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Preface

1 Intended audience and distinguishing features

This is a textbook intended for an introductory course in probability theory and statisti-
cal inference, written for students who have had at least a semester course in calculus. The
additional mathematics needed are coalesced into the discussion to make it self-
contained, paying particular attention to the intuitive understanding of the mathemat-
ical concepts. No prerequisites in probability and statistical inference are required but some
familiarity with descriptive statistics will be of value.

The primary objective of this book is to lay the foundations and assemble the over-
arching framework for the empirical modeling of observational (non-experimental) data.
This framework, known as probabilistic reduction, is formulated with a view to accom-
modating the peculiarities of observational (as opposed to experimental) data in a unify-
ing and logically coherent way. It differs from traditional textbooks in so far as it
emphasizes concepts, ideas, notions, and procedures which are appropriate for modeling
observational data.

The primary intended audience of this book includes interested undergraduate and
graduate students of econometrics as well as practicing econometricians who have been
trained in the traditional textbook approach. Special consideration has been given to the
needs of those using the textbook for self-study. This text can also be used by students of
other disciplines, such as biology, sociology, education, psychology, and climatology,
where the analysis of observational data is of interest.

The traditional statistical literature over the last 50 years or so, has focused, almost
exclusively, on procedures and methods appropriate for the analysis of experimental-
type (experimental and sample survey) data. The traditional modeling framework has
been that of the experimental design tradition, as molded by Fisher (1935) (and formu-
lated by the sample survey literature of the 1940s and 1950s), and the “curve fitting” per-
spective of the least-squares tradition. Both of these traditions presume a modeling
framework in the context of which the observed data are interpreted as a realization of
an observable phenomenon which can be realistically viewed as a nearly isolated (by
divine or human intervention) system; see Spanos (1995b). This book purports to
redress (somewhat) the balance by expounding a modeling framework appropriate for
observational data. This modeling framework can be viewed in the spirit of the
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conditioning perspective of the Biometric school (Galton, Karl Pearson, Yule) formu-
lated in the late 19th and early 20th century. How conditioning can be used as the corner-
stone of a framework for modeling observational data, will be elaborated upon in what
follows. The alternative framework is deemed necessary because observational data con-
stitute the rule and not the exception in fields such as econometrics. Indeed, econometrics
will largely provide both the motivation as well as the empirical examples throughout the
discussion that follows.

The most important distinguishing features of this text are the following:

(1) The discussion revolves around the central pivot of empirical modeling and the
order of introduction of the various concepts, ideas, and notions is largely deter-
mined by the logical coherence and completeness of the unfolding story.
Probability theory and statistical inference are interweaved into empirical model-
ing by emphasizing the view of the former as a modeling framework; this is in con-
trast to probability theory as part of mathematics proper or as a rational decision
making framework under uncertainty.

(2) Special emphasis is placed on the notion of conditioning and related concepts
because they provide the key to a modeling framework for observational data. The
notion of regression arises naturally out of the modeler’s attempt to capture depen-
dence and heterogeneity, when modeling observational data. The discussion does not
neglect the importance of the historical development of these ideas and concepts.

(3) The interplay between abstract concepts of probability theory and the correspond-
ing chance regularity patterns exhibited by the data is extensively utilized using a
variety of graphical techniques. Special emphasis is placed on mastering the cre-
ative skill of “reading” data plots and discerning a number of different chance
regularity patterns as well as relating the latter to the corresponding mathematical
concepts.

(4) A clear separating line is drawn between statistical and (economic) theory informa-
tion, with a statistical model being specified exclusively in terms of statistical
information (probabilistic assumptions relating to observable random variables);
in contrast to specifying statistical models by attaching autonomous error terms
(carrying the probabilistic structure) to theoretical relationships.

(5) The discussion emphasizes certain neglected aspects of empirical modeling which
are crucially important in the case of observational data. These facets include:
specification (the choice of a statistical model), misspecification testing (assessing
the validity of its assumptions), and respecification; the discussion puts the accent
on the empirical adequacy of a statistical model.

(6) A statistical model is viewed not as a set of probabilistic assumptions in the middle
of nowhere, but contemplated in the context of the all-embracing perspective of
the totality of possible statistical models. This view is adopted in an attempt to
systematize the neglected facets of modeling by charting the territory beyond the
postulated statistical model in broad terms using an assemblage of restrictions
(reduction assumptions) on the set of all possible statistical models; hence the term
probabilistic reduction.
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R: in view of the proposed bridge between probabilistic assumptions and
observed data patterns, the neglected facets of modeling are thus transformed into
informed procedures and not hit-or-miss attempts in connection with the probabil-
istic structure of some unobservable error term(s).

(7) The traditional textbook hypothesis testing is reinterpreted in an attempt to bring
out the distinct nature of misspecification testing. The proposed interpretation calls
into question the traditional view that the Neyman–Pearson approach to testing
has (largely) superseded that of Fisher. It is argued that they constitute two distinct
(although related) approaches to testing with very different objectives which can be
used as complements to one another, not as substitutes.

2 Origins and pedigree*1

The present textbook has its roots in the author’s book Statistical Foundations of
Econometric Modelling, published in 1986 by CUP, and has been growing in the form of
lecture notes ever since. The Statistical Foundations book was my first attempt to put
forward an alternative comprehensive methodology to the traditional textbook
approach to econometric modeling. This was motivated by the state of econometrics
after its failure to fulfill the expectations fomented in the 1960s and 1970s; a failure which
led to a re-examination of its foundations and elicited a number of different diagnoses
from the critics of the traditional textbook approach in the early 1980s (Hendry, Sims,
and Leamer; see Granger (1990)). Naturally, the seeds of the proposed methodology can
be traced back to my graduate studies at the London School of Economics (LSE) in the
late 1970s; see Hendry (1993).

The primary objective of the Statistical Foundations book was to put forward a log-
ically coherent methodological framework by entwining probability theory and statistical
inference into empirical modeling. The modus operandi of this modeling approach was
the distinction between statistical and theory information and the related recasting of
statistical models exclusively in terms of statistical information: probabilistic assump-
tions relating to the observable random variables underlying the data; the error was
reinterpreted as the residuum (unmodeled part). In the context of this framework:

(a) not only the theory, but the nature and the (probabilistic) structure of the observed
data is thoughtfully taken into consideration, and

(b) not only estimation and hypothesis testing, but also specification, misspecification
testing and respecification, are explicitly recognized as both legitimate and neces-
sary facets of modeling.

The ultimate objective of that book was to propose a framework in the context of
which some of the problems that have troubled the traditional textbook approach since
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the 1920s, including the problems raised by some critics in the 1970s and 1980s, can be
resolved. These problems include general methodological issues in modeling such as the
nature and structure of theories and the role of observed data, as well as statistical issues
such as misspecification testing and respecification, the omitted variables bias, pre-test
bias, identification, and exogeneity.

Looking back, the Statistical Foundations book was a bold, and some would say auda-
cious, attempt to influence the way econometrics is taught and practiced. Despite its con-
troversial nature and its mathematical level, its success was a pleasant surprise. A purely
subjective assessment of its success has been based on:

(a) Its favorable reception in the market place.
(b) Its likely influence on several textbooks in econometrics published after 1986,

which took several forms, the most important being:

(i) A more substantive treatment of probability theory (not an appendage of
definitions).

(ii) A shift of emphasis from unobservable error terms to observable random
variables.

(iii) A historically more accurate interpretation of the regression model (as
opposed to the Gauss linear model), proposed as being better suited for the
analysis of observational (non-experimental) data.

(iv) The introduction of the notion of a statistical generating mechanism (GM)
as an orthogonal decomposition of a random variable (or vector), given an
information set; as opposed to a functional relationship among theoretical
variables with an error attached.

(v) A more systematic treatment of misspecification testing and respecification.

In addition to some explicitly acknowledged influences (see inter alia Cuthbertson
et al. (1992), Mills (1993), Davidson and MacKinnon (1993), Hendry (1995),
Poirier (1995)), I would like to think that there has also been some indirect influence
in relation to:

(vi) Heightening the level and broadening the role of probability theory in
econometrics (see Dhrymes (1989), Goldberger (1991), Amemiya (1994),
Davidson (1994)).

(vii) Helping to focus attention on the issue of misspecification testing (see
Godfrey (1988)).

(c) Its influence on current practice in empirical modeling with regard to misspecifica-
tion testing. Both, textbooks as well as econometric computer packages, nowadays,
take a more serious view of misspecification testing; regrettably misspecification
testing for systems of equations (see Spanos (1986) chapter 24) is yet to be imple-
mented.2 This should be contrasted with the pre-1980s treatment of misspecifica-
tion testing and respecification, which amounted to little more than looking at the
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Durbin-Watson statistic and when the null was rejected, palliating the problem by
modeling the error.

The Statistical Foundations book, however, was a work in progress with a number of
crucial limitations arising from externally imposed restrictions (mainly the prohibitive
cost of typesetting graphs at the time) as well as some initial hesitation on my behalf to
focus my research exclusively on such a long term project. The advances in personal
computing technology and the success of the Statistical Foundations book provided the
spur to take the story a step further, unimpeded by the initial constraints.

This textbook represents a more ripened elucidation of the approach proposed in the
Statistical Foundations book with particular attention paid to the exposition of concepts
and ideas, and the logical coherence, consistency and completeness of the approach. The
primary objective of the Statistical Foundations book is pursued further in a number of
different ways:

(1) Ameliorating the interweaving of probability theory and statistical inference into
empirical modeling by presenting statistical models as constructs based on three
basic forms of (statistical) information:

(D) Distribution, (M) Dependence, (H) Heterogeneity.

This information can be related to observed data (chance regularity) patterns using
a variety of graphical techniques, rendering modeling an informed procedure.

(2) Strengthening the logical coherence of the proposed methodology by stressing the
distinction between theoretical and statistical information in terms of which the
respective theory and statistical models are defined. Statistical information is codi-
fied exclusively in terms of probabilistic concepts and theory information in terms
of economic agents’ behavior.

(3) Enhancing the probabilistic reduction framework by viewing statistical models in
the context of a broader framework where the neglected facets of empirical model-
ing (specification, misspecification, respecification), can be implemented in a more
systematic and informed fashion, in conjunction with a variety of graphical tech-
niques.

(4) Enriching the probabilistic reduction framework by extending empirical modeling
beyond the Normal/linear/homoskedastic territory in all three dimensions of sta-
tistical information; the emphasis in the Statistical Foundations book was placed on
modeling dependence, with only brief remarks in relation to exploring the other two
dimensions of modeling; distribution (beyond Normality) and heterogeneity.

The ultimate objective of this textbook remains the same as that of the Statistical
Foundations. In the context of the proposed methodology the nature and structure of
theories as well as the role of the data in the assessment of theories is addressed without
shying away from any difficult methodological issues as they arise naturally during the
discussion. In the context of the proposed framework a purely statistical viewing angle
(as opposed to the traditional theory viewing angle) is put forward, in an attempt to elu-
cidate some statistical issues, such as the omitted variables, pre-test bias, multicollinearity,
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and exogeneity, which are often (misleadingly) viewed from the theoretical viewing angle
creating confusion; see Spanos (1997a).

3 As a teaching and learning device

Empirical modeling is a difficult subject to master primarily because it inherits the sum
(and then some) of the inherent difficulties in learning probability theory and statistical
inference. Some of these inherent difficulties are:

(a) The requirement to master too many concepts, ideas, and notions, too quickly.
(b) The abstract nature of these concepts without any apparent connection to tangible

counterparts.
(c) The problem of terminology in so far as the (historically) established terminology

is often inept as well as misleading because the same term is often used to denote
several different notions.

(d) The extensive utilization of mathematical symbols.

In a purposeful attempt to deal with (a), the most troublesome difficulty, the discus-
sion that follows utilizes several learning techniques such as:

(i) repetition of crucial concepts and notions,
(ii) story so far abridgements,
(iii) bird’s eye view of the chapter outlines,
(iv) looking ahead summaries, and
(v) recurrent references to what is important.

In addition, the discussion utilizes short historical excursions in order to dilute the high
concentration of concepts, ideas and notions.

The extensive utilization of graphical techniques enables the reader to build direct
connections between abstract probability concepts, such as Normality, Independence
and Identical Distribution, and the corresponding chance regularity patterns, rendering
the task of mastering these concepts easier.

The problem of inept terminology is brought out at the appropriate places during the
discussion and the reader is warned about possible confusions. For example, the term
mean is used in the traditional literature to denote at least four different (but historically
related) notions:

A Probability theory
(i) the mean of a random variable X: E(X)5 xf(x)dx,

B Statistical inference

(ii) the sample mean: 5 n
k51Xk,

(iii) the value of the sample mean: 5 n
k51xk,

C Descriptive statistics

(iv) the arithmetic average of a data set (x1, x2, …, xn) : 5 n
k51xk.o1

nx

o1
nx

o1
n  X 

E
x[RX



The teacher is obliged to spend a sizeable part of his/her limited time explaining to the
students firstly, the (often subtle) differences between the different notions represented
by the same term and secondly, how these different notions constitute relics of the histor-
ical development of the subject. In the case of the mean, up until the 1920s (see Fisher
(1922)), the whole literature on statistics conflated probabilities and relative frequencies,
leading to numerous befuddlements including that between E(X ), and . What is
more, very few statisticians of the 1920s and 1930s noticed the transition from descrip-
tive statistics to statistical inference proper; Karl Pearson died in 1936 without realizing
that Fisher had turned the tables on him; see chapters 11–13. In an attempt to ameliorate
the inept terminology problem, new terms are introduced whenever possible. This is
often impossible, however, because the terminology has been entrenched over several
decades.

Students with a somewhat weaker background in mathematics are often intimidated
by mathematical terminology and symbolism. On the issue of mathematical symbols
every effort has been made to use uniform symbolism throughout this book. The student
should know, however, that systematic thinking is made more accessible by the utiliza-
tion of heedful symbolism. Symbols are essential for systematic thinking because they
economize on unnecessary and nebulous descriptions! Hence, the proper utilization of
symbols is considered a blessing not a hindrance. Unfortunately, undergraduates often
confuse symbolism and haughty-sounding terminology with mathematical sophistica-
tion and develop a phobia to any hint of the Greek alphabet; fraternity parties not with-
standing. The only known cure for such phobias is the reverse cold turkey treatment: face
your phobia head on until it becomes a friend not a foe.

Another important feature of the book is that a lot of emphasis is placed on providing
the reader with an opportunity to learn things properly, as opposed to pretend learning,
so eloquently articulated by Binmore (1992, p. xxvi):

Much of what passes for an undergraduate education, both in the United States and in
Europe, seems to me little more than an unwitting conspiracy between the teacher and the
student to defraud whoever is paying the fees. The teacher pretends to teach, and the student
pretends to learn, material that both know in their hearts is so emasculated that it cannot be
properly understood in the form in which it is presented. Even the weaker students grow tired
of such a diet of predigested pap. They understand perfectly well that ‘appreciating the con-
cepts’ is getting them nowhere except nearer to a piece of paper that entitles them to write
letters after their names. But most students want more than this. They want to learn things
properly so that they are in a position to feel that they can defend what they have been taught
without having to resort to the authority of their teachers or the textbook. Of course, learning
things properly can be hard work. But my experience is that students seldom protest at being
worked hard provided that their program of study is organized so that they quickly see that
their efforts are producing tangible dividends.

I have instinctively subscribed to the creed of learning things properly or don’t even
bother since I can remember. As a student I refused to learn things by heart because I
knew in my heart that it was (largely) a waste of time and intellectual energy; I even
caught myself refusing to answer exam questions which were designed to test my ability
to memorize in a parrot-like fashion. As a teacher of econometrics for over 18 years both

x  X 
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in Europe and the United States, I have tried very hard to implement the creed of learn-
ing things properly and think, things, through, systematically with encouraging success.

After a few years of teaching in the United States, however, I found myself on the slip-
pery declivity of unconsciously emasculating probability theory and statistical inference
down to maize-porridge. After the first two years, I reluctantly reached the conclusion
that fighting the system would be tantamount to jousting with windmills but at the same
time I could not indulge in pretend teaching. The only strategy with a fighting chance to
circumvent this problem seemed to be to start with a diet of predigested pap and gradu-
ally work my way up to something more solid. The reality was that the digestive system
of the majority of students, after years on such a diet, would not accept anything but pre-
digested pap. It goes without saying, that I consider the students as being the real victims
of the “pretend teaching conspiracy” and in no circumstance share in the blame for this
state of affairs. The educational system itself puts the overwhelming majority of the stu-
dents on this diet from a very early age, encouraging them to think that the ultimate
objective of learning is the exam which leads to the piece of paper and what that entitles
them to; learning for exams fosters pretend learning. In view of this situation, I resigned
myself to the idea of trying to reach everybody along the lines of learning things prop-
erly, but also to satisfy myself with galvanizing a minority of students who would be pre-
pared to think along during the lectures. Inevitably, the predigested pap component of
the course tended to expand slowly but surely. Fortunately, I stumbled across the above
passage from Binmore just in time to salvage myself from sliding down this slippery
declivity even further. The undergraduates of a different educational system, at the
University of Cyprus, helped restore my faith in learning things properly and the some-
what emasculated lecture notes of the period 1989–1992 have been transformed into the
current textbook after five years of teaching undergraduate econometrics.

I sympathize with the teachers of econometrics who find themselves in a situation
where they have to teach something their students do not really want to learn and are
forced to indulge in pretend teaching, but I offer no apologies for the level of difficulty
and the choice of material in the current textbook. I know very well that this book
could never qualify to be included in any of the popular series with titles such as
“Econometrics for dummies,” “An idiot’s guide to econometrics” and “A complete idiot’s
guide to econometrics”. Personally, I could not water-down the material any further
without emasculating it; I leave that to better teachers.

This is a textbook designed for interested students who want to learn things properly
and are willing to put in the necessary effort to master a systematic way of thinking. With
that in mind, no effort has been spared in trying to explain the crucial concepts and ideas
at both an intuitive as well as a more formal level. Special attention is given to Binmore’s
advice that “the program of study is organized so that they [the students] quickly see that
their efforts are producing tangible dividends.” Early in the discussion of probability
theory, the book introduces a variety of graphical techniques (see chapters 5–6) in an
attempt to enable the reader to relate the abstract probability concepts to discernible
observed data patterns and thus develop an intuitive understanding of these concepts.
Moreover, the story so far abridgements and looking ahead summaries in almost every
chapter are designed to give the student a bird’s eye view of the forest and encourage
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learning by presenting the material as an unfolding story with a single unifying plot. At
the same time these abridgements and summaries can be used by the readers to assess
their understanding of the crucial steps and the important concepts in the discussion.

Another dimension of learning things properly is related to the way the material is pre-
sented. I consider university teaching not as an attempt to force some predigested pap
down students’ throats but as an attempt to initiate the students into thinking, things,
through, systematically in the context of a coherent framework; the teacher offers both
the systematic thinking and the coherent framework. In class I try to induce the students
to think along with me in a conscious attempt to coach them in a particular way of think-
ing. Needless to say that the present book largely reflects this attitude to teaching and
learning and I have no delusions with regard to its suitability for students who prefer the
force-feeding and pretend teaching and learning methods. The book does not subscribe
to pretend teaching even when discussing some of the most difficult concepts and ideas
in probability theory and statistical inference, such as s-fields, stochastic conditioning,
limit theorems, the functional limit theorem, stochastic processes, maximum likelihood,
and testing. Instead, when the material is deemed necessary for a coherent and proper
understanding of empirical modeling, every effort is made to demystify the concepts and
ideas involved by ensuring that the discussion is both comprehensive and systematic.
Special emphasis is placed on motivating the need for these concepts and on the intuitive
understanding of their essence.

To those teachers who are not convinced that this material can be taught to interested
undergraduates, I can only offer my experience at the University of Cyprus for a period
of five years. The overwhelming majority of undergraduates in economics could assimi-
late the bulk of the material in a two semester course and over a third of these students,
having toiled through this textbook, would then choose to specialize in econometrics and
proceed to struggle through Spanos (1986, forthcoming). Moreover, when I returned to
the United States for a semester, I was able to use the book in undergraduate courses by
utilizing a number of shortcuts which affect only the depth of the discussion but not its
coherence.

The creed of learning things properly entails a logically coherent, complete (as far as
possible) and in depth discussion which goes beyond skimming the surface of the
subject. Compromising the logical coherence and the completeness of the discussion will
often be counterproductive. The book, however, is written in such a way so as to provide
the teacher and student with options to decide the depth of the analysis by taking short-
cuts when the going gets tough. As a general rule, all sections marked with an asterisk (*)
can be skipped at first reading without any serious interruption in the flow of the discus-
sion. This textbook includes enough material for two semester courses, but with some
judicious choices the material can be shortened to design several one semester courses.
Using my experience as a guide, I make several suggestions for one semester courses at
different levels of difficulty.
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1 One semester undergraduate course in probability theory and statistical inference:
Chapter 1(1.1–1.5), chapter 2(2.1–2.2), chapter 3(3.4.2–3.7.1, 3.7.4), chapter
4(4.1–4.2.3, 4.3–4.4.4, 4.5.7, 4.7.1, 4.7.4), chapter 5(5.1–5.6), chapter 6(6.1–6.2,
6.4.1–6.4.2, 6.7.2), chapter 7(7.1–7.2), chapter 8(8.1–8.3, 8.10.1–8.10.3), chapter
9(9.1–9.2, 9.3.1–9.3.3, 9.4.1, 9.5.1, 9.9), chapter 11(11.1–11.2, 11.5–11.7.1), chapter
12(12.1–12.4), chapter 13(13.1–13.3), chapter 14(14.1–14.3).

2 One semester undergraduate (intermediate) course in probability theory:
Chapter 1(1.1–1.6), chapter 2(2.1–2.9), chapter 3(3.1–3.7), chapter 4(4.1–4.7), chapter
5(5.1–5.6), chapter 6(6.1–6.7), chapter 7(7.1–7.2,), chapter 8(8.1–8.5, 8.9–10), chapter
9(9.1–9.5).

3 One semester undergraduate (intermediate) course in statistical inference:
Chapter 1(1.1–1.6), chapter 5(5.1–5.6), chapter 7(7.1–7.6), chapter 9(9.1–9.5), chapter
11(11.1–11.6), chapter 12(12.1–12.5), chapter 13(13.1–13.5), chapter 14(14.1–14.6),
chapter 15(15.1–15.5).

4 One semester graduate course in probability theory and statistical inference:
Chapter 1(1.1–1.6), chapter 2(2.1–2.9), chapter 3(3.1–3.7), chapter 4(4.1–4.7), chapter
5(5.1–5.6), chapter 6(6.1–6.7), chapter 7(7.1–7.2), chapter 8(8.1–8.5, 8.9–8.10),
chapter 9(9.1–9.5), chapter 11(11.1–11.6), chapter 12(12.1–12.5), chapter
13(13.1–13.4), chapter 14(14.1–14.6), chapter 15(15.1–15.5).

5 One semester graduate course in probability theory:
Chapters 1–9; all sections marked with an asterisk (*) are optional.

6 One semester graduate course in statistical inference:
Chapters 1, 5, 7, 9, 10–15; all sections marked with an asterisk (*) are optional.

In view of the fact that the book is written with a variety of audiences in mind, it
should be apparent that another learning attitude that I do not subscribe to is that text-
books should include only the material everybody is supposed to toil through and any
additional material can only confuse the helpless student. It is true that when a student
wants to learn things by heart, additional material can only blur the part to be memor-
ized, rendering such a task more difficult, but when the aim is to learn things properly, no
such danger exists; seeing more of the jigsaw puzzle can only illuminate the part the
student is trying to master. Indeed, some care has been taken to cater for the inquisitive
student who wants to learn things properly and pursue certain lines of thought further.

4 Looking ahead: a bird’s eye view

The text begins with an introductory chapter which demarcates the intended scope of
empirical modeling and sets the scene for what is to follow by elaborating on the dis-
tinguishing features of modeling with observational data and summarizing the main
methodological prejudices of the present author. The primary objective of the chapters
that follow is to transform these prejudices into theses: contentions supported by coher-
ent (and hopefully persuasive) arguments.
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Probability theory

The journey through the probability theory forest, which commences in chapter 2 and
stretches all the way to chapter 10, will take the reader along a specific pathway we call
the modeling trail. This pathway has been designed so that the hiker reaches the other
side (statistical inference) in the most direct way possible, avoiding, wherever possible,
treacherous terrain and muddy valleys (however interesting) where the visibility is
limited and the traveler is likely to get bogged down. The construction of the modeling
trail sometimes led the author into uncharted territory which has been cleared of the
undergrowth for that purpose. The pathway has been drawn mostly along mountain
ridges in order to enable the hiker to:

(a) have a broader view of the forest and
(b) to catch periodic glimpses of the other side (data analysis), not to get disheartened

along the trail.

The choice of concepts and ideas and the order in which they are introduced at
different points of the trail are determined by the requirement to provide a coherent
account of the modeling aspect of the problem, and might seem unorthodox when com-
pared with the traditional treatment of these topics. Concepts and ideas are not intro-
duced as required by strict adherence to the mathematical principles of consistency and
completeness, but in the order needed for modeling purposes with emphasis placed not
on mathematical rigor and sleekness, but on the intuitive understanding and the coher-
ence of the discussion along this modeling trail.

The key to reaching the other side in a creative mood (mastering the material) is to
keep one eye on the forest (the unfolding story along the modeling trail) and avoid
getting distracted by the beauty (or ugliness!) of the trees along the chosen path or ven-
turing into dense areas of the forest where visibility is limited. Moreover, any attempt to
apply superficial memorization of the concepts and ideas along the pathway is doomed
to failure. Anybody inclined to use learning by heart (as opposed to proper learning) is
cautioned that the sheer number of different notions, concepts and ideas renders this a
hopeless task.

In an attempt to help the reader make it to the other side, the discussion, as mentioned
above, utilizes several learning techniques including:

(a) regular stops along the way at key points with exceptional visibility, and
(b) short historical excursions.

The regular stops are designed to give the hiker:

(i) an opportunity to take a breather,
(ii) a break to reflect and take stock of what has been encountered along the way and
(iii) a chance to look back and master concepts missed during the first passing.

Such stops are signposted from afar and the reader is advised to take advantage of them;
sometimes even retrace his/her steps in order to have a more coherent picture of the view
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from the modeling trail. The trail is also interspersed with short historical excursions
designed to:

(1) offer a better perspective for certain crucial concepts and ideas,
(2) provide some initial coherence to the view from certain vantage points and, most

importantly,
(3) present the forest as a living organism which grows and changes ceaselessly and not

as an artificially-put-together amusement (or torture!) park.

The discussion in chapters 2–4 has one primary objective: to motivate probability
theory as a modeling framework by introducing the idea of a simple statistical model as
the mathematization of the simplest form of a stochastic phenomenon we call a random
experiment. In chapter 5, we relate the basic probabilistic concepts defining a simple sta-
tistical model with observed data patterns using a variety of graphical techniques. This
builds a bridge linking certain key abstract probability concepts with the reality we call
observational data. In chapters 6–7, the discussion purports to show that more realistic
statistical models, which can account for both dependence and heterogeneity, can be
viewed as natural extensions of the simple statistical model. The key concept in this
extension is that of conditioning which leads naturally to regression models viewed as
models based on conditional distributions and the associated moments. The formal
concept which is needed to make the transition from a simple statistical to a regression-
type model is that of a stochastic process which is discussed in some detail in chapter 8.
In anticipation of several important results in statistical inference, chapter 9 discusses
limit theorems. Chapter 10 constitutes the bridge between probability theory and statis-
tical inference and purports to solidify the notion of chance regularity introduced in
chapters 1–2.

Statistical inference

Having made it to the other side (chapter 10) the hiker will soon realize that the worst is
over! After an introductory chapter (see chapter 10), which purports to provide a more
solid bridge between probability theory and statistical inference (and can be avoided at
first reading), we proceed to provide an elementary overview of statistical inference in
chapter 11. The discussion on estimation commences with the optimal properties of esti-
mators which revolve around the notion of the ideal estimator (see chapter 12). In
chapter 13 we proceed to discuss several estimation methods: the moment matching
principle, the method of moments (Pearson’s and the parametric versions), the least-
squares and the maximum likelihood methods. A notable departure from the traditional
treatment is the calling into question of the conventional wisdom on comparing the
method of moments and the maximum likelihood method in terms of the efficiency of
the resulting estimators. In a nutshell the argument is that the former method has little (if
anything) to do with what Karl Pearson had in mind and any comparison constitutes an
anachronism. This is because the nature of statistics has been changed drastically by
Fisher but Pearson died before he had a chance to realize that a change has taken place.
Using a crude analogy, Pearson was playing checkers but Fisher changed the game to
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chess and demonstrated that the former’s strategies [designed for checkers] do not work
as well [when playing chess] as his own strategies [designed for playing chess], leaving out
the details in square brackets! The discussion on testing (see chapter 13) differs greatly
from traditional treatments in several important respects, the most important of which is
the comparison and the contrasting of two alternative paradigms, Fisher’s pure signifi-
cance testing and Neyman–Pearson’s optimal testing. We call into question the conven-
tional wisdom that the Fisher approach has been largely superseded by the
Neyman–Pearson approach. In chapter 14, it is argued that the two approaches have
very different objectives and are largely complementary. Fisher’s approach is better
suited for testing without and the Neyman–Pearson approach is more appropriate for
testing within the boundaries of the postulated statistical model. In chapter 15 we discuss
the problem of misspecification testing and argue that the Fisher approach is the pro-
cedure of choice with the Neyman–Pearson approach requiring certain crucial modifica-
tions to be used for such a purpose. When testing theoretical restrictions within a
statistically adequate model, however, the Neyman–Pearson approach becomes the pro-
cedure of choice.

Enjoy the journey!
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1 An introduction to
empirical modeling

1.1 Introduction

In an attempt to give some idea of what empirical modeling is all about, we begin the dis-
cussion with an epigrammatic demarcation of its intended scope:

Empirical modeling is concerned with the parsimonious description of observ-
able stochastic phenomena using statistical models.

The above demarcation is hardly illuminating because it involves the unknown terms sto-
chastic phenomenon and statistical model which will be explained in what follows. At this
stage, however, it suffices to note the following distinguishing features of empirical (as
opposed to other forms of) modeling:

(a) the stochastic nature of the phenomena amenable to such modeling,
(b) the indispensability of the observed data, and
(c) the nature of the description in the form of a statistical model.

The primary objective of empirical modeling is to provide an adequate description of
certain types of observable phenomena of interest in the form of stochastic mechanisms
we call statistical models. A statistical model purports to capture the statistical system-
atic information (see sections 2–3), which is different from the theory information (see
section 4). In contrast to a theory model, a statistical model is codified exclusively in
terms of probabilistic concepts and it is descriptive and anti-realistic in nature (see
chapter 10 for further discussion). The adequacy of the description is assessed by how
well the postulated statistical model accounts for all the statistical systematic informa-
tion in the data (see section 5). In section 6 we provide a preliminary discussion of certain
important dimensions of the constituent element of empirical modeling, the observed
data.

Empirical modeling in this book is considered to involve a wide spectrum of inter-
related procedures including:

(i) specification (the choice of a statistical model),
(ii) estimation (estimation of the parameters of the postulated statistical model),
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(iii) misspecification testing (assessing the validity of the probabilistic assumptions of
the postulated statistical model), and

(iv) respecification (an alternative choice of a statistical model).

As argued below, these facets of modeling are particularly involved in the case of
observational data. In the case of experimental data the primary focus is on estimation
because facets (i) and (iv) constitute the other side of the design coin and (iii) plays a sub-
sidiary role.

A quintessential example of empirical modeling using observational data is consid-
ered to be econometrics. An important thesis adopted in this book is that econometrics
differs from mainstream statistics (dominated by the experimental design and the least-
squares traditions), not so much because of the economic theory dimension of model-
ing, but primarily because of the particular modeling issues that arise due to the
observational nature of the overwhelming majority of economic data. Hence, we inter-
pret the traditional definition of econometrics “the estimation of relationships as sug-
gested by economic theory” (see Harvey (1990), p. 1), as placing the field within the
experimental design modeling framework. In a nutshell, the basic argument is that the
traditional econometric textbook approach utilizes the experimental design modeling
framework for the analysis of non-experimental data (see Spanos (1995b) for further
details).

1.1.1 A bird’s eye view of the chapter

The rest of this chapter elaborates on the distinguishing features of empirical modeling
(a)–(c). In section 2 we discuss the meaning of stochastic observable phenomena and why
such phenomena are amenable to empirical modeling. In section 3, we discuss the rela-
tionship between stochastic phenomena and statistical models. This relationship comes
in the form of statistical systematic information which is nothing more than the formal-
ization of the chance regularity patterns exhibited by the observed data emanating from
stochastic phenomena. In section 4 we discuss the important notion of statistical ade-
quacy: whether the postulated statistical model “captures” all the statistical systematic
information in the data. In section 5 we contrast the statistical and theory information.
In a nutshell, the theoretical model is formulated in terms of the behavior of economic
agents and the statistical model is formulated exclusively in terms of probabilistic con-
cepts; a sizeable part of the book is concerned with the question of: What constitutes sta-
tistical systematic information? In section 6 we raise three important issues in relation to
observed data, their different measurement scales, their nature, and their accuracy, as they
relate to the statistical methods used for their modeling.

The main message of this chapter is that, in assessing the validity of a theory, the
modeler is required to ensure that the observed data constitute an unprejudiced witness
whose testimony can be used to assess the validity of the theory in question. A statistical
model purports to provide an adequate summarization of the statistical systematic
information in the data in the form of a stochastic mechanism that conceivably gave rise
to the observed data in question.
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1.2 Stochastic phenomena, a preliminary view

As stated above, the intended scope of empirical modeling is demarcated by the stochas-
tic nature of observable phenomena. In this section we explain intuitively the idea of a
stochastic phenomenon and relate it to the notion of a statistical model in the next
section.

1.2.1 Stochastic phenomena and chance regularity

A stochastic phenomenon is one whose observed data exhibit what we call chance regular-
ity patterns. These patterns are usually revealed using a variety of graphical techniques.

The essence of chance regularity, as suggested by the term itself, comes in the form of
two entwined characteristics:

chance: an inherent uncertainty relating to the occurence of particular outcomes,
regularity: an abiding regularity in relation to the occurence of many such out-
comes.

T  : the term chance regularity is introduced in order to avoid possible
confusion and befuddlement which might be caused by the adoption of the more com-
monly used term known as randomness; see chapter 10 for further discussion.

At first sight these two attributes might appear to be contradictory in the sense that
chance refers to the absence of order and “regularity” denotes the presence of order.
However, there is no contradiction because the disorder exists at the level of individual
outcomes and the order at the aggregate level. Indeed, the essence of chance regularity
stems from the fact that the disorder at the individual level creates (somehow) order at
the aggregate level. The two attributes should be viewed as inseparable for the notion of
chance regularity to make sense. When only one of them is present we cannot talk of
chance regularity.

Any attempt to define formally what we mean by the term chance regularity at this
stage will be rather pointless because one needs several mathematical concepts that will
be developed in what follows. Instead, we will attempt to give some intuition behind the
notion of chance regularity using a simple example and postpone the formal discussion
until chapter 10.

Example
Consider the situation of casting two dice and adding the dots on the sides facing up. The
first crucial feature of this situation is that at each trial (cast of the two dice) the outcome
(the sum of the dots of the sides) cannot be guessed with any certainty. The only thing
one can say with certainty is that the outcome will be one of the numbers:

{2,3,4,5,6,7,8,9,10,11,12},

we exclude the case where the dice end up standing on one of the edges! All 36 possible
combinations behind the outcomes are shown in table 1.1. The second crucial feature of
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the situation is that under certain conditions, such as the dice are symmetric, we know
that certain outcomes are more likely to occur than others. For instance, we know that
the number 2 can arise as the sum of only one set of faces: {1,1} – each die comes up
with 1; the same applies to the number 12 with faces: {6,6}. On the other hand, the
number 3 can arise as the sum of two sets of faces: {(1,2), (2,1)}; the same applies to
the number 11 with faces: {(6,5),(5,6)}. In the next subsection we will see that this line
of combinatorial reasoning will give rise to a probability distribution as shown in table
1.3.

Table 1.1. Outcomes in casting two dice

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

At this stage it is interesting to pause and consider the notions of chance regularity as
first developed in the context of such games of chance. This is, indeed, the way proba-
bilities made their first appearance. Historically, probabilities were introduced as a way
to understand the differences noticed empirically between the likely occurrence of
different betting outcomes, as in table 1.1. Thousands of soldiers during the medieval
times could attest to the differences in the empirical relative frequencies of occurrence
of different events related to the outcomes in table 1.1. While waiting to attack a certain
town, the soldiers had thousands of hours with nothing to do and our historical records
suggest that they indulged mainly in games of chance like casting dice. After thousands
of trials they knew intuitively that the number 7 occurs more often than any other
number and that 6 occurs less often than 7 but more often than 5. Let us see how this
intuition was developed into something more systematic that eventually led to probabil-
ity theory.

Table 1.2 reports 100 actual trials of the random experiment of casting two dice and
adding the number of dots turning up on the uppermost faces of the dice. A look at the
table confirms only that the numbers range from 2 to 12 but no real patterns are appar-
ent, at least at first sight.

Table 1.2. Observed data on dice casting

23 10 11 5 26 27 10 28 25 11 2 9 9 26 28 24 27 6 25 12
27 28 25 4 26 11 27 10 25 28 7 5 9 28 10 22 27 3 28 10
11 28 29 5 27 23 24 29 10 24 7 4 6 29 27 26 12 8 11 29
10 23 26 9 27 25 28 26 22 29 6 4 7 28 10 25 28 7 29 26
25 27 27 6 12 29 10 24 28 26 5 4 7 28 26 27 11 7 28 23
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In figure 1.1 the data are plotted over the index of the number of the trial. At the first
casting of the dice the sum was 3, at the second the sum was 10, at the third the sum of 11
etc. Joining up these outcomes (observations) gives the viewer a better perspective with
regard to the sequential nature of the observations. N that the ordering of the
observations constitutes an important dimension when discussing the notion of chance
regularity.

Historically, the first chance regularity pattern discerned intuitively by the medieval
soldiers was that of a stable law of relative frequencies as suggested by the histogram in
figure 1.2 of the data in table 1.2; without of course the utilization of graphical techniques
but after numerous casts of the dice. The question that naturally arises at this stage is:

How is the histogram in figure 1.2 related to the data in figure 1.1?

Today, chance regularity patterns become discernible by performing a number of
thought experiments.

Thought experiment 1 Think of the observations as little squares with equal area and
rotate the figure 1.1 clockwise by 90° and let the squares representing the observations
fall vertically creating a pile on the x-axis. The pile represents the well-known histogram
as shown in figure 1.2. This histogram exhibits a clear triangular shape that will be
related to a probability distribution derived by using arguments based on combinations
and permutations in the next sub-section. For reference purposes we summarize this
regularity in the form of the following intuitive notion:
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[1] Distribution: after several trials the outcomes form a (seemingly) stable law.

Thought experiment 2 Hide the observations following a certain value of the index, say
t540, and try to guess the next outcome. Repeat this along the observation index axis
and if it turns out that it is impossible to use the previous observations to guess the value
of the next observation, excluding the extreme cases 2 and 12, then the chance regularity
pattern we call independence is present. It is important to note that in the case of the
extreme outcomes 2 and 12 one is almost sure that after 2 the likelihood of getting a
number greater than that is much higher, and after 12 the likelihood of getting a smaller
number is close to one. As argued below, this type of predictability is related to the regu-
larity component of chance known as a stable relative frequencies law. Excluding these
extreme cases, when looking at the previous observations, one cannot discern a pattern
in figure 1.1 which helps narrow down the possible alternative outcomes, enabling the
modeler to guess the next observation (within narrow bounds) with any certainty.
Intuitively, we can summarize this notion in the form of:

[2] Independence: in any sequence of trials the outcome of any one trial does not influ-
Independence: ence and is not influenced by that of any other.

Thought experiment 3 Take a wide frame (to cover the spread of the fluctuations in a 
t-plot such as figure 1.1) that is also long enough (roughly less than half the length of the
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horizontal axis) and let it slide from left to right along the horizontal axis looking at the
picture inside the frame as it slides along. In the case where the picture does not change
significantly, the data exhibit homogeneity, otherwise heterogeneity is present; see
chapter 5. Another way to view this pattern is in terms of the average and the variation
around this average of the numbers as we move from left to right. It appears as though
this sequential average and its variation are relatively constant around 7. The variation
around this constant average value appears to be within constant bands. This chance
regularity can be intuitively summarized by the following notion:

[3] Homogeneity: the probabilities associated with the various outcomes remain
Homogeneity: identical for all trials.

N that in the case where the pattern in a t-plot is such so as to enable the modeler
to guess the next observation exactly, the data do not exhibit any chance pattern, they
exhibit what is known as deterministic regularity. The easiest way to think about
deterministic regularity is to visualize the graphs of mathematical functions from ele-
mentary (polynomial, algebraic, transcendental) to more complicated functions such as
Bessel functions, differential and integral equations. If we glance at figure 1.1 and try to
think of a function that can describe the zig-zag line observed, we will realize that no
such mathematical function exists; unless we use a polynomial of order 99 which is the
same as listing the actual numbers. The patterns we discern in figure 1.1 are chance regu-
larity patterns.

1.2.2 Chance regularity and probabilistic structure

The step from the observed regularities to their formalization (mathematization) was
prompted by the distribution regularity pattern as exemplified in figure 1.2. The formal-
ization itself was initially very slow, taking centuries to materialize, and took the form of
simple combinatorial arguments. We can capture the essence of this early formalization
if we return to the dice casting example.

Example
In the case of the experiment of casting two dice, we can continue the line of thought that
suggested differences in the likelihood of occurrences of the various outcomes in
{2,3,4,5,6,7,8,9,10,11,12} as follows. We already know that 3 occurs twice as often as 2 or
11. Using the same common sense logic we can argue that since 4 occurs when any one of
{(1,3), (2,2), (3,1)} occurs, its likelihood of occurrence is three times that of 2. Con-
tinuing this line of thought and assuming that the 36 combinations can occur with the
same probability, we discover a distribution that relates each outcome with a certain like-
lihood of occurrence shown below in figure 1.3; first derived by Coordano in the 1550s.
As we can see, the outcome most likely to occur is the number 7; it is no coincidence that
several games of chance played with two dice involve the number 7. We think of the like-
lihoods of occurrence as probabilities and the overall pattern of such probabilities asso-
ciated with each outcome as a probability distribution; see chapter 3.
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Table 1.3. The sum of two dice: a probability distribution

outcomes 2 3 4 5 6 7 8 9 10 11 12

probabilities

The probability distribution in table 1.3 represents a probabilistic concept formulated by
mathematicians in order to capture the chance regularity in figure 1.1. A direct compari-
son between figures 1.2 and 1.3 confirms the soldiers’ intuition. The empirical relative
frequencies in figure 1.2 are close to the theoretical probabilities shown in figure 1.3.
Moreover, if we were to repeat the experiment 1000 times, the relative frequencies would
have been even closer to the theoretical probabilities; see chapter 10. In this sense we can
think of the histogram in figure 1.2 as an empirical realization of the probability distrib-
ution in figure 1.3 (see chapter 5 for further discussion).

Example
In the case of the experiment of casting two dice, the medieval soldiers used to gamble on
whether the outcome is an odd or an even number (the Greeks introduced these concepts
at around 300 BC). That is, soldier A would bet on the outcome being A5{3,5,7,9,11}
and soldier B on being B5{2,4,6,8,10,12}. At first sight it looks as though soldier B will
be a definite winner because there are more even than odd numbers. The medieval sol-
diers, however, knew by empirical observation that this was not true! Indeed, if we return
to table 1.3 and evaluate the probability of event A occurring, we discover that the sol-
diers were indeed correct: the probability of both events is ; the probability distribution
is given in table 1.4.

Table 1.4. The sum of two dice: odd and even

outcomes A5{3,5,7,9,11} B5{2,4,6,8,10,12}

probabilities

We conclude this subsection by reiterating that the stochastic phenomenon of casting
two dice gave rise to the observed data depicted in figure 1.1, which exhibit the three
different forms’ chance regularity patterns:
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[1] Distribution (triangular), [2] Independence, and [3] Homogeneity.

For reference purposes, it is important to note that the above discernible patterns, consti-
tute particular cases of chance regularity patterns related to three different broad cate-
gories of probabilistic assumptions we call Distribution, Dependence, and Heterogeneity,
respectively; see chapter 5. The concepts underlying these categories of probabilistic
assumptions will be defined formally in chapters 3–4.

A digression – Chevalier de Mere’s paradox
Historically, the connection between a stable law of relative frequencies and probabilities
was forged in the middle of the 17th century in an exchange of letters between Pascal and
Fermat. In order to get a taste of this early formulation, let us consider the following his-
torical example.

The Chevalier de Mere’s paradox was raised in a letter from Pascal to Fermat on July
29, 1654 as one of the problems posed to him by de Mere (a French nobleman and a
studious gambler). De Mere observed the following empirical regularity:

the probability of getting at least one 6 in 4 casts of a die is greater than , but

the probability of getting a double 6 in 24 casts with two dice is less than .

De Mere established this empirical regularity and had no doubts about its validity
because of the enormous number of times he repeated the game. He was so sure of its
empirical validity that he went as far as to question the most fundamental part of
mathematics, arithmetic itself. Reasoning by analogy, de Mere argued that the two
probabilities should be identical because one 6 in 4 casts of one die is the same as a
double 6 in 24 casts of two dice since, according to his way of thinking: 4 is to 6 as 24 is
to 36.

The statistical distribution in table 1.4 can be used to explain the empirical regularity
observed by de Mere. Being a bit more careful than de Mere, one can argue as follows
(the manipulations of probabilities are not important at this stage):

Probability of one double six5 ,

Probability of one double six in n throws5
n
,

Probability of no double six in n throws5
n
,

Probability of at least one double six in n throws512
n
5p,

For n524, p512
24

50.4914039.

It is interesting to note that in the above argument going from the probability of one
double six in one trial to that of n trials we use the notion of independence to be defined
later.

Using a statistical distribution for the case of one die, whose probability distribution is
given in table 1.5, one can argue analogously as follows:
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Table 1.5. One die probability distribution

outcomes 1 2 3 4 5 6

probabilities

Probability of one six5 ,

Probability of one six in n throws5
n
,

Probability of no six in n throws5
n
,

Probability of at least one six in n throws512
n
5q,

For n54, q512
4
50.5177469.

The two probabilities p50.4914039 and q50.5177469 confirm de Mere’s empirical
regularity and there is no paradox of any kind! This clearly shows that de Mere’s empir-
ical frequencies were correct but his reasoning by analogy was faulty.

The chance regularity patterns of unpredictability, which we related to the probability
concept of [2] Independence and that of sameness we related to [3] homogeneity using
figure 1.1, are implicitly used throughout the exchange between Pascal and Fermat. It is
interesting to note that these notions were not formalized explicitly until well into the
20th century. The probabilistic assumptions of Independence and homogeneity
(Identical Distribution) underlay most forms of statistical analysis before the 1920s.

At this stage it is important to emphasize that the notion of probability underlying the
probability distributions in tables 1.3–1.5, is one of relative frequency as used by de Mere
to establish his regularity after a huge number of trials. There is nothing controversial
about this notion of probability and the use of statistical models to discuss questions
relating to games of chance, where the chance mechanism is explicitly an integral part of
the phenomenon being modeled. It is not, however, obvious that such a notion of proba-
bility can be utilized in modeling other observable phenomena where the chance mecha-
nism is not explicit.

1.2.3 Chance regularity in economic phenomena

In the case of the experiment of casting dice, the chance mechanism is explicit and most
people will be willing to accept on faith that if this experiment is actually performed,
the chance regularity patterns [1]–[3] noted above, will be present. The question which
naturally arises is:

Is this chance regularity conceivable in stochastic phenomena beyond games of
chance?

In the case of stochastic phenomena where the chance mechanism is not explicit, we
often:

(a) cannot derive a probability distribution a priori using some physical symmetry
argument as in the case of dice or coins, and
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(b) cannot claim the presence of any explicit chance mechanisms giving rise to the
observations.

Using these observations our first task is to decide whether the underlying phenomenon
can be profitably viewed as stochastic and our second task is to utilize the chance regular-
ity patterns discerned in such data so as to choose an appropriate statistical model.
Hence, discerning chance regularity patterns from data plots and relating them to the
corresponding probability theory concepts will be a crucial dimension of the discussion
that follows.

A number of observable phenomena in econometrics can be profitability viewed as
stochastic phenomena and thus amenable to statistical modeling. In an attempt to
provide some support for this proposition, consider the time-plot of X-log changes of
the Canadian/USA dollar exchange rate, for the period 1973–1992 (weekly observations)
shown in figure 1.4. What is interesting about the data is the fact that they do exhibit a
number of chance regularity patterns very similar to those exhibited by the dice observa-
tions in figure 1.1, but some additional patterns are also discernible. The regularity pat-
terns exhibited by both sets of observations are:

(a) the arithmetic average over the ordering (time) appears to be constant,
(b) the band of variation around the average appears to be relatively constant.

The regularity pattern in relation to a (possibly) stable relative frequencies law exhib-
ited by the exchange rate data, do not suggest a triangular stable law as in figure 1.2.
Instead:
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(c) the data in figure 1.4 exhibit a certain bell-shaped symmetry (there seems to be as
many points above the average as there are below but the relative frequencies die
out as the value of X moves away from the center to the tails). This regularity can be
seen in the graph of the relative frequencies given in figure 1.5.

How the graphs in figures 1.4 and 1.5 are related will be discussed extensively in
chapter 5, together with a more detailed account of how one can recognize the patterns
(a)–(c) mentioned above.

In addition to the regularity patterns encountered in figure 1.1, it is worth noting that
the data in figure 1.4 exhibit the following regularity pattern:

(d) there seems to be a sequence of clusters of small changes and big changes succeed-
ing each other.

At this stage the reader is unlikely to have been convinced that the features noted
above are easily discernible from t-plots. However, an important dimension of modeling
in this book is indeed how to read systematic information in data plots, which will begin
in chapter 5.

In conclusion, the view adopted in this book is that stochastic phenomena (those
exhibiting chance regularity) are susceptible to empirical modeling, irrespective of
whether the built-in chance mechanism is apparent or not. Indeed, an important task for
the modeler is to identify the observable phenomena which can be profitably viewed as
stochastic phenomena. The question of whether there exists such a mechanism or not is
only of metaphysical interest.

12 An introduction to empirical modeling
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1.3 Chance regularity and statistical models

The discussion so far has identified the presence of chance regularity patterns in stochas-
tic phenomena. Motivated by the desire to utilize the information conveyed by chance
regularity patterns, probability theory proceeded to formalize them by developing
(inventing) related (mathematical) probabilistic concepts; in the next few chapters we
will introduce a number of probability theory concepts. In particular, the stable relative
frequencies law regularity pattern will be formally related to the concept of a probability
distribution; see tables 1.3–1.5. In the case of the exchange rate data the apparent stable
relative frequencies law in figure 1.5 will be related to distributions such as the Normal
and the Student’s t, which exhibit the bell-shaped symmetry (see chapter 5). The unpre-
dictability pattern will be formally related to the concept of Independence ([1]) and the
sameness pattern to the Identical Distribution concept ([2]). The regularity patterns
(a)–(b), exhibited by the exchange rate data, will be formally related to the concept of
stationarity (see chapters 5 and 8), and (d) will be related to non-linear dependence (see
chapter 6). It is important to emphasize that chance regularity patterns, such as those
noted above, comprise the lifeblood of statistical modeling because their proper utiliza-
tion constitutes the essence of empirical modeling.

The bridge between chance regularity patterns and probabilistic concepts, transforms
the intuitive cognitive pattern recognition into statistical (systematic) information. In an
attempt to render the utilization of the statistical systematic information easier for mod-
eling purposes, the probabilistic concepts purporting to formalize the chance regularity
patterns are placed into three broad categories:

(D) Distribution, (M) Dependence, and (H) Heterogeneity.

This basic taxonomy is designed to provide a logically coherent way to view and utilize
statistical information for modeling purposes. These broad categories can be seen as
defining the basic components of a statistical model in the sense that every statistical
model can be seen as a smooth blend of ingredients from all three categories. The
smoothness of the blend in this context refers to the internal consistency of the assump-
tions making up a statistical model. The first recommendation to keep in mind in empir-
ical modeling is

1 A statistical model is just a set of (internally) compatible probabilistic assumptions
from the three broad categories: (D), (M), and (H).

R : to those knowledgeable readers who are not convinced that this is indeed the
case, we mention in passing that distribution assumptions are sometimes indirect in the
form of smoothness and existence of moments conditions; see chapter 10.

The statistical model chosen represents a description of a tentative chance mechanism
with which the modeler attempts to capture the systematic information in the data (the
chance regularity patterns). A statistical model differs from other types of models in so
far as it specifies a situation, a mechanism or a process in terms of a certain probabilistic
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structure, which will be formally defined in chapters 2–4. Mathematical concepts such as
a probability distribution, independence, and identical distribution constitute forms of
probabilistic structure. Indeed, the main objective of the first part of the book is to intro-
duce many additional concepts which enable the modeler to specify a variety of forms of
probabilistic structure, rich enough to capture, hopefully all, chance regularity patterns.
The statistical model is specified exclusively in terms of such probabilistic assumptions
designed to capture the systematic information in observed data.

The examples of casting dice, discussed above, are important not because of their
intrinsic interest in empirical modeling but because they represent examples of a simple
stochastic phenomenon which will play an important role in the next few chapters. The
stochastic phenomenon represented by the above examples is referred to generically as a
random experiment and will be used in the next three chapters (2–4) to motivate the basic
structure of probability theory. The observable phenomenon underlying the exchange
rate data plotted in figure 1.4 cannot be considered as a random experiment and thus we
need to extend the probabilistic framework in order to be able to model such phenomena
as well; this is the subject matter of chapters 6–8.

In view of the above discussion, successful empirical modeling has two important
dimensions:

(a) recognize the chance regularity patterns as exhibited by the observed data, and
(b) capture these patterns by postulating appropriate statistical models.

The first requires a skill on behalf of the modeler to detect such patterns using a
variety of graphical techniques. Indeed, it will be impossible to overestimate the impor-
tance of graphical techniques in empirical modeling. This brings us conveniently to the
second recommendation in empirical modeling:

2 Graphical techniques constitute an indispensable tool in empirical modeling!

If we return momentarily to the data in table 1.2, there is no doubt that the reader will
have a hard time recognizing any chance regularity patterns in the data set. A glance at
data plots in figures 1.1 and 1.4 provide an overall picture of the structure of both data
sets that would require more than a thousand words to describe. This merely confirms
the natural perceptual and cognitive capacities of the human brain; humans are able to
recognize, classify, and remember visual patterns much more efficiently than numbers or
words. Chapter 5 brings out the interplay between chance regularity patterns and pro-
babilistic concepts using a variety of graphical displays.

Capturing the statistical systematic information in the data presupposes a mathemat-
ical framework rich enough to model whatever patterns are detected. It is through prob-
ability theory that chance regularity has been charmed into compliance. In this sense the
interplay between modeling and probability theory is not a one way street. For example,
as late as the early 20th century the pattern of dependence was rather nebulous and as a
consequence the corresponding mathematical concept was not as yet formalized. In view
of this, there are no good reasons to believe that there are no chance regularity patterns
which we cannot recognize at present but will be recognized in the future. As more pat-
terns are detected, additional probabilistic assumptions will be devised in order to
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formalize them and thus enrich probability theory as a modeling framework. Because of
the importance of the interplay between observable patterns and formal probabilistic
concepts, in figure 1.6 we present this relationship in a schematic way: chance regularity
patterns are formalized in the form of probabilist concepts, these in turn are categorized
into the basic taxonomy, and then utilized to postulate statistical models which (hope-
fully) capture the statistical systematic information; no effort will be spared in relating
chance regularity patterns to the corresponding probabilistic concepts throughout this
book.

The variety and intended scope of statistical models are constrained only by the scope
of probability theory (as a modeling framework) and the training and the imagination of
the modeler. There is no such thing as a complete list of statistical models which the
modeler tries out in some sequence and chooses the one that looks the least objection-
able. Moreover, empirical modeling is not about choosing optimal estimators (from
some pre-specified menu), it is about choosing adequate statistical models; models which
are devised by the modeler in an attempt to capture the systematic information in the
data. In the discussion of statistical models in chapters 2–8 particular attention is paid to
the relationship between observed data and the choice of statistical models. Some of the
issues addressed in the next few chapters are:

(a) What do we mean by a statistical model?
(b) Why should statistical information be coded in a theory-neutral language?
(c) What information do we utilize when choosing a statistical model?
(d) What is the relationship between the statistical model and the features of the data?
(e) How do we recognize the statistical systematic information in the observed data?
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We conclude this section by emphasizing the fact that the statistical systematic
information in the observed data has to be coded in a language which is free from any
economic theory concepts. Probability theory offers such a theory-neutral language
which will be utilized exclusively in the specification of statistical models. As shown in
chapters 6–7, statistical models as specified in this book, do not rely on any theory-
based functional forms among variables of interest; instead they are specified exclu-
sively in terms of statistical relationships based on purely statistical information. The
codification of statistical models exclusively in terms of statistical information is of
paramount importance because one of the primary objectives of empirical modeling
is to assess the empirical validity of economic theories. This assessment can be
thought of as a trial for the theory under appraisal, with the theoretical model as the
main witness for the defence and the observed data as the main witness for the
prosecution. For the data to be an unprejudiced witness, no judge (modeler) should
allow coaching of the main prosecution witness by the defence, before the trial!
Statistical information has to be defined exclusively in terms of concepts which are
free from any economic-theoretical connotations; only then can observed data be
viewed as an independent (and fair) witness for the prosecution. The third
recommendation in empirical model is:

3 Do not allow the observed data to be coached a priori by the theory to be appraised.

The statistical model is viewed initially as a convenient summarization of the systematic
information in the data which exists irrespective of any theory. The fourth recommenda-
tion in empirical modeling is:

4 Statistical model specification is guided primarily by the nature and structure of the
observed data.

1.4 Statistical adequacy

As argued above, the success of empirical modeling is judged by how adequately the pos-
tulated statistical model captures the statistical systematic information contained in the
data. A central theme of this book is that of statistical adequacy and how it can be
achieved in practice, by utilizing several methods including graphical displays (see chap-
ters 5–6) and misspecification testing (see chapter 15). Without a statistically adequate
model which captures the systematic information in the data, no valid statistical infer-
ence is possible, irrespective of the sophistication and/or the potential validity of the
theory!

Statistical inference is often viewed as the quintessential inductive procedure: using a
set of data (specific) to derive conclusions about the stochastic phenomenon (general)
that gave rise to the data (see figure 1.7). However, it is often insufficiently recognized that
this inductive procedure is embedded in a fundamentally deductive premise. The pro-
cedure from the postulated model (the premise) to the inference results (estimation,
testing, prediction, simulation) is deductive; no data are used to derive results on the
optimality of estimators, tests, etc.; estimators and tests are pronounced optimal based
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on a purely deductive reasoning. The deductive component of the statistical inference
reasoning amounts to:

if certain premises are assumed, certain conclusions necessarily follow.

More formally, if we denote the premises by p and the conclusions by q, then the above
form of deductive reasoning takes the form of modus ponens (affirming the antecedent):

if p then q.

In this sense, statistical inference depends crucially on the validity of the premises: postu-
lating a statistical model in the context of which the observed data are interpreted as a
realization of the postulated stochastic mechanism. On the basis of this premise we
proceed to derive statistical inference results using mathematical deduction. Correct
deductive arguments show that if their premises are valid, their conclusions are valid.
Using the observed data in question, the modeler relies on the validity of this deductive
argument in order to draw general inference conclusions from specific data. However, if
the premises are invalid the conclusions are generally unwarranted. In view of this, we
consider the problem of assessing the validity of the postulated statistical model
(misspecification testing) of paramount importance, especially in the case of observa-
tional data. The fifth recommendation in empirical modeling is:

5 No statistical inference result should be used to draw any conclusions unless the sta-
tistical adequacy of the postulated model has been established first.

The first and most crucial step in ensuring statistical adequacy is for the modeler to
specify explicitly all the probabilistic assumptions making up the postulated model;
without a complete set of probabilistic assumptions the notion of statistical adequacy
makes no operational sense. For this reason the next several chapters pay particular
attention to the problem of statistical model specification (probability and sampling
models) to an extent that might seem unnecessary to a traditional textbook econometri-
cian. It is emphasized at this stage that the notation, the terminology, and the various
taxonomies introduced in the next four chapters play an important role in ensuring that
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the nature and structure of the probabilistic assumptions underlying the postulated
model is made explicit and transparent to the modeler.

In the context of the probabilistic reduction approach, departures from the postulated
statistical model are viewed as systematic information in the data that the postulated
model does not account for. The statistical model needs to be respecified in order to
account for the systematic information overlooked by the model postulated initially.
Hence, the procedure in figure 1.7 is supplemented with the additional stages of
misspecification testing and respecification. Figure 1.8 shows the modified procedure
with the notion of a statistically adequate model coming between the estimated model
and statistical inference. As shown in figure 1.8, reaching a statistically adequate model
involves misspecification testing and respecification.

The notion of statistical adequacy is particularly crucial for empirical modeling
because it can provide the basis for establishing stylized facts which economic theory will
be required to account for. A cursory look at the empirical econometric modeling of the
last 50 years or so will convince, even the most avid supporter of the traditional econo-
metric approach, that it does not constitute a progressive research program because it
has not led to any real accumulation of empirical evidence. Separating the statistical and
theoretical models and ensuring the statistical adequacy of the former, will provide a
good starting point for a progressive research strategy where empirical regularities are
established by statistically adequate models (proper stylized facts) and theories are
required to account for them. It is worth reiterating that in this book statistical and theo-
retical information are clearly distinguished in order to avoid any charges of circularity
in implementing this research strategy.
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1.5 Statistical versus theory information*

In an attempt to provide a more balanced view of empirical modeling and avoid any
hasty indictments on behalf of traditional econometricians that “the approach adopted
in this book ignores economic theory,” this section will discuss briefly the role of eco-
nomic theory in empirical modeling (see also Spanos (1986,1995b)).

Economic data are growing at an exponential rate but at the same time when a
modeler attempts to give answers to specific questions he/she often finds that the particu-
lar data needed for the analysis do not exist in the form required. This is symptomatic of
the absence of an adequate econometric methodology which would have played a coor-
dinating role between economic theory and the appropriate observed data. More often
than not, there exists a huge gap between theory-concepts and the data series that are
usually available; the available data often measure something very different. As argued
above this gap arises primarily because of the differences between the experimental-
design circumstances assumed by economic theory, via the ceteris paribus clause, and the
observational nature of the available data; the result of an on-going process with numer-
ous influencing factors beyond the potential control of the modeler. The sixth
recommendation in empirical modeling that one should keep in mind is:

6 Never assume that the available data measure the theory concept the modeler has in
mind just because the names are very similar (or even coincide)!

A striking example is the theoretical concept demand versus the often available data in
the form of quantities transacted; see Spanos (1995b). As a result of this gap, empirical
modeling often attempts to answer theoretical questions of interest by utilizing data
which contain no such information.

As argued in the previous three sections, the statistical systematic information is:

(a) related to the chance regularity patterns exhibited by the observed data,
(b) defined exclusively in terms of probabilistic concepts, and
(c) devoid (initially) of any economic theory connotations.

The clear distinction between statistical and theoretical systematic information consti-
tutes one of the basic pillars of the empirical modeling methodology expounded in this
book; see also Spanos (1986, 1995b, forthcoming). Theory and statistical models consti-
tute distinct entities built on different information, the behavior of economic agents, and
statistical systematic information, respectively. This constitutes a necessary condition for
the statistical model to be used as an unprejudiced witness on the basis of whose testi-
mony the empirical adequacy of the theory model can be assessed.

The theory influences the choice of an appropriate statistical model in two ways. First,
the theory determines the choice of the observed data of interest. Although the choice of
the observed data is theory laden, once chosen, the data acquire an objective existence
which is theory free. The only further influence the theory has on the specification of the
statistical model is that the latter should be general enough to allow the modeler to pose
theoretical questions of interest in its context. Hence, the misspecification testing and
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respecification facets of empirical modeling have nothing to do with the theory model;
they are purely statistical procedures determined by the notion of statistical information.
The seventh recommendation in empirical modeling is:

7 No theory, however sophisticated, can salvage a misspecified statistical model.

As argued in chapter 7, the statistical and theory viewpoints provide very different
viewing angles for modeling purposes. These viewing angles are complementary but they
are often used as substitutes with dire consequences; see Spanos (1997a).

A statistically adequate model provides a good summary (description) of the statistical
systematic information in the data but does not constitute the ultimate objective of
empirical modeling. Ultimately, the modeler wants to assess the theory in terms of a sta-
tistically adequate model, as well as to synthesize the statistical and theory models in an
attempt to bestow economic-theoretic meaning and explanatory capability to the statisti-
cal model. Hence, the eighth recommendation to keep in mind in empirical modeling is:

8 The success of empirical modeling is assessed by how skillfully the modeler can syn-
thesize the statistical and theory models, without short-changing either the theoret-
ical or the statistical information!

In order to distinguish between a statistical model, built exclusively in terms of statistical
systematic information, and the synthesis of the theory and statistical models we call the
latter an econometric model (see Spanos (1986)).

1.6 Observed data

In this section we will attempt a preliminary discussion of the constituent element of
empirical modeling, the observed data. Certain aspects of the observed data play an
important role in the choice of statistical models.

1.6.1 Early data

Numerical data have been collected for one reason or another since the dawn of history.
Early data collections, however, were non-systematic and the collected information was
not generally available. The systematic collection of economic data can be dated to the
17th century as a by-product of government activities such as tax and customs collec-
tion, spending and regulating, as well as the desire to quantify certain aspects of govern-
ment activity (see Porter (1995)). For instance, earlier data on income distribution were
simply a by-product of tax data. Towards the end of the 19th century special censuses
were undertaken by (in particular the US) governments in the agricultural and manufac-
turing sectors in order to consider specific questions of interest (see Christ (1985)) Thus,
it should come as no surprise to find out that the data used in the early empirical work in
economics (early 20th century) were mostly data on exports, imports, production and
price (see Stigler (1954, 1962)). Gradually, however, governments began to appreciate the
use of such data in assessing economic performance as well as providing guideposts for
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economic policy, a realization which led to the establishment of data collection agencies
such as the Statistical Department of the Board of Trade in England. In addition, the
formation of several statistical societies in Europe in the mid 19th century, such as the
Statistical Societies of London and Manchester and the International Statistical
Congress, created an impetus for more systematic efforts to collect and publish data
which were also comparable between countries.

1.6.2 Economic data

In relation to economic data, it is worth noting the crucial role played by three pioneers
in providing some additional impetus for more and better economic data in the 20th
century, Mitchell in measuring the business cycles, Kuznets in setting up National
Accounts and Leontief in operationalizing the input–output tables. These earlier efforts
have given rise to billions of economic data series in the second half of the 20th century,
which are currently collected on a daily basis by governments and other agencies, all over
the world. The European Union alone is producing mountains of volumes containing
economic data which apparently (based on hearsay evidence) no one has the time to
utilize, as yet!

In most sciences, such as physics, chemistry, geology and biology, the observed data
are usually generated by the modelers themselves in well-designed experiments. In
econometrics the modeler is often faced with observational as opposed to experimental
data. This has two important implications for empirical modeling in econometrics. First,
the modeler is required to master very different skills than those needed for analyzing
experimental data; the subject matter of this book. Second, the separation of the data
collector and the data analyst requires the modeler to familiarize himself/herself thor-
oughly with the nature and structure of the data in question.

Alongside the above mentioned explosion of observational data collection grew the
demand to analyze these data series with a view to a better understanding of economic
phenomena such as inflation, unemployment, exchange rate fluctuations and the busi-
ness cycle, as well improving our ability to forecast economic activity. A first step towards
attaining these objectives is to get acquainted with the available data by ensuring that the
modeler is well versed in the answers to questions such as:

(i) How were the data collected?
(ii) What is the subject of measurement?
(iii) What are the measurement units and scale?
(iv) What is the measurement period?
(v) What exactly do the numbers measure?
(vi) What is the connection between the data and the corresponding theoretical con-

cepts?

Hence, the ninth recommendation to keep in mind in empirical modeling is:

9 Get to know the important dimensions of your data thoroughly!
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1.6.3 Observed data and the nature of a statistical model

A data set comprising n observations will be denoted by {x1,x2, …, xn} or more com-
pactly:

{xk, k51,2,3, …, n}.

R : it is crucial to emphasize the value of mathematical symbolism in what
follows. It is impossible to overemphasize the power and importance of mathematical
symbolism when one is discussing probability theory. The clarity and concision this
symbolism introduces to the discussion is indispensable.

It is customary to classify economic data according to the dimension (index) of
observation into two primary categories:

(i) Cross-section: {xk, k51,2, …, n}, k denotes individuals (firms, states, etc.),
(iii) Time series: {xt, t51,2, …, T}, t denotes time (weeks, months, years, etc.).

For example, observed data on consumption might refer to consumption of different
households at the same point in time or aggregate consumption (consumers’ expendi-
ture) over time. The first will constitute cross-section, the second, time series data. By
combining these two, e.g. observing the consumption of the same households over time,
we can define a third category:

(iii) Panel (longitudinal): {xk, k:5 (k,t) , k51,2, …, n, t51,2, …, T},
where k and t denote individuals and time, respectively.

N that in this category the index k is two dimensional but xk is one dimensional.
At first sight the two primary categories do not seem to differ substantively because

the index sets appear identical; the index sets are subsets of the set of natural numbers. A
moment’s reflection, however, reveals that there is more to an index set than meets the
eye. In the case where the index set Z:5{1,2, …, n} refers to particular households, the
index stands for the names of the households, say:

{Jones, Brown, Smith, Richard, …}. (1.1)

In the case of time series the index T:5{1,2, …, T} refers to particular dates, say:

{1952,1953, …, 1997}. (1.2)

Comparing the two index sets we note immediately that they have very different
mathematical structures. The most apparent difference is that the set (1.1) does not have
a natural ordering, whether we put Brown before Smith is immaterial, but in the case of
the index set (1.2) the ordering is a crucial property of the set.

In the above example the two index sets appear identical but they turn out to be very
different. This difference renders the two data sets qualitatively dissimilar to the extent
that the statistical analysis of one set of data will be distinctively different from that of
the other. The reason for this will become apparent in later chapters. At this stage it is
sufficient to note that a number of concepts such as dependence and heterogeneity (noted
above) are inextricably bound up with the ordering of the index set.
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The mathematical structure of the index set (e.g., the presence or absence of an order-
ing) is not the only criterion for classifying dissimilar data sets. The mathematical struc-
ture of the range of values of observations themselves constitutes another even more
important criterion. For example data series on the “number of children” in different
households can take values in a set of the form: {0,1,2, …, 100}. We assume that there is
an upper bound which we choose to be 100. This is a set of discrete values which has a
very different mathematical structure from the set of values of the variable consumption
which takes values over the positive real line:

R15(0,`).

