
2. UML for OOAD

2.1 What is UML?

2.2 Classes in UML

2.3 Relations in UML

2.4 Static and Dynamic Design with UML

Object-orientation emphasizes representation of objects

2.1 UML Background

"The Unified Modelling Language (UML) is a graphical
language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system.
The UML offers a standard way to write a systems blueprints,
including conceptual things like business processes
and system functions as well as concrete things such as
programming language statements, database schemas, and
reusable software components."

Grady Booch, Ivar Jacobsen, Jim Rumbaugh
 Rational Software

[OMG Unified Modelling Language Specification, Version 1.3, March 2000]

2.1 Brief UML History

• Around 1980
• first OO modelling languages

• other techniques, e.g. SA/SD

• Around 1990
• "OO method wars"

• many modelling languages

• End of 90's
• UML appears as combination of best practices

2.1 Why UML?

• We need a common language
• discuss software systems at a black- (white-) board

• document software systems

• UML is an important part of that language

• UML provides the "words and grammar"

2.2 Classes in UML

• Classes describe objects
• Interface (member function signature)

• Behaviour (member function implementation)

• State bookkeeping (values of data members)

• Creation and destruction

• Objects described by classes collaborate
• Class relations → object relations

• Dependencies between classes

2.2 UML Summary

2.2 UML Summary

Figure 1.3. The UML use case diagram.

2.2 UML Summary

Figure 1.4. The UML state diagram.

2.2 UML Summary

Figure 1.5. The UML sequence diagram.

2.2 UML Summary

Figure 1.6. The UML activity diagram.

2.2 UML Summary

Figure 1.7. The UML communication diagram.

2.2 UML Summary

Figure 1.8. The software component icon in UML 1.x.

Figure 1.9. The software component icon in UML 2.0.

2.2 UML Summary

Figure 1.10. The UML deployment diagram.

2.2 UML Summary

Figure 1.11. In any diagram you can add explanatory comments
by attaching a note.

2.2 UML Summary

A stereotype is an existing UML element with the
addition of a keyword in guillemets. The keyword indicates that
the element is used in a somewhat different way than originally
intended.

2.2 UML Class

Class name

Data members

Instance methods

Arguments
Return types

Data members, arguments and methods are specified by
visibility name : type

Class method

2.2 Class Name

The top compartment

contains the class name

Abstract classes have italicised

names

Abstract methods also have

italicised names

Stereotypes are used to identify

groups of classes, e.g interfaces

or persistent (storeable) classes

2.2 Class Attributes

Attributes are the instance
and class data members

Class data members (underlined)
are shared between all instances
(objects) of a given class

Data types shown after ":"

Visibility shown as
 + public
 - private

 # protected

Attribute
compartment

visibility name : type

2.2 Class Operations (Interface)

Operations are the class
methods with their argument
and return types

Public (+) operations define the
class interface

Class methods (underlined)
have only access to class data
members, no need for a class
instance (object)

Operations
compartment

visibility name : type

2.2 Visibility

+
public

Anyone can access

Interface operations

Not data members

-

private

No-one can access

Data members

Helper functions

"Friends" are allowd
in though

protected

Subclasses can access

Operations where sub-

classes collaborate

Not data members
(creates dependency
off subclass on im-

plementation of parent)

2.2 Template Classes

Generic classes depending on parametrised types

Type parameter(s)

Operations compartment
as usual, but may have
type parameter instead of
concrete type

2.3 Relations

• Association

• Aggregation

• Composition

• Parametric and Friendship

• Inheritance

2.3 Binary Association

Binary association: both classes know each other

Usually "knows about" means a pointer or reference

Other methods possible: method argument, tables, database, ...

Implies dependency cycle

2.3 Unary Association

A knows about B, but B knows nothing about A

Arrow shows direction of
association in direction of
dependency

2.3 Aggregation

2.3 Aggregation

2.3 Aggregation

Aggregation = Association with "whole-part" relationship

Shown by hollow diamond
at the "whole" side

No lifetime control implied

2.3 Aggregation

2.3 Composition

2.3 Composition

Composition = Aggregation with lifetime control

Shown by filled diamond
at the "owner" side

Lifetime control implied

Lifetime control can be
tranferred

Lifetime control: construction and
destruction controlled by "owner"

→ call constructors and destructors

 (or have somebody else do it)

2.3 Association Details

Name gives details of association
Name can be viewed as verb of a sentence

Notes at association ends
explain "roles" of classes (objects)

Multiplicities show number of
objects which participate in the
association

2.3 Friendship

Friends are granted access to private data members and
member functions
Friendship is given to other classes, never taken

Bob Martin:
More like lovers than friends.
You can have many friends,
you should not have many lovers

