2. UML for OOAD

2.1 What is UML?

2.2 Classes in UML

2.3 Relations in UML

2.4 Static and Dynamic Design with UML

Object-orientation emphasizes representation of objects

A

Plane ‘ , L
> visualization of

domain conceplt tailNumber domain concept
k public class Plane
. {
representation in an private String tailNumber,
object-oriented
programming language public List getFlightHistory() {...}

}

2.1 UML Background

"The Unified Modelling Language (UML) is a graphical
language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system.

The UML offers a standard way to write a systems blueprints,
Including conceptual things like business processes

and system functions as well as concrete things such as
programming language statements, database schemas, and
reusable software components."

[OMG Unified Modelling Language Specification, \ersion 1.3, March 2000]

2.1 Brief UML History

e Around 1980

* first OO modelling languages
 other techniques, e.g. SA/SD

e Around 1990

* "O0 method wars"
 many modelling languages

e End of 90's

 UML appears as combination of best practices

2.1 Why UML?

* We need a common language
e discuss software systems at a black- (white-) board
* document software systems
« UML is an important part of that language
 UML provides the "words and grammar"

2.2 Classes in UML

 Classes describe objects
* Interface (member function signature)
* Behaviour (member function implementation)
 State bookkeeping (values of data members)
* Creation and destruction

* Objects described by classes collaborate
* Class relations — object relations
* Dependencies between classes

2.2 UML Summary

Figure 1.2. Two UML object icons—The icon on the left represents a
named object, the icon on the right represents an anonymous object.

myWasher:WashingMachine :WashingMachine

2.2 UML Summary

Washing Machine

o Wash clothes
N o

Washing Machine User

Figure 1.3. The UML use case diagram.

2.2 UML Summary

Figure 1.4. The UML state diagram.

l Soaking)

2.2 UML Summary

Figure 1.5. The UML sequence diagram.

Timer

‘WaterPipe

:) tmeSoak() .
sendWalter() ;
l | storeWater()
stopFlow() ‘
‘ timeWash() tl
rotateBac&AndFoﬂh
pumpWa'.e«[]
)
stopRotating()
timeRinse()
sendWater() E
storeWater()
rotateBac{AndForth()
pumpWater()
.
stopRatating()
tmeSpin() .
rounch‘)dcmc()
stopRarating()

2.2 UML Summary

(Drum rotates back and forth 15 minutes)

Figure 1.6. The UML activity diagram.

(Drum pumps out soapy water)

(Drum stops rotating)

2.2 UML Summary

Figure 1.7. The UML communication diagram.

:Timer 1:timeSoak()

3:storeWater()

2:sendWater()

‘WaterPipe

‘Drum

B

2.2 UML Summary

Figure 1.8. The software component icon in UML 1.x.

Figure 1.9. The software component icon in UML 2.0.

—

A Component

«component»

A Component

2.2 UML Summary

Figure 1.10. The UML deployment diagram.

-

Cobalt Networks Qube Microserver 2700WG

l‘..-l""

Vectra VL Series 7

Dell Dimension XPS B450

2.2 UML Summary

Figure 1.11. In any diagram you can add explanatory comments

by attaching a note.

Some explanatory text
about ClassT

]

Class1

2.2 UML Summary

«Interface»
InterfaceName
A stereotype is an existing UML element with the
addition of a keyword in guillemets. The keyword indicates that

the element is used in a somewhat different way than originally
intended.

2.2 UML Class

/L
4

name

—x: double

— 3 |-y: double
—z: double

-n: 1nt

+name ()
——3 |tmethodl (:double) : double
+method2 () :Abool \

> tclassMethof () \\\\

Data members, arguments and methods are specified by
name : type

2.2 Class Name

The top compartment —
contains the class name

—> «interfacey

AbstractClass
Abstract classes have italicised /+me thod()

names
Abstract methods also have

/talicised names «stereotype»

/ Name
Stereotypes are used t(_) Identify —JdataMember: type
groups of classes, e.g interfaces Tl

or persistent (storeable) classes

2.2 Class Attributes

Attributes are the instance
and class data members

Class data members (underlined)
are shared between all instances

[
' fagiven cl
(objects) of a given ¢ K Name f
TR —instanceDataMember: type¢
Data types shown after ™ —classDataMember: type
L +Name ()
Visibility shown as +Name (:Name)
-+ public +operation ()