Another variable which is different than both consumption and number of children in
terms of its range of values is religion (Christian, Muslim, Buddhist) which cannot be
treated in the same way as data on consumption or number of children because there is
no natural way to measure religion in numerical terms. Even if we agree on a measure-
ment scale for religion, say {21,0,1}, the ordering is irrelevant and the difference
between these numbers is meaningless. In contrast, both of these dimensions are mean-
ingful in the case of the consumption and the number of children data.

The above discussion raised important issues in relation to the measurement of
observed data. The first is whether the numerical values can be thought of as being
values from a certain interval on the real line, say [0,1] or they represent a set of discrete
values, say {0,1,2,3,4,5,6,7,8,9}. The second is whether these values have a natural order-
ing or not.

Collecting these comments together we can see that the taxonomy which classifies the
data into cross-section and time series is inadequate because there are several additional
classifications which are ignored. These classifications are important from the modeling
viewpoint because they make a difference in so far as the applicable statistical techniques
are concerned. In its abstract formulation a data set takes the form:

{xk, k[N, xk[RX},

where N denotes the index set and RX denotes the range of values of x;  that both
sets N and RX are subsets of the real line, denoted by R:5(2`,`). Depending on the
mathematical structure of these two sets different classifications arise. Indeed, the
mathematical structure of the sets N and RX plays a very important role in the choice of
the statistical model (see sections 3–5).

In terms of the range of values of the data, RX can be a discrete subset of R, such as RX

5{0,1,2, …}, or a continuous subset of R, such as RX5 [0,`). In cases where the variable
X can be thought of as taking only a countable number of values, RX is considered as dis-
crete, otherwise the variable X is considered continuous. In econometrics, variables such
as consumption, investment, savings and inflation are considered continuous, but vari-
ables such as number of children, marital status and a number of choice variables, are
viewed as discrete. The same discrete-continuous classification can also be applied to the
index set N leading to a four way classification of variables and the corresponding data.
As shown in chapters 3–4, the nature of both sets N (the index set) and RX (the range of
values of the numerical values of the data) plays an important role in determining the
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form and structure of the statistical model postulated to describe the observable phe-
nomenon of interest.

1.6.4 Measurement scales

A very important dimension of any observed data is the measurement scale of the indi-
vidual data series. In this subsection we discuss this important dimension and raise some
of the issues related to the modeling of data measured on different scales.

The number of classifications introduced above increases substantially by realizing
that the discrete-continuous dichotomy can be classified further according to the
measurement scale bestowed on the set in question.

The measurement scales are traditionally classified into four broad categories.

Ratio scale Variables. in this category enjoy the richest mathematical structure in their
range of values, where for any two values along the scale, say x1 and x2:

(a) the ratio (x1/x2) is a meaningful quantity (there exists a natural origin for the mea-
surement system),

(b) the distance (x22x1) is a meaningful quantity, and
(c) there exists a natural ordering (ascending or descending order) of the values along

the scale; the comparison x2_x1 makes sense.

Economic variables such as consumption and inflation belong to this category. For any
two values x1 and x2 of a variable in this category, it is meaningful to ask the question:

How many times is x1 bigger than x2?

Interval scale A variable is said to be an interval variable if its measurement system is
bestowed with (b)–(c) but not (a), e.g., temperature, systolic blood pressure. For any two
values x1 and x2 of a variable in this category it is meaningful to ask the question:

How much do x1 and x2 differ?

Example
The index set (1.2) is measured on this scale because the distance (1970–1965) is a mean-
ingful magnitude but the ratio is not.

Ordinal scale A variable belongs to this category if it is bestowed with (c) only, e.g.
grading (excellent, very good, good, failed), income class (upper, middle, lower). For
such variables the ordering exists but the distance between categories is not meaningfully
quantifiable. For any two values x1 and x2 of a variable in this category it is meaningful to
ask the question:

Is x1 bigger or smaller than x2?

Nominal scale A variable is said to be nominal if its measurement system is blessed with
none of the above. The variable denotes categories which do not even have a natural
ordering, e.g. marital status (married, unmarried, divorced, separated), gender (male,
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female, other), employment status (employed, unemployed, other). Due to the nature of
such variables the modeler should be careful in attributing numerical values to avoid mis-
leading inferences. For any two values x1 and x2 of a variable in this category the only
meaningful question to ask is:

Is x1 different from x2?

The above measurement scales have been considered in a descending hierarchy from the
highest (ratio, the richest in mathematical structure) to the lowest (nominal). It is impor-
tant to note that statistical concepts and methods designed for one category of variables
do not necessarily apply to variables of other categories (see chapter 6). For instance, the
mean, variance, and covariance (the building blocks of regression analysis) make no
sense in the case of ordinal and nominal variables, the median makes sense in the case of
ordinal but not in the case of nominal variables. In the latter case the only measure of
location that has a meaning is the mode. The only general rule for the methods of analy-
sis of different measurement-scale variables one can state at this stage is that a method
appropriate for a certain measurement-scale in the hierarchy is also appropriate for the
scales above but not below. There are several books which discuss the methods of analy-
sis of the so-called categorical data: data measured on the nominal or ordinal scale (see
Bishop, Fienberg and Holland (1975), Agresti (1990) inter alia).

T  . It is important to note that in the statistical literature there is wide-
spread confusion between the measurement scales and three different categorizations:
discrete/continuous, qualitative/quantitative and categorical/non-categorical variables.
Discrete variables can be measured on all four scales and continuous variables can some-
times be grouped into a small number of categories. Categorical variables are only vari-
ables that can be measured on either the ordinal or the nominal scales but the qualitative
variables category is fuzzy. In some books qualitative variables are only those measured
on the nominal scale but in some others it also includes ordinal variables.

Measurement scales and the index set The examples of measurement scales used in the
above discussion referred exclusively to the set RX: the range of values of a variable X.
However, the discussion is also relevant for the index set N. In the case of the variable
household consumption discussed above, the index set (1.1) is measured on a nominal
scale. On the other hand in the case of consumers’ expenditure the index set (1.2) is mea-
sured on the interval scale. This is because the time dimension does not have a natural
origin (zero is by convention) and in statistical analysis the index set (1.2) is often
replaced by a set of the form T:5{1,2, …, T}. We note that the time series/cross-section
categorization is exclusively based on measurement scale of the index set. The index set
of time series is of interval scale and that of cross-section of nominal scale. There are
also cases where the index set can be of a ratio or an ordinal scale. For example, there are
data produced by a seismograph with a continuous index set T,R1.

The nature of the index set plays an important role in empirical modeling as will be
seen in the sequel. In view of the fact that in addition to the discrete/continuous
dichotomy we have four different measurement scales for the range of values of the vari-
able itself and another four for the index set, a bewildering variety of data types can be
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defined. Our concern is with those types which affect the kind of statistical methods that
can be applied to the data in question. A cursory look at the applied econometrics litera-
ture reveals that variables from very different measurement scales are involved in the
same regression equation (see chapter 7), rendering some of these results suspect. As
argued in chapter 3, the concepts of mean, variance and covariance (the raw materials of
regression) make no sense for nominal or even ordinal variables.

1.6.5 Cross-section versus time series, is that the question?

In conclusion it is important to return to the traditional cross-section/time series taxon-
omy to warn the reader against adopting aphorisms of the form dependence or/and het-
erogeneity are irrelevant for cross-section data. What is important for considering
dependence or/and heterogeneity is not whether the data are cross-section or time series
but whether the data are ordered or not. It is true that for time series data there is a
natural ordering (time) but that does not mean that cross-section data do not have
natural orderings such as spatial or some other dimension of interest. Once an ordering
is adopted both notions of dependence and heterogeneity become as relevant in cross-
section as they are for time series.

Example
Consider the case of the data given in the table 1.6. The data refer to the test scores of a
class taking a multiple choice exam on Principles of Economics in 1992 and are reported
according to the alphabetical order of the students’ names. The data are plotted in figure
1.9 with the scores measured on the vertical axis and the students in alphabetical order
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on the horizontal axis. This ordering does not seem very interesting because there are no
reasons to believe that there is a connection between scores and the alphabetical order of
the students’ names; just to be on the safe side one could assess this conjecture by com-
paring this t-plot with that shown in figure 1.1. On the other hand, ordering the observa-
tions according to the sitting arrangement during the exam, as shown in figure 1.10,
seems to be more interesting in the sense that it might yield some interesting information.
Indeed, looking at figure 1.10, we can see a rather different graphical display. The ups
and downs of the latter graph are a bit more orderly than those of figure 1.9; they exhibit
some sort of cyclical behavior. As explained in chapter 5, this pattern of non-identical
cycles reveals that the data exhibit some form of positive dependence over the exam-
sitting ordering. In plain English this means that there was a lot of cheating taking place
in the exam room during the examination! As a result of the statistical analysis of the
data as ordered in figure 1.10 (see chapters 5 and 15) that was the last multiple choice
exam the author has administered.

Table 1.6. Data on Principles of Economics exam scores

298.0 43.0 77.0 51.0 93.0 85.0 76.0 56.0 59.0 62.0
267.0 79.0 66.0 98.0 57.0 80.0 73.0 68.0 71.0 74.0
283.0 75.0 70.0 76.0 56.0 84.0 80.0 53.0 70.0 67.0
100.0 78.0 65.0 77.0 88.0 81.0 66.0 72.0 65.0 58.0
245.0 63.0 57.0 87.0 51.0 40.0 70.0 56.0 75.0 92.0
273.0 59.0 81.0 85.0 62.0 93.0 84.0 68.0 76.0 62.0
265.0 84.0 59.0 60.0 76.0 81.0 69.0 95.0 66.0 87.0
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The moral of the story is that although there is no natural ordering for cross-section
data, there can be many interesting dimensions with respect to which they can be
ordered. The tenth recommendation in empirical modeling is:

10 Classifications of data, by themselves, do not determine the form and probabilistic
structure of the appropriate statistical model.

As argued below, statistical models take into consideration a variety of different dimen-
sions and features of the data. Classifying models according to the classification of data
based on only one such dimension is myopic.

1.6.6 Limitations of economic data

In relation with the limitations of economic data we will consider two important issues:

(i) their accuracy and
(ii) their nature.

An important milestone in using economic data for studying economic phenomena
was the publication of a book by Morgenstern (1963) entitled On the accuracy of eco-
nomic observations, first published in 1950. In this book the author disputed the accuracy
of published economic data and questioned the appropriateness of such data for the
purposes used. This book was influential in forming the practitioners’ attitude toward
economic data as described below by Griliches (1984, both quotes at p. 1466):

Econometricians have an ambivalent attitude towards economic data. At one level, the
“data” are the world that we want to explain, the basic facts that economists purport to eluci-
date. At the other level, they are the source of all our trouble. Their imperfection makes our
job difficult and often impossible. Many a question remains unresolved because of “multi-
collinearity” or other sins of the data…

Griliches’ view of the situation is that econometricians should not complain about the
quality of their data because it is exactly this so-and-so quality that justifies their legiti-
macy:

If the data were perfect, collected from well designed randomized experiments, there would
be hardly room for a separate field of econometrics …

Although this is clearly an extreme viewpoint there is some truth in it in so far as the
available data in econometrics are rarely collected from well designed randomized
experiments. Hence, the need for different statistical techniques and procedures arises
because of the nature of the available data rather than their bad quality. The primary
limitation of the available economic data arises from the fact that there is a sizeable gap
between theory models and the available data. Economic theory, via the ceteris paribus
clause, assumes a nearly isolated system but the observed data are the result of an on-
going multidimensional process with numerous influencing factors beyond the control
of the modeler (see Spanos, 1956).

The accuracy of economic data has improved substantially since Morgenstern (1963)
and in some sectors, such as the financial, the data are often very accurate. Time series on

28 An introduction to empirical modeling



exchange rates and stock prices are as accurate as economic data can get. In this book we
do not subscribe to the view that when the data analysis does not give rise to the expected
results (based on a certain preconceived idea), the quality of the data is to blame. This is
the same as a bad carpenter blaming his tools.

In cases where the accuracy of the data is indeed problematical, the modeler should
keep in mind that no statistical procedure can extract information from observed data
when it is not there in the first place. The eleventh recommendation in empirical model-
ing is:

11 No statistical argument, however sophisticated, can salvage bad quality observed
data.

In what follows we assume that the modeler has checked the observed data and
deemed them accurate enough to be considered reliable for statistical inference purposes.
As a rule, we do not consider bad inference results (judged against some a priori con-
ceived prejudice) as symptomatic of bad quality data. Many a time the quality of the
data is used as an excuse for the modeler’s ascetic knowledge of the nature of the
observed data and the shallow-mindedness often displayed in relating a theoretical
model to the observed data in question (see Spanos (1995b)). Hence, the last
recommendation in empirical modeling is:

12 Familiarize yourself thoroughly with the nature and the accuracy of your data.

This will make the modeler aware of what questions can and cannot be posed to a partic-
ular data set.

In conclusion, the author has no delusions with regard to the acceptability of the
above recommendations. At this stage, the only status claimed for these recommenda-
tions is as the author’s prejudices in empirical modeling. As mentioned in the Preface, the
discussion in the rest of this book purports to transform these prejudices into theses sup-
ported by convincing arguments.

1.7 Looking ahead

The main objective of the next three chapters (2–4) is to motivate and build the quintes-
sential form of a statistical model which we call a simple statistical model. The motiva-
tion is provided by presenting the latter as a formalization of a simple stochastic
phenomenon we generically call a random experiment. The formalization introduces the
necessary probabilistic concepts which are then blended together in order to build the
generic form of a simple statistical model. The interplay between chance regularity pat-
terns and the probabilistic concepts defining a simple statistical model is brought out in
chapter 5 using a variety of graphical techniques. The primary objective of chapter 6 is
to extend the simple statistical model in directions which enable the modeler to capture
several forms of dependence, including the ones exhibited in the exchange rate data in
figure 1.4. Chapter 7 continues the theme of chapter 6 with a view to showing that the
key to modeling dependence in observational data is the notion of conditioning. This
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leads naturally to regression and related models. Extending the simple statistical model
in directions which enable the modeler to capture several forms of dependence and het-
erogeneity is completed in chapter 8. In a nutshell, the basic objective of chapters 2–8 is
to introduce the necessary probability theory framework in the context of which such
probabilistic concepts can be defined and related to observable patterns exhibited by
observations from stochastic phenomena.

1.8 Exercises

21 How do we decide which economic phenomena of interest are amenable to empir-
ical modeling?

22 Explain intuitively the notion of chance regularity.

23 Explain briefly the connection between chance regularity patterns and probability
theory concepts.

24 Explain briefly the connection between chance regularity patterns and statistical models.

25 Explain the connection between a histogram and a probability distribution using de
Mere’s paradox.

26 Explain why it is important that the statistical information is summarized exclu-
sively in terms of probabilistic concepts.

27 Under what circumstances can the modeler claim that the observed data constitute
unprejudiced evidence in assessing the empirical adequacy of a theory?

28 Explain the notion of statistical adequacy and discuss its importance for statistical
inference.

29 “Statistical inference is a hybrid of a deductive and an inductive procedure.”
Discuss.

10 Compare and contrast the different measurement scales for observed data.

11 Give four examples of variables measured on each of the different scales, beyond
the ones given in the discussion above.

12 Why do we care about measurement scales in empirical modeling?

13 Beyond the measurement scales what features of the observed data are of interest
from the empirical modeling viewpoint?

14 Compare and contrast time-series, cross-section, and panel data.

15 Explain how the different features of observed data can be formalized in the context
of expressing a data series in the form of:

{xk, xk [RX, k[N}.

Hint: explain the role and significance of the mathematical structure of the sets (RX,N) .

16 “In modeling cross-section data one cannot talk about dependence.” Discuss.
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2 Probability theory: a
modeling framework

2.1 Introduction

2.1.1 Primary aim

The primary objective of this and the next several chapters is to introduce probability
theory not as part of pure mathematics but as a mathematical framework for modeling
certain observable phenomena which we call stochastic: phenomena that exhibit chance
regularity (see chapter 1). Center stage in this modeling framework is given to the notion
of a statistical model. This concept is particularly crucial in modeling observational
(non-experimental) data. The approach adopted in this book is that the mathematical
concepts underlying the notion of a statistical model are motivated by formalizing a
generic simple stochastic phenomenon we call a random experiment. An example of such
a phenomenon is that of “counting the number of calls arriving in a telephone exchange,
over a certain period of time.” The formalization (mathematization) of this generic sto-
chastic phenomenon will motivate the basic constituent elements that underlie the
notion of a statistical model and provide the foundation for a broader framework in the
context of which empirical modeling takes place.

2.1.2 Why do we care?

The first question we need to consider before we set out on the long journey to explore
the theory of probability as a modeling framework is:

Why do we care about probability theory?

The answer in a nutshell is that it provides both the foundation and the frame of refer-
ence for data modeling and statistical inference. Indeed, what distinguishes statistical
inference proper from descriptive statistics is the fact that the former takes place in the
context of the mathematical framework we call probability theory.

In the context of descriptive statistics the modeler summarizes and exhibits the impor-
tant features of a particular data set in a readily comprehensible form. This usually
involves the presentation of data in tables, graphs, charts, and histograms, as well as the
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computation of summary numerical values, such as measures of central tendency and
dispersion. Descriptive statistics, however, has one very crucial limitation:

The conclusions of the analysis cannot be extended beyond the data in hand.

Any conclusions beyond these data are without any formal justification. In contrast, sta-
tistical inference proper has a built in inductive argument which enables the modeler to
draw inferences and establish generalizations and claims about future observations
(observations beyond the observed data set) on the basis of the observed data in hand.
The modus operandi of this built-in inductive argument is the notion of a statistical
model itself. To be more precise, in statistical inference:

the observed data are viewed as a particular realization of a stochastic mecha-
nism as specified by the statistical model postulated a priori.

In other words, the modeler’s objective is to model the stochastic mechanism that gave
rise to the data and not the data themselves; in contrast, the objective of descriptive sta-
tistics is to describe the data themselves. The observed data are viewed in a broader
framework defined by the statistical model and this in turn enables the modeler to draw
inferences about the mechanism underlying the observed data, not just the data in hand.
The concept of a statistical model and its adornments are formulated within the
mathematical framework of probability theory.

2.1.3 A bird’s eye view of the chapter

In section 2 we introduce the notion of a simple statistical model at an informal and intu-
itive level, as a prelude to the more formal treatment undertaken in the rest of this and
the next chapter. In many ways we jump ahead to chapter 4 where the formal discussion
will culminate with the formulation of the notion of a simple statistical model. This is to
help the less mathematically inclined students to come to grips with the main ideas at the
outset and make the discussion that follows more focused for those who prefer a more
formal and complete discussion. In section 3 we introduce the reader to probability
theory from the viewpoint of statistical modeling. Instead of commencing the discussion
with the primitive notions and the relevant axioms, we proceed, in section 4, to motivate
both by formalizing a simple generic stochastic phenomenon we call a random experi-
ment defined in terms of three conditions. The viewing angle is not that of a mathemati-
cian but that of a modeler. In section 5 we proceed to formalize the first of these
conditions in the form of the outcomes set. In section 6, the formalization of the second
condition gives rise to two mathematical concepts: the event space and the probability set
function. The formalization of the third condition defining a generic random experi-
ment, takes place in section 7 giving rise to a simple sampling space of random trials. In
section 8 the various concepts introduced in sections 5–7 are collected together to define
the concept of a statistical space.
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2.2 Simple statistical model: a preliminary view

2.2.1 Main objective

As mentioned above, the notion of a statistical model takes center stage in the
mathematical framework for modeling stochastic phenomena. In this section we attempt
an informal discussion of the concept of a simple statistical model at an intuitive level
with a healthy dose of handwaving. The main objective of this preliminary discussion is
twofold. Firstly, for the mathematically weak students, the discussion, although incom-
plete, will provide an adequate description of the primary concept of statistical model-
ing. Secondly, this preliminary discussion will help the reader keep an eye on the forest,
and not get distracted by the trees, as the formal argument of the next few sections
unfolds. We note at the outset that when this formal argument unfolds completely in
chapter 4, it will be shown that a simple statistical model can be viewed as a
mathematization of the notion of a generic random experiment.

2.2.2 The basic structure of a simple statistical model

The simple statistical model, first aluded to by Fisher (1922), has two interrelated compo-
nents:

[i] Probability model: F5{f(x;u), u[Q, x[RX},
[ii] Sampling model: X:5(X1, X2, …, Xn) is a random sample.

The probability model specifies a family of densities (f(x;u), u[Q), defined over the
range of values (RX) of the random variable X; one density function for each value of the
parameter u, as the latter varies over its range of values Q: the parameter space. As we can
see, when defining the concept of a probability model we need to introduce several other
concepts, each one of which will require several pages of formal discussion to be
explained. Indeed, the remaining sections in this and the next chapter deal with all these
concepts. The purpose of the present section is to provide a less formal but intuitive
explanation for some of these concepts as a prelude to the discussion that follows.

T  . The simple statistical model as specified above is often called paramet-
ric because it is defined in terms of the parameter u.

The most effective way to visualize the notion of a probability model is in terms of the
diagram in figure 2.1.

This diagram represents several members of a particular family of densities known as
the one parameter Gamma family and takes the explicit form:

F5 f(x;u)5 exp {2x}, u[R1, x[R1 . (2.1)

N that the particular formula is of no intrinsic interest at this stage. What is impor-
tant for the discussion in this section is to use this example in order to get some idea as to

6xu21
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what types of things lie behind the various symbols used in the generic case. For instance,
the parameter space Q and the range of values RX of the random variable X, are the pos-
itive real line R1:5(0,`), i.e., Q:5R1and RX:5R1. Each curve in figure 2.1 represents
the graph of one density function (varying over a subset of the range of values of the
random variable X: (0,14],R1) for a specific value of the parameter u. In figure 2.1 we
can see five such curves for the values: u51,2,3,5,8; the latter being a small subset of the
parameter space R1. In other words, the graphs of the density functions shown in figure
2.1 represent a small subset of the set of densities in (2.1). This is, however, a minor
detail. Figure 2.1 illustrates the notion of a probability model by helping us visualize
several densities indexed by the parameter u.

Let us now briefly discuss the various concepts invoked in the above illustration,
beginning with the notion of a random variable.

2.2.3 The notion of a random variable: a simplistic view

The notion of a random variable constitutes one of the most important concepts in the
theory of probability. For a proper understanding of the concept the reader is required
to read through to chapter 3. In order to come to grips with the notion at an intuitive
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level, however, let us consider the simplistic view of the notion of a random variable, first
introduced by Chebyshev (1821–1884) in the middle of the 19th century. He defined a
random variable as:

a real variable which can assume different values with different probabilities.

This definition comes close to the spirit of the modern concept but it leaves a lot to be
desired from the mathematical viewpoint.

As shown in chapter 3, a random variable is a function from a set of outcomes to the
real line; attaching numbers to outcomes! The need to define such a function arises
because the outcomes of certain stochastic phenomena do not always come in the form
of numbers but the data do. The simplistic view of a random variable, in an attempt to
simplify the concept, suppresses the set of outcomes and identifies the notion of a
random variable with its range of values RX; hence the term variable:

Example
In the case of the experiment of casting two dice and looking at the uppermost faces, dis-
cussed in chapter 1, the outcomes come in the form of combinations of die faces (not
numbers!), all 36 such combinations, denoted by, say, {s1, s2, …, s36}. We bypassed the
many faces problem by proceeding directly to counting the total number of dots appear-
ing on the two faces. This, in a sense, amounts to defining a random variable:

X :a function from the set of outcomes to the subset of the real line RX:5{2, 3, …, 12}:

X(.) :{s1, s2, …, s36}→{2, 3, …, 12}.

However, this is not the only random variable we could have defined. Another such func-
tion might be to map the odd sums to 0 and the even sums to 1, i.e.

Y(.) :{s1, s2, …, s36}→{0,1}.

This example suggests that suppressing the outcomes set and identifying the random
variable with its range of values can sometimes be misleading. Be that as it may, let us
take this interpretation at face value and proceed to consider the other important dimen-
sion of the simplistic view of a random variable: its randomness. In an attempt to dis-
tinguish a random variable X from an ordinary mathematical variable, the simplistic
view proceeds to associate probabilities with the range of its values RX. The simplest way
to explain this dimension is to return to the above example.

Example
In the case of the experiment of casting two dice and counting the dots at the uppermost
faces, we defined two random variables, which the simplistic view identifies with their
respective range of values:

X with {2, 3, …, 12} and Y with {0,1}.

In the case of the random variable X the association of its values and the probabilities, as
shown in chapter 1, takes the form:
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x 2 3 4 5 6 7 8 9 10 11 12

f(x) (2.2)

After some thought, the relation between the values of the random variable Y and the
associated probabilities takes the form:

y 0 1

f(y) (2.3)

It is important to note that the density function is defined by:

P(X5x)5f(x), for all x[RX, (2.4)

and satisfies the properties:

(a) fx(x)$0, for all x[RX, (b) xi [ RX
fx(xi)51.

The last property just says that adding up the probabilities for all values of the random
variable will give us one; verify this in the case of the above examples. The density func-
tion can be visualized as distributing a unit of mass (probability) over the range of values
of X.

Continuous random variables
The above example involves two random variables which comply perfectly with
Chebyshev’s simplistic definition. With each value of the random variable we associate a
probability. This is because both random variables are discrete: their range of values is
countable. On the other hand, when a random variable takes values over an interval, i.e.,
its range of values is uncountable, things are not as simple. Attaching probabilities to par-
ticular values does not work (see chapter 3) and instead, we associate probabilities with
intervals which belong to this range of values. Instead of (2.4), the density function for
continuous random variables is defined over intervals as follows:

P(x#X,x1dx)5f(x) ·dx, for all x[RX,

and satisfies the properties:

(a) fx(x)$0, for all x[RX, (b) 
x [ RX

fx(x) ·dx51.

It is important to note that the density function for continuous random variables takes
values in the interval [0,`) and thus cannot be interpreted as probabilities. In contrast,
the density function for discrete random variables takes values in the interval [0,1].

2.2.4 Parametric density functions

The densities of the random variables X and Y associated with the casting of the two dice
experiment, introduced above, involve no unknown parameters because the probabilities
are known. This has been the result of implicitly assuming that the dice are symmetric
and each side arises with the same probability. In the case where it is known that the dice
are loaded, the above densities will change in the sense that they will now involve some
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unknown parameters. For example, assuming that P(Y51)5u (an unknown parame-
ter), 0#u#1, the density function of Y now takes the form:

y 0 1

f(y;u) 1–u u (2.5)

This can be expressed in the more compact form of the formula:

f(y;u)5uy(1–u)1–y, u[ [0,1], y50,1,

known as the Bernoulli density, with Q:5 [0,1] and Ry5{0,1}.
The notion of a parametric distribution (density) goes back to the 18th century with

Bernoulli proposing the Binomial distribution with density function:

f(x;u)5 ux(1–u)n2x, u[ [0,1], x50,1, n51,2, …,

where 5 , n!5n · (n21)·(n22) ··· (3) · (2) · (1). In the early 19th century de Moivre
and Laplace introduced the Normal distribution whose density takes the form:

f(x;u)5 exp 2 (x2m)2 , u:5(m,s2)[R3R1, x[R.

The real interest in parametric densities, however, began with Pearson (1895) who pro-
posed a family of distributions known today as the Pearson family. This family is gener-
ated as a solution of a differential equation:

5 f(x) , x[RX. (2.6)

Depending on the values taken by the parameters (u0,u1,u2,u3), this equation can generate
several well-known density functions such as the Student’s t, the Laplace, the Pareto, the
Gamma, and the Beta (see appendix A), in addition to the Normal. A discrete version of
the above differential equation can be used to generate several well-known distributions
such as the binomial, the Negative Binomial, the Hypergeometric and the Poisson (see
appendix A). For a more extensive discussion of the Pearson family see chapter 4.

The parameter(s) u
As can be seen in figure 2.1, the parameters u are related to features of the density func-
tion such as the shape and the location. As the values of the parameters u change over
their range of values Q, the parameter space, a whole collection of such densities is
created. As shown in the next chapter, in order to understand and use these parameters
more effectively we relate them to the so-called moments of the distribution. At this stage
it is sufficient to remember that the parameters u play a very important role in the context
of empirical modeling and statistical inference.

The notion of a simple statistical model and its first component, a parametric family
of densities, will be discussed at length in chapter 3 and thus no further discussion will be
given in this section; see appendix A for a more complete list of parametric densities.

3 (x 2 u0)
u1 1 u2x 1 u3x24

df(x)
dx
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2.2.5 A random sample: a preliminary view

What makes the generic statistical model specified in section 2.2.2, simple is the form of
the sampling model, the random sample assumption. This assumption involves two inter-
related notions known as Independence and Identical Distribution. In order to explain
these notions adequately we will need some of the concepts to be introduced in the next
few sections. However, these notions can be explained intuitively as a prelude to the more
formal discussion that follows:

Independence The random variables (X1, X2, …, Xn) are said to be independent if the
occurrence of any one, say Xi, does not influence and is not influenced by the occur-
rence of any other random variable in the set, say Xj, for iÞ j, i,j51, 2, …, n.
Identical Distribution The independent random variables (X1, X2, …, Xn) are said to
be identically distributed if their density functions are identical in the sense:

f(x1;u)5 f(x2;u)5 ···5f(xn;u).

For observational data the validity of the IID assumptions can often be assessed using a
battery of graphical techniques discussed in chapters 5–6. In these chapters we will
discuss the connection between the probabilistic notions making a simple statistical
model (such as Independence and Identical Distribution) and several graphical displays
of real data. This discussion is particularly relevant for modeling observational data.

For a better understanding of the notion of a random sample, it is worth considering
the question of ensuring the appropriateness of IID assumptions in the case of sample
survey data using a simple Bernoulli model. Before considering this question, it is impor-
tant to emphasize that the appropriateness of the IID assumptions in experimental data,
in contrast to observational data, is a matter of good design.

Example
Consider the problem of designing a sample survey in order to evaluate the voting inten-
tions of the US electorate in the next presidential election. Assuming that there are only
two candidates, the Democratic and Republican nominees, we can define the random
variable:

X(Democratic nominee)51, X(Republican nominee)50,

with the associated probabilities:

P(X51)5u, P(X50)512u.

This enables us to use the Bernoulli distribution and the question which arises is how to
design a sample survey, of size n51000, so as to ensure that the random sample of the
Bernoulli model as specified above is appropriate. In order to develop some intuition in
relation to the notion of a random sample, let us consider a number of ways to collect
sample surveys which do not constitute a random sample:

(a) Picking “at random” 1000 subscribers from the local telephone directory and ask
them to register their voting intentions.
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(b) Sending a team of students to the local shopping center to ask the first 1000 people
entering the mall.

(c) Driving through all 51 states, stop at the largest shopping mall of the state capital
and ask as many voters as the ratio of the voters of that state, to the total voting
population allows.

In all three cases our action will not give rise to a random sample because:

(i) it does not give every potential voter the same likelihood of being asked; not every-
body has a phone or goes to the mall, and

(ii) the local nature of the selection in cases (a) and (b) excludes the majority of the
voting population; this induces some heterogeneity into the sample. The last feature
might even induce some dependence in the sample if there is some local issue that
renders the local population pro-Democrat or pro-Republican.

Theoretically, a way to design a random sample in this case is to allocate a number to
every voter, irrespective of location, and then let a computer draw at random 1000
numbers. Then proceed to ask the voters corresponding to these numbers for their voting
intentions. This is often impossible to achieve for a number of reasons beyond the scope
of the present discussion; for further discussion see chapter 11.

In concluding this section it is interesting to  that historically the assumption of a
random sample has been implicitly used in empirical modeling throughout the 18th,
19th and the early 20th centuries. The territory of Dependence and/or non-Identical
Distributions was largely uncharted until the first quarter of the 20th century.

2.2.6 Jumping ahead?

At this stage, the mathematically fainthearted readers are advised to proceed to section
3.4.2 where the discussion relating to the notion of a parametric family of densities con-
tinues. The brave are strongly advised to toil through the next several sections in order to
get a more complete and coherent picture of the probabilistic foundations.

2.3 Probability theory: an introduction

2.3.1 Outlining the early milestones of probability theory

In an attempt to give the reader some idea as to the origins and the development of prob-
ability theory, we put forward an outline map, charting the historical development of
probability in an attempt to semaphore the most important milestones over the last four
centuries; for a more detailed account see Stigler (1986), Porter (1986), Hacking (1975),
Hald (1990) and Maistrov (1974).

Glimpses of probabilistic ideas relating to odds in dice and card games can be traced
back to the middle of the 16th century to Gerlamo Cardano (1501–1576) in his book
The book on dice games, published posthumously in 1663. Cardano calculated the odds
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in dice and card games of chance in the context of discussing fair bets and introduced
the idea of the number of equally possible outcomes and the proportion relating to an
event. Apart from certain isolated instances of combinatorial calculations, nothing
very significant happened for the next century or so until the well-known series of
letters between Pierre de Fermat (1601–1665) and Blaise Pascal (1623–1662) in relation
to probabilities associated with games of chance. The origins of probability theory as
providing systematic ways for solving problems in games of chance appeared in these
letters. Pascal and Fermat are credited with the first correct answer to an old problem
of dividing the stakes when a fair game is stopped before either player wins. The next
important milestone was the book How to reason in dice games by Christiaan Huyghens
(1629–1695) which proved to be the first widely read textbook on probability for games
of chance. Huyghens introduced the fundamental notion of mathematical expectation
and the basic rules of addition and multiplication of probabilities. The next influential
book on probability entitled The art of conjecturing was written by James Bernoulli
(1654–1705) but published posthumously in 1713 by his nephew Nicolas. This was a
turning point for probability theory because it went beyond the probabilities associ-
ated with games of chance and proved the first of the so-called limit theorems known
today as the Law of Large Numbers as a justification for using observed frequencies as
probabilities. This thread was taken up by Abraham de Moivre (1667–1754) who
proved the second limit theorem, known today as the Central Limit theorem, in his
book The doctrine of chances published in 1718. Important notions such as inde-
pendence and conditional probabilities are formalized for the first time by de Moivre.

Pierre Simon Laplace (1749–1827) in his book The analytical theory of probability,
published in 1812, drew together and extended the previous results on probabilities asso-
ciated with games of chance and the limit theorems and related these results to the
development of methods for reconciling observations. Laplace and Carl Frederic Gauss
(1777–1855) founded the tradition known as the theory of errors which linked probabil-
ity theory to the modeling of observed data by operationalizing the Central Limit
theorem effect and introducing the method of least squares. This was achieved by
viewing errors of observations as the cumulative effect of numerous independent errors.
The reign of the Normal distribution began with Laplace and Gauss (hence Gaussian
distribution) and continues unabated to this day. Laplace’s synthesis of probability
theory and the reconciliation of observations provided the foundation of mathematical
statistics: analysis of data by fitting models to observations.

During the 19th century probability theory was identified with limit theorems and the
dividing line between the probability of an event and its frequency of realization in a
sequence of trials was nebulous. As a result of this, probability theory was introduced in
diverse fields such as jurisprudence and social physics as well as in the analysis of real life
data on population, mortality, and insurance risks.

The foundations of probability provided by games of chance proved wholly inade-
quate for the new applications of probability and the search for new foundations began
with Lvovich Pafnufty Chebyshev (1821–1884) and was extended by his students Andrei
Andreiwich Markov (1856–1922) and Alexander Michailovich Lyapunov (1857–1918).
Chebyshev introduced the notion of a random variable and opened several new research
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paths with just four publications. His students Markov and Lyapunov met the challenge
admirably and all three had a profound effect on probability theory. Their lasting effect is
better seen in the limit theorems where they developed revolutionary new methods for
studying the asymptotic behavior of sums of independent random variables. The
modern mathematical foundations of probability theory were provided by Andrei
Nikolaevich Kolmogorov (1903–1989) in his book Foundations of probability theory first
published in 1933. This book established probability theory as part of mathematics
proper and provided the understructure for modern statistical inference which had been
founded a decade earlier by Ronald A. Fisher (1890–1963).

It is interesting to note that statistical inference and probability theory developed
largely independently of each other during the first half of the 20th century; there is not
a single reference to Kolmogorov’s work in Fisher’s three books (1925,1935,1956)! The
first serious attempt to fuse the two lines of thought should be credited to Harald
Cramer (1946); see also Cramer (1976). He begins his preface by stating:

During the last 25 years, statistical science has made great progress, thanks to the brilliant
schools of British and American statisticians, among whom the name Professor R. A. Fisher
should be mentioned in the foremost place. During the same time, largely owing to the work
of French and Russian mathematicians, the classical calculus of probability has developed
into a purely mathematical theory satisfying modern standards with respect to rigor. The
purpose of the present work is to join these two lines of development in an exposition of the
mathematical theory of modern statistical methods, in so far as these are based on the
concept of probability… (Cramer (1946), p. vii)

Since then, very few books in statistical inference make a purposeful attempt to bridge
the gap between probability theory and data analysis using inference procedures. The
present book attempts to follow in Cramer’s footsteps by making a concerted effort to
propose a bridge between the theoretical construct of a statistical model and the
observed data.

2.3.2 A pragmatic approach to probability theory

Intuitively we can think of probability as an attempt to tame chance regularity. The
failure to provide a satisfactory intrinsic definition of probability is mainly due to our
failure to come to grips with the notion of chance regularity in a generally acceptable
way. However, for most purposes the axiomatic (mathematical) definition, as given in
section 5 below, is adequate. This definition amounts to saying that probability is what
we define it to be via the chosen properties (axioms)!

The well-known axiomatic approach to a branch of mathematics, going back to Euclid,
specifies the basic axioms and primitive objects and then develops the theory (theorems,
lemmas, etc.) using deductive logic. The approach adopted in this chapter (see also
Spanos (1986)) is somewhat more pragmatic in the sense that the axioms and basic con-
cepts will be motivated by striving to formalize the regularity patterns exhibited by
observable chance mechanisms of the type we seek to model in the context of probability
theory. In particular, the basic concepts will be introduced initially as a formalization of a
simple chance mechanism we call a random experiment. This approach has certain
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advantages for non-mathematicians over the usual axiomatic approach.
First, it enables the reader to keep an eye on the forest and not get distracted by the

beauty or the ugliness (beauty is in the eye of the beholder) of the trees. It is imperative
for the student not to lose sight of the main objective of probability theory, which is to
provide a framework in the context of which stochastic phenomena can be modeled.

Second, motivating the mathematical concepts using a particular chance mechanism
enables us to provide a manifest direct link between observable phenomena and abstract
mathematical concepts throughout. This enhances the intuition for the mathematical
concepts and gives an idea why we need these concepts.

Third, historically the development of many branches of mathematics follows the
pragmatic approach and the axiomatization follows after the branch in question has
reached a certain maturity. Probability theory existed for many centuries before it was
axiomatized in 1933.

Fourth, it enables us to begin with a somewhat simplified mathematical structure, by
formalizing a simple enough chance mechanism. We can then proceed to extend the
mathematical apparatus to broaden its intended scope and encompass more realistic
chance mechanisms of the type we encounter in econometrics.

2.3.3 A word of caution

Due to the simplicity of the random experiment, its formalization gives rise to a statis-
tical model which is not adequate for modeling a number of stochastic phenomena in
econometrics. The main objective of chapters 6–8 is to extend the domain of
applicability in order to enable us to model more realistic observable phenomena of
interest, such as the behavior of inflation, interest rates, and stock returns. The proba-
bility concepts introduced in these chapters will allow us to enrich the structure of a
simple statistical model in order to accommodate features of observational as opposed
to experimental data, rendering them suitable for modeling economic phenomena such
as the ones mentioned above. Our eagerness to extend the intended scope of a simple
statistical model, in a certain sense, constitutes the main difference between the present
book and other books intended to provide the probabilistic foundations for statistical
inference.

2.4 Random experiments

We remind the reader again that the purpose of introducing the notion of a random
experiment is twofold. First, to give immediately an idea as to the nature of the stochas-
tic phenomena we have in mind using a particularly simple example. Second, to bring out
the essential features of such simple phenomena and then formalize them in a precise
mathematical form. This will enable us to motivate the concepts of probability theory
using intuitive notions as they relate to simple observable chance mechanisms. The
notion of a random experiment is given a mathematical formulation in the form of a
statistical model in the next two chapters. In the present chapter we present the first more
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abstract form of the formalization, known as the statistical space. The discussion that
follows reverses the order followed by Kolmogorov (1933) in the sense that we begin with
the phenomena of interest and proceed to formulate the axioms. The abstract notion of
a statistical space provides the mathematical foundations of probability theory, and its
less abstract form, that of a statistical model, provides an operational form useful for
modeling purposes. The concept of a statistical space is formulated in this chapter and
that of the statistical model in the next two chapters.

2.4.1 The notion of a random experiment

We note that the notion of a random experiment can be traced back to Kolmogorov’s
monograph entitled Foundations of the theory of probability, first published in 1933 in
German and generally acknowledged as the book that founded modern probability
theory (see pages 3–4).

A random experiment %, is defined as a chance mechanism which satisfies the following
conditions:

[a] all possible distinct outcomes are known a priori,
[b] in any particular trial the outcome is not known a priori but there exists a percept-

ible regularity of occurrence associated with these outcomes, and
[c] it can be repeated under identical conditions.

Examples
[1] Toss a coin and note the outcome. Assuming that we can repeat the experiment

under identical conditions, this is a random experiment because the above condi-
tions are satisfied. The possible distinct outcomes are: {H,T}, where (H) and (T)
stand for “Heads” and “Tails,” respectively.

[2] Toss a coin twice and note the outcome. The possible distinct outcomes are:

{(HH), (HT), (TH), (TT)}.

[3] Toss a coin three times and note the outcome. The possible distinct outcomes are:

{(THH), (HHH), (HHT), (HTH), (TTT), (HTT), (THT), (TTH)}.

[4] Tossing a coin until the first “Heads” shows up. The possible distinct outcomes are:

{(H), (TH), (TTH), (TTTH), (TTTTH), (TTTTTH), …}.

[5] A document is transmitted repeatedly over a noisy channel until an error-free copy
arrives. Count the number of transmissions needed. This represents a more realistic
case of stochastic phenomena but it can be viewed as a random experiment since the
above conditions can be ensured in practice. The possible distinct outcomes include
all natural numbers:

N:5{1, 2, 3, …}
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[6] Count the number of calls arriving in a telephone exchange over a period of time.
The possible distinct outcomes include all integers from 0 to infinity:

N0:5{0, 1, 2, 3, …}.

[7] Measure the lifetime of a light bulb in a typical home environment. In theory
the possible distinct outcomes include any real number from zero to infinity:
[0,`).

Let us also mention an observable stochastic phenomenon which does not constitute a
random experiment.

[8] Observe the closing daily price of IBM shares on the New York stock exchange. The
conditions [a]–[b] of a random experiment are easily applicable. [a] The possible dis-
tinct outcomes are real numbers between zero and infinity: [0,`). [b] The closing
IBM share price on a particular day is not known a priori. Condition [c], however, is
inappropriate because the circumstances from one day to the next change and
today’s share prices are related to yesterday’s. Millions of people use this informa-
tion in an effort to “buy low” and “sell high” to make money.

2.4.2 A bird’s eye view of the argument

The formalization of the notion of a random experiment will occupy us for the next two
chapters. In the process of formalization several new concepts and ideas will be intro-
duced. The ultimate aim is to set up a mathematical framework for modeling economic
data which exhibit chance regularity. However, we begin with a simple case. In the discus-
sion that follows, we will often find ourselves digressing from the main story line in an
effort to do justice to the concepts introduced. Hence, it is of paramount importance for
the reader to keep one eye firmly on the forest and not get distracted by the trees. With
that in mind let us summarize the proposed formalization.

The first step will be to formalize condition [a], by defining the set of all possible dis-
tinct outcomes (S) (see section 3). In section 4 we take the second step which is concerned
with the formalization of condition [b], relating to the uncertainty of the particular
outcome in each trial. Even though at each trial the particular outcome is not known a
priori, we often have information as to which outcomes are more probable (they are
likely to occur more often) than others. This information will be formalized by attaching
probabilities to the set of outcomes defined in the first step. In these two steps we con-
struct what we call a probability space. It’s worth summarizing the construction of a
probability space to help the reader keep his/her eyes on the forest. We begin with a
collection (a set) S of what we call elementary events and then proceed to define another
collection F, made up of subsets of S we call events, so that F is closed under set union,
intersection and complementation. Probability is then defined as a non-negative func-
tion P(.) from F to the subset of the real line [0,1] ; assumed to satisfy P(S)51 and the
additivity property:

for A[F, B[F and A>B5Ø, then P(A<B)5P(A)1P(B).
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In the third step, taken in section 5, we will formalize condition [c]. The notion of
repeating the experiment under identical conditions will be formalized in the form of
random trials: a set of independent and identical trials.

The forest: the formalization of a random experiment into a simple statistical model is
the main objective of this and the next two chapters.

The trees: the introduction of numerous concepts which enable us to supplement the
simple statistical model with a view to setting up a mathematical framework for empiri-
cal modeling purposes.

2.5 Formalizing condition [a]: the outcomes set

2.5.1 The notion of a set

The first step in constructing a mathematical model for a random experiment is to
formalize the notion of all distinct outcomes. We do this by collecting them together and
defining a set. The notion of a set in the present context is used informally as a collection
of distinct objects which we call its elements.

Example
S5{♣ , ♦ , ♥ ,1} is a set with elements the card suits and the plus sign:

♣ [S: reads “♣ belongs to S.”

R :
(i) This is clearly not a mathematically satisfactory definition of the notion of a set,

because, in a certain sense, we replaced the term set with that of a collection. This is
why it is often called naive. It provides, however, some intuition as to what a set is.

(ii) The notion of membership is one of the fundamental primitive concepts of set
theory and we use the notation [ for the notion of being an element of a set and Ó
for its negation. The relation a[A means that a is one of the objects that make up
the set A.

(iii) It is important to note that the nature of the objects making up a set does not enter
the notion of set. Hence, naive definitions which require the elements of a set to be
of the same nature are simply non-sensical.

2.5.2 The outcomes set

A set S which includes all possible distinct outcomes of the experiment in question is
called an outcomes set.

T  : another more widely used name for the outcomes set is the term sample
space. We avoid this term because it is clearly a misnomer, it has nothing to do with the
notion of a sample as used later.

The notion of an outcomes set formalizes condition [a] of a random experiment %
using the idea of a set. This might seem like a trivial step but in fact it is the key to the
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whole formalization because it renders the power of set theory available for the formal-
ization of the rest of the conditions defining %. In particular, set theory will be instru-
mental in formalizing condition [b]. In set theoretic language the outcomes set S is the
so-called universal set: the set to which all objects we want to consider belong.

Examples
The outcomes sets for the random experiments [1]–[4] are:

S15{H,T},
S25{(HH), (HT), (TH), (TT)},
S35{(THH), (HHH), (HHT), (HTH), (TTT), (HTT), (THT), (TTH)},
S45{(H), (TH), (TTH), (TTTH), (TTTTH), (TTTTTH), …}

In order to utilize the notion of the outcomes set effectively, we need to introduce some
set theoretic notation which will be used extensively in this book. The way we defined a
set in the above examples was by listing its elements.

An alternative way to define a set is to use a property shared by all the elements of the
set. For example, the outcomes set for experiment [5] can be written as:

S55{x : x [ N:5{1,2,3, …}},

which reads “S5 is the set of all xs such that x belongs to N,” i.e., x is a natural number.
Similarly, the set of all real numbers can be written as:

R5{x : x a real number, 2`,x,`}.

Using this set we can write the outcomes set for experiment [7] as:

S75{x : x [ R, 0#x,`}.

N : a shorter notation for this set is [0,`). It is important to note that when a square
bracket is used, the adjacent element is included in the set, but when an ordinary bracket
is used it is excluded:

(i) the closed interval: [a,b]5{x :x [ R, a#x#b},
(ii) the open interval: (a,b) 5{x :x [ R, a,x,b},
(iii) the half-closed interval: (2`,a]5{x :x [ R, 2`,x#a}.

2.5.3 Special types of sets

In relation to the above examples, it is useful to make two distinctions. The first is the dis-
tinction between finite and infinite sets and the second is the further division of infinite
sets into countable and uncountable. A set A is said to be finite if it can be expressed in
the following form:

A5{a1, a2, …, an} for some integer n.

A set that is not finite is said to be infinite.

46 Probability theory: a modeling framework



Examples
(1) The set C5{♣ , ♦ , ♥ } is finite.

(2) The intervals [a,b], (a,b), (2`,x] define infinite sets of numbers.

(3) The most important infinite set in mathematics is the real line, defined by:
R5{x : x a real number, 2`,x,`}.

(4) The following sets are some of the most important infinite sets of numbers:
(i) natural numbers: N 5{1, 2, 3, …},

(ii) integers: Z 5{0,61,62,63, …},

(iii) rational numbers: Q 5 : m[Z and n[N ,

(iv) positive real numbers: R15{x :x[R, 0,x,`}.

Among the infinite sets we need to distinguish between the ones whose elements we can
arrange in a sequence and those whose elements are so many and so close together that
no such ordering is possible. For obvious reasons we call the former countable and the
latter uncountable. More formally, a set A is said to be countable if it is either finite or
infinite and each element of A can be matched with a distinct natural number, i.e., there
is a one-to-one matching of the elements of A with the elements of N.

Examples
(1) The set of even natural numbers is countable because we can define the following

one-to-one correspondence between Neven and N:

Neven:5{2 4 6 8 10 ··· 2n ···}
↕ ↕ ↕ ↕ ↕ ↕

evenN:5{1 2 3 4 25 ··· 2n ···}.

(2) The set of integers is a countable set because we can define the following one-to-one
correspondence:

Z:5 {··· 23 22 21 0 1 2 3 ···}
↕ ↕ ↕ ↕ ↕ ↕ ↕

N:5{···27 25 23 1 2 4 6 ···}.

(3) The set Q of rational numbers is a countable set. The one-to-one correspondence is
more complicated in this case and beyond the scope of this book (see Binmore
(1980)).

In view of the fact that between any two natural numbers, say [1,2], there is an infinity of
both rational and real numbers, intuition might suggest that the two sets Q and R have
roughly speaking the same number of elements. In this case intuition is wrong! The set of
real numbers is more numerous than the set of rational numbers (see Binmore (1980)):

:1:5 [number of elements of R] . :0:5 [number of elements Q]

6n
m5
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An infinite set whose number of elements (coordinality) is of the same magnitude as that
of R, is called uncountable.

Example
The sets R, [a,b], (a,b), (2`,x] are uncountable.

R : giving examples of real numbers which are not rational numbers (irrational
numbers) is not as straightforward as it might seem because we often use decimal
approximations of irrational numbers. The most famous irrational number is the well-
known ratio of the circumference to the diameter of a circle: p53.1415926535897...; the
three dots at the end of the last digit signify that the sequence would go on to infinity.
What distinguishes rational and irrational numbers, when expressed in decimal form, is
that in the case of rational numbers, when they have infinite decimal expansions, the
sequence of digits will eventually repeat itself but for an irrational number no discernible
pattern in the sequence exists; see chapter 10.

2.6 Formalizing condition [b]: events and probabilities

Having formalized condition [a] of random experiment (%) in the form of an outcomes
set, we can proceed to formalize the second condition:

[b] in any particular trial the outcome is not known a priori but there exists a percept-
ible regularity of occurrence associated with these outcomes.

This condition entails two dimensions which appear contradictory at first sight. The first
dimension is that individual outcomes are largely unpredictable but the second is that
there exists some knowledge about their occurrence. In tossing a coin twice we have no
idea which of the four outcomes will occur but we know that there exists some regularity
associated with these outcomes. The way we deal with both of these dimensions is to
formalize the perceptible regularity at the aggregate level. This formalization will
proceed in two steps. The first involves the formalization of the notion of events of inter-
est and the second takes the form of attaching probabilities to these events.

In this introduction we used a number of new notions which will be made more precise
in what follows. One of these notions is that of an event. Intuitively, an event is a state-
ment in relation to a random experiment for which the only thing that matters is its
occurrence value, i.e., whether in a particular trial it has occurred or not. So far the only
such statements we encountered are the elementary outcomes. For modeling purposes,
however, we need to broaden this set of statements to include not just elementary out-
comes but also combinations of them.

How do such events differ from elementary outcomes?

Example
In the context of the random experiment [2]: tossing a coin twice with the outcomes set
S2:5{(HH),(HT),(TH),(TT)} we might be interested in the following events:
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(a) A2at least one H: A5{(HH),(HT),(TH)}.
(b) B2 two of the same: B5{(HH),(TT)}.
(c) C2at least one T: C5{(HT),(TH),(TT)}.

In general, events are formed by combining elementary outcomes using set theoretic
operations and we say that an event A has occurred when any one of its elementary out-
comes occurs. In order to make this more precise we need to take a detour into set theo-
retic terrain.

2.6.1 A digression: set theoretic operations

Subsets
The concept of an event is formally defined using the notion of a subset. If A and S are
sets, we say that A is a subset of S and denote it by A,S if every element of A is also an
element of S. More formally,

A,S if for each a[A implies a[S.

Examples
(1) The set D15{♣ , ♥ } is said to be a subset of D5{♣ , ♦ , ♥ }, and denoted by D1,D,

because every element of D1 is also an element of D.

(2) The sets N, Z, Q, R1 introduced above are all subsets of R.

(3) In the case of the outcomes set S2:5{(HH),(HT),(TH),(TT)} there are four ele-
mentary outcomes. By combining these we can form events such as:

A5{(HH),(HT),(TH)}, B5{(HH),(TT)}, C5{(HH)}, D5{(HT),(TH)}.

More formally events are subsets of S formed by applying the following set theoretic
operations: union (<), intersection (>), and complementation (2) to elements of S.

Union
The union of A and B, denoted by A<B, is defined as follows:

A<B: the set of outcomes that are either in A or B (or both).

More formally:

A<B:5{x : x[A or x[B}.

Example
For the sets A5{(HH),(TT)} and B5{(TT),(TH)}:

AøB5{(HH),(TH),(TT)}.
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Intersection
The intersection of A and B, denoted by A>B, is defined as follows:

A>B: the set of outcomes that are in both A and B.

More formally:

A>B:5{x : x[A and x[B}.

Example
In the case of events A and B defined above:

A>B5{(TT)}.

Complementation
The complement of an event A, relative to the universal set S, denoted by , is defined as
follows:

: the set of outcomes in the universal set S which are not in A.

More formally:

:5{x : x[S and xÓA}.

The above three operations are illustrated in figure 2.2 using Venn diagrams. Note that
the rectangle in the Venn diagrams represents the outcomes set S.

Examples
(i) In the case of events A and B defined above: 5{(TT)}, 5{(TH),(HT)}. The

union of A and gives S i.e., A< 5S and their intersection yields the empty set,
i.e., A> 5{}:5Ø. Also, 5Ø and 5S.

(ii) For the sets A5{(HH),(HT),(TH)}, B5{(HH),(TT)}, C5{(HH)},
D5{(HT), (TH)}:

A>B5{(HH)}5C and B>D5Ø.

(iii) The complement of the set of rational numbers Q with respect to the set of real
numbers R:

:5{x :x[R and xÓQ}

is known as the infinite set of irrational numbers.

Using complementation we can define a duality result between unions and inter-
sections:

[1] ( )5 > .BAA<B

Q

ØSA
AA

BA

A

A

A
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Figure 2.2 (a) Venn diagram of A>B

A B

Figure 2.2 (b) Venn diagram of AøB

A B

Figure 2.2 (c) Venn diagram of A5S2A

AA

A B



Example
In the case of the sets A5{(HH),(HT)} and C5{(HH)} defined above, (A<C)5A and
thus: ( )5 5{(TT)}. On the other hand, 5{(HT),(TH),(TT)}. Hence, > 5

{(TT)}5( ).

[2] ( )5 < .

Example
In the case of the sets A and C defined above, (A>C)5C and thus ( )5 . On the
other hand, < 5{(HT),(TH),(TT)}5 .

For completeness we note that by combining the above basic operations with sets we
define two other operations often encountered in books on probability.

By combining the set operations of intersection and complementation we define the
difference between two sets as follows:

A2B5A> :5{x :x[A and xÓB}.

By combining all three set operations we can define the symmetric difference between two
sets as follows:

A▲B5(A> )< ( >B):5{x :x[A or x[B and xÓ(A>B)}.

Equality of sets
Two sets are equal if they have the same elements. We can make this more precise by
using the notion of a subset to define equality between two sets. In the case of two sets A
and B if:

A,B and B,A then A5B.

Example
For the sets A5{♦ ,♥ } and B5{♥ ,♦ }, we can state that A5B;  that the order of
the elements in a set is unimportant.

In concluding this subsection it is worth noting that all the above operations were defined
in terms of the primitive notion of membership ([) of a set.

2.6.2 Events
In set-theoretic language, an event is a subset of the outcomes set S; i.e.,

If A,S, A is an event.

In contrast, an elementary outcome s is an element of S, i.e.:

If s[S, s is an elementary outcome.

That is, an outcome is also an event but the converse is not necessarily true. In order to
distinguish between a subset and an element of a set consider the following example.

AB

B

CCA
CA>C

BAA>B

A<C
CACAA<C
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Example
Consider the sets D5{♣ ,♦ ,♥ } and C5{♣ ,♥ }. It is obviously true that:

C,D but CÓD.

On the other hand, in the case of the set: E5{(♣ ,♥ ),♦ } which has two elements (♣ ,♥ )
and ♦   C is an element of E:

C[E.

The crucial property of an event is whether or not it has occurred in a trial. We say that
A5{s1, s2, …, sk} has occurred if one of its elements (outcomes) s1, s2, …, sk has
occurred.

Special events
In the present context there are two important events we need to introduce. The first is S
itself (the universal set), referred to as the sure event: whatever the outcome, S occurs. In
view of the fact that S is always a subset of itself (S,S), we can proceed to consider the
empty set:

Ø5S2S,

called the impossible event: whatever the outcome, Ø does not occur. N that Ø is
always a subset of every S.

Using the impossible event we can define an important relation between two sets. Any
two events A and B are said to be mutually exclusive if:

A>B5Ø.

Using the notion of mutually exclusive events in conjunction with S we define an
important family of events. The events A1, A2, …, Am are said to constitute a partition of
S if they are:

(i) mutually exclusive, i.e., Ai>Aj5Ø, for all i Þ j, i,j51, 2, …, m, and
(ii) exhaustive, i.e., m

i51Ai5S.

2.6.3 Event space

As argued at the beginning of this section the way we handle uncertainty relating to the
outcome of a particular trial is first to structure it and then to articulate it in terms of
probabilities attached to different events of interest. Having formalized the notion of an
event as a subset of the outcomes set, we can proceed to make more precise the notion of
events of interest.

An event space I is a set whose elements are the events of interest as well as the related
events; those we get by combining the events of interest using set theoretic operations. It
is necessary to include such events because if we are interested in events A and B, we are
also interested (indirectly) in , , A<B, A>B, ( 1> 2), etc.:AABA

<
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: denotes the non-occurrence of A.
(A<B): denotes the event that at least one of the events A or B occurs.
(A>B): denotes the event that both A and B occur simultaneously.

In set theoretic language, an event space I is a set of subsets of S which is closed under
the set theoretic operations of union, intersection and complementation; when these
operations are applied to any elements of I, the result is also an element of I. For any
outcomes set S we can consider two extreme event spaces:

(a) I05{S,Ø}:the trivial event space,
(b) P(S)5{A:A,S}, i.e., the power set: the set of all subsets of S.

Neither of these extreme cases is very interesting for several reasons.

(a) The trivial event space I0 is not very interesting because it contains no information;
S and Ø are known a priori.

(b) The power set. At first sight the set of all subsets of S seems to be an obvious choice
for the event space, since it must include all the relevant events and be closed under
the set theoretic operations of union, intersection, and complementation.

Example
In the case of the random experiment of tossing a coin twice the outcomes and the power
sets are given as follows:

S25{(HH),(HT),(TH),(TT)},
P(S2)5{S2,[(HH)(HT)(TH)],[(HH)(HT)(TT)],[(HH)(TH)(TT)],
P(S2)5 [(TT)(HT)(TH)],[(HH)(HT)],[(HH)(TH)],[(HH)(TT)],[(HT)(TH)],
P(S2)5 [(HT)(TT)],[(TH)(TT)],[(HH)],[(HT)],[(TH)],[(TT)],Ø}.

The question that comes to mind is whether we can always use the power set of S as the
appropriate event space. The short answer is no for two reasons, a practical and a
mathematical one. First, in view of the fact that if S is countable and has N elements
P(S) has 2N elements, it often contains too many elements to be practical from the mod-
eling viewpoint.

Example
To see this, consider the case of tossing a coin three times. The outcomes set S3 has eight
elements which implies that its power set has 285256 elements; too many to enumerate.

Things become more complicated in the case where S is countable but infinite, as in the
case of the random experiment of “counting the number of calls coming into a tele-
phone exchange over a period of time” where S5{0, 1, 2, 3, …}. The power set of S in
this case is not just infinite, it has the same order of infinity as the real numbers! Second,
the mathematical reason why the power set is not always appropriate as an event space is
that when the outcomes set is uncountable, such as:

S5{x :0#x#1, x[R},

A
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the power set includes subsets which cannot be considered as events and thus cannot be
assigned probabilities. Putting it differently, if we proceed to assign probabilities to all
these subsets as if they were events, we will run into technical (mathematical) difficulties
(see Billingsley (1986)).

As shown below, the way to circumvent these difficulties is to avoid the power set by
bestowing to the event space a specific mathematical structure (a field or a s-field) which
ensures that if A and B are events then any other events which arise when we combine
these with set theoretic operations are also elements of the same event space.

Example
If we return to the random experiment of tossing a coin three times, and assume that the
events of interest are only, say A15{(HHH)} and A25{(TTT)}, there is no need to use
the power set as the event space. Instead, we can define:

I35{S,Ø,A1,A2,(A1<A2), 1, 2,( 1> 2)},

which has only 8 elements; in contrast to 256 elements in the power set. We can verify
that I3 is closed under the set theoretic operations:

(S3<Ø)5S3[I3, (S3>Ø)5Ø[I3, 35Ø[I3, 5S3[I3,

( 1< 2)5( )[I3, etc.A1>A2AA

ØS

AAAA
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The concept of an event space plays an important role in the formalization of condition
[b] defining a random experiment by providing the necessary mathematical structure for
a coherent assignment of probabilities to events. This is crucial for our purposes because
if A and B are events of interest, the related events are also of interest because their
occurrence or not is informative for the occurrence of A and B and thus we cannot ignore
them when attaching probabilities.

Field A collection I of subsets of S, is said to be a field if it satisfies the conditions:

(i) S[I,
(ii) if A[I then also belong to I,
(iii) if A,B[I, then (A<B)[I.

This means that I is non-empty (due to (i)) and it is closed under complementation (due
to (ii)), finite unions (due to (iii)) and finite intersections (due to (ii)–(iii)).

Examples
(1) The power set of any finite outcomes set, such as P(S2), is a field.

(2) I05{S,Ø} is the trivial field for any outcomes set S. I0 is a field because:

S[I0, S<Ø5S[I0, S>Ø5Ø[I0 and S2Ø5S[I0.

(3) I(A)5{S,Ø,A, } is the field generated by event A. I(A) is a field because:

S[I(A), S<Ø5S[I(A), S>Ø5Ø[I(A), S2Ø5S[I(A),
[I(A), A< 5S[I(A), A> 5Ø[I(A), A<S5S[I(A),

A>S5A[I(A), <S5S[I(A), >S5 [I(A).

Counter-examples
(4) {S,Ø,A,B} cannot be a field because the event (A<B) is not an element of this set,

unless B5 .

(5) {S,Ø,A,B,(A<B)} cannot be a field because the event (A>B) is not an element of
this set, unless A>B5Ø.

(6) {S,A, } cannot be a field because it does not contain Ø.

Generating a field To illustrate how a field is generated from a set of events of interest,
let us consider the case where the set is D15{A, B} and consider generating the corre-
sponding field. In an effort to avoid getting lost in abstractions we will discuss the
generation of a field in relation to our favorite example of “tossing a coin twice”, where
S:5{(HH),(HT),(TH),(TT)}, A5{(HH),(HT)}, B5{(HT),(TH)} and the field is the
power set P(S2) as defined above.

Step 1 Form the set D25{S,Ø,A,B, , } which includes the complements of events A
and B.
In relation to the example:

5{(TH),(TT)}, 5{(HH),(TT)}.BA

BA

A

A

AAA
AAA

A

A

56 Probability theory: a modeling framework



Step 2 Form the set which also includes all intersections of the elements of D2:

D35{S,Ø,A,B, , ,(A>B),( >B),(A> ),( > )}.

In relation to our example:

A>B5{(HT)}, (A> )5{(HH)}, ( >B)5{(TH)}, ( > )5{(TT)}.

Notice that these intersections generate all the events with one outcome.
Step 3 Form the set which also includes all unions of the elements of D3:

D5{D3, (A<B), (A< ), ( <B), ( < ), etc.}.

In relation to our example:

[A<B]5{(HH),(HT),(TH)}, [A< ]5{(HH),(HT),(TT)},

[ <B]5{(HT),(TH),(TT)}, [ < ]5{(HH),(TH),(TT)},

[(A> )<( >B)]5{(HH),(TH)}, [(A>B)<( > )]5{(HT),(TT)}.

The reader is encouraged to check that the power set of S has indeed been gener-
ated!

N that D1,D2,D3,D and D is a field. Indeed, D is the smallest field containing
D1, referred to as the field generated by D1, and denoted by I(D1)5D.

Example
In the case of tossing a coin three times:

S35{(HHH),(HHT),(HTT),(HTH),(TTT),(TTH),(THT),(THH)}.

If the events of interest are, say A15{(HHH)} and A25{(TTT)}, the set {A1,A2} is
clearly not a field but we can always generate such a field starting from this set. In this
case the field of events of interest is:

I35{S3,Ø,A1,A2,(A1<A2), 1, 2,( 1> 2)}.

It should be clear from the above examples that generating a field using set theoretic
operations, starting from a set of events of interest, is a non-trivial exercise in cases
where the number of initial events of interest is greater than 2. The exception to this is the
case where the initial events form a partition of S.

Consider the events {A1, A2, …, Am} that constitute a partition of S, then the set of all
possible unions of the elements of A:5{Ø,A1, A2, …, Am} forms a field:

I(A)5 B: B5 i [ IAi, I#{1, 2, …, n} .

Example
In the case of tossing a coin three times:

S35{(HHH),(HHT),(HTT),(HTH),(TTT),(TTH),(THT),(THH)},

6<5

AAAA

BAAB

BAA

B

BAAB

BAAB

BABABA
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consider the events A15{(HHH),(HHT),(HTT)}, A25{(HTH),(TTT),(TTH)} and
A35{(THT),(THH)}; the set {A1,A2,A3} is clearly a partition of S3. The field generated
by this partition takes the form:

I35{S3,Ø,A1,A2,A3,(A1<A2),(A1<A3),(A2<A3)}.

This event space has the mathematical structure of being closed under the set theoretic
operations (<,> and 2), i.e., if we perform any of these operations on any elements of I3

the derived events will be elements of I3 (verify).

The above method can be extended to the case where S is infinite by defining a countable
partition of it, say {A1, A2, …, An, …}5{Ai, i[N}. The set of subsets generated by
A:5{Ø,A1, A2, …, An, …} takes the form:

I(A)5 B: B5 i [ IAi, I#N ,

and constitutes an extension of the notion of a field, known as a s-field. The extension
amounts to the s-field being closed under countable unions and interesections of events.

T  : the terms algebra and s-algebra are often used instead of field and
s-field, respectively, in the literature. Although the former terms might be more
appropriate (see Williams (1991)), we prefer the latter terminology for historical reasons
(Kolmogorov (1933) used the term field).

s-field A collection I of subsets of S, is said to be a s-field (pronounced sigma-field) if
it satisfies the conditions:

(i) S[I,
(ii) if A[I, then [I,
(iii) if Ai[I for i51, 2, …, n, … the set `

i51Ai[I.

In view of (ii), from (iii) and De Morgan’s law we can deduce that:

`
i51 Ai[I, since `

i51Ai5
`
i51 i.

That is, a s-field is non-empty and closed under countable unions and intersections, pro-
viding the most general mathematical structure needed to formalize the notion of an
event space. It goes without saying that a field is always a special case of a s-field.

Borel s-field The most important s-field in probability theory is the one defined on the
real line R, known as a Borel s-field, or Borel-field for short, and denoted by B(R). So far
we considered s-fields generated by arbitrary sets of outcomes S which were endowed with
no other mathematical structure than the set theoretic. The real line R is obviously not just
a set in the same sense of the set of outcomes of the experiment of tossing a coin twice. It
enjoys a rich mathematical structure which enables us to define order among its elements,
define distance between any two elements, define convergence in relation to a sequence of
its elements, etc. The structure that is of particular interest in the present context is the one
that enables us to define convergence, known to the mathematical connoisseurs as topolog-
ical structure. Naturally, the Borel-field B(R) enjoys a certain additional mathematical

A><>

<
A

6<5
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structure inherited by that of the real line; in particular it enjoys some additional
topological structure.

Given that the real line R, has an infinite number of elements (with its infinity of
higher order than that of the natural numbers), the question which naturally arises is:
How do we define the Borel-field B(R)? As shown above, the most effective way to define
a s-field over an infinite set is to define it via the elements that can generate this set. In the
case of the real line a number of different intervals such as (a,`), (a,b] (a,b), (2`,b), can
be used to generate the Borel-field. However, it turns out that the half-infinite interval
(2`,x] is particularly convenient for this purpose. Let us consider how such intervals
can generate the Borel-field B(R).

We begin with a set of subsets of the real line of the form:

Bx5{(2`,x]: x[R},

which is closed under finite intersections, i.e., for any two real numbers x and y:

(2`,x]>(2`,y]5 (2`,z][Bx, where z5min (x,y).

We then proceed to define the s-field generated by Bx, denoted by B(R)5s(Bx), using
the set theoretical operations of union, intersection, and complementation; see
Galambos (1995) for futher details.

This Borel-field B(R) includes just about all subsets of the real line R, but not quite all!
That is, there are subsets of R which belong to the power set but not to B(R), i.e.

B(R),P(R), and B(R)ÞP(R).

The Borel-field, however, includes all the subsets we usually encounter in practice, such as:

(a,`), (a,b], {a}, (a,b), for any real numbers a,b,

in the sense that they can all be created using the set theoretic operations of union, inter-
section and complementation in conjunction with intervals of the form (2`,x]. This can
be seen by noting that:

(a,`)5 , ⇒ (a,`)[B(R),
(a,b]5(2`,b]>(a,`), ⇒ (a,b][B(R),
{a}5 `

n51 (a2 ,a], ⇒ [B(R), etc.

The formalization so far In an attempt to help the reader keep track of the formalization
as it unfolds, we summarize the argument so far below:

[a] ⇒ S
%V5[b] ⇒ (I,?),

[c] ⇒ ?

In concluding this subsection we collect the terminology introduced so far in table 2.1.
The discerning reader would have noted that we used a pair of terms for most of the
notions introduced above, one term is set theoretic and the other probabilistic. It is
important for the reader to see the correspondence between the two different but related
terminologies.

