the substitution of the current (1.36) in the
general integral (1.23a) for the vector potential, and subsequent use of the resulting
expression in (1.24). The indicated differentiations can be carried out directly without
evaluating the integral. The result is

i1 ; . .

Ba(p,z) = ]4’”_“0 [e—JﬂoRm + e PR _ 9 cog Boh e—jﬂor] (1.382)
TP

i1 -h _. h _.; 2 .
Ep(p, ) = 1m0 [—Z ook TN gk _ 22 o0 g e—fﬁor] (1.38b)

47'[,0 R]h RZh r

N —JBoRin —JjBoRan —JBor
E.(p,2) = ]4m§° [e +¢ —2cos foh & } (1.38¢)
By(p,z) = B:(p,2) = E4(p,2) =0, (1.38d)
where

r=yp*+22, Ry = p*+ (" —2)2 Ry =/p>+ (h+2)? (1.38e)

are the distances from the observation point to the center and the two ends of the
antenna, respectively.

When Boh = m/2, the interpretation of (1.38) in terms of spheroidal waves is
available in [1, pp. 297-310] or [3, Chapter V]. It is easily checked that, when r
is large, (1.38a—d) reduce to the radiation field given by (1.28a, c) with (1.37a).
Furthermore, (1.38) are seen to reduce to the field (1.33) of the electrically short
antenna when Bph < 1.

The total, time-average power P is equal to the integral of the normal component of
Re{S} = (1/2u10) Re{E x B*} over a closed surface surrounding the antenna, where
E and B are given by (1.38). Although any closed surface completely surrounding the
antenna will correctly give P, it is convenient to select a large sphere for the integration
surface and use the expressions (1.28) and (1.37) for the radiation field in spherical
coordinates. The complete formula for P determined in this manner can be found, for
example, in [2, p. 140]. It is easy to see that the expression for P has the form

P=41,?R, or P=1I0)*R} (1.39)

where the quantities Ry, and Rj = Ry, / sin Boh depend only on foh. The units of
Ry, and R§ are ohms. By definition, Ry, (R() is the radiation resistance referred to I,
(1(0)). Ry, is equal to 73.1 ohms when Bph = 7 /2, and 199 ohms when Soh = 7.

In general, R is not the driving-point resistance of a center-driven antenna. To see
why this is true, let us examine in more detail the model of an infinitely thin antenna
with a sinusoidal distribution of current. In particular, in what way can one maintain,
at least in principle, the sinusoidal current distribution (1.36) on the infinitely thin,
perfectly conducting wire?
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From (1.38¢), it is seen that the exact tangential electric field E, (0, z) on the wire’s
axis is non-zero along the entire length of the wire. This is the axial field maintained
by the sinusoidal current distribution, and not the total axial field. Since the total axial
field is zero, there must be an externally maintained field E{ = —E;(0, z) on the
perfectly conducting wire. It is given by

E{(z) = y — 2cos Boh

jInCo | e iPoh=2) N e—JPoh+2) e—JPolzl
h—z h+z ||

:|; —h<z<h
(1.40)

and is non-zero along the whole length of the wire. It follows that it is not possible to
excite a sinusoidal current simply by a single delta-function generator with E¢(z) =
V8(z). Instead, a continuous distribution of electromotive forces is necessary.

Equations (1.40), (1.36), and the power identity (1.20c) provide another equivalent
way to determine the time-average power P radiated by the infinitely thin antenna, by
integrating Re{% E{(z)I*(z)} along the length of the antenna. Note that the integrand
is finite. As before, R{ is the coefficient of % |1(0)|? in the resulting expression.

The foregoing discussion clearly shows that R and the driving-point resistance Ro
of a center-driven antenna are two different quantities. In some cases, however, it is
true that Ry = R{. This will be seen in the next section.

1.7

Impedance of antenna: EMF method

In this section, the “induced EMF method” [4] is discussed. This is an approximate
method used for calculating the impedance of a center-driven antenna with non-zero
radius.

Let 1(z) = 2maK(z) be the current on an antenna center-driven by a delta-function
generator, and let £, (a, z) be the tangential electric field at the surface p = a. Consider
the quantities

—m /_}; E (a,2)I*(2)dz (1.41a)
or

1 h
_12_(())/h E (a,2)I(2)dz. (1.41b)

These are both equal to Zy, the driving-point impedance of the antenna. This is seen
to be true by the substitution of the boundary condition E,(a, z) = —V§(z) in (1.41)
and the subsequent use of the property (1.2c) of the delta function and the definition
Zy=V/I(0).
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The “induced EMF method” consists of determining the driving-point impedance
of the antenna from the formula

Zo =

h
/ E;(a,2)I*(z)dz (1.41¢c)

IO

where one uses the sinusoidal current distribution 7(z) = [1(0)/ sin Bgh] sin o(h —
|z]) on the right-hand side, and the associated value of E(a, z) from (1.38c). Itis easily
seen from (1.38c) that the integral in (1.41c) is proportional to |/ (0)|2. Therefore,
the final quantity obtained does not involve 7 (0); it is an integral expression which
depends only on fpa and Boh. Since I(z) is in phase with I (0) for all z, the same
result is obtained if (1.41b) is used instead of (1.41a).

The resulting integral expression for Z can be evaluated by numerical integration,
expressed [5] in terms of integrals tabulated in standard mathematical handbooks [6],
or written in the form

Zo= 2% 1 (sin foh [Calh, h) — cos foh Culh, 0)]
27 sin” Boh
— cos Boh [Sq(h, h) — cos Boh S, (h, 0)]}, (1.42a)
where the integrals C,(h, z) and S, (%, z), which occur frequently in antenna theory,
are defined by
h e—JBoR1  o—jPoRa
Cy(h,2) =/ cos ,301/[ + ] 7 (1.42b)
0 Ry Ry
h e~ PR e—JPoR2
Sa(h, 2) =/ sin Bo |7/ + d7 (1.42¢)
0 Ry Ry

and where

Ry =V (z—12)?+a, Ry =+ (z+7)?+a (1.42d)

A short table of these integrals for the case a/A = 0.007 022 is given in [2, Appendix
1].

Note that the value of Zy so obtained is infinite when gh = 7, 27, . ... Therefore,
the method cannot be used to determine the driving-point impedance of antennas with
these lengths. Note also that, in the limit Sga — 0, the value of Ry = Re{Z} reduces
to R, where R{ is the radiation resistance obtained in the previous section.

From a theoretical point of view, the valid objection can be raised that two different
models are involved in (1.41). These are the antenna in which a sinusoidal current
distribution is maintained (by a continuous distribution of electromotive forces),
and the antenna center-driven by a delta-function generator. Only under special
circumstances can the first model be regarded as being similar to the second, or,
indeed, to the more practical antennas of Figs. 1.1a and 1.1b. For the first model, there
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Figure 1.7 Distribution of amplitude and phase of current in half-wave dipole.

is no single pair of terminals, so that the quantity in (1.41) is not the driving-point
impedance of an antenna. For the second model, the quantity in (1.41) is indeed the
driving-point impedance but (1.41c) is an identity, and not a means of determining
Zy. The electric field maintained by the currents in the first case violates the boundary
condition E;(a, z) = 0 (z # 0) satisfied by the corresponding field in the case of the
center-driven antenna.

In order to further understand the two models, it is instructive to consider the
permissible choices of ¥; in (1.20b). In other words, for what types of surfaces X
does one correctly obtain the time-average power radiated? The answer is different
for the two models: For the case of the center-driven antenna, 1 can be any closed
surface that encloses the delta-function generator at z = 0. It need not enclose the
entire antenna. However, for the antenna with a sinusoidal distribution of current, it is
necessary to enclose the entire antenna in order to correctly obtain P, the time-average
power.

From an engineering point of view, the induced EMF method is best discussed by
comparison with measurement. In order to obtain useful results, it is necessary that the
assumed sinusoidal current distribution be close to the true current distribution, and
that the antenna be electrically thin. Figures 1.7 and 1.8 show the measured amplitude
and phase of the current for a base-driven monopole over a ground plane together with
the sinusoidal current for fph = 7 /2 and 7, respectively. The parameter €2 is related
to h/a by Q = 2In(2h/a). In Fig. 1.7, the experimental data are taken from [7]. The
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Figure 1.8 Distribution of amplitude and phase of current in full-wave dipole.

theoretical curve is in the form

I 1] 10 2
(@ _ ‘ﬁ 016 _ % cos foz = — cos foz (1.43)
0

\%4 Vv

where Zg has been calculated from (1.41c) to be Zyp = 73 + j41 ohms. The factor
of 2 in the last equation in (1.43) is included so that /(z)/V corresponds to that of
a monopole over a ground plane. In Fig. 1.8, the measurements have been made by
Mack. The value of |1,/ V| = |I(A/4)/V] in the theoretical curve is such that the
total power radiated by the antenna with the sinusoidal current (as calculated from
P = R¢ |1, |* with RS, = 199 ohms) is the same as the total power radiated by the
base-driven monopole. The latter power can be found from the measured driving-point
conductance G = 1.023 millisiemens (mS) as P = G|V |%.

In Fig. 1.7, the general agreement between the measured values and the sinusoidal
approximation is fair, with more current near the top of the actual antenna than is
indicated by the cosine curve. The driving-point admittance as calculated by the
induced EMF method agrees quite well with the measured value. The phase differs
somewhat from the constant required by the sinusoidal distribution of current. For
the full-wave antenna of Fig. 1.8, the sinusoidal current fails completely near the
driving point, where, instead of |/(0)/V| = 0, |1(0)/ V| is about three-quarters its
maximum value along the antenna. The measured phase, instead of being constant,
changes significantly along the antenna.

Some additional comments about the half-wave antenna are now made. More
discussions along these lines can be found in [8]. For Bph = m/2, the measured
current is fairly close to that predicted by the induced EMF method. It follows that the
near-field Bg should also be fairly close. This is not true, however, for all near-field
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Figure 1.9 Normalized distribution of charge in amplitude and phase for a half-wave dipole.

quantities. It follows from preceding discussions that the £, components are different.
That the E, components should also be different is illustrated in Fig. 1.9, where the
measured [7] charge per unit length ¢(z)/V = |q(z)/V|e/®@ along the half-wave
antenna is shown together with that predicted by the sinusoidal theory. The theoretical
curve was calculated from (1.43) by the equation of continuity (1.22). Here, the
agreement is quite poor.

The sinusoidal current distribution sin So(h — |z|) has been seen to be inadequate
in many cases. Nevertheless, it is attractive because of its simplicity. In Chapter 2,
linear antennas satisfying Bpa < Poh < 3m/2 and fpa < 1 are considered. For
such antennas, an improved representation of the current will be introduced. In this

representation, sin Bo(h — |z|) is the first term, and the remaining terms are also simple
trigonometric functions.

1.8

Integral equations for the current distribution

In the three preceding sections, the current distribution /(z) along the length of the
linear antenna has been assumed. A more scientific and more difficult method for
investigating the properties of a center-driven linear antenna is to determine / (z) from
the boundary condition satisfied by E; on the surface of the antenna. If this condition
is imposed, an integral equation for /(z) results. A history of the development of the
integral equation, as well as many additional references, can be found in [3,9, 10].
This section first introduces the model of the center-driven tubular dipole. Two
integral equations will be derived, one of which is exact for this model and will be
called the exact integral equation. The second integral equation is approximate and
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Figure 1.10 Center-driven tubular dipole: top view and cross section.

will be called the approximate integral equation. Both forms are referred to as Hallén’s
integral equation in recent literature.

Figure 1.10 shows a center-driven tubular dipole. It is a perfectly conducting, open-
ended tube with walls of negligible thickness. A delta-function generator is located
at an infinitesimal gap between z = 0~ and z = 0T, so that the scalar potential
¢ (p, z) satisfies ¢ (a,0") — ¢(a,0”) = V. From (1.8) and the boundary condition
E.(a,z) = 0 (z # 0), it is seen that, on the surface of the tube at p = a,

E.(a,z) =—-Vé(z); —h<z<h (1.44)

There is a rotationally symmetric surface current density K, ouc(z) on the outside of
the tube, and a similar surface current density K, iy(z) on the inside of the tube. The
total current [ (z) is defined by 1(z) = 2mwalK; out(z) + K7 in(2)]. I (z) is even in z; it
vanishes at the ends z = %/ of the dipole by the continuity of K, (z).

Denote by A;(a, z) the rotationally symmetric vector potential on the surface of
the tube. An integral equation for /(z) can be derived by calculating A;(a, z) in two
different ways and equating the results as follows.

The first step is to note that, at any observation point r, E,(r) is related to A,(r) by
equation (1.24c). (This equation holds as long as only z-directed currents are present.)
When the observation point is on the surface of the dipole, (1.44) can be substituted in
(1.24c). Thus, A;(a, z) satisfies the differential equation

9%A.(a, 2) -
g—zz +B2AL(a, 2) =

The solution to this equation consists of a particular solution plus the general

ﬂg .
Vé(z); —h<z<h. (1.45)
w

solution of the homogeneous equation. The latter is C; cos Bpz + C» sin oz where Cy
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and C» are constants to be determined. From the properties (1.2) of the delta function,
a particular solution is readily verified to be (—jV /2c) sin By|z|. Since A;(a, z) is even
in z, the coefficient C; is identically zero and the solution to (1.45) is

—jv
Az(a,z) = 2]c sin Bo|z| + Cq cos Boz. (1.46)
It is seen that the derivative of A;(a, z) is discontinuous. This is a consequence of the
step-function behavior of the scalar potential at z = 0.

The second way to calculate A (a, z) is from the integral (1.12a). At any observation
point r, the vector potential is given by integrating over the surface of the tube:

I1(7 JjBolr—r'|
A.(r) = ”0/ / 1) e T ey, (1.47)

2ma r—r/|

When p = a, the distance between r and r’ is given by (see Fig. 1.10)

Ir—r| = \/(z — 22 + 4a? sin?[( — ') /2]. (1.48)

Although @ appears in the integral for A,(a, z), it is apparent that A (a, z) is
independent of @, so that one can take ® = 0 with no loss of generality. Equating
(1.46) with the integral expression for A;(a, z), the equation

4 h ’ ’ /
_Az(a,z)E/ K(z—2)1(z)dz
o

—h

—j2zV
= 3 sin Bglz| + CcosBoz; —h<z<h (1.49)
0

is obtained. In (1.49), K () is given by

1 [ GXP(—Jﬁo\/zz + 442 sin*(®/2))
K@) = Kex(2) = gf

dd; |z| <2h (1.50)
- \/zz + 4a2 sin®(/2)

and the constant C = 47 C1 /o is to be determined from the condition that
I(h) =0. (1.51)

In equation (1.49), which is to hold for all values of z between —h and h, the
unknown current /(z) appears inside the integral sign. This is the desired exact
integral equation. The quantity K (z — z’) = Kex(z — 2’) that multiplies the unknown
is called the kernel of the integral equation. It depends only on the difference z — z/,
and not on z and 7’ separately.

The same steps may be followed to derive the so-called approximate integral
equation. On the basis that the antenna is electrically thin, Spa < 1, one makes the
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assumption that the current is located at the axis z = 0 of the antenna. Thus, in place
of (1.47), one has the integral expression (1.23a) for the z-directed vector potential,
where

R=Ir—2|=V(z—-7)2+d> (1.52)

when the observation point r is on the antenna’s surface. Equating this integral
expression with (1.46) results in the approximate integral equation. It is the same as
(1.49), but with the “approximate” or “reduced” kernel

o (i)
V72 +a? '

in place of the exact kernel of (1.50).
In this chapter, as well as in the related Chapter 13, the symbol /¢ (z) will denote the

K(z) = Kyp(2) = |z| < 2h (1.53)

unknown current when the exact kernel K¢x(z) is used in (1.49). The corresponding
quantity when Kj,,(z) is used will be denoted by I,,(z). A symbol K (z) [/(z)] with
no subscripts can denote either Kex(z) [lex(2)] or Kap(2) [Lap(2)].

The most pronounced advantage of the approximate integral equation is that K,,(z)
is simpler in form than K¢y (z), which involves an integration. The approximate integral
equation will be used almost exclusively throughout this book. Despite the similarity
of the two integral equations, their mathematical properties are very different. Such
properties are discussed in detail in [10] and in Section 13.2 of this book.

Equations (1.49) and (1.51) can be written in various equivalent forms, one of which
is

—j27V

h
f Kz - )IV(dZ = sinfolzl; —h<z<h (1.54a)
—h

and
h

/ K(z—)IPE)d7 =cosBoz; —h <z <h, (1.54b)
—h

where the unknowns 1V (z) and 7 (z) are related to I (z) and C by

B I(l)(h)
IOm)

This form is slightly more convenient for the application of numerical methods. These

1) =1V +CcIPr@, C= (1.55)

are discussed in the next section and in Chapter 13.

1.9

Direct numerical methods

Methods for solving (1.49) approximately were proposed as early as the 1930s
[11]. When high-speed computers appeared, solving (1.49) by numerical methods,
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especially moment methods [12], became popular. When applying moment methods
to integral equations, the basic idea is to seek an approximate solution in the form
of a linear combination of a finite number of basis functions. The coefficients of the
basis functions are the unknowns. They are determined by approximating the integral
equation by a system of algebraic equations which are then solved by computer.

In this section, numerical methods are introduced by describing the application of a
particular method to (1.49). The method to be applied is Galerkin’s [13] method with
pulse functions, which is a form of the method of moments in [12]. Generalizations
and additional information can be found in many standard antenna and engineering
textbooks. A more critical discussion of the application of numerical methods to (1.49)
is beyond the scope of an introductory chapter and is contained in Chapter 13.

As mentioned previously, it is convenient to deal first with equations (1.54a, b). One
writes 1V (z) and I® (z) as the sum of basis functions with unknown coefficients.
Basis functions that are non-zero on only a part of the interval of interest [in our
case (—h, h)] are called subsectional basis functions. Perhaps the simplest choice of
subsectional basis functions are the pulse functions u,(z) which result by dividing
(—=h, h) into 2N + 1 segments of length z;, so that

Q2N + 1)z, = 2h. (1.56)

The nth pulse function u, (z) is constant on the nth segment and zero elsewhere:

1, ifn—3)z, <z<m+ )z
Un(2) = 2 2 (1.57)
0, otherwise
forn = —N, —(N — 1),..., N (see Fig. 1.11). The choice of an odd number of
segments is convenient, but not necessary.
“Staircase”-type approximate solutions to (1.54a, b) are sought by setting
N N
Y=Y 1Pu@.  1P@0= ) 1Pu), (1.58)
n=—N n=—N

where I,El) and I,(,z) are coefficients to be determined. The substitution of (1.58) into
(1.54) yields

N h ;
—j27V

Z Irgl)/ K(Z — Z,)un(z/) dz/ = il Sinﬂolz|; —h < < h (1593)
n=—N —h ;O
and

N h

1® f K(z — Z2)un(z')dz =cosfoz; —h <z <h. (1.59b)

n=—N —h

Note that the integrands in (1.59) are non-zero over the nth segment only.
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Figure 1.11 Pulse functions u, (z).

Equations (1.59) cannot be satisfied for all z, and one must satisfy them approxi-
mately. This can be done by selecting a second set of functions v;(z),l = =N, ..., N
(called testing functions), multiplying (1.59) by v;(z), and integrating from z = —h
to z = h. In the case of Galerkin’s method, the set of testing functions is taken to be
the same as the set of basis functions. Multiplication of (1.59) by u;(z) and integration
from z = —h to z = h yield

N N
Y Ant® =B 3 a1P =87 1=0%1,... %N, (1.60)
n=—N n=—N
where
(+1/2)zp p(n+1/2)z,
Aln=/ / K(z—7)dz'dz; —N<l,n<N (l1.61)
(-1/2)zp Jn=1/2)z,

—j2rv (125
Bl(l) = ]—/ sin Bol|z| dz
) 1-1/2)z,

—j8nV

- sin(Bozp/4), ifl =0

(1.62a)

1%
T sin(Bozp/2) sin(Bozplll). ifl =1, ... £N
¢oBo

and

2) (I+1/2)zp
Bl( = / cos Bozdz
(I-1/2)zp

2
= IB—sin(,BOZp/Z) cos(Bozpl); 1 =0, £1,...,£N. (1.62b)
0
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Equations (1.60) are two systems of algebraic equations with unknowns Iillzj,
M 1 @ ;O 2
I—(N—l)’ oo Iy and 175, I—(N—l)’ s Iy

The procedure just described is Galerkin’s method with pulse functions applied to

the two integral equations (1.54). Having solved the systems in (1.60) by computer,

one can determine C from [see (1.55)]
c=-1y/1y. (1.63a)

The final numerical solution is therefore
N N
1@ = ) hun@ = ) LY+ CLP (). (1.63b)
n=—N n=—N

The symbols Iex , and Iyp , Will denote the values of I, obtained with the exact kernel
and the approximate kernel, respectively.

The double integral in (1.61) can be reduced to a single integral by setting z — [z,
= x, 7z — nzp = x’, and by using the identity

/2 rzp/2 Zp
fx —x"dx"dx :/ (zp — D f @)+ f(=2)]dz. (1.64)
—2p/2 S —zp/2 0
From the resulting equation and from K (z) = K (—z), it is seen that the A;,, depend
on |/ — n| only, and not on / and n separately. Denoting A;, = Ay by A;—,, one has
the simpler expression

Z
A=A = / p(Zp —O[K(z+1zp) + K(z —zp)]dz (1.65)
0

for the matrix coefficients. In (1.65), the index [ takes the values 0, &1, £2, ..., £2N.

Thus, one must first solve the two (2N + 1) x (2N + 1) systems (1.60) for 1,5”
and 1,52). These systems are symmetric since A;;, = A,; and Toeplitz [14] because
Ay, depends only on the difference / — n. Whereas the vector elements on the right-
hand side can be found from (1.62), it is necessary to compute the matrix elements A;
by numerical integration. This is a simple task for modern computers. Note that the
expression (1.50) for the exact kernel is an integral, so that when the exact kernel is
used, (1.65) is actually a double integral. Here, one can exploit the properties of the
integrand and use standard techniques [15] to reduce the computer time required for
the numerical integration. The solutions to the systems in (1.60) satisfy I,El) = Iil,f
and I,(,Z) = 19,3 , so that each system is equivalent to a (N + 1) x (N + 1) system. It
can also be shown that (1.60) and (1.63a) are equivalent (in the absence of roundoff
errors in the computer) to one (N + 1) x (N + 1) system of equations with unknowns
Io, I1,...,Iny_1,and C.

When applying the method, one can scale &, a, and z,, by the wavelength A =27 /.
Figures 1.12a and 1.12b show the results obtained for #/1 = 0.25, a/A = 0.007 022,
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Figure 1.12 Numerical results obtained with method of Section 1.9; 4/A = 0.25, a/A = 0.007 022,
N = 20. (a) Re{lex,n/ V} (solid line) and Re{lap,n/ V'} (dots). (b) Im{/ex,n/ V'} (solid line) and
Im{lap,»n/V} (dots).

and N = 20. Here, z,/A is about 0.012. In Fig. 1.12a, the component of current
Re{l,,/V} in phase with the driving voltage is shown as a function of n, for both the
approximate and the exact kernels. The values of Re{l,,,/V}, n = 0,1, ..., 20,
are shown as dots. The corresponding values for the case of the exact kernel have
been joined by straight lines. For this choice of N, the values agree quite well. Good
agreement between the results obtained with the exact and the approximate kernels is
also seen in Fig. 1.12b, where the components Im{/,,/ V'} are shown. The driving-point
admittance obtained for this antenna with N = 20 is Yy = Iex0/V = 10.1 — j2.91
mS for the case of the exact kernel, and Yy = I,p0/V = 9.72 — j2.76 mS for the case
of the approximate kernel.

When applying this numerical method to integral equations, the numerical solution
ordinarily becomes closer to the true solution as N is increased, where 2N + 1 is the
number of pulse functions. In practice, the true solution is not known and one often
resorts to the empirical criterion of making N larger until the solution has converged
to a satisfactory final value.
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Figure 1.13 Numerical results obtained with method of Section 1.9; h/A = 0.25, a/A = 0.007 022.
(@) Ryg = Re{V/Iex 0} (solid line) and Ry = Re{V /I5p o} (dots) as function of N.
(b) Xo = Im{V/Iex 0} (solid line) and Xo = Im{V /I, o} (dots) as function of N.

Figures 1.13a and 1.13b show the driving-point resistance Rg and reactance X
obtained by the numerical method as a function of N for N = 1, 2, ..., 100. One
may be surprised to see that the values of Ry and X agree for small values of N only.
Whereas the values for the case of the exact kernel are relatively stable when N is
large, a perhaps puzzling behavior is observed in the case of the approximate kernel:
both Ry and X seem to converge to zero. Corresponding graphs for the driving-point
conductance G and susceptance By (shown in Figs. 1.14a and 1.14b) reveal that the
quantity By is to blame: For large values of N in Fig. 1.14b, the values of By are much
larger than those obtained with the exact kernel. (In Fig. 1.14b, the values of By for
N > 72 in the case of the approximate kernel are not shown. These values continue to
rise rapidly, with By = 0.1 S when N = 100.) The values of G¢ in Fig. 1.14a, on the
other hand, agree quite well with those obtained with the exact kernel.

It is seen from these figures that, in the case of the approximate kernel (at least
for the specific parameters /A and a /X under consideration), the choice of N is very
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Figure 1.14 Numerical results obtained with method of Section 1.9; A/A = 0.25, a/A = 0.007 022.
(a) Go = Re{lex,0/ V} (solid line) and Gg = Re{l,p 0/ V'} (dots) as function of N.

(b) Bo = Im{lex o/ V'} (solid line) and By = Im{l,p o/ V'} (dots) as function of N. Values of
Im{l,p 0/ V} for N > 72 are not shown.

important and the empirical criterion mentioned above cannot be used. These results
indicate that the application of numerical methods to (1.49) presents difficulties. Such
difficulties have been discussed in the literature from many points of view [16-21].
In Chapter 13 of this book, the interested reader will find detailed explanations
for the behavior observed in Figs. 1.13 and 1.14. The discussion there concerns
both integral equations. The situation is simpler in the case of the exact kernel; in
this case, the behavior of the numerical solutions can be readily inferred from the
mathematical properties of the integral equation. Knowledge of these properties also
leads to improvements of the numerical method. Even with the exact kernel, however,
difficulties exist.

Despite the difficulties associated with solving (1.49) numerically, useful results can
be obtained by numerical methods. Many such results are available in the literature.
Chapter 2 introduces an alternative method for determining the current on a linear
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antenna: I (z) is represented as a linear combination of a fixed number (two or three)
of trigonometric functions. The unknown coefficients are determined by exploiting the
properties of the kernel and the right-hand side of the integral equation. Chapters 3—7
and 10-12 extend this method to arrays of cylindrical dipoles. In this case, one needs to
solve a system of algebraic equations to obtain the unknown coefficients. Because the
number of unknown coefficients per dipole is small, the systems of equations that result
are generally much smaller than those resulting from the application of numerical
methods.
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An approximate analysis of the cylindrical
antenna

2.1

31

The sinusoidal current

The distribution of current along a thin center-driven antenna of length 24 (or along
a base-driven antenna of length 4 over an ideal ground plane) is assumed to have the
sinusoidal form

1) = 1,0 2Pt 12D @.1)

sin Boh

in Sections 1.6 and 1.7. Actually, this is the correct distribution along a section of
lossless coaxial line of length 4 that is short-circuited at z = O and terminated at
z = h in an infinite impedance. This is illustrated in Fig. 2.1a where the infinite
impedance is obtained by means of an additional short-circuited quarter-wave section
of coaxial line. In this case the current is entirely reactive, the electromagnetic field
is completely confined within the coaxial shield in the form of axial standing waves
and there is no radiation. When the ideal “open” end at z = & is replaced by an
actual one as shown in Fig. 2.1b, the distributions of current and charge are changed
in a manner that resembles a crowding of the entire pattern toward the open end. In
addition to a large reactive component, the current now also includes a very small
resistive part. The associated electromagnetic field is still primarily a standing wave
within the coaxial sleeve, but it does extend outside especially near the open end and
there is some radiation. From the point of view of the transmission line the differences
between currents and fields for Figs. 2.1a and 2.1b are interpreted as end-effects. If
the outside shield is removed as in Fig. 2.1c these “end-effects” extend all the way
to the generator and the distributions of current and charge are significantly changed
over the entire length. The resistive component is now comparable in magnitude to the
reactive part and the associated electromagnetic field includes a large radiation field
that extends to infinity in the form of outward traveling waves. It is, of course, not
at all surprising that the distributions of current along the conductors of radius a and
length 7 are not the same in the three quite different situations represented in Figs.
2.1a—c. The boundary conditions are not alike except at r = a, 0 < z < h, where the
tangential electric field vanishes.
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Figure 2.1 (a) Coaxial line terminated in Zso at z = h. (b) Coaxial line terminated in open end.

(c) Base-driven monopole over perfectly conducting ground screen.

2.2  The equation for the current

As discussed in Section 1.8, the determination of the actual current distribution along
the antenna in Fig. 2.1c requires the derivation and solution of an integral equation.
The derivation proceeds from the boundary condition E;(z) = — Voe 8(z) on the surface
p = a, —h < z < h, of the perfectly conducting, center-driven tubular antenna. The
electric field E(z) is expressed in terms of the vector potential defined in (1.23a) in the
formula (1.24c). On the surface of the antenna where E;(z) = —V;§(z), the following

differential equation applies:
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2.3 Properties of integrals

2 _:n2
(d— + ﬁS)Az(z) _ ik VES(2), (2.2)

dz? )

which has the solution
Az(2) = =L (C1cos foz + LV sin folz) 23)

if the symmetry conditions, I;(—z) = [I;(z), A;(—z) = A;(z) are imposed. The
second term in (2.3) is a particular solution to (2.2), and C; is a yet undetermined
constant. With (1.23a) the integral equation for the current is

4r h e~ JPoR —jan
T A(z) = / L) dz7 = —I (€ cos foz + LVEsinfolzll, (24)
Ho h R o

where Vjj is the EMF of the delta-function generator, {o = +/o/€o = 1207 ohms, and

R = /(z — 7)? + a?. By definition the driving voltage of the delta-function generator
is lir% [¢(z) — ¢(—2)] = Vj;. The constant C; must be evaluated from the condition
—

I.(£h) = 0. Note that the “approximate kernel”, discussed in Section 1.8, is used in
(2.4).

Although it is not difficult to derive the integral equation (2.4), the problem of
finding analytical solutions for the current is very complicated. What is needed is an
approximate solution that is both sufficiently simple to be useful in the evaluation of
the electromagnetic field and sufficiently accurate to provide quantitatively acceptable
values not only of the details of the field but of the driving-point impedance. (In
anticipation, it is well to note that a generalization of the method in order to make it
useful in the solution of the simultaneous integral equations that occur in the analysis
of arrays is also going to be required.)

The procedure to be followed in obtaining a useful approximate solution of (2.4) is
straightforward and simple. It involves the replacement of the integral equation (2.4) by
an approximately equivalent algebraic equation. In order to accomplish this a careful
study must be made of the integral in (2.4).

Properties of integrals

The integrand in (2.4) consists of two parts: (1) the current /;(z) which is to be
determined and about which nothing is known except that it vanishes at the ends
Z = =h, is continuous through the generator at z = 0, and satisfies the symmetry
condition I,(—z) = I,(z2); (2) the kernel

; R=(z—-2)*+a 2.5)

efj/gOR

R

K(z,7) =
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which may be separated into its real and imaginary parts,

R in By R
_COSPR oy = _SnAR (2.6)

K 9 / 9
r(z,2) R R

The dimensionless quantities Kg(z, z’)/Bo and K;(z, z')/ Bo are shown graphically in
Fig. 2.2 as functions of Bylz — 7’|. A comparison in the lower figure shows that their
behaviors are quite different. Kg(z, z')/Bo has a sharp high peak precisely at 7/ = z;
its magnitude 1/Bpa is very large compared with 1 since it has been postulated that
Boa < 1. On the other hand, K;(z, z')/Bo varies only slowly with 8y|z — z’| and never
exceeds the value 1. It is seen in the upper part of Fig. 2.2 that sin o R/BoR is very
well approximated by cos(BgR/2) in the range 0 < fByl|z — z’| < 7. Moreover, the
value of cos(BoR/2) is hardly affected if the small quantity Bopa is neglected and So R
is approximated by Bolz — Z/|.
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These facts suggest the following approximations for the two parts of the integral in
(2.4):

cos ,BOR

Jr(h, 2) :/ I.(2) dz' = Wi (2)I;(z) = V1 1.(2) 2.7

s1n,80R Z/
Jr(h, z) = —/ L(7) ——— R = —,80/ I,(z) cos 2,80(z—z)dz (2.8)

The reasoning behind the approximation in (2.7) is simple. Since the kernel is quite
small except at and very near 7/ = z, where it rises to a very large value, it is clear
that the current near 7/ = z is primarily significant in determining the value of the
integral at z. In other words, the integral is approximately proportional to I(z). The
proportionality constant W is best determined where /;(z) is a maximum.

The integral in (2.8) may be transformed as follows:

h
Ji(h,z) = —ﬂo/ L,(z) cos 3 Bo(z — 2) d7’
—h
h
= —/30/ I.(z)[cos %ﬁo(z —7') + cos %ﬂo(z +z2)H1d7
0
h
= —2pB cos %,BOZ/ 1,(Z)) cos %,301/ d7.
0

It follows that for antennas that do not greatly exceed foh = 7 in electrical half-length,
specifically, foh < 57 /4,

h
Ji(h,z) = Jp(h,0)cos 3P0z Ji(h,0) = —2 / I.(Z)cos 3oz’ d2/.  (2.9)
0

A further refinement in the approximation (2.7) is suggested by the fact that, while
the integral on the left becomes quite small at the ends of the antenna where z = +£h,
the right-hand side vanishes identically at these points since I;(£h) = 0. Evidently a
better approximation than (2.7) is the following:

h
g AL (2) = Az (h)] = / , L()[Kr(z,2) — Kr(h,2)1dZ = W1, (z), (2.10)

where the left-hand side is simply the vector potential difference between the point
(a, z) and the end (a, h) of the antenna; W, is a new constant.
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Rearranged equation for the current

In order to make use of (2.10), the integral equation (2.4) may be modified by
subtracting 47 .y 'A ;(h) from both sides. The result is

h

4 AL 2) — A-()] = / LKz 2y de
h

—jan Loe -
:T[Cl cos Boz + 5V sin folz| + U], (2.11)
where
_jé‘() h ’ ’ ’
U= o /hIZ(Z)K(h,Z)dz (2.12)
and the difference kernel is
Ki(z,7)=K(z,7) — K(h, 7). (2.13)

The constant C can now be expressed in terms of U and V{§ by setting z = h. Since

the left-hand side of (2.11) then vanishes, the right-hand side can be solved for C; to

give

_ 3V sinBoh +U
cos Boh

C, = (2.14)

If this value of C is substituted into (2.11) the following equation is obtained:
jar

o cos Bol [5 V¢ sin Bo(h — |z]) + U (cos oz — cos foh)].

h
/ L(Z)Kq4(z,7)d7 =

—h
(2.15)

The integral equation (2.15) with (2.12) is a rearrangement of the original equation
(2.4). No approximations are involved.

Reduction of integral equation to algebraic equation
The next and most important step is to make use of the information contained in (2.9)
and (2.10) in order to reduce (2.15) to an approximately equivalent algebraic equation.

The procedure is simple and straightforward. With (2.9) and (2.10) it is clear that the
integral in (2.15) may be approximated as follows:

h
/ L(Z)Ka(z,2)dz' = I,(z)W + jJ; (h, 0)(cos oz — cos 5 foh). (2.16)
—h
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If this is substituted in (2.15), the resulting equation can be solved explicitly for 7, (z).
It is seen to have the following zero-order form:

I(2) = [I:(2)]o = Iy [sin fo(h — |z]) + Ty (cos foz — cos foh)

+ Tp (cos %,302 — Cos %,Boh)], (2.17a)
where Iy, Ty and Tp are complex coefficients. With the identity

M = —(sin Bylz| — sin Bph) + tan Boh (cos Boz — cos Boh)
cos Boh

an alternative form of (2.17a) is

1.(2) = [I.(2)lo = — Iy[(sin Bolz| — sin Boh) + T}, (cos oz — cos Poh)
— T} (cos 3Boz — cos 5 Boh)], (2.17b)

where I{,, T/, and T}, are complex coefficients.

This is a very significant result. It shows that an approximation of the current
consists of three terms, each of which represents a different distribution. One of the
terms is the simple sinusoid. As for the completely shielded transmission line, the
sinusoidal component of the current is maintained directly by the generator; it does
not include the components that are induced by coupling between different parts of the
antenna. The currents induced by the interaction between charges moving in the more
or less widely separated sections of the antenna appear in two parts. One of these,
the shifted cosine, is maintained by that part of the interaction that is equivalent to a
constant field acting in phase at all points along the antenna. The other part, the shifted
cosine with half-angle arguments, is the correction that takes account of the phase lag
introduced by the retarded instead of instantaneous interaction.

Thus, the new three-term approximation augments the conventionally assumed
sinusoidal distribution with components represented by a shifted cosine and a shifted
cosine with half-angle arguments, each with a complex coefficient.

It is quite possible to evaluate the coefficients W;, Jy(h, 0) and U that are involved
in Iy, Ty, and Tp — obtained when (2.16) is substituted in (2.15). However, it is
preferable to use the arguments and approximations introduced up to this point merely
to determine the form of the distribution of current. The three new coefficients, Iy,
Ty and Tp, may be evaluated directly if (2.17a) is substituted in the integral equation
(2.15) and the principles involved in (2.9) and (2.10) are invoked.
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The substitution of (2.17a) in the integral in (2.15) involves the following parts
obtained from the real part K z(z, z") of the difference kernel K;(z, z’) defined in
(2.13):

h

/ sin Bo(h — |2')Kar(z, 2') dz’ = Wy sin Bo(h — |z]) (2.18a)
—h
h

/ [cos Boz" — cos BohlKar(z, 2') dz = Waygr(cos Boz — cos Boh) (2.18b)
—h

h
f_ [eos $Boz' — cos 2 oh1Kar(z, 2') dz’ = Wapr(cos 3 Poz — cos 1 foh).  (2.18¢)

These expressions follow from (2.10). In order to enhance the accuracy, each part of
the current is separately treated and supplied with its own coefficient. The evaluation
of these coefficients is considered below.

The integrals obtained with the imaginary part K;;(z, z') of the difference kernel
are easily approximated by the application of (2.9). Thus,

h
/ sin fo(h — 12’V Kar (z, 2') dz' = Way (cos 3oz — cos 3 foh) (2.192)
—h
h
/ (cos Boz’ — cos foh) Kai (z, 2') dz’ = Waui(cos 30z — cos 3 foh) (2.19b)
—h

h
/ (cos 3 Boz’ — cos 3 Boh)Kai (2, 2') dz' = Wapi(cos 3 Poz — cos 1 foh).  (2.19¢)
—h

The three constants W7, W,y and Wgpy are evaluated later. Finally, if the distribution
(2.17a) is substituted in (2.12), the result is

_ —Jj%ly

U= A [(Wy(h) + TuYy (h) + TpW¥p(h)], (2.20)
where
h
Uy (h) = / sin Bo(h — |2 DK (h, 7)) d7’ (2.21a)
—h
h
Wy (h) = / (cos Boz' — cos oK (h, 7)) dZ (2.21b)
—h
h
Wp(h) = / (cos 3P0z’ — cos 1 oh) K (h, Z) dZ . (2.21c)
—h

With (2.18a—c) and (2.19a—c) the integral on the left-hand side in (2.15) is reduced to
amere sum of terms with suitable coefficients. And the integral equation as a whole has
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been replaced by an algebraic equation that involves the three distributions sin So(h —

|z]), cos Boz — cos Boh, and cos %,301 — cos %ﬁoh. Itis

g — 7YY Sin ot — 2
— ————— | sin —
vWar 2o cos Boh sin By z
janU
+\ IvTyYaur — ———— ) (cos Boz — cos Boh)
¢o cos Boh

+ Iy (jWar + jWaurTy + WapTp)(cos 3oz — cos 3 foh) = 0,

where W;p = Wapr + jWVapr-

2.6

Evaluation of coefficients

(2.22)

The algebraic equation (2.22) is satisfied for all values of z when the coefficient

of each of the three distributions vanishes. This step yields three equations for the

determination of the coefficients Iy, Ty and Tp in (2.17a). They are:

B J2r Vs
~ ZoWar cos foh
Ty[Waur cos Boh — Wy (h)] — TpWp(h) = Yy (h)

Iy

TyVYaur — jTpYap = — Yy .

The last two equations are easily solved for Ty and Tp. The results are:

Ty = Q7' Wy () Wap — j¥p () Yar]

Tp = — j O {War[Waur cos foh — Wy ()] 4+ Wy (h)Waur)

O = VYypl[WYaurcos Boh — Yy (h)] + jYp(h)Waur.

(2.23a)

(2.23b)

(2.23c)

(2.24a)

(2.24b)

(2.25)

The several ¥ functions in (2.24)—(2.25) are defined with (2.18a—c) and (2.19a—c)
at the value of z that gives the maximum of the current distribution function. Since,

in the range of interest, Sgh < 3w /2, the maximum of sin So(h — |z]) isatz = 0
when foh < m/2 but at z = h — A/4 when Bph > m/2, whereas the maxima of
(cos Boz — cos Boh) and (cos % Boz — cos % Boh) are at z = 0, the following definitions

are appropriate:
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Zm =0, ﬂoh < 7T/2
Wir = Yar(Zm), " (2.26)
m=h—Aj4,  Poh > )2

h
W,r(z) = csc Po(h — |z)) fh sin Bo(h — |Z/D[KRr(z,7') — Kr(h,Z)]d7 (2.27)

h
Waur = (1 — cos foh)~! f (cos Boz' — cos Bl [Kr(0, =) — Kr(h, 2)]d2’
—h

(2.28)

h
Wap = (1 —cos 3foh) " / (cos 3oz’ — cos 3 Boh)[K (0, 2') — K (h, 2)]dZ'
—h

(2.29)
Wy = (1 cos L o)™ /]; sin Bo(h — |2/ DK (0, 2) — Ky (h, 2)]dZ' (2.30)
) h
Wy = (1 —cos 3 foh) ™! /h(cos Boz — cos Boh)[K(0,2') — Ky (h, Z')1dZ .
(2.31)

These integrals may be evaluated directly by high-speed computer or reduced to the
tabulated generalized sine and cosine integral functions given by (1.42b—d) and the
exponential integral,

h e=iboRi hre—iboRt  p=jPoR2 ,
Eq(h, 2) :/ dz :/ |: + }dz. (2.32)
¢ - R 0 R Ry

2.7 The approximate current and admittance

The final approximate expression for the current in an isolated cylindrical antenna for
which Boh < 37 /2 and Bpa K 1 is

j2r Vg .
I;(z2) = ———————[sin Bo(h — |z]) + Ty (cos Boz — cos Boh)
ZoWar cos Boh

+ Tp(cos 5oz — cos 5 foh)]. (2.33)

The associated driving-point admittance is
j2r

Yo=—F——
SoWar cos Boh

[sin Boh + Ty (1 — cos Boh) + Tp(1 — cos %,30/1)]. (2.34)
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Since these formulas become indeterminate when Bgh = /2, it is convenient to
use the alternative forms obtained from (2.17b) when Bg# is at or near v /2. They are

—j2rVy . ) ,
I;(z) = ——— [(sin Bolz| — sin Boh) + Ty (cos foz — cos Boh)

SoWVar
— T}y(cos 3 Boz — cos 3 Boh)] (2.35)
. j2m ’ / 1
Yo = [sin Boh — Ty, (1 — cos Boh) + T (1 — cos 5Boh)] (2.36)

SoWar

where
T i h T

T} = _Lmﬂo, T} = b (2.37)

cos Boh cos Boh

T/, and T}, are both finite when Boh = /2.
When the antenna is electrically short, so that Sgh < 1, the trigonometric functions
can be expanded in series and the leading terms retained. The current is then given by

j2r Vs 2| 145272 22
I(z) = h{l—— B T{1——=)|. 2.38
(@)=t o )+ 38 - (2.38)
This distribution includes triangular and parabolic components. The admittance is
j2n 15272
Yo = [Boh + 3 Byh”T1, (2.39)
SoWar 270

where T = Ty + Tp /4.

2.8 Numerical examples; comparison with experiment

Numerical computations have been made for typical antennas for which extensive
measurements are available. For these antennas a/A = 7.022 x 1073, The parameters
for the two critical lengths, Boh = 7 /2 with Q = 21In2h/a = 8.54 and foh = 7 with
Q = 9.92 are listed below:

Boh = %: Wg = 6218, T =3.085+ j3.581,

T}, = 1.061 + j0.025 (2.40a)
Boh =m:  Wag=5.737,  Ty=—0.117+ j0.114,
Tp = —0.106 + j0.108. (2.40b)

The corresponding normalized currents in amperes per volt, admittances in siemens
and impedances in ohms are as follows.
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For Boh = /2,
1:(2) i : .
V_oe = {9.597 cos oz — 0.067 cos 5 foz + 0.047 — j[2.680(sin Bo|z| — 1)
+ 8.269 cos Bz — 2.843 cos 1 foz + 2.010]} x 1077 (2.41a)
Yo = (9.577 — j4.756) x 1073, Zoy = 83.76 + j41.60. (2.41b)
For Boh = 7,
%f) = {0.331(cos Bpz + 1) + 0.314 cos %,302
0
— j[2.905 sin Bp|z| — 0.340(cos Boz + 1) — 0.308 cos %,Boz]} x 1073
(2.42a)
Yo = (0.976 + j0.988) x 107, Zo = 506.0 — j512.2. (2.42b)

Note that when a sinusoidal distribution of current is assumed the corresponding
impedances are for Boh = /2, Zg = 73.14 j42.5 (see Section 1.7); and for fph = 7,
Z() = OQ.

Graphs of I;(2)/V§ = [1]'(z) + jI}(z)]/V{ are presented in Figs. 2.3 and 2.4 for
Boh = m/2 and 7 together with measured values. The approximate theoretical curves
are seen to agree very well with measured values not only for S = 7 /2, but also for
,3()h =T.

As can be seen from Figs. 2.3 and 2.4, and especially from the latter, the theoretical
currents at the driving point and, hence, the admittances differ somewhat from the
measured values. In order to achieve a more accurate admittance, higher-order terms
are required in the expressions for the current. Simple trigonometric functions cannot
take adequate account of the rapid change in the current near the driving point when the
antenna is not near resonance. Since higher-order terms are necessarily complicated,
their introduction would defeat the primary purpose of this formulation, namely, to
maintain a reasonably simple representation. Fortunately, there is a useful alternative.
Since the only large error in the current occurs in the quadrature component of the
current very near the driving point, it is possible to introduce a lumped susceptance B,
across the terminals which will correct the driving-point current and the susceptance
while leaving the otherwise well-approximated current unchanged. Actually, since the
use of a lumped corrective network is required in any case to take account of the
local geometry of the junction between the feeding line and the antenna if quantitative
accuracy is desired, the addition of B, to the susceptance Br of the terminal-zone
network is no significant complication. In practice, it may be convenient to measure
the apparent driving-point susceptance at Soph = m and use the difference between this
and the approximate theoretical value as the total lumped susceptance Br + B, to be
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Figure 2.3 Current in upper half of half-wave dipole.

used with all theoretical values based on the approximate theory for any given ratio of
a/i.

2.9 The radiation field

The electric field in the radiation zone of an antenna with a distribution of current /,(z)
is given by the integral

sin ®

. o o—ifoRy [h o
E = ®E£); Eg) = J @Ko / IZ(Z/)e]ﬁoz cos ® dz.

(2.43)
0 —h
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Figure 2.4 Current in upper half of full-wave dipole.

The far field maintained by the distribution (2.33) is obtained when

j2nVy .
I(2) = ——————[sin fo(h — |z]) + Ty (cos Boz — cos foh)
SoWar cos foh

+ Tp(cos 5oz — cos 5 foh)]

is substituted in (2.43). The result may be expressed as follows:
_Vé? e—JBoRo
Yir  Ro

ro_
E('*) -

f(®, Boh),

where

f(®, foh) = [Fn (O, Boh) + Ty Gn(O, Boh) + Tp Dy (©, Poh)]sec foh.

(2.44)

(2.452)

(2.45b)
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The several field functions are

h
Fin(©, Boh) = %/ sin Bo(h — |2/])e/P% ©€ sin© d7’
—h

cos(Boh cos ®) — cos Boh

= 2.46
sin ® ( )
_ Po " / JjBoz cos ® - ’
Gn(®, Boh) = 5 (cos Bopz — cos Boh)e sin ® dz
—h
_ sin Boh cos(Boh cos ®) cos ® — cos Boh sin(Boh cos O) (2.47)

sin ® cos ®

h
Dy (®, foh) = % / (cos 1 Boz’ — cos 4 Boh)e’Po= 5O sin @ d7’
—h

2 cos(Bph cos ®) sin %ﬂoh — 4 sin(Bph cos ®) cos %ﬁoh cos®
- 1 —4cos?2®
sin(Bph cos ®) cos %ﬂoh

— ] sin®. (2.48)
cos ®

For the alternative current

j2nV,

I.(z) = ——— [(sin folz| — sin oh) + T}, (cos foz — cos foh)
R

oWy

— T}y(cos 3 Boz — cos 3 foh)], (2.49)

which is useful when Bo# is at and near /2, the far field is

. V§ e—JPoRo ) A
Eg = — (O, , 2.50
U Ry F(®, Boh) (2.50a)
where
f(©, Boh) = Hu (O, Poh) 4+ T;Gn(©, Boh) — Tp D (@, Boh). (2.50b)

The new field function is

h
H, (O, Boh) = % / (sin Bolz’| — sin Boh)e’P07 5O sin©® d7’
—h

_ [1 — cos Boh cos(Bph cos ®)] cos ® — sin Boh sin(Bph cos ®) 2.51)
o sin ® cos © o

Gn(®, Boh) and D, (0, Boh) are as in (2.47) and (2.48).
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For the specific cases considered above, the coefficients are:

For Boh = /2,
LT
y (@ n)_cos®—s1n(acos®)
"\ )T sin ® cos ©
T
o (@ z)_c0s<500s®> . (@ z)
"\ 2 sin ® )
T LT
T V2 | 2cos (—cos@)—4sm (—cos@) cos ®
Dy, (@,5):7 2 2
1 —4cos2®
LT
- sin <ECOS®) }sin@.
cos ®
For Boh = 7,
F(©.7) = cos(m c'os ®)+1
sin ©®
sin(7r cos ®)
Gn(®, 7)== ——

sin ® cos ©

2 cos(r cos ®) sin ®

Dn(®, 7) = 1 —4cos2®

(2.52a)

(2.52b)

(2.52¢)

(2.53a)

(2.53b)

(2.53¢)

In the formulas (2.45a) and (2.50a), the field is referred to the driving voltage V/;.
It can be referred to the current /;(0) at the driving point with the simple substitution
of I;(0)/ Yo for Vij where Yy is the admittance given by (2.34) or (2.36). The field in

(2.45a) is then expressed as follows:

_ joIL(0) e~iPoo

El, = 0, Boh),
¢} T Ro fI( ,30)

where
Fun(©, Boh) + Ty G (O, Boh) + Tp Dy (O, Boh)
sin Boh + Ty (1 — cos foh) + Tp(1 — cos L foh) -

The alternative form (2.50a) becomes

_ jol.(0) eiPoo

EL = 1(©, Boh),
b= o J1(©: foh)

f1(®, Boh) =

where

Hm®, h—|—T’Gm®’ h_T/Dm®, h
110, fohy = — An(©: o) + TG (O, foh) — T Dn(©. foh)

sin foh — T/, (1 — cos foh) + T}, (1 — cos 2 foh) -

(2.54a)

(2.54b)

(2.55a)

(2.55b)
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Figure 2.5 The functions Fy;, (®, ), G (©, ), Dy, (O, ) and the field components f (O, ) =
fr(®, )+ jfi(®,7) whena/r = 7.022 x 1073,

As a numerical illustration, the three functions F,,(®, ), G, (®,7) and
D, (®, ) are shown graphically in Fig. 2.5 for a full-wave antenna. They all have
nulls at ® = 0 and maxima at ® = 90°. However, G,,(®, 7) and D,,(®, ) have
relatively much greater values at small values of ® than F,,(®, ).

If use is made of the numerical values of Ty and Tp given in (2.40b) for a cylindrical
antenna with a/A = 7.022 x 1073 [for which the distribution of current is given in
(2.42a) and the admittance and impedance in (2.42b)] the field factor

f(©,7)=f(0,7)+jfi(®, 1) (2.56)

may be evaluated. The real and imaginary parts f(®, ) and f;(®, w) are shown
in Fig. 2.5 together with the magnitude | f(®, m)|. If | f(®, 7)| and F,(®, ) are
divided by their respective maximum values at ® = /2, two normalized functions
are obtained. These resemble one another quite closely except for ® < 30° where the
first one is significantly greater. However, since the field is quite small when ® < 30°,
no serious error is made in calculating the far field if the following approximations are
used when foh < m:

o (3.0)

(o)

_(sin Boh — Boh cos Poh
- 1 — cos Boh

G (O, foh) = Fin(©, Boh)

) Fin(©, Boh) (2.57a)
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D (3.0)

Dy (®, foh) = " (%,ﬁ0h>

Fu(©, Boh)

_(2sin 3 B0h — Poh cos 5 Boh

= ( = cos ol ) Fn(©, Boh) (2.57b)
e (5.0

Hy(©, foh) = ——F—= Fu(®, poh)
Fm (E» ,30h>

_ (1 —cos Boh — Boh sin Boh
N 1 — cos Boh

) Fn(©, Boh). (2.57¢)

These approximations are equivalent to the use of the far-field distribution associated
with a sinusoidal current, but normalizing this to the value at ® = 7 /2 obtained from
the three-term form of the current.

2.10 An approximate two-term theory

For all purposes when Bph < m/2 and for determining the far-field and driving-point
impedance when Soh < 57 /4, the difference between the distribution functions Fp, =
cos Boz — cos Boh and Hy, = cos % Boz — cos % Boh is small and the formulation may
be simplified further by consolidating the two terms. If Fj, is substituted everywhere
for Hy, the current is well approximated as follows when Boh < 57 /4:

L) = — 70 G goh T h 2.58
z(Z)—m[Smﬁo( —|z]) + T'(cos Boz — cos Boh)] (2.58)

or, in the form useful near foh = 7 /2,

—j2rVy . ) ,
I;(z) = ——— [sin Bolz| — sin Boh + T (cos Boz — cos Boh)], (2.59)
R

SoWa

where T and T are obtained by forming Ty +Tp and T}, — T}, but with the substitution
Vp = VYyy, Yp(h) = Wy (h). The function T is simply

T — Wy (h) — jWar cos foh
\IJdU COS ,30h — \IJU (h) '

(2.60)
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T’ is given by
T + sin Bph
cos Boh
_ Wy (h) — Wy (h)sin Boh] sec foh + Wau sin foh — jWar
B Wy (h) — Way cos Boh
_ [Wau + Eq(h, h)]sin Boh — jWar — Sa(h, h)
Ca(h, h) — [Wau + Ea(h, h)]cos Boh

T =

(2.61a)

(2.61b)

Since Wy (h) = Wy (h) = C4(h, h) when Boh = m/2, this reduces simply to

_ A A A A
Vau — jWar — Sa 1 + E, 12
c A A
“\4’4
when Boh = 7 /2.

For the numerical cases considered in Section 2.8 for a/A = 7.022 x 1073, the

T =

(2.62)

results for the two-term theory are:

Boh = /2 W,r = 6.218, T =2.65+ j3.79;
(2.63)
Yo = (10.17 — j4.43) x 1073 siemens
Boh = 7 W,r = 5.737, T = —0.172 + j0.175;
(2.64)
Yo = (1.021 + j1.000) x 1073 siemens.

These are seen to be in good agreement with the values obtained with the more accurate
three-term theory. A more extensive list of numerical values of Wyg, T, T" and Yy =
Go + jBoisin Table 1 of Appendix I.

As with the three-term theory, the quadrature component of the current near the
driving point is not adequately represented by simple trigonometric functions so that
the same expedient previously described must be used in order to obtain quantitative
agreement with measured values of the susceptance. The lumped value of B, to be
used with the two-term theory differs only slightly from that for the three-term theory.
For a/A = 7.022 x 1073, it is B, = 0.72 millisiemens. This value must be added
to the two-term susceptance By + Br (where Br is the terminal-zone correction
for a particular transmission-line-antenna junction) in order to obtain the measurable
apparent susceptance By, = Bg+ 0.72 + Br. Itis seen in Fig. 2.6 that By 4 0.72 is in
good agreement with the King—Middleton second-order values of By and the apparent
measured values corrected for the terminal-zone effects, By, — B7.



50 The cylindrical antenna
|

T T T ' I I
(@]
15 |
K-M second order
'
L ‘| - = = - Measured (Mack)
— ‘ ]
1 Two-term theory
\
L 1 o GO I
B “ ® B,+0.72
ol , |‘ X B0 -
j ) 4 -7.022%x103
i / ‘ i i
\
I [l v G 7
2 N B N
2 N
8 L ]
E st |
.5
£ i i
o
2 y _
X
LD Cd
i Q& . z |
Cd - - x
0 | ! . Py~ X I I
7,
— 7 ]
7
’ X
/7
L Vs I
Y4
’ X
— / ]
7
— X ]
s ' SE— I
0.5 1 2 3
Byh

Figure 2.6 King—Middleton second-order admittance Y = G + jB. Two-term zero-order
admittance Yy = G + j Bg, and measured.

2.11 The receiving antenna

The general method of analysis introduced in this chapter as a means of analyzing
the center-driven cylindrical antenna can be extended readily to the center-loaded
receiving antenna in an incident plane-wave field. For the purposes of this book! —
which includes the properties of receiving arrays — it is sufficient to treat only the
simple case of normal incidence with the electric vector parallel to the z-axis which

1 A more detailed analysis of the receiving antenna is in [1], Chapter 4.
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is the axis of the antenna. The antenna is, therefore, in the plane wave front of the
incident wave which may be assumed to travel in the positive x direction. That is
E;“C x) = E?‘Ce’j’fj‘pC where E;“C is the constant amplitude. The boundary condition
that requires the total tangential electric field to vanish on the surface of the antenna

gives
d? iB? . ,
(P + ﬁ3> Ax() = =TTV = —pAr 265)

instead of (2.2). In (2.65), A, (z) is the vector potential due to the currents in the receiv-
ing antenna itself. AiznC is the constant amplitude of the vector potential maintained on
the surface of the antenna by the distant transmitter. Note that E;“C =— ja)Aiznc. Since
the axis of the antenna lies in the wave front, even symmetry obtains with respect to
z for both the current and the associated vector potential so that A,(—z) = A.(2),
I.(—z) = I;(2). It follows that, on an unloaded receiving or scattering antenna, the
vector potential on the surface of the antenna due to the currents in the antenna satisfies
the equations

h —JjBoR —jan

I.(Z) dz =
h

inc 2.
R o [Cy cos oz + U™], (2.66)

dpg ' Az(x) = /

where C| is an arbitrary constant to be evaluated from the condition 7,(h) = 0 and

yinc _ E;nc _ _ijlZ.nC ] (2.67)
Po Po

This integral equation is like (2.4) with an added constant term on the right and with

Vg = 0. If the same rearrangement is carried out as for (2.11), the result is

h

4y 1Az (2) = Az ()] = / I.()Kqa(z,2)dZ
h

—i4 .
:—EF{Qummz+U+UmL (2.68)

where U, as defined in (2.12), is proportional to the vector potential at z = h, p = a
due to the currents in the antenna; U inc, as defined in (2.67), is proportional to the
vector potential maintained on the surface of the antenna by the distant transmitter.
The sum U + U™ is proportional to the total vector potential on the surface of the
antenna.

Since the integral equation (2.68) is just like (2.11) with Vi = 0, it follows that the
rearranged equation corresponding to (2.15) is

jaAm (U + Uin®)

h
/ 1,(Z)Ky(z,7)d7 = ——————= (cos Boz — cos Boh). (2.69)
—h o cos Boh
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The approximate solution of this equation is like (2.33) with V|j = 0. It is obtained
with W;p = WYy, Yp(h) = Wy (h). Itis

inc

janU
0

where Q is defined in (2.25), ¥;p in (2.29) and W 7 in (2.31). This solution for the
unloaded receiving antenna corresponds to the three-term form (2.33) for the driven

L(z) = [Wap(cos Boz — cos Boh) — j¥aur(cos 5Boz — cos 5 foh)], (2.70)

antenna. Corresponding to the simpler two-term approximation (2.58) for the driven
antenna is the expression

IZ(Z) =

jam Ene [ cos foz — cos foh } 2.71)

oy | Wau cos Boh — Wy (h)

In (2.71), U™ has been set equal to E?‘C /Bo, its value when the normally incident
plane wave has its electric component parallel to the axis of the receiving antenna.
When the axis of the antenna is oriented at an arbitrary angle with respect to the
incident E-vector, the distribution of current is much more complicated. In particular,
if the antenna does not lie in the plane wave front (surface of constant phase) of the
incident field, the current and the vector potential have components with both even and
odd symmetries with respect to z.

If the antenna is cut at z = 0 and a load Z; is connected in series with the halves of
the antenna, the current in the antenna is readily obtained. Note first that, if a generator
with voltage V' is connected across the terminals at z = 0 instead of the load, the
resulting current in the antenna is

L(z) = V{u(z) + U™u(z), (2.72)

where v(z) is I;(z)/V{ as obtained from (2.44) and u(z) is I;(z)/U inc a5 obtained
from (2.71). If now Vjj is replaced by the negative of the voltage drop across a load
Z1 that is connected across the terminals of the antenna, that is,

Vo =—-1.(0)Z, (2.73)

Vg is readily eliminated between (2.73) and (2.72). With Zy, the driving-point
impedance of the same antenna when driven, the result can be expressed as follows:

i Z1 2
Iz:UlnC[uz—vzuO—]. 274
2(2) (2) ()()ZL+ZO (2.74)
This is the current at any point z in the center-loaded receiving antenna. The current in
the load at z = 0 is simply

Zo

1,(0) = U™u(0) T 7 (2.75)
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since v(0) = 1/Zo. When Z; = 0, this gives I,(0) = U™™u(0). The voltage drop
across the load is
ZoZp,

L(0)Z; = U™y (0) ——=—.
(0)ZL u()ZO+ZL

(2.76)

When Z; — o0, this is the open-circuit voltage across the terminals at z = 0. That is

V(Z, — 00) = lim L(0)Z; = U™u(0)Zy = [1:(0)Zo]z; =0- (2.77)
71— 00

It is now clear that with (2.67) and (2.75) the current in the load is given by

V(ZL — 00)  EMu(0)Zo
Zo+ 7y Bo(Zo+ Z1)

I.(0) = (2.78)
This is the current in a simple series circuit that consists of a generator with EMF equal
to the open-circuit voltage across the terminals of the receiving antenna in series with
the impedance of the antenna and the impedance of the load. The same conclusion is
readily obtained by the application of Thévenin’s theorem.

The quantity

T
u(0)Zo/Bo = 2h, (5) : 2.79)

which occurs in (2.78) and is dimensionally a length, is known as the complex effective
length of the receiving antenna with actual length 2k. With (2.79), the current in the

load is
z inc
' Zo+Zy

Note that (2.78), (2.79) and (2.80) apply only when the axis of the receiving antenna is
parallel to the incident electric vector and, therefore, also perpendicular to the direction
of propagation of the incident wave. Similar but more general expressions that involve
the orientation of the antenna relative to the incident wave and the direction of the

electric vector in the plane wave front are available in the literature.?

2 See, for example, [1], Chapter 4, Section 4.
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The method of symmetrical components

An array is a configuration of two or more antennas so arranged that the superposition
of the electromagnetic fields maintained at distant points by the currents in the
individual elements yields a resultant field that fulfils certain desirable directional
properties. Since the individual elements in an array are quite close together — the
distance between adjacent elements is often a half-wavelength or less — the currents
in them necessarily interact. It follows that the distributions of both the amplitude and
the phase of the current along each element depend not only on the length, radius,
and driving voltage of that element, but also on the distributions in amplitude and
phase of the currents along all elements in the array. Since these currents are the
primary unknowns from which the radiation field and the driving-point admittance are
computed, it is essential that they be determined accurately and not arbitrarily assumed
to have identical distributions, as in uniform array theory.

In order to introduce the properties of arrays in a simple and direct manner, it is
advantageous to study first the two-element array in some detail. The integral equation
(2.15) for the current in a single isolated antenna is readily generalized to apply to
the two identical parallel and non-staggered elements shown in Fig. 3.1. It is merely
necessary to add to the vector potential on the surface of each element the contributions
by the current in the other element. Thus, for element 1, the vector potential difference
is

4y AL (D) — AL ()]

h
= /h[llz(Z’)Klld(Z, )+ b () Ki2a(z, 2)1d7

jam

= Zocos foh [5Viosin Bo(h — |z]) + Ui (cos Boz — cos Boh)]. (3.1)
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Figure 3.1 Two identical parallel antennas.

Similarly, for element 2:

Ay [An: (2) — Age ()]

h
= /h[llz(Z/)KZId(Z,Z/) + I, (z')K2a(z, 2)]d7’

Jjam .
= oo Bol [3 Va0 sin Bo(h — |z]) + Ua(cos Boz — cos Boh)].
In these expressions
, e—JBoR1L  p—jBoRiin , ,
Ki1a(z,7) = - = Kii(z,2) — Ki1(h, 2)
Ry Riin
, e—JPoR12  p—jBoRi2n , ,
Ki2a(z,2) = - = Ki2(z,2) — Ki2(h, 2)
Rz Rion
with

Ry =V (z—2)*+a?,
R =+ (z—2)2+ b2,

Rip=v(h—2)~+a?
Rion =+ (h — 2/)% + b2,

3.2)

(3.3a)

(3.3b)

(3.4a)

(3.4b)

K24(z, 7") and K214(z, 7') are obtained from the above formulas when 1 is substituted

for 2 and 2 for 1 in the subscripts.
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The two simultaneous integral equations (3.1) and (3.2) can be reduced to a single

equation in two special cases. These are (a) the so-called zero-phase sequence when

the two driving voltages are identical so that the two currents are the same, and (b) the

first-phase sequence when the two driving voltages and the resulting two currents are

equal in magnitude but 180° out of phase. Specifically, for the zero-phase sequence,

Vio=Voo=VO,  1,(2) = h(2) = 10(2),

so that the equations (3.1) and (3.2) both become

h
/ 19K (2. 2y dZ

= gocjjﬁ [3V©@sin Bo(h — |z]) + U (cos Boz — cos Boh)],
where
v = %ﬁo /_}; 1K (h, 2y d?
and
KOz, 7) = e It + e_jﬂORu,

R R
k0 )= KO, ) — KO0, 7).

Similarly, for the first-phase sequence,
Vio=—Vao =V, () =~ = [P (2),

so that the two equations again become alike and equal to

h
f 1KV @, ) d7
h

Jj4m .
= o8 ok [3V® sino(h — |z]) + UM (cos foz — cos foh)],
where
W _ =% (" e
U =?/ 10K (h, 2y dz
—h
and
—jBoR —jBoR
KD 2y = e—JPoRu e JBoR12
R Ri2

KM@ )= kD, ) — KDh, 7).

3.5)

(3.6)

(3.7)

(3.8)

3.9)

(3.10)

3.11)

(3.12)
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|
Note that the two phase sequences differ only in the sign in K ©(z, /) and KV (z, /).

If (3.6) can be solved for the zero-phase-sequence current / Z(O) (z) and (3.10) for the

first-phase-sequence current Iz(l)(z), the currents /1;(z) and I5;(z) maintained by the
arbitrary voltages V1o and V,o can be obtained simply by superposition. This follows
directly if V(@ and V(D are so chosen that
v O — %[Vm + Vaol, v = %[VIO — Vol (3.13)
In this case,
Vip=VO + v vy =v@ vy (3.14)
so that
h:=1"0+1"@, h=120-1". (3.15)

I

3.2  Properties of integrals

The two integral equations (3.6) and (3.10) for the phase-sequence currents are
formally exactly like the equation (2.15) for the isolated antenna. They differ only
in the kernels of the integrals on the left and in the definitions (3.7) and (3.11) of the
functions U. Each of these is now the algebraic sum of two terms that are identical
except that the radius a appears in the first term, the distance b between the elements
in the second term.

The two elements may be considered close together when Bopb < 1 and b < h. In
this case, since b satisfies substantially the same conditions as a, the behavior of the
integrals that contain b corresponds closely to that of the integrals that contain a. These
are discussed in the preceding chapter. When the separation of the two elements is such
that Bob > 1 but not so great that Byg~/b? + h? differs negligibly from Byb, the vector
potentials maintained by the currents on the one antenna at points along the surface
of the other differ significantly from one another in phase due to retarded action. A
detailed investigation! has been made of the four current distributions involved in
(2.33) and (2.35) which lead to the integrals

S1(z) = sinBoh Cy(h, z) —cos foh S, (h, 2) (3.16a)
$2(z) = =Sy (h, 2) +sin foh E,(h, 2) (3.16b)
C(z) = Cy(h,z) — cos foh E,(h, 2) (3.16¢)
D(z) = Dy(h, z) — cos 3 foh E,(h, 2), (3.16d)

I See [1], pp. 1456-1458.
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where C,(h, z) and S, (h, z) are defined in (1.42b—d) with a replaced by p, E,(h, 2)
is defined in (2.32) with a replaced by p, and

—JjBoR1 —JjBoR>
¢ ¢ ) dz, (3.172)

h
D,(h, z) :/ cos 1,302/< +
P 0 2 Ry R

where

Ry =V (z—2)?+ b2, Ry =/ (z+7/)% + b2 (3.17b)

Accurately calculated three-dimensional graphs2 of S1(2), S$2(z), C(z), and D(z) for
Boh = m, m/2, and 1.2 show that the real parts of all four of these functions quite
accurately correspond to cylindrical waves when b > h and —h < z < h and that they
are reasonable approximations when Sgb > 1, —h < z < h. The respective amplitudes
are S1(0), $2(0), C(0), and D(0). It follows that for most purposes the distribution of
current induced by the real part of any of the four functions (3.16a—d) in a parallel
dipole when this is at distances b that satisfy the inequality Sob > 1 can be assumed
to be like that induced by a normally incident plane wave, namely cos Bypz — cos Boh.
In special cases, such as that of the resonant circular array analyzed in Chapter 11,
the more severe condition b > h may have to be enforced. The distribution of current
induced by the imaginary part of any of the four functions is closely approximated by
cos %,301 — cos %ﬁoh for all values of Bopb when Bph < S /4.
In order to verify the correctness of these conclusions the difference integral

h
Sy(h, 2) — Sp(h, h) =/ sin fol2'| Ka(z, 2') d2! (3.18)
—h

has been evaluated for fph = 7 over a range of values of Syb extending from 0.04
to 4.5. The real and imaginary parts are shown in Fig. 3.2 together with the three
trigonometric functions, sin Bz, (cos Boz + 1) and cos % Boz, to which the sine, shifted
cosine and shifted cosine with half-angle arguments reduce when fgph = m. For
convenience in the graphical comparison, —(cos foz + 1) and — cos % Boz are shown.
It is evident from Fig. 3.2 that the real part of the difference integral approximates
sin Bpz when Bob < 1, 1 + cos Bpz when Bob > 1. On the other hand, the imaginary
part resembles the shifted cosine with half-angle arguments, in this case cos % Boz, for
all values of Bgb.

As a consequence of these observations, the following approximate representation
of the integrals in (3.6) and (3.10) is indicated. For Bpb < 1,

h R R
/ L&) (COS PoRia _ cosfo ‘”) d7 = W (2)L(2) = Wi L, (2), (3.192)
—h R Riop

2 For examples, see [1], Figs. 1, 2, and 3.
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Figure 3.2 The functions Sj (h, z) — Sp(h, h) compared with three trigonometric functions.

where W is a constant. For ob > 1,

h
R R
(/‘ L) <C°Sﬂ° 12 _ co8Fo ‘2h> dz' ~ cos foz — cos foh. (3.19b)
—n Rz Rion
For all values of Byb
h . .
R R
f 1,(7) <sm,30 2 _ sin fio ]2h> dz' ~ cos %,302 — Cos %,Boh. (3.19¢)
—h Rpp Rion
|
3.3 Reduction of integral equations for phase sequences to algebraic

equations

The relations (3.19a, b, ¢), combined with the results of Chapter 2, indicate that the

current in each of the two coupled elements in both phase sequences must have leading

terms that are well approximated by the following zero-order, three-term formula:

I (@) = 1" ()10 = 1" Tsin Bo(h — |2]) + T (cos Boz — cos foh)
+ T3 (cos L Boz — cos L o)1, (3.20)

where m = 0 or 1 and I‘(,m), Tl(]m) and TI()m) are complex coefficients that must be
determined.
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The substitution of (3.20) into the integral in (3.6) and (3.10) involves the following
parts obtained from the real part K;Z’) (z,7") of the difference kernel Ka(lm) (z,Z)
defined in (3.8) and (3.12) form = 0 and 1:

h
Bob < 1, /h sin Bo(h — 12/ DK (2,2 dz' = Wi sin o(h — [z])  (3.21a)

h
Bob > 1, f sin fo(h — 12 DK (2, 2) dz' = Wag sin fo(h — |z])
—h

+ W (cos oz — cos Boh). (3.21b)

For all values of Bob,’

/ (cos Boz’ — cos ,Boh)K(" )(Z d7 = lleUR(cos. Boz — cos Boh) (3.22a)

h
/h(cos $Boz' — cos %ﬂoh)K[(lm)(z d7 = lIJdDR(cos $Boz — cos 1Boh).  (3.22b)

The corresponding integrals obtained with the imaginary part Kt(i;")(z, 7') of the
difference kernel Ka(lm)(z, 7') are valid for all values of Bpb. They are:

h

/ sin Bo(h — 12/ NK" (2, 2) dz’ = W5 (cos L Boz — cos L Boh) (3.232)
—h

/ (cos Boz’ — cos fo) K" (z, 2') dz = Wiy, (cos L Boz — cos | oh) (3.23b)

/ (cos L Boz’ — cos Lo K (z, 2y dz' = W) (cos L oz — cos L Boh).  (3.23¢)

The several W functions introduced in the above expressions are defined as follows:

=0, h<m/2
\110(1"1? _ (m)( ) Zm poh ==/ (3.24a)
m =h—AJ4, Boh > m/2

Bob < 1:
Wi (z) = esc foh — |z)) / sinBo(h — 12 DK™ (2, 2)dz (3.24b)

3 Strictly according to (3.19b) the integral in (3.22b) should be treated separately with different behaviors when
Bob < 1 and Byb > 1. However, since the distributions cos gz — cos Boh and cos(Byz/2) — cos(Bph/2) are
quite similar when Sgh < 57 /4, and since considerable complication is avoided by not making this separation,
the relation (3.22b) is used for both real and imaginary parts of the kernel and for all spacings.
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W, g is defined in (2.26) and (2.27)

h
fob = 1: | Wise = (=1)"(1 = cos poh) ™! / sino(h = 12

[cos BoR12  cos ,30R12h] /
x — dz'.
R Rion

The following apply for all values of Byb:

h
Wy = (1= cos Lo ! [ sin ot — 12K 0,2 07

h
\Il((i’?/)R = (1 — cos ,Boh)_1 /h(cos Boz — cos ,Boh)KL%)(O, ZHd7

h
Wi = (1 —cos L gom) ™! / (cos Boz' — cos Boh) K (0, 7'y dZ'

h
Wi = (1 —cos 1 goh)~! / (cos L Boz’ — cos L o) K™ (0, ) d7'.
—h

(3.25a)

(3.25b)

(3.26)

(3.27a)

(3.27b)

(3.28)

For each pair of real and imaginary parts, the notation W; = Wgg + jWy will be

used.

When (3.20) is substituted in U™ as defined in (3.7) and (3.11), the notation of

(2.20)—(2.21c¢) applies in the form
v = L e a1 e+ T o,
where
h
Wy (h) = / sin Bo(h — |/ NVK " (h, ') d2’

h
W (h) = / (cos Boz’ — cos Boh)K ™ (h, 7'y d7’
—h

h
vy (h) = / (cos 3oz’ — cos 5 foh) K™ (h, ') dz’

withm =0, 1.

(3.29)

(3.30)

(3.31)

(3.32)

If the approximate formulas for the several parts of the integrals when Bpb < 1

are substituted in (3.6) and (3.10), an algebraic equation is obtained that is just like
(2.22) for the single antenna but with superscripts (m) on I, T, W, V and U. It follows
that (2.23a), (2.24), (2.25) and (2.26) give the solutions for I\, 7" and T if

superscripts (m) are affixed to all W’s and V™ replaces Vs
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When Bob > 1, the equation corresponding to (2.22) has the following slightly
different form:

v\
(I‘gm)\de — = )sinBo(h —|z])

Zo cos Boh
; (m)
(m) g, (m) ) po(m) g, (my _ JATU
+ (1 Vose Vv Ty "Wayg — m) (cos Boz — cos Boh)

F 1 G 4wl T £ Wi (cos Loz — cos LBoh) = 0. (3.33)

If the coefficients of the trigonometric functions are individually equated to zero and
(3.29) is substituted for U, three relations corresponding to (2.23a—c) are obtained.
They are readily solved to give

27 V M)
o — I (3.34)
SoWar cos Boh
TS = (WS w ™ () — w2 cos foh] — jw i (w0 (3.35)
TS = — jIwi e cos foh — Wi ()]
+ WG W () — W, cos fohl/ Q™ (3.36)
QM = wMwlm cos Boh — W ()] + jW S ()W . (3.37)

As throughout this chapter, m = 0, 1.

3.4 The phase-sequence currents and admittances

With the three coefficients I‘(,m), T[(]m) and Tgm) determined, the phase-sequence
currents and the admittances may be written down directly. When Spb < 1, they are

27 ) m
1) = — [sin fo(h — |z]) + T (c0s oz — cos foh)
S0V r" cos Bo
+ 73" (cos L oz — cos 1 Boh)] (3.38)
i
Yy — + [sin Boh + T™ (1 — cos foh) + T (1 — cos L Boh)]
fo\IJdR cos Boh

(3.39)
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with

T = ()" (i) — e’ w1 o™ (3.40)
Ty = — j{WS W cos o — Wi ()] + Wi () w )}/ 0™ (3.41)
0 = Wil cos foh — W (W] + jW ()W, (3.42)

The functions W™ are defined in (3.24), (3.26)—(3.28) and (3.30)—(3.32). For the
zero-phase sequence, m = 0; for the first-phase sequence, m = 1.

As for the single antenna, these formulas for /. Z(m) (z) and Yém) become indeterminate
when Bph = 7 /2. Convenient alternative forms when Boh is at or near 7 /2 are

—2gyVm )
IZ("’)(Z) — [(sin By|z| — sin Bph) + Tl/](m(cos Boz — cos Boh)
o dR
T (cos 1 Boz — cos L foh)] (3.43)
o )
Y = <= [sin foh — T, (1 — cos foh) + TA™ (1 — cos L Bom)] (3.44)
go\de
where, as in (2.37),
1(m) TL(/m) + Sin ﬁ()h 1(m) Tém)
T, = ——o—, p = (3.45)
cos Boh cos Boh

T and TJ" are given in (3.40) and (3.41).
When Bob > 1, the general form of the expressions for the phase-sequence current
and admittance are similar to those for Bgb < 1. They are

2 VM
70m _ IV h 7o ~ .
z (z) oWk cos ok [sin Bo( lz]) + U (cos Boz — cos Boh)
+ T3 (cos 1 oz — cos L Boh)] (3.46)
j2m ) ) - 1
VO = oy o SN ol & T (1 = cos oh) + T5" (1 — cos 3 foh)]

(3.47)

with 7" and T given by (3.35) and (3.36) with (3.37). Similarly, when Soh is near
/2 and Bob > 1,

—j2mvm ,
IZ('”)(Z) = J{onR [(sin Bo|z| — sin Boh) + T[/](m)(cos Boz — cos Boh)
T,;(m)(cos 1 Boz — cos 1 Boh)] (3.48)
ym — [sin Boh — T (1 — cos foh) + Tp\™ (1 — cos L foh)]. (3.49)

COd
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The parameters T(/](m) and Tgm) are defined as in (3.45); Tém) and T[(,m) are given by
(3.35) and (3.36).

Note that the currents and admittances when Sob > 1 differ from those when Sob <
1 not only in the T' (or T") parameters but also in the appearance of W for the isolated
antenna instead of \IJ(%) for the coupled pair.