- private
protected

name : type

2.2 Class Operations (Interface)

Operations are the class
methods with their argument
and return types

Public (+) operations define the
class interface

Class methods (underlined)
have only access to class data

Name

—instanceDataMember: type
—classDataMember: type

+Name ()

+Name (: Name)
+instanceMethod ()
+classMethod () T

members, no need foraclass ¥ |

Instance (object)

name : type

2.2

Visibility

_|.
public

Anyone can access

Interface operations

Not data members

private
NoO-0ne can access
Data members

Helper functions

"Friends" are allowd

In though

#
protected

Subclasses can access

Operations where sub-
classes collaborate

Not data members
(creates dependency
off subclass on Im-

plementation of parent)

2.2 Template Classes

Generic classes depending on parametrised types

e

vector

+size(): size_t
tpush_back (:T)
+ogperaboE[] (§81z2e8) I

2.3 Relations

* Association

* Aggregation

* Composition

* Parametric and Friendship

* Inheritance

2.3 Binary Association

Binary association: both classes know each other

A B
-myB: B* =myA: A¥
+doSomething () +operation ()
’ +service ()
[] T
'
n 5‘
AN AN
#include "B.hh"; #include "A.hh";
void A::doSomething () { volid B::operation () {
myB->service () ; myA—->doSomething () ;
h }

Usually "knows about” means a pointer or reference
Other methods possible: method argument, tables, database, ...
Implies dependency cycle

2.3 Unary Assoclation

A knows about B, but B knows nothing about A

A = B

-myB: B* +service ()
+doSomething () K\\\

N Arrow shows direction of
#include "B.hh"; assoclation in direction of
dependency

void A::doSomething () {

myB->service();

2.3 Aggregation

Figure 2.11. A typical computer system is an example of an
aggregation—an object that's made up of a combination of a number
of different types of objects.

2.3 Aggregation

Figure 5.1. An aggregation (part-whole) association is represented
by a line between the component and the whole with an open
diamond adjoining the whole.

Homeomg uben
O
F 1 1
e b CPLUBox Heytward Mo for WMouse
2
0 LY

Drskstielr ve Ha 1D ve RAM CD-ROM GeaphvcsCard SoundCand Button | | MouseBall

s conngcted 1o

2.3 Aggregation

Aggregation = Association with "whole-part"” relationship

Crate O——>1 Module

—-aModule: Module* +service ()
+doSomething ()

N Shown by hollow diamond

#include "Module.hh"; at the "whole" side

void Crate::doSomething () {

" aModule->service () ; No lifetime control implied

2.3 Aggregation

1

1

MainCourse

Dessert

2.3 Composition

Figure 5.3. In a composite, each component belongs to exactly one
whole. A closed diamond represents this relationship.

CoffeeTable

1

1 4
TableTop Leg

2.3

Composition

Composition = Aggregation with lifetime control

Particle lo——>1 FourVector

-momentum: FourVector +magSquared() : double
+mInv () : double

Shown by filled diamond
double mInv () { at the "Owner" Side

double minv2= momentum.magSquared();
return minvZ2<0?-sqrt (—minv2) :sqrt (minvl);

}

Lifetime control implied
Lifetime control: construction and Lifeti ol b
destruction controlled by "owner" tr;neférrr;g dcon robeanbe
— call constructors and destructors

(or have somebody else do it)

2.3 Assoclation Detalls

Name gives details of association
Name can be viewed as verb of a sentence

Notes at association ends
explain "roles" of classes (objects)

Uses »
A aster
=“myBy B* I lave
+A () s
+operation () B
+B ()
+service ()

Multiplicities show number of
objects which participate in the
association

2.3 Friendship

Friends are granted access to private data members and

member functions
Friendship is given to other classes, never taken

<< i >>
A |< friend B
—-myC: C* +B ()
+A () +service (a:A&)
+operation () '
AN
class A { #include "A.hh"
friend class B; void B::service(A& a) {
A aC= a.myC;
| delete aC;
a.myC= 0;

Bob Martin: :
More like lovers than friends.
You can have many friends,

you should not have many lovers

Friendship breaks data hiding, use carefully

2.3 Parametric Assoclation

Association mediated by a parameter (function call argument)