1
n>

( 2 `,a]

Formalizing condition [b]: events and probabilities 59



Table 2.1. Contrasting the terminology

Set theoretic Probabilistic

universal set S sure event S
empty set Ø impossible event Ø
B is a subset of;A :B,A when event B occurs event A occurs
set A>B events A and B occur simultaneously
set A<B events A or B occur
set :5S2A event A does not occur
disjoint sets :A>B5Ø mutually exclusive events A, B
subset of S event
element of S elementary outcome
field event space
s-field event space

In the next section we formalize the notion of probability and proceed to show how we
attach probabilities to elements of an event space I.

2.6.4 A digression: what is a function? 

Before we proceed to complete the second component in formalizing condition [b] defin-
ing a random experiment, we need to make a digression in order to define the concept of
a function because the type of functions we will need in this and the next chapter go
beyond the usual point-to-point numerical functions. The naive notion of a function as a
formula enabling f(x) to be calculated in terms of x, is embarrassingly inadequate for our
purposes.

It is no exaggeration to claim that the notion of a function is perhaps the most impor-
tant concept in mathematics. However, the lack of precision of the notion of a function
has caused many problems in several areas of mathematics from the time of Euclid to the
early 20th century. The problems caused by the absence of a precise notion of a function
were particularly acute during the rigorization of calculus (analysis). The definitions
adopted at different times during the 18th and 19th centuries ranged from “a closed
(finite analytical) expression” to “every quantity whose value depends on one or several
others” (see Klein (1972) for a fascinating discussion). One can go as far as to claim that
the requirements of analysis forced mathematicians to invent more and more general
categories of functions which were instrumental in the development of many areas of
modern mathematics such as set theory, the modern theory of integration, and the
theory of topological spaces. In turn, the axiomatization of set theory provided the first
general and precise definition of a function in the early 20th century. Intuitively, as
defined below, a function is a special type of “marriage” between two sets.

A function f(.) :A → B is a relation between the sets A and B satisfying the restriction that
for each x[A, there exists a unique element y[B such that (x,y)[f. The sets A and B are
said to be the domain and the co-domain of the function f(.), respectively. The set:

A
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G:5{(x,y)[f : x[A, y[B}

is called the graph of the function.
Unfortunately, this definition contains the term relation which has not been

mathematically defined. In order to define the notion of a relation we need to go a step
further back to define the notion of the Cartesian product of two sets, denoted by A3B:

A3B is the set of all ordered pairs (x,y) where x[A and y[B.

An ordered pair refers to a set with two elements whose order is important and cannot be
changed; to indicate the order we use the set theoretic notation: (x,y):5{x,{x,y}}.

A relation R between the sets A and B is any subset of the Cartesian product A3B. If
(x,y)[R, we say that the relation R holds between x and y and denote it by xRy.

In figure 2.4 we can see the Cartesian product A3B and the relation R (an elliptical
disc) in grey.

Hence, a function is a special kind of a relation f (see figure 2.5) which ensures that:

(i) every element x of the domain A is paired,
(ii) for each x[A, there exists a unique element y[B such that (x,y)[f.

Looking at figure 2.6 brings out two important features of a function.

(i) The nature of the two sets and their elements is arbitrary. In this sense the naive
notion of a function as a formula relating numbers to numbers is much too narrow.

(ii) The uniqueness restriction concerns the elements of the co-domain which are
paired with elements of the domain (BA:5f(A),B, and BA is called the range of f)
and intuitively means that only one arrow emanates from each element x[A, but
more than one arrow can end up with any one element y[BA.

N that we distinguish between the co-domain and the range of f; in figure 2.6 the
element F belongs to the co-domain but does not belong to the range of f. In the case
where BA:5f(A)5B the function is called surjective (onto). Also, in the case where for
each y[BA there corresponds a unique x[A, the function is said to be injective (one-to-
one). If the function is both one-to-one and onto it is called a bijection.

2.6.5 The mathematical notion of probability

The next step in our formalization of condition [b], defining a random experiment, is to
find a way to attach probabilities to the events of interest as specified by the event space.

Example
In the case of tossing a coin three times, with the event space defined by I3, common
sense suggests that the following probabilities seem reasonable:

P(S3)51, P(Ø)50, P(A2)5 , P( 1)5 ,

P( 2)5 , P(A1<A2)5 , P( 1> 2)5 .3
4AA1

4
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7
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Figure 2.4 Graph of a relation
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In calculating the above probabilities we assumed that the coin is fair and used common
sense to argue that for an event such as A1<A2 we find its probability by adding that of
A1 and A2 together since the two are mutually exclusive. In mathematics, however, we
cannot rely exclusively on such things as common sense when setting up a mathematical
structure. We need to formalize the common sense arguments by giving a mathematical
definition for P(.) as a function from an event space I to real numbers between 0 and 1.
The major breakthrough that led to the axiomatization of probability theory in 1933 by
Kolmogorov was the realization that P(.) can be thought of as a measure in the newly
developed advanced integration theory called measure theory. This realization enabled
Kolmogorov to develop probability theory as a special chapter of measure theory:

This task would have been a rather hopeless one before the introduction of Lebesgue’s the-
ories of measure and integration. However, after Lebesgue’s publication of his investigations,
the analogies between measure of a set and probability of an event, …, became apparent…

(Kolmogorov (1933), p. v)

Probability set function
P(.) is defined as a function from an event space I to the real numbers between 0 and 1
which satisfies certain axioms. That is, the domain of the function P(.) is a set of subsets
of S. To be more precise:

P(.) :I → [0,1],

is said to be a probability set function if it satisfies the following axioms:

[1] P(S)51, for any outcomes set S,
[2] P(A)$0, for any event A[I,
[3] Countable additivity. For a countable sequence of mutually exclusive events, i.e.,

Ai[I, i51, 2, …, n, …such that Ai>Aj5Ø, for all iÞ j, i,j51, 2, …, n, …, then

P( `
i51Ai)5 `

i51P(Ai).

Axioms [1] and [2] are self-evident but [3] requires some explanation because it is not
self-evident and it largely determines the mathematical structure of the probability set
function. The countable additivity axiom provides a way to attach probabilities to events
by utilizing mutually exclusive events. In an attempt to understand the role of this axiom
let us consider a number of different types of outcomes sets in an ascending order of
difficulty.

(a) Finite outcomes set: S5{s1, s2, …, sn}
In this case the elementary outcomes s1, s2, …, sn are indeed mutually exclusive by defini-
tion and moreover, n

i51si5S, i.e., the events s1, s2, …, sn constitute a partition of S.
Axiom [3] implies that

P( n
i51si)5 n

i51P(si)51,

(by axiom [1]) and suggests that by assigning probabilities to the outcomes yields the
simple probability distribution on S:

o<

<

o<
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[p(s1), p(s2), …, p(sn)], such that 
n

i51p(si)51.

The probability of event A in I is then defined as follows. First we express event A in
terms of the elementary outcomes, say A5{s1, s2, …, sk}. Then we derive its probability
by adding the probabilities of the outcomes s1, s2, …, sk, since they are mutually exclu-
sive, i.e.,

P(A)5p(s1)1p(s2)1…1p(sk)5
k

i51p(si).

Examples
(1) Consider the case of the random experiment of “tossing a coin three times,” and

the event space is the power set of:

S35{(HHH),(HHT),(HTT),(HTH),(TTT),(TTH),(THT),(THH)}.

Let A15{(HHH)} and A25{(TTT)}, and derive the probabilities of the events A3:5
(A1<A2), A4:5 1, A5:5 2 and A6:5 ( 1> 2).

P(A3)5P(A1)1P(A2)5 1 5 ,

P(A4)5P(S3)2P(A1)512 5 ,

P(A5)5P(S3)2P(A2)512 5 ,

P(A6)5P( 1> 2)512P(A1<A2)5 .

If we go back to the previous section we can see that these are the probabilities we
attached using common sense.

(2) Consider the assignment of probability to the event:

A5{(HH),(HT),(TH)},

in the case of the random experiment of “tossing a fair coin twice.” The probability dis-
tribution in this case takes the form:

P(HH)5 , P(HT)5 , P(TH)5 , P(TT)5 .

This suggests that P(A)5P(HH)1P(HT)1P(TH)5 .

In the case where the number of distinct outcomes is infinite, this way of assigning prob-
abilities is inappropriate. A more efficient way to do that is provided by the concept of a
density function, defined in the next section.

(b) Countable outcomes set: S5{s1, s2, …, sn, …}
This case is a simple extension of the finite case where the elementary outcomes s1, s2, …,
sn, … are again mutually exclusive and they constitute a partition of S, i.e., `

i51si5S.
Axiom [3] implies that:

P( `
i51si)5 `

i51P(si)51.o<

<

3
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(by axiom [1]) and suggests that by assigning probabilities to the outcomes yields the
probability distribution on S:

`5 [p(s1), p(s2), …, p(sn), …], such that 
`

i51p(si)51.

In direct analogy to case (a) the probability of event A in I (which might coincide with
the power set of S) is defined by:

P(A)5 [i:si [ A] p(si). (2.7)

In contrast to the finite S case, the probabilities {p(s1),p(s2), …, p(sn), …,} cannot be
equal because for any positive constant p.0, however small, where p(sn)5p, for all
n51, 2, 3, …, i.e. for any p.0,

`

i51p5`.

N that the only way to render this summation bounded is to make p a function of n.
For example, for pn5 :

`
n51 ,`, for k.1.

Example
Consider the case of the random experiment of “tossing a coin until the first H appears”
and the event space is the power set of:

S45{(H),(TH),(TTH),(TTTH),(TTTTH), …}.

Assuming that P(H)5u, and P(T)51–u, we can proceed to evaluate the probabilities of
the outcomes as follows:

P(TH)5(1–u)u, P(TTH)5(1–u)2u,
P(TTTH)5(1–u)3u, P(TTTTH)5(1–u) 4u,
P(TT … TH) 5(1–u)n21u, etc.

n times

(c) Uncountable outcomes set S
Without any loss of generality let us consider the case where the outcomes set is the inter-
val [0,1]:

S5{x :0#x#1, x[R}.

We can utilize axiom [3] if we can express the interval [0,1] as a countable union of dis-
joint sets Ai, i51, 2, 3, … It turns out that with the use of some sophisticated mathemat-
ical arguments (axiom of choice, etc.) we can express this interval in the form of:

[0,1]5 `
i51Ai ,

where Ai>Aj5Ø, iÞ j, i,j51,2, …, and P(Ai) is the same for all Ai, i51, 2, 3, … This,
however, leads to inconsistencies because by axiom [3]:

P([0,1])5P( `
i51Ai)5 `

i51P(Ai),

and thus P([0,1])50, if P(Ai)50, or P([0,1])5`, if P(Ai).0.

o<

<
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The reason why the above attempt failed lies with the nature of the disjoint sets Ai ,
i51, 2, 3, … They are members of the power set P([0,1]) but they are not necessarily
members of a s-field associated with this interval. As argued above, the mathemat-
ical structure necessary for a consistent assignment of probabilities is that of a
s-field.

How do we deal with the assignment of probabilities in the case of an uncount-
able outcomes set?

The question that comes to mind is whether we can start with an arbitrary class of
subsets of S, say D, with P(.) defined for every element of D, and then proceed to extend
it to a s-field generated by D. The answer is in the affirmative only if D is a field. This is
because axiom [3] restricts the assignment of probabilities to countable unions of dis-
joint sets and given an arbitrary union of elements of D, it can be expressed as a count-
able union of disjoint sets only if D is a field.

In formal mathematical terms the extension of the assignment of probabilities from a
set of events to the event space is achieved by starting with a field D and expressing it as
a countable union of disjoint sets on which P(.) is defined. We then extend D to the s-
field I generated by D, denoted by I5s(D) obtained by complementation, countable
unions and intersections on the elements of D. Having defined the probability set func-
tion P(.) on D we can then proceed to extend it to all the elements of I, using
Caratheodory’s extension theorem (see Williams (1991)).

Example
This procedure is best illustrated in the case where the outcomes set is the real line R
and the appropriate s-field is the Borel-field B(R) which is generated by subsets of the
form:

Bx5{(2`,x] :x[R}.

We can define P(.) on Bx first and then proceed to extend it to all subsets of the form:

(a,`), (a,b], {a}, (a,b), for any real numbers a,b.

using Caratheodory’s extension theorem.

Let us return to the focus of the discussion which was the role of the axiom of countable
additivity. In addition to its above-mentioned assignment role, the countability property
is also needed to ensure the continuity of the probability set function discussed in the
next subsection.

2.6.6 Probability space (S,I,P(.))

From the mathematical viewpoint this completes the formalization of the first two
conditions defining a random experiment (%). Condition [a] has become a set S called an
outcomes set (with elements the elementary outcomes) and condition [b] has taken the
form of (I,P(.)) where I is a s-field of subsets of S called an event space and P(.) is a set
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function which satisfies axioms [1]–[3] called a probability set function. Collecting all
these components together we can define what we call a probability space.

The trinity (S,I,P(.)) where S is an outcomes set, I is an event space associated with S,
and P(.) a probability function that satisfies axioms [1]–[3] above, is referred to as a proba-
bility space; see Pfeiffer (1978) and Khazanie (1976) for further details. The probability
space has the necessary mathematical structure to be used as the foundation on which
one can build the whole edifice we call probability theory.

The next step in the mathematical approach is to use the above mathematical set up,
in conjunction with mathematical logic, in order to derive a number of conclusions we
call probability theory. The approach adopted in this book does not follow this pro-
cedure. For modeling purposes it is preferable to develop the theory of probability
after we transform the probability space into something mathematically easier to
handle. It is instructive, however, to get a taste of what the mathematical approach
entails before we proceed to metamorphose the probability space into a probability
model.

2.6.7 Mathematical deduction*

As a deductive science, mathematics begins with a set of fundamental statements we call
axioms (the premises) and ends with other fundamental statements we call theorems
which are derived from the axioms using deductive logical inference. To get a taste of
what this is all about let us derive a few such theorems in the case of the probability space
as specified above.

Accepting the axioms [1]–[3] as “true” we can proceed to derive certain corollaries
which provide a more complete picture of the mathematical framework.

Theorem 1 P( )512P(A).
Let us see how this follows from axioms [1]–[3]. In view of the fact that <A5S, and 

>A5Ø we can use axioms [1] and [3] to deduce that:

P(S)515P( <A)5P( )1P(A), ⇒ P( )512P(A).

The first equality is axiom [1], the second follows from the fact that <A5S, and the
third from the fact that >A5Ø and axiom [3].

Example
In the case of tossing a coin twice let A5{(HH),(HT),(TH)}. Given that 5{(TT)},
using theorem 1 we can deduce that P( )5 .

The next result is almost self-evident but in mathematics we need to ensure that it follows
from the axioms. Using theorem 1 in the case where A5S (and hence 5Ø), we deduce:

Theorem 2 P(Ø)50.
The next theorem extends axiom [3] to the case where the events are not mutually exclu-
sive.

A

1
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Theorem 3 P(AøB)5P(A)1P(B)2P(AùB).

The way to prove this is to define A<B in terms of mutually exclusive events and then
use [3]. It is not difficult to see that the events C5{A2 (A>B)} and B are mutually
exclusive and C<B5A<B. Hence, by axiom [3]:

P(A<B)5P(C<B)5P{A2(A>B)1P(B)5P(A)1P(B)2P(A>B)}.

Example
For A as defined above and B5{(HH),(TT)}, theorem 3 implies that:

P(A<B)5 1 2 51.

The next theorem is of considerable mathematical interest but its proof is much more
involved than the ones encountered above. For this reason we will consider only a partial
proof; see Karr (1993) for a complete proof.

Theorem 4 For {An}`
n51[I, if lim

n→`
An5A[I, then lim

n→`
P(An)5P(A).

This theorem says that for a sequence of events {An}`
n51 in the event space of interest

which converges to another event A, the limit of the sequence of probabilities coincides
with the probability of A. Theorem 4 is known as the continuity property of the probabil-
ity set function. This theorem raises the obvious question: What meaning can one attach
to the statement: the limit of a sequence of events which is also supposed to be an event?
A partial answer to this question is provided by noting that for two special types of
sequences, the limit is defined in terms of countable unions and intersections.

Non-decreasing sequence A sequence of events {An}`
n51 is called non-decreasing if

A1,A2, ···,An,An11,An12, ···

For such a sequence:

lim
n→`

An5 `
n51An. (2.8)

Non-increasing sequence A sequence of events {An}`
n51 is called non-increasing if:

A1.A2. ···.An.An11.An12. ···

For such a sequence the following relationship holds:

lim
n→`

An5 `
n51An. (2.9)

Consider a partial proof of the above theorem concerned only with non-decreasing
sequences. Assuming that the sequence {An}`

n51 is non-decreasing, we know that we can
express the limit of the sequence as in (2.8). This limit can then be expressed in the form
of mutually exclusive events of the form (Ak11–Ak) and (Aj11–Aj) for kÞ j, which have
the properties:

(Ak11–Ak)>(Aj11–Aj)5Ø, P(Ak11–Ak)5P(Ak11)2P(Ak).

>

<
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Using such events, and setting A05Ø, we can define An via:

lim
n→`

An5 An5A11(A2–A1)1(A3–A2)1 ···.

For A5 lim
n→`

An, we can use the above relationship in conjunction with axiom [3] to argue:

P(lim
n→`

An)5P(A1)1P(A2–A1)1 ···1P(Ak11–Ak)1 ···5
5P(A1)1P(A2)–P(A1)1 ···1P(Ak11)–P(Ak)1 ···5 lim

n→`
P(An).

The last equality follows from the fact that the partial sums on the right-hand side take
the form n

k51 [P(Ak)–P(Ak–1)]5P(An), and thus the limit is just the limit of P(An),
giving rise to the result P(A)5 lim

n→`
P(An). This amounts to proving that the probability

set function P(.) is continuous from below. In order to prove theorem 4 in its full general-
ity we need to prove it for non-increasing sequences (continuity from above) as well as for
null sequences, i.e., for sequences of the form lim

n→`
An5Ø (continuity at Ø); for the details

see Shiryayev (1984).
In conclusion, let us state a related theorem known as the Bonferroni inequality

without proof; see Chung (1974), Feller (1968).

Theorem 5 P( n
k51Ak)$12 n

k51P( ), Ak[I, k51, 2, …, n.

2.7 Formalizing condition [c]: random trials

The last condition defining the notion of a random experiment is:

[c] the experiment can be repeated under identical conditions.

This is interpreted to mean that the circumstances and the state of affairs from one trial
to the next remain unchanged, and thus it entails two interrelated but fundamentally
different components:

(i) the set up of the experiment remains the same for all trials and
(ii) the outcome in one trial does not affect that of another.

How do we formalize these conditions?

The first notion we need to formalize is that of a finite sequence of trials. Let us denote
the n trials by {A1,A2,A3, …, An} and associate each trial with a probability space
(Si,Ii,Pi(.)), i51,2, ··· , n, respectively. In order to be able to discuss any relationship
between trials we need to encompass them in an overall probability space; without it we
cannot formalize condition (ii) above. The overall probability space that suggests itself is
the product probability space:

(S1,I1,P1(.))3(S2,I2,P2( ))3…3(Sn,In,Pn(.)),

which can be thought of as a triple of the form:

([S13S23 · · ·3Sn],[I13I23 · · ·3In],[ P13P23 · · ·3Pn]):5(S(n),I(n),P(n)),

Ako>

o

<
`

n51
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in an obvious notation. The technical question that arises is whether (S(n),I(n),P(n)) is a
proper probability space. To be more precise, the problem is whether S(n) is a proper out-
comes set, I(n) has the needed structure of a s-field, and P(n) defines a set function which
satisfies the three axioms. The answer to the first scale of the question is in the affirmative
since the outcomes set can be defined by:

S(n)5{s(n) : s(n) :5(s1, s2, …, sn), si[Si, i51, 2, …, n}.

It turns out that indeed I(n) has the needed structure of a s-field (for a finite n) and P(n)

defines a set function which satisfies the three axioms; the technical arguments needed to
prove these claims are beyond the scope of the present book (see Parthasarathy (1977)).

Having established that the product probability space is a proper probability space, we
can proceed to view the sequence of trials {A1,A2,A3, …, An} as an event in
(S(n),I(n),P(n)) ; an event to which we can attach probabilities.

The first component of condition [c] can be easily formalized by ensuring that the
probability space (S,I,P(.)) remains the same from trial to trial in the sense:

[i] (Si,Ii,Pi(.))5 (S,I,P(.)), for all i51,2, …, n, (2.10)

and we refer to this as the Identical Distribution (ID) condition.

Example
Consider the case where S5{s1, s2, …, sk} is the outcomes set and:

`5 [p(s1), p(s2), …, p(sk)] such that 
k

i51p(si)51

is the associated probability distribution. Then condition [i] amounts to saying that:

[i] ̀ is the same for all n trials A1,A2,A3, …, An.

More formally, the ID condition reduces the product probability space (S(n),I(n),P(n)) to:

(S,I,P(.))3(S,I,P(.))3…3 (S,I,P(.))5 [(S,I,P(.))]n,

with the same probability space (S,I,P(.)) associated with each trial.
The second component is more difficult to formalize because it involves ensuring that

the outcome in the ith trial does not affect and is not affected by the outcome in the jth
trial for iÞ j, i, j51,2, …, n. Viewing the n trials {A1,A2,A3, …, An) as an event in the
context of the product probability space {S(n),I(n),P(n)), we can formalize this in the form
of independence among the trials. Intuitively, trial i, does not affect and is not affected by
the outcome of trial j. That is, given the outcome in trial j the probabilities associated
with the various outcomes in trial i are unchanged and vice versa. The idea that “given
the outcome of trial j the outcome of trial i is unaffected” can be formalized using the
notion of conditioning, discussed next.

2.7.1 A digression: conditional probability and independence

The notion of conditioning arises when we have certain additional information relating
to the experiment in question.

o
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Example
In the case of tossing a coin twice, if we (somehow) know that the actual outcome has at least
one tails (T), this information will affect the probabilities of certain events. In view of such
information we can deduce that the outcome (HH) is no longer possible and thus the out-
comes (HT),(TH), and (TT) now have probabilities equal to , not as before. Let us formal-
ize this argument in a more systematic fashion by defining the event B “at least one T”:

B5{(HT),(TH),(TT)}.

Without knowing B the outcomes set and the probability distribution are:

S25{(HH),(HT),(TH),(TT)},
`5{P(HH)5 , P(HT)5 , P(TH)5 , P(TT)5 }

With the knowledge provided by B these become:

SB5{(HT),(TH),(TT)}, `B5 PB(HT)5 , PB(TH)5 , PB(TT)5 .

In a sense the event B has, become the new outcomes set and the probabilities are now
conditional on B in the sense that:

PB(HT)5P((HT) |B)5 , PB(TH)5P((TH) |B)5 , PB(TT)5P((TT) |B)5 .

A general way to derive these conditional probabilities, without having to derive SB first,
is the following formula:

P(A |B)5 , for P(B).0, (2.11)

for any event A[I, where P(.) is the original probability set function defined on I.

Example
Let us verify this with A5{(TH)}. Given that A>B5{(TH)} we can deduce that:

P(A |B)5 5 .

Using the conditional probability formula (2.11) we can deduce the product probability
rule:

P(A>B)5P(A |B) ·P(B)5P(B |A) ·P(A).

Combining these two formulae we can derive Bayes’ formula:

P(A |B)5 , for P(B).0. (2.12)

Independence
The notion of conditioning can be used to determine whether two events A and B are
related in the sense that information about the occurrence of one, say B, alters the

P(A) ·P(B |A)
P(B)
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probability of occurrence of A. If knowledge of the occurrence of B does not alter the
probability of event A it is natural to say that A and B are independent. More formally A
and B are independent if:

P(A |B)5P(A). (2.13)

Using the conditional probability formula (2.11), we can deduce that two events A and B
are independent if:

P(A>B)5P(A) ·P(B). (2.14)

N . This notion of independence can be traced back to Cardano in the 1550s.

Example
For A5{(HH),(TT)} and B5{(TT),(HT)}, A>B5{(TT)} and thus:

P(A>B)5 5P(A) ·P(B),

implying that A and B are independent.

It is very important to distinguish between independent and mutually exclusive events; the
crucial difference being that the definition of the latter does not involve probability, but
there is more to it than that. Two independent events with positive probability cannot be
mutually exclusive. This is because if P(A).0 and P(B).0 and they are independent
then P(A>B)5P(A) ·P(B).0, but mutual exclusiveness implies that P(A>B)50 since
A>B5Ø. The intuition behind this result is that mutually exclusive events are informa-
tive about each other because the occurrence of one precludes the occurrence of the
other.

Example
For A5{(HH),(TT)} and B5{(HT),(TH)}, A>B5Ø but:

P(A>B)50Þ 5P(A) ·P(B).

Joint independence Independence can be generalized to more than two events but in the
latter case we need to distinguish between pairwise, joint, and mutual independence. For
example in the case of three events A, B, and C; we say that they are jointly independent if:

P(A>B>C)5P(A) ·P(B) ·P(C).

Pairwise independence The notion of joint independence, however, is not equivalent to
pairwise independence defined by the conditions:

P(A>B)5P(A) ·P(B), P(A>C)5P(A) ·P(C), P(B>C)5P(B) ·P(C).

Example
Let the outcomes set be S5{(HH),(HT),(TH),(TT)} and consider the events:
A5{(TT),(TH)}, B5{(TT),(HT)}, and C5{(TH),(HT)}. Given that A>B5{(TT)},
A>C5{(TH)}, B>C5{(HT)}, and A>B>C5Ø, we can deduce:

1
4

1
4
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P(A>B)5P(A) ·P(B)5 , P(B>C)5P(B) ·P(C)5 ,

P(A>C)5P(A) ·P(C)5 , but P(A>B>C)50ÞP(A) ·P(B) ·P(C)5 .

Similarly, joint independence does not imply pairwise independence. Moreover, both of
these forms of independence are weaker than independence which involves joint inde-
pendence for all subcollections of the events in question.

Independence The events A1, A2, …, An are said to be independent if and only if:

P(A1>A2>…>Ak)5P(A1) ·P(A2) ···P(Ak), for each k52, 3, …, n.

That is, this holds for any subcollection A1, A2, …, Ak (k#n) of A1, A2, …, An.
In the case of three events A, B, and C, pairwise and joint independence together

imply independence and the converse.

2.8 Statistical space

Returning to the formalization of the notion of a random experiment (%) we can now
proceed to formalize the second component of condition [c]:

[ii] the outcome in one trial does not affect that of another.

Sampling space A sequence of n trials, denoted by Gn5{A1,A2,A3,…,An} where Ai,
represents the ith trial of the experiment, associated with the product probability space
(S(n),I(n),P(n)), is said to be a sampling space.

As argued above, we view the n trials Gn:5{A1,A2,A3,…,An} as an event in the
context of the product probability space (S(n),I(n),P(n)). As such we can attach a probabil-
ity to this event using the set function P(n). Hence, we formalize [c][ii] by postulating that
the trials are independent if:

[ii]* P(n)(A1>A2>…>Ak)5P1(A1) ·P2(A2) ···Pk(Ak), (2.15)
for each k52, 3, …, n,

or

[ii]* P(n)(Ak |A1, A2, …, Ak21, Ak11, …, An)5Pk(Ak),
for each k51, 2, …, n.

N that P(n)(.) and Pk(.) are different probability set functions which belong to the
probability spaces (S(n),I(n),P(n)) and (Sk,Ik,Pk), respectively; see Pfeiffer (1978).

Taking the conditions of Independence (2.15) and Identical Distribution (2.10) we
define what we call a sequence of random trials.

Random trials A sequence of trials Gn
IID:5{A1,A2,A3, …, An}, which is both inde-

pendent and identically distributed i.e.

P(n)(A1>A2>…>Ak)5P(A1) ·P(A2) ···P(Ak), for each k52, 3, …, n,

is referred to as a sequence of Random trials.

1
8

1
4

1
4

1
4
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R : Gn
IID is a particular form of a sampling space Gn associated with

(S(n),I(n),P(n)), defined above, in the sense that Gn
IID is associated with (S,I,P(.))n. N

that the notion of a sampling space is not inextricably bound up with the sequence of
Random trials. The components of (S(n),I(n),P(n)) can be both non-Identically Distributed
(their set up differs from one trial to the next) and non-Independent.

Combining a simple product probability space and a sequence of Random trials we
define a simple statistical space, denoted by:

[(S,I,P(.))n,Gn
IID].

The term simple stems from the fact that this represents a particular case of the more
general formulation of a statistical space:

[(S(n),I(n),P(n)),Gn],

where each trial, say Ai, is associated with a different probability space {(Si,Ii,Pi(.)) (i.e.,
non-ID) and the trials are not necessarily independent. As argued in chapters 5–8 in
some fields such as econometrics we need to utilize the more general formulation. We
will do it, however, in stages. Initially, (see chapters 3–4) we will deal with the simple case
and then proceed to consider the more complicated one.

A simple statistical space [(S,I,P(.))n,Gn
IID] represents our first complete formalization

of the notion of a random experiment %. This formulation, however, is rather abstract
because it involves arbitrary sets and set functions, not numbers and numerical functions
we are familiar with in calculus courses. The main aim of the next chapter is to reduce it
to a more manageable form by mapping this mathematical structure onto the real line.

The story so far in symbols:

%:5 ⇒ [(S,I,P(.))n,Gn
IID].

2.9 A look forward

The purpose of this chapter has been to provide an introduction to probability theory
using the formalization of a simple chance mechanism we called a random experiment.
The formalization of the three conditions, written in simple terms, to a formidable array
of mathematical concepts had a purpose: to motivate some of the most important con-
cepts of probability theory and define them in a precise mathematical way. The notion of
a statistical space provides the mathematical foundation for the theory of probability. In
the next two chapters we transform the simple statistical space into a simple statistical
model with a view to operationalize the abstract formulation [(S,I,P(.))n,Gn]. In chapter
3 the probability space (S,I,P(.)) is metamorphosed into a probability model defined on
the real line and takes the form:

F5{f(x;u), u[Q, x[R}.

3[a]
[b]
[c]4  

⇒
⇒
⇒

  1S
(I,P(.))
Gn

2
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In chapter 4 the sampling space is transformed into a special type of sampling model
which we call a random sample: a set of random variables X:5(X1, X2, …, Xn) which are
both Independent and Identically Distributed. In chapter 5 an attempt is made to relate
the various probabilistic notions associated with a simple statistical model to real data
using graphical displays. In chapters 6–8 we extend the notion of a simple statistical
model to a more general formulation which is appropriate for modeling economic phe-
nomena that exhibit chance regularities beyond the random sample such as business
cycles, growth, and exchange rate fluctuations.

2.10 Exercises

21 Why is descriptive statistics inadequate for modeling purposes in econometrics?

22 Explain intuitively the notion of chance regularity.

23 What is the main objective of probability theory in the context of modeling observ-
able stochastic phenomena of interest.

24 Explain how we define the probability of an event A in the case where the outcomes
set has a finite number of elements, i.e., S5{s1, s2, …, sn}.

25 Which of the following observable phenomena can be considered as random experi-
ments:
(i) A die is tossed and the number of dots facing up is counted.
(ii) Select a ball from an urn containing balls numbered 1 to 20 and note the

number.
(iii) Observe the monthly changes of the consumer loan rate of interest.
(iv) Select a ball from an urn containing balls numbered 1 to 3. Suppose balls 1

and 2 are black and ball 3 is red. Note the number and color of the ball drawn.
(v) Toss a coin until Heads turns up and note the outcome.
Explain your answer.

26 For the experiments (i)–(v) in question 5, specify the set of all distinct outcomes.

27 For the sets A5{2,4,6} and B5{4,8,12} derive the following:
(a) A<B, (b) A>B, (c) relative to S5{2,4,6,8,10,12}.
Illustrate your answers using Venn diagrams.

28 Explain the difference between outcomes and events. Give examples from expe-
riment (ii) in exercise 5.

29 Explain the notions of mutually exclusive events and a partition of an outcomes set
S. How is the partition useful in generating event spaces?

10 Define the concept of a s-field and explain why we need such a concept for the set of
all events of interest. Explain why we cannot use the power set as the event space in
all cases.

A<B
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11 Consider the outcomes set S5{2,4,6,8} and let A5{2,4} and B5{4,6} be the
events of interest. Show that the field generated by these two events coincides with
the power set of S.

12 Explain how intervals of the form (2`,x] can be used to define intervals such as
{a}, (a,b), [a,b), (a,b], [a,`), using set theoretic operations.

13 Explain the difference between a relation and a function.

14 Explain whether the probability functions defined below are proper ones:
(i) P(A)5 , P( )5 , P(S)51, P(Ø)50,

(ii) P(A)5 , P( )5 , P(S)51, P(Ø)50,

(iii) P(A)5 , P( )5 , P(S)50, P(Ø)51,

(iv) P(A)52 , P( )5 , P(S)51, P(Ø)50.

15 Explain how we can define a simple probability distribution in the case where the
outcomes set is finite.

16 How do we deal with the assignment of probabilities in the case of an uncountable
outcomes set?

17 Describe briefly the formalization of conditions [a] and [b] of a random experiment
into a probability space (S,I,P(.)).

18 Describe briefly the formalization of condition [c] of a random experiment into a
simple sampling space Gn

IID.

19 Explain the notions of Independent events and Identically Distributed trials.

20 Explain how conditioning can be used to define independence. Give examples if it
helps.

21 Explain the difference between a sampling space in general and the simple sampling
space Gn

IID in particular.

22 In the context of a random experiment of tossing a coin twice, derive the probability
of event A5{(HT),(TH)} given event B5{(HH),(HT)}. Are the two events inde-
pendent?

5
4A1

4

3
4A1

4

1
3A1

3

1
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3 The notion of
a probability model

3.1 Introduction

3.1.1 The story so far

In the previous chapter we commenced the long journey to explore the theory of proba-
bility as it relates to fashioning a theoretical (mathematical) framework for modeling
stochastic phenomena: observable phenomena that exhibit chance regularity. The partic-
ular path we followed began with the formalization of the notion of a random experiment
%, defined by the following conditions:

[a] All possible distinct outcomes are known a priori,
[b] in any particular trial the outcome is not known a priori but there exists a percept-

ible regularity of occurrence associated with these outcomes, and
[c] it can be repeated under identical conditions.

The mathematization took the form of a statistical space [(S,I,P(.))n,Gn
IID] where

(S,I,P(.)) is a probability space and Gn
IID is a simple sampling space.

The main purpose of this chapter is to metamorphose the abstract probability space
(S,I,P(.)) into something appropriate for empirical modeling using numerical data;
something defined on the real line. The final target of this chapter is the formulation of
what we call a probability model, one of the two pillars of a statistical model; the other
being the sampling model which will be the subject matter of the next chapter where we
consider the metamorphosis of Gn

IID.

3.1.2 Why do we care?

The statistical space, although adequate for mathematical purposes, does not lend itself
naturally to the modeling of stochastic phenomena. Stochastic phenomena, such as the
growth and inflation rate of the economy, are often observed in the form of numerical
data and not in terms of abstract events. Hence, for modeling purposes we need to meta-
morphose the abstract statistical space, defined in terms of events and set functions, into
something less abstract, defined in terms of numbers and numerical functions.
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3.1.3 A bird’s eye view of the chapter

The modus operandi of this metamorphosis is the notion of a random variable, one of the
foremost concepts of probability theory. Its primary role is to enable us to map the statis-
tical space [(S,I,P(.)),Gn

IID] on to the real line (R). In an attempt to elucidate the role of
this important concept we discuss the transformation of the abstract probability space
(S,I,P(.)) into a much simpler probability model, with the minimal mathematical
machinery, in section 2 for the case where the outcomes set is countable. In section 3 we
consider the concept of a random variable in a general setting. In section 4 we complete
the metamorphosis chain by discussing the last link: the cumulative distribution and
density functions which constitute the basic element of a probability model. In section 5
we bring together the results of the previous sections and we complete the transforma-
tion of the probability space into a probability model (we trade a space for a model!). In
sections 6 and 7 we take an important digression in an attempt to relate the unknown
parameters (the focus of parametric statistical inference) to the numerical characteristics
of the distributions. We introduce numerous valuable concepts, such as the moments of a
distribution, which will prove indispensable in the context of modeling as well as statisti-
cal inference. It suffices to say that modeling is often done via the moments of a distribu-
tion. In section 8 we state several probabilistic inequalities which relate probabilistic
statements for a random variable X and certain moments.

3.2 The notion of a simple random variable

In order to help the reader keep one eye on the forest we state at the outset that the
mapping of the probability space (S,I,P(.)) on to the real line (R) will be done in three
steps. The first step is to map S into the real line R, in such as way so as to preserve the
event structure of interest I; the concept of a random variable X. Armed with the
concept of a random variable we proceed to take the second step, which amounts to
trading the probability set function:

P(.) : I→ [0,1],

with a much simpler point-to-point numerical function, the cumulative distribution func-
tion (cdf), defined in terms of X:

FX(.) : R → [0,1].

The third step is to simplify the cdf by transforming it into the density function:

fx(.) : R → [0,`).

The notion of a probability model is often defined in terms of the density function.
From the mathematical viewpoint it is always more satisfying to define a concept in its

full generality and then proceed to discuss the special cases. From the pedagogical view-
point, however, it is often better to begin the discussion with the simplest case and then
proceed to the more general formulation in order to help the reader understand the
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concept without undue mathematical machinery. In the case of the notion of a random
variable what renders the definition easy or not so easy, from the mathematical view-
point, is whether the outcomes set is countable or not. In the case of a countable out-
comes set, the random variable is said to be simple (or discrete) because it takes a
countable number of values. To help the reader understand the modern notion of a
random variable and how it transforms the abstract statistical space into something
much easier to handle, the discussion begins with the simplest case and proceeds to
discuss the more complicated ones:

(i) the outcomes set is finite,
(ii) the outcomes set is countable but infinite,
(iii) the outcomes set is uncountable.

3.2.1 Finite outcomes set: S5{s1,s2, …, sn}

A simple random variable with respect to the event space I, is defined to be a function:

X(.) :S → RX, such that Ax :5{s :X(s)5x}[I for each x[R. (3.1)

Heuristically, a random variable is a function which attaches numbers to all the elements
of S in a way which preserves the event structure of I.

Example
The function X(.) :S → RX :5{1,2}, where S5{♣ ,♠ ,♦ ,♥ } defined by:

X(♣)5X(♠ )51, X(♦ )5X(♥ )52,

is a random variable with respect to the event space: I5{S,Ø,{♣ ,♠ },{♦ ,♥ }}. This is
because the events associated with RX:5{1,2}: A15{s :X(s)51}5{♣ ,♠ }[I, and
A25{s :X(s)52}5{♦ ,♥ }[I, are events which belong to I.

Counter-example
The function Y(.) : S → RY:5{0,1} defined by:

Y(♥ )50, Y(♣)5Y(♠ )5Y(♦ )51, (3.2)

is not a random variable with respect to I because the event {s:Y(s)50}5{♥ }ÓI.

There are several things to  about the above definition:

First, the name random variable is something of a misnomer. The definition of a random
variable (3.1) has nothing to do with probabilities and thus it is neither random nor a
variable; it is just a real-valued function.

Second, the notion of a random variable is always defined relative to an event space I;
whether or not X(.) satisfies condition (3.1) depends on I, not on P(.). The fact that a
certain real-valued function is not a random variable with respect to a particular I does
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not mean that it cannot be a random variable with respect to some other event space.
Indeed, for any function Y(.) :S → RY we can always define a field IY with respect to
which Y(.) is a random variable; we call IY the field generated by Y(.); see Bhat (1985).

Example
In the case of Y(.) as defined by (3.2) we can generate an event space IY with respect to
which it is a simple random variable, as follows:

(i) define all the events associated with Y(.):
{s :Y(s)51}5{♣ ,♠ ,♦ }, {s :Y(s)50}5{♥ }.

(ii) generate a field using the events derived in (i):
IY :5s(Y)5{S,Ø,{♣ ,♠ ,♦ },{♥ }}.

IY :5s(Y) is known as the minimal field generated by the random variable Y.

Third, the set Ax is not a set on the real line, it is the pre-image of X at X5x, which can
also be denoted by:

Ax:5{s :X(s)5x}5X21(x), x[R.

N that the pre-image of X is not the usual inverse function. The notion of a pre-
image of an element of the co-domain is illustrated in figure 3.1.

Fourth, the values of R which do not belong to RX have the empty set Ø as their pre-
image. The empty set, however, always belongs to all I:

X21(x):5{s :X(s)5x}5Ø[I, for all x[ X:5(R2RX).R
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In a certain sense the notion of a random variable preserves the event structure of a
particular event space I, by ensuring that the pre-image of the function X(.) :S → RX,
defines a mapping:

X21(.): R → I, (3.3)

where for each x[RX, X21(x)[I, and for each xÓRX, X21(x)5Ø[I. This divides the
real line into two sub-sets, RX and X, with the former associated with the event structure
of interest and the latter with everything of no interest.

Fifth, the nature of the random variable depends crucially on the size of the field in
question. If I is small, being a random variable relative to I is very restrictive. For
example in the case I05{S,Ø} the only X(.): S → R which is a random variable relative to
I0 is X(s)5c, for all s[S; c being a constant X is a degenerate random variable. On the
other hand, if I is large, say the power set, then it takes a lot of weird imagination to
define a function X(.) : S → R which is not a random variable with respect to it.

After these comments on the definition of a random variable let us return to the
notion itself to consider some examples.

Example
An important example of a simple random variable is the indicator function defined rel-
ative to a set A in I as follows:

IA(s)5
1, s[A,h 0, sÓA.

Let us show that IA(s) is indeed a random variable. Taking its pre-image we get:

IA
21(0)5 [I and IA

21(1)5A[I.

We know this is true because if A[I then [I. This shows that IA(.) is a random vari-
able with respect to I. Moreover, IA5{A, , S, Ø} is the minimal event space generated
by the indicator function IA(s).

Assigning probabilities
Using the concept of a random variable we mapped S (an arbitrary set) to a subset of the
real line (a set of numbers) RX. Because we do not want to change the original probabil-
ity structure of (S,I,P(.)) we imposed condition (3.1) to ensure that all events defined in
terms of the random variable X belong to the original event space I. We also want to
ensure that the same events in the original probability space (S, I, P(.)) and the new for-
mulation, such as Ax5{s:X(s)5x}, get assigned the same probabilities. In order to
ensure this, we define the point function fx(.), which we call a density function as follows:

fx(x):5P(X5x) for all x[RX. (3.4)

N that (X5x) is a shorthand notation for A:x5{s :X(s)5x}. Clearly, for xÓRX,
X21(x)5Ø, and thus fx(x)50, for all xÓRX.
Example. In the case of the indicator function, if we let X(s):5IA(s) we can define the
probability density as follows:

A
A

A

R
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fx(1):5P(X51)5u and fx(0):5P(X50)5(1–u),

where 0#u#1. This is known as the Bernoulli density:

p x p 0 1 

fx(x) (1–u) u (3.5)

What have we gained?
In the context of the original probability space (S, I, P(.)), where S5{s1,s2, …, sn}, the
probabilistic structure of the random experiment was specified in terms of:

{p(s1),p(s2), …, p(sn)}, such that
n

i51p(si)51.

Armed with this we could assign a probability of any event A[I as follows. We know
that all events A[I are just unions of certain outcomes. Given that outcomes are also
mutually exclusive elementary events, we proceed to use axiom [3] (see chapter 2) to
define the probability of A as equal to the sum of the probabilities assigned to each of the
outcomes making up the event A, i.e., if A5{s1,s2, …, sk}, then:

P(A)5
k

i51p(si).

Example
In the case of the random experiment of “tossing a coin twice”:

S5{(HH),(HT),(TH),(TT)}, I5P(S),

where P(S) denotes the power set of S: the set of all subsets of S (see chapter 2). The
random variable of interest is defined by: X2the number of “Heads”. This suggest that
the events of interest are:

A05{s :X50}5{(TT)},

A15{s :X51}5{(HT),(TH)},

A25{s :X52}5{(HH)}.

In the case of a fair coin, all four outcomes are given the same probability and thus:

P(A0)5P{s :X50}5P{(TT)}5 ,

P(A1)5P{s :X51}5P{(HT),(TH)}5P(HT)1P(TH)5 ,

P(A2)5P{s :X52}5P{(HH)}5 .

Returning to the main focus of this chapter, we can claim that using the concept of a
random variable we achieved the following metamorphosis:

(S,I,P(.)) ⇒
X(.)

(RX, fx(.)),

where the original probabilistic structure has now been transformed into:

{fx(x1),fx(x2), …, fx(xm)}, such that 
m

i51fx(xi)51, m#n;

this is referred to as the probability distribution of a random variable X.

o

1
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The question which arises at this point is to what extent the latter description of the
probabilistic structure is preferable to the former. At first sight it looks as though no
mileage has been gained by this transformation. However, it turns out that this is
misleading and a lot of mileage has been gained for two reasons.

(a) Instead of having to specify {fx(x1), fx(x2), …, fx(xm)} by listing them, we can use
simple real valued functions in the form of formulae such as:

fx(x;u)5ux(12u)1–x, x50,1, and 0#u#1, (3.6)

which specify the distribution implicitly. For each value of X the function fx(x)
specifies its probability. This formula constitutes a more compact way of specifying
the distribution given above.

(b) Using such formulae there is no need to know the probabilities associated with the
events of interest a priori. In the case of the above formula, u could be unknown
and the set of such density functions is referred to as a family of density functions
indexed by u. This is particularly important for modeling purposes where such a
collection of density functions provides the basis of probability models. In a sense,
the uncertainty relating to the outcome of a particular trial (condition [b] defining a
random experiment) has become the uncertainty concerning the “true”value of the
unknown parameter u.

The distribution defined by (3.6) is known as the Bernoulli distribution. This distribu-
tion can be used to describe random experiments with only two outcomes.

Example
Consider the random experiment of “tossing a coin twice”:

S5{(HH),(HT),(TH),(TT)},I5{S,Ø,A, },

where the event of interest is, say A5{(HH),(HT),(TH)}, with P(A)5u, P( )5(1–u).
By defining the random variable X(A)51 and X( )50, the probabilistic structure of the
experiment is described by the Bernoulli density (3.6).

This type of random experiment can be easily extended to n repetitions of the same two-
outcomes experiment, giving rise to the so-called Binomial distribution discussed next.

Example
Consider the random experiment of “tossing a coin n times and counting the number of
Heads.” The outcomes set for this experiment is defined by S5{H,T}n (the product of
{H,T} n times) with P(H)5u and P(T)51–u. Define the random variable:

X: the total number of Hs in n trials.

N that the range of values of this new random variable is RX5{0,1,2,3, …, n}. The
random variable X is Binomially distributed and its density function for 0#x#n is:

fx(x;u)5 ux(1–u)n2x, 0#x#n, n51,2, …, 0#u#1, (3.7)1n
x2

A
A

A
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where 5 , where n!5n · (n21)·(n22)··· (3) · (2) ·1.

This formula can be graphed for specific values of u. In figures 3.2 and 3.3 we can see
the graph of the Binomial density function (3.7) with n510 and two different values of
the unknown parameter, u50.15 and u50.5, respectively. The horizontal axis depicts
the values of the random variable X (RX5{0,1,2,3, …, n) and the vertical axis depicts the
values of the corresponding probabilities as shown below.

x 0 1 2 3 4 5 6 7 8 9 10

f(x;0.15) 0.197 0.347 0.276 0.130 0.040 0.009 0.001 0.000 0.000 0.000 0.000
f(x;0.5) 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001

n!
(n 2 k)!k!1n

k2
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In concluding this subsection, it is worth mentioning that the gains from using density
functions are even more apparent in the case where the outcomes set S is infinite but count-
able. As shown next, in such a case listing the probabilities for each s[S in a table is imposs-
ible. The assignment of probabilities using a density function, however, renders it trivial.

3.2.2 Countable outcomes set: S5{s1,s2, …, sn, …}
Consider the case of the countable outcomes set S5{s1,s2, …, sn,…}. This is a simple
extension of the finite outcome set case where the probabilistic structure of the experi-
ment is specified in terms of:

{p(s1),p(s2), …, p(sn),…}, such that 
`

i51p(si)51.

The probability of an event A[I, is equal to the sum of the probabilities assigned to
each of the outcomes making up the event A:

P(A)5
{i:si [ A}

p(si).

Example
Consider the random experiment of “tossing a coin until the first H turns up.” The out-
comes set is:

S5{(H),(TH),(TTH),(TTTH),(TTTTH),(TTTTTH),…}

and let the event space be the power set of S. If we define the random variable X(.) – the
number of trials needed to get one H, i.e.

X(H)51, X(TH)52, X(TTH)53, etc.

and P(H)5u, then the density function for this experiment is:

fx(x;u)5(1–u)x21u, 0#u#1, x[RX5{1,2,3, …}.

This is the density function of the Geometric distribution. This density function is
graphed in figures 3.4–3.5 for n520 and two different values of the unknown parameter
u50.20 and u50.35, respectively. Looking at these graphs we can see why it is called
Geometric: the probabilities decline geometrically as the values of X increase.

3.3 The general notion of a random variable
Having introduced the basic concepts needed for the transformation of the abstract
probability space (S,I,P(.)) into something more appropriate (and manageable) for
modeling purposes, using the simplest case of countable outcomes set, we will now
proceed to explain these concepts in their full generality.

3.3.1 Uncountable outcomes set S
As a prelude to the discussion that follows, let us see why the previous strategy of assign-
ing probabilities to each and every outcome in the case of an uncountable set, say S5R,

o

o
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will not work. The reason is very simple: the outcomes set has so many elements that it is
impossible to arrange them in a sequence and thus count them. Hence, any attempt to
follow the procedure used in the countable outcomes set case will lead to insurmountable
difficulties. Intuitively we know that we cannot cover the real line point by point. The
only way to overlay R, or any of its uncountable subsets, is to use a sequence of intervals
of any one of the following forms:

(a,b), [a,b], [a,b), (2`,a], where a,b, a and b are real numbers.

We will see in the sequel that the most convenient form for such intervals is:

{(2`,x]} for each x[R. (3.8)
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Random variable
In view of the above discussion any attempt to define a random variable using the defini-
tion of a simple random variable:

X(.) : S → RX, such that {s :X(s)5x}:5X21(x)[I for each x[R. (3.9)

is doomed to failure. We have just agreed that the only way we can overlay R is by using
intervals not points. The half-infinite intervals (3.8) suggest modifying the events
{s :X(s)5x} of (3.9) into events of the form {s :X(s)#x}.

A random variable relative to I is a function X(.) :S → R, that satisfies the restriction:

{s :X(s)#x}:5X21((2`,x])[I for all x[R. (3.10)

N that the only difference between this definition and that of a simple random vari-
able comes in the form of the events used. Moreover, in view of the fact that:

{s :X(s)5x},{s :X(s)#x}

the latter definition includes the former as a special case, hence the term simple random
variable. In principle we could have begun the discussion with the general definition of a
random variable (3.10) and then applied it to the various different types of outcomes sets.

From this definition we can see that the pre-image of the random variable X(.) takes us
from intervals (2`,x], x[R back to the event space I. The set of all such intervals
generates a s-field on the real line we called the Borel-field B(R):

B(R)5s((2`,x], x[R).

Hence, in a formal sense, the pre-image of the random variable X(.) constitutes a
mapping from the Borel-field B(R) to the event space I and takes the form:

X21(.) : B(R) → I. (3.11)

This ensures that the random variable X(.) preserves the event structure of I because the
pre-image preserves the set theoretic operations (see Karr (1973)):

(i) Union: X21( `
i51Bi)5 `

i51X21(Bi),

(ii) Intersection: X21( `
i51Bi)5 `

i51X21(Bi),

(iii) Complementation: X21( )5( ).

The probability space induced by a random variable*
Let us take stock of what we have achieved so far. The metamorphosis of the probability
space (S,I,P(.)) into something more appropriate for modeling purposes has so far
traded the outcomes set S with a subset of the real line RX and the event space I with the
Borel-field B(R). The modus operandi of this transformation has been the concept of a
random variable.

The next step will transform P(.) :I → [0,1] into a set function on the real line or more
precisely on B(R). This metamorphosis of the probability set function takes the form:

P(X#x)5PX21((2`,x])5PX((2`,x]).

X21(B)B

>>
<<
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It is very important to  at this stage that the events in the first and second terms are
elements of the event space I but that of the last equality is an element of B(R). We are
now in a position to assign probabilities to intervals of the form {(2`,x] :x[R} whose
pre-image belongs to I. For other intervals of the form (a,b), [a,b], [a,b), (2`,a), etc. we
can use Caratheodory’s extension theorem to extend the probability set function PX(.) in
order to assign probabilities to every element Bx of B(R):

PX21(Bx)5PX(Bx) for each Bx[B(R).

This defines a new probability set function as a composite function PX21(.) where
P(.): I→ [0,1], X21(.): B(R) → I, and thus:

PX(.) :5PX21(.): B(R) → [0,1].

Collecting the above elements together we can see that in effect a random variable X
induces a new probability space (R,B(R),PX(.)) with which we can replace the abstract
probability space (S,I,P(.)). The main advantage of the former over the latter is that
everything takes place on the real line and not in some abstract space. In direct analogy
to the countable outcomes set case, the general concept of a random variable induces the
following mapping:

(S,I,P(.)) ⇒
X(.)

(R,B(R),PX(.)).

That is, with the help of X(.) we traded S for R, I for B(R) and P(.) for PX(.). For refer-
ence purposes we call (R,B(R),PX(.)) the probability space induced by a random variable
X; see Galambos (1995).

Borel (measurable) functions In probability theory we are interested not just in random
variables but in well-behaved functions of such random variables as well. By well-
behaved functions, in calculus, we usually mean continuous or differentiable functions.
In probability theory by well-behaved functions we mean functions which preserve the
event structure of their argument random variable. A function defined by:

h(.) : R → R such that {h(X)#x}:5h21((2`,x])[B(R), for any x[R,

is called a Borel (measurable) function. That is, a Borel function is a function which is a
random variable relative to B(R). N that indicator functions, monotone functions,
continuous functions, as well as functions, with a finite number of discontinuities, are
Borel functions; see Khazanie (1976), Bierens (1994).

Equality of random variables Random variables are unlike mathematical functions in so
far as their probabilistic structure is of paramount importance. Hence, the notion of
equality for random variables involves this probabilistic structure. Two random variables
X and Y, defined on the same probability space (S,I,P(.)), are said to be equal with prob-
ability one (or almost surely) if (see Karr (1993)):

P(s :X(s)ÞY(s))50, for all s[S;

i.e., if the set (s :X(s)ÞY(s)) is an event with zero probability.

88 The notion of a probability model



3.4 The cumulative distribution and density functions

3.4.1 The cumulative distribution function

Using the concept of a random variable X(.), so far we transformed the abstract prob-
ability space (S,I,P(.)) into a less abstract space (R,B(R),PX(.)). However, we have not
reached our target yet because PX(.):5PX21(.) is still a set function. Admittedly it is a
much easier set function because it is defined on the real line, but a set function all the
same. What we prefer is a numerical point-to-point function with which we are famil-
iar.

The way we transform the set function PX(.) into a numerical point-to-point function
is by a clever stratagem. By viewing PX(.) as only a function of the end point of the inter-
val (2`,x] we define the cumulative distribution function (cdf):

FX(.) :R → [0,1], where FX(x)5P{s :X(s)#x}5PX((2`,x]). (3.12)

The ploy leading to this definition began a few pages ago when we argued that even
though we could use any one of the following intervals (see Galambos (1995)):

(a,b), [a,b], [a,b), (2`,a], where a,b, a[R and b[R,

to generate the Borel-field B(R), we chose the intervals of the form: (2`,x], x[R.
In view of this, we can think of the cdf as being defined via:

P{s :a,X(s)#b}5P{s :X(s)#b}2P{s :X(s)#a}5PX((a,b])5FX(b)2FX(a),

and then assume that FX(2`)50.
The properties of the cdf FX(x) of the random variable X are determined by those of

(S,I,P(.)). In particular, from axioms [1]–[3] of P(.) and the mathematical structure of
the s-fields I and B(R). We summarize the properties of the cumulative distribution func-
tion (see Karr (1993)):

F1. FX(x)#FX(y), for x#y, x,y real numbers,

F2. lim
x→x0

1
FX(x)5FX(x0), for any real number x0,

F3. lim
x→`

FX(x):5FX(`)51, lim
x→2`

FX(x) :5FX(2`)50.

where x → x0
1reads “as x tends to x0 through values greater than x0.” That is, FX(x) is a

non-decreasing, right-continuous function such that FX(2`)50, and FX(`)51.
Properties F1 and F3 need no further explanation but F2 is not obvious. The right-conti-
nuity property of the cdf follows from the axiom of countable additivity [3] of the prob-
ability set function P(.) and its value lies with the fact that at every point of discontinuity
x0 property F2 holds.

The cumulative distribution function (cdf) provides the last link in the chain of the
metamorphosis of (S,I,P(.)) into something more amenable to modeling. Before we
proceed to enhance our intuitive understanding of the concept we need to relate it to the
notion of a density function introduced in the context of simple (discrete) random vari-
ables.
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The discerning reader would have noticed that in the context of simple (discrete)
random variables the metamorphosis of the abstract probability space took the form:

(S,I,P(.)) ⇒
X(.)

(RX, fx(.)),

where RX5{x1,x2, …, xn, …}. The original probabilistic structure has been transformed
into:

{fx(x1),fx(x2), …, fx(xm), …} such that
xi[ RX

fx(xi)51.

The last link in the metamorphosis chain was the notion of a density function:

fx(.) : RX → [0,1], fx(x):5P(X5x) for all x[RX.

On the other hand, in the context of a continuous random variable (uncountable out-
comes set) the metamorphosis took the form:

(S,I,P(.)) ⇒
X(.)

(RX,FX(.)),

with the cdf being the last link in the chain. The reason why the density function could
not be defined directly in this case has been discussed extensively in the previous chapter.
The gist of the argument is that in the case of an uncountable outcomes set we cannot
define probability at a point but only over an interval.

3.4.2 The density function

At this stage two questions arise naturally. The first is whether we can define a density
function in the case of a continuous random variable. The second is whether we can
define a cdf in the case of a discrete random variable. Both questions will be answered in
the affirmative beginning with the first.

Having defined the cumulative distribution function over intervals of the form
((2`,x]) we can proceed to recover the density function fx(.) (when it exists). Assuming
that there exists a function of the form:

fx(.): R → [0,`), (3.13)

such that it is related to the cdf via:

FX(x)5 fx(u) du, where fx(u)$0, (3.14)

fx(.) is said to be a density function which corresponds to FX(.).
This recovery presupposes the existence of a non-negative function whose form one

has to guess a priori. In cases where fx(.) is assumed to be continuous, one can recover it
from FX(.) using the fundamental theorem of calculus (see Strang (1991), Binmore
(1993)). Suppose that fx(x) is a continuous function of x:

(a) if FX(x)5 fx(u) du, then 5fx(x),

(b) if 5fx(x), then fx(u) du5FX(b)2FX(a).Eb

a

dFX(x)
dx

dFX(x)
dxEx

2`

Ex

2`

o
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Using the fundamental theorem of calculus we can recover the density function much
easier by differentiation using the fact that:

5fx(x), at all continuity points x[R of fx(x).

Example
Consider the random experiment of “measuring the lifetime of a light bulb in a typical
home environment.” The cumulative distribution function often used to model this
experiment is that of the exponential distribution:

FX(x;u)51–e2ux, u.0, x[R1 :5 [0,`).

The graph of the cdf for u53 is shown in figure 3.6. In view of the fact that FX(x;u) is
continuous for all x[R1, we can deduce that the density function is just the derivative of
this function and takes the form (see figure 3.7):

fx(x;u)5ue2ux, u.0, x[R1.

The density function, for continuous random variables, defined by (3.14), satisfies the fol-
lowing properties:

f1. fx(x)$0, for all x[RX,

f2. fx(x)dx51,

f3. FX(b)2FX(a)5 fx(x)dx, a,b, a[R, b[R.

We now turn our attention to the question whether we can define a cdf in the case of
simple (discrete) random variables. The definition of the cumulative distribution func-
tion given in (3.12) is also applicable to the case where X(.) takes values in a countable
subset of R. For RX5{x1,x2, …, xn}, where x1,x2,…,xn, the cdf function of a
random variable X(.) is defined in terms of the density function by:

Eb

a

E`

2`

dFX(x)
dx
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FX(xk)5P({s:X(s)#xk})5
k

i51 fx(xi), for k51,2, …, n. (3.15)

That is, the cdf for a simple (discrete) random variable is a step function with the jumps
defined by fx(.). The term cumulative stems from the fact that the cdf in both cases (3.12)
and (3.15) accumulates the probabilities given by the density functions. This becomes
apparent by ordering the values of X in ascending order x1#x2#…#xn and assuming
that FX(x0)50, then FX(.) and fx(.) are related via:

fx(xi)5FX(xi)2FX(xi21), i51,2,…n.

The density function, in the case of a discrete random variable, has properties similar to
those above with the integral replaced by a summation:

f1. fx(x)$0, for all x[RX,

f2. xi[ RX
fx(xi)51,

f3. FX(b)2FX(a)5 a , xi ø b fx(xi ), a,b, a[R, b[R.

Example
In the case of the Bernoulli random variable the density function is:

fx(1)5u and fx(0)5(1–u),

where 0#u#1 (see 3.5). This is shown in figure 3.8 for a known value of u, denoted by
u50.6. The corresponding cdf takes the form FX(0)5u, FX(1)51:

0, x,0,
Fx(x)5 u, 0#x,1,h 1, 1#x.

o

o

o
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As can be seen from figure 3.9 the cdf is a step function with jumps at x50 of height
(12u)50.4 and x51 of height u50.6. The dots at points (0,0.4) and (1,1) symbolize the
right continuity of the cdf; these points belong to the upper line not the lower.

Although the cdf appears to be the natural choice for assigning probabilities in cases
where the random variable X(.) takes values in an uncountable subset of R, the density
function offers itself more conveniently for modeling purposes. For this reason we con-
clude this section by mentioning some more distributions for both continuous and dis-
crete random variables.

Continuous random variable A random variable X(.) is said to be continuous if its range
of values is any uncountable subset of R. A glance at the definition (3.13)–(3.14) suggests
that one should not interpret the density function of a continuous random variable as a
function assigning probabilities, because the latter might take values greater than one!

Examples

(i) The most widely used distribution in probability theory and statistical inference is
without a doubt the Normal (or Gaussian) distribution whose density function is:

fx(x;u)5 exp , u:5(m,s2)[R3R1, x[R. (3.16)

The graph of this density function, shown in figure 3.10 with m50 and s251,
exhibits the well-known bell shape with which the Normal distribution is easily rec-
ognizable. The cdf for the Normal distribution is:

FX(x;u)5 exp du, u:5(m,s2)[R3R1, x[R. (3.17)

The graph of this cdf, shown in figure 3.11, exhibits the distinct elongated S associ-
ated with the Normal distribution.

52
(m 2 m)2

2s2 61
sÏ2pEx

2`

52
(x 2 m)2

2s2 61
sÏ2p
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Figure 3.10 Normal density

Figure 3.11 Normal cdf

Figure 3.9 Bernoulli cdf
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(ii) Another widely used distribution is the Uniform (continuous) whose density func-
tion is of the form:

fx(x;u)5 , u:5(a,b)[R2, a#x#b. (3.18)

The graph of this density function, shown in figure 3.12 for a51 and b53, exhibits
a rectangular shape. The cdf for the Uniform (continuous) distribution is:

FX(x;u)5 , u:5(a,b)[R2, a#x#b. (3.19)

The graph of this cdf is shown in figure 3.13.

Discrete random variable A random variable X(.) is said to be discrete if its range RX is a
countable (it can be counted) subset of the real line R; its density function is of the form:

fx(.) :R → [0,1].

x 2 a
b 2 a

1
b 2 a
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In contrast to the continuous random variable case, this definition suggests that one
could interpret the density function of a discrete random variable as a function assigning
probabilities.

Examples

(i) The Uniform distribution also has a discrete form, with a density function:

fx(x;u)5 , u is an integer, x50,1,2, …, u. (3.20)

The graph of this density function, shown in figure 3.14 for u59, exhibits the well-
known uniform spike shape. The cdf for the Uniform (discrete) distribution is:

FX(x;u)5 , u is an integer, x50,1,2, …, u. (3.21)

Its graph is shown in figure 3.15 where the jumps are all of the form:

pk5 , for u59, k51,2, …, 9.1
u 1 1

x 1 1
u 1 1

1
u 1 1
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Figure 3.14 Uniform (discrete) density

Figure 3.15 Uniform (discrete) cdf
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(ii) Another widely used discrete distribution is the Poisson whose density function is:

fx(x;u)5 , u.0, x50,1,2,3, … (3.22)

The graph of this density function, shown in figure 3.16 for u54, where the asym-
metry in the shape of the density is obvious. The cdf for the Poisson distribution is:

FX(x;u)5 x
k50 , u.0, x50,1,2,3, … (3.23)

The graph of the cdf is shown in figure 3.17.

3.5 From a probability space to a probability model

Let us collect the various threads together. We began the discussion in this chapter with
one primary target: to transform the abstract probability (S,I,P(.)) built in the previous
chapter into something more amenable to modeling with numerical data. The first stage

e2uux

k!o

e2uux

x!
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of the transformation amounted to introducing the notion of a real-valued function
from the outcomes space S to the real line R, constrained to preserve the event structure
of the original event space I; the concept of a random variable. At the second stage we
used the concept of a random variable to map (S,I,P(.)) into (R,B(R),PX(.)); the latter
being an edifice on the real line. At the third stage we transformed the set function PX(.)
into a numerical point-to-point function, the cumulative distribution function, by:

FX(x)5PX(2`,x].

At the last stage we simplified FX(.) even further by introducing the density function via:

FX(x)5 fx(u)du, fx(x)$0, for all x[R.

We then extended the formulation to the case where the probabilities are known func-
tions of certain unknown parameter(s) u. This was done by introducing these parame-
ters in the formulae for the cdf and density functions: F(x;u), f(x;u). The details of this
extension will be discussed in chapter 10. Symbolically the transformation has taken the
form:

(S,I,P(.)) ⇒
X(.)

(R,B(R),PX(.)) ⇒ {f(x;u), u[Q, x[RX}.

Ignoring the intermediate step, we can view the mapping at the level of the individual
components as:

S ⇒ RX, and [I,P(.)] ⇒ {f(x;u), u[Q}.

The end result of this metamorphosis is that the original probability space (S,I,P(.))
has been metamorphosed into a probability model defined by:

F5{f(x;u), u[Q, x[RX}. (3.24)

F is a collection of density functions indexed by a set of unknown parameters u; one density
for each possible value of u in the parameter space Q.

It is important to  that we could use the cdf instead of the density function as the
basis of the probability model, in the sense that:

FF5{F(x;u), u[Q, x[RX},

is even more general than (3.24). As can be seen from the above graphs of the various
cdf and density functions, however, the shape of the density functions is easier to judge
than that of the cdf. For mathematical reasons we often prefer the cdf but for modeling
purposes we usually prefer the density function. The notion of a probability model, as
defined in terms of density functions, is convenient for modeling purposes because, as
shown in chapter 5, there is a helpful link between this theoretical concept and the
observed data. We will see how the notion of a density function constitutes the proba-
bility theory counterpart of the notion of a histogram in descriptive statistics and how
that relates to a t-plot of a set of data. In summary, we can build a direct link between
the probability model and real data in order to help in the choice of appropriate
models.

Ex

2`
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There are several things worth emphasizing about the probability model as defined in
(3.24). First, the probability model represents a whole collection of densities, often an
infinite number, depending on the nature of the parameter space Q. In a certain sense the
parameter(s) u encapsulate the initial uncertainty in relation to the outcome of a partic-
ular trial (condition [b]). Second, the probability model has three important compo-
nents: (i) the density function of a random variable X, (ii) the parameter space Q, and
(iii) the range of values of the random variable in question RX. To signify the importance
of component (iii) we give it a special name.

The support of the density fx(.) is the range of values of the random variable X for
which the density function is positive, i.e.

RX:5{x[RX : fx(x).0}.

Because of the paramount importance of the concept of a probability model we will
consider several examples in order to enable the reader to understand the basic concepts.

Examples
(i) Consider the probability model of a Binomial distribution specified by:

F5{f(x;u)5 ux(1–u)n2x, 0,u,1, 0#x#n, n51,2, …}. (3.25)

In figures 3.18–3.21 we can see several members of this probability model for
n520. Each graph represents a density for a specific value of the unknown para-
meter: u50.15,u50.3,u50.5,u50.8. In theory F includes an infinity of such den-
sities (to wit a double infinity) because the parameter space Q:5 [0,1] has an
uncountable number of elements! For the densities shown in figures 3.18–3.21 the
support is R*X :5{0,1,2, …, 20}.

(ii) Another interesting example of a probability model is the Beta:

F5 f(x;u)5 , u:5(a,b)[R1
2 , 0,x,1 .

In figure 3.22 several members of this family of densities (one for each combina-
tion of values of u) are shown. This probability model has two unknown parame-
ters a.0 and b.0; the parameter space is the product of the positive real line:
Q:5R1

2 . This suggests that the set F has an infinity of elements, one for each com-
bination of elements from two infinite sets. Its support is RX:5(0,1). As can be
seen, this probability model involves density functions with very different shapes
depending on the values of the two unknown parameters.

(iii) Another important example of a probability model is the Gamma:

F5 f(x;u)5 exp , u:5(a,b)[R1
2 ,x[R1 .

In figure 3.23 several members of this family of densities (one for each combina-
tion of values of u) are shown. Again, the probability model has two unknown
parameters a.0 and b.0; the parameter space is the product of the positive real
line: Q:5R1

2. Its support is RX:5(0,`).
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Figure 3.20 Binomial (n520, u50.5)

Figure 3.18 Binomial (n520, u50.15)

Figure 3.19 Binomial (n520, u50.3)
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(iv) The last example of a probability model is the Weibull:

F5 f(x;u)5 exp , u:5(a,b)[R1
2, x.0 .

Several members of this family of densities (one for each combination of values of
u) are shown in figure 3.24. Again, the model has two unknown parameters a.0
and b.0; the parameter space is the product of the positive real line: Q:5R1

2. Its
support is RX:5(0,`).

The probability model constitutes one of the two pillars on which we are going to erect
the notion of a statistical model, the cornerstone of statistical inference (and empirical
modeling); the other pillar being the sampling model to be discussed in the next chapter.

For empirical modeling purposes we utilize the notion of a probability model as
follows. We postulate a priori one such family of densities as underlying the stochastic
mechanism that gave rise to the observed data in question: our task as modelers is to
chose the most appropriate family for the data in question. A priori we do not commit
ourselves to a particular density, say f(x;u0), where u0 is a specific value of the unknown
parameters u, as providing the appropriate summary of the data in question. Instead, we
assume that such a density is a member of the postulated family for some u[Q. In
empirical modeling we define the probability model in terms of unknown parameter(s)
u and let the data, using statistical inference, choose its appropriate value from Q. The
question that naturally arises at this stage is: How do we make the original decision
regarding which probability model (see appendix A for several such models) is appropri-
ate? An oversimplified answer is that the modeler considers how all three components
(i)–(iii) of the probability model relate to the data in question.