3.5 Currents for arbitrarily driven antennas; self- and mutual admittances
and impedances

With the phase-sequence currents IZ(O) (z) and Iz(l)(z) determined, it is straightforward
to obtain the expressions for the currents /1,(z) and I>,(z) in the two antennas when
they are driven by the arbitrary voltages Vig and Vog. If

VO =1(Vig+ Vi), VW = 5(Vip— Vao) (3.50)

it follows that, when Bob > 1,

I1:(2) = I9(2) + IV (2) = Vigu(2) + Vaow(z) (3.51a)
by (2) = I9(2) — IV (2) = Vipw(z) + Vaou(2), (3.51b)
where
Jj2n - L0, (D)
U(Z) = m [sin ﬁ()(h — |Z|) + E(TU + TU )(COS ﬂOZ — COS ,B()h)
+ 3T + TS)(cos L oz — cos 1 Boh)] (3.52a)
J27 17 (0) ()
=1  ta©_r _ h
w(z) CoWar cos ol [ (T y )(cos Boz — cos Boh)
+ 3@ — 1) (cos L oz — cos 1 o). (3.52b)

Alternatively, when Boh is near /2,

—j2r . .
v(z) = {0{11 — [(sin o] = sin foh) + L@ 4+ 1/M)(cos oz — cos foh)
_ Lp0) /(1) 1o ool
5(Tp" + Tp ") (cos 5 B0z — cos 5 Boh) ] (3.52¢)
—j2m

w(z) = [%(Tllj(o) — TL/,(I))(cos Boz — cos Boh)

ZoWar

— L — 15V (cos L Boz — cos 1 fo)]. (3.52d)



65

3.5 Arbitrarily driven antennas

The corresponding expressions when Bpb < 1 are easily obtained from (3.38). The
driving-point currents may be expressed in the form

117(0) = VioYs1 + Voo Y12 (3.53a)
17 (0) = VipYa1 + Vao¥io, (3.53b)

where Y1 and Y, are the self-admittances, Yi» and Y;; are the mutual admittances.

They are given by
Yo =Yo=v0) =30 +r®) (3.54)
Yor =Y =w0) = 3¥© —yM) (3.55)
Specifically,
Yo = Yo = 0(0) = —27 [25infoh + T + 1)1 = cos foh)

SoWar cos Boh

+ (@ + 1) — cos L o] (3.56)
Vi = Yor = w0) = ot (T = TP~ cos o)

+ (@ = 1)1 — cos 1 foh)]. (3.57)

When Boh = m/2, the self- and mutual admittances are
Yo = v, = 27 [2sin Boh — (T/Y + T/ (1 — cos Boh)
’ U oWar v v

+ (T + TH)(1 = cos 3 foh)] (3.58)

_jT[

). =Yi=
SoWar

[(Tl/j(o) - T[/J(l))(l — cos foh) — (Tl/)(o) - Tgl))(l — cos 3 oh)].
(3.59)

The associated self- and mutual impedances are the coefficients of the currents in
the equations

Vio = 1z(0)Zs1 + 12:(0)Z12 (3.602)
Voo = 11:(0)Z21 + 12;(0) Zy». (3.60b)
It is readily shown that

Zg =Ypo/D =52+ 2"y Zp=Ya/D =52 +2") (3.61a)

Zin=-Yn/D =529 -2z0);  Zy=-vu/D=352%-2z"), @Gs6lb)
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where D = Y1 Yo — Y12 Y01 = (Z1 Zso — ZuZzl)_l. If lumped impedances Z; and
Z, are connected in series with Vg and V;g, Zs1 and Zs; in (3.60a, b) are replaced by
Ziwn=2Zg+Zyand Zy = Zy» + Z5.

This completes the general formulation for the currents and admittances of two
parallel antennas driven by the arbitrary voltages Vi and Va.

3.6

Currents for one driven, one parasitic antenna

If antenna 2 is parasitic instead of driven and is center-loaded by an arbitrary
impedance Z;, the driving voltage V>o may be replaced by the negative of the voltage
drop across the load. Thus,

Voo = —12:(0) 2 = —1>;(0)/ Y2. (3.62)

If (3.62) is substituted in (3.53b), the result is

D (0) = Vip—22 — vy, 2 , (3.63)
14+ Y02y Zo(Zs1 + Z2) + Z12Z0y
so that
VO3 VASVA)
Yo+ Y Z(Zs1 + Z2) + Z12Z2
It follows from (3.51a, b) that
I1;(z) = V1o [U(Z) - (L) w(z)} (3.652)
o+ Y
h(z) = Vio [w(z) - (L> v(z)} . (3.65b)
Yo +7Y
The driving-point admittance and impedance are
11,(0) Y21Y
Yip=—— =Yg ——— (3.66a)
Vio 2+ Y
1 Z1(Z Z VALY
Zim = _ s1(Zs2o+2Z2) + Z12 21 (3.66b)
Yiin Zyo+ 7y

Note that when Z> = 0 or Y, = o0,

Yiim = Ys1; I;:(z) = Viov(2); I;(z) = Viow(2). (3.67a)
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|
Alternatively, when Zy = oo or Y2 =0,
Y21
Ziin = Zs1; L:(z) = Vio | v(2) — Yo w(z) |;
; (3.67b)
21
b (z) = Vio [u)(z) - v(z)} .
Ys2
The parasitic element is tuned to resonance when Y = jB and B, = —B;s; in
Yo = Gy + j Bs. With this choice, Y21 /(Y2 + Y;2) is maximized so that
Yy
li:(z) = Vio | v(z) — w(z) (3.68a)
GS2
Y3
I;(z) = Vio | w(z) — v(z) |- (3.68b)
G52
Since the coefficient Y51/ Gy is of the order of magnitude of one, the coefficients of
v(z) and w(z) are comparable. It follows that the distributions of I1,(z) and I»,(z) are
roughly similar, whereas when Z, = 0 as in (3.67a), they are quite different unless
Boh is near /2.
|
3.7  The couplet

Perhaps the most interesting two-element array is the couplet in which the distance
between the elements is A/4 and the currents at the driving points are equal in
amplitude but differ in phase by a quarter period. That is

1, (0) = jI1,;(0). (3.69)

It follows from (3.60a, b) that with Z|, = Z»; and Z;» = Z;q,

Vio = 11:(0)[Zs1 + jZ12] (3.702)
Voo = L (0)[Zs1 — jZ12] = 11 (O)[Z12 + jZs1]. (3.70b)
Hence,

Ziin=Zs1 + jZ12, Zoin = Zs1 — jZ12. (3.70c)

The distributions of current are obtained from (3.51a, b). Thus
Zin+jZsa
Za+JjZ2

Z12+ jZsi
—— (7).
Za+jZn

Ii:(z) = V1o [U(Z) + w(z)] (3.71a)

Ly (z) = V1o [w(z) + (3.71b)
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Instead of specifying the driving-point currents /1,(0) and I>,(0) as in (3.69), the
driving voltages may be assigned so that

Vao = jVio. (3.72)
It then follows from (3.53a, b) that
11:(0) = Vio(Ys1 + jY12) (3.73a)
Dz(0) = Vao(Ys1 — jY12) = Vio(Y12 + jYs1). (3.73b)
The driving-point admittances are
Yiin = Y51 + jY12, Yoin = Y51 — jY12. (3.74)

The currents are obtained from (3.51a, b) with (3.61a, b). Thus,

[ Yo+ jYa
I1,() = Vi | v(z) + =451 w(z)]
L Yo1—jY2
[ Zio— jZs
=V |v(@) — o——5— w(z)] (3.752)
L Zs1+jZ12
[ Yio 4+ jYa
I,(z) = Vio | w(z) + 4 v(z)]
L Yo —jYn2
[ Z1y — jZs
=Vio|w@ — ——=— U(Z)] . (3.75b)
L Za+jZn»

The currents are not the same when /,(0) and I, (0) are specified as when V¢ and
Vs are assigned. Note that

[11:(D)]1 — [1z(2)]v = 2Vi0Z12w(2) (3.76a)
[12:(2)]1 — [12:(D)]v = 2V10Z120(2). (3.76b)
If the currents differ significantly, the field patterns cannot be the same.

3.8 Field patterns

The radiation field of an array of two parallel elements is the vector sum of the
fields maintained by the currents in the individual elements. In terms of the spherical
coordinates R, ®, &, that have their origin midway between the centers of the two
elements, the individual electric fields are readily expressed in the form (2.45a, b) for
the currents (3.51a, b). Thus
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1 e~ JBoRi
Eg = —— [Vio f(O®, Boh) + V20g(O, Boh)] (3.77a)
W,r R
1 e JPoR2
Egy = —— [Vi0g(®, Boh) + V2o f(O, Boh)], (3.77b)
YR R
where
b .
Ri =R+ Ecos<bsm® (3.78a)
b .
Ry=R-— 5 cos @ sin ® (3.78b)

£(®, Boh) = [Fn(®, foh) + 3T + TG (0, oh)
+ 3Ty + T D (©, foh)] sec ok (3.79)
g(®, poh) = (T — TG (®, foh) + LTS — TS)D,u(©, poh)] sec foh.
(3.80)

The field functions F,,,(®, Boh), G, (O, Boh) and D,,(®, Boh) are defined in (2.46),
(2.47) and (2.48). Alternatively, when Boh is near m/2, the fields for the currents
(3.52c¢, d) are:

] e_j,B()Rl , ,
Eg = — [Viof'(®, Boh) + Vaog'(©, Boh)] (3.812)
Wr R
1 e JPoR2 ) )
Egy = — [Viog' (®, Boh) + Vao £/ (©, Boh)] (3.81b)
YR R

£(©, Boh) = Hu(©, oh) + LT[ + T[)Gn(®, Boh)
— 1@ + 1"V Dw(©, Boh) (3.82)
g'(©, poh) = 2TV — T/ )Gn(®, poh) — L(TRY — T))DWw(©, Boh).  (3.83)

The function H,,(®, Boh) is defined in (2.51).
The resultant radiation field of the arbitrarily driven two-element array is
—1 e~ JPoR

E€~)=E€91+E62=\I,_dR R

{[Viof(®, Boh)

+ VZOg(®, ﬂoh)]e—](ﬂob/z) COS(DSil’l@
+ [V10g(®, Boh) + Vao £ (O, Boh)]el (Pob/2) cos @sin©y (3.84)

When Boh is near 7/2, —f/(®, Boh) and —g’(®, Boh) may be substituted, respec-
tively, for f(®, Boh) and g(®, Boh).
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The two-term approximation

As pointed out in Section 2.10, the difference between the distribution functions
Fy; = cos oz — cos Boh and Hyp, = cos % Boz — cos %ﬂoh is relatively unimportant
in the determination of the far-field and the driving-point admittance of an isolated
antenna when Boh < Sm/4. This is also true of the far-field and driving-point
admittances of two coupled antennas provided the interaction between them is not
sensitive to small changes in the current distributions. When both elements are driven
by comparable voltages and when the distance between them is sufficiently great
so that Bob > 1, it may be assumed that the substitution of cos fgz — cos Boh for
cos %,302 — COs %ﬂoh can produce no important change in the admittances or the
far-field. When one element is parasitic and unloaded, the three-term approximation
is automatically reduced to two terms since the distribution sin 8o(h — |z]|) is excited
only by a generator or an equivalent voltage drop across a load. Correspondingly, the
two-term approximation is reduced to a single term. However, this is quite adequate
for many purposes. In anticipation, it may be added at this point that when an array
consists of one driven antenna and many parasitic elements, at least two terms are
desirable in the representation of the current distributions. This is considered in a later
chapter.

As for the single antenna, the two-term approximations are quickly obtained from
the three-term formulas by the simple substitution of cos Byz — cos Boh for cos % Boz —
cos % Boh and the representation of the resulting coefficient (Ty + Tp) by T. It is
implicit that V;p — Way, Yp(h) — Wy (h). Thus, the phase-sequence currents and
admittances (3.46) and (3.47) become, for Bob > 1,

my oy _ _J2V (m)
1" (z) = m [sin Bo(h — |z]) + T (cos Boz — cos Boh)] (3.85)
j 27
) =TT i+ 71 —cox o), 356)
where

W) — (W + W) cos Boh

U D
i (hy — wi) cos Boh

(3.87)

Similarly, when Boh is near 7 /2, (3.48) and (3.49) reduce to

(m) —j27’[ V(m) . . 1(m)
1,"(z) = ———— [(sin Bolz| — sin Boh) + T (cos Boz — cos Boh)] (3.88)
SoWar
i
Y = L= [sin Boh — T (1 = cos Boh)], (3.89)

© CoWar
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where

T + sin Boh
cos Boh

7/m — _

W () — W (h) sin Boh] sec foh + W) sin foh — jWi — Wiy
\Ill(]m)(h) - \I/[(I'Z’/) cos Boh

— [\p;nlj) + E,(h, h)]sin Boh — jlllt(i;") — S,(h, h) — qj;n;:)R
Cy(h, h) — [Wqu + Eq4(h, h)]cos Boh :

(3.90)

Note that when foh = /2, Wi (1/4) = W (3./4).
As an example, the phase-sequence currents have been evaluated specifically for
two antennas for which Q = 21In(2h/a) = 10, Boh = 7 and Byb = 1.5. For these

War=5834, w® —_0245 Wi —0245 (3.91a)
W) = —0.633 — 0.524 = —1.157;

1 (3.91b)
W) = —0.633 +0.524 = —0.109
W) =7.848 — j3.939, W) =7.352— j0.66. (3.91c¢)

The amplitude functions are
o (* : a (* :
T 5)= —0.216 + j0.274, T 5= —0.177 + j0.066.

With these values the two-term zero-phase-sequence and first-phase-sequence currents
(in amperes when Vj is in volts) in the two antennas are

12(2) = 112 (2) = v©{0.783(cos foz + 1)
— j[2.805 sin Bolz| — 0.617(cos Boz + D]} x 1073 (3.92a)

—12(;)(2) = Il(;)(z) = v1{0.189(cos Boz+ 1)
— j[2.805 sin Bo|z| — 0.506(cos Boz + 1)1} x 1073. (3.92b)

These currents are shown graphically in Fig. 3.3 in the form I, = I+ j I/, where I is
in phase, I/ in phase quadrature with Vj. The corresponding driving-point admittances
and impedances are

Y = (1.566 + j1.234) millisiemens,

(3.93a)
Y = (0.378 4 j1.012) millisiemens,

Z©® =394 — j310 ohms, ZWM =324 — j867 ohms. (3.93b)
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Milliamperes per volt

Figure 3.3 Zero- and first-phase-sequence currents on two-element array. 2 = 10, fob = 1.5.

The two-term approximations of the general formulas (3.51a, b) are

11:(z) = Viov(2) + Vaow(z) (3.94a)
I (z) = Viow(z) + Vaou(2), (3.94b)
where now
0@ =~ fsinoth — Jz) + LT 4+ TW)cos oz — cos foh)]
SoWar cos Boh 2
(3.95a)
_ T 0 _ _
w(z) = 2o cos ol (T T"")(cos Boz — cos Boh). (3.95b)

When Boh is near /2,

v(z) = —j2n [(sin Bo|z| — si L0 ) _

= olz| — sin Boh) 4+ 5(T" + T"V)(cos Boz — cos Boh)]  (3.95¢)
SoWar

w(z) = T (1" — 7'W)(cos Boz — cos foh). (3.95d)

SoWar
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The self- and mutual admittances (3.56) and (3.57) become

jm

Yo =Yp=—"—[2sinfoh + (T© + TW)(1 = cos Boh)] (3.96)
SoWar cos Boh

Yor = Yip = —2 7 (7O _ 7Oy — cos foh). (3.97)
ZoWar cos Boh

Similarly, when Bph is near 7 /2, (3.58) and (3.59) reduce to

Y1 = Yoo = 2 [2sin foh — (T"© + T'D)(1 = cos foh)] (3.98)
SoWar

Ya1 = Y12 = —2 (7O — 7'D)(1 — cos Boh). (3.99)
SoWar

The two-term self- and mutual admittances for the special case a/A = 7.022x 1073,
Boh = m are shown in Fig. 3.4 as a function of b/A. The self-susceptance is expressed
in the corrected form By + 0.72. Agreement with measured values is seen to be very
good. Numerical values of W, T /m ym y. — ¥, and Y;, are in Tables
2—-4 of Appendix I for three values of Bph and a range of b/A = d/A.

For the special case Q2 = 10, foh = 7w, Bob = 1.5, the two-term self- and mutual
impedances defined in (3.61) with the two-term expressions (3.96) and (3.97) are

Zyp =Zg = 5(Z9 + zV) =359 — j588 ohms (3.100a)
Zo1 = Z1p = 229 — zW) = 35 + j278 ohms. (3.100b)

If antenna 1 is driven and antenna 2 is an unloaded parasitic element, (3.67a) applies.
The two-term formulas for the currents may be obtained directly from (3.94a, b) with
Va0 = 0. Then, in the special case 2 = 10, Boh = 7w, Bob = 1.5,

11.(2) = V10{0.486(cos oz + 1) — j[2.805 sin fo|z| — 0.566(cos oz + 1]} x 1073

(3.101a)
. (z) = Vi0(0.287 4 j0.055)(cos Boz + 1) x 1073, (3.101b)
The corresponding driving-point admittance and impedance are
Y1in = (0.972 + j1.33) millisiemens, Z1in = 436 — j508 ohms. (3.102)

The currents in the driven and parasitic antennas are shown in Fig. 3.5a. They differ
from each other greatly in both distribution and amplitude. Indeed, contributions to
the far-field by the currents in the parasitic element are insignificant and the horizontal
field pattern is almost circular. Note that this behavior is entirely different from what
it would be if the two elements were half-wave instead of full-wave dipoles. In the
former, the current in the parasitic element is comparable and essentially similar in
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2.0 T T T T T T T T
L N=2
1.5 -
L G, i
1.0 -
2 L
[
g L
2 | —— Two-term zero-order theory
= except By, = [B]y + 0.72
= 05 0 Measured points (Mack)
0
_05 | | | | 1 | | 1 1

0 01 02 03 04 05 06 07 08 09 1.0
b/

Figure 3.4 Self- and mutual admittances of two-element array; b is the distance between elements;
Boh =m.

distribution to that in the driven element. The reason for this difference is that the
half-wave elements are near resonance, the full-wave elements near anti-resonance.
This condition can be changed by inserting a lumped susceptance B; (or an equivalent
transmission line) in series with the full-wave parasitic element at its center and tuning
this susceptance to make the entire circuit resonant. When this is done the distribution
functions v(z) and w(z) given by (3.95a, b) give

I1,(z) = V10{0.369(cos Boz + 1) — j[2.805sin Bp|z| — 0.494(cos Boz + 1)]} x 1073
(3.103a)
D>, (z) = V10{[0.064(cos Bpz + 1) — 0.320sin By|z|]

+ j[1.712sin Bolz| — 0.343(cos Boz + 1)]} x 1073, (3.103b)
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(a) Antenna 1 I’ Antenna 2

(driven) VllZ) =0.486 (cos Byz+1) (parasitic)

0.566 (cos B,z +1)

I Bh=m
% =—[2.805 sin f|z| ’
10 Byb=1.5
—0.566 (cos B,z + 1)] 1
3| V—zz =0.287 (cos Byz+ 1)
10
e 4 /
4
’ 1
Vio ’ Pl VLZ =0.055 (cos Byz+ 1)
A 2 10
ol 1@ *\_
L=+, . it
—2.805 sin ﬁ0|z|/ s
L | | |
3 2 -1 0 1 0 1
Milliamperes per volt
(b) "
Ilz 121 Iz - IZ " ]IZ
h=r
V1o = Py I
2, =JX, % = [1.712sin Bz
. v
\/ 10
o —0.343 (cos Byz+ 1)]
X,B,, =1 \‘\
I’ ’
Iz = _ 2,805 sin Byla| /
V1o /
-0.494 (cos B,z + 1] T \
” 4 1//
222 20,064 (cos By + 10320 sin fyl)” SN | o2 =0369 (cos Bz + 1)
Vio \ Vio
1 1 | L . ]
-3 2 -1 0 1 2

Milliamperes per volt

Figure 3.5 Currents on full-wave antenna with (a) a/\ = 7.022 x 10~3 untuned parasite, Q2 = 10;
(b) tuned parasite, Q2 = 10.

These currents are shown in Fig. 3.5b. They are very nearly alike in both distribution
and amplitude, so that the horizontal field pattern of the tuned full-wave parasitic
array must correspond closely to that of the half-wave array with an unloaded parasitic
element.
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The two-term formulas for the currents in the couplet are given by (3.71a, b) with
v(z) and w(z) as in (3.95a, b). For the special case 2 = 10, Boph = 7w, pob = 1.5,
(3.70a, b) give
Zin+ jZs

Voo = Vio (—
Zag+jZ1n

) = (—0.966 + j1.267)V}o = 1.59V;9e /1463 (3.104)

With this value, the explicit formulas for the current in an array are

I1. = Vio{0.129(cos Boz + 1) — j[2.805 sin Bolz| — 0.884(cos Boz + D]} x 1073
(3.1052)

I, = V50{0.400(cos Boz + 1) — j[2.805 sin By|z| — 0.397(cos Boz + 1)]} x 1073,
(3.105b)

In order to obtain expressions for the current that are comparable from the point of
view of maintaining an electromagnetic field, it is necessary to use the same reference
for amplitude and phase. If I, is referred to Vg instead of V;g, the following formula
is obtained in place of (3.105b):

I, = Vi10{[3.554 sin By|z| — 0.884(cos Boz + 1)]
4+ j[2.7105sin By|z| + 0.129(cos Boz + 1)]} x 1073, (3.105¢)
The corresponding driving-point admittances and impedances are

Y10 = (0.258 + j1.768) millisiemens, Y20 = (0.801 + j0.784) millisiemens
(3.106a)

Z10 = 80.8 — j554 ohms, Zyp = 638 — j624 ohms. (3.106b)

The ratio of the power supplied to antenna 1 to that supplied to antenna 2 is
|V20|2G20/|Vi0|>G1o = 7.9. The currents represented by (3.105a) and (3.105b)
are shown in the upper diagram in Fig. 3.6 in the form 11,/ Vip and Ip;/ Va9. The
distribution of I»;/ Vi is shown in the bottom diagram in Fig. 3.6. It differs greatly
from 11,/ Vip (shown in the upper graph) even though the input currents at z = 0
satisfy the assigned relation, I»o = jI1o.

The radiation field of the full-wave couplet may be expressed as follows:

Ey = Eg)l + E(’;)2 = K[Alej(ﬂobﬂ)cos@ + AZe—j(ﬁob/Z) COSCPL (3.107)
where
A1 = Vip[(0.129 4 j0.884)G,, (®, ) — j2.805F,(®, )] (3.108a)

Ay = Vip[(—0.884 4 j0.129)G 1, (©, ) 4 (3.554 + j2.710) F, (O, )] (3.108b)
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Figure 3.6 Currents in full-wave couplet; Irg = jlig; Bob = 2nb/X =1.5; Q2 =10

and where K is a constant. Note that in the equatorial plane, ®
m

= m/2, and
Gn(n/2, ) =m, F,(r/2, m) = 2. The field pattern calculated from the magnitude

of (3.107) with (3.108a, b) for the couplet of full-wave elements is shown in Fig.
3.7 together with the corresponding pattern for the ideal couplet with identical
distributions of current in the two elements. (This latter is quite closely approximated

by the pattern of a couplet of half-wave elements.) Both patterns are normalized to
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Figure 3.7 Horizontal pattern of full-wave couplet with I,g = jl19; 2 = 2In(2h/a) = 10,
Boh = m, Bpb = 1.5.

unity at ® = 0. It is seen that the deep minimum at ® = 180° in the ideal pattern
(this would be a null if Bopb = 7/2 had been used instead of Bgb = 1.5) is replaced
by a minor maximum with an amplitude that is about one-half that of the principal
maximum at ® = 0. Thus, the characteristic property of the ideal couplet of providing
a null in one direction does not exist in actual couplets when Soh = m or, in fact, for
any other value of Boh that is not near /2 or that is not an odd multiple thereof.
Significantly, this makes the cardioid pattern of the half-wave couplet a relatively
narrow-band property!
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The two-element array, which was investigated in the preceding chapter, may be
regarded as the special case N =2 of an array of N elements arranged either at
the vertices of a regular polygon inscribed in a circle, or along a straight line
to form a curtain. Owing to its greater geometrical symmetry, the circular array
is advantageously treated next. Indeed, the basic assumptions which underlie the
subsequent study of the curtain array (Chapter 5) depend for their justification on the
prior analysis of the circular array.

The real difficulty in analyzing an array of N arbitrarily located elements is that
the solution of N simultaneous integral equations for N unknown distributions of
current is involved. Although the same set of equations applies to the circular array,
they may be replaced by an equivalent set of N independent integral equations in
the manner illustrated in Chapter 3 for the two-element array. Since the N elements
are geometrically indistinguishable, it is only necessary to make them electrically
identical as well. One way is to drive them all with generators that maintain voltages
that are equal in amplitude and in phase. When this is done all N currents must also
be equal in amplitude and in phase at corresponding points. But this is only one of
N possibilities. If the N voltages are all equal in magnitude but made to increase
equally and progressively in phase from element 1 to element N, a condition may be
achieved such that each element is in exactly the same environment as every other
element. There are N such possibilities since the phase sequence closes around the
circle when the phase shift from element to element is an integral multiple of 27 /N.
Any increment in phase given by 2mrm/N withm = 0,1,2,... , N — 1 may be
used. Specifically, when N =2, the two possibilities are 0 and 7. This means that
the two driving voltages and the two currents may be equal in magnitude and in phase
(0, 0) or equal in magnitude and 180° out of phase (0, 180°). Similarly, when N =3,
there are three possibilities, 0, 27 /3 and 4w /3. The voltages and currents around
the circle may now be equal in magnitude with phases (0, 0, 0), (0, 120°, 240°) or
(0, 240°, 480°).

The analysis of the circular array involves the solution of N simultaneous equations
similar in form to (2.15). The case N =2 is solved in Chapter 3 by rearranging the
two simultaneous equations for the currents /1;(z) and I>,(z) into two independent
equations. These were derived by adding and subtracting the two original equations.
When the elements were driven by voltages which were equal in magnitude and
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either in phase or 180° out of phase, the resulting currents were independent and
named, respectively, the zero- and first-phase-sequence currents. The solution for
the phase-sequence currents was then carried out and, after a simple algebraic
transformation, the actual currents in the elements were derived. The solution for
arbitrary driving conditions could also be obtained from the two phase-sequence
solutions. A generalization of this procedure is followed in the analysis of the circular
array.

The arrays considered here consist of N identical, parallel, non-staggered, center-
driven elements that are equally spaced about the circumference of a circle. This means
that the elements are at the vertices of an N-sided regular polygon. Arrays of this
type are frequently called single-ring arrays in the literature. Their analysis formally
parallels step-by-step the analysis of the two-element array in Chapter 3. However,
contributions to the vector potential on the surface of each antenna by the currents in all
of the elements must be included and this leads to a set of N coupled integral equations
for the N currents in the elements. The complete geometrical symmetry of the array
permits the use of the method of symmetrical components to reduce the coupled set of
integral equations to a single integral equation for each of N possible phase-sequence
currents. All other quantities that are required to design and describe the array can be
calculated from the solution of essentially one equation with N somewhat different
kernels.

The coordinate system and parameters that are used to specify an array are shown
in Fig. 4.1 for five elements. The diameter of each element is 2a, its length is 24, the
distance between the kth and the ith elements is by;, the distance between adjacent
elements — the length of the side of a regular polygon with the elements at its vertices
—is d, and the radius of the circle is p.

As indicated in Sections 3.9 and 2.10, the two-term approximation is generally
adequate when 7 < 5A/8 and b > X /2m. Since it is much simpler and has been used
to compute the theoretical results discussed in this chapter, the currents, admittances,
and fields in the following sections are determined in the two-term form. Later when
matrix notation is introduced, both the two- and the three-term forms of the theory are
presented in compact form. This serves both as a summary of the theory of circular
arrays and as an introduction to the analysis of more general arrays in Chapters 5
and 6.

Integral equations for the sequence currents

The vector potential difference at the surface of each element in a circular array of
N elements is easily obtained as a generalization of (3.1). Since all elements are thin
and parallel to the z-axis, only z-components of the current and the associated vector
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Figure 4.1 Coordinate system for circular arrays.

potential at the surface of each element are significant. Thus, the vector potential
difference on the surface of element 1 is

4y [A1(2) — A ()]

h
= / [1:(Z)K114(z,2') + I (2)Ki2a(z, 2) + -+ + In(2)Kina(z, 2)]dZ
_h

jam

= Zocos ol [%Vlo sin Bo(h — |z|) + Uy (cos Boz — cos Boh)], (4.1a)

where

—j¢ h
U1 = 20 [ 1@ K2+ e Kiath )+
—h

+ In(Z)Kin(h, 2)]d7. (4.1b)
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Similarly, the vector potential difference on the surface of element 2 is

h
Ay Az () — A ()] = /h[llz(z/)KZId(Z’ 2) + by () K22a(z,2) + -

+ In; () Kona(z, 2)]dZ
jam

Co cos Boh

+ Uj(cos Boz — cos Boh)],

[3Vaosin Bo(h — |z)

where

—Jjdo

U
2= kg

/ (1)K (h &) + D) Kaa (D) + -
+ In:(z)Kan (h, 2)1d7.
The vector potential difference on the kth element is
470115 [ARe(2) = Are ()] = f lez(z VKiia (e ) !
jam
;0 cos foh
+ U (cos Boz — cos Boh)],

[ Vko sin Bo(h — |z])

k=1,2,...,N

where

gLl f Z @)K (h, ) d.
=1

In these expressions the kernels are

, , , e~ JPoRki e~ JPoRkin
Kria(z,7) = Kii(2,2') — Kyi(h, 2') = -

Ry Rein

with

Ri =/(zk — )% + b},
Riin =/ (h — z))* + b;%l-, bk = a.

4.1¢)

(4.1d)

(4.1e)

(4.11)

4.1g)

(4.1h)

(4.11)

Viko is the applied driving voltage at the center of element k (or the voltage of an

equivalent generator if the element is parasitic with an impedance connected across its
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terminals), and Uy is the effective driving function characteristic of that part of all the
currents that maintains a vector potential of constant amplitude equal to thatat z = &
along the entire length of the antenna. To reduce the set of N simultaneous equations in
(4.1e) to N independent equations, the symmetry conditions characteristic of a circular
array must be imposed and the phase-sequence voltages and currents introduced.

Assume that all of the driving voltages are equal in magnitude and have a uniformly
progressive phase such that the total phase change around the circle is an integral
multiple of 2. Each multiple of 27 is one of the N phase sequences designated by a
superscript (m); these range from zero to N — 1. In the zero phase sequence, all driving
voltages are the same; in the first phase sequence, the driving voltages of adjacent
elements differ by exp(j2m/N); in the mth phase sequence, the driving voltages of
adjacent elements differ by exp(j2wm/N), and the voltages of the kth and the ith
elements are related by

Vi = Vel 2mi=m/N (4.2a)

Because of the symmetry of a circular array, the currents in the elements must be
related in the same manner as are the driving voltages. That is,

L:(Z) = I (7)elmi=km/N, (4.2b)

Note that with these driving voltages both the geometric and the electrical environ-
ments of each element in the array are identical. Therefore, when (4.2a) and (4.2b) are
substituted into the set of coupled integral equations, /;(z") can be removed from the
summation, the remaining kernel is the same regardless of the element to which it is
referred, and each equation in the set reduces to

h
f ™K 2,2y d7!
—h

4 .
= COCJOW [%V(m) sin Bo(h — |z]) + U™ (cos Boz — cos Boh)], (4.3a)
wherem =0,1,...N — 1 and
(m) —Jj%o h (m) (/N g (m) ’ ’
—h
N —JjBoRiin
K™ (h, gy = " e/2mi=m/N [—e } (4.3¢)
; Riin

(4.3d)
Ry; Riin

N —JjBoRi1i —JjBoR1in
i27(i—)m/N | € ¢
K‘(im)(Z, Z/) _ Ze] a(i—1)m/ |: :|
i=1
For later use, it is convenient to separate this difference kernel into two parts that
depend, respectively, on the real and imaginary parts of the exponential functions.
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That is
(m) N _ pr(m) / . p-(m) /
K; ' (z,2) = Kyp'(z,2) + jK ;' (2, 2), (4.3¢)
where
N —JjBoRii —JjBoR1in
(m) N 27 (i—1)m/N € €
Kp(z,2)=) ¢ Re [ - } (4.31)
R ; Ry; Riin
N —JjBoRui —JjBoR1in
(m) N o_ 27 (i—1)m/N € €
K, '(z,z2)=) ¢ Im[ - (4.3g)
di Z Ry; Riin s

i=1

The method of solution for (4.3a) parallels that of (3.6) and (3.10); the discussion
of Section 3.2 and the steps of Section 3.3 are applicable if note is taken of Section
3.9, which relates the two-term to the three-term theory. In fact, the solution is formally
given by (3.85) and (3.86) withm = 0, 1,2, ..., N —1. This is discussed in somewhat
greater detail in a later section (Section 4.6) rather than at this point in order to avoid
complications in these initial stages of the analysis. Thus, the mth phase-sequence
current in the two-term form is given by

2 v m) . T
1™ () = —22°_[inBo(h — |2]) + T (cos foz — cos foh)].  Poh # =
ZoWar cos Boh 2
(4.4a)
27 V0
1) = L2255 (1 — sin olzl — T/ cos ozl Poh = - (4.4b)
toWar 2

The W and T functions which occur in (4.4a, b) are defined as follows when Bod > 1:

W () — [ + jwiP cos ok
Wi cos foh — W™ ()

Uet B (A A) s <A k)

dR S\ 55 ] RO\ 5,

7rm) _ 4 ‘; - 4.4 (4.5b)
cs (22
:(33)

A A A
W,;r = Re |:Sin,30h Cisi (h, h — Z) — COSﬂQh Sasi1 (h, h — Z)i| s h > Z

T —

(4.5a)

A
= Re[Cyz1(h, 0) — cot foh Sgz1(h, 0)], h < 1 (4.6b)
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W (h)y = sin foh CL (h, h) — cos Boh SE" (h, h) .7
W (hy = €Y (h, h) — cos Boh ELV (h, h) (4.8)
Wi — (1 — cos Boh) ™' [sin Boh C2, (h, 0) — cos foh STe)(h, 0)] 4.9)
Wi — Im{(1 — cos Boh) ™' [sin foh C\2), (h, 0) — cos Boh SI2 (h, 0)1} (4.10)
W) = (1 — cos foh) "' [CY% (h, 0) — cos Boh Ee) (h, 0)] (4.11)

CM(hz)=Ch,2)— ™ hy,  SU(h,z) =S (h,z) — S (h, )

Ef (h.2) = E$”(h,2) — L b, h) (4.12)
N oo h —jBoRyi
C¥(h, ) =) /= ImINC, ) = / cos oz’ & ———d7 (413
i=1 —h bi
NGO h —jBoRyi
S (h,z) =Y es2mibm/INg, Spi = / sin Bolz’| £ d7  (4.13b)
i=1 —h Rp;
N oo h ,—jBoRbi
EQV(h,2) =) /2 i=DmNg,  Ey = / ‘ o d! (4.13¢)
i=1 —h bi

Rbi = (Z — Z/)z + blz, bi =aq for i =1. (414)

The subscript d X1 indicates that only element 1 (i = 1) is to be included and effects
of all other elements are ignored; the subscript d £2 indicates that only the effects of
elements other than element number 1 are to be included i =2, ..., N).

In order to evaluate (4.4a, b) it is convenient to lump the various coefficients into
new parameters defined as follows:

j2m

gm — ’ cm — gm)yp(m) (4.15a)
SoWar cos Boh
S _ gji” , cm) = g/m)rm) (4.15b)
oWar

so that, when normalized to V(’"), (4.4a, b) become

Jm 2)
y (m)

= 5" sin Bo(h — |z|) + ¢ (cos Boz — cos Poh), Boh # (4.162)

ST SR

= '™ (1 — sin Bolz|) — '™ cos oz, Boh = (4.16b)
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The sequence admittances are given by the normalized sequence currents in amperes
per volt evaluated at z = 0. Thus,

yom _ 1O

v 5™ sin Boh 4+ ¢™ (1 — cos Boh), Boh #

(4.17a)

— g _ ), Boh = —. (4.17b)

[N I SR

For a circular array of N elements there are N sequences but only (N + 1)/2 are
different if N is odd or (N/2) + 1 if N is even. This is the same as the number of
different self- and mutual admittances.

The sequence currents form a set of functions that are characteristic of the ge-
ometrical and electrical properties of the array. Thus, W,z and the 7 or T/™
function depend upon the number of elements in the array, their spacing, and the length
and thickness of the elements. Once these parameters have been specified, the set of
sequence currents can be calculated. Distributions of current in the elements, their
driving-point admittances, and the far-zone fields of the arrays with arbitrary driving
conditions can be determined from the set of sequence currents with the relations
given in Section 4.2. Short tables of Wy and T or 7' are given in Appendix I;
additional values are available [1]. It may be noted parenthetically that in the notation
of [1], the terms ‘quasi-zeroth-order’ and ‘zeroth-order admittances’ refer identically
to what is called the ‘two-term approximation’ in this book.

4.2 Sequence functions and array properties

Imagine the array to be excited simultaneously with currents in all of the N possible
phase sequences. Then the driving voltage and current for the kth element are

N-1
Vo= 3 vimginbm/N (4.18a)
m=0
N—1 )
I(z) = ) 1M (g)es2mk=m/N, (4.18b)
m=0

where V" is the mth phase-sequence voltage and 1™ (z) is the corresponding phase-
sequence current. Similarly, from (4.18b) and (4.17), the self- and mutual admittances
are

N—-1

1 .
Y1, = Y(m) j27T(k—1)m/N. 4.19
= > e (4.19)

m=0
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If the elements of the array are driven by arbitrary voltages V; which produce
corresponding currents /;(z) along the elements, the sequence voltages and currents
are readily obtained from the relations

1 Y o
V(m) — N Z ‘/l_e—JZJT(l—l)m/N (4203)
i=1
1 &Y o
1M (7) = ~ Z Ij(z)e/2mi=Dm/N (4.20b)
i=l1

With (4.18b) and (4.16) the normalized current distribution along the kth element can
conveniently be expressed as follows:

Ii(z . g
D) i sin fo(h — |2 + cxteos oz — cosfoh), o £ 5 (4210
1
/ . / T
= 5, [1 — sin Bolz|] — ¢} cos oz, Boh = ) (4.21b)
where the complex amplitude functions s; and ¢y are
N=1 y(m
— (m) ,j2m(k—1)m/N 4.22.
Sk Z Vi s'e ( a)
m=0
S Vo ian
cp = — MmN (4.22b)

The corresponding expressions for s; and c¢; are similar. The radiation-zone electric
field for each element is given by (2.43); the total field is a superposition of the fields
maintained by each element. When the currents in the form (4.21a, b) are substituted
in (2.43), the resulting expressions for the field are

r N

E ) .
® _ . JBop sin O cos(¢p; —P)
= F (O, Boh E s;e’
KK, v, ~ @ Fo )l.zl ’

N
+ GO, foh) Y cielPorinOs G oy 2 2 (4.230)
i=1

N
T . .
- —H <®, _) E 5! @JBop sin O cos(p; —P)
2 i=1 l

N
_ z / jBop sin O cos(¢; —P) _ z
G (@, 2) ;cie 0 . ph=3. (4.23b)
with
e JPoR J%o wd/A
Ki= . K =22 = TU 4 =i —1)21/N.
1 R o Bop SnGr/N) ¢i = —1)2n/
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F(O®, Boh), G(O, poh) and H(®,m/2) are given by (2.46), (2.47), and (2.52a),
respectively. These are the so-called element factors and there is one for each type
of current distribution. The sums in (4.23a, b) are the array factors. The complex
amplitude coefficients are not simply related to one another and the array factors
generally cannot be summed in a closed form to yield something equivalent to the
familiar sin Nx/ sin x patterns. In (4.23) the driving voltage V; appears since the other
driving voltages have been referred to the voltage of element 1. Any other element
could have been used for this normalization.

The steps required to make use of this theory in the analysis of a particular array
can now be summarized. If the driving voltages are specified, sequence voltages are
computed from (4.20a), s; and ¢ from (4.22a, b), the current distributions from (4.21a,
b), and far-zone fields from (4.23a, b). Driving-point admittances are found either from
the current evaluated at z = 0, namely

1 (0) _ I (0) Vi
Vi Vi Vi

Ykin = (4.24&)

or from the coupled circuit equations and the self- and mutual admittances
Ny
l
Yiin = E — Yii. (4.24b)

If the driving-point currents are specified, sequence currents can be found from
(4.20Db), (4.16a) or (4.16b) solved for V™ and the remaining steps carried out as
when the driving voltages are specified. Numerical results for a particular array can be
obtained from the tables of Appendix I or [1].

Self- and mutual admittances

For a circular array with uniformly-spaced elements, self- and mutual admittances are
defined in terms of the sequence admittances by (4.19). The more general definition
(discussed in Chapter 14) of self- and mutual admittances as the coefficients of
the driving-point voltages in the coupled circuit equations also applies. For the pth
element,

N
I,(0) =) " Vi¥p (4.25)
i=1

from which it follows that the self-admittance Y,, of the pth element is the
driving-point admittance of that element when all other elements are present and
short-circuited at their driving points. The mutual admittance Y, (p # k) between
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element p and element k is the driving-point current of element p per unit driving
voltage of element k with all other elements present and short-circuited at their driving
points. Thus, the mutual admittances characterize the degree in which power that is
fed to one element of the array is transferred to the remaining elements.

Among the properties of circular arrays that are revealed by a study of their self-
and mutual admittances are resonant spacings at which all of the elements interact
vigorously and, in larger arrays, spacings at which at least some of the mutual
admittances are very small compared with the self-admittance. In arrays containing
only a few elements, the resonant spacings are most important for elements with
lengths near 7 =A/4; in larger arrays they are most important for elements with
somewhat greater lengths. When the elements in an array are at the resonant spacings,
their currents are essentially all in phase and their properties are very sensitive to
small changes in frequency. Although calculations of the driving-point admittances
generally must include all of the mutual admittances when the array consists of
only a few elements, there are ranges of spacings in larger arrays over which at
least some of the mutual admittances are much smaller than the self-admittance.
In larger arrays there is also a range of spacings over which many of the mutual
admittances are nearly the same in magnitude and phase. These properties are
illustrated in Figs. 4.2-4.7, which show graphically examples of self- and mutual
admittances in millisiemens for a range of values of d /A, the distance between adjacent
elements.

With the exception of the self-susceptance shown in Fig. 4.3b, the theoretical
results are all evaluated from the two-term theory and were computed from (4.19),
(4.17b), and the functions in (4.5)—(4.14). The theoretical self-susceptance in Fig. 4.3b
is shown in the corrected form Bj; + 1.16 with Bj; calculated from the two-term
theory. The correcting susceptance 1.16 includes the term 0.72 needed to correct the
two-term susceptance and an additional susceptance that takes account of the particular
end-effects of the coaxial measuring line. The measured results in Figs. 4.2, 4.3 and
4.4 were obtained from load admittances apparently terminating the coaxial line.
They were measured by the distribution-curve method discussed in Chapter 14. The
experimental apparatus consisted of combined slotted measuring lines and monopoles
driven over a ground-screen. The actual measured results have been divided by two
and an approximate terminal-zone correction of Y7 = j0.286 millisiemens as obtained
from Fig. 14.3b has been combined with By so that the final results apply to an ideal
center-driven dipole with all contributions to the admittance by an associated driving
mechanism eliminated.

An array of four elements of length 7 =X/4 (Fig. 4.2) has a resonant spacing
near d /A =0.54. At this spacing all conductances have sharp positive maxima while
the suceptances are all essentially zero. If the length of the elements is increased
to h=3A/8, a similar resonance occurs in the range between d/A =0.37 and 0.40,
but the maxima are not as sharp. With eight elements (Fig. 4.5) there are several
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Figure 4.2 (a) Measured and theoretical self- and mutual conductances for circular array; N = 4,
h/x =1/4,a/» = 0.007022.

resonances but only the first two, which occur near d/A=0.35 and 0.50, are
sharply defined. Also, from Fig. 4.5 it is seen that the conductances all have the
same sign at the first resonance but not at the second. For twenty elements with
length 7 =X/4 it is seen from Fig. 4.6 that a number of resonances occur, but that
they no longer have large amplitudes. On the other hand, when the length of the
elements is near &7 =31/8, the resonances are sharply defined and a small change
in spacing (or frequency) produces large changes in the admittances as shown in
Fig. 4.7.

Note also that, whereas the four- and eight-element arrays have only one spacing
each at which some of the mutual conductances or susceptances are small compared
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Figure 4.2 (b) Like Fig. 4.2a but for the susceptances.

to the self-conductance or susceptance, there is a considerable range of spacings
for a twenty-element array over which only Yj; is important and all other mutual
admittances are small compared to Y7;. For close spacings, many of the mutual
admittances have essentially the same value in Figs. 4.5 and 4.6. Also, at small
spacings the self-susceptance and the mutual susceptance between adjacent elements
become very large compared to either the remaining susceptances or the conductances.
This indicates that it is these quantities which cause difficulties in matching arrays
of closely-spaced elements. These susceptances can be controlled at least partially
by an adjustment of the lengths of the elements. Additional, more extensive graphs
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Figure 4.3 (a) Measured and theoretical self- and mutual conductances for circular array; N = 4,
h/x =3/8,a/r =0.007022.

and tables of self- and mutual admittances are in the literature [2]. All of the results
discussed here are for elements with the radius a/A = 0.007, but since the parameters
of an array change quite slowly with the thickness of the elements, the qualitative
behavior should be the same for thicknesses that do not violate the requirement of
‘thin’, i.e. Bpa < 0.10. Note, however, that the self-impedances of the individual
elements change significantly with their radius — especially when 4 is not near
A/4.
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Figure 4.3 (b) Like Fig. 4.3a but for the susceptances.

Figures 4.2 and 4.3 indicate that, except near the sharp resonances, the results
from the two-term theory are in good agreement with the measured values for all
conductances and mutual susceptances. Part of the differences between measured
and computed conductances at the sharp resonant maxima for 4 =A/4 may be due
to the difficulty encountered in obtaining accurate measurements over this region.
The self-susceptance and its correction were discussed in Chapter 2. In Fig. 4.2, no
correction has been applied to Bjp; the use of the correction 0.72 millisiemens that
was indicated in Chapter 2 would yield better agreement for d/A < 0.40. In Fig.
4.3, the correction applied to By is 1.16 millisiemens. As previously discussed, this
includes both the term 0.72 and an additional empirically determined susceptance that
takes account of the end-correction for the coaxial measuring line actually used. It
was determined from a comparison of theoretical and measured results for a single
element (Fig. 2.6). Since the correction to By is a constant, it is evident that the
correct variation of By with d/A is given by the theory. In a practical application, the
characteristics of a given array are determined from the theory, a single model of the
elements of the array is constructed, and its driving-point admittance measured. The
difference between theoretical and measured driving-point susceptances for the single
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Figure 4.4 Measured and theoretical self- and mutual admittances, five-element circular array;
h=x/2.

element may be used as a correction for the computed driving-point admittances in the
array.

It is sometimes convenient to characterize element intercoupling by self- and mutual
impedances instead of admittances. For a general array, the conversion from an
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Figure 4.5 (a) Theoretical self- and mutual conductances for circular array; N = 8, h = 1 /4,
a/r = 0.007022.

admittance basis to an impedance basis requires an inversion of the admittance matrix.
For a circular array, the sequence admittances and impedances are reciprocals, that is,

zm) _ 1/Y(m)

(4.26)
N-1

Zii = 1 3 emi2nti=bm/N Zm 4.27)
N m=0

so that the reciprocal of only one complex number is required for each sequence.

4.4

Currents and fields; arrays with one driven element

One of the simplest examples of the application of the two-term theory is provided by
ring arrays with one element driven and the remaining elements short-circuited at their
driving points. In the following examples, the radius of the elements is taken to be
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Figure 4.5 (b) Like Fig. 4.5a but for the susceptances.

a/’ = 0.007 and the radiation patterns are all measured or computed in the equatorial
plane, ® = 7 /2. The relative radiation patterns are computed from

EL(O®, @) EL(O, ®)

, (4.28)
Eg)m ’ Eg)*m

Psp = 10log

where Eg,
indicates the complex conjugate, Eg (©, @) is given by (4.23), and Py p is the relative
magnitude of the Poynting vector in decibels (dB).

Figure 4.8a contains two examples of the radiation patterns of five-element arrays.
One pattern is for d = A /4 and & = A /4 and has a back-to-front ratio of about —14 dB
with half-power beam widths of about 100°. The second pattern is also for d = A/4
but & = 31/8; it has a very smooth angular variation with a back-to-front ratio of
about —20 dB and beam widths of about 140°. Agreement between the theoretical and
measured results is well within 1 dB except near the deeper minimum in the backward
direction near ® = 180°. Similar patterns for #/A = 0.5 and two values of d /X are in

Fig. 4.8b.

is the maximum value of the field in the plane ® = m/2. An asterisk
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Figure 4.6 (a) Theoretical self- and mutual conductances for circular array; N = 20, h = A /4,
a/r = 0.007022.

Corresponding currents in the elements of the two arrays with the patterns given in
Fig. 4.8a are shown in Figs. 4.9 and 4.10. As a consequence of the symmetry, only
three of the currents are different for each five-element array. The radiation patterns
depend only on the relative distributions of current. If the currents in Figs. 4.9 and
4.10 were simply normalized to their maximum values, it is evident that agreement
between theoretical and measured results would be very good and, therefore, measured
patterns well represented by the theory. In order to permit detailed comparison of the



98 The circular array
|

10.0 \
1
\
r \
\
AN
8.0 AR
\
L \
\
\
6.0 AP
\
[ \
\
\
N -~
4.0 S e
\
2] L 1
5 v
=) NP
z 20f ‘
=

Figure 4.6 (b) Like Fig. 4.6a but for the susceptances.



99
—

4.4 Currents and fields

é T T T T T
g 0.8 1
= 0.6F 1
0.4F s
S02} '
£
'Qa‘) B 1
Z0.0 =
= |
02}
N Gl7
04} :
L i L G18
06} 1 —06F Gio
i i i G1oJGin i
-0.8 I 1 1 I 1 0.8 I 1 I 1 1
01 02 03 04 05 01 02 03 04 05
d/h /A

Figure 4.7 (a) Theoretical self- and mutual conductances for circular array; N = 20, h = 31/8,
a/x = 0.007022.

experimental and theoretical models, the relative amplitude and phase of the current
along each element were measured and normalized to the measured self- and mutual
admittances. Thus,

Ie@ _ @I jw

Vi Vi

_ @I+ sin ()] = RE@ +IIm L)
Vi Vi

(4.29)
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Figure 4.7 (b) Like Fig. 4.7a but for the susceptances.

where the real and imaginary parts are, respectively, in phase and in phase quadrature
with the driving voltage. The relatively small amplitude of the current |/3(z)|/ V] in
Fig. 4.9 prevented an accurate measurement of phase in this case.

The experimental model that was used for the measurement of both field patterns
and currents consisted of five monopoles over a ground plane combined with a



101
—

4.4 Currents and fields

gL WA=02500—""
-10 |
dB
-12

T

—14 +

1 1 1 1

1 1 1

L L3
0 20 40 60 80 100 120 140 160 180

@ (degrees)

Figure 4.8 (a) Radiation patterns for five-element arrays with one driven element; 4/A = 0.25 and
0.375.

measuring line for each. The equipment and procedures for measuring amplitude and
phase are discussed in Chapter 14. The s; and c¢; coefficients for use in (4.21) and
(4.23) can be computed from the values of W;r and T in the tables of Appendix I with
the use of (4.15a, b) and (4.22a, b). Numerical data for the two five-element arrays
under discussion are

N=5 d=xr/4, h=ir/4

5] = j2.6824; ) = sg =5y = sg =0;

C’l = —4.2084 + j9.2159; C'2 = C/5 = —0.8072 — j4.6906; (4.30)
¢y = c¢j = 0.6835 — j0.3656;

N=5  d=1/4 h=3)1/8:

s1 = —Jj3.6571; sy =s3=s54=155=0;

c1 =0.7504 4+ j1.1391; ¢y = c5 = 0.4492 + j0.4419; 4.31)
¢c3 = cq4 = 0.1890 + j0.1678.
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Figure 4.8 (b) Horizontal pattern of parasitic arrays of two and five elements in a circle;
h/Ax = 0.50; d is the distance between adjacent elements.

Note that the currents in the parasitic elements are represented by shifted cosine
components only.

The radiation patterns in Fig. 4.8a suggest that spacings can be found at which the
pattern is a smooth function of ® and has a deep minimum near ® = 180°. Examples
of such patterns are shown in Fig. 4.11 for N = 4, 5, 10 and 20 and 2 = 3A/8.
As N increases, such patterns occur when the circumference of the circle containing
the array approaches 2A. For them, the phase of the electric field is also a smooth
slowly changing function of the azimuth angle ® as shown in Fig. 4.11. The phase
was computed from (4.23a) in the form

Ep(n/2, @) _ Re[Eg)(n/z, (I))} +jIm[E(’_)(n/2, cb)}

KK Vi KKiV; KKiW
_ | Ee@/2 D) jwipe) 4322)
KKV,
Im EL, ()2, ®
W02, &) = tan~! M Ee(T/2.9) (4.32b)

Re Ef(71/2, @)
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Figure 4.9 Element currents; N =5, h =X1/4,d = 1 /4.

4.5 Matrix notation and the method of symmetrical components

In the preceding sections the N simultaneous integral equations for the N currents in
a circular array were replaced by N independent integral equations by a procedure
known as the method of symmetrical components. This procedure was introduced as a
generalization of the corresponding treatment of the two coupled equations analyzed
in Chapter 3. It is now appropriate to systematize the general formulation with the
compact notation of matrices.
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The general method of symmetrical components became well known in its ap-
plication to problems in multi-phase electric circuits. Loads on three-phase power
systems, for example, must generally be balanced to give equal currents in all three
branches. Under some conditions unequal loads are placed across the supply lines.
The calculation of the resulting branch currents is usually made in terms of three
phase-sequence components. The zero phase-sequence currents are all in phase. The
first sequence contains three equal phasors which have 120° progressive phase shifts.
These phasors rotate in the counter-clockwise direction in the complex plane as time
increases. The angular velocity is w. The second phase sequence has three phasors with
equal magnitude and a progressive —120° phase shift. Since the currents generated
by the three sets of phase-sequence voltages do not interact with one another, they
may be calculated separately and later combined to give the actual currents. A similar
procedure applies to an N-phase system.

The equations which relate the currents and voltages in N coupled circuits have the
following matrix form:

[ZI{1} = {V}, (4.33)
where
I Vi
I V2
=11 =1, (4.34)
In VN
[ Zu Zin Ziz ... Zin
Zy  In o Zon
[Z1=| . (4.35)
L ZN] e ZNN
The usual reciprocity of off-diagonal impedances is assumed, ie., Z;; = Zj;. In

addition, [Z] is a circulant matrix, so that all rows are cyclic permutations of the first
TOoW.

In order to illustrate the application of the method of symmetrical components, this
set of equations will not be solved in the usual manner by setting {/} = [Z]"YVv).
Instead, the phase-sequence voltages and impedances will be calculated first by means
of the following transformation matrices:

o r1 1 1 1 7 (W
V(l) 1 p_1 p_2 .. p_(N_l) Va
14 — l 1 p*2 p’4 . p*Z(N*” Vs
: N ) ’
Vol . : : :
y=D 1 p—(N—l) p—2(N—l) p—(N—l)(N—l)_ Vy

(4.36)
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where p = ¢/27/N or
(VP V). 4.37)
Similarly, for the impedances
{(z™) =P1{Z}, (4.38)
where
7(0)
M
(zmy=17 (4.39)
Z(N=1)
Zn
Z12
{(Z}y=1Z13 (4.40)
ZiN
! 1 o1
1 p p2 p(N_l)
[Pl=| 1 p? p’ R A (4.41)
L1 pv-D p2v-D p(N=D(=D)
The phase-sequence currents are given by the algebraic equations
[ =y zm m=0,1,...(N = 1). (4.42)
The original currents I;,i = 1,2,3, ... N are given by
{1y =[PHI™), (4.43)
where
I
I
{1} = (4.44)
In

As a trivial example of the method, consider two coupled circuits with the same
self-impedances. The matrix equation is

[Zn le:|{11}:{V1}
Ziy Zu] 2 )

(4.45)
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With p = ¢/27/N = ¢J™ = —1, the matrix P! defined by (4.36) is

1 1

P~ ' =1 . 4.46
(P! =1 [1 _J (4.46)
The phase-sequence voltages and impedances as obtained from (4.37) and (4.38) are

v O 1 11 W Vi+ W

=1 =1 (4.47)

vy 1 1] (W Vi—V2

and
© 1 1] (2 Z z

!Z }:[ }{ 11}:{ 1+ 12}. (4.48)

AL 1 =1l Zn Zi1—Zn
The resulting phase-sequence currents /™, m = 1, 2, are given by
19 =L+ V) /(Z11 + Z12) (4.49)
and
1Y =L —w)/(Zn - Z1). (4.50)

The desired currents [;, i = 1, 2 (which are generated by the actual driving voltages
V1 and V») are given by (4.43) with (4.49) and (4.50). They are

:h} . |:1 1] :[(O)} . V1714 —VZZIZ)/(Z]Zl _2122) 4.51)
L 1 —1/l;o aZii = ViZ) /(23 — Z3) | |

These equations are, of course, the same as those obtained directly from (4.45). Note
that in the method of symmetrical components the matrix inversion is performed in a
number of straightforward steps. In the analysis of circular arrays it allows a large
matrix to be inverted for each phase sequence by obtaining the reciprocal of one
complex number.

General formulation and solution

In Section 4.1, the solutions for the N independent integral equations for the phase-
sequence currents in a circular array of identical elements were obtained by a logical
generalization of the parallel analysis for the two-element array in Chapter 3. A more
complete formulation and solution with special reference to the complications of the
N-element array is now in order.

With the matrix notation introduced in Section 4.5, the integral equations (4.3a) for
the N phase-sequence currents may be expressed as follows

h
/ M@K @, 2y d7
h

jam

= —{0 cos Boh [%V(’”) sin Bo(h — |z|) + U(m)(COS,BoZ — cos foh)], (4.52)
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where
{rmy = (P17 41} (4.53a)
(vmy = P17} (4.53b)
(K" (z,2)} = [P1{Ka(z, 2)) (4.54)
and
—jco [
vm = 2>2 / ™YK ™ (h, 7y d7 . (4.55)
4 —h

In order to reduce the integral equation (4.52) to an approximately equivalent
algebraic equation in the manner described in Chapter 3, it is necessary to introduce
approximate expressions for the several parts of the integral. The procedure and the
reasoning behind it are in principle the same as described in Sections 3.2 and 3.3
for two elements. However, for N elements in a circle the kernel consists of a sum
of N instead of two terms. In the interest of simplicity, the introductory discussion
in Section 4.1 assumed that all elements are separated by distances sufficiently great
so that Boby; > 1 for all values of k and i. Although this condition is satisfied in
most circular arrays, there are exceptions. One is the cage antenna in which the N
parallel elements are distributed around an electrically small circle so that the condition
Bobri < 1 is satisfied for all £k and i. An intermediate case arises when the circle is
electrically large, but the elements are quite closely spaced so that one or more on
each side of every element satisfies the inequality Bobg; < 1, but all of the others are
far enough away so that Bobx; > 1. Since the behavior of the parts of the integrals
that relate closely spaced elements is different from the parts that represent widely
spaced ones, it is necessary to treat them separately. Since for each phase sequence
all elements are in identical environments, element no. 1 is conveniently selected for
reference. Let it be assumed that n elements on each side of element 1 are sufficiently
near so that for them Boby; < 1,1 <i <n, N—n+1 <i < N and that for all other
elements, Boby;; > 1,n <i < N —n + 1. Let the sum over all the 2n 4+ 1 elements
for which Bpbj; < 1 be denoted by X1, the sum over all other elements in the circle
by X2. Similarly, let Kt(imz)1 (z, Z) be the part of the sum in (4.3d) which includes the
2n + 1 elements for which Boby; < 1, Kfi";)z (z, Z’) the rest of the sum. It now follows
by analogy with (3.21a, b) that

h
/ sin o = DK 3 g (2 2) d2' = W, o sin Bo(h — |2]) (4.562)

h
/ sin Bo(h — 12/ DK wh o (z,2) dz’ = W% - (cos foz — cos oh), (4.56b)
—h
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where K;'g)l z(z,Z) and K%)ZR(z,z/) are the appropriate parts of Kd(lnl?(z,z/) as
defined in (4.3f). On the other hand, all remaining parts of the integral are independent
of Bobii, so that they are the same as in (3.22a)—(3.23c) but with K[(lnlz)(z, Z') and
K;T)(z, ') as given in (4.3f) and (4.3g).

The W-functions introduced in (4.56a, b) are defined as follows:

m) _ g m g m . Zm =0, Boh <m/2
VYar =Yaxir = Yaxir@m); {Zm =h—Ar/4, Boh>m/2 (4.57a)
h
W p(2) = csc fo(h — |z]) / sin ok - DK, (2, 2 dZ (4.57b)

h
wime = el = (1 — cos foh) ! /_ sin ol — DK, L (0,2)dZ'. (4.58)

These are generalizations of (3.24a, b) and (3.25a, b). The other W-functions, specif-
ically \yg%) = \IJC%)R +j \If;"l})l, llfg;:’,) = \IJ‘%)R +j \IJC(J"Z))I and \Ifd(,'}') are the same as
defined in (3.26)—(3.28) but with the N-term kernel given in (4.3e). Note that when all
elements are sufficiently far apart to satisfy the inequality Soby; > 1,1 <i < N, only
i = 1 with b;; = a contributes to \IJC(;Z) which is then equal to W, for the isolated
element.

With the notation introduced in (4.57a) and (4.58), the equation (3.33) applies
directly to the N-element array. The same equation with \IJL%) substituted for W r is
correct when some elements are sufficiently close together so that Boby; <1, i > 1.
It follows that the entire formal solution in Sections 3.3 and 3.4 is valid for the
phase sequences of the N-element array. The N independent phase-sequence currents
1™, m = 0,1,...N, may be expressed as the solution of a column matrix
equation.

A summary of the relevant equations is given below.

Phase-sequence currents

j2n (m) (m)
1M (2)) = vy vm i E VT Hy M,
{ z (2)} ZoWar cos foh ({ 0z} +{ U 0z} +{ D 0z}]

(4.59)
where My, = sinBo(h — |z|), Fo; = cos oz — cos Bph, and Hy, = cos %,Boz -
cos %ﬂoh.

™ - wim () — Wi cos foh
Ty A
(m) (m)
o )
(D] = { o (Tnﬂ : (4.60b)
Q1 Pryp
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[<I>¥n)]_1 is the reciprocal of [CD(Tm)]'

@) = Wity cos foh — W (h)

7y =~V ()
- o (4.61)
m . m
Cror = iy
(m) _ \yy(m)
q)T22 - \I}dD
The phase-sequence admittance is given by setting z = 0 in (4.59), thus:
(m)
1;7°(0)
(m) _ 2
Yy = v (4.62)
The phase-sequence impedance is the reciprocal of the phase-sequence admittance,
1
(m) _
zZV" = Ok (4.63)

The mutual impedances Zj;, 1| < i < N, may be calculated from the phase-sequence
impedances by multiplying by the inverse (4.36) of the phase-sequence matrix P.
Thus,

{2y =[P ' {z™). (4.64)

When the identical elements of a circular array are equally spaced around a circle,
symmetry reduces the number of different admittances or impedances to (N + 1)/2 if
N is odd and (N/2) + 1 if N is even. For example,

Z12 = Z\N; Z13=Zi(N-1); Z14 = Z1(N—2) €lC. (4.65)

When the expression for the phase-sequence currents becomes indeterminate for
Boh = /2 and for a range near this value, the alternative form given in (3.43)—(3.45)
is useful. It is

(@) = 2 VO S, + VT Fo = VT Hog), o ~
‘oWar 2
(4.66)
where
So; = sin Bo|z| — sin Boh
—sinfBolzl—1  when Boh = % (4.67)
and
(T} = —{((T™ + sin Boh)/ cos foh)
(4.68)

(T™y = (T / cos oh)
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The two-term approximation used earlier in this chapter is quickly obtained from the
three-term formulas. As stated in Section 3.9, the procedure involves the substitution
of Fy, for Hy, and T for Tl(/m) + Tg"). This implies that Vyp — Yey, Yp(h) —
Wy (h). The two-term forms for the phase-sequence currents and admittances (cf.
(3.85)—(3.87)) are

j2m

{1 (2)) = Ui cos B (VP Mo, + VOO T Fo A (4.69)
and

(m)

I;77(0)

my _ ) Iz

{y }—{ v } (4.70)
where

(m) (m) .1, (m)
(rmy { Wy () — (Wi + ¥ g7) cos Boh } | @70

i (hy — wi) cos Boh

When Boh is at or near /2 the alternative formulas (3.88)—(3.90) are applicable. They
are

— 2
()} = ;ofde (VO Sy, + VT Fy ) (4.72)

(m)

1"™(0)

(m)y _ z
{y'"y = { v } , (4.73)
where
T™ 4 sin Boh T

(T'™) = — {W , Boh ~ = (4.74)

Note that (4.69) and (4.72) are the same as (4.4a) and (4.4b).



B The circuit and radiating properties of
curtain arrays

In Chapters 2 and 3 an accurate theory is presented for a single antenna and for a
two-element array. The present chapter is concerned with the analysis of the general
N-element curtain array. This is a linear array with the centers of all elements along a
straight line and with their axes all perpendicular to and in a plane containing the line.

5.1 Comparison of conventional and two-term theories

The analysis of arrays is conventionally formulated under the implicit assumption that
distributions of current along all elements are identical. It follows that self- and mutual
impedances depend only on the geometry of the elements. Circuit equations can then
be written to relate the driving-point voltages and currents through an impedance
matrix. Thus,

{(V}=1Z1{1} (5.1
where
Vo1 o1
Voo Ioy
{Vi= : , {1} = . (5.2)
Von Ion
and
[ Zu Zin Zis ... Ziy ]
Zyy Zy Zyz ... Zon
Z1=| . : (5.3)
Zn1t Zny Zn3 ... ZNN

The bracketed terms are N x N matrices; the terms in braces are column matrices.
The usual reciprocity of off-diagonal impedances in (5.3) holds (i.e. Z1» = Z3; etc.).
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5.1 Conventional and two-term theories

Equation (5.1) relates the quantities that can be assigned at the driving point of the
antenna, namely the voltages and currents. The simple matrix relation between V’s and
I’s shows that it is immaterial whether the voltages or the currents are specified, since
the ratio between each voltage and current is unchanged. The phase and magnitude
of the currents in the individual elements are normally specified so as to produce a
particular radiation pattern. The assumption of identical distributions of current on all
elements involves the tacit assumption that the phase and amplitude of the current at
all points in each element are completely determined by their values at the driving
point.

The preceding remarks may, at first glance, seem like a repetition of well-known
facts. However, the assumptions implied in the conventional formulation are not
satisfactory approximations for actual arrays except when the elements are very
thin and have lengths near A/2. Even for this special case difficulties arise when
the elements are very closely spaced. Fortunately, a more realistic theory can be
developed that is generally applicable to arrays with elements that are less than 3A/4
in half-length. The new theory is somewhat more complicated than the conventional
approach. However, for engineering purposes it is more important that a theory agree
with experiment than that it be mathematically simple. As with most new approaches,
much of the complexity disappears with continued use and understanding. At the
outset the fundamental processes will be explained without reference to the details
of the theory.

An example of the notation of a three-element array is shown in Fig. 5.1. The
conventional assumption is that regardless of the driving conditions each element has
the same distribution of current. For example,

5 = Iy S2P0 2D s, (5.4)
sin Boh

Equation (5.4) shows that once the currents are assigned at any point, e.g. at z = 0, the

entire current is completely specified. The more accurate theory requires the individual

currents to have distributions determined by their electrical environments. Specifically,

they are represented by the following formula:

I; (z) = jA;sin Bo(h — |z|) 4+ Bj(cos Bpz — cos Boh), (5.5)

where i = 1, 2, 3, and A; is real and B; is complex. In (5.5) the A coefficients are
directly proportional to the respective driving voltages. That is,

A; = CVy;, i=1,2,3, 5.6)

where C is a constant. On the other hand, the complex B coefficients depend on
contributions not only from the individual element but also from all of the remaining
elements. For example, there are contributions to B from Vj; and also from V{; and
Vo3.
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Figure 5.1 Three-element array.

5.2 Two-term theory of curtain arrays

The theoretical solution of the general problem of the curtain array will now be
examined in detail. The essential basis for this theory was given in Chapter 2. Since the
two-term theory described in Section 2.10 yields results of sufficient accuracy, it will
be used for the curtain array to reduce the complexity of the formulation. However, the
more accurate three-term representation involves only added algebraic complications.

The integral equation (2.4) may be written as follows for the kth antenna of an
N-element array:

h N
gt A (2) = /h Li (2 Kyi(z, 2) d7’
—h =1

 4m )
=iy (Cx cos Boz + % Vox sin Bolzl), (5.7)
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where
e~ JPoRki

Ry

Rii =/ (zx — 2 n2 + bkz’ b = a, Zo = 1207 ohms. 5.9

The notation is illustrated in Fig. 5.1 for a three-element array. If the array has N
elements, it is necessary to solve N simultaneous integral equations of the form (5.7),

Kii(z, 7)) =

) (5.8)

where k = 1,2, 3, ... N. Following the procedure used in Chapter 2, an approximate
zero-order solution will be obtained for the general linear array. That is, given the
N driving voltages, a solution will be obtained for the currents in the N elements.
Alternatively, given the N driving-point currents, the N driving voltages will be
determined.

As a first step in the solution, the constant part of the vector potential is removed
from the right-hand side of (5.7) by the introduction of the vector potential difference

W (z) = Ag(2) — Az (h).

The result is

47711«0 W (2) = / lel (2 Kria(z, 2 d7 (5.10)
 4m 1 .
=—J % [Ck cos Boz + 5 Vor sin Bolz]]

h N
—/ > Li)Kii(h, 2y dZ . (5.11)
—h =1

where
, e~ JBoRki o= iBoRkin
Kiia(z,2) = - : (5.12)
l Ry Riin
The constants of integration Cy are expressed in terms of quantities Uy that are pro-
portional to the A_;(h) by means of the relation W_;(h) = 0. The final rearrangement

of the integral equation (5.7) is [cf. (2.15)]

/_}; lX::IZ, (2)Kria(z,2)dz = j o ; ) (UkFo; + 5 VOkM0z) (5.13)
where

Fo, = Fo(z) — Fo(h) = cos Boz — cos Boh (5.14)
Mo; = Fo(z) sin foh — sin fo|z| Fo(h) = sin fo(h — |z]) (5.15)

ZUkl =—j —/ Zlm(zmkl(h )dz. (5.16)
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The difference kernel (5.12) may be separated into its real and imaginary parts as
follows [cf. (2.5) et seq.]:

Kiiar(z, 7)) + jKriar(z,2') = Kiia(z, '), (5.17)

where

Kriar = Kkir(z.2') — Kkir(h, 2')

(5.18)
Kiiar = Krir(z,2') — Kkir(h, 2')

For the single element, the integrals corresponding to those in (5.13) were separated
into two groups depending on the manner in which their leading terms varied as
functions of z. The same principle of separation may be applied to the integrals for
the curtain array. As before, one group varies approximately as M., the other as Fy;.
The following functional forms for the integrals in (5.13) are important general criteria
for the separation:

h

/ Li(Z)Kkir(z,2) dZ ~ Li(2) when Bobr; < 1 (5.19)
—h
h

/ Li(z)Kkir(z, 2) dZ ~ Fy, when Boby; > 1 (5.20)
—h
h

/ Li(Z)Kiir(z,7) d7 ~ Fo, for any 1 (z) and all Boby;. (5.21)
—h

The current in each element can now be expressed in two parts in the form

I:i (2) = Lui (2) + 1i(2) (5.22)
where, by definition, the leading terms behave approximately as follows:

1y (2) ~ Mo, 1,i(z) ~ Fo;. (5.23)

Some appreciation of the importance of the general functional forms in (5.23) may
be obtained from an investigation of the integral equation (5.13). If attention is
directed to the right-hand side of (5.13), it is seen that the equation contains two
apparent sources, the coefficients of Fp, and Mp,. The function U has a constant
amplitude over the entire length of the kth element and is generated primarily by
the distributed currents on each element in the array. The other source function is
the potential difference Vjy, as in a transmission line or in an isolated antenna; it is
localized at z = 0. The form of the integral equation (5.13) suggests that the current
on each element can be separated into two parts, the one apparently generated by
the Uk, the other by the V. The part of the current due to Uy is closely related
to the current in an unloaded receiving antenna that is located in the wave front of
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an incident plane-wave field that has the same amplitude and phase over the entire
length of the element. For this the leading term varies as Fp,. Except when the
elements are very closely spaced (as in an open-wire line), the sinusoidal parts of
the currents (i.e. My;) are maintained primarily by the individual driving potentials
Vok. Thus, the current due to each of the Vyy is essentially the same as in an isolated
antenna.

When (5.22) is substituted in (5.13), groups of integrals occur that may be expressed
as follows for all k and i in the ranges 1 to N:

h B:

/ L () Kria(z,2)d7 = (B—]l) Weiduluk(z) — Diigu(2) (5.24)
—h
h JAi

f 1i(2)Kpia(z, 2') d7' = (B—k>‘llkidv1uk(z) — Diiav(2); Bobki =1 (5.25)
—h

h A;
/ 1i(Z)Kkiar(z,7) d7' = (—Ak)'“pkidevk(Z) — Dyiar(2);  Pobki <1 (5.26)
—h

h 'Ai
/ 1i (2)Kiiar(z, 2) dz' = <]BT> Wiiar luk(2) — Driar(2);  Pobri < 1. (5.27)
—h

It is assumed that the functions Wy; are defined so that the difference terms Dy; (z) are
small enough to be negligible in a solution of zero order. The coefficient (jA;/By) in
(5.27) is the ratio of the amplitude of I,;(z) to that of I,x(z). When (5.24)—(5.27) are
substituted in (5.13) and only the leading terms are retained, the following separation
into two groups of equations may be carried out:

kff (A">\y I (@) = —2 VoM, (5.28)
— ) Ykiar Lok (2) = j ok Mo .
L= \ag) toFo(h) :
N k—m—1 N .
B; JA;
> (B—l> Wkiduluk(2) + [ Yoo+ > } (B—l> Wkidvluk(2)
i=1 k i=1 ktm+1 k
k+m .
. JAi . 4
— ) Wkiar 1, = j —— Ui Fop,. 5.29
+]i:kX_:m ( Bk) kidl luk(2) = J CoFot) DkEo: (5.29)

The index m in the sums is defined by

Bobim < 1, Bobk,m+1 = 1 (5.30)

where by, is the distance between the centers of the elements m and k. In most curtain
arrays the spacing of the elements is sufficiently great so that all elements with m # k
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satisfy the right-hand inequality in (5.30) and only Bobixr = Boa < 1. When this is
true, (5.28) and (5.29) reduce to

L) = j Vo, (5.31)
k(2) = j ———— Mo .
’ toWarFo(h)
and
3 BY Wi+ (220 an (1 = 800 + jiarsial } (o) = 22795 R
£ By kidu By kidv ik JYkidIOik uk = §0F0(h) 0z
(5.32)

where

0, i#k
Sik =
" {1, i=k.

The notation Wyr = Wirar is used, since with identical elements all the Wy g are
identical and equal to W, for the isolated antenna.

It follows directly from (5.31) that the leading term in I, (z) is always M, for each
value of k. Similarly from (5.32) the leading term in 7,4 (z) is of the form Fp,. Hence,
it is possible to set

Li(z) = jAi Mo, 1,i(z) = B; Fo, (5.33)
or
Izi (z) = inMOZ + B; FOz- (5.34)

Since W, p is real, it is clear from (5.31) that A; is real when Vjy is real and from (5.32)
that B; is in general complex, or

B; = Bir + jBir. (5.35)

Note that the constant (jA;/By), introduced in (5.25) and (5.27), is the ratio of the
coefficients of the two terms in (5.34).

With the zero-order current formally determined, the constant Uy may be obtained
from the substitution of (5.34) in (5.16). It is given by

N
Uk =—Jj j—joT Z[in‘l’kiu(h) + BiWkiu(h)], (5.36)
i=1
where
h
Wiy (h) = / Moy Kyi(h, 2 dZ' (5.37)
—h

h
Wiu (h) =/ Foy Kyi(h, ') dz. (5.38)
—h
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If (5.36), (5.33), and (5.34) are substituted in (5.31) and (5.32) the result is

__ (5.39)
= SoWar Fo(h) ok '

N
> BilWiiau Fo(h) — Wi (h)]
i=1

N
= jZ Ai{Wriv(h) — [Wrigv(1 — 8ix) + jWriardix1Fo(h)} (5.40)

i=1

where k = 1,2,3,...N. The physical significance of the zero-order solution is
evident from (5.39) and (5.40). The coefficients of the ‘transmitting part’ of the
current are given by (5.39). The N driving voltages generate the expected sinusoidal
distribution of current on each element. The coefficients of the ‘receiving part’ of
the current are given by (5.40). The N currents act as distributed sources to generate
distributions of the receiving type which are present in all the elements of the array.
Equation (5.40) permits the prediction in each driven element of the shifted-cosine
component of the current that is due to coupling between currents distributed along
the element itself and along all other elements in the array. Conventional array theory
is concerned only with (5.39), since all currents are assumed to have the same
sinusoidal distribution. In the special case of an array with thin half-wave elements,
the real and imaginary parts of the current in each element do have approximately
the same distribution. It follows that conventional array theory should work quite
well for an array of very thin half-wave elements. On the other hand, in the more
general case, the real and imaginary parts of the current in each element have
different distributions so that (5.40) is needed along with (5.39) to determine the actual
currents.

An important case to which conventional theory has no application is the array
of full-wave elements in which the currents are near anti-resonance, and their real
and imaginary parts have quite different distributions. Before some particular parallel
arrays are analyzed, (5.40) is best expressed in matrix form. A general expression will
be given for the Wg;(z) functions, and rigorous expressions will be derived for the
radiation field.

Equation (5.40) is a set of linear algebraic equations with N unknowns that may be
solved for the B; in terms of the A;. The N values of the A; are expressed in terms of
the N driving voltages Vp; by (5.39). In order to express (5.40) in matrix form, let the
following quantities be defined:

Dy = YriquFo(h) — Wiy (h) (5.41)

Dpivy = Wiiv(h) — Wrigp Fo(h) (1 — 8ix) — jWkiar Fo(h)dik. (5.42)
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Also let
[ @1 Piow ... Piwu |
Doy DPoow ... DPonu
[®,] = : (5.43)
cIDNlu (DNZM ce cI)NNu
[ @1, P12 ... Py |
Py Doy ... Doy
[@u]=| . (5.44)
DPyiy Pnow oo P
Ay By
A B,
{A} = e {B} = S (5.45)
AN By

The bracketed terms are N x N matrices; the terms in braces are column matrices.
From the substitution of (5.41)—(5.45) in (5.40), it follows that

[Pu{B} = [P,){jA} (5.46)

and from (5.39)

2
= SoWar Fo(h) Vol 64D
with {Vp} defined as in (5.2).

The solutions of two important problems in linear array theory are readily obtained
from (5.46) and (5.47). Case I is concerned with specifying the driving-point! currents
and determining the N potentials Vi required to maintain these currents. In Case II
the N potentials Vo, are specified and the corresponding driving-point currents are
determined.

In the zero-order current distribution (5.34), the coefficients B; are the amplitudes of
the shifted cosine currents due to the distributed interaction of all elements of current
in the array. The A; coefficients are determined completely by the voltages of the

' The term ‘base current’ is also used for driving-point current.
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individual generators. The distribution of the current in the ith element (5.34) may be
separated into its real and imaginary parts as follows:

;i (z) = j{Aisin fo(h — |z|) + Bir(cos foz — cos Boh)}
+ B;jr(cos Bpz — cos Boh) (5.48)
=1;(2) + jI; (2). (5.49)
At z = 0, the real and imaginary parts of the driving-point current are
12;(0) = Big(1 — cos Boh) (5.50a)
1;(0) = A; sin Boh + Bij (1 — cos foh). (5.50b)

The driving-point impedance and admittance under the two driving conditions can be
computed from the following general formulas obtained by combining (5.46)—(5.50).
(Note: A special form is convenient when Boh is at or near 77/2.)

Case I Input currents specified

_ 1 1
(W} = (1= cos fol) (@]  [Pu1{I:(0)}, (5.51)

where

c1 = j2m/(GoWar cos Boh);

[Dy] =[Py + Dy sin Boh /(1 — cos Boh)]. (5.52)

Case 11 Driving voltages specified
{1:(0)} = ¢1(1 = cos foh)[ @] ™' [P ]{ Vo). (5.53)

The matrix components in (5.51) and (5.53) as well as numerical values of the
driving-point impedances and admittances under different driving conditions are given
in tables in Appendices II and III. These tables were extracted from a more complete
table [1]. The forms of the current for specified driving-point voltages and currents are
not generally the same since the A; and B; coefficients differ for the two cases.

The symmetry properties of the impedance matrix in (5.1) and its counterpart in
(5.51) are not identical. The assumption of identical current distributions implies that
the mutual impedance between any two elements in an array is only a function of the
size and spacing of the elements. Thus, with identical elements in an array, elements
with the same center-to-center spacing have the same value of mutual impedance. For
example, in an array with elements equally spaced, Z1» = Zy3 = Z34 and Z13 =
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Z24 = Zs6. The mutual impedance for elements near the center of the array is then

the same as for corresponding elements near the ends of the array. The more accurate
theory correctly shows that the coupling properties of an element in the array depend
on the distribution of current and the location of every element in the array. Elements

near the edges of an array are coupled differently from elements near the center.