A <<parameter>> > B

+doSomething (:const B &) +operation ()

#include "B.hh";

void A::doSomething(const B & b) {
b.operation();

}

2.3 Inheritance

A

-myX: double

+setX (:double)
+getX () : double

JAY

¥— Base class or super class

-« __Arrow shows direction
of dependency

B
foperation () — Derived class or subclass

N B inherits A's interface,

. . . AN behaviour and data members
#include "A.hh";]
— B can extend A, 1.e. add new
clasgs B : public & { data members or member functions
) — B depends on A,

A knows nothing about B

2.3

Assoclations Summary

* Can express different kinds of associations
between classes/objects with UML
* Association, aggregation, composition, inheritance
* Friendship, parametric association

e Can go from simple sketches to more detailed
design by adding adornments
* Name, roles, multiplicities
* lifetime control

2.3 Multiple Inheritance

«inte}zface» Countable The derived class inherits
‘ —nObjects: int Interface, behaviour and
tdoSomething () +Countable () data members of all its
+~Countable () b |
tgetNumObis () : int ase classes
Extension and overriding
works as before
B
+B () : :
+~B() B implements the interface A and
+doSomething () IS also a "countable™ class

Countable also called a "Mixin class"

2.3 Deadly Diamond of Death

TObject

T

(A C++ feature)

«interface»

Countable

A

-nObijects: int

+doSomething () +Countable ()
+~Countable ()

+B ()
+~B ()
+doSomething ()

Now the @*#! hits the %&%$?

Data members of TObject are
Inherited twice in B, which ones
are valid?

Fortunately, there is a solution

to this problem:

— virtual inheritance in C++:
only one copy of a multiply
Inherited structure will
be created

2.4

Static and Dynamic Design

e Static design describes code structure and object
relations
* Class relations
* Objects at a given time

* Dynamic design shows communication between
objects
e Similarity to class relations
 can follow sequences of events

2.4 Class Diagram

* Show static relations between classes
* we have seen them already
* interfaces, data members
* associations

e Subdivide into diagrams for specific purpose
* showing all classes usually too much
* ok to show only relevant class members
 set of all diagrams should describe system

2.4 QObject Diagram

Particle le———>{ FourVector :
-mom: FourVector +mInv () CIaSS dlagram

-parent: Particle* never ChangeS

—daughters: list<Particle*>
*

DO:Particle H mom:FourVector | ODJeCt diagram shows
relations at instant in time
?_\k (snapshot)

:Particle H mom:FourVector

\ Object relations are drawn

D*:Particle H mom:FourVector :J_Slng the CIaSS association
INes

2.4 Sequence Diagram

Show sequence of events for a particular use case

‘Modem

|
pon L dial(12345678) 5, | —

‘\

User 1glQnoect 44000 _ L,

2.4 Sequence Diagram

a:A
| Can show creation and
| «create» g1 B destruction of objects
, [
gperation -
< - esull _ _ I
I
<<dESTl"0¥>>

2.4 Sequence Diagram

You:User Telekom:SP Auntie:User
| | |
] % | I

L |
. |
L digl tone- - :
—¢ial(12345) |
g e
off
CcoO | ct
|
|
Hello?
‘.—

Slanted messages take
some time

Can model real-time
systems

2.4 Sequence Diagram

You:User Telekom:SP

Auntie:User

| |
off hook !

| dial tone- -

—diali12345)

off hook
rin
*ﬂuﬂe&/ \m&»

on_hook—
Ll

Crossing message lines
are a bad sign

race conditions

2.4 Collaboration Diagram

4: Hello? Object diagram with
-g—
You:User Auntie:User numbered messages

\:off hook
Ntdial tone /1 ring
\E:dial /21 1: off hook
/s

. connect

Telekom:SP

2.4 Static and Dynamic Design Summary

 Class diagrams — object diagrams
 classes — objects; associations — links

* Dynamic models show how system works
* Sequence and collaboration diagram

* There are tools for this process
 UML syntax and consistency checks

* Rough sketches by hand or with simple tools
 aid in design discussions

Modelling Aspects

Functional

Use case diagram
(Activity diagram)
(Sequence diagram)

3 Modelling
axes
Static Dynamic
Class diagram State diagram
(Object diagram) (Activity diagram)

(Sequence diagram)

Component diagram
(Deployment diagram) Collaboration diagram

“4+1” View

: / Logical View
//

Analysts/Designers End User
Structure Fung¢tionali

1
% é Process View

System Integrators
Performance

Scalability
Throughput

£ 73

Implementation Tﬁew% g

—C O
Programmers
OO Software management

Use-Case View

Deployment View _—

System engineering
System topology
Delivery, mstallation
communication

Case Study — ATM (Automatic Teller Machine)

Problem Statement-The ATM offers the following

services:

1) Distribution of money to every holder of a
smartcard via a card reader and a cash dispenser.