Friendship breaks data hiding, use carefully

2.3 Parametric Association

Association mediated by a parameter (function call argument)

A depends upon B, because it uses B
No data member of type B in A

2.3 Inheritance

Base class or super class

Derived class or subclass

Arrow shows direction
of dependency

→ B inherits A's interface,

 behaviour and data members

→ B can extend A, i.e. add new

 data members or member functions

→ B depends on A,

 A knows nothing about B

2.3 Associations Summary

• Can express different kinds of associations
between classes/objects with UML

• Association, aggregation, composition, inheritance

• Friendship, parametric association

• Can go from simple sketches to more detailed
design by adding adornments

• Name, roles, multiplicities

• lifetime control

2.3 Multiple Inheritance

The derived class inherits
interface, behaviour and
data members of all its
base classes

Extension and overriding
works as before

B implements the interface A and
is also a "countable" class

Countable also called a "Mixin class"

2.3 Deadly Diamond of Death

Now the @*#! hits the %&$?

Data members of TObject are
inherited twice in B, which ones
are valid?

Fortunately, there is a solution
to this problem:

→ virtual inheritance in C++:

 only one copy of a multiply
 inherited structure will
 be created

(A C++ feature)

2.4 Static and Dynamic Design

• Static design describes code structure and object
relations

• Class relations

• Objects at a given time

• Dynamic design shows communication between
objects

• Similarity to class relations

• can follow sequences of events

2.4 Class Diagram

• Show static relations between classes
• we have seen them already

• interfaces, data members

• associations

• Subdivide into diagrams for specific purpose
• showing all classes usually too much

• ok to show only relevant class members

• set of all diagrams should describe system

2.4 Object Diagram

Object diagram shows
relations at instant in time
(snapshot)

Object relations are drawn
using the class association
lines

Class diagram
never changes

2.4 Sequence Diagram

Show sequence of events for a particular use case

Object

Lifeline

Activation

Messages
half-arrow=asynchronous,
full arrow=synchronous, dashed=return

Active object

2.4 Sequence Diagram

Can show creation and

destruction of objects

Destruction mark

2.4 Sequence Diagram

Slanted messages take
some time

Can model real-time
systems

2.4 Sequence Diagram

Crossing message lines
are a bad sign

→ race conditions

2.4 Collaboration Diagram

Object diagram with

numbered messages

Sequence numbers of messages
are nested by procedure call

2.4 Static and Dynamic Design Summary

• Class diagrams → object diagrams
• classes → objects; associations → links

• Dynamic models show how system works
• Sequence and collaboration diagram

• There are tools for this process
• UML syntax and consistency checks

• Rough sketches by hand or with simple tools
• aid in design discussions

Modelling Aspects

“4+1” View

Case Study – ATM (Automatic Teller Machine)

Problem Statement-The ATM offers the following
services:
1) Distribution of money to every holder of a

smartcard via a card reader and a cash dispenser.
2) Consultation of account balance, cash and cheque

deposit facilities for bank customers who hold a
smartcard from their bank.

3) All transactions are made secure.
4) It is sometimes necessary to refill the dispenser,

etc.

Steps we should take:
• Identify the actors,
• Identify the use cases,
• Construct a use case diagram,
• Write a textual description of the

use cases,
• Complete the descriptions with

dynamic diagrams,
• Organize and structure the use

cases.

Case Study – ATM (Automatic Teller Machine)
Step #1: Identifying the actors of the ATM

Problem Statement-The ATM offers the following
services:
1) Distribution of money to every holder of a

smartcard via a card reader and a cash
dispenser.

2) Consultation of account balance, cash and
cheque deposit facilities for bank customers
who hold a smartcard from their bank.

3) All transactions are made secure.
4) It is sometimes necessary to refill the dispenser,

etc.

• VISA AS (Issuer) for withdrawal
transactions carried out using a
Visa smartcard

• Bank IS (Acquirer) to authorize
all transactions carried out by a
customer using his or her bank
smartcard, but also to access the
account balance.

An interview with the domain expert

 Maintenance operator

Case Study – ATM (Automatic Teller Machine)

Possible graphical representations of an actor

Case Study – ATM (Automatic Teller Machine)

Static Context Diagram

Case Study – ATM (Automatic Teller Machine)

Static Context Diagram

mutually exclusive

Case Study – ATM (Automatic Teller Machine)

Static Context Diagram

Bank customer as a specialization of CardHolder

Case Study – ATM (Automatic Teller Machine)
Step #2: Identifying use cases

• A use case represents the specification of a sequence of
actions, including variants, that a system can perform,
interacting with actors of the system.