The general W (z) functions, obtained from the defining integrals (5.24)—(5.27), are

1
Wiiau(z) = cos foz — cos ol {[Cp(h, 2) — Cp(h, h)]

—cos Boh [Ep(h, 2) — Ep(h, h)]}
1

Wiiar(z) = m Re{[Cp(h, z) — Cp(h, h)]sin Boh
— [Sp(h, z) — Sp(h, h)]cos Boh}
1
Wiia1(z) = Im{[C(h, 2) — Cp(h, h)]sin Boh

cos Boz — cos Boh
— [Sp(h, z) — Sp(h, h)] cos Boh}
1

Wiigv(z) = c0s oz — cos Boh {[Cp(h, z) — Cp(h, h)]sin Boh

— [Sp(h, z) — Sp(h, h)] cos Boh}

Wiiv(h) = Cp(h, h) sin Boh — Sp(h, h) cos Boh
Wiy (h) = Cp(h, h) — Ep(h, h) cos Boh,

where in subscripts b = by;, and

h , [e= PR p=ifoR: ,
Sp(h, z) =/ sin Boz [ + } dz
0 Ry R

e—JPoR1 e—jﬂoRzi| ,
Z

h
Cp(h, 2) :/ cos Boz’ |: +
0 Ry R>

h [ e=iPoRL  o—jboRa )
Ep(h,2) = / |: + dz
0 Ry Ry

Ri=\/z—22+b},  R=\G+)2+b}

(5.54)

(5.55)

(5.56)

(5.57)
(5.58)
(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

The functions Sp, Cp and Ej, are found in King2 and are tabulated for a wide range
of values of /4, z and b by Mack [3]. In order to obtain satisfactory overall agreement,
the W functions are evaluated at the point of maximum current. This ensures a good

approximation for the determination of both the far field and the input power. However,

2 [2],p. 94.
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Figure 5.2 Coordinate system locating one element with respect to the center O of a parallel array.

the input susceptance may be somewhat in error. This does not present any practical
difficulty since appropriate corrections may be applied at the driving point (cf. Section
2.8).

The far-zone electric field depends upon the location of each element and its current
distribution. Thus, for the geometry of Fig. 5.2, which defines R;,

in® L e JPoRi rh o
Eo(®.®) = j wu(;sm Z e — / I, ()l cos© g1 (5.64)
T l=1 1 7h

For the conventional sinusoidal distribution of current, the electric field is given by

é’O N efj.ﬁORi
Eo(©,®)=j— > 1;(0) Fu(®, Boh), (5.65)
T i=1 i
where
h — h
Fn(©, foh) = 3P0 €05 O) = cos foh, (5.66)

sin ®
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The more accurate far-zone electric field is

C0 oL e~ JPoRi
Eg(®,D) = = Z [JA;i Fn(©, Boh) + BiG (O, Boh)], (5.67)
T R
where
i h h ® e — h si h ®
G (©. foh) = sin Boh cos(Boh cos )'cos cos Boh sin(Boh cos ). (5.68)
sin ® cos ®

Example: the three-element array

Consider a three-element array with elements that are a full wavelength long (22 = 1)
and separated by a quarter wavelength (b; ;11 = A/4). The conventional approach to
this problem is doomed to failure when Byh = 7, since an assumed sinusoidal current
(i.e. I;(z) ~ sin fplz]) is zero at the driving point. This gives rise to a zero admittance
or an infinite impedance for each element in the array. This difficulty does not exist
with the current obtained from (5.5) with Boh = . This is

I; = jA;sin Bolz| + Bj(cos Boz + 1). (5.69)

At z = 0, the current is finite and is given by the coefficient B; for each element in
the array. In order to demonstrate the difference between the two antenna theories, the
conventional approach will be used for Spi = 3.157 and compared to the results of
the two-term theory for Soh = 7.

Consider now the three-element array shown in Fig. 5.1. Either the driving-point
voltages or the driving-point currents may be specified. Conventionally the phases
of the equal driving-point currents are specified to produce a radiation pattern. The
electric field Eg in the far zone can be expressed in the simple form

_ jtol0(0) e JPoR
N 2w R

where Fo(®, Boh) is the vertical field function of an isolated element and A(®, ®)
is the array factor. A uniform array with equally spaced elements and with |/;; (0)] =

Eg

Fo(®, Boh)A(O, @), (5.70)

|1,0(0)]| for all values of i has the array factor

sin Nx

A, D) =

= A(©,P; N, n,1), (5.71)

where x = m(nsin ® cos ® — r), n is the distance between elements in fractions of a
wavelength, and ¢ is the time delay from element to element in fractions of a cycle. The
expanded form of (5.71) in which all five variables and parameters are explicit is useful
when several array factors are superimposed. For the array of Fig. 5.1, the number
of elements is N = 3, and »n is chosen to be 4—1‘. Now let attention be directed to the
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T 3.~ 1
ap(E,QD,Z,j,O)‘

Figure 5.3 Arrays factors which comprise actual three-element array factor.

horizontal pattern in the equatorial or H-plane defined by ® = 7 /2. The three driving-
point currents are equal in magnitude but the phase delay 7 between elements may be
varied to produce a particular pattern. For example, a value of 1 = zlt will produce an
endfire radiation pattern with the maximum value of the directivity D toward the right
in Fig. 5.1.

The actual radiation pattern of the three-element endfire array with specified base
currents differs from the ideal pattern shown on the left of Fig. 5.3. The several
components of current on the elements which are discussed later in this section, are
equivalent to separate sources producing different radiation patterns. The additional
patterns in the middle and right of Fig. 5.3 fill in the deep nulls and reduce the
back-to-front ratio of the ideal pattern. The electric field for the three-element array
with the expanded form of the array factor in (5.71) is given by the sum

Eo ~ A(/2,®;3, 4, 1) 4+ (053 4+ jO.5STA(r/2, @;2,1,0)
+ (=007 4 jO.S0)A(r/2, @;2, 1 1),

The individual normalized field patterns

A©,D;N,n, 1) sin Nx
N ~ Nsinx

ap(®,®; N,n,t) =

are shown in Fig. 5.3.

The ideal radiation pattern as determined from (5.70) depends on the vertical field
factor Fp(®, Boh) of an isolated element. Consider now an array with full-wave
elements (Bph = ). The particular value of Fp(®, Boh) is given by (5.66). Thus,

cos(mcos®) + 1

Fp©,7) = SN e (5.72)
Fo (% n) —2. (5.73)
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As an illustrative comparison of the results of the present theory with other methods,
an examination of the driving-point impedances for the three-element array with
Boh = m/2 and Bph = = is given. An extension of the “induced EMF method”,
discussed in Section 1.7 for the case of a single isolated antenna, is frequently used for
the calculation of mutual impedance.? As in the case of a single antenna, the method
assumes sinusoidal currents. The resulting formula for the mutual impedance is the
same as in (1.42) but with a replaced by b. For foh = /2, and with ¢y = 1207 ohms,
the self- and mutual impedances obtained with the EMF method are

Z11 = 73.12 + j41.28 ohms, Q = 2In(2h/a) = 10

Z12 = 40.79 — j28.35 ohms, Bob=m/2 (5.74)
Z13 = —12.53 — j29.93 ohms, Bob=rm

Zin=2Zn=Zp=123, Ziz=12Zyn, Zi=2In==7;s. (5.75)

The driving-point currents are specified in the following way to produce an endfire

pattern:
Ioy 1

{1} = Ipp \ = Io1 _j . (576)
Io3 -1

The substitution of (5.76) and (5.74) into (5.1) yields the following driving-point
impedances for the three elements:

Zor=7Z11—jZ1p — Z13 =57.3 4 j30.42 ohms = Vj1 /1o
Zy = Z11 =73.12 4 j41.28 ohms = Vi /o> . (5.77)
Ziz=Z11+jZip — Z13 =114.0+ j112.0ohms = Vy3/Ip3

The same results are, of course, obtained when the driving voltages are assigned
instead of the currents by the substitution of V for I in (5.76), since no changes are
possible in the assumed distributions of current and, hence, in the mutual coupling.

It is now in order to examine the results obtained by the two-term theory which
takes full account of the changes in the distributions of current due to the presence of
any number of coupled elements. The driving-point impedances for the three elements
are readily computed.* They are

2h
Zo1 = 67.51 + j24.140hms, Q=2In=— =10
a

Zoy = 78.47 + j31.23 ohms . (5.78)
Zoz = 145.61 + j96.91 ohms

3 See, for example, [4], pp. 535-556. 4 [1], p. 84.
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These values are comparable with those in (5.77) (with differences not exceeding about
30%) simply because the current in half-wave dipoles is predominantly sinusoidal with
only relatively small changes due to finite radius and mutual coupling.

The situation is quite different when the elements are not near resonance. This is
well illustrated with the same three-element array but now with Sph near 7 instead
of /2. The conventional application of the EMF method with assumed sinusoidal
currents on all elements yields meaningless results. Since the currents at all three
driving points are identically zero all driving-point impedances are infinite — which
is, of course, absurd.

Once again it is in order to introduce the results from the two-term theory which
actually determines the distributions of the currents on all three elements and the
associated driving-point impedances. The following values are readily calculated® for
the driving-point currents specified in (5.76):

Zp1 = 612 — j591 ohms Yo1 = (0.845 + j0.817) x 1073 siemens
Zy» = 160 — j590 ohms Yoo = (0.429 + j1.578) x 1073 siemens ¢ . (5.79)
Zopz = 61.5 — j435 ohms Yo3 = (0.318 4 j2.252) % 10~3 siemens

When normalized to Ip;, the voltages required to maintain the currents specified in
(5.76) when Bph = 7 and Bob = 7 /2, i.e. Ip = —jlo1, lo3 = —Ip1, are Vo1/1lo1 =
612— j591 volt/ampere, Vi2/lo1 = —590— j160 volt/ampere, and Vp3/lp; = —61.5+
j435 volt/ampere. The power supplied to element k by its generator is

Pe = |TokI* Rok = Vo Go. (5.80)
The ratios of the powers supplied to the three-element array are
P1/P3; =9.82, P,/ Pz =2.51. (5.81)

Evidently element 1 receives almost ten times the power that is supplied to the
terminals of element 3.

The two-term theory gives the following values® of Zo; and Yy;, i = 1,2, 3 when
the driving-point voltages are specified (Voo = —j Vo1, Vo3 = —Vo1) instead of the
currents:

Zo1 = 675 — j484 ohms Yo1 = (0.979 + j0.701) x 1073 siemens
Zy2 = 359 — j479 ohms Yoo = (1.003 4 j1.336) x 1073 siemens ¢ - (5.82)
Zo3 = 170 — j4260hms  Yo3 = (0.808 + j2.024) x 1073 siemens

5 [1],p.203.  © [1],p.221.
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Clearly, the results for Cases I and II are not the same as seen from a comparison of
(5.79) and (5.82). This difference is due to the unequal distributions of the currents in
the elements which cause non-uniform coupling. This effect will become clearer when
the currents in the individual elements are examined.

The conventional currents in the three-element endfire array with Sph = 3.157 are

1 (z) = Ip; sin(3.157 — Bolz|), i=1,2,3

driving-point currents specified (5.83)
I;i(z) = V;Y;sin(3.157 — Bolzl), i=1,2,3

driving voltages specified. (5.84)

The form of the currents in (5.83) and (5.84) is identical for each element. Both the real
and imaginary parts have the same distribution. The currents in the two-term theory
are given by (5.69) with (5.46) and (5.47). They are shown in Figs. 5.4 and 5.5 for
the two different driving conditions. When the currents at z = 0 are specified, the
distributions differ widely in form from element to element. Note that the currents are
shown both with respect to the individual driving voltages and with respect to V(. In
the computation of radiation patterns the currents must all be normalized with respect
to a single driving voltage. The large differences in the real and imaginary parts of
the currents in Fig. 5.4 practically disappear when the driving voltages are specified in
Fig. 5.5.

Electronically scanned arrays

Previous sections of this book have demonstrated the general invalidity of the assump-
tion of equal current distributions in the elements of an array. A most significant
result of the two-term theory is that the expected conventional radiation pattern
is not achieved since the contributions by the individual elements to the radiation
pattern are different. The results of the two-term theory for the broadside and endfire
arrays show an appreciable difference not only between the driving-point impedances
for the broadside and endfire arrays, but between the conventional and two-term
theories. The experimental determination of the individual driving-point impedances is
a complicated problem and a theoretical prediction of the individual circuit properties
would certainly be an aid in the efficient operation of an array.

A comparison of the corresponding expressions for the far fields based on the
conventional method and the more accurate two-term approach helps to illustrate some
of the problems in the theory of scanned arrays. Consider an array in which the currents
at the driving points of the elements are specified in both amplitude and phase. For the
present, let the amplitudes be equal and the phases required to change linearly from
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(a)

L3 Izi = [zi +j]zi

e

-3 -2 -1 0 1 -3 2 -1 0 1 -3 -2 -1 0 1 2
mA/V mA/V mA/V

Figure 5.4 Three-element endfire array; driving-point currents specified. Drawn with respect to (a)
individual driving voltages, (b) Vo (1/4 spacing, Boh = m, 2 = 10).

element to element across the array. For example, the base current might increase in
phase by 30° toward one end of the array. Expressed in general terms

I; = Ipe 7% = [ye 7?71 (5.85)

where ¢ is the time delay between elements in fractions of a period.
With the currents at z = 0 specified in (5.85) and under the assumption of identical
distributions of current, the far-zone electric field has the form

3(N=1)

icoln e—JPoRo . : . .
El = {150 0 e Fo(®. ,goh)} L4 Y [enGihS) | ol Gimfos)
T 0 i=1

(5.86)

The second term in braces in (5.86) is the familiar array factor given by (5.71). If
the distance between the elements is small enough, the radiation pattern has only one
principal maximum in the visible ranges of ® and ®. The first maximum of (5.70)
occurs when x = 0. Thus, to direct the main beam in a specific direction (®,,, ®,,)
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L =1 +I,

zl zi

(a)

1

-3 -2 -1 0 1

-3 2
mA/V mA/V
b
(b) N 3 )
B2 Izi = Izi +J
2 7
V02
14
L I / L 1 I L
-3 -2 -1 0 1 -3 -2 -1 0 1 -3

mA/V mA/V

Figure 5.5 Three-element endfire array; driving voltages specified. Drawn with respect to (a)
individual driving voltages, (b) Vo (1/4 spacing, Boh = 7, 2 = 10).

in space, the time delay between the currents in the elements must be set equal to a
particular value 7, such that

nsin®,,cos ®,, —t,, =0,
or
tym = nsin ©,, cos ®,,. (5.87)

For example, in an array with half-wave spacing (n = %) for which the main beam
is to point in the direction ®,, = /2 (H-plane) and ®,, = 60°, the required phase
shift given by (5.87) is t,,, = % of a period. In a single curtain array it is not possible
with ordinary elements to have any control over the beam pointing in the ® direction.
The control of the main beam in the ® direction could be achieved by a planar array
formed by an array of collinear elements.

Now let the conventional requirement, that the distributions of current be equal, be
removed. Let the currents at z = 0 again be specified so that, on the basis of the
conventional theory, the main beam will point in a desired direction. However, and
this obvious fact is often overlooked, the specification of the currents at each driving
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point usually does not determine the entire current along each element. A variety of
distributions of current may be associated with any given value at z = 0. In general,
the radiation pattern can be considered the superposition of two parts. One part is
the pattern of an array of elements with equal distributions of current; the other the
pattern of the same array with dissimilar distributions of current. Conventional theories
assume that the first part is the entire pattern.

The beam-pointing properties of a scanning array are affected by the interaction
between the currents in the elements. The simple array factor in (5.71) characterizes
an ideal array in which the exact phase and amplitude of the current are specified
for each element. This specification applies not only at z = 0 but all along each
element. The phase of the current is of primary importance in the determination of the
direction of the main beam. In an actual array the variation in phase along the length
of each individual element differs from element to element. In practice, this variation
is responsible for a beam-pointing error of non-negligible value. Furthermore, with
this phase variation perfect phase cancellation and addition are impossible. Perfect
nulls in the radiation pattern will disappear and side-lobe levels will be modified
significantly. The side-lobe level and the angular width of the main beam are also
affected by changes in the magnitudes of the currents from element to element across
the array.

As a specific example, consider the three-element array with full-wave elements
(Boh = m) and half-wave spacing (Bopb = m/2). The driving-point currents are
specified to produce a maximum field in the direction indicated by the conventional
theory. The driving-point impedance is to be calculated for each element as a function
of the scanning angle. The actual position of the maximum, as given by the two-term
theory, is to be compared with the corresponding angular position predicted by the
conventional theory. The difference is the beam-pointing error A.

The general matrix relation (5.51) between the driving-point voltages and currents
may be reduced to the following symbolic form:

{(Vo} = [®1]1{1o}, (5.88)
where
Voi Io
Vo2 Ioy
{Vo} = R {Ip} = : (5.89)
Von Ion
and
®ri1 Priz ... PN
Py Pr ... Pron 1 _
[®r] = . =———————— [®,] ' [®,], (5.90)

: c1(1 — cos Boh)
Pry1 Pryz ... Prwwn
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where [cf. (5.52)]
[Py] = [Py + Dy sin foh /(1 — cos Boh)]
c1 = j2m/5oWar cos Boh.

The elements of ®7 may be derived from the machine-tabulated values of &, and
@, in the tables [Appendix II]. From the tabulated values for the two different sets
of driving conditions [Appendix III] and a knowledge of the symmetry properties of
the &, and P, values, the @7 values may also be calculated. In the present example
calculations similar to those given in Appendix III yield the following information for
the case Boh = 7, Bob = 7 /2:

When
1
{Io} =1Io1  —J (5.91)
-1
then
612 — j591
(Vo) = Iy { —590—,160 } (5.92)
—61.5 4 j435
Also when
1
{Io} = Io1 { 1 (5.93)
1
then
435 — j346
(Vo) = Io; { 309 — /379 } (5.94)
435 — j346

The specifications in (5.91) and (5.93) are the conventional ones for the endfire and
broadside arrays. For Boh = m, fob = 7 /2, the time delay between elements as given
by (5.87) is

tm =ncosd,, = % cos . (5.95)
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Table 5.1. Relative values of driving-point currents I;, i = 1,2, 3 for

different values of ®,,
D,y 0 30° 60° 75° 90°
L 1 1+ ;0 1+ /0 1+ /0 1

L/l —j  0209-j0.978  0.707-j0.707 0.919-j0.395 1
/I, —1 —0913-j0.409 —0.707-70.707 0.687-j0.726 1

The driving-point currents in the N elements can now be expressed in terms of the
angle ®,, with the aid of (5.85). The result is

I = Ile—jZJT(i—])nCOS(Dm — Ile—j(n/Z)(i—l)coscbm’ i=1,23

=
I
FNT

.(5.96)

Table 5.1 is useful for the computation of the driving-point impedances for different
values of the angle ®,,.

Before the driving-point impedances can be computed the elements of the matrix
@7 must be found. They can be computed directly from the basic matrix equations
in terms of &, and ®,, or they may be computed from the tables of driving-point
impedances for different driving conditions. For example, from the two sets of
information contained in (5.92) and (5.94), the symbolic matrix multiplication (5.88)

yields
Q711 + Pri2 + P13 =435 — j346
207121 + P72 =309 — j37.9
@711 — jPriz — @113 =612 — j591 , (5.97)
— j®r2 = —590 — j160
—®7r11 — jPri2+ P13 = —61.5+ j435
where
711 Priz Priz
[®r]=| Prai Pr2 Pra1 |, (5.98)

®riz Priz Prin

The symmetry properties of the elements of (5.98) were deduced from those of the
component matrices involved in (5.88). The elements of (5.98) may be compared to
the impedance matrix whose elements are the self- and mutual impedances computed
under the conventional assumptions. For example, ® 71| could be compared to Z11, the
self-impedance of the first antenna. The result shown symbolically in (5.98) indicates
that the off-diagonal terms are not necessarily equal (e.g. @712 # Pr21) and that the
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600 [ Calculated points
° Ry,
B Xoi

500

400

300

200

100

Driving-point resistance and reactance in ohms

90 80 70 60 50 40 30 20 10 0
Ideal scanning angle ®,,

Figure 5.6 Variation of driving-point resistance and reactance with beam-pointing angle &, for
three-element array (A /4 spacing, foh = , Q2 = 10).

diagonal terms may differ (e.g. @711 # Pr22). The numerical values of the matrix
elements of ®p are

O7y =347 — j567

D7y =160 — j590

D71 =779+ j275 ;. (5.99)
Dy =743+ j276

b3 =10.4 — j53.7

Consider the specific case ®,, = 75°, where the driving-point currents are given in
Table 5.1 and the elements of the &7 matrix are given by (5.99). Thus,

Voi 711 Priz Pris 1+ 50
Vior=| ®r21 Orn Pro 0.919 — j0.395; I;. (5.100)

To compute, for example, Zp» = (Voz/12), the quantity (Vi/11) is computed from
(5.100) or (Voa/11) = Pr21(1 + jO) + $722(0.919 — j0.395) + Pr21(0.687 —
j0.726) = 240 — j193 ohms. The driving-point impedance Zg> is found from the
substitution of the relation I, = (0.919 — j0.395)I; in this expression with the
result, Zpp = 297 — j82.8 ohms. The variation of the driving-point resistance and
reactance with the beam-pointing angle ®,,, is shown in Fig. 5.6. It is seen that even if
the beam-pointing angle is restricted to moderate departures from a normal position,
significant changes in the impedance function occur. These will be apparent in the
mismatch between the generator and the antenna. Note also that from symmetry, the
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continuation of Rp; and Xy in the range 90° < ®,, < 180° is the mirror image of
Ro3 and X3 about @, = 90°.

The driving-point currents have been specified according to the criteria of the
conventional theory. This specification does not control the distribution of either the
phase or the amplitude of the current away from the driving point. As a result, the
location of the maximum of the main beam may differ from that predicted by the
ideal angle in (5.87). This difference is the beam-pointing error A and represents the
difference between the ideal scanning angle ®,, and the actual angle &,,.

The far-zone electric field is given by (5.67). The computation of this field requires
all currents to be normalized with respect to a single driving voltage. Thus, with the
kth element as a reference, (5.67) may be rearranged to give

EL(©) = ]2'% e_;f:R" iXZl:Ciejﬁob[(N2i+1)/2]cos<I>sin(~) (5.101)
where

Ci=4 [ 60;’;1? Fun(©, foh) + % G (©. ﬂoh)} (5.102)
and

& = Voi/ Vox- (5.103)

The conventional theory equates the C coefficient in (5.101) to the driving-point
currents [cf. (5.65)]. These, in turn, are chosen to produce a given radiation pattern.
The two-term theory has shown that the currents in the elements as well as the radiation
pattern cannot be specified merely by adjusting the currents at the driving point.
Moreover, the direction of the main beam may differ considerably from the value
predicted by the conventional theory.

The true location of the principal lobe is found from the location of the major
maximum of |Eg (®)| or of |E6(®)|2. For the special case ® = 7w /2, fob = 7/2,
N =3, and Boh = /2, the electric field in the far zone is

E5L(©) = K(Cre /" + Cy + C3e/"), (5.104)

where

jo e IPoRo
T2t Ry

u = Bobcos® = %COSCD

b4
0= 7 (H-plane).
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Figure 5.7 Variation of beam-pointing error with beam-pointing angle for three-element array (1 /4
spacing, Boh = m, Q2 = 10).

The square of the absolute value of Eg, (®) is formed from (5.104) with the result

ELEG = KK*CaC3[CHC3e"™ 4 (Cy + Ca)el + (1 + C1aChy + C32C3y)

+(Crz + Ch)e " + C1pChe /2], (5.105)
where
Cq Cs3
Cpp=— d Cyp = —. 5.106
12 ) an 32 ) ( )

With the substitution x = e/*, (5.105) is seen to be an algebraic equation of fourth
degree. Thus,

|EGL(x0)[> = Cax® + Cpx® + Cox? + Cyx + C.. (5.107)

The true location of the principal lobe is determined from the equation obtained when
(5.107) is differentiated with respect to x and equated to zero. The computed beam-
pointing error for the three-element array as determined from the conventional theory
is shown in Fig. 5.7. This graph shows an appreciable plus and minus variation over
most of the visible range of ®.
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The expression for the square of the absolute value of the far-field for the N-element
array is

[Eg)IP = KK* )" " CiCrx™. (5.108)
i n
The location of the extremes of (5.108) is given by

0 ,
a—|E(r_)(x)|2 =KK*j Y Y (i —m)CiCix'™" =0, X = X0, X1, X2, ....
X T
1 n
(5.109)

5.5 Examples of the general theory for large arrays

Thus far the simple array with N = 3 and Bpb = m/2 has been examined for a
variety of driving-point conditions. Calculations have also been made for arrays with a
larger number of elements. For these the lengths 2/ of the elements were varied from
a quarter to a full wavelength. The driving-point voltages or currents were specified
according to conventional array theory to produce a broadside or endfire radiation
pattern.

The driving-point currents required for an ideal broadside array are

I;1(0) = I2(0) = I;3(0), etc. (5.110)

or, in matrix form,

1
{I.(0)} =I1(0) y I ¢. (5.111)

Alternatively, the driving voltages may be assigned as follows:

1

Vi=Ww (5.112)

1

The relatively large sinusoidal parts of the currents on the antennas are determined
directly from (5.47) by the specification of the voltages. However, the relations (5.50a)
and (5.50b) between the coefficients A, Bgr, B; and the currents at z = 0 do not in
general suffice to determine the distributions of current along the elements.

The driving-point impedances for broadside arrays are shown in Figs. 5.8-5.10.
Driving-point currents and voltages are specified for arrays of up to 25 elements
(N < 25) for quarter- and half-wavelength spacings (Bob = m/2 and Bpb = ).
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In Figs. 5.8a—d are shown graphs of the resistances and reactances of the individual
elements of a broadside array when the driving-point currents are specified. In Figs.
5.8a and 5.8b the distance between the adjacent antennas is one-quarter wavelength;
the lengths of the elements are, respectively, a quarter and a half wavelength. In
Figs. 5.8c and 5.8d the spacing of the elements has been increased to a half wave-
length.

Since the main beam of a broadside array is at right angles to the curtain of antennas,
it is to be expected that the effect of mutual coupling will be much less than for an
endfire array. However, when the elements are separated by only a quarter wavelength,
differences in the interactions between the currents in differently situated elements are
sufficient to produce small but significant changes in the resistances even when the
elements are as short as a quarter wavelength (Fig. 5.8a). In this case there is only a
very small variation in the reactance. When the length of the elements is increased
to a half wavelength with the same quarter wavelength spacing, both resistance and
reactance vary greatly from element to element (Fig. 5.8b). Note that the change in
the reactance from the central element in the array to one at the extremities may be as
large as from near 100 ohms to near zero.

As is to be expected, an increase in the spacing of the elements to a half wavelength
substantially reduces the changes in resistance and reactance due to differences in
mutual interaction. When 24 = A /4 both resistance and reactance are substantially
constant across the array (Fig. 5.8c). When 2k = X /2 significant differences in both
resistance and reactance exist, but they are much smaller than for the more closely
spaced array (Fig. 5.8b). In all cases, the obviously different environment of elements
at the extremities of the array is responsible for the largest differences in the
impedances. For the two lengths, 2h =A/4 and 2h =X /2, there is little difference
between the results obtained with specified voltages and with specified driving-point
currents.

Graphs of the resistances of the individual antennas in a broadside array of three-
quarter and full wavelength elements are shown in Figs. 5.9a—d when the driving-point
currents are specified. Similar curves for the same array with the voltages specified
are in Figs. 5.10a—d. Especially noteworthy when 2i = 31 /4 are the large differences
between the resistances and reactances of the elements when the driving-point voltages
are specified instead of the driving-point currents (Figs. 5.9a, ¢ and 5.10a, c). When
2h = A the reactance and to a lesser extent the resistance of the elements at the
extremities of the array differ greatly from the others (Figs. 5.9b, d and 5.10b, d).
As an example of typical digital results prepared for this study, a table of impedances
is given in Appendix III.

The radiation patterns in the equatorial or H-plane are shown in Fig. 5.11 for a
broadside array of 15 elements. The ideal patterns are fairly well approximated when
the amplitude and phase of the current along each antenna are specified near the point
of maximum amplitude. For the array of half-wave dipoles this occurs essentially
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Figure 5.11 Field patterns in the H-plane for a 15-element broadside array.

when the driving-point currents are specified, for the full-wave dipoles when the
voltages are specified. On the other hand, when the current is not specified at the
maximum, the actual pattern differs considerably from the ideal especially in the
region of the minima (nulls). This is true when the driving-point currents are specified
for the full-wave elements and when the voltages are specified for the half-wave
elements.

In endfire arrays the currents are adjusted to produce the main beam of the radiation
pattern along the line of the elements. For the unilateral endfire array there is a single
major lobe in the direction ® = 0; for the bilateral endfire array there are two major
lobes, one in the direction ® = 0, the other in the opposite direction, & = 180°.
Whereas in the broadside array the interaction between all but the next adjacent
elements is quite small owing to extensive cancellation of the fields of the several
elements in both directions along the line of the array, exactly the opposite is true for
the endfire array. In the unilateral endfire array there is a cumulative reinforcement of
the fields due to the several elements in one direction from one end of the array to the
other, a more or less complete cancellation in the opposite direction. In the bilateral
array the cumulative reinforcement is in both directions. It is to be expected, therefore,
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5.5 General theory for large arrays

that mutual coupling between neighboring and even quite widely separated elements
must play a major role in determining the amplitude, phase, and distribution of each
current.

In an ideal endfire array the currents must all be equal in amplitude and vary
progressively in phase by an amount equal to the electrical distance between the
elements. The specifications for a unilateral endfire array are

1
—j i
LOY=LOy _y (- Ab=7. (5.113)
For the bilateral array,
1
-1
{I.(0)} = I1(0) 1 (; pob = 7. (5.114)

Alternatively, the voltages may be specified in the same manner. Thus, for the
unilateral array

vy=vi{ _j {.  Bb=73. (5.115)

For the bilateral array,

(Vi=v 1 (> Pob=m. (5.116)

The resistances and reactances of the individual elements in a unilateral endfire
array are shown in Figs. 5.12a and 5.12b, respectively with 24 = A/4 and 2h = A /2.
The driving-point currents were specified according to (5.113). Corresponding values
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for the bilateral array are in Figs. 5.12c and 5.12d. Note that these are symmetrical with
respect to the center of the array. For the shorter elements (22 = X /4), the reactances
of all elements are reasonably alike; the resistances also vary little except for the two
elements at the ends of the unilateral array. When the elements are a half-wavelength
long, the resistances and reactances both vary greatly along the unilateral array (Fig.
5.12b), moderately along the bilateral array (Fig. 5.12d). It is interesting to note that in
the unilateral array the impedance of the forward element (in the direction of the beam)
is greatest, that of the rear element smallest. Since the amplitudes of the driving-point
currents are all the same, the power supplied to each element is proportional to its
resistance. It follows from Fig. 5.12b that the power supplied to and radiated from the
forward element is approximately five times that supplied to and radiated from the rear
element. Note that the resistance and the reactance of all but the last two elements in
each array are significantly greater than for an isolated antenna. In effect, each element
after the forward one acts partly as a driven element, partly as a parasitic reflector for
the element in front of it.

The resistances of the antennas in a unilateral endfire array with elements of length
2h = 3A/4 (Fig. 5.13a) decrease continually from the forward element to that in the
rear in a manner resembling that for the half-wave elements (Fig. 5.12b). However, the
range of magnitudes is much greater. The corresponding values for the same array but
constructed of full-wave elements (24 = A) are in Fig. 5.13b. They are startlingly
different. The resistances of all elements are now reasonably alike except for that
of the rear element, which is much greater. Evidently, the rear element is supplied
and radiates the most power — approximately four to six times as much as any other
element. This suggests that all but the rear element act in part as driven radiators and
in part as parasitic directors for the elements behind them, especially the rear one.
Note that for the bilateral array of full-wave elements (Fig. 5.13d) the resistances of
the elements increase from the center outward, whereas for the corresponding array of
half-wave elements (Fig. 5.12d) the resistances decrease from the center outward. If
the voltages are specified according to (5.115) and (5.116) instead of the driving-point
currents, the graphs of Figs. 5.13a—d are replaced by those of Figs. 5.14a—d. The two
sets are seen to differ considerably.

The radiation patterns in the equatorial or H-plane are shown in Figs. 5.15 and 5.16
respectively for the unilateral and bilateral endfire arrays. The ideal pattern is fairly
well approximated when the current along each antenna is specified near its point of
maximum according to the criteria for an ideal array. For the half-wave dipoles this
is true essentially when the driving-point currents 7 (0) are specified, for the full-wave
dipoles when the voltages are assigned. On the other hand, when the current is not
specified at its maximum value, the actual pattern differs considerably from the ideal,
especially in its minor lobe structure and the region of the minima (nulls). This is
true when the driving-point currents are specified for the full-wave dipoles, when the
voltages are specified for the half-wave dipoles. In general, the departure from the ideal
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Figure 5.15 Field patterns in the H-plane for a 15-element unilateral endfire array.

patterns is greater for the unilateral endfire array (Fig. 5.15) than for the broadside
array (Fig. 5.11) since the effect of mutual interaction is greater.

5.6

The special case when Syh = /2

The general functional form for the currents in the elements given by (5.34) with (5.46)
and (5.47) presents some difficulties when Bph = /2. For both circular and curtain
arrays the expression for the currents becomes indeterminate in the form 0/0 when
Boh = /2. This behavior is illustrated for the curtain array in the following matrix
equation for the currents:

j2r
ZoWar cos Boh
j 27
L gt
ZoWar cos Boh

{(2)} = {Vo} sin fo(h — |z])

[®, 17" [®,]{V0}(cos oz — cos Boh). (5.117)



149

5.6 Special case of half-wave elements
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Figure 5.16 Radiation patterns in the H-plane for a 15-element bilateral endfire array.

From the form of the W functions at foh = 7 /2 it follows that

lim [®,]7'[®,] = —[Z], (5.118)
Boh—m/2
where [Z] is the identity matrix. The indeterminate form for the currents in the
elements follows directly when (5.118) is used in (5.117). It is

j2m cos Boz .27 cos Boz 0 b4

(L@} =——— (V- ——F~ Vol =7, poh = = (5.119)

) CoWar -0 / SoWar - 0 0 2
Two alternatives are available for avoiding this difficulty: (a) the formula for the
currents may be rearranged as in Section 2.7; or (b) a special formulation for Soh =
/2 may be used. The former method has the advantage that it is applicable over a
range near Sph = m/2, whereas the latter method is valid only at Sph = 7 /2. Both
methods are presented here, although the numerical results were calculated based on
the special form for fgph = m /2. Numerical calculations have shown the results of the
two approximate forms that are useful when oh = /2 to be approximately the same.
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The expression for the currents when Soh is near 7 /2 follows directly from the
results of Section 2.7. In matrix form

—Jj2n : . _
{I:(2)} = CO‘]l’dR ({Vo}(sin Bolz| — sin Boh) + [/ 171 [P, 1{Vo}(cos Boz — cos Boh)),
(5.120a)
where the elements of the matrices are
@}y, = —Driu c0 foh (5.120b)
iy = Priv + Priy sin foh. (5.120c¢)
When Soh = /2,
—j2r ) y e
{I:(2)} = ({Vo}(sin Bolz| — 1) + [P, ] [P, {Vo} cos Boz). (5.121)
SoWar
For Boh = 7 /2, the elements of the @, and & matrices are
iy = Wi (h) (5.122a)
and
iy = Yridu — Yriav(1 = 8ix) — jWkiarix. (5.122b)

The alternative approach begins with the special form for the integral equation valid
at Boh = m /2. It was this latter method which was used for the original curtain-array
calculations [5]. The final form is similar to (5.121) with slightly different values for
the constant Wy and the @) and &/ matrices. In this method the W functions are
computed with the following cosine and shifted-sine currents:

I;i(z) = —jAiSo; + Bi Fo, (5.123)

where Sp; = sin B¢ |z| — sin foh and Fy; = cos Bpz — cos Boh. The final expression for
the current with foh = /2 is

—j2r . . 2m 1Ak
{I.(2)} = o (Vo}(sin Bolz| — 1) — j i [Pul™ [Py 1{Vo}cos foz,  (5.124)
ORT SoWgg
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5.7 Summary

where

Oy = Wi, (1= 8) + U 8k — Wi, 0) (5.125a)
Ppiu = —WYridu + Yriu(0) (5.125b)
and

who = —Re{[Sy(h, 0) — Ep(h, 0)] — [Sp(h, h) — Ep(h, h)]) (5.126a)
Wy = Im{[Sy(h, 0) = Ep(h, 0)] = [Sy(h, h) — Ep(h, )]} (5.126b)
Wy = [Sp(h, 0) — Ep(h, 0)] — [Sp(h, h) — Ep(h, h)] (5.126¢)
Wiigu = Cp(h,0) — Cp(h, h) (5.126d)
Wi (0) = Sp(h, 0) — Ep(h, 0) (5.126¢)
Wiiu(0) = Cp(h, 0) (5.126f)
Boh =m/2,  b=by, by =a.

Numerical calculations show that the results obtained with (5.124) are comparable
with those obtained with (5.121).

Summary

In this chapter a complete theory of curtain arrays of practical antennas has been
presented. Mutual coupling among all elements is included in a manner that takes
account of changes in the amplitudes and the phases of the currents along all elements
as determined by their locations in an array. The theory is quantitatively useful for
cylindrical elements with electrical half-lengths in the range Boh < 57 /4 and electric
radii with values Bpa < 0.02. This includes lengths over the full range in which the
principal lobe in the vertical field pattern is in the equatorial plane; it provides a 5 to 1
frequency band for electrical half-lengths included in the range 7 /4 < Boh < 5w /4.
In this chapter no measurements have been cited to verify the quantitative cor-
rectness of the two-term theory in determining distributions of current, driving-point
impedances or admittances, and field patterns of typical curtain arrays. This is due
in part to the relative difficulty in carrying out accurate measurements of the self-
and mutual impedances for curtain arrays owing to the lack of the symmetry which
underlies the corresponding measurements with the circular array. The primary reason,
however, is the adequacy of the experimental verification of all phases of the theory
as applied to the two-element array — the simplest curtain array (Chapter 3), general
circular arrays (Chapter 4) and to curtain arrays of parasitic elements (Chapter 6). As
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in the case of the circular array, the most sensitive and, at the same time, the most
convenient experimental verification of the theory is in its application to an array in
which only one element is driven while all others are parasitic. The first section in the
next chapter is concerned specifically with the application of the theory developed in
this chapter to a curtain array of twenty elements of which only one is driven and a
comparison of theoretically and experimentally determined currents, admittances, and
field patterns.
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6.1

153

Arrays with unequal elements: parasitic and
log-periodic antennas

The general theory of curtain arrays which is developed in the preceding chapter
requires all N elements to be identical geometrically, but allows them to be driven
by arbitrary voltages or loaded by arbitrary reactors at their centers. If some of these
voltages are zero, the corresponding elements are parasitic and their currents are
maintained entirely by mutual interaction. In arrays of the well-known Yagi—Uda type,
only one element is driven, so that the importance of an accurate analytical treatment
of the inter-element coupling is increased. In a long array the possible cumulative
effect of a small error in the interaction between the currents in adjacent elements
must not be overlooked. As an added complication, the tuning of the individual
parasitic elements is accomplished by adjustments in their lengths and spacings. This
introduces the important problem of arrays with elements that are different in length
and that are separated by different distances. In the Yagi—Uda array the range of these
differences is relatively small. On the other hand, in frequency-independent arrays of
the log-periodic type the range of lengths and distances between adjacent elements is
very great.

In this chapter the analytical treatment of arrays with elements that are different
in length and unequally spaced is carried out successively for parasitic arrays of
the conventional Yagi—Uda type and for driven log-periodic arrays. However, the
formulation is sufficiently general to permit its extension to arrays of other types, both
parasitic and driven, that involve geometrically different elements.

Application of the two-term theory to a simple parasitic array

The simplest parasitic array consists of N geometrically identical antennas each of
length 2/ and radius a arranged in a curtain of parallel non-staggered elements with
spacing b. Element 1 is driven, all others are parasitic. Such an array is illustrated in
Fig. 6.1. The directional properties of the electromagnetic field maintained by the array
depend on the relative amplitudes and phases of the currents in all of the elements.
The currents in the parasitic elements are all induced by their mutual interaction. The
current in the driven antenna is determined in part by the driving generator, in part by
the mutual interaction with the currents in the other elements. The coupling between
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~

Figure 6.1 Parasitic array of identical elements.

the currents in any pair of elements of given length depends primarily on the distance
between them.

The general theory of curtain arrays formulated in the preceding chapter may be
applied directly by setting Vo; = 0, 1 < i < N. The currents in the N elements are
given by (5.34). They are

I;1(z) = jAysin Bo(h — |z]) + Bi(cos foz — cos foh) (6.1)

I;i(z) = Bj(cos Boz — cos Boh), i=2,3,...N, (6.2)

where from (5.47)

Al = __m Vou (6.3)
SoWar cos foh

and the B; are obtained from (5.46). With Vj specified, the currents at the centers of
the elements are obtained from (5.53). The driving-point admittance of element 1 is

Yo1 = 1;1(0)/ Vor. (6.4)

The field pattern of the array is obtained from (5.67) with the appropriate values of
A; and B;. As only A differs from zero the applicable formula is

; —JjBoR1 —JjBoR;
Eo(©, @) =101 j4,° ¢
21 1

Gu(®, foh) ¢, (6.5)

1

N
Fun(®, Boh) +Y _ B;
i=1

where F,,(®, Boh) and G,,(®, Boh) are defined in (5.66) and (5.68). In (6.5) the field
is evaluated in the far zone of each element so that the distances R; are measured to
the centers of the elements. The far field of the array implies in addition that R; = R
in amplitudes and R; = Ry — (i — 1)b sin ® cos ® in phase angles.

Numerical computations have been made by Mailloux [1] for an array of 20
elements with a/A = 0.006 35 and b/A = 0.20. Several values of 4 /X were chosen in
the range for endfire operation between 0.16 and 0.204.
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Figure 6.2 Components of current (mA) on driven dipole in 20-element parasitic array (Mailloux),

(a) in phase with driving voltage, (b) in phase quadrature with driving voltage. b/A = 0.20,
a/x = 0.00635.

The calculated distributions of current along the driven element are shown in Fig.
6.2 together with measured values. The agreement is excellent for 2/ = 0.16 and
0.18. The agreement when A /X = 0.20 is not so close. However, the theoretical curves
for antennas with /1 /A increased by only 0.004 — a distance of less than a/A = 0.006 35
— are in excellent agreement with the experimental data for 2/1 = 0.20. Evidently,
as resonance is approached the current amplitude becomes increasingly sensitive to
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Figure 6.3 Driving-point admittance of 20-element parasitic array (Mailloux). b/A = 0.20,
a/x = 0.00635.

small changes in length. The theoretical and experimental driving-point admittances
are shown in Fig. 6.3. As for the current distribution in general, the agreement is very
good for h/x = 0.16 and 0.18, but the theoretical value at 1/A = 0.204 is in better
agreement with the measured value for 2/1 = 0.20 than is the theoretical value for
h/Ax = 0.20.

The normalized theoretical distributions of current along all parasitic dipoles are the
same. The experimental values were also found to be remarkably alike. Theoretical
and experimental distributions of the magnitude of the current along a typical parasitic
element are shown in Fig. 6.4. It is seen that the theoretical currents differ somewhat
from the measured values. Measured changes in the phase of the current along the
parasitic elements were very small.

The amplitudes of the currents at z = 0 along each of the twenty elements are shown
in Fig. 6.5. The agreement with measured values is again excellent for #/A = 0.16 and
0.18. As before, the theoretical curve for h/A = 0.204 is in much better agreement
with the measured curve for 4/A = 0.20 than is the theoretical curve for 4/1 = 0.20.
The corresponding phases are shown in Fig. 6.6.

It is interesting to note that when 2/A = 0.16 and 0.18 the amplitudes of the currents
in all of the parasitic elements except those nearest the driven antenna are quite small
and substantially equal and the phase shift from element to element is linear. On
the other hand, as /& /A approaches resonance the amplitudes of the currents increase
greatly and they oscillate in magnitude from element to element. The small constant
amplitude and linear phase shift that are characteristic of the shorter elements suggest
a traveling wave along the array; the large oscillating amplitudes near resonance are
characteristic of a standing wave.
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Figure 6.4 Normalized current amplitudes on a typical parasitic element in a 20-element array
(Mailloux). b/A = 0.20, a/A = 0.006 35.
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Figure 6.5 Amplitudes of currents at centers of the elements in a 20-element array with element
No. 1 driven; comparison of King—Sandler theory with experiment (Mailloux). b/x = 0.20,
a/) = 0.006 35, frequency 600 MHz.

The theoretical and experimental field patterns are shown in Fig. 6.7 for the three
values of /2/A. Although the measurements were made in the far zone of each element
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Figure 6.6 Same as Fig. 6.5 but for phases of currents (Mailloux).

(E far zone), the length L of the 20-element array was such that the true far-zone
approximations R; = Rj in amplitudes and R; = R; — (i — 1)bsin ® cos @ in phases
were not sufficiently well satisfied. Accordingly, the field was evaluated from (6.5)
with the actual distances to the elements for comparison with the measured values.
The true far field was also computed for comparison. The former is designated ‘E far
zone’ in the figures, the latter is labelled ‘far zone’. The agreement between theory and
experiment is seen to be quite good even in the details of the minor lobe structure.

It may be concluded that the two-term theory of curtain arrays developed in Chapter
5 provides remarkably accurate results even for parasitic arrays for which one of the
terms vanishes for each of the N — 1 parasitic elements. This is somewhat surprising
since the single term provides no flexibility in the representation of the distribution of
the currents in the parasitic elements. They are all assumed to be the same and given by
1(z) ~ cos Bpz — cos Boh. Moreover, the phase of the current / (z) along each element
is assumed to be the same as that of the current 7 (0) at the center. This means that
the current distribution function f(z) in I(z) = 1(0) f(z) is assumed to be real for all
parasitic elements.

It is unreasonable to suppose that these implied assumptions are generally valid
when longer elements are involved. After all, the investigation in this section has been
limited to relatively short elements with 2/A < 0.2. It would appear that a more
accurate representation of the currents in the parasitic elements is required — this is
suggested in Fig. 6.4 where the actual distributions of current even on the relatively
short elements were not very accurately represented by the single shifted-cosine
term.
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6.2 The problem of arrays with parasitic elements of unequal lengths

Arrays with unequal elements

In order to provide a more accurate representation of the current in the parasitic
elements of an array, use may be made of the three-term approximation given in (3.20).
This is known to be an improvement over the two-term theory used in Chapter 5 and,
when applied to parasitic elements, it provides two terms with complex coefficients
instead of only a single term. Specifically let

Lk (zk) = AxMozk + Bi Fozx + Dy Hozk, (6.6)
where

Moz = sin o (h — |zk]) (6.7a)
Fozr = cos Bozx — cos Bohk (6.7b)
Ho,x = cos %ﬂozk — cos %ﬁohk. (6.7¢)

In parasitic elements the coefficient A is zero, but the two terms By Fozx + Dy Hozk
remain.

It is anticipated that the distribution (6.6) provides sufficient flexibility to represent
the currents in elements of different lengths when each element is allowed to have its
own length 2.

When the several antennas in an array are not all equal in length so that the &; differ,
the problem of solving the N simultaneous integral equations

S hi / / / j47T 1
> 12 (2;) Kkia 2k, z;) dz; = —————— [5 VokMozk + Uk Foz] (6.8)
= Jn %o cos Bohx

withk = 1,2, ... N, is more complicated. The kernel has the form

, , , e~ JPoRki o= JjBoRkin
Kria(zk, 2;) = Kki(zk, 2j) — Kii(he, 2;) = - , (6.9)
Ry Riin

Rii = /(zk — 22+ b2, Run =+ (hx —2))* + b2, (6.10)

Note that by = a. The function Uy is

_ —Jj&o

U
k 4r

N hy
Z/ Li(z)) Kyi (., 7)) dz. 6.11)
i=1Y~hk
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In a parasitic antenna / the driving voltage Vi; = 0, so that

N b .
i ]47[
E Li(Z) Ky ,2)d7 = ——— U Fy,. 6.12
A /—hl- i () Kria(z1, 2;) dz; 20 c0s ol 170zl ( )

In order to obtain approximate solutions of the N simultaneous integral equa-
tions (6.8) by the procedure developed in the earlier chapters, use may be made
of the properties of the real and imaginary parts of the kernel. As shown in
Chapter 2,

hi
/ Goyx Kikar (zk, 23) Az ~ Goz, (6.13)
—hy

where G/ stands for Mok, Foyx or Hoyx and Kirar(2k, 2;.) is the real part of the
kernel. On the other hand,

hi
/ GoyiKikar (zk, z) dzj ~ Hozk (6.14)
—hk

for any distribution G,/. It follows that

h

Wikv (zx) = \ Moy Kika(zk, 7)) dzf = Wit gy Mogk + Wi 1y Hozk (6.15)
—g
& f h
Wik (zx) = /h FokKika @k, 23) dzg = Vi, 0 Fork + Yeeay Hozk (6.16)
—g
e f h
Wikp(2x) = , Hoyk Kika 2k, 2) dz = Yigap Fozk + Yeia p Hozk (6.17)
—g

where the W’s are complex coefficients yet to be determined. Actually, (6.13) with
G = H and (6.14) suggest that the term \If,fk 4pHozk should be an adequate approx-
imation. The term \Ifkf;( 4pFozk is added in order to provide greater flexibility and
symmetry.

When i # k and Bpb > 1, it has been shown by direct comparison in Chapter 3
that

hi

/ GoyiKkiar(zk, 2;) dz; ~ Fozx (6.18)
_hi
hi

f GoyiKriar(zk, z;) dz; ~ Hozk, (6.19)
_hi
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where G(/; stands for My,/;, Fo,/; or Hyy;. It follows that with i # k,

hi
Wiiv(zk) = f Moy Kkia(zk, Z;) dZ; = qj/g;dvFOZk + lIj/il,'dv Hok (6.20)
—h;
hi 7
Wiiv (zk) = / Foyi Kkia(zk, Z;) dZ; = qjkidUFOZk + IIJ/?,'dUHOZ:’c (6.21)
—h;
h; ;
Wiip(zk) = / HoyiKkia(zk, 2) dz) = W[y Fou + WL, p Ho, (6.22)
—h;

where the W’s are complex coefficients yet to be determined.

In the formulation developed in the earlier chapters for driven elements of equal
lengths, the coefficients W were defined individually in terms of the two integrals
obtained from the real and imaginary parts of the kernel. In order to take account
of the more varied distributions that may be obtained when the elements are neither
all driven nor all equal in length, the separation into two parts is not made. Instead
the entire integral is represented by a linear combination of the two distributions
that best represent the parts of the integral. The complex coefficients of these
distributions are to be determined by matching the integral and its approximation
at two points along the antenna, instead of at only one such point. It is antici-
pated that by fitting the trigonometric approximations to the integrals at z = O,
hi/2, and h; (where both must vanish) a good representation may be achieved in
reasonably simple form of all of the different distributions that may occur along
antennas of unequal lengths. It is, of course, assumed that Soh; < 5w /4 for all
hi.

Application to the Yagi—Uda array

In order to clarify the description of the procedure used to solve the N simultaneous
integral equations for a parasitic array, it will be carried out in detail for the specific and
practically useful Yagi—Uda array. In general, this consists of a curtain of N antennas
of which No. 1 is parasitic and adjusted in length to function as a reflector, No. 2
is driven by a voltage Vi and Nos. 3 to N are also parasitic and adjusted to act as
directors. Such an array is shown in Fig. 6.8 for the special case (treated later) with
2h1 = 0.514; 2hy = 0.504; 2h; = 2h, i > 2; by; = 0.25X; bjj+1 = b, i > 2. The
details of these adjustments are examined later.

On the basis of the three-term approximation, the current in the single driven
element has the form

I:2(z2) = AoMoy 2 + BaFopn + Dy Hopo. (6.23)
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Figure 6.8 A Yagi array with directors of constant length, radius and spacing.

The currents in the parasitic elements are
I3 (zi) = Bi Fozi + DjiHoyi, i=134,...N, (6.24)

where the constants A, B; and D; must be evaluated ultimately in terms of V. The
integral equation for the driven element is

I N
Az Moz2 K24 (22, 25) dzh + Y BiFoziKaia (22, 7)) dz;
2

- i=1

N
+ Y DiHoziKaia(22. 2)) d2;
i=1

jar

1
= ———[5 Voo M U, Fonl. 6.25
2o cos ol [5 VoaMoz2 + Uz Foz2] (6.25)

The remaining N — 1 integral equations are

hy N
Ay Moy2Kiad (zk. 25) dz) + Z Bi FoyiKiia(zk, z;) dz;

) i=1

N
+ Y DiHozi Kiia (k. 2)) d2;
izl
jam

= —— U Foz, k=1,3,4,...N. (6.26)
o cos Bohg :
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With (6.15)—(6.17) and (6.20)—(6.22) these may be expressed in terms of the parame-
ters W. Thus, for (6.25)

N
AolW3h gy Moza + Wity Hool + D BilW5, ., Foa + Wiy Hozol

i=1

N "
+ 3 DilW,yp Foz + Wy 1 Hoco]

i=1
_ jam
~ Zocos foha
For (6.26), the N — 1 equations are

[3 Vo2 Moz + Uz Fozal. (6.27)

N
AZ[‘IjkfzdvFOZk + q"]ilZdVH()zk] + Z Bi [qjk};dUFOZk + qj/il,-du Hozx]

i=1

N
+ D], Fou + Wl Houl
i=1
4T R k=13.4 ... N (6.28)
= ——— Ui Fou, =1,3,4,...N. .
o cos Bohi ‘

These equations will be satisfied if the coefficient of each of the three distribution
functions is individually required to vanish. That is, in (6.27):

27 Vi
Ay = — I3 (6.29)
gO\DQZdV cos Bohy

N f f j47‘[

> [BiWy, yy + DiWy,, plcos oo — o U2 =0 (6.30a)
i=1

N
AWy + D By + Dl )1 =0. (6.30b)

i=1

Similarly in (6.28) withk =1,3,... N

N .
4r
{Agw,g;dv + D By + Diviyp] § cos fohy — ]g_—o Uy =0 (6.30¢)
i=1
N
AWl L+ Z[Biq:,@ DYl 1=0. (6.30d)

i=1
Actually, the single equations in (6.30a) and (6.30b) may be combined with the N — 1
equations in (6.30c) and (6.30d) with the aid of the Kronecker 6 defined by

. 0 ik
Tl =k
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The 2N equations are
f Y f f jan
Ar(1 = 82) Wy + D BV, + D%y pl ¢ cos fohi — 7 Uk=0 (6310

i=1

N
AWy + D By + D, p1=0 (6.31b)
i=1
with k = 1,2, ... N. These equations, together with (6.29), determine the 2N + 1
constants A, B; and D;,i =1,2,...N.
Before these two sets of equations can be solved, it is necessary to evaluate the
functions Uy. This is readily done in terms of the following integrals:

hi

Wiy (hy) = Moy Kii(hi, 2)) dz; (6.32)
—h;
hi

Wyiv (hi) =/ Foyi Kii(hi, 2;) dzj (6.33)
—h;
hi

Wiip (hi) =/ Ho.i Kki(hk, z;) dz}, (6.34)
_hi

where

, e—JBoRkin
Kyi(hg, z;) = “Rar Riin =/ (hi — 2))? + b},. (6.35)
L
It follows from the definition in (6.11) that

_ —Jjo

U,
k 4

N
> Ay (i) + BiWkiv (hx) + Di Wi p (o). (6.362)
i=1

Since only antenna 2 is driven, A; = 0, i % 2 so that

_ —J&o

U
k 4r

N
AWy (i) + Y [BiWyiv (hi) + D; lI’kiD(hk)]} : (6.36b)
i=1

The substitution of (6.36b) in (6.31a) gives for these equations

N
AslWiay () — (1 = 812)Wihgy cos fohi] + D BilWiiv (he)

i=1
N
— W[y cos Bohil + Y Di[Wiip(hi) — Wi cos fohl = 0 (6.37)
kidU 07k iL*¥kiD\tk kidD 0k s .
i=1
with k = 1,2, ... N. These equations can be simplified formally by the introduction
of the notation

Proy = Wiay () — (1 — 812) W], cos Bohx (6.38)
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Oriv = Yriv (i) — ‘lf;f;dU cos Bohk (6.39a)
@rip = Wkip(hi) — ‘1’,{,-[11) cos Bohk. (6.39b)

With this notation, (6.37) together with (6.31b) gives the following set of 2N equations
for determining the 2N coefficients B; and D; in terms of Aj:

N
> [@kiv Bi + PripDil = — Doy Ao; k=1.2,...N (6.40)
i=1

N
D Ity Bi+ Y pDil = =V Ax; k=1,2,...N. (6.41)
i=1

These equations may be expressed in matrix form after the introduction of the
following notation:

[ Py P ... Pive |
[Py] = (6.42a)
| Py - Dynvu
[ ®1p Pi2p ... Pinp |
[@p] = : (6.42b)
| ®yip ... ®yNp
- gk h h =
Ve Yiav - Yinau
(wh 1= : (6.43a)
h h
L Yniau Yyyau
- b h h .
Viep Yiap -+ Winap
(wh 1= : (6.43b)
h h
L YNiap Vynap
Prov lI’flzdv
P2ov Yooav
(@)= . (W) = : (6.44)
P2y "IJI}\lIZdV
B, Dy
B, D,

{B} = : {D} = oo (6.45)
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The matrix forms of (6.40) and (6.41) are

[Pul{B} + [®Pp{D} = —{P2v}A2 (6.46)

(wh UBY+ [V 1D} = —(W! 1A, (6.47)

The N coefficients B; and the N coefficients D; must be determined from these
equations for substitution in the equations (6.23) and (6.24) for the currents in the
N elements. The coefficient A,, which is a common factor, is obtained from (6.29) in
terms of the single driving voltage V(.

It remains to evaluate the parameters W that occur in the ®’s in (6.46) and explicitly
in (6.47).

6.4 Evaluation of coefficients for the Yagi—Uda array

The equations (6.46) and (6.47) involve the elements of the N x N matrices [®y],
[®p], [\IJZU] and [\Ilg pl. These, in turn, depend on the parameters W introduced in
(6.15)—(6.17) and (6.20)—(6.22) and the parameters W (k) defined in (6.32)—(6.34).
Since each integral is approximated by a linear combination of two terms with
arbitrary coefficients, these can be evaluated by equating both sides in (6.15)—(6.17)
and (6.20)—(6.22) at two values of z. The values chosen are z = 0, and z = hy /2 in
addition to z = hj; where both sides must vanish.

Specific formulas for the two values of each of the integrals W defined in (6.15)-
(6.17) and (6.20)—(6.22) are as follows:

hi /’li
Wiiv (0) = A,-_I/ Ivi(z)Kiia(0, z}) dz} i/ Moy Kiia(0, z}) dz; (6.48a)
_hi —h,‘
hi M hy
Wiiv (—) = A" / Ivi(z)Kiia (—,Z; dz;
2 " 2
M hi /
= Moy Kkia ERES dz; (6.48b)

/’l,‘ hi
Wiiv (0) = B} / Tyi(z))Kia (0, 2}) dz; if FoyiKiia(0, z)) dz} (6.492)
_hi

i

hk M hk
Wriv (—) = B; 1/ 1yi(z)) Kiia (—,Zl’~ dz;
2 L 2

- i . . hk / /
= FoyiKrid ERE dz; (6.49b)
—h;
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h,' hi
Wiip(0) = Di_I/ Ipi(z))Kia(0, 2;) dz} i/ Hoi K1ia(0, z}) dz; (6.50a)
—hi —hi

hk — hi hk
Wrip <—> =D; 1/ Ipi(z;)Kia <—,Z; dz;
2 s 2
. & h / ’
= . Hoyi Kiia DR dz;. (6.50b)

In all of the above, k =1, 2, 3, ... N. These are a set of complex numbers which give
the values of the integrals (6.20)—(6.22) at the two points z = 0 and z = hy /2. They
are readily evaluated numerically by high-speed computer, or they may be expressed
in terms of the tabulated generalized sine and cosine integral functions. Once the W’s
in (6.48a)—(6.50b) have been obtained for all values of i and k&, the coefficients W may
be determined from the equations (6.15)—(6.17) and (6.20)—(6.22). At z = 0 these
become:

Wy sin Bohe + WL [1 — cos(Bohi/2)] = Wik (0) (6.51a)
W/ 4y (1= cos fohy) + Wl [1 — cos(Bohe/D] = Wy () i £k (651b)
Wl (1= o8 fohi) + WLt [1 = cos(Bohi /2)] = Wiig (0) 6510)
W,y (1 = cos fohx) + Wit 11 — cos(Bohi/2)] = Wiip (0). (6.51d)

At z = hy /2, they are

h
Wy sin(Bohk/2) + Wi 4y [cos(Bohk /4) — cos(Bohi/2)] = Wiy (7]() (6.52a)

W/, 4y [cos(Bohy/2) — cos fohi] + Wi 1y [cos(Boh /4) — cos(Bohy/2)]

= Wiiv <%> i #k (6.52b)
W/, ylcos(Bohi/2) — cos Bohx] + Wi,y [cos(Bohi /4) — cos(Boh/2)]
h
= Wiiv <?> (6.52¢)

‘I’k’;dn[cos(ﬁohk/z) — cos Bohi] + WL, p[cos(Bohr /4) — cos(Bohi/2)]

hi
=Wiip (7> . (6.52d)
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The solutions of these equations for the W’s are obtained directly. They are

h h
Vikay = A1_1{"kav(0) |:COS (%) — cos <%>i|

= Wiy (hie/2)[1 - COS(,BOhk/Z)]} (6.53)

Wy = AT (Wew (i /2) sin fohi — Wiy (0) sin(Bohy /2)) (6.54)
Wy = A5 Wiy (0)[cos(Bole/4) — cos(Bohi/2)]

— Wigv (/DL — cos(Bohi /1) i #k (6.55)
W= A Wiy (e /2)[1 — cos Bohy]

— Wiiv (O)[cos(Bohe/2) — cos fohil) i #k (6.56)

W/l = AT (Weip (0)[cos(Bohi /4) — cos(Bohi/2)]

— Wiiv (hx/2)[1 — cos(Bohi/2)1} (6.57)
Wl = A {Wiiy (hie/2)[1 = cos Bohk] — Wiiv (0)[cos(Bohk /2) — cos(Bohi)])
(6.58)
Wiup = Ay (Wkip(0)[cos(Bohi/4) — cos(Bohi/2)]
= Wiip (hi/2)[1 — cos(Bohi/2)1} (6.59)

Wl = A {Wiip (he/2)[1 — cos ol
— Wkip (0)[cos(Bohk/2) — cos Pohil}, (6.60)

where
Ay = sin fohy [cos(Bohk/4) — cos(Bohi/2)]

— sin(Bohi/2)[1 — cos(Bohi/2)] (6.61)
and
Az = [1 — cos Bohi]lcos(Bohk /4) — cos(Bohk/2)]

— [cos(Bohi/2) — cos Bohk][1 — cos(Bohk/2)]. (6.62)

All of the W’s have been determined. The W (%) coefficients are given in (6.32)—(6.34).
The elements of the ® matrices are obtained from (6.38)—(6.39b). This completes the
solution for all of the currents in the elements of the Yagi—Uda array.
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6.5

Arrays with half-wave elements

When an array includes half-wave parasitic elements the formulation in Sections 6.3
and 6.4 is directly applicable. Specifically, when Soh; = 7/2 and element i is parasitic,
the current (6.24) has the form

Li(zi) = Bi cos Pozi + Dilcos(Bozi/2) — v/2/2l. (6.63)

If the length of the driven element 2 is such that Bgh; is near or exactly /2 (as in
Fig. 6.8), the alternative form for the current given in (2.35) for the isolated antenna is
more convenient since it does not yield an indeterminate form at Sghy = /2. That is,
in the notation of (6.23),

I2(22) = A,Soz2 + B5Fon + DaHoo, (6.64)
where

Soz2 = sin Bg|z2| — sin Bohy (6.65)
and

Al = — Ay cos Bohy = — j (27 Vi /G0 Wh 1) (6.66a)
B}, = B + Ay sin fohy = By — Al tan fohs. (6.66b)

Note that A} and B} are finite when ok, = /2. In this case
Soz2 = sin Bolz2| — 1, Bé = By + Aj. (6.67)

Since (6.64) is not actually a different distribution from the original in (6.23) but
merely a rearrangement that is more convenient when foh» is at or near /2, it is not
necessary to repeat the formulation in the preceding sections with Sp_» substituted for
Moy;>. A simple rearrangement of the 2N equations in (6.40) and (6.41) is all that is
required. This is accomplished by the substitutions (6.66a) and (6.66b) for A, and B;.
Specifically, let

Ay = —AJ sec Boha, By = B} + A) tan foh» (6.68)
@),y = [Prav — Prow sin Bohz] sec Boha (6.69)

‘I’/igdv = [\IjlilZdV - ‘D/ilzdu sin Boha] sec foha. (6.70)
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Also let B stand for By, B), B3, ... By. With this notation, the equations (6.40)
and (6.41) become:

N
> [@kiv B] + ®ripDil = Opyy Al; k=1,2,...N (6.71)
i=1
N
h l h th /.
> B+ Y pDil =W, Ab k=12, N. (6.72)

i=1

In matrix form these are

[®yl{B'} + [®pl{D} = {®)y}A) (6.73)
(Wi 1B} + (W), 1{D} = (W), }AS, (6.74)

where the four square matrices and the column matrix {D} are defined in (6.42a, b),
(6.43a, b) and (6.45). The other column matrices are

h
B} CD/IZV q’i}gdv
/
B, @5y q’g}%dv
!
{B'y=1 B3 ¢, (P} =1 Pav ¢, Wi =1 Yaav ¢. (6.75)
B. c1>" \11”"
N N2V N2dV

These equations are to be solved for the 2N coefficients B/ and D; in terms of A}, =
—JQ2r Voo /SoW5, 4v)- The W functions that occur in these equations are defined in
the same manner as in Sections 6.3 and 6.4. This is illustrated below for Sohy =
/2.

When Bohy = /2, Fozx = Mozx = cos Bozk. It follows from (6.48) and (6.49) that
Wiav (0) = Wiy (0) and Wioy (hi /2) = Wioy (hy/2). From (6.32) and (6.33), (6.61)
and (6.62), it follows that Woy (hy) = Wiopy (hy) and A; = Aj. Hence, from (6.53)
and (6.57), (6.54) and (6.58), it follows that WJ% , = Wl wh =~ — wl = when
k = 2. Similarly, (6.55) and (6.57), (6.56) and (6.58) give \IJ,‘{fde = \If,‘z;dU, ‘y/ilzdv =
\Il,i’2 dU when k # 2. As a consequence, @;{2‘, and \If,/cg qv become indeterminate in the
form 0/0 when k # 2. However, the limiting value for each as Bphy, — 7 /2 is finite.
Thus, (6.69) and (6.70) may be expanded as follows. When k = 2,

@y = —Sa(ha, ha) + Ealha, ha) + Wy (6.76a)
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|

when k # 2,

Doy = — Shy(ho, hi) + Epy, (ha, hy)

cos Pohi L Boh | Bohi][—Ep,, (h2, 0
+ A, [cos 7 Bohk — cos 5 Bohk]l[—Ep, (h2, 0)

+ Ep, (ho, hi) + Spy, (B2, 0) — Spy, (h2, hy)]

| hi
+ (I — cos 5 Bohi) | Epy, | h2s >

h
— Ep, (ha, hi) — Spy, (hz, éc) + Spy, (h2, hk)j| } (6.76b)

where A is defined in (6.62). Similarly, when k = 2,

1-V2 h |
vy = A—;/_H:Ca (hz, ?2) — Cy(ha, hz)] [1 - ﬁj|

—[Cq(h2, 0) — Cy(ha, hy)] |:cos T %]}

8
+ ALQ”—S(; <h2, %) + Sa(ho, hy) + E, (”lz, %) — Ey(hy, hz)]
" % [Sa(h2, 0) = Sa(h2, h2) = Ea(h2, 0) + Ea(ha, hz)]}; (6.76¢)
when k # 2,

1 h
Wy = A_z{[l — cos IBOhk]|:_Sbk2 (hz, ?k) + Spy, (ha, hi)

hy

+ Ep,, (hz, > ) — Ep,(ha, hk)i|
+ [cos 3 Bohi — cos Bohk1[ Sk, (h2, 0) — Spy, (ha, hy)
— Ep, (h2,0) + Ep, (ha, hk)]}. (6.76d)

The coefficients Bi’ and D; obtained for fphy = 7 /2 from (6.73) and (6.74) with (6.76)
are to be used in the current distributions

I:2(z2) = A} Soz2 + By Foz2 + Do Hop (6.77)
Li(z;) = BFosi + DiHosi.  i=1,3,...N. 6.78)

In the original analysis of arrays with half-wave elements [2] and in its application
to arrays of the Yagi type [3], a somewhat different procedure was used. In effect, this
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treated the alternative form (6.64) of the distribution of current along a driven half-
wave element as an independent representation. The entire procedure carried through
in Sections 6.3 and 6.4 was repeated with the distribution function My, replaced by
Soz2. This also involved a simple rearrangement of the integral equations (6.8) so that
when k = 2, the right-hand member is (j471/§0)[%V02S012 + C2 Fpzo].

The alternative procedure is basically equivalent to that outlined in Section 6.5 but
the two are not identical and involve small quantitative differences when applied to
a particular array. In particular, the values of Wy (0) and Way (hy/2) from (6.48a,
b) are necessarily somewhat different when, with Sohy = 7 /2, Sp;2 = sin Bol|z2| — 1
is substituted for My,» = cos Bpzz in the integrals. It follows that the two values of
L 25 4v as defined in (6.53) are also not quite the same when Sp.» is used instead of
Mo>. These differences are small and either procedure should give satisfactory results,
although in the interest of simplicity and consistency the generalization in Section 6.3
is to be preferred.

Reference is here made to the alternative procedure primarily because it was used
by Morris in an extensive quantitative study of the Yagi—Uda array. The results of his
work, described later in this chapter, differ negligibly from those actually given.

The far field of the Yagi—Uda array; gain

The electric field maintained at distant points by the currents in the N elements of the
Yagi—Uda array is readily determined. For the currents

I;2(z2) = Az sin Bo(ha — |z2]) + Ba(cos Bozz — cos Boh2)
+ Dj(cos %,Bozz — cos %,Bohz) (6.79a)
Li(zi) = Bi(cos fozi — cos foh;) + Dj(cos §fozi — cos $ohi), i #2 (6.79b)

the electromagnetic field is

jco e~ JPoRa
Eg(Ry, ©, P) = 2_{A2 Fn (O, Boh2)
T R>
N o—jPoRi
— [BiGn(O, Bohi) + Di Dy (O, ﬁohi)]}, (6.80)
i=1 i

where F,,(®, Boh), G, (®, Boh) and D,,(®, Boh) are defined in (2.46)—(2.48) and R;
is the distance from the point of calculation to the center of element i. This may be
rearranged as follows:

Vop e JPoR2

Eon(R2,®, D) = ——
on (R ) v R

Jn(©, D). (6.81a)
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[
e

21

Figure 6.9 Coordinates for four-element array referred to origin at center of element 2.
by =by3 =b3g =D.

Since no ambiguity can arise the symbol W without subscripts and superscripts is used
for W35, as defined in (6.53). The field factor in (6.81a) for the N-element array is
given by

N
fn(®, @) = {Fm(@, Bohz) + Y e PRI 1,6, (O, Bohi)
i=1

+ Tpi Dy (O, ,BOhi)]} sec Boha. (6.81b)

In obtaining (6.81a, b) the far-field approximation, R; = Rj, in amplitudes has been
made. In the spherical coordinates R, ®, ® (Fig. 6.9), and with b; ;11 = b,

R; — Ry = —(i —2)bsin ® cos O. (6.81¢)
The following set of parameters has been introduced:
Ty; = Bi/ A, Tp; = Di/ Az, (6.82)

where Ay = j2m Vo /oW cos Boho. The quantity Eg(®, ©)/ Vo, is the far field per
unit voltage driving element 2.
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An alternative expression for the field per unit input current to the driven antenna 2,
ie. Eg(®, ®)/1,2(0), is readily obtained with the substitution of Vi = 1,2(0)/Yan
where, from (6.23), the input admittance of antenna 2 when driving the N-element
array is

1:2(0) Jj2m .
= = hy + Tya(1 — h
Vos 20U cos folta [sin Bohy + Ty2(1 — cos Bohr)
+ Tpa(1 — cos 3 Boh2)]. (6.83)

The result is

1 C01,2(0) e 7PoR2
Eon(Ry, ©, ®) = 2 = Fn(©, ), (6.842)
T R,

where
fin(©. @)
N .
| Fu(®. foh) + e IETEITY; G, (O, fohi) + Tpi Dn(©, fohi)]

- i=1

sin Boha + Tua(1 — cos Boha) + Tpa(1 — cos 5 Boha)

(6.84b)

If the driven element is near a half wavelength long, the more convenient alternative
form of the current is

I:2(z2) = A4(sin fo|z2| — sin foh2) + Bj(cos foza — cos foh2)
+ Da(cos 3 Boz2 — cos 3 foha), (6.85)

where A, = — ;27 Via/¢oW. The currents in the parasitic elements are given by
(6.79b). With the notation

T); = Bj/Ay,  B{=Bi|, B} Bs,...By (6.86)

the formula for the distant field is

Vop e /PoR2
E Ry, ®,d) = —
on(R2 ) v R

fon(©, ®), (6.872)

where
N .
Fin(©, @) = Hy(©, foha) + Y e IPoRi=Ra)
i=1
x [Tl/]le(G)a ,BOhi) + Tpi D), (©, ,30/’1,)] (687b)

H,;, (©, Boh) is defined in (2.51) and, specifically for foh = 7/2,1in (2.52a). As before,
G (0, Boh) and D,, (O, Boh) are given in (2.47) and (2.48). Special values for foh =
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/2 are in (2.52b, ¢). If desired Egy (R2, ®, ®) as given in (6.87a, b) may be referred
to the current ;7 (0) instead of the voltage Vp,. In this case

—j2m .
Yon = ;f)—\lf [— sin Boha + T, (1 — cos Boha) + Tpa(1 — cos %ﬁohz)] (6.88)
so that
ic0l.0(0) e—JPoR2
Eon(Ry, @, @) = 150/20) ¢ Fin(©, ), (6.8%)
2w R
where

N
Hn(©, Boha) + Y _ e IF=RIT). G, (O, Bohi) + Tpi D (O, ohi)]
i=1

— sin Boha + T}, (1 — cos Boha) + Tpa(1 — cos 2 foho)

(6.89b)

The graphical representations of the normalized field factors |fn(®, ®)|/
| fnv(T/2,0)| or |f1’v(®, <I>)|/|f1’v (;r/2, 0)| in appropriate planes are the field patterns.
The field pattern in the equatorial (horizontal) plane is given by |fn(7/2, ®)|/
| fn(m/2,0)| as a function of ®. Important field patterns in planes perpendicular to
the equatorial plane are with ® = 0 and x. In this case | f§ (O, {2 })|/|fN (r/2,0)|
is shown graphically as a function of ®. The ratio of the field in the forward direction
(i.e. toward the directors, & = 0) to the field in the backward direction (i.e. toward the
reflector, ® = ) in the equatorial plane ® = /2 is known as the front-to-back ratio.

It is given by
T

(59|
Rpp = +——7—- (6.90a)

v (57)]
The front-to-back ratio in decibels is

T b4

rrp = 20logo | fiv (5,0) /fN (E,n) . (6.90D)

Note that in all of the ratios involving fn (®, ®) either fyn(®, @) or fiv(®, ®) may
be used.

Since the total power radiated by an array is given by the integral over a great sphere
of the normal component of the Poynting vector

ISR(R, ©, ®)| = |[Ee(R, ©, ®)*/24) (6.91)
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the distribution as a function of ® and ® of |Sg(R, ®, ®)| is of interest. The total
power supplied to the N-element array is

Py = 3I20)*Ray = 3|Vi2*Gan. (6.92)

where Roy and G,y are, respectively, the driving-point resistance and conductance of
the element 2 when driving the N-element parasitic array. With (6.81a), (6.84a) and
(6.92), (6.91) becomes

P

1Sk (Rp, ©, )| = ﬁ G . ®)2 (6.93a)
Py

= R | fv(©, @), (6.93b)

A graphical representation of | fy (®, ®)/fy(T/2, 0)|2 is known as a power pattern.
(Note that R is a distance, Ry a resistance.)

If ohmic losses in the conductors of the antennas and in the surrounding dielectric
medium (air) are neglected, the total power radiated by an array outside a great sphere
of radius R is the same as the total power supplied at the terminals of the driven
element 2. That is

Poy = 31Vol*Gon = S112(0)*Raw

2
:/ / |SR(R2, ©, ®)|R3 sin© dO dP. (6.94)
0 0

With (6.93) and (6.94), formulas are obtained for Ry and G,y in terms of the far
field. They are

2n pm
Ron = 5_0/ / | fiv(©, ®)*sin © dO dd (6.95)
4-7T2 0 0

1 2
Goy = —2/ / | fvn (O, d>)|2 sin®d® do. (6.95b)
oVv=Jo Jo
Actually, both Roy and Gy are already known from

1,2(0)/ Voo = Gon + jBon

when the medium in which the array is immersed is lossless.

The absolute directivity of the N-element Yagi array is defined in terms of the power
radiated by a fictitious omnidirectional antenna that maintains the same field in all
directions as the Yagi array does in the one direction of its maximum, namely, ® =
/2, ® = 0. This power is

T
Py omni = 47 R \SR (.. > 0)(

o [0 GO =P gz [ Go)f - 690

= P)§
o)
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The ratio Py omni/ P2nv 1s the absolute directivity. Thus

D (5.0) = et — | (3.0)[ = W—Gm\fW( o)["
(6.97)

This formula is often written with Ry expressed explicitly as given in (6.95a). The
quantity

Gy (% 0) — 10log,y Dy (% o) (6.98)

is the absolute gain in decibels.
The absolute directivity of the driven element 2 when isolated is

= (%’0> - % - JTR21 ‘f” ( ))2 §0W2G21 ‘fw ( >‘2 (©59)

The relative directivity at constant power of the array referred to the isolated driven

element is
2e(30) i (GO oalin (30

b
21 (3:0) Rl (Z0)[ G | (Z.0)

The corresponding relative gain in decibels is

G,(0) = Gy (% o) ~ G (% o) =10 [mg10 Dy (% 0) ~log,o D1 (% 0)].
(6.101)

D, (0) = (6.100)

The relative directivity (6.100) is readily expressed in terms of the electric field in
(6.84a). Thus,

T 2
‘EG)N (.. 5,0){ P

b4 2 ’
For (R 3 0)

D,(0) = (6.102)

The relative directivity at constant power, P»; = Py, is

o (5230
D, (0) = p 5 - (6.103)
[Eor (R2.5.0)]

This is equivalent to (6.100).
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The relative directivity (6.100) or (6.103) is also the relative forward directivity in
the direction ® = /2, ® = 0. The relative directivity at constant power Py; = Py
in the backward direction ® = /2, ® = & is defined by

)EON (Rz’ ’ )‘2_ R ‘fm<%’”>‘2 G2l ‘fVN(% ))2

T
2
D, () = = .
T 2 Ry T 27 Gon T 2
Eor(kegom)| B | (Gom)[ T | (5)]
‘@122 f1127T fV12
(6.104)
The relative backward gain in decibels is
G, () = 10log o D, (7). (6.105)

Since for a single element rotational symmetry with respect to ® gives f(;r/2, 0)
= f1(/2, 7), it follows that

D,(0) iz (%O)‘z

D, (7) po 3 (6.106)
(5]

and

rrg = G, (0) — G, () (6.107)

in decibels. Note that R is a distance, Ry; and R,y resistances.

6.7

Simple applications of the modified theory; comparison with
experiment

The theory of arrays developed in the preceding sections is like that formulated
in the earlier chapters in that the complicated simultaneous integral equations for
the currents in the elements are replaced by a set of algebraic equations. This is
accomplished by approximating the integrals with an appropriate combination of
trigonometric functions. In dealing with arrays of driven elements of equal length
it was convenient to use different trigonometric functions for different parts of the
integrals and to match these to the integrals at the point of maximum current, z = z,,,
and at the ends, z = =+h. For use with parasitic elements of unequal length this
procedure is modified. Each integral is approximated by a sum of trigonometric
terms with coefficients matched to the integral at z = 0, £h/2 and +A. In order
to illustrate the application of the modified theory and at the same time verify its
accuracy it is convenient to consider the simplest cases, the isolated antenna and the
two-element parasitic array. Since conventional (sinusoidal) theory fails completely
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Figure 6.10 Distribution of current on full-wave antenna; I (z) = I"(z) + jI'(z); a/) =
0.007 022, /A = 0.5.

when full-wave elements are involved, the examples are selected deliberately to
include such elements.