2) Consultation of account balance, cash and cheque

deposit facilities for bank customers who hold a

smartcard from their bank.

All transactions are made secure.

4) Itis sometimes necessary to refill the dispenser,
etc.

68
N

Steps we should take:

Identity the actors,

Identify the use cases,

Construct a use case diagram,
Write a textual description of the
use cases,

Complete the descriptions with
dynamic diagrams,

Organize and structure the use
cases.

Case Study — ATM (Automatic Teller Machine)

Step #1: ldentifying the actors of the ATM

Problem Statement-The ATM offers the following

services:
1) Distribution of money to every holder of a
-

smartcard via a card reader and a cash
dispenser.
2) Consultation of account balance, cash and
cheque deposit facilities for bank customers
who hold a smartcard from their bank.
All transactions are made secure.
4) Itis sometimes necessary to refill the dispenser,

etc. \ %

68
N

Maintenance operator

VISA AS (Issuer) for withdrawal
transactions carried out using a
Visa smartcard %
Bank IS (Acquirer) to authorize

all transactions carried out by a
customer using his or her bank
smartcard, but also to access the ?Q\
account balance.

An interview with the domain expert

Case Study — ATM (Automatic Teller Machine)

Possible graphical representations of an actor

keyword symbol
instead of
<<actor>> keyword
Bank IS f”')Q\

ShLGE man Customer Bank IS

Case Study — ATM (Automatic Teller Machine)

Static Context Diagram

% multipliecity O
k.s o1 2N

0.1

CardHolder Bank
customer

system
ON—
0.1 i
/\ . \3“1
Maintenance /
operator /-‘ <=gctor==>
/ Bank IS
/ 0.1

association <<aclor>>
Visa AS

Case Study — ATM (Automatic Teller Machine)

Static Context Diagram

multiplicity

O
S, A

Bank
customer .
mutually exclusive

CardHolder

system
O N—
0..1 i
//“RH hkx&x“ax?“1
Maintenance /
operator /-‘ <=gctor==>
/ Bank |5
/ 0.1

association <<aclor>>
Visa AS

Case Study — ATM (Automatic Teller Machine)

Static Context Diagram

ATM
0.1 ®)
CardHolder
A Maintenance
| operator

Bank customer as a specialization of CardHolder

Case Study — ATM (Automatic Teller Machine)
Step #2: ldentifying use cases

* A use case represents the specification of a sequence of
actions, including variants, that a system can perform,
interacting with actors of the system.

* A use case models a service offered by the system. It
expresses the actor/system interactions and yields an
observable result of value to an actor.

» For each actor identified previously, it is advisable to
search for the different business goals, according to
which is using the system.

Case Study — ATM (Automatic Teller Machine)

Step #2: ldentifying use cases

Prepare a preliminary list of use cases
of the ATM:

primary actors

Secondary actors (non-human)

Supporting actors
External actor

— CardHolder:

* Withdraw money.

Bank customer:

* Withdraw money (something not to forget!).
* Consult the balance of one or more accounts.
* Deposit cash.

* Deposit cheques.

Maintenance operator:

* Refill dispenser.

* Retrieve cards that have been swallowed.

* Retrieve cheques that have been deposited.

Visa authorization system (AS):
* None.

Bank information system (IS):

* None.