The first component is the density function. The most convenient way to assess the
appropriateness of the density function is to compare the distributional shapes (as pre-
sented in the above graphs) to the histogram of the observed data. These shapes will
prove to be one of the guiding lights in choosing an appropriate statistical model for the
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Figure 3.22 Beta probability model

Figure 3.23 Gamma probability model



stochastic phenomenon in question. In chapter 5 we will demonstrate how the histogram
can be used to make informed decisions with regard to the appropriate density. Taking
the Beta probability model as an example, we can see that it exhibits almost unlimited
flexibility with regard to different distributional shapes; the shapes shown in figure 3.22
indicate this flexibility. However, the other two continuous probability models, the
Gamma and Weibull also show enough flexibility in terms of shapes suggesting that they
cannot by themselves provide answers to the question of choosing the appropriate prob-
ability model. Those readers who are not convinced of that should take a look at figure
3.25 where two very different densities are contrasted to show that it will be impossible to
choose between them when faced with real data. In the dotted line we have the standard
Normal density and in the solid line we have a Weibull density of the form:

f(x;u)5 exp , u:5(a,b)[R1
2 , x.m[R,

with parameters (a53.34,b53.45,m523). The best way to distinguish between these
very similar distributional shapes is via index measures based on moments (see next
section) which are invariant to scale and location parameter changes; see the skewness
and kurtosis coefficients below.

In addition to the distributional shapes and the related parameters of the densities one
should consider the support of the density in making decisions about the appropriateness

52 1x 2 m

a 2
b

6bxb21
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of probability models. For example, in the case of the Beta model the support limits its
usefulness to cases where the data are percentages or can be expressed as such. For
example in the case of modeling data referring to exam scores it is often more realistic to
use the Beta and not the Normal distribution because all scores can be easily expressed in
the interval [0,1]; the Normal distribution has support (2`,`). On the other hand, if the
data can take only positive values without an obvious upper bound the modeler should
consider the other two probability models.

Finally, an important consideration in making a decision regarding the appropriate
model is the richness of the choice menu; the more families of densities we have to
choose from the higher is the likelihood that one of them will turn out to be appropriate
in a given situation. This is why in appendix A we collected some of the most important
probability models for reference purposes.

3.6 Parameters and moments

3.6.1 Why do we care?

In the previous section we introduced the concept of a probability model:

F5{fx(x;u), u[Q, x[RX},
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as a formalization of conditions [a]–[b] of a random experiment. Before we proceed to
formalize condition [c] (see next chapter), we make an important digression to introduce a
most convenient way to handle the unknown parameter(s) u of the probability model. In
the context of statistical inference and modeling in general, the most efficient way to deal
with the unknown parameters u is to relate them to the moments of the distribution. As
mentioned in the previous section one of the important considerations in choosing a
probability model is the shapes different families of densities can give rise to. These
shapes are obviously related to the unknown parameters but that is no comfort for the
modeler who has to choose such a model a priori because they are unknown! Hence, we
would like to use other information which is available a priori in making that choice.
Along with the histogram of the data we often have a number of numerical values, such
as arithmetic averages, from descriptive statistics. These numerical values are related to
what we call moments of the distribution and can be used to make educated guesses
regarding the unknown parameters and thus for the different distribution shapes.

The moments of a distribution are defined in terms of the mathematical expectation
of certain functions of the random variable X, generically denoted by h(X), as follows:

E[h(X)]5 h(x) · f(x;u)dx. (3.26)

In view of the fact that the integral is defined in terms of the density functions f(x;u), in
general E[h(X)] is some function of u, i.e.

E[h(X)]5g(u). (3.27)

By choosing specific forms of the function h(X), such as:

h(X)5Xr, h(X)5 |X | r, r51,2, …, h(X)5etx, h(X)5eitx, (3.28)

we obtain several functions of the form g(u) which involve what we call moments of
f(x;u).

In statistical modeling as well as statistical inference, it will be shown that the best way
to handle probability models (postulate a statistical model, estimate u, test hypotheses
about these parameters u, etc.) is often via the moments of the postulated probability
distribution.

3.6.2 Numerical characteristics

In what follows we will consider several special cases of (3.26) in order to discuss their
role in both modeling and inference.

Mean
For h(X) :5X, where X takes values in RX, the above integral gives rise to the mean of the
distribution:

E(X)5 x ·fx(x;u)dx, for continuous random variables, (3.29)E`

2`

E`

2`
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E(X)5
xi [ RX

xi · fx(xi;u), for discrete random variables. (3.30)

N that the only difference in the definition between continuous and discrete random
variables is the replacement of the integral by a summation. The mean is a measure of
location in the sense that knowing what the mean of X is, we have some idea on where
fx(x;u) is located. Intuitively, the mean represents a weighted average of the values of X,
with the corresponding probabilities providing the weights. Denoting the mean by:

m:5E(X),

the above definition suggests that m is a function of the unknown parameters u, i.e. m(u).

Examples

(i) For the Bernoulli distribution: m(u):5E(X)50·(1–u)11·u5u, and thus the mean
coincides with the unknown parameter.

(ii) In the case of the Poisson distribution:

f(x;u)5 , u[Q:5(0,`), x50,1,2,3, …,

m(u):5E(X)5 k 5u e2u 5u, since 5eu.

(iii) For the Uniform distribution (a continuous distribution):

f(x;u)5 , x[ [u 1,u 2], u:5(u 1,u 2), 2`,u 1,u 2,`,

m(u):5E[X]5 dx5 x2 5 .

(iv) For the Normal distribution:

f(x;u)5 exp , u :5 (m,s2)[R3R1, x[R, (3.31)

the parameter m is actually the mean of the distribution (hence the notation).

E(X)5 ∫`
2`x · exp dx5 ∫`

2` exp (s) dz5

E(X)5 ∫`
2`zexp dz1m ∫`

2` exp dz501m ·15m.

The second equality follows using the substitution z5 or x5sz1m, with

5s.
For random variables X1 and X2 and the constants a, b and c, E(.) satisfies the

following properties:
E1. E(c)5c,
E2. E(aX11bX2)5aE(X1)1bE(X2).
These properties designate E(.) a linear mapping.

dx
dz

1x 2 m
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Example
Let X1,X2, …, Xn be Bernoulli distributed random variables with mean u. Find E(Y) for
Y5 n

i51,Xi. Using [E2] we can deduce that: E(Y)5 n
i51E(Xi)5 n

i51u5nu.

Variance
For h(X):5 [X2E(X)]2 the integral (3.26) yields the variance:

Var(X):5E[(X2E(X))2]5 [x2m]2fx(x;u)dx,

where in the case of discrete random variables the integral is replaced by the usual
summation (see (3.29) and (3.30)). In our context the variance represents a measure of
dispersion (variation) around the mean.

Examples

(i) In the case of the Bernoulli model:

Var(X)5E(X2E[X])25(02u)2 · (12u)1(12u)2 ·u5u (12u).

(ii) In the case where X has a Normal distribution (see (3.31)), using the same substitu-
tion, x5sz1m, we can show that the variance coincides with the unknown para-
meter s2, i.e. Var(X)5E(X2)2 (E(X))25s2, since:

E(X2)5 ∫`
2`x2 · exp dx5 ∫`

2` exp (s) dz5

E(X2)5s2 ∫`
2` exp dz1 ∫`

2` exp dz1m2 ∫`
2` exp dz

E(X2)5s2101m25s21m2,

hence the notation X,N(m,s2). In figure 3.26 we can see the Normal density (with
m50) and different values of s2; the greater the value of s2 the greater the disper-
sion.

For independent random variables X1 and X2 and the constants a, b and c, Var(.) satisfies
the following properties:

V1. Var(c)50,
V2. Var(aX11bX2)5a2Var(X1)1b2Var(X2).

Bienayme’s lemma If X1,X2, …, Xn are Independently Distributed random variables:

Var( n
i51aiXi)5 n

i51ai
2Var(Xi).

This lemma constitutes a direct extension of property V2.

Example
Let X1,X2, …, Xn be independent Bernoulli distributed random variables with mean u.
What is the variance of Y5a1 n

i51Xi?o

oo
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Using V1 and Bienayme’s lemma, we can deduce that:

Var(Y)5 n
i51Var(Xi)5 n

i51u (12u)5nu (12u).

A particularly useful inequality which testifies that the variance provides a measure of
dispersion is that of Chebyshev.

Chebyshev’s inequality Let X be a random variable with bounded variance:

P( |X2E(X) |.«)# , for any «.0.

Standard deviation
The square root of the variance, referred to as the standard deviation, is also used as a
measure of dispersion:

SD(X)5 [Var(X)] .

The term standard deviation was first proposed by Pearson (1894) who used the notation
s5 [Var(X)] . This measure is particularly useful in statistical inference because it pro-
vides us with the best way to standardize any random variable X whose variance exists.
One of the most useful practical rules in statistical inference is the following:

A random variable is as “big” as its standard deviation (provided it exists!).

1
2

1
2

Var(X)
«2

oo
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Hence, when we need to render a random variable free of its units of measurement we
divide it by its standard deviation, i.e., we define the standardized variable:

X*:5 , where Var(X*)51.

which by definition is unitless. The term standard error is often used in place of standard
deviation. The standard error terminology can be traced back to the 18th century tradi-
tion of the theory of errors. Galton (1877) was the first to replace the term error with
deviation.

Although the mean and the variance are the most widely used moments, they do not
suffice to determine the main characteristics of a distribution. That is, although we know
the mean and the variance we know very little about the main features of the density
function. We can easily think of very different density functions which have the same
mean and variance. In order to be able to distinguish between such distributions we need
to consider higher moments.

3.7 Moments

In this section we consider two types of moments, the higher raw and central moments,
which constitute direct generalizations of the mean and variance, respectively. The
notion of moments in general was borrowed from classical mechanics where the mean,
E(X), is the abscissa of the center of gravity of the mass of the distribution and the vari-
ance, Var(X), represents the moment of inertia of the mass of the distribution with
respect to a perpendicular axis through the point x5E(X). The first six moments of the
Normal distribution were used by a number of analysts throughout the 18th century
including Gauss and Quetelet. The first to coin the term moments was Pearson (1893).

3.7.1 Higher raw moments

A direct generalization of the mean yields the so-called raw moments. For h(X):5Xr, r5

2,3,4, … the integral in (3.26) yields the raw moments defined by:

mr9 (u):5E(Xr)5 xrfx(x;u)dx, r51,2,3, …

Examples

(i) In the case of the Bernoulli distribution:

mr9 (u)5E(Xr)50r· [12u]11r· u5u, for all r51,2,3,4, …

That is, all the raw moments are the same. The second raw moment is often useful
in deriving the variance using the equality:

Var(X)5E[(X2E(X))2]5E(X2)2 [E(X)]2.

We can verify this in the Bernoulli case where E(X2)5u:

Var(X)5u2u25u (12u).

E`

2`

  
X

[Var(X)] 
1
2
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(ii) In the case where X is Normally distributed with density (3.31):

E(Xr)5

(iii) Consider the exponential random variable X with a density function:

fx(x;u)5u e2ux, x.0, u.0,
mr9 (u):5E(Xr)5 ∫`

0 xrue2uxdx.

Using the change of variables u5ux, dx5 du:

mr9 (u)5 e2udu5 u(r11)21e2udu5 .

I . In connection with the raw moments, it is interesting to note that when the
fourth moment exists so do the first, second and third. The general result is given in the
following lemma.

Lower moments lemma If mk9:5E(Xk) exists for some positive integer k, then all the raw
moments of order less than k also exist, i.e.:

E(Xi),`, for all i51,2, …, k21.

3.7.2 Moment generating function

A particularly convenient way to compute the raw moments is by way of the moment
generating function (mgf) defined using the integral in (3.26) with h(X)5etX, i.e.

mX(t):5E(etX)5 etXf(x)dx, for t[(2h,h), h.0,

provided E(etX) exists for all t in some interval (2h,h); for discrete random variables the
aforementioned change of integrals and summations holds (see Gnedenko (1969)).

The idea behind this mathematical device is to pack the moments into capsule form
which would be immediately accessible. As shown below the mgf can be used to generate
these moments by simple differentiation instead of integration.

Examples

(i) Let X be a Poisson distributed random variable. Then:

mX(t)5 etX 5e2u 5e2ueuet5eu(et21), since 5eu.

(ii) Let X be a random variable which is Uniformly distributed over the interval [a,b]:

mX(t):5 etx dx5 , for tÞ0. (3.32)ebt 2 eat

(b 2 a)t1 1
b 2 a2Eb

a

1ur

r!2o
`

r50

(etu)r

r!o
`

r50
1e2uur

r! 2o
`

r50

E`

2`

r!
ur!E`

2`

1
ur

ur

urE`
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50,
(1·3···(r 2 1))s r,

  
for r 5 3,5,7,…
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The intuition behind the definition of mX(t) is as follows. In view of the fact that
Maclaurin’s series expansion of etX takes the form:

etX511Xt1 `
r 50 , (3.33)

we can conclude that if mX(t) exists for t[(2h,h), and some h.0, then we can write:

mX(t):5E(etX)5E `
r 50 ,

and interchanging the order of expectation and summation (we use some hand waving
here), yields:

mX(t):5E(etX)5 `
r 50E(Xr) , for t[(2h,h), h.0.

This suggests that, assuming that mX(t) exists, we can recover the raw moment
mr9:5E(Xr) as the (r11)th term in the above expansion, either directly when the mgf can
be expanded as a power series in powers of t, or indirectly using differentiation (there is
some hand waving here as well) via:

E(Xr)5 mX(t)*
t50

:5mX
(r)(0), r51,2,3, …

m19:5E(X)5 * t50,m29:5E(X2)5 * t50, …, mr9:5E(Xr)5 * t50 .

The intuition behind this result is the following: looking at (3.33) we can see that by
differentiating mX(t) r times, the terms up to E(Xr) disappear and the latter becomes:

E(Xr) 5E(Xr).

The terms with power higher than r involve t, which means that when we substitute t50
they disappear, leaving us with just E(Xr).

Example
For a Poisson distributed random variable X, mX(t)5eu (et21), and thus:

E(X)5 mX(t) * t505eu(et21)uet * t505u,

E(X2)5 mX(t) * t505eu(et21)u et1eu(et21)u2e2t * t505u21u.

Uniqueness lemma An important fact about the mgf is that when it exists (and it does
not always), it is unique in the sense that two random variables X and Y that have the
same mgf must have the same distribution, and conversely.

Using this lemma we can prove a very useful result which provides the basis for simu-
lating random variables with specific distributional features. It enables us to use random
numbers generated from a Uniform distribution as the basis for generating random
numbers for several continuous distributions (see chapter 5).

d2
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Probability integral transformation lemma For any continuous random variable X, with
cdf FX(x) (irrespective of its form), the random variable defined by Y5FX(X) has a
uniform distribution over the range (0,1), i.e.

Y5FX(X),U(0,1). (3.34)

Proof The mgf of Y takes the form:

mY(t):5E(etY)5E(etF(X))5
2
∫̀
`

etF(x)f(x)dx *`

2`5 ,

since F(`)51 and F(2`)50. Looking at the form of the mgf, and comparing it with
(3.32), we can see that the random variable Y is uniformly distributed over the interval
(0,1).

There are two functions related to the moment generating functions, the cumulant gener-
ating and characteristic functions, considered next.

Cumulants*
A generating function related to mX(t) is the cumulant generating function, defined by:

cX(t)5 ln (mX(t))5 , for t[(2h,h), h.0,

where kr, r51,2,3,… are referred to as cumulants (or semi-invariants). It is interesting to
note that:

k15E(X)5 * t50, k25Var(X)5 * t50,

and the cumulants are directly related to the raw moments. The first few cumulants are
related to the raw moments as follows:

k15m19,
k25m292(m19)2,
k35m3923m29 m1912 (m19)3,
k45m4924m39 m1923(m29)2112m29 (m19)2–6(m19)4,
k55m5925m49 m19210m29 m39120m39 (m19)2130(m29)2m19260m29 (m19)3124(m19)5.

From this we can see that the first two cumulants are the mean and the variance.
The cumulants are often preferable to the moments for several reasons including the

following:

(i) In the case of the Normal distribution: kr50, r53,4,…
(ii) The rth cumulant is rth-order homogeneous: kr(aX)5arkr(X), r51,2,…
(iii) The rth cumulant is a function of the moments of order up to r,
(iv) For independent random variables, the cumulant of the sum is the sum of the

cumulants:

kr(
n
k51Xk)5 n

k51kr(Xk), r51,2, …oo

d2cX(t)
dt2

dcX(t)
dt

o
`

r51
 kr 

tr
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et 2 1
t

etF(x)

t
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Characteristic function*
The existence of the mgf depends crucially on mX(t) being finite on the interval (2h,h).
In such a case all the moments E(Xr) are finite for all r. In cases where E(Xr) is not finite
for some r, mX(t) is not finite on any interval (2h,h). To be able to deal with such cases we
define the so-called characteristic function (see Cramer (1946)):

wX(t):5E(eitX)5 eitXf(x)dx5mX(it), for i5 .

which, in contrast to mX(t), always exists since for all t, wX(t) is bounded:

|wX(t) |#E( |eitX | )51,

and thus, for many random variables, we can find the characteristic function using the
moment generating function.

The characteristic function is related to the moments (when they exist!) via the series:

wX(t)5
`

r50 mr9, for t[(2h,h), h.0. (3.35)

There is also a direct relationship between the characteristic function on one side and
the cumulative distribution (cdf) and density functions on the other, first noted by
Lyapunov in the context of limit theorems.

Inversion theorem Let FX(x), f(x), and wX(t) denote the cdf, the density, and character-
istic functions of a random variable X, respectively.

(a) Assuming that (a,b) are two real numbers (a,b) at which F(x) is continuous:

FX(b)2FX(a)5 lim
n→`

wX(t)dt.

(b) If ∫`
2` |wX(t) |,`,then, FX(x)5 ∫x

2` f(u) du and f(x)5 ∫`
2`e2itxwX(t)dt.

(c) wX(t) determines FX(x) uniquely in the sense that (see Karr (1993)):

FX(x)5
z→2`
lim lim

n→`
wX(t)dt .

3.7.3 The problem of moments*

As argued above, the primary usefulness of moments is that they enable us to handle distri-
butions with unknown parameters for both modeling and inference purposes. The ques-
tion that comes to mind at this stage is when do the moments {mk9:5E(Xk), k51,2, …},
assuming they exist, determine the distribution uniquely? This question is of paramount
importance because if the moments do not determine the distribution uniquely, then the
usefulness of the moments is reduced. Hence, the questions which arise are the following:
given the set of moments:

{mk9:5E(Xk),`, k51,2, …},

21e2itz 2 e2itb

it 2En

2n

1
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1e2ita 2 e2itb
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(i) existence: Is there a function f(x)$0, such that: mk95 ∫`
2`xrf(x)dx?

(ii) uniqueness: Is the function f(x) unique?

i.e., does ∫`
2`xrf(x)dx5 ∫`

2`xrg(x)dx ⇒ f(x)5g(x)?

In general, the answer to both questions is no! Under certain conditions, however, the
answer is yes. Let us see how these conditions are related to the convergence of the series
in (3.35).

Lemma 1 A useful result on the existence of the moments is the following.
A sufficient (but certainly not necessary) condition for the existence of moments is that
the support of the random variable X is a bounded interval, i.e., RX:5 [a,b], where
2`,a,b,`. In this case all moments exist:

mk95 xrf(x)dx,`, for all k51,2, …

In cases where the range of values of the random variable in question is unbounded we
need to check the existence or otherwise of the moments.

A sufficient condition for the uniqueness problem is provided by lemma 2.

Lemma 2 The moments {mk9, k51,2, …} (assuming they exist) determine the distribu-
tion function uniquely if:

lim
n→`

sup (2n)21(m92n) ,`.

N that on many occasions we will use the abbreviations sup and inf which stand for
supremum and infimum, respectively. These are essentially the well-known max and min
which stand for maximum and minimum with one qualification. Sometimes the maximum
or/and the minimum of a set of numbers might not exist, e.g., the set (0,1) does not have
either a minimum or a maximum. In such cases we use inf and sup, which denote the largest
lower and the smallest upper bounds, respectively, both of which always exist! The less
mathematically inclined can interpret them as min and max, without worrying too much.

A useful check for a unique determination of the distribution function via the moments
is provided by the Carleman condition:

`
n51 [m92n]2 5`.

A necessary and sufficient condition for the uniqueness problem in the case of
continuous random variables is provided by lemma 3.

Lemma 3 The moments {mk9, k51,2,…} of the continuous random variable X (assum-
ing they exist) with density function f(x) determine its distribution function uniquely if
and only if:

dx52`.

This is known as the Krein condition; see Stoyanov (1987).
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Example
Consider the case where the random variable X has a log-Normal distribution with density:

f(x)5 exp 2 (ln x)2 , x[R1.

It can be shown that:

mk95e , k51,2, …,

and thus:

`
k51 ek2 2

5 `
k51 e2 ,`,

i.e., the Carleman condition does not hold. However, in view of the fact that the Carleman
condition is only sufficient we cannot conclude that the moments do not determine the dis-
tribution uniquely. On the other hand, since the Krein condition does not hold, i.e.

2 ln x2 (ln x)2 dx,`,

we can conclude that the log-Normal distribution is not determined by its moments
because the Krein condition is both necessary and sufficient; see Heyde (1963).

The bottom line
The above lemmas suggest that, in general, moments do not determine distributions
uniquely even if we use an infinite number of them. In addition, we know that, in general,
no distribution is determined by a finite number of moments. In view of the fact that for
modeling and statistical inference purposes we can only deal with a small number of
moments (and certainly finite), the problem of moments appears insurmountable.
However, if we are prepared to limit ourselves to a specific class of distributions the
problem becomes tractable.

Example
Within the Pearson family we require at most four moments to determine the particular
distribution (see chapter 12).

A   : moment matching can be very misleading!
Consider the distribution as specified below (see Romano and Siegel (1986)).

x 2 0

f(x)
(3.36)

We can show that the random variable whose distribution is defined by (3.36) has
moments which match the first five moments of Z,N(0,1), since:

E(X)5 2 50, E(X2)53 13 51,

E(X3)5
3

2
3

50, E(X4)59 19 53,

This example might seem a bit extreme but it should serve as a cautionary note.
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3.7.4 Higher central moments

The notion of the variance can be extended to define the central moments using the
sequence of functions h(X):5(X2E(X))r, r53,4,… in (3.26):

mr(u):5E(Xr)5 (x2m)rf(x;u)dx, r52,3,…

Instead of deriving these moments directly, it is often more convenient to derive the
central moments mr using their relationship with the raw moments and the cumulants
(see Stuart and Ord (1994)):

m25m292(m19)2, k25m2,
m35m3923m29 m1912(m19)3, k35m3,
m45m4924m39 m1916m29 (m19)223(m19)4, k45m423m2

2.

Examples

(i) For the Poisson density: f(x;u)5 , u[(0,`), x50,1,2,…

we already know that m5u. From a previous example above, we know that:

cX(t)5 ln (mX(t))5u (et21)5u 11t1 1 1 ··· .

Hence, we can deduce that:

kr5 * t505u, r51,2, …

k15u, k25u, k35u, k45u, ⇒ m25u, m35u, m453u21u.

(ii) In the case where the random variable X is Normal with density (3.31):

m195m, m25s2, m350, m453s4, mr5
0, r odd,5 , r even,

k15m, k25s2, k350, k450, kr50, r55,6, …

In direct analogy to the moment generating function (mgf) the central mgf is defined by:

MX(t):5E[e(X-m)t]5eX
2mtmX(t)511 `

r51mr , for t[(2h,h), h.0,

provided it exists.
One of the main uses of the central moments is that they can be used to give us a more

complete picture of the distribution’s shape. By standardizing the above central moments
we define a number of useful measures which enable us to get a more complete idea of
the possible shape of a density function. The first important feature of a distribution’s
shape is that of symmetry around a given point a; often a5E(X).

Symmetry A random variable X with density f(x) is said to be symmetric about a point a
if the following condition holds:

f(a2x)5 f(a1x), for all x[RX,

tr

r!o

r!s r

(·5r)!2(·5r)

drcX(t)
dtr

2t3

3!
t2

2!1

1e2uux

x! 2

E`

2`
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or more generally in terms of the cdf FX(x):

FX(a2x)1FX(a1x)51, for all x[R.

The skewness coefficient
The first index of shape, designed to give us some idea about the possible asymmetry of a
density function around the mean, is the skewness coefficient defined as the standardized
third central moment, introduced by Pearson (1895):

Skewness: a3(X)5 .

N that 5 [Var(X)] denotes the standard deviation. If the distribution is sym-
metric around the mean then, a350; the converse does not hold!

Example
Looking at figure 3.10 we can see that the Normal density (3.10) is symmetric and thus
a350; the same is true for the Uniform density as shown in figure 3.12. In figure 3.27,
however, we can see two positively skewed density functions (a3.0). They both repre-
sent the same density, the Beta density:

f(x;u)5 , u:5(a,b)[R1
2, 0,x,1,

for different values of the parameters (a,b); (a51,b54) and (a52,b54). As shown in
appendix A the skewness coefficient of the Beta distribution is:

a35 .

In figure 3.28 we can see two negatively skewed density functions (a3,0), representing
the same Beta density with parameters: (a54,b51) and (a54,b52). It is instructive to
compare figures 3.27–3.28 with 3.22.

A   : a350 does not imply that the distribution is symmetric!

x 22 1 3

f(x) 0.4 0.5 0.1
(3.37)

E(X)5(22)(0.4)11(0.5)13(0.1)50, E(X3)5(22)3(0.4)11(0.5)133(0.1)50.

Hence, a350 despite the fact that the above distribution is clearly non-symmetric (see
Romano and Siegel (1986)). This example brings out the importance of looking at the
graphs of the distributions and not just at some summary measures; the latter are no
substitutes for the graphs themselves!

Kurtosis
The skewness coefficient enables the modeler to distinguish between a symmetric and a
non-symmetric distribution but that still leaves us with the problem of distinguishing

2(a 2 b)Ï(a 1 b 1 1)
(a 1 b 1 2)Ïab

xa21(1 2 x)b21

B[a,b]

1
2Ïm2

m3

(Ïm2)
3
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between two symmetric distributions with different shapes, such as the Normal and the
Uniform densities shown in figures 3.10 and 3.12. Looking at these two graphs we can
see that these two densities differ with respect to their peaks and their tails. The Normal
has a bell-shaped peak but the Uniform has a flat peak (no peak!). The Normal has
longish tails extending to infinity on both sides but the Uniform has no tails. Intuition
suggests that one way to distinguish between them is to devise a measure which measures
peakedness in relation to tails. The kurtosis coefficient is such a measure, originally intro-
duced in Pearson (1895).

The kurtosis is a standardized version of the fourth central moment:

Kurtosis: a4(X)5 .
m4

(m2)
2
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Figure 3.28 Negatively skewed densities
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The term comes from the Greek word kýrtvsh which means curvature of the spine and
purports to be a measure of peakedness in relation to the shape of the tails. N that in
some books the measure used is (a423) referred to as excess kurtosis (the standardized
fourth cumulant). In the case of the Normal distribution (3.31) a453, and it is referred
to as a mesokurtic distribution; meso comes from the Greek word m«́so§ which means
middle. In the case where the distribution in question has a flatter peak than the Normal
(a4,3), we call it platykurtic, and in the case where it has a more pointed peak than the
Normal (a4.3), we call it leptokurtic; platy and lepto come from the Greek words
platý§ and leptó§ which mean wide and slim, respectively; these terms were introduced
by Pearson (1906).

Intuitively, we can think of the kurtosis coefficient as a measure which indicates
whether a symmetric distribution when compared with the Normal has thicker tails and
more pointed peaks or not. Viewing the Normal density as a bell-shaped pile made of
plaster the sculptor shaves off part of the shoulders and adds it to the tails and the peak
to produce a leptokurtic distribution.

Examples
(i) Leptokurtic In figure 3.29 we compare the standard Normal density (dotted line) and
a leptokurtic density, the standard Student’s t density with n55:

f(x)5 11
2 (n11)

, n.2, x[R.

The Normal density differs from the Student’s t in two respects:

(a) The tails of the Student’s t are thicker,
(b) The curvature of the Student’s t is more pointed.

 : Figure 3.29 is a bit misleading because, although both densities are standard-

ized, the Normal has unit standard deviation but the Student’s t is equal to . In

figure 3.30 the same curves are shown with unit standard deviations. This graph is better
suited when looking at real data plots (see chapter 5).

(ii) Leptokurtic In figures 3.31–3.32 we compare the Normal density (dotted line) with
another leptokurtic density, the Logistic density:

f(x;u)5 , u:5(a,b)[R3R1, x[R

with parameters (a50,b50.56) and (a50,b50.628), respectively.

As shown in appendix A the kurtosis coefficient of the Logistic distribution is a454.2.
Figure 3.32 shows how difficult it can be to distinguish the two distributions in empirical
studies by just eye-balling them.

exp52 1x 2 a

b 26
b 2 11 1 exp52 1x 2 a

b 222

Î n

n 2 2

1
22x2

n1
G31

2
 (n 1 1)4(np)2

1
2

G31
2

n4
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(iii) Platykurtic In figure 3.33 we compare the Normal density (in dotted line) with a
platykurtic density, the Pearson type II with n53:

f(x)5 11
2 (n11)

, 2c#x#c, c2:52(n12).

The Normal density differs from the Pearson type II in exactly the opposite way than it
differs from the Student’s t. In particular

(a) the tails of the Pearson II are slimmer,
(b) the curvature of the Pearson II is less pointed.

(iv) In figure 3.34 we can see the graph of a symmetric Beta density with parameters
(a54,b54):

1
22x2

nc21
G31

24·G[n 1 1]p2
1
2

G31
2

1 n 1 14·c

120 The notion of a probability model

Figure 3.29 Student’s t versus Normal densities normalized by sx

Figure 3.30 Student’s t versus Normal densities normalized so that Var(X)51
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Figure 3.31 Logistic (a50, b50.56) versus Normal (0,1) densities

Figure 3.32 Logistic (a50, b50.628) versus Normal (0,1) densities

Figure 3.33 Pearson II versus Normal densities



f(x;u)5 , u:5(a,b)[R1
2 , 0,x,1.

Again we can see the same bell shape as in the case of the Normal, the Student’s t, and
the Pearson type II densities but in contrast to the Student’s t it is platykurtic since:

a45 ,

and thus for any a5b, a4#3.

(v) Polykurtic Consider the power Exponential (or error) distribution whose density is:

f(x;u)5 e , u:5(m,b,d)[R3R1
2, x[R. (3.38)

This is a symmetric distribution with a350 which includes the Normal (d51) and
Laplace (d52) distributions (see appendix A). Moreover, it provides a convenient
parameterization of the kurtosis coefficient because it nests all three forms of kurtosis
via the parameter d. In view of the fact that:

a45 ,

(a) for d51, f(x;u) is mesokurtic,
(b) for d,1, f(x;u) is platykurtic,
(c) for d.1, f(x;u) is leptokurtic (see figure 3.35).

(vi) Platykurtic It is instructive to return to figure 3.25 where we compared a Weibull
density with parameters (a53.345,b53.45,m523) and a standard Normal density.
Looking at the graphs of the two densities it is obvious that distinguishing between them
is rather difficult. However, using the kurtosis coefficient we discover that the Weibull is
platykurtic (a452.71) as opposed to the Normal (a453).

G[5d/2] · G[d/2]
G[3d/2]2

52
1
2Ux 2 m

b U2
d 6b2122(d

2 11)

G31 1
d

24

3(a 1 b 1 1)[2(a 1 b)2 1 ab(a 1 b 2 6]
ab(a 1 b 2 2)(a 1 b 2 3)

xa 2 1(1 2 x)b 2 1

B[a,b]
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Figure 3.34 Beta (a54, b50.4) density



In conclusion, it must be said that the usefulness of the kurtosis coefficient is reduced in
the case of non-symmetric distributions because it does not have the same interpretation
as in the symmetric cases above (see Balanda and MacGillivray (1988)).

Before we proceed to consider other numerical characteristics of distributions, it is
instructive to discuss the derivation of the moments in cases where the distribution
involves no unknown parameters.

Examples

(i) Consider the discrete random variable X with a density given below:

x 0 1 2

f(x) 0.3 0.3 0.4
(3.39)

E(X)50(0.3)11(0.3)12(0.4)51.1, E(X2)502(0.3)112(0.3)122(0.4)51.9,

E(X3)503(0.3)113(0.3)123(0.4)53.5, E(X4)504(0.3)114(0.3)124(0.4)56.7.

Var(X)5 [021.1]2(0.3)1 [121.1]2(0.3)1 [221.1]2(0.4)50.69,

Var(X)5E(X2)2 [E(X)]251.9021.2150.69,

E{(X2E(X))3}5 [021.1]3(0.3)1 [121.1]3(0.3)1 [221.1]3(0.4)50.108,

E{(X2E(X))4}5 [021.1]4(0.3)1 [121.1]4(0.3)1 [221.1]4(0.4)50.7017,

a35 50.18843, a45 51.4785.

(ii) Consider the continuous random variable X with density function:

f(x)52x, 0,x,1.

E(X)5 ∫ 1
02x2dx5 x3 * 1

05 , E(X3)5 ∫ 1
02x4dx5 x5 * 1

05 ,

E(X2)5 ∫ 1
02x3dx5 x4 * 1

05 , Var(X)5E(X2)2 [E(X)]25 2 5 .1
18
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Figure 3.35 Power exponential: polykurtic density
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Invariance of skewness and kurtosis We conclude the discussion of the skewness and
kurtosis coefficients by reiterating that their usefulness stems from the fact that they are
invariant to location and scale changes. That is, for any random variable X whose first
four moments exist:

a3(X)5a3(a1bX) and a4(X)5a4(a1bX).

3.7.5 Other numerical characteristics

It is sometimes the case that for certain random variables, the moments discussed above
do not make sense. For example, in the case where the random variable X denotes relig-
ion of a person: 15Christian, 25Muslim, 35Jewish, 45Buddhist, the mean and vari-
ance do not make much sense. In addition, sometimes the mean and variance do not
exist, as in the case of the Cauchy distribution (see next section). In such cases we need to
consider other numerical characteristics.

Measures of location
(1) The mode, or modal value m0, is that particular value of the random variable which
corresponds to the maximum of the density function; proposed by Pearson (1894).

Examples
(i) For the density function given in (3.39) the mode is equal to 2.

In the case where f(x) is differentiable the mode can be derived as the solution of:

50, subject to *x5m0
,0. (3.40)

(ii) For a log-Normal random variable X with density function:

f(x;u)5 exp , u:5(m,s2)[R3R1, x[R1, (3.41)

the mode can be obtained using (3.40):

5 exp exp 50,

⇒ 50 ⇒ 51, or (m2s2)5 ln x.

In view of the fact that *x5m0
,0, the mode of the density is: m05exp (m2s2).

In figure 3.36 we can see the mode of the log-Normal density LN (m51,s50.7).

In figure 3.37 we can see the mode of the Cauchy density C(a50,b51).

(2) The median of a random variable X is that particular value which divides the proba-
bility into two equal halves, i.e., it corresponds to x (assuming it is unique) such that:

P(x,x )#0.5 and P(x#x )$0.5.

In the case where the cdf is continuous and strictly increasing, x is defined by:

F(x )50.5 and x is unique.1
2
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Examples
(i) For a Normal random variable the median coincides with the other two measures of

location:

mean5median5mode.

N that for symmetric distributions in general, the only equality holding is:

mean5median.

(ii) For a log-Normal random variable the median is given by the value m such that:

∫
m

0
exp 2 dx5 , substituting y5 ln x,

ln m

∫
2`

exp 2 dx5 , this holds for ln m5m.1
261y 2 m

s 2
21

251
sÏ2p

1
261ln x 2 m

s 2
21

251
xsÏ2p
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Figure 3.36 Mode of log-Normal density

Figure 3.37 Mode of Cauchy density



Hence, the median is:

x 5em.

The median of the log-Normal density is shown in figure 3.36 as the spot in the
middle of the black rectangle (m51,s50.7 and thus x 52.71828).

The median is an important measure of location because sometimes the mean does not
exist (see the Cauchy distribution below) but the median always does. Extending the
notion of a median to other values in the interval [0,1], not just , we define what is
know as a quantile.

(3) Quantiles The pth quantile, denoted by xp, is defined as the smallest number satisfy-
ing the relationship:

FX(xp)$p, for p[ [0,1].

More formally, the pth quantile is defined by:

xp5FX
2(p):5

x [ RX
inf {x :FX(x)$p}, for p[ (0,1). (3.42)

As argued above,
x [ RX

inf ; is just a glorified minimum. This definition suggests that in the

case where the cumulative distribution function (cdf) is continuous and strictly increas-
ing, xp is unique and is defined by:

F(xp)5p.

The value p is known as the pth percentile and the value xp the corresponding quantile.
It is interesting to  that the notion of a quartile was introduced by McAlister

(1879), the notion of a median by Galton (1883), and that of a percentile by Galton
(1885).

Beyond the median there are another two quantiles of particular interest. The lower
quartile ( the difference in the name) and the upper quartile are defined by:

x 5F2(0.25), x 5F2(0.75).

Examples
(i) In the case of the standard Normal distribution (N(0,1)):

x 520.6745, x 50.6745.

Hence, for an arbitrary Normal distribution (N(m,s2)):

x 5m20.6745s, x 5m10.6745s.

(ii) It is well known that the Cauchy distribution (C(a,b)) has no moments. Consider
the Cauchy distribution with cdf, quantile, and density functions:

F(x;a,b)5 1 tan21 , F21(x;a,b)5a1b tan p x2 ,

f(x;a,b)5 , a[R,b[R1, x[R.1
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The function defined by (3.42) is interesting in its own right and thus we will take a short
digression to discuss its properties in some detail; see Karr (1993).

Quantile function The function defined by (3.42) in the form of:

FX
2(.) : (0,1) → RX,

is known as the quantile function. Looking at the definition it is not very difficult to see
that the FX

2(.) is not the same as the ordinary inverse function of the cdf FX(.) since the
inverse exists only in cases where FX(.) is one-to-one and onto, i.e., when FX(.) is continu-
ous and strictly increasing. It does constitute, however, a kind of generalized inverse
which exists even in cases where the ordinary inverse function does not exist. When the
ordinary inverse function exists the two coincide in the sense that:

FX
2(.)5FX

21(.).

As implied above, F2(.) exists even in cases where F(.) is neither continuous nor strictly
increasing. Intuitively, F2(.) jumps where F(.) is flat and F2(.) is flat at the points where
F(.) jumps. Because of its importance we note several useful properties of the quantile
function:

Q1. FX
2(p)#x if and only if p#FX(x) for all x[RX and p[(0,1),

Q2. FX
2(.) is increasing and left continuous,

Q3. If FX(.) is continuous, FX(FX
2(p))5p.

Example
In figures 3.38–3.39 we can see the Cauchy cdf F(x;0,1) and the corresponding quantile
function:

G(x;0,1):5F21(x;0,1).(a50,b51).

We can show that:

dx5 , dx5 , dx5 .

That is, the median is equal to a, the lower quartile is equal to (a2b), and the upper
quartile is equal to (a1b). These quantiles can often be used instead of the moments
when using the Cauchy distribution. In figure 3.37 we can see the two quartiles shown
with the little triangles on either side of the mean.

In relation to the quantile function we note a very useful result which can be viewed as
the converse of the probability integral transformation mentioned above.

The inverse probability integral transformation For any continuous random variableX,
with a cdf FX(x) such that u5FX(x) is invertible and x5FX

21(u).

(a) For the random variable U5FX(X):

U5FX(X),U(0,1). (3.43)
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(b) Let U,U(0,1) and define X5FX
21(U). Then X has a distribution with cdf FX(.).

N that, in contrast to the probability integral transformation, the inverse trans-
formation result does not assume that F(.) is continuous.

The above result provides a most remarkable way to generate random variables with a
given distribution. Its usefulness can be easily seen in cases where F(x) is invertible (see
chapter 5).

Example
Consider the case where U,U(0,1) and we want to transform it into an exponentially
distributed random variable X with:

FX(x)51–e2ux, x.0.
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Figure 3.38 Cauchy cdf  (a50, b51)

Figure 3.39 Cauchy quantile function



Using (3.43) together with the specific form of F(x), we can deduce that u51–e2ux,
e2ux512u, x52 ln (12u), and thus:

X5FX
21(u)52 ln (12u), u[(0,1).

This result can be used to simulate exponentially distributed random variables using uni-
formly distributed random variables; see chapter 5.

Measures of dispersion
(1) The Range, is defined to be the difference between the largest and the smallest value
taken by the random variable in question, i.e.

R(X):5Xmax2Xmin.

Example
In the case of the Uniform distribution (U(a,b)):

R(X)5Xmax2Xmin5b2a

(2) The Interquartile Range, is defined to be the difference between the lower and upper
quartiles:

IQR(X):5(x3/4–x1/4).

Examples
(i) In the case of the Normal distribution (N(m,s2)):

IQR(X):5(x3/42x1/4)5m10.6745s2m10.6745s52(0.6745)s.

In figure 3.40 we can see the Normal cdf for N(0,1) with the following quantiles

q x F(x) f(x)

x0.05 21.645 0.05 0.103
x0.25 20.6745 0.25 0.318
x0.75 20.6745 0.75 0.318
x0.95 21.645 0.95 0.103

In figure 3.41 we can see these quantiles in relation to the density function. N that the
maximum of the density function is just 50.39894.

(ii) In the case of the Cauchy distribution considered above, we can easily see that:

IQR(X)5(a1b)2(a2b)52b.

This can be used as a measure of dispersion since the variance does not exist.

(3) The quartile deviation is defined as half of the interquartile range i.e.:

q(X):5 (x3/42x1/4).21
21

1
sÏ2p

1
0

1
u
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Examples
(i) For the Normal distribution (N(m,s2)): q(X):5 (x3/42x1/4)5(0.6745)s.

(ii) For the Cauchy distribution (C(a,b)): q(X):5 (x3/42x1/4)5b.

(4) The coefficient of variation, proposed by Pearson (1896), is defined to be the ratio of
the standard deviation to the mean of the random variable in question, i.e.

cv(X):5 .

Example
In the case of the Normal distribution (N(m,s2)):

cv(X):5 .s

m

{Var(X)}
1
2

E(X)

21
21
21

21
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Figure 3.40 Normal cdf: quantiles

Figure 3.41 Normal density: quantiles



3.8 Inequalities

A very important chapter of probability theory is that of probabilistic inequalities. The
primary role of these inequalities is to provide upper and lower bounds for the evalua-
tion of probabilities associated with random variables by utilizing their moments. In a
way these inequalities provide ways for us to sidestep the distribution of certain random
variables but still be in a position to make probabilistic statements relating to these
random variables; see Shiryayev (1984), Karr (1993) and Loeve (1963).

General Chebyshev’s inequality Let X(.) : S → RX:5(0,`) be a positive random variable
and let g(.) : (0,`) → (0,`) be a positive and increasing function. Then, for each «.0:

P(g(X)$«) # . (3.44)

We note that the Chebyshev inequality encountered above is a special case of (3.44).
Other such special cases are stated below. N at the outset that the there is no stan-
dard terminology for these inequalities.

Markov’s inequality Let X be a random variable such that E(|X | p),`, for p.0:

P(|X |$«) # .

The well-known saying that “there is no free lunch” can be illustrated by using this
inequality to show that by postulating the existence of higher moments we can improve
the upper bound.

Example
Let {Xn}`

n51 :5{X1,X2,…, Xn…} be a sequence of Independent and Identically Bernoulli
distributed (IID) random variables. It can be shown that:

Sn:5
n
k51Xk,Bi(nu,nu (1–u)).

Using Chebyshev’s inequality yields:

P(|n21Sn–u |.«) # .

On the other hand, using Markov’s inequality for the fourth moment:

P(|Y–E(Y) |4.«) # ,

noting that E(|n21Sn-u |4)5nu [ 113u (1–u)(n–2)] yields:

P(|n21Sn-u |.«) # .

As can be seen, the estimate of the upper bound given by Markov’s inequality is less
crude because it utilizes more information in relation to the existence of moments.

Bernstein’s inequality Let X(.) : S → RX:5(0,`) be a positive random variable such that
E(etX),` for some t[ [0,c], c.0:

P(X$«) # #
0#t#c
inf {e2tXE(etX)}.E(etX)

etX

3
(16)n2«4

E( |Y 2 E(Y) |4

«4

u(1 2 u)
n«2

o

E( | X | p)
«p

E(g(X))
g(«)

Inequalities 131



Jensen’s inequality Let w (.) :R → R be a convex function, i.e.:

lw (x)1(1–l)w (y) $ w (lx1(1–l)y), l[ (0,1), x,y[R.

Assuming that E( |X | ),`, then:

w (E(X)) # E(w (X))

This inequality can be used to derive a whole series of inequalities.

Lyapunov’s inequality Let X be a random variable such that E( |X | p),`, for 0,q,p:

E(|X | q) # E(|X | p) .

As a consequence of this inequality is the following sequence of inequalities:

E(|X | ) # E(|X |2) # E(|X |3) # ···# E(|X | n) .

Holder’s inequality Let X and Y be random variables such that E(|X | p),` and 
E(|Y | q),`, where 1,q,`, 1,p,`, 51, then:

E(X ·Y) # E(|X | p) ·E(|Y | q) .

Minkowski’s inequality Let X and Y be random variables such that E(|X | p),` and 
E(|Y | p),`, where 1#p,`, then:

E(|X1Y | p) # [E(|X | p) 1E(|Y | p) .

The above inequalities will be used extensively in the context of the limit theorems con-
sidered in chapter 9.

3.9 Summary

The basic aim of this chapter has been the metamorphosis of the abstract probability
space (S,I,P(.)) into an operational probability model. The end result is a family of densi-
ties indexed by a small number of unknown parameters:

F5{f(x;u), u[Q, x[RX}.

This forms the foundation of the mathematical framework upon which the modeling
and statistical inference will be built. The basic elements of the probability model being
(i) the density function whose shapes will prove important in modeling, (ii) the parame-
ter space which also plays an important role in statistical inference, and (iii) the support
of the density. All three elements play important roles in choosing an appropriate proba-
bility model. In view of the fact that the distributional shapes depend crucially on the
unknown parameters, we would like some way to assess the shapes suggested by the
observed data before we choose the appropriate probability model without having to
know the parameters. At the outset we can use descriptive statistics techniques, such as
the histogram, as well as calculate features of the observed data such as the arithmetic

1
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1
p

1
p

1
q

1
p

1
p

1
1
q

1
n

1
3

1
2
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average. As shown in chapter 5 these are directly related to the distributional shapes
taken by density functions and the so-called moments of the distribution. That is the
reason we digressed to discuss the moments of a distribution and how they relate to the
unknown parameters.

The relationship between the unknown parameters u of the probability model and the
moments of the distribution in question is given by:

E(Xr):5 xr · f(x;u)dx5gr(u), r51,2,…

The concepts introduced during this digression will prove indispensable for modeling
purposes because they represent crucial parts of the foundation.

In the next chapter we consider the metamorphosis of the abstract sampling space
Gn

IID into an operational sampling model in terms of random variables: a set of random
variables X:5(X1,X2, …, Xn) with a specific probabilistic structure.

3.10 Exercises

21 Explain why the abstract probability space is not convenient for modeling purposes.

22 (a) “A random variable is neither random nor a variable.” Discuss.
(b) “The concept of a random variable is a relative concept.” Discuss.
(c) Explain the difference between the inverse and the pre-image of a function.

23 Consider the random experiment of casting two dice and counting the total number
of dots appearing on the uppermost faces. The random variable X takes the value 0
when the total number of dots is odd and 1 when the total number of dots is even.
(a) Derive the density function of the random variable X assuming that the two

dice are symmetric.
(b) Derive the density function of the random variable X assuming that the two

dice are non-symmetric.

24 Discuss the difference between the following probability set functions in terms of
their domain:

P(X#x)5PX21((2`,x])5Px((2`,x]).

25 In the case of the random experiment of “tossing a coin twice”:

S5{(HH),(HT),(TH),(TT)},I5{S,Ø,A, },

where A5{(HH),(HT),(TH)}.
Consider the following functions:

(i) X(HH)51, X(HT)52, X(TH)52, X(TT)51,
(ii) Y(HH)51, Y(HT)50, Y(TH)50, Y(TT)50,
(iii) Z(HH)51, Z(HT)51, Z(TH)51, Z(TT)57405926.

(a) Which of the functions (i)–(iii) constitute random variables with respect to I?

A

E`

2`
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(b) For the functions which are not random variables with respect to I, define the
event space generated by them.

26 Compare and contrast the concepts of a simple random variable and a general
random variable

27 Describe briefly the metamorphosis of the probability space (S,I,P(.)) into a proba-
bility model of the form:

F5{f(x;u), u[Q, x[RX}.

Explain the relationship between the components of the probability space and the
probability model.

28 Explain the main components of a generic probability model of the form:

F5{f(x;u), u[Q, x[RX}.

29 Why do we care about the moments of a distribution? How do the moments provide
a way to interpret the unknown parameters?

10 The density function of the Exponential distribution is:

f(x;u)5u e2ux, u.0, x.0.

(a) Derive its mean and variance.
(b) Derive its mode.

11 Consider the function:

f(x)5140[ x3(1–x)3], 0,x,1.

(a) Show that this is indeed a proper density function for a random variable X.
(b) Derive the mean, mode, variance, and kurtosis of X.

12 Consider the discrete random variable X whose distribution is given below:

x 21 0 1

f(x) 0.2 0.4 0.4

(a) Derive its mean, variance, skewness, and kurtosis coefficients.
(b) Derive its mode and coefficient of variation.

13 (a) State the properties of a density function.
(b) Contrast the properties of the expected value and variance operators.
(c) Let X1 and X2 be two Independent random variables with the same mean m

and variance s2. Derive the mean and variance of the function: Y5 X11 X2.

14 Explain how the properties of the variance are actually determined by those of the
mean operator.

15 Explain how the moment generating function can be used to derive the moments.

2
3

1
3
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16 Explain the notion of skewness and discuss why a350 does not imply that the dis-
tribution in question is symmetric.

17 Explain the notion of kurtosis and discuss why it is of limited value when the distri-
bution is non-symmetric.

18 For a Weibull distribution with parameters (a53.345,b53.45) derive the kurtosis
coefficient using the formulae in appendix A.

19 Explain why matching moments between two distributions can lead to misleading
conclusions.

20 Compare and contrast the cumulative distribution function (cdf) and the quantile
function. Explain why the quantile function is not always the inverse of the cdf.

21 Explain the notions of a percentile and a quantile and how they are related.

22 Why do we care about probabilistic inequalities?

23 “Moments do not characterize distributions in general and when they do we often
need an infinite number of moments for the characterization”. Discuss.

24 Explain the probability integral and the inverse probability integral transforma-
tions. How useful can they be in simulating non-uniform random variables?

Appendix A Univariate probability models

The purpose of this appendix is to summarize the most useful probability models and
their parameterizations, their moments, and other numerical characteristics for refer-
ence purposes.

Notation
a32skewness, a42kurtosis, m(t)2moment generating function.
IID2Independent and Identically Distributed.
G[a] is called the Gamma function and defined by:

G[a]5 exp (2u) · ua21du.

B[a,b] is called the Beta function:

B[a,b]5 ua21(12u)b21du

where there is a direct relationship between beta and gamma functions.

B[a,b]5 .

R: the real line, R1: the positive real line.

G[a]·G[b]
G[a 1 b]

E1

0

E`

0
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The following is a partial list of important probability models; Johnson, Kotz and Kemp
(1992), Johnson, Kotz and Balakrishnan (1994, 1995) and Evans et al. (1993) for more
details.

A.1 Discrete univariate distributions

Bernoulli: B(u,u (12u);1)

F5{f(x;u)5ux(12u)1–x, 0,u,1, x50,1}.

Numerical characteristics
E(X)5u, Var(X)5u (12u),

a35 (122u)[u (12u)]2 (a423)5 ,

mr95u for all r53,4, …, m(t)5(12u1uet).

Relationships with other distributions
(a) Bernoulli–Binomial:
If X1,X2, …, Xm are IID Bernoulli distributed random variables, i.e.
if Xi,B(u,u (12u);1),i51,2, …, m, then Y5 m

i51Xi,Bi(u,u (12u);m).

Binomial: Bi(u,u (1–u);n)

F5{f(x;u)5 ux(12u)n2x, 0,u,1, x50,1, n51,2,…}.

Numerical characteristics
E(X)5nu, Var(X)5nu (12u),

a35 , f512u, a4532 ,

m(t)5(12u1uet)n.

Relationships with other distributions
(a) Binomial–Bernoulli: see Bernoulli.
(b) Binomial–Normal: (see Central Limit Theorem, chapter 9).

Geometric: Geom(u)

F5{f(x;u)5u (12u)x21, 0#u#1, x51,2,3,…}.

Numerical characteristics

E(X)5 , Var(X)5 , a35 , a4591 ,

where f:51–u, m(t)5 , for [12u]et,1.

Hypergeometric: HyG(K,M)

F5 f(x;u)5 , 0#x#min (K,n) .61K
x21

M 2 K
n 2 x 2

1M
n 25

uet

(1 2 [1 2 u]et)

u2

f

2 2 u

Ïu

(1 2 u)
u2

1
u

6
n

1
1

nuf

(1 2 2u)

(nuf)
 1
2

1n
x2

o

11 2 6u(1 2 u)
u(1 2 u) 261

25
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Numerical characteristics

E(X)5n , Var(X)5n

Logarithmic series: LogS(u)

F5{f(x;u)5a , a52 [ln (12u)]21, 0,u,1, x51,2,…}.

Numerical characteristics

E(X)5 , Var(X)5 ,

a35 , a45 ,

mr5u 1rm2mr21 for r53,4, …, m(t)5 .

Negative Binomial: NBi(u,k)

F5{f(x;u,k)5 uk(12u)x, 0,u,1, k51,2,…., x50,1,2,….}

Numerical characteristics

E(X)5 , Var(X)5 ,

a35(22u)(k(12u)) 2 , a4235 1 ,

m(t)5 , for [12u]et,1.

Poisson: Poisson(u)

F5 f(x;u)5 , u.0, x50,1,2,3,… .

Numerical characteristics

E(X)5u, Var(X)5u, a35 , a4531 ,

m(t)5exp (u [et21]).

Relationships with other distributions

(a) Poisson–Binomial: limm → ̀ , [mu] → l{(x
n)ux(12u)12x}5 .

(b) Poisson–Gamma: For Y,G (a,b), a an integer, then for any y,

P(Y#y)5P(X$a), where X is Poisson .

Uniform (discrete): Un(u) (discrete)

F5 f(x;u)5 , u is a non-negative integer, x50,1,2,3,… .61
u 1 15

1Y
b2

e2llx

x!

1
u

1
Ïu

6e2uux

x!5

1 uet

(1 2 [1 2 u]et)2

1 u2

k(1 2 u)2
6
k

1
2

k(1 2 u)
u2

k(1 2 u)
u

1k 1 x 2 1
k 2 1 2

ln(1 2 uet)
ln(1 2 u)

mr

u

1 1 4u 1 u2 2 4au(1 1 u) 1 6a2u2 2 3a3u3

au(1 2 au)2

(1 1 u 2 3au 1 2a2u2)

(au)
1
2 (1 2 au)

3
2

au(1 2 au)
(1 2 u)2

au

(1 2 u)

1ux

x 2

1M 2 K
M 2 1M 2 n

M 2 121K
M21K

M2
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Numerical characteristics

E(X)5 , no mode, Var(X)5 ,

a350, a4532 .

A.2 Continuous univariate distributions

Beta: Beta(a,b)

F5 f(x;u)5 , u:5(a,b)[R1
2 , 0#x#1 .

Numerical characteristics

E(X)5 , Var(X)5 ,

a35 , a45 ,

mr95 , r52,3, …, m(t)511 `
k51

k21
r50 .

Relationships with other distributions

(a) Beta–F: If Y,F(m1,m2) then X5 ,Beta(.,.).

(b) Beta–Gamma: see Gamma.

Cauchy: C(a,b)

F5 f(x;u)5 , u:5 (a,b)[R3R1, x[R .

Numerical characteristics
No moments exist, Mode5median5a.

Relationships with other distributions
(a) Cauchy–Student’s t: St(1):5C(0,1).
(b) Cauchy–Normal: see Normal.

Chi-square: x2(n)

F5 f(x;n)5 x exp 2 , n[N5{1,2,…}, x[R1 .

Numerical characteristics
E(X)5n, mode5n22, for n.2, Var(X)52n,

a352 n2 , a4531 , mr95 , r52,3, …,

m(t)5(1–2t)2 , for t, .1
2

n

2

2rG1n

2
1 r2

G1n

22
12
n

1
2

3
2

662x
2151n 2 2

2 222sn
2d

G3n

24
5

61
pb[1 1 {(x 2 a)2/b}5

1 m1Y
m2 1 m1Y2

2a 1 r
a 1 b 1 rp1oB[r 1 a,b]

B[a,b]

3(a 1 b 1 1)[2(a 1 b)2 1 ab(a 1 b 2 6)]
ab(a 1 b 2 2)(a 1 b 2 3)

2(b 2 a)(a 1 b 1 1)
1
2

(a 1 b 1 2)(ab)
1
2

ab

(a 1 b 1 1)(a 1 b)2

a

a 1 b

6xa21(1 2 x)b21

B[a,b]5

16
52 11 1

2
u(u 1 2)2

1u(u 1 2)
12 21u

22
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Relationships with other distributions
(a) Chi-square–Normal: If X1,X2, …, Xn are NIID (standard Normal)

Y5 n
i51Xi

2,x2(n).
(b) Chi-square–F:

(i) If X1,x2(n1), X2,x2(n2) are independent,

Y5 ,F(n1,n2).

(ii) If X,x2(n) and Y,F(n,`) then X5nY.

Exponential: Ex(u)

F5 f(x;u)5 e2 , u[R1 , x[R1 .

Numerical characteristics
E(X)5u, mode50, median5u ln 2, Var(X)5u2, a352,

a459, mr95G[r11]ur, m(t)5 , for t. .

Relationships with other distributions
(a) Exponential–Gamma: A special case of the Gamma with a51.

(b) Exponential–Weibull: If X,Ex(u), Y5X ,W(u,b).

(c) Exponential–Uniform: If Y,U(0,u) then X52 ln ,Ex(u).

(d) Exponential–Pareto: If X,Ex(u) with X$X0$u$0, then
Y5x0eX2u,Par(u;x0).

Extreme value (Gumbel): EV(a,b)

F5 f(x;u)5 e2 exp 2e2 , u:5(a,b)[R3R1, x[R1 .

Numerical characteristics
E(X)5a10.5772b, mode5a, median5a1bln (ln 2),

Var(X)5 , a351.29857, a455.4, m(t)5e G [11t].

Relationships with other distributions
(a) Extreme–Logistic: If X1 and X2 are independent Extreme value,

Y5(X12X2),Lg(0,p2/3).
(b) Extreme–Weibull: see Weibull.

Fisher’s F: F(n,h)

F5 f(x;u)5 x (n22) 11 x 2 (n1h), n .0, h.0, x.0 .61
222n

h112
1
21

1n

h2
1
2

n

B3n

2
, 

h

245

at
b

b2p2

6

62
(x 2 a)

b1
(x 2 a)

b
1
b5

1Y
u211

u2

1
b

1
u

1
(1 2 ut)

61x
u21

u5

1(X1/n1)
(X2/n2)2

o
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Numerical characteristics

E(X)5 , h.2, Var(X)52 , h.4,

a35 , h.6, a45 , h.8,

mr95 , r, .

Relationships with other distributions
(a) F–Chi-square: see Chi-square.
(b) F–Student’s t: see Student’s t.
(c) F–Beta: see Beta.

(d) F–F: If X,F(n,h) then Y5 ,F(h,n).

Gamma: Gamma(a,b)

F5 f(x;u)5
a21exp 2 , u:5(a,b)[R1

2, x[R1 .

Numerical characteristics
E(X)5ab, mode5b(a21), b$1, Var(X)5ab2,

a352a2 , a4531 , mr95 , r52,3, …,

m(t)5(12bt)2a, for t, .

Relationships with other distributions
(a) Gamma–Chi-square: see Chi-square.
(b) Gamma–Beta: X1,Gamma(1,m1), X2,Gamma(1,m2),

Y5 ,Beta(m1,m2), if (X1,X2) are independent.

(c) Gamma–Erlang: Gamma(a,b) with b an integer, is the Erlang.
(d) Gamma–Exponential: G(1,b) is known as the Exponential.

Generalized Gamma: GG (a,b,d)

F5 f(x;u)5
db21exp 2

d , u:5(a,b,d)[R1
3 , x[R1 .

Numerical characteristics
E(X)5ag1, mode5a(db21)(1/d), a$1, Var(X)5a2(g22g1

2),

a35 , a45 ,

mr95argr, where gr5 , r51,2,3.1G3b 1 1g

d24
G[b] 2

([g4 2 4g3g1 1 6g1
2g2 2 3g1

4])
([g2 2 g1

2])2

([g3 2 3g2g1 1 2g1
3])

(Ï[g2 2 g1
2])3

662x
a152x

a1
a21

G[b]5

1 1
X1 1 X2

2

1
b

1G[a 1 r]b2r

G[a] 216
a2

1
2

662x
b152x
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b21

G[a]5

11
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h
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Laplace (double exponential): Lp(a,b)

F5 f(x;u)5 e2 , u:5(a,b)[R3R1, x[R.

Numerical characteristics
E(X)5a, mode5median5a, Var(X)52b2, a350, a456,
mr50 for r odd, mr5r!br for r even,

m(t)5 , for | t |, .

Logistic: Lg(a,b)

F5 f(x;u)5 , u:5(a,b)[R3R1, x[R .

Numerical characteristics

E(X)5a, Var(X)5 , a350, a454.2,

m(t)5exp (at)B[(12bt),(11bt)].

Relationships with other distributions
(a) Logistic–Extreme value: see Extreme value.

Log-Normal: LN(m,s2)

F5 f(x;u)5 exp , u:5(m,s2)[R3R1, x[ R1 .

Numerical characteristics

E(X)5exp m1 s2 , mode5exp {m2s2}, median5em,

Var(X)5g (g21)e2m, g5es2, a35(g12)(g21) ,

a45(g 412g313g223), mr95exp rm1 r2s2 , r53,4,…

Relationships with other distributions
(a) Log-Normal–Normal: If X,LN(m,s2), Y5(lnX),N(m,s2).

Non-central chi-square: x2(n;d) 

F5 f(x;u)5 `
k50 , u:5 (n,d)[N3R1, x[R1 .

Numerical characteristics
E(X)5n1d, Var(X)52(n12d), a35 ,Ï8(n 1 3d)

(n 1 2d)
3
2

6x(n
2)1k21dk

22kk!G3n
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o
exp52 1x 1 d

2 26
2(n
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41
23

1
2

61
25

652
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2s2 61
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1

sÏ2p5
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6exp52 1x 2 a

b 26
b 11 1 exp52 1x 2 a
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25

1
b

eat

(1 2 b2t2)
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a4531 , mr952rG 1r `
k50 , r52,3, …,

m(t)5(122t)2 exp , for t, .

Relationships with other distributions
(a) Non-central Chi-square–Normal: If X1,X2, …, Xn are NIID

(standard Normal)

Y5 n
i51 (Xi1ai)2,x2(n;d), d5 n

i51ai
2.

(b) Non-central Chi-square–Non-central F: (i) If X1,x2(n1;d), X2,x2(n2),

Y5 ,F(n1,n2;d) if X1 and X2 are independent.

Non-central Student’s t: St(n;d)

F5 f(x;n,d)5 `
k50G , u5 (n,d)[R2

1, x[R .

Numerical characteristics

mr95cr for n.r,

c2r215 r
k51 , c2r2

r
k51 , r51,2,…

Relationships with other distributions
(a) Student’s t–Chi-square–Normal: X,N(m,s2), ,x2(n)

Y5 ,St(0,1;n) if X and Z are independent.

Normal (Gaussian): N(m,s2)

F5 f(x;u)5 exp 2 , u:5(m,s2)[R3R1, x[R .

Numerical characteristics
E(X)5m, mode5median5m, Var(X)5s2, a350, a453,

mr50 for r odd, mr5 , for r even, m(t)5emt1 s2t2.

Relationships with other distributions
(a) Normal–standard Normal: If X,N(m,s2) then

Y5 ,N(0,1).1X 2 m
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(b) Normal–log-Normal: If X,N(m,s2) then Y5eX,LN(m,s2).
(c) Normal–Chi-square: If X,N(0,1) then Y5X2,x2(1).
(d) Normal–Cauchy: If X1,N(0,1), X2,N(0,1) independent,

Y5 ,C(0,1).

(e) Normal–F: If X1,N(0,1), X2,N(0,1) independent,

Y5
2
,F(1,1).

(f) Normal–Student’s t: If X,N(0,1), Y,x2(n) independent,

Z5 ,St(n).

Pareto: Par(u,x0)

F5{f(x;u)5(u x0
u)x2(u11), u[R1, x0.0, x$x0}.

Numerical characteristics

E(X)5 , median52 x0, mode5x0,

Var(X)5 , mr95 , for u.r.

Relationships with other distributions
(a) Pareto–Exponential: see Exponential.
(b) Pareto–Chi-square: If X1,X2, …, Xn are IID Pareto random variables,

Y52u ln n
i51 ,x 2(2n).

Power exponential (or error): PE(m,b,d)

F5 f(x;u)5 e , u:5(m,b,d)[R3R1
2, x[R .

Numerical characteristics

E(X)5m, mode5median5m, Var(X)5 , a350,

a45 , mr50, r odd, mr5 , r even.

Relationships with other distributions
(a) Power Exponential–Normal: PE(m,1,1):5N(m,1).
(b) Power Exponential–Laplace: PE(m,0.5,2):5L(m,1).
(c) Power Exponential–Uniform: As d → 0, then

PE(m,b,d) ⇒ U(m2b,m1b).

2drbrG[(r 1 1)d/2]
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Student’s t: St(n)

F5 f(x;u)5 11
2 (n11), u:5(m,s2)[R3R1, x[R .

Numerical characteristics

E(X)5u, Var(X)5 , n.2, a350, (a423)5 , n.4,

mr50 for r odd, mr5n for n.r52,4,… 

Relationships with other distributions
(a) Student’s t–Normal: as n→ ̀ , St(n) ⇒ N(0,1).
(b) Student’s t–F: If X,St(n) then for Y5X2,F(1,n).

Uniform: U(a,b) (continuous)

F5 f(x;u)5 , u:5(a,b), a#x#b .

Numerical characteristics

E(X)5 , no mode, median5 , Var(X)5 ,

a350, a451.8, mr50 for r odd,

mr5 , for r even, m(t)5 .

Relationships with other distributions
(a) Uniform–Beta: If X,U(0,1), then X,Beta(1,1).
(b) Uniform–all other distributions: If X,U(0,1), then for any random vari-

able Y with cdf F(y), Y5F21(x).

Weibull: W(a,b)

F5 f(x;u)5 exp 2
b , u:5 (a,b)[R1

2, x.0 .

Numerical characteristics

E(X)5a G , mode 5a(b 21), a$1,

Var(X)5a G 2 G
2 , mr95a G , r53,4,…

Relationships with other distributions
(a) Weibull–Exponential: see Exponential.
(b) Weibull–Extreme value: If X,W(a,b), then

Y52 ln (aXb),EV(a,b).

(c) Weibull–Rayleigh: W(a,2) is the Rayleigh distribution.
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4 The notion of a random
sample

4.1 Introduction

4.1.1 Primary aim of this chapter

The primary objective of this chapter is to complete the metamorphosis of the simple
statistical space to a simple statistical model which began in the previous chapter. In
chapter 3 we converted the first component, the probability space, into a probability
model. In this chapter we proceed to convert the second component, the sampling
space, into a sampling model. The metamorphosis involves two of the most important
notions of probability theory: Independence and Identical Distribution. Upon comple-
tion of the metamorphosis we reach one of our primary intermediate targets, the
formulation of a simple statistical model, which constitutes the simplest form of a statis-
tical model. The latter provides the cornerstone on which we will build both empirical
modeling as well as statistical inference. As mentioned in chapter 1 what differentiates
empirical modeling from other forms of modeling is the use of observed data in
conjunction with statistical models. It will be very difficult to exaggerate the importance
of the notion of a statistical model in the context of modeling with non-experimental
data. This is because choosing a statistical model when modeling non-experimental
data is the most difficult aspect of the problem and thus one needs a thorough and in-
depth understanding of the concepts involved. This understanding concerns both the
probabilistic (mathematical) aspects, as well as the intuitive dimension as it relates to
the observed data.

4.1.2 The story so far

In chapter 2 we commenced the formalization of a simple chance mechanism generically
known as a random experiment % specified by the following conditions:

[a] all possible distinct outcomes are known a priori,
[b] in any particular trial the outcome is not known a priori but there exists a percepti-

ble regularity of occurrence associated with these outcomes, and
[c] it can be repeated under identical conditions.
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The first formalization in chapter 2 took the form of a simple statistical space:

[i] simple probability space: (S,I,P(.))n,
[ii] simple sampling space: Gn

IID5{A1,A2,A3, …, An}.

This formalization, although adequate for mathematical purposes, is much too abstract
for modeling purposes. In an attempt to transform it into something more suitable for
analyzing numerical data, we used the concept of a random variable to metamorphose
the probability space into a probability model:

Probability space Probability model
(S,I,P(.)) V F5{f(x;u),u[Q, x[RX},

where F denotes a collection of density functions f(x;u), indexed by some unknown
parameter(s) u; the latter taking values in Q (see chapter 3).

4.1.3 From random trials to a random sample: a first view

As argued in chapter 2 a simple sampling space Gn
IID:5{A1,A2, …, An} is a set of

random trials, which satisfies the following conditions:

Independent (I): P(n)(A1>A2>…>Ak)5 k
i51Pi(Ai), for each k52,3, …, n,

(4.1)

Identically Distributed (ID): P1(.)5P2(.)5 ···5Pn(.)5P(.). (4.2)

Independence is related to the condition that “the outcome of one trial does not affect
and is not affected by the outcome of any other trial,” or equivalently:

P(n)(Ak |A1,A2,…Ak21,Ak11, …, An)5Pk(Ak), for each k51,2, …, n. (4.3)

The ID condition has to do with “keeping the same probabilistic structure from one trial
to the next”; the probabilities associated with the different outcomes remain the same for
all trials.