In Fig. 6.10 are the distributions of current along a full-wave isolated antenna as
computed from the modified theory, and as measured. They may be compared with
the three-term approximation in Fig. 2.4 where the same experimental data are also
shown. The two theoretical representations, while not identical, are nevertheless both
very good approximations of the current. The modified theory does not provide quite
as good an overall fit, but is somewhat better in specifying the susceptance — as would
be expected since all integrals are matched at z = 0 and not only at the maximum
of current. The admittance in the modified theory is Yy = (0.926 4 j1.350) x 1073
siemens; the value obtained previously is Yo = (0.976 + j0.988) x 1073 siemens. The
measured value after correction for end effects is (1.025+4 j1.676) x 1073 siemens. As
indicated in conjunction with Fig. 2.6 a lumped susceptance By = 0.72x 1073 siemens
must be added to the three-term admittance to give Yo = (0.976 + j1.708) x 1073
siemens. A similar lumped correction is also required with the modified theory, but it
is smaller, namely By = 0.35 x 1073 siemens. It is clear that when suitably corrected
to give the right susceptance, either theory provides a very acceptable approximation
of the current in a dipole.

The distributions of current in an array of two full-wave elements in which element
1 is center driven and element 2 is parasitic are shown in Fig. 6.11 for four values
of b, the distance between the parallel antennas. The corresponding field patterns in
the equatorial plane are in Fig. 6.12. The distributions of current in Fig. 6.11 may be
compared with measured values in Fig. 6.13. The agreement is seen to be very good.
Equally good agreement has been observed for the field patterns.

As an illustration of the computations for the currents in a two-element array
with elements differing greatly in length, the graphs in Fig. 6.14 are provided. The
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Electric field (decibels)

1

0 30 60 90 120 150 180

@ (degrees)

Figure 6.12 Horizontal field patterns of full-wave two-element parasitic array. 2/A = 0.5,
a/x = 0.007022.

associated horizontal field patterns are in Fig. 6.15. In the case considered, the driven
element is a wavelength long, the parasitic element has successively the three lengths
hy = 0.2X, 0.4, and 0.65A. Large changes in the distributions of current are seen
to occur in the parasitic element as its length is changed while fixed at the specified
distance b = 0.21 from the driven element. Note that except for the shortest length,
the currents in the parasitic element differ significantly from the sinusoidal. The
current in the driven antenna is only slightly affected by the changes in length of the
coupled parasitic antenna, the largest changes occurring near the driving point so that
the admittance is noticeably modified. Specifically, for the values hy/A = 0.2, 0.4,
0.65 the admittances are (0.916 + j1.041) x 1073, (0.790 + j1.480) x 1073, and
(0.805 + j1.510) x 1073 siemens.

A typical computer printout for a two-element parasitic array is in Table 6.1.
The coefficients of the trigonometric components of the current, the admittance, the
impedance, the current distributions, the horizontal and vertical field patterns, the
forward gain, the backward gain and the front-to-back ratio are all given.

6.8

The three-element Yagi—Uda array’

The computed distributions of current and the field pattern for a three-element array
consisting of a reflector of length 2/1 = 0.51, a driven element of length 24, = 0.50X
and a single director of length 2h3 = 0.45A are shown in Figs. 6.16 and 6.17. For
this array the radius of all elements was taken as a = 0.003 369. The driving-point
impedance of element 2 is Z, = 27.4 + j1.27 ohms. The computed values of the

1 This section is based on the work of Dr I. L. Morris [3].
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Table 6.1. Computer printout for two-element parasitic array

No. of elements = 2

Half-length of driving antenna = 0.500 0000E 00
Half-length of parasitic antenna = 0.650 0000E 00
Radius = 0.702 2000E—02

Element spacing = 0.200 0000E 00

Coefficients for current distributions

AR

—0.249 034E—-04

BI

0.441 346E—03

BI

—0.493231E—-03

Element No. 1
Al

—0.318 019E—-02

DR

0.439517E—03

Element No. 2

DR

0.221251E-03

Current distributions and input admittances

Real

Input admittance =

0.805 356E—-03

Input impedance =

Z/H

0.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.274884E 03

Real
0.805356E—03
0.783297E—03
0.734272E—-03
0.661 902E—03
0.571337E-03
0.468 802E—03
0.361 052E—03
0.254792E—03
0.156 115E—03
0.700 128E—04

Element No. 1

Imaginary

0.151 036E—02

—0.515518E 03

Imaginary
0.151 036E—02
0.498 302E—03

—0.473916E—-03
—0.131281E—-02
—0.193902E—-02
—0.229 502E—-02
—0.235064E—-02
—0.210594E—-02
—0.159 102E—-02
—0.862943E—-03

BR

0.182919E—-03

DI

0.627 672E—-03

BR

0.707 925E—04

DI

0.456011E—03

Magnitude
0.171 167E—02

0.584226E 03

Magnitude
0.171167E—02
0.928 363E—03
0.873929E—-03
0.147023E—02
0.202 144E—02
0.234241E—-02
0.237821E—02
0.212 130E—02
0.159 866E—02
0.865779E—03

Argument
61.8473

—61.8473

Argument
61.8473
324182

—32.7939

—63.1562

—73.4809

—178.3470

—81.1558

—82.9870

—84.2797

—85.2440
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Table 6.1. — continued
Element No. 2

Z/H Real Imaginary Magnitude Argument
0. 0.434100E—-03 —0.120 109E—-03 0.450410E—-03 —15.4447
0.1 0.423 681E—03 —0.890 176E—-04 0.432931E-03 —11.8492
0.2 0.393571E—-03 —0.202264E—05 0.393577E—03 —0.2940
0.3 0.347053E—-03 0.123 120E-03 0.368 245E—03 19.5057
0.4 0.289 068E—03 0.260242E—-03 0.388955E—03 41.9382
0.5 0.225521E—-03 0.379298E—-03 0.441278E—-03 59.1837
0.6 0.162456E—03 0.451 620E—03 0.479 950E—03 70.1187
0.7 0.105 249E—-03 0.455010E—-03 0.467 024E—03 76.8698
0.8 0.579298E—-04 0.377819E—-03 0.382234E—03 81.1709
0.9 0.227 404E—-04 0.221 326E—03 0.222491E—-03 84.0178
Horizontal field pattern
Phi E E dB
0. 1.000 000 —0.
10.00 0.999 009 —0.0086
20.00 0.997528 —0.0215
30.00 0.999 831 —0.0015
40.00 1.012 188 0.1052
50.00 1.041 196 0.3507
60.00 1.091 405 0.7597
70.00 1.163272 1.3136
80.00 1.252706 1.9570
90.00 1.352388 2.6220
100.00 1.453 907 3.2507
110.00 1.549 639 3.8046
120.00 1.633938 4.2647
130.00 1.703 568 4.6272
140.00 1.757 561 4.8982
150.00 1.796 660 5.0893
160.00 1.822 565 5.2137
170.00 1.837157 5.2829
180.00 1.841848 5.3051

F gain = 0.4079 dB B gain = 5.7130 dB FTBR = —5.3051 dB

Vertical field pattern

Theta E EdB

10.00 0.068 390 —23.3002
20.00 0.151670 —16.3820
30.00 0.245 067 —12.2143
40.00 0.345 650 —9.2273
50.00 0.460228 —6.7405
60.00 0.606571 —4.3424
70.00 0.782575 —2.1295

80.00 0.937397 —0.5615
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187 6.8 Three-element Yagi—-Uda array
|

T T T T T
S h/A=0.5, hyl=0.65 1
- - = h/A=05, hA=04 --"
A — = nA=05, A =02 . 1
3+ |
2t |
§
.g 1F -
=
T
& ~.
=R . 1
3 N\,
=t \, 1
\\
-3r \ -
4t \‘\ 1
_5F ‘\~\ /_/"Z
1 1 1 1 1
0 30 60 9 120 150 180
O (degrees)

Figure 6.15 Horizontal field patterns of arrays of two elements of different lengths. b/A = 0.2,
a/x =0.007022, N = 2.

phase angle of the current along the reflector are nearly constant; it decreases from
74°.5 at z/hy = 0to 72°.7 at z/h; = 0.9. The phase angle of the current along
the driven element decreases from —2°.66 at z/hy = 0 to —8°.47 at z/hy = 0.9.
The phase angle of the current along the director is almost exactly constant, changing
only from —154°.3 at z/h3 = 0 to —154°.0 at z/ h3 = 0.9. It is clear from Fig. 6.16
that the current in the reflector is so small that it actually contributes negligibly to the
field.

In order to determine whether the particular length /3 and spacing by3 are the best
values to maintain the largest forward gain G(0) or the maximum front-to-back ratio,
the quantities ~3/A and by3/A can be varied over a suitable range and the associated
forward gain or front-to-back ratio computed. A computer printout for the front-to-
back ratio is shown in Fig. 6.18. The ordinates are 2h3/A = 2H/L, in a range from
0.50 to 0.36 in steps of 0.01; the abscissae are bp3/1 = B/L in the range from 0.02
to 0.30 in steps of 0.02. The contours are drawn along estimated lines of constant
front-to-back ratio ranging from 1 to 19. It is seen that the maximum value of front-
to-back ratio is close to by3/A = 0.12 with 2h3 /A = 0.44 Thus, the distributions of
current and the field pattern in Figs. 6.16 and 6.17 do not quite correspond to those
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n0.25 I'(2)/Vy,
! - == T@V 0.225
it b,/A =025 0.20
‘| " by /A = 0.08
Hy 1 7015 a/A = 0.003369 1015 ¢
1 1 A ’ A
1 1 ’
v 17010 ! 10.10
1 1
1 1
T 17005 10.05
1 1
1 1 1
Il 1 1 1 1 1 1 1 1wl 1 1
05 0 10 20 30 40 -30 -20 -10 O
Milliamperes per volt
Figure 6.16 Currents in three-element Yagi—Uda array.
0
5}
3
]
8 -10
N
5 2h /2= 0.51
= st 2h,/A = 0.50
g 2hy/A = 0.45
é’ b,/A =0.25
0k by3/A = 0.08
a/A = 0.003369
25 1 1 1 1 1
0 30 60 90 120 150 180

O (degrees)

Figure 6.17 Field pattern of three-element Yagi—Uda array with element No. 2 driven.

for maximum front-to-back ratio. A small readjustment in the length of the director
from 2h3 = 0.45A to 2h3 = 0.44X and an increase in its spacing b3 from 0.08A to
0.12A produce an increase in front-to-back ratio from 24.14 to 30.70. If the parameters
2h3/A and by3/) were varied in steps smaller than 0.01 and 0.02, respectively, an
even higher ratio might be obtained within the narrow ranges 2h3/1 = 0.44 + 0.01,
by3/A = 0.12 4+ 0.02. A more extended set of contours of the front-to-back ratios is
shown in Fig. 6.19b in which the computed numbers have been deleted and only the
contours of constant 7 g are shown. It is clear that a number of successive maxima in
front-to-back ratio are obtained as the distance b,3 between the director and the driven
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I
=
0.02 0.100.18 0.26 0.34 0.42 0.50 0.58 0.66 0.74 0.82 0.90 0.98 1.06 1.14 1.22 1.30 1.38
b/A
®) 050 Y
0.46 3 \\
A 0.42 7dB
0.38
0.02 0.10 0.18 026 0.34 0.42 0.50 0.58 066 0.74 082 090 0.98 106 1. 14 122
b/A
(© 0.50
0.46— \_20 \\ \ \ \J
2 140 14
A 0.42 60 130 110
038 > 80 100 ohms 120 110 100 105 )
0.02 010 0.18 0.26 034 0.42 0.50 058 0.66 0.74 0.82 0.90 0.98 1.06 1. 14 1.22
b/
@ 0.50
on 40 \ 14 40\ \W
2 0.42F 80
0.38 80 ohms 7
0.02 010 0.18 026 034 0.42 0.50 0.58 0.66 0.74 082 0.90 0.98 106 1.14 1.22
b/A
Figure 6.19 Contour diagrams constructed with computer printouts for a one-director Yagi array,
(a) forward gain, (b) front-to-back ratio, (c) input resistance, (d) input reactance.
element is increased. These occur substantially at intervals of A/2 with 2h3 between
0.44) and 0.46. Similar computer printouts for forward gain, driving-point resistance
and reactance are also shown in Fig. 6.19.
I
6.9 The four and eight director Yagi—Uda arrays>

The theory developed and illustrated with simple examples in the preceding sections
can be applied to analyze the properties of longer Yagi—Uda arrays. For such arrays
the quantities of principal interest include the distributions of current along all
elements (since these determine the field), the admittance or impedance of the single

2 This section is based on the work of Dr L. L. Morris [3].



191

6.9 Yagi-Uda arrays

driven element, the far-field pattern, the forward gain and the front-to-back ratio.
For many purposes the determination of conditions that yield a maximum in the
forward gain or in the front-to-back ratio is important. The parameters that may
be varied are the length 2h; and radius a; of each element i, the distances b;;
between the elements i and j and their number N. Thus, there are a total of 3N
parameters.

Because of the large number of possible combinations, an exhaustive study of the
Yagi array would be very costly in both time and money even when a high-speed digital
computer is available. An investigation of reasonable proportions must be restricted to
a choice and range of parameters that is appropriate to a particular purpose.

In general, the purpose of the Yagi—Uda array is to obtain a highly directive field
pattern with large values of the forward gain and front-to-back ratio. It has been shown
implicitly that these desired properties can be achieved with the array pictured in Fig.
6.8. It consists of the following components:

1. A single driven element No. 2 that is a typical half-wave dipole of length 2k, =
0.5\ but with a finite radius a> and a distribution of current that is not assumed in
advance to be sinusoidal, but remains to be determined.

2. A single reflecting element No. 1 that is slightly longer (22; = 0.511) than the
driven antenna is placed at a distance b1 = 0.25) from it. The field maintained
by the currents induced in a parasitic element of this length and relative location
tends to reinforce the field maintained by the currents in the driven element in the
forward direction (from 1 to 2) and to reduce or cancel it in the opposite or backward
direction (from 2 to 1).

3. The balance of the array consists of N —2 directors that all have the same half-length
h; = h and that are separated by the same distance b;_1; = b with3 < i < N.
In order to function as directors, the length & of the N — 2 parasitic elements must
satisfy the inequality 7 < hy = 0.5A if the field maintained by the currents in them
is to reinforce in the forward direction the field maintained by the currents in the
driven element and in the reflector. If it is required that all antennas have the same
radius, a; = a, the 3N parameters have been reduced to three; 4, b and N.

Contour diagrams constructed from computer printouts of the forward gain, the
front-to-back ratio, the input resistance and the input reactance are shown in Figs.
6.20 and 6.21 for an array with four identical directors. The parameters are 2k /A
and b/L where h = hy = hgy = hs = hgand b = bys = b3y = bss = bse.
From these, combinations of 4 and » may be selected for which the forward gain
or the front-to-back ratio is a maximum. For example, the following pairs of values
are obtained from Fig. 6.20 to give a maximum front-to-back ratio: 2h/A = 0.413,
0.420, 0.426, 0.424; b/x = 0.033, 0.139, 0.248, 0.360. These four sets all give a
maximum front-to-back ratio, but the field patterns are quite different. These are shown
in Fig. 6.22 together with corresponding patterns for similarly optimized one- and
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1.0 1 Director
0.8 2h/A = 0.440
r b/A =0.111
‘E((I)) 0.6 -
E(0) i
04r
02
0 1 1 1 1 1 1 J
1.0 2 Directors
0.8
| Line 2wWA b/A
M 0.425 0.064
‘E(CD) 0.6 ' - - --0436 0255
E(0) \
04r ‘\
- \
02} *\
N
0 1 1 1 1 1 1 _— J
1.0 4 Directors
081 DN Line 2W/A  b/A
| AR 0413 0.033
05 \\‘ \\ -===0420 0.139
6F . —-— 0426 0.248
‘EEC(I;)) | \ \ —--— 0424 0.360
\
04r \\ \\ Pt
0 2 : \\‘ /'\\'/
. \_,\ /A
L Yy I
0 1 1 1 1 1 1 1 1 1 1 — T o |
0 20 40 60 80 100 120 140 160 180

@ (degrees)

Figure 6.22 Horizontal field patterns for Yagi arrays with maxima in front-to-back ratio.

two-director arrays. From these it is seen that the field patterns for the most closely
spaced condition for maximum front-to-back ratio are practically identical regardless
of the number of directors. This is due to the fact that the directors are all so close to
the driven element that no minor lobes are possible. As the distance between directors
is increased, but limited to values that yield maxima in the front-to-back ratio, minor
lobes appear and the beam width is reduced. The currents at the centers of the elements
for the arrays that maintain the field patterns in Fig. 6.22 are represented in the form
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|

<
4
2h/ = 0.440 4 Element [1(0)|
bA=0.111
’ 1 4.28
L/ 2 24.47
105.77° 3 23.08
8.12°
2h/A = 0.425 Element |1(0)|
b/A = 0.064 | 435
, 2 27.34
’ 3 12.55
,/ 4 16.68
4
/7
4
/
71
2h/2. = 0.436 Element [1(0)]
b/ =0.255
1 4.55
2 13.32
3 14.17
63.10° 4 11.05

28.33°

Figure 6.23 (a) Phasor diagrams for Yagi arrays with maxima in front-to-back ratio; one and two

directors.

of phasor diagrams in Figs. 6.23a, b. The magnitude and angle of / (0) in each element
are shown. Note that for the very closely spaced four-director array with b/1 = 0.033,
the currents in the directors are almost equal and in phase and much smaller than
the current in the driven element. On the other hand, for the largest spacing shown
b/Ax = 0.36, the currents in the directors are comparable in magnitude with the current
in the driven element and their phase differences are close to the progressive phase
difference 360°b /1 = 130° of a wave traveling with the velocity of light from element

to element.




196 Arrays with unequal elements
|

2h/A = 0.413 Element | [I(0)

bA=0033

4.49
30.66
791
7.34
8.79
12.21

AN BN =

«—21.79°
S/ = 0,420 : 6/ Element [1(0)]
b/ =0.139 28.72° 1 4.48
2 15.54
5.40° 3 9.64
4 9.14
82.29° 5 570
6 9.73
19.76°
I {4239 Element | [I(0)
1
A =0426 5.07°
bA=0248 1 /% % 1?82
b /5%27.860 3 926
! 4 6.37
! 5 8.05
. 5 3 6 7.89
]
1 61.59°
/
26.32°
22.69°
. Element [1(0)]
QW) = 0.424 = 29.64
b/ = 0.360 1 4.74
2 9.59
! /‘ 24.19° 3 7.46
4 8.14
5 7.58
13,220 6 5.29

29.30°

Figure 6.23 (b) Like Fig. 6.23a but for four directors.

Composite diagrams showing the forward gain, the front-to-back ratio, the input
resistance and the input reactance as functions of b/A for 1-, 2-, 4- and 8-director
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(a) 12
10 |
2 8
T |
.gﬁ 6
o - N
§ 4r o~
o ~ N
£ i 1 Director =
2r —-— 2 Directors
F = = = = 4 Directors
ok —— 8 Directors
_1 1 1 1 1 1 1 1 1 1 1
0 005 0.10 0.15 0.20 0.25 0.30 0.35 040 045 05
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(b)
)
Z
2
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g 5t —--=— | Director
& —-— 2 Directors
0O = = = = 4 Directors
5 8 Directors

0 005 010 0.15 020 025 030 035 040 045 0.50
b/A

Figure 6.24 Forward gain (a), and front-to-back ratio (b), for a Yagi array with directors of
constant length, radius and spacing (0.43A, 0.003 37A and b, respectively).

arrays with 2h/A = 0.43, a/A = 0.003 37 are shown in Figs. 6.24a, b and 6.25a, b.
From these the major quantities of interest are readily obtained.

A computer printout of an 8-director Yagi-Uda array> with 24/A = 0.4 and b/A =
0.3 is given in the accompanying Table 6.2. The impedance of the driven element when
isolated is Zg = 88.94 + j39.11 ohms. Graphs of the currents in all of the elements
are shown in Fig. 6.26. The phase angle along each parasitic element is essentially
constant. It is represented in Fig. 6.27 as a function of the distance of the element
from the driven antenna No. 2. The curve drawn through the points has no physical
significance; it serves merely to interrelate the discrete points and thus reveal how
nearly constant the phase change from director to director actually is. The electrical
separation of adjacent directors is 108°; the average phase difference of the currents

3" The numerical evaluation for the 8-director Yagi array was done by V. W. H. Chang.
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200
@ —--— 1 Director

—-— 2 Directors
- = = = 4 Directors
8 Directors

150 -

100 -

Input resistance (ohms)

0 1 1 1 1 1 1 1 1 1 J
0 0.05 0.10 0.15 0.20 025 030 035 040 045 0.50
b/A
(®) 150 + —--— 1 Director
—-— 2 Directors
=~ = = = = 4 Directors
g 8 Directors
< 100
E I~
g 0N
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=
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Figure 6.25 Input resistance (a), and reactance (b), for a Yagi array with directors of constant
length, radius and spacing (0.434, 0.003 371 and b, respectively).

is 115°.6. The horizontal field pattern maintained by the currents in the ten-element
array is shown in Fig. 6.28.

6.10 Receiving arrays

The study of arrays of cylindrical antennas in all of the earlier sections of the book
has been directed specifically to the problem of transmission, which involves the
determination of distributions of current, driving-point admittances and field patterns.
Arrays of antennas are also used to secure desired directional properties for receivers.

In a transmitting array a single element may be driven, as in parasitic arrays of the
Yagi—Uda type, or all the elements may be active as in the broadside or endfire arrays.
In these latter the driving voltage is usually supplied from a single power oscillator
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|

Table 6.2. Computer printout for eight-director Yagi—Uda array

No. of elements = 10

Half-length of driving antenna = 0.250 0000E—00
Half-length of parasitic antennas = 0.200 0000E—00
Half-length of reflector antenna = 0.255 0000E—00
Radius = 0.336 9000E—02

Spacing between reflector and driving antennas = 0.250 0000E—00

Spacing between parasitic antennas = 0.300 0000E—00

Coefficients for current distributions

Element No.

1

O 0 3 N AW

Element No.

1

O 00 3 QN L AW

10

AR
0
0.260791E—-04
0

[=NeBoNoNecRol -l

BI
0.443 744E—03
0.204 197E—-01
—0.956 042E—-03
—0.290 843E—-02
0.282252E—-02
0.397791E—-03
—0.284 188E—-02
0.176 994E—02
0.139167E—02
—0.278 379E—-02

Al
0

—0.128 598E—02

0

[=NeBolNoNeRol el

DR
0.626 141E—02
0.200499E—-01
—0.339069E—-01
0.207297E—-01
0.102 848E—01
—0.256 008E—01
0.109612E—-01
0.149901E-01
—0.223427E-01
0.390 606E—02

BR
—0.261 108E—03
0.603 188E—03
0.373 823E—02
—0.247 170E—-02
—0.117657E—-02
0.302 159E-02
—0.130879E—-02
—0.176 549E—02
0.264 461E—02
—0.391 583E—-03

DI
0.121 838E—-01
—0.917 549E—-01
0.757 068E—02
0.252 446E—01
—0.238 580E—01
—0.357 119E—-02
0.241 588E—01
—0.149562E—-01
—0.119466E—01
0.234452E—01
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Table 6.2. — continued

Current distributions and input admittances

Z/H
0.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Z/H

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Z/H

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Real
0.163470E—02
0.161797E—02
0.156 780E—02
0.148 433E—02
0.136 779E—02
0.121 849E—02
0.103 685E—02
0.823 442E—03
0.578 922E—03
0.304 115E—03

Real
0.644 960E—02
0.638 444E—02
0.618 129E—02
0.584 171E—02
0.536 841E—02
0.476 516E—02
0.403 674E—02
0.318 893E—02
0.222 841E—02
0.116 268E—02

Real

—0.389258E—-02
—0.385515E—-02
—0.374 266E—02
—0.355451E—-02
—0.328973E—-02
—0.294 700E—02
—0.252470E—-02
—0.202 096E—02
—0.143372E—-02
—0.760 799E—03

Element No. 1

Imaginary
0.416262E—-02
0.411786E—-02
0.398 398E—02
0.376 216E—02
0.345436E—-02
0.306 328E—02
0.259232E-02
0.204 556E—02
0.142768E—02
0.743 922E—03

Element No. 2

Imaginary

—0.516 874E—02
—0.533 846E—02
—0.543 588E—02
—0.544297E-02
—0.533362E—-02
—0.507 442E—-02
—0.462572E—-02
—0.394290E—-02
—0.297779E—02
—0.168 029E—-02

Element No. 3

Imaginary
0.785263E—-03
0.777 863E—03
0.755 602E—03
0.718 302E—03
0.665 672E—03
0.597315E—-03
0.512741E—-03
0.411377E—-03
0.292 589E—03
0.155698E—03

Magnitude
0.447210E—-02
0.442432E—02
0.428 136E—02
0.404 439E—02
0.371 530E—02
0.329 672E—02
0.279 199E—02
0.220 508E—02
0.154 059E—02
0.803 683E—03

Magnitude
0.826 517E—02
0.832227E—-02
0.823 147E—02
0.798 446E—02
0.756 752E—02
0.696 107E—02
0.613 943E—02
0.507 107E—02
0.371928E—02
0.204 333E—02

Magnitude
0.397 100E—02
0.393285E—02
0.381817E—02
0.362 636E—02
0.335 640E—02
0.300 693E—02
0.257 624E—02
0.206 240E—02
0.146 327E—02
0.776 567TE—03

Argument
68.4651
68.4550
68.4247
68.3743
68.3042
68.2146
68.1060
67.9789
67.8340
67.6719

Argument
—38.6555
—39.8463
—41.2718
—42.9171
—44.7520
—46.7358
—48.8223
—50.9645
—53.1176
—55.2423

Argument
168.6103
168.6082
168.6018
168.5912
168.5765
168.5580
168.5358
168.5102
168.4815
168.4500
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Table 6.2. — continued

Z/H

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Z/H

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Z/H

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Real
0.225112E—-02
0.222970E—-02
0.216 531E—02
0.205751E—02
0.190 559E—02
0.170 859E—02
0.146 531E—02
0.117439E—-02
0.834289E—03
0.443 383E—03

Real
0.115 124E-02
0.114022E—02
0.110710E—-02
0.105 169E—02
0.973 653E—03
0.872 566E—03
0.747 887E—03
0.598 995E—03
0.425205E-03
0.225787E—03

Real
—0.280 144E—-02
—0.277475E-02
—0.269 450E—-02
—0.256 017E—-02
—0.237090E—-02
—0.212552E-02
—0.182261E—02
—0.146 0S0E—-02
—0.103 734E—-02
—0.551178E—-03

Element No. 4

Imaginary
0.281 162E—02
0.278 474E—02
0.270393E—-02
0.256 871E—02
0.237 827E—02
0.213 152E—-02
0.182713E—-02
0.146 354E—02
0.103904E—02
0.551817E—03

Element No. 5

Imaginary

—0.260615E—-02
—0.258 133E—-02
—0.250670E—-02
—0.238 177E-02
—0.220574E—-02
—0.197751E-02
—0.169575E—-02
—0.135890E—-02
—0.965221E-03
—0.512883E—03

Element No. 6

Imaginary

—0.407 170E—-03
—0.403 259E—-03
—0.391 507E—-03
—0.371 848E—03
—0.344 178E—03
—0.308 354E—-03
—0.264202E—-03
—0.211518E—-03
—0.150081E—03
—0.796 550E—04

Magnitude
0.360 177E—02
0.356 740E—02
0.346 408E—02
0.329 114E—-02
0.304 753E—02
0.273 178E—02
0.234212E-02
0.187647E—02
0.133254E—-02
0.707 878E—03

Magnitude
0.284910E—02
0.282 195E—-02
0.274 030E—02
0.260363E—-02
0.241 108E—02
0.216 147E—02
0.185335E—-02
0.148 506E—02
0.105473E-02
0.560383E—03

Magnitude
0.283 087E—02
0.280390E—02
0.272279E—-02
0.258 703E—02
0.239575E—-02
0.214777E—-02
0.184 166E—02
0.147 573E—-02
0.104 814E—02
0.556 904E—03

Argument
51.2469
51.2456
51.2416
51.2350
51.2259
51.2144
51.2006
51.1848
51.1671
51.1476

Argument
—66.0760
—66.0770
—66.0799
—66.0847
—66.0913
—66.0997
—66.1096
—66.1212
—66.1340
—66.1481

Argument
—171.7418
—171.7424
—171.7442
—171.7473
—171.7516
—171.7569
—171.7633
—171.7707
—171.7790
—171.7880
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Table 6.2. — continued

Z/H

0.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Z/H

0.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Z/H

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Z/H

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Real
0.118 905E—02
0.117 774E—02
0.114373E—-02
0.108 680E—02
0.100657E—02
0.902524E—-03
0.774037E—-03
0.620375E—03
0.440727E—-03
0.234232E—-03

Real
0.164 294E—02
0.162 728E—02
0.158 020E—02
0.150 140E—02
0.139 038E—02
0.124 645E—02
0.106 878E—02
0.856 408E—03
0.608 252E—03
0.323 173E-03

Real

—0.243 969E—02
—0.241 646E—-02
—0.234 660E—02
—0.222965E—-02
—0.206487E—-02
—0.185124E-02
—0.158 7T48E—02
—0.127214E-02
—0.903 608E—03
—0.480 150E—-03

Real
0.475414E—-03
0.470 794E—03
0.456916E—03
0.433725E—-03
0.401 134E—03
0.359024E—-03
0.307248E—03
0.245641E—03
0.174023E—-03
0.922 045E—04

Element No. 7

Imaginary
0.265 022E—02
0.262496E—-02
0.254901E—02
0.242 187E—02
0.224 275E—-02
0.201 056E—02
0.172395E-02
0.138 136E—02
0.981 069E—03
0.521244E—-03

Element No. 8
Imaginary

—0.163 338E—-02
—0.161 782E—-02
—0.157 105E-02
—0.149275E-02
—0.138 243E—-02
—0.123 940E—-02
—0.106281E—-02
—0.851 691E—-03
—0.604 957E—-03
—0.321454E—-03

Element No. 9

Imaginary

—0.131 999E—-02
—0.130739E—-02
—0.126951E—02
—0.120611E—-02
—0.111 680E—-02
—0.100 106E—02
—0.858 237E—-03
—0.687 575E—-03
—0.488 242E—-03
—0.259353E—-03

Element No. 10

Imaginary
0.255409E—02
0.252977E—-02
0.245 667E—02
0.233429E—-02
0.216 185E—02
0.193 825E—02
0.166 218E—02
0.133207E—-02
0.946231E—-03
0.502 831E—03

Magnitude
0.290474E—-02
0.287 706E—02
0.279384E—02
0.265 454E—02
0.245 827E—-02
0.220384E—02
0.188 974E—02
0.151427E-02
0.107 552E—02
0.571454E—-03

Magnitude
0.231672E—-02
0.229464E—02
0.222 828E—-02
0.211720E—-02
0.196 068E—02
0.175777E—-02
0.150727E—02
0.120 781E—02
0.857871E—03
0.455822E—-03

Magnitude
0.277389E—-02
0.274 746E—02
0.266 799E—02
0.253497E-02
0.234754E—02
0.210457E—-02
0.180462E—-02
0.144 607E—02
0.102708E—-02
0.545718E—03

Magnitude
0.259 796E—02
0.257321E-02
0.249 880E—02
0.237425E—-02
0.219875E—-02
0.197 122E—-02
0.169 033E—02
0.135453E—-02
0.962 100E—03
0.511215E—-03

Argument
65.7455
65.7450
65.7437
65.7414
65.7383
65.7344
65.7297
65.7243
65.7182
65.7116

Argument
—44.7710
—44.7712
—44.7718
—44.7727
—44.7741
—44.7757
—44.7777
—44.7800
—44.7826
—44.7854

Argument
—151.6237
—151.6242
—151.6258
—151.6285
—151.6321
—151.6367
—151.6422
—151.6486
—151.6557
—151.6634

Argument
79.3463
79.3483
79.3545
79.3647
79.3787
79.3965
79.4177
79.4421
79.4695
79.4994
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Table 6.2. — continued

Real
Input admittance =
0.644 960E—02
Input impedance =
0.944123E 02

Horizontal field pattern

F gain = 11.5646 dB

Phi
0.
5.00

10.00

15.00

20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00

80.00

85.00

90.00

95.00

100.00
105.00
110.00
115.00
120.00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
160.00
165.00
170.00
175.00
180.00

B gain = —3.1270 dB

Imaginary
—0.516 874E—-02

0.756 624E 02

E
1.000 000
0.986511
0.944 099
0.867 684
0.751 469
0.593 565
0.404 522
0.232860
0.225985
0.344 538
0.415399
0.390921
0.298334
0.247244
0.299 673
0.334813
0.292 586
0.225493
0.229328
0.260556
0.241345
0.183770
0.156 452
0.176931
0.187247
0.166 602
0.130073
0.107 503
0.118454
0.146 355
0.171587
0.187308
0.193 479
0.192924
0.189266
0.185 684
0.184 254

Magnitude
0.826 517E—02

0.120990E 03

E dB
—0.
—0.1180
—0.4996
—1.2328
—2.4818
—4.5306
—7.8611
—12.6581
—12.9184

—9.2553

—7.6307

—8.1582
—10.5060
—12.1375
—10.4671

—9.5039
—10.6749
—12.9373
—12.7909
—11.6820
—12.3473
—14.7145
—16.1124
—15.0439
—14.5517
—15.5664
—17.7163
—19.3716
—18.5290
—16.6919
—15.3103
—14.5489
—14.2673
—14.2923
—14.4586
—14.6245
—14.6917

FTBR = 14.6917 dB

Argument
—38.6555

38.6555




(=]

YGTO =Y 10J 01 = YLECOO O =O0lp=--- =T = Ipiygo=01'6g= .- = €q ‘ygz'0 = Clq

Yoz 0=0ly=---= €Yy ygz0= %y “YSSz'0 = ly ‘UdALIp 7 JuoWd[o ‘Aelre 136X JUSW[R-()] Ul SIUALIND) 979 N1
3104 12d saredwerIA
0 [4 0 < 14 C 0
r I r T O
! \
1 L 1 \ 1 4
.. ! Y
\ .
1 T \ 1 110 =
! \
] | ! v ]
1 \
1 \
d =70
J10A 1od saredwrer|[IA
[ «— v 9 v C 0 «— v 9 7 0
T T AN T O
! \
1 \ \ J
1 1 \
1 ] \
! .
’ \ \ 110 Y
‘ , L
4 -
/
120

@r---- @,1

‘@), 1M+ (2),1=@)]

@ juauwRrlq



205
—

6.10 Receiving arrays

90' 1 T T T T T T T
O _
_90 L
-180
g
>~ 270+
2
B -360F
3
[P
g 450
g
5 540t
Q
el
£ 630
[}
g
£ -720F
-810
-900 -
-990 - )
Element No. 10

-025 0 03 06 09 12 15 1.8 21 24
Distance from element No. 2 in fractions of a wavelength

Figure 6.27 Phases of currents in elements referred to V.

by way of a suitable network of transmission lines, transformers and phase shifters.
The design of such a feeding system of transmission lines is beyond the scope of this
book. However, most transmitting arrays with their associated networks have a single
pair of terminals across which the driving voltage is maintained. Since this pair of
terminals is directly obvious in the parasitic arrays which have only a single driven
element, attention in the following discussion is focused specifically on arrays of this
type. Note that all references to the terminals of the driven element in a parasitic array
apply equally to the single pair of input terminals of the transmission-line network that
drives any other array.

Consider a receiving array of antennas in the incident plane-wave field of a distant
transmitter. For convenience let the array be that shown in Fig. 6.8 with a load
impedance Zj instead of the generator connected across the terminals of antenna 2.
In order to determine all of the properties of this system including, for example,
the distributions of current in the elements and the reradiated or scattered field, it is
necessary to formulate the coupled integral equations from the boundary condition
that requires the tangential component of the total electric field to vanish on the
perfectly conducting surface of each element. Fortunately, if interest is restricted to
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Figure 6.28 Field of 10-element Yagi array.

the transmission of information from a distant transmitter to the load Z, this elaborate
analysis is unnecessary since the current in the load between the given terminals can
be determined by the application of the reciprocal theorem? to the identical array when
driven by the voltage V| across the same terminals.

The reciprocal theorem applies to two arbitrarily located pairs of terminals, the
one, for example, in an array A, the other in a simple dipole D. First, let the array
be used for transmission, the dipole for reception. A generator with EMF Vi and
internal impedance Z, is connected across the terminals of the array; a load Z,
is connected across the terminals of the dipole. The center of the driven element
2 in the array is located at the origin of the spherical coordinates r, ®, ®; the
receiving dipole is used to measure the field pattern of the array. For this purpose
it is moved along the surface of a great sphere so that its axis is always tangent to
the electric field maintained by the transmitter. The current Ip(®, ®) in Z; at the
center of the dipole varies as the dipole is moved. From (2.78) with (2.79), it is given
by

2he () ER —=2he (5 ) Eo(Re, 0, @)

Zo+2Z Zo+Z1

4 See, for example, [4], p. 690 and [5], p. 216.

Ip(®, d) = , (6.108)
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where 2h,(r/2) is the effective length of the dipole when its axis is parallel to the
incident electric field and perpendicular to the direction of propagation. Note that when
the axis of the receiving dipole is tangent to the surface of the great sphere parallel to
E™_ the positive direction of the spherical coordinate ® is opposite to the positive
direction z along the antenna.

The far-zone electric field maintained by the N-element Yagi array driven by a
generator at the center of element No. 2 is given by (6.84a). It is

it0l.0(0) e~ JPoR2
Eo(Ry, 0, @) = 1020 e 707 oo o), (6.109)
21 Ry

where R; is measured from the center of element No. 2 and the field factor of the
array, fiyv(®, @), is given by (6.84b). If the driving-point impedance of the array at
the terminals of element No. 2 is Zy; and the internal impedance of the generator is
Zyg, it follows that

e

VO
8

With (6.109) and (6.110), (6.108) becomes

T
_2he (5) ' jcoV§ e—JBoR2
Zo+Z, Zn+Z; 2R

Ip(®, ®) = Jin(®, D). (6.111)

Now let the generator with its EMF V; and internal impedance Z, be interchanged
with the load Z} so that the dipole is the transmitter, the array the receiver. The dipole
is again moved over the surface of the same great sphere; the array remains fixed at
the origin of coordinates. The current /4 (®, ®) in the load Z; in the array varies as
the location of the transmitter is changed.

The reciprocal theorem states that if the same voltage V(j is applied successively to
both antennas and provided Z, = Z, then

Ip(®, @) = 14(0, ?) (6.112)

for all values of ® and ®. It follows by a rearrangement of (6.111) and with (6.112)
that the current in the load Z of the Yagi array when used for reception is given by

Ip(O, ®) = (6.113)

2fiv©, @) jooVs e ik (n)
Bo(Zox + Z1) Zo+Zg 27Ry 0 C\2
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I

provided Z;, = Zj. Since it has been proved’ in general that

b4 4
pone (3 ) = £1 (5 Boh) . (6.114)

2 2
where f7(r/2, Boh) is the field factor of the dipole given in (2.54b) and evaluated at
® = /2, it follows that (6.113) can be expressed as follows:

2hen (O, D) EG,
10, )=————"— 6.115
A0, D) 7o+ Z1 ( )

where

JjCo1;(0) e Pk m
EL = (5 poh) 6.116

® T R, fi ) Bo ( )

is the field maintained by the dipole at the center of element No. 2 of the array and
where
2hen(©, @) =2fiv(O, P)/Bo (6.117)
is by definition the effective length of the Yagi array. It follows that the directional
properties of the Yagi (or any other array) are the same for reception as for transmis-
sion.

The preceding discussion has been concerned with reciprocity with constant applied
voltage. If reciprocity is to be preserved with constant power somewhat different
conditions must be fulfilled. This problem is considered elsewhere.®

I
6.11 Driven arrays of elements that differ greatly in length

The procedure outlined in Section 6.2 for approximating the integrals in the simulta-
neous integral equations (6.8) for the currents in a parasitic array of unequal elements
is quite adequate when the elements do not differ greatly in length. In the Yagi—-Uda
array the lengths 24; of the individual elements i = 1,...N always lie in a range
that extends from slightly greater than A /2 to approximately A /3. Unfortunately, when
elements have lengths that encompass the full range permitted by the present theory,
namely, 0 < Boh; < 57w /4, the representations (6.20)—(6.22) for the several integrals
are not adequate under certain conditions. In particular the two-term approximations
on the right in (6.20)—(6.22) do not adequately represent the integrals Wy;(zx) on the
left whenever element k is quite long (Bohr ~ 7) but element i is short (Boh; <
7 /4). Extensive computations and measurements by W.-M. Cheong [6] have shown
that the two-term approximations in (6.20)—(6.22) with the two-point fitting used in

5 [4], pp. 568-570.  © [4], p. 694.
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(6.53)—(6.60) are especially unsatisfactory for points on the longer element in the range
|z| > h/2.

A better representation of all of the integrals (6.15)—(6.17) and (6.20)-(6.22) is
obtained when full advantage is taken of the three-term distribution of current given in
(6.6) to approximate the integrals. Specifically, let

hi
Wiiv (zk) = , Moy Kkia(zk, z;) dz}

= W Mo + Wy Foo + Wl Ho 6.118)

hi
WkiU(Zk)E/ FoyiKkia(zk, 2;) dz;

hi
= qudUMOzk + \DlgdUFOzk + \Ijlilidy Hok (6.119)
hi
Wiip(zk) = Hoi Kkia (zk, 2}) dz}
= Wiiap Moz + ‘Il,f;dDFozk + ‘l’fidDHozk. (6.120)

The inclusion of the distribution My, in the approximate representation of the integrals
Wiiv (zk) and Wg;p(zx) is a new departure. In all previous discussions it has been
pointed out that the part of the integral that depends on the real part of the kernel
is approximately proportional to the distribution in the integrand when the distance
Bobki < 1 (which usually occurs only when i = k and by, = a) and that otherwise
the entire integral is proportional to combinations of Fp, = cos oz — cos fpoh and
Hy, = cos(Boz/2)—cos(Boh/2). This means that the distribution M, = sin Bo(h—|z|)
can appear on the right only when My, appears in the integrand. These statements are
still correct. However, the investigations of Cheong [6] have shown that the current
induced in the relatively long antenna (h ~ A/2) by a very short one (h < A/4)
is not well represented by combinations of Fj, and Hy, alone. These distributions
are excellent when the amplitude and phase of the inducing field are approximately
constant along the entire length of an antenna. Clearly, this is not at all true of the
field maintained, for example, along a full-wave antenna by the current in an adjacent
quite short element. By including the term in M., Cheong has obtained an improved
overall representation of the amplitudes of the currents, especially at points at some
distance from the centers of the longer elements. On the other hand, since My, has a
discontinuous slope at z = 0 (except when Boh = (2n 4 1) /2), which the actual
induced current cannot have, the slope of an approximate representation that makes
use of My, is necessarily somewhat in error near z = 0 even though the amplitude is
quite well described. The slope of the current is, of course, proportional to the charge
per unit length. Fortunately, an incorrect slope with a discontinuity at z = 0 does
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not significantly affect the admittance or the far field. These are determined by the
magnitude and phase of the current alone.

Since combinations of Fy, and Hy, are excellent approximations of the two integrals
in (6.119) and (6.120) except in the special situations just described, it is to be
anticipated that the coefficients W}; ,,, and W/}, will be small except under those
conditions. In any event, the three-term representation of the current for all elements
including the My, terms in (6.119) and (6.120), can only serve to improve the
representation of the amplitudes of the currents at the expense of a small error in their
slopes near z = 0.

In order to determine the complex parameters W in (6.118)—(6.120), the approxi-
mate expressions on the right are made exactly equal to the integrals at the three points
2k = 0, zx = hi/3 and zx = 2hy/3 instead of only at the two points zx = 0 and
Zx = hi/2 used in Section 6.4. That is, three equations are obtained from each of the
relations (6.118)—(6.120) in the form:

hi
Wiiv (0) = /h Moy i Kia(0, z;) dz;

= W,y sin Bohy + \I’{idv(l — cos Bohy) + \D,i’idv[l — cos(Bohi/2)]

(6.121)
hi
Wiiv (hi/3) = / Moz i Kiia(hi /3, z;) dzj
_]1’.
= WP,y sinBohi/3) + W[, [cos(Bohi /3) — cos Bohx]
+ Wt [cos(Bohk /6) — cos(Bohi/2)] (6.122)
hi
Wiiv (2hi/3) = / Moy Kkia(2hi /3, 2}) dz;
_hi
= \IJ,i';dV sin(Bohi/3) + \Ifgl.dv[cos(2/30hk/3) — cos Bohg]
+ Wit [eos(Bohi /3) — cos(Bohi/2)]. (6.123)

Each integral when evaluated is a complex number. There are, then, three simultaneous
complex algebraic equations to evaluate the three complex parameters V" ,,, \IJ,‘cfi qv
and \I/,i’i 4v for each pair of values i and k. A similar second set of three equations is
obtained with the different complex numbers Wy;y (0), Wiy (hr/3) and Wiy (2hy/3)
on the left. These are obtained from the same integrals when M\y/; is replaced by Fy,/;.
The simultaneous solution of these three equations for each pair of values i and & yields
the complex parameters W[ ;;;, \IJ{I. qu and \I/,’:l. qu- A third set of three equations is
obtained with the quantities Wy, p (0), Wi;p (hr/3) and Wy;p(2hi/3) appearing on the
left in (6.121)—(6.123). These quantities are defined by the integrals in (6.121)-(6.123)



211

6.11 Elements of greatly different length

with My,; replaced by Hy,/;. For each pair of values of i and k this third set of three
equations yields W , ,, \IJ,'cfi 4p and \If,fl. 4p- In this manner all values of the parameters
W;iq are determined. They have the following forms for each of the subscripts V, U
and D on the W’s and W’s:

Wi (0) 1 — cos Bohi 1 — cos(Bohi/2)
Wt = AT Wii(he/3)  cos(Bohk/3) — cos Bohk  cos(Bohk /6) — cos(Bohk/2)
Wki(2hi/3)  cos(2Bohk/3) — cos Bohr  cos(Bohk/3) — cos(Bohk/2)
(6.124)
sin Boh Wki (0) 1 — cos(Bohi/2)
‘1’,‘5 = A |sinQBohi/3)  Wii(he/3)  cos(Bohi/6) — cos(Bohk/2) (6.125)
sin(Bohr/3)  Wii(2hi/3)  cos(Bohi/3) — cos(Bohk/2)

sin Bohy 1 — cos Bohi Wi (0)
\IJ,i’l. = A1 sin(2Bohi/3) cos(Bohy/3) — cos Bohr ~ Wii(he/3) |, (6.126)
sin(Bohi/3)  cos(2Bohk/3) — cos Bohx  Wii(2hy/3)
where
sin Bohg 1 — cos Bohg 1 — cos(Bohi/2)

A = |sin(2Bohi/3) cos(Bohi/3) — cos Bohr  cos(Bohi/6) — cos(Bohi/2)|.
sin(Bohi/3)  cos(2Bohi/3) — cos Bohx  cos(Bohi/3) — cos(Bohk/2)

(6.127)
The N simultaneous integral equations for the currents in the elements are
N hi h;
Z{Ai / Moy Kkia(zk, z}) dz; + B / FoyiKkia(zk, 2}) dz;
i=1 —hi —hi
hi
+ D; Hoyi Kia (zk, 2;) le/-}
jam 1
= ———— [ Vo Mozk + Ur Fozl; k=1,2,...N, (6.128)
%o cos Bohy

where

_KO Z/ Li () Kki (h, 20) dz;
i=1

J§0

Z[A Wiy (hi) + Bi kv (he) + D Wi p ()] (6.129)
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with Wiy (hg), Wiy (hr) and Wy;p(hy) defined in (6.32)—(6.34). If the integrals in
(6.128) are replaced by their approximate algebraic equivalents, the following set of
algebraic equations for the coefficients A;, B; and D; is obtained:

N
D ANy Mock + W gy Fook + W, gy Hozt]
i=1

+ B; [\p]?;dUMOZk + \I"]g;dl/ Fozx + “I"]Z’d(] Hozx]

+ D[V} Mogk + W p Fook + WU Hogeld
Iy Mo + U Fou (6.130)
= Zo cos Bohx 5 YOk M0zk kL'0zk1- .

Finally, if (6.129) is substituted for Uy, the set of equations may be arranged as follows:

N .
j2m
Moz Y [(Aiw,?}dv + B + DV ) cos Bohy — o VOk]

i=1

N
+ Fos y_[(AW],gy + By + Di%l;,p) cos Bohs

i=1

— AjWyiv (hy) — BiWyiy (hi) — DiWyip (hy)]

N
+ Hozk Y (A + BiW}y + DiV} ] cos Bohy = 0 (6.131)
i=1

with k = 1,2,... N. These equations are satisfied if the coefficient of each of the
three distribution functions is allowed to vanish. The result is a set of 3N simultaneous
equations for the 3N unknown coefficients A, B and D. They are:

N .
j2r Vo

A9 B;yv D;v =— — 6.132
;[ kiav + Bi%iiay + DiViap] % cos ol ( )
N
Z[Aiq)ki\/ + Bi®kiv + Di®Pkip] =0 (6.133)
i=1
N
D ALy + By + DY pl =0 (6.134)

i=1

withk = 1,2, ... N.In (6.133) the following notation has been introduced:

Oriv = Wriv (hi) — ‘I/,f;dv cos Bohk (6.135)
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Oriv = Yriv (i) — \IfkldU cos Bohi (6.136)

Dkip = Yrip(hi) — ‘I’kde cos Bohy. (6.137)
These equations can be expressed in matrix notation. Let

[@]=]| : (6.138)
[OFV3 dyn

where the matrix elements ®y; are defined in (6.135)—(6.137) for each subscript V, U
and D. Also let

h h h
whoowh e W
(W' = : LM = : ,
h h
Wy .- Wyn \Ifj’\’;l \III’GN
(6.139)

where the \IJ,’; are obtained from (6.126). The following column matrices are needed:

Al B, D
{A} = (> Bl=41 . (- {D} = : (6.140)
Vo1/ cos Bohi
i2 i2 Voz/ cos Boha
{J” Yo }:J” , (6.141)
Zo cos Boh o :
Von/ cos Boh y

With this notation, the equivalent matrix equations for determining the coefficients A;,
B; and D; are

m m m _ ﬂ Vo
[V HAY+ [V B+ [V, {D} = { % cos ﬁoh} (6.142a)
[@y]{A} + [®yl{B} + [®p{D} =0 (6.142b)
[Wh, A} + W), 1B} + W), 1{D} = 0. (6.142¢)

These equations correspond to (6.29) with (6.46) and (6.47) in the simpler case of the
Yagi array with two-term fitting of the integrals.
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The solutions of (6.132)—(6.134) or (6.142a, b, c) express each of the coefficients
A;, B; and D; as a sum of terms in the N voltages Vor, k = 1,2, ... N. That is

2t LV
A= BN TR (6.143)
0 =1 COSﬂohk
N
_ = Z (6.144)
C = OS.BOhk
27'[ N
Di=j— YVik (6.145)
0o = COSﬂohk

where the «;y, Bix and y;; are the appropriate cofactors divided by the determinant of
the system.

It follows that with the coefficients A;, B; and D; evaluated, the currents in all
elements are available in the form:

2 N
Li(x) = g—” Zl — /3 i (eisin ok — |2 + Bk (c0s oz — cos o)
+ yirlcos(Boz/2) — cos(Bohy/2)1) (6.146)

1-(0)—'2”2N: Yok e sin ok + Bie (1 — cos fole)
zi =] Co ra COS,Bh Ajk 07k ik 07k

+ vir[1 — cos(Bohr/2)1}

= > VoY (6.147)

In these relationsi = 1,2, ... N, and

2
Yie = j ———— (g sin fohi + Pix(1 — cos fohe) + yiell — cos(Bohi/2)1}.
Lo cos Bohi
(6.148)

The quantities Y;x, with k = i, are the self-admittances of the N elements in the array;
the Yix, with k # i, are the mutual admittances. They are readily determined from
(6.148). Note that in general the self-admittance of an element when coupled to other
antennas is not the same as the self-admittance of the same element when isolated.

In matrix form, the equations for the N driving-point currents are

{I;(0)} = [Yal{Vo}, (6.149)
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where
1;1(0) Voi
1:2(0) Vo2
{0} = .o Wl=y . (6.150)
I:n(0) Von
and
Yn Y ... Yin
[Yal = : : (6.151)
Ynv1 ... Ynn

The solution for the currents in the N elements of the array is thus completed
in terms of arbitrary voltages. When these are specified, the complete distributions
of current are given in the form (6.146). The driving-point admittances Yy; and
impedances Zg; are given by

Li0) 1

Yoi = -—.
l Voi Zo;

(6.152)

The log-periodic dipole array

An interesting and important example of a curtain of driven elements that all have
different lengths and radii and that are unequally spaced is the so-called log-periodic
dipole array illustrated in Fig. 6.29. In spite of the fact that in this array all elements are
connected directly to an active transmission line, its operation when suitably designed
is closely related to that of the Yagi—Uda antenna in which only one element is driven
and all others are parasitic. However, unlike the Yagi antenna, the log-periodic array
has important broad-band properties. These are best introduced in terms of an array
of an infinite number of center-driven dipoles arranged as shown in Fig. 6.29. Let the
half-length of a typical element i be A;, let its radius be a;. The distance between
element i and the next adjacent element to the right is b; ;41 where i = 1,2,3,....
The array is constructed so that the following parameters
hi hi+1 2h;

— =, =0, 2In — =Q (6.153)
hit1 biit1 a;

are treated as constants independent of i. As throughout this book, it is assumed that
hi > a;.

If the dipoles individually approximate perfect conductors, the electrical properties
of the array (such as the driving-point admittances of the elements and the field pattern
of the array) at an angular frequency wp depend only on the electrical dimensions
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Figure 6.29 Seven elements of an infinite log-periodic array.

Bohi, Bobiit1, and Boa; where By = wo/c = 2w /1o and c is the velocity of light.
If the angular frequency is changed to w, = t"wp, where n is a positive or negative
integer, the original electrical properties are determined by T =" 8,h;, T~" Bnbi.i+1 and
T "Bna; where B, = wy,/c. However, there are along the array antennas with half-
lengths A4, = ©~"h; for which (hjtn+1/bitn,i+n+1) = 0 and 2In(2h; 4, /ai1n) =
Q. Since Boh; = t7 "By hi = Buhitn, it follows that all properties of the array at the
angular frequency wg referred to element i are repeated at the angular frequency w, but
referred to the element i +#. This periodicity of the properties with respect to frequency
is linear with respect to the logarithm of the frequency. That is, since log w, = log wp+
n log 7, it is clear that any property shown graphically on a logarithmic frequency scale
is periodic with period log . Accordingly, arrays with this construction are known
as log-periodic dipole arrays [7-10]. Such arrays are generally driven from a two-
wire line in the manner illustrated in Figs. 6.30a, b. The arrangement with reversed
connections in Fig. 6.30b is the one required for endfire operation.

Actual arrays are, of course, never infinite so that the ideal frequency-independent
properties of the infinite array are modified by asymmetries near the ends. These may
be modified by the use of a terminating impedance Z7 as shown in Fig. 6.30 which
provides an additional parameter. The value Z7 = Z., where Z, is the characteristic
impedance of the line, is an obvious choice.

6.13 Analysis of the log-periodic dipole array

The theory developed in Section 6.11 for arrays of antennas with unequal lengths,
spacings and radii can be applied directly to the log-periodic dipole array. It is
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Figure 6.30 Log-periodic array driven from a two-wire line with (a) direct connections,
(b) reversed connections.

only necessary to specify the driving-point voltages to the elements in order to
obtain a complete solution for the distributions of current along the elements and
their individual input admittances. The driving-point admittance of the array and the
complete field pattern are then readily obtained over any frequency range for which the
condition Boh; < 5w /4 is satisfied for all elements. Such quantities as the beam width,
the directivity, front-to-back ratio and side-lobe level can, of course, be obtained from
the field pattern.

Consider specifically the array shown in Fig. 6.30b. The driving voltage is applied
to a transmission-line that is connected successively to all of the elements beginning
with the shortest. Between each adjacent pair of elements the connections are reversed
by crossing the conductors of the transmission line in order to achieve the desired
phase relations. The analysis of this circuit is conveniently carried out following the
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Figure 6.31 Schematic diagram of (a) the antenna circuit, (b) the transmission-line circuit, and

(c) the antenna and transmission-line circuits connected in parallel.

method introduced by Carrel [9]. The procedure is simply to determine first the matrix
equation for the antenna circuit shown in Fig. 6.31a, then the matrix equation for the
transmission-line circuit shown in Fig. 6.31b, and finally the matrix equation for the
two circuits in parallel. Note that in Fig. 6.31, a generator is connected across each of
the N terminals.

The matrix equation for the antenna circuit in Fig. 6.31a has already been given
in (6.149). The elements of the admittance matrix [Y4] are the self- and mutual
admittances of the antenna array.

The matrix equation for the transmission-line circuit in Fig. 6.31b is readily derived.
Consider a typical section of the line between the terminal pairs i and i + 1 which
are separated by a length of line b; ;41 as shown in Fig. 6.32. The relations between
the current and voltage at terminals i and those at terminals i + 1 are readily
obtained.” For temporary convenience let d; = b;;11; also let ¢ be any constant

7 [11], p. 83, equations (6) and (7).
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Figure 6.32 Section of transmission line between the terminal pairs i and i + 1 when the voltages
Vi and V; 1 are maintained.

phase-shift introduced between adjacent elements in addition to the value Sod; which
is determined by the length of line between elements i and i + 1.

Vi = Viy1cos(Bodi + ¢) + jI, Re sin(Bod; + ¢) (6.154a)
I'Re = jViqisin(Bod; + @) + I} Re cos(Bod; + ¢), (6.154b)

where R, is the characteristic resistance of the lossless line.
These equations can be rearranged in the form

I/ = —jG Vi cot(Bod; + ¢) — Vis1 cse(Bodi + $)] (6.155a)
Iy = —jG.LV; esc(Bod;i + ¢) — Vii1 cot(Bodi + )], (6.155b)
where G, = R ! is the characteristic conductance of the lossless line. It follows that
I = —jGc[Viy1cot(Bodit1 + @) — Viyaesc(Bodiv1 + ¢)] (6.156a)
I[ ) = —jGc[Vig1esc(Bodip1 + ¢) — Viga cot(Bodip1 + ¢)]. (6.156b)
The total current in the generator at the terminals i 4 1 is
Liv1 =1 — 1| = jG{Vicsc(Bodi + ¢) — Vigilcot(Bodi + ¢)

+ cot(Bodi+1 + @)1 + Vita esc(Bodi+1 + @)} (6.157)
In particular, when ¢ = 7 as in Fig. 6.31b,
liy1 = — jGc{Vicsc Bobi it

+ Vigi1(cot Bobi i+1 + cot Bobi+1,i+2) + Viya csc Bobit1,i+2}- (6.158)
Also

I = 11// = —jG.[V] cot Bob12 + V2 csc Bobi2] (6.159)
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and

In = —jGc[Vy_icscBoby—1,n + Vn(cot Bobn—1,n + jyn)] (6.160a)
since

11/\/, = VnYn = VnynGe, (6.160b)

where

(6.161)

Yr + jG.tan Bob
yN:YN/Gc:|:T JjGctan f T]

G+ jYrtan Bobr

is the normalized admittance in parallel with element N. Y7 = 1/Zr is the admittance
terminating the final section of line of length by = by n+1/2.

With (6.158), (6.159) and (6.160), the matrix equation for the transmission line has
the form

{I} =[YLI{V}, (6.162)
where
I \%1
Ip) V2
{1y=1 . ¢ {Vi=1 . (6.163)
Iy Vi
and
[Yo]=—jG,
 cot Bob12 csc Bob12 0 0
csc Bob1a  (cot Bobia + cot Bob3z) csc Bobas 0
0 csc Bobas (cot Bobaz + cot Bob3g) csc Bobza ...
X . . . .
0 0 0 0
L 0 0 0 0
0 0 0 7
0 0 0
0 0 0
csc Bobn—2,n—1 (cot Boby—2,N—1 + cot Bobn—1,N) csc Bobn—1,n
0 csc Bobn—1,n (cot Bobn—1,N + jyn)

(6.164)
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The final step in the analysis of the array in Fig. 6.30b is to connect the transmission-
line circuit in Fig. 6.31b in parallel with the antenna circuit in Fig. 6.31a as shown
schematically in Fig. 6.31c. The same driving voltages are maintained across the
N input terminals. Let the total currents in the generators be represented by I;; =
I; (0) + I; where I,;(0) is the current entering antenna i and /; is the current into the
transmission line at terminals i. The matrix equation for the total current is

{I;} = ([Yal + [YLD{Vo} = [Y{Vo}. (6.165)

This gives the N currents supplied by N generators connected across the N sets of
terminals in Fig. 6.31c. In the actual circuit in Fig. 6.30b, there is only one generator,
Vo1, and all of the total currents I;; are zero except I;1. Hence, in (6.165)

I
Vo
=300t (o)=1 : (6.166)
Von
0
[Y]=[Yal+[YL] (6.167)
The voltages Vp; driving the N elements are, therefore, given by
(Vo) = Y17 (1) (6.168)

in terms of the total current /;;. The driving-point admittances of the N elements can
be determined as follows. The substitution of

{Vo} = [Yal 1{1.(0)} (6.169)
in (6.165) yields
{1} = [U 4 [YL1[Yal" L (0)}, (6.170)

where U is the unit matrix. Note that [Z4] = [Y4]~! is the impedance matrix of the
array. The equation (6.170) can be solved for the driving-point currents of the several
elements in terms of the driving-point current in element 1. Thus,

{L(0)) = [U + [YLI[YAl 1711 6.171)

These currents with a common phase and amplitude reference value are convenient for
calculating the field pattern and for comparing relative amplitudes. The admittances of
the N elements are

Yoi = Goi + jBoi = 1:i(0)/ Voi, i=12,...N, (6.172)

where Vp; and I;; (0) are given, respectively, by (6.168) and (6.171). The driving-point
admittance of the array at the terminals i = 1 of the first element is

Y1 =G+ jB1 = I/ Voi. (6.173)
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Characteristics of a typical log-periodic dipole array®

A complete determination of the properties of the log-periodic dipole array involves
a systematic study in which the several parameters that characterize its operation are
varied progressively over adequately wide ranges. These include the degree of taper of
the array (v = h;/h;+1), the relative spacing of the elements (o = h;4+1/b; i+1), the
relative thickness of the elements (2 = 21n(2h;/a;)), the total number of elements
N, the normalized admittance (y7 = Y7 R,) terminating the transmission line beyond
the Nth element, and the phase shift ¢ introduced between successive elements in
addition to that specified by the electrical distance Bob; ;41 between adjacent elements.
Such an investigation could also make use of optimization procedures for the forward
gain, front-to-back ratio, band width, and other properties of practical interest in a
manner similar to that used earlier in this chapter for the Yagi—Uda array. Use of the
formulation of Sections 6.11-6.13, which takes full account of the coupling among
all elements in determining the different distributions of current and the individual
driving-point admittances, should lead to results of considerable quantitative accuracy
to supplement those of earlier, more approximate investigations [7-10]. A complete
analysis of a typical log-periodic dipole array has been made by Cheong [6] with a
high-speed computer. The parameters for this array are t = 0.93,0 = 0.70, 2 = 11.4,
N =12, YrR; = 1, and ¢ = m. The results obtained serve admirably to illustrate both
the detailed operation of the log-periodic dipole array and the power of the theory.
Consider first the operation of the array at a frequency’ such that an element k
near its center is a half wavelength long. At this frequency the admittances of the 12
elements when individually isolated lie on a curve in the complex admittance plane
that is very nearly an arc of a circle that extends on both sides of the axis Bp = 0
as shown in Fig. 6.33. Note that element 7 is nearest to resonance with only a small
negative susceptance. The actual admittances Yy; = Go; + j Bo; of the same elements
when driven as parts of the log-periodic array lie on a curve that departs significantly
from the circle for the isolated admittances.! It is roughly circular for the group of
elements from No. 3 to No. 9, but the circle has a much greater radius than that for the
isolated elements. Indeed, it is so great that the conductances of a number of elements
(Nos. 2 and 3) are negative. This large difference in the driving-point admittances is
due to coupling; it indicates a strong interaction between the currents in this group of
elements. Note that element 7 is still very nearly resonant. Since the admittance curve
near its ends bends inward and comes quite close to the circle for the isolated elements,
it must be concluded that the elements near the ends of the array behave much as if

8 This section is based on Chapter 9 of [6]. Parts of Sections 6.14-6.16 were first published in Radio Science
[12].
9 Designated as f14 in a notation described in Section 6.15.
10" Note that only the plotted points are physically meaningful; the continuous curve serves only to guide the eye.
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Figure 6.33 Admittances of elements in a log-periodic dipole array when individually isolated and

when in an array with t = 0.93,0 = 0.7, Q = 11.4, Y7 R, = 1, ¢ = m (operating frequency f14).
o, [solated admittances; x, admittances in array.

they were individually isolated. This is possible only if their currents are relatively
small and contribute little to the properties of the array.

In Fig. 6.34 are shown the magnitudes and relative phase angles'! of the complex
voltages V(y; that obtain across the input terminals of the elements in the array. The
amplitudes are fairly constant for the shorter capacitive elements but they decrease
rapidly as soon as the elements are long enough to pass through resonance and become
inductive. The phase of the voltages is seen to shift continuously from element to
element along the line. Corresponding curves for the driving-point currents I,; (0) are
also in Fig. 6.34. Note particularly that elements 4, 5 and 6 all carry larger currents
than element 7 which is nearest resonance. Note also that the phase curve for the
current crosses that for the voltage at resonance. The shorter elements have leading
(capacitive) currents, the longer elements lagging (inductive) currents. The relative

1" Note that only the plotted points are physically meaningful; the continuous curve serves only to guide the eye.
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Figure 6.35 Relative power in the 12 elements and the termination. (Operating frequency f14.)

powers!2 Py; in each element and in the termination are given in Fig. 6.35. Note
that in the elements 2 and 3, which have a negative input conductance, the power is
negative. This means that power is transferred from the other elements to Nos. 2 and 3
by radiation coupling and then from these back to the feeder. The small rise in voltage
shown in Fig. 6.34 at elements 3 and 4 may be ascribed to elements 2 and 3 acting as
generators and not as loads. It is significant that the maximum power per element is
not in the resonant element 7 but in the shorter elements 5 and 6 which also have larger
currents. This is a consequence of the very much smaller voltage maintained across the
terminals of element 7 as compared with the voltages across the terminals of elements
5 and 6.

The roles played by the several elements in the array may be seen most clearly
from their currents. The distributions of current /,; (z) along all 12 elements are shown
in Fig. 6.36a referred to the driving voltage Vp; at the input terminals of the array.
Note these distributions differ greatly from element to element — they are not simple
sinusoids. The quantity 1;;(z)/ Vp1 is represented in its real and imaginary parts; it
provides the relative currents that together maintain the electromagnetic field. It is
seen that (as predicted from the admittance curves in Fig. 6.33) the currents in the

12’ Note that only the plotted points are physically significant. The continuous curve serves merely to guide the
eye.
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outer elements 1, 2, 9, 10, 11, 12 are extremely small so that their contributions are
negligible. Clearly, the distant electromagnetic field is determined essentially by the
currents in elements 3 to 8 and of these elements 4, 5, 6 and 7 predominate. Note in
particular that the currents in the shorter-than-resonant elements 4, 5 and 6 actually
exceed the current in the practically resonant element 7.

The current distributions are also shown in Fig. 6.36b but each current is now
referred to its own driving voltage. Thus, the quantities represented are I;;(z)/ Voi =
[1]:(z) + jI/;(z)]/Voi where I]/(z) is the component in phase with Vp;, I/;(z) the
component in phase quadrature. Note that I; (0)/ Vo; = Yo; so that I7;(0)/ Vo; = Go;
and / z/.i (0)/ Voi = Bo;. The power in antenna i is Py; = |Vp; |2Gy;, but since the value
of Vy; differs greatly from element to element as seen in Fig. 6.34, the relative powers
in the several elements are not proportional simply to the real parts of the currents
1 Z’ ; (0) in the terminals. However, the distributions in Fig. 6.36b are instructive since
they show the negative real parts for elements 2 and 3 that transfer power to the feeding
line. They also show that the imaginary parts of the currents in elements 1 to 6 are
capacitive, those in elements 7 to 12 inductive. This means that each of the elements
1 to 6 acts as a director for the elements to its right, whereas each of the elements 7 to
12 acts as a reflector for all elements to its left. Actually, the capacitive components of
current in elements 3, 4 and 5 exceed the conductive components so that relatively little
power is supplied to them from the line, and they behave substantially like parasitic
directors. The inductive component of current predominates in elements 8 to 12 and
these act in major part like parasitic reflectors. However, since the amplitudes of the
currents in elements 9 to 12 are quite small, it is clear that the principal reflector action
comes from element 8. In summary, Figs. 6.36a, b indicate that of the 12 elements
numbers 1, 2,9, 10, 11 and 12 may be ignored since their currents are small; elements
5, 6, 7 are supplied most of the power from the feeder and behave primarily like
driven antennas in an endfire array; elements 3 and 4 act predominantly like parasitic
directors; and element 8 is essentially a parasitic reflector. Thus, the log-periodic
antenna is very much like a somewhat generalized Yagi—Uda array when driven at
a frequency for which the antenna closest to resonance is not too near the ends and the
array is long enough to include relatively inactive elements at each end. A lengthening
of the array by the addition of one or two or even a great many more elements at either
end or at both ends cannot significantly modify the circuit or field properties of the
array at the particular frequency since these are determined by the active group.

The normalized far-field pattern in the equatorial or H-plane (variable ® with
® = m/2)is shown in Fig. 6.37. Note the smoothness of the pattern and the very small
minor lobes. As is to be expected this low minor-lobe level is achieved at the expense
of the beam width. A comparison with the field pattern in Fig. 6.28 for a 10-element
Yagi—Uda array shows that the latter has larger minor lobes but a much narrower beam.
However, the Yagi—Uda array does not have the important frequency-independent
properties of the log-periodic dipole array.
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6.15

Frequency-independent properties of the log-periodic dipole array

The principle underlying the properties of the log-periodic dipole array when driven at
the terminals of the shortest element as shown in Fig. 6.30b and operated as illustrated
in the preceding section depends upon the following:

1. A small group of about seven dipoles constitutes the active or radiating part of

the array. These may be described approximately as including: (a) three strongly
driven and radiating elements near resonance; (b) three shorter elements each of
which combines the functions of a rather weakly driven antenna and a highly active
parasitic director; and (c) one longer antenna that acts both as a weakly driven
element and a strong parasitic reflector.

. All other elements in the array and the terminating admittance Y7 have such small

currents and so little power that they may be ignored both as loads on the feeding
line and as contributing radiators of the far-zone field.

. The driving-point admittance of the array at the terminals of the shortest element is

approximately equal to the characteristic conductance G of the transmission line.

. The currents in the active elements maintain a unilateral endfire field pattern with

very small minor lobes.

The effect of a change in frequency is to shift the active group toward the terminated

end with longer elements when the frequency is lowered. As long as the frequency
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Table 6.3. Relation between the relative heights
of the elements, h/X, and the frequencies f;.

iin f; hi/A hip/A  fiwhenh; =1m

1 0.0962  0.2138 28.86 MHz
2 0.0998  0.2217 29.94
3 0.1035 0.2299 31.05
4 0.1073  0.2384 32.19
5 0.1113  0.2473 33.39
6 0.1154  0.2564 34.62
7 0.1197  0.2659 3591
8 0.1241  0.2757 37.23
9 0.1287  0.2859 38.61
10 0.1335  0.2966 40.05
11 0.1384  0.3075 41.52
12 0.1435 0.3188 43.05
13 0.1488  0.3306 44.64
14 0.1543  0.3428 46.29
15 0.1600  0.3555 48.00
16 0.1659 0.3686 49.77
17 0.1721  0.3824 51.63
18 0.1785  0.3966 53.55
19 0.1850 0.4110 55.50
20 0.1918 0.4261 57.54
21 0.1989  0.4419 59.67
22 0.2063  0.4583 61.89
23 0.2139  0.4752 64.17
24 0.2218  0.4928 66.54
25 0.2300 0.5110 69.00
26 0.2385  0.5299 71.55
27 0.2473  0.5494 74.19

range is bounded so that neither the shortest nor the longest element in the array is a
part of the active group, there can be no significant change in either the circuit or the
field properties. The array must behave substantially as if infinitely long. On the other
hand, as the frequency is increased or decreased sufficiently to make the element at
either end of the array a member of the active group, all of the properties of the array
must begin to change. This change becomes drastic when the frequency is varied so
much that none of the N elements is near resonance.

The general behavior of the 12-element log-periodic dipole array as a function of
frequency has been investigated by Cheong [6] using a discrete set of frequencies
fi,i = 1,...,27. These are chosen so that the lowest frequency f; is below the
resonant frequency of the longest element No. 12 and the highest frequency f>7 is
above the resonant value for the shortest element No. 1 as shown in Table 6.3. In
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Figure 6.38 Like Fig. 6.33 but for lower frequency with resonance near element 10. (Operating
frequency f7.) e, Isolated admittances; x, admittances in array.

order to distribute the frequencies according to the log-periodic scheme of lengths and
spacings, the ratio factor +/0.93 was chosen so that fi+2/fi = 0.93 where j is an
integer. This provides an intermediate frequency step fj1+1/f; = 1/0.93 to achieve a
closer approximation of a continuous spectrum. The properties of the array described
in the preceding section and represented in Figs. 6.33—6.37 are obtained specifically at
the center frequency fi4 in this set for which an element (No. 7) near the middle of the
array is most nearly resonant.

Consider first a decrease in frequency from fi4 to f7 so that resonance is moved
from approximately element 7 to approximately element 10. The corresponding
driving-point admittances are shown in the complex admittance plane in Fig. 6.38
together with the admittances of the elements when these are individually isolated. The
admittance circle for the isolated antennas and the admittance curve'® for the array
resemble those in Fig. 6.33 but appear to have been moved in a counter-clockwise

13" Note that only the plotted points are physically significant. The continuous curve serves merely to guide the
eye.
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Figure 6.39 Like Fig. 6.34 but for lower frequency with resonance near element 10. o,

Driving-point voltages, Vp;; x, driving-point currents, I,; (0).

direction. The admittances of the short elements from 1 to 6 now form a small spiral
around the values for the same elements when isolated. The previous tight little spiral
of admittances for the longer elements in Fig. 6.33 is completely unwound and the
admittance curve for the array no longer comes near to the circle for the admittances
of the isolated elements. It is clear that in Fig. 6.38 elements 6 to 12 instead of 3
to 9 as in Fig. 6.33 form the active group. This is further confirmed in Fig. 6.39
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Figure 6.41 Like Fig. 6.38 but for lower frequency with resonance beyond element 12. (Operating
frequency f3.)

which shows the voltages and currents at the driving points of the elements. The
voltage amplitudes are quite constant from elements 1 to 8, then decrease rapidly. The
associated current amplitudes are small for elements 1 to 6, large for elements 7 to 11
and again small for element 12. Evidently, with reference to Fig. 6.39 (and Fig. 6.34),
the group consisting of director-radiators 6, 7 and 8 (instead of 3, 4, 5), radiators 9, 10,
11 (instead of 6, 7, 8) and reflector-radiator 12 (instead of 9) is primarily responsible
for the properties of the array. These conclusions may also be reached from a study
of the current-distribution curves for I ;(z)/ Vo1 in Fig. 6.40a and for I,;(z)/ Vy; in
Fig. 6.40b. The former show clearly that the amplitudes of the currents in elements 1
through 5 are negligibly small. The latter indicate the following: the capacitive currents
dominate in elements 6, 7 and 8, in element 9 the capacitive and conductive currents are
practically equal, element 10 is nearly resonant with a very small capacitive current,
element 11 has large inductive and conductive components, and in element 12 the
inductive current exceeds the conductive component. It may be concluded, therefore,
that the decrease in frequency which moved resonance from near element 7 to near
element 10 has not significantly changed the properties of the active group and, hence,
of the array.

If the frequency is decreased still further to f3 at which even element No. 12
is too short to be resonant, the admittance curve is that shown in Fig. 6.41. The
counter-clockwise rotation of the curves has been increased beyond that in Fig. 6.38
so that now none of the elements is either inductive or resonant. The small spiral
formed by the admittances of the short elements around the circle of their isolated
values has two complete turns. It is to be expected, therefore, that elements 1 through
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Figure 6.42 Like Fig. 6.33 but for higher frequency with resonance near element 4. (Operating
frequency f19.) e, Isolated admittances; x, admittances in array.

7 must have negligible currents. The active group in Fig. 6.41 includes dipoles 8 to 12.
However, none of these is resonant and there are no inductive reflectors. Moreover,
since there must be a significant voltage across the terminals of element No. 12,
considerable power must be dissipated in the terminating admittance Y7. Under these
conditions the properties of the array must differ significantly from those existing for
the frequencies determining Figs. 6.33 and 6.38. The frequency-independent behavior
requires at least two radiating and reflecting elements longer than the one nearest
resonance.

If the frequency is increased to f19 so that element No. 4 is most nearly resonant, the
admittance curve takes the form shown in Fig. 6.42. As compared with Fig. 6.33, the
curves have been rotated clockwise with respect to the axis By = 0. The admittances
of the longer elements Nos. 8 through 12 in the array are all clustered close to one
end of the circular arc formed by the admittances of the isolated elements. On the
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Relative power in elements

Element number

Figure 6.43 Like Fig. 6.35 but for frequencies f3, f7, f19, and f3.

other hand, not even the shortest element No. 1 is near the other end of the circular
arc. Since a detailed study (in conjunction with Figs. 6.33 and 6.36a) of the currents
and power in the elements longer than resonance has shown that at most two elements
longer than the one nearest resonance carry significant currents, it follows that all
elements from No. 12 down through No. 7 play no significant role in the array. On
the other hand, it is clear from Fig. 6.42 that the admittance of element No. 1 does
not produce a curve that bends inward toward the circular arc of isolated admittances,
but rather outward away from the arc. This is a consequence of the fact that the region
of active elements has been moved too close to the end of the array. It is clear from
Fig. 6.36a that the active region includes at least four elements shorter than the one
nearest resonance. For the frequency f19 leading to Fig. 6.42 there are only three such
elements available. This means that the frequency responsible for Fig. 6.42 is already
somewhat higher than acceptable for the frequency-independent properties of the array
and that the currents in element No. 1 must differ from the expected since one of the
required director-radiators is missing.

The useful range for a frequency-independent behavior lies between the frequencies
at which elements 5 and 10 (or, in general, N — 2) are resonant. In the scale of discrete
frequencies used for the 12-element array this range is approximately f7 < f < f17.
The power in the several elements at the frequencies f3, f7, f14, f19 and f>3 is shown
in Figs. 6.35 and 6.43. Note that in these figures only the plotted points are significant.
The connecting curves serve only to guide the eye.

A detailed study of the operation of the 12-element array over the full range of
frequencies from f; to f»7 has been made by Cheong [6]. Important results in addition
to those already discussed are contained in Figs. 6.44—6.46. They may be summarized

as follows:



236

Arrays with unequal elements

0.8

0.7

0.6

Element number

Relative power in elements and termination

v
\ 0.6
'
'
5
V05
'
‘2 o /\@ ',' i
- 3 v
z 04 SEND @ -.
N 3 ~ . '
Q § / v X -~ 3
) H Y ’ N
= 03 SRR VAN YA 4
e ° H Y / \ N \ '\
e H 0 A .
°§ i / /-. ¥ \,\ N .
H h % / - )
2 : ; ' )\ / \ '
* H o 3y
3 0.2 / / S ‘\ .
E ) ' } \(l . \\
S 01 / 2O\ ]
: Pha* N "— ’ . \
= - O RIS
- —-;{‘\ , 5:" \\/ . | ! 'r - \..;\v‘::
0 ot~y N v l 7 e X
\/‘\/ﬂ _ XJ_/?\ .\ '\ ] K
i / \ N .
-0.1 - \ \' \/ kWi . 4
EA AN 4 !
7 ele
TN T N O T B 1\1 TN N T N T S | 1 1 1
i=1 5 10 15 20 25 27

Frequency fl

Figure 6.44 Relative power in the elements and the termination.

1. As shown in Fig. 6.44, curve T, a large fraction of the total power is dissipated
in the terminating admittance Yr = G, in the ranges f < f5 and f > f2. As a
consequence only a small fraction of power appears in the dipoles so that little
is radiated. It is also clear from Fig. 6.44 that in the range f5 < f < f6 only a



237
—

6.15 Frequency-independent properties

v
=}
Q
=
Q
Rz
Z
=
=
E ] ~ ,
R 2NN b5
Q; Vi \ 110 E
[0 10 !/ \ 2
g ’ \ | =
‘(3 *'\ B ! \ 5 E
3 ) -~ 1y \ k=
g [ IR - —
8 ol Vo 7 N g \ 0 Q
= ] - ! 8
[ 1 =)
= \ S
= r =9
\ 45 ©
\ 2
’ =3
L \ 17
\ ! 5
\ 1 1-10 Z
1 =
= \ P
\ 1
1
| \\, 4 -15
4
o e v b e b b P
i=5 10 15 20 25

Frequency fl

Figure 6.45 Input admittance Y1 = G| + j By of the log-periodic array.

small part of the power is dissipated in the terminating admittance, most of it

appears in and is radiated from a relatively small group of active dipoles near
resonance.