Case Study — ATM (Automatic Teller Machine)

Step #3: Creating use case diagrams

% /_—\ sssssss
CardHolder H(b ATM

O atien

Actor /

) Refill dispenser \‘“\2
/ Cansult bal

/ onsult balance O %
% _ Retriove car ds that have Aa nnnnnnnnn
been swallowed operator
Bank ’
customer

Preliminary use case diagram of the ATM

Case Study — ATM (Automatic Teller Machine)

Step #3: Creating use case diagrams

r'> I
'z N
N
CardHolder Withdraw money
A B
YN
'\.H____ 4
/,/’ Consult balance
II." Y f,-f"f J—
| - I/ \
‘ N
Il o Deposit cash
| customer \\\\\
| \“\

o n ~
Generalization \ - ~
Specialization Generalisation N i
Inheritance Deposit cheques

C D

Refill dispenser

‘\,_\x
TN
I E—
~
Retrieve cards that have A

been swallowed -

s
— —-_j' -
Retrieve cheques that have
been deposited

oy

|~

-~

;Fi

Maintenance
operator

A more sophisticated version of the preliminary use case diagram

Case Study — ATM (Automatic Teller Machine)

Step #3: Creating use case diagrams

<<actor>>

E E \ g Visa AS
Visa
CardHolder

Withdraw money

Role

/ Consult balance \"&w\ secondary
seco

<<actor>>
secondary Bank IS

primary actors to the left of

Bank
the use cases and the customer Deposit cash secondary
secondary actors to the

right.

Deposit cheques

Simple version of the completed use case diagram

Case Study — ATM (Automatic Teller Machine)

Step #3: Creating use case diagrams

secondary actor
% C D Veahs

Withdraw money using a

Visa CardHolder Visa card
//"_“‘\\ secondary <<zactors=
L__/’) Bank IS
Withdraw money using a
Bank customer bank card

If the 2 use cases
cannot occur at the
same time...

Representation of the scenarios of a use case

Case Study — ATM (Automatic Teller Machine)

Step #4: Textual description of use cases

We call each unit of description of action sequences a

sequence. A scenariorepresents a particular succession of

sequences, which is run from beginning to end of the use

case. A scenario may be used to illustrate an interaction or

the execution of a use case instance. Alternative sequences

Error sequences

/ sequences error Main success scenario

1} normal

and

beginning

* Not standardized
in UML

Representation of the scenarios of a use case

Case Study — ATM (Automatic Teller Machine)

Step #4: Textual description of use cases

separating thelactions of the actors and
those of the system into two columns

Pre-conditions:
e The ATM cash box is well stocked.

e There is no card in the reader.

Post-conditions:
e The cashbox of the ATM contains fewer notes than it
did at the start of the use case.

—

. The Visa CardHolder inserts his or her

card in the ATM's card reader.

4. The Visa CardHolder enters his or her

pin number.

=1

The VISA authorisation system
confirms its agreement and indicates
the daily balance.

9. The Visa CardHolder enters the
desired withdrawal amount.

12. The Visa CardHolder requests a
receipt.

14, The Visa CardHolder takes his or her
card.

16, The Visa CardHolder takes the notes
and the receipt.

!‘_I

The ATM verifies that the card that has
been inserted is indeed a Visa card.

The ATM asks the Visa CardHolder to
enter his or her pin number.

The ATM compares the pin number
with the one that is encoded on the
chip of the card.

The ATM requests an authorisation
from the VISA authorisation system.

The ATM asks the Visa CardHolder to
enter the desired withdrawal amount.

. The ATM checks the desired amount

against the daily balance.

. The ATM asks the Visa CardHolder if he

or she would like a receipt.

. The ATM returns the card to the Visa

CardHaolder.

. The ATM issues the notes and a receipt.

Case Study — ATM (Automatic Teller Machine)

Step #4: Textual description of use cases

Non-functional constraints

Constraints Specifications

Response time The interface of the ATM must respond within a maximum time
limit of 2 seconds.

A nominal withdrawal transaction must take less than 2 minutes.
Concurrency Non applicable (single user).

Availability The ATM can be accessed 24/7.14

A lack of paper for the printing of receipts must not prevent the
card holder from being able to withdraw money.

Integrity The interfaces of the ATM must be extremely sturdy to avoid
vandalism.
Confidentiality The procedure of comparing the pin number that has been entered

on the keyboard of the ATM with that of the smartcard must have
a maximum failure rate of 107,

% This non-functional requirement is here as an example, but should be removed in the end and put at
the system level as it applies to all use cases.