Armed with the notion of a random variable, let us now consider the metamorphosis
of the abstract notion of a simple sampling space to something related to random vari-
ables. Looking at the definition of random trials (4.1)–(4.2), we can see that the inde-
pendence condition is defined in terms of the probability set functions P(n)(.) and Pk(.)
which belong to the probability spaces (S(n),I(n),P(n)) and (Sk,Ik,Pk), respectively. The
difficulties one has to face in transforming the trials {A1,A2, …, An} into a set of
random variables X(n):5(X1,X2, …, Xn), have to do with defining the equivalent concepts
to P(n)(.) and Pk(.) in terms of random variables. The concept corresponding to the set
function P(n)(.), is the so-called joint distribution function and that corresponding to
Pk(.), the marginal distribution function. Using these two notions we can define the
concept of a random sample: a set of Independent and Identically Distributed (IID)
random variables. The basic new concept needed for the formalization of both notions is
that of a joint distribution function.

p
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4.1.4 A bird’s eye view of the chapter

In section 2 we introduce the notion of a joint distribution using the bivariate case for
expositional purposes. In section 3 we relate the notion of the joint distribution to that
of the marginal distribution introduced in the previous chapter, emphasizing the fact
that the former often involves more information than the marginal distributions associ-
ated with it. In section 4 we introduce the notion of a conditional distribution and relate
it to both the joint and marginal distributions. The notion of conditioning and condi-
tional moments will play a very important role in the discussions that follow. In section
5 we define the notion of independence using the relationship between the joint, mar-
ginal and conditional distributions. In section 6 we define the notion of identically
distributed in terms of the marginal distributions. Armed with the notions of inde-
pendence and identical distribution we proceed to define the notion of a random
sample in section 7. Before we complete the metamorphosis of a simple statistical space
into a simple statistical model in section 10 we take an important digression. In section 8
we introduce the concept of a function of random variables and its distribution as a
prelude to discussing the concept of an ordered random sample in section 8. The notion
of a function of random variables is crucial in the context of statistical inference; the
overwhelming majority of quantities of interest in statistical inference (estimators, test
statistics, predictors) are such functions. The concept of an ordered sample is important
in the present context because a simple re-ordering of a random sample yields a non-
random sample! The concept of an ordered sample also plays an important role in sta-
tistical inference.

4.2 Joint distributions

The concept of a joint distribution is without a doubt one of the most important notions
in both probability theory and statistical inference. As in the case of a single random
variable, the discussion will proceed to introduce the concept from the simple to the more
general case. In this context simple refers to the case of countable outcomes sets which
give rise to discrete random variables. After we introduce the basic ideas in this simplified
context we proceed to discuss them in their full generality.

4.2.1 Discrete random variables

In order to understand the notion of a set of random variables (a random vector) we
consider first the two random variable cases since the extension to a larger number of
random variables is simple in principle, but complicated in terms of notation.

Random vector Consider the two simple random variables X(.) and Y(.) defined on the
same probability space (S,I,P(.)), i.e.

X(.) : S → R, such that X21(x)[I, for all x[R,

Y(.) : S → R, such that Y21(y)[I, for all y[R.
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R : we remind the reader that Y21(y)5{s :Y(s)5y, s[S} denotes the pre-image
of the function Y(.) and not its inverse. Viewing them separately we can define their indi-
vidual density functions, as explained in the previous chapter, as follows:

P(s :X(s)5x)5fx(x).0, x[RX, P(s :Y(s)5y)5fy(y).0, y[RY,

where RX and RY denote the support of the density functions of X and Y. Viewing them
together we can think of each pair (x,y)[RX3RY as events of the form:

{s :X(s)5x, Y(s)5y}:5{s :X(s)5x}>{s :Y(s)5y}, (x,y)[RX3RY.

In view of the fact that the event space I is a s-field, and thus closed under intersections,
the mapping:

Z(.,.) :5(X(.),Y(.)) : S → R2,

is a random vector since the pre-image of Z(.) belongs to the event space I:

Z21(x,y)5 [(X21(x))>(Y21(y))][I,

since X21(x)[I and Y21(y)[I by definition (see Spanos (1986)).

Joint density The joint density function is defined by:

f(.,.) :RX3RY → [0,1],

f(x,y)5P{s :X(s)5x, Y(s)5y}, (x,y)[RX3RY.

Example
Consider the case of the random experiment of tossing a fair coin twice, giving rise to the
set of outcomes: S5{(HH),(HT),(TH),(TT)}.

Let us define the random variables X(.) and Y(.) on S as follows:

X(HH)5X(HT)5X(TH)51,X(TT)50,
Y(HT)5Y(TH)5Y(TT)51,Y(HH)50.

We can construct the individual density functions as follows:

x 0 1 y 0 1

f(x) 0.25 0.75 f(y) 0.25 0.75
(4.4)

To define the joint density function we need to specify all the events of the form:

(X5x,Y5y), x[RX, y[RY,

and then attach probabilities to these events. In view of the fact that:

(X50,Y50)5{}5Ø, f(x50,y50)50.00,
(X50,Y51)5{(TT)}, f(x50,y51)50.25,
(X51,Y50)5{(HH)}, f(x51,x50)50.25,
(X51,Y51)5{(HT),(TH)}, f(x51,y51)50.50.
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That is, the joint density takes the form:

y\x 0 1

0 0.00 0.25 (4.5)
1 0.25 0.50

If we compare this joint density (4.5) with the univariate densities (4.4), there is no
obvious relationship, but as shown below, this is misleading. As argued in the next
chapter, the difference between the joint probabilities f(x,y),x[RX, y[RY, and the
product of the individual probabilities (f(x) ·f(y)) for x[RX, y[RY, reflects the depen-
dence between the random variables X and Y. At this stage it is crucial to note that a
most important feature of the joint density function f(x,y), is that it provides a general
description of the dependence between X and Y.

Before we proceed to consider the continuous random variables case it is instructive to
consider a particularly simple case of a bivariate discrete density function.

Example

The previous example is a particular case of a well-known discrete joint distribution, the
Bernoulli distribution given below:

y\x 0 1

0 p(0,0) p(1,0) (4.6)
1 p(0,1) p(1,1)

where p(i,j) denotes the joint probability for X5 i and Y5 j, i,j50,1. The Bernoulli joint
density takes the form:

f(x,y)5p(0,0)(12y)(12x)p(0,1)(12y)xp(1,0)y(12x)p(1,1)xy, x50,1 and y50,1.

4.2.2 Continuous random variables

In the case where the outcomes set S is uncountable the random variables defined on it are
said to be continuous, because their range of values is an interval on the real line R.

Random vector Consider the two continuous random variables X(.) and Y(.) defined on
the same probability space (S,I,P(.)), i.e.

X(.) :S → R, such that X21((2`,x])[I, for all x[R,
Y(.) :S → R, such that Y21((2`,y])[I, for all y[R.

Viewing them separately we can define their individual cumulative distribution functions
(cdf) (see chapter 3), as follows:

P(s :X(s)#x)5P(X21(2`,x])5PX((2`,x])5FX(x), x[R,
P(s :Y(s)#y)5P(Y21(2`,y])5PY((2`,y])5FY(y), y[R.
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Viewing them together we can associate with each pair (x,y)[R3R events of the form:

{s :X(s)#x, Y(s)#y}:5{s :X(s)#x}>{s :Y(s)#y}, (x,y)[R3R.

As in the discrete random variable case, since I is a s-field (close under intersections) the
mapping:

Z(.,.) :5(X(.),Y(.)) : S → R2,

constitutes a random vector; the pre-image of Z(.):

Z21((2`,x]3(2`,y])5 [(X21((2`,x]))>(Y21((2`,y])) ][I,

since X21((2`,x])[I and Y21((2`,y])[I by definition.
The joint cumulative distribution function (cdf) is defined by:

FXY(.,.) : R2 → [0,1],

FXY(x,y)5P{s :X(s)#x, Y(s)#y}5PXY((2`,x]3(2`,y]), (x,y)[R2.

The joint cdf can also be defined on intervals of the form (a,b]:

P{s :x1,X(s)#x2, y1,Y(s)#y2}5F(x2,y2)2F(x1,y2)2F(x2,y1)1F(x1,y1).

The joint density function, assuming that f(x,y)$0 exists, is defined via:

F(x,y)5 f(u,v) du dv.

 that the subscripts will often be omitted when there is no possibility of confusion.
In the case where F(x,y) is differentiable at (x,y) we can derive the joint density by partial
differentiation:

f(x,y)5 , at all continuity points of f(x,y).

Example
Let the joint cdf be that of the bivariate Exponential distribution:

F(x,y)512e2x2e2y1e2x2y, ⇒ f(x,y)5 5e2x2y, x$0, y$0.

In the case of continuous random variables we can think of the joint density as being
defined over an interval of the form (x,X#x1dx,y,Y#y1dy) as follows:

P(x,X#x1dx, y,Y#y1dy)5f(x,y) dx dy.

Hence, as in the univariate case (see chapter 3), the joint density function takes values
greater than one, i.e.

f(.,.) : R3R→[0,`).

In direct analogy to the univariate case, the joint density function has to satisfy certain
properties:

[bf1] f(x,y)$0, for all (x,y)[RX3RY,

12F(x,y)
xy 2

12F(x,y)
xy 2

Ey

2`
Ex

2`
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[bf2] ∫`
2` ∫`

2` f(x,y)dx ·dy51,

[bf3] FXY(a,b)5 ∫ a
2` ∫ b

2` f(x,y) dx dy,

[bf4] f(x,y)5 , at all continuity points of f(x,y).

 : in the discrete case the above integrals become summations over all values of X
and Y, i.e., for x1,x2, ···,xn, ···and y1,y2, ···,yn, ···

[bf2]9 f(xi,yj)51, [bf3]9 F(xk,ym)5 f(xi,yj).

Examples
(i) An important discrete bivariate distribution, is the Binomial whose density takes

the form:

f(x,y;u)5 u 1
xu2

y(12u12u2)n2x2y, ui[ [0,1], i51,2,

u:5 (u1,u2), n is an integer such that x1y#n, x,y50,1,2,…, n.

(ii) The most important continuous bivariate distribution is the Normal, whose density
takes the form:

f(x,y;u)5 (4.7)

where u:5(m1,m2,s11,s22,r)[R23R1
23 [21,1], x[R, y[R. In view of its appar-

ent complexity, the bivariate density given in (4.7), is often denoted by:

(4.8)

where s12:5r . A special case of this distribution, known as the standard
bivariate Normal, is defined when the parameters take the values:

m15m250, s115s2251.

Its density function takes the simplified form:

f(x,y;u)5 exp – [x2–2rxy1y2] . (4.9)

This density with u:5 (0,0,1,1,0.2) is shown in figure 4.1. The details of the bell
shape of the surface can be seen from the inserted contours which can be viewed
intuitively as the lines we get by slicing the surface at different heights.
Several additional bivariate distributions are listed in appendix B.

4.2.3 Joint moments

As in the case of univariate distributions the best way to interpret the unknown parame-
ters is via the moments. In direct analogy to the univariate case, we define the joint
product moments of order (k,m) by:

mk9m5E{XkYm}, k,m50,1,2,…,

61
2(1 2 r2)51

2pÏ(1 2 r2)

Ïs11s22

1Y
X2,N11m1

m2
2,1s11

s12

  
s12

s22
22

(1 2 r2)2
1
2

2pÏs11s22

 exp 52
1

2(1 2 r2)
 11y 2 m1

Ïs11
2

2

2 2r 1y 2 m1

Ïs11
2 1x 2 m2

Ïs22
21 1x 2 m2

Ïs22
2

2

26

1 n!
x!y!(n 2 x 2 y)!2

o
k

i51

 o
m

i51
o

`

i51

 o
`

j51

12F(x,y)
xy 2

Joint distributions 151



and the joint central moments of order (k,m) are defined by:

m km5E{(X2E(X))k(Y2E(Y))m}, k,m50,1,2,…

The first two joint product and central moments are:

m9105E(X), m1050,
m9015E(Y), m0150,
m9205E(X)21Var(X), m205Var(X),
m9025E(Y)21Var(Y), m025Var(Y),
m9115E(XY). m115E[(X2E(X)) (Y2E(Y))].

The most important and widely used joint moment is the covariance, defined by:

m11:5Cov(X,Y)5E{[X2E(X)][Y2E(Y)]}. (4.10)

Examples
(i) Consider the joint Normal distribution whose density is given in (4.7). We

know from chapter 3 that the parameters (m1,m2,s11,s22) correspond to the
moments:

m15E(Y), m25E(X), s115Var(Y), s225Var(X).

152 The notion of a random sample

Figure 4.1 Bivariate Normal density surface with contours inserted



The additional parameter s12 turns out to be the covariance between the two
random variables, i.e.:

s12:5Cov(X,Y).

(ii) Let us derive the covariance of X and Y, using the joint density given below:

y\x 0 1 2 fy(y)

0 0.2 0.2 0.2 0.6
2 0.1 0.1 0.2 0.4

fx(x) 0.3 0.3 0.4 1
(4.11)

First, we need to derive the moments of the univariate distributions:

E(X)5(0)(0.3)1(1)(0.3)1(2)(0.4)51.1, E(Y)5(0)(0.6)1(2)(0.4)50.8,
Var(X)5 [0–1.1]2(0.3)1 [121.1]2(0.3)1 [221.1]2(0.4)50.69,
Var(Y)5 [020.8]2(0.6)1 [220.8]2(0.4)50.96.

Using these moments we proceed to derive the covariance:

Cov(X,Y)5E{[X2E(X)][Y2E(Y)]5 [021.1][020.8](0.2)1

Cov(X,Y)1 [021.1][220.8](0.1)1 [121.1][020.8](0.2)1
1 [121.1][220.8](0.1)1 [221.1][020.8](0.2)1

1 [221.1][220.8](0.2)50.12.

Properties of the covariance

c1. Cov(X,Y)5E(XY)2E(X) ·E(Y),
c2. Cov(X,Y)5Cov(Y,X),
c3. Cov(aX1bY,Z)5aCov(X,Y)1bCov(Y,Z), for (a,b)[R2.

The first property shows the relationship between the raw and central joint moments for
k5m51. The covariance is equal to the first joint product moment E(XY) minus the
product of the two means. The second property refers to the symmetry of the covariance
with respect to the two random variables involved. The third property follows directly
from the linearity of the expectation operator E(.).

Let us verify c1 using the above example. In view of the fact that:

E(XY)5(0)(0)(0.2)1(0)(2)(0.1)1(1)(0)(0.2)1(1)(2)(0.1)1(2)(0)(0.2)1

1(2)(2)(0.2)51.0,

we can conclude that: Cov(X,Y)51.02(1.1)(0.8)50.12, which confirms the above
value of Cov(X,Y).

A digression It is interesting to note that using the covariance, we can extend property V2
of the variance (see chapter 3), to the case where the two variables are not independent. In
the case of two arbitrary random variables X and Y:

V29 Var(aX1bY)5a2Var(X)1b2Var(Y)12abCov(X,Y).
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In the case where the random variables X and Y are independent, Cov(X,Y)50 (but the
converse is generally untrue) and the above relationship reduces to the one we saw in
chapter 3: Var(aX1bY)5a2Var(X)1b2Var(Y) .

The third and fourth joint moments are also of interest because, as in the univariate
case, they can be used to assess the symmetry and shape of the joint distribution. The
formulae, however, become too complicated too quickly. For reference purposes let us
consider the skewness and kurtosis coefficients for a bivariate distribution in the case
where (X,Y) are uncorrelated, i.e.

m1150, m205Var(X), m025Var(Y),

skewness: a3(X,Y)5 1 13 13 ,

kurtosis: a4(X,Y)5 1 1 .

4.2.4 The n-random variables case

So far we have discussed the extension of the concept of a random variable to that of a
two-dimensional random vector. It turns out that no additional difficulties arise in
extending the notion of a random variable to the n-variable case X(.):5 (X1(.),X2(.), …,
Xn(.)):

X(.): S → Rn,

where Rn:5R3R3 ···3R denotes the Cartesian product of the real line (see chapter 2).
The n-variable function X(.) is said to be a random vector relative to I if:

X(.) : S → Rn, such that X21((2`,x])[I, for all x[Rn,

where x:5(x1,x2, …, xn) and (2`,x]:5(2`,x1]3(2`,x2]3 ···3(2`,xn].

N that all random variables (X1(.),X2(.), …, Xn(.)) are defined on the same outcomes
set S and relative to the same event space I.

In view of the fact that I is a s-field we know that X(.) is a random vector relative to I if
and only if the random variables X1(.),X2(.), …, Xn(.) are random variables relative to I.
This is because Xk

21((2`,xk])[I for all k51,2, …, n, and thus:
n

i51Xk
21((2`,xk])[I.

The various concepts introduced above for the two random variable case can be easily
extended to the n-random variable case. In direct analogy to the bivariate case, the joint
density function satisfies the properties:

[mf1] f(x1,x2, …, xn)$0, for all (x1,x2, …, xn)[RX
n,

[mf2] ∫x1
2` ∫x2

2` ··· ∫xn
2` f(x1,x2, …, xn)dx1dx2 ···dxn51,

[mf3] F(x1,x2, …, xn)5 ∫x1
2` ∫x2

2` ··· ∫xn
2` f(u1,u2, …, un)du1du2 ···dun.
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Using the same line of reasoning we can easily extend the n-dimensions of the random
vector X(.) to an infinity of dimensions, i.e., define X`(.):5(X1(.),X2(.),…, Xn(.),…):

X`(.): S → R`,

which is a random vector relative to some I if and only if each element in the sequence
X`(.) is a random variable relative to I. This establishes the existence of an infinite
random vector and prepares the way for chapter 8 where we will discuss the notion of a
stochastic process {Xn(s)}`

n51 :5X`(s), s[S. The reader can now appreciate why s-
fields (countable additivity) were required and not just fields of events in order to
define the notion of an event space. This becomes even more apparent when we
proceed to utilize the mathematical (topological) structure of the Borel field B(R).
This structure, enables us to discuss the convergence of such sequences of random
variables:

lim
n→`

Xn(s)5X(s), for all s[S.

This notion will be of paramount importance in chapter 9 where we discuss limit theo-
rems; the topological structure of the Borel-field B(R) enables us to discuss notions of
probabilistic convergence.

4.3 Marginal distributions

The second component of condition [c], relating to the independence of the trials
is defined in terms of a simple relationship between the joint density function
f(x1,x2, …, xn;f) and the density functions of the individual random variables X1,X2, …,
Xn, referred to as the marginal distributions. Let us see how the marginal is related to the
joint distribution.

It should come as no surprise to learn that from the joint distribution one can always
recover the marginal (univariate) distributions of the individual random variables
involved. In terms of the joint cdf, the marginal distribution is derived via a limiting
process:

FX(x)5 lim
y→`

F(x,y) and FY(y)5 lim
x→`

F(x,y).

Example
Let us consider the case of the bivariate exponential cdf:

F(x,y)5(12e2ax) (12e2by), a.0, b.0, x.0, y.0.

Given that lim
n→`

(e2n)5e2`50, we can deduce that:

FX(x)5 lim
y→`

F(x,y)512e2ax, x.0, FY(y)5 lim
x→`

F(x,y)512e2by, y.0.

Let us see how the marginalization is defined in terms of the density functions. In view of
the fact that:
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FX(x)5 lim
y→`

F(x,y)5 lim
y→`

f(x,y)dydx5 f(x,y)dy dx,

and the relationship between FX(x) and fx(x), we can deduce that:

fx(x)5 f(x,y) dy, x[RX. (4.12)

Similarly, in terms of the joint density function, the marginal density function of Y is
derived via:

fy(y)5 f(x,y)dx, y[RY. (4.13)

These suggest that marginalization amounts to integrating out the other random vari-
able.

Examples
(i) Let us consider the case of the bivariate exponential density:

f(x,y)5e2x2y, x.0, y.0,

where the random variables X and Y are continuous. The formula in (4.12) suggests
that to derive the marginal distribution of X, one needs to integrate out the random
variable Y from f(x,y):

fx(x)5 e2x2ydy5e2x.

(ii) Consider the bivariate standard Normal density (4.9). In order to derive the mar-
ginal density of X, we need to integrate out Y, and vice versa. The manipulations
for such a derivation are rather involved (and thus omitted) but the result is particu-
larly useful. It turns out that:

fx(x)5
2
∫̀
`

f(x,y)dy5 exp 2 x2 , fy(y)5
2
∫̀
`

f(x,y)dx5 exp 2 y2 .

That is, both marginal distributions are (standard) Normal, denoted by:

X,N(0,1) and Y,N(0,1).

Marginalization and intuition We can visualize the derivation of the marginal distribu-
tion of X, from the bivariate distribution f(x,y), as projecting the bivariate surface into
the [x,f(x,y)] plane. As shown in figure 4.2, projecting a bell-shaped surface onto a plane
opposite yields a bell-shape for both marginal distributions. Intuitively, going from the
joint to the marginal density amounts to ignoring the information relating to the partic-
ular dimension represented by the random variable integrated out.

In the discrete random variable case, we can derive the marginal distribution of one
random variable, from the joint density f(x,y), by summing out the other random variable
For example, the derivation of the marginal density of X takes the form of summing over
all the values of Y, say y1,y2,y3, ···,yn, ···, as follows:

61
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Ï2p61
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Ï2p
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2`
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4E`
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fx(x)5 `
i51 f(x,yi), x[RX. (4.14)

Similarly, the marginal density of Y takes the form of summing over all the values of X,
say x1,x2,x3, ···,xn, ··· :

fy(y)5 `
i51 f(xi,y), y[RY. (4.15)

Examples
(i) The joint density of the Bernoulli distribution is well defined, if the probabilities

p(i,j) for i,j50,1, in addition to being non-negative, also satisfy certain additional
restrictions as required by the marginal distributions. The marginal distributions
of X and Y are given below:

x 0 1 y 0 1

fx(x) p.1 p.2 fy(y) p1. p2.
(4.16)

p.15p(0,0)1p(0,1), p1.5p(0,0)1p(1,0),

p.25p(1,0)1p(1,1). p2.5p(0,1)1p(1,1).

o

o
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For these marginal distributions to make sense they need to satisfy the properties
of univariate density functions f1–f3 (see chapter 3). This suggests that their prob-
abilities must add up to one, i.e., p.11p.251 and p1.1p2.51.

(ii) An important discrete distribution, is the bivariate Binomial (or trinomial as it is
often called) whose density takes the form:

f(x,y;u)5 u1
xu2

y(12u12u2)n2x2y, ui[ [0,1], i51,2,

where u:5(u1,u2) and n is an integer x1y#n, x,y50,1,2,…, n.

fx(x;u)5 (12u12u2)n2x2k5 (12u12u 2)n2x2k5

5 u2
k(12u12u2)n2x2k5 u1

x(12u1)n2x.

(iii) Let us derive the marginal distribution of X from the joint density given below:

y\x 0 1 2

0 0.2 0.2 0.2 (4.17)
2 0.1 0.1 0.2

The formula in (4.12) suggests that by summing down the columns we derive the
marginal density of X and summing over rows we derive the marginal density of Y:

x 0 1 2 y 0 2

fx(x) 0.3 0.3 0.4 fy(y) 0.6 0.4
(4.18)

These are clearly proper density functions, given that:

fx(x)$0, fx(0)1fx(1)1fx(2)51, and fy(x)$0, fy(0)1fy(2)51.

The two marginal densities are shown with the joint density below:

y\x 0 1 2 fy(y)

0 0.2 0.2 0.2 0.6
2 0.1 0.1 0.2 0.4

fx(x) 0.3 0.3 0.4 1
(4.19)

Looking at the last column we can see that the probabilities associated with the
values of Y contain no information relating to X.

4.4 Conditional distributions

4.4.1 Conditional probability

Let us return to chapter 2 and remind ourselves of the notion of conditional probability
using our favorite example.

1n
x2

(n 2 x)!
k!(n 2 x 2 k)!o

n2x

k51

n!ux
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x!(n 2 x)!

uk
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1u
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2)

x!k!(n 2 x 2 k)!o
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k51

1 n!
x!y!(n 2 x 2 y)!2

158 The notion of a random sample



Example
Consider again the random experiment of “tossing a fair coin twice,” with:

S5{(HH),(HT),(TH),(TT)}.

Assuming that A5{(HH),(HT),(TH)} is an event of interest, without any additional
information, common sense suggests that P(A)5 . However, in the case where there
exists some additional information, say somebody announces that in a particular trial
“the first coin is a T,” the situation changes. The available information defines the event
B5{(TH),(TT)} and knowing that B has occurred invalidates the probability P(A)5 .
This is because the information implies that, in this particular trial, the outcomes (HH)
and (HT) cannot occur. That is, instead of S, the set of all possible distinct outcomes,
given that B has occurred, is just B. This suggests that the new probability of A, given
that B has occurred, denoted by P(A |B), is different. Common sense suggests that
P(A |B)5 , because A includes one of the two possible distinct outcomes. How can we
formalize this argument?

The formula for the conditional probability of event A given event B, takes the 
form:

P(A |B)5 , for P(B).0. (4.20)

In the above example, P(A>B)5P(TH)5 , P(B)5 , and thus P(A>B)5 5 , which
confirms the common sense answer.

4.4.2 Conditional density functions

As in the case of the joint and marginal distributions, we will consider the simple dis-
crete random variable case first and then proceed to discuss the general random variable
case.

Discrete random variables.
In the case of two discrete random variables X and Y, if we define the events:

A5{Y5y} and B5{X5x},

then the translation of the above formulae in terms of density functions takes the 
form:

P(X5x)5f(x),
P(Y5y,X5x)5f(x,y),
P(Y5y |X5x)5f(y |x),

giving rise to the conditional density formula:

f(y |x)5 , for f(x).0, y[RY, (4.21)

where f(y |x) denotes the conditional density of Y given that X5x.

Example
Consider the joint density function for the discrete random variables X and Y given in

f(x,y)
fx(x)

1
2

 
1
4

 1
2

1
2

1
4

P(A>B)
P(B)

1
2

3
4

3
4
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(4.19). From the above formula we can see that the conditional density of Y given X50
takes the form:

f(y |x50)5 , y[RY:5{0,2}.

This suggests that the conditional probabilities f(y |x50), for y[RY, are scaled joint
probabilities f(x50,y), for y[RY, with the marginal probability fx(x50) providing the
weight. In particular:

f(y |x50)55 5 5 , y50,

5 5 , y52.

The conditional density is shown below:

y 0 2

f(y |x50) (4.22)

Continuous random variables
In the case of two continuous random variables X and Y we cannot use the events
A5{Y5y} and B5{X5x} in order to transform (4.20) in terms of density functions,
because as we know in such a case P(X5x)50 and P(Y5y)50 for all x[R, y[R. As
in the case of the definition of the joint and marginal density functions we need to con-
sider events of the form:

A5{X#x} and B5{Y#y}.

However, even in the case of continuous random variables we would like to be able to
refer to the conditional distribution of Y given X5x. The way we get around the
mathematical difficulties is by way of the conditional cumulative distribution function
defined as follows:

FY | X(y |X5x)5 limh → 01 ,

where h → 01reads “as h tends to 0 through values greater than 0.” After some mathemat-
ical manipulations we can show that:

FY | X(y |X5x)5 limh → 01 5 du.

This suggests that in the case of two continuous random variables X and Y we could
indeed define the conditional density function as in (4.21) but we should not interpret it
as assigning probabilities because:

f(. |x): RY → [0,`).

As we can see, the conditional density is a proper density function, in so far as, in the
case of continuous random variables, it satisfies the properties:

f(x,u)
fx(x)Ey

2`

P(Y#y, x#X#x 1 h)
P(x#X#x 1 h)

P(Y#y, x#X#x 1 h)
P(x#X#x 1 h)

1
3

2
3

1
3

0.1
0.3

f(x 5 0,y 5 2)
fx(x 5 0)

2
3

0.2
0.3

f(x 5 0,y 5 0)
fx(x 5 0)

f(x 5 0,y)
fx(x 5 0)
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[cf1] f(y |x)$0, for all y[RY,

[cf2] ∫`
2` f(y |x)dy51,

[cf3] F(y |x)5 ∫ y
2` f(u |x) du.

In the case of discrete random variables the integrals are replaced with summations.

Examples
(i) Consider the case where the joint density function takes the form:

f(x,y)58xy, 0,x,y, 0,y,1.

The marginal densities of x and y can be derived from the joint density by integrat-
ing out y and X, respectively:

fx(x)5 ∫ 1
x(8xy)dy54xy2 | y5

y51
x54x(12x2), 0,x,1.

fy(y)5 ∫ y
0(8xy)dx54x2y |x5y

x5054y3, 0,y,1.

 : The only difficulty in the above derivations is to notice that the range of
X is constrained by Y and vice versa. Using these results we can deduce that:

f(y |x)5 , x,y,1, 0,x,1,

f(x |y)5 , 0,x,y, 0,y,1.

(ii) Consider the bivariate standard Normal distribution. As seen in the previous
section, in the case where f(x,y) is Normal, the marginal distributions fx(x) and fy(y)
are also Normal. Hence, the conditional density of Y given X5x can be derived as
follows:1

f(y |x)5 ,

f(y |x)5 [2p (12r2)]2 exp 2 [2(1–r2)]21(x222rxy1y2)1 x2 .

Using the equality:

[2(12r2)]21(x222rxy1y2)1 x25 [2(1–r2)]21(y2rx)2,

the conditional density takes the form:

f(y |x)5 exp 2 [y2rx]2 .

Hence f(y |x) is also Normal with mean rx and variance (1–r2), denoted by:

(Y |X5x),N(r x,(12r2)).

61
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The conditional density f(y |x520.5) can be visualized as the one dimensional
density we get by slicing the joint density using a perpendicular plane, parallel to
the y-axis and passing through the point x520.5. In figure 4.3 we can see how the
slicing of the bivariate surface at x520.5 scaled by [1/fx(20.5)] yields a Normal
univariate density.

4.4.3 Continuous/discrete random variables
In empirical modeling there are occasions when the modeler is required to model the
relationship between continuous and discrete random variables. Naturally such discus-
sions will involve the joint distribution of the random variables involved, and the ques-
tion arises as to how to specify such distributions. It turns out that a most convenient way
to specify such a joint distribution is via the conditional density.

Consider the case where F(x,y) is the joint cdf of the random variables (X,Y) where X
is discrete and Y is continuous. Let RX5{x1,x2,…} be the range of values of the random
variable X. The joint cdf is completely determined by the sequence of pairs of a marginal
probability and the associated conditional density:

(fx(xk), f(y |xk), for all yk[RX).
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This can be visualized as a sequence of probability poles along the x-axis at the points
{x1,x2,…} which are smudged along the y-axis in such a way that the density at any point
xk is [fx(xk) ·f(y |xk)].

The only technical difficulty in this result is how to specify the conditional density. It is
defined by:

f(y |xk)5 ,

where the notation (xk20) indicates taking the derivative from the left, such that:

F(x,y)5 
xk#x

fx(xk) f(u |xk)du.

Similarly, the marginal distribution of the random variable Y is defined by:

FY(y)5  
xk[RX

fx(xk) f(u |xk)du.

Example
Consider the case where the random variables (X,Y), X is Bernoulli and Y is Normally
distributed and the joint density takes the form:

f(x,y;f)5f(y |xk;u) · fx(xk;p), xk[RX,

f(y |xk;u)5 exp 2 (y2b02b1xk)2 , fx(1)5p, fx(0)512p.

4.4.4 Conditional moments

The conditional density, being a proper density function, also enjoys numerical
characteristics analogous to marginal density functions. In particular, for continuous
random variables we can define the conditional moments:

raw: E(Yr |X5x)5
2
∫̀
`

yrf(y |x)dy, r51,2, …,

central: E{(Y2E[Y |X5x])r |X5x}5
2
∫̀
`

[y2E(y |x)]rf(y |x)dy, r52,3,…

N that the only difference between the marginal and conditional moments is that the
relevant distribution with respect to which E(.) is defined is now the conditional.

In the case of discrete random variables we replace the integrals with summations as
exemplified in the case of the first of these conditional moments:

conditional mean: E(Y |X5x)5 y[RYy ·f(y |x),

conditional variance: Var(Y |X5x)5 y[RY[y2E(y |x)]2 · f(y |x).

Examples
(i) Discrete distribution, no unknown parameters. For the conditional density (4.22):

E(Y |X50)50· 12· 5 ,

Var(Y |X50)5 02
2

1 22
2

5 .124
27221
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(ii) Continuous distribution, no unknown parameters. Consider the case where the joint
density function takes the form:

f(x,y)58xy, 0,x,y, 0,y,1.

As shown above, the marginal densities of x and y are:

f(x)54x(12x2), 0,x,1 and f(y)54y3, 0,y,1.

f(y |x)5 , x,y,1, 0,x,1,

f(x |y)5 , 0,x,y, 0,y,1.

E(Y |X5x)5 ∫ 1
xy dy5 ∫ 1

xy2dy5 y3 | y5x
y 51 5 ,

E(X |Y5y)5 ∫ y
0x dx5 x3 |x5y

x50 5 y3 5 y,

Var(X |Y5y)5 ∫ y
0 x2 y 2 dx5 ∫ y

0 x21 y22 xy dx5

5 ∫ y
0 1 x2 dx5 1 x22 *

x5y

x50
5 y2.

(iii) Continuous distribution, with unknown parameters. Consider the case of the bivari-
ate (standard) Normal distribution discussed in the previous subsection. It was
shown that the conditional distribution of Y given X5x takes the form:

(Y |X5x),N(rx, (12r2)).

This suggests that:

E(Y |X5x)5rx, and Var(Y |X5x)5(12r2).

The conditional moments are of interest in modeling dependence, because they often
provide the most flexible way to capture the important aspects of probabilistic depen-
dence (see chapter 6).

4.4.5 A digression: other forms of conditioning

Truncation
In addition to conditioning on events of the form {X5x}, it is often of interest to condi-
tion on events such as:

{X.a}, {X,b} or {a,X#b}.

Example
In the case of the random experiment of “measuring the life of a light bulb” we might be
interested in the probability that it will last n hours given that it has lasted at least m
hours already (n.m).
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Consider the most general case of conditioning on the event {a,x#b}, referred to
as double truncation; from the left at the point a and from the right at the point b.
Intuition suggests that in the case of a discrete random variable X with a range of values
RX:5{x1,x2,…}, the conditional probability function of X given {a,x#b} should be
given by:

f(xi |a,X#b)5 , for a,xi#b.

That is, the probability of X5xi given {a,x#b} is just a weighted probability.
Similarly, in the case of a continuous random variable X the above formula takes the
form:

f(x |a,x#b)5 , for a,x#b. (4.23)

Example
In the case of the Normal distribution the doubly truncated density takes the form:

f(x;u)5 exp 2 , a,x#b.

Viewing the events {X.a} and {X,b} as special cases of {a,x#b} we can modify the
above formulae accordingly. For the cases {X.a}5(a,`) and {X,b}5(2`,b), using
the result F(`)5 lim

x→`
F(x)51 we deduce that:

f(x |X.a)5 , x.a, f(x |X,b)5 , x,b. (4.24)

The functions f(x |a,x#b), f(x |X.a), and f(x |X,b) are often referred to as truncated
density functions and they enjoy the usual properties:

[tf1] f(x |a,x#b)$0, for all x[RX,
[tf2] ∫ b

a f(x |a,x#b)dx51.

Example
Let X be an exponentially distributed random variable with:

f(x)5ue2ux, and F(x)512e2ux, y.0.

From (4.24) it follows that:

f(x |X.t)5 5ue2u(x2t).

Hazard function
As can be seen from the above example, f(x |X.t) is a function of both x and t. Viewing
it as a function of t only, we define what is known as:

Hazard function: h(t)5 , x.t.

Intuitively, this can be thought of as the instantaneous rate of mortality for an individual
who is alive up to time t.

f(t)
1 2 F(t)

ue2ux

e2ut

f(x)
F(b)

f(x)
1 2 F(a)
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Example
For X, an Exponentially distributed random variable, the hazard function takes the form:

h(t)5 5u.

Intuitively, this means that the instantaneous rate of mortality is constant. This suggests
that the Exponential distribution is not appropriate for modeling the life of the light bulb
because it implicitly assumes that the probability of failing does not depend on the age of
the bulb!

4.4.6 Marginalization versus conditioning

Marginal and conditional densities, viewed in relation to the joint density function:

Joint- f(.,.): (R3R) → [0,`),
Marginal- fy(.): R → [0,`),
Conditional- f(. |x): R → [0,`),

have one thing in common: they are both univariate densities. That is, they both reduce
the dimensionality of the bivariate density function but the reduction takes different
forms. In the case of the marginal density fy(.) the information relating to the other
random variable X is ignored (integrated out). On the other hand, in the case of the
conditional density f(. |x) not all information relating to X is ignored. The conditional
density retains part of the information relating to X; the information X5x.

The formula (4.21), defining the conditional density can be rearranged to yield:

f(x,y)5f(y |x) · fx(x), for each (x,y)[RX3RY. (4.25)

This decomposes the bivariate density f(x,y), into a product of two univariate densities,
f(y |x) and fx(x); or so it appears. The importance of this decomposition will become
apparent in the next section in relation to the notion of independence. Before we con-
sider that, however, there are good reasons to elaborate on the intuition underlying
marginalization and conditioning.

Example
Consider the joint density function represented below:

y\x 1 2 3 fy(y)

0 0.20 0.10 0.15 0.45
1 0.10 0.25 0.05 0.40
2 0.01 0.06 0.08 0.15

fx(x) 0.31 0.41 0.28 1
(4.26)

Contemplate the following scenario. You wake up in a Cypriot hospital covered in
plaster from head to toe with only the eyes and mouth showing and suffering from com-
plete amnesia. A nurse, who just came on duty, walks in and informs you that, based on
the report he had just read: you have been involved in a car accident, you are in bad shape

ue2ut

e2ut
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(but out of danger) and you are likely to remain in hospital for a while. The first question
that comes to mind is: Who am I? but the second thought that creeps in is: Can I afford
the bills? The nurse seems to be reading your mind but he is unable to help. The only
thing he could offer was the above table where X denotes age group and Y income group:

X51: (18–35), X52: (36–55), X53: (56–70),
Y50: poor, Y51: middle income, Y52: rich.

A glance at the joint probabilities brings some more confusion because the highest prob-
ability is attached to the event (X52,Y51) (middle aged and middle income) and the
lowest probability is attached to the event (X51,Y52) (young but rich!). In an attempt
to re-assure yourself you ignore income (as of secondary importance) for a moment and
look at the marginal density of X. The probability of being in the age bracket of seniors
(irrespective of income) is lower than the probabilities of being either young or middle-
aged; a sigh of relief but not much comfort because the probability of being young is not
very much higher! During this syllogism the nurse remembers that according to the
report you were driving a Porsche! This additional piece of information suddenly
changes the situation. Unless you were a thief speeding away when the accident hap-
pened (an unlikely event in a crime-free country like Cyprus!), you know that Y52 has
happened. How does this change the joint probabilities? The relevant probabilities now
are given by the conditional density of X given Y52:

5
5 50.067, x51,

f(x |y52)5 5 50.400, x52,

5 50.533, x53.

A glance at these conditional probabilities and you are begging the nurse to take the
plaster off to check how old you are; there is more than 50 percent chance you are a
senior!

Having discussed the concepts of marginal and conditional distributions we can proceed
to formalize the notions of independence and identical distributions.

4.5 Independence

4.5.1 The 2–random variable case

As seen in chapter 2, two events A and B which belong to the same event space I, are said
to be independent if:

P(A>B)5P(A) ·P(B).

By translating the arbitrary events A and B into events of the form: A:5(s:X(s)#x) and
B:5(s:Y(s)#y), s[S, the above condition becomes:

0.08
0.15

f(x 5 3,y 5 2)
fy(y 5 2)

0.06
0.15

f(x 5 2,y 5 2)
fy(y 5 2)

0.01
0.15

f(x 5 1,y 5 2)
fy(y 5 2)
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P(X#x,Y#y)5P(X#x) ·P(Y#y), for each (x,y)[R2.

FXY(x,y)5FX(x) ·FY(y), for each (x,y)[R2, (4.27)

where FXY(.,.) denotes the joint cumulative distribution function (cdf). In terms of the
density functions, X and Y are said to be independent if:

f(x,y)5fx(x) · fy(y), for each (x,y)[R2. (4.28)

That is, the joint density is equal to the product of the two marginal density functions. In
other words the only case where the joint density contains no additional information
from that contained in the marginal density functions is the case where the random vari-
ables are independent.

It is important to  that in view of (4.25), when X and Y are independent:

f(y |x)5fy(y) for all y[RY. (4.29)

Similarly, f(x |y)5fx(x), for all x[RX. That is, when Y and X are independent, condi-
tioning on X does not affect the marginal density of Y and vice versa. This provides a
more intuitive way to understand the notion of independence.

Examples
(i) Consider the bivariate density (4.26). The random variables X and Y, are not inde-

pendent since for the first value (X,Y)5(1,0):

f(1,0)5(0.20)Þfx(1) ·fy(0)5(0.31)(0.45)5(0.1395).

(ii) Consider the bivariate density given below:

y\x 0 1 fy(y)

0 0.3 0.3 0.6
2 0.2 0.2 0.4

fx(x) 0.5 0.5 1
(4.30)

To check whether X and Y are independent, we need to verify that the equality in
(4.28) holds, for all values of X and Y:

(X,Y)5(0,0), f(0,0)5fx(0) · fy(0)5(0.3)5(0.5)(0.6),
(X,Y)5(0,2), f(0,2)5fx(0) · fy(2)5(0.2)5(0.5)(0.4),
(X,Y)5(1,0), f(1,0)5fx(1) · fy(0)5(0.3)5(0.5)(0.6),
(X,Y)5(1,2), f(1,2)5fx(1) · fy(2)5(0.2)5(0.5)(0.4).

These results suggest that X and Y are indeed independent.

(iii) In the case where (X,Y) are jointly Normally distributed, with density as defined in
(4.9), we can deduce that when r50, X and Y are independent. This follows by a
simple substitution of the restriction r50 in the joint density:
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f(x,y)5 exp 2 [x222rxy1y2] *
p50

5 exp 2 [x21y2] 5

f(x,y)5 exp 2 x2 exp 2 y2 5 fx(x) ·fy(y),

where fx(x) and fy(y) are standard Normal densities.

R : The last example provides an important clue to the notion of inde-
pendence by suggesting that when the joint density f(x,y) can be factored into a
product of two non-negative functions u(x) and v(y) i.e.

f(x,y)5u(x) ·v(y),

where u(.)$0 depends only on x and v(.)$0 depends only on y, then X and Y are
independent.

(iv) In the case where (X,Y) are jointly exponentially distributed, with density:

f(x,y;u)5 [(11u x)(11u y)2u]exp {2x2y2uxy}, x.0, y.0, u.0.

It is obvious that X and Y are independent only when u50, since the above factor-
ization can be achieved only in that case:

f(x,y;0)5 [(11ux)(11uy)2u]exp {2x2y2u xy}| u505(e2x)(e2y).

4.5.2 Independence in the n-variable case

The extension of the above definitions of independence from the two to the n-variable
case is not just a simple matter of notation. As argued in the previous chapter, the events
A1,A2, …, An are independent if the following condition holds:

P(A1>A2>…>Ak)5P(A1) ·P(A2) ···P(Ak), for each k52,3, …, n. (4.31)

That is, this must hold for all subsets of {A1,A2, …, An}. For example, in the case n53,
the following conditions must hold for A1,A2,A3 to be independent:

(a) P(A1>A2>A3)5P(A1) ·P(A2) ·P(A3),
(b) P(A1>A2)5P(A1) ·P(A2),
(c) P(A1>A3)5P(A1) ·P(A3),
(d) P(A2>A3)5P(A2) ·P(A3).

In the case where only conditions (b)–(d) hold, the events A1,A2,A3 are said to be pair-
wise independent. For (complete) independence, however, we need all four conditions.
The same holds for random variables as can be seen be replacing the arbitrary events
A1,A2,A3 with the special events Ai5(Xi#xi), i51,2,3.

Independence The random variables X1,X2, …, Xn are said to be independent if the fol-
lowing condition holds:

F(x1,x2, …, xn)5F1(x1) ·F2(x2) ···Fn(xn), for all (x1, …, xn)[Rn. (4.32)
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In terms of the density functions, independence can be written in the form:

f(x1,x2, …, xn)5f1(x1) ·f2(x2) ···fn(xn), for all (x1, …, xn)[Rn. (4.33)

From (4.33) we can see that the qualification for all subsets of {A1,A2, …, An} in the
case of events has been replaced with the qualification for all (x1, …, xn)[Rn. In other
words, in the case of random variables we do not need to check (4.33) for any subsets of
the set X1,X2, …, Xn, but we need to check it for all values (x1, …, xn)[Rn. It is also
important to note that when (4.33) holds for all (x1, …, xn)[Rn, it implies that it should
hold for any subsets of the set X1,X2, …, Xn, but not the reverse.

Example
Let us return to our favorite example of “tossing a fair coin twice” and noting the
outcome: S5{(HH),(HT),(TH),(TT)}, I being the power set. Define the following
random variables:

X(HT)5X(HH)50, X(TH)5X(TT)51,
Y(TH)5Y(HH)50, Y(TT)5Y(HT)51,
Z(TH)5Z(HT)50, Z(TT)5Z(HH)51.

PXYZ(1,1,1)5 , PXYZ(1,1,0)50,

PXYZ(1,0,0)5 , PXYZ(1,0,1)50,

PXYZ(0,1,0)5 , PXYZ(0,1,1)50,

PXYZ(0,0,1)5 , PXYZ(0,0,0)50.

PX(0)5 P(0,y,z)5P(0,1,0)1P(0,0,1)1P(0,1,1)1P(0,0,0) 5 ,

PX(1)5 P(1,y,z)5P(1,1,1)1P(1,0,0)1P(1,1,0)1P(1,0,1) 5 ,

PY(0)5 P(x,0,z)5P(1,0,0)1P(0,0,1)1P(1,0,1)1P(0,0,0) 5 ,

PY(1)5 P(x,1,z)5P(1,1,1)1P(0,1,1)1P(1,1,0)1P(0,1,0) 5 ,

PZ(0)5 P(x,y,0)5P(1,0,0)1P(1,1,0)1P(0,1,0)1P(0,0,0) 5 ,

PZ(1)5 P(x,y,1)5P(1,1,1)1P(0,0,1)1P(1,0,1)1P(0,1,1) 5 .

In view of these results we can deduce that (X,Y), (X,Z) and (Y,Z) are independent in
pairs since:

PXY(0,0)5PX(0) ·PY(0)5 , PXZ(0,0)5PX(0) ·PZ(0)5 ,

PXY(1,0)5PX(1) ·PY(0)5 , PXZ(1,0)5PX(1) ·PZ(0)5 ,

PXY(0,1)5PX(0) ·PY(1)5 , PXZ(0,1)5PX(0) ·PZ(1)5 ,1
4
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PYZ(0,0)5PY(0) ·PZ(0)5 ,

PYZ(1,0)5PY(1) ·PZ(0)5 ,

PYZ(0,1)5PY(0) ·PZ(1)5 .

On the other hand, all three random variables (X,Y,Z) are not independent, since:

PXYZ(1,1,1)5 ÞPX(1) ·PY(1) ·PZ(1)5 .

The above definition completes the first stage of our quest for transforming the notion of
random trials. The independence given in the introduction in terms of trials (see (4.1))
has now been recast in terms of random variables as given in (4.33). We consider the
second scale of our quest for a random sample in the next section.

4.6 Identical distributions

As mentioned in the introduction, the notion of random trials has two components:
independence and identical distributions. Let us consider the recasting of the Identically
Distributed component in terms of random variables.

Example
Consider the Bernoulli density function:

f(x;u)5ux(12u)12x, x50,1,

where u5P(X51). Having a sample of n independent trials, say (X1,X2, …, Xn),
amounts to assuming that the random variables X1,X2, …, Xn are independent, with each
Xi having a density function of the form:

f(xi;u i)5ui
xi(12u i)12xi, xi50,1, i51,2, …, n,

where u i5P(Xi51), i51,2, …, n. Independence in this case ensures that:

f(x1,x2, …, xn;f)5
n

i51fi(xi;u i)5
n

i51ui
xi(12u i)12xi, xi50,1,

where f:5(u1, u2, …, un). Obviously, this does not satisfy the Identically Distributed
component. For that to be the case we need to impose the restriction that for all trials the
probabilistic structure remains the same, i.e., the random variables X1,X2, …, Xn are also
Identically Distributed in the sense:

f(xi;u i)5uxi(12u)12xi, xi50,1, i51,2, …, n.

Let us formalize the concept of Identically Distributed random variables in the case of
arbitrary but Independent random variables, beginning with the two-variable case. In
general, the joint density involves the unknown parameters f, and the equality in (4.28)
takes the form:
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f(x,y;u)5fx(x;u1) ·fy(y;u2), for all (x,y)[RX3RY,

where the marginal distributions fx(x;u1) and fy(y;u2) can be very different.
Two independent random variables are said to be Identically Distributed if fx(x;u1)

and fy(y;u2) are the same density functions, denoted by:

fx(x;u1); fy(y;u2), for all (x,y)[RX3RY,

in the sense that they have the same functional form and the same unknown parameters:

fx(.)5fy(.) and u15u2.

Examples
(i) Consider the case where the joint density takes the form:

f(x,y;u)5 , x$1, y.0.

It is clear that the random variables X and Y are independent (the joint density
factors into a product) with marginal densities:

fx(x;u1)5 , x$1, fy(y;u2)5 e2 , y.0.

However, the random variables X and Y are not Identically Distributed because
neither of the above conditions for ID is satisfied. In particular, the two marginal
densities belong to different families of densities (fx(x;u1) belongs to the Pareto
and fy(y;u2) belongs to the Exponential family), they also depend on different para-
meters (u1Þu2) and the two random variables X and Y have different ranges of
values.

(ii) Consider the three bivariate distributions given below:

y\x 1 2 fy(y) y\x 0 1 fy(y) y\x 0 1 fy(y)

0 0.18 0.42 0.6 0 0.18 0.42 0.6 0 0.36 0.24 0.6
2 0.12 0.28 0.4 1 0.12 0.28 0.4 1 0.24 0.16 0.4

fx(x) 0.3 0.7 1 fx(x) 0.3 0.7 1 fx(x) 0.6 0.4 1
(a) (b) (c)

The random variables (X,Y) are independent in all three cases (verify!). The
random variables in (a) are not Identically Distributed because RXÞRY, and fx(x)
Þfy(y) for some (x,y)[RX3RY. The random variables in (b) are not Identically
Distributed because even though RX5RY, fx(x)Þfy(y) for some (x,y)[RX3RY.
Finally, the random variables in (c) are Identically Distributed because RX5RY,
and fx(x)5fy(y) for all (x,y)[RX3RY.

(iii) In the case where f(x,y;u) is bivariate Normal, as specified in (4.7), the two mar-
ginal density functions have the same functional form but u:5(m1,m2,s11,s22),
u1: 5(m1,s11) and u2:5(m2,s22), are usually different. Hence, for the random
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variables X and Y to be Identically Distributed, the two means and two variances
should coincide: m15m2 and s115s22:

f(x;u1)5 e2 [x2m1]2, f(y;u2)5 e2 [y2m1]2.

The concept of Identically Distributed random variables can be easily extended to the n-
variable case in a straight forward manner.

Identical Distributions The random variables (X1,X2,…, Xn) are said to be Identically
Distributed if:

fk(xk;uk);f(xk;u), for all k51,2, …, n.
This has two dimensions:

(i) f1(.);f2(.); f3(.); · · ·;fn(.);f(.),
(ii) u15u25u35…5un5u.

The equality sign; is used to indicate that all the marginal distributions have the same
functional form.

4.6.1 A random sample

Our first formalization of condition [c] of a random experiment %, where:

[c] it can be repeated under identical conditions,

took the form of a set of random trials {A1,A2,A3, …, An} which are both Independent
and Identically Distributed (IID):

P(n)(A1>A2>…>Ak)5P(A1) ·P(A2) ···P(Ak), for each k52,3, …, n.
(4.34)

Using the concept of a sample X:5(X1,X2, …, Xn), where Xi denotes the ith trial, we
can proceed to formalize condition [c] in the form of a sample where the random vari-
ables X1,X2, …, Xn are both Independent (I) and Identically Distributed (ID).

Random sample The sample X(n)
IID:5(X1,X2, …, Xn) is called a random sample if the

random variables (X1,X2, …, Xn) are:

(a) Independent:

f(x1,x2, …, xn;f)5
I n

k51 fk(xk;uk) for all (x1, …, xn)[Rn,

(b) Identically Distributed:

fk(xk;uk)5f(xk;u), for all k51,2, …, n.

Putting the two together the joint density for X(n)
IID:5 (X1,X2, …, Xn) takes the form:

f(x1,x2, …, xn;f)5
I n

k51 fk(xk;uk)
IID
5

n

k51 f(xk;u), for all (x1, …, xn)[Rn. (4.35)pp
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The first equality follows from the independence condition and the second from the
Identical Distribution condition. N that fk(xk;uk) denotes the marginal distribution
of Xk(.), derived by integrating out all the other random variables apart from Xk(.), i.e.

fk(xk;uk)5
2
∫̀
`

2
∫̀
`

···
2
∫̀
`

f(x1, …, xk21,xk,xk11, …, xn;f)dx1…dxk21dxk11…dxn.

As argued in chapter 2, the formalization of a random experiment was chosen to moti-
vate several concepts because it was simple enough to avoid unnecessary complications.
It was also stated, however, that simple stochastic phenomena within the intended scope
of a simple statistical model are rarely encountered in economics. One of our first tasks,
once the transformation is completed, is to extend it. In preparation for that extension
we note at this stage that the notion of a random sample is a very special form of what we
call a sampling model.

Sampling model A sampling model is a set of random variables (X1,X2, …, Xn) (a sample)
with a certain probabilistic structure. The primary objective of the sampling model is to
relate the observed data to the probability model.

4.6.2 A simple statistical model: concluding the metamorphosis

We are now in a position to complete the quest which began with the formalization of the
notion of a random experiment %, defined by the conditions:

[a] All possible distinct outcomes are known a priori,
[b] in any particular trial the outcome is not known a priori but there exists a percept-

ible regularity of occurrence associated with these outcomes, and
[c] it can be repeated under identical conditions.

The initial abstract formalization took the form of a simple statistical space:
[(S,I,P(.))n, Gn

IID]. The main aim of the previous chapter was to metamorphose the
simple probability space (S,I,P(.))n into something defined on the real line. The key to
the transformation was the notion of a random variable X(.):

(S,I,P(.)) ⇒
X(.)

(R,B(R),PX(.)) ⇒ {f(x;u), u[Q, x[RX}.

In this chapter we transformed the simple sampling space into a random sample:

Gn
IID5{A1,A2,A3, …, An} ⇒

X(.)
X(n)

IID:5 (X1,X2, …, Xn).

Collecting the main results of the last two chapters together we define a generic simple
statistical model:

[i] Probability model: F5{f(x;u), u[Q, x[RX},
[ii] Sampling model: X:5(X1,X2, …, Xn) is a random sample.

The notion of the statistical model constitutes the basic contribution of probability
theory to the theory of statistical inference. All forms of parametric statistical inference
presume a particular statistical model, which, if invalid, renders any inference results fal-
lacious. Hence, a sound understanding of the form and structure of a simple statistical
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model of the form given above is imperative. Particular examples of simple statistical
models are given below:

Simple Bernoulli model

[i] Probability model: F5{f(x;u)5ux(12u)12x, 0#u#1,x50,1},
[ii] Sampling model: X:5(X1,X2, …, Xn) is a random sample.

Simple Normal model

[i] Probability model:

F5 f(x;u)5 exp 2 , u:5(m,s2)[R3R1 , x[R ,

[ii] Sampling model: X:5(X1,X2, …, Xn) is a random sample.

Simple generalized Gamma model

[i] Probability model:

F5 f(x;u)5 a2bd xbd21exp 2
d

, u[Q, x[R1 ,

[ii] Sampling model: X:5(X1,X2, …, Xn) is a random sample.

4.7 A simple statistical model in empirical modeling:
a preliminary view

As mentioned above, every form of statistical inference presupposes the specification of
a particular statistical model a priori. This specification amounts to choosing a set of
probabilistic assumptions which the modeler deems appropriate for describing the sto-
chastic mechanism that gave rise to the data set in question. The choice of an appropriate
statistical model constitutes perhaps the most difficult and at the same time the most
crucial decision a modeler has to make; in comparison the decision of choosing a good
estimator for u is trivial. In chapter 1 we argued that in the case of observational (non-
experimental) data we need to establish a procedure which takes into consideration the
structure of the observed data. After all, the statistical model chosen is considered
appropriate only when it captures all the systematic information in the data in question.

What renders the above statistical model simple is the assumption of a random sample,
that is, (X1,X2, …, Xn) are Independent and Identically Distributed random variables.
Making an appropriate choice of a statistical model will require the modeler to develop
both a formal and an intuitive understanding of such probabilistic assumptions.
Similarly, postulating a parametric family of densities requires the modeler to appreciate
what that decision entails.

4.7.1 Probability model

Looking at a probability model of a parametric family of densities:
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F5{f(x;u), u[Q, x[RX}, (4.36)

from the modeling viewpoint, we discern two basic components:

(i) the parametric form of the density function f(x;u), u[Q,
(ii) the support of the density RX:5{x[R: f(x;u).0}.

In theory, empirical modeling commences from the “set of all possible probability
models,” say P, and utilizing information relating to the form and structure of the data,
the modeler narrows this set down to a subset P0,P, of admissible probability models,
by choosing f(x;u) and RX , felicitously.

The notion of a simple probability model was illustrated in chapter 3 with a number of
density plots for different values of u. As we will see in chapter 5, the choice of f(x;.) and
u does not have to be a hit or miss affair; it can be expedited by a number of data plots.
The support of the density also plays an important role in the specification because the
range of values of the observed data is a crucial dimension of modeling which is often
neglected. In the case where the observed data refer to a data series measured in terms of
proportions (i.e., the values taken by the data lie in the interval [0,1]), postulating a family
of densities with support (2`,`) is often inappropriate. Using the Beta family of densi-
ties might often be a better idea.

Example
In the case of the exam scores data in (see table1.6), there are good reasons to believe
that, based primarily on the support of the data, the Beta probability model might
indeed be a better choice; see chapter 15.

A   . In the context of statistical inference center stage will be
given to the unknown parameter(s) u; estimation and testing revolve around u. However,
the modeler should not lose sight of the fact that the estimation of u (using the observed
data in order to choose a good estimator û) is a means to an end. The primary objective
of empirical modeling is to describe adequately the stochastic phenomenon underlying
the data in question. This model comes in the form of the estimated probability model:

F̂5{f(x;û), y[RX}, (4.37)

which provides the basis of any form of statistical inference, including prediction and
simulation. It represents an idealized stochastic mechanism purporting to provide an
adequate description of the stochastic phenomenon underlying the observed data in
question. In this sense, undue focusing on the unknown parameters will result in losing
sight of the forest for the trees.

4.7.2 Identifiability and parameterizations

It must be stressed at the outset that for modeling purposes the parameters u[Q, must
be associated with unique probability distributions, otherwise our choice of a good esti-
mator of u, and thus a choice of stochastic mechanism as given in (4.37) is meaningless.
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In other words, it is imperative that for different values of u in Q there correspond
different distributions. The condition which ensures this is specified below.

Identifiability: for all u1Þu2, where u1[Q, u2[Q, f(x;u1)Þf(x;u2), x[RX.

I In what follows we will assume that all the probability models are identifi-
able in relation to the parameterization postulated.

In relation to the uniqueness of the parameterization it must be emphasized that it is
defined up to one-to-one mappings. That is, when specifying the probability model (4.36)
the modeler can choose a number of equivalent parameterizations if there exists a one-
to-one mapping between the two parameter spaces. In particular, an equivalent
parameterization of (4.36) is:

F5{f(x;c), c[C, x[RX}, (4.38)

only in the case where there exists a one-to-one mapping c5g(u):

g(.): Q → C.

If we want to emphasize the reparameterization we can write (4.38) in the form:

F5{f(x;c), c5g(u), u[Q, x[RX}, (4.39)

which parameterization will be used in a particular case depends on a number of factors
including interpretability.

Example
Consider the case of the Exponential distribution where the u[Q parameterization
takes the form:

F5{f(x;u)5u exp [2ux], x.0, u[Q:5(0,`)}.

An equivalent parameterization is defined in terms of c5 :

F5 f(x;u)5 exp , x.0, c[C:5(0,`) .

Beyond statistical parameterizations an important role in econometric modeling is
played by theoretical parameterizations. In a nutshell, a statistical parameterization has a
clear interpretation in terms of distributional features of the family of densities in ques-
tion, such as moments and quantiles. In contrast, a theoretical parameterization has a
clear interpretation in terms of the economic theory (or theories) in question. So far we
encountered only statistical parameterizations. In econometrics, however, we are ulti-
mately interested in (economic) theoretical parameterizations a[A, which are often
different from the postulated statistical parameterizations u[Q. More often than not we
have fewer theoretical than statistical parameters of interest. In such a case we need to
ensure that there exists a many-to-one mapping of the form:

h(.): Q → A,

which defines a uniquely (up to one-to-one parameterizations). N that a many-to-
one mapping h(.) will reparameterize and restrict the statistical parameters. This is often

632
1
c

x41
c5

1
u
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necessary in order to reduce the data specificity of a statistical model as well as render the
statistical parameters theoretically meaningful.

4.7.3 Important parametric families of distributions

The success of empirical modeling will depend crucially on the richness of the paramet-
ric families of distributions available to the modeler. In this section will consider briefly
some of the most important families of distributions used in empirical modeling. The
first important breakthrough in making parametric families of distributions available to
the modeler was made by Karl Pearson (1895).

The Pearson family
The Pearson family of density functions was initially motivated by the desire to generate
non-Normal distributions (especially non-symmetric) to be used for modeling biological
data. Pearson noticed that the Normal density function f(x) satisfies the simple
differential equation:

5f(x) , x[R, where m:5u0 and s2:52u1.

He went on to generalize this differential equation to four unknown parameters
(u0,u1,u2,u3):

5 f(x) , x[RX.

Depending on the values taken by the unknown parameters, this equation, in addition to
the Normal, can generate several well-known density functions such as:

Student’s t: f(x;u)5 11
2 (n11), u:5(m,s2)[R3R1, x[R,

Laplace: f(x;u)5 e2 , u:5(a,b)[R3R1, x[R,

Pareto: f(x;u)5(u x0
u)x2(u11), u[R1, x0.0, x$x0,

Gamma: f(x;u)5
a21exp 2 , u:5(a,b)[R1

2 ,x[R1,

Beta: f(x;u)5 , u:5(a,b)[R1
2 , 0#x#1.

In the case of discrete random variables, the corresponding difference equation is:

fk2fk215 fk , k51,2,3…, x[RX.

In addition to the binomial distribution, this equation can be used to generate several
well-known discrete distributions such as:

Hypergeometric: f(x;u)5 , 0#x#min (K,n),
1K

x21
M 2 K
n 2 x 2

1M
n 2

3 (k 2 u0)
u1 1 u2x 1 u3x(1 2 x)4

xa21(1 2 x)b21

B[a,b]

62x
b152x

b1
b21

G[a]

1|x 2 a|
b 21

2b

1
22(x 2 m)2

ns21
G31

2
(n 1 1)4(s2np)2

1
2

G31
2

n4

3 (x 2 u0)
u1 1 u2x 1 u3x

24df(x)
dx

3(x 2 u0)
u1

4df(x)
dx
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Negative Binomial: f(x;u,k)5 uk(12u)x, 0,u,1, k51,2, …, y50,1,2, …,

Poisson: f(x;u)5 , u.0, x50,1,2,3,…

Exponential family of distributions
This family of distributions was initially introduced into statistics by Fisher (1934) as a
natural extension of the Normal distribution for inference purposes. As argued in
chapter 12, this family retains some of the important properties of the Normal distribu-
tion in relation to inference. N that the Exponential family is different from the expo-
nential distribution encountered above. The density function of the Exponential family
can expressed in the form:

f(x;u)5c(u) ·h(x)exp 
k

i51gi(u) ·ti(x) ,

(a) c(u)$0,
(b) h(x)$0,
(c) gi(u), i51,2, …, k: real-valued functions (free of x),
(d) ti(x), i51,2, …, k: real-valued functions (free of u).

Many well-known distributions such as the Normal, Gamma, Beta, Binomial, Poisson,
and Negative Binomial belong to this family; see Barndorff-Nielsen and Cox (1989),
Azallini (1996).

Examples
(i) The Poisson distribution is a discrete member of the Exponential family with

density function:

f(x;u)5 exp (x ln(u)), x50,1,2, …, u.0.

Hence, for this density: k51, c(u)5e2u, h(x)5 , g(u)5 ln (u), t(x)5x.

(ii) The Normal distribution is a continuous member of the Exponential family with a
density function:

f(x;u)5 exp 2 5 exp 2x2 1x , x[R,

u:5 (m,s2)[R3R1. Hence, for the Normal density: k52, c(u)5 exp 2 ,
h(x)51, g1(u)5 , g2(u)5 , t1(x)5x, t2(x)5x2.

The stable (Pareto-Levy) family
The stable family of distributions was initially motivated by the important property of
the domain of attraction: the sum of independent random variables from a certain distri-
bution, appropriately normalized, has the same distribution as the individual random
variables. This family of distributions has been used extensively for modeling speculative

2 1
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21m
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2s221
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prices (see Campbell et al. (1997)). A major drawback of this family is that most of its
members do not have an explicit closed-form density function and thus modelers work
directly with the cumulant (log of the characteristic) function (see chapter 3) which is
given by:

log f(t)55imt2s |t |a 12 [sign(t)] · ib tan , for aÞ1

imt2s |t | 11 [sign(t)] · ib ln (|t |) , for a51.

This family is defined in terms of four parameters (see Galambos (1995)):

a: the characteristic exponent, where 0,a#2,
b: the skewness, where21#b#1,
m: the location, where m[R,
s: the scale, where s[R1.

This is a continuous family of unimodal (one mode) densities. For a,2 the tails of the
density function decay like a power function (hence the term Pareto), exhibiting more
dispersion than the Normal; the smaller a, the thicker the tails. For b50 the density is
symmetric around m but b.0 and b,0 give rise to left- and right-skewed densities,
respectively; the cases |b |51 give rise to the extreme stable distributions.

The support of this family depends on the parameters (a,b):

R, for a$1, | b |Þ1,
RX*(a,b)5 (2`,0), for a,1, b51,5 (0,`), for a,1, b521.

Examples
(i) For a52 and b50, the stable family reduces to the Normal distribution.

(ii) For a51 and b50, the stable family reduces to the Cauchy distribution with
density:

f(x;m,s)5 , x[R, m[R, s[R1.

N that for the case 0,a#1 no moments exist!

(iii) For a5 and b51, the stable family reduces to the Levy distribution with density:

f(x;m,s)5 exp 2 , x.m, m[R, s[R1.

The Johnson transformation family
The Johnson transformation family of distributions was initially motivated by an
attempt to introduce non-Normal distributions which can be viewed as monotone trans-
formations of the Normal. Johnson (1949) proposed the transformation:

X5g1dh(Y)5g1dh , X,N(0,1), h(.) a monotone function.1Z 2 m

s 2

21
2(x 2 m)1Î s

2p(x 2 m)3

1
2

s

p[s2 1 (x 2 m)2]

6412
p235

641pa

2 235
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The most important members of this family are based on the following transformations:

(i) SL, log Normal:

h(Y)5 ln(Y), m,Z,`.

(ii) SB, bounded range:

h(Y)5 ln , m,Z,m1s.

(iii) SU, unbounded range:

h(Y)5 ln (Y1 ), 2`,Z,`.

4.7.4 Random sample

In so far as the sampling model is concerned we note that from the modeling viewpoint
the basic components of a random sample: X(n)

IID:5(X1,X2, …, Xn), are the assumptions:

(i) Independence, and
(ii) Identical Distribution.

For observational data the validity of these assumptions can often be assessed using a
battery of graphical techniques discussed in chapters 5–6. In these chapters we will
discuss the connection between the probabilistic notions making a simple statistical
model (such as Independence and Identical Distribution) and various plots of real data.
The discussion is particularly relevant to modeling observational data.

In an attempt to show how easy it is to end up with a non-random sample, it is shown
in the next section that a simple rearrangement of the sample gives rise to a non-random
sample.

4.8 Ordered random samples*
Consider the case where the original sampling model is a random sample (X1,X2, …, Xn)
with cdf F(x;u), i.e.

(i) F(x1,x2, …, xn;f)5 n
k51Fk(xk;uk),

(ii) Fk(xk;uk)5F(x;u), for k51,2, …, n.

For a number of reasons, which will be explored in the next few chapters, it is often inter-
esting to consider the ordered sample where the random variables are arranged in ascend-
ing order, i.e.

(X[1],X[2], …, X[n]) where X[1]#X[2]#…#X[n].

N : it is important to emphasize that the ordered sample constitutes a mental con-
struct because before the sample is realized no such ordering is possible! Be that as it

p

Ï1 1 Y 2

1 Y
1 2 Y2
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may, it might come as a surprise to the reader that even though the sample (X1,X2, …, Xn)
is random (IID) the ordered sample (X[1],X[2], …, X[n]) is non-random; the random vari-
ables X[1],X[2], …, X[n] are neither Independent nor Identically Distributed. Let us see this
in some detail.

4.8.1 Marginal distributions

Consider first the distribution function of the random variable

X[1]:5min (X[1],X[2], …, X[n])

and let its cdf be denoted by F[1](x). Then, from first principles we know that:

F[1](x)5P(X[1]#x)512P(X[1].x).

In view of the fact that the random variable X[1] is the smallest, the event (X[1].x) occurs
if and only if all the Xks exceed x, i.e.

(X[1].x)5(X1.x, X2.x, ··· ,Xn.x).

From the randomness of the sample (X1,X2, …, Xn) we know that:

P(X1.x, X2.x, ··· ,Xn.x)5 [12F(x;u)]n

and thus:

F[1](x)5P(X[1]#x)512 [12F(x;u)] n.

Consider next the distribution function of the random variable

X[n]:5max (X[1],X[2], …, X[n])

and let its cdf be denoted by F[n](x). Then, from first principles we know that:

F[n](x)5P(X[n]#x).

In view of the fact that the random variable X[n] is the largest, the event (X[n]#x) occurs if
and only if all the Xks do not exceed x, i.e.

(X[n]#x)5(X1#x, X2#x, ··· ,Xn#x).

From the randomness of the sample (X1,X2, …, Xn) we know that:

P(X1#x, X2#x, ··· ,Xn#x)5 [F(x;u)]n,

and thus:

F[n](x)5P(X[n]#x)5 [F(x;u)]n.

Noting that the event:

(X[k]#x)5(at least k random variables from X1,X2, …, Xn do not exceed x),

we can derive the cdf of any random variable X[k] as follows. From the Binomial distribu-
tion we know that:
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P(exactly k from X1,X2, …, Xn do not exceed x)5 [F(x;u)]k[12F(x;u)]n2k,

and thus (see David (1981)):

F[k](x)5P(X[k]#x)5P(X[k]#x)5 n
m5k [F(x;u)]m[12F(x;u)] n2m.

N that the cdf for X[1] and X[n] constitute special cases of the above result.
Collecting the above results together we deduce that the ordered sample

(X[1],X[2], …, X[n]) is clearly non-ID since the distribution of X[k] changes with k.

Example
Consider the case where (X1,X2, …, Xn) constitutes a random sample from a Uniform
distribution:

Xk,U(0,1), k51,2, …, n.

We can easily show that the first two moments of these variables (see appendix A) are:

E(Xk)5 , Var(Xk)5 , Cov(Xk,Xj)50, jÞk, j,k51, …, n.

On the other hand, the first two moments of the ordered sample (X[1],X[2], …, X[n]) 
are:

E(X[k])5 , Var(Xk)5 , Cov(Xk,Xj)5 , j,k, j,k51, …, n.

The fact that the covariance is non-zero suggests that the ordered sample cannot be
Independent (see chapter 6).