2. In the range f5 < f < f17 elements which have half-lengths %; in the range 0.18 <

hi/A < 0.255 form the active group. Resonance occurs with #; /A = 0.216.
Elements which have half-lengths /; less than 0.18\ or greater than 0.255A play
an insignificant part in the operation of the array. On the other hand, outside this
range of frequencies the shorter and longer elements cannot be ignored.

. As shown in Fig. 6.45 the driving-point admittance of the array, Y7, is reasonably
constant at a value very near the characteristic conductance G, of the transmission
line over the range f5 < f < f17. Specifically Y1 = (23.0 + j0.0) x 103 siemens

with G. = 20 x 1073 siemens. Outside this range of frequencies Y varies widely
in both real and imaginary parts.

. The band of frequencies fs5 < f < f17 is characterized by a very stable main lobe

in the forward direction, i.e. toward the shorter elements and the driving point,
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Figure 6.46 Like Fig. 6.37 but for a number of different frequencies.

and very small side and back lobes. This is clear from Fig. 6.37 and Fig. 6.46.
Figure 6.47 shows that the ratio of the forward field to the largest side- or back-lobe
level is roughly constant near 15 and that the 3 dB forward beam width remains
quite stable at about 38° in the range f5 < f < f17. Outside this band of frequencies
large side and back lobes appear.

It is important to note that all of the computed data apply to a particular array with a
single set of values of the basic parameters 7, o, €2, Y7, R, and ¢p. A numerical study
of the effects of changes in these parameters and of optimum designs based on the
three-term theory can readily be made if required. Additional information is given in
Cheong [6], Cheong and King [12], and Carrel [9].
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Figure 6.47 Ratio of the forward field to the largest side lobe and the 3 dB beam width over the
frequency range f to fo7.

Experimental verification of the theory for arrays of unequal dipoles

In order to verify experimentally the predictions of the general theory developed in
Section 6.11 for arrays of dipoles with a wide range of lengths and spacings, a series
of measurements on the 12-element log-periodic dipole array would be appropriate.
However, arrays of this type are driven from two-wire lines in a manner that makes ac-
curate measurements of current distributions, admittances, voltages and field patterns
very difficult — especially over a two-to-one or greater range of frequencies. For this
reason a less elaborate array arranged to permit precision measurements was preferred
by Cheong [6].

As a first step, an extensive experimental study was made of two coupled dipoles
over wide ranges of lengths and spacings in order to verify the adequacy of the three-
term representation of the currents. When this had been established, a complete array
of five elements was constructed after the log-periodic design with the longest element
approximately twice as long as the shortest element. This array consisted of monopoles
over a very large ground screen. Each element was the extension of the inner conductor
of a coaxial line of which the outer conductor pierced the metal ground screen. In order
to provide an equivalent for the reversal of the connections between adjacent pairs of
elements, provision was made to permit the insertion of an arbitrary length of coaxial
line in addition to a length equal to the spacing of the elements. Since the added phase
shift had to be exactly m for each different frequency, it was necessary to readjust
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the length of the sections of coaxial line between the elements for each frequency.
Careful measurements were made of the driving-point admittance, the currents and
voltages in amplitude and phase at the base of each element, and the field pattern over a
range of some 17 different frequencies that included resonance for the longest and the
shortest elements. The agreement between theory and measurement was remarkable
in all details, thus confirming the adequacy of the theory for use not only on the five-
element array but on an array of any type that satisfies the requirements of the theory.
Details and extensive graphs are in the work of Cheong [6] and Cheong and King [13].
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The study of dipole arrays in Chapters 3 through 6 has proceeded from simpler to
more complicated configurations. In Chapters 3 and 4 all elements are physically alike
and arranged to be parallel with their centers uniformly spaced around a circle so that
when driven in suitable phase sequences all elements are geometrically and electrically
identical. Chapter 5 is also concerned with parallel elements that are structurally
alike, but they lie in a curtain with their centers along a straight line of finite length;
consequently the electromagnetic environments of the several elements are not all the
same. In Chapter 6 the requirement that the elements in a curtain array be equal in
length is omitted and consideration is given first to arrays of elements that differ
only moderately in length, then to arrays in which not only the lengths but also the
radii of the elements and the distances between them vary widely. The lifting of each
restriction introduces additional complications in the approximate representation of
the currents on the elements by simple trigonometric functions and in the reduction
of the integrals in the simultaneous integral equations to sums of such functions with
suitably defined complex coefficients.

The final generalization, which is carried out in this chapter, is the omission of the
requirement maintained throughout the book until this point, that all elements be non-
staggered. The removal of this condition leads to the discussion of arrays of parallel
elements that are arranged in a plane as in Fig. 7.1 and in three dimensions as shown
in Fig. 7.2. Note that such arrays include arbitrarily staggered elements and collinear
elements which do not occur in the circular and curtain arrays considered in Chapters
3 through 6. When the centers of the elements are displaced from a common plane,
the halves of many antennas are in different electrical environments so that an even
symmetry with respect to their individual centers no longer obtains for the distributions
of current. An important new complication is thus introduced: components of current
with odd symmetries in addition to those with even symmetries.

Vector potentials and integral equations for the currents

Four typical elements in an array of N parallel dipoles are shown in Fig. 7.3. All
antennas have their axes parallel to the Z-axis of a system of rectangular coordinates
X, Y, Z. The center of the kth element is at Xy, Yk, Z; its radius is ak, its half-length
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Figure 7.2 Three-dimensional array of 12 identical elements.

hi, and it is center driven by a delta-function generator with EMF V{y;. As before, the
antennas are assumed to be perfectly conducting and electrically thin so that Spa; < 1
fork =1,2,...,N.Alocal axial coordinate z; has its origin at the center of element k.

The vector potential on the surface of antenna k no longer has the simple form given
in (2.3), since the even symmetry conditions I x(—zx) = I (zx) for the current and
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Figure 7.3 Typical elements in an array of N parallel antennas.

Azr(—zx) = Az (zr) for the vector potential no longer apply. However, the vector
potential can be resolved into two parts, one with even symmetry, the other with odd
symmetry. Thus

Azk(z) = A (z) + A% (z0), (7.1)

where, in the range —hy < zx < hy,

A (z) = _TJ [Ck1 cos Boz + 3 Vor sin Bolzk|] 72
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as in (2.3), and
AR @) = _TJ Cr2 sin Bozk. (7.3)

The vector potential on the surface of antenna k is also given by the sum of integrals,

N h;
Ko !
An(e) =) L) G i 7 79 d, (7.4)
i=1 —hi
where
. e~ JPoRki
Gri(dkis 2ks 2;) = (7.5a)
Ry
with
Ryi = \/(dki + 20—z + b7, (7.5b)
As shown in Fig. 7.3, di;, = |Zyx — Z;| is the axial distance between the
transverse planes containing the centers of elements k and i, dixy = 0; by =

VX — X2+ (Yx — Y2, i # k, is the distance between the center of element k
and the projection of the center of element i onto the plane z; = 0; bgr = ay. The
currents I;;(z;) in the N elements that generate the vector potential on the surface of
antenna k as given in (7.4) include even and odd parts with respect to the centers of
the respective elements. That is,

Li(zi) = IS () + Iz, (7.6)
where
I9(z) = A Li(z) + Li(=z)],  13G) = 3Li(z) — Li(=z)].

In order to separate the even and the odd parts of the vector potential in (7.4), the
kernel Gy; (dyi, zk, zg) in (7.4) must be separated into its even and odd parts. Thus,

Gri(dyis 2k, 70) = GE™(dyi, 2k, 70) + Gy, 2k, 20), (7.7)
where, as is readily shown,

G (i 2> 20) = 5[ Ki (2 — dii, 20) + Kui (2 + dii, 2)] (7.8)
GOy, 2k, 7)) = S[Kni(zk — diis 20) — Kii 2k + dii, 2D)]- (1.9)

The function K occurring in (7.8) and (7.9) is the kernel previously used for non-
staggered arrays, namely,

e—jﬂow (zk—2))2+b3;
V@ — 2% + by

Kii(zk, 2}) = Kiir 2k, 2;) + jKkir (2, 2}) = (7.10)



245 7.2 Vector potential differences

Note that when di; = 0, GH*™(0, zx, 2}) = Kii(zx, z}) and G4(0, ¢, 2)) = 0, as
required for the previously analyzed non-staggered array. By means of the obvious
relation,

Kri(zk, Z;) = Ky (—2zk, _Zl/')’

it is readily shown that, when (7.6) and (7.7) are substituted in (7.4), the parts of the
integral that involve the products 7¢Ve"Ge¥en, [°4dGodd are themselves even in z, the
parts that contain / evenczodd - yodd zeven yre themselves odd in z. It follows that the even
part of the vector potential is given by

hi
477“0 1Aeven(Zk) — /h even( k)Geven(O, 2 Z;C)dz;(
—Ng
N phi
+ / 15z G (s 2k, 7) dz;
i=1 —hi

N
+y / 139G G i 2. 2}) ]
i=1 v~

—jan 1 )
= [Ck1 cos Bozx + 5 Vor sin Bolzx], (7.11)

where k = 1,2, ... N; {o = 120 ohms; and Z/ is the sum with i = k omitted. The
odd part of the vector potential is contained in

hy
4”M01A0dd(2k) = /h Odd( Z) w0, zg, 7)) dzp,
N
+ /h IS5 G (dyi 2k 7)) d]
i=1 YN

N
+Z// 12 GE™ (i, 2, 20) d}
iz /-

= —(j47T/§0)C/<2 sin Bozk (7.12)

where k =1,2,...N.
The relations on the right in (7.11) and (7.12) are 2N simultaneous integral
equations for the even and odd parts of the currents in the N elements.

7.2  Vector potential differences and integral equations

In order to determine approximate distributions of current from the two sets of N
simultaneous integral equations in the general manner described in earlier chapters, it



246

Planar and three-dimensional arrays

is convenient to introduce the vector potential differences. This is quite straightforward
for the even part of A (zx). Thus, if 47 1Aeven (hy) is subtracted from both sides of
(7.11), the result is

hi
A pg A (2) — A (ho)] = f IS (2GRS0, 2k, z) dz
—hy
N phi
2 / 15" (z) " i 2, 7)) A
i=1 Y—hi

N o
/ 1

dd ./ dd , ,

+ Z / Iz(.)i (Zi)Gzid (dii, 2k, 7;) dz;
i=1 —h;

= —(j47/20)[5 Vor(sin Bolzk| — sin Boh)
~+ Cr1(cos Bozk — cos Bohi)]

= (j4m /o cos Bohi)[% Vok sin Bo(hi — |zk|)

+ Uk (cos Bozk — cos fohi)], (7.13)
where k =1,2,...N and
—j — Uy + 5 Vo sin foh
Uy = J&o N (), Crr = k + 5 Vok sin Bohi (7.14)
cos Bohy
as in the corresponding equation with di; = O for the curtain array. The difference

kernel (with extra subscript d) is defined by

z;ljn(dkl’ ks 2 ) = Geven(dkia Zk> Z:) - even(dkla hk’ < ) (715)

and a similar equation for GZ?j(dk,-, Zk, z;).

It is not possible to form an equation like (7.13) with A;’gd (zx) since this is an odd
function of zj; so that if A‘)dd(zk) AOdd(hk) is zero at zx = hy, itis — AOdd(hk) at
Zt = —hy. A convenient alternative! is to subtract the odd function (zx / hk)AOdd(hk)

which is equal to the vector potential at both zz = hy and zx = —hg. Thus, with (7.12),

4m g "TAS (2) — (zie/ i) A% (i)

hi
= [ o, g s

N
/ 1
+Z /h Izeiven(Z )gkdd(dkz,Zk Z; )dz
i=1 —ni

1 See[1].
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N h:

/ 1
+2 / 159D GRS i 2 7)) d2;

i=1 Y —hi

= —(j4m C2/%0)[sin fozk — (zk/ hi) sin Bohy] (7.16)
where k = 1,2, ... N and the difference kernels are given by
Grid " (@xis 2k, 7)) = G ™ (dxis 2k, 27) — (a/ hi) G (i s by 23) (7.17a)
Godui 2k 7)) = G di 2k ) — (2 / M) Gt (dui s . 2)). (7.17b)
For each superscript, the kernel may be expanded into its real and imaginary parts as
follows:
Gria(dki, 2k, 2;) = Griar (di, 2k, ;) + jGriar (dris 2k, 2})- (7.18)

The desired alternative set of 2N simultaneous integral equations for the even and odd
parts of the currents in the N elements is contained in (7.13) and (7.16).

73

Approximate distribution of current

It has been shown in earlier chapters that the first integral in (7.13) is well approxi-
mated by

hy h
’ /
/h even( k)Gz}]ciinR (O, Tk Zk) de = /h even(zk)Kkde (Zk Zk) de

~ 15" (20) (7.19)

and
he hi
/ 13 (20) Gy 0, 2k, z) dz = / I3 (23) Kikar (zk, 23) dz
—hy —hy

~ Hozx, (7.20)
where
Hozr = cos(Bozr/2) — cos(Bohk/2) (7.21)

provided Bohix < 5 /4. By the same procedure it is readily shown that the first integral
in (7.16) can be separated into analogous parts for which the following relations are
good approximations:

hy
/ 1999 ()G (0, 21 24) dey ~ 1909 (z0) (7.22)
—hy

hy
/ 1999 ()G (0, 24 24) d2h ~ Eoet (723)
— I
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where

Eozx = sin(Bozi/2) — (zx/ i) sin(Bohi/2). (7.24)

As a consequence of (7.19) and (7.22) it follows that the trigonometric functions
that occur on the right-hand side of (7.13) and (7.16) must also occur as leading terms
in the approximate expressions for the currents, together with (7.21) and (7.24). That
is, appropriate approximate formulas for the even and odd currents in antenna k are
given below. For the even currents

15" (zx) = AkMozk + B Fozx + Dy Hozk (7.25a)
or the alternative equivalent form:
2 (zk) = Ay Sozk + By Fozk + Di Hozk, (7.25b)

where Ay, A}, Bi, B, and Dy, are complex coefficients and

Mozx = sin Bo(h — |zk|) (7.26)
Sozk = sin Bolzx| — sin Bohg (7.27)
Fozr = cos Bozix — cos Bohi (7.28)
Hozk = cos(Bozk/2) — cos(Bohi/2). (7.29)

For the odd currents

15%(zk) = Qi Pozi + RiEozk, (7.30)
where QO and Ry are complex coefficients and

Pozk = sin fozx — (zx/ hi) sin Bohy. (7.31)

Eq; is defined in (7.24). The above formulas are for k = 1, 2, ... N. The approximate
formulas (7.25a, b) and (7.30) are obtained specifically from the first integrals in
(7.13) and (7.16). When there are no staggered elements (dy; = 0), it is known
that the induced currents are well represented by a linear combination of Fp,; and
Ho.x. It may be argued that a similar linear combination must also be an acceptable
representation of the even parts of the currents induced in staggered elements. This
follows from the theoretical and experimental studies, referred to in Chapter 6, of
currents in non-staggered elements that differ greatly in length. If the current induced
on a relatively long element (but with Sgh; < 57/4) by an adjacent very short antenna
is well represented by (7.25a, b), it may be concluded that the same must be true of
the current induced in antenna k by other coupled elements which maintain a vector
potential with an even part that varies less in amplitude and phase along antenna k
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than the vector potential generated by the currents in a very short element. Since no
measurements were available of the currents induced by coupled staggered elements,
a numerical check was made of the degree in which the assumed current distributions
satisfy the integral equation. The results were quite satisfactory.

It may be concluded that the current along any element k in an array of N parallel
antennas is approximately

Li(zk) = Ag sin Bo(hi — |zk]) + Bi(cos Bozx — cos Bohi) + Di[cos(Bozk/2)
— cos(Bohr/2)] + Qklsin Bozk — (zk/ hi) sin Bohi]
+ Ry [sin(Bozk/2) — (zi/ hi) sin(Bohi /2)]. (7.32)

If more convenient, the first two terms may be replaced by those in (7.25b). The first
three terms for the even part of the current are the same in form as for arrays of parallel,
non-staggered elements. They include the term sin So(h;r — |zx|) which represents
that part of the current excited directly by the generator voltage Voi. No such term
is possible for the odd part of the current in a center-driven dipole. The remaining
problem is to determine the coefficients in (7.32).

74

Evaluation of coefficients

The coefficients in the approximate formula (7.32) for the current in a typical element
k in an array of N arbitrarily located parallel elements may be evaluated in various
ways. The method outlined here is the one selected by V. W. H. Chang in his study
of planar and three-dimensional arrays. He preferred to use the following alternative
form for the current:

Li(zx) = A (sin Bolzx| — sin Bohx) + By (cos Bozx — cos Bolk)
+ Di[cos(Bozk/2) — cos(Bohk/2)]
+ Qklsin Bozx — (z/ hi) sin Bohk]
+ Rilsin(Boz/2) — (zi/ hi) sin(Bohk/2)], (7.33)

where k = 1,2, ... N. Instead of substituting the even and odd parts into the integral
equations (7.13) and (7.16) he used the simpler integral equation for the total current
obtained when (7.4) is equated to (7.1) with (7.2) and (7.3). That is,

JBoRki ) - .
» dz; = —(j4m /o) [Cr1 cos Bozi + Cia sin Bozk
1

5[
Li(z)
i=1Y—hi R

+ 5 Vo sin Bolzi 1. (7.34)
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The substitution of (7.33) in the integral in (7.34) yields N equations with 7N
unknowns, namely the SN coefficients in (7.33) and the 2N constants Ci; and Cya
with k = 1,2,...N. The required 7N equations can be obtained by satisfying
(7.34) exactly at seven points along each antenna. The points chosen for z; are Ay,
2hy /3, hi /3,0, —hy /3, —2hy /3, and —hy. These correspond to the values used in the
evaluation of the coefficients for the array of unequal elements in the last sections of
Chapter 6, but since the currents are now not even functions of z;, the negative values
—hy, —2h /3 and —hy /3 must also be used.

The number of unknowns can be reduced by the elimination of the constants
Ck1 and Cgo. The former is conveniently evaluated at zz = h; where the current
vanishes; the latter can be obtained from the equation at z;z = 2hg /3. Thus, with the
notation

N by

Uy = Z/ Li(z))Gri(dki, hk, z)) dz} (7.35)
i=17=hi
N i

Vo=Y / 112 G (s 2he /3. 2)) d (7.36)
i=17=hi

(7.34) evaluated at zz = hy and 2hy /3 yields

(j41/50)Cr1 = Ui sin(2Bohi/3) — Uz sin Bohy] esc(Bohk/3) (7.37)
(ja4m/20)(Cr2 + Vor/2) = [Uka cos Bohi — Uk1 cos(2Bohi/3)] csc(Bohi/3).  (7.38)

Note that in the range fohy < 57 /4, these expressions remain finite.
With (7.37) and (7.38), Cx1 and Cy; can be eliminated from (7.34) to obtain

N hi
> sin(Bohi/3) / Li(z))Gui(dii, k. 2}) d2
i=1 —hi

N hi
+ ) sin ﬂo(%hk - Zk)/ Li(z))Gri(dki, hk, z}) dz}
i=1 —h;

N hy
— ) sin Bo(hi — zx) / Li (z)) Gui(dui » 3hi. 2)) dz;
i=1 —h;

_ jam Vok

sin(Bohy/3) sin Bozx H (—zx). (7.39)

where H (—z;) is the Heaviside function defined by H(—zx) = 0, zx > 0; H(—z) =
Lz <0.
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The next step is to substitute the current (7.33) in the integrals in (7.39). This leads
to quantities of the following form:

hi .
§kij(zk) = Sin(ﬂohk/3)/ T2 Gri(dis 2k, 2}) dz)
_h[-
hi
+ sin Bo(Ghx — Zk)/ T3 (@) Gri(dris i, 2}) dzj
_h’-

hi .
+ sin Bo(hk — zk) f J(z)Gri(dri, 2 /3, 7)) dzj, (7.40)
_hi

wherek =1,2,...N,i =1,2,...Nand j = 1,2, ...5. The notation

J5(2) = Sozi = sin olzi| — sin foh; (7.41a)
J2(z}) = Fozi = cos fozi — cos fohi (7.41b)
J2(2}) = Hozi = cos(Bozi/2) — cos(Bohi/2) (7.41c)
J3(2)) = Pozi = sin fozi — (zi/ hi) sin Boh; (7.41d)
J3z}) = Eozi = sin(Bozi/2) — (zi/ hi) sin(Bohi /2) (7.41e)

is used. Note that for any specified value of zx in a fixed array, (7.40) defines a set of
N complex numbers that can be evaluated by high-speed computer. With (7.40) and
(7.41a-e), (7.39) becomes:

N

Z[Aﬁékil(Zk) + Bl&ki2(zk) + Dikkiz(z) + Qibria(zi) + Rikis(zi)]
i=1

=j (47 Vok /§o) sin(Bohi /3) sin Bozk H(—2k), (7.42)
with k = 1,2, ... N. Five sets of N equations can be obtained from (7.42) if z; is

successively made equal to the five values hy /3, 0, —hy /3, —2hi /3 and —hy. These
contain the M = 5N unknown coefficients given by the column matrix

{A} = tr(Ay, ... AN, B1,... BN, D1,... Dy, O1,...On, R1, ... RN) (7.43)

where tr indicates the transpose. Let
Dy ... Dy

(1= : S (7.44)
Dy ... DPym

where M = 5N and

@it m—D)N.i+(—HN = Ekij(2)) (7.45)
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with j = 1,2,...5m =1,2,...5k=1,2,...N;i = 1,2,...N. The notation
2t = h/3, 27 = 0,23 = —hi/3, 2} = —2hi/3, 27 = —hy is used. Also let the
following column matrix of SN terms be defined:

(Wy=t(0...0,0...0,Wy...Wx,Ti...Txn, S ...SN), (7.46)
where

Wi = —(j47 Vo /¢0) sin*(Bohi /3) (7.47a)
Ty = —(j4m Vor /¢o) sin(Bohy /3) sin(2Bohy /3) (7.47b)
Sk = —(j4m Vor/&o) sin(Bohi /3) sin Bohy (7.47¢)

withk=1,2,...N.

With this matrix notation the SN equations for the N coefficients of the currents in
terms of the N driving voltages Vor withk = 1,2, ... N are given by the single matrix
equation

[@1{A} = {W}. (7.48)

If (7.48) is solved for the SN coefficients given by (7.43), the N currents I, (zx),
k=1,2,...N given in (7.33) are known in terms of the N voltages Vy. The currents
at the driving points are then given by the matrix equation

{I(O)} = [YI{Vo}, (7.492)
where
1;1(0) Vot
{I:(0)} = : , (W} = Dot (7.49b)
I,n(0) Von

The square matrix

Yn Yo ... N
=\ : : (7.49¢)
Yvi ... YN

is the admittance matrix. The terms Y;; are the self-admittances, the terms Y;;, i # j
are the mutual admittances.

The N driving voltages can be expressed in terms of the currents at the driving
points in the form

{Vo} = [ZI{1;(0)}, (7.49d)

where [Z] = [Y]7 ! is the impedance matrix.
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The driving-point admittance of element & is defined by

Yor = 11(0)/ Vor. (7.4%)

7.5 The field patterns

The radiation field of an array of arbitrarily located parallel elements is the superpo-
sition of the fields generated by the individual elements. The far field of element i in
such an array is given by

rooo_
EG)i -

oo e PR phi e
Ll f Li (z})e’P0%i 5 © sin @ dz, (7.50a)

4 Rl' —h;

where R; is the distance from the center of the antenna i at X;, ¥;, Z; to the point of
calculation P, and ® is the angle between the Z-axis and the line OP from the origin
of coordinates near the center of the array.

If the distribution of current (7.33) is substituted in (7.50a), the field of element i
can be expressed in the following integrated form:

JBoR;
EL, = Zi’eR [A} H(©, Bohi) + BG (O, Bohi)
+ DDy (©, Bohi) + Qi Om(O, Bohi) + R Ry (O, Boh;)], (7.50b)

where the individual field factors are as follows:

®
Hy(©, fohy) = 201 / (sin folz}] — sin foh;)e % <30 g7
= {cos ® — [1 — cos Boh; cos(Boh; cos ®)]} sec ® csc ® (7.51a)
H,, (0, Bohi) = Hy (7, Bohi) =0 (7.51b)
n .
H, (5, ,BOhi> — 1 — cos fohi — Boh; sin Bohi (7.51¢)
. @ hl ) ,
GO, o) = 20 = f (cos Boz) — cos Bohy)e ot <% gz
_hi
= [cos ® sin Boh; cos(Boh; cos ®)
— cos Boh; sin(Boh; cos ®)] sec ® csc O (7.52a)
Gm(0, Bohi) = Gm(m, Bohi) =0 (7.52b)

T .
o (5 Bohi) = sin Bohi — Bohi cos Boh (7.520)
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Bo sin ®

hi o
Dy (®, fohi) = = / h[cos(ﬁoz;/Z)—cos(ﬂohi/znefﬁozf“’s@dz;

sin ®
= 2 O si hi/2
|:cos®(1 — 4 cos? ®)i|[ cos ®sin(fohi/2)

X cos(Boh; cos ®) — cos(Boh;/2) sin(Boh; cos ©)] (7.53a)
T .
Dy (5 Bohi) = 2sin(Bohi/2) = fohy cos(Bohi/2) (7.53b)
2 3
D (% IBOhl-) — Dy, (%’ IBOh,-> = % (Bohi — sin Bohi) (7.53¢)
. hi ] ,
01, fohi) = 2° S;I@ / [sin Boz] — (2 hy) sin Boh; 1e/0% 3O g7/
_hi
= (j/Bohi)[—Poh; cos® ® cos Poh; sin(Boh; cos ©)
— sin® © sin Boh; sin(Boh; cos ©)
+ Boh; cos ® sin Boh; cos(Boh; cos ®)] csc O sec’ ® (7.54a)
T
Qi (0. fohi) = Qi (5 Bohi) = Qu(er. fohi) = 0 (7.54b)

. hl ) ,
Ry (©. fohi) = 20 S;r‘@ / [sin(Boz,/2) — (1) hs) sin(Boh /2)1e P05 <05© g7/
hi

. jsin® . .

- |:,30hl~ cos2 ® (1 — 4 cos? @)] tsin(foh; cos ©)
X [—2Boh; cos? ® cos(Boh;/2) — sin(Boh;/2)
+ 4sin(Boh; /2) cos® O] + Boh; sin(Boh; /2)

X cos ® cos(Bph; cos ®)} (7.55a)

o ()

T
R (

0 (7.55b)

|

2 3
s:BOhi> =—Ry, (% ,BOhi) =j %— [Bohi + sin Boh;

— (8/Bohi) sin*(Bohi /2)]. (7.55¢)
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0 X

Figure 7.4 Point P in the far field of an array of parallel elements of which element i at X;, Y;, Z;
is typical.

The radiation field of N parallel antennas is the sum of the contributions from each
element. In the far-field approximation
e—JPoRi o= jBoRo

= — R ejﬂo(l'i-f{o)’ (7.56)
1

where r; is the vector drawn from the origin near the center of the array to the center of
antenna i and Ry is the unit vector along the line O P where P is the point of calculation
as shown in Fig. 7.4. With (7.56) the far field of the array is

—JjBoRo
_ i(o e T Z j,BO(I':RO)[A Hy (O, Bohi) + B/G (O, Bohi)
T

Eg =
+ Di Dy (©, Bohi) + Qi O (O, Bohi) + R Ry (O, Bohi)]. (7.57)

If the point P where the field is calculated is located by the spherical coordinates
Ro, ®, ® and the center of element i is at X;, Y;, Z;, then

r; -ﬁo = X;sin®cos® + Y;sin®@sin® + Z; cos ©. (7.58)
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Figure 7.5 Two-element collinear array. Figure 7.6 Two-element staggered array.

7.6  The general two-element array?

In the introductory analysis of the two-element array in Chapter 2 only parallel
non-staggered antennas are considered. As a consequence of the resulting even
symmetry for the currents in the elements and the vector potentials, a three- or even
two-term representation is adequate. The more general five-term approximation of
the currents introduced in this chapter includes the previous three terms to describe
the even currents and two additional terms to represent the odd currents generated
by asymmetrical coupling when the elements are collinear as shown in Fig. 7.5 or
staggered as in Fig. 7.6.

The general formulas for the currents, driving-point admittances and field patterns
derived in the preceding sections are readily specialized for the two-element array.

2 The computations in this section were planned and programmed by V. W. H. Chang.
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Table 7.1a. Symmetrical and anti-symmetrical admittances in millisiemens of parallel,

non-staggered array of two elements; a/X = 0.007 022

h/x = 0.50 h/h = 0.25

bia/h s ye s Y4

0.05 0.813 + j1.397  0.071 + j0.941 4.939 — j0.820 4.831 — j53.897
0.10 1.028 + j1.668  0.146 + j1.122 5.572 — j0.290 4.344 — j24.150
0.15 1.197 4+ j1.749  0.230 + j1.286 6.258 + j0.112 4.385 — j15.386
0.25 1.448 4+ j1.627  0.408 + j1.531 7.853 + j0.809 4.758 — j8.655
0.50 1.079 + j0.932  0.865 + j1.774 14.321 — j1.496 6.129 — j3.340
0.75 0.635+ j1.374  1.244+ j1.570 8.960 — j7.101 8.318 — j1.318
1.00 0.872+ j1.657  1.066 + j1.141 7211 — j3.839  11.577 — j2.517
1.25 1.157 + j1.537  0.728 + j1.359 8.543 — j2.095 9.503 — j5.707
1.50 1.053 + j1.226  0.877 + j1.602 10.725 — j2.875 7.777 — j3.918

Table 7.1b. Symmetrical and anti-symmetrical admittances in millisiemens of collinear array of
two elements; a/) = 0.007 022

h/x =0.50 h/x =0.25
dia —2h ys ya ys ya
A

0 1.050 + j1.581 0.816 4+ j1.139 5.549 — j1.953 15.281 — j6.078
0.05 1.042 + j1.505 0.808 + j1.338 7.508 — j1.868 11.013 — j6.483
0.10 1.035 + j1.465 0.844 + j1.409 8.444 — j1.913 9.529 — j5.821
0.15 1.026 + j1.437 0.875 + j1.440 9.100 — j2.104 8.858 — j5.208
0.25 0.999 + j1.403 0.919 + j1.461 9.850 — j2.764 8.412 — j4.288
0.50 0.941 4 j1.409 0.966 + j1.446 9.521 — j4.026 8.832 — j3.243
0.75 0.945 4 j1.435 0.965 + j1.422 8.923 — j3.800 9.415 — j3.404
1.00 0.958 + j1.435 0.950 + j1.422 9.042 — j3.445 9.300 — j3.785
1.25 0.959 + j1.426 0.950 + j1.431 9.295 — j3.518 9.045 — j3.699
1.50 0.953 + j1.425 0.956 + j1.432 9.238 — j3.708 9.103 — j3.517

Comparative examples of the admittances of coupled full-wave and half-wave el-
ements when driven symmetrically with Vy; = Vo =1 volt and anti-symmetrically
with Vo1 = —Vp2 =1 volt as a function of the distance between centers are given in
Tables 7.1a, b, c for antennas with a/X = 0.007 022. These tables give the symmetrical
admittance Y = G* + j B® and the anti-symmetrical admittance Y¢ = G* + j B“. The
associated self- and mutual admittances are Y1, =(Y* 4+ Y%)/2 and Yo =—(Y* —
Y4 /2.

Table 7.1a applies to the non-staggered antennas considered in Chapter 2; the
variable parameter is b1>/X, the normalized distance between centers. Table 7.1b is
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Table 7.1¢c. Symmetrical and anti-symmetrical admittances in millisiemens of parallel, staggered
array of two elements; a/} = 0.007 022

h/r =0.50 h/r =0.25
bﬁ — @ YS Ya YS Ya
A A
0.05 0.825 4+ j1.318  0.086 + j0.608 4.692 — j0.775 11.923 — j76.274
0.10 1.040 4+ j1.720  0.786 4 j0.801 5.456 — j0.470 8.631 — j29.120
0.15 1.189 + j1.832  0.236 + j0.984 6.336 — j0.297 7.399 — j16.489
0.25 1.363 4+ j1.681  0.420+ j1.379 8.372 — j0.097 6.669 — j 8.084
0.50 1.035+ j1.110  0.965 + j1.673 11.077 — j4.641 7.804 — j 2.856
0.75 0.785+ j1.474  1.089 + j1.414 8.235 — j3.925 10.159 — j 3.106
1.00 1.008 4 j1.489  0.906 4 j1.350 9.340 — j2.908 8.903 — j 4.302
1.25 0.976 4+ j1.380  0.939 4 j1.484 9.483 — j4.115 8.862 — j 3.166
1.50 0918+ j1.400 0.989 + j1.419 8.729 — j3.561 9.650 — j 3.650
200 F /R‘* (staggered) Collinear

Symmetrical resistance and reactance (ohms)

150

100

50 X* (collinear) - & - _
P Xp=373 O IR
_ - - 7 ~

- ‘\‘ - _ J_ - , , s , 7’ <
L w == , L’

W 4
L NN 3(S (staggered) , # L’ Txs (nonstag.)

NS Phg 7’
0 U -
= A ~ - - -
_10 | I 1 1 I | L 1 L

0 0.2 0.4 0.6 0.8

R* (nonstag.)

Staggered

Non-staggered

;E[ by dlZI by d12_$2h

R* (collinear)

1.0

by,/Aor (d}, —2h)/A for collinear array

Figure 7.7 Resistance and reactance of symmetrically driven array of two parallel half-wave
dipoles when non-staggered, staggered with by = dj», and collinear; a/A = 0.007 022,
h/x =0.25, Voo = V.
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150 T T T T T T T T T

X4 (collinear) <
R X4 (staggered) N b
~

Antisymmetrical resistance and reactance (ohms)

1

0 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0

b,/ or (d|, — 2h)/A for collinear array

Figure 7.8 Like Fig. 7.7 but for anti-symmetrically driven elements, Vjp = — V.

for the collinear pair with the distance (dj» — 2h) between the adjacent ends as
the parameter (d;> is the distance between centers). The admittances in Table 7.1c
are for the staggered pair as the center of element 2 is moved along a 45° line
so that b1y =dj>. The impedances Z°*=1/Y® and Z¢ =1/Y“ corresponding to the
admittances in Tables 7.1a, b, c are shown graphically in Figs. 7.7 and 7.8, respectively,
for the symmetrically and anti-symmetrically driven pairs. In these figures Rg and X
are the resistance and reactance for infinite separation. The interaction between the
elements is seen to be greatest for the non-staggered pair, smallest for the collinear
arrangement. The self- and mutual impedances are given by Zs; = (Z° + Z%)/2 and
Z1p=(Z° — Z%)/2; they are listed in Tables 7.2a, b.

The current distribution along the lower element of a collinear pair when the
adjacent ends are separated by a distance djp — 2h = 0.1A is shown in Fig. 7.9 for
both symmetrically and anti-symmetrically driven full-wave elements. Note that in
both cases the currents are asymmetrical with respect to the center of the element.
When the excitation is symmetrical (Vo1 = V(2), the current in the outer half is the
greater; when the excitation is anti-symmetrical (Vo; = — Vip2), the current in the inner
half is the greater.

The current distribution for a pair of coupled full-wave antennas in the staggered
position with b12/A =d12/1=0.1 is shown in Fig. 7.10 for symmetric excitation
(Vo1 = Viz) in broken line. Since the two elements are very close together, the
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04 F - \

0.2 - S \
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Current in milliamperes per volt

Figure 7.9 Currents in element No. 1 of a symmetrically and anti-symmetrically driven pair of
collinear antennas. 1,1 (z) = Iz”1 ) + jIZ/1 (2), Voo = £Vp1 = %1 volt, a/A = 0.007 022,
h/x =0.5,d1p/» = 1.1. (Element 1 is below element 2.)

interaction is great. When center driven with equal and opposite voltages, the two
conductors form a slightly displaced two-wire line with a large and only slightly
asymmetrical reactive current IZ/ 1(z) that is almost sinusoidal, and a very small
in-phase component IZ”1 (z). Since the current induced in each element by that in
the other is essentially 180° out of phase, the coupling reinforces the currents
excited by the generator voltages. When center driven by equal and co-directional
generators the distribution of current is extremely asymmetrical. The half of each
element that is removed from the other has a very large approximately sinusoidal
reactive current I/, (z), whereas the adjacent halves have only a small and oppositely
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Figure 7.10 Like Fig. 7.9 but for two staggered elements with bjo /X = djp /1 = 0.1.
directed reactive component. The in-phase component IZ/; (z) is much greater than
when the antennas are anti-symmetrically driven and the asymmetry is in the opposite
directions.

The distributions of current for the symmetrically and anti-symmetrically driven
staggered pair are sketched approximately to scale in Figs. 7.11a, b. Note that the
more closely coupled adjacent halves of the elements have the greater current when the
excitation is asymmetrical, very much the smaller when the excitation is symmetrical.
In the former case the coupling between the elements reinforces the generators, in the
latter it opposes them.

It is interesting to note that the distribution along the symmetrically driven pair in
Fig. 7.11a resembles that along a sleeve dipole.? This is to be expected since the two
elements are very closely coupled.

I
7.7 Asimple planar array*

The application of the general theory developed earlier in this chapter to planar
arrays is conveniently illustrated with the three by three nine-element array shown

3 See, for example, R. W. P. King, [2], p. 413, Fig. 30.7e.

4 The computations in this section are those of V. W. H. Chang. Parts of Sections 7.7-7.10 were first published
in Radio Science [3].
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Figure 7.11 Currents in two-element staggered array driven (a) symmetrically with Vo = V1 and
(b) anti-symmetrically with Vjp = —V{y1. The distributions of current are taken from Fig. 7.10.

in Fig. 7.12. This involves non-staggered, staggered and collinear elements, so that
the effects of the different types of coupling on otherwise identical elements can be
studied.

Consider first the broadside array in which all elements are driven with equal
voltages, that is, Vo; = 1volt,i = 1,2,...9. Since conventional theory is unable
to treat full-wave elements, let an array of nine elements with /A = 0.5 be analyzed.
Let the lateral distances between elements be b/A = 0.25 and the axial distance
between adjacent ends be (d — 2h)/1 = 0.1 where d is the distance between centers
of adjacent collinear elements. With this symmetric excitation, elements 1, 2 and 3
are like elements 7, 8 and 9 in the even parts of these currents, but the algebraic sign
of the odd parts is reversed. The coefficients of the five trigonometric functions in
the current distribution given in (7.33) are listed in Table 7.3 for all of the elements.
The associated driving-point admittances and impedances are also listed. Note that
these differ significantly. The four different distributions of current are shown in Fig.
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@ ®
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VO7 _ V()S — V09 _ 2h
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+ + +
V04 _ VOS _ V06 _

d
Element

number ) @ ®
+ + +
VOI _ VOZ _ V03 _

Figure 7.12 Planar array of nine identical, equally-spaced elements.

7.13 in the form I;;(z;) = [I/;(z;) + jI.;(z;) where I;(z;) is in phase with Vp;,
1 z’ ;(zi) in phase quadrature. Note that the currents for elements 7, 8 and 9 are like
those for 1, 2 and 3 but with —z; substituted for z;. Elements 4, 5 and 6 have even
currents. The contribution by the odd currents in elements 1, 2 and 3 is seen to be
large.

When the same nine-element array is driven to obtain a unilateral endfire pattern
with Vo1 = Vou = Vo = 1, Vo = Vos = Vog = —J, Voz = Vos = Vg9 = —1 volt, the
coefficients for the trigonometric functions in the current distribution (7.33) are listed
in Table 7.4. Note that there are now six different sets of coefficients since elements
1 and 3 and their counterparts are no longer electrically identical. The driving-point
admittances and impedances are also given in Table 7.4. They are seen to have a wider
range of values than in the broadside array. Note that the resistances of the elements
in the collinear trio in the backward direction (1, 4, 7) are much greater than the
corresponding resistances in the forward trio (3, 6, 9). This is characteristic of endfire
arrays of full-wave elements. The six different currents are shown in Figs. 7.14 and
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Table 7.3. Nine-element planar array — broadside; a/) = 0.007022, h/» = 0.5, b/» = 0.25,
d/x=1.1 Vo =1volt,i =1,2,...9
Coefficients of trigonometric functions in milliamperes per volt
i A; Bi/ D; 0;? R;?
1,3,7,9 0.006 — j3.626 0.763 — j0.739  0.287 + j2.849 0.197 + j0.444 —0.008 + j0.134
2,8 0.010 — j3.580 1.065 — j0.643 0.197 + j3.164 0.317 + j0.604 0.279 + j0.199
4,6 0.007 — j3.615 0.832 —;j0.590 0.176 + j2.596 0+ 0 0+ 0
5 0.010 — j3.567 1.176 — j0.443  0.087 + j2.821 0+ /0 0+ 50
4 Reverse signs fori = 7,8, 9.
Admittances in millisiemens and impedances in ohms
i Yoi = Goi +jBoi  Zoi = Roi +jXoi
1,3,7,9 1.759 + j1.371 353.7 — j275.7
2,8 2.328 4+ j1.878 260.2 — j209.9
4,6 1.840 + j1.416 341.3 — j262.8
5 2.440 + j1.955 249.6 — j200.0
Table 7.4. Nine-element planar array — endfire; a/) = 0.007022, h/A = 0.5, b/ = 0.25,
d/a =11 Vo1 = Voa = Vo7 =1, Voo = Vos = Vos = —J, Vo3 = Vo = Voo = —1 volt
Coefficients of trigonometric functions in milliamperes per volt
i Al B D 0, R;i®
1,7 0.053 — j3.674 0.321 — j0.426  0.391 — j2.060 0.206 + j0.463 0.288 + j0.213
2,8 —3.675—j0.006 —0.282— ;j0.501 2.375— j0.027 0.500 — j0.151 0.196 — j0.168
3,9 0.042 + j3.668 —0.724 — j0.152 0.480 — j2.201 —0.119 — j0.562 —0.223 — j0.124
4 0.053 — j3.664 0.381 — j0.299 0.321 + j1.845 0+ 50 0+ /0
5 —3.665 — j0.005 —0.129 — j0.546 2.137 + j0.010 0450 0+ /0
6 0.044 + j3.657 —0.735—j0.344 0.463 — j1.918 0+ /O 0+ jO

4 Reverse signs fori =7, 8, 9.

Admittances in millisiemens and impedances in ohms

i Yoi = Go;i + JBoi

Zoi = Roi + jXoi

1,7 1.034+ j1.208 409.0 — j477.8
2,8  1.030 + j1.811 237.2 — jA17.2
3,9 0.966 + j2.506 134.0 — j347.4
4 1.084 + j1.250 396.0 — j456.7
5 1.083 + j1.879 230.2 — j399.5
6 1.008 + j2.607 129.0 — j333.7
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Figure 7.13 Currents in a planar array of nine elements in broadside. I;; (z;) = 1] (z;) + jI;(z),
Voi = 1volt; a/x =0.007022, h/A =0.5,b/x =0.25,d/Ar = 1.1.

7.15. The currents in elements 7, 8 and 9 are like those in 1, 2 and 3 but with —z;
substituted for z;. Note that the currents in the rear collinear trio (1, 4, 7) are greater
and contribute more to the far field than the currents in the forward trio of the elements
(3, 6, 9). The far-field patterns in the horizontal or H-plane and the vertical or E-plane
are shown in Fig. 7.16 for both the broadside and the endfire arrays. The horizontal
pattern of the broadside array is bidirectional with maxima at & = 90° and 270°,
the endfire pattern is unidirectional with a broad maximum in the direction ® = 0°.
The vertical patterns in the direction @ = 0 are seen to be very sharp as would be
expected when three full-wave elements (which correspond to six half-wave elements)
are stacked. (Note that the vertical pattern shown for the broadside array is not in the
direction of the maximum at ® = 90°.)

When the length of the elements is a half wavelength instead of a full wavelength,
it is usually desirable to assign the driving-point currents [I;(0) instead of the
voltages Vp;. If the array shown in Fig. 7.12 is constructed of half-wave elements
with h/x = 0.25, b/» = 0.25, (d — 2h)/A» = 0.1, and the currents are assigned
for a broadside pattern with /;;(0) = 2.5 milliamperes for i = 1,2,...9, the
coefficients for the trigonometric functions in the expression (7.33) for the currents
in the elements are those given in Table 7.5. The required driving voltages Vy; are also
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Figure 7.14 Like Fig. 7.13 but driven in endfire with Vo = Vg = Vg7 = 1,
Voo = Vos = Vog = —Jj, Vo3 = Vogg = Vg9 = —1 volt. Currents in elements 1, 2, 3.
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Figure 7.15 Like Fig. 7.14 but for elements 4, 5 and 6.
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Figure 7.16 Horizontal (® = 90°) and vertical (& = 0°) patterns of a nine-element planar array of
full-wave antennas; broadside and endfire excitation.

listed together with the associated driving-point admittances and impedances. Note
that the voltages differ considerably, as do the impedances. This is due entirely to
mutual coupling.

The fact that the driving-point currents are all maintained equal and in phase
by a suitable choice of voltages does not mean that the several distributions of
current are therefore equal and in phase. The very different interactions among
the several elements necessarily lead to distributions of current that are quite
dissimilar in both amplitude and phase. This is shown graphically in Fig. 7.17
for the real and imaginary parts of the currents. The real parts are seen to be
more nearly triangular than cosinusoidal; the imaginary parts are quite large and
distributed so differently from the real part that the phase angle is very far from
constant. This means that even for half-wave elements the conventional assumption
that all currents are cosinusoidally distributed and constant in phase along each
element is of questionable validity for determining impedances and minor lobe
structures.
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Table 7.5. Nine-element planar array — broadside; a/) = 0.007022, h/A» = 0.25, b/1 = 0.25,
d/n = 0.6, I;(0) =2.5 x 1073 amperes; i = 1,2,...9
Coefficients of trigonometric functions in milliamperes
i A; Bl.’ D; 0;? R;?*
1,3,7,9 —0.810—j1.304 —4.422— j2.913 20.869 + j5.492 —0.392+ j0.650 2.679 — j6.099
2,8 —1.233 — j2.300 —5.529 — j5.054 23.204 + j9.404 —0.202+ j1.214 0.897 — j11.409
4,6 —1.194 — j1.213 —5.759 — j2.193 24.120 + j3.342 0+ 50 0+ /0
5 —1.188 — j2.419 —7.570 — j4.620 27.976 + j7.513 0+ 50 0+ /0
4 Reverse signs fori = 7,8, 9.
Admittances in millisiemens, impedances in ohms, EMF’s in volts
i Yoi = Goi +jBoi  Zoi = Roi + jXoi Voi
1,3,7,9 8.203 4 j4.310 95.5 — j50.2 0.239 — j0.125
2,8 4.817 + j2.320 168.6 — j81.1 0.421 — j0.203
4,6 6.369 4 j5.538 89.4 — j77.7 0.223 — j0.194
5 3.713 4 j2.663 177.8 — j127.5 0.445 — j0.319
0.25 ~
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Figure 7.17 Normalized currents in the nine elements of a planar array.
Ii(z;) = IZ’; (zj) + jIZ’i (zi), 1;; (0) = 2.5 milliamperes withi =1, 2,...9.a/A = 0.007 022,
h/x =0.25b/A =0.25,d/x = 0.6.
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Figure 7.18 Horizontal (® = 90°) and vertical (& = 90°) patterns of a planar array of nine
elements with currents shown in Fig. 7.17; a/A = 0.007 022, h/A = 0.25, b/A = 0.25,d /1 = 0.6;
I;(0) = 2.5 milliamperes, i = 1,2, ... 9.

The far-field pattern of the nine-element broadside planar array of half-wave
elements is shown in Fig. 7.18 in the horizontal plane (® = 90°) and the vertical
plane in the direction of the maximum horizontal field ($ = 90°).

The general five-term theory is also valid for arrays that include parasitic elements.
For example, in the nine-element planar array, the upper and lower rows may be
parasitic with only elements 4, 5 and 6 driven and all constants the same as for
the array described in Table 7.5 except that Vi = Vo = Viiz = Vo7 = Vog = Vigo =0,
Voa = V5 = Ve = 1 volt. The coefficients of the trigonometric functions in the distri-
bution of current (7.33) are as given in Table 7.6. The admittances and impedances for
the three driven elements are also tabulated. The distributions of the real and imaginary
parts of the current referred to the driving voltage are shown in Fig. 7.19. The currents
in the collinear parasitic elements are, of course, much smaller than in the driven
elements and their distributions are quite different. Note, however, that the current



2N 7.7 Simple planar array
—
Table 7.6. Nine-element planar array, with three elements driven; a/\ = 0.007 022, h /A = 0.25,
b/x=0.25d/x=0.6; Vo1 = Voo = Vo3 = Vg7 = Vg = Voo = 0, Voa = Vo5 = Vg = 1 volt
Coefficients of trigonometric functions in milliamperes per volt
i Al B] D; 0,2 R;?
1,3,7,9 0.020 — j0.038 —0.554 — j0.197 —1.305— j3.260 —2.225 — j3.406 16.467 — j33.106
2,8 0.026 — j0.045 —0.519 — j0.340 —1.735 — j4.588 —2.145 — j2.471 16.336 — j27.315
4,6 —0.386— j5.485 —8.106— j14.193  54.503 + j29.666 0+ jO 0+ O
5 —0.309—j5.731 —7.211— j18.733 45.860 + j62.562 0+ jO 0+ ;0
4 Reverse signs fori =7, 8, 9.
Admittances in millisiemens and impedances in ohms
i Yo =Goi +JjBoi Zoi = Roi +JjXoi
4,6 8.244 — j0.019 121.3 4+ j0.3
5 6.530 + j5.322 92.0 — j75.0
0.25 — -
L@V, .- L, ; i=1,3—
0.20 - L @I, e
0151 S, R
: L@V, : 0T T
0.10 - ” - 5 0 >‘ \\
: : 100, ,
705 : | s@IV
[ @1V, N.
0 1 % i > ' M
| . e, o /,I E
—0.05 F |, e -
| @1V, e /, R
I 1 . L
010 : - T
—0.15F ™ e Rt
/ o
-0.20 - . i
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Current in milliamperes per volt

Figure 7.19 Currents in the nine elements of a planar array. I; (z;) = I;(z;) + j1.;(z),
Vo1 = Voo = Vo3 = Vo7 = Vg = Voo = 0, Vgu = Vs = Vg = 1 volt. a/A = 0.007 022,
/% =025, b/h = 025,d/% = 0.6.

in the middle element No. 5 has quite a different distribution from that of the other two

driven elements Nos. 4 and 6.
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7.8

A three-dimensional array of twenty-seven elements’

As a final example of the application of the five-term theory consider a three-
dimensional array consisting of three stacked, three-element, broadside curtains ar-
ranged in endfire as shown in Fig. 7.20. Let the lateral distances between the adjacent
identical elements be by /A = by /A = 0.25, the axial distance between adjacent ends
(d — 2h)/A = 0.1; also let a/A = 0.007 022. If the antennas are individually a full
wavelength long (4 /1 = 0.5), the desired unidirectional endfire pattern is well realized
when the driving voltages (which directly excite the large sinusoidal components of the
currents) are assigned the following values: V43, = 1, Voi3, = —J, Va3, = —1 volt
with n = 0,1, 2,...8. The unidirectional beam is to be in the positive x direction.
With this choice of parameters the five coefficients for the trigonometric components
of the current in (7.33) have been computed and listed in Table 7.7. The associated
driving-point admittances and impedances are also given. These are seen to vary
widely as a necessary consequence of differences in the induced currents. Since the
power in each element is given by Py; = %Vozi Goi, and Vozi = Vi VO’; = 1, the relative
powers are proportional to the driving-point conductances. It is seen from Table 7.7
that the nine elements in the plane x = —b, (which are the rear elements if the forward
direction along the positive x-axis is that of the maximum beam), receive the largest
amount of power from the generators (9.78 Voz); the nine elements in the plane x = 0
the next largest amount (5.78 VOZ); and the nine forward elements in the plane x = b,
the smallest amount (4.51 VOZ). However, the power is reasonably well divided among
the elements. It is greatest in the middle elements 10, 13, 16 of the rear plane (3.89V02)
where induced currents are relatively small; it is least in the middle elements 12, 15,
18 of the forward plane (1.26 VOZ) where induced currents are relatively large.

The computed currents in 18 of the elements are shown graphically in Figs. 7.21a,
b, c. The currents in elements 7, 8, 9, 16, 17, 18, 25, 26, 27 are obtained, respectively,
from those in elements 1, 2, 3, 10, 11, 12, 19, 20, 21 with the substitution of —z; for z;.
Both the real and imaginary parts of the currents on differently situated but otherwise
identical elements are seen to vary widely. Those in the outer tiers of elements with
centers in the planes z = £d exhibit a large asymmetry owing to the one-sidedness of
the coupling.

If the full-wave elements in the array are replaced by half-wave elements (h/A =
0.25) with the same axial distance (d — 2h)/A = 0.1 between adjacent ends and all
other conditions, including the driving voltages unchanged, the coefficients for the
trigonometric components of the currents are computed to have the values listed in
Table 7.8. The associated driving-point admittances and impedances are also given in
Table 7.8. Note their very wide range.

5 The computations in this section are those of V. W. H. Chang.
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7.8 Three-dimensional array

2 1].- 21.” 3

Figure 7.20 Three-dimensional array of 27 identical, equally-spaced elements.

As with the full-wave elements, the power in the nine elements in the rear plane
(x = —by) is greatest (35.56V02), in the nine elements in the middle plane next
greatest (4.90V02), and in the nine elements in the forward plane least (0.94V02).
The distribution of power is seen to be very uneven. Indeed, the currents induced in
the central forward elements 12, 15, 18 are now so great that these act as negative
resistances or generators. The assigned voltage at the terminals of these elements can
be maintained only if loads are connected across their terminals instead of generators.
This is also true of the central element 14 in the middle plane. In evaluating the
powers in the elements in the three planes, the negative values were subtracted since
they represent power dissipated in a load, not radiated power. Note that the powers in
elements 11 and 17 are not negative but very small. The entire admittance is very low,
the input impedance correspondingly high. It might be supposed that these elements
contribute negligibly to the radiation field. But this is not necessarily true. The fact that



€15t — 0SS 86L° €l +1€8°0 ST 8'6Lef — 86 LSTEL +960°T 29
yeszl — 006 YOS €f + SvTT ¥1 8'162f — ¥evl 19.°2f + LSE'T AN
OvLIL —9bST 0€8°1/ +8L9T €1 0'szel — 6'SS¢E 69’1 +800°C Wy
L19zf —T'19 €29l +Ly80  81°TI  L'L8TZf —8'66 oref +9L0T LTIT6°C
9'69Zf — 6'96 weel +2TT LTI 6°S0€f — 6°0ST 0€9°CL +L6TT  92°0T°8°C
TT81/ —0°89C SELTL+7TSST 9101 192! — 6'1LE LITI +LI6T  ST6L°L‘T
Vxl+M0y=0z7 Ngf+09=1"21 1 Vxl+M0y=0z7 Ngf+09=1"21 1

swyo u soouepaduu PuB SUSWIST[IW UI SOOUBIIWIPY

"LT ‘9T ‘ST ‘81 ‘L1 ‘91 6 ‘8 ‘L = 1 10J SuSIS 9SI0ATY

of +o0 of +o 9c6'Tf —828'T 1€6'0f — 01— SYSel + 1900~ ST
of +0 of+0 9v9'0f —01€'€  S¥6'0f — L60°0 €20°0f — 8S€T— ¥1
of+0 of+0 SL9°TL +686'0 Tty Of — 980 8.5 €l — 1100 €1
S91°0f —9Z1'0—  9¥L'0f —090°0 8ectf —ST16'T  TH9'0f — 18€'T—  6SS°€f +LEOO 81 ‘Tl
T00°0f — ¥6+°0 900°0f +79L°0  9S9°0f +LE9'E  ¥E€6'0f — LST'O—  STO'Of — 65€°0— LTTT
PLYOL +90€0  989°0f +TvC0  L66TL + €901 19€0f —¥PL0  06S€Ef —SLOO 91 ‘01
of +o0 of +o0 0T, —109°'T  809°0f —8vE'I—  665°€f +LEOO A
of+0 of+0 7860/ +¥I€T 698°0f —681'0— LIO0f —8T9E— €T°S
of+0 of +0 8sezf — €960 vbS0f — TS0 €29°¢f — 7900 WY
790°0f +60€0— 1S9°0f —OIT'0— O€h'Tf —SE9'T 9€€0f —SSET—  €19°€/ +€€00 LT IT'6°C
S10°0f —STZz0  0ZI'0f — €650 €€€0f —61v'€  SI8°0f —+6€0— LIOOf —6£9'€— 9T'0T°8°C
0EF0f +201°0  6TS0f +LST0  06STf —€€0T  L890f —THH0O  €€9°€f/ —T900  ST'6L'L°I
' o) ‘a a N4 !

oA Jod sorodureqmu U SUONSUNY SINSWOUOI JO SIUSTII0))

w-.-nNrﬁ pong
904 [— = YETEQ [ — = UEFTY T = YEHIN 11 = /P ST0O="Y/%q9="/*q ‘¢'0 = Y/Y TTOLOOO = /P
{0 = @ uonoa.np Ul WDq DU YIM KDLID 241fpud [DUOISUSUIIP-22.4Y] JUIUII|2-UDAIS-KIUdM] *["] B|qel



$80cf —9°L9—
YLl — L'80T—
9v8f —T6L
6 1S — 1111~
8°0evel + 6'ZERY
L9l — €701

£60°€/ +8L9°0— ST
SLT 1! + L9E0— ¥1
6629/ + S68°S €1
L80TL +€1S0—  8I°CI
601°0f — 1¥1°0 LI 11
VT +SLYL 91 ‘01

0'865f — $'€92
9'91Zf + 8'609
Ssvel — 1921
0'8ef — 1°0LST
§'08zf +797¢
88/ +9¢€I1

0071 + L1970
LISOf —9S¥'1
88y 1L +€v9°L
S10°0f + LESO
091z —THL'1
SL90f — 6¥L'8

¥T°9

£2°S

Ty
LTIT6 '€
92078 °C
ST61 L T

0y [ + 0y = 07

0g[ 4 009 = 10y

0y [ + 0y = 07

0g [+ 05 = 10y

Suyo Ut saouepadull pue SUQUISISI[ITU UT SAOUE)IIWpPY

"LT'9T ‘ST BT ‘L1 ‘91 ‘6 ‘8 ‘L = 110J SUSIS 3SI0ATY ,

of +0 of+0 TeR'6ef — 0Sy'E 9T PIf +66€0—  S65°SL +9700— ST
of +o0 of+o LLY'1f +161°0€ 1L0°0f — €L0’ET—  #10°0f — SOS'S— ¥1
of +o0 of+o 87809/ + 19L°€S LTLIL — $8T°01—  $SL'SL —TEe0— €1
6TV TIL +1LT°S—  9TT 1L —+0S0 LOE'LEL — 898'E covvIL +€v90—  95S°SL + 42070~ 81 “CI
019°¢/ — LIE'ST— 0£€0f +S99°1 L¥S'0f —TT6°ST £20°0f +€9T°€E1—  #00°0f — 19¥°S— L1°TT
L9E0TL —08Z°92 88L°0f +066T— T€9'1S! + 6TL9S 6v991L — b1S'6—  699°SL —€LE0— 91 ‘01
of +o0 of+o ¥81'82L —€9v'S—  S9€TIf +T720°1 115°S! + 6£0°0 29
of +0 of+0 UL —sse°Ll 088° 1/ +SI0'TI—  6L0°0f +SIH¥'S— €T °S
of +o0 of+0 Yoy LTl + 62119 $SOTIL —TL90TI—  60S°SL — 11¥0— WYy
ESPOIL + 687 L—  9IL I — LO8O Yervel — LS8'€—  809°TIL +92S0 L9V'SL +€€0°0 LTIT6°E
LL8'9 —Ov8'61— 6LL°0f +€0TT  vLTTIL —999°C1 PO 1L +SETTI—  $80°0f +S9€°S— 9Z°0T°‘8°C
6LE'0cf —Tssve 60TL +Ti6T— 681°07L +011°29 STOTIf —vL86—  9cH'SL —TEH'0— STU6I°L°T
'y 20 ‘a a N4 !

110A Jod saxadwrer[Iuu UT SUOROUN] OLNAWIOUOSIN JO SJUSIOLFI0D)

8" T T0=uoa]— = UETEQ - = UEHTY T = YeHI4 90 =Y/P STO="Y/“9="Y/*q‘STO="/Y
220 L00°0 = /P {0 = @ uoyda.1p ul wipaq umwu ynm Koiip anfpus [pUOISUIUIP-224Y] JUIUWII]2-UaNIS-KIuaM] "g"J d|qeL



276 Planar and three-dimensional arrays
|

(@ 05
- &
0.4 L N, .
- - . N\ ~
e N I (2)/Vy,;
/ ’ S
03+ V4 : N
' . \\\ S
\ \J .
0.2 SO NN
~ ~ ~ -~
N .
~ ~ S 0\ .‘
L.V~ ~ \
z 01 @@/ Voi I R
i ~ :s.;

__1;?% / .
0.1+ _’___.-/-f:? - ;2 /
Tt 0
Y v
-02r 'o",”' ,{’ ‘
l'I f / J/ .
_ = O N W = —_—
0.3 .\~\\\ }J’/ i=1,19
SN § 4,22- - -
-0.4 Z,

(b)

ol

Current in milliamperes per volt

Figure 7.21 (a) Currents in elements Nos. 1, 4, 10 and 13 of the 27-element array shown in Fig.
7.20. Vigzn =1, Voyz, = —j, Vagzy = —1volt,n =0,1,2,...8;a/1 = 0.007022, /L = 0.5,
by /A =by /) =0.25,d/) = 1.1. (b) Like (a) but for elements 2, 5, 11 and 14.

1;11(0) is near zero does not mean that /,11(z11) is everywhere equally small. It may
be quite large.
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Figure 7.21 (c) Like (a) but for elements 3, 6, 12 and 15.

The currents in the elements of the 27-element array of half-wave dipoles when
the driving voltages are assigned to be Vi3, =1, Voi3z, =—j, V343, = —1 volt with
n = 0,1,...8 are shown in Fig. 7.22. Note that the currents on the elements in the
rear plane (top figure) are greater than those in the middle plane (lower left) and
still greater than those in the forward plane (lower right). Specifically, the current
in element 11 is very small at z = 0, but quite comparable with the other currents
out along the antenna. It is seen from Fig. 7.22 that even with half-wave elements
the conventional assumption that the distributions of current along all elements are
identical and cosinusoidal is not well satisfied. Since this assumption also implies that
the phase of each current is the same along the antenna as at the driving point, it is
of interest to examine the relative phases referred to a common reference, namely
Voi. This is done in Fig. 7.23 where the phase angles of the currents along all
elements are shown. For the elements in the rear plane where induced currents are
not of major significance, the phase angle varies relatively little from z = 0 to
z = =h, much as in an isolated antenna. On the other hand, when induced currents
constitute the major parts of the currents in an element, the phase angle varies very
widely — as much as 153° in the middle element 14. It is clear that when large
currents are induced in some elements of an array, as in endfire arrangements which
maintain a maximum field along the antennas, an assumed current with constant
phase cannot be expected to represent even approximately the actual currents in an
array.
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Figure 7.22 Like Figs. 7.21a, b, c but with /A = 0.25 and d /1 = 0.6.

Since with half-wave antennas the principal component of the current has its
0, the progressive phases in the currents required for a
specified field pattern can be approximated more closely when the maxima of the

maximum value at z
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Figure 7.23 Phases of the currents in Fig. 7.22 all referred to V.

currents, i.e. the values I;;(0), are assigned instead of the voltages. Let the values
L143,(0) = 2.5 % 1073, Ir43,(0) = —j2.5 x 1073, I343,(0) = —2.5 x 1073 amperes
be specified for the same 27-element array. The corresponding coefficients for the
currents as evaluated by computer are in Table 7.9 together with the required driving
voltages and the associated admittances and impedances for the elements. Note that
the voltages range from Vp = —0.006 — j0.236 to V15 = —1.173 4+ j0.403 volts.
The complete distributions of current are in Figs. 7.24a, b, ¢ in the normalized form:
Li(2i)/ I:i (0) = 1}}(2i)/1:i 0) + jI;(zi) / Li (0).

With the driving-point currents specified, the power in each element is conveniently
determined from Py; = %llzi (0)|2R0i- It is seen to be proportional to Ry; as given in
Table 7.9. The distribution of power to the elements with the driving-point currents
assigned is quite different from when the voltages are specified. Note that the nine
elements in the rear plane (x = —by), which with voltages specified received the
greatest power, now receive the least (411.8102), the middle plane (x =0) is again
intermediate (523.6102), and the elements in the forward plane (x = by ), which with
voltages assigned received the least power, now receive the greatest (1484.8102).
However, the division of power is not as extreme as before and there are no elements
that have negative resistances and, therefore, feed power into a load instead of
receiving power from a generator. A comparison of the relative powers in all of
the elements is shown schematically in Fig. 7.25 in which boxes are located in
the three-dimensional pattern of the array. The upper number in each box is the
conductance G¢; when the conditions of Table 7.8 with voltages specified obtain; it
is proportional to the power Pyp; in each element. The lower number in each box is
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7.8 Three-dimensional array

the resistance Ry; for the same array when the conditions of Table 7.9 are maintained
with input currents assigned; it is proportional to the power Py; in each element. The
relative distribution of power is seen to be reversed.

The distributions of current in Fig. 7.24a, b, c all have the same value at z; = 0
and the components in phase with the input current are similarly distributed along the
antenna in a rough sense. They range from a flattened cosine to a triangle. However,
the quadrature currents are by no means negligible (they are presumed not to exist in
conventional array theory). Indeed, they are of major significance in those elements
which radiate most of the power. Note in particular the very large quadrature currents
in all of the elements in the forward plane x = b, which are shown in Fig. 7.24c. (The
currents in elements 9, 18 and 24 are like those in 3, 12 and 21 with —z; substituted for
z;.) These have distributions quite different from the conventionally assumed cosine
curve. Evidently the phases are also as far from constant as those shown in Fig. 7.23
for the same array with assigned voltages.

The purpose of an array is to maintain a useful far field. The computed far-field
patterns of the 27-element endfire array shown in Fig. 7.20 are in Fig. 7.26 for all
the cases considered in this section, that is, for 4/ = 0.5 with voltages assigned,
h/x = 0.25 with voltages and currents assigned. The horizontal patterns in the
equatorial plane ® = 90° all have the principal maximum in the desired direction,
® = 0, ® = 90°. They also have a minor maximum in the backward direction,
® = 180° ® = 90°. This is smallest with the array of half-wave elements
with specified input currents, it is largest with the half-wave elements with voltages
specified. The array of full-wave elements with voltages specified has a backward lobe
of intermediate height. The vertical patterns for the array of half-wave elements are
essentially the same when currents or voltages are specified. The former has a very
slightly broader main beam and a correspondingly slightly lower minor lobe level.
The array of full-wave elements has the narrowest main beam in the vertical pattern —
the array is, of course, axially twice as long. On the other hand, its minor lobe level
is correspondingly somewhat higher. Note that since very good approximations of
actual currents on all of the elements are used, there are no nulls as would have been
obtained with assumed sinusoidal currents with constant phase along each antenna.
The details of the minor lobe structure derived from the five-term approximations
of the several currents should have an accuracy comparable to that of the major
lobe.

If all of the 27 elements are driven in phase, an approximately circular pattern with
some undulations is obtained as would be expected; of interest is the fact that in this
case, too, a number of the elements have negative driving-point conductances and
resistances. This indicates that the induced currents in these elements predominate
so that they act as generators and not as loads when connected to a transmission
line. Elements with negative resistances are likely to occur in most arrays with large
numbers of rather closely coupled elements.
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Figure 7.24 (a) Currents in elements Nos. 1, 4, 10 and 13 of the 27-element array shown in Fig.
7.20. 1143, (0) = 2.5mA, I543,(0) = —j2.5mA, I3,3,(0) = —=2.5mA, withn =0, 1,2, ...8.
a/) =0.007022, h/% = 0.25, bx /. = by /X = 0.25, d /1 = 0.6. (b) Like (a) but for elements 2, 5,
11 and 14.
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Figure 7.25 Schematic diagram showing the relative powers supplied to the half-wave

(h/x = 0.25) elements in a 27-element endfire array. The upper number in each box is G; (in
millisiemens) which is proportional to power supplied when the Vj); are specified. The lower
number is Rg; (in ohms) which is proportional to power when the driving-point currents I,; (0) are
specified.
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Figure 7.26 Horizontal (® = 90°) and vertical (& = 0°) patterns of a three-dimensional endfire
array of 27 elements; a/A = 0.007 022, by /. = by /A = 0.25, (d — 2h) /A = 0.1; V143, =1,
Votan = —J, Vag3p = —1voltor I143,(0) = 2.5mA, I543,(0) = —j2.5mA,
I343,(0) = =2.5mA, withn =0, 1,2,...8.

7.9 Electrical beam scanning

The major lobe in the endfire patterns shown in Fig. 7.27 is in the direction ® = 90°,
® = 0°. This is readily switched electrically to the direction ® = 90°, & = 90°
simply by interchanging the phases of the voltages or currents in the broadside rows
(parallel to the y-axis in Fig. 7.20) and the endfire rows (parallel to the x-axis). For
example, the assigned voltages would be Vp; = 1volt, 1 <i < 9; Vo; = —j volt,
10 <i < 18; Vo; = —1volt, 19 < i < 27 or, if the driving-point currents are assigned,

Li(0) =25mA, 1 <i <9 I;(0) = —j2.5mA, 10 < i < 18; I;(0) = —2.5mA,
19 <i <27.
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Figure 7.27 Horizontal (® = 90°) and vertical patterns of 27-element three-dimensional endfire
array with beam in the directions ® = 0° and ® = 45°. Driving voltages specified as in Table 7.10;
a/’ =0.007022, /% = 0.5, by /A = by /L =0.25,d/1 = 1.1.

More generally, the direction of the beam is specified by the far-field formula (7.57)
in which the field factor of each individual antenna i is given by the square bracket, and
the combination of these into a pattern for the array is determined by the phase factors
exp(jBor;i - ﬁo). The contribution to the pattern by each element is greatest when the
amplitudes A}, B/, D;, Q; and R; all include the common factor exp(— jBor; - Ry).
When this is true the contributions from all the elements arrive in phase in the direction
specified by particular values of ®, ® in (r; - ﬁo) as given in (7.58). This is, evidently,
a necessary condition for a maximum in the field pattern. However, it is not a sufficient
condition since the directional properties of the individual elements, as given by the
square bracket in (7.57) for element 7, are also involved. These may differ considerably
from element to element owing to differences in the distributions of current so that no
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simple formula for the direction ®,,, ®,, of the main lobe on the field pattern can be
written down. In the special case of maxima in the equatorial plane (®,, = 90°) the
presence of the common phase factor

exp(—jBori - Ro) = exp[—jBo(X; cos @y, + ¥; sin ®,)],

is sufficient to fix the main beam in the direction ®,,,. For example, when ®,, = 0, the
factor is exp(—jBoX;). This means that when voltages are assigned, these must have
the relative phases exp(jBoby), 1, exp(—jBoby), respectively, for the elements in the
planes X; = —by, X; = 0, and X; = b,. When b, = A/4 as in the arrays considered
in this chapter, the phases are exp[j(r/2)] = j, 1, and exp[—j (;r/2)] = —j; or, if
j is removed as a common factor, the relative phases are given by 1, —j, —1, which
are the values used in Table 7.7. When the beam is switched to ®,, = 90°, the phase
factor is exp(—jBoY;) so that the voltages in the planes ¥; = —b, = —1/4,Y; =0,
Y; = by, = A/4 must have the relative phases exp[j(7/2)], 1, and exp[—j(7/2)].
When driving-point currents instead of voltages are assigned, the coefficients apply to
them unchanged.

If the direction of the maximum beam is to be ®,, =90°, ®,, =45°, the coefficients
are given by

exp(—jBori - Ro) = exp[—jBo(X; + Y;)v/2/2].

For the three-dimensional array of 27 elements shown in Fig. 7.20, the elements are
located at X; = —b, = —A/4, X; =0, X; = by = A/4and Y; = —by = -1 /4,
Y; =0,Y; = by = A/4. Thus, the following relative phases must be assigned to the
driving voltages (or currents if these are specified instead of the voltages):

A
Xi=Y = —Z: exp(jnx/i/2)

A A
Xi = T Y;=0; X; =0,V = e exp(jm/2/4)

A
Xi=Y = Z: exp(—jn\/i/Z).

Alternatively, if exp(jm \/5/2) is removed as a common factor, the five phase coef-
ficients are, respectively, 1, exp(—jn«/i/4), exp(—jn\/i/Z), exp(—j3n\/§/4) and
exp(—jm V2). With reference to Fig. 7.20, the required assigned voltages are listed in
exponential form near the top of Table 7.10 and in complex numerical form later in the
table. If these assigned voltages are used in the computer program, the coefficients for
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the currents in the 27 elements of the same array analyzed in Table 7.7, but with the
beam rotated 45°, are as listed in Table 7.10. Note that the number of different currents
is greater than when the main beam is in the direction @ = 0 or ® = 90°. The currents
in the elements with centers in the plane Z = d are, of course, the same as those in the
plane Z = —d with z; replaced by —z;. The associated admittances and impedances
are also given together with the numerical values of the assigned voltages.

Since the voltage magnitudes are | Vp;| = 1 volt, the relative powers to the elements
are proportional to the driving-point conductances. In general, these are quite compa-
rable in magnitude and range to those in Table 7.7 but the larger values are shifted to
the new elements in the backward direction (® = 225°), the smaller values to the new
elements in the forward direction (® = 45°).

The horizontal field pattern in the plane ® = 90° and the vertical pattern in the plane
® = 45° are shown in Fig. 7.27 together with the corresponding patterns from Fig.
7.26. It is seen that in the horizontal plane the main lobe has been rotated substantially
unchanged through 45°, but that the minor lobe structure is somewhat different. The
change in the vertical pattern is so small that it can be distinguished only near the peak
of a minor lobe. Evidently, the rather narrow beam of a three-dimensional array of
full-wave elements in collinear, broadside, and endfire combinations is readily rotated
by appropriate changes in the phases of the driving voltages. A similar rotation of the
corresponding array of half-wave elements is readily achieved with precisely the same
changes in the phases of the assigned driving-point currents.

Problems with practical arrays

The theory developed in this and the preceding chapters provides a complete, practical
tool for the quantitative determination of the properties of very general arrays when
the active elements are driven by a concentrated EMF at their centers. In practice,
antennas are driven from transmission lines that maintain the desired voltage across
the terminals of the antennas, but also introduce the complications that accompany
transmission-line end-effects and the coupling between the antenna and the line. There
is also the possibility of unbalanced currents on open-wire lines or on the outside
surfaces of coaxial lines. These latter can be excited by asymmetrical conditions
at the junctions of antennas and feeding lines, or by the intense near fields in an
array whenever transmission lines are not in a neutral plane of these fields. Since
such currents induced along transmission lines usually contribute significantly to the
radiation field and can, therefore, constitute a non-negligible part of the load, both
the circuit and field properties of an array can be modified greatly whenever they
are excited. Important aspects of the problems relating to end-effects and coupling
effects between antennas and transmission lines as well as techniques of measurement
are considered in Chapter 14. However, questions relating to the maintenance of the
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7.10 Problems with practical arrays

required voltages for antennas with positive conductances and loads for those with
negative conductances in large arrays are not analyzed since they involve the specific
geometry of each array. A problem of this sort in which elements with both positive
and negative resistances play important roles is treated in detail at the end of Chapter
6 where the log-periodic array is analyzed. This antenna includes not only radiating
elements with specified geometrical properties but also a feeding line with definite
electrical characteristics. Since it is in the neutral plane, the problems of unbalanced
currents are avoided, but those relating to the transfer of power from the radiating
elements to the line and vice versa constitute a major aspect of the analysis.
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Vertical dipoles on and over the earth or sea

Introduction

In their practical application in radio broadcasting, communicating with ships and
submerged submarines, and in cellular telephone transmission, dipole antennas are
in proximity with the surface of the earth or sea. More generally, the earth may be
coated with a layer of asphalt or concrete and the water may have a layer of ice.
In a common engineering approximation, the earth or sea is treated as a perfectly
conducting reflector or, in the far field, the earth-reflected field is assumed to be
correctly given by the plane-wave reflection coefficient. As shown in Fig. 8.1, the
far field of a short dipole at the height d over the earth or sea [1] is represented as
the superposition of a direct field and an earth-reflected field. The former travels the
distance r; = [p? + (z — d)*]'/? from the source to the point of observation at the
point p, z. The latter is reflected as a plane wave from the surface so that it travels the
distance 2 = [p? + (z + d)?]'/%. The plane-wave reflection coefficient is

N%cos® — (N2 —sin? ©)1/2

©= - : 8.1)
Jer N2C05®+(N2—Sln2®)1/2
where, with the time dependence e/’ ,
k2 .
N2 = —g = €y, + g
kO WE()
j 2
ion w
k2=k2 € ), k2= 2 € — — 8.2
2 0(2r+w€0) 0 — @ Ho€o 2 (8.2)

Here, kg is the wave number of air and k; = 82 + iy is the complex wave number of
the earth or sea. Note that when k» — oo as for a perfect conductor, f.(®) = 1. In
the spherical coordinates ry, ®, @, the far field in the air of a dipole with the current /
and the effective length 24, is given by

E(r)@(ro, 0) = CBS@(VO» ®)

. 201 ikoro
_ _lomo@hel) €0 o) Gine, (8.3)
2w ro
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Figure 8.1 Vertical electric dipole at height d in air (region 0) over the earth (region 2). Taken from
King and Sandler [1, Fig. 1]. © 1994 LE.E.E.

where

A(O) = %[e—ikod cos® 1 £ (@)eikod c0s O] (8.4)
When f,,(®) = 1 for a perfect conductor,

A(®) = cos(kod cos ©). (8.5)
The field on the surface of the earth or sea is obtained with ® = /2, where

A(/2) = 31 + for(7/2)]

. N?cos ©
= lim —
©—7/2 | N2cos ® + (N2 — sin” ©)1/2
0, N <o,
= (8.6)
1, N =o0.

Since N = oo only when o, = o0, i.e. the earth is a perfect conductor, it follows that
the field on the surface of the earth is zero for all physically available types of earth
or water. But this is contrary to fact. Vertical receiving antennas on the surface of the
earth or sea receive strong signals at large distances from the source!

The reason that (8.3) with (8.4) gives incorrect results when ® is at and near 77/2 is
that the assumption that the far field of a vertical dipole is a plane wave and is reflected
from the earth or sea as such is not true. The electromagnetic field near and along the
air—earth or air—sea boundary actually includes an inhomogeneous wave known as the
Norton surface wave or, more generally, as a lateral wave. It is not included in (8.3)
with (8.4) so that the correct answer is not obtained when ® is at or near /2.
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8.2

Vertical dipoles over earth or sea

The complete electromagnetic field of a vertical dipole over the earth
or sea with or without a coating

The electromagnetic field of a center-driven electric dipole with the length 24 and the
approximate current distribution
sinkg(h — |z
L@ = Lo Ot ID e < (8.7)
sin koh

is conveniently expressed in terms of a dipole with the constant current / and a length
2h, — called the effective length — that has the same electric moment. This is defined
as follows:

h 21.(0) ("
2h.l = I,(z)dz = sinko(h — z)dz

—h sin koh 0
_1 1 —coskph
=21, (0)k, " ~smkch (8.8)

With 7,(0) = I, the effective length is

_1 1 —coskoh
2h, = 2k, “inkoh (8.9)

When kZh? < 9, sinkoh ~ koh and 1 — cos koh ~ kZh?/2, so that
2he = h. (8.10)

With the dipole represented by (2k.7), the complete field of any dipole with an
electrical length kgph < 7 can be expressed in terms of the field of an infinitesimal
unit dipole with (2k,1) = 1 ampere meter (A m).