Case Study — ATM (Automatic Teller Machine)

Step #5: Graphical description of use cases

Text

Activity

System sequence
diagram

B R OX

B

Dynamic descriptions of a use case

Preconditions
Postconditions

Case Study — ATM

Step #5: Graphical description of
use cases

% primary actor on the left
% the system in a black box in the middle
% any secondary actors on the right

&

L)

X2
ATM

Visa SA

Visa CardHolder
: insert Visa smartcard
E Message
E request pin number
=
E“-..
E pin number (value)
' request authorisation
H —
i -
E authorisation (limit)
| <
' request desired withdrawal amount
:_;"

withdrawal amount (value)

request receipt

Message with

N

Ok

value

-

eject smartcard

/

take smartcard

eject notes + receipt

take notes + receipt

el NN N NN

4

4

D)

swtl

Case Study — ATM (Automatic Teller Machine)

Step #5: Graphical description of use cases

[validjcard]

Verify code

[not OK for the 1% or 2™time]

> [OK] i

[not OK for the 3™ time]

(—\ RActiwvity state

{

Request Visa
authorisation

(Initial

state

[notes not
retrieved
after 30s]

An activity state models the
realization of an activity that:

* is complex and can be broken
down into activities or actions,

* can be interrupted by an event.

[invalid card] ;iw _‘_ [withdraw refused]
Transaction cancelled) :
[withdraw authonsed]
o ¥
[l:tﬁarEErljlﬂt Ejectcard pe& amount == mt aIrEnnc:El[ﬂ ,)
after 15s]
[amount = limit]
[card is taken back] Conditional
fork branch
An action state models the
[redgjpt was requested] ‘j realization of an action that:
Guard . .
— condition * is simple and cannot be
rin

Action state
[notes are taken]

join

Final state

O Mominal end

broken down,
e is atomic, which cannot be
interrupted.

Case Study — ATM (Automatic Tel ¢

Step #5: Graphical description of use cases

references to “alternative” and
error sequences (by means of notes).

ATM
Visa |
CardHolder Yiza A§
insart Visa cand 1
.
v verify card
requast pin number -TZes E1-
inwalid card
pin numiber (valua) '
=
E varify pin
i | See A1 and E2-
i | incormect pin number
Ses EX: i request authorisation o
withdrawl not | H Ear]
authorised Tt tmeemee .. authorisation (limit)
e STemeean
)
request desired withdrawl amount E
I-“" "
i withdrawl amount (valua) :-“':
E check amount requestad
EI-, Saa AZ-
request recaipt : amount requested is
:"-!‘: E greatar than daily limit
i Ok i
e “;.'::
— it
E ''''''''' Sea Al
aject card 1 recaipt refused
o [
i take card H
|
e] See E4: ﬁ
H card s not take
gject notes + recaipt i e "
< s
take netes + recaipt i
_______ —)
Rt S Sea E5:
H | notes are

not takan

Case Study — ATM (Automatic Teller Machine)

Step #6: Organizing the use cases

With UML, it is actually possible to
detail and organize use cases in two
different and complementary ways:

* by adding include, extend and
generalization relationships
between use cases;

* by grouping them into packages to
define functional blocks of highest
level.

C D

Deposit cheques case

Base use

'{qmclude}}

- .

Consult balance ™ Tl ': Deposit cash

L - ‘h"‘
include L7 f-{mcluden
Include

- relatlanshlp
- Authentmate T
{qnchep}f T~ Q{MGMde}}
Withdraw money using a Wlthdraw money using a
bank card Visa card

Inclusion use
case

Case Study — ATM (Automatic Teller Machine)
Step #6: Organizing the use cases

extend: a relationship from an extension use case to a base use case, specifying how the behavior

defined for the extension use case augments (subject to conditions specified in the extension) the

behavior defined for the base use case.

* The behavior is inserted at the location defined by the extension point in the base use case. The
base use case does not depend on performing the behavior of the extension use case.

» Note that the extension use case is optional unlike the included use case which is mandatory.

* We use this relationship to separate an optional or rare behavior from the mandatory behavior.

Extension
point

7. The VISA authorisation system confirms its agreement and indicates the daily \
withdrawal limit. <<extend>>
(verify amount)

The ATM asks the Bank customer to enter the desired withdrawal amount.

[==]

Extension points:
verify amount, etc.