4.8.2 Joint distributions

The dependence among the ordered random variables (X[1],X[2], …, X[n]) can be best seen
in the context of the bivariate joint distribution for any two of these random variables,
say X[i],X[j] (1# i, j#n). By definition:

F[i,j ](xi,xj)5P(X[i]#xi,X[ j ]#xj)5

F[i,j ](xi,xj)5P(at least i random variables from X1,X2, …, Xn do not exceed xi and at
least j random variables from X1,X2, …, Xn do not exceed xj)5

F[i,j ](xi,xj)5 n
k5j

k
,5i P(exactly i random variables from X1,X2, …, Xn do not exceed

xi and exactly j random variables from X1,X2, …, Xn do not exceed xj ).

Following the same common sense argument used above we can deduce that (see David
(1981)):

F[i,j](xi,xj )5 [F(xi)],[F(xj)2F(xi )] k2,[12F(xj )] n2k.

As we can see, the above joint distribution cannot be expressed as a product of the
two marginal distributions and thus the random variables (X[i],X[j]) are not inde-
pendent.
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4.9 Summary
In this chapter we completed the transformation of the initial formalization of the
notion of a random experiment in the form of the abstract statistical space
[(S,I,P(.))n,Gn

IID] into a simple statistical model. The phenomena of interest that can be
modeled in the context of this simple model are the ones that exhibit chance regularity
patterns of:

(1) Independence and (2) Identical Distribution (homogeneity).

4.9.1 What comes next?

In order to enhance our understanding of the notion of a simple statistical model we will
relate the probabilistic concepts making up this model to real data. The bridge between
these probabilistic concepts and graphs of real data is built in the next chapter. The ques-
tion of extending the formalization in order to model more realistic chance mechanisms
encountered in economics will be undertaken in chapters 6–8.

4.10 Exercises

21 Explain why the joint distribution can be used to describe the heterogeneity and
dependence among random variables.

22 “Marginalizing amounts to throwing away all the information relating to the
random variable we are summing (integrating) out.” Comment.

23 Consider the random experiment of tossing a coin twice and define the random
variables: X – the number of Hs, and Y5 | the number of Hs – the number of Ts | .

Derive the joint distribution of (X,Y), assuming a fair coin, and check whether
the two random variables are independent.

24 Let the joint density function of two random variables X and Y be:

y\x 21 0 1

21 0.2 0.2 0.2
1 0.1 0.1 0.2

(a) Derive the marginal distributions of X and Y.
(b) Determine whether X and Y are independent.
(c) Verify your answer in (b) using the conditional distribution(s).

25 Define the concept of independence for two random variables X and Y in terms of
the joint, marginal and conditional density functions.

26 Explain the concept of a random sample and explain why it is often restrictive for
most economic data series.
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27 Describe briefly the formalization of the condition: [c] we can repeat the experiment
under identical conditions, in the form of the concept of a random sample.

28 Explain intuitively why it makes sense that when the joint distribution f(x,y) is
Normal the marginal distributions fx(x) and fy(y) are also Normal.

29 Define the raw and central joint moments and prove that:

Cov(X,Y)5E(XY)2E(X) ·E(Y).

Why do we care about these moments?

10 Explain the notion of an ordered sample.

11 Explain intuitively why an ordered random sample is neither Independent nor
Identically Distributed.

12 Explain the notions of identifiability and parameterization.

13 “In relating statistical models to (economic) theoretical models we often need to
reparameterize/restrict the former in order to render the estimated parameters theo-
retically meaningful.” Explain.

Appendix B Bivariate distributions

B.1 Discrete bivariate distributions

Bivariate Binomial:

f(x,y;u)5 u1
x
u2

y(12u12u2)n2x2y , x,y50,1,2,…

u:5 (u1,u2)[ [0,1]3 [0,1], n integer, x1y#n,
Numerical characteristics

E(X)5nu1, Var(X)5nu1(12u1), Cov(X,Y)52nu1u2.

Bivariate Poisson:

f(x,y;u)5exp{2u12u21u3}
s
i50

u:5 (u1,u2,u3), u1.u3.0, u2.u3.0, s5min (x,y),
a5(u1–u3), b5(u2–u3), x[i]5x · (x21)··· (x2 i11)

Marginals and conditionals
f(x;u1) and f(y;u2) are Poisson but f(y |x;u1,u3)
and f(x |y;u2,u3) are not Poisson distributed.

Numerical characteristics
E(X)5u1, Var(X)5u1, Cov(X,Y)5u3,
0,Cov(X,Y),min (u1,u2).

651x[i]

a[i]2 1y[i]

b[i]2 
u i

3

i! 2o1axby

x!y! 2

61 n!
x!y!(n 2 x 2 y)!25
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Bivariate Negative Binomial (see Pearson (1924)):

f(x,y;u)5 u1
x
u2

y(1–u1–u2)k , x, y50,1,…

u:5(u1,u2), 0,u1,u2,1, (u11u2),1, k.0.
Numerical characteristics

E(X)5 , E(Y)5 , Var(X)5 ,

Var(Y)5 , Cov(X,Y)5 , a512u12u2.

B.2 Continuous bivariate distributions

Bivariate Beta (Filon-Isserlis) (see Isserlis (1914) and Pearson (1923a)):

f(x,y;u)5 {xn121yn221(12x2y)n321},

u:5(n1,n2,n3)[R1
3, x$0, y$0, x1y#1.

Numerical characteristics
E(X)5 , E(Y)5 , Var(X)5 ,n5(n11n21n3),

Var(Y)5 , Corr(Y,X)52 .

Bivariate Cauchy (see Pearson (1923b)):

f(x,y;u)5 11 [Y̆ 222rY̆ X̆ 1X̆ 2] 2 ,

Y̆ :5 , X̆ :5 , x[R, y[R.

Marginals and conditionals
f(x;u1) and f(y;u2) are Cauchy but f(y |x;w) is Student’s t with n52.

Numerical characteristics
No moments exist!

Bivariate Exponential (Gumbel) (see Gumbel (1960)):

f(x,y;u)5 [(11ux)(11uy)2u ]exp {2x2y2uxy},

u[R1, x[R1, y[R1.
Marginals and conditionals

f(x;u), f(y;u) and f(y |x;u) are all Exponential.
Numerical characteristics

E(X)5u, Var(X)5u2,
Corr(X,Y)5211 ∫`

0 {exp (2y)/[11uy]}dy.

Bivariate Exponential (Marshall–Olkin) (see Marshall and Olkin (1967a,b)):

F(x,y;u)512exp{2 [u11u3]x}2exp{2 [u21u3]y}1

1exp {2u1x2u2y1u3} max(xy)
u:5(u1,u2,u3)[R1

3, x[R1, y[R1.

(x 2 m2)
Ïs22

(y 2 m1)
Ïs11

3
261

(1 2 r2)51 (np)21G33
24

G31
24Ï[(1 2 r2)s11s22]2

1
21 n1n2

(n1 1 n3)(n2 1 n3)21n2(n1 1 n3)
n2(n 1 1) 2

1n1(n2 1 n3)
n2(n 1 1) 21n2

n 21n1

n 2

1 G(n1 1 n2 1 n3)
G(n1)·G(n2)G(n3)2
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Marginals and conditionals
f(x;u), f(y;u) and f(y |x;u) are all Exponential.

Numerical characteristics

E(X)5 , Var(X)5 , Corr(X,Y)5 .

Bivariate F:

f(x,y;u)5 G n (n01n1x1n2y)2 nx n121y n221,

u:5 (n0,n1,n2)[R3
1, n5(n01n11n2), x[R1, y[R1.

Numerical characteristics

E(Y)5 , E(X)5 , n0.2, Var(X)5 ,

Var(Y)5 , Corr(Y,X)5 , n0.4.

Bivariate Gamma (Cherian) (see Cherian (1941)):

f(x,y;u)5 ezzu021(x2z)u121(y2z)u221dz,

u:5 (u0,u1,u2)[R1
3, x$0, y$0,

Marginals and conditionals
f(x;u), f(y;u) and f(y |x;u) are also Gamma.

Numerical characteristics

E(X)5u11u0, Var(X)5u11u0, Corr(X,Y)5 .

Bivariate Gamma (Kibble) (see Kibble (1941)):

f(x,y;u)5 exp 2 [xy]2 (b21) ·Ib21 ,

u:5 (a,b)[ [0,1]3R1, y$0,y$0, and In(z)5 `
k50 ;

In(z) is modified Bessel function (see Muirhead (1982)).
Marginals and conditionals

f(x;b), f(y;b) and f(y |x;b,a) are also Gamma.
Numerical characteristics

E(X)5b, Var(X)5b, Corr(X,Y)5a.

Bivariate Gamma (McKay) (see McKay (1934)):

f(x,y;u)5 e2ayxu121(y2x)u221, y.x$0,

u:5 (a,u1,u2)[R3
1,

Marginals and conditionals
f(x;u), f(y;u) and f(y |x;u) are Gamma but f(x |y;u) is Beta.
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Numerical characteristics
E(X)5u1/a, Var(X)5u1/a2, Corr(X,Y)5 .

Bivariate Normal (see Galton (1886)):

f(x,y;u)5 exp 2 [Y̆ 2222rY̆ X̆ 1X̆ 2]

Y̆ :5 , X̆ :5 , x[R, y[R,

u:5(m1,m2,s11,s22,r)[R23R1
23 [21,1].

Marginals and conditionals
f(x;u2), f(y;u1) and f(y |x;u) are also Normal.

Numerical characteristics
E(Y)5m1, E(X)5m2, Var(Y)5s11,
Var(X)5s22, Corr(X,Y)5r.

Bivariate Pareto (see Mardia (1962)):
f(x,y;u)5g(g11)(a b)g11[ax1by2ab ]2(g12),
u:5(a,b,g), x.b.0, y.a.0, g.0.

Marginals and conditionals
f(y;a,g), f(x;b,g),
f(y |x;u)5b (g11)(ax)g11[ax1by2ab ]2(g12),
all three densities are Pareto.

Numerical characteristics

E(Y)5 , E(X)5 , Var(Y)5 ,

Var(X)5 , Corr(Y,X)5 , for g.2.

Bivariate Pearson type II (see Pearson (1923b)):

f(x,y;u)5 12 [Y̆ 222rY̆ X̆ 1X̆ 2]
n

Y̆ :5 , X̆ :5 , u:5(m1,m2,s11,s22,r)[R23R1
23 [21,1].

n.0, 2g ,y,g , 2g ,x,g , g252(n12).

Marginals and conditionals
f(x;u2), f(y;u1) and f(y |x;u) are also type II.

Numerical characteristics
E(Y)5m1, E(X)5m2, Var(Y)~s11, Var(X)~s22, Corr(X,Y)5r.

Bivariate Student’s t (see Pearson (1923b)):

f(x,y;u)5 11 [Y̆ 2222r Y̆ X̆ 1X̆ 2] 2 (n12),

Y̆ :5 , X̆ :5 , x[R, y[R,

u:5(m1,m2,s11,s22,r)[R23R1
23 [21,1].
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Marginals and conditionals
f(x;u2), f(y;u1) and f(y |x;u) are also Student’s t.

Numerical characteristics
E(Y)5m1, E(X)5m2, Var(Y)5 s11,

Var(X)5 s22, Corr(X,Y)5r.n

(n 2 2)

n

(n 2 2)
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5 Probabilistic concepts and
real data

5.1 Introduction

In completing the formalization of the notion of a simple statistical model in chapter 4
we have reached one of our primary intermediate targets. The qualifier simple is used to
emphasize the fact that the model is restrictive in the sense that the notion of a random
sample renders it appropriate only for observed data which can be viewed as a realization
of a set of random variables which are both Independent and Identically Distributed
(IID). In the next three chapters we will extend this simple model to more realistic forms
of statistical models which can be used to model economic data exhibiting non-IID
chance regularity patterns. Before we proceed in that direction, however, we need to
solidify the ground charted so far by building a bridge between the theoretical concepts
defining a simple statistical model (a family of densities, Independence and Identically
Distributed random variables) and the corresponding chance regularity patterns exhib-
ited by observed data. As argued in chapter 1, in the context of the development of prob-
ability theory, the probabilistic concepts are usually motivated by chance regularity
patterns in observed data. In this chapter we consider the question of utilizing graphical
displays of the observed data in order to establish their connection with the probabilistic
assumptions underlying simple statistical models.

5.1.1 Why do we care?

As argued in the previous chapter, any form of statistical inference presupposes postulat-
ing a statistical model which provides the foundation of the empirical modeling. The sta-
tistical model is a consistent set of probabilistic assumptions which purports to provide a
probabilistic description of the stochastic mechanism that gave rise to the data in ques-
tion. The choice (specification) of a statistical model, given a particular data set, consti-
tutes the most crucial and the most difficult decision facing the modeler. In general, an
inappropriate choice of a statistical model will invalidate any statistical inference results
built upon the premises of the postulated model. As argued in chapter 1, the specifica-
tion problem is particularly difficult in the case of non-experimental (observational) data,
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because the theoretical model can only provide rough guidelines. The primary informa-
tion that a modeler should use in making the choice of an appropriate statistical model,
is the data itself. For the purposes of statistical model specification, any theoretical
information relating to the behavior of the economic agents giving rise to the observed
data, should be utilized once an adequate statistical model is established. As argued in
chapter 1, the situation is very different in the case of experimental data because the
design of the experiment itself is, in a certain sense, the other side of the coin of choosing
the appropriate statistical model. Hence the specification of the statistical model is
decided upon at the design stage and the resulting data should not be used to choose the
model (see Spanos (1995b)). In the latter case the specification usually takes the form of
attaching white error terms to the design. In addition, in most cases we can repeat experi-
ments when the data are not adequate for answering the questions posed. This opportu-
nity does not arise in the case of non-experimental (observational) data and thus we need
to utilize the available observed data in our attempt to specify an appropriate statistical
model; a statistical model which constitutes an adequate summary of the systematic
information in the data.

Graphical techniques are also invaluable at the misspecification stage where the
modeler assesses the empirical adequacy of the estimated statistical model; whether the
assumptions making up the postulated model are data acceptable (see chapter 1). This
often takes the form of exploring the features of the observed data in conjunction with
the residuals of the estimated model in an attempt to detect departures from the under-
lying assumptions of the model. In cases where the original model is found to be mis-
specified the modeler will proceed to respecify the statistical model and that also involves
the utilization of graphical techniques.

Consider an example of a simple statistical model we encountered in chapters 3 and 4,
known as the Gamma statistical model:

[i] Probability model:

F5 f(x;u)5 exp , u:5(a,b)[R1
2, x[R1 ,

[ii] Sampling model: X:5(X1,X2,…,Xn) is a random sample.

Figure 5.1 shows several members of this family of densities (one for each combina-
tion of values of u). The probability model has two unknown parameters a.0 and
b.0; the parameter space is the product of the positive real line: Q:5R1

2. Its support is
RX:5(0,`). This pictorial representation of a probability model will prove very useful in
relating this abstract notion to chance regularity patterns. So far we have seen no pictor-
ial representation of the theoretical concepts defining a random sample. In the previous
chapter, we provided only a mathematical definition of the notion of a random sample
X(n)

IID:5(X1,X2,…,Xn). To remind the reader, we defined a random sample as a set of
random variables which satisfy two probabilistic assumptions:

(I) Independence: f(x1,x2,…,xn;f) I n
k51 fk(xk;uk) for all (x1,…,xn)[RX,

(ID) Identical Distribution: fk(xk;uk) 
ID
5 f(xk;u), for all k51,2,…,n.

p
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The question to be considered in this chapter is:

How can one utilize graphical displays of the observed data to decide upon the
most appropriate statistical model?

The discussion that follows will attempt to bring out the connection between concepts
such as Independence and Identical Distribution and the corresponding chance regular-
ity patterns discernible in a t-plot and related graphical representations of observed data.

5.1.2 A bird’s eye view of the chapter

The primary purpose of this chapter is to provide an introduction to graphical methods
for data analysis which have a direct connection with the theoretical concepts introduced
in the context of a simple statistical model. The three concepts making up a simple statis-
tical model are:

(D) Distribution (density function), (M) Independence, (H) Identical Distribution.

All three of these probabilistic concepts will be related to chance regularity patterns
exhibited by observed data. It turns out that a t-plot can be used to access chance regu-
larity patterns which correspond to all three of the above theoretical notions.
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In section 2 we review early developments of graphical displays in statistics as a
prelude to the discussion of the visual representation of data for statistical model
specification purposes. Section 3 considers the question of using a particular graphical
display, the t-plot, as a tool in assessing the chance regularity patterns that would be
appropriately modeled in the context of simple statistical models. Our basic tool is the
use of pseudo-random numbers (simulated data) which satisfy certain properties by
design; we discuss the question of generating such pseudo-random numbers in section 8.
In section 4 we consider the question of assessing the appropriateness of a distribution
assumption by looking at the connection between t-plots and the histogram (or the
smoothed histogram). In sections 5 and 6 we consider the question of assessing the
appropriateness of the Independence and Identical Distribution assumptions, respec-
tively, using the information conveyed by t-plots. In section 7 we return to graphical dis-
plays for assessing distribution assumptions. We consider several graphical displays
associated with the empirical cumulative distribution function, such as the P-P and Q-Q
plots, which can be used to assess the distribution assumption for IID data. In section 8
we discuss briefly the question of generating ideal data in the form of pseudo-random
numbers.

5.2 Early developments
Looking at masses of observed data (dozens of numbers) is usually hopeless for dis-
cerning any chance regularity patterns. The visual representation of the data, in the form
of graphs, is often the only way to utilize the data at the specification stage of modeling.
Well-designed data graphs can help the modeler make educated (as opposed to wild)
guesses about the nature of the statistical model that might be appropriate for a certain
set of data. The way such graphs can help the specification of statistical models will be
the subject matter of this chapter.

Although descriptive statistics can be traced back to John Graunt (1662) and William
Petty (1690), the systematic use of graphical techniques in descriptive statistics dates
back to William Playfair (1786,1801), who introduced bar diagrams, pie charts, and line
graphs. A few years later Fourier introduced the cumulative frequency polygon and in the
mid-19th century Quetelet (1849) introduced the widely used diagrams known as the
histogram and its sister the frequency polygon.

Karl Pearson was a devotee to the graphical analysis of data and coined most of the
terminology in use today, including that of the histogram utilizing mostly Greek words
(see Pearson (1892)). Histogram is a compound of two Greek words isto

.
§ (wooden pole)

and grammh
. (line). Polygon is also a compound Greek word made up of the words poly

.

(many) and gvni
.
a (angle).

In a certain sense the histogram provided the motivation for the probabilistic notion of
a density function and for a long time the dividing line between the two was blurred. The
blurring of the dividing line between relative frequencies and probabilities was the rule
and not the exception until the 20th century. As a result of this, the notion of an
unknown parameter and the corresponding estimate in terms of the observations was
made indistinct.
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The first to draw the line clearly and bring out the confusion between unknown para-
meters and their estimates was R. A. Fisher in his path breaking paper (Fisher 1922a),
where he considered this confusion to be one of the two reasons for the neglect of statis-
tics. He diagnosed the problem through its symptom: the use of the same terminology
for both the theoretical unknown parameter and its estimate:

it has happened that in statistics a purely verbal confusion has hindered the distinct formula-
tion of statistical problems; for it is customary to apply the same name, mean, standard devia-
tion, correlation coefficient, etc., both to the true value which we should like to know, but can
only estimate, and to the particular value at which we happen to arrive by our methods of
estimation… (p. 311)

During the rapid development of practical statistics in the past few decades, the theoretical
foundations of the subject have been involved in great obscurity. Adequate distinction has
seldom been drawn between the sample recorded and the hypothetical population from which
it is regarded as drawn … (p. 333)

Unfortunately for statistics the problem of terminology diagnosed by Fisher three
quarters of a century ago is still bedeviling the subject even though the distinction is
clearly established. A lot of grey matter and effort is frittered away by the students (and
teachers) of statistics because of the confusion created by the terminology.

Fisher went on to make the distinction between the histogram and the density function
(called a frequency curve at the time) very clear:

No finite sample has a frequency curve: a finite sample may be represented by a histogram, or
a frequency polygon, which to the eye more and more resembles a curve as the size of the
sample is increased. To reach a true curve, not only would an infinite number of individuals
have to be placed in each class, but the number of classes (arrays) into which the population is
divided must be made infinite … (p. 312)

The confusion between unknown parameters and their estimates pervades the statisti-
cal literature of the early 20th century (Galton, Edgeworth, Pearson, Yule) because this
literature had one leg in the descriptive statistics tradition of the previous century and
the other in the statistical inference tradition which began with Gossett (1908) and was
formulated by Fisher in the 1920s and 1930s.

R. A. Fisher, in his book Statistical Methods for Research Workers (the first textbook
on statistical inference in its modern sense), published in 1925, begins the second chapter
entitled “Diagrams” (devoted to the usefulness of graphical techniques in statistical
inference), with the following paragraph:

The preliminary examination of most data is facilitated by the use of diagrams. Diagrams
prove nothing, but bring outstanding features readily to the eye; they are therefore no sub-
stitute for such critical tests as may be applied to the data, but are valuable in suggesting such
tests, and in explaining the conclusions founded upon them… (Fisher (1925a), p. 24)

There is no doubt that graphical methods have always been an integral part of
observed data analysis.

The modern era of graphical analysis in empirical modeling can be dated back to
Tukey (1962) but the paper which revived interest in graphical techniques is arguably
Anscombe (1973) who demonstrated the dangers of relying (exclusively) on the numer-
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ical results when modeling in the context of the linear regression model. A good
summary of the graphical techniques as of the early 1980s is given in Tukey (1977) and
Cleveland (1985).

5.3 Graphical displays: a t-plot

As stated in chapter 1 the primary aim of probability theory is to provide a framework in
the context of which we can formalize chance regularity patterns with a view to modeling
observable phenomena which exhibit such patterns. The purpose of this section is to set
up a bridge between the various theoretical concepts introduced so far and the observable
phenomena we aspire to model. An attempt will be made to establish such a relationship
by utilizing a number of graphical techniques.

This bridge between theoretical concepts and observed data has two components.
The first component establishes a connection between theoretical concepts, such as
Independence, non-Correlation, Identical Distribution and Normality on the one hand
and the ideal data on the other. The ideal data come in the form of pseudo-random
numbers generated by computer algorithms so as to artificially satisfy the restrictions we
impose upon them. Generating pseudo-random numbers enables the modeler to create a
pictionary of ideal data plots which can be used as reference for assessing the features of
real data.

The second component is concerned with comparing these ideal plots with real data
plots, in an attempt to relate the purposefully generated patterns with those in real data.
The pictionary of simulated t-plots will provide a reference framework for assessing the
features of actual data plots. In this chapter we concentrate on the first component. The
problem of generating pseudo-random numbers will be considered in section 8. In the
meantime we take the generation of the pseudo-random numbers for granted and
proceed to provide a pictionary of simulated series designed to teach the reader how to
discern particular patterns of chance regularity.

A statistical graph constitutes a visual representation of observable data series. Such
visual representations can take numerous forms (see Chambers et al. (1983)). In this
section we consider one such graph known as the t-plot. A t-plot is drawn with the values
of the variable Z measured on the y-axis and the index (dimension) t, with respect to
which the data are ordered, such as time or geographical position, on the x-axis:

t-plot: {(t,Zt), t51,2,…,T}.

N that the original term for a t-plot, introduced by Playfair, was line graph. In prac-
tice t could represent any dimension which is measured on an ordinal scale (see below).
Our aim is to compile a pictionary of t-plots of simulated IID data from several well-
known distributions and bring out the kind of probabilistic information such a graph
can convey.

When reading t-plots the reader should keep a number of useful hints in mind.
First, it is important to know what exactly is measured on each axis, the units of

measurement used and the so-called aspect ratio: the physical length of the vertical axis
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divided by that of the horizontal axis. A number of patterns associated with dependence
and heterogeneity can be hidden by choosing the aspect ratio non-intelligently! In figures
5.2 and 5.3 we can see the same heterogeneous data series with different aspect ratios.
The regularity patterns are more visible in figure 5.3. To enhance our ability to discern
patterns over the t-index it is often advisable to use lines to connect the observations even
in cases where the data are not observed continuously. In order to appreciate the value of
connecting the observations we urge the reader to look at figure 5.35 where the same data
are shown with a line connecting consecutive observations. In what follows we employ
this as the default option.

Second, it must be noted at the outset that the t-plots which follow are only a small
sample of the variety of patterns one could get by simulating data from different distrib-
utions. The reader should interpret the above plots as representative of t-plots from these
distributions and not as providing exact pictures one expects to see in real data plots.
Moreover, the discussion that follows separates the various features of the data into the
three categories (D),(M),(H) and assesses them in isolation for expositional purposes. In
practice, real data are not as helpful and the modeler needs to separate these features at a
preliminary stage.

In the next two sections we consider the connection between a t-plot and the appropri-
ateness of a probability model and the random sample, respectively. Our discussion
focuses on the most widely used model: the simple Normal statistical model:

[i] Probability model:

F5 f(x;u)5 exp , u:5(m,s2)[R3R1, x[R ,

[ii] Sampling model: X:5(X1,X2,…,Xn) is a random sample

Our aim is to provide a visual guide on what the observed data would look like for this
model to be appropriate. In order to help the reader keep an eye on the forest, we state at
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the outset that the t-plot of Normal IID data (see figure 5.4) exhibits three chance regu-
larity patterns:

(1) a bell-shaped symmetry,
(2) an unpredictability, and
(3) a certain uniformity.

The first one relates to the probability model and the other two to the sampling model of
a random sample.

We have already discussed the notion of a probability model and how this notion can
be represented graphically as a family of density functions. In figure 5.5 we can see such a
family of Normal density functions indexed by the variance only, for simplicity.

Figure 5.4 represents a realization of a simulated data series which can be appropri-
ately modeled in the context of the above simple Normal Statistical model.

5.4 Assessing distribution assumptions

5.4.1 Normal IID data

Looking at the pictorial representation of a Normal family of densities in figure 5.5 the
issue that naturally arises is the connection between this theoretical construct and the
data plot in figure 5.4. In particular, when looking at the t-plot in figure 5.4: Where is the
bell-shaped symmetry exhibited by figure 5.5? The best way to discern the bell-shaped
symmetry in figure 5.4 is through the following thought experiment:

Imagine that each observation has an area equal to that of the square around it
and we turn the t-plot 90° clockwise so it sits on the opposite end of the y-axis. If
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we then let the squares fall vertically on the y-axis they will form a pile (a pseudo-
histogram) (see figure 5.6).

The histogram in figure 5.6 reminds one of the bell shape of the Normal distribution.
To be more precise, the bell-shaped symmetry, associated with the Normal distribution,
amounts to the following:

(a) symmetry: roughly the same number of observations above and below the imagi-
nary mean axis at zero,

(b) middle humpback: a concentration of observations around the imaginary mean axis,
(c) dying out tails: a reduction in the number of observations as we go away from this

mean axis with the overwhelming majority of observations being within 2.5 stan-
dard deviations around the data mean band.

Although the histogram created by the above thought experiment often suffices to
narrow down the set of possible distributions, it is often advisable to reduce the data
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specificity of the histogram by smoothing it. The histogram needs to be smoothed
somewhat in order to go beyond the specific data in hand and bridge the gap between
the actual data and the theoretical notion of a distribution (density function). The
question of smoothing the histogram is discussed below.

The t-plot of Normal IID data constitutes the cornerstone upon which one can build a
pictionary of t-plots. The choice of the Normal distribution is no coincidence but
reflects the center stage given to this distribution in statistical inference. In an attempt to
enhance our understanding of the peculiarities of Normality in t-plots of IID data, we
will contrast it to several other distributions.

5.4.2 Non-Normal IID data

Log-Normal IID data
The above thought experiment, when used in conjunction with IID data, can be used as a
guide in order to narrow down the possible probability models. Figure 5.7, depicting IID
log-Normal data, exhibits none of the features associated with the bell-shaped symmetry
of the Normal distribution. Instead, the t-plot exhibits the following chance regularity
patterns:
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(a) asymmetry: a lot more observations appear to be on one side of the distribution
(the left side),

(b) left humpback: the highest concentration of observations seems to be on the left of
the distribution,

(c) long right-hand tail: the number of observations on the right-hand side, as one
moves away from the imaginary data mean, decreases smoothly but the left tail
appears to cut off abruptly. This should be seen in conjunction with the log-Normal
family of densities shown in figure 5.8.

These features appear most clearly in figure 5.9 where we performed the thought
experiment of turning the t-plot 90° clockwise and letting the observations drop verti-
cally into a pile. As we can see from figure 5.9, the majority of observations are piled up
on the extreme left and the histogram has a long right tail. A smoothed version of the
histogram reminds us of the family of densities in figure 5.8.

Exponential IID data
A glance at figure 5.10, depicting simulated IID Exponential data, reveals a similar form
of asymmetry (skewed to the right) as the log-Normal distribution. The connection
between the skewed pattern exhibited by the data and the theoretical family of densities
becomes apparent when looking at figure 5.11.

Assessing distribution assumptions 201

Figure 5.8 Log-Normal family of densities



Weibull IID data
The plot depicted in figure 5.12, which represents simulated IID data from the Weibull
distribution, reveals a less extreme form of asymmetry than both of the previous two t-
plots. The pseudo-histogram created by the thought experiment will be skewed to the
right but in a less extreme form than the one in figure 5.9.

Beta IID data
The plot depicted in figure 5.13, which represents simulated IID data from the Beta dis-
tribution, reveals an even less extreme form of asymmetry than the previous three t-
plots, with the longer tail on the left.

So far the comparison between Normal IID data and IID data from skewed distribu-
tions was designed to enable the reader to develop a pictionary where the symmetry is at
center stage. Normality, however, does not mean just any symmetry. The next two t-plots
come from symmetric but non-Normal distributions. The first is rectangularly shaped
symmetric and hopefully easy to distinguish from Normality but the other is bell shaped
and not as easy to distinguish from the Normal bell-shape.
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Uniform IID data
A glance at figure 5.14, depicting simulated IID Uniform data, exhibits a different form of
symmetry than the bell shape of the Normal distribution. The thought experiment of
letting the observation squares drop vertically along the t-axis will form a pile that will
appearmore likearectangle thanabell shape.This is theresultof theuniformityof pattern
created by the particular way these squares are scattered around the mean of the observed
data. There does not appear to be any concentration of points in any section of the t-plot.

Student’s t IID data
One will need more than a glance to discern the differences between the Normal IID data
depicted in figure 5.4 and the IID Student’s t data shown in figure 5.15. The latter t-plot
exhibits the same bell-shaped symmetry the uninitiated often associate with the Normal
distribution. A closer look, however, reveals two important differences that distinguish
the leptokurtic Student’s t from the Normal distribution (see figure 5.16):

(i) the middle humpback appears more accentuated, and
(ii) the tails appear to be longer (notice the range of values on the y-axis).

5.4.3 The histogram and its connection to the density function

The histogram constitutes a graphical way to summarize the relative frequencies of
occurrence of the values (x1,x2,…,xn) of the variable X underlying this data. Let us first
partition the range of values of the variable, say a,xi,b, i51,2,…,n, into:

a5x[0],x[1],x[2], ···,x[m]5b,

and then express the relative frequency of interval i as:

wi5 , i51,2,…,m, (m,n),

where n i is the number of observations falling in the ith interval. The histogram can be
viewed as the step function:

g(x)5 , for x[i21]#x,x[i], i51,2,…,m, x[RX,

whose graph depicts the relative frequencies on the y-axis and the intervals on the x-axis. The
histogram, as defined above, is a cumbersome step function with jumps at the points (x[i], i5
1,2,…,m) (irrespective of whether the data represent realizations of discrete or continuous
random variables), which also depend on the choice of the origin x0 and the bandwidth. In
this sense the histogram is unlike its theoretical counterpart: the density function.

In a very insightful paper, Rosenblatt (1956) proposed a variation on the histogram
which opened the way to bridge the gap between this descriptive statistics device and its
probability theoretic counterpart, the density function.

The first proposed change was in the form of equal length intervals (of width h), defin-
ing the so-called bins:

[x[0]1kh, x[0]1(k11)h], k51,2,…,m.

ni

n(x[i] 2 x[i21])

ni

n(x[i] 2 x[i21])
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The second change was to unfix the origin and the intervals defined relative to that origin
and render every point in the range x[RX a mid point of a bin. These changes enable us
to avoid the cumbersome notation of the specific intervals by making every value x[RX

the mid point of a mesh of intervals covering the range RX. In terms of these overlapping
bins we can think of the rolling histogram as:

gh(x)5 no. of xi9s in x2 , x1 ,

where x[RX. This can be written equivalently as:

gh(x)5 n
i51I x1 #xi# x2 , x[RX,

where I(.) is an indicator function of the form:

I(xi)5
h1, if xi[ [x6(h/2)],

I(xi)5h0, if xiÓ [x6(h/2)].

Intuitively, the rolling histogram is constructed by placing a box of width h and height
(1/nh) on each observation and then summing the boxed observations. A more allusive
notation for gh(x) is:

gh(x)5 n
i51I 2 # # ,

1, if ci[ [2(1/2),(1/2)],
I(ci)5h0, if ciÓ [2(1/2),(1/2)],

where ci:5 .1xi 2 x
h 2

21
21xi 2 x

h 21
21o1

nh

22h
212h

211o1
nh

221h
221h

2211
n
 1no. of xi9s in the same bin as x

h 25
1
nh

 1
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Viewed this way, the rolling histogram is still a step function with a lot more jumps whose
graph is a step closer to the density function. The third and most crucial change to the
histogram came in the form of the weighting. We can think of the above histogram as a
function of the form:

gh(x)5 n
i51K 5 n

i51K(ci),

where K(z) is a weight function (see figure 5.20):

K(z):5h , if |z |#,1
0, if |z |.1.

This function gives the same weight to all the observations in a certain bin irrespective of
whether they are at the center of the bin or at the edges. It reminds us of the uniform
density over the interval RZ:5 [21,1], with the properties:

(i) K(z)$0, z[R, (ii) 
z[Rz

K(z) dz51. (5.1)

This realization led to the most decisive step toward bridging the gap between the
histogram and the density function: smoothing over the edges. The smoothing effect can
be achieved by replacing the Uniform weight function with another weight function
which gives more weight to the observations close to the value x and less to those at the
edges of the bin. That is, make the weight a function of the distance from the point x.
Such weight functions are called kernels and the most widely used are:

[1] Normal kernel: K(z)5 exp 2 z2 ,

[2] Epanechnikov kernel: K(z)5 (12z2), |z |#1,

[3] Biweight kernel: K(z)5 (12z2)2, |z |#1,

[4] Uniform kernel: K(z)5 , |z |#1.

The smoothed histogram is defined by:

f̂h(x)5 n
i51K ,

where the kernel satisfies the conditions (5.1) above. As we can see from figures
5.17–5.19, the kernel functions give more weight to the values close to the designated
value z. The exception to this rule is the uniform kernel shown in figure 5.20 which gives
the same weight to all values of z. It turns out that the choice between the first three
kernels above does not make much difference to the smoothing. What is crucially impor-
tant for the smoothing, however, is the value of the width for the bins h; called the band-
width.

In view of the fact that we can think of the histogram as a sum of boxes placed at the
observations, we can think of the smoothed histogram as a sum of bell-shaped lumps.
Hence, the smaller the value of h the more even the outline of the smoothed histogram.
Ironically, the choice of the h depends both on the true underlying density as well as the

1xi 2 x
h 2o1

nh

1
2

15
16

3
4

61
251

Ï2p

E

1
2

o1
nh1xi 2 x

h 2o1
nh

208 Probabilistic concepts and real data



number of observations n. The rule of thumb often used in conjunction with the Normal
kernel is (see Silverman (1986)):

h.s · (1.06)·n2 .

Using the Normal kernel we can evaluate the smoothed histogram:

f̂h(x)5 n
k51K 5 n

k51exp 2 , h5s · (1.06) ·n2 .

The effect of Normal kernel smoothing on the histogram is shown in figures 5.21 and
5.22 in the case of IID data from a Normal and a log-Normal distribution, respectively.

In connection with our thought experiment of turning the t-plot 90° clockwise and
letting the observations drop vertically into a pile, when we endow each observation with
a rectangle the thought experiment yields a histogram but when we endow them with a
bell-shaped lump the experiment yields a smoothed histogram. Intuitively, if we think of
a histogram as a two-dimensional area under the step function defined above, smoothing
amounts to nothing more than taking a trowel and literally smoothing the edges. In
figure 5.23 we can see the rotation experiment together with the histogram and smoothed
histogram in the case of NIID data.
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Figure 5.17 Normal kernel Figure 5.18 Epanechnikov kernel

Figure 5.19 Biweight kernel Figure 5.20 Uniform kernel

K
(z

)
K

(z
)

K
(z

)
K

(z
)

z z

z z



210 Probabilistic concepts and real data

Figure 5.21 Smoothed histogram of simulated NIID data

Figure 5.22 Smoothed histogram of simulated IID log-Normal data



Smoothed histogram: parametric versus non-parametric
In the context of the above framework a smoothed histogram is nothing more than a
useful device for exploratory data analysis. It is important to remind the reader that the
histogram, as part of descriptive statistics, is data specific! As argued many times in this
book, the major difference between descriptive statistics and statistical inference is that
the former is data specific and thus the conclusions refer to the data in question. In order
to reduce the data specificity of such descriptive measures we utilize a device called
smoothing. In this sense we view smoothing as giving operational meaning to Fisher’s
statement:

… To reach a true curve, not only would an infinite number of individuals have to be placed in
each class, but the number of classes (arrays) into which the population is divided must be
made infinite … (Fisher (1922b), p. 312).

A smoothed histogram constitutes the bridge between the observed data set (x1,x2,…,
xn) and the theoretical concept of a density function f(x), the data viewed as a realization
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Figure 5.23 Histogram and kernel smoother of simulated NIID data



of an IID sample (X1,X2,…,Xn) . As mentioned above, the smoothing is necessary in
order to reduce the data specificity of the histogram.

In traditional statistical inference a smoothed histogram is commonly viewed as a non-
parametric estimator of the unknown density function. This interpretation raises a
number of interesting methodological issues which are beyond the scope of the present
chapter. This issue will be discussed further in chapter 10.

5.5 Independence and the t-plot

The notion of a random sample has been historically confused with the notion of ran-
domness. A careful reading of Von Mises’ discussion of randomness (see Von Mises
(1957)) reveals that the meaning attributed to this term is inextricably bound up with the
concepts of IID. The restriction that the ordering of the observations leaves the relative
frequencies invariant, has to do with both Independence and Identical Distribution. In
addition, the Law of Large Numbers used to provide an empirical foundation for these
relative frequencies was considered at the time in relation to IID sequences of random
variables (see chapter 10). In this book we consider randomness as a notion which goes
beyond IID sequences. Indeed, this notion underlies our notion of chance regularity
which applies to non-IID sequences equally well.

As mentioned above, in the case of assessing the distributional nature of a data set
using a t-plot the ordering of the observations is irrelevant and thus suppressed. In the
case of assessing independence and identical distribution the ordering is the all-impor-
tant dimension.

Apart from the bell-shaped symmetry, the second important feature exhibited by
figure 5.4 (reproduced on opposite page for reference) comes in the form of the unpre-
dictability of the ups and downs of the plot from one observation to the next. This
unpredictability of the direction of change (ups and downs) corresponds to the probabil-
istic notion of Independence.

If we imagine ourselves standing at any one point on the observations axis t (hiding
away the plot to our right) and try to predict the direction of the next few observations
we will have great difficulty guessing correctly. In other words, there is no obvious pattern
to be used to help narrow down the possibilities that will enable us to guess correctly the
direction of the next observation. The only information we have is with regard to the
likely values of the data series as they relate to the underlying distribution. If the under-
lying distribution is Normal as in figure 5.4, then we know that the values around the
mean (zero in this case) are more likely to arise than observations in the tails. This
information, however, is often of very little help when we seek to predict the direction of
the next observation.

C : the one occasion when knowledge of the distribution might provide some
assistance in our attempt to predict the direction of change is in the case of extreme
observations. In the case of the plot in figure 5.4, an observation above 2.5 is likely to be
succeeded by a smaller observation and one below 22.5 by an observation greater in
value because the probability of getting too many such extreme observations is very
low.
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Runs up and down Another way to look at this unpredictability of direction of change is
to ignore the values taken by the data series altogether and concentrate just on the sign
(direction) of the differences (changes):

d15x22x1,d25x32x2,…,dn215xn2xn21,

denoting an increase (a positive difference) by a plus (1) and a decrease by a minus (2).
The observations 65–105 in figure 5.4 give rise to the following pattern of ups and downs:

12212122111–1122121221211212111211211212

From this sequence of pluses and minuses we discern no regular pattern to be utilized to
guess the next up or down. The patterns we have in mind come in the form of runs: a sub-
sequence of one type (pluses only or minuses only) immediately proceeded and suc-
ceeded by an element of the other type. In the early time series literature (see Yule and
Kendall (1950)) the beginning of each run is also known as a turning point because the
direction changes at that point. In the above case the number of runs up and down are:

{1,1,1,3,2,1,1,1,2,1,3,2,2,1}1, {2,1,2,1,2,1,2,1,1,1,1,1,1,1}2

respectively. Looking at this we can see that at first sight these runs exhibit no discernible
regularity.
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Figure 5.4 Simulated NIID data



By treating the sequence of pluses and minuses as Bernoulli trials we can use combina-
torial arguments to evaluate the number of runs expected if the observations were inde-
pendent. Defining the following random variables:

R: number of runs of any size,
Rk: number of runs of size k,
Rk9: number of runs of size k or greater,

combinatorial arguments can be used to show (see Levene (1952)) that:

E(R)5 ,

E(Rk)52n 22 , k#(n22),

E(Rk9)52n 22 , k#(n22).

In the case of the above data for n540:

E(R)526.3, E(R1)516.7, E(R2)57.1, E(R39)52.5.

These numbers do not differ significantly from the actual numbers of various sized
runs derived above; for more formal tests see chapter 15. The number of all size runs is
28, very close to the number expected under independence: 26. The number of size 1 runs
is 18, very close to the number expected under independence: 17. The number of size 2
runs is 8, close to the number expected under independence: 7. Finally, the number of
size 3 or greater runs is 2, very close to the number expected under independence: 2.5.
N that NID stands for Normal, Identical Distribution.

In order to come to grips with the patterns indicating independence and how to recog-
nize it on a t-plot, contrast figure 5.4 with figure 5.24, where the assumption of inde-
pendence does not hold. In the latter plot we can discern a pattern of cycles which enable
the observer to make educated guesses regarding the next observation. This can be done
by exploiting the pattern of the cycles. The observations 65–105 in figure 5.24 give rise to
the following pattern of signs:

1111121111211222122212112212211211122111.

From this sequence of pluses and minuses we discern a regular pattern of runs up and
down which can be utilized to guess the next up or down. In particular, the sequence of
runs up and down are, respectively:

{5,4,2,1,1,2,1,2,3,3}1, {1,1,3,3,1,2,2,1,2}2.

Looking at these runs we can see that if we were trying to guess the next change and the
previous was an increase (decrease) we would be correct in a sizeable proportion of our
guesses to predict an increase (decrease). This pattern indicates the presence of positive
dependence: an increase tends to be followed by an increase and a decrease by a decrease.
The presence of dependence is confirmed by the various sizes of runs which differ signif-
icantly from the expected numbers derived above under independence. For instance, the
number of all size runs is just 19, much smaller than the expected under independence:
26.

1k2 1 k 2 1
(k 1 2)! 21 k 1 1

(k 1 2)!2

1k3 1 3k2 2 k 2 4
(k 1 3)! 21k2 1 3k 2 1

(k 1 3)! 2

12n 2 1
3 2
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A different pattern of dependence is exhibited in figure 5.25 where we can see alternat-
ing ups and downs which can help us predict the next observation in most of the cases
along the t-axis! The observations 65–105 in figure 5.25 give rise to the following pattern
of signs:

1212121212121211112121212122121212121212.

From this sequence of pluses and minuses we discern a regular pattern of runs which can
be utilized to guess the next up or down. In particular, the sequence of runs up and down
are:

{1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1}1 , {1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1}2.

Looking at these runs we can see that if we were trying to guess the next change and the
previous was an increase (decrease) we would be correct in a sizeable proportion of our
guesses to predict a decrease (increase). This pattern indicates the presence of negative
dependence: an increase tends to be followed by a decrease and a decrease by an increase.
The presence of dependence is confirmed by the various sizes of runs which differ
significantly from the expected numbers derived above under independence. For
instance, the number of all size runs is just 36, much larger than the expected under inde-
pendence: 26.
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Figure 5.24 Simulated NID positively dependent data



Example
Let us return to the exam scores data; see table 1.6 and figure 1.9 and figure 1.10, repro-
duced for convenience. In the case of the exam scores data arranged in alphabetical order
we observe the following runs:

{1,1,4,1,1,3,1,1,1,1,2,1,1,1,1,1,1,2,2,1,1,2,3,1,1}1,

{1,1,3,1,1,2,2,1,2,1,2,2,3,1,2,1,2,1,2,1,2,1,1,1,1}2.

From above, expected mean values of the various runs are:

E(R)546.3, E(R1)529, E(R2)512.6, E(R39)54.5.

The number of all size runs is 50, the number of size 1 runs is 32, the number of size 2
runs is 13, the number of size 3 or greater runs is 5, and they are all very close to the
numbers expected under independence.

On the other hand, the marks data arranged according to the sitting arrangement
during the exam (see figure 1.2) exhibit very different runs up and down:

{3,2,4,4,1,4,3,6,1,4}1, {2,2,2,4,3,3,7,4,6,1,3}2,

which are nowhere near the numbers expected under independence. The number of all
size runs is 21 (expected 46), the number of size 1 runs is 3 (expected 29), the number of
size 2 runs is 4 (expected 13), the number of size 3 or greater runs is 13, (expected 5).
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In chapter 15 we will make the above informal checks more precise by specifying
proper tests for departures from independence. For that we need to use not just the
mean values of the various random variables referring to the runs up and down but
also their second moments; the difference between the expected and the actual runs has
to be considered relative to the standard deviation to decide whether it is large enough.
Intuitively, the departure is measured in terms of the standard deviations of the
random variable in question. For reference purposes we also note the second moments
below:

Var(R)5 ,

Var(R1)5 , Var(R2)5 , Cov(R1,R2)52 ,

Var(R19)5 , Var(R29)5 , Cov(R19,R29)52 .

For these as well as the general formulae (which are highly complicated) see Wolfowitz
(1944), Levene and Wolfowitz (1944) and Levene (1952). As shown in chapter 15, the
above conjectures relating to the various data plots are confirmed by formal testing. As
will be apparent in the sequel, the above informal checks for detecting departures from
independence will also be sensitive to departures from homogeneity.

We conclude this subsection by emphasizing once more that the various plots pre-
sented above are indicative in nature and should not be interpreted as unique visualiza-
tions of the corresponding probabilistic concepts. Indeed, a major characteristic of
randomness is the lack of uniqueness. The reader who has access to computer software
which allows for simulating pseudo-random numbers is strongly encouraged to generate
his own t-plots and compare them with those given above.

5.6 Homogeneity and the t-plot

The third important feature exhibited by figure 5.4 comes in the form of a certain appar-
ent homogeneity over t exhibited by the plot. With the mind’s eye we can view t-homo-
geneity by imagining a density function cutting the x-axis at each observation point and
standing vertically across the t-plot with its support parallel to the y-axis. Under com-
plete homogeneity all such density functions are identical in shape and location and
create a dome-like structure over the observations. That is, for each observation we have

5n 2 3
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57n 2 43
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16n 2 29
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453600
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Table 1.6. Data on Principles of economics exam scores

298.0 43.0 77.0 51.0 93.0 85.0 76.0 56.0 59.0 62.0
267.0 79.0 66.0 98.0 57.0 80.0 73.0 68.0 71.0 74.0
283.0 75.0 70.0 76.0 56.0 84.0 80.0 53.0 70.0 67.0
100.0 78.0 65.0 77.0 88.0 81.0 66.0 72.0 65.0 58.0
245.0 63.0 57.0 87.0 51.0 40.0 70.0 56.0 75.0 92.0
273.0 59.0 81.0 85.0 62.0 93.0 84.0 68.0 76.0 62.0
265.0 84.0 59.0 60.0 76.0 81.0 69.0 95.0 66.0 87.0



218 Probabilistic concepts and real data

Figure 1.10 Exam scores data (sitting order)

Figure 1.9 Exam scores data (alphabetical)



a density over it and we view the observation as the one realized from the particular
density hanging over it. Naturally, if the relevant distribution is Normal we expect more
observations in the middle of the density but if the distribution is Uniform we expect the
observations to be dispersed uniformly over the relevant area.

This t-homogeneity can be assessed in two different but equivalent ways. The first way
to assess the t-homogeneity exhibited by the data in figure 5.4 is to use the first two data
moments evaluated via a thought experiment. The mean of the data can be imagined by
averaging the values of {Zt, t51,2,…,T} moving along the t-axis. As can be seen, such
averaging will give rise to a constant mean close to zero. The variance of the data can be
imagined using the virtual bands on either side of the mean of the data which will cover
almost all observations. In the case where the bands appear to be parallel to the mean
axis there appears to exist some sort of second-order homogeneity. In the case of the
observed data in figure 5.4 it looks as though the data exhibit both mean and variance
homogeneity.

The second way to assess t-homogeneity is in terms of the following thought experi-
ment.

Thought experiment Choose a frame high enough to cover the values on the y-axis but
smaller than half of the x-axis and slide this frame along the latter axis keeping an eye on
the picture inside the frame. If that picture does not change drastically, then the observed
data exhibit homogeneity along the dimension t.
In the case of the data in figure 5.26 we can see that this thought experiment suggests that
the particular data do exhibit complete homogeneity because the picture in the three
frames shown do not differ in any systematic way. The chance regularity pattern of
homogeneity, as exhibited by the data in figure 5.26, corresponds to the probabilistic
notion of Identical Distribution. N that NI denotes Normal, Independent.

In contrast to figures 5.4 and 5.26, the mean of the data in figure 5.27 is no longer con-
stant (it increases with t) and the thought experiment of sliding a frame along the x-axis
(see figure 5.28 where the picture in each windows changes drastically) will easily detect
such heterogeneity over t. When the change looks like a function of the index t we call it
a trend.

Viewing the variance of the data as being related to the two the bands on either side of
the mean which cover the large majority of the observations, we conclude that, because
the variation around the data mean is relatively constant, the variance in figure 5.27
seems to be homogeneous.

To understand what this entails it should be contrasted with figure 5.29 where the vari-
ance changes with t. Again, the thought experiment of sliding the frame will easily detect
such a variance heterogeneity (see figure 5.30); the first frame differs substantially from
the second and the third, indicating the presence of heterogeneity. Heterogeneity,
however, comes in numerous forms.

Figures 5.31 and 5.32 depict simulated data series which exhibit a different kind of
heterogeneity in terms of the first two moments. In figure 5.31 the data exhibit a shift in
the mean and in figure 5.32 the data exhibit a shift in the variance. These forms of
moment heterogeneity can be combined to yield data t-plots which exhibit heterogeneity
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Figure 5.26 Assessing t-homogeneity using the window experiment

Figure 5.4 Simulated NIID data
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Figure 5.27 Simulated NI mean (trend) heterogeneous data

Figure 5.28 Assessing t-homogeneity using the window experiment



in both the mean and the variance. In figure 5.33 both the mean and variance are trend-
ing and in figure 5.34 both moments exhibit shifts at observation t5100.

At this stage it is important to note that some forms of heterogeneity can be utilized to
improve the modeler’s ability to predict. In the case of the mean-heterogeneity exhibited
by the data in figure 5.27, the modeler can utilize this heterogeneity in order to predict
the general direction of the next few observations. However, the modeler is in no better
position to predict the next observation than in the case of the data in figure 5.4. The het-
erogeneity in figure 5.27 establishes general trends but is unrelated to the dependence
that might exist in the data.

Yet another important form of heterogeneity is related to the so-called seasonal
effects. The term seasonality refers to a particular form of heterogeneity which repeats
itself at regular intervals (we call seasons). In figure 5.35 we can see a regular pattern in
the form of a sinusoidal function which repeats itself every 24 observations. In figure
5.36 the data exhibit both mean heterogeneity (a trend) and a seasonal pattern.

In cases where the observed data are dominated by the presence of strong seasonal
effects as in the case of the data exhibited in figures 5.35 and 5.36, predicting the next
observation is relatively easy because the patterns are almost non-stochastic. This should
be contrasted with the cycles in connection with positive dependence discussed above.

It is very important to bring out the difference between the regular seasonal pattern
and the positive dependence pattern exhibited in figure 5.37. In figures 5.37 and 5.38 the
data exhibit positive dependence which is clearly not half as regular as the seasonal
pattern exhibited in figures 5.35 and 5.36, respectively. In the case of the data in figure
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Figure 5.29 Simulated NI variance (trend) heterogeneous data
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Figure 5.30 Assessing t-homogeneity using the window experiment

Figure 5.31 Simulated NI mean (shift) heterogeneous data
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Figure 5.32 Simulated NI variance (shift) heterogeneous data

Figure 5.33 Simulated NI mean-variance (trend) heterogeneous data
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Figure 5.34 Simulated NI mean-variance (shift) heterogeneous data

Figure 5.35 Simulated NI mean (seasonally) heterogeneous data



5.38, in addition to the positive dependence we can also discern a strong mean hetero-
geneity. It must be said that most economic macro data series exhibit both of these fea-
tures.

5.6.1 Assessing the distribution in non-random samples

As noted above, in cases where the sample is non-IID it not advisable to proceed to assess
its distribution because the results will usually be very misleading. This can be easily con-
firmed using the thought experiment of turning the t-plot 90° clockwise and letting the
observations drop vertically into a pile in the case of the figures 5.27–5.38. This state-
ment appears convincing in the cases of heterogeneity but it might not be as clear in the
case of dependence.

To convince the reader that it is a bad idea to proceed to assess the distribution
assumption in cases of dependent data, consider the data in figure 5.37 exhibiting posi-
tive dependence but no heterogeneity. The histogram, the smoothed histogram (line with
triangles) and the Normal density (line with circles) are shown in figure 5.39. As we can
see, the histogram and smoothed histogram appear skewed to the left and close to
bimodal; the Normal density is plotted on the same graph for comparison purposes. Any
attempt to assess the distribution by looking at the histogram (or smoothed histogram)
will lead the modeler astray.

The question which arises at this stage is: How does one proceed to assess the distribu-
tion assumption in cases where the data exhibit dependence and/or heterogeneity? The
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Figure 5.36 Simulated NI mean (seasonally, trend) heterogeneous data
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Figure 5.37 Simulated NID, positively dependent data

Figure 5.38 Simulated Normal, positively dependent and heterogeneous data



simple answer is to find a way to “remove” such features before the assessment of the dis-
tribution. The act of removing the dependence and heterogeneity will be referred to as
dememorizing and detrending, respectively. It goes without saying that dememorizing and
detrending are used to find a way to make a preliminary assessment of the nature of the
distribution that might describe certain data and not to throw away such information!

In practice the success of dememorizing and/or detrending depends on how well we
can describe the nature of dependence and heterogeneity exhibited by a certain data set.
The discussion that follows is very brief because in order to be able to describe depen-
dence and heterogeneity we need to use numerous concepts which will be introduced in
the next few chapters. In the meantime, however, we will give some indication what
dememorizing and detrending entails.

Although heterogeneity can come in many flavors, the three most widely used types
are the ones used in the t-plots above. The first kind comes in the form of mean (or vari-
ance) heterogeneity as a polynomial in t:

E(Zt):5mt5a01a1t1a2t21…1amtm, for some m$1, t[T.

The second is also mean (or variance) heterogeneity in the form of a shift at tm:

E(Zt):5mt5a01amDm, for some m$1, t[T,
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Figure 5.39 Smoothing the histogram of simulated Normal, dependent data



where Dm is a so-called dummy variable of the form:

Dm5
hh1, for t5tm,

Dm5h0, for tÞtm,
t[T,

tm

Dm5{0,0,0,…,,0,1,0,…..,0,….}

This can be easily extended to any subset Tm,T, not just one observation. The third type
of heterogeneity comes in the form of seasonality which is often captured in one of two
ways: (a) dummy variables (one for each “season”) or using the trigonometric polynomi-
als. The seasonal dummy variables, say for quarterly data, take the form:

Q1t:5{1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,…},
Q2t:5{0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,…},
Q3t:5{0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,…},
Q4t:5{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,…}.

The trigonometric polynomials, say for monthly data, take the form:

E(Zt):5mt5
m
k50akcos 1dksin , t[T.

In the case of dependence the most widely used technique for describing it (and
thus being able to remove it) comes in the form of the autoregressive representation,
for p$1:

E(Zt |Zt21,…,Z1)5a01a1Zt211a2Zt221…1apZt2p, t[T.

Dememorizing amounts to estimating such representations and then subtracting out the
estimated effects (see chapters 8, 15, and Spanos (1986) for details).

The above representations can be easily combined in order to capture both the depen-
dence and heterogeneity features, say for some p$1:

E(Zt |Zt21,…,Z1)5a01a1t1…1amtm1b1Zt211…1bpZt2p, t[T.

We conclude this subsection emphasizing again that in real data modeling the issue of
assessing the distribution, dependence, and heterogeneity features of the data will not be
as straightforward as they seem from the above discussion. An exploratory data analysis
is often needed in order to separate the various features at a preliminary stage and assess
them properly. In terms of separation of features the distribution assumption should not
be assessed before the dependence and heterogeneity features are removed.

5.7 The empirical cdf and related graphs*

5.7.1 The notion of the empirical cdf (ecdf)

The distribution assumption of a random variable X in the proceeding discussion was
assessed in terms of the density function and its sample analogue. In this section we
proceed to consider assessing the distribution assumption in terms of the cumulative

12pkt
12 212pkt

12 2o
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distribution function (cdf) and its sample analogue. To remind the reader, the cdf of a
random variable X is defined by (see chapter 3):

FX(x):5P(s :X(s)#x)5PX21(2`,x].

The cdf of the Normal distribution is shown in figure 5.40. For a given realization of the
sample X:5(X1,X2,…,Xn), say x:5(x1,x2,….,xn),the sample equivalent of the cdf is the
empirical cumulative distribution function (ecdf):

F̂n(x)5
n

k51I(2`,x](Xk),

where IA(x) is the indicator function defined by:

IA(xi)5
h1, if x[A,

IA(xi)5
h0, if x[A.

N that the ecdf as defined above is a function of the form:

F̂n(.): R → Un, where Un:5 0, , ,…,, ,1 .

In this sense F̂n(x) refers to the relative frequency of the observations not exceeding the
value x. In terms of the ordered sample (X[1]#X[2]# ···#X[n]) (see chapter 4) and its real-
ization:

x[1]#x[2]# ···#x[n], (5.2)

6n 2 1
n

2
n

1
n5

o[no. of (X1,X2, …, Xn) whose realization do not exceed x]
n

5
1
n
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Figure 5.40 The cdf of the Normal distribution



the ecdf function F̂n(x) is defined by:

0 for x,x[1],

F̂n(x):55 for x[k]#x,x[k11], k51,2,…,n21,

1 for x$x[n].

In the case where all the values in (5.2) are distinct then strict inequalities hold and at
each point x[k] the function F̂n(x) has a jump equal to . In the case where some of the
values are the same, say m of them have the same value, then at that point the function
F̂n(x) has a jump equal to . That is, the ecdf assigns to each set Ak:5{xk21,Xi#xk},
on the real line the proportion of the sample observations that lie in that set. When
viewed as a function of the observations (x1,x2,…,xn), F̂n(x) has the following proper-
ties:

(a) uniquely defined,
(b) its range is [0,1],
(c) non-decreasing and continuous on the right, and
(d) it is piecewise constant with jumps multiples of at the observed points,

i.e., it enjoys all the properties of its theoretical counterpart, the cdf.
In figure 5.41 we can see the ecdf of the exchange rate data shown in figure 5.63

(see also figure 1.4) which because of the number of observations involved (n5953)
looks very smooth. This is the result of the fact that the range of values of the ecdf is Un:
5 0, , ,…, ,1 , and as n increases the jumps become smaller and smaller, giving the
impression of a continuous function such as the case of figure 5.41.
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Figure 5.41 The ecdf of Canada/USA exchange rate data



By comparing the cdf of the Normal (see figure 5.40) and the ecdf of the exchange
rate data (see figure 5.41) it looks as though the Normal is not the most appropriate dis-
tribution for this data; see figure 5.42 which superimposes both plots.

The problem, however, is how to argue that the discrepancies shown in figure 5.42 are
“large enough” to warrant rejecting the distribution assumption in question. In figure
5.42 we can see that around the median the ecdf appears to be close to the cdf of the
Normal distribution but as we move towards the tails there is an apparent discrepancy.
One thing, however, is obvious: that the ecdf points towards a symmetric distribution.

In figures 5.43 and 5.44 we can see the cdf of the discrete Uniform distribution and the
ecdf of the data which refer to the first 1000 digits of the irrational number (see
chapter 10). A direct comparison between the two reveals that they are not very far apart
but again the problem is to find a more convenient way to assess the discrepancy.

The problem of comparing two curves in the context of the above plots is illustrated in
figure 5.45. The first problem facing the modeler is the difficulty in choosing the distance
between the two curves. As we can see in figure 5.45 the distance can be measured in two
different ways: horizontally in terms of the quantiles xq or vertically in terms of the per-
centiles p5FX(x) (see chapter 3). The second problem is that assessing curved distances
by eye is treacherous. The eye finds it much easier to assess discrepancies from straight
lines rather than curves.

The plots considered next will transform the above discrepancies into departures from
straight lines. The first type of plot called a P-P plot uses the percentile distance and the
other called the Q-Q plot uses the quantile distance.

5.7.2 Probability plots

In this subsection we consider two important graphical displays known as the P-P and
Q-Q plots which provide a simple but effective way to evaluate the appropriateness of a
probability model through the visual assessment of the discrepancy between shapes
created by the pattern of points on a plot and some reference straight line. Both of
these plots are based on the ordered sample and are based on a very simple idea: we
plot the ordered sample (or some transformation of it) against some theoretical refer-
ence sample. The latter is chosen so as to ensure that if the postulated distribution is
valid the graph of the ordered sample against the reference sample will be a straight
line.

From chapter 4 we know that the cdf for X[k] for any random variable from the ordered
sample (X[1],X[2],…,X[n]) takes the form:

F[k](x)5P(X[k]#x)5 n
m5k [F(x;u)]m[12F(x;u)]n2m.

The corresponding density function takes the form:

fk(x)5 [F(x)]k21[12F(x)]n2k.

The probability plots discussed next revolve around a Uniformly distributed ordered
random sample; see Wilk and Gnadadesikan (1968).

n!
(k 2 1)!(n 2 k)!
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P-P plots
Of particular interest is the case where X is Uniformly distributed:

Xk,U(0,1), k51,2,…,n.

The density function of the ordered random variable X[k] takes the form:

fk(x)5 xk21[12x] n2kf(x), x[ [0,1].

This is the density function of a Beta distribution with parameters (k,n2k11) (see
appendix A) and thus:

n!
(k 2 1)!(n 2 k)!
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Figure 5.42 The ecdf of exchange rate data compared with the Normal cdf

Figure 5.43 The cdf of the discrete Uniform distribution



E(X[k])5 , Var(X[k])5 , Cov(X[k],X[ j ])5 , k,j51,2,…,n.

In view of these results we can deduce that a plot of x[k] on , k51,2,…,n will give
rise to a straight line given the proportionality and monotonicity between the two sets of
values. This suggests an obvious graphical way to check the distribution assumption of a
Uniform distribution using the Uniform Probability-Plot (P-P):

,x[k] , k51,2,…,n . (5.3)

If the underlying distribution is indeed Uniform then this plot should look roughly like a
straight line through the origin.
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Figure 5.44 The ecdf of the data on the Ï2 expansion

Figure 5.45 Comparing two cdfs
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In figure 5.46 we can see a t-plot of simulated Uniform IID data whose P-P plot is
given in figure 5.47. The P-P plot confirms our initial conjecture of a straight line.
Caution should be exercised in checking linearity of plots because we are not talking
about mathematical straight lines but empirical ones.

The above Uniform P-P plot can easily be extended to any other continuous distribu-
tion using the probability integral transformation lemma encountered in chapter 4. This
lemma states that in the case where the random variable X is continuous and has cdf
FX(.), then the transformation:

Y:5FX(X),U(0,1). (5.4)

This suggests that after we transform the ordered observations using their own cdf,
y[k] :5FX(x[k]), k51,2,…,n, we can assess the appropriateness of FX(.) by utilizing the
FX(.) distribution P-P plot:

, FX(x[k]) , k51,2,…,n .

The distribution, which is almost always used as the comparison rod, is the Normal
distribution with cdf:

F(x)5 exp 2 z2 dz.

The Normal P-P plot takes the form:

, F(x[k]) , k51,2,…,n . (5.5)

In figure 5.49 we can see the Normal P-P plot for the Normal IID data shown in figure
5.48, which confirms the above theoretical result of a straight line.

In the same way, we can define many different P-P plots for a variety of distributions such
as the Beta, the Gamma and the Weibull. What is more interesting, however, is to be able
not only to assess whether the distribution underlying a certain set of IID observations
belongs to a specific probability model but also to get some indications toward alternative
probability models in cases where the original choice was inappropriate. For example we
would like to know what the Normal P-P plot would look like if the observations came from
alternative distributions such as the Uniform, the Exponential, the Cauchy, etc. This can be
achieved using a particular form of the P-P plot we call standardized.

Standardized P-P plot
The probability integral transformation lemma says that in the case of a continuous
random variable X, the transformation defined by its own cdf induces a Uniform distrib-
ution (see (5.4)) irrespective of the nature of the cdf FX(.). The reverse of this result,
known as the quantile transformation (see chapter 3), says that the distribution of any
continuous random variable X is determined via:

X5FX
21(y), y[ [0,1] (5.6)

This suggests that in cases where there exists an analytical expression for FX
21(.) we can

generate a theoretical sequence (y1,y2,…,yn) of ordered, FX(.) distributed, random vari-
ables using:

y[k]5FX
21(uk), uk:5 , k51,2,…,n. (5.7)k
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Figure 5.46 t-plot of simulated IID uniform data

Figure 5.47 Uniform P-P plot of simulated ID Uniform data
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Figure 5.48 Simulated NIID data

Figure 5.49 Normal P-P plot of simulated NIID data



Analytical expressions for the inverse of cdf in the case of three distributions are given
below:

Cauchy F21(u)5tan p u2 ,

Extreme value F21(u)52 ln [2 ln (u)],
Exponential F21(u)5 [2 ln (12u)]. (5.8)

Using this result we can proceed to generate distribution curves for any reference distrib-
ution by passing the artificially generated sequence (y[1],y[2],…,y[n]), after being standard-
ized, through the cdf of the reference distribution using (5.4). The standardization of the
theoretical sequence (y[1],y[2],…,y[n]) takes the form (see Gan et al. (1991)):

yk*:5 , :5
n

i51y[i], sY
2 :5

n

i51(y[i]2 )2. (5.9)

The standardized P-P plot for the reference distribution FR(.) takes the form:

(uk, FR(yk*)), where uk5 , k51,2,…,n .

That is, beginning with the artificial sequence uk5 , k51,2,…,n we use (5.7) to arti-
ficially generate a sequence (y[1],y[2],…,y[n]) which traces a curve for a particular distribu-
tion FX(.). After standardizing the latter sequence we pass it through the filter of the
reference cdf function FR(.) to trace a curve for FX(.) viewed through the prism of the refer-
ence distribution. This amounts to applying both the probability integral and the quan-
tile transformations in the sense that, apart from the standardization, this amounts to:

FR(FX
21(uk)), k51,2,…,n.

Having constructed the standardized P-P plot for the reference distribution FR(.) and
introduced several distribution curves, we can proceed to assess a particular data set
(x1,x2,…,xn) using the line:

, FR(xk*) , k51,2,…,n ,

where xk*:5 is the standardized data.

To illustrate this type of graph let us take the reference distribution to be the Normal
and consider the question of generating distribution curves using the inverse cdfs given
in (5.8). The standardized Normal P-P plot takes the form:

, F(zk*) , k51,2,…,n , (5.10)

where F (.) denotes the standard normal cdf and zk* denotes the standardized form of the
ordered observations or the artificially generated sequences of distribution curves. In
figure 5.50 we can see the simulated distribution curves of the Uniform (circle), the
Exponential (square) and the Cauchy (inverted triangle) distributions.

The above reference distribution curves can be utilized to make informed guesses in
cases where other plots indicate departures from Normality. In figure 5.51 we can see
the standardized Normal P-P plot for the Uniform IID data together with the reference
Uniform distribution curve. As we can see, the match between the two is remarkable.

62k
n 1 115

1x[k] 2 x

sX
2

62k
n 1 115

6k
n 1 15

6k
n 1 15

yo1
n 2 1o1

ny1y[k] 2 y

sY
2

421
213

238 Probabilistic concepts and real data



The empirical cdf and related graphs 239

Figure 5.50 Normal S(P-P) plot and reference distribution

Figure 5.51 Normal S(P-P) plot of simulated ID Uniform data



Less remarkable but still quite impressive is the match shown in figure 5.53, the
standardized Normal P-P, between the reference Exponential distribution curve and
the Exponential IID data whose t-plot is shown in figure 5.52. In figure 5.55 we can
see the standardized Normal P-P plot of simulated Cauchy IID observations, whose t-
plot is given in figure 5.54, matched against the reference Cauchy curve.

Q-Q plots
Let us return to the ordinary P-P plot. The Normal P-P plot (5.49) extends the Uniform
P-P plot (5.47) in so far as it changes the ordered observations (x[1],x[2],…,x[n]) measured
on the y-axis by replacing them with the normal probability integral transformation of
the ordered observations denoted by (y[1],y[2],…,y[n]),where (y[k]:5F (x[k]), k51,…,n). In
the case of any other continuous cdfs, say FX(.), (y[k]:5FX(x[k]), k51,…,n).

Another interesting graphical display arises if we keep the ordered observations on the

y-axis but replace the sequence uk:5 , k51,2,…,n , measured on the x-axis by the

sequence {FX
21(uk), k51,2,…,n}. Recall from chapter 3 that FX

21 is the -

quantile of the distribution FX(.). Moreover, the ordered observations (x[1],x[2],…,x[n])
are related to the quantiles via:

FX
21(q)5x[k], for any q such that ,q, .61k

n22k 2 1
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Figure 5.52 Simulated ID Exponential data
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Figure 5.53 Normal S(P-P) plot of simulated ID Exponential data

Figure 5.54 Simulated ID Cauchy data



This suggests that instead of the uniform sequence uk:5 , k51,2,…,n we could
use a sequence {qk, k51,2,…,n} which is chosen in a such way so as to ensure that:

FX
21(qk).E(X[k]).

We  that the choice of the sequence {qk, k51,2,…,n} is not a trivial matter because
it depends on the nature of the distribution FX(.). However, in most cases the sequence
takes the form:

qk:5 , where 0#c#1.