The analytical determination of the electromagnetic field in the air (region 0, wave
number kg) over the earth or sea (region 2, wave number k) when this is coated with
a thin layer of dielectric (region 1, wave number kj, thickness /) as shown in Fig. 8.2
is complicated and is not carried out here. It is available in [2]. Subject only to the
conditions

ko < kil <1kl kil <06 (8.11)
and with the definition of the small quantity € (not a permittivity when written without
a subscript)
k
€ =2 _ikol (8.12)
ks

the following formulas give the electromagnetic field of a short vertical dipole located
at any height d over the air—dielectric surface. The cylindrical components of the field
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Figure 8.2 Unit vertical electric dipole at height d over plane boundary z = —z’ = 0 between air

and a sheet of dielectric with thickness / over a conducting (or dielectric) half-space. Taken from
King and Sandler [2, Fig. 1]. © 1994 American Geophysical Union.

are defined at any radial distance p and height 7’ from the source. The electric moment
of the dipole with the length 24 is 2h,1 where [ is the current at its center. The field is

Boy (p, 7)) = _M[ tk0f1< )(lko iz) + lkm( )(@ — %)
4m i rnooorg rn)\rn r
2
— 2kZe el’m( ) _’P]-'(P)] (8.13)
a)pL()(Zh I){ ik ( )(Z/—d)<ik0 3 3i )
Egy(p.2) = o — - -
0p (0, 2) 4mkg r r r12 korl3
‘ Z+d\[(ik 3 3
()
2 r 2. ry  kor;
. k 1 12
Y e’k0’2[< )(l—o - —2> - kge(i) e"”f(P)“ (8.14)
rn)\r  ry kor>

opo(2hel)
Ak

o [iko 1 Z—d\*(iko 3 3
x1¢ 2 3 T 2T 3
1 r kor1 r r r kor1

EOZ/ (101 Z/) =
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Vertical dipoles over earth or sea

In these formulas, 7| = [p% + (Z/ — d)*1"/? and ry = [p? + (2’ + d)?]V/2. Also,

P_k()rz ern+7 +d 2
== p ,

ko .
€ = — —ikol (8.16)
k>

. ) P eit
F(P)= i(l—{—l)—/o —(27”)1/2 dt.

The integral in (8.17) is the Fresnel integral. Note that all three components of the

(8.17)

electromagnetic field in the air, 77 > 0, are independent of the wave number k| of
the dielectric layer. Only its thickness is involved in the small parameter €. This is
a consequence of the fact that all but one of the so-called “trapped” waves in the
dielectric layer are cut off by the condition |k;/| < 0.6 and the one possible mode,
TMy, has the same components as the lateral wave in the air above the dielectric
layer. Furthermore, the trapped waves are plane waves that are not strongly excited
by a vertical dipole as are lateral waves. Note that when / = 0 and € = ko/ k3, the
formulas (8.13)—(8.15) for the three-layered region reduce to formulas for the two-
layered region consisting of regions 0 and 2.

The complete field in the air, given by (8.13)—(8.15), is conveniently studied in
ranges, each with simple characteristic properties. These can be visualized with the
help of Fig. 8.3, which shows the radial dependence of the electric field of a vertical
electric dipole over sea water [3] in the important special case when both the dipole
and the point of observation are in the air very close to the boundary surface, i.e. with
7/ ~0andd ~ 01in (8.14) and (8.15). With these values, the formulas reduce to

we
EOp(p’ O) = _E BO¢/(ps O)

_ wpo€Rh,.I) eikop[iko 12 k(2)€< T
PP

1/2 "
ko —) e Of(Po):| (8.18)

2hI) ik 1 j 172
Eou(p, 0) = 2H0CheD) elkop|:l_0 N kge(L> P PO)],

27k o p? koo kop
(8.19)
where now
k 2
Py = Ogé . (8.20)

In their radial dependence, these formulas can be separated into four ranges. They
include the near field defined by

wpoe(2h 1) etkor
2mko 02

O<kop<l: E'(0.0)=—25B" (p.0) = — 8.21
<kop < I: 0p (05 0) = ko 0 (05 0) = (8.21)

wpo(hel) 1 i
E} (p,0) = ————= "™ — + —— ). 8.22
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Figure 8.3 Components of electric field E(p, 0) in V/m of unit vertical electric dipole (1Al =1
A m) at boundary between region 2 (sea water, €5, = 80, 0 = 3.5 S/m) and region 0 (air); 7’ = —z.
Taken from King [3, Fig. 2]. © 1990 American Geophysical Union.

The intermediate range is defined by kgp > 1 and |Py| < 1 or

; we . iopoe(h 1) etkor
1 <kop < || E, (p,0) = —— B, (p,0) = 8.23
<kop =1 0p (P> 0) ko Bos (0, 0) o ) (8.23)
. iwpno(2heI) etkor
Ej, (p,0) = > = . (8.24)
n o
The transition range is bounded by the conditions
8
L <|Pl=4 or |Z|<kop=|=| (8.25)
€ €
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8.3

Vertical dipoles over earth or sea

The far field is defined by

4 < |Py|l <00 or < kop < o0. (8.26)

P

When (8.26) is satisfied, the Fresnel-integral terms reduce to a remarkably simple
asymptotic form. This cancels the factor e 70 and then cancels the 1/p term in (8.18)
and (8.19). As shown in detail in [4, Eq. (3.4.35)], the entire bracketed terms in (8.18)
and (8.19) reduce simply to —1/€%p?. It follows that the far field for the surface wave
is defined by

8 ) - _ we _ wpo(Rhd) e'*or
S| = kop < oo Ej,(p.0) = % Biy (p,0) = — ke (8.27)
wpo(Rh ) etkor
Eg.(p,0) = — . (8.28)

2wky  €2p?’

In the transition range between the intermediate and far fields, i.e. when 1 < |Py| < 4
or [2/€%| < kop < |8/€?|, the amplitude of the field curves smoothly from the 1/p
dependence to the 1/p? dependence as the lateral wave increases from negligible to
dominant. These ranges are shown in later sections for specific applications.

It is now appropriate to examine the properties of the field at all points in the air,
i.e. for all values of p and z’. The condition d> < p? will be retained. A schematic
diagram of the four ranges of the field is shown in Fig. 8.4. The contour P = 1 bounds
the 1/rp intermediate field and the transition range; the contour P = 4 bounds the
transition range and the 1/ rg far field. For most purposes, it is convenient to eliminate
specific reference to the transition range and divide it equally between the intermediate
and far fields. When this is done, the 1/ry decrease characteristic of the intermediate
range is extended to include half of the transition range. Similarly, the remainder of
the transition region is made part of the far field where the dependence on distance is
1/ rg. With this approximation, the extended intermediate and far fields are

1 < kop < < kop < 0. (8.29)

’

5
€2

€2

The field in the air in the intermediate range

In the intermediate range defined by korg > 1 and |P| < 1, the near-field terms are
negligible and the Fresnel-integral terms are small compared to the 1/rg terms. In this
range, the components of the field are more convenient in the spherical coordinates
ro, ®, @ than in the cylindrical coordinates p, ¢’, 7. The relations between them are
o = rosin® and 7 = rgcos ®. When the dipole is at d = 0 on the surface of the
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0 1 H ‘7‘ kop

Figure 8.4 Schematic diagram of the four ranges: near field, 1/ rg, 1/ rg; intermediate field, 1/7g;
transition range, 1/ry — l/rg; and far field, l/rg. € = (ko/kp) — ikol.

layered region or directly on the earth or sea, or if it is at heights d that are small
compared to the radial distance to the point of observation so that d? < rg, and when,
in addition, d7’ <« rg where ry = (p? 4 z/*)!/2, it follows that

ri=[p*+ @ —d)?*1"? ~ (5 =27 d)!? =ry —dcos® (8.30a)
r=[p*+ & +d)* 1V ~ (1§ +27d)* = rg +d cos . (8.30b)
These values are used in phases. In amplitudes,

rL~r2~r

is an adequate approximation. With these formulas and with the near-field and the
Fresnel-integral terms omitted because they are negligibly small in the intermediate
range, (8.13)—(8.15) become

_ Ho(2h.T) pikoro iko

— sin ® cos(kod cos @) (8.31)

Bl (ro, ©) =
00 (0, ©) 21 7o

Elo(ro, ®) = Eép(p, 7)cos® — Eéz,(p, 7)) sin®

. 2h 1 ikoro
= — lw'uoz( e e sin ® |:cos(k0d cos ®)
v/ ro

d ‘ ]
+ ' os® sin(kod cos ®) — € cos © ¢'*od COSO]. (8.32)
ro

Here the terms multiplied by the small quantities € and d/rg can usually be neglected.
This leaves the leading term
iwpo(2heI) ekoro

El(ro, ©) = cBlg (ro, ©) = o p

sin ® cos(kod cos ©). (8.33)
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This is the same as the far field of a vertical dipole at the height d over a perfectly
conducting plane as given by (8.3) with k; = oo and f,,(®) = 1. In the intermediate
range, the properties of the layered region are evidently irrelevant so long as the
conditions (8.11) are satisfied. However, whereas the radial component of the electric
field Ef)r (ro, ®) = 0 when the dipole is over a perfect conductor, it has a finite value
when the dipole is over a region that satisfies (8.11). Specifically,

E{, (r0, ©) = E{ (p.Z)sin® + E{(p.z/) cos ®

2h I ik()ro d .
C()[L()( e ) e [_ Sln(k()d cos @) + iE elk()dCOS 8} Sin2 @ (834)

2w ro | 7o

When both d/rg and kod are small, the significant radial field is

l'a),u,()(zhe[) eiko(ro-i-d cos ©)

€sin’ @, (8.35)
2 ro

E}, (ro, ©) =

where € is defined in (8.16). Note that the radial component also decreases as 1/rg,
and has the factor sin® ®, not sin ® as does the transverse component.

With d ~ 0,
, j 2h,I) e'koro
El o (ro, @) = —2H0ChD) €00 (8.36)
2 ro
) : 201 ikoro
El (rp, @) = 2#0CheD) €0 G0, (8.37)
2 ro
|

8.4 The far field in the air

When the condition |P| > 4 is satisfied, the far-field terms of the direct and image
fields can be combined with the far field of the Fresnel-integral term. In its asymptotic

form with
k '+ d\?
p— °2r2<”2 +pz + > (8.38)

x \/2
T:kge(ko—rz) e "PF(P)

_, ikop € +i(—p/r2 )3 (8.39)
r2 e+ @ +d)/rn r2\e+E@+d)/rn) '
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With (8.39), (8.13)—(8.15) have the following far-field forms:

B6¢/(p,z’):_“O(Zhel){e”“)” oo ”‘Or{lkop —2T“
am i r

_ ko(hed) {eikorl ikop ,korz[lkop <(z +d)/r — 6)
= 2

4 ri @ +d)/rrt+e
2 3
‘ (L) ]} (8.40)
e+ @ +d)/nr
Since the angle of incidence on the surface 7’ = 0 in the far field is ®' with
/
. d .
cos @ = = + , sin@ =2 (8.41)
p) )

the plane-wave reflection coefficient for the layered surface at 7’ = 0 is

. cos® —e(1 —€2sin2®)1/2  cos @ — ¢
fer (@) = ~ — (8.42)
cos O +€(1 —€2sin> @)1/2  cos O +¢€
where € = (ko/ k) — ikol and |e|2 < 1.When!=0,e=N"!= ko/k>.
With (8.41) and (8.42), (8.40) becomes

, n . HoCheD) [ o Tkop

BO¢/ (p7 Z ) - = 47_[ el ort r12
+ ik0r2|: f (@ ) < IO/rZ )3:” (8 43)
e ’ - —F . .
2 ¢ e+ @ +d)/r
Similarly,
QhD)( . ikop (7 —d

ET , N — _wl’LO ikory

00(P52) ey 2\

; ik "+d
+e‘k0’2|:¥<z * —26) +26T:|}
ry r

_ opo(2h.I) ik ikop (7 —d
4 kg 2 r

r

ko lkop(z +d) 2i< p/r2 )3“
+e [rz )@+ ot am (8.44)

. 2 2
Ej(p,7) = M{eikorl @(ﬁ) 1k0r2|:lk0< ) B 2T(£)]}
amko ! r2 \n rn

_ @ro@heD) | ikgr, Tko Jikor2| tKo fer(®)
Ak %)

(= )( )]} @45
e+ @ +d)/r ’

~.

1
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Vertical dipoles over earth or sea

The formulas (8.43), (8.44), and (8.45) give the complete far field at any height z’ of a
vertical electric dipole located at any height d subject only to the conditions

K<kl <k IPl=4, |kl <0.6. (8.46)

The field and the dipole are over a layered region consisting of a dielectric with the
thickness / (region 1) on a half-space (region 2). It is significant to note that each of
these far-field formulas consists of three terms. They are the direct field, the plane-
wave reflected field, and the lateral-wave field.

It is possible to express the field in the spherical coordinates ro, ®, ® with the

substitutions
o 4
ro= (> +7ZHY?,  sin@=L,  cos®@== (8.47)
ro ro

if the additional restriction
d*> <} (8.48)
is made. With it,
ri~ro—dcos®, rp ~ro+dcos® (8.49)
in phases, and
ry ~rp~ro (850)
in amplitudes. It follows that
PP P _sne (8.51)
ry r ro

' —d ' —d d
< ~ % =cos® — —

ri ro ro
. "+d "+d d
cos @ = ° rta 27 =cos® + —. (8.52)
) ro ro

With these substitutions and
1 4 fo (@) = 2O Fd/m0 11— fur(©))] = ¢
2 “ T e4cos®O+d/ry 2 er T e+4cos®+d/rg

(8.53)
(8.43)—(8.45) become

2h0) | [k
% etkoro { 0 6in® [COS(kod cos ©)
T

B}y (10, ©) = — -

®+d
X cos® +d/ro — i sin(kod cos ®) €
€+cos®+d/rg €+cos®+d/ry

. 3
N sin © pikod cos © (8.54)
ra\€+cos®+d/ry |
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|

_omo@hel)

Ej, (0, ©) = == o

. |k
ikoro { t*o sin ® [cos ® cos(kod cos ©®)
ro

id O+d ik
+l_sin(k0dcos®)i|( cos® +d/ro )—’ 0
ro

—sin®
€+cos®+d/rg 70

d
X |:i cos O sin(kod cos ®) + — cos(kod cos ®)}
ro

- 3
% € + f sin © eikgdcos@
€+cos® +d/ry ra\€+cos®+d/ry

(8.55)

Ej(ro, ©) = @poZhel) ikoro { iko

. 2
— ®
2ko oo
|:(COS ® + d/rg) cos(kod cos ®) — ie sin(kod cos ®)i|
X

€+cos® +d/rg

. 3
N sin ® sin @ eikodcos® | (8.56)
r(% €+cos®+d/rg

The two cylindrical components of the electric field can be combined to obtain the
spherical components. After extensive algebraic manipulation,

Eg(ro, ©) = Egp(ro, ®) cos ® — E_(r9, ®) sin ® (8.57)
_ _©HoZhe]) etkoro ik sin ©
2wk 70

cos(kod cos ®)

cos® +d/rg —e(d/rg)cos ®
X[ €e+cos®+d/rg

€ —(d/rg)cos®O(cos® + d/ry)
- €+cos®+d/rg

i © 3 .
+ £ o (€ cos © — sin® @)etkodcos® (8.58)
rg €e+cos®+d/rg

sin(kod cos @)}

Since the terms ed /rg and d?/ rg are negligibly small,

ES@(r07 ®) ~

3 wpnoh.I) Jikoro { iko O |:(cos ® + d/rg) cos(kod cos ®)
ro

2k ro €+cos®+d/ry
ile — (d/ro) cos? O] sin(kod cos O)
€+cos®+d/rg

+ £ S (€ cos © — sin? @)eikodeos®l (g 50
rg €+cos®+d/rg
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Similarly, with (8.55) and (8.56),

Eq,.(ro, ®) = Eép(ro, ®)sin ® + E_,(rg, ®) cos © (8.60)

_ @0@heD) kg [ R0 4G5
2wk

ro 1o
» € cos(kpd cos ®) — i(cos ® + d/rgp) sin(kod cos ©®)
€+cos®+d/rg

O 3 _
- %( o ) (¢ + cos ®)sin® e’kod“’se)}
g €+cos® +d/rg

_ @uo(2hI) oikoro iko d sin* ©
2mko

ro 1o
€ cos(kod cos ®) — i cos O sin(kod cos ©)
X
€+cos®+d/rg

n® 3 _
- 32( i ) (¢ +cos ©) sin@e’k0d°°s®}. (8.61)
g €+cos® +d/rg

The formulas (8.54), (8.59), and (8.61) give the three components By (0, ©),
E(g(ro, ®), and E;j (ro, ©) of the far field of a vertical electric dipole with the electric
moment 24,1 located at any height d. The field is defined at any point rg, ®; as it
is rotationally symmetric, the coordinate ® does not appear. It contains terms with
dependences on © in the form sin” ® withn = 1, 2, 4, and 5. Graphs of these functions
are in Fig. 8.5. The conditions are: k(Z) < |k12| < |k%|, lkil| < 0.6, and d? < rg. When
the dielectric layer is absent, [ = 0 and € = (ko/k2) — ikol becomes € = ko/ k.

In many applications the antenna is on the surface of the earth, either as a base-

insulated dipole or as a monopole base-driven against a buried ground system. In this
case, d/rg ~ 0, kod ~ 0, and

By (ro, ©) =

 po2h1) eikoro[@ sin@cos® € ( sin © )3] 562

2w ro cos® + € _% cos® + €

D) . Tiko sin® cos ©

2k E cos® + €

L E(mO V' so —sino) (8.63)
—_ | —— € COS — Sin .
rg cos® + €

.4
_wpo(2hel) eikoroi[ sin” © j|

EL (ro. ©) = _sme
or (0. ©) 2mko rg (cos ® + ¢€)2

(8.64)
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0 10 20 30 40 50 60 70 80 90
O (degrees)

Figure 8.5 The field factors sin ® for the space wave and sin? ©, sin* ©, and sin® © for the lateral
wave.

The field on the surface of the earth is given by ® ~ 7 /2, rg = p, so that

po(2hel) e'*or

B(};q) (r07 7-[/2) = 27_[ €2p2

(8.65)

wpo(hI) e*o?
2nky  €2p?

Ejye(ro, 7/2) = (8.66)

wpo(h I) etkor

2ky  €p?

Note that these formulas consist entirely of the lateral-wave terms. The direct and
image fields cancel.

E} (ro, 7/2) = (8.67)

8.5

Base-driven and grounded monopoles

An important antenna in radio communication is the base-driven and base-grounded
monopole. In the AM broadcast band (0.55-1.6 MHz), for example, the monopole
is on the earth and driven against a radial ground system of bare conductors. In the
maritime radio band (1.5-30 MHz), the monopole may be erected on the upper deck
of the ship and be driven against the steel hull which is, of course, grounded in the
water — lake or sea.
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When the condition |k»|* > k(% is well satisfied so that the radial distance p =
2|k§|/k8 to the outer boundary of the intermediate field is at least several hundred
meters, the vertical component of the electric field near the monopole is the same as if
it were over a perfect conductor. This means that the distribution of current in the base-
driven monopole is the same as it would be if it were the upper half of a center-driven
dipole isolated in the air. Its impedance is half that of the dipole. If there are several
monopoles in a directive array, the properties of the array can be obtained directly
from those of the corresponding dipole array. The total radiated power is one-half that
radiated by the corresponding dipole array with equal driving-point currents.

The driving-point impedance of the grounded monopole is the sum of the impedance
of the monopole over a perfect conductor and the impedance of the ground network.
That is,

Zin =20+ Zg, (8.68)

where Z is the impedance of the monopole and Z, is the impedance of the ground
network. This latter is readily evaluated with the theory of the bare dipole in a
conducting medium. If the earth is not too dry so that oo > wepea,, the current in

a monopole in an infinite medium with the wave number kp ~ (i wpeoa)'/? is well
approximated by
V¢ sinky(h — x)

1 ~0 = 2 8.69
O T (869)
where

Z=R—-iX = kycotkrh (8.70)

4 or )
. i drzior\'?

ky =B +iay = |iopgoy — 7 (8.71a)
v =2In(h/a) — 2. (8.71b)

The internal impedance per unit length of the monopole is z' = r’ —ix’. At frequencies
that are sufficiently high so that (wpo)? > @mrt /\11)2, the internal impedance
7' of the copper monopole can be neglected and the monopole treated as perfectly
conducting. In this case,

172
w o)
ki = ky = (fopooa) /% = (1 + i)(%) =By +ian. (8.72)

In the AM broadcast band, the frequency is high enough to treat the conductor as
perfect, so that

v (wpeor
4oy 2

v wug 1/2(1 : cos Brh coshaph — i sin Brh sinhaph
= —|— i .
47 \ 207, sin B>h coshazh + i cos Brh sinhaph

ZN

1/2
) (14 1i) cot Boh (1 + i)

(8.73)
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A study of the behavior of the current in and impedance of a bare antenna in a
dissipative medium such as wet or moist earth shows that the current amplitude
decreases to negligibly small values at electrical distances from the driving point
that exceed Brx = m/2. It follows that a monopole length that exceeds frh = 7 /2
serves no useful purpose. Because the surrounding medium is conducting, a cylindrical
conductor serves both as a radiating antenna and as an electrode for transferring the
current from the conducting antenna to the conducting earth.
With goh = /2,

172
v (wpo N
Z=—(259) " (1 4i)(—itanh7/2)
47 \ 207
172
v /fw
—0917(1 — i) — (2K (8.74)
4 \ 207

At a frequency f = 0.55 MHz and with oo = 0.04 S/m for moist earth,

ko =0.0115m™", ky = 0.294(1 +i)m™! (8.75)
so that
T
h=-— =534m. (8.76)
2B

If the radius of the monopole is @ = 2.5mm, h/a = 2136 and W = 13.3. It follows
from (8.74) that

Z =7.1(1 — i) ohms. (8.77)

The formulas (8.70), (8.73), and (8.74) give half the impedance of a center-driven
dipole in the infinite dissipative medium. Because the mutual interaction between the
two halves of a dipole is extremely small when the dipole is in such a medium, it
contributes negligibly and the impedance of the dipole is well approximated by the sum
of the impedances of two independent monopoles, i.e. the impedance of the monopole
when driven against any other element is simply half the impedance of the dipole. In
the present case, the horizontal monopole in the dissipative earth is driven against a
vertical monopole in the air. More specifically, a radial group of N such horizontal
monopoles, all connected in parallel, are driven against the vertical monopole in the
air.

Actually, the formulas (8.70), (8.73), and (8.74) apply to a monopole in an infinite
dissipative medium. In a radial ground network, each element is close to the surface
of the earth so that the electric field and the associated currents in the conducting
earth are reflected at the air boundary. Since |k2|? > k2, the reflection coefficient
fr = (ko — ko) / (k2 + ko) ~ 1. This means that the reflected electric field is in phase
with the incident electric field and the reflected magnetic field is in phase opposition
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with the incident magnetic field. Hence, the complete reflected field is equal to the
field of an identical codirectional image monopole at a distance 2d from the actual
monopole if d is its distance from the air—earth boundary. As the electrical distance
|kod | is small, the reflected electric field when combined with the direct field from the
monopole is essentially that of two identical monopoles separated by a distance 2d. In
effect, the monopole with its image constitutes a single monopole with the effective
radius a, = (2da)'/?, the associated quantity

WV, =2In(h/a,) — 2 (8.78)
and a current /1, (x) that is twice that in the actual monopole. That is,

Vs sinka(h — x)

Iiy(x) =21 (x) = 7 W (8.79)
e
N 1/2
.= —(w) (14 i) cot foh (1 + ). (8.80)
4 \ 2073

The driving-point impedance in the presence of the boundary is

Ve 27V
0 27, = ‘.

7| = = 8.81
1 I (0) e 7 ( )
The impedance of N such monopoles in parallel is
_Zy 279, (8.82)
TN ONU '

where Z is the impedance of a single monopole in an infinite medium, as given by
(8.70), (8.73) or (8.74). Note that with N = 10, the radial conductors are sufficiently
far apart in the conducting earth that mutual impedances can be neglected.

Withd = 0.15m,

a, = 0.087m (8.83)
v, =6.23 (8.84)
so that

2ZY, .
Z1 = = 0.937Z = 6.66(1 — i) ohms. (8.85)

With ten buried radial conductors,
Z, = 0.666(1 — i) ohm. (8.86)

It is this value that is substituted in (8.68) to determine the driving-point impedance Zi,
of the monopole base-driven against the radial ground network. Note that Z, is very
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small compared to the driving-point impedance of a monopole in air over a perfect
conductor. If this has 7 = A¢/4 = 136.6 m and the radius a = 1.24 cm, it follows that
the expansion parameter 2 = 21In(2h/a) = 20. Then, with Table 30.1 in [5, p. 168],
Zp = 39.3 —i21.8 ohms and the driving-point impedance of the grounded antenna is

Zin = Zo + Zg = 40.0 — i22.5 ohms. (8.87)

Note that the impedance of the ground network is small enough to be negligible.
This means that the properly grounded monopole behaves like the monopole over a
perfect conductor for all circuit and field properties within the intermediate-zone range
provided |k |? > k(z). The complete fields in the extended intermediate and far zones

are
5 . j 2h,I) e'koro
L<kop < || Eig(ro, @) = —2H0Gh) €00 4 (8.88)
62 2 ro
; j 2hI) ekoro
Ei (o, @) = [00@heD €0 G0 (8.89)
2w ro
5 opohed) 4 iko (sin ® cos ®
— | < kop: E" @) = — el koo f 2D (2 7 P
2| =op 00 (0. ©) 21k ¢ ro \ €+ cos®
B sin® © (5 sin” ® — €2 cos ©) } (8.90)
ry (€ + cos ©)3
-4
Eq,.(ro, ®) = oo (2hel) €sin* © Jikoro 8.91)

2rko  r§(e + cos ©)2

with € = (ko/ky) — ikol. When there is no surface layer of pavement, [ = 0 and
€ =ko/k>.

The radial components given by (8.89) and (8.91) are due to the lateral wave. In the
far field, the transverse component is clearly separated into a space-wave term (that
includes the plane-wave reflection coefficient as a factor and decreases with distance
as 1/rp) and a lateral-wave component (that decreases as 1/ ré). The former vanishes
when ® = /2, the latter has its maximum there. The corresponding formula (8.88)
for the intermediate range consists of only one term with its amplitude proportional
to 1/r9. However, the contribution from the plane-wave reflection coefficient is zero
when ® = 7/2, whereas in (8.88) the amplitude is at its maximum when ® = /2.
Evidently, (8.88) combines the contributions of the plane-wave reflection coefficient
and the lateral wave into one simple term in the intermediate range where the Fresnel-
integral term is negligible.

The vertical field patterns for the intermediate range of |E6® (ro, ®)| ~ sin® and
of |E6r(r0, ®)| ~ lko/ k2| sin? © are shown in Fig. 8.6. The pattern for E6®(ro, ®)
applies to a vertical electric dipole on the surface of all types of earth or water. The
four patterns for Eér (ro, ©) apply to (a) sea water with oo = 4 S/m, €3, = 80; (b) wet
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lko/ks| sin’ ©
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sin ©

Figure 8.6 The vertical field characteristics of a vertical electric dipole on the boundary between
air and earth or water. Broken line: the function sin ® for |E6® (ro, ®)| over all types of earth and
water. Solid lines: the function |kq/ k| sin? © for |E(i)r (ro, ®)| over (a) sea water, (b) wet earth, (c)
dry earth, and (d) lake water.

Table 8.1. Numerical values (Jf\E(r)@ (rg, ®)|max and |E6® (ro, m/2)| for vertical dipole in air over
different media®

Region 2 02 (S/m) €  Omax  |Ejg(ro, ©)lmax (V/m)  |Ejg (ro, w/2)| (V/m)

Sea water 4.0 80  78.5° 236 x 1079 1.73 x 107
Wet earth 0.4 12 73.0° 2.20 x 1075 1.73 x 1077
Dry earth 0.04 8  66.0° 1.87 x 107> 1.74 x 1078
Lake water  0.004 80  65.5° 1.80 x 1073 1.93 x 1078

Frequency f = 10 MHz, radial distance rg = 500 km. See Fig. 8.7.
4 Taken from King [3, Table 1]. © 1990 American Geophysical Union.

earth with o = 0.4 S/m, €3, = 12; (c) dry earth with o = 0.04 S/m, €5, = 8; and (d)
lake water with o = 0.004 S/m, €5, = 80. In all cases, the frequency is f = 10 MHz.

The corresponding patterns for the far field Ejg (ro, ®) as obtained from (8.90)
are shown in Figs. 8.7 and 8.8 in conjunction with Table 8.1. Graphs of the far field
E(,(ro, ®) as obtained from (8.91) are shown in Fig. 8.9 in conjunction with Table
8.2. In all cases, the frequency is f = 10 MHz.

Vertical antennas on the earth for communicating with submarines in
the ocean

Shore-based antennas for communicating with submarines are located close to the sea
coast at various points around the world. Examples are at Annapolis, MD, and Cutler,
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Figure 8.7 Complete field of |E6®(r0, ®)| for vertical dipole in air on boundary between air and

(a) sea water, (b) wet earth, (c) dry earth, and (d) lake water; the dashed curve is for oo = oo.

Frequency f = 10 MHz, radial distance ryp = 500 km. Numerical values are in Table 8.1. Taken

from King [3, Fig. 3]. © 1990 American Geophysical Union.
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Figure 8.8 Enlarged section of Fig. 8.7 near ® = 90°.

American Geophysical Union.

Taken from King [3, Fig. 4]. © 1990
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Figure 8.9 Complete field of |E6r (ro, ®)| for vertical dipole in air on boundary between air and (a)
sea water, (b) wet earth, (c) dry earth, and (d) lake water. Frequency f = 10 MHz, radial distance
ro = 500km. Numerical values are in Table 8.2. Taken from King [3, Fig. 5]. © 1990 American
Geophysical Union.

Table 8.2. Numerical values of |E6r (rg, /2)|
for vertical dipole in air over different media®

Region 2 02 (S/m) €3 |E(), (rg, 7/2)] (V/m)

Sea water 4.0 80 2.04 x 1078
Wet earth 0.4 12 6.44 x 1072
Dry earth 0.04 8 2.04 x 1072
Lake water ~ 0.004 80 2.15x 1079

Frequency f = 10 MHz, radial distance ry = 500 km. See Fig. 8.9.
4 Taken from King [3, Table 2]. © 1990 American Geophysical Union.

ME, along the Atlantic coast. In order to penetrate to useful depths in the ocean, these
antennas must radiate at very low frequencies. Since vertical antennas on the earth are
limited for practical reasons to heights of the order of 7 = 1200 ft (366 m), frequencies
in the range from 14 kHz to 28.5 kHz involve electrical lengths in the range koh =
0.107 to 0.218, where kg = w/c is the wave number of air. Grounded base-driven
monopoles with such small electrical lengths have triangular current distributions and
driving-point impedances given by
. 30(2—-2—-2In2)

Z=R+jX =10kh* - j v ohms, (8.92)
0
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where j = —i and

Q=2In2h/a) and 2+21n2 =3.39. (8.93)
For f = 14 to 28.5 kHz and with h/a = 75 and Q2 = 10,

R =0.114 t0 0.475 ohm, X = —1853 to —909.6 ohms. (8.94)

Owing to the very large reactance, the electrically short monopole is not a practical
antenna for radiating the very large amounts of power needed to communicate with
submerged submarines at large distances in the sea.

In order to reduce the high reactance and increase the very low radiation resistance,
it is necessary to increase the length of the antenna. As this cannot be done vertically
upward, the only alternative is to do so horizontally. The resulting antenna is known as
an inverted L antenna. However, in the case at hand, the vertical section is electrically
so short that the horizontal wire with its image in the earth is simply a two-wire
transmission line with an open end. If the length of the horizontal wire is a quarter
wavelength with an open end, the line is resonant and the impedance seen by the
generator in the vertical section is a pure resistance given by R = 15k§b2 = 60k(2)h2
where b = 2h is the spacing of the two-wire line. Instead of extending the horizontal
wire a full quarter wavelength, it can be much shorter if it is end-loaded with
capacitance to ground. This capacitance can consist of large metal panels or areas of
wire mesh. Several such radial sections can be arranged in a rotationally symmetric
manner and connected in parallel to the feeding transmission line. The resulting
umbrella-like structure is known as a top-loaded antenna. Since the top-loading is
roughly equivalent to a flat metal disk, it has the general properties of a radial
transmission line driven at its center by a generator in series with a vertical conductor
that connects the disk to a radial ground network. The total power radiated from under
the outer edge of the disk is simply the power radiated by a dipole with the length
h and carrying a current with the uniform amplitude /,(0). The external or radiation
resistance of such a dipole is

R¢ = 40kZh?, (8.95)

where £ is the length of the monopole. Since the actual top-loading panels are lower
at the edge than at the center and are supported by grounded metal towers, each with
its guy wires, the electromagnetic field of the currents in them partly cancel the field
of the current in the central monopole. This reduces the radiated field and the effective
length which determines its amplitude. The field actually generated by the top-loaded
monopole can be measured at suitable distances and the effective length determined
for each frequency. It is necessarily smaller than either the length & of the central
monopole or the height of the outer edges of the top-loading.

Since the capacitive top-loading usually does not extend out radially far enough to
make the antenna resonant, a variable inductance can be connected in series with the



312

Vertical dipoles over earth or sea

monopole at the driving point to tune it to resonance and provide a resistive impedance.
This resistance is the sum of the radiation resistance R¢, the resistance R, of the
ground network, and the resistance R, of the inductance coil. Thus,

Ry = R°+ Ry + R, (8.96)
where
R¢ = 40kZh?. (8.97)

The ground resistance, if this is due to N radial wires, is approximated by the real part
of (8.82) if the wires are not too close together. Since the entire system is tuned to
resonance, the total reactance including X, is zero.

At frequencies in the kilohertz range, the intermediate zone is very extensive.
Specifically at f = 20kHz over sea water (wave number k»), the conditions | Py| < 1,
koro > 1 become |,0k8/2k§| <lor

2k?
kg

2 3
_ ZHORC 74 % 107 km. (8.98)

o=
w2

Clearly, the intermediate zone includes the entire useful range so that the formulas
(8.36) and (8.37) give the entire electromagnetic field when 24, for a dipole with the
length 2/ is replaced by &, for a monopole with the length 4. Specifically,

. . i Wl etkoro
Eio(ro.©) = cBiy(ro. ©) = — 222 £ Gineo (8.99)
2 ro
: iouoheI (ko koo 2
E{, (ro, ®) = o ¢ (5> - sin“ ©. (8.100)

The VLF antenna at Cutler, ME, consists of two vertical monopoles, each with the
height 298 m and separated by a distance 1870 m. Each monopole is top-loaded by
six symmetrically arranged diamond-shaped panels of wire mesh that extend radially
outward 935 m. Each panel is supported by the central monopole and three grounded
towers. The outermost one is 243 m high. The panels sag significantly between the
masts so that the average height is only 201 m. The entire structure is on a peninsula
that extends into the Atlantic Ocean. It has a roughly rectangular shape only slightly
greater than the area 3740 x 1870 m under the top-loading of the two monopoles.
Each monopole has its own ground system that begins with radial conductors but is
interconnected and finally led into the surrounding ocean. Measurements of the vertical
electric field indicate that the effective height of the antenna with either one element
driven or both driven in parallel is near 150 m. This is half the length of the monopoles
and substantially smaller than the outer edge of the panels or their average height. With
he = 150m and f = 19.4kHz, ko = 4.063 x 10~*m~! and

R¢ = 40k}h2 = 0.150 ohm. (8.101)
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The measured resistance of the tuning coil was R, = 0.014 ohm and the total driving-
point resistance of one monopole was Ry = 0.200 ohm. It follows that the ground
resistance must be

R, = Ry — R, — R® = 0.036 ohm. (8.102)

The very extensive ground system ending in salt water makes this quite low resistance
reasonable. The radiating efficiency of the antenna is high, namely

e

R
E=—=075 or 75%. (8.103)
Ro
When operating at full power, each monopole carries a current of 2600 A and radiates
a megawatt of power. The array radiates twice that power. The vertical electric field at
p = 500km on the surface of the sea is

wpohel
270

|E}o(500km, 77/2)| = = 19mV/m. (8.104)

The radial electric field on the surface of the sea is

‘ ko

|} (500km, 7/2)| = |2 Ej (500km, 7/2)|. (8.105)
2

Here,

k | 12

20 _ —<L) —0.51 x 1073,

ky ¢\ noo2

Hence,

|E}, (500km, 77/2)| = 9.89 uV/m. (8.106)

The signal received by a submarine at the depth z is

|Exp(p, 2)| = |Eb, (p, 7/2)| e, (8.107a)
where

12\ /2 1/2
o = (%) = (%) —0.56m". (8.107b)

At a depth of z = 20 m, the field is
| E2,(500km, 20m)| = 1.35 x 10710 V/m (8.108a)
or

20logy |E2p| = —197.4dB. (8.108b)
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Atz =40m,

|E2,(500km, 40m)| = 1.85 x 1071° V/m (8.109a)
or

201og;o |E2p| = —294.7 dB. (8.109b)

This is a large enough signal to be readily detectable by a submarine with a trailing-
wire antenna and a sensitive receiver.

The VLF antenna at Annapolis, MD, differs from the Cutler, ME, antenna in that it
consists of a single tower that is 1200 ft high and insulated from the ground instead
of being connected to a ground network. It is driven by three transmission lines at the
300-ft, 600-ft, and 900-ft heights. These lines lead from the antenna to the transmitter
on the ground at some distance from the base of the tower. The top-loading consists
of three symmetrical panels that are supported by 600-ft towers. In addition, there is
a much longer parallel-wire type of top-loading that extends out beyond one of the
three panels. Measurements of the vertical electric field give an effective length of
he = 125 m. The radiation efficiency is only 35%.

8.7 High-frequency dipoles over the earth; cellular telephone

Frequencies in the range from 100 to 1800 MHz are used for various types of
communication including especially the cellular telephone at frequencies from 900
to 1800 MHz. The antennas involved are dipoles or monopoles on elevated ground
planes of finite size. These may be at heights as great as d =30m. Owing to the
high frequency, the far-field condition |Py|>4 is satisfied in the practical range
of distances. Also, the radial distances p are large compared with the height d of
the dipole so that the condition d? < p? is well satisfied. Accordingly, the appli-
cable formula for Ej (ro, ®), which is the only component of interest, is (8.59).
That is,

ES@(r07 ®) =

—sin®
21k €+cos®+d/rg

opohel) o { iko . |: (cos ® + d/rg) cos(kod cos ®)
—_—— e
ro

ile — (d/ro) cos? O] sin(kod cos ©)
€+cos®+d/rg

i 3 .
n %( o ) (€ cos O — sin2 @)eikod cos @}. (8.110)
5 €+cos®+d/ry
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When the dipole is over earth or water, € = kg/k2; when there is an electrically thin
layer of asphalt or concrete on the earth or a layer of ice on the water, € = (ko/k2) —
ikol. The only restrictions on (8.110) are

k2| > 3ko, |kil] 0.6, d* <rj. (8.111)

The three wave numbers are

. 1/2
ko=, ki =koel? k2=ﬁ2+m2=koe;,/2<1+&) ; (8.112)
c WENED,

ro = (p% + 2%)Y/2 and O is measured from the vertical z’-axis. In most cases,

d

— K |cos ® + €] (8.113)
ro

so that (8.110) reduces to

_wpoZhel) eikoro{@(sin(@cos@)

Elo(rog, ©®) =
00 (0, ©) 2k ro \ cos® + ¢

€ sin(kod ®
X [cos(kod cos®) — ie sin(kod cos )]
cos ®
+ %(L) (€ cos © — sin? @)elkodcmo}. (8.114)
ry \COs ®+¢€

In this expression, the term with 1/r¢ as a factor is the space wave. Its value is zero
when ® = 7/2 on the boundary surface. The factor containing d takes account of
the height of the dipole. It reduces to unity when d = 0. The term with 1/ rg as a
factor is the lateral wave. Its maximum occurs when ® = /2. This is proportional to
(sin5 @)/ezrg. Over most of the earth’s surface, €2 = k(z)/lkz|2 < 1 so that l/e2 =
k% /k% is very large. The factor sin® © shows that the surface wave is confined to a
narrow beam close to the surface where ® = /2. Only over dry sand is the condition
lka| = 3kq not satisfied so that 1/€? = k% / kg is not large and for all practical purposes
there is no surface wave. This means that | Eg, (o, 7/2)| ~ 0.

Graphical representations of the vertical field patterns of a vertical electric dipole at
the height d =2 m are shown in a series of figures at the radial distances ro = 100,
500, and 1000 m, for sea and lake water, two types of earth, and dry sand. Specifically,
Figs. 8.10, 8.12, and 8.14 show polar graphs of |E(g(ro, ®)] at f = 100 MHz.
The field in the range 80° < ® < 90° is shown in logarithmic graphs in Figs.
8.11, 8.13, and 8.15. Similar graphs at f = 500MHz are in Figs. 8.16-8.19, and
at f = 1000 MHz in Figs. 8.20-8.23. A close study of Figs. 8.10, 8.12, and 8.14
shows that the three sets of diagrams are identical for all values of ® not too close
to ® = /2 or 90° except for the radial scale which decreases with increasing
ro exactly as 1/rg. Specifically, 1 V/m on Fig. 8.10 with rp = 100m appears as
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Figure 8.10 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 100 MHz; ryp = 100 m. Taken from King and
Sandler [1, Fig. 2]. © 1994 LE.E.E.

0y (S/m) €y, |E6® (ro, ®)|max at ©

1. Sea water 4.000 80  4.34 x 109 at 90°
2. Wet earth 0.400 12 8.05 x 10! at 49°
3. Dry earth 0.040 8 6.62x107! at 50°

4. Lake water  0.004 80 7.60 x 107! at 47°
5.Drysand  0.000 2 997x107! at 74°
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Figure 8.11 Rectangular graphs of the range 80° < ® < 90° in Fig. 8.10; f = 100 MHz,
rg = 100 m. Taken from King and Sandler [1, Fig. 5]. © 1994 L.LE.E.E.

oy (S/m) € |Efg (ro, 90°)]

— Seawater  4.000 80  4.34 x 109
———Wetearth  0.400 12 437x107!

—.—Dryearth  0.040 8 6.45x 1072
— — Lake water  0.004 80  4.80 x 1071
----- Drysand  0.000 2 1.20x 1072

0.2V/m on Fig. 8.12 with rp = 500m, and as 0.1 V/m on Fig. 8.14 with ryp =
1000 m.

In Fig. 8.10, the top curve for sea water with rp = 100 m has a large peak at ® =
90°; the peak is much smaller in Fig. 8.12 with rop = 500 m and does not appear in
Fig. 8.14 with ry = 1000 m. This peak is part of the contribution of the lateral wave
which decreases with distance as 1/ rg. In order to show its part of the field more
clearly, completely separate diagrams are shown in Figs. 8.11, 8.13, and 8.15 for the
range 80° < ® < 90°. Note that the scale between ® = 88° and ® = 90° is greatly
expanded and the amplitude of the field is represented on a logarithmic scale. The large
peak at ® = 90° for sea water is clearly shown in Figs. 8.11, 8.13, and 8.15 together
with the 1/ rg decrease in amplitude. These figures also show that there is a significant
contribution from the lateral wave for all media except dry sand for which the small
ratio |k2|/ko = 2 makes the field at ® = 90° only a little greater than the 1/ rg near
field. Since the space wave decreases to zero at ® = 90° over all types of earth or
water and the contribution by the lateral wave rises to a maximum there, the transition
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Figure 8.12 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the

height d = 2 m over five different media at f = 100 MHz; ryp = 500 m. Taken from King and
Sandler [1, Fig. 3]. © 1994 LE.E.E.

o2 (S/m) ey, |E6@ (r0, ®)|max at®

1. Sea water 4.000 80 1.74 x 107! at 90°
2. Wet earth 0.400 12 1.61 x 107! at 49°
3. Dry earth 0.040 8 1.32 x 1071 at 50°
4. Lake water  0.004 80 1.52 x 107! at 47°
5. Dry sand 0.000 2 200x 107! at 74°
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Figure 8.13 Rectangular graphs of the range 80° < ® < 90° in Fig. 8.12; f = 100 MHz,
rg = 500 m. Taken from King and Sandler [1, Fig. 6]. © 1994 LE.E.E.

oy (S/m) €, |E{g(ro, 90°)]

— Seawater  4.000 80 1.74x 107!
———Wetearth  0.400 12 1.75x 1072

—.—Dryearth  0.040 8 258x1073
— — Lake water ~ 0.004 80 1.92x 1072
..... Drysand  0.000 2 480x 107

from the one to the other involves a more or less sharp minimum. This moves closer to
® = 90° as ry increases because the space wave decreases as 1/rg, the surface wave
as 1/ rg.

The cellular radiotelephone operates in the 0.9 to 1.8-GHz range of frequencies.
Transmitting and receiving antennas in the form of center-driven or loaded dipoles
are placed on high towers that are located several miles apart along major highways.
The area surrounding each of these antennas is called a cell. Radiotelephone antennas
are either attached to hand-held transceivers or are mounted on the metal top or the
rear deck of an automobile. The hand-held instruments include a monopole mounted
on a typical telephone receiver that now also contains a transmitter. When in use, the
monopole extends upward beside and above the head. The metal case serves as the
lower part of the antenna. Typically, currents of the order of 0.1 A in the antenna are
needed for transmission to the nearest tower. The monopoles on the metal top or rear
deck of an automobile are base-driven by a coaxial line with the car top or rear deck
serving as the ground plane.
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Figure 8.14 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the

height d = 2 m over five different media at f = 100 MHz; ryj = 1000 m. Taken from King and
Sandler [1, Fig. 4]. © 1994 LE.E.E.

oy (S/m) ey, |E6@ (rp, ®)|max at ©

1. Sea water 4.000 80  8.57 x 1072 at 48°
2. Wet earth 0.400 12 8.05x 1072 at 49°
3. Dry earth 0.040 8  6.62x1072 at 50°
4. Lake water  0.004 80  7.60 x 1072 at 47°
5. Dry sand 0.000 2 998 x 1072 at 74°
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Figure 8.15 Rectangular graphs of the range 80° < ® < 90° in Fig. 8.14; f = 100 MHz,
ro = 1000 m. Taken from King and Sandler [1, Fig. 7]. © 1994 LE.E.E.

oy (S/m) €, |E6@ (19, 90°)|

— Seawater  4.000 80 434 x 1072

———Wetearth  0.400 12 437x1073
— . —Dryearth  0.040 8 6.45x107*
— — Lake water  0.004 80  4.80 x 1073
..... Drysand  0.000 2 1.20x107%

The electromagnetic field generated by any of these antennas is simply that of a
vertical dipole with an appropriate effective length /.. The dipole antenna is at a height
d over the surface of the earth. The electric field generated by such an antenna is given
by (8.110) or (8.114). It is illustrated for a typical hand-held or car-mounted dipole in
Figs. 8.20-8.23.

8.8 Vertical dipoles over a two-layered region

All of the formulas in this chapter involve the small parameter € = (ko/k2) — ikol,
where [ is the thickness of a dielectric layer (region 1) located between the air
(region 0) and the earth or sea (region 2). When there is no such layer, [ = 0 and
€ = ko/ k2 as in the applications in Section 8.7. In this section, applications that involve
an electrically thin layer on region 2 are considered.
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Figure 8.16 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 500 MHz; ryp = 100 m. Taken from King and
Sandler [1, Fig. 8]. © 1994 LE.E.E.

02 (S/m) €3y |E(g(ro, ®)max at®

1. Sea water  4.000 80  4.91 x 109 at 73°
2. Wet earth 0.400 12 4.89 x 109 at 86°
3. Dry earth 0.040 8 547 x 100 at 86°
4. Lake water  0.004 80  4.48 x 10° at 63°

5.Drysand  0.000 2 772 x 100 at 86°
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Figure 8.17 Rectangular graphs of the range 80° < ® < 90° in Fig. 8.16; f = 500 MHz,
rg = 100 m. Taken from King and Sandler [1, Fig. 9]. © 1994 L.LE.E.E.

oy (S/m) €, |E{g(ro, 90°)]

— Seawater  4.000 80 9.87 x 107!
———Wetearth  0.400 12 1.12x107!

—.—Dryearth  0.040 8 4.87x1072
— — Lake water  0.004 80  4.80 x 1071
----- Drysand  0.000 2 1.20x 1072

Vertical dipoles over asphalt-coated earth

When the earth is asphalt- or cement-coated with a layer that is / = 0.15 m thick with
€1, = 2.65 over earth with oo = 0.04 S/m and €3, = 8, the three wave numbers for
f = 100MHz are: kg = 2.09m™!, k; = koe;/> = 3.41m~!, and ky = koes/*(1 +
ioy/weper,)/? = 7.43 +i2.85 = 7.96¢/03¢m~1. Also, kj/ = 0.51 < 0.6 and
€ = 0.26¢7103% _ ;0.315 = 0.478¢ 103, The far field is limited by p > |8/ koe?| =
16.8 m. The far-field patterns of a vertical dipole at the height d = 2 m over the asphalt-
coated earth are shown in Figs. 8.24, 8.25, and 8.26, respectively, at the radial distances
ro = 100, 500, and 1000 m. The polar graphs in Figs. 8.24a, 8.25a, and 8.26a show the
space wave; the logarithmic graphs in Figs. 8.24b, 8.25b, and 8.26b show the complete
field in the range 80° < ® < 90° where the lateral wave is dominant.
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Figure 8.18 Like Fig. 8.17 for ry = 500 m. Taken from King and Sandler [1, Fig. 10]. © 1994
LE.E.E.
oy (S/m) €3, |Ebg(rg, 90°)]
— Seawater  4.000 80  3.95x 1072
———Wetearth  0.400 12 449x 1073
— . —Dryearth  0.040 8 1.95x1073
— — Lake water  0.004 80 1.92 x 1072
..... Drysand  0.000 2 480x 107

Vertical dipoles over the Arctic ice

Communication on the Arctic ice involves a vertical dipole at a height d in the air
over a layer of ice with the thickness / on salt water. At f =7 MHz, the relative
permittivity of ice is of the order of €1, ~ 3.2. For sea water, €3, = 80 and 0, =4 S/m.
The relevant wave numbers are: for air, kg =0.147 m~!; for ice, k; =0.262m~!; and
for sea water, k» = 14.87¢/"/* =10.52(1+i) m~!. With / =2.5m, k;/ = 0.658, which
slightly exceeds the condition k1/ < 0.6, but is an acceptable value. Note that the small
quantity € = (ko/kz) — ikgl =0.01e~""/* — {0.368. Evidently, € ~ — ikol = —i0.368
and the sea behaves like a perfect conductor under the ice. The far field occurs
when p > |8/koe?| =8/kjl> =401 m. The far-field patterns of a vertical dipole at
the height d =2m over the Arctic ice are shown in Figs. 8.27, 8.28, and 8.29
at the radial distances rg =500, 1000, and 5000 m, respectively. As the distance
increases, the magnitude of the space wave decreases more slowly than that of the
lateral wave, so that the transition from the former to the latter moves nearer to
®=90°.
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Figure 8.19 Like Fig. 8.17 for ry = 1000 m. Taken from King and Sandler [1, Fig. 11]. © 1994
LE.EE.

o7 (S/m) e, |E6® (ro, 90°)|

— Seawater  4.000 80 9.87 x 1073

———Wetearth  0.400 12 112x1073
—.—Dryearth  0.040 8 487x1074
— — Lake water  0.004 80  4.80 x 1073
----- Drysand  0.000 2 120x 1074

Vertical dipoles on microstrip

Microstrip consists of a thin dielectric layer coating a highly conducting base on which
strip transmission lines and antennas are located. Elements of these are horizontal
electric dipoles. These are treated in Chapter 9. Vertical connections to the base are
vertical electric dipoles. Since the dielectric substrate is thin and k; is very large,
€ ~ —ikol. Graphs of both E¢. (p,0) and Eg,(p, 0) as functions of p for a vertical
dipole in the air on the surface 7/ = —z = 0 of the dielectric layer with the thickness
[ = 0.1 mm are shown in Fig. 8.30 at f = 10GHz. The range kop < 1 is the
near field. It involves a 1/p? decrease with increasing p for E,(p0,0) and a 1/ 03
decrease for Eg,/(p, 0). The range 1 < kop < 2/ kél2 is the intermediate range, where
both Eo,(p, 0) and Ep;(p,0) decrease approximately as 1/p. Similar graphs with
f =5.15GHzand f =4.21 GHz and [ = 4.445 mm are shown in Figs. 8.31 and 8.32.
These extend to a much greater range so that a part of the far field where koo > 8/ k(z)l 2
is included. In it, the field has a 1/ 0> dependence. Far-field patterns of | Ege (19, ®)|
for f = 5.15GHz and ! = 4.445 mm are shown in Figs. 8.33, 8.34, and 8.35 with
p = 0.3, 3, and 30 m, respectively.
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Figure 8.20 Polar graphs of the electric far field (V/m) in air of a vertical electric dipole at the
height d = 2 m over five different media at f = 1000 MHz; ry = 100 m. Taken from King and
Sandler [1, Fig. 12]. © 1994 LE.E.E.

oy (S/m) €, |E6@ (r0, ®)|max at ®

1. Sea water 4.000 80  9.38 x 100 at 68°
2. Wet earth 0.400 12 1.14 x 10! at 88°
3. Dry earth 0.040 8 1.21 x 101 at 88°
4. Lake water  0.004 80  9.54 x 100 at 88°

5. Dry sand 0.000 2 1.65 x 101 at 88°
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Figure 8.21 Rectangular graphs of the range 80° < ® < 90° in Fig. 8.20; f = 1000 MHz,
ro = 100 m. Taken from King and Sandler [1, Fig. 13]. © 1994 L.LE.E.E.
02 (S/m) €3 |E(g(rp, 90°)]
Seawater  4.000 80  6.45 x 107!
———Wetearth  0.400 12 8.39x 1072
—.—Dryearth  0.040 8 4.82x1072
— — Lake water  0.004 80  4.80 x 107!
----- Drysand  0.000 2 1.20x 1072
|
8.9 Propagation over the spherical earth

All of the formulas and applications discussed so far in this chapter apply strictly to
a planar earth. Since the radius of the earth is @ = 6378 km, it is to be expected
that the planar formulas are a good approximation for a substantial distance along the
surface of the earth. For propagation over the sea, much greater distances are involved
especially in communicating with submarines and with surface-wave, over-the-horizon
radar. These make use of relatively low frequencies and electrically short vertical
dipoles on the surface of the earth very close to the sea.

The electric and magnetic fields due to a vertical dipole on the spherical earth are
conveniently expressed in the spherical coordinates r, ®, ®, where r is the radial
distance from the center of the earth, ® is the angle measured from the radial line
through the dipole, and @ is the circumferential angle about this radial line. The three
components of the field are Eg(r, ®), E,(r, ®), and Be(r, ®). Note that rotational
symmetry obtains with respect to the z’-axis from the center of the earth through the
dipole. In the planar limit, Eg — E,, E, — E,and Bo — By.
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Figure 8.22 Like Fig. 8.21 for ry = 500 m. Taken from King and Sandler [1, Fig. 14]. © 1994
LE.EE.

o7 (S/m) e, |E6® (ro, 90°)|

— Seawater  4.000 80  2.58 x 1072

———Wetearth  0.400 12 336x 1073
—.—Dryearth  0.040 8 1.93x1073
— — Lake water  0.004 80 192 x 1072
----- Drysand  0.000 2 480x 1074

The distance along the surface of the earth between the dipole and a point of
observation also on the surface of the earth is p; = a®. The cylindrical radial distance
from the z’-axis to the point of observation is p = a sin ©. The difference between the
twois ps —p = a(® —sin®) ~a(® — O+ O3/6---) ~ a®3/6.

A first-order correction for the curvature of the earth is the substitution of p; = a®
for p = asin ® in the planar formulas. For propagation over the sea and conducting
earth, the direct field in the earth is negligible so that the following formulas for the
surface wave give the complete field over the spherical earth:!

pothe kg efortim/d
— I (n2, 8.115
T 2(n2, 8) ( )

Boo(a, ©®) ~

k w
Eor(a, ©®) ~ éEO@(a, ®) ~ "k Boo (a, ©). (8.116)

1 6] p. 11.78.
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Figure 8.23 Like Fig. 8.21 for ryp = 1000 m. Taken from King and Sandler [1, Fig. 15]. © 1994

LEE.E.

o2 (SIm) € |Epg(ro. 90°)

Seawater  4.000 80 6.45x 1073
——— Wetearth  0.400 12 839x107%

— . —Dryearth  0.040 8 4.82x107*
— — Lake water  0.004 80 4.80 x 1073
----- Drysand  0.000 2 1.20x 107
Here,

_ ko (koa ' (kTP e (kea)
=\ 2 ) P 2 . M= 2 )

(8.117)

I>(n2, g) is a complicated integral that is well approximated, when 1, > 1, by the

simple exponential formula

27

P emEl — ApmmiBm
1 T8

L, g =

(8.118)

where &1 = B + i« is obtained from the numerically evaluated Table 8.3 for any value

of g. Note that

4 2mi 2 [(n tan=! >]
= = exp|ty — — tan .
Breitia [(B+g)?+arl” T'\2 B+
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Figure 8.24 Electric far field of vertical dipole at height d over asphalt-coated earth. (a) Polar
graph, 0° < ® < 90°. (b) Rectangular graph, 80° < ® < 90°. €, =2.65,/ = 0.15m;

oy = 0.04S/m, €5, = 8; f = 100MHz,d = 2m, ryg = 100 m.

|EfgImax = | Eg (100m, 60°)| = 0.813 V/m; |E(jo (100 m, 90°)| = 2.3 x 10~2 V/m. Taken from
King and Sandler [2, Fig. 2]. © 1994 American Geophysical Union.

The amplitude |A| and constants « and S for |g| = 0.05, 1, and 20 are given below,
together with the associated frequency for sea water:

lg| = 0.05: f=0.265MHz, |A|=6.0, a =087, g=0.56, (8.119a)

gl = 1: f=9.65MHz, |A|=246, o« =105 =133, (8.119b)

lg| = 20: f=351MHz, |A|=0.0157, «=199, g=120. (8.119)
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Figure 8.25 Like Fig. 8.24 with ryg = 500 m. |E6®|max = |E6®(500 m, 60°)| = 0.162 V/m;
|E6® (500m, 90°)| =9.21 x 10~* V/m. Taken from King and Sandler [2, Fig. 3]. © 1994

American Geophysical Union.

Note that when & > g2, I, ~ (2ni/§1)ei"2§' and when & <« gz, I, ~

(2ni/g2)ei

For communicating with submerged submarines at f = 20kHz, the quantity of
interest is the component of the electric field tangent to the surface of the sea, i.e.
Epo(a, ®). With (8.115)—(8.119), this is given by the following formula for the field

mér

of a base-driven monopole with the effective height 4,:

|Ege(a, ©)

wpohelko

eikops

dmky

(pspe)'/?

At
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Figure 8.26 Like Fig. 8.24 with ry = 1000 m. |E6®|max = |E6@(1000 m, 60°)| = 0.0811 V/m;

|E(g (1000m, 90°)| = 2.3 x 10~4 V/m. Taken from King and Sandler [2, Fig. 4]. © 1994
American Geophysical Union.

Here,

koa —-1/3
pcza(7> = 579.3 km. (8.121)
Note that kg = (47/3) x 107*m™" and kn = (wpoo2/2)Y*(1 + i) =
(wpoo2) ' 2ei™/* = 0.795¢7/* = 0.56(1 + i)m™! = B, + ias. It follows that
lgl = |(ko/ko)(koa/2)'3| = 0.0058, & = 0.515 + i0.881 = B + i, and

Al = 27/ + g2)| ~ [21/&1| = 6.16. With @ = 6378km and p; = 5000 km,
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Figure 8.27 Electric far field of vertical dipole at height d over ice-coated sea water. (a) Polar
graph, 0° < ® < 90°. (b) Rectangular graph, 80° < ® <90°. ¢}, =3.2,] =2.5m; 0p = 4S/m,
€y = 80; f =TMHz,d =2m, rg = 500m. | EjjgImax = |Eg (500 m, 60°)| = 1.06 x 1072 V/m;
|E6® (500m, 90°)| = 1.72 x 103 V/m. Taken from King and Sandler [2, Fig. 8]. © 1994
American Geophysical Union.

= ps/pe = 8.63 and O = p;/a = 5000/6378 = 0.784. With these values,
|Eoo(a, 0.784)| = 6.81 x 10~ (h,I). (8.122)
It follows that, for a unit dipole,

20log; |Eoe| = —283.3dB. (8.123)
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Figure 8.28 Like Fig. 8.27 with ryg = 1000 m.
|E(gImax = | Efyg (1000 m, 60°)] = 5.32 x 1073 V/m; |E(g (1000m, 90°)| = 4.29 x 10~ V/m.
Taken from King and Sandler [2, Fig. 9]. © 1994 American Geophysical Union.

The antenna at Cutler, ME, has an effective length 4, = 150 m and carries a maximum
current of 2600 A. Hence, h,I = 3.9 x 10° Am and

|Eoe(a, 0.784)] = 2.65 x 107? V/m (8.124)
20log;o |Ege| = —171.5dB. (8.125)

The planar earth values are —225 dB and —112.8 dB, respectively. These are the values
at the surface of the sea. At the depth (a — r) in the sea,

|Exo(a —r,0.784)| = |Eoe(a, 0.784) e~ 2@
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Figure 8.29 Like Fig. 8.27 with rg = 5000 m.

|EfgImax = | Efyg (5000 m, 60°)] = 1.06 x 1073 V/m; |E(g(5000m, 90°)| = 1.72 x 1073 V/m.
Taken from King and Sandler [2, Fig. 10]. © 1994 American Geophysical Union.

where o = 0.56m™!. If a submarine with a trailing-wire antenna can detect a field
of the order of Esg ~ 5.6 x 1017 V/m or 20 log;o |E20| ~ —325 dB, the submarine
can be no deeper than 31.6 m. Thus,

2010go |E20(31.6,0.784)e 316%2| = 2010g,,5.47 x 10717 = —325.2dB. (8.126)

With the planar earth formula, the 325-dB limit of detectability is reached at (@ —r) =
43.6 m instead of the actual 31.6 m.
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Figure 8.30 The complete electric field of a vertical dipole on the dielectric substrate of microstrip;
f = 10GHz, [ = 0.1 mm. Taken from King and Sandler [2, Fig. 11]. © 1994 American
Geophysical Union.
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Figure 8.31 Like Fig. 8.30 with f = 5.15GHz, [ = 4.445 mm. Taken from King and Sandler [2,
Fig. 12] but with corrected value for frequency. (© 1994 American Geophysical Union.
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Figure 8.32 Like Fig. 8.30 with f = 4.21 GHz, [ = 4.445 mm. Taken from King and Sandler [2,
Fig. 13] but with corrected value for frequency. (©) 1994 American Geophysical Union.

A second important application of the formulas for the spherical earth is over-the-
horizon radar using the surface wave. Because radar using ionospheric reflection is
unable to detect low-flying missiles closer than 1000 km, the surface wave must be
used for these shorter distances. Since the target is close to the surface of the sea and
the shore-based transceiver involves an array of grounded monopoles or base-insulated
dipoles, the conditions 7z’ ~ d ~ 0 are satisfied.

At a frequency of f = 9.65MHz, |g| = 1, ko = 2nf/c = 0202m™ !, ky =
(wp0o2) /e /* = 17.45¢'7/* = 12.35(1 + i) = o + ia; pe = a(koa/2)~ /3 =
73.88km. At pgy = 500km, 1y = ps/p. = 6.76 and ® = p;/a = 0.0784. The vertical
electric field for a unit dipole is

wigAe” 1

|Eoy(a, 0.0784)| = =3.62 x 1078 v/m. (8.127)

47 (mpspe)'/?

The tangential electric field for a unit dipole is
ko —10
|Eoe(a, 0.0784)| = o Eopr(a,0.0784)| =42 x 107 V/m. (8.128)
2

For a grounded vertical monopole with the length 4, the electric moment is /.1; for a
base-insulated dipole with the length 2/, the electric moment is (2h,1).
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Figure 8.33 Electric far field E6® (ro, ®) of a vertical dipole on the dielectric substrate of
microstrip. (a) Polar graph, 0° < ® < 90°. (b) Rectangular graph, 80° < ® < 90°. f = 5.15GHz,
I =4.445mm,d =0,rg = 0.3 m. |E6®|max = |E6®(0.3 m, 55°)| = 1.35 x 10* V/m;
|E6® (0.3m, 90°)| = 2.89 x 103 V/m. Taken from King and Sandler [2, Fig. 14]. © 1994 American
Geophysical Union.

The surface-wave, over-the-horizon radar array may consist of a broadside curtain of
base-driven, grounded vertical monopoles. Since all elements are in the intermediate
zone, their current distributions and impedances are the same as if they were over
a perfect conductor. An alternative to the radial ground system is a radial array of
traveling-wave horizontal-wire or Beverage antennas. This is discussed in Chapter 9.
A novel array of base-insulated vertical dipoles is the resonant circular array described
and analyzed in Chapter 11. Both the horizontal-wire antenna and the resonant circular
array with two elements driven to produce a pancake-like field pattern are especially



k2]
—

8.10

8.10 Conclusion
@ ©=03""""u.
. 1, O=90°
0 250 500 750 1000 1250
(b) 103 :I L ‘ T EE T T T T | T T T IEE T T T T E
102 = = = =
E c x ES E
> C T T ]
g L 1 —
@ 10 = = 3
S F * * 1
% C I T ]
~o - £ —+ .
N
109 = = = E
1071 111 Il ‘ L1 1 Il 1 1 | 1 1 1 1 | 1 1 1 1
80 85 88 89 89.95 90

© (degrees)

Figure 8.34 Like Fig. 8.33 with rg = 3 m. |E6®|max = |E6®(3 m, 55°)| = 1.35 x 103 V/m;
|E6® (3m, 90°)| = 28.9 V/m. Taken from King and Sandler [2, Fig. 15]. © 1994 American
Geophysical Union.

suited to excite the lateral wave required for over-the-horizon radar to detect low-flying
targets within 1000 km of the coast line.

Conclusion

In this chapter the properties of vertical electric dipoles in the air over a conducting
or dielectric half-space with or without an electrically thin dielectric layer have been
described. Analytical formulas for the complete electromagnetic field in the air have
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Figure 8.35 Like Fig. 8.33 with rg = 30m. | Ejjg Imax = | E(g (30m, 55°)| = 135 V/m;
|E6® (30m, 90°)| = 0.289 V/m. Taken from King and Sandler [2, Fig. 16]. © 1994 American
Geophysical Union.

been discussed in terms of near, intermediate, and far fields. The far field includes a
surface-wave term that dominates near the boundary surface. Applications range from

communication with submarines in the kilohertz range of frequencies to microstrip
circuits at 5-10 GHz.
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Dipoles parallel to the plane boundaries of
layered regions; horizontal dipole over, on,
and in the earth or sea

Introduction

Dipole antennas located parallel to the plane boundaries of a layered region have
numerous important applications over a wide range of frequencies. Examples include
horizontal-wire (Beverage) antennas in air close to the earth, insulated antennas on or
below the surface of the earth or sea, cellular telephone transceivers close to the human
head, and patch antennas on microstrip.

The electromagnetic field of a dipole antenna parallel to the surface of a layered
region is more complicated than the field of the same dipole when perpendicular
to the boundaries. This is a consequence of the fact that all six components of the
electromagnetic field are involved. In the cylindrical coordinates o, ¢’, z’ shown in
Fig. 9.1, there are three components of electric type, namely, E,, E, and By, and
three components of magnetic type, namely, B,, B/, and Eg. The dipole with the
length 24 and electric moment 24,1 is located at the height d’ in the air (region 0, wave
number ko) over the surface of the electrically thin layer (region 1, wave number k1,
thickness /). This coats a dielectric or conducting half-space (region 2, wave number
ky = B2 +ian). The vertical 77 = —z axis passes through the center of the dipole. The
field in the air, 7/ > 0, is expressed in terms of the coordinates p, ¢’, 7’. The fields in
the dielectric layer, 0 < z < [, and in the conducting or dielectric half-space, z > [,
are expressed in terms of p, ¢, z. Note that z = —z’ and ¢ = —¢’. The complete field
subject only to the conditions

Oko < 3k1 < |kal, kil <0.6 9.1
is given by

, wpoh,I)
Eop(p.¢'.2) = Tk;cosqﬁ’

: 2 2i 7 —d"\? iko 3 3i
ki
) (el . |:r2 kor? < r ) r 2 kor?
1 07 1 1 " 07
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Figure 9.1 Unit horizontal electric dipole at height d” over plane boundary (z = 0) between air and
a sheet of dielectric with thickness / over a conducting or dielectric half-space.
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In these formulas,

+

w ion 172
ko= —. ki = koy/€rr, ko =koi/ex|1 ©-8)

WENEQr

k
r=yo2+ (@ —d), =+ @A) €= k—“ — ikol 9.9)
2

Py elt

k "+ d
. 0r2<6r2+Z + dt. (9‘10)

2
Py == p ) f(Pz):%(Hi)—/O

Note that € without subscript is the small quantity defined in (9.9); €, and €5, are the

2wt

relative permittivities of regions 1 and 2, respectively.
The field in the electrically thin dielectric layer (region 1) is

Biy(p, ¢, 2) ~ Bop(p, ¢,0) 9.11)
kil = z) +i(ki/k2)

Elp(p’ ¢7 Z) EO,O(IO’ ¢10)[ kll+l(k1/k2) } (912)

k2
Ev.(p,¢,2) ~ k—g Eo;(p, ¢,0) (9.13)

1
ki(l —z)+i(k1/k2)

El¢(p7 ¢’ Z) E0¢(107 ¢7O)|: k]l+l(k1/k2) ] (914)
Bi,(p, ¢, 2) ~ Boy(p, ¢,0) (9.15)
Biz(p, ¢,2) ~ Bo:(p, ¢, 0). (9.16)
The field in region 2 is
Bay(p, ¢, 2) ~ Bop(p, ¢, 0)e'*2E=D (9.17)

k .
Exp(p, ¢,2) ~ kz—'; Eop(p, ¢, 0)e2ED (9.18)

k2 .
Ex.(p,$,2) ~ k—g Eo(p, ¢, 0)e'2ED (9.19)

2

k .
Exp(p, ¢,2) ~ kZ—OE Eog(p. ¢, 0)e 2D (9.20)
By, (0, ¢, 2) ~ Bop(p, ¢, 0)e*2E=D 9.21)
Ba:(p, ¢, 2) ~ Boz(p, §, 0)e*2 7D, (9.22)

The six components of the field consist of three of electric type, namely, E,, E,, and
By which are usually dominant, and three of magnetic type, namely, B,, B;, and E.
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As for the vertical dipole, the field of the horizontal dipole can be described in terms
of the near field, the intermediate field, and the far field. These are defined exactly as

for the vertical dipole in Section 8.2.

The practical applications of the horizontal electric dipole in the presence of a

layered region are primarily those in which the dipole is close to the surface compared

to the radial distance p to the point of observation, i.e. d’ < p. When this is true, the

direct and perfect-image fields virtually cancel. It follows that

2h,1 , "+ d ik 1
Eop(p,¢/,z/) — MCOS¢/ etk0r2 {(i) (l_O _ _2

27Tk0 mn rn ry

ik 1 . 1/2 )
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S (e

2wk 1) r

2 2 d+d N\ ik 3 3i
€|zt —=+ T 3773
ry  kor; r . ry  kor

2 1/2 )
+ ikge (%) (é) e’PZf(Pz)“

- 2h,1 ; ik 1
Eoy (p, ¢.7) = MCOS(ﬁ/ glkor [(ﬁ) <l_0 _ _2>

2k ) " rs
12
T .
_ k2 At —lpzf P
o€ <k0r2> e (P)

2h.1 .
Boy(p. ¢'.2) = M sing’ ekor2
T

2 2 7 +d'\* [iky, 3  3i
N2 T T\ 2 kel
5 ()I‘2 2 2 1’2 ()l’2

2 12
vikoe [2)(Z) e iPFpy)
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2h.1)e : ik 1 ;
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Boc(p, ¢, &y = —HORDE Gy itors (£> {<Z +d/)
Z ’ ’ -

2 1) 1)

iko 3 3i 1 n 3i 3
X|l———=——]—€| ==+ — — —
%) r22 kor; r22 kor23 k8r§

d+d\* (iky 6 15i
+< - )(Z_ﬁ_FH}' (9.28)
2 0r;

In these formulas, r;, €, P>, and F (P,) are the same as defined in (9.9) and (9.10).

When |P;| > 4, the far-field formulas in the spherical coordinates rg, ®, ® are
useful. Since d’ < p, it follows that r, ~ rg and d/r ~ 0. In this case, z'/rg = cos ©
and p/rg = sin ® so that

wuyRhel)e i iko eT”
E| P)= ——— d oo | — ®— 9.29
0p (10, ©, ®) ke osde . (cos €)+ e 9.29)
— 2h,1 -  k
Ej. (ro,®, ®) = —@roheD)e cos @ ekoro (L0 Gne — 77 (9.30)
2 2k ro
woRhl)e i iko T"
B, (rg,®, ) = ————— P00 — — , 9.31
09 (ro, ©, P) 2w cose ro sin ® ( )
where
z \12
T =kie (—) e N F(Py)
koro
ik in © in® @
_ ko _esin 4 € sin 932)

ro € +cos® rg (€ + cos®)3°
When this value is substituted in the formulas for the three components, these become
E(,(ro, ®, @) = E(’)p(ro, 0, ®)sin® + Eg_(r9, ©, ®) cos ©

_ wpo(h.I)e cos @ gikoro |:ik0

2ko o

€2sin®

X (cos@sin@—esin@—i——
€+ cos®

. €sin ® cos ®
—sin®cos® + ——

€ +cos®

€2 sin® © n € sin® ®cos ®
rg (e +cos®)3 2 (e +cos®)3
_ wpo(2h,I) 2 sin’o

petoro 9.33
2mko osme rg (€ + cos ©)2 ©-33)
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|

Ejg(ro, ®, @) = Eg,(ro, ©, @) cos © — Ep (10, ©, D) sin ©

2he1 :  k
— M cos @ elkOrO l_O COS2 @
2k ro

€2cos®

)
®
—ecos@—i———}—sinz@—&
€ +cos® €+ cos®

€2 sin® O cos ® esin* © j|
ro(e +cos®)3  ri(e + cos ©)3

_ opohel)e

0s @ ¢tkoro
2k

|:ik0( cos ® ) € sin® O (sin’ ® — € cos O)
X — —

_ 9.34
€ +cos® 2 (e + cos ®)3 j| ©-34)

ro 7'0

2h.1 :
By (ro, ©, @) = Ho@heD)e cos @ e'koro
2
iko 1 € € sin ©
X —_— p— —_——
ro €+ cos® rg (€ +cos ©)3
_ HBo@heD)e cos @ ekoro
2w
o @ cos ® € sin> © . 9.35)
rg € +cos® rg (¢ + cos ©®)3

9.2 Horizontal traveling-wave antennas over earth or sea; Beverage
antenna (/ = 0,¢ = ko/kp)

Horizontal-wire antennas close to the earth or sea are efficient generators of lateral
waves. Although the field of a unit horizontal dipole close to the earth is smaller by
the factor |kg/ k2| than the field of a unit vertical dipole close to the earth, it is possible
to make the horizontal-wire antenna very long and terminate it so that the current in
it is a traveling wave. This can yield an electric moment that is very much greater
than that of a vertical electric dipole. When the traveling-wave antenna is at the small
height d’ <« p, kod’ < 1, over the earth, it can be a bare wire supported on insulating
posts. The termination at each end can consist of a suitable resistor in series with a
quarter-wave horizontal monopole, or it can consist of a vertical ground connection
(Beverage antenna) [1]. These two possibilities are illustrated in Fig. 9.2. Since it
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Figure 9.2 Wave antennas. (a) Conventional Beverage antenna; (b) horizontal-wire antenna;

(c) coordinates. Taken from King [1, Fig. 1]. © 1983 LE.E.E.

has been shown! that the terminations — whether horizontal or vertical — contribute
negligibly to the electromagnetic field since they are very much shorter than the main
horizontal wire, only the field of this latter need be determined.

The wave number of the current in the bare x-directed wire at the height d’ in the
air over the earth is not the wave number kg of the current in an isolated antenna in
the air. The proximity of the earth greatly modifies the wave number so that it has the

value k;, given by

1 [2] Chapter 18.
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2 1 K1Qkyd")  inl(2kad")
kL: 0 1+ / nNe / /
In(2d' /a) | (2kad") 2k>d 4kod
1/2
A 2kd  (kyd))?  (kad')?
_l< 3 T s T ’ 036

where K| and ;| are modified Bessel functions and the following condition is imposed:

kod < 0.27. (9.37)
When
0 < |kad'| < 0.8, (9.38)

the wave number k;, is well approximated by the following simpler expression:

(9.39)

1/2
o[y med) 4y = §—idr = 4ked) ]
L= In(2d’ /a) ’

where y = 0.5772.
When (9.37) is satisfied, the antenna behaves like a transmission line with the
characteristic impedance

ZokyL | 2d’ 60k, 1 2d’
= — =—In—.
2wk a ko a

Z. (9.40)
In these formulas, a is the radius of the wire. The current in the wire has the general
transmission-line form

—iVy sinlkp (h — x) 4+ i6y]

I(x) = , 9.41
X0 = T s £ 1) ©41)

where 6), = coth™!(Z, /Z.). When Zj, the terminating impedance at x = A, is equal
to the characteristic impedance, i.e. Z;, = Z., 0;, = oo and

Vo o . .
I(x) = Z—O etk — 1 0yl (9.42)

m

The impedance of the antenna at the driving point x = 0 is
Zin =7+ Zo+ Zs, (9.43)

where Z = Z_. is the impedance of the terminated long wire with the length 4,,, Zg
is the impedance of the terminating sections at x = 0 and x = h, and Z; is the
impedance of the generator at x = 0 (see Fig. 9.2). For traveling-wave operation,
Zo+ Zg = Zo+ Zp = Z. (where Z is the lumped impedance in series with Z
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at x = h) so that Z;, = 2Z.. With the horizontal-wire antenna, Z is the impedance
of an open-ended section of the horizontal-wire line with the length / so that Zy =
iZ.cotkyl. With the Beverage antenna, Z is the impedance of each of the grounded
vertical conductors at x = 0 and x = h.

The components of the electric far field of the traveling-wave current in the
horizontal-wire antenna with the length 4 adjusted to maximize the field with 4 = A,

are

Ey, (10, ©g, ®o) = I, (0)h.(Og, Po)[Ey, (0, Op, 0)]; cos P (9.44)
Ejg (o, ©g, ©g) = I (0)h.(Og, Po)[Eyg (ro, Op, 0)]1, cos Do, (9.45)
where

l[l _ ei(kL_kO sin ®q cos @)k, ]

he(®g, ®g) = - 9.46
«(®0, o) ki — kg sin ®q cos P ( 2)

and

(BL — koYhm = — tan™ ! (,BLa—L k0> ) (9.46b)

Since ¢, is usually small,

b4
~ ) (9.46¢)
" BL—ko

The associated magnetic field is
By (ro, ©g, ®o) = I (0)1. (g, Po)[Bye (ro, Op, 0)]1, cos Po. (9.47)
In these formulas, rg, ®g, and ¢ are spherical coordinates referred to the origin
at p = 0, 77 = 0, on the surface of the earth directly below the generator at
x = 0 in the horizontal-wire antenna. Also, the subscript & denotes the field of
a unit horizontal electric dipole at x = 0, z7 = d’. The three components are

given by (9.33), (9.34), and (9.35) with the subscript 0 added to ® and ® and with
€ = ko/ k.

In order to display the characteristics of a horizontal-wire antenna, the numerical
values of the several parameters can be calculated from the appropriate formulas [3].
For this purpose, consider antennas designed for use at f = 10 MHz over earth (o2 =
0.04 S/m, €3, = 8) and sea water (0o = 4 S/m, €, = 80). For operation over the earth,
the field for the two heights d’ = 15 and 45 cm are studied; for operation over the
sea, the height d’ = 4 cm is used. The several parameters and quantities of interest for
these three cases are shown in Table 9.1.

The magnitude of the electric far field |E(g (ro, ®o, o)| as obtained from (9.45)
is shown in Figs. 9.3, 9.4, and 9.5, respectively, for the three cases A, B, and C
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Table 9.1. Properties of horizontal-wire antenna with maximizing length hy, radius a, and

height d’, at f = 10 MHz®

Case A (dry earth) B (dry earth) C (sea water)

a (m) 0.003 0.003 0.003

ko (m™1) 0.2094 0.2094 0.2094

o (S/m) 0.04 0.04 4

€9y 8 8 80

ky (m~ 1) 1.7827¢1073 1.7827¢10-73 17.7721£10-78
ky = By +iay (m~1) 1.3284 4+ i1.1888  1.3284 +i1.1888  12.6365 + i12.4967
d’ (m) 0.15 0.45 0.04

kod’ 0.03141 0.09423 0.00838
kod' 0.2674¢10-73 0.8022¢10-73 0.7109¢:0-78
kp = Br +iop (m™1) 0.2407 +i0.0129  0.2223 +i0.0079  0.2336 4+ i0.0129
Br — ko (m™1) 0.0313 0.0129 0.0242

Z; = Ry —iX] (ohm) 317.6 +i17.0 363.3 4+i12.9 219.54i12.1
Ry (m) 87.85=2.93%9 201.96=6.734  109.57 = 3.651
he(/2,0) (m) 38.47¢1-10 78.25¢10-929 44.47¢10-987
he(/2,0)/ he ()2, ) 15.33¢~10-17 38.93¢ 10788 18.55¢—10.783
1¢(0, 0) (m) 5.13¢1:32 4.00¢'1-354 3.38¢11-38
he(0,0)/ he(m/2, 0) 0.13¢0-22 0.05¢10-425 0.076¢/0-393
[(ko/k2)he ()2, 0)] (m) 452 9.19 0.52

hey (m) (vertical monopole) 4.78 478 4.78

4 Taken from King [3, Table I]. © 1992 American Institute of Physics.

listed in Table 9.1. Graphs in the xz’-plane are shown for the distances ro =50,
100, 500, and 1000 km with I,(0) =10A. Graphs in the xy-plane are shown only
for ro =50km. The maximum of the field occurs at ®y=76.4 and 79.5° in cases
A and B over earth, at ®y=283.4° in case C over sea water. (The corresponding
maxima for the vertical monopole as obtained in Chapter 8 are ®9=66 and 78°.)
The horizontal-wire antenna generates a narrow directive beam along the antenna axis
that is tilted upward from the earth by only a small angle. The vertical monopole
generates a rotationally symmetric pattern that is tilted upward at a much greater
angle. The surface wave, with its maximum along the surface ®g=m/2, is com-
parable in magnitude for the horizontal-wire antenna and the vertical monopole
when both are over the earth. Over the sea, the small factor ko/k, makes the
surface wave due to the horizontal-wire antenna much smaller than that due to the
vertical monopole. A complete experimental verification of the current distribution
and the field pattern as determined from the above formulas has been reported by
Rama Rao [4].