——

Extension point: Verify amount

_ _ Consult balance
Withdraw money using a

9. The Bank customer enters the desired withdrawal amount,
bank card

Extend

10. The ATM checks the desired amount against the daily withdrawal limit.
relationship

Case Study — ATM (Automatic Teller Machine)

Step #6: Organizing the use cases

P secondary | <<Actor>>
_j Visa AS

Withdraw money using a Visa card

Visa
CardHolder ¢
\
\
\
\ .
N\
N\
secondary| _.acorss
raw mone u\s,?r\g b B dms Refill dispenser
y \ \ secondary] ank |
a bank card . \\
A N A secondary
: Ry
N
(Verify amount) <
<<e!r}end>> b Maintenance Retrieve cards that have been swallowed
- ————— B operator
~ \
ey \
Bank s “inolude>>
customer Consult balance s <<dndh Q:F':
ol OV TN Retrieve cheques that have been deposited
<<include>>"~_ _ \

N

O —————————— Authenticate
/v Deposit money q\

C D

D t cash
Deposit cheques eposit cas

Case Study — ATM (Automatic Teller Machine)

Step #6: Organizing the use cases

=

Visa
CardHolder

PR

Bank
customer

=

Maintenance
operator

1

Visa withdrawl

1

Customer transactions

]

Maintenance

Dependency between
packages

1]

Support services

Packages

PN secondary | <<Actor>>
& — Visa AS

Withdraw money using a Visa card

Visa
CardHolder %
\
\
\
N
N
N
y > secondary| . acior>
raw money ush»q\ N secondany Bank IS
a bank card N N
A secondary

\
|

(Verify pmount)

<<ex¢nd>>
— - &
~ \
\
Bank “acinolude>>
customer Consult balance

N\ N
5 <<inchyges>
~s N
~ \
<<include>>"~_ N
N

<<include>>_ .- ~-~—

O ____________ Authenticate
/V Deposit money \ :

Deposit cash

Deposit cheques

Case Study — ATM (Automatic Teller Machine)

Step #6: Organizing the use cases

/'—_-\ secondary | <<Actor>>
N Visa AS
Visa Withdraw money using
CardHolder a Visa card

', <<include>>
%
4
%
N

C_ D

Authenticate
(Support services)

Case Study — ATM (Automatic Teller Machine)

Step #6: Organizing the use cases

(Verify available amount)
<<gxtend=>> S ~
T

Withdraw money using ~

a bank card :
S

Consult balance

Y s
#

~
LY . #
“:‘fiﬂCTL@E'-"'-"' -=:=:|r}gh|de‘.:'_:
.

%
Y £
% Q secondary secondary
<<Arctor==>

Authenticate
Bank
(Support services) Bank IS
customer ,-ﬂ

rj secondary

ﬂﬂinclﬁde?b
!

O

Deposit money

el
O V\O

Deposit chegues Deposit cash

Case Study — ATM (Automatic Teller Machine)

Step #6: Organizing the use cases

/

x -

Maintenance Retrieve cards that have been swallowed
operator

C D

Retrieve cards that have been deposited

C_ D

Refill dispenser

Other Samples

Figure 9-5. Abstract and Concrete Classes and Operations

abstract class

fcon

origin : Point

display() * |~ abstract polymorphic operation

getiD() : Integer {leat)¢¥ e Draa
I

/’ K / abstract class

"eRactangularicon Arbitrarylcon €

height : Integer edge : LineCollection
width : Integer

JAN

|

isinside(p : Point) : Boolean \

|
concrete polymorphic operalion

—,”ﬁ
Buttone— concrete class

display()

JAY

|

OKBulton‘i

{leaf} | T~ |eafclass

display() e—

concrete operation

Other Samples

CourseSchedule

add(c:Course) |~~~ ° >| Course
remove(c : Course)
AN
|
«permits

Iterator

The dependency from Iterator shows that the Iterator uses the CourseSchedule; the CourseSchedule
knows nothing about the Iterator.
The dependency is marked with the stereotype «permit», which is similar to the friend statement in C++.

Requirements Gathering Techniques

* Interview (Open or Closed=Structured)

» QObservation
 Direct (Observing live functions in the working space either active or passive)
* Indirect (media or movie)

» Research / Questionnaire

» Documents Analysis

* Reverse Engineering (black-box or white-box)
 Prototyping

» Brainstorming

* Focus Group

* Interface Identification (User/System/Hardware)
 Storyboarding / Storytelling

* Role Playing

* Requirements Workshops