Putting the above pieces together will give rise to the so-called FX(.) distribution Q-Q
plot:

{(FX
21(qk), X[k]), k51,2,…,n}, (5.11)

which, as in the case of the P-P plot, should yield roughly a straight line. The name
derives from the fact that the variables measured on both axes can be thought of as quan-
tiles; the ordered observations can be thought of as the sample (observation) quantiles
and that of the y-axis as the theoretical quantiles of the distribution in question.

The most widely used Q-Q plot is that of the Normal, which is based on the sequence
of approximate values: qk5 , k51,2,…,n. Again, if the observations come from
a Normal IID sample the Normal Q-Q plot should be roughly a straight line. Figure 5.56
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Figure 5.55 Normal S(P-P) plot of simulated ID Cauchy data



shows the Normal Q-Q plot for simulated NIID observations. The Normal Q-Q plot is
close to a straight line and very few observations are beyond the two standard deviations
range.

As with the t-plots and smoothed histograms, the Normal is often used as a yardstick
in comparisons with other distributions. The Normal rank Q-Q plot is used to indicate
how other distributions differ from the Normal. For example, figure 5.57 shows the
Normal Q-Q plot of the simulated data exhibited in figure 5.52. As we can see, the tails
bend up on the left and down on the right indicating lighter tails than the Normal; what
we called platykurtosis in chapter 3. It must be emphasized that the figures 5.47, 5.51 and
5.57 represent different plots for the same simulated Uniform IID data. The former is a

Uniform P-P plot and measures the Uniform rank , k51,2,…,n on the x-axis but

the latter is a Normal Q-Q plot with the Normal rank F21 , k51,2,…,n , on the

x-axis. As a result, the Normal Q-Q plot should be interpreted as assessing the distribu-
tion features of the data through the viewing angle of the Normal distribution; see
D’Agostino (1986).

The Normal Q-Q plot in figure 5.57 should be contrasted with the Normal Q-Q plot of
simulated Student’s t IID data with 5 degrees of freedom, shown in figure 5.59; the t-plot
of the simulated data is given in figure 5.58. As we can see, the Normal Q-Q plot of the
Student’s t data bends down at the left and up at the right end, indicating more negative
observations in the left tail and more positive observations in the right tail, i.e., heavier
tails than the Normal (what we called leptokurtosis in chapter 3).

The Normal Q-Q plot is often the easiest way to check both platykurtosis and
leptokurtosis. The Normal rank P-plot is also useful in assessing skewness. In figure 5.60
we can see the Normal Q-Q plot of simulated log-Normal IID.

In view of the above discussion in relation to the heavy and light tails we can see that
the Normal Q-Q plot of the log-Normal IID data is bent up at the left (lighter left tail)
and up on the right (heavier right tail); what we called skewed to the right in chapter 3.
The opposite of course happens in the case of IID observations from a distribution
skewed to the left. In figures 5.61 and 5.62 we can see the t-plot and Q-Q plot of simulated
IID Beta (with parameters 7 and 1) data.

P-P versus Q-Q plots
The P-P plot amounts to plotting a set of uniformly distributed ordered observations
against the theoretical values assuming that the random sample is uniformly distributed:
the uniform rank sequence uk:5 , k51,…,n . Its theoretical basis is the probability
integral transformation lemma. The Q-Q plot amounts to plotting a set of ordered
observations against a set of theoretical values {FX

21(qk), k51,…,n} chosen to ensure
that FX

21(qk).E(X[k]). Its theoretical basis is the quantile transformation lemma.

P-P plot: (uk, FX(X[k])), k51,2,…,n, where uk:5 ,

Q-Q plot: {(FX
21(qk), X[k]), k51,2,…,n, where FX

21(qk).E(X[k]) }.

In view of the fact that the values (uk, k51,2,…,n) are uniformly spaced but the values
(FX

21(qk), k51,2,…,n) are often more tightly bunched together in the region around the
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Figure 5.56 Normal Q-Q plot of simulated NIID data

Figure 5.57 Normal Q-Q plot of simulated IID Uniform data
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Figure 5.58 t-plot of simulated ID Student’s t data

Figure 5.59 Normal Q-Q plot of simulated ID Student’s t data
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Figure 5.60 Normal Q-Q plot of simulated ID log-Normal data

Figure 5.61 t-plot of simulated ID Beta data



mode on the x-axis, one would expect that the Q-Q plot will be more sensitive to dis-
crepancies in the tail regions than a P-P plot. By the same token a P-P plot is likely to be
more sensitive to discrepancies in the modal region of the assumed distribution. This
suggests that these two plots can be used as complements not substitutes.

One disadvantage of the Q-Q plot is that the reference distribution curves are not
readily available as in the case of the P-P plot. In addition, the P-P plot is easier to work
with because the range of values on both axes is always the same: [0,1]. We conclude this
section by mentioning an advantage of the Q-Q plot in so far as it can be used to estimate
the location and scale parameters of the reference distribution as the intercept and slope
of the straight line the observations give rise to, since the graph:

, FX
21(qk) , and (X[k], m1s GX

21(qk)), k51,2,…,n,

are equivalent for GX(x)5FX (see D’Agostino and Stephens (1986)).

A cautionary note
We conclude this subsection by noting that in assessing the distributional nature of the
data using a t-plot we have suppressed the indexing dimension. That is, the ordering of
the observations plays no role in assessing its distributional features. This, however, pre-
supposes that the plotted data are IID. In the case of non-IID data suppressing the
ordering can give rise to very misleading histograms as shown above. It is very important
to emphasize again that before one can assess the distributional nature of the data, it is
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Figure 5.62 Normal Q-Q plot of simulated ID Beta data



imperative to ensure that the data are IID. As argued above, in cases where the data
exhibit some dependence and/or heterogeneity the modeler needs to filter out these fea-
tures before assessing the distributional features of such data.

5.7.3 Empirical example: exchange rates data

In order to illustrate some of the graphical techniques discussed above let us consider the
exchange rate data plotted in figure 1.4, also shown in figure 5.63. As mentioned in
chapter 1, these data refer to log-changes (D ln Xt) of the Canadian/US exchange rate for
the period 1973–1992 and refer to weekly observations (T5953). The sample size was
chosen to be very large in order to bypass problems of inadequate information which
arise in cases of small sample size. Also, at this stage we assume that the data are close to
a random sample.

At first sight the t-plot of the data exhibits the bell-shaped symmetry we associate with
Normal and other elliptically symmetric distributions. In order to assess its distribu-
tional features we begin with a Normal Q-Q plot shown in figure 5.64. This plots shows
most clearly that the data cannot be described by a Normal distribution because the
graph is not a straight line; the shape reminds one of figure 5.65 representing simulated
Student’s t data with the reference distribution being the Cauchy.

This conjecture is explored further in figure 5.67 in a Normal P-P plot for the exchange
rate data (the curve in squares) with the Cauchy as a reference distribution (the inverted S
solid line). N that we use the Cauchy as the reference distribution because the inverse
cdf of the Student’s t distribution does not have an analytic expression in general, but it
has one in the case of one degree of freedom (d.f.); the Cauchy distribution. This plot
leaves no doubts in the mind of the observer that the exchange rate data are clearly lep-
tokurtic and exhibit some affinity with the Student’s t distribution.

The smoothed histogram, shown in figure 5.66 (inverted triangles identify the curve),
provides additional evidence that the Normal distribution (identified by the circles) is
clearly inadequate for describing the data and some leptokurtic distribution, such as
the Student’s t, might provide a better description. The difficulty with deciding to
adopt the Student’s t distribution is the degrees of freedom parameter n which deter-
mines the extent of its leptokurticity:

a4:531 .

Figure 5.65 indicates that for the exchange rate data the degrees of freedom parameter n
lies somewhere between 1 and 12. One can justify this on the basis that n.1 since the
Cauchy is somewhat off and n,12 because the Student’s t with degrees of freedom
higher than that is very close to the Normal. One way to proceed in order to narrow
down the range of values of this parameter is to plot Student’s t densities in figure 5.66
with different degrees of freedom and choose the one closest to the smoothed histogram.
Although this procedure does not seem unreasonable, it can be misleading because, as
mentioned above, the smoothed histogram depends crucially on the value of the band-
width h chosen. In this case the problem of choosing h is particularly crucial because any

6
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Figure 5.63 t -plot of Canada/USA exchange rate data

Figure 5.64 Normal Q-Q plot of Canada/USA exchange rate data
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Figure 5.65 Normal S(P-P) plot of Canada/USA exchange rate data

Figure 5.66 Histogram and smoothed histogram of Canada/USA exchange
rate data
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oversmoothing (higher than the optimal value for the bandwidth) will suggest a higher
value of the degrees of freedom parameter than its true value.

A much safer way to proceed will be to construct a standardized Student’s t P-P plot of
the form (see Spanos (1996d)):

Standardized Student’s t P-P plot:

(uk, FSt(y*[k];n)), uk5 , k51,2,…,n .

where FSt(.;n) denotes the cdf of the Student’s t distribution with n degrees of freedom
(chosen a priori). It is very important to  that the ordered observations y*[k], k51,2,
…,n should be standardized to have standard deviation not 1 but , i.e.

n
k51 .

In figure 5.67 we can see such a standardized Student’s t P-P plot for the exchange rate
data together with the reference Cauchy distribution. The reference distribution is the
standard Student’s t with 4 d.f., denoted by St(0,1;4). It is interesting to  how the
Cauchy distribution curve when viewed through the prism of the Student’s t distribution
has changed its shape when compared with that in the context of the standardized
Normal P-P plot. Figure 5.67 suggests that the Student’s t distribution with 4 degrees of
freedom provides a remarkable fit to the exchange rate data. In order to provide support
for this choice we present the standardized Student’s t P-P plot for different degrees of
freedom in figures 5.68–5.70.

Commencing with figure 5.68, where the reference distribution is St (0,1;5), we can see
that the plot of the data is very close to the diagonal straight line but the lower half of the
observations appears slightly above the diagonal and the higher half slightly below. It
must be emphasized, however, that for real data the plot with 4 d.f. constitutes a remark-
able fit and it is only the close fit that enables us to put a possible question mark on the fit
of the 5 d.f. graph. Some people might prefer the case of 5 d.f. for theoretical reasons
such as the existence of the kurtosis coefficient!

The discrepancy noted in figure 5.68 is more apparent in figure 5.69 where the degrees
of freedom parameter was increased to 6; the reference distribution is St(0,1;6). The
opposite discrepancy can be seen in figure 5.70 where the reference distribution is
St(0,1;3). As we can see the lower half of the observations lie below the diagonal and the
higher half lie above the diagonal.

The patterns exhibited in these standardized P-P plots in conjunction with the Cauchy
distribution curve can be used as a guide in deciding whether to increase or decrease the
degrees of freedom parameter to achieve a better fit. For example, in the case of the
reference distribution St (0,1;3) it is clear that the discrepancy is towards the Cauchy dis-
tribution and to correct it we need to move in the opposite direction, i.e., increase the
degrees of freedom.

In concluding this subsection we deduce that in the case of the exchange rate data the
graphical techniques introduced above proved adequate to assess its distributional fea-
tures. These data can best be described by the Student’s t distribution with 4 degrees of
freedom.

Finally, we note that the use of large samples in this section was designed to ensure
that the created pictionary was reliable enough. This, however, does not mean that the
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Figure 5.67 Student’s t [St(0,1;4)] S(P-P) plot of exchange data

Figure 5.68 Student’s t [St(0,1;5)] S(P-P) plot of exchange data
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Figure 5.69 Student’s t [St(0,1;6)] S(P-P) plot of exchange data

Figure 5.70 Student’s t [St(0,1;3)] S(P-P) plot of exchange data



above graphical displays cannot be used for sample sizes smaller than T5200. Any
sample beyond T520 could be assessed using these plots but the modeler should be
more careful in the case of small samples.

5.8 Generating pseudo-random numbers*

5.8.1 Uniform pseudo-random numbers: conguential methods

How do we generate the ideal random numbers used in the above t-plots? The most
commonly used method has two stages: the first stage generates “ideal” Uniformly
distributed random numbers and the second stage transforms these numbers into
ideal pseudo-random numbers from other distributions. This is because the genera-
tion of ideal Uniformly distributed random numbers is mathematically an easier
proposition.

The pseudo-random numbers {ui, i51,2,…} are so called because they appear to be
realizations of a sequence of Independent and Identically Distributed (IID) random
variables {Ui, i51,2,…} that follow the Uniform distribution U(0,1). These are numbers
such that for any finite collection {ui1,ui2,…,uin} of size n$2, the following relationship
holds:

P(Ui1#ui1,Ui2#ui2, ··· ,Uin#uin)5 uij.

The appearance of IID is established via some computer-based algorithm which chooses
rational numbers in ways that ensure the absence of any patterns associated with depen-
dence and/or non-identical distribution.

The most widely used method for generating pseudo-random numbers is the so-called
multiplicative congruential method which involves the following recursive formula (see
Johnson (1987)):

uk5auk21 mod m, k51,2,…,

uk, k51,2,…,denotes the output pseudo-random numbers,
u0 is the initial value known as the seed,
a is a chosen constant (known as the multiplier) such that a,m, and
m is a prime number, known as the modulus.

Mod is shorthand for modulus. In words, uk is generated by dividing the product auk21 by
m and letting uk be the remainder of the division; (uk/m) is a rational number in the inter-
val [0,1].

Example
Consider the case m511, a57, u051,

u1 5remainder of 57,

u2 5remainder of 55,1737
11 2

1 7
112

o
n

j51
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u35remainder of 52,

u45remainder of 53,

··· ··· ···

the first pseudo-random numbers: ((1/11),(7/11),(5/11),(2/11),(3/11),(10/11),···).
The pseudo-random numbers generated using this algorithm will repeat themselves

with the maximum period m21; the maximum period is achieved when a is a primitive
root of m. For these numbers to exhibit no patterns of dependence and/or heterogeneity
the numbers a and m should be chosen appropriately; the rule is to choose a to be a posi-
tive primitive root of m and the latter should be a large prime number. The experience of
the last few decades has shown that there are good and bad choices. Some of the better
choices for these numbers are:

m5(23121), a5950706376, a5742938285, a51226874159.

A simple extension of this algorithm, known as a linear conguential method for gener-
ating uniform pseudo-random numbers, takes the recursive form:

uk5auk211c, mod m, k51,2,…,

where c is some constant (often an odd integer). This algorithm yields the sequence of
pseudo-random numbers:

vk5 [ [0,1), k51,2,…

In the literature this linear congruential method has been extended in a number of
directions such as the non-linear congruential method and the inverse congruential
method in an attempt to improve the quality of the pseudo-random numbers generated
(see Lewis and Orav (1989)).

Before the sequences of pseudo-random numbers generated by these algorithms are
used one needs to check whether they enjoy the required properties, i.e., represent real-
izations of an IID sample of random variables. This question will be raised again in
chapter 10.

5.8.2 Generating non-Uniform pseudo-random numbers

The inverse distribution function method
The pseudo-random numbers for the Uniform distribution can then be transformed into
numbers from all the other distributions using two variants of the probability integral
transformation introduced in the previous chapter.

(i) The probability integral transformation. Assuming that X has a cdf F(x) so that F21(u)
exists for 0,u,1, the random variable defined by U5F(x), has a Uniform distribution
over the range (0,1), i.e.

U5F(X),U(0,1).

1uk

m2

1732
11 2

1735
11 2
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This is a remarkable result because in cases where F21(u) is computable for 0,u,1, it
can be used to transform a Uniformly distributed random variable into another random
variable with distribution F(x) using the quantile transformation:

X5F21(u), u[(0,1), where F21(u)5 inf {x :F(x)$u, 0#u#1}.

Some examples of continuous distributions for which F21(.) has an analytical expres-
sion are given below (see also Lewis and Orav (1989)):

Distribution F(x) F21(u)

Uniform: a1(b2a)u

Cauchy: a1b tan p u2

Exponential: e2 x 2b ln (12u)

Logistic: a1b ln 

Pareto: abax2(a11)

Weibull: xa21exp b (2 ln (12u)

Beta(a,1): axa21 u

Beta(1,b): b (12x)b21 12(12u) (5.12)

Example
Consider the case where U,U(0,1) and we want to use it to generate pseudo-random
numbers from a logistically distributed random variable X with:

F(x)5 , 2`,x,`.

Setting u5 , or u5ex(12u), we deduce that x5F21(u)5 ln u2 ln (12u), and thus:

X5F21(u)5 ln u2 ln (12u), u[(0,1),

can be used to simulate logistically distributed pseudo-random numbers.

(ii) Simulation for a discrete random variable X. Let U,U(0,1). Set X5xn whenever:

F(xn21),U#F(xn), for n51,2,… (set F(x21)50),

P(X5xn)5F(xn)2F(xn21)5pn, n51,2,…,

by the definition of the distribution function of a Uniform random variable with range
(0,1).

ex

1 1 ex

ex

1 1 ex

1
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1
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Example
Consider the case where U,U(0,1) and we want to use it to generate pseudo-random
numbers from a Bernoulli distributed random variable X with density:

f(x;p)5px(1–p)1–x, x51,0.

The algorithm suggested by the above procedure is:

1. If U#p, set X51, 2. If U.p, set X50.

Normal pseudo-random numbers
The most popular distribution in probability and statistical inference is undoubtedly the
Normal distribution for which the following method is often used to generate random
numbers. Consider the case where Ui,U(0,1), i51,2, and independent. These pseudo-
random numbers can be used to generate the Normal pseudo-random numbers:

,N

i.e., Xi,N(0,1), i51,2, and independent, using the transformation:

X15 ·cos (2p U2), X25 · sin (2p U2). (5.13)

This is based on a change of variables result from two independently distributed
random variables (r,u) via the transformation:

X15r cos u, X25r sin u, 0,r,`, 0#u#2p, (5.14)

whose Jacobian (see Box and Muller (1958)) takes the form:

5det 5r.

The joint distribution of (r,u) is (see chapter 11):

f(r,u)5f(x1)f(x2) ·r5 exp 2 (x1
21x2

2) 5f(u1)f(u2),

where (U1,U2) are independent and Uniformly distributed random variables defined by:

U15exp 2 r2 ,U(0,1], U25 ,U(0,1].

The transformation (5.13) is derived by inverting (5.14).

5.8.3 The rejection method

Another commonly used method for generating pseudo-random numbers from distribu-
tions other than the Uniform is the rejection–acceptance method. The idea behind this
method is to start from another distribution which is easy to simulate and is very similar
in shape to the one we want to simulate, and cut and paste the simulated numbers from the
first distribution by accepting the ones which agree with the second distribution.

u

2p21
21

61
25r

2p

1 cos  u
2 r sin u

  
sin u

r cos u2(x1,x2)
(r,u)

Ï( 2 2 ln U1)Ï( 2 2 ln U1)

130
04,31 0

0 1421X1

X2
2
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This method presupposes (i) the existence of a density function, i.e., there exists a non-
decreasing function f(x) such that (see Devroye (1986)):

F(x)5 f(u)du for all x[R,

and (ii) the existence of a distribution G(x) with density g(x), for which pseudo-random
numbers are readily available, such that:

f(x) # cg(x) for some constant c$1, x[R.

Armed with these two density functions one proceeds to generate two independent
random samples, {uk, k51,2,…,n} from the Uniform distribution and {zk, k51,2,…,n}
from the distribution G(x). The decision rule for selecting an IID sample from F(x) is as
follows:

(i) If cuk. then reject zk and try again with other uk and zk,

(ii) If cuk# then accept zk, for k51,2,…,n.

The output is the sequence xk5zk, k51,2,…,m (m#n). The theory underlying this
method is encapsulated in the following relationship:

Pr (Z#x and z is accepted)5Exk
2` g(u)du5 Exk

2` f(u)du5 F(xk)

Hence, taking x → ̀ ⇒ Pr (z is accepted)5 , yielding

Hence, taking x → ̀ ⇒ Pr (Z#x |z is accepted)5 5F(x).

That is, the random variable X has the cdf function F(x).
There are many other methods for generating non-Uniform pseudo-random numbers

such as the composition and the ratio of uniforms methods. The interested reader is
referred to Devroye (1986) for an extensive discussion.

5.9 Summary

In this chapter we considered the question of bridging the gap between the observed data
and the theoretical concepts defining a simple statistical model:

[i] Probability model: F5{f(x;u), u[Q, x[R},
[ii] Sampling model: XIID

(n) :5(X1,X2,…,Xn) is a random sample.

The tentative bridge between the two came in the form of the graphical displays of
simulated data. In particular, it was shown that the graphical display known as a t-plot
conveys information relating to the appropriateness of all three probabilistic assump-
tions making up any simple statistical model:

(D) Distribution: arbitrary distribution,
(M) Dependence: independence,
(H) Heterogeneity: identical distribution.

1
c F(x)

1
c

1
c

1
c

1
c

f(u)
cg(u)

f(zk)
g(zk)

f(zk)
g(zk)

Ex

2`
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In the case of assessing the distribution assumption we related the t-plot to other plots
such as the histogram, the smoothed histogram, the Q-Q and P-P plots of the data. All
these plots will be particularly useful at the specification stage of modeling where we need to
make a preliminary assessment of the assumptions defining the statistical model chosen.

The tentative bridge will be reinforced in the next few chapters with additional graph-
ical displays but there will be some loose ends which will be tied together in chapter 10.

5.10 Exercises

21 Explain the concept of a random sample and its restrictiveness in the case of most
economic data series.

22 How do we assess the distributional features of a data series using a t-plot?

23 “A smoothed histogram is more appropriate in assessing the distributional features
of a data series than the histogram itself because the former is less data specific.”
Explain.

24 Explain how one can distinguish between a t-plot of NIID and a t-plot of Student’s
t IID observations.

25 Explain the relationship between the abstract concept of independence and the cor-
responding chance regularity pattern in a t-plot of a data series.

26 Explain how any form of dependence will help the modeler in prediction.

27 Explain the relationship between the abstract concept of identical distribution and
the corresponding chance regularity pattern in a t-plot of a data series.

28 “Without an ordering of the observations one cannot talk about dependence and
heterogeneity.” Discuss.

29 Explain the notion of a P-P plot and the Normal P-P plot in particular.

10 Compare and contrast a Normal P-P and a Normal Q-Q plot.

11 Explain how the standardized Student’s t P-P plot can be used to evaluate the
degrees of freedom parameter.

12 Explain the notion of a reference distribution in a P-P plot. Why does the Cauchy
reference distribution take different shapes in the context of a standardized Normal
and a Student’s t P-P plot?

13 Explain the notion of a pseudo-random number.

14 Explain the linear conguential method for generating Uniform pseudo-random
numbers.

15 Compare and contrast the P-P and standardized P-P plots.
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6 The notion of
a non-random sample

6.1 Introduction

In this chapter we take the first step toward extending the simple statistical model
(formalized in chapters 2–4) in directions which allow for dependence and heterogeneity.
Both of these dimensions are excluded in the context of the simple statistical model
because the latter is built upon the notion of a random sample: a set of random vari-
ables which are both Independent and Identically Distributed (IID). In this chapter we
concentrate on the notion of dependence, paving the way for more elaborate statistical
models in the next few chapters. We also extend the bridge between theoretical concepts
and real data introduced in chapter 5, by introducing some additional graphical tech-
niques.

6.1.1 The story so far

In chapter 2 we commenced our quest for a mathematical framework in the context of
which we can model stochastic phenomena: phenomena exhibiting chance regularity. We
viewed probability theory as the appropriate mathematical set up which enables one to
model the systematic information in such phenomena. In an attempt to motivate this
mathematical framework, we introduced probability theory as a formalization
(mathematization) of a simple chance mechanism, we called a random experiment %,
defined by the following three conditions:

[a] all possible distinct outcomes are known a priori,
[b] in any particular trial the outcome is not known a priori but there exists a percept-

ible regularity of occurrence associated with these outcomes,
[c] it can be repeated under identical conditions.

The idea behind this formalization was twofold. First, to bring out the fact that probabil-
ity theory, like other branches of mathematics, is not just a sequence of slick theorems
and lemmas! It is a branch of mathematics which grew out of the need to model certain
phenomena of interest. Moreover, it changes continuously, broadening and extending its
intended scope in order to provide a framework for modeling stochastic phenomena.
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Second, to bring out the connection between chance regularity patterns and the corre-
sponding abstract mathematical concepts; the former motivating the formalization of
the latter. The chance mechanism represented by a random experiment was chosen to be
simple enough (the chance regularity patterns are manageable) but not simpler (to para-
phrase a statement by Einstein), with a view to motivating the main concepts underlying
a statistical model.

The initial mathematical formalization of %, given in chapter 2, came in the form of a
simple statistical space [(S,I,P (.))n,Gn

IID], which has two components:

(i) Probability space: (S,I,P(.))n:5 (S,I,P(.))3(S,I,P(.))3 ···3(S,I,P(.)),
(ii) Sampling space: Gn

IID5{A1,A2,A3,…,An}.

These two pillars provide the mathematical foundations upon which one can erect prob-
ability theory as a branch of mathematics. From the modeling viewpoint, however, this
mathematical framework is more abstract than needed because our data are often
numerical and thus, in chapters 3 and 4, we set out to metamorphose it into an equivalent
formulation on the real line. It is important to  that, even after the metamorphosis,
this abstract formulation is still of interest because it constitutes the mathematical
foundations of probability theory. Whenever we introduced a new concept in the context
of the transformed formulation we need to return to the abstract formulation to check
whether it makes sense or not. As shown below, in extending the simple statistical model
we retain the notion of a probability space (S,I,P(.)) but we define on it, random vari-
ables, which can be both dependent and heterogeneous (see chapter 8 for the details).

The metamorphosis of the abstract statistical space [(S,I,P(.))n,Gn
IID] took the form of

a simple (generic) statistical model.

[i] Probability model: F5{f(x;u), u[Q, x[R},
[ii] Sampling model: X(n)

IID:5(X1,X2,…,Xn) is a random sample.

In the previous chapter a bridge has been erected between the probabilistic concepts of:

(i) Distribution (a cumulative distribution or a density function),
(ii) Independent, and
(iii) Identically Distributed random variables,

and the corresponding chance regularity patterns exhibited in a number of graphical dis-
plays of observed data. In extending the simple statistical model we also need to extend
this bridge in order to introduce additional graphical techniques relevant for dependence
and heterogeneity chance regularity patterns.

6.1.2 Extending a simple statistical model

The intended scope of the simple statistical model is limited by the concept of a random
sample; it can only be used to model stochastic phenomena that exhibit independence and
complete homogeneity over t. Unfortunately, this is rarely the case in economics.
Economic data often exhibit non-random sample features: dependence and/or heterogene-
ity. A typical economic time series is shown in figure 6.1, where monthly data on the US
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Industrial Production Index (19855100), for the period January 1960 to May 1994, are
plotted over time.

Using the expertise acquired in the previous chapter, we can see that this t-plot exhibits
positive dependence in the form of business cycles and distinct heterogeneity, in the form
of an upward trend, and a possible seasonality pattern.

The primary objective of the next few chapters is to extend the simple statistical model
with a view to modeling observable phenomena, such as the behavior of stock returns,
exchange rates, inflation and GDP growth, which cannot be viewed as realizations of a
random sample. The main objective of this chapter is to take the first step towards
extending the simple statistical model in order to enhance its scope. This step takes the
form of introducing several notions of dependence.

6.1.3 Introducing a fundamental taxonomy

One of the basic themes that underlays the discussion in this book is a fundamental
classification of probabilistic assumptions into three broad categories:

(D) Distribution, (M) Dependence, (H) Heterogeneity.

This taxonomy will be utilized extensively in the chapters that follow for both pedagog-
ical as well as substantive reasons. It constitutes one of the unifying themes of the
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approach to statistical inference and modeling that runs through this book. The taxon-
omy is not supposed to provide a partition of the set of probabilistic assumptions; just a
broad grouping. Some assumptions will straddle over the boundary between these cate-
gories but that does not reduce the usefulness of the taxonomy.

At this stage it is important to emphasize that, in terms of the above taxonomy, a
simple statistical model can be viewed as imposing extreme assumptions in two of the
three categories. From the (M) (for memory) category it imposes independence and from
the (H) category complete homogeneity:

(D) Distribution: arbitrary distribution,
(M) Dependence: Independent random variables,
(H) Heterogeneity: Identically Distributed random variables.

In the same way we can view statistical models with broader intended scope as built upon
assumptions from the above three categories other than independence from the category
(M) and identical distributions from the category (H). This suggests that a pre-requisite
of this broadening of the intended scope is the availability of different notions of depen-
dence and heterogeneity beyond the two extreme restricted cases.

The concept of a statistical model in general is of paramount importance in statistical
inference. The main purpose of a statistical model is to provide an adequate summary of
the systematic information in the data by capturing all statistical systematic information
as it relates to the chance regularity patterns exhibited by the data.

6.2 Non-random sample: a preliminary view

What makes a random sample such a fundamentally important notion? The short
answer is that the assumptions of Independence and Identical Distribution simplify
both the modeling as well as the statistical inference concerning simple statistical models.
This simplification is encapsulated by the form of the reduction of the joint distribution
of the sample. To see this we remind the reader that:

Independence: f(x1,x2,…,xn;f)5 fk(xk;uk), for all x[Rn,

Identical Distribution: fk(xk;uk)5f(xk;u), for all k51,2,…,n.

The end result of these assumptions is that the joint distribution is simplified immensely
by its reduction to a product of univariate (identical) marginal distributions:

f(x1,x2,…,xn;f)5
I

fk(xk;uk)
IID
5 f(xk;u), for all x[Rn. (6.1)

Looking at this result we can see that the random sample assumption simplified the
joint distribution (distribution of the sample) drastically in two important respects:

(i) Dimensionality reduction:
f(x1,x2,…,xn;f) is n-dimensional and f(xk;u) is 1-dimensional, and

(ii) Parameter reduction:
the number of unknown parameters in u is often considerably smaller than that of f.

p
n

k51
p

n

k51

p
n

k51
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Example
Consider the case where the joint distribution of the random variables (X1,X2,…,Xn) is
Normal, i.e., f(x1,x2,…,xn;f) takes the form:

,N . (6.2)

As it stands, the joint distribution has at least N5n1 [n(n11)] unknown parameters:

f:5(m i,sij, i,j51,2,…,n),

with n means: (E(Xi):5mi ,i51,2,…,n) and [n(n11)] covariances (due to symmetry):

Cov(Xi,Xj)5Cov(Xj,Xi):5sij, i,j51,2,…,n.

If we impose the Independence assumption on the joint distribution the result will be that
the covariances become zero:

sij5
5sii , for i5 j,

sij5h0, for iÞ j,
, i,j51,2,…,n,

the original joint distribution reduces to:

,N . (6.3)

In terms of the reduction (6.1), the first equality is the result of imposing Independence,
with the univariate marginal densities fk(xk;uk), uk:5 (mk,skk), k51,2,…,n being:

Xk,N(mk,skk), k51,2,…,n. (6.4)

This reduction, although drastic, does not yield an operational model because there are
still 2n unknown parameters:

uk:5(mk,skk), k51,2,…,n,

which are increasing with the sample size! Imposing the Identical Distribution assump-
tion at the second stage in (6.1) ensures that:

u15u25 ···5un5u:5(m,s2),

and thus the joint density is reduced to a product of univariate marginal densities
f(xk;u), where u:5(m,s2), of the form:

Xk,N(m,s2), k51,2,…,n.
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N the corresponding reduction in the unknown parameters in (6.1):

f:5(mi,s ij, i,j51,2,…,n)Vuk:5{(mk,skk), k51,2,…,n},Vu:5(m,s2).

The above reduction yields the simple Normal model:

[i] Probability model:

F5 f(x;u)5 exp 2 , u:5(m,s2)[R3R1, x[R ,

[ii] Sampling model: X:5(X1,X2,…,Xn) is a random sample.

This example illustrates most clearly the drastic reduction in both the dimensionality
and the number of unknown parameters achieved by the random sample assumption.
By the same token, the above example can also be used to indicate the kind of
difficulties that will arise in the case of a non-random sample, where one or both of
the assumptions do not hold.

Looking at (6.2) we realize that the above blessings in the case of a random sample
become curses in the case of a non-random sample. If no restrictions are placed on the
dependence and heterogeneity two difficult problems arise:

(a) Dimensionality curse: f(x1,x2,…,xn;f) is n-dimensional,
(b) Incidental parameters curse: the number of unknown parameters in f, say N,
increases with the sample size n.

6.2.1 Sequential conditioning

Let us consider the dimensionality curse first. For modeling and statistical inference pur-
poses the high dimensionality of the joint distribution is a difficult problem. The key to
dispelling the dimensionality curse was presented in the previous chapter in the form of a
conditional distribution. It was shown that in the case of two arbitrary random variables
X and Y (defined on the same probability space) the following relationship holds:

f(x,y;f)5f(y |x;w2) ·fx(x;w1), for all (x,y)[RX3RY. (6.5)

 :
(i) The reduction is symmetric with respect to X and Y in the sense that:

f(x,y;f)5f(x |y;c2) ·fy(y;c1), for all (x,y)[RX3RY, (6.6)

(ii) f(y |x;w2) and f(x |y;c2) are both univariate distributions.
(iii) The reduction in dimensionality is not accompanied by any corresponding reduc-

tion in the number of unknown parameters §. In order to avoid introducing
cumbersome notation consider an example of the simple two-variable case.

Example
Consider the case where the random variables (X,Y) are Normally distributed, i.e.
f(x,y;f) takes the form:

66(x 2 m)2

2s251
sÏ2p5
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(6.7)

The reduction in (6.6) takes the form (see chapter 4):

X,N(m2,s22), (Y |X5x),N(b01b1x,s2), x[R,

where b0:5m12b1m2, b1:5 , s25s112 . These results show that:

f:5(m1,m2,s11,s12,s22), w1:5(m2,s22), w2:5(b0,b1,s2),

and thus the number of unknown parameters remains the same! This is true in the n-
dimensional case but the notation gets a bit complicated.

Comparing (6.5) to the case where X and Y are independent:

f(x,y;f)5fx(x;u1) ·fy(y;u2), for all (x,y)[RX3RY, (6.8)

we can see that in the non-independent case the conditional distribution f(y |x;f) pro-
vides the key to a reduction of a bivariate to a product of two univariate distributions.

Example
Returning to the above case where the random variables (X1,X2) are Normally distrib-
uted, we can see that:

s1250 ⇒ b150, b05m1 and s25s11.

That is, under the restriction s1250, f(y |x;w2) takes the form:

(Y |X5x) | s1250,N(m1,s11), x[R,

which implies that f(y |x;w2)| s1250 5fy(y;u2). It turns out that the restriction s1250 is
both necessary and sufficient for the conditional to reduce to the marginal distribution
and thus under this restriction the joint distribution of (X,Y) satisfies the independence
condition in (6.8).

The reduction in (6.5) can be easily extended to the n-variable case using sequential condi-
tioning. Consider the case of three random variables (X1,X2,X3):

f(x1,x2,x3;f)5f(x3 |x2,x1;c3) ·f(x2,x1;q1),
f(x1,x2,x3;f)5f(x3 |x2,x1;c 3) ·f(x2 |x1;c 2) ·f(x1;c 1), (x1,x2,x3)[RX

3,

where we conditioned X3 on (X1,X2) first and then conditioned X2 on X1. In the general n-
variable case, the sequential conditioning yields:

f(x1,x2,…,xn;f)
non-IID

5 f1(x1;c1) fk(xk |xk21,…,x1;c k), for all x[RX
n. (6.9)

This dispels the dimensionality curse because the right-hand side is a product of univari-
ate densities but raises two different problems:

(c) The increasing conditioning set: the number of conditioning variables changes
with the index in the sense that fk(xk |xk21,…,x1;ck) has (k21) conditioning
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variables but the index changes k52,3,…,n, rendering these densities different,
e.g. for n55:

f(x2 |x1;c2),
f(x3 |x2,x1;c3),
f(x4 |x3,x2,x1;c4),
f(x5 |x4,x3,x2,x1;c5).

(d) The stochastic conditioning problem: the right-hand side of (6.9) is the product of
n univariate distributions (n21 conditional and one marginal) for each value x[

RX
n; i.e., one such n-tuple for every value of x[RX

n. In the reduction in (6.5) there
exists one joint distribution f(x,y;f) and one marginal density fx(x;w1), but
several conditional densities f(y |x;w2); one for each value x[RX, since the
notion of a conditional density is defined for a specific value of the conditioning
variable.

These problems are symptomatic of the dependence among the random variables in the
sequence because the random variables involved never forget. The fact of the matter is
that the way to deal with both of these problems is to impose some restrictions on the
dependence and heterogeneity of the set of random variables (X1,X2,…,Xn) (see chapter
8). In order to convince the reader that we need restrictions from both categories, let us
return to the Normal example with independence imposed. The reduction in (6.10) sim-
plifies to:

f(x1,x2,…,xn;f)5
I

fk(xk;uk), for all x[RX
n, (6.10)

but the problem of over-parameterization remains: uk:5(mk,skk), k51,2,…,n. This is
symptomatic of the heterogeneity of the sequence.

Collecting the various threads of our reasoning above, we conclude that the dimen-
sionality curse raised by the notion of a non-random sample can be theoretically
removed using sequential conditioning but this raises two other problems (the increasing
conditioning set and the stochastic conditioning). It also leaves the incidental parame-
ters problem intact.

6.2.2 Keeping an eye on the forest!

Our objective in this and the next two chapters is to landscape the territory beyond
Independent and Identically Distributed (IID) random variables by introducing alterna-
tive forms of dependence and heterogeneity which enable us to capture the chance regu-
larity patterns exhibited by the time series data such as figure 6.1.

The preliminary discussion in connection with the difficulties arising in the case of
non-random samples brought out the role of several useful concepts which relate to the
joint and the conditional distributions. Two things have become apparent from the above
discussion:

(i) the key to taming non-IID sequences is the notion of conditioning and

p
n

k51
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(ii) measuring dependence has to do with the relationship between joint and marginal
distributions or equivalently between conditional and marginal distributions.

The primary objective of this chapter is to introduce several notions of dependence in
connection with pairs of random variables, as a prelude to the discussion of the general
case of a sequence of random variables in chapter 8. Special attention is given to qualita-
tively different random variables. Chapter 7 concentrates on the stochastic conditioning
problem and discusses the way conditional distributions and their moments can be
extended to deal with this problem. The concepts developed in these two chapters are
then utilized in chapter 8 to provide a systematic discussion for sequences of random
variables as they relate to dependence and heterogeneity. In other words, all these threads
will be tied together in chapter 8 to show how the newly charted territory of the non-IID
jungle can help model chance regularity patterns associated with dependence and/or het-
erogeneity.

6.2.3 Statistical models beyond the simple: a preliminary view

The above preliminary discussion set the scene for extending the simple statistical model
to more general models which allow for some dependence and/or heterogeneity. We say
some dependence and/or heterogeneity because statistical models with unrestricted
dependence and/or heterogeneity are unattainable in the case of non-experimental
(observational) data.

In an attempt to be more concrete let us return to the example of the case where the
joint distribution of (X1,X2,…,Xn) is Normal, i.e. f(x1,x2,…,xn;f) takes the form
(6.2) where f:5(mi,sij, i,j51,2,…,n) includes N5n1 n(n11) unknown parameters. In
the case of observational data we have just one realization of the sample (X1,X2,…,Xn),
i.e. n numbers (x1,x2,…,xn) and there is no way we can estimate N unknown parameters
(see chapter 11).

In the case of experimental data we are often in a position to generate more than one
realization of the sample, say (x1i,x2i,…,xni), i51,2,…,M. These additional realizations,
under certain restrictions, will be sufficient to estimate all N unknown parameters. These
methods, however, are beyond the scope of the present book which concentrates on the
modeling and inference with observational data.

Returning to statistical models for observational data, we  , as a prelude to the
discussion that follows, that each one of these operational models is made up of three
basic compatible components from the broad categories mentioned in the case of the
simple statistical model:

(D) Distribution: arbitrary univariate,
(M) Dependence: Independence, Markov, martingale, non-correlation,…
(H) Heterogeneity: Identical Distribution, weak and strict stationarity….

Our main task in this and the next two chapters is to enrich the Dependence and
Heterogeneity categories with a variety of notions between the two extremes of
Independence and Identical Distribution at one end and unrestricted dependence and

1
2
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heterogeneity at the other end of the spectrum. In modeling the aim is to combine com-
ponents from all three categories in a consistent way with a view to specifying opera-
tional statistical models for observational data. The secret of modeling lies with the
utilization of all the systematic information in the data. What is systematic, however,
depends on how effective the theoretical concepts we use are to capture the patterns we
call chance regularity.

6.3 Dependence between two random variables: joint
distributions

Intuitively, probabilistic dependence between two random variables X and Y refers to
“how information about X helps one infer the value of Y.” If X and Y are perfectly
dependent, knowing X enables us to infer Y, with probability one. In this sense, perfect
dependence provides a probabilistic counterpart to the notion of mathematical func-
tional dependence, where Y5h(X) for some function:

h(.): RX → RY.

In addition, independence provides a probabilistic counterpart to the notion of no func-
tional dependence between two mathematical variables. The main difference is that pro-
babilistic dependence, unlike functional dependence, makes sense for cases between
these two extremes. The statement “the random variables X and Y are highly (but not
perfectly) dependent” is a meaningful probabilistic statement. Measuring the degree of
probabilistic dependence, however, is a difficult, multifaceted problem.

In chapter 2 we defined independence between two events A, B in I ((S,I,P(.)) being
the relevant probability space) as follows:

P(A>B)5P(A) ·P(B), or P(A |B)5P(A), for P(B).0.

We could easily extend this to independence between any two event subspaces (s-fields)
A and B of I:

P(A>B)5P(A) ·P(B) for all events A[A and B[B,
or

P(A |B)5P(A) for all events A[A and B[B, P(B).0.

This definition can be easily adapted to the case of two random variables X and Y
defined on (S,I,P(.)) by choosing A:5s(X) and B:5s(Y), where s(X) denotes the
minimal s-field generated by X; see chapter 3.

In the case where the two event subspaces A and B are not independent (i.e. they are
dependent), this is no longer true and the difference between the two sides:

||P(A>B)2P(A) ·P(B) || , or ||P(A |B)2P(A) || ,

where || ||denotes some meaningful measure of distance, can be used as measures of
dependence.
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Illustrations
Let A,I and B,I, the following are measures of dependence between them:

(1) a (A,B)5 sup
A[A, B[B

|P(A>B)2P(A) ·P(B) | ,

(2) f (A,B)5 sup
A[A, B[B

|P(A |B)2P(A) | , for P(B).0,

(3) c (A,B)5 sup
A[A, B[B

, for P(B).0, P(A).0.

Choosing A:5s(X) and B:5s(Y), the above quantities measure dependence
between the random variables X and Y.

Example
Consider again our favorite random experiment of tossing a fair coin twice and noting
the outcome with S:5{(HH),(HT),(TH),(TT)}, the event space being the power set of
S, i.e., I:5P(S). Define the random variables:

X(HH)5X(TT)50, X(HT)5X(TH)51,

Y(HH)5Y(HT)50, Y(TT)5Y(TH)51,

Z(HH)50, Z(HT)5Z(TH)51, Z(TT)52.

s(X):5{S,Ø,A, }, where A:5{(HH),(TT)},

s (Y):5{S,Ø,B, }, where B:5{(HH),(HT)},

s (Z):5{S,Ø,C1,C2,C3, 1, 2, 3}, C1:5{(HH)},
s (Z):5{C2:5{(HT),(TH)}, C3:5{(TT)}.

From these results we can deduce that the random variables X and Y are independent:

P(A>B)5 5P(A) ·P(B) for all A[s (X) and B[s (Y).

On the other hand, the random variables X and Z are not independent because for at
least one of the intersection events:

P(A>C1)5 ÞP(A) ·P(C1)5 .

In view of the fact that the random variables X and Z are dependent we can proceed to
measure their dependence using any one of the measures (1)–(3) above.

5P(A>C1)5P(HH), P(A) ·P(C1)5 5 ,

05P(A>C2)5P(Ø), P(A) ·P(C2)5 5 ,

5P(A>C3)5P(TT), P(A) ·P(C3)5 5 ,

5P(A> 1)5P(TT), P(A) ·P( 1)5 5 ,

5P(A> 2)5P(HH), P(A) ·P( 2)5 5 ,1
4
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5P(A> 3)5P(HH), P(A) ·P( 3)5 5 ,

a(s(X),s(Z))5 sup
A[s(X), B[s(Z)

|P(A>B)2P(A) ·P(B) |5 .

The other measures of dependence such as f (A,B) and c (A,B) are evaluated similarly.

In chapter 4 we defined independence between two random variables X and Y using the
joint density function as follows:

f(x,y)5fx(x) · fy(y), for all (x,y)[RX3RY. (6.11)

This equality suggests that in the case where the random variables X and Y are inde-
pendent, the joint distribution contains the same information as the two marginal distri-
butions.

Example
Consider joint distribution of the random variables X and Y above:

y\x 0 1 fy(y)

0 0.25 0.25 0.50
1 0.25 0.25 0.50

fx(x) 0.50 0.50 1
(6.12)

It can be easily verified that these two random variables are indeed independent.

In terms of the conditional density function we defined independence between two
random variables X and Y via:

f(y |x)5 fy(y), for all (x,y)[RX3RY. (6.13)

Because of the symmetry of the notion of independence, it can defined equivalently by:

f(x |y)5 fx(x), for all (x,y)[RX3RY.

In the case where the random variables X and Y are not independent, they are depen-
dent, (6.11) is no longer true; the joint distribution contains more information than the two
marginal distributions. The additional information is indeed the information relating to
the dependence between the random variables X and Y. In this sense functions of the form:

|| f(x,y)2fx(x) · fy(y) || , or || f(y |x)2fy(y) || (6.14)

can be used as measures of dependence based on density functions.

Examples
1 Hoeffding’s D

D (X,Y)5 [f(x,y)2fx(x)fy(y)]2f(x,y)dxdy .2E`

2`
E`

2`
1

1
4

3
8

3
421

21CC1
4
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2 The absolute value analogues to D

d1(X,Y)512(∫`
2`∫`

2` | f(x,y)2fx(x)fy(y) |f(x,y)dxdy)

d2(X,Y)512(∫`
2`∫`

2` | f(x,y)2fx(x)fy(y) |fx(x)fy(y)dxdy).

3 Informational distance

K(X,Y)5 ln f(x,y)dxdy,

where ln denotes the natural (base e) logarithm; this measure is based on the Kullback
measure of divergence between two distributions.

4 Square contingency coefficient

w2(X,Y)5 f(x,y)dxdy21 .

5 Spearman’s rank coefficient

S(X,Y)53 [2Fx(x)21] [2FY(y)21] f(x,y)dxdy,

where [2FX(x)21] is chosen instead of FX(x) to render the latter distribution symmetric
around zero. In fact, it can be shown that for u5FX(x), whatever the nature of FX(x), the
distribution of u is uniform with range [0,1], i.e. FU(u)5u, for 0#u#1 (see chapter 3).
Hence, the distribution of u5 [2FX(x)21] is uniform around 0, i.e.

[2FX(x)21],U(21,1).

The presence of multiple integrals in the above measures of dependence based on density
functions, renders them cumbersome and close to unattainable in the case of more than
two random variables. As argued in the previous section we need measures of depen-
dence for a sequence of random variables {X1,X2,…,Xn}. On the other hand the mixing
condition measures (1)–(3), based on subevent spaces, are easier to handle because they
involve maximization over sets of subsets. As shown in chapter 8, the latter measures of
dependence form the basis of the so-called mixing conditions on temporal dependence in
a sequence of random variables.

6.4 Dependence between two random variables:
moments

6.4.1 Joint moments and dependence

Measuring dependence using distances such as those mentioned above can be a very
difficult task and thus in modeling we often resort to measures based on the moments.
The connection between these two categories of dependence measures passes through
the following lemma.

E`

2`
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23 f(x,y)
fx(x)fy(y)4E`
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1 f(x,y)
fx(x)·fy(y)2E`
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272 The notion of a non-random sample



Independence lemma Two random variables X and Y are said to be independent, if for
any well-behaved (Borel) functions u5g(X) and v5h(Y):

f(g(X),h(Y))5fu(g(X)) ·fv(h(Y)), for each (u,v)[R2. (6.15)

In simple terms, this result means that if X and Y are independent, then any functions
of these random variables, say u5X2 and v5 ln Y, are also independent random vari-
ables.

Clearly, this lemma cannot be used to establish independence because one needs to
demonstrate that (6.15) holds for all possible Borel functions; an impossible task. It is,
however, very useful for two reasons. First, it can be used to demonstrate non-indepen-
dence by finding just one counter-example. Second, it is of theoretical interest because
after establishing independence using, say (6.11), one can declare that any Borel func-
tions of the original random variables are also necessarily independent.

A    : it must be emphasized that in the case where X and Y are not
independent (6.15) might be true for some functions g(X) and h(Y), as the following
example demonstrates.

Example
Consider the joint distribution as specified below.

y\x 21 0 1 v\u 0 1 fv(v)

21 0 0.25 0 0 0.25 0.25 0.50
0 0.25 0.25 0 1 0.25 0.25 0.50 (6.16)
1 0 0 0.25

fx(x) 0.50 0.50 1
(a) (b)

X and Y are not independent because:

f(21,21)50Þfx(21)·fy(21)50.062.

However, the random variables u5X2 and v5Y2 turn out to be independent, as can be
verified from (6.16)(b). The moral of the story being that even in cases where the random
variables X and Y are not independent, there might exist some functions of them which
turn out to be independent.

In view of the fact that the expectation E(.) is always defined with respect to a specific dis-
tribution, it should come as no surprise to learn that the condition (6.15) can be written
equivalently in the following form:

E(g(X),h(Y))5E(g(X)) ·E(h(Y)), (6.17)

assuming the expectations exist. It is important to  that E(.) on the left-hand side is
defined in terms of f(x,y) but the other two are defined in terms of fx(.) and fy(.):

E(h(X) ·g(Y))5 ∫`
2`∫`

2` [h(X) ·g(Y)] ·f(x,y)dxdy,
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E(h(X))5 ∫`
2` h(X) · fx(x)dx,

E(g(Y))5 ∫`
2` g(Y) ·fy(y)dy.

Using this result in conjunction with simple functions of X and Y, which give rise to the
moments of the joint distribution, we can define different forms of independence (and
dependence) in terms of the joint product and central moments.

In the case where all the moments of the random variables X and Y exist (E(Xk)
,` and E(Yk),`, for all k51,2,…), we can use the above independence lemma in
conjunction with the joint product moments to deduce that X and Y are independent if
and only if:

(a) m9km:5E{XkYm}5E(Xk) ·E(Ym), for all k,m50,1,2,… (6.18)

This is, again, a non-operational result for demonstrating independence because we need
to verify these equalities for an infinite number of joint moments. However, its negation
can be used to charter the territory between the two extreme positions of independence
and complete dependence, in the sense that if:

E(Xk ·Ym)ÞE(Xk) ·E(Ym), for any k,m51,2,… (6.19)

the random variables X and Y are (k,m)-order dependent. Unfortunately, the only special
case of (6.19) explored thoroughly so far in the literature is the case (1,1):

E(X ·Y)ÞE(X) ·E(Y),

known as first-order (linear) dependence. In the case where the equality holds:

E(X ·Y)5E(X) ·E(Y),

it is called first-order independence.
The notion of independence in terms of an infinite number of moments can be defined

equivalently in terms of the joint central moments:

(b) mkm:5E{[X2E(X)]k[Y2E(Y)]m}50, for all k,m50,1,2,… (6.20)

Similarly, we can define the notion of (k,m)-dependence using its negation:

E{[X2E(X)]k[Y2E(Y)]m}Þ0, for any k,m50,1,2,…

The equivalence of the two definitions in terms of the joint product and joint central
moments can be demonstrated easily in the case k51,m51. The notion of first-order
independence is equivalent to saying that the first central moment, the covariance is zero:

m11:5Cov(X,Y)5E{[X2E(X)][Y2E(Y)]}50.

The equivalence of the two definitions follows from the fact that:

Cov(X,Y)5E(XY)2E[X ·E(Y)]2E[Y ·E(X)]1E[E(X) ·E(Y)]5

Cov(X,Y)5E(XY)22[E(X) ·E(Y)]1 [E(X) ·E(Y)]5E(XY)2 [E(X) ·E(Y)],

Cov(X,Y)50 ⇔ E(XY)-E(X) ·E(Y)50.
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It is interesting to  that there is a direct relationship between the covariance and
the dependence distances used in defining independence in the previous section:

Cov(X,Y)5 [FXY(x,y)2FX(x)FY(y)] f(x,y)dxdy.

Correlation and dependence
An important weakness of the covariance, when used as a measure of the dependence
between X and Y, is that it depends on their units of measurement. The standardized
version of the covariance, known as the correlation coefficient, was first proposed by
Galton (1880) as co-relation.

Correlation coefficient For any two random variables X and Y such that Var(X),`,
Var(Y),`, defined on the same probability space (S,I,P(.)), the correlation coefficient is
defined by:

Corr(X,Y)5 ·

Example
Let us derive the correlation coefficient between X and Y, using the joint density 4.19 (see
chapter 4):

E(X)51.1, E(Y)50.8, Var(X)50.69, Var(Y)50.96, Cov(X,Y)50.12.

Hence, the correlation coefficient is: Corr(X,Y)5 50.147.

Properties of the correlation coefficient
r1. 21#Corr(X,Y)#1,
r2. Corr(aX1b,cY1d)5Corr(X,Y), for (a,b,c,d)[R4, (a ·c).0,
r3. Corr(X,Y)561, if and only if Y5a01a1X, (a0,a1)[R2.

The first property relating to the range of values for the correlation coefficient follows
from the so-called Schwarz inequality:

|Cov(X,Y) | # [Var(X)] [Var(Y)] .

The second property follows from the definition of the correlation coefficient which
renders it invariant to linear transformations. The third property is more involved but
the proof of this result can throw some light on the relationship between dependence in
general and correlation in particular.

Perfect correlation Two random variables X and Y are perfectly correlated, i.e.,
Corr(X,Y)561, if and only if they are linearly related.

Proof (the proof can be omitted without any loss of continuity). The if part follows
directly by assuming that the random variables X and Y are linearly related:

Y5a01a1X, a1.0. (6.21)

1
2

1
2

0.12
Ï(0.69)·(0.96)

Cov(X,Y)
ÏVar(X)·Var(Y)

E`

2`
E`

2`
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By simple algebra and the properties of E(.) (see chapter 3), it follows that:

Cov(X,Y)5E{[a01a1X2E(a01a1X)][X2E(X)]}5

5a1E{[X2E(X)][X2E(X)]}5a1 Var(X).

In view of the fact that Var(Y)5a1
2 Var(X), substitution into the correlation coefficient

formula yields:

Corr(X,Y)5 51.

 that in the case a1,0, Corr(X,Y)521. The only if part of this result is a bit more
complicated. Assume that Corr(X,Y)51 (the case Corr(X,Y)521 can be dealt with,
similarly) and define the standardized variables:

X*5 , Y*5 .

From this we can deduce that:

E{(X*2Y*)2}5Var(X*)1Var(Y*)22E(X*Y*)522250.

This implies that P(s:X*(s)ÞY*(s))50, for all s[S (see chapter 3), which can be equiva-
lently written in the form:

P(s:X*(s)5Y*(s))51, s[S or X*5Y*, with probability one.

Substituting the original variables and rearranging the terms yields:

Y5E(Y)1 (X2E(X)), with probability one,

which coincides with (6.21) for: a05E(Y)2a1E(X), a15 .

The above result suggests that correlation is a measure of linear dependence.
This fact is brought out most emphatically by the following example.

Example
Let X be uniformly distributed between minus one and plus one, denoted by

X,U(21,1), and Y:5X2.

As we can see, X and Y are perfectly dependent on each other (but non-linearly); knowl-
edge of one determines the other completely. We can show, however, that the two are
uncorrelated. In view of the fact that:

fx(x)5 , E(X)50,

Cov(X,Y)5E(XY)2E(X) ·E(Y)5E(X3)2E(X) ·E(X2).

Hence, X and Y are uncorrelated if E(X3)50. Indeed:

E(X3)5 x3 dx5 x4 * 1

21 5 2 50·

At this stage, it is imperative to differentiate non-correlation from independence. We
know from the above discussion that the correlation coefficient defines a measure of
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linear dependence, not dependence in general. Hence, the general conclusion we can draw
about the relationship between non-correlation and independence is that:

independence ⇒ non-correlation

but the converse is not true:

non-correlation ⇒ ⁄ independence

In concluding this subsection we  a concept closely related to uncorrelatedness,
the notion of orthogonality. Two random variables X and Y, whose second moments are
finite, are said to be orthogonal if:

E(X ·Y)50.

 that if two random variables are uncorrelated, their mean deviations,

X*:5 [X2E(X)], Y*:5 [Y2E(Y)],

are orthogonal:

E(X*·Y*)50.

6.4.2 Conditional moments and dependence

Returning to the definition of independence of two random variables X and Y in terms of
the conditional density:

f(y |x)5 fy(y), for all (x,y)[RX3RY, (6.22)

we  that the conditional moments condition analogous to (6.18) is:

E(Yr |X5x)5E(Yr), for all x[RX, r51,2,… (6.23)

It is interesting to see how these equalities arise in the case of independence.
Step 1 From the definition of independence we know that for any well-behaved func-

tions h(.) and g(.) of the random variables X and Y:

E(h(X) ·g(Y))5E(h(X)) ·E(g(Y)), for all (x,y)[RX3RY. (6.24)

Step 2 Choosing the functions:

h(X) arbitrarily but, gr(Y):5Yr, r51,2,…,

(6.24) reduces to (assuming the moments exist):

E(h(X) ·Yr)5E(h(X)) ·E(Yr), for all r51,2,…, (6.25)

Step 3 In general:

E(h(X) ·Yr)5E[E(h(X) ·Yr) |s(X)]5E(h(X)) ·E(Yr) |s(X)), (6.26)

where the first equality follows from the property CE2: E(Y)5E[E(Y |s (X))]
and the second from the CE3 property of conditional expectations (see chapter
7); we remind the reader that s (X) denotes the set of all events generated by the
random variable X (see chapter 3).
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Step 4 Comparing (6.25) with (6.26) we deduce that the two random variables X and Y
are independent when (6.23) holds.

As in the case of joint and marginal moments (6.18), (6.23) does not provide a way to
verify independence because it involves an infinite number of moments. However, as
with (6.19), their negation can be used to chart the territory beyond independence.
Unlike (6.19) the conditional moments offer a more systematic taxonomy of dependence
in the sense that we can talk about first, second, third, etc. orders of dependence. This
measure of dependence is defined in terms of the distance function:

dr*(X,Y):5 [E(Yr |s (X))2E(Yr)], (6.27)

or equivalently (see chapter 7):

dr(Y |x):5 [E(Yr |X5x)2E(Yr)] for all x[RX. (6.28)

rth-order dependence. Any two random variables X and Y, whose moments of rth-order
exist and dk(Y |x)50 for all k51,2,…, r21 are:

rth-order dependent if: dr(Y |x)Þ0, for all x[RX, r51,2,3,…

On the other hand, the random variables X and Y are:

rth-order independent if: dr(Y |x)50, for all x[RX, r51,2,3,…

This definition enables us to chart the territory of dependence using this hierarchical
scheme of first, second, third, etc. order of dependence. For example any random vari-
ables X and Y whose first-order moments exist:

d1(Y |x)Þ0, for all x[RX ⇒ X and Y are first-order dependent.

The above charting of dependence can be done equivalently in terms of the central
moments distance function:

dr*(X,Y):5 [E([Y2E(Y |s (X))]r |s (X))2E([Y2E(Y)]r)], (6.29)

or equivalently:

dr(Y |x):5 [E([Y2E(Y |X5x)]r |X5x)2E([Y2E(Y)]r)], for all x[RX. (6.30)

For example second-order independence is defined by:

d2(Y |x)50 ⇔ Var(Y |X5x)5Var(Y), for all x[RX.

In this sense, two random variables X and Y can be first-order independent but second-
order dependent, i.e., E(Y |X)5E(Y) but Var(Y |X)ÞVar(Y); see chapter 8.

It is important to  that the conditional moments give rise to a much easier
classification of dependence than the double index notions defined in terms of the joint
moments in (6.19). However, the above derivation based on (6.26) suggests that the
notions of independence defined in terms of the conditional moments are somewhat

278 The notion of a non-random sample



stronger. To see this consider the case of first-order dependence where (6.26) takes the
form:

E(h(X) ·Y)5E[E(h(X) ·Y) |X]5E(h(X)) ·E(Y |X). (6.31)

This suggests that first-order independence, is stronger than non-correlation because in
the case of the latter the function h(.) cannot be arbitrary as in first-order independence
but has to be of the form: h(X)5X. In turn, first-order independence is weaker than
(complete) independence because for the latter to hold we need all conditional moments
to coincide with the marginal moments. In summary:

Independence ⇒ first-order independence ⇒ non-correlation.

6.4.3 Conditional independence

An important form of dependence is what we call conditional independence. In the
context of a probability space (S,I,P(.)) two events A[I and B[I, are conditionally
independent given a third event D[I, for which P(D).0, if:

P(A>B |D)5P(A |D) ·P(B |D).

That is, knowing that D has occurred renders the events A and B independent.
The random variables X and Y are said to be conditionally independent given Z, if and

only if:

f(x,y |z)5f(x |z) ·f(y |z), for all (x,y,z)[ [RX3RY3RZ], (6.32)

RZ:5{z[R: fZ(z).0} is the support set of fZ(z). That is, the joint density of (X,Y,Z)
factors into two conditional densities. Intuitively, X and Y are conditionally independent
given Z, if X and Y are related only through Z.

Example
Consider the case where (X1,X2,X3) are Normally distributed with joint distribution
denoted by:

(6.33)

E(Xk)5mk, Var(Xk)5skk, k51,2,3, Cov(Xi,Xj)5sij, iÞ j, i,j51,2,3.

N that the general formula for the joint Normal distribution of X (an n31 vector) is:

f(x;u)5 exp 2 (x2m)ÁS21(x2m) , E(X)5m, Cov(X)5S. (6.34)

As shown above, the Normal distribution allows only first-order dependence and thus
for any iÞ j, i,j51,2,3:

s ij50 ⇔ Xi and Xj are independent.
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It turns out that conditional independence is also easy to define in this context in terms
of the inverse of the variance–covariance matrix:

For any iÞ jÞk, i,j,k51,2,3:

vij50 ⇔ Xi and Xj are conditionally independent given Xk.

Returning to the notion of conditional independence between the random variables X and
Y given Z we  that it can be defined equivalently by:

(M): f(y |x,z)5f(y |z), for all (x,y,z)[ [RX3RY3RZ]. (6.35)

This form is directly related to the widely used notion of Markov dependence. In the
context of (6.35), Y and X are conditionally independent given Z, but if we interpret Y as
the “future,” X as the “past,” and Z as the “present,” (M) says that, given the present the
future is independent of the past; this is known as Markov dependence. Using the points
0,t1,t2,t3 the Markov dependence can be written in the more heedful form:

(M): f(xt3
|xt2

,xt1
)5 f(xt3

|xt2
), for all (xt1

,xt2
,xt3

)[RX
3.

A third useful way to define conditional independence, which involves no reference to
conditional distributions, is:

f(x,y,z)5 (f(x,z) · f(y,z)), for all (x,y,z)[ [RX3RY3RZ].

N . The conditional independence of X and Y given Z is often denoted by:

[X'Y] | (Z).

Using this notation we state several useful results in relation to conditional independence
(see Whittaker (1990)):

(i) ([Y'(X1,X2)] | (Z)) ⇒ ([Y'X1] | (Z)),
(ii) ([Y'(X1,X2)] | (Z)) ⇔ ([Y'X1] | (Z,X2)) and ([Y'X2] | (Z,X1)),
(iii) ([Y'X] | (Z)) and U5h(X) ⇒ ([Y'U]|(Z)),
(iv) ([Y'X] | (Z)) and U5h(X) ⇒ ([Y'X] | (Z,U)),

where h(.) is a Borel function. N that these results hold unchanged in the case where
X,Y,Z are random vectors.

A concept related to conditional independence but less general is defined in terms of
the covariance of the conditional means. This is known as a partial covariance between
the random variables X and Y given Z and defined by:

Cov(X,Y |Z)5E([ X2E(X |Z)] [Y2E(Y |Z)]).
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In direct analogy to the simple covariance, the partial covariance measures conditional
linear independence. Since, it shares with its sister the same dependence on the units of
measurement, we proceed to standardize it to define the partial correlation:

Corr(X,Y |Z)5 .

This measures the linear dependence between two random variables X and Y after
removing the effect of a third random variable Z. This was first introduced by Yule
(1897), who called it the nett correlation coefficient.

N that the partial correlation is related to the simple correlations via:

rij.k:5Corr(Xi,Xj |Xk)5 , rij:5 , iÞ jÞk, i,j,k51,2,3.

Example
In the case where (X1,X2,X3) are Normally distributed, discussed above, one can show
that the conditional covariances coincide with the elements of the inverse
variance–covariance matrix, i.e.:

Cov(Xi,Xj |Xk)5vij, iÞ jÞk, i,j,k51,2,3.

In view of the fact that for i,j,k51,2,3, iÞ jÞk:

rij.k50 ⇔ vij50 we deduce that [Xi'Xj] |Xk ⇔ vij50.

Motivated by the variety of dependence structures among several random variables that
can be generated using different conditional independence restrictions, a literature called
graphical analysis has been developed recently (see Whittaker (1990), Edwards (1995)
and Pearl (1988)). The term derives from the fact that these models are represented as
graphs connecting the various random variables involved. In order to provide a taste of
graphical analysis let us consider the case of the Normally distributed random variables
(X1,X2,X3,X4) with a joint distribution:

, (6.36)

where, as above, we denote the inverse variance–covariance by:

.

(i) Model 1: vijÞ0, for all i,j51,2,3; complete dependence.

3
v11

v12

v13

v14

  

v12

v22

v23

v24

  

v13

v23

v33

v34

  

v14

v24

v34

v44

43
s11

s12

s13

s14

  

s12

s22

s23

s24

  

s13

s23

s33

s34

  

s14

s24

s34

s44

4
21

5

1
X1

X2

X3

X4

2,N13
m1

m2

m3

m4

4,3
s11

s12

s13

s14

  

s12

s22

s23

s24

  

s13

s23

s33

s34

  

s14

s24

s34

s44

42

sij

Ïsiisjj

(rij 2 rikrjk)

Ï(1 2 r2
ik)·(1 2 r2

jk)

E([X 2 E(X |Z)][Y 2 E(Y |Z)])
ÏVar(X |Z)·Var(Y |Z)

Dependence between two random variables: moments 281



(ii) Model 2: v1350, X1 conditionally independent of X3 given X2,X4,
v12Þ0, v14Þ0, v23Þ0, v24Þ0, v34Þ0.

(iii) Model 3: v1350, v12Þ0, v14Þ0, v23Þ0, v34Þ0,
v2450, X2 conditionally independent of X4 given X1,X3.

(iv) Model 4: v1350, v2450, v12Þ0, v23Þ0, v34Þ0,
v1450, X1 conditionally independent of X4 given X2,X3.

(v) Model 5: v1350, v2450, v12Þ0, v14Þ0, v23Þ0,
v3450, X3 conditionally independent of X4 given X1,X2.

(vi) Model 6: v1350, v2450, v1450, v3450, v12Þ0, v23Þ0.

6.5 Dependence and the measurement system

6.5.1 Measurement scales and dependence

An important limitation of the correlation coefficient, as a measure of linear depen-
dence, is that linearity makes sense only in cases where the random variable in question
takes values in a measurement system such as the interval or ratio system. In the case of
random variables of the nominal or the ordinal type (see chapter 1 and Spanos (1986), p.
409), linearity does not make much sense. In chapter 1 we discussed the following hierar-
chy of measurement scales:

(i) ratio, (ii) interval, (iii) ordinal, (iv) nominal.

As argued there, the ratio variables have the richest mathematical structure and then fol-
lowed by interval, ordinal, and nominal variables in that order. Statistical methods
designed for one category of variables do not necessarily apply to variables of other cat-
egories. The only general rule we can use as a guide is that a statistical method designed
for one category of variables applies also to variables which belong to a higher category
but not necessarily to a lower category. For example, a statistical concept designed for an
ordinal variable is meaningful for interval and ratio variables but not necessarily for
nominal variables. For nominal variables the only measure of location that makes sense
is the mode and for ordinal variables we can add the median. In terms of measures of dis-
persion the interquantile range makes sense only for ordinal variables. Anything that
involves the mean or variance does not make much sense for nominal and ordinal vari-
ables.

Measuring dependence among the last two categories (nominal, ordinal) of random
variables is somewhat problematical because it is not obvious what dependence means in
their context. The problem is even more serious when measuring dependence among
variables from different categories. These problems were recognized early in the 20th
century and became an issue that led to acrimonious arguments between K. Pearson and
Yule. Yule (1900, 1910, 1912) was in favor of designing specific measures of association
between discrete variables by utilizing their discreteness. K. Pearson (1910, 1913a,b), on
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Figure 6.2 Graphical models (continuous random variables)



the other hand, favored the use of continuous distributions to approximate the bivariate
discrete distribution for categorical variables and use them in order to measure associa-
tion; see also Heron (1911). The arguments from both sides were heated and those who
think that probability theory and statistical inference are unemotional mathematical
subjects should read the following vilification from K. Pearson to his former, student,
assistant and co-worker:

We regret having to draw attention to the manner in which Mr Yule has gone astray at every
stage in his treatment of association, but criticism of his methods has been thrust on us not
only by Mr Yule’s recent attack, but also by the unthinking praise which has been bestowed
on a textbook (Yule’s) which at many points can only lead statistical students hopelessly
astray. (Pearson and Heron (1913), p. 310)

Karl Pearson was no stranger to controversy and later suffered greatly at the hands of
R. A. Fisher; see chapters 7, 11, and 13.

6.5.2 Dependence for categorical variables

For categorical (ordinal and nominal) random variables the concept of linearity (and thus
moments) does not make much sense and thus measuring linear dependence using
correlation is inappropriate. The notion of monotonicity, however, in the sense that one
variable tends to increase when the other increases (concordance) or tends to decrease
when the other decreases (discordance), does make sense for ordinal variables. Defining
dependence between nominal variables is not easy because neither linearity nor mono-
tonicity makes sense.

One of the most widely used measures of association (dependence) between ordinal
(and sometimes nominal) variables is the cross-product ratio.

Cross-product ratio
The cross-product ratio between two events A and B is defined as:

crp(A,B)5 .

In the case where the events A and B are independent: crp51, or ln (crp)50.

y\x x1 x2 fy(y)

y1 p11 p12 p1·
y2 p22 p22 p2·

fx(x) p·1 p·2 1

The above formula can be adapted to the case of a bivariate distribution f(x,y) where the
random variables X and Y are ordinal variables with only two values (x1,x2 and y1,y2,
respectively) of the form given above. In this case the cross-product ratio is defined as the
ratio of the products p22 p11 and p12p21 of probabilities from diagonally opposite cells
(hence the name), i.e.

P(A>B)·P(A>B)
P(A>B)·P(A>B)
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crp(X,Y)5 .

Using this measure, we say that X and Y are independent if and only if:

ln (crp(X,Y))50.

Yule’s Q (coefficient of association)
A closely related measure of dependence is that of Yule’s Q (in honor of the Belgian sta-
tistician Quetelet) defined by (see Yule (1900)):

Q5 .