The horizontal field pattern of the terminated horizontal-wire or Beverage antenna is
unidirectional and quite directive. The directivity is greatly increased when horizontal-
wire antennas are arranged in an array of parallel elements all at the same height above
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Figure 9.3 Magnitude of electric far field Ej, (g, ©, @) of horizontal-wire antenna over the
surface of the earth; @’ = 15cm, f = 10 MHz (case A). (a) Rectangular graphs in vertical xz’ plane
(®g =0, ); (b) polar graphs in xy plane, ryg = 50 km. Taken from King [3, Fig. 3]. © 1992
American Institute of Physics.
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Figure 9.4 Magnitude of electric far field E(g (ro, ®, @) of horizontal-wire antenna over the
surface of the earth; @’ = 45 cm, f = 10 MHz (case B). (a) Rectangular graphs in vertical xz" plane
(®g =0, m); (b) polar graphs in xy plane, rg = 50 km. Taken from King [3, Fig. 4]. © 1992
American Institute of Physics.
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Figure 9.5 Magnitude of electric far field E6® (r9, ®, @) of horizontal-wire antenna over the
surface of the sea; d’ = 4cm, f = 10 MHz (case C). (a) Rectangular graphs in vertical xz’ plane
(@9 = 0, m); (b) polar graphs in xy plane, ry = 50 km. Taken from King [3, Fig. 5]. © 1992
American Institute of Physics.

the surface of the earth and all driven in phase with currents of the same amplitude.
If the distance s between adjacent elements is a half-wavelength or more (s > 1¢/2,
Lo = 27/ kp), the mutual interaction is negligible and the current in and driving-point
impedance of each element is the same as when isolated. The array is, therefore,
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|
uniform and the far field is that of a single element as given by (9.44) or (9.45)
multiplied by the array factor of a uniform array, namely,
sin(Nn sin ® cos )
A(O, Q) = — - . (9.48)
sin(;rn sin ® cos )
Here N is the number of elements in the array and » is the distance between adjacent
elements in fractions of the wavelength in air.
I
The terminated insulated antenna in earth or sea

9.3

The amplitude of the current in a bare antenna immersed in the earth or sea is rapidly
attenuated due to ohmic losses and radiation. When the copper conductor with the
radius a is insulated with a dielectric layer with the radius » or thickness b — a,
its properties change greatly. If the wave number k; = w./€4,/c of the insulating
dielectric layer is small compared with the magnitude of the wave number k, =
B2 + iy of the ambient medium and the transverse dimension is electrically small, i.e.

lka| > 3kq, lkra| < |kob| < 1 (9.49)

the current in the conductor is distributed as in a transmission line with the wave
number kj, and characteristic impedance Z..

A schematic diagram of the end-driven terminated insulated antenna [5] is shown in
Fig. 9.6. The traveling-wave current is given by

I (x) = I, (0)ekL*, (9.50)

When the antenna is at the depth d below the air—earth or air—sea surface and the
conditions

lkad| < 1, d> > b* 9.51)

are satisfied, the wave number k;, is given by

i o 1 27y n T 41 2 L1
= - n— n
FERML T /ey [ \ope T 2 kbl " Tkad

172
— 0.90] } (9.52)

and the characteristic impedance by

ki b
= QRCL 2, 9.53)
2rk; a

In (9.52), rg is the internal resistance per unit length of the copper conductor.
The impedance of the antenna at the driving point is

Zin=72Z+Zo+ Zyg, (9.54)
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Figure 9.6 Insulated antennas. (a) Completely insulated dipole; (b) terminated insulated antenna.
Ambient medium: earth, sea water. Taken from King [5, Fig. 1]. © 1986 L.LE.E.E.

where Z is the impedance of the insulated length / of the antenna, Z is the impedance
of the bare monopole in series with the impedance Z, of the generator. At the end
x = h, the termination consists of a lumped impedance Zj in series with the bare
monopole with impedance Zy. For matched operation, Zg + Z, = Zo + Z; = Z. so
that Z = Z. and Z;, = 2Z..

The electromagnetic far field generated in the air by an insulated antenna at the
depth d in the earth or sea is the field of a unit electric dipole at p = 0, multiplied by
the quantity

il — ei(kL*kO sin ®¢ cos <I>0)h]

he = . 9.55
¢ ki — ko sin ®q cos dg ( )

The maximizing value of &, is given by (9.55) with

T

h=hy~——ro,
BL — ko

(9.56)

where B is the real part of k; = Br + i and ko is the real wave number of air.

The traveling-wave terminated insulated antenna can be arranged in highly directive
arrays. N identical elements are located at the same depth d with adjacent elements
separated by the distance s ~ A,/4 where A, = 27 /S,. Note that 3, is the real part of
ko> = B> + iay, and kj is the wave number of the ambient medium. The far field in the
air of the array is the far field of a single element multiplied by the array factor

sin(Nn sin ®q cos Pg)

A(N,n) = (9.57)

sin(zrn sin ®g cos dg)
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I
N is the number of parallel elements, n is the distance between elements in fractions
of a wavelength in air, i.e. n = s/Ag where Lo = 27/ kg and kg is the wave number of
air. Specifically,
E(g (ro, ©g, ©o) = [Ejg(ro, ©o, o)l
il (O)[l _ ei (kg —kg sin ®¢ cos <I>0)h]
- A(N,n) (9.58)
k; — ko sin ®¢ cos ®
Eq,. (ro, ©g, o) = [E, (ro, ©p, Po)ln
1. (01 — ei(kako sin ©¢ cos Pg)h
Ol : LA, 9.59)
k1 — ko sin ®q cos P
Here,
. . j k cos ®
[Ejo (0. @, @0)li = s cos dg ¢/ eihorn | 220 .
21k ro \ 1+ (ka/ko)cos ®g
ky sin? O [sin? O — (ko/k2) cos @0]} ©.60)
kord [1 + (ka/ko) cos O3 '
WL iord etkoro sin® @g
[E(, (ro, ®g, Po)]n = cos ®g e'"? ) (9.61)
2k rg [1 + (k2/ ko) cos @0]2
The formulas with the subscript / apply to the unit horizontal dipole at the depth d in
the earth or sea. Note that they are the same as for the unit horizontal dipole on the
surface of the earth or sea in air except for the factor ¢/*2¢. When the dipole is below
the surface in the earth, the electromagnetic waves travel vertically upward from the
dipole to the surface and then propagate as lateral waves parallel to and near the surface
in the air.

A comparison of the terminated insulated antenna at a depth d in the earth described
in this section with the terminated traveling-wave horizontal-wire antenna described
in the preceding section shows great similarity. The reason is quite simple. The
horizontal wire is actually an air-insulated antenna lying on the surface of the earth.
The conductor is eccentrically located in the infinite air insulation.

I
9.4 Arrays of horizontal and vertical antennas over the earth

Vertical monopoles on the surface of the earth are usually grounded by means of
a network of bare conductors as described in Chapter 8. For most communication
purposes at broadcast frequencies, this is entirely satisfactory and the loss of power
in the ground system is of no consequence. When the purpose of the antenna or array
of antennas is over-the-horizon radar, long-range detection of a target over the sea
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requires ionospheric reflection and involves all of the complications that go with it.
The actual frequency to be used at any given time must be determined by a separate
ionosphere-monitoring system. Each of the six frequency bands in the 5 to 28 MHz
range has its own 12-element subarray complete with backscreen and ground screen.
The separate receiving arrays are quite different. The design and properties of this
highly specialized system are not described as the end of the cold war has made
it largely inoperative. Furthermore, the ionospheric-reflection method is not useful
for the detection of low-flying targets nearer than 500 to 1000km. For this range,
use must be made of the surface wave. The field of the grounded vertical monopole
includes a substantial surface wave. This can be increased and all ground losses
eliminated if the ground system is replaced by radial traveling-wave antennas either of
the horizontal-wire (Beverage) type or in the form of buried insulated traveling-wave
antennas.

Consider an omnidirectional array consisting of a vertical monopole base-driven
against 10 radial horizontal-wire antennas. The arrangement is shown in Fig. 9.7. Each
of the horizontal elements has a length £, = 201.96 m, is at the height d’ over the
earth, and is terminated at the optimum length in an impedance Z, = Zo + Z; = Z..
Here Zy is the impedance of a quarter-wave section and Zy is a lumped impedance.
With d’ = 45 cm, the electrical height kod’ at f = 10 MHz is kod’ = 0.094, which is
sufficiently small so that coupling among the 10 elements is negligible and each can
be treated as if isolated. Since the impedance of a single element as given in Table 9.1,

case B, is

Z; =Z,=363.341i12.9 ohms (9.62)
the combined impedance of the 10 equally spaced elements in parallel is

Z, = % = 36.3 +il.3 ohms. (9.63)

With a proper choice of the height %, and radius a, of the vertical monopole, its
impedance Z, can approximate the complex conjugate of Z, in (9.63) very closely. For
example, with kgh, = 1.477 and a, /A9 = 0.007022, Z, = 36.6 — i0.13 ohms. With
this choice, the impedance of the monopole in series with the 10-element horizontal
array is

Z=R—-iX=Z,+Z7Z,="729+il.20hms. (9.64)

The entire array is conveniently driven from a 72-ohm coaxial line that is buried in the
earth and extends vertically upward so that the extension of its inner conductor is the
vertical monopole and the 10 radial horizontal antennas are connected to the shield.
This is illustrated in Fig. 9.7.

The input current to the monopole is

I;(0) = —1,(0) = ; (9.65)
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Figure 9.7 Omnidirectional antenna with 10 radial elements. (a) Top view; (b) side view. Taken

from King [3, Fig. 6]. © 1992 American Institute of Physics.

The power in the array is

P =I5 (0)R = I}(0) x 72.9. (9.66)
The power dissipated in each resistive termination is

Py = [0.11,(0)e *t" >Ry = 12(0) x 0.01 x e™>?R; = 0.000412(0)Ry. (9.67)

Since the power in the monopoles with the impedance Z in series with Z, is radiated,
the power dissipated as heat is in

R; = R;, — Ry, (9.68)

where R, = R., and Ry is the resistance of an open-ended section of the horizontal
antenna. This has the impedance Zy = Z. cotkrl, where k; = B +iop = 0.2223 +
i0.0079 and Bl = /2 so that [ = /0.4446 ~ 7.07 m. It follows that

cos(%n +iapl)

Zo = C.l—.zzctanhotLl’\'ZcotLl,
sin(37 + iapl)

Ro ~ arlR, = 0.0079 x 7.07 x 363.3 = 20.3 ohms.
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Hence, R;, = 363.3 — 20.3 = 343.0 ohms and

Py = I%(0) x 0.0004 x 343.0 = 0.13712(0). (9.69)
The power dissipated in the terminations of all 10 elements is

P, = 10P; = 1.371%(0). (9.70)
The total power radiated is

P = (72.9 — 1.37)12(0) = 71.51%(0). (9.71)

The radiation efficiency is 71.5/72.9 = 98%. Note that this does not mean that 98%
of the power is in the space wave. Both the vertical monopole and the horizontal wires
generate strong surface waves which transfer power exclusively into the earth or sea
as they propagate outward. Since it is entirely by means of the surface wave that low-
flying targets can be detected, the power in the surface wave is useful power.

The electric far field of the horizontal-wire antennas in the omnidirectional array is
obtained from (9.45) for each of the 10 radial wires. It is

i (1 _ ei[kL —ko sin ©¢ cos(<I>o+n7r/5)]hm)

9
Ele (0. ©, ©0)lha = 0.17,(0 :
[Eo6 (70 ©0. P0)lia "( )n; ki — ko sin ©g cos(®g + n/5)

x cos(Pg + nw/S)[Egg(ro, O, 0)]5. (9.72)

Since the field in the backward direction of any of the 10 wires and the beam
width in the horizontal plane are both small, the field of the horizontal array is well
approximated by

l[l _ ei(kL—ko sin ®q cos ®g)h,,

E! , ®p, ® =0.17,(0 -
[Epg (o, ©0, o)lna x ( )( k1 — ko sin O cos By

) [Ege (0, @0, 0)]4

X [cos @y + 2 cos(Pg + 7/5) + 2 cos(Pgy + 27/5)]. (9.73)

This is approximately circular with a value near that in the direction ¢ = 0, so that
the final approximation is

[E6®(r0’ ©0, ®0)lha ~ [E6@(r0, ®0, 0 1na
l[l _ ei(kL—ko Sin@o)hm]
ky — ko sin ®

= 0.3241,(0) ( ) [Ege (0, @0, 0)]5.
(9.74)
The electric field of the vertical monopole with 7,/(0) = —1,(0) is

[E(r)@(rOa O0)lvm = — I« (O)hev[E{)@(rO’ ©0)]v, 9.75)
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where he, is the effective length and [E(q (ro, ©¢)]y is the field of a unit vertical
monopole at a height d’ ~ 0 as given by (8.64).
The complete field of the monopole and horizontal omnidirectional array is

[EQe (ro. ©0)1a = [Ejg (ro, ©0)lum + [Ejg (o, ©0, 0)]ha
= _Ix(o)hev[E(r)@(rO, Oo) ]y + 0.3241,(0)

(i[l _ itk —kosin (~)0)hm]
X

E! , O, 0]y 9.76
k. — ko sin ©q )[ 00 (10, ©0, 0) 15 (9.76)

When the explicit formulas for the far fields of unit vertical and horizontal dipoles are
substituted in the above expression, it becomes

w . k .
[Eo (ro. ©0)]4 = zino 1, (0)eikoro [é hyy sin ©g + 0.324

i[l — efkL=kosin O]\ | Fif, cos O
x ki — ko sin ® [Z (ko—i-kz cos ®0>
ky ( sin® Oq [sin® Og — (ko/kz) cos Op]
kird [1+ (ka/ko) cos Op]? '

(9.77)

The effective length of a monopole with height iz ~ Ag/4 s hey ~ 2h/7 ~ Ao/21 =
kO_1 = 4.78 m. In the plane ®¢ = /2, ro = p and the field reduces to

w ,
[Epo (0, /214 = ——20 [ (0)e'k0”
k i11 — et kL—ko)lm k
x [ = +0.324 il—e ] 2. (9.78)
kg kr — ko kgp?

With Table 9.1, case B, kz/ k3 = 40.65¢'%73 = 30.29 + i27.11 and

ifl— el kL—ko)hm ]

hon(/2,0) = = 78.25¢'99% = 46.84 + i62.68 (9.79)
ki, — ko

so that

. ky etkor
Efo(p.m/2)]4 = —65.81¢/0806 2E02 1 ) & 9.80
[Eoe (0, /2)]a 2k «(0) = (9.80)
This is substantially greater than the field of the monopole alone, namely,

ikop
r _ 10.73 @Hoka e

(e (o /Dl = —40.65¢/°7° 057 10) . (9.81)
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Figure 9.8 Directional fan antenna with 10 traveling-wave elements in a 60° angle and one vertical
monopole. (a) Top view; (b) side view. Taken from King [3, Fig. 7]. © 1992 American Institute of
Physics.

Evidently, the use of the array of horizontal wave antennas with a vertical monopole
in place of the usual grounding network not only increases the space wave but uses the
power dissipated in a grounding network to generate a large and useful addition to the
surface wave.

An alternative to the omnidirectional array is the directional fan antenna illustrated
in Fig. 9.8. It is like the omnidirectional antenna except that the 10 radial horizontal-
wire antennas are equally spaced in an arc of 60° or 7/3 radians instead of 360° or
2m radians. Even at the much closer spacing, the coupling among the 10 elements
is small because they are close to the earth. Consequently, a good approximation of
the complete field of the horizontal elements is the sum of the contributions of the 10
elements with each treated as if isolated. It is

[Epe (o, ®g, P0)]na = 0.1i I (0)[ Eyg (ro, Oo, 0)]n
9 1 — ei[kL—kO sin ®g cos(®g—nm/54)]h,
x ) -
o kr — ko sin ®q cos(Pg — nm/54)

x cos(®g — nmw/54), n = odd. (9.82)

The complete field of the array is
[Epe (o, ©o, Po)la = [Epg (o, ®0)lom + [Eje (1o, Oo, Po)lha, (9.83)

where [Ejq (ro, ©0)lum is given in (9.75). This provides a broad unidirectional beam
from the horizontal wires and an omnidirectional field from the vertical element. It
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can serve as a self-contained array or an element in a broadside array directed from
the Atlantic seaboard toward the ocean or from the coast of the Gulf of Mexico
toward the Gulf. It is an efficient surface-wave antenna for detecting low-flying
targets but also radiates an upward-directed space wave for use in ionospheric
reflections.

If the use of an array of horizontal-wire antennas in conjunction with a vertical
monopole is inconvenient, it can be replaced by a similar array of insulated traveling-
wave antennas in the earth or sea a small distance d from the surface. The properties of
such elements are discussed in Section 9.3. For the present application, the insulation
must be thick and have a wave number k; close to that of air, so that styrofoam is
appropriate with k; ~ ko. With f = 10MHz, o, = 0.04S/m, €3, = 8§, d = 50cm,
b =20cm, and a = 1 mm,

ky =0.229 +i0.0284m™!, Z, =347.7 4 i43.1 ohms. (9.84)

The optimum length for the insulated wire when terminated in Z, is
b/
" BL —ko

The associated effective length is

= 160.3m. (9.85)

1 4 ¢~ othm

—— [ =29.3m. (9.86)
kr — ko

|hel ='

The terminating impedances Z 4 consist of bare monopoles with the electrical length
B2l = m/2 in the earth or [ = 7 /28, = 1.18 m in series with lumped impedances
Zp such that Z, = Zo+ Zp = Z, = 347.7 4 i43.1 ohms. The impedance of the
10 radial elements in parallel is 34.77 + i4.31 ohms. The driving-point impedance
of the 10-element array in series with the vertical monopole is Zy, = Z, + Z, =
36.6 —i0.13+34.77+i4.31 = 71.37+i4.18 ohms. This value corresponds closely to
the impedance with the horizontal-wire array. As the actual and effective lengths of the
buried insulated antennas are substantially smaller than those of the horizontal-wire
antennas, the contribution to the electromagnetic field by the currents in the radial
array is also smaller. But the general properties of the array are much the same
whether the radial array consists of horizontal wires in the air or insulated wires in
the earth.

9.5

Horizontal antennas over the spherical earth

All of the formulas in this chapter apply to horizontal antennas close to the surface of
a planar earth. When the point of observation is also close to the surface with 7/ ~ 0
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or ® ~ /2, rg ~ p, acorrection for the spherical earth can be made [6]. Under these
conditions, the intermediate and far fields are contained in

[Eop(p. @', 0)]n ~ %kozko cos ¢’ e*0” <% - T) (9.87)
2

[Eox (o, ¢/, )]s ~ ;;",i‘z O cos ¢’ ekor (% = T) (9.88)

[Bog (0, ¢', 0)1j, ~ ;‘T)Z cos ¢’ e'kor (% - T) : 9.89)

where

T = g (%)l/ze"’”}f@o), Py = ];%). (9.90)

The corresponding formulas for the vertical dipole also with d ~ 0, 7/ ~ 0, are

OO ixp kO —ky

E 0]y = —=¢é*P | ——-T ) =—I[E ,0,0 991

[Eop(p. Oy = 5 =~ e ( ; ) & LE0p(p, 0,001 (9.91)
w . ik —k

[Eo(p, 0)], = zﬂ ekor (—0 - T) = 2 [Eoz(p, 0, 0)]1 (9.92)
ko P ko
_ MO ke [ Fko _ —k

[Bog' (0, )]y = —— 0P (=2 — ) = —=2 [Byy (p. 0, 0)]s. (9.93)
2 0 ko

The above formulas give the intermediate field when T ~ 0 and the far field when

ik k2
T~ 22 (9.94)
P k0p2
Evidently, any of the three components of the horizontal dipole are given by the
corresponding component of the vertical dipole with the simple formula
—k
H=—"Vcos¢ (9.95)
ko
This also applies to the field when expressed in the spherical coordinates rp, ®, ® with
ro— p,® — /2.
In the spherical coordinates r, ®, ® with the center of the earth as origin and the
angle ® measured from the radial line through the center of the dipole, the following
relations apply:

[EOp(,O, 0)]y = [Eoel(a, ©)]y, [E()z/(,O, 0]y, = [Eor(a, ©)],
[Bog' (0, )]y = [Bow(a, ©)]y, (9.96)
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where r = a is the radius of the earth. The corresponding relationships for the
horizontal dipole are

—ki

[Eop(p. . 0)]s = [Ege(a. ©, )] = k—2° [Eoe(a, ©)], cos d (9.97)
—k

[Eox(p. ', O] = [Eor(a, ©, ®)]; = k—;’ [Eor(a, ©)], cos d (9.98)
—k

[Bog (0. ¢, )i = [Bow(a, ©, D)) = k—z‘) [Boo (a, ©)], cos ®. (9.99)

With (8.115) and (8.116) in Chapter 8, it follows that

, —ko 1)
[Eop(p, ¢, 0)]n =k—2 & [Boo(a, ©®)], cos @
—owk? etkopstim/4
=% e L(p, g) cos @ (9.100)
47Tk2 ~/TPs Pc
, —ko w
[Eoz(p, @', 0)]n % Uk [Bow (a, ®)]y cos O
_ k ikops+im/4
— THowRo ¢ L(pa, g) cos ® (9.101)

dwky  /TTPsPC
—k
[Bog' (0, ¢, 0)] = k—zo [Boo(a, ©)], cos ®

Mokg eikops+in /4

= ——— (1, g)cos . (9.102)
dmky  /TTPsPc 8
Here,
ko [ koa 173 koa -3 Ps koa 13
- (== , =al — , == = —_ . 9.103
8 k2< > ) pe=al — Up) S > ( )

The evaluation of I7(12, g) is given in (8.118).

As a specific example, consider the array of horizontal traveling-wave antennas and
vertical monopole treated in the preceding section, erected on the earth but transmitting
over sea water. The component of the field [E(g (ro, ®0)]a for the array includes
the fields of the unit dipoles, namely [E(g (ro, ©0)]um for the vertical monopole and
[Eye (10, ©0, 0)]na for each horizontal element. The generalization is valid only for
points on the surface, so that it is necessary to set ®g ~ 7 /2, ro ~ p. In terms of the
coordinates (r, ®, ®) with the center of the earth as origin and r = a, the vertical field
of the array is given by (9.76) in the form

[Ep,(a, ©,0)]a = L (0){—hey[Ep, (a, ©)]y + 0.324h4[Ep,.(a, ©,0)]1}, (9.104)
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where ® = pg/a. With (9.98) and (9.101) with & = 0,

k
[E(r)r(as 0©,0)]a = 1:(0) (é hey + 0~324heh) [E6r (a,0,0)]n

—wuokol. (0 k eikop5+iﬂ/4
= Tl O) (K2 40 304, L, 2),
4ky ko TTPs Pe

(9.105)

where, at f = 10 MHz,

hey = 4.78 m (9.106a)

i[1 — eltk—ko)hm)
hep = =46.84 +i62.68 m. (9.106b)
kr — ko
With these values,
) kol (0O ikops+im/4
(£}, (a, ©,0)]4 = —65.81¢10800 210k0L ) ¢ L(n. 8). (9.107)

dky T
At f = 10MHz,

0.2094 x 6378 x 103
2

-1/3
pe = 6378 x 10° ( ) =73.0x 10°m =73km.  (9.108)

For sea water, kp = 17.77¢"98 m~! and

1/3
0.2094 (0.2094 X 6378 x 103> / 1 0308

= - 9.109
8 = 177761078 2 (9.109)
For these values,

I (n2, g)| ~ 2.46¢~ 10305/ P (9.110)
so that
kol. (0 —1.0505/pc
LE} (@, ©,0)]4] = 161.8‘“’“: 0l:(O)} : 9.111)
ky A/ Tt Ps Pc

This is the vertical electric field at any distance p; = a® along the surface of the
sea due to the omnidirectional array consisting of a vertical monopole and a radial
10-element array of horizontal-wire antennas at a height d’ = 45 cm over the earth
close to the sea coast.

At a distance pg; = 500km, (9.111) gives

[Ef,(a, ©,0)14] = 2.67 x 10781,(0). (9.112)
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9.6 Horizontal dipoles for remote sensing

If the driving-point current in the vertical monopole is 1;(0) = —1,(0) = 100 A,

[EG, (a, ©,0)]4] =2.67 uV/m. (9.113)
The planar earth formula (9.80) gives

[lEf(p, /2)]a| = 1.34 x 107 V/m = 134 pV/m. (9.114)

It is seen that at a distance of 500 km over the sea, the effect of the earth’s curvature is
to reduce the field by roughly a factor 50 below the value for a plane earth.

Horizontal electric dipoles for remote sensing on and in the earth,
sea, or Arctic ice

Horizontal electric dipoles have a wide range of applications in remote sensing.
Antennas for this purpose are located on satellites at altitudes of the order of 800 km,
on aircraft flying at various heights, and directly on the surface of the earth, sea, or ice.
They are used to map the surface of the earth, monitor the properties and motions of
ice sheets, and locate objects buried in the earth or snow and submarines submerged in
the ocean or under the Arctic ice. A detailed description of these interesting and in part
highly complicated systems is beyond the scope of the book. However, they all involve
the electromagnetic field of a dipole antenna parallel to the surface of the earth and the
electromagnetic field backscattered from that surface and from objects of arbitrary
shape and size at different depths under the surface. A signal from the transmitting
antenna induces currents in the earth or sea and in buried or submerged objects. The
direction and magnitude of these currents are determined by the polarization of the
incident field and the shape, electrical size, orientation, depth, and electrical properties
of a buried or submerged object. These currents radiate the scattered field which can be
received by the transmitting antenna switched to the receiving mode as in monostatic
radar or by a separate receiving antenna as in bistatic radar.

When the transmitting and receiving antennas are on the surface of the earth, sea,
or ice in a bistatic arrangement, the field transmitted into the earth and that received
from a buried scattering object cannot be determined by plane-wave theory. The two
components of the electric field in the earth due to an insulated horizontal dipole on
the surface of the earth are given by (9.2) and (9.3) with 7/ = d’ = 0, ¢’ = —¢ and
€ = ko/ ky, and multiplied by ¢'*2% where 7 is directed downward into the earth. They
are

—ouokoheD) [iky 1 i
Erp(p, ¢,2) = — | —

ang P _P__

3

ka

2z L
(l) e P F(Py) | e0P etk cos (9.115)
kop
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wpokoh D[ 2 2
Ex(p.¢.2) = T k2 L2 ke
-k2 1/2 ) ) i
+ Ko (l) P F(Py) | 0P e sin g, (9.116)
kap \ kop
where
k3p Py eit
Po=—0n.  F(Po) =51+ —/ dt. (9.117)
242 2 0 ~2mt

It is this field that propagates downward into the earth and induces currents in
any buried objects in the earth. A detailed analysis of the current induced in an
insulated metal rod at a depth d below the surface in different locations relative to the
transmitting dipole has been made.> The field re-radiated by these currents at points
on the surface has also been determined. It is this field that is detected by a horizontal
receiving antenna moved about on the surface of the earth in the vicinity of the buried
rod. The results show a significant change in the electric field over the volume occupied
by the rod and that this is sufficiently localized to permit an accurate bounding of the
area above the rod in a detail that clearly defines its shape and orientation. It is to be
emphasized that the field re-radiated by the buried object and maintained along the
air—earth surface is a pure lateral wave. Complete formulas for the field in air due to a
horizontal electric dipole at a depth d in the earth or sea are in Chapter 5 of [2].

A similar application with a horizontal electric dipole in the sea close to the surface
as the transmitter and a movable crossed dipole also in the sea just below the surface
as a receiver has been analyzed [9] and shown to permit the detection of submarines
at depths up to 100 m. A generalization of the method to permit the transmitting and
receiving antennas to be laid on the surface of the Arctic ice has been made [10].

In the synthetic aperture radar (SAR), the backscattered field is received and
recorded successively and over a range of frequencies. It is then processed to form
an image. In one system, the radar transmits in a series of narrow bands of about
1 MHz that step up in frequency from 20 to 90 MHz at about 100-ps intervals. The
returns are then integrated to produce images. This process of combining the returns
from a wide narrow-band series gives the radar the effect of a large band width. Very
extensive signal processing is required and this is based on plane-wave theory. Of
primary importance is coherence, that is, the phase of the reflected field is defined
well enough and contains the information needed to characterize the target. Can the
synthetic aperture radar accurately reconstruct the image of a target buried in the earth
if the signal processing assumes that the scattered field is a plane wave that obeys the
well-known laws of reflection and refraction? Can the essential coherence be achieved
with the plane-wave assumption?

2 See [2], Chapter 7, [7] and [8].
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Consider an electrically short insulated metal rod buried at a depth d in the earth.
The rod has the length 2/ and the effective length 24,. If the current induced in the
rod by the field incident from the horizontal antenna of the aircraft flying parallel to
the x-directed rod at the height 7’ and radial distance p is I, the component of the
electric field scattered or re-radiated by the rod parallel to the antenna on the aircraft is

—O)MO(ZheI) eikzdeik()r()
2mky

ko | iko 1 i ) (%) iko 1
X{——-"-———-—-"=T|—-(—=)l——=])t-
kol ro 13 kory P ro) \ro 1}

Eop(p,0,7) =

(9.118)
The magnetic field is
ko(hel) .4 ; i k 1 [
Bog (0, 0, 7) = Melkzdezkoro l_O___l_3_r_2T , (9.119)
27k ro ry  korg P

where

ro=yp?+2%  n=.p*+ @ +d)? (9.120)

7 =20 (L) e RFEP), P= 0? ( or2 +ka(z + )) (9.121)
2 \korz 2k3 kop

it

P;
F(Py) = %(Hi)—f 2 dt. (9.122)
0

2t

It is this field that is received by the aircraft at the height 7’ and radial distance p.
It is very different from that assumed by plane-wave theory. In its simplest form,
this assumes that the induced current in the buried dipole generates a plane wave
that propagates directly to the receiving antenna in the air. That is, the signal has the
simple form of a free-space plane wave, namely,

Eop ~ €02 cos ¢/, (9.123)

where r; is given in (9.120). This ignores the properties of the earth. A more complete
form assumes the emitted plane wave travels to the earth—air boundary which it
reaches with an angle of incidence ®,. At the surface, it is refracted according to the
plane-wave law of refraction and continues in the air at the angle of transmission ®g,
so that kp sin ®, = kg sin ®¢. The transmission coefficient is

2k cos ®¢

Fonr = ks cos ®y + kg cos Op

(9.124)
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The field in the air using the refracted plane-wave approximation is
Eop ~ fruse' @700 cos ¢, (9.125)

where ry is the distance of travel in the earth from the buried rod at the depth d to
the earth—air surface and rq is the distance of travel in the air from that surface to the
aircraft antenna at the height z’.

A detailed comparison of the signals received and processed by a synthetic aperture
radar based on the accurate field in (9.118) and each of the two plane-wave assump-
tions, (9.123) and (9.125), has been made by Gilbert et al. [11]. Their calculations
are for f = 600MHz and f = 5GHz with d = 0.5m and z’ = 3 and 30 m. They
conclude that:

“when the receiving antenna is very close to the ground above a buried source, the use of plane
wave approximations to correlate signals will lead to severely degraded images compared to images
correlated with accurate analytical solutions to the Maxwell equations [(9.118) and (9.119)]. In
contrast, for many other cases of interest, when the receiving antenna is sufficiently high (over 30 m
altitude), the quality of images correlated with a plane wave approximation is quite good apart from
some loss in image intensity.”

For maximum quality of the image, it is clearly desirable to use the accurate
formulas rather than plane-wave approximations under all circumstances. This is
essential when the transceiver is near the surface of the earth. When z/ > p, the
condition P> < 1 is generally satisfied so that the Fresnel-integral term is negligible.
Thus, when kgp > 1 and P> < 1, the intermediate-zone field is

A iwpokoRheI) e*2deikoro /7 kg

E. (p.¢.7) = = ! 9.126
0p (P #', 2) ks . o cos ¢ ( )
. i k2 2h.1 ikod ,ikoro

Biy(p. 9.2 = -2 0Chel) €T o (9.127)

2mko ro

Note that in the spherical coordinates ry, ®, ®, z'/rg = cos .

9.7 Horizontal electric dipoles and patch antennas on microstrip

The dipole

As stated in Section 8.8, the horizontal electric dipole is the basic element of strip

transmission lines and antennas on microstrip. The complete electromagnetic field in

cylindrical coordinates of such a dipole with the electric moment (24,17) is given by

(9.2)—(9.7) with (9.8)—(9.10). For microstrip with a dielectric layer with the thickness [,
ko

€ = — —ikol ~ —ikol. (9.128)
ko
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The wave number k; of the conducting base is generally so large that |ko/ k2| < kol
or |kal| > 1. In effect, the base acts like a perfect conductor. At sufficiently large
electrical distances with the dipole on the surface of the dielectric so that d’ = 0 and

koro > 1 (9.129)

the point of observation is in the intermediate zone or beyond. The outer limit of the
intermediate field is

2

—ikolro + 7'
tko'ro + 2 , (9.130)

0

—ikol + cos®
sin ®

koro
2

2 koro

Pyl <1, Py| =
[Pyl < | Pol 5

where © is measured from the 7z’ axis and p/rg = sin ©®, z'/ry = cos . It follows that
for the intermediate zone,

e <o sin ® 2 2sin? © ©.131)
14 = . .

070 = —ikol + cos ® k(%l2 +cos2®

Since k31 < 1,

koro <2tan’®, O #£7/2 (9.132a)
koro < el 0 =n/2. (9.132b)

Since kol is approximately constant over the frequency range in which microstrip is
useful, a typical value is general. Specifically, with f = 10 GHz, [ = 0.1 mm, kol =
27 x 1010 x 1074/(3 x 108) ~ 2 x 1072 and

koro < 5 x 10°.

This is so large that no microstrip circuit can extend beyond the intermediate zone and
the far zone in which the field decreases as 1/r?2 is never reached. The relevant range
lies beyond the near field with kgrg > 1 entirely in the intermediate range.

The components of the intermediate range include three of electric type, namely,

. 3 201 ikoro /
Ey,(p.¢.2) = iwpo@hel) oy @ (Z— +ikol) cos ¢’ (9.133)
2r 7o ro
; ' 2h,1 ikoro
Eéz/<p,¢’,z’>:“"“°2( D (ikgty € (ﬁ> cos ¢’ (9.134)
T ro ro
; —ikopo(hel ikoro
Bl (0, ¢/, 7)) = —00CReD) ey € cos g (9.135)

2w ro
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and three of magnetic type, namely,

i oy _ —ikopo(Zhd) etkoro (772

Bhy(p. ¢/, ) =~ ko) (—g>sm¢ (9.136)
; kopo(2hel etkoro

Bg)z,(p,¢/,z/)=’°“°2§r ) (ikol) € - ( )( >sm¢ (9.137)
. i 2h,I etkoro

E5¢,(p,¢/,z’):’“’“°2(nh ) (ikol) © ( >sm¢ 9.138)

In the spherical coordinates rg, ®, ®, these are

; - 2hI ekoro
E} (r.0,®) = iwpohel) oy € s sin® (9.139)
2 70
; —i 2h1 ikoro
Elo(ro, ©, &) = —CR0@RD) G iy €0 (| 1 ikl cos ©) cos ® (9.140)
2w 7o
4 —ikopto(2hel ikoro
Biy(ro, ©, &) = —R0M0GheD) oy T s (9.141)
2 ro
B, (r0,©,®) =0 (9.142)

4 —ko .
Bl (ro. ©, @) = 7‘) El o (r0. ©, ®)

—ipoko(2heI ikoro
_ i oko(2h, )(ik()l) e
21 ro

sin ® cos ©. (9.143)

For completeness and possible special cases, the far-field formulas are also given.
The far-field condition is

8sinZ ©

Pyl >4 or korg> .
[Pol = roRoro = cos2 ® + € cos O + €2

(9.144)

The formulas for the field of electric type are obtained from (9.33)—(9.35) with € =
—ikol. They are

sin> ®

2h,1 .
Ef (0, ©, &) = 2R oo g pitorn (9.145)
2ko rgl1 + (i/kol) cos ©]?
2h,1 ko [ kol cos ©
Ebe (o, ©, &) = 210D gy gikoro| Ko (Kol coS®
2 ko ro \ kol 4+ icos®

N ) 272
® (ikol ® — k5l ®
_sin (ikol sin o1~ cos )} (9.146)

KEI2r311 + (i /kol) cos ©F
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-, y,2)

b - _____C >/ 7 Dielectric
v substrate

Conducting base

Figure 9.9 Microstrip patch antenna end-driven by microstrip transmission line. Taken from King
[12, Fig. 1]. © 1992 American Geophysical Union.

no(2heI) ” ikg kol cos ©®
B/, ,0,P) = —— pethoro | — | ——
00 (70 ) 21 cosTe ro \ kol +icos®

ikol sin> ©
} (9.147)

IRIr2[1 + (i/ kol) cos OF

As the field of magnetic type includes no lateral wave, the intermediate field for it
extends on into the far field.

Patch antennas

In order to increase the electric moment of horizontal electric dipoles on microstrip,
they can be enlarged into flat patches that can be rectangular, square, or circular in
shape. Such a patch antenna can be driven from a vertical post that pierces the dielectric
layer or from a strip transmission line that connects to one end. A schematic diagram
of the end-driven rectangular patch antenna [12] is shown in Fig. 9.9. The current on
such a patch antenna has not been determined analytically. In practice, it is obtained
by numerical methods or simply postulated in terms of a reasonable approximation.
Since the radiation field is not sensitive to the details of the current distribution, a
usually adequate determination can be made with the latter method.

The current-density distribution appropriate for the rectangular patch antenna shown
in Fig. 9.9 has the form

‘])C(x//a y//) =

1, (0
x© coskrx”. (9.148)
2w
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The length of the patch is 24 and the width is 2w with
—h <x" <h, —w <y’ <w. (9.149)

In (9.148), k. = ko./€1reff is the wave number that would characterize the patch as
a segment of a microstrip transmission line, I, (0) is the total current traversing the
center line x” = 0 of the patch, and % is so chosen that k; A = 7/2. The transverse
distribution of the x-directed current is assumed to be uniform. Actually, the transverse
distribution has large peaks at the edges |y”| = w and a minimum at the center
y” = 0. In addition, there is a y”-directed current. Since this is in opposite directions
on the top and bottom surfaces of the patch, its contribution to the radiation field is
negligible. Since the impedance of the patch as a termination for the strip transmission
line is very large — near anti-resonance — the driving-point current is small compared to
I, (0), and the assumed current (9.148) should be a good approximation. Formulas for
the characteristic impedance of the microstrip transmission line and the real effective
permittivity €1, ofr as given by Hoffman [13] are

z O 1 (* £2on 0<2¥ < (9.150a)
= n|{ — + — ) ohms, < — < .150a
T Sl w21 l
—1

1200 | 2w l 1\ 2w
Ze = o402 41— — ohms, i |

€lreft | ! w 2w l

(9.150b)

e, +1 e, —1 51\ ~1/?

Elreff = lr2 + r2 (1 + E) , ki = ko\/€1r eff- (9.151)

These apply to a microstrip transmission line with the width 2w on a dielectric
substrate with the thickness / and the relative permittivity €y,.

The radiation field of the assumed current distribution in the rectangular patch is
obtained by integration using the intermediate-zone formulas (9.140) and (9.143).
These have the differential elements

ikor

—iopuy ., . € .
dEye(r,®, ) = > (ikol) (1 + ikol cos ®) cos @
Vg r

x Jo(x”, ¥y dx" dy” (9.152)
iwpo ikor
dEoo(r, ©, ®) = — = (ikl) —— sin @ cos © Jx(x", ") dx" dy". (9.153)
Here,
r = \/(x/ _ x//)z +(y — y//)z + 72 (9.154)
is the distance from the element J,(x”, y”)dx"dy” at 7’ = 0 to the point of

observation at x’, y’, 7. In the radiation zone, r ~ rg = v/x'2 + y’2 + 7’2 is adequate
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in amplitudes. In phases, the more accurate formula

r~ \/rg —2x'x" = 2y'y" ~ rg — x” % — y”f—;
=79 —x"cos ®sin® — y” sin ®sin O (9.155)
must be used. The integral to be evaluated for all components is
J = e*oro g x" Iy, (9.156)
where
Iy = /h cos ka//e—ikOX”COS<1>sin®dx// _ 2ky cos(kgh cos ® sin ®) 9.157)
—h k? — k3 cos? @ sin? ©
JG") = f“’ o ikoy” sin @sin© dy' = ZSin(ko?u sinfbsin @)' 9.158)
—w ko sin ® sin ®

With these values, the field factor for the patch antenna is
1:(0)

P(©,9) = Jx"MIO"
w
~ 1.0) 2k; cos(koh cos ® sizn ®) |:sin(kow.sin <I>.sin @)] (9.159)
k? — ki cos? dsin® © kow sin @ sin @
The leading components of the radiation field are
. w ,
E(Z)G(r07 ®7 qD) = k_o B(l)(I)(rOv ®7 q))
_; ikoro 4
= IR0 ko) S cos @ P(O, B), 1 <kop < —
2 ro kolz
(9.160)

. —w
E(l)q)(ro’ ®7 (I)) = K B(l)(»«)(rOa ®a ¢)

iw eikoro
= 2270 Gkl
2w )

sin®cos ® P(O, P), 1 < kop. (9.161)

These are valid throughout the intermediate zone which includes the far field for Eye
and Bpe but excludes the range |Py| > 1 close to the plane 77 = 0 when this is
occupied by microstrip. In practice, the microstrip is finite and the field beyond its
edges is modified by edge reflection and diffraction.

Of particular interest is the field in the E-plane when & = 0. In this case,

2k cos(koh sin ®)

P(®,0) = I,(0 9.162
( ) x()|: k%_k%sjn2® :| ( )
. ) ) ikoro

Eio(r0.0,0) = kﬂ Bl (ro. ©.,0) = ——E0 (ikel) S— P(©, 0). (9.163)

0

2w ro
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Dipoles parallel to layered regions

When & = n/2, the H-plane pattern is given by

P(®,1/2) = I’;C(LO) [

2 sin(kow sin ®)
kow sin ®

and
i —w
Eyg(ro, ®,7/2) = k_OB()@(m’@,T[/z)

i ikoro

= (ikol) S— cos © P(®, 1/2).
2 ro

(9.164)

(9.165)



10 Application of the two-term theory to general
arrays of parallel non-staggered elements

The purpose of this chapter is threefold:

1. To summarize those parts of the two-term theory of Chapters 2—-5 which concern
arrays with large inter-element spacing. The notation used in this chapter is new

and suitable for a general-purpose computer program.

2. To remove the restriction for N > 3 that the N elements need to be placed on a

circle (Chapter 4) or equispaced along a straight line (Chapter 5). The elements

must still be parallel, non-staggered, and identical.

3. To prepare for the analysis of the large circular array developed in the next two
chapters, for which the new notation of this chapter is particularly well-suited.

Section 10.1 contains a concise derivation of the formulas. Section 10.2 contains the

complete formulas in their final form. In Section 10.3, special cases, extensions and
computational aspects are discussed. Finally, Section 10.4 derives a special form for

the case kh = /2.

[D] denotes the N x N matrix with components D,; (1 <n,l < N) and {¢} denotes
the vector (N x 1 column matrix) with components 1, 2, . . ., ty. The linear algebra

terms used here may be found in any standard linear algebra textbook.

10.1 Brief derivation of the formulas

The two-term formulas for the N coupled integral equations

N oh
Z/ L) Kn(z—2)dZ
n=1 —h

—jam

V
= (Cgcoskz+?lsink|z|); —h <z <h, I=1,...

%o

where the constants C; are determined from the conditions

I (£h) = L(£h) = - = In(£h) =0

379

, N

(10.1)

(10.2)
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are briefly derived here for a general array in free space. Here, “general array” means
an array of parallel, identical, non-staggered, center-driven, perfectly conducting
cylindrical dipoles satisfying the conditions

ka < 1, a < h, minb,; 2 h, kh < 3m/2. (10.3)

In (10.1)-(10.3), 11 (z), I2(2), ..., In(2) are the unknown current distributions on the
surface of the N dipoles, /4 is the half-length of each dipole, and a is its radius. V; is
the voltage driving element /, with V; = 0 if the element is non-driven. The dipoles’
centers lie on the plane z = 0; k = 27 /A = w./1o¢€ is the free-space wave number
and ¢y = /10/€p = 376.73 ohms. The K,,;(z) are the kernels of the integral equations.
The self-interaction kernels K11(z), K22(2), ..., Kyn(z) are all equal. They depend
on the radius ka of the elements and are given by

Kiu(z) Kii(z) coskv/zZ+a?  sinks/z%2 4+ a?
= = — J .
k k kn/z2 4 a? kn/z% + a?
The mutual interaction kernels K,;(z), n # [, depend on the distance kb,; between
the axes of element / and element n. They are given by

nz(z) _ Ku() cosk\/er—b2 sink\/zz—ir—bfll
N T N E s

These kernels must be modified for the special case of a large resonant circular array.
This modification is discussed in Section 11.8. As discussed in Section 3.2, the third

l=1,...,N. (104)

n#l. (10.5)

condition in (10.3) can, for many purposes, be replaced by min Bob,; > 1.
First, the integral equations are rearranged in a form suitable for applying the two-
term theory approximations: Formula (10.1) for z = h is

i — v
QU, Z/ I,()Ky(h — 7)) d7 = (cl skh—i—?lsinkh). (10.6)

If this is subtracted from (10.1), the following equivalent system of integral equations
is obtained:

N .
—j4r V
Z/ Li(Z)Kan(z, 7)) dz' = é—(Cz coskz + 31 sink|z| + Ul), (10.7)
—h 0
where
Kani(z,7) = Kni(z —2') — Kn(h — 2)) (10.8)

are the difference kernels. In this and the next section, it is assumed that kh # 7/2; this
restriction is discussed in Section 10.3 and removed in Section 10.4. Formula (10.6)
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may then be used to write the constants C; in terms of the constants Uj:

1 .
sVisinkh + U
=217 T (10.9)
coskh

so that the final exact form of the integral equations is found by substituting (10.9) into
(10.7) as

N rh
Z/ L(Z)Kani(z, 7)) d7’
n=1 —h

4 Vi
:{Ojcoﬁ[?lsink(h—|Z|)+U1(coskz—coskh)], I=1,...,N
(10.10)
which are to be solved together with the conditions
4 N h
J;—”UFZf L@ Kn(h—2Ydd. 1=1.... N (10.11)
0 —1J—h

Both sides of the integral equation (10.10) are proportional to the vector potential
difference A,;(z) — A, (h) and vanish at z = £h.

Subject to the conditions (10.3), the approximate two-term theory current distribu-
tions are of the form

1,(z) = s[Vysink(h — |z|) + t,(cos kz — cos kh)], n=1,...,N, (10.12)

where the coefficients s and 7, are to be determined.

Thus, one part of the current on each element is the sine term sink(h — |z|). The
discontinuity in the derivative of this term at the driving point is due to the existence
of the idealized delta-function generator there. In the limit ka — 0, the sine current
distribution is the exact current distribution on an isolated element. The coefficient
s will turn out to be purely imaginary and to depend on ki and ka only. Thus, the
sin k(h —|z|) part of the current is purely reactive. It is said to be maintained directly by
the generator driving element 7 since its coefficient sV, is directly proportional to the
driving voltage V, and is independent of the number, location, and driving conditions
of the rest of the elements in the array.

The second term in the current (10.12) is the shifted cosine (coskz — coskh). Its
coefficient #, will turn out to depend linearly on all the driving voltages in the array,
namely,

th=TuVi+TpVo+---+T,NnVnN, n=1,...,N (10.13)

where the T;; are independent of the driving voltages. If element n is non-driven
(Vy, = 0), the distribution of current along its length consists only of the shifted
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cosine (cos kz—cos kh). This is exactly the current distribution on an isolated receiving
element in the limit ka — O.

In terms of the unknowns s and t,,, the constant U; is found by substituting (10.12)
into (10.11),

oS
= [ZV \yv,,,+2tn\yy,,1] I=1,...,N, (10.14)
where
h
Wy = / sink(h — [ DKu(h —2)d's  1<mI<N (10.15)
—h
and
h
Wy = / (coskz’ —coskh)K,(h — 7)) dz7'; l1<nI<N (10.16)
—h

are known constants.

In order to write the left-hand side (LHS) of (10.10) into the form of the right-hand
side (RHS), and to reduce the problem of finding the coefficients s and ¢, to one of
solving a system of linear algebraic equations, the two-term theory approximations
are made. These are

h
/ sink(h — |2/ ) Re{Ka11(z, 2D} d7 = Vg sink(h — |z]), l=1,...,N
—h
(10.17)
h
/ sink(h — |Z') Im{Kg11(z, 2)} dz' = Wy (cos kz — cos kh), I=1,...,N
—h
(10.18)
h
/ sink(h — |2/ ) Kani(z, 2) dz’ = Wy (coskz — coskh), n#1 (10.19)
—h

h
/ (coskz' — coskh)Kgn(z, 7)) dz' = Wayn(coskz — coskh), 1<n,l<N.
—h
(10.20)

In these approximate formulas, the functions of z on the LHS as well as those on the
RHS are even and vanish at z = =h. In the case kh < 3m/2, the maxima of the
functions of z on the RHS occur at z = zmax = 0. The exception is when /2 <
kh < 3m/2. In this case, the maxima of the functions on the RHS of (10.17) occur
at 7 = £zZmax = £(h — A/4). If the coefficients of proportionality are determined by
enforcing the functions on the RHS to coincide with those on the LHS at +zyax, a
good approximation results. Thus, the coefficients are given by
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1 h
—Th f sink(h — |Z'|)Re{K4;(0,2)}dZ', kh <m/2 (10.21)
sin _
Wyp = 5 "
sink(h — |Z'|) Re{K gy (h — 1/4,72)}d7', 7m/2 <kh <3m/2
—h (10.22)
1 h . / / /
Wy = —/ Slnk(h - |Z I)Im{Kdll(O, Z )}dZ (10.23)
1 —coskh J_,
1 h
Yoy = —f sink(h — |2/ |)Kan (0, 2) d7/, n#1 (10.24)
1 —coskh J_y
1 h
Wyn = —/ (coskz — coskh) K ,1(0, 2) d7 . (10.25)
1 —coskh J_,

Note from (10.21) and (10.22) that as a function of kh, W, is continuous at kh = /2.

If (10.12) with (10.17)—(10.20) and (10.14) are substituted into the integral equa-
tions (10.10) and the coefficients of sink(h — |z|) and (cos kz — cos kh) are equated,
the following equations result. By equating the coefficients of sink(h — |z|), it is seen
that

j2r

§=— (10.26)
LoWgyR coskh

which gives s in terms of the known coefficient W;. Equating the coefficients of the
shifted cosine term, we obtain

N N

> Dinty=)_ PuVs, 1<I<N, (10.27)

n=1 n=1

where

Dy = Dpp = coskh Wayn — Yuni, I=1,...,N, n=1,...,N
(10.28)

Pip = Py = —coskh Wayvn + WYy, l<n#l<N (10.29)

Re{P;} = Re{Pi1} = Re{—jWg; coskh + Wy11}, I=1,...,N (10.30)

Im{P;} = Im{P;;} = Im{—jW,; coskh + ¥y1}, I=1,...,N. (10.31)

Equation (10.27) is a system of linear equations. The unknowns are the coefficients f,.
It is convenient to substitute (10.15), (10.16), and (10.21)—(10.25) into (10.28)—(10.31)
and express the coefficients D,; and P,; as integrals involving the kernels K,;(z). The
final complete formulas obtained in this manner are listed in the next section.
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10.2 The complete two-term theory formulas

Assuming that kh # /2 as in the previous section, the currents are

j2m .
L;(z) = ——— [V;sink(h — t kz — kh)], I=1,...,N.
1(2) T [V sink( |z]) 4 t(cos kz — coskh)]
(10.32)
Equation (10.32) can also be written in matrix form as
Jj2m .
{I1(R)} = ———[{V}sink(h — |z]) + {t}(coskz — coskh)]. (10.33)
LoWar coskh
In (10.32) and (10.33),
1 h
. f sink(h — |z'D[Re{K11(z")} — Re{K11(h — 2)}1dZ,
sinkh J_j,
kh < )2 (10.34)
Var = b
/ sink(h — |Z'|)[Re{K11(h — A/4 — ') — Re{K11(h — 2)}1dZ/,
—h
/2 <kh <3m/2 (10.35)
and the coefficients #; are determined by solving the N x N system of linear algebraic
equations
N N
Y Dun=Yy PuVi, 1<n<N. (10.36)
=1 I=1

The system (10.36) can be written in matrix form as
[D]{r} = [P]{V}. (10.37)

The matrix components are

D, = m ‘/_}; (coskz — coskh)

X [coskh Ky(z) — Kni(h — 2)]1dz, 1<nlI<N. (10.38)
Excluding the principal diagonal, the components of the matrix on the RHS are given
by

-1 h
Py = T coskh /_h sink(h — |z])

X [coskh Ky (z) — Kp(h — z)]dz, n#l. (10.39)
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The components of the principal diagonal of the matrix on the RHS are

h
Py = / sink(h — |2]) Re(K 11 (h — 2)} dz
—h

h
it / sink(h — |z])[cos kh Tm{K11(2)} — Im{K 1 (h — 2)}] dz.
1 —coskh J_,

(10.40)

These formulas readily follow from the equations in the previous section. The ker-
nels K,;(z2) = Kin(2), 1 <n,l <N, appearing in (10.34), (10.35), and (10.38)—(10.40)
are given in (10.4) and (10.5). The relation (10.13) between [T] and {z} may be written
in matrix notation as

{t} =[T1{V}, (10.41)
where
[T]=[D]"'[P]. (10.42)

10.3 Remarks and programming considerations

The formulas of the previous section may be easily programmed in the form given
above. The inputs of the program are the parameters N, kh, ka, kb,; (1 < n,l < N),
and the driving voltages Vi, V, ..., Vy. Alternatively, the parameters N, kh, ka, kb,
and the driving-point currents /1(0), I2(0), ..., Iy (0) may be inputs to the program.
Some observations and numerical considerations are given below.

1. The matrix elements D,; and P,; in (10.38)—(10.40) are complex. They depend on
N, kh, ka, and kb;;, and they are independent of the driving voltages. Their real
(imaginary) part depends only on the real (imaginary) part of the corresponding
kernel K,;(z). Thus, for n # I, each matrix element is completely determined by
the distance kb,; and by kh. When n = [, the matrix element depends on the self-
interaction kernel (10.4) and is completely determined by the radius ka and by kh.

2. It follows that the matrices [D] and [P] are complex and symmetric and that all
elements on their principal diagonals are equal.

3. The real and imaginary parts of the matrix elements are easily obtained by
numerical integration of the real and imaginary parts of equations (10.38)—(10.40).
The change of variables kz = x is convenient. In order to determine all elements
D, and P, for a general array, a total of 2(N 2 _ N +2) different real integrals must
be calculated numerically. If the program uses general-purpose adaptive integrators
(subroutines), one can specify the desired accuracy for the numerical integrations.
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Generally, the elements (integrals) on or close to the principal diagonal are those
that must be computed with the highest relative accuracy. The elements far from
the diagonal are smaller in absolute value; slight errors in these elements will not
appear in the final results.

. In the case where the base voltages Vi, Vo, ..., Viy are specified, the program

should first compute the coefficients Wy and #. Wyr is found from (10.34) or
(10.35) by numerical integration. Once the matrix elements D,;; and P,; have been
found as described above, the program may compute the complex vector [P]{V'} on
the RHS of (10.37) and use a standard routine to solve the complex N x N linear
system (10.37) for the coefficients .

Quantities which may be easily determined once W;r and #; are found are the
following:

(a) The current distributions /1(z), I2(z), ..., In(z) from equation (10.32).
(b) Equation (10.32) and the definition

Yiin=1/Z;in = L;(0)/ V], I=1,...,N (10.43)

may be used to compute the driving-point admittances’ Y1in, Y2,ins - --» YNin
of the elements. Y; i, is completely determined by the voltage ratios Vi/ V],
Vo/Vi, ..., Vn/ V), and by N, kh, ka, and kb,,;.

(c) Consider the case where only one element is driven and the rest are (present
but) non-driven. Suppose that element 7 is driven by a voltage V, (V, = 0
for p # n). The single driving-point admittance in this case is often called the
self-admittance Y, and the normalized midpoint currents 1;(0)/V,, n # [, are
often called the mutual admittances Y;,. The matrix [Y] with elements Y7, is
completely determined by N, kh, ka, and kb,;. It is easily seen to be related to
the matrix [7'] of (10.42) by

(Y] = __jm {sinkh[INXN]—i—(] —coskh)[T]}, (10.44)
LoWyr coskh
where [IV*N]is the N x N identity matrix. The driving-point admittances in
the case when all elements are driven by voltages Vi, V,, ..., Vy are related to
Yin by
Moo,
n
Yl,in=;YanI, I=1,...,N. (10.45)

The above equations are useful when one wishes to compute the driving-point
admittances for many different sets of driving voltages {V'}. Standard tech-
niques for solving systems with multiple RHS vectors are useful in order to

1" Note that what is referred to in this book as the driving-point admittance (impedance) is often referred to in the

literature as the active admittance (impedance).
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determine [7'] from (10.42). Note that for general arrays with N > 3, [T]
and [Y] are not necessarily symmetric and that the elements on their principal
diagonals are not necessarily equal.

(d) Suppose that the center of the axis of dipole / is located at (p;, ¢;) in polar
coordinates and that the spherical coordinates of a far-field observation point
are (r, 0, ¢). The radiation field is found from W, and #; by the equation

E(r, 0, ¢) =0E,

~ _1 efjkr N . .
—0 ViF(© 1 G(6) e ko sm@coswﬁ—d)z)’
Vo oosh ;[1 ©) +1G©O)]e

(10.46)

where

cos(kh cos0) — coskh
F@©) = - (10.47)
sin 6
GO) = sin kh cos(kh cos ) cos @ — cos kh sin(kh cos 0) (10.48)

sin @ cos 6

are the “element factors” for the sine and shifted-cosine currents, respectively.
With the radiation field determined, the gain and directivity of the array may be
easily found.

5. The case where the driving-point currents 11(0), I>(0), ..., Iy(0) are given and
the base voltages Vi, Va, ..., Vy are desired may also be treated by a program in a
similar manner. The relation between {V } and {I (0)} is found from (10.33), (10.41),
and (10.42) to be

ZoWyR coskh
[01(V} = 2= [D{1 (0)}. (10.49)
j2r
where
[Q] =sinkh [D] + (1 — coskh)[P]. (10.50)

In this case, the program should first compute W,g, [D], and [P] as before, then
compute [Q] from (10.50), find the vector on the RHS of (10.49), and then solve
the system (10.49) of linear algebraic equations for the unknown vector {V}. The
matrix [Q] has the same form as [ P] and [D] (see the second observation of this
section).

6. For the special case of a curtain array (Chapter 5), the distances b,; are given
by b,; = |l — n|b, where b is the distance between adjacent elements. Here, the
matrices [D], [P] and [Q], in addition to being symmetric, are Toeplitz (i.e. the
matrix elements on all diagonals are equal). The full matrices are determined by the
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elements of the first row. In order to determine all elements D,;, P,;, and Q,,; for a
curtain array, only 4N different real integrals need to be calculated numerically. If
a routine especially designed for complex Toeplitz systems is used to solve (10.37)
or (10.49), further reduction in computer time and storage is accomplished. For
N > 3, the matrices [T] and [Y] are in general neither symmetric nor Toeplitz.

. For the special case of a circular array, the matrices [D], [P], and [Q] are

(symmetric and) circulant so that the solution of the system (10.37) or (10.49)
may be written as a superposition over the N phase sequences. A brief, general
discussion of symmetric circulant matrices is given in Section 4.5.

All elements in a circular array have the same self-admittance and the mutual
admittances satisfy Y,; = Yj,,. Also, for a given circular array, Y, = Y4 if bj, =
bpq. When the array is driven in its mth phase sequence (V; = Vie/2mU=Dm/Ny the
driving-point admittance Y, l(m) of any element in the array does not depend on the
element number /; it is denoted by Y m) in Chapters 4, 11, and 12, and referred to
as the mth phase-sequence admittance. For the large circular arrays considered in
Chapters 11 and 12, the formulas must be modified as discussed in Sections 11.8
and 12.8. Furthermore, special numerical considerations must be taken into account.
These are discussed in Section 13.5.

. Arrays of vertical monopoles over a ground plane and arrays of horizontal,

non-staggered dipoles over a ground plane are discussed here. The ground plane
is assumed to be of infinite extent and perfectly conducting in both cases.

(a) The case of N vertical monopoles of length /4 over a ground plane (located at
the plane z = 0) reduces by virtue of the theorem of images to that of a general
array of N dipoles of length 24 in free space: If driving voltages are given
and currents are desired, one first solves the latter problem and multiplies the
resulting current distributions by a factor of 2. For z > 0, these are the desired
current distributions on the monopoles.

(b) The theorem of images also applies to the case of N horizontal, non-staggered
dipoles over a ground plane. Suppose that the ground plane is located at the
plane x = 0, and that the N dipoles are in the half-space x > 0. Their centers
lie on the plane z = 0. The b;,; (1 < n,l < N) are the axis-to-axis distances.
The problem is equivalent to that of 2N parallel, non-staggered dipoles in free
space. The original dipoles are numbered as 1,2, ..., N, and the images are
numbered as N + 1, N 4+ 2, ..., 2N, so that the image of dipole [ is the dipole
[+ N =1,2,...,N). The voltage driving dipole / is the opposite of that
driving dipole [ 4+ N, namely,

v ==V, I=1,2,... N, (10.51)

where the superscript 2N has been affixed to show that the equivalent array has
2N elements.
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Denote by ¢,; = ¢;;, the axis-to-axis distance between element / and the image
of element n (1 < n,l < N). If the original dipoles are sufficiently far from the
ground plane, specifically,

mincy > h (10.52)

[and if the conditions (10.3) are also satisfied], then the problem may be treated
as described above, where there are 2N dipoles instead of N. It is possible,
however, to reduce the problem to that of solving N linear equations instead of
2N as follows.

The matrices [ D] and [ P] appearing in the 2N x 2N system (10.37) for the 2N
coefficients tlzN separate into four N x N submatrices, namely,

[Dy] D]
D] = 10.53
. {[Dc] [Db]} 1039
[P)] [P]
Pl = , 10.54
ok [[Pc] [Pb]} (10>

where [ D] and [ Pp] depend only on the distances b,; and are the same as if the
N original dipoles (the ones above the plane x > 0) were alone in free space.
The components of the matrices [D,] and [ P,] are given by

1 h
Doy = ——— / (coskz — coskh)[coskh Ky (z2) — Keni(h — 2)1dz,
1 —coskh J_y
l<n <N (10.55)
-1 h
Pepj = ———— / sink(h — |z|])[coskh Ky (z2) — Keni(h — 2)1dz,
1 —coskh J_y
1 <n,l <N, (10.56)

where

KD Kan(@ cosk,/z2 + ¢, Csink,/z? + 2
2ty e

l1<n <N (10.57)

and the K,;; are similar in form to the kernels K,;; but involve the distances c,,;.
Thus, the matrices [D.] and [ P,] involve only the distances c,; from dipole to
image.

From (10.37), (10.53), and (10.54), it is easily seen that

ity =—tN,  1=1,2,...,N (10.58)
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and that

N N

> Dput = Det) 7V =" (Pow = Pe) VPN, 1<n<N. (1059
=1 =1

Formula (10.59) is the desired N x N system for the N coefficients tlzN R

t22N e, tlzvN . With these determined, the currents are found from
J2n N 2N
I(2) = Vartocoskh [V "V sink(h — |z]) 4+t (cos kz — cos kh)],
I=1,...,N. (10.60)

The components of the N x N composite matrices [ Dp] —[D.] and [ Pp] — [ P,]
are completely determined by the corresponding distances kb,,; and kc,; (or, by
ka and kcj; in the case of diagonal elements). The matrices are complex and
symmetric. Furthermore, they are Toeplitz in the special case of a curtain array
above a ground plane, where b,; = |l — n|b and ¢,y = +/c2 + (I — n)?b%; (c/2
is the distance from the dipoles’ axes to the ground plane).

9. Because of the presence of coskh in the denominator of (10.32), the two-term
solution apparently is infinite when kh = /2. It is shown in the next section
that this is not the case. Although each of the terms in (10.32) become infinite
when kh = 7/2, their sum remains finite. By rearranging the terms in the two-term
theory, an equivalent form will be obtained, none of the terms of which vanish at
kh = m /2. This equivalent form may be used in the case where kh = 7 /2. In most
applications, however, it is adequate to replace the value kh = /2 by another value
close to /2 and use the formulas listed in Section 10.2.

10.4 Alternative form for the solution and the case k2 = 77 /2

For the purposes of this section, we will temporarily affix the argument k# to the vector
{t} and the matrices [D] and [P].
If the vector

coskh
is defined, then in terms of this vector, equation (10.33) takes the equivalent form

{t'(kh)} =

(sinkh {V} + {t(kh)}) (10.61)

j2r
SoWar
When kh = 7/2 (but not at any other value of kh), {t'(;t/2)} is simply the derivative
of {t (kh)} evaluated at kh = 7 /2:
d
d(kh)

{I1(2)} = [{V}(sinkh — sink|z|) — {t'(kh)}(cos kz — coskh)]. (10.62)

{t'(/2)} = {t(m/2)}. (10.63)
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This is seen by noting from (10.38)-(10.40) that when kh = m/2, the relation
[D(%/2)] = —[P(x/2)] holds so that the solution {t(7/2)} to the system (10.37)
when kh = 7 /2 may be found by inspection. It is

{t(@/2)} = —-{V}. (10.64)

The definition (10.61) for {¢'(kh)} is thus indeterminant when kh = 7/2 and its
limiting form is (10.63).

For any value of k#, the system for {#'(kh)} is readily derived by solving (10.61) for
{t(kh)} and substituting into the system (10.37). It is seen that

[D(kh)){t'(kh)} = [P'(kh)]{V}, (10.65)

where

[P'(kh)] = ~! (sinkh [D(kh)] + [P (kh)]) . (10.66)
coskh

Note that [ P’(kh)] is not the derivative of [ P (kh)] when kh = 7 /2. Using (10.66) and
(10.38)—(10.40), it is found that the explicit expressions for the components PI; ; of the
matrix [P'] = [P/ (kh)] are

, —sinkh "
Re{P;} = T coskh /_h(coskz —coskh)[Re{K1(z)} — Re{K1(h — 2)}]dz
h
- / (sinkh — sink|z|) Re{K i (h — 2)}dz (10.67)
—h
1 h
Im{Pl'l} = m /_h(sinkh — Sink|Z|)
x [coskh Im{Ki(z)} — Im{K;(h — 2)}]dz (10.68)
and

1 b :
PI’;l = m /;h(slnkh - Slnk|Z|)
x [coskh Kpi(z) — Kn(h —2)]dz, 1<n#I[<N. (10.69)

It is seen that there are no apparent infinities when k2 = 1 /2. The mathematically
equivalent form (10.62) and (10.65) with (10.67)—(10.69) of the two-term theory is
useful numerically when kh = 7 /2.
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11 Resonances in large circular arrays of

perfectly conducting dipoles

11.1
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Introduction

In this and the following chapter, a study of large circular dipole arrays with one or
two elements driven is presented. The top view of such an array is shown in Fig. 11.1a,
and a realization of a large circular array with one element driven [1] by monopoles
over a ground plane is shown in Fig. 11.1b.

The main reason for initiating the study was the belief that such arrays should
possess very narrow resonances if the many parameters of the problem are properly
chosen. It was further believed that some particular shapes of non-circular closed-loop
arrays might produce a superdirective field pattern. The large circular array of this
chapter is the simplest form of the more general closed-loop array. The latter is a
subject of ongoing research.

It was seen in Chapter 4 that circular arrays of a small number of elements possess
noticeable resonances; previous studies also supported the idea of the existence of
very narrow resonances in large circular arrays. For instance, it was known that the
long Yagi array may be thought of as a surface-wave structure [2]. Such a structure
does not radiate broadside, and it was observed experimentally that this property is
preserved if the array is bent into a semi-circle of sufficiently large radius [3].

Essential initial considerations concerning resonances in large circular arrays came
from studies in quantum mechanics. It was found by T. T. Wu and A. Grossmann
that an infinite linear array of Fermi pseudopotentials possesses resonances of zero
width [4, 5] and that a large circular array of pseudopotentials possesses resonances
the width of which is exponentially small in the number N of pseudopotentials in
the array [5]. Roughly speaking, a Fermi pseudopotential is a point interaction in
the context of the Schrodinger equation, characterized by a single parameter with
the dimension of length. These considerations are contained in [6]; this paper also
mentions the important possible connection between resonance and superdirectivity in
a large closed-loop array.

The belief in the existence of narrow resonances in a large circular array of dipoles
with only one element driven led to numerical calculations using the two-term theory
in its original form (Chapter 4). Narrow resonances associated with flower-shaped
far-field patterns were discovered and illustrated graphically [7] in N = 60 and



393

11.1 Introduction
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Figure 11.1 (a) Circular array with N = 96 elements. (b) Circular array of monopoles over ground
plane. Driven element is extension of inner conductor of coaxial transmission line. Part (b) taken
from Fikioris et al. [1, Fig. 2]. © 1994 EMW Publishing.

N = 90 element circular arrays when the dipoles are electrically quite thick and short.
If A is the free-space wavelength, the values of the individual element parameters are
h/x = 0.18 and a/A = 0.028. The quantity d /X is the varying parameter where
d is the spacing between adjacent elements. Resonances were discovered for this
rather unusual combination of /A and a/A after unsuccessful attempts were made
to discover resonances in arrays with values of the individual element parameters
commonly used in other applications.

In [7], each resonance is associated with a particular phase sequence m (m = N /2,
N/2 — 1,...), where resonances with larger m occur at higher frequencies. The
complete graphical picture of the basic properties of a N = 90 element circular array
operating at its last (in = 45) resonance is shown in the several parts of Fig. 11.2. These
include the conductance G, the susceptance Bj ;, and the magnitude and phase angle
of the admittance Y;; = G1; + jBi;. Of special interest is the normalized power
pattern consisting of 90 sharp peaks separated by 90 sharp nulls.

After the publication of [7], it was found that the two-term theory in its original form
gave meaningless results in other cases. This consideration as well as others led D. K.
Freeman and T. T. Wu to re-examine the kernels used in the integral equations and
to propose a new set of kernels [8, 9]. However, use of these kernels in the two-term
theory formulas presents difficulties. The kernels are not of a simple form so that
numerical calculations would require a large amount of computer time, and more
importantly, such kernels would make an analytical study of the two-term theory
formulas difficult. A simpler alternative was found: the “modified” kernels are as
simple as the original ones and possess many of the properties of the kernels proposed
in [8] and [9]. The modified kernels result very simply from the original ones by
setting a = 0 in the imaginary part of the self term. They are incorporated into the
two-term theory employed in this chapter. Whereas this modification is unimportant in
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Figure 11.2 Properties of a 90-element circular array, as calculated by the (unmodified) two-term
theory of Chapter 4; N = 90, m =45, h/» = 0.18,a/x = 0.028, and d /1 = 0.437432095. (a)
Self- and mutual conductances G ; as a function of element number /. (b) Self- and mutual
susceptances Bj ; as a function of element number /. (c) Magnitudes of self- and mutual
admittances |Y] ;| as a function of element number /. (d) Phases of self- and mutual admittances
arg(Yy ;) as a function of element number /. (¢) Normalized far-field power pattern | E (¢) |2. Taken
from Fikioris et al. [7, Fig. 9]. © 1990 American Institute of Physics.

ordinary antenna problems, it is crucial for the accurate description of the phenomenon
of resonances in large circular arrays.

This chapter is organized as follows: in Section 11.2, the two-term formulas with the
modified kernel are presented in an alternative form. This form is especially suitable
for the detailed study to follow and is also suitable for numerical implementation in a
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computer. This form and the properties of the modified kernel when N is large are the
starting points for the analytical study of the large circular array of lossless elements
in Sections 11.3—11.6. This study, supplemented by numerical investigations whenever
necessary, shows that a large circular array with one element driven may possess very
narrow resonances if the parameters are properly chosen. The mth “phase-sequence
resonance” occurs when the mth phase-sequence conductance is large. At resonance,
all currents are large and their distribution around the circle may be thought of as a
standing-wave mode. Design guidelines are derived that help in choosing the number
of elements N, the spacing d/A, and the individual element parameters a/X and 2 /A
in order to excite a desired resonance. The behavior of the circular array at or near
a narrow resonance is explored. One important conclusion is that the driving-point
susceptance always becomes zero near a narrow resonance; in a practical application,
the matching of the array to a generator may be accomplished with a transformer.
Simple approximate formulas for the radiation field are derived which show that the
resonant array is highly directive in the vertical plane with field patterns that involve
many sharp, pencil-like beams. The main conclusions in these sections are listed as a
series of properties.

In Section 11.7, it is shown that it is possible to excite a resonant traveling-wave
distribution of current around the array by driving two elements instead of one. The
choice of N and of the second driven element must be properly made. The resulting far-
field pattern is omnidirectional with a pancake-like shape. After the general conditions
needed in order to be able to excite a traveling wave are developed and the meaning of
“resonance” when two elements are driven is clarified, the properties of the array over
earth are discussed. Applications as a surface-wave generator are proposed. Finally,
Section 11.8 is an appendix that discusses the various kernels mentioned throughout
this chapter, including, in particular, a detailed discussion about the modified kernels
and their relationship to the original kernels.

The analysis in this chapter assumes lossless elements. It is extended to circular
arrays of highly conducting dipoles in Chapter 12. In ordinary antenna problems, it
is an excellent approximation to assume that highly conducting dipoles are perfectly
conducting when admittances and radiation fields are to be calculated. In closed-loop
arrays of many elements, such an approximation is no longer valid. It will be seen that
the effect of the ohmic losses on both the width of the resonant peaks and the field
pattern may be significant.

Interest in this chapter is in circular arrays of perfectly conducting dipoles satisfying
the conditions
ka < 1, ka < kh < m/2, dZh, (11.1)

~

172

where L = 27/ k is the free-space wavelength, k = w (up€p) /-, a is the radius of the

elements, and # is their half-length. Also, N (>> 1) is the number of elements in the
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array, and d = 2R sin(zr/N) is the distance between adjacent elements. It is assumed
throughout most of this chapter that N is even, but the formulation for N odd is similar.

11.2

The two-term theory and the modified kernel

Assume that element 1 of the circular array is driven by a voltage V; and that the
rest of the elements [ = 2, ..., N are parasitic. The two-term formulas for the N
currents ;(z),l = 1,2, ..., N, are readily obtained from equations (10.32)-(10.42)
for the general array of Chapter 10 by observing that the matrices [D] and [P] are
circulant and applying the method of symmetrical components. The detailed derivation
is contained in [10]. The currents are a superposition of the N/2 + 1 phase-sequence
currents I(m)(z), m=0,1,...,N/2, where I(m)(z) is the current on element 1 when
all elements are driven by voltages Vl(m) = (Vi/N)e/>7(=Dm/N The final formulas
are:

j27‘[ V1 .
CoWar coskh [sink(h — |z]) + Ti(cos kz — coskh)], [=1,
"= 2wV (11.2)
c\yjﬂ—lkhTz(COSkz—coskh), [=2,3,...,N,
0%YdR COS
where ¢o = (110/€0)"/? = 376.73 ohms. The parameter W g is real and independent

of N and d/A. It is given by (10.34). The coefficients 7; = Tj; of the shifted-cosine
part of the current are complex and depend on all the parameters of the problem. They
are obtained by superimposing the phase-sequence coefficients 7 ):

(.0 v 2 ST 27 (1 — 1)m
Tl:N{T()_(_l) TN 42 Z T(’")cos[T“, (11.3)
m=1
where
(m) - p(m)
ron _ Pe_ TP
D[(Qm) _l_jD;m)
(m) - p(m)
P P P
_ DRt Per 40 m=0,1,...,N/2. (11.4)

Dig + DY + jD™"

In (11.4), the parameters in the numerator and the denominator are all real. The
subscript / means that the parameter depends only on the imaginary part of the
modified phase-sequence kernel. Hence, Pl(m) and ng) are independent of the radius
a/X. The subscript 1R means that the parameter depends only on the self-term of the
real part of the kernel and is therefore independent of N, m and d/A. The subscript £ R
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means that the quantity depends only on the mutual terms of the real part of the kernel
and is therefore independent of a/A. The full formulas for the various parameters are

h
Pig = / sink(h — |z K1r(h — 2) dz (11.5)
—h
(m) —1 ! (m) (m)
O T eoskh | sink(h — |z|)[coskh K3 (z) — Ks g (h — 2)]dz (11.6)
(m) —1 " (m) (m)
P = oot |, Sk = leDleoskh K[ () = K[ (h = 2))dz - (11.7)
Dip= ——— / (coskz — coskh)[coskh K1r(z2) — K1p(h —2)]dz  (11.8)
1 —coskh
DI = —kh / (cos kz — cos kh)[cos kh K (2) — K& (h — 2)1dz  (11.9)
COS
D" = —— / (coskz — cos kh)[cos kh K™ (z) — K™ (h — 2)]dz.
1 —coskh
(11.10)

The various parts of the modified kernel (the use of which is justified in Section 11.8
and in [9] and [10]) are

coskRi(2)

Kip(z) = —2210Y (11.11)

. Ri(2)

N/2+1
27l — 1)m ] coskR;(2)

(m)
Ks7(2) = & cos|: } (11.12)

xR ; N R (2)

. N/241 .

(m) —sinkz 27l — Dm ] sinkR;(z)
K;"(z) = - & cos[ , (11.13)

! z ; N Ri(2)
where
g — 1, I=N/2+1 (11.14)

2, otherwise '
and
a, =1

Ri() =@ +bY% by =1 dsin[(l — 1)7/N] (11.15)

sin(zr/N) ’ t# 1.
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Note that the radius a does not appear in (11.13). Finally, the relation between T ™
and the phase-sequence admittances is

ym — gm 4 jB(m)
j2m

= — 1 [sinkh+ T — coskh 11.16
CoUar cos ki [sinkh + (I —coskh)] ( )

and the self- and mutual conductances G1; (susceptances Bj ;) are determined only
by the phase-sequence conductances G (susceptances B™)) by the relation

Yii=G11+ jBiy

N/2—1
1 2n(l -1
— N!Y(O) _ (_l)ly(N/Z) +2 E : y (m cos[%} } (11.17)

m=1

With the original imaginary part of the self term of the kernel, [i.e. sinkR;(z)/R1(z) in
place of sinkz/zin (11.13)], itis easily seen that (11.2)—(11.17) reduce to (4.4)—(4.14).

The modified kernel (11.11)—(11.13) has been evaluated asymptotically for large N
and d/X fixed with d/A < m/N < % (see [8,9], and also Section 11.8). K(EmR) (z) is
well approximated by the kernel of the infinite linear array [replace by; by /d in (11.12)
and let N — oo while keeping m /N fixed]; it is therefore roughly independent of N
for large N and fixed m/N. The imaginary part K ;m)(z) must be approximated more
carefully because the imaginary part of the kernel of the infinite linear array is exactly
zero. The asymptotic formula for K ;m) (z)is

KM@ -1 1 1
k ~ 47 1/2 N1/2 [(m/N)2 _ (d/k)2]3/4 exp[—2N (m/N)g(xm)]
+ {same withm — N — m}, (11.18)
where
d/i 1
Xm = ﬁ; gx) = cosh1<—) — (1 =x»H72, 0<x<l1. (11.19)
m X

The approximation is better when z/A is small and when d/A is not very close tom /N.
These are the cases of interest. When m < N /2, only the first term needs to be kept;
in the extreme case of m = N /2, the second term simply contributes a factor of 2. The
function g(x) appearing in the exponential is positive and decreasing, with g(0) = oo.
The following properties of K fm) (z) are noted:

Property 1: K ;m)(z) is approximately independent of z when d/A < m/N.

Property 2: K ;m)(z) is exponentially small in N for fixed d/A and fixed m/N with
d/% <m/N.

Property 3: K ;m)(z) is a rapidly decreasing function of d/A when N and m/N are
fixed withd /A < m/N.
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Figure 11.3 Typical plot of D}m) as function of d/A; N =90, m =45, h/A = 0.2, and
a/i = 0.05. Taken from Fikioris et al. [1, Fig. 3]. © 1994 EMW Publishing.