• A use case models a service offered by the system. It
expresses the actor/system interactions and yields an
observable result of value to an actor.

• For each actor identified previously, it is advisable to
search for the different business goals, according to
which is using the system.

Case Study – ATM (Automatic Teller Machine)
Step #2: Identifying use cases

CardHolder:
• Withdraw money.

Bank customer:
• Withdraw money (something not to forget!).
• Consult the balance of one or more accounts.
• Deposit cash.
• Deposit cheques.

Maintenance operator:
• Refill dispenser.
• Retrieve cards that have been swallowed.
• Retrieve cheques that have been deposited.

Visa authorization system (AS):
•None.
Bank information system (IS):
•None.

Prepare a preliminary list of use cases
of the ATM:

primary actors

Secondary actors (non-human)
 Supporting actors

 External actor

Case Study – ATM (Automatic Teller Machine)
Step #3: Creating use case diagrams

 Preliminary use case diagram of the ATM

Case Study – ATM (Automatic Teller Machine)
Step #3: Creating use case diagrams

A more sophisticated version of the preliminary use case diagram

Generalization
Specialization
Inheritance

Case Study – ATM (Automatic Teller Machine)
Step #3: Creating use case diagrams

Simple version of the completed use case diagram

primary actors to the left of
the use cases and the

secondary actors to the
right.

Case Study – ATM (Automatic Teller Machine)
Step #3: Creating use case diagrams

Representation of the scenarios of a use case

If the 2 use cases
cannot occur at the
same time…

Case Study – ATM (Automatic Teller Machine)
Step #4: Textual description of use cases

Representation of the scenarios of a use case

We call each unit of description of action sequences a
sequence. A scenario represents a particular succession of
sequences, which is run from beginning to end of the use
case. A scenario may be used to illustrate an interaction or
the execution of a use case instance.

* Not standardized

in UML

Alternative sequences

Main success scenario

Error sequences

separating the actions of the actors and
those of the system into two columns

Pre-conditions:
• The ATM cash box is well stocked.
• There is no card in the reader.

Post-conditions:
• The cashbox of the ATM contains fewer notes than it
did at the start of the use case.

Case Study – ATM (Automatic Teller Machine)
Step #4: Textual description of use cases

Non-functional constraints
14

Case Study – ATM (Automatic Teller Machine)
Step #4: Textual description of use cases

 This non-functional requirement is here as an example, but should be removed in the end and put at
the system level as it applies to all use cases.

Case Study – ATM (Automatic Teller Machine)
Step #5: Graphical description of use cases

Dynamic descriptions of a use case

Preconditions
Postconditions

Case Study – ATM
Step #5: Graphical description of
use cases

 primary actor on the left
 the system in a black box in the middle
 any secondary actors on the right

Case Study – ATM (Automatic Teller Machine)
Step #5: Graphical description of use cases

An activity state models the
realization of an activity that:
• is complex and can be broken
down into activities or actions,
• can be interrupted by an event.

An action state models the
realization of an action that:
• is simple and cannot be
broken down,
• is atomic, which cannot be
interrupted.

Case Study – ATM (Automatic Teller Machine)
Step #5: Graphical description of use cases

references to “alternative” and
error sequences (by means of notes).

Case Study – ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

With UML, it is actually possible to
detail and organize use cases in two
different and complementary ways:
• by adding include, extend and

generalization relationships
between use cases;

• by grouping them into packages to
define functional blocks of highest
level.

Case Study – ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

extend: a relationship from an extension use case to a base use case, specifying how the behavior
defined for the extension use case augments (subject to conditions specified in the extension) the
behavior defined for the base use case.
• The behavior is inserted at the location defined by the extension point in the base use case. The

base use case does not depend on performing the behavior of the extension use case.
• Note that the extension use case is optional unlike the included use case which is mandatory.
• We use this relationship to separate an optional or rare behavior from the mandatory behavior.

Case Study – ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

Case Study – ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

Case Study – ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

Case Study – ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

Case Study – ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

Other Samples

Other Samples

The dependency from Iterator shows that the Iterator uses the CourseSchedule; the CourseSchedule

knows nothing about the Iterator.

The dependency is marked with the stereotype «permit», which is similar to the friend statement in C++.

Requirements Gathering Techniques

• Interview (Open or Closed=Structured)

• Observation
• Direct (Observing live functions in the working space either active or passive)

• Indirect (media or movie)

• Research / Questionnaire

• Documents Analysis

• Reverse Engineering (black-box or white-box)

• Prototyping

• Brainstorming

• Focus Group

• Interface Identification (User/System/Hardware)

• Storyboarding / Storytelling

• Role Playing

• Requirements Workshops