With the use of Property 1, approximations for P,(m) and ng) are obtained when
h/X is not too large. Thus,

) . K0
D, ~ =2(sinkh — kh cos kh) p ; d/A» <m/N (11.20)

(m)
Ki (O% d/x» <m/N (11.21)

PI('") ~ 2(1 — cos kh)

so that D;m) and Pl(m) are slowly varying functions of kh that also possess the
Properties 2 and 3 above.

11.3

Phase-sequence resonances

Throughout this section, d/A is the variable and a/A, h/A, and N are fixed. In an
experimental study, it is much simpler to vary the frequency and keep the geometrical
parameters a, h, and d fixed. The physical picture is very similar in the two cases.

A typical plot of D;em) =Dig+ D(Emlg as a function of d /A is given in Fig. 11.3. It is
seen that D%m) is a quantity of order 1 that has two zeros in the range 0 < d/A < 0.5.
The array is defined to be at its mth phase-sequence resonance when D%m) is exactly
zero. It will be seen that when this occurs, G™ and G 1,1 are almost exactly at their
maximum and Bj ;1 is very close to its zero. In Fig. 11.3, the smaller root is not in
the region of validity of the two-term theory since d/A < h/A. Since the position
of the resonance is determined only by the real part of the kernel, a particular m/N
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phase-sequence resonance will occur at roughly the same value of d /A for all large N.
Here, it is assumed that the resonant spacing d/X is independent of N so that it is
meaningful to examine resonant currents as N becomes larger while keeping m /N
and d /) fixed. Denote by 6,/ the position of the larger root, so that D%m) =0
when d /A = §,,/y. It is seen from (11.4) and (11.16) that, at the mth phase-sequence
resonance,

(m) (m)
P P
m) __ 1 __ "R
s = e J _Dﬁ’") (11.22)
(m)
mo 27T (11.23)
res .
LoWag cos kh D;’")
) 2t I(m)
m) __ 3 _
By’ = —CO‘I’dR coskh [sm kh + (1 — coskh) —D(m):|, (11.24)

where Pl(em), Pl(m), and D;m) are evaluated at d /A = &, /n.

The quantity Pl(em) is of order 1. Because of Properties 2 and 3 and equations (11.20),
(11.21), and (11.17), if §,,y)y < m/N, itis seen that

Property 4: At the mth phase-sequence resonance, the phase-sequence conductance
Gﬁé”s) is extremely large in N. The self- and mutual conductances G ;
around the array are also extremely large and they vary around the array
according to

2w (l — 1)m
G, x Gy 1cos| ———|,

l=1,2,...,N. (11.25)
N

This distribution of current around the array may be recognized as a
standing wave.

Property 5: Gg"s) and the G ;’s will be much larger when the resonant spacing d /A =
8m/N occurs at a smaller value.

It should be pointed out that the conductances are actually predicted by (11.18), (11.20)
and (11.23) to be exponentially large in N. This is a consequence of the assumption
that the resonant spacing d /A = §,,/y does not depend on N and may or may not be
true within the two-term theory.

On the other hand, Br(gsl) and the By ;’s are not large when the array is exactly at
resonance. In the special case when cos[27 (I — 1)m/N] = 0 (this requires N to be
a multiple of 4), the current on element / is very small compared to that on all other
elements. Figure 11.4 shows the normalized conductances G1; as a function of the
element number / for the m/N = % phase-sequence resonance with N = 72. With
a/} =0.05and h/) = 0.2, this occurs at d /1 = 0.2269. The data in Fig. 11.4 as well
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Figure 11.4 Normalized self- and mutual conductances G ; as function of element number [ for
m/N = % phase-sequence resonance; N = 72, h/A = 0.2, a/X = 0.05, and d /A = 0.226 88. Taken
from Fikioris et al. [1, Fig. 4]. © 1994 EMW Publishing.

Figure 11.5 Normalized far-field power pattern | Eg (7/2, (j))l2 at 0 = /2 plane of dipoles’ centers
for m = 27 phase-sequence resonance; N = 72, h/A = 0.2, a/x = 0.05, and d/A = 0.226 88.
Taken from Fikioris et al. [1, Fig. 5]. © 1994 EMW Publishing.

as those of Figs. 11.5 and 11.6 and of Table 11.1 were obtained with the full two-term
theory formulas (11.2)—(11.17) with the imaginary part of the kernel evaluated from
(11.13) using quadruple precision and with Tr‘(:?) given by (11.22). In Fig. 11.4, the
current distribution of Property 4 is recognized; in this case, the currents divide up into
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-

6=0
Figure 11.6 Normalized far-field power pattern |Eg (0, 0)|2 at ¢ = 0 for m = 27 phase-sequence

resonance; N =72, h/A = 0.2,a/)» = 0.05, and d /1 = 0.226 88.

Table 11.1. Resonant spacings d /). = (Sm/N;a values of imaginary part of kernel K;m) ©0)/k at
z=0,d/\ = &N, and driving-point conductances G 1 at resonance®

h/x  a/i =001 a/k = 0.03 a/x =0.05
0.14  noroot no root Sm/N = 0.479
(m)
K™
r O _ —-0.25
k
Gi,1 =147mS
0.16  no root Sm/N = 0.480 Sm/N = 0.439
(m) (m)
K™ K™
4 ():—0.18 4 ():—4.8><10_3
k k
G]ﬁ] = 10.5mS G1‘1 = 81.6mS
0.18  &u/n = 0.494 Sm/N = 0.431 Sm/N = 0.370
(m) (m) (m)
K™ K™ K™
IT() = —0.47 r O _ —2.1x1073 O _ -39 %1077
Gy =48mS Gi.1 = 109mS Gi,1 =48 x10°mS
020 8y N = 0.437 Sm/N = 0.336 Sm/N = 0.273
(m) (m) (m)
K™ K™ K™
’k()=—4.1><10—3 Ik():—7.0><10_10 ’k():—2.3x10—l6
G1.1 = 54mS Gi1=21x10%mS G111 =63x10"%mS

4Roots dm N are sought in interval /A < d/A <m/N = %; number of elements N = 90 and
phase sequence m = N /2 = 45.

bTaken from Fikioris ez al. [1, Table 1]. © 1994 EMW Publishing.

five groups. Other combinations are possible. Note that G 1 is repeated at the end of
Fig. 11.4 as G173 for reasons of symmetry.

The parameter D%m) = Dip + D(Emlg depends on a/A only through D and on
d /A only through D(Emlg. D1 g is zero when the elements are self-resonant. By plotting
D g for various values of A/, it is seen that D{p is a decreasing function of a/A, at
least when a/A < 0.07 and a/A < h/) < 0.22. (It can be shown, in fact, following
a procedure similar to that in Appendix II of [11], that the variation with a is linear
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in the quantity 2 = 21In(2k/a), but the approximation is poor when 4 /a becomes
small.) Hence, making the dipoles electrically thicker will result in decreasing the
amplitude of a curve like that in Fig. 11.3, thereby shifting the resonant spacing 6,/
to a smaller value of d/A. The resonant currents will therefore become much larger.
When the elements are electrically very thin, the array can have no narrow resonances
at all, because the resonant root occurs at a value d/A > m/N.

The effect of changing the length #/A is much more involved since both Dip
and D(Zmlg depend on A/XA in a complicated way. However, extensive numerical
calculations show that the position of the root §,,,y decreases when h/A increases,
at least when a/A and h/)\ are in the above-mentioned ranges. Table 11.1 shows
the resonant spacings §,,/y, the values of K;m)(O) evaluated at d/A = §&,,/n, and
the self-conductance G1,1 for 90-element arrays at their m = N /2 phase-sequence
resonance as a/A and i /A vary. The conclusion is that

Property 6: If a specific phase-sequence resonance is desired, making the dipoles
electrically longer or thicker will require an electrically smaller circle
and will result in much higher resonant currents around the array, at least
when a /X and h/A are in the ranges

a/dx <007 and a/A <K h/r < 0.22.

It is seen from Table 11.1 that the currents are predicted to be extremely large when the
perfectly conducting elements are long and thick. Very large currents can be realized
in practice only with superconducting elements; in the case of highly conducting
elements (for example, elements made from brass or aluminum), the currents are
severely limited. The effect of ohmic losses is considered in Chapter 12.

It is natural to believe that values of a/A and h/X that yield narrow resonances in
circular arrays will yield narrow resonances in non-circular closed-loop arrays as long
as the minimum radius of curvature is large enough.

114

Behavior near a phase-sequence resonance

Consider again that a/A, h/A, and N are fixed, and that d/X\ is varied but stays
very close to a resonant spacing 8,y so that the array is very close to its mth
phase-sequence resonance. The function D;em) is usually a quantity of order 1, but
near resonance it is of the order of magnitude of the very small quantity D;m) ; it is the
controlling quantity in (11.4). It is a good approximation to assume that Pl(em), Pl(m),
and ng) are constant and that D;em) varies linearly with d /A so that the dependence
of T™ on d/ is explicitly
Py + jP™
@™ (d /A = 8myn) + jDI

T (d/)) = (11.26)
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where o™ is the slope of D;em) near its zero. Using Pl(em) > Pl(m), it is seen
from (11.26) that Re{T ™} has extrema when DY = £D"™ or d/A — 8,5 =
:I:D;m) /o™ with the corresponding values

(m)

P 1
Re{T™)} = iZDR(m) =¥; Im{T™} = FIm{T™}. (11.27)
1

From the relations (11.16) between T, G and B"™ and (11.17) between By
and B it is seen that

Property 7: B" and the By ’s are very rapidly varying near a narrow resonance.
When the spacing d /X is such that G has decreased to half its maxi-
mum value, B is roughly equal to G"™: B = £G™ = :E%Gﬁgls).
Hence, B™ and the B; .1’s have a zero very close to resonance. The By ;’s
vary around the array as cos[27 (I — 1)m/N].

It is therefore possible to design an array near resonance with a purely resistive
driving-point impedance, but this property is extremely sensitive to slight changes in
the parameters.

The Q of the resonant array may be estimated from the curve of G 1 as a function
of d/\ as

. Sm/N
O = @, — i

(The actual definition involves the frequency.) In (11.28), the (d /1) and (d/A); are the
spacings at which the power is reduced to one-half the maximum at constant voltage,
i.e. when D%") = iD;m). Using Pl(em) > Pl(m) and (11.26), it is seen that

(11.28)

. Sy la™

2|D§m)| (11.29)
Formula (11.29) provides a simple way to estimate the Q. If, in (11.26), P{" is
neglected compared to Pl(em), a simpler formula for the behavior of the quantities near
a narrow resonance as a function of d/X (or as a function of frequency) is obtained,
which predicts a small, constant self-resistance and a linearly varying self-reactance
that becomes zero at resonance. This formula is used in Section 11.7 below.

It is not simple numerically to calculate quantities near resonance from the full
formulas (11.2)—(11.17). In addition to the numerical complications created by the
smallness of K ;m)(z) and D;m), the calculation of Dg") requires high precision. The
reason is that D;em) is the difference between two nearly equal, complicated integrals
of order 1. A more detailed discussion of these and similar numerical difficulties is
provided in Section 13.5.
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11.5

Radiation field at or near a phase-sequence resonance

With the two-term theory currents, and with the origin of the spherical coordinates
(r, 6, ¢) placed at the center of the array, the radiation field is given by (10.46)—(10.48)
with ; = VT, = Vi T;.

E(r,0,¢) = 0Ey

-V efjkr

=6
Y rcoskh r

N
X {F(e)eij sin9cos(¢—¢1) + G(e) Z T]eij sin COS(¢—¢1) } , (1 130)
I=1
where (R, /2, ¢;) = (R, n/2,2x (I —1)/N) is the location of element /, R = d /(2 x
sinmr/N) is the radius of the circular array, and

cos(kh cosf) — coskh
F@®) = : (11.31)
sin 6
sin kh cos(kh cos ) cos @ — cos kh sin(kh cos 6)

sin @ cos 6

G@) = (11.32)
In (11.30), the first term represents radiation from the sine current of the driven
element; the second term is radiation from the shifted-cosine currents of all elements;
F(0) and G(0) are the “element factors” for the sine and shifted-cosine currents,
respectively. At or near a narrow resonance, we have the standing-wave distribution
T; = Ticos[2r(l — 1)m/N]. It will be seen that the first term in (11.30) may
be neglected. Thus, if one defines the array factor for the mth phase-sequence
resonance as

N
A(m)(e’ ¢) — i Z]’vleijSiHQCOS(d)—(bl) (11333.)
1=
al 20— Dm7 irsing
:Zcos[—]ef sing cos(¢—¢r) (11.33b)
1=1 N

the radiation field is given approximately by

-V e—jkr
© W,gcoskh

Ey GOTA™ (0, ¢). (11.34)

The array factor is the radiation field due to a circular array of isotropic radiators with
the mth phase-sequence resonance currents around the array, element 1 having unit
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current. The sum in (11.33b) may be written exactly as follows (see [12] for a detailed
derivation):

A6, ¢) = Nj™ J,,[N(d/2) sin 0] cos(me)

+N Y NPT TNy N(d/3) sinf] cos[(Np — m)¢]
p=1

+N Y NP Ny e N (/) sin 6] cos[(Np + m)@]. (11.35)
p=1

Because of the condition d/A < m/N < %, the arguments of the Bessel functions
are always smaller than the orders. When N is large, only two terms in (11.35) are
significant, namely,

A, ¢) ~ Nj™J,,[N(d/2) sin 0] cos(me)
+ NN Iy _m[N(d/2) sin 0] cos[(N — m)¢]. (11.36)
As with the imaginary part of the kernel, the first term is adequate when m < N /2

and the second term is equal to the first one when m = N /2. Assuming for simplicity
that m <« N /2 and using the asymptotic formula for the Bessel functions, one obtains

N 1
(m) ~ jmn
AV, ) ~ j Qrm)1/2 [1 — (x,, sin0)2]1/4
x exp[—N(m/N)g(x,, sin6)] cos(me), mLN/2, (137

where x,, and g(x) are the same as in (11.19). Hence, the array factor is an
exponentially small quantity and, in fact, it shares Properties 2 and 3 of the imaginary
part of the kernel. Also, it has a zero of order m at 6 = 0. From (11.37), the field
formula (11.34), and the expressions (11.20)—(11.22) for T} = (2/N )Tr(é:’), it is seen
that:

Property 8: The magnitude of the radiation field at any fixed point in space is
extremely large in N.

This verifies that radiation from the sine current of element 1 is negligible and justifies
the usefulness of the array factor. The largeness of the field should be expected since,
for lossless elements, integration of |Eg|> over a large sphere should give the total
radiated power %Gm [Vi|?, which is large.

Property 9: The horizontal field pattern (6 = 7/2) consists of 2m spikes.

Property 10: The vertical field pattern is very narrow, with a maximum at 8 = 7 /2.

Figures 11.5 and 11.6 show the horizontal and vertical far-field power patterns for the
N = 72 array of Fig. 11.4 as calculated from (11.30)—(11.32). It is seen that Properties
9 and 10 hold.
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The narrowness of the vertical beam can be estimated by neglecting variations of
the field in (11.34) due to the slowly varying G (6) and defining vertical directivity as
the maximum of the array factor divided by its mean value, namely,

|A™ (12, )|

Dy = —— .
%/O A (0, ¢)|sin6 dO

(11.38)

Subject to the approximation (11.36), the integral can be carried out analytically and
the resulting Dy is independent of ¢ when m << N /2. Thus,

Dy = 2N (@/M)] m < N/2. (11.39)

T2 AN @MV gy 2N @ /30

With the asymptotic expression for the Bessel functions and after some manipulation,
it can be shown that

Dy ~ @N/m)"*[(m/N)* — (d /""" (11.40)
Hence,

Property 11: For a specific phase-sequence resonance m/N, making N larger will
result in a narrower vertical field pattern, and in more spikes in the
horizontal plane.

Property 12: For fixed N and for a specific phase-sequence resonance m, making the
dipoles thicker or longer will result in a smaller resonant spacing 6., /n,
a much narrower resonance, and a slightly more directive vertical field
pattern.

The vertical directivity may therefore be made arbitrarily large by making N large
(although the increase is slow, roughly as the square root of N). The field strength
at any point in space increases very rapidly. The input impedance may be a pure
resistance. However, the physical dimensions of the array increase (linearly with N)
and the band width decreases very rapidly.

The array factor’s smallness has an interesting consequence. For resonant non-
circular arrays, an array factor A(6, ¢) may be defined exactly as in (11.33a). This
array factor will depend on the array’s geometry and the relative current distribution
around the array. It will be a sum of N terms of order 1, each term depending
on the location of element / and its relative current (admittance). If a sufficiently
large non-circular array with one element driven is thought of as a perturbation
of some corresponding circular array, then it is logical to assume that the current
distribution around the array will not be significantly affected and will again be of
the standing-wave type. Hence, each term in the sum for A(6, ¢) will be close to each
term in the sum for the circular array. However, any very small quantity that can be
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written as the sum of terms of order 1 is extremely sensitive to perturbations of these
terms. Therefore, the array factor (field pattern) for the non-circular array will not be
close to that of the circular array. This means that a wide variety of field patterns may
be obtained by resonant non-circular arrays, perhaps even a superdirective pattern. The
possibility of using a resonant non-circular array to obtain a highly directive field was
proposed in [6].

A far-field pattern consisting of many sharp spikes equally spaced around a circle
is unusual and would seem to have no useful purpose. There is, however, one very
interesting potential application. Assume that N = 90 and m = 45 so that there are
90 spikes. If the array of 90 elements is mounted rigidly on a circular disk passing
through the center of each element, and if the single driven element is center-driven
by a transmission line that extends from the element to the center of the disk and
then vertically downward, the entire structure can be rotated about the vertical axis
through the center of the disk. When the angular velocity is one revolution in 1% min
or 90s, the array, operating at a fixed frequency and constant amplitude, emits a
sharp pulse once each second in all directions in its horizontal plane. Thus it is a
radio beacon that could be used in place of flashing lights along the sea coast. By
selecting different angular velocities, each beacon can be made uniquely identifiable.
As compared with the conventional flashing lights, which vanish in dense fog, the
radio beacon is equally useful in all kinds of weather. Although it sends out short,
sharp pulses, it is a structurally and electrically simple, steady-state device.

11.6

Refinements for numerical calculations

Two further improvements to the two-term theory are now presented. These do not
change the properties given before but are useful for numerical calculations whenever
high precision is necessary. These improvements apply specifically to tubular dipoles
(or monopoles over a ground plane) with walls of zero thickness.

Whereas the real part of the self-term of the kernel K1g(z) given in (11.11) assumes
interaction from axis to perimeter, the more accurate but more complicated form (see
Section 11.8 and Chapter 1)

1 /” cos{k[z? + 4a? sin2(¢>/2)]1/2} do (11.41)

Kir(x) = —
. [+ 4a?sint(@/2)]"?

2
assumes that the interaction is from a point on the perimeter to another point on the
perimeter. The use of (11.41) instead of (11.11) provides higher accuracy.

The second improvement comes from the observation that the trigonometric func-
tions sin k(h —|z|) and cos kz —cos kh are not adequate to describe the charge build-up
near the ends z = =h of the tubular dipole. It is known that /(z) behaves like
/h —|z] for |z| close to h for both the driven [13] and the parasitic elements. A simple
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improvement to the current that takes into account this behavior is achieved [9, 14] by
modifying the shifted cosine to

s coskz — y1, lz| < zo
p (z) =
V2V kh —klz|, 20 < |z| < h,

where the constants i, y», and zq are found by matching pS(z) and its first two
derivatives at z = z¢o. The resulting equations are

(11.42)

tankzg = 2(kh — kzg) (11.43)

y1 = coskzo[l — 4(kh — kz0)?] (11.44)

v2 = 2sinkzoy/kh — kzo. (11.45)

Formula (11.43) is a transcendental equation for kz( that has exactly one solution when
kh < m/2. The two-term theory solution then becomes (11.2)—(11.15) with cos kz —
coskh in (11.2) and (11.8)—(11.10) replaced by pS(z) as given by (11.42)—(11.45).
This solution gives excellent agreement between theoretically predicted and measured
resonant frequencies in the two experimental studies that have been performed
[10, 15].

In the extended theory in Chapter 12 that takes into account the effect of a finite
but large conductivity of the elements, the current distributions on the elements are
assumed to be the same as in the lossless case and the refinements of this section may
be included in the extended theory for lossy elements. The values of driving-point
admittance obtained from such a theory will be seen to agree very well with those
measured.

11.7

Resonant array with two driven elements

In Sections 11.2-11.6, it was seen that properly dimensioned large circular arrays of
electrically short, perfectly conducting vertical dipoles possess very narrow resonances
when only one element is driven and the rest are parasitic. At each resonance, the
currents on all elements are large and are distributed as a standing wave around the
circle. The driving-point reactance is zero. The associated field pattern consists of
many pencil-like beams.

In recent studies [16, 17], the complete electromagnetic field generated by a vertical
electric dipole located in the air above planar earth (salt water, lake water, wet earth,
dry earth) has been formulated in simple integrated expressions. Included is the special
case when both the vertical dipole and the observation point are on or close to the
surface of the earth.

In applications such as broadcast, ground-wave over-the-horizon radar [18], shore-
to-ship communication and microwave beacons, it is required to generate a significant
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electromagnetic field (surface wave) close to the air—earth boundary at 8 = 7/2. In
addition to the field close to & = m/2, a typical transmitting antenna generates a
significant field at smaller angles 6. This field is unwanted. Furthermore, the upward
generated field may reflect off the ionosphere and interfere with the surface wave
propagating near § = /2. In this section, a structurally simple antenna array that
is especially suited to generate an omnidirectional surface wave will be described.
Instead of directing the outward-traveling electromagnetic field upward toward the
ionosphere, the array directs the field along the surface of the earth in a pancake-shaped
field pattern. The array is a large circular array as before but in this case two elements
are driven instead of one. Each driven element has a driving-point impedance that is
purely resistive. A description and analysis of the array are followed by a determination
of its complete far field both when the array is in free space and when the array is over
planar earth. The generation of a pancake-shaped field pattern by a large circular array
with many parasitic elements was first proposed in [19].

In this section, a time dependence e~'® is assumed instead of the e/®' of the
previous sections. Also, it is assumed that the frequency f = c¢/A = w/27 is the
varying parameter instead of d/A of the previous sections.

The basic idea here is to design a resonant circular array with two elements (1 and

n) driven that has a traveling-wave distribution of current, namely,

22l — Dm
L,(0) = 1, (0) exp |:—z T} I=1,..., N (11.46)

instead of the standing wave of (11.25). The resulting array-factor pattern is omnidi-
rectional with a pancake-like shape. The vertical directivity increases as the width of
the resonance decreases. The problem will be studied in general; conditions on N, m
and n will be developed so that (11.46) is possible; the meaning of “resonance” when
two elements are driven will be clarified.

Excitation of a traveling wave with two driven elements

The midpoint currents 7;(0) on the dipoles when elements 1 and n are driven by
voltages V1 and V,,, respectively, are given by (10.43) and (10.45) so that

LO)=Y1V1+ Y10 Va, l=1,..., N, (11.47)

where the self- and mutual admittances Y; ; satisfy Y;; = Y, ;, Y; ; = Y11, and
Yii = Y1 j—i+1 = Y1 j—1+1+n. The last equality follows from the symmetry of the
circular array with one element driven. At or near a narrow resonance (as long as the
self-conductance is large), the admittances follow the distribution (11.25) so that

27l — m 2n(l — n)ym
I;(0) = Y114 Vicos N + V, cos —~ i I=1,...,N.
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As a function of frequency (see Section 11.4)

Y1.(/)) =Gi11(f) —iB1.1(f)
G1.1(fm) I f — ful
— : ) YV ZJml
1—120(f — fu)/fm m =

where Q is the quality factor of the resonance curve.

, (11.49)

In this section, interest is primarily in cases where G is large enough so that
contributions from the rest of the phase sequences are negligible in (11.48). However,
the small contributions from the rest of the phase sequences are included in numerical
and graphical results.

Defining
2n(n — )m
- % (11.50)
it is seen that if the ratio V,,/ V| is chosen so that
Vi = —Vye''mn, (11.51)
then the currents satisfy (11.46) with the current on element 1 given by
11(0) = —Vy Y11 i sin ty,e'™mn, (11.52)

It follows that the choice (11.51) is not sufficient for a traveling-wave distribution of
current around the array; in addition, the condition

sintyy,, # 0 (11.53)

must be satisfied. This is a restriction on the choice n of the second driven element for
given N and m.
The two driving-point admittances are given by

. 1,(0)
Yl,in = Gl,in - lBl,in = ] = wmnYl,l (11.54)
. 1,(0)
Yuin = Gp,in — i Byin = nV =w,, Y11, (11.55)
n
where
Win = Ump — i Vpn = sin’ tin — I SIN tyy COS typ (11.56)

and the asterisk denotes the complex conjugate. It follows from u,,, > 0 that the total
power supplied to the array, namely,

Pioatin = 3G1inlVil* + 1Guinl Val* = 3(G1in + Guin) IV (11.57)
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is positive as one would expect. However, the individual powers supplied may include
one that is negative. This means that it is necessary to extract power from one of the
elements in order to excite a traveling-wave distribution of current. Although this may
be done by center-loading the element (as opposed to driving it by a generator), a case
like this is undesirable and can be avoided as will be shown below.

As when one element is driven, the far-field pattern is adequately described by the
array factor. With the currents (11.46), this is

N
A(m)(e’ ¢) — Ze—i[27t(l—1)m/N]€—ikRSinGCOS((ﬁ—(b[)’ (1158)
=1

where (R, /2, ¢p) is the location of element [ in spherical coordinates. This may be
evaluated asymptotically for large N as in the case where only one element is driven.
The details are in [20]. The final result is

N R ' imd!
A(m)(e’ }) ~ 2_ etmqb/ o ikRsin0 cos¢’ ,—im¢ d(ﬁ/
T 0

2
+ l ei(N—m)d)/ i e—ikRsin900s¢>/ei(N—m)¢>/ d(ﬁ/ (11.59a)
27‘[ 0
or
A™ (0, ¢) ~ Ngm(@ e ™ + Ngny—m(@)e! N9, (11.59b)
where
gm ) = (—=i)" Ju[N(d/1)sin6]. (11.60)

It is seen from (11.59a) that each term in (11.59a) or (11.59b) is proportional to
the radiation field due to a continuous circular traveling wave of current. One is a
clockwise traveling wave and the other is a counter-clockwise traveling wave. If m <
N /2, the first term dominates and the resulting radiation field has a pancake-shape,
with vertical directivity the same as in (11.40) so that [AT (0, ¢)| = A™ (). In
the extreme case m = N /2 (which is not allowed because (11.53) is not satisfied),
the second term would have the same magnitude as the first term and the resulting
radiation field would consist of 2m pencil-like beams.

Choice of the parameters

If N is chosen to be a multiple of 4, then for certain n there exist values of m such that
coStyn = 0 < vy, = 0and u,,, = 1. (11.61)
With such a choice of N, n, and m, (11.54)—-(11.56) give

Yiin="Ynin=7Y11 (11.62)
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so that, at or near a narrow resonance, the two driving-point admittances are equal to
the self-admittance and all desirable properties of the circular array with one element
driven are preserved: The two driving-point susceptances become zero at the same
frequency and the driving-point conductances are very large at that frequency. Hence,
it is desirable to use as a second driven element one that would have a very small
current if only element 1 were driven.

If, furthermore, the second driven element is chosen to be a quarter-way around the
circle,i.e. n = N/4 + 1, then u,,, = 1 and v,,, = 0O for all odd m; with this choice
of second driven element, it is possible to excite many phase-sequence resonances; the

required voltage ratio is either ¢/"/? —in/2,

ore

The choice of m depends on various opposing factors. For given large N, if m
is chosen to be too large, the following disadvantages apply: (i) the second term in
(11.59) might contribute and the field pattern will not have a true pancake-shape,
although the value of the ratio |gy—;, (t/2)/gm (7w/2)| decreases very rapidly with
decreasing m; and (ii) the antenna might be too frequency-sensitive. On the other hand,
the advantages of using a large value of m include a slight increase in directivity as well
as smaller contributions from the other phase sequences; these contributions can cause
departures from the omnidirectional pancake-like field pattern. The advantage in being
able to excite many different phase-sequence resonances with the same construction
allows the choice of m to be made to fit a particular application.

Finally, it must be pointed out that when N, m and n are not chosen to satisfy
(11.61), a very different frequency dependence may result. Figures 11.7 and 11.8
show the two driving-point admittances as calculated by (11.54)—(11.56) and (11.49)
when Q = 1000, N = 90, m = 43, and n = 24 (this choice of n corresponds to
using as a second driven element one that would have the largest possible current
if only element 1 were driven at the resonant frequency f43). It is seen that the
driving-point conductances both become negative very close to “resonance”, that the
driving-point susceptances become larger than the conductances, and that all values
are much smaller than the resonant self-conductance G1,1(fm)-

A specific example is now given for an operating frequency of about 30 MHz. The
number of elements is chosen to be N = 96, so that there are many combinations
of m and n that satisfy (11.61). The choice a = 0.28m, 7 = 1.9m, andd = 3.1m
is appropriate for 30 MHz. This choice of a, &, and d corresponds to an approximate
scaling of the N = 90 element experiment' over a ground plane with one element
driven by a coaxial line. The diameter of the 30-MHz array is 2R = 95 m. Table 11.2
shows the phase-sequence resonances that may be excited by using elements 1 and 25
(= N/4 + 1) as driven elements, the required voltage ratio V»5/ Vi, the theoretically
predicted resonant frequencies f;,, the values of the driving-point conductance at
resonance G in(fm) = N(0)/ Vi = Guin(fm) = G1,1(fn), the ratio of the two

1" [10] Chapter 8.
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Figure 11.7 Normalized driving-point conductance G1, in(f)/G1,1(fm) (solid line) and
driving-point susceptance B in(f)/G1,1(fm) (dashed line) of element 1 as function of relative

frequency (f — fm)/fm; @ = 1000, N = 90, m = 43, and n = 24. Taken from Fikioris et al. [20,
Fig. 2]. © 1996 LE.E.
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Figure 11.8 Normalized driving-point conductance G4, in(f)/G1,1(fm) (solid line) and
driving-point susceptance B4 in(f)/G1,1(fm) (dashed line) of element 24 as function of relative
frequency (f — fm)/fm; @ = 1000, N = 90, m = 43, and n = 24.

array-factor terms in (11.59b) at 6 = 7/2 and ¢ = 0, and the vertical directivity
of the array factor Dy as given by (11.40). The values of f;, and G 1(f,n) were
calculated using the full formulas of Section 11.2, and including the two refinements
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Table 11.2. Phase-sequence resonances m;? required voltage ratios V5/ V| ; predicted resonant
frequencies fi,; resonant driving-point conductances G in(fm) = 11(0)/ V1 = Gas,in(fm);
ratios |gN—m (t/2)/gm (7 /2)| of two array-factor terms in (11.59) at 6 = /2, and vertical
directivities Dvb

m @ Sm G1,in(fm) ‘gN—m(ﬂ'/2) Dy
Vi (MHz)  (mS) gm(/2)
47 i 30652 2x10!0 1 x 10! 478
45 —i 30589 4x108 2x 1073 4.60
43 i 30460 1 x 107 3x 1073 441
41 —i 30262 5x10° 4x1077 421
39 i 29987 3 x10* 5% 1079 4.01
37 —i 29624 2x10° 6 x 10~ 3.78
35 i 29.154 3 x10% 6x 10713 3.54

4Excited when number of elements N = 96, radius ¢ = 0.28 m, half-length # = 1.9 m, element
separation d = 3.1 m, and number of second driven element n = 25.
YTaken from Fikioris et al. [20, Table 1]. © 1996 L.E.E.

in Section 11.6. It is seen that the second term in (11.59) will have a noticeable effect
only in the first case of Table 11.2.

Far field of array in free space

The far field of the omnidirectional array is the product of the field of a single isolated
antenna multiplied by the array factor. The far field of a vertical dipole in space that is
electrically short and has the effective half-length 4, is

—iwpo2h1(0) ekro

E) = ino, 11.63
0 4 ro s ( )

where k; is the free-space wave number. The far field of the circular array is thus

—iwp2he1;(0) etk2ro
4 ro

E) = A (6)sing, (11.64)
where A" (0) is given by the magnitude of the first term in (11.59b).

Figures 11.9 and 11.10 show the normalized far-field power pattern |Ej (6, d))l2
in the plane & = m/2 of the dipoles’ centers for the cases m = 37 and m = 45
of Table 11.2, respectively. Figures 11.9 and 11.10 were obtained using (11.47)
and the full formulas in Sections 11.2 and 11.6 so that the effects of the rest of
the phase sequences are included. The small oscillatory departure from the smooth
omnidirectional field in the m = 37 case is due to the contributions from the rest of the
phase sequences. The slight ripples in the m = 45 case are due to the contribution of
the term corresponding to the second term in (11.59). The intermediate cases m = 41
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¢ =m/2

Figure 11.9 Normalized far-field power pattern |E 5 /2, ¢) |2 as function of polar angle ¢ in plane
6 = /2 of dipoles’ centers for m = 37 case of Table 11.2. Taken from Fikioris et al. [20, Fig. 3].
© 1996 L.E.E.

and m = 43 appear as smooth circles and are not shown here. Figure 11.11 shows the
normalized far-field power patterns in the elevation plane ¢ = 0 as a function of the
polar angle 0. The m = 45 case is seen to be slightly more directive.

The array over the earth or sea

Suppose that the resonant array is located in region 2 (air) over region 1 (salt water,
wet earth, lake water, dry earth), at a small distance dy over the air—earth boundary.
Medium 1 is characterized by a complex wave number k1 = w./iov€1 + i(01/w), so
that

2 2
TR I (11.65)
k3 " An? f2¢

where (i) for salt water, €, = 80 and oy = 4 S/m, so that |k;|%/ k% = 2400, (ii) for
wet earth, €), = 12 and o1 = 0.4 S/m, so that |k;|>/k5 = 240; (iii) for lake water,
€1, = 80 and oy = 0.004 S/m, so that |k;|>/k3 = 80; and (iv) for dry earth, €, = 8
and o1 = 0.04 S/m, so that |k |*/ k5 = 25.

Consider a vertical electric dipole in region 2 (air) over region 1. If the electrical
distance k>p from the dipole to the point of observation satisfies kpp < 2|k; 12/ k2,
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¢=m/2
1

-1

Figure 11.10 Normalized far-field power pattern |Ej (/2 ¢) 2 as function of polar angle ¢ in
plane 6 = 7 /2 of dipoles’ centers for m = 45 case of Table 11.2. Taken from Fikioris et al. [20,
Fig. 4]. © 1996 L.E.E.

6=0 m=37

_— m=45 \
~— - 0=n/2

Figure 11.11 Normalized far-field power pattern |E (6, 0)|2 as function of polar angle 0 in plane
¢ = 0 of dipoles’ centers for m = 37 and m = 45 cases of Table 11.2. Each pattern is normalized to
its maximum at 6 = /2. Taken from Fikioris et al. [20, Fig. 5]. © 1996 L.E.E.

then the z-component of the electric field E; in region 2 is the same as when region 1
is a perfect conductor [21]. The range kop < 2|k;|?/ k% includes both the intermediate
and the near regions, the latter being defined by the stricter condition kzp < 1. In
the m = 37 case of Table 11.2, the smallest element-to-element electrical distance is
kop = kod = 1.95, and the largest element-to-element electrical distance is k2p =
ka(2R) = 59.5. At least in cases (i)—(iii), therefore, all elements in the array are in
each other’s intermediate region and it is correct to assume that region 2 is perfectly
conducting when estimating mutual-coupling effects. Note that these depend entirely
on Ep;.

In order to provide an estimate of the coupling between the array in region 2 and
its perfect image in region 1, the behavior of the z-directed electric field of an array in
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free space is investigated. The current distribution along the length of all elements in
the resonant array is cos kz — cos kh. Two simplifying assumptions are made: (i) that
the elements have infinitesimal thickness; and (ii) that the current distribution along
their length is sin k(h — |z|). Thus, the currents are taken to be

li(z) _ sink(h — |z|)
L) sinkh

(11.66)

where [;(0) is given in (11.46). These approximations are adequate for our purposes
since the dipoles are electrically short (kh < 7 /2) and the two distributions sin k(h —
|z]) and cos kz —cos kh are quite similar. Now use is made of the exact formulas (1.38)
for the field of an infinitesimally thin dipole with a sink(h — |z|) distribution. The
origin of the cylindrical coordinates (p, ¢, z) is placed at the center of the array, and
the location of the center of dipole [ is (R, ¢y, 0) = (R, 27 (I —1)/N, 0) in cylindrical
coordinates. From (1.38c), it follows that the z-component ¢;, of the electric field due
to dipole / in the circular array is given everywhere by

. 1) ikyry ikorp; ikarer
iwpol; (0) (e e € ) (11.67)

. —2coskh
dm sinkh \ kory korp 2Tl

elZ(p7 ¢7 Z) =

where ry, rp;, and r. are, respectively, the distances from the observation point to the
top (z = h), bottom (z = —h), and center (z = 0) of dipole [ in the array.

Upon using (11.46) and setting p = R, it follows that the total z-directed electric
field of the resonant array is given by

47 sinkh E.R.$.2) =

iope1(0) 0T
ﬁ:exp IR L N P (11.68)
= N kary  karpr ore ) '

The formulas for the distances r;;, rp;, and r¢; in the case where p = R are

r = ru($,7) = \/4R2 sin’ @ + (h — 2)? (11.69)
:w=mmn=Jm%wf%@+m+& (11.70)
ret =rei(, 2) =\/4R2sin2¥ + 22 (11.71)

The magnitude of the normalized z-component of the electric field as calculated
from (11.68)—(11.71) is plotted in Fig. 11.12 for the m = 37 case of Table 11.2
as the distance z varies from —12 to —2m. It is seen that E, decays rapidly and
monotonically away from the array. The rate of decay is much more rapid than for
a single isolated element. This phenomenon is related to the rapid decrease of the field
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Figure 11.12 Magnitude of normalized z-component |[(4r sinkh)/iwugl; (0)]1E; (R, ¢, )| of
electric field as function of z for ¢ = 0 and for m = 37 case of Table 11.2. Taken from Fikioris et
al. [20, Fig. 6]. © 1996 LE.E.

(surface wave) observed in infinite linear arrays [2]. This rapid decrease indicates that
the coupling between the resonant array and its image is negligible even if the array is
placed at a small distance above the surface of the earth.

Field of the array over earth or sea

General formulas for the three cylindrical components of the electromagnetic field of
a vertical electric dipole with unit electric moment are given in [16, 17] subject only to
the condition that the wave number of air (k2) be small compared to the magnitude of
the complex wave number (k1) of the earth or sea. That is,

K>k} or |ki| > 3k (11.72)

The formulas are valid at all points in the air, z > 0, with the dipole at any height dj.
When the three conditions

kop = 8I21/K3, A3 <13, lkado/kirgl < 1 (11.73)

are satisfied, the procedure carried out to obtain the formulas for the cylindrical
components may be extended to the spherical component Ej (ro, 6). The result is

Ey(ro,0) =

—wpohely ikaro iky . 0 (cos @ + dy/rp) cos(kady cos )

——e¢ —=sin

2mks ro cosO +dy/ro+ ka/ ki
i(ka/k1 —dy/ro cos? 6) sin(kady cos 9)] ko

cosO +dy/ro+ ka/ky klrg

in6 3k ,
x St 22 cos6 — sin2 0 |eikadocos0 L (11 74)
cosB +do/ro+ ka/ky ky
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where
ro = (p> + 222, (11.75)

h, is the effective half-length of the dipole, and Iy is the current at its center. Of
particular interest here is the far field Ej(ro, 0) in spherical coordinates when the
dipole is quite close to the surface so that kodp ~ 0 and dyp/ro ~ 0. In this case,
(11.74) reduces to
—wpg2hedy Jikaro [& (k1 sin @ cos 9)
2mky ro \ ko + ki cosé
k3[sin> 0 — (ka/k1) cos 0] sin’ 0
k3rg[1 + (ki / ko) cos 013 ]
In (11.74) and (11.76), the 1/ry term is that obtained from the plane-wave reflection
coefficient. It vanishes along the boundary defined by 6 = 7 /2. The 1 /rg term is the

Eg(ro,0) =

(11.76)

lateral wave that propagates in the air close to the boundary and continuously transfers
energy into the earth or sea. Although it decreases with radial distance as 1/ rg, it is
multiplied by the very large factor k% / k%. The far field for the surface wave when
(z +do)/ro < 1 is defined by the first condition in (11.73).

An alternative form is useful when the vertical heights z of the observation point are
small compared to the radial distance from the transmitter. Specifically, when
kiz| < koro,  sinf =2, cosf = «1 (11.77)

ro ro

(11.76) reduces to

—wio2h.dy ki eik2r0<

E (ro. 0) =
6 (0. 9) 2tk kR

ikyz — ﬁ) (11.78)
ko

This formula shows that for observation points at any fixed height z < |karg/ k1|, the
incident electric field is proportional to 1/ rg. This includes both the surface-wave term
and the space-wave term. Note that the latter vanishes when z = 0 so that the entire
field along the surface is due to the lateral wave.

The far field of the resonant circular array of dipoles at a small height dy ~ 0 over
the earth or sea is given by (11.74), (11.76), or (11.78) multiplied by A (9) as given
by the magnitude of the first term in (11.59). The pancake-like pattern represented
by A" (0) is enhanced by the low-altitude field represented by (11.74), (11.76), or
(11.78). In particular, the important field close to the surface of the earth is maximized
and virtually no field is maintained at upward angles that are not close to 6 ~ /2.

11.8 Appendix: the various kernels for the circular array

In the course of this chapter, four different kernels for the mth phase-sequence integral
equation are mentioned. In this appendix, their relationship and applicability are
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discussed. Consider the coupled integral equations for the current distributions 7;(z) in
an array of identical, perfectly conducting, parallel, non-staggered tubular dipoles of
radius a and half-length 4 (the array may or may not be circular, and more than one
element may be driven):

—1 " / / / j47T Vi .
drpy Az(z) = E hln(z)an(z—z)dz =~ Clcoskz—k?smldzl .
— J_

(11.79)

In (11.79), the constants C; are determined from the conditions I;(h) = 0, A (z) is
the z-directed vector potential on the surface of dipole /, and V; is the voltage driving
element [, with V; = O if the element is parasitic. Each term in the sum on the left-hand
side of the integral equation is the vector potential on element / due to the current I, (z")
on element n; the kernel K,;; associated with each vector potential is a “self-interaction
kernel” if n = [ so that K;,;(z) = Kj;(z) = K11(2) or a “mutual interaction kernel” if
n # [. The various mth phase-sequence kernels referred to in this chapter result from
the following four sets of kernels for the general array.

1. The original kernels, employed in Chapters 1-7:

exp[—jk(z% + a? 12
Ki(2) = pL—Jk( 1/2) ] (11.80a)
(22 +a?)
172
ik b
Ku() = 20 @ +]/2’) L (11.80b)

(22 +b%)
where by, is the distance between the axis of dipole / and the axis of dipole .
2. The improved kernels of [8] and [9]:

T a2 2 w2040 1/2
ki) = 5 [ SRCLE LIS EL ) gy (1181
- [22 + 4a? sin® (¢ /2)]
D) I 11.81b
nl(Z) A 2/ / nl(Z d) ¢) ¢ ¢’ I/l7é s ( . )
where
Ru(z.¢.¢") =[z>+ (asing —a sin(b')2 + (acos¢p —acosp’ — b,ll)z]l/2
(11.81¢)

is the distance between a point on the surface of dipole / and the surface of dipole
n. It is illustrated in Fig. 11.13.
3. The modified kernels introduced in Section 11.2. The mutual interaction kernels
K, (2) are in (11.80b) and the self-interaction kernel is
cos[k(z% + az)l/z] sinkz

Ki(z) = —J . (11.82)
2 +a2)'? z
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nl

n 1

Figure 11.13 The distance BC is the projection of R,;(z, ¢, ¢’) onto the z = 0 plane.

4. The refined modified kernels discussed in Section 11.6. The mutual interaction
kernels are again the same as in (11.80b) and the self-interaction kernel is

1 (7 cos{k[z? +4a®sin’(¢//2)1V/3} ., . sinkz
Kj(z) = —/_ﬂ 2 1 4 sindg /)] d¢' —j - (11.83)

2

The improved kernels (11.81a), (11.81b) are, by the nature of their derivation,
inherently more accurate than the rest. However, they are significantly more compli-
cated so that adequate simpler alternatives are needed. Note that the imaginary parts
of (11.80b), (11.82), and (11.83) are equal to the corresponding imaginary parts of
(11.81a), (11.81b) with the radius a set to zero, so that statements concerning the
imaginary parts of the improved kernels may be specialized to obtain corresponding
statements for the imaginary parts of the modified or refined modified kernels. This is
not true, however, for the real parts.

For arrays of a small number of elements N, where narrow resonances do not occur,
the original kernels (11.80a), (11.80b) are adequate. A discussion of the relationship
between (11.80a) and (11.81a) in the case N = 1 (where the latter kernel is exact) is
given in Chapter 1 and in [22]. It is believed that the use of any of the sets of kernels
in approximate solutions to the integral equations such as the two-term theory would
not make a noticeable difference when N is small. Significant differences exist when
N is large and narrow resonances occur. The case of a non-driven infinite linear array
and that of a large circular array will be examined in turn.

Case 1

It is shown in [8] and [9] that a non-driven infinite linear array of equispaced elements
(here, b,; = |n — [|d) may possess resonances of zero width where the currents satisfy
Il(ﬁ)(z) = I(()’g)(z)efﬁl. Thus, the integral equation for Iéﬁ)(z) is

"® Jjam
/ I (z/)K(ﬂ)(z—z/)dz’=—TCocoskz, (11.84)
0
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where

KP@) =Y Kou@e = Koo(x) +2) Ko(z)cos pl. (11.85)

l=—00 =1

It is shown in [8] and [9] that K ®)(z) is real for all z when d/r < B2n < % and
when the improved kernels (11.81a), (11.81b) are used. It follows that this is also true
when the modified and refined modified kernels are used. Hence, with these kernels,
(11.84) is a real equation and this suggests the possibility of real solutions Iéﬁ )(z)
with Iéﬂ) (h) = 0 for proper choices of d/x, h/, and a/A. However, K ® (z) is not
real if the original kernels (11.80a), (11.80b) are used, so that (11.80a), (11.80b) are
inadequate in this case.

Case 2

Next consider the integral equations for the currents / l(m) (z) in the mth phase sequence
for a large circular array. The driving voltages (and, therefore, the currents) satisfy
Vl(m) = Vl(m) exp[j27 (I — 1)m/N] and the integral equation for 1 l(m)(z) is

h jAm v
/ " (K™ (z—2)d7 = _C_(c{’") coskz + — sinklzl), (11.86)
—h 0
where
N N/2+1
. 2n(l — )m
K™z =Y Ku@e” "IN = K@)+ Y &Ku) cos[¥]
=1 =2

(11.87)

and & is defined in (11.14). Here, the distances b,,; are b,y = b1,j—n4+1 = d sin(|l —
n|w/N)/ sin(r /N). It is shown in [8] and [9] that Im{K ") (z)} is exponentially small
in N for all z when d/A < m/N < % and when the improved kernels (11.81a),
(11.81b) are used; an asymptotic formula for Im{K “ (z)} is derived. The asymptotic
formula (11.18) for Im{K ™ (z)} when the modified or refined modified kernels are
used may then be obtained from the results of [8] and [9]; Im{K ™) (z)} is exponentially
small in this case as well — the only difference is a small overall multiplicative factor
of Joz(ka). If the original kernels (11.80a), (11.80b) were used, Im{K M) (2)} would
not be exponentially small. As seen earlier in this chapter, this property is crucial for
an accurate description of the resonances.

The preceding analysis shows: (i) that (11.82) or (11.83) together with (11.80b) are
simpler, adequate alternatives to (11.81a), (11.81b); and (ii) that (11.80a), (11.80b) are
not adequate for the cases of an infinite linear array or of a large circular array. In fact,
one can find cases in which the original theory gives meaningless results. For example,
application of the two-term theory for a large circular array with N = 90, h/A = 0.2,
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and a/A = 0.05 yields the negative driving-point conductance G1,1 = —97mA/V. It
is believed that statements (i) and (ii) above are also valid for large non-circular arrays.

Note that all discussions up to this point concern the imaginary parts of the kernels
only; (11.82) differs from (11.83) only in the real part. It seems logical to retain the
“exact” real part of the self-interaction kernel for calculations where high precision
is needed, especially since the resulting two-term theory formulas are not much
more complicated numerically. In any case, the refined modified kernels (11.83) and
(11.80b) (together with the square-root end correction of Section 11.6) are the ones
that give the best agreement between two-term theory calculations and experiment
(see Section 12.7).
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In Chapter 11, the phenomenon of resonances in large circular arrays of dipoles is
discussed. It is assumed throughout that the dipoles are perfectly conducting. The
effect of ohmic losses is considered in this chapter. It is assumed here that one dipole
is driven. The case where two dipoles are driven is a very simple extension. In Sections
12.1-12.6, an array of highly conducting dipoles in free space is examined. The
two-term theory is extended so that it applies to this theoretical model. The model
is mathematically equivalent to the physically unrealizable one of an array consisting
of highly conducting monopoles over a ground plane which is perfectly conducting:
one can determine the currents in the latter model by multiplying those of the former
by a factor of 2.

The case of a circular array of highly conducting monopoles over a highly con-
ducting ground plane is examined briefly in Section 12.7. An approximate method
is outlined which allows calculation of the admittances in this case by slightly
modifying the theory of Sections 12.1-12.6 in which a lossless ground plane is
assumed. The model of Section 12.7 closely approximates experimental conditions.
The theoretical curve (driving-point admittance as a function of frequency) obtained
after the effect of the imperfectly conducting ground plane is taken into account is
compared in this section to a corresponding experimental curve and the agreement is
very good. Finally, Section 12.8 is an appendix which contains the formulas for the
large circular array of highly conducting dipoles in a form convenient for computer
implementation.

Introduction

In the previous chapter, it was seen that the resonances in a lossless array become
rapidly narrower and the currents around the array become much larger as the varying
parameter f or d/X\ (or, as the integer parameter m characterizing the resonance)
becomes larger. Also, the resonances become rapidly narrower as N becomes larger;
or, to be more precise, a particular m /N resonance becomes rapidly narrower as the
number N of elements becomes larger. As a numerical example, the driving-point
conductance is predicted by the theory for lossless elements to be of the order of
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10'% mS for the m = 45 resonance of the N = 90 element experiment.! With the
aid of the theory presented here, the two situations described above (“fixed-N array”
and “fixed-m/N array”) are examined for the case of a lossy array. It is seen that
the behavior of the resonant lossy array is quite different from that of the perfectly
conducting case.

The interest here is in large arrays where the elements are highly conducting (for
example, a N = 90 element circular array of brass dipoles at microwave frequencies).
After integral equations for the current distributions are developed, an approximate
two-term solution is proposed in which the current distributions along the elements
are written as a linear combination of sink(h — |z|) and (coskz — coskh), just as
in the lossless case. When the conductivity of the dipoles is small, the situation is
quite different. The problem of a single isolated dipole of small conductivity has
been studied in the past, both theoretically [2-4] and experimentally [5]. It was found
that the current distribution along the element changes significantly from the lossless
case.

The starting points for the derivation of the integral equations are the well-known
concepts of skin effect and internal impedance [6]. Suppose that a current-carrying
cylinder has radius a, conductivity o, and permeability pg. The skin depth d; is defined

as
dy = ! (12.1)
s = ,—ijo’l,Lo’ .

where f = w/2m is the operating frequency. Under the condition

dy < a or a/opngo > 1 (12.2)

the current is principally confined to a thin layer of thickness ds near the surface of
the cylinder. The distribution of the current density J,(p), (and, also, of the vector
potential and axial electric field) inside the cylinder as a function of the radial distance
p is given by

J.(p) = Jz(a)\/g e~ @—p)/ds ,~jla—p)/ds (12.3)

The ratio of the axial electric field E,(a) at the surface p = a at a given cross-section
to the total current I, = foa J-(p)2mp dp across that cross-section is called the internal
impedance per unit length z'. It is given by

i E@ 14 1 Jnfuo

A S — =14 j)— 12.4
eEr A I, 2radso ( +J)27m o ( )

L' [1] Chapter 8.
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The same formula for the internal impedance per unit length holds for a tubular
conductor of radius a and wall thickness a — a; provided that the wall thickness is
much larger than the skin depth, i.e.

dy < a—ay and dy K< a. (12.5)
If, however, the wall thickness is very small compared to the skin depth,
a—a) Lds K a, (12.6)

then the internal impedance per unit length is purely resistive and is given by

. . 1
L J A — 12.7
¢ " 2mwa(a — ay)o ( )

12.2

Integral equations

Consider a circular array of N identical, parallel, non-staggered, lossy dipoles of length
2h and radius a. Element 1 is center-driven by a voltage V) and elements 2,3, ..., N
are parasitic. Integral equations that take the ohmic losses into account are readily
derived from the boundary condition for the tangential electric field E;(z) on the
surface of any dipole /, namely,

E;(z) = —Vi818(2) + 2 I (2), (12.8)

where 7' is the internal impedance per unit length, /;(z) is the current on dipole /, and
5 Lol=n (12.9)
Ln = ) .
" 0, otherwise.

The detailed derivation is contained in [1]. The final form of the integral equations is”

N h
> [ Kt =2+ 8uKuG = ] dF
=17/-h

—j4 %
= Z_ﬂ(Clcoskz+81,171sink|z|>; —h<z<h, [=1,...,N,
0

(12.10)

where

Kp(z) —j2n?
k kg

sink|z|. (12.11)

2 [1] equation (6.16).



428

Circular arrays of imperfect conductors

The only difference between the integral equations (12.10) for lossy elements and the
integral equations (10.1) of Chapter 10 for lossless elements is that the self-interaction
kernel now includes the additional term K (z) proportional to the internal impedance
per unit length. This form of the integral equations was derived especially for the case
of a large circular array.

The integral equations (12.10) may be decoupled via the method of symmetrical
components just as in the lossless case, so that the mth phase-sequence integral
equation becomes

h

/ 1 (7 [K(’")(z — I+ Ki(z— z’)] d7

—h

. (m)

—j4 1%

— é ”(cf’") coskz + ]2 sinklzl), (12.12)
0

where Vl(m) = Vi/N.

The case of tubular dipoles with walls much thicker than the skin depth is of
particular interest. In this case, z' is given by (12.4) so that ' = x' and the real
and imaginary parts Kgy (z) and Kjy(z) of K1 (z) are equal in magnitude. They are
given by

K -K o

Rli(z) _ ;{L(Z) _ Esink|z|, (12.13)
where
& 2ari M d 1 1 1
_r M _ 4 1 _ [€of (12.14)
2 k&o 2o 2a 2 aJopooc  2a/r N mo

is the dimensionless parameter determining the change in both the real and the
imaginary parts of the kernel. The notation ® is in accordance with the literature
[4,5].

For brass dipoles (o = 1.4 x 107 S/m), the skin depth is dy = (J'rfuoo*)’l/2 =
2.69x 10~®mat f = 2.5 GHz and, for a radius of a = 3.175 x 10~ m, the parameter
®/2 has the value

S_ L Jof _ 403104

= —— (12.15)
2 2a/A NV o

It is seen that ®/2 < 1 so that the real and imaginary parts of K11(z)/k in (12.10)
are negligibly affected as functions of kz by the presence of ohmic losses (at least if the
dipoles are not many wavelengths long), and the integral equations remain essentially
the same. Thus, highly conducting elements may be treated as though they were
perfectly conducting in ordinary antenna array problems involving a small number
of elements.
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12.3 Two-term theory

If the material is not highly conducting, then a significant change can result.
For example, in the experimental study of [5], imperfectly conducting dipoles were
constructed by coating a dielectric cylinder with a thin layer of resistive paint. The
value of ®/2 in this experiment ranged from 0.62 to 2.23. In this case, the imaginary
part of the kernel and the integral equations change significantly. (The real part of the
kernel stays the same here because the thickness of the coating is much smaller than
the skin depth so that z' is given by (12.7) and is purely resistive.)

For a large circular array, the situation is quite different from both of the cases
described above. The mth phase-sequence kernel now includes the term K (z) =
Krr(z) + jKip(2) of (12.13). It was seen in Section 11.2 that the imaginary part
K ;m)(z) of the lossless kernel is small when N is large and d/A < m/N. In this case,
the presence of losses in the elements can make a noticeable difference even in the case
of highly conducting elements (®/2 « 1). By contrast, the real part K1 g(z) + K (Z";g (2)
of the lossless mth phase-sequence kernel is of order 1 for large N, so that K gy (z) may
be neglected when ®/2 < 1.

The effect of the frequency on a large circular array of highly conducting dipoles
may be deduced directly from the integral equations. Except for the new term in
the integral equations (12.12) involving ®/2, the integral equations scale (i.e. they
do not change if the frequency is changed provided that the electrical parameters
h/A, a/A, and d /A remain the same). The case where the electrical parameters are
fixed is the one of interest when narrow resonances in circular arrays are desired;
resonances are known to occur only if the electrical parameters are chosen from
the limited ranges described in Section 11.3. The effect of ohmic losses becomes
more pronounced when ®/2 becomes larger. It is seen from the last expression in
(12.14) that ®/2 is an increasing function of the frequency when h/XA, a/X, and
d/A are fixed. Thus, if an array of fixed i/A, a/A, and d/A is to be implemented at
two different frequencies (physically larger values of %, a, and d are required at the
lower frequency), the effect of ohmic losses will be more pronounced at the higher
frequency.

Two-term theory

Assume that the circular array satisfies the conditions (11.1). The theory presented here
incorporates the change in the self-part of the kernel directly in the two-term theory in
Section 11.2 without making any other changes. Thus, the current distributions on the
elements are assumed to remain the same as in the lossless case. The solution is still
given by (11.2)=(11.17) but with K "™ (z) replaced by K "’ (z) + K11 (z). Equivalently,
one may replace the parameters P,(m) and D;m) by Pl(m) + P;z and D;m) + Dy,
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I
respectively. The additional parameters Py and Dy are proportional to ®/2. They
are given by
_ h
P = —/ sink(h — |z|)[coskh K 1. (z) — Kjp(h — 2)]dz (12.16)
1 —coskh J_,,
Dy =—"— / (coskz —coskh)[coskh Ky;(z) — K;p(h —2)1dz.  (12.17)
1 —coskh

With the expression (12.13) for K (z), the integrations in (12.16) and (12.17) may
be performed. The resulting formulas for the new parameters are
P ® ! (—kh + 1 sin2kh) (12.18)

=——(— 5 sin .
= 1T —coskh 2
—® 1 .
Dy = ————Q2coskh —khsinkh — 1 — cos2kh). (12.19)
2 1—coskh
Thus, the driving-point admittance is given by
1,(0)
Yi1 =
1,1 i
j2m 2 Lo
=— kh mT (1 — coskh 12.20
toUyr cos ki sinkh + — Z & ( coskh) |, ( )
where
(m) - p(m)
Py +j(P + P
T _ fm) J( I(m) L) (12.21)
and where, for simplicity, N is assumed to be even.

Similar formulas may be obtained if the square-root end correction of Section 11.6
is taken into account. The complete formulas for both cases are derived in Section
6.5 of [1], and are summarized in Section 12.8 in a form suitable for computer
implementation. The qualitative behavior of large resonant circular arrays is of concern
in the next section; for this purpose, the simpler version of the two-term theory outlined
above is adequate.

I
Qualitative behavior

12.4

The behavior of a fixed-N array and that of a fixed-m /N array and their differences
from the lossless case will now be discussed. The first observation is that the positions
of the resonances will remain the same as in the lossless case since the parameter
Dl(,em) which determines these positions remains unchanged. Although the remaining
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results of this section may be obtained by studying the lossy two-term theory formulas
directly, it is instructive to use the formulas to derive equivalent circuits for the two
situations described above and study the equivalent circuits.

If the circular array is at or near its mth phase-sequence resonance, i.e. D;m) + Djp,
is small and D;em) is close to its zero, then the formula (12.20) for the self-admittance
may be approximated by the methods of Sections 11.3 and 11.4. The details are in
Section 6.4 of [1]. If f;, is the resonant frequency, the following approximate formula
is obtained:3

1/(R(m) + Rloss)

rad

Y11(f) =Gra(f) +jBra(f) = 1T 2007 — )/ fn” (12.22)

where
r(;ré) — % g E’Zz (units: ohms) (12.23)
Rioss = % 5 o~ (units: ohms) (12.24)
2™ f (dimensionless). (12.25)

2D + Dy

In (12.23)—(12.25), ™ is the slope of D%m) near its zero, £ is given by (12.47) and

(m) _ 2r(1 —coskh) _(m)

H R
oW g coskh

(12.26)
is a quantity which depends on the real part of the mth phase-sequence kernel. Equation
(12.22) is the same as the formula for the input admittance of a high-Q series RLC
circuit when its operating frequency is close to its resonant frequency.* Thus, (12.22)
shows that a circular array at or near its mth phase-sequence resonance is roughly
equivalent to a high-Q RLC circuit. “Equivalence” should be understood in the sense
that the driving-point conductance and susceptance in the two cases have the same
frequency response. The equivalent circuit for the resonant circular array has two
resistances in series and is pictured in Fig. 12.1.

Fixed-N array

This rough equivalence gives a simple picture of the qualitative behavior of an array
where the frequency is varied to obtain a series of narrow resonances at frequencies
fm where m < N/2 (fixed-N array). The array is equivalent to a finite sequence

3 [1] equation (6.40).  * [1] equation (6.35).
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Figure 12.1 Equivalent circuit for circular array at or near its mth phase-sequence resonance.

of RLC circuits. The resonant frequency of the mth RLC circuit is f,,. The behavior of
the array may be determined by studying the dependence of the parameters of the RLC
circuits on m. It may be shown that Rr(;? decreases rapidly as m increases. Rjogs, ON
the other hand, is approximately independent of m. The case when m = N/2 (when
N = even) is an exception: When m = N /2, R)ys increases by a factor of 2 because
of the presence of £ in (12.23). Hence the finite sequence of high-Q RLC circuits
is obtained by rapidly decreasing Rr(gfl) as m (or the frequency f) increases. Assuming
that Q > 1, one can define two regions depending on the relative size between Rr(;'é)
and Rjogs:

1. The region of rapid increase, in which R™ > Riogs or /2 K |K }m)| « 1. Here,

rad

the ohmic losses do not matter. Since Rr(;’é) 4+ Rioss = ngzi), the increase of G1 1
and Q with m is, just as in the lossless case, very rapid.

2. The saturation region, in which Rr(;'é) & Rjoss O |K;m)| <« ®/2 « 1. Here, the
ohmic losses are dominant. Since Rr(:é) ~+ Rioss = Rloss Which is independent of m,
G1,1 = G1,1sa Stays constant as a function of m. In the case when m = N /2, the

resonant G1 1 drops to the value %Gl,l sat-

Fixed-m /N array

A similar analysis may be carried out for the case of a fixed-m /N array. Rr(;'é) decreases
rapidly as N increases. The parameter H "™ is roughly independent of N when m /N is
fixed. Thus, the value of the resistance R)y increases linearly as N increases. Hence,
a “fixed-m/N array” is equivalent to a series of RLC circuits. For each N, the RLC
circuit is obtained by rapidly decreasing Rr(:é) and linearly increasing Rjogs. Assuming

again that Q > 1, two regions are distinguished:



433

12.5

12.5 Numerical results
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Figure 12.2 Driving-point conductance G 1(f) as function of frequency for N = 90,
h =0.858in,2a = 1/4in,2R = 40in,and 0 = 1.4 X 107 S/m.

1. The region of rapid increase, in which Rf:fi) > Rjpss or P/2 K |K ;m)| « 1. Here,
the ohmic losses do not matter. Since Rr(:fi) + Ripss = Rr(gfi), the increase of G |
and Q with N is, just as in the lossless case, very rapid.

2. The region of decrease as 1/N, in which Rr(zzl) & Rijoss of |K ;m)l L P2 « 1.
Here, the ohmic losses are dominant. Since Rr(z’:é) 4+ Rioss = Rioss Which varies

linearly with N, G 1 and Q decrease as 1/N.

The factor of N in the expression (12.23) for Rjoss comes from the superposition
of the phase sequences; the resonant phase-sequence conductances Gﬁgﬁ) eventually
become constant as N increases.

Numerical results

Figures 12.2 and 12.3 show numerical results for the driving-point conductance
G1.1(f) and susceptance Bj 1(f) for the parameters

N =90, h =0.858in, 2a = 1/4in, 2R =40in, o = 1.4 x 10’ S/m, (12.27)

of the experimental circular array in Chapter 8 of [1]. The frequency interval is
2.4GHz < f < 2.7GHz. The results were obtained using the complete formulas
given in Section 12.8, including the “exact” real part of the self term and the square-
root end-corrected current for greater accuracy. Dipole admittances were multiplied
by a factor of 2, so that the results correspond to the admittances of an array of brass
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Figure 12.3 Driving-point susceptance By 1(f) as function of frequency for N = 90, 7 = 0.858 in,
2a = 1/4in, 2R = 40in, and o = 1.4 x 107 S/m.
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Figure 12.4 Like Fig. 12.2 but in frequency interval 2.65 GHz < f < 2.68 GHz.

monopoles over a perfectly conducting ground plane. Table 12.1 shows the resonant
frequencies f;, and the values of resonant driving-point conductance G1,1( f). For
comparison, the values G’l‘l( fm) obtained for the same parameters but assuming
lossless elements are in the last column of Table 12.1. It is seen that the effect of
the ohmic losses is negligible in the first few resonances and drastic in the later
resonances.
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Table 12.1. Resonant frequencies fi,,2 resonant driving-point
conductances G1 1 foro = 1.4 x 107 S/m; and resonant
driving-point conductances G’1 (Joro =00

m fm (GHz) G1,1 (mS) G} | (mS)
29 2.4260 28.33 28.62
30 2.4623 4747 48.77
31 2.4950 89.75 95.92
32 2.5241 183.96 216.44
33 2.5497 373.34 552.37
34 2.5722 653.61 1572.42
35 2.5919 901.02 4946.67
36 2.6090 1026.01 1.711 x 10%
37 2.6238 1066.35 6.488 x 10*
38 2.6365 1074.19 2.694 x 10°
39 2.6473 1073.11 1.224 x 10°
40 2.6562 1070.71 6.086 x 10°
41 2.6634 1069.38 3.312 x 107
42 2.6689 1070.83 1.974 x 108
43 2.6728 1079.90 1.289 x 10°
44 2.6752 1120.60 9.118 x 10°
45 2.6759 637.16 1.824 x 1010

4N =90,h =0.858in,2a = 1/4in, and 2R = 40 in.

In Fig. 12.4, the results of Fig. 12.2 for G 1(f) are shown in the frequency
interval 2.65 GHz < f <2.68 GHz only where the resonances m =40-45 occur. It
is interesting that the last two resonances (m =44 and m =45) overlap. The same
phenomenon would occur for the equivalent composite circuit of the circular array
(many high-Q RLC circuits connected in parallel) if the resonant frequencies of two
of the RLC circuits were very close.

12.6 Field pattern

The radiation field may be determined from the phase-sequence coefficients 7" if
formula (12.45) for T; in Section 12.8 is substituted into (11.30). One obtains

-V efjkr

Wyrcoskh r

E(r,0,¢) = éEQ -0 {F(@)eij sin 6 cos(¢p—¢1)

N/2 %-(n)
+G(0)ZTT(")A(”)(6,¢)}, (12.28)
n=0
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where A™ (0, ¢) is the array factor for the nth phase sequence (11.33b), and F'(6) and
G (0) are defined in (11.31) and (11.32). The field in the lossy case might be different
from that of the lossless case for the following reason.

The properties of A (0, ¢) were discussed in Section 11.5. In particular, it was
seen that for sufficiently large n, the array factor is a small quantity. If a lossless array
is at its n = mth phase-sequence resonance, A" (0, ¢) is small, T is large, and
the product T % A™ (0, ¢) remains large. Thus, the term in (12.28) for n = m
dominates and the complete radiation field possesses the properties of Section 11.5.
If the elements are lossy, it has been seen that 7™ may be much smaller than in the
lossless case. If T x A" (@, ¢) is sufficiently large, the field of the lossy array
will be essentially the same as that of the lossless array. If T % A (@, ¢) is small,
contribution from other terms in equation (12.28) will be of importance and Ey (7, 6, ¢)
will be different than in the lossless case.

In general, the effect of ohmic losses is more pronounced when m and N are larger.
For the omnidirectional array of Section 11.7, numerical calculations based on (12.28)
and the formulas in Section 12.8 show that the radiation field is significantly changed
in the first few cases of Table 11.2 if the elements are made from copper. However,
the omnidirectional radiation field in the m = 37 case with copper elements is the
same (Figs. 11.9 and 11.11) as if the elements were perfectly conducting. A similar
conclusion holds for a 90-element microwave beacon application [7].

12.7 The effect of a highly conducting ground plane

Introduction

In Sections 12.1-12.6, the problem of resonant circular arrays of highly conducting
dipoles was addressed and a two-term theory taking the finite conductivity of the
dipoles into account was developed. It was remarked that a circular array of highly con-
ducting dipoles of length 2/ is equivalent to an array of highly conducting monopoles
of length i over a perfectly conducting ground plane of infinite extent. In practice,
both the monopoles and the ground plane have a large (but finite) conductivity. In the
N = 90 element experiment in Chapter 8 of [1], for example, the monopoles are made
of brass and the ground plane is made of aluminum. The conductivities of the two
materials are o)y = 1.4 x 107 S/m and oG = 3.5 x 107 S/m, respectively. When the
number of elements in the array is large and the array is at or near a narrow resonance,
the finite conductivity of the ground plane will make a noticeable difference. In this
section, an approximate method is outlined so that the ohmic losses of the ground
plane may be taken into account as a perturbation to the theory of Sections 12.1-12.6
which assumes a lossless ground plane. The current distributions on the monopoles are
assumed to remain the same.
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Consider a circular array consisting of N monopoles of length %, radius a, and
conductivity oy over an infinite ground plane of conductivity o located at z = 0.
Element 1 is driven and the rest are parasitic. N is large and the array is at or near its
mth phase-sequence resonance so that the currents on the monopoles are the shifted
cosine currents, namely,

li(z) _ coskz —coskh 2n(l — m

- . I=1,...,N, O<z<h (1229
1,0) —coskh 7 N == (12.29)

where, without loss of generality for what follows, the current /;(0) on the base of
element 1 is set to unity.

In the case og = o0, a surface current Js(po, ¢) exists on the ground plane which
may be determined from the tangential magnetic field H by the equation

Js=zxH. (12.30)

In the case of a highly conducting ground plane, there is a quasi-surface current
distributed on a thin layer under the surface z = 0. In the treatment of problems
involving highly conducting materials (for example, when losses in waveguides are
calculated), it is usual to assume that the tangential magnetic field is the same as if the
surface were perfectly conducting and that the quasi-surface current is a true surface
current given by (12.30). Due to the finite conductivity, there is a total time-average
power Pg dissipated as heat on the ground plane. If Js is known, Pg may be found
from the equation

Pg =//%Re{ZG}|JS|2dS://% /”i{’jo Is2ds. (12.31)

where Zg is the surface impedance of the ground plane. Formula (12.31) is an

approximate equation adapted from the problem of a plane wave incident on a highly
conducting surface. The integrand is the power dissipated as heat per unit surface
area.

Outline of the procedure

A brief description of the method and of the approximations involved is presented
here. Detailed calculations and formulas are contained in Chapter 7 of [1].

(A) The first problem is the calculation of the surface currents Js on the ground
plane for the circular array. This is simple in principle if the field due to a single
monopole with a rotationally symmetric current is known.

If the magnetic field due to an isolated monopole placed at the origin is
h = $h¢ (p), then the surface currents due to an array of monopoles may be
determined by superposition. The difficulty is that there are no simple formulas
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Region 1, x<-a

Region 3, x> a

Figure 12.5 Infinite linear array.

(B)

©)

for hy(p) for an isolated monopole of thickness a with a cos kz — cos kh current
distribution. A simple formula for 44 (o) does exist for the case of an infinitely
thin monopole with a sin k(2 — z) current and is given in (1.38a).

For the monopole lengths ki < /2 of interest, the distributions sin k(h — z) and
cos kz — cos kh are quite similar. Thus, the simplifying assumption is made that
the monopoles of the array are infinitely thin and that their current distribution is
sink(h — z) so that the monopole currents (12.29) are replaced by

[j(z)  sink(h —z) cos 2n(l — Dm

= , I=1,...,N. 12.32
11(0) sinkh N ( )

Once the surface currents are known, one may attempt to calculate the time-
average power Pg dissipated as heat on the ground plane from (12.31). The
integration extends to infinity. Consider, however, any array consisting of a finite
number of monopoles with z-directed currents over a perfectly conducting ground
plane. In the far zone, the magnetic field at z = 0 is parallel to the ground plane
and decreases as 1/p. The resulting surface currents will also decrease as 1/p.
Therefore, the integral in (12.31) diverges. The divergence of the integral is a
result of the approximation that the currents on the imperfectly conducting ground
plane are the same as if it were perfectly conducting. This divergence reveals that
the approximation is not valid in the far zone. It is believed, however, that the
approximation is valid near the array.

Consider the infinite linear array, taken as the limit of the large circular array as
N — oo. If y is the axis of the array and x is the direction perpendicular to
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Figure 12.6 Circular array of N = 8 elements.

(D)

the array (Fig. 12.5), it is seen from the analysis in [1] that the surface currents
decrease exponentially when |x| is large and that they are periodic in y with
period Nd. Thus, an integration of the form (12.31) is meaningful in the case
of the infinite linear array if the integration is carried over a period in y; the
integration over a period in y corresponds to the ¢-integration for the large
circular array.

The formulas for Js for the infinite linear array derived in [1] are appropriate
for numerical evaluation when the observation point is not very close to the axis
of the array; they are not suitable when the observation point approaches this
axis.

For the reasons outlined above, Pg is calculated as the sum Pg; + Pg13 resulting
from separating the plane z = 0 into three regions. These regions are illustrated
in Fig. 12.6. The original circular array is shown in this figure to consist of
N = 8 monopoles of radius a. Pgy is computed directly for the circular array
as the contribution from the shaded region 2 of Fig. 12.6. This calculation is
straightforward. Since it is assumed that the monopoles are infinitely thin, a small
area near each monopole / is excluded when integrating to determine Pgy. Since
R/2a > 1 (R/2a = 160 in the experimental study), the particular choice of this



440
—

Circular arrays of imperfect conductors

(E)

small area is not important. For numerical convenience, it is chosen to be

a
R—a<p<R+a, ¢—Ap<o <+ Ad; Acp:sin_lE (12.33)
so that region 2 consists of the subregions

R—a<p<R+a, ¢+Ap<d<dip— AP l=1,...,N.
(12.34)

Pg13, on the other hand, is computed from the infinite linear array of
Fig. 12.5 as the contributions for regions 1 (x < —a, —Nd/2 <y < Nd/2) and
3 (x>a, —Nd/2<y<Nd/2). The properties of the ground plane currents
mentioned above (namely, the exponential decrease for large |x| and the peri-
odicity in the y direction) are verified by this calculation, which is somewhat
involved.

The time-average power Py dissipated on the surface of the monopoles and the
time-average power P = Pg> + Pg13 dissipated on the surface of the ground
plane when element 1 has unit current at its base are computed in the manner
described above. The final equations have the form

= %,/ T e = %,/ nmo Y, (12.35)

where the coefficients ¥ and vy, are independent of the conductivities oG and
oy (but depend on m).
An “effective conductivity of the monopoles” O’IE/T iff is defined for each phase-

sequence resonance m by the equation

7 f 1o 7f 1o 7 f o
—= Yy =3 Yy + % VG = Py + Pg. (12.36)
Gﬁ"iff oM Y

The total loss Pg + Py in the case where the ground plane is imperfectly
conducting is equal to the loss in the case where the ground plane is perfectly

conducting and the monopoles have the perturbed conductivity ol M eff Equations
(12.35)—(12.36) may be solved for O’M off o obtain

() Py \? (12.37)
o =0 S EE—— . .

The perturbation to the theory of the Sections 12.1-12.6 results by replacing o,
by or ff at each resonance.

Although the method described above involves several simplifying assumptions, the

theoretical results obtained (driving-point conductance and susceptance) agree very

well with the experimental results.
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Table 12.2. Resonant frequencies f,; powers Py, Pgo, and Pg13 dissipated on
monopoles and on regions 2 and 1, 3; and effective conductivities aéﬁlniff for
parameters of experiment?

m  fm (GHz) Py (WIAY)  Pgy (WIAD)  Pgi3 (WAZ) o\ (S/m)

29 2.4260 0.2567 0.0276 0.2277 0.3520 x 107
30 2.4623 0.2602 0.0276 0.2171 0.3718 x 107
31 2.4950 0.2634 0.0276 0.2078 0.3903 x 107
32 2.5241 0.2662 0.0277 0.1996 0.4074 x 107
33 2.5497 0.2688 0.0277 0.1923 0.4233 x 107
34 2.5722 0.2711 0.0278 0.1859 0.4378 x 107
35 2.5919 0.2731 0.0278 0.1802 0.4511 x 107
36 2.6090 0.2748 0.0279 0.1752 0.4630 x 107
37 2.6238 0.2763 0.0279 0.1709 0.4736 x 107
38 2.6365 0.2777 0.0279 0.1672 0.4829 x 107
39 2.6473 0.2788 0.0280 0.1640 0.4910 x 107
40 2.6562 0.2797 0.0280 0.1614 0.4977 x 107
41 2.6634 0.2805 0.0280 0.1593 0.5033 x 107
42 2.6689 0.2811 0.0281 0.1577 0.5075 x 107
43 2.6728 0.2815 0.0281 0.1565 0.5106 x 107
44 2.6752 0.2817 0.0281 0.1559 0.5124 x 107
45 2.6759 0.5636 0.0562 0.3113 0.5130 x 107

4 [1] Chapter 8.

The effective monopole conductivity and numerical results

Table 12.2 shows the values of the resonant frequencies f;,, the time-average powers
Py, Pga, and Pgi3 dissipated on the monopoles and on regions 2 and 1, 3 of the
ground plane, and the effective monopole conductivity o }E,';fiff for the parameters of
the experiment in Chapter 8 of [1]. The parameters N, h, a, d = 2R sin(r/N), and
oy = o are given in (12.27). The conductivity o of aluminum is given by og =
3.5x 107 S/m.

It is seen from Table 12.2 that Pg> is significantly less than P13, which is the same
order of magnitude as Py;. As a result, o ]E;" iff is significantly smaller than o;.

Table 12.3 shows the resulting values of the resonant self-conductance G 1. The
corresponding values in the case og = oo from Table 12.1 are repeated here
for comparison. It is seen that the effect of the imperfectly conducting ground
plane is minimal in the first (broadest) resonances but noticeable in the last reso-
nances.

A continuous frequency-response curve for Gi,;; or Bj1 may be conveniently
obtained by using an interpolated value of 0}8;? lff at each frequency. Figures 12.7
and 12.8 show the frequency-response curves Gi,1(f) and By 1(f) thus ob-

tained.
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Table 12.3. Resonant frequencies fp,; resonant driving-point
conductances G | for parameters of experiment;* and

i iy ’ —
resonant driving-point conductances GL1 forog = oo

m fm (GHz) G1.1 (mS) G} | m$)
29 2.4260 28.04 28.33
30 2.4623 46.34 47.47
31 2.4950 84.95 89.75
32 2.5241 163.37 183.96
33 2.5497 296.00 373.34
34 25722 449.60 653.61
35 25919 558.33 901.02
36 2.6090 609.27 1026.01
37 2.6238 628.74 1066.35
38 2.6365 636.60 1074.19
39 2.6473 641.02 1073.11
40 2.6562 644.84 1070.71
41 2.6634 649.49 1069.38
42 2.6689 657.24 1070.83
43 2.6728 675.68 1079.90
44 2.6752 734.49 1120.60
45 2.6759 476.01 637.16

411] Chapter 8.

In Fig. 12.9, the conductance G, 1(f) is shown in the frequency interval where the
m = 40-45 phase-sequence resonances occur. The frequency interval is 2.65 GHz
< f < 2.68 GHz. When compared to the corresponding curve of Fig. 12.4 which
assumes oG = 00, it is seen that the additional losses introduced by the ground plane
cause the m = 45 phase-sequence resonance to merge with the m = 44 resonance.
Thus, the last peak of Fig. 12.9 actually corresponds to two phase-sequence resonances
namely, m = 44 and m = 45.

Comparison of theory and experiment

In this section, the theoretical results are compared to experimental results. The
experimental study is described in detail in Chapter 8 of [1]. The ground plane is made
from aluminum and the monopoles are made from brass. The experimental setup is
that of Fig. 11.2. Experimental results are obtained in [1] in four different ways, each
corresponding to a different location of the measuring voltage probe in the coaxial
line of Fig. 11.2. The resulting frequency-response curves are distinguished by the
superscripts AB, AC, BC, and BD.

In Figs. 12.10 and 12.11, the theoretical frequency-response curve of Fig. 12.7
is shown together with the experimentally determined frequency-response curve
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