Examples
(i) Consider the case where p1150.3, p1250.1, p2150.2 and p2250.4.

crp(X,Y)5 56, and in view of the fact that ln (crp(X,Y))51.792, we can
deduce that X and Y are not independent. This is confirmed by Yule’s Q:

Q5 50.07.

(ii) Consider the case where p1150.2, p1250.3, p2150.2 and p2250.3. In view of the
fact that:

crp(X,Y)5 51, and ln (crp(X,Y))50,

we can conclude that the cross-product ratio coefficient confirms the independence
shown in terms of the joint density function (see chapter 4). This is confirmed by
Yule’s Q:

Q5 50.

Gamma coefficient
Yule’s Q can be extended to ordinal variables which take more than two values by notic-
ing that c5p11p22 can be thought of as a measure of concordance and d5p12p21 as a
measure of discordance. Two random variables X and Y are said to be concordant if the
unit ranking higher with respect to X also ranks higher with respect to Y, and discordant
if the unit ranking higher in X ranks lower in Y.

In the case where X takes m values and Y takes n values, we can use the following mea-
sures:

Concordance: c52 m
i51

n
j51pij( h.i k.jphk),

Discordance: d52 m
i51

n
j51pij( h.i k,jphk).

Using these measures we say that the association (dependence) between X and Y is
positive if ( c2 d).0 and negative if ( c2 d),0. A scaled version of the distance
( c2 d) is the so-called Gamma coefficient, introduced by Goodman and Kruskal
(1954)), and defined by:

g5 , where 21#g#1.
Pc 2 Pd

Pc 1 Pd

pp
pppp

oooop

oooop

pp

(0.3)(0.2) 2 (0.3)(0.2)
(0.3)(0.2) 1 (0.3)(0.2)

(0.3)(0.2)
(0.3)(0.2)

(0.3)(0.4) 2 (0.1)(0.2)
(0.3)(0.4) 1 (0.1)(0.2)

(0.4)(0.3)
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p11p22 2 p12p21

p11p22 1 p12p21

p22·p11

p12·p21
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Like the correlation coefficient, if |g |51 the two random variables are perfectly associ-
ated. Moreover, like the correlation coefficient, if g50 the two random variables are not
necessarily independent. Independence, however, implies that g50.

Example
Consider the joint density function represented in (6.37), where X denotes age bracket
and Y income bracket:

X51: (18–35), X52: (36–55), X53: (56–70),
Y50: poor, Y51: middle income, Y52: rich.

y\x 1 2 3 fy(y)

0 0.20 0.10 0.15 0.45
1 0.10 0.25 0.05 0.40 (6.37)
2 0.01 0.06 0.08 0.15

fx(x) 0.31 0.41 0.28 1

Consider evaluating the concordance coefficient:

i50, j51: p01( h.0 k.1phk)50.20(0.2510.0510.0610.08)50.088,

i50, j52: p02( h.0 k.2phk)50.10(0.0510.08)50.013,

i51, j51: p11( h.1 k.1phk)50.10(0.0610.08)50.014,

i51, j52: p12( h.1 k.2phk)50.25(0.08)50.020.

c52(0.08810.01310.01410.020)50.270.

The discordance coefficient:

i50, j52: p 02( h.0 k,2phk)50.10(0.1010.01)50.011,

i50, j53: p 03( h.0 k,3phk)50.15(0.1010.2510.0110.06)50.063,

i51, j52: p 12( h.1 k,2phk)50.25(0.01)50.0025,

i51, j53: p 13( h.1 k,3phk)50.05(0.0110.06)50.0035.

d52(0.01110.06310.002510.0035)50.160.

Hence:

g5 5 50.2558,

i.e., there is a low positive dependence between income and age.

6.5.3 Dependence between nominal variables

As mentioned above defining dependence between nominal variables is not easy because
neither linearity nor monotonicity makes any sense. The only notion of dependence we
can entertain in this context is in terms of:

0.270 2 0.160
0.270 1 0.160

Pc 2 Pd

Pc 2 Pd

p

oo
oo
oo
oo

p

oo
oo
oo
oo
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how does knowledge of the classification on the random variable X can help us
conjecture the classification on the random variable Y?

The uncertainty of conjecturing the classification of Y without any help from X is
measured by the variance of Y: Var(Y). This uncertainty changes to Var(Y |X5x1) for a
specific value x1 of the conditional variable. Given that the random variable X takes
more than one value, we take the average of these conditional variance values, i.e.,
E(Var(Y |X)), leading to the standardized measure:

512 .

This ratio has been used by Goodman and Kruskal (1954) in conjunction with the
contingency table (bivariate density) given below:

y\x x1 x2 x3
… xn fy(y)

y1 p11 p12 p13
… p1n p1

.

y2 p21 p22 p23
… p2n p2

.

y3 p31 p32 p33
… p3n p3

.
… … … … …

ym pm1 pm2 pm3
… pmn pm

.

fx(x) p·1 p·2 p·3
… p·n 1

where the variance of Y takes the form:

Var(Y)5 pk· (12pk· )512 pk
2.,

and the conditional variance given X5xh is:

Var(Y |X5xh)512 p 2
k. |h, pk | h5 , h51,2,…,n.

E(Var(Y |X))5 p·h 12 p2
k | h 512 ,

to suggest the so-called Goodman and Kruskal tau (or concentration coefficient):

t5

n
h51

m
k51 2 m

k51p
2
k
.

12 m
k51p

2
k

Theil (1950), using an alternative measure of dispersion based on Entropy:

V(Y)5 pk· ln pk· ,

proposed the uncertainty coefficient:

U5
n
h51

m
k51pkh ln (pkh /pk· ·p·h).
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k51pk· ln pk·o
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Both, the concentration and uncertainty coefficients are measures of dependence that
take values between zero and one; t50, U50 both imply that the random variables X
and Y are independent.

In order to formulate such measures we need the notion of conditioning introduced in
the next chapter where a number of additional measures of dependence is discussed. The
main argument of the next chapter is that the best way to handle dependence and joint
density functions is via the notion of conditioning and conditional distributions.

6.5.4 The Bernoulli distribution

The Bernoulli distribution can be used to model both ordinal and nominal variables and
the modeler should decide when to use which measures to assess dependence between
such variables. The Bernoulli bivariate density function takes the form:

f(x,y)5p(0,0)(12y)(12x)p(0,1)(12y)xp(1,0)y(12x)p(1,1)xy, x50,1 and y50,1,

with the marginal and conditional distributions being again Bernoulli:

fx(x)5 [p(0,0)1p(1,0)](12x)[p(0,1)1p(1,1)]x, x50,1,

fy(y)5 [p(0,0)1p(0,1)](12y)[p(1,0)1p(1,1)]y, y50,1.

Of particular interest is the log-linear form of the joint density which is:

ln f(x,y)5 ln p(0,0)1yln 1xln 1xyln ,

ln f(x,y)5u01yu11xu21xyu12, x50,1, y50,1,

in an obvious notation. The latter is known as the log-linear expansion and we note that
the u12 term is simply the log of the cross-product ratio:

u12:5 ln (crp(X,Y))5 ln .

When u1250 we say that the Bernoulli random variables X and Y are independent.
The above results can be extended to the trivariate Bernoulli distribution whose

density function (in direct analogy to the bivariate) takes the form:

f(x,y,z)5p(0,0,0)(12y)(12x)(12z) · · ·p(1,1,1)xyz, x50,1 and y50,1, z50,1.

Its log-linear form is:

ln f(x,y)5u01yu11xu21zu31yxu121yzu131xzu231xyzu123,

where, as above, the us denote interaction terms:

u23 :5 ln (cpr(X,Z |Y50)), u123:5 ln ,

crp(X,Z |Y5y1)5 , for y150,1.

Using this representation we can define conditional independence in terms of the u-

p(y1,1,1)·p(y1,0,0)
p(y1,1,0)·p(y1,0,1)

1cpr(X,Z |Y 5 1)
cpr(X,Z |Y 5 0)2

p(1,1)·p(0,0)
p(1,0)·p(0,1)

p(1,1)p(0,0)
p(1,0)p(0,1)

p(0,1)
p(0.0)

p(1,0)
p(0.0)
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terms. The random variables X and Z are conditionally independent given Y, denoted by
([ X'Z] |Y), if and only if:

u2350 and u12350,

or equivalently:

crp(X,Z |Y5y1)51 for y150,1.

In concluding this section it is important to note that the numerical values of the inter-
action terms uij, i,j51,2,3 and u123 are not of intrinsic interest; the basic interest lies with
what they imply in terms of the dependence structure among the random variables
involved. Using the graphical models introduced in the previous section we can see how
they identify this dependence structure.

(i) Model 1: u12350, uijÞ0, for i,j51,2,3.
(ii) Model 2: u12350, u1350, u23Þ0, u12Þ0, ([ X'Z] |Y).
(iii) Model 3: u12350, u1350, u2350, u12Þ0, ([ X'Z] |Y), ([Y'Z] |Y).

N that the nodes in the case of discrete random variables are no longer circles but
discs; for more discussion on graphical models see Edwards (1995) and Lauritzen (1996).

6.5.5 Dependence in mixed (discrete/continuous) random variables

The discussion of dependence in this chapter has one focus point:

dependence is inextricably bound up with the joint distribution of the random
variables involved.

In cases where all the random variables involved are all discrete or all continuous no
problems arise because we can use joint discrete or continuous distributions, respec-
tively, to describe the dependence. Problems arise in the case where some of the random
variables are discrete and the others are continuous and the modeler considers the ques-
tion of the dependence among these random variables.
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As argued in chapter 4, the joint density function of (X,Y,Z) where (X,Y) are continu-
ous and Z is a discrete random variable can be best defined indirectly via the product:

f(x,y,z)5f(x,y |z) · fZ(z), for all (x,y,z)[RX3RY3RZ.

Similarly, the joint cumulative distribution function is defined via:

F(x,y,z)5
zk#z

fz(zk) f(x,y |zk)dudv.

This suggests most clearly that in the case of a mixture of continuous and discrete
random variables the dependence structure between them should be best accommodated
in the context of the conditional moments of f(x,y |z). Motivated by this observation
Lauritzen and Wermuth (1989) introduced the so-called conditional Gaussian distribu-
tion which in the case of the random variables (X,Y,Z), the conditional density f(x,y |z)
takes the form:

|Z5z ,N , , z[RZ. (6.38)

That is, the moments of the joint distribution of (X,Y) are assumed to be functions of
the conditioning variable; in the spirit of conditional moment functions. The functional
forms that should be postulated by a modeler for:

m i(z), sij(z), i,j51,2,

is not a trivial issue because it concerns the parameterization of dependence between
variables from different measurement scales. Anybody who thinks this is child’s play
should reflect for a moment on the question of parameterizing the (possible) dependence
between family income and religion!

6.6 Joint distributions and dependence

As suggested above, joint distributions constitute the quintessential way of modeling
dependence. In this sense progress in modeling different types of dependence relies cru-
cially on the development of such joint distributions. Unfortunately, the road from mar-
ginal to joint distributions is treacherous. There are infinitely many joint (multivariate)
distributions with the same marginal distributions! In this sense there is no systematic
(generally applicable) way to specify multivariate distributions. Some of the most
notable attempts to specify bivariate and multivariate distributions will be summarized
in this section.

The first attempts to generate non-Normal joint distributions were made by Karl
Pearson in the late 1890s. His success in generating a very rich family of univariate distri-
butions, we nowadays call the Pearson family, using a differential equation (see chapters
4, 13), encouraged him to try and extend the method to two differential equations:

, where h3(x,y), h4(x,y) are third and fourth degree polynomials,

, and g4(x,y)5h4(x,y).
 ln f(x,y)

y
5

g3(x,y)
g4(x,y)

 ln f(x,y)
x

5
h3(x,y)
h4(x,y)

24s11(z)
s12(z)

  
s12(z)
s22(z)34m1(z)

m2(z)3122Y
X11

Ex
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It turned out that without restrictions on the coefficients of the three polynomials no
progress was possible. Important breakthroughs along these lines were made by
Pretorius (1930) and then Van Uven (1947,1948) who simplified these equations to:

, where h1(x,y), h2(x,y) are first and second degree polynomials,

, subject to .

The following special cases turned out to be of particular interest (see Mardia (1970) for
the details):

(1) h2(x,y) and g2(x,y) have no common factors (as polynomials),
(2) h2(x,y) and g2(x,y) have one common factor,
(3) h2(x,y) and g2(x,y) are identical, and
(4) g2(x,y) is a linear factor of h2(x,y).

Case 1 provides us with sufficient conditions for independence between X and Y; no
common factors implies that:

f(x,y)5fx(x) · fy(y).

Case 2 assuming that h2(x,y)5h12(x,y) ·,(x,y) and g2(x,y)5g12(x,y) ·,(x,y) where all
the right-hand side polynomials are of degree one, yields a joint distribution of
the general form:

f(x,y)5c0(a x1b)u1(g y1d)u2(ax1by1c)u3.

This joint distribution includes the bivariate Beta, Pareto and F-distribution
(see appendix B) as special cases.

Case 3 assuming that h2(x,y)5g2(x,y), gives rise to a joint distribution of the form:

f(x,y)5c0(ax21by212u1xy12u2x12u3y1c)m.

This joint distribution includes the bivariate Cauchy, Student’s t, and Pearson
type II distribution (see appendix B) as special cases.

Case 4 assuming that h2(x,y)5h12(x,y) ·,(x,y) and g2(x,y)5,(x,y), gives rise to a joint
distribution of the general form:

f(x,y)5c0(ax1b)u1e2u2y(ax1by1c)u3.

This joint distribution includes the bivariate (McKay) Gamma distribution (see
appendix B) as a special case.

Several other methods to generate joint distributions, such as the bivariate Edgeworth
expansion and the translation method, proved only of marginal value; see Mardia (1970)
for an excellent discussion. The least effective way to create joint distributions is to take
linear combinations of marginal distributions. The first to propose this method was
Steffensen (1922). Assuming that the two independent random variables (Z1,Z2) have

1h1(x,y)
h2(x,y)25



x
 1g1(x,y)

g2(x,y)2
2 ln f(x,y)

xy
5



y
 ln f(x,y)

y
5

g1(x,y)
g2(x,y)

 ln f(x,y)
x

5
h1(x,y)
h2(x,y)
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known marginal densities f1(z1) and f2(z2), he considered the joint distribution of the
linear transformations:

X5a1Z11b1Z21c1, Y5a2Z11b2Z21c2.

In view of the fact that the inverse transformation is:

Z15X1aY, Z25Y1bX,

the joint density takes the general form (see chapter 11):

f(x,y)5 | ab21| f1(x1ay) ·f2(y1bx).

This is the most ineffective way to generate joint distributions because by construction
the only form of dependence built into the joint distribution is that of linear dependence
(correlation). As argued above, however, linear dependence characterizes distribution-
related dependence only in the case of the Normal distribution.

Several extensions of this restricted result have been suggested in the literature. For
reference purposes we summarize the most important of these results. Let F(x,y), FX(x)
and FY(y) denote the joint and marginal distributions of the random variables X and Y.
The marginal distributions are given and the modeler combines them in a variety of ways
to construct the joint distribution.

1 Frechet (1951):

F(x,y)5b max (0,FX(x)1FY(y)21)1(12b) min (FX(x),FY(y)), 0#b#1.

2 Morgenstern (1956):

F(x,y)5FX(x) ·FY(y)[11a(12FX(x))(12FY(y))], a[ [21,1].

3 Gumbel (1960):

(2 ln F(x,y))m5(2 ln FX(x))m1(2 ln FY(y))m, m$1.

4 Plackett (1965): F(x,y) is the solution of the equation:

F(x,y)(12FX(x)2FY(y)1F(x,y))5a (FX(x)2F(x,y)) (FY(y)2F(x,y)), a.0.

5 Ali, Mikhail and Haq (1978):

F(x,y)5 , a[ [21,1].

As we can see, the bivariate distribution in all these cases is constructed using a parame-
ter that connects the marginal distributions. This is clearly of limited scope because the
dependence is now captured by this one parameter which is often related to the correla-
tion coefficient.

The most effective method to formulate joint distributions is by direct generalization
of univariate densities in cases where the functional form of the density function allows
substituting a random variable with a random vector such as the case of the elliptically
symmetric family of distributions discussed below. This is because all the features of the

FX(x)·FY(y)
[1 2 a(1 2 FX(x))(1 2 FY(y))]
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univariate distributions are naturally extended to the joint and the dependence is not
artificially restricted.

The assessment of the current situation by the author is that we need to focus our
attention on the development of additional parametric families of joint distributions
with a view to extending the existing concepts of distribution-related dependence.

6.6.1 Dependence and the Normal distribution
The first attempt to develop a joint distribution with a view to capturing the dependence
observed in a particular data set was made by Galton (1886) with the help of his mathe-
matician friend Dickson. It is instructive to refer to the way Galton stumbled upon the
bivariate Normal distribution because it constitutes an important early example of how
patterns in the observed data can be utilized to construct mathematical concepts in an
attempt to model them. While examining observed data on the height of mid-parents (x)
and their offsprings (y), Galton mapped out a scatterplot (the data (x1,x2,…,xn) are
plotted against (y1,y2,…,yn); see below) and noticed (by his own account):

that lines drawn through entries of the same value formed a series of concentric and similar
ellipses… (Galton (1885), p. 255).

That is, the scatterplot of the two data series exhibited a clear elliptical shape which on
closer examination revealed that when collecting the data points with the same relative
frequency they formed concentric elliptical shapes. This is a remarkable piece of detec-
tive work which exemplifies Galton’s observation prowess. His first reaction was to use
these concentric ellipses in order to construct the bivariate surface (joint frequency
curve) that lies behind them. Knowing that his mathematical skills were inadequate for
the task he called upon his friend Dickson (a mathematician at Cambridge University).
The result, published as an appendix to Galton (1886), was the bivariate Normal density:

f(x,y;u)5 exp 2 22r 1 , (6.39)

where the unknown parameters u:5 (m1,m2,s11,s22,r) are related to the moments via:

m1:5E(Y), m2:5E(X),
s11:5Var(Y), r:5Corr(X,Y), s22:5Var(X).

Using this bivariate distribution Galton went on to develop the concepts of regression
(see next chapter) and correlation. As shown in chapter 4, both the marginal and condi-
tional densities are also Normal (but univariate of course). Using the notation for the
bivariate Normal distribution, introduced in chapter 4:

,N , ,

where the correlation coefficient can be expressed in the form r5 , we deduced that:

(a) Y,N(m1,s11), (Y |X5x),N(b01b1x,s1
2),

(b) X,N(m2,s22), (X |Y5y),N(a01a1x,s 2
2),

s12

Ïs11s22

24s11

s12
  

s12

s22
34m1
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312Y
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621x 2 m2

Ïs22
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b0:5m12b1m2
, b1:5 , s1

2:5s112 ,

a0:5m22a1m1
, a1:5 , s2

2:5s222 .

The multivariate Normal is by far the most widely used joint distribution in empirical
modeling. Because of its dominating role in statistical inference it is important to
examine the dependence structure of this distribution using the concepts developed in
the previous sections. In so far as the order of dependence is concerned we argued that
the most direct way to assess it is via the conditional moments. In the case of the bivari-
ate Normal distribution we know that:

(a) E(Y |X5x)5b01b1x,

(b) E[(Y2E(Y |X5x))r |X5x]5
0 for r odd,5 for r even.

In particular, Var(Y |X5x)5s 1
2. In view of the parameterizations involved we can see

that in the case where r50 (s1250), all the conditional moments coincide with the mar-
ginal moments:

(a) E(Y |X5x)| r505m1,

(b) E[(Y2E(Y |X5x))r |X5x] | r505
0 for r odd,5 for r even.

This suggests that when the correlation coefficient is zero the two random variables are
independent, i.e.

for X and Y jointly Normal, r50 ⇒ Y and X are independent,

(see chapter 4). This is clearly an exception to the general rule stated in chapter 4 that
non-correlation does not imply independence. The intuition behind this exception is that
the only form of dependence one can describe using the Normal distribution is linear
dependence. In other words, dependence in the context of the joint Normal distribution
is encapsulated in the correlation coefficient parameter r (or equivalently s12).

From the modeling viewpoint it is important to  the relationship between the
correlation coefficient and the shape of the joint Normal density. In order to get some
idea as to how the shape changes with the value of r, let us compare the joint density in
figure 6.4 where r50 with that given in figure 6.5 where r50.8. The dependence takes
the form of a “squashed” joint density. This effect can be easily seen on the inserted equal
probability contours (a bivariate map of the density) which are circular in the case r50
and ellipses in the case of rÞ0. N that the equal probability contours are the theo-
retical counterparts to Galton’s notion in terms of relative frequency. From the above
graphs it is obvious that the more squashed the density (and the ellipses) the higher the
correlation.

The graph of the equal probability contours is of particular interest in connection
with real data plots (see section 6) and worth having a closer look at. They are called
equal probability (equiprobability) contours because every ellipse of the form:

22r 1 5ci, i51,2,…,n, (6.40)21x 2 m2

Ïs22
2

2
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Figure 6.4 Normal density with r50

Figure 6.5 Normal density with r50.8



represents a set of points with the same probability. Intuitively, they can be thought of as
being created by slicing the three-dimensional surface of the density across, parallel to
the x–y plane at equal distances, say (0.001), (0.02), (0.04),…,(0.18), and drawing the
outside elliptical shape of the slices beginning with the lowest on the outside (0.001) and
ending with the highest (0.18) representing the last slice which includes the peak. In this
sense equal probability contour graphs have a lot in common with ordinary map contour
lines representing a mountainous three dimensional surface in a two-dimensional map.
In both cases the map arises by projecting the equal elevation slices of a three dimen-
sional surface onto a two-dimensional diagram. As with the map contour lines, the
closer the contours the sharper the elevation.

In figures 6.6 and 6.7 one can see the equal probability contours of a bivariate Normal
density with correlation r50.5 and r520.5, respectively. Looking at the graph of the
equal probability contours we should be able to visualize the three-dimensional surface.
If we compare the contour plot in figure 6.6 with that of figure 6.7 we can see that they
differ in terms of their orientation, the slope of the principal axis of the ellipses in figure
6.6 is positive but that of figure 6.7 is negative; this stems from the fact that the correla-
tion in figure 6.6 is positive but that of figure 6.7 is negative.

296 The notion of a non-random sample

Figure 6.6 Contours of the Normal density with r50.5



6.6.2 Dependence and the elliptically symmetric family

Unknown to Galton the same equiprobability contours (6.40) can be used to generate a
whole family of symmetric distributions, known as the elliptically symmetric family (see
Kelker (1970)) which includes the Normal as a special case. The bivariate form of these
distributions depends on (a) the quadratic form generating the concentric ellipses:

,(x,y)5 22r 1 ,

and (b) the determinant of S:5 , where det (S)5s11s222s 2
125[(12r2)s11s22].

The generic form of this family can be generally written as:

f(x,y;u)5c0 ·d(det (S)) ·h(,(x,y)),

where d(.) and h(.) are arbitrary positive functions over the range of values RX3RY and
c0 a normalizing constant which ensures that f(x,y;u) is a proper density, i.e.
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Figure 6.7 Contours of the Normal density with r520.5



RX3RY

f(x,y;u)dxdy51.

This family can be easily extended to the m-variable case (m.2) by defining ,(.) as:

,(x1,…,xm):5 (x2m)ÁS21(x2m), and

R13R2…3Rm

… f(x1,…,xm;u)dx1 ···dxm51,

s11 s12 ··· s1m x12m 1

s21 s22 ··· : x22m2S:53: : ··· : 4, (x2m):51: 2.

sm1 ··· ··· smm xm2mm

In addition to the Normal, the elliptically symmetric family includes the Student’s t,
the Pearson type II, and a form of the Logistic distributions (see Fang et al. (1990)). For
example, the bivariate density of the Student’s t takes the form:

f(x,y;u)5 11 [,(x,y)] 2 (n12), (x,y)[R2.

The equal probability contours of this density for r50.5 and r520.5 are shown in
figures 6.8 and 6.9, respectively. Comparing figures 6.6 and 6.8 we can see that the equal
probability contours for the Student’s t are closer together than those of the Normal and
the peak of the former is higher than that of the latter. This is confirmed by comparison
of figure 6.7 with 6.9.

The difference between the Student’s t and Normal distributions becomes even more
apparent when we compare figure 6.10 (Normal with r50.2) with figure 6.11 (Student’s
t with r50.2 and n55). As we can see the main difference between the two is that the
Student’s t distribution is leptokurtic (kurtosis.3). We can detect the leptokurtosis by
looking at the measurements on the z-axis (the Student’s t peaks at 0.30 and the Normal
at 0.18) and the contours (the Student’s t are much closer together). For an extensive dis-
cussion of the multivariate Student’s t distribution see Spanos (1994).

The comparison between the Normal and Student’s t densities becomes more
apparent when both of these distributions are compared with another member of the
elliptic family, the so-called Pearson type II distribution whose density takes the
form:

f(x,y;u)5 12 [,(x,y)] n.

In contrast to the Student’s t distribution is the Pearson which is platykurtic (see chapter
3). The bivariate density of the Pearson type II, together with its equiprobability con-
tours, is shown in figure 6.12.

The above comparison suggests that in the case of the elliptic family we can dis-
tinguish between the various members only by careful examination of how crammed the
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Figure 6.8 Contours of the Student’s t density with r50.5

Figure 6.9 Contours of the Student’s t density with r520.5
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Figure 6.10 Bivariate Normal density

Figure 6.11 Bivariate Student’s t density



equiprobability contours are. In all cases, however, the correlation can be assessed by how
squashed the elliptical contours are. However, a word of caution is in order: zero correla-
tion does not imply independence for the elliptic family, except in the case of the Normal
distribution. Let us consider this in some more detail.

The question that naturally arises at this stage concerns the dependence structure of
the elliptically symmetric family. The whole of the elliptic family has the same condi-
tional mean, the conditional mean we encountered above in relation to the Normal dis-
tribution, but the higher conditional moments are in general functions of the
conditioning variable, i.e.

(a) E(Y |X5x)5b01b1x,

(b) E[(Y2E(Y |X5x))r |X5x]5
h0 for r odd,5qr(x) for r even.

For example, in the case of the Student’s t and Pearson type II the conditional variances
(see appendix B) take the form:

Student’s t: Var(Y |X5x)5s 1
2 11 ,

Pearson type II: Var(Y |X5x)5s 1
2 12 .2(x 2 m2)2

s22
11 1

2n 1 32

2(x 2 m2)2

s22

1
n11 n

n 2 12
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Figure 6.12 Bivariate Pearson type II density



This result suggests that in the case where r50 all members of the elliptic family become
first-order independent but the only distribution for which this is equivalent to complete
independence is the Normal. For instance, in the case of the Student’s t distribution:

Var(Y |X5x) | r505 11 ,

which is clearly different from the marginal variance, Var(Y)5 . In this sense the
Student’s t distribution is second-order dependent even after we impose the zero correla-
tion restriction.

6.6.3 Dependence and skewed distributions

It is important to consider several additional joint distributions which are not bell-
shaped symmetric as is the elliptic family in order to provide the reader with a balanced
view of bivariate distributions. Unfortunately, there is no systematic way to present the
distributions and the reader should consider this section as just a collection of examples
whose basic objective is to provide the reader with a less-distorted picture of the Normal
dominated textbook literature.

Bivariate Logistic density
The bivariate Logistic density takes the form:

f(x,y;u)5 , u[R23R1
2, (x,y)[R2,

where u:5(m1,m2,s11,s22). In figure 6.13 we can see the standardized form of this bivari-
ate density with u:5(0,0,1,1). As we can see, this density is non-symmetric with contours
which remind one of a Paleolithic axe. However, it is important to note that the marginal
densities are symmetric (being logistic). Unfortunately, the dependence structure of this
distribution is rather inflexible because it gives rise to a constant correlation coefficient
r:5Corr(X,Y)50.5, irrespective of the values of u.

For a more flexible correlation structure this bivariate distribution has been generalized
by introducing an additional parameter a to form:

F(x,y;a)5 11 [exp (2ax)] 1 [exp (2a y)]
21

,

yielding:

r:5Corr(X,Y)512 , where r$ ,

which includes the above case as a special case with a51. It is interesting to note that
there is a form of the bivariate Logistic distribution which belongs to the elliptically sym-
metric family but it does not have a close form (see Fang et al. (1990)). Note that the
multivariate extension of this distribution takes the form:

F(x1,x2,…,xm;u)5 11 m
k51exp 2a

21
, a$1;

the ordinary Logistic being a special case with a51.
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Bivariate Gamma density
The bivariate Gamma distribution comes in a number of different forms (see appendix B
for three of these forms), each one with its own dependence structure. In this section we
will consider two of these forms.

The Cherian bivariate Gamma density takes the form:

f(x,y;u)5 ezzu021(x2z)u121(y2z)u221dz, (x,y)[R2,

where u:5(u0,u1,u2)[R3
1. The correlation coefficient is:

r:5Corr(X,Y)5 , 0,r#1.

In figures 6.14–6.15 we can see the bivariate density with the contours inserted for two
sets of parameters u:5(1,3,3) with r50.25 and u:5(8,3,3) with r50.727, respectively.

The McKay form of the bivariate Gamma density is:

f(x,y;u)5 e2ayxu121(y2x)u221, u:5(a,u1,u2)[R1
3, (x,y)[R2,

a(u11u2)
G(u1)G(u2)

u0

Ï(u0 1 u1)(u0 1 u2)

e2(x1y)

G(u0)G(u1)G(u2)
    E
min(x,y)

0
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Figure 6.13 Bivariate (standard) Logistic density
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Figure 6.14 Bivariate (Cherian) Gamma (1,3,3) density

Figure 6.15 Bivariate (Cherian) Gamma (8,3,3) density



with correlation coefficient:

r:5Corr(X,Y)5 .

In figures 6.16–6.17 we can see the bivariate Gamma (McKay) density with the con-
tours inserted for two sets of parameters u:5(2,2,6) with r50.5 and u:5(2,6,4) with
r50.775, respectively. In these figures the asymmetry is different from that in figures
6.14–6.15.

Bivariate Exponential density
As in the case of the bivariate Gamma distribution the bivariate Exponential has several
forms. The Gumbel bivariate Exponential density takes the form:

f(x,y;u)5 [(11ux)(11uy)2u]exp{2x2y2u xy}, u[R1 , (x,y)[R1
2 .

This density, together with its equiprobability contours, for two different values of u, is
shown in figures 6.18 and 6.19. In the case of figure 6.18 u50.2 which implies a correla-
tion coefficient r520.148. In the case of figure 6.19 u51.0 which is implies a
correlation coefficient r520.404. N that this bivariate density gives rise only to
negative correlation. A direct comparison between the two surfaces and the equiprob-
ability contours suggests that the higher correlation can be detected by a higher
concentration of probability at the arms of the density.

Bivariate F density
The bivariate F density takes the form:

f(x,y;u)5G [0·5n] (n01n1x1n2y)20·5n x0·5n121y0·5n221, (x,y)[R1
2,

where (n0,n1,n2)[R1
3, n5(n01n11n2). This density, together with its equiprobability

contours, for two different values of u, is shown in figures 6.20 and 6.21. In the case of
figure 6.20 u:5(n0512,n158,n258), implying a correlation coefficient r50.444. In the
case of figure 6.21 u:5 (n055,n1560,n2560), implying a correlation coefficient
r50.953. Comparing the two surfaces and their equiprobability contours we can see
that the higher the correlation the more squashed the density. However, this should be
interpreted carefully because the correlation coefficient is insufficient to capture the
dependence structure of the F distribution (see next section). In order to get a more com-
plete picture consider two other shapes for the bivariate F distribution in figures 6.22 and
6.23 whose correlations are not very different but the parameters are u:5(n0580,
n154,n252) with correlation r50.035 and u:5(n05200,n1520,n2520) with correla-
tion r50.092.

N that in the case where the correlation is zero the bivariate F looks similar to the
bivariate Exponential without the inward curvature.

1 ni
0·5ni

G[0·5ni]2p
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i50

Î u1

(u1 1 u2)
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Figure 6.16 Bivariate (McKay) Gamma (2,2,6) density

Figure 6.17 Bivariate (McKay) Gamma (2,6,4) density
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Figure 6.18 Bivariate Gumbel Exponential with u50.2

Figure 6.19 Bivariate Gumbel Exponential with u51.0
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Figure 6.20 Bivariate F density with u:5 (12,8,8)

Figure 6.21 Bivariate F density with u:5 (5,60,60)



Bivariate Beta density
As in the case of the bivariate Exponential, there are several joint distributions which are
called Beta. The Filon–Isserlis bivariate Beta density takes the form:

f(x,y;u)5 {yn121xn221(12x2y)n321}, x$0,y$0, x1y#1,

where (n1,n2,n3)[R1
3 . This density, together with its equiprobability contours, for two

different values of u, is shown in figures 6.24 and 6.25. In the case of figure 6.24 the
bivariate density has parameter values u:5(n153,n253,n356), implying a correlation
coefficient r520.333. In the case of figure 6.25 the bivariate density has parameter
values u:5(n156,n256,n358), implying a correlation coefficient r520.429.
Comparing the two surfaces on the basis of the correlation coefficient is not such a good
idea in this case because the distribution exhibits a lot of flexibility, and correlation by
itself will not provide a reliable guide.

In the above discussion of dependence in the context of non-symmetric bivariate dis-
tributions we used the correlation coefficient in order to explore how these densities
change when dependence changes. This is clearly unsatisfactory because we know that
the correlation coefficient measures only first-order dependence. We clearly need a more
general viewing angle in order to assess the dependence structure of different joint distri-
butions. As an extension of the correlation coefficient we might consider utilizing the
first few conditional moments, say up to order four, in order to get a more complete
picture of the dependence structure. This will be discussed further in the next chapter in
relation to the first few conditional moment functions.

6.7 From probabilistic concepts to observed data

6.7.1 Generating pseudo-random numbers*

The techniques for generating pseudo-random numbers introduced in chapter 5 can be
extended to joint distributions. In the case of Independent and Identically Distributed
random variables the extension is trivial because the relationship:

f(x1,x2,…,xn)
IID
5 f(xk), for all x[Rn,

suggests that generating pseudo-random numbers for the joint distribution of the
random vector X:5(X1,X2,…,Xn) can be done for each random variable Xk separately.
Things are not appreciably more complicated in the case where (X1,X2,…,Xn) are
Independent but non-Identically Distributed since:

f(x1,x2,…,xn)
I, non-ID

5 fk(xk), for all x[Rn.

This suggests that, at least theoretically, heterogeneity can be handled without
insurmountable difficulties. Things become much more complicated in the case where
(X1,X2,…,Xn) are dependent because the generating scheme has to handle the dependen-
cies among these random variables. In this section we will consider several methods of
generating pseudo-random numbers for a random vector X:5(X1,X2,…,Xn).

p
n

k51

p
n

k51

1 G(n1 1 n2 1 n3)
G(n1)·G(n2)G(n3)2
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Figure 6.22 Bivariate F density with u:5 (80,4,2)

Figure 6.23 Bivariate F density with u:5 (200,20,20)
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Figure 6.24 Bivariate Beta density with u:5 (3,3,6)

Figure 6.25 Bivariate Beta density with u:5 (6,6,8)



The conditional distribution approach
In section 2 above we argued that in the case where (X1,X2,…,Xn) are neither inde-
pendent nor identically distributed the only reduction to a product of univariate distrib-
utions possible is that derived by sequential conditioning and takes the form (6.9) which,
when simplified by ignoring the unknown parameters, is:

f(x1,x2,…,xn)
non-IID

5 f1(x1) fk(xk |xk21,xk22,…,x1), for all x[Rn. (6.41)

This reduction suggests that generating pseudo-random numbers for the random vector
(X1,X2,…,Xn) amounts to using univariate distributions sequentially.

1 Generate the observations for X1 using the marginal distribution f1(x1).
2 Generate the observations for X2 using the conditional distribution f2(x2 |x1) given

X15x1.
3 Generate the observations for X3 using the conditional distribution f3(x3 |x2,x1) given

X25x2 and X15x1.
:

n. Generate the observations for Xn using the conditional distribution
fn(xn |xn21,…,x1) given Xn215xn21, Xn225xn22,…,X25x2 and X15x1.

The implementation of this result requires that the modeler specifies explicitly these
conditional cdfs.

Example
Consider the case n52 where the joint density function takes the form:

f(x,y)5exp{c2ax2by1gxy}, a.0, b.0, g#0, (x,y)[R1
2.

The corresponding marginal and conditional densities take the form (see Arnold et al.
(1992)):

fx(x)5h , x.0, where h(u)5 [ ∫`
0 e2z(11uz)21dz]21,

f(y |x)5(b2g x) e2(b2g x) y, y.0.

This suggests that the modeler can generate pseudo-random numbers for X using the
rejection method (see chapter 5.7) and then proceed to use the simulated values of X to
generate Y using the inverse distribution function method (see chapter 5.7) via the condi-
tional density f(y |x).

In terms of the cumulative distribution functions (cdfs) the reduction (6.41) takes the
form:

F(x1,x2,…,xn)
non-IID

5 F1(x1) Fk(xk |xk21,xk22,…,x1), for all x[Rn.

Using this result Rosenblatt (1952) extended the probability integral transformation (see
chapter 4) to the case of a random vector as follows.

p
n

k52

12 g

ab 2 1abe2ax

b 2 gx2

p
n

k52
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Conditional probability integral transformation Let (X1,X2,…,Xn) be a continuous
random vector with joint cdf F(x1,x2,…,xn), then the n random variables defined by:

Z1:5F1(X1), Z2:5F2(X2 |X1), Z3:5F3(X3 |X2,X1), ··· ,Zn:5Fn(Xn |Xn21,…,X1),

are IID Uniformly distributed random variables, i.e.:

Z15F1(X1),U(0,1), Zk5Fk(Xk |Xk21,Xk22,…,X1),U(0,1), k52,3,…,n.

Rosenblatt suggested using pseudo-random numbers from a random vector of IID
Uniform random variables and via the use of the inverse transformations:

Xk5Fk
21(Zk), k51,2,…,n,

generate the pseudo-random numbers for the random vector (X1,X2,…,Xn).

Example
Consider the case n52 where the joint density function takes the form:

f(x,y)5exp {2y}, x,y, (x,y)[R1
2 .

The corresponding marginal and conditional cdfs take the form:

FX(x)512exp (2x), x.0, F(y |x)512exp (x2y), 0,x,y,`.

The conditional probability integral transformation suggests that:

Z1:5FX(X)512exp (2X),U(0,1),
Z2:5F(Y |X)512exp (X2Y),U(0,1), 0,X,Y,`.
Z2:5F(Y |X)512exp (X2Y),U(0,1),6

The inverse distribution function method can be easily used in the present case to gener-
ate pseudo-random numbers for the random vector (X,Y). This result can be verified
directly using the following lemma (see Devroye (1986)).

Lemma Let (Z1,Z2) be bivariate uniform with joint density g(z1,z2). Let f1 and f2 be two
pre-specified marginal density functions with F1 and F2 the corresponding cdfs. Then the
joint density of (X,Y):5(F1

21(Z1),F2
21(Z2)), takes the form:

f(x,y)5f1(x) · f2(y) ·g(F1(x),F2(y)).

Conversely, if the random vector (X,Y) has joint density f(x,y) as given above, then
(f1,f2) are the marginal density functions of X and Y, respectively. Furthermore,
(Z1,Z2):5(F1(X),F2(Y)) is a bivariate random vector with joint density:

g(z1,z2)5 , z1[ [0,1], z2[ [0,1].

Returning to the above example we can deduce that:

g(z1,z2)5e2y ·ex ·e(y2x)5e051, z1[ [0,1], z2[ [0,1],

which is a bivariate  Uniform density.

f(F1
21(z1),F2

21(z2))
f1(F1

21(z1))·f2(F2
21(z2))
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The rejection method
The rejection method for generating pseudo-random numbers in the case of univariate
distributions was encountered in chapter 5.7. Theoretically, this method can be extended
to the case of a random vector X without any difficulties. In practice, however, several
traps await the unaware; see Devroye (1986) and Johnson (1987). The basic result under-
lying this method is as follows.

Rejection method lemma Let f(x) be the joint density function of the random vector X.
Assume that f(x) can be represented in the form:

f(x)5c ·h(x) ·g(x), where c.1, 0,h(x),1 and g(x)$0, h(x)[RX
n.

Let Z,U(0,1) and Y be a random vector with joint density g(y); Y and Z independent.
Then the conditional distribution of Y given Z#g(y) coincides with the distribution of
X, i.e.

F(y |Z#g(y))5F(x).

The dependence function method
A promising method for generating pseudo-random numbers, which is yet to be
explored, could be based on the dependence function (see Castillo (1988)).

Dependence function Let F(x,y) be the cdf of the random variables (x,y) with marginal
cdfs FX(x) and FY(y). The dependence function is defined as the transformation that
maps marginal Uniform cdfs into a joint cdf:

d(FX(x),FY(y))5F(x,y), (x,y)[RX3RY where d(.,.): [0,1]2 → [0,1]. (6.42)

In the case where F(x,y) is a continuous cdf with univariate marginal cdfs (FX(.),FY(.)),
and quantile functions (FX

21(.),FY
21(.)), then:

d(z1,z2)5F(FX
21(z1),FY

21(z2)), (z1,z2)[R13R2. (6.43)

The dependence function constitutes an important way to isolate the dependence struc-
ture of jointly distributed random variables.

We can use the latter form of the dependence function in order to gain some addi-
tional insight. In chapter 3 we encountered the integral probability transformation
which states that for any continuous cdfs FX(.) FY(.), the random variables Z15FX(X)
and Z25FY(Y) are uniformly distributed, i.e.:

Z15FX(X),U(0,1), Z25FY(Y),U(0,1),

and the inverse integral probability transformation which ensures that:

FX
21(Z1),FX(.), FY

21(Z2),FY(.).

Hence, we can view the dependence function in (6.43) as a mixing mapping of (inde-
pendent) uniformly distributed random variables giving rise to dependent random
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variables with joint cdf F(x,y). Hence, given the dependence function the modeler can
use uniform pseudo-random numbers to generate such numbers for the random vector
(X,Y).

Examples (see Castillo (1988))

(i) Consider the Gumbel Exponential distribution whose cdf takes the form:

F(x,y)5exp(2x2y1uxy)112exp(2x)2exp (2y).

In view of the fact that the inverse integral transformation of the cdf
FX(x)512exp (2x) is FX

21(z1)52 ln (12z1) we can show that:

d(z1,z2)5F(2 ln (12z1),2 ln (12z2))5

d(z1,z2)5exp[ln (12z1)1ln (12z2)1u ln (12z1)ln (12z2)]112(12z1)2(12z2)
d(z1,z2)5(12z1)(12z2)exp[u ln (12z1)ln (12z2)]211z11z2,
the dependence function is:

d(x,y)5 (12x)(12y)exp[u ln (12x)ln (12y)]211x1y.

(ii) Consider the Mardia Exponential distribution whose cdf takes the form:

F(x,y)5 [exp(x)1exp(y)21]21112exp(2x)2exp(2y).

Again, using the same inverse integral probability transformation we can show
that:

d(z1,z2)5F(2 ln (12z1),2 ln (12z2))5

d(z1,z2)5 1 21
21

112(12z1)2(12z2)5

d(z1,z2)5 1 21
21

211z11z2.

Hence, the dependence function is:

d(x,y)5 1 21
21

211x1y.

6.7.2 A graphical display: the scatterplot

In the previous chapter we introduced the graphical display of a t-plot and other related
graphical representations of observational data, such as the histogram and the
smoothed histogram, to provide a link between theoretical concepts and real data. In
this section we take the story one step further by introducing another important graph-
ical display which can provide a link between the probabilistic notions of joint density
and dependence and the observed data. This is known as the scatterplot (or cross-plot)
and has its roots back in the mid-19th century.

A scatterplot is a two-dimensional graphical display of the form:

scatterplot: {(xt,yt), t51,2,…,T},

21
y 2 1

1
x 2 11

21
z2 2 1

1
z1 2 11

21
z2 2 1

1
z1 2 11
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where the y-axis represents the range of values of the random variable Yt and the x-axis
represents the range of values of the random variable Xt. In figures 6.26 and 6.27 we can
see two such scatter-plots of simulated bivariate Normal IID data. As we can see, figure
6.26 exhibits a certain circular shape with the number of observations increasing as one
moves from the outskirts to the center of the circular shape. Figure 6.27 exhibits an ellip-
tical shape with the same tendency for the number of observations to increase as one
moves from the tails to the principal axis of the elliptical shape. It turns out that the only
difference between the two plots is the correlation coefficient which is r50 for figure 6.26
and r50.8 for figure 6.27.

The key to relating these data plots to the theoretical concept of a joint density func-
tion was given to us by Galton (1886) who was able to join the equal-frequency points
into elliptical contours and then derive the density itself. With today’s graphical tech-
niques we can formalize Galton’s procedure and make the necessary distinctions
between theoretical concepts and their empirical counterparts.

Smoothed stereogram As in the case of a single data series discussed in chapter 5, the
first step in relating the scatterplot in figure 6.26 to a theoretical joint density function is
to construct the two-dimensional histogram, coined stereogram by Pearson, and then
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Figure 6.26 Simulated bivariate Normal data with (r50)



smooth it. The most widely used smoother is an extension of the one-dimensional kernel
discussed in chapter 5. A kernel smoother of a histogram takes the form:

ĝh(x)5 n
k51K , h.0, K(z)$0, ∫ z[RZ

K(z) dz51,

where K(.) denotes the kernel; for several examples of such kernels see chapter 5. The
most widely used kernel is that based on the Normal density yielding the smoothed
histogram:

ĝh(x)5 n
k51exp 2

2
, h.s · (1.06)·n2 .

The simplest form of the smoothed stereogram extends this to:

ĝh(x,y)5 n
j51

n
i51K , h.0,

where the kernel takes the form (see Cacoullos (1966)):

K(x,y)$0,

x[RX y[RY

K(x,y) dydx51.EE

13xi 2 x
h 4 3yi 2 y

h 42oo1
nh

1
561xk 2 x

h 21
25o1

nhÏ2p

1xk 2 x
h 2o1

nh
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Figure 6.27 Simulated bivariate Normal data with (r50.8)
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Figure 6.29 Bivariate Normal data with (r50)

Figure 6.28 Smoothed stereogram of normal simulated data with (r50)



More general forms of smoothing kernels allow for different bandwidths and/or correla-
tion (see Silverman (1986)).

The smoothed stereogram for the data in figure 6.26 is shown in figure 6.28. This
can be compared with the theoretical bivariate Normal density with r50, shown in
figure 6.29. As we can see, the smoothed stereogram is very similar to the theoretical
surface.

Contours The second step is to assess how good an approximation the smoothed stereo-
gram is to the bivariate density function. This assessment can be made in terms of the
contours of these two surfaces. In figure 6.30 we can see the contours of the smoothed
stereogram and in figure 6.31 the same contours are overlaid with those of the bivariate
Normal density (r50).

As we can see, this overlay provides a graphical display where the differences between
the bivariate density and its empirical counterpart can easily be assessed at different
heights. In this example it is obvious that the two are quite close for most heights except
the very top where a certain difference can be detected. For the novice we note that such
small (but insignificant) differences are the rule and not the exception in empirical mod-
eling; so do not expect the two to coincide!

This exercise is repeated for the scatterplot in figure 6.27. In figures 6.32–6.33 we can
see the smoothed stereogram and the bivariate Normal density with r50.8, respectively.
A glance at these plots suggests that the latter is a good approximation of the former.
This conclusion is confirmed by the plot of the contours of the smoothed stereogram in
figure 6.34 which are overlaid with those of the bivariate density with r50.8, shown in
figure 6.35.

A comparison between the figures 6.26 and 6.28–6.31 on the one side and the figures 6.27
and 6.32–6.35 on the other, can be used as a framework in the context of which the modeler
can assess the dependence in Normal IID data (where I refers to temporal independence).
Perhaps the best way to summarize the two groups of plots is to overlay the contours of the
smoothed stereogram with the scatterplot. In figures 6.36 and 6.37 we can see these two
plots for the simulated data from a bivariate Normal with different correlation.

The elliptical shape together with the increasing concentration of points of the scat-
terplot as the eye moves toward the intersection of the two principal axes, point toward
the Normality assumption and the degree of eccentricity of the elliptical shape (how
squashed it looks) indicates the level of correlation.

The discussion in the previous section, however, suggested that the elliptical shape of
the scatterplot is not a feature of the Normal only but a feature of a whole family of joint
distributions we called elliptically symmetric. In order to illustrate this point let us return
to the Canadian/US exchange rate data introduced in chapter 1 and discussed in chapter
5 in relation to their distributional features. In chapter 1 we noted the chance regularity
patterns exhibited by the t-plot of these data including the bell-shaped symmetry. The
preliminary conclusion in chapter 5, based on standardized P-P plots, was that the data
exhibit a bell shape symmetry closer to the Student’s t distribution with 4 degrees of
freedom rather than the Normal distribution. Moreover, at first sight the data did not
seem to exhibit any significant first-order temporal dependence or any heterogeneity.
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Figure 6.30 Smoothed stereogram contours of simulated Normal (r50) data

Figure 6.31 Smoothed stereogram and Normal (r50) contours
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Figure 6.32 Smoothed stereogram of simulated Normal (r50.8) data

Figure 6.33 Bivariate Normal density with (r50.8)
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Figure 6.34 Smoothed stereogram contours of simulated Normal (r50.8)
data

Figure 6.35 Smoothed stereogram and Normal (r50.8) contours
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Figure 6.36 Smoothed stereogram contours and scatterplot of Normal (r50)
data

Figure 6.37 Smoothed stereogram contours and scatterplot of Normal
(r50.8) data



In this chapter we proceed to consider the question of distribution-related temporal
dependence. Despite the importance of the distinction between contemporaneous and
temporal dependence in the context of modeling, in relation to assessing distribution-
related dependence the distinction is just a matter of notation. Using the appropriate
joint distribution we can discuss the dependence related to the distribution f(xt,yt) as
easily as that of f(xt,xt21); the difference is just one of notation. In the present context we
can use the scatterplot:

{(xt,xt21), t51,2,…,T},

shown in figure 6.38, to assess the temporal dependence between successive elements of the
stochastic process {Xt}`

t51. The scatterplot exhibits a clear elliptical (close to circular) shape
with the concentration of observations increasing as we move toward the center of this
elliptical shape. With the eye of our mind we can visualize the two-dimensional surface
(stereogram) suggested by this plot. As the number of observations increases moving
toward the center of the elliptical shape the corresponding stereogram increases in height.
The smoothed stereogram is plotted in figure 6.39 and it represents the data analogue to the
two-dimensional surface representing the density function. Looking at this plot we can say
that it is surprisingly close to the theoretical bivariate density for the Student’s t distribution.
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Figure 6.38 Scatterplot (xt,xt21) of exchange rate data



In figure 6.39 we can also see the corresponding marginal smoothed densities as well
as the contours inserted on the right margin. Figure 6.39 confirms that the bivariate
Student’s t constitutes a much more appropriate distribution assumption than the
Normal because a glance at figures 6.10 and 6.11, depicting these bivariate densities,
suggest most clearly that the smoothed bivariate density for these data is closer to the
density shown in figure 6.11 than that of figure 6.10; it is important to note the measure-
ments on the vertical axis. This is confirmed in figure 6.40 where the contours of the
smoothed stereogram in figure 6.39 are superimposed on those of the bivariate Student’s
t density with 4 degrees of freedom.

The correlation (first-order dependence) between Xt and Xt21 does not appear to be
significant because the elliptical shapes are close to circles. It should be noted that zero
correlation in this context does not mean that the stochastic process {Xt}`

t51 is temporally
independent. As argued above, non-correlation does not imply independence in the case
of the Student’s t distribution. For a more accurate assessment, however, we need to
apply proper testing procedures (see chapter 15).

In order to ensure that the conclusions about distribution-related dependence drawn
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Figure 6.39 Smoothed stereogram/contours of exchange rate data
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on the basis of the scatterplot {(xt,xt21), t51,2,…,T}, are indeed valid for the process
{Xt}`

t51, we need to consider additional scatterplots of the form:

{(xt,xt2k), k$2, t51,2,…,T}.

For illustration purposes we consider the scatterplot in the case k52 in figure 6.42 and
the corresponding smoothed stereogram in figure 6.43; we can assure the reader that
the additional plots for values k.2 are very similar. As we can see, both of these
graphical displays confirm the conclusions drawn on the basis of figures 6.38–6.40.
This is reinforced by figure 6.41 where the contours of the smoothed stereogram in
figure 6.43 are superimposed on those of a bivariate Student’s t density with 4 degrees
of freedom.

In the previous section we discussed the importance of overcoming the undue influ-
ence of the Normal distribution in empirical modeling. The above empirical example
takes the modeler a step away from the Normal distribution and into the elliptic
family. Further steps are required, however, in order to get away from Normality’s
spell. With that in mind let us consider some additional scatterplots of simulated data
from asymmetric distributions in order to ensure that the reader does not complete
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Figure 6.40 Smoothed stereogram (xt,xt21) and Student’s t (n54) contours



this chapter with the erroneous impression that scatterplots appear as symmetric
elliptical shapes.

The non-symmetric bivariate distribution we consider first is the Gamma (Cherian)
distribution. We choose the parameters in such a way so as to yield a nearly symmetrical
distribution in an attempt to illustrate some of the more subtle forms of asymmetry. In
figure 6.44 we can see a scatterplot from a bivariate Gamma distribution with parame-
ters (u052,u1516,u2516) which imply a correlation coefficient r50.111;  that the
Cherian form of the bivariate Gamma distribution allows only for positive correlation.
Figure 6.45 shows the contours of the corresponding theoretical density which exhibit
an egg-shaped asymmetry with the yolk (the mode) closer to the more kurtic end point-
ing toward the origin.

The asymmetry of the scatterplot is not as apparent but a close examination of the
data scatterplot in figure 6.44 in conjunction with the contours of the theoretical density
shown in figure 6.45 reveals the asymmetry.

In relation to the scatterplot in figure 6.44 it is worth making the point that if the
modeler decides to pronounce some of the observations in the tails as outliers, the
exhibited asymmetry could very easily be lost; and with it the very information that
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Figure 6.41 Smoothed stereogram (xt,xt22) and Student’s t (n54) contours
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Figure 6.42 Scatterplot (xt,xt22) of exchange rate data

Figure 6.43 Smoothed stereogram/contours of exchange rate data
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Figure 6.44 Simulated data: bivariate Gamma (Cherian) (u052, u1516,
u2516)

Figure 6.45 Contours of a Gamma (Cherian) (u052, u1516, u2516) density



would direct the modeler towards the correct distribution.
The same egg-shaped asymmetry is exhibited in figures 6.46–6.47 where the correla-

tion coefficient is r50.5. As in the case of the Normal distribution higher correlation is
visualized as squashed contours.

In figures 6.48–6.49 the correlation is increased to r50.8 and the compression of the
contours increases.

As an example of a highly skewed distribution we consider scatterplots of simulated
data from the Exponential (Gumbel) distribution with correlation, r520.01 and
r520.36, in figures 6.50–6.51, respectively. These scatterplots correspond roughly to
the bivariate densities shown in figures 6.18–6.19, respectively. As we can see, the nega-
tive correlation in a Gumbel Exponential distribution is exhibited by the concentration
of the observations along the axes in a fish-tail form.

Although the Gumbel bivariate Exponential does not allow for positive correlation,
other forms allow for a complete range of correlations21#r#1 (see Devroye (1986)).
In figure 6.52 we can see a scatterplot of simulated data from a non-Gumbel Exponential
with positive correlation r50.36. The positive dependence is visualized in figure 6.52 as
closing up of the triangular shape in figure 6.50. This becomes more apparent in figure
6.53 where the correlation has been increased to r50.9 inducing a comet-like shape for
the scatterplot.

We conclude this section by emphasizing once more that the above plots are only
indicative in nature and constitute just the tip of the iceberg in terms of the variety of
shapes and patterns one should expect in modeling with real data. The reader is strongly
encouraged to generate such scatterplots and the corresponding smoothed densities in
order to appreciate the wealth of information such graphical displays can furnish.

  . In this section we discussed the problem of relating the scatter-
plot of the data series {(xt,yt), t51,2,…,T} to the distribution structure of the bivariate
density f(x,y), (x,y)[RX3RY. Going to three data series, the scatterplot becomes a
scattercloud and certain problems arise in rotating the cloud to get a more reliable view.
When the modeller attempts to relate the scattercloud to the joint distribution, he/she is
required to think in four dimensions. In the above discussion we focused exclusively on
two data series because human cognition is limited to three dimensions. Hence, it is
often more practical to consider the m data series case by viewing two such series at a
time and putting together a more complete picture using the three-dimensional snap-
shots.

6.8 What comes next?

After the above discussion of dependence, we proceed to discuss the problem raised by
stochastic conditioning. Chapter 7 concentrates on conditional distributions and their
moments as they relate to dependence and/or homogeneity concentrating again on the
simple two-variable case:

f(x,y;f)5f(y |x;w2) ·fx(x;w1), for all (x,y)[RX3RY.

Of particular interest in chapter 7 will be the concept of distribution-related dependence
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Figure 6.47 Contours of a Gamma (Cherian) (u0516, u1516, u2516)
density

Figure 6.46 Simulated data: bivariate Gamma (Cherian)
(u0516, u1516, u2516)
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Figure 6.48 Simulated data: bivariate Gamma (Cherian)
(u0532, u1516, u2516)

Figure 6.49 Contours of a Gamma (Cherian) (u0532, u1516, u2516) density



What comes next? 333

Figure 6.50 Simulated data from a bivariate Gumbel Exponential with
(r520.01)

Figure 6.51 Simulated data from a bivariate Gumbel Exponential with
(r520.36)
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Figure 6.52 Simulated data from a bivariate non-Gumbel Exponential with
(r50.36)

Figure 6.53 Simulated data from a bivariate non-Gumbel Exponential with
(r50.09)



and how that relates to the conditional distributions f(y |x;w2), for all x[RX. It is argued
that the most effective way to model such forms of dependence is via the concept of
conditional moment functions:

E(Yr |X5x)5hr(x), x[RX, r51,2,…

The concepts developed in these two chapters are then extended in chapter 8 beyond
the simple two-variable case in order to provide a general framework for modeling
dependence and heterogeneity as they relate to sequences of random variables. That is,
we return to the general case where the reduction of the joint distribution takes the
form:

f(x1,x2,…,xn;f)
non-IID

5 f1(x1;c1) fk(xk |xk21,…,x1;ck), for all x[RX
n,

and proceed to consider the question of imposing dependence and heterogeneity restric-
tions in order for the above reduction to give rise to operational models.

6.9 Exercises

21 Why do we care about heterogeneity and dependence in statistical models?

22 Explain how the idea of sequential conditioning helps to deal with the problem of
many dimensions of the joint distribution of a non-random sample.

23 Define the following concepts:
(a) joint moments, (b) conditional moments, (c) non-correlation,
(d) orthogonality, (e) cross-product ratio, (e) Gamma coefficient.

24 Let the joint density function of two random variables X and Y be:

x\y 0 1 2

0 0.1 0.2 0.2
1 0.2 0.1 0.2

(a) Derive the conditional distributions: f(y |x), x50,1.
(b) Derive the following moments:

E(X), E(Y), Var(X), Var(Y), Cov(X,Y), E(XY), Corr(X,Y),
E(Y |X50), E(Y |X51), Var(Y |X50).

25 Explain the difference between dependence, correlation and non-orthogonality.

26 Explain the notion of rth-order dependence and compare it with that of (m,k)th-
order dependence.

27 Explain the notion of conditional independence and relate it to that of Markov
dependence.

p
n

k52
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28 Explain why non-correlation implies independence in the case of a bivariate
Normal distribution. How does one assess the correlation by looking at a scatter-
plot of observed data?

29 Explain how one can distinguish between the equiprobability contours of the
Normal, Student’s t and Pearson type II bivariate densities.

10 Explain why zero correlation does not imply independence in the case of the
Student’s t and Pearson type II bivariate distributions.

11 Explain how an increase in correlation will affect the bivariate Exponential density.
What does that mean for the scatterplot?

12 Explain why the notion of correlation makes no sense in the case of random vari-
ables measured on the nominal scale.

13 Consider the random variable X,N(0,1) and define the random variable Y5X221.
Prove that:

Cov(X,Y)50,

but the two random variables are not independent.
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7 Regression and related
notions

7.1 Introduction

In the previous chapter we took the first step into the non-random sample territory of
probability theory. The reader would have realized by now that this territory can be both
treacherous and exciting at the same time. It suffices to  that this was a largely
uncharted territory until the first quarter of the 20th century. The main target of the dis-
cussion that follows is to extend the concept of a simple statistical model, and in particu-
lar the notion of a random sample (Independent and Identically Distributed random
variables), toward more realistic formulations. Such models will allow for random vari-
ables which are endowed with dependence and/or heterogeneity. In this chapter we con-
tinue this journey and discover that we have been holding the key to the non-random
sample territory since chapter 4: the concept of conditioning.

The manageability of the simple statistical model stems from the fact that the joint dis-
tribution of the sample can be greatly simplified by its reduction to a product of univari-
ate (identical) marginal distributions:

f(x1,x2, …, xn;f)5
I

fk(xk;uk)
IID
5 f(xk;u), for all x:5(x1,x2, …, xn)[Rn. (7.1)

In the case of a non-random sample, if we view non-randomness negatively as the
absence of independence and homogeneity (ID) the only result available is:

f(x1,x2, …, xn;f)
non-IID

Þ f(xk;u), for all x:5(x1,x2, …, xn)[Rn. (7.2)

In chapter 6 we viewed non-randomness positively as the presence of dependence and/or
heterogeneity and it was argued that the key to dealing with the joint distribution of a
non-random sample was the notion of sequential conditioning simplifying the joint dis-
tribution to:

f(x1,x2, …, xn;f)
non-IID

5 f1(x1;c1)
n

k52
fk(xk |xk21, …, x1;ck), for all x[RX

n . (7.3)

A direct comparison between (7.1) and (7.3) reveals that for non-random samples we
trade marginal for conditional distributions. These conditional distributions will provide
the means to model dependence and/or heterogeneity.

p

p
n

k51

p
n

k51
p

n

k51
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The first problem we need to address when modeling dependence in the context of the
reduction (7.3) is that of the stochastic conditioning problem. This problem arises because
the right-hand side of (7.3) is not just a product of one marginal density (f1(x1;c 1)) and
(n21) conditional densities (fk(xk |xk21, …, x1; ck), k52,3, …, n) as it might appear at first
sight. In view of the fact that the concept of a conditional density function is defined for a
specific value of the conditioning variables, for each k, the set of conditional densities:

{fk(xk |xk21, …, x1;ck), for all (xk21, …, x1)[RX
k21 (7.4)

represents a whole family of density functions; one for each value of (xk21, …, x1) in
RX

k21, and that changes with k. Addressing these problems in their full generality in the
context of (7.3) and (7.4), however, will prove very tangled. For this reason we simplify
the problem by sidestepping the issues of dependence and heterogeneity associated with
a general k.2 and concentrate exclusively on the k52 case. In a sense we circumvent the
problems of (a) the changing conditioning set (the number of conditioning variables
changes with k) and (b) the heterogeneity of the conditional densities (they change with
k). These two issues will be discussed in the next chapter.

7.1.1 A bird’s eye view of the chapter

In section 2 we discuss the conditioning problem in the context of the simplest two
random variable case:

f(x,y;f)5f(y |x;w2) ·fx(x;w1), for all (x,y)[RX3RY. (7.5)

N that, as in the previous chapter, in order to simplify the notation we use (x,y)
instead of (x1,x2). In this simple case the increasing conditioning set and the heterogeneity
problems do not arise. In this context the conditioning problem is effectively dealt with by
extending the notion of conditional moments to functions of the values of the condi-
tioning variable. In section 3 we extend the notion of conditional moment functions to
take account of the presence of the marginal distribution f1(x1;w1). This gives rise to the
concept of stochastic conditional moment functions. In section 4 we consider the question,
Under what circumstances can the modeler ignore the marginal distribution? – the
answer to which leads to the notion of weak exogeneity. In section 5 we introduce a new
component to the notion of a statistical model in addition to the probability and sam-
pling models. This new component is called a statistical generating mechanism (GM) and
constitutes a bridge between statistical and theory models. In section 6 we take a short
historical excursion to trace the roots of regression back to Francis Galton (1822–1911)
and Karl Pearson (1857–1936) with a view to providing a brief overview of the biometric
tradition in statistics. This tradition was later reformulated by R. A. Fisher (1890–1962)
into modern statistical inference. We remind the reader that in chapter 1 we mentioned
briefly two older traditions in statistics, the theory of errors and the experimental design,
arguing that they are better suited for the statistical analysis of experimental data; or data
that can be viewed as generated by a nearly isolated system. A particularly important line
of argument that runs through this book is that the biometric tradition is better suited for
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modeling observational (non-experimental) data. Moreover, it is argued that Karl
Pearson’s approach using the conditional moment functions constitutes the procedure of
choice for modeling dependence and/or heterogeneity.

7.2 Conditioning and regression

7.2.1 Reduction and conditional moment functions

As argued above, the equality in the reduction (7.5) does not represent a joint distribu-
tion on the left and a product of one conditional and one marginal distribution on the
right! The notion of a conditional distribution discussed in chapter 6 is defined
with respect to a specific value of the conditioning variable, but the qualifier for all
(x,y)[RX3RY means that for each value of the conditioning variable, x[RX, there
exists a conditional distribution. From the modeling viewpoint, the conditioning
problem has two dimensions. The first dimension is that:

f(y |x;w2), (x,y)[RX3RY, (7.6)

defines a (possibly infinite) family of conditional densities indexed by different values of
the random variable X. The second dimension is that each conditional density in (7.5) is
weighted by the marginal probability associated with the corresponding conditioning
value of the random variable X. In this section we consider the problem of many (poss-
ibly an infinite number of) conditional distributions. The weighting dimension will be
discussed in sections 3–4. In order to make the discussion less abstract let us consider this
issue using some examples.

Examples
(i) Consider the joint and marginal distribution as given below:

y\x 1 2 3 fy(y)

0 0.20 0.10 0.15 0.45
1 0.10 0.25 0.05 0.40
2 0.01 0.06 0.08 0.15

fx(x) 0.31 0.41 0.28 1 (7.7)

According to (7.6) this joint distribution gives rise to three different conditional dis-
tributions, f(y |X5x) for x51,2 and 3, given by (see chapter 4):
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, y50,
y 0 1 2

f(y |x51)5 , y51,

, y52,
f(y |x51) 0.645 0.323 0.032

f(x 5 1,y 5 2)
fx(x 5 1)

5
0.01
0.31

f(x 5 1,y 5 1)
fx(x 5 1)

5
0.10
0.31

f(x 5 1,y 5 0)
fx(x 5 1)

5
0.20
0.315



(ii) Consider the case where f(x,y;f) is bivariate Normal of the form:

(7.9)

N that m15E(Y), m25E(X), s115Var(Y), s225Var(X), s125Cov(X,Y).
The conditional and marginal distributions in (7.5) take the form:

(Y |X5x),N(b01b1x,s2), x[R, X,N(m2,s22),

b05m12b1m2, b15 , s25s112 . (7.10)

This shows that the conditional distribution represents an infinite family of condi-
tional densities, one each value x[R.

The above examples suggest that any attempt to deal with the modeling of the reduction
(7.5) by concentrating on the moments of the distributions involved is doomed. This is
because of the presence of a conditional density for each value of the conditioning vari-
able. That is, even though the joint distribution on the left and the marginal distribution
on the right can (possibly) be modeled via their moments, the conditional densities give
rise to a possibly infinite number of conditional moments (one set for each value of the
random variable X). That is, the use of conditional moments does not deal with the
reduction effectively. This is because conditional moments are defined for each member
of the family (7.6) separately and the modeler will be faced with the question: Which set
of conditional moments does one use?

Example
In the case of the joint distribution given in (7.7), there correspond three different condi-
tional distributions (see (7.8)), one for each value of X. Hence, there are three pairs of
conditional means and variances:

f(y |x51): E(Y |x51)50.387, Var(Y |x51)50.301,

f(y |x52): E(Y |x52)50.902, Var(Y |x52)50.380,

f(y |x53): E(Y |x53)50.749, Var(Y |x53)50.758.

2s 2
12

s22
12s12

s22
1

1Y
X2, N13m1

m2
4,3s11  s12

s12  s22
42.
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, y50,
y 0 1 2

f(y |x52)5 , y51,

, y52,
f(y |x52) 0.244 0.610 0.146

(7.8)

, y50,
y 0 1 2

f(y |x53)5 , y51,

, y52.
f(y |x53) 0.536 0.179 0.285

f(x 5 2,y 5 2)
fx(x 5 3)

5
0.08
0.28

f(x 5 2,y 5 1)
fx(x 5 3)

5
0.05
0.28

f(x 5 3,y 5 0)
fx(x 5 3)

5
0.15
0.28

f(x 5 2,y 5 2)
fx(x 5 2)

5
0.06
0.41

f(x 5 2,y 5 1)
fx(x 5 2

5
0.25
0.41

f(x 5 2,y 5 0)
fx(x 5 2)

5
0.10
0.415

5



The answer to the question of which set of conditional moments to use is, in a nut-
shell, all of them combined by extending the conditional moments in a way analo-
gous to the family (7.6). That is, by extending the notion of conditional moments to
account for all values of the random variable X, we define the conditional moment func-
tions:

Raw: E(Yr |X5x)5hr(x), x[R, r51,2,…
Central: E([Y2E(Y |X5x)]r |X5x)5gr(x), x[R, r52,3, …, (7.11)

where for a specified value X5 these conditional moments are defined (see chapter 4)
by:

E(Yr |X5 )5
y[RY

yr · f(y | )dy, r51,2,…

E([Y2E(Y |X5 )]r |X5 )5
y[RY

[y2E(y | )]r · f(y | )dy, r52,3,…

Example
In the case of the joint distribution given in (7.7) and the conditional moments as given
in the example above, the functions associated with the conditional mean and variance
take the form:

x E(Y |X5x)5h1(x) x Var(Y |X5x)5g2(x)

1 0.387 1 0.301
2 0.902 2 0.380
3 0.749 3 0.758

The utilization of the concept of functions deals directly with the problem of many
different sets of conditional moments by rendering the moments functions of the values
of the conditioning variable. In cases where these functions can be defined in terms of
specific functional forms they provide easy ways to model dependence. As argued next,
for most bivariate distributions we can derive these functions explicitly.

7.2.2 Regression and skedastic functions

In modeling dependence we often concentrate only on the first few of these functions
related to the family of densities (7.6). In particular, the main objective of regression
models is to model (7.6) via the first few conditional moment functions as defined in
(7.11). The current literature on regression models concentrates almost exclusively on
the first two of such conditional moment functions.

(i) The regression function is defined to be the conditional mean of Y given X5x,
interpreted as a function of x:

E(Y |X5x)5h(x), x[RX. (7.12)

N that the term Regression was first coined by Galton (1885); see below.

xxExx

xEx

x
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(ii) The skedastic function is defined to be the conditional variance interpreted as a func-
tion of x:

Var(Y |X5x)5g(x), x[RX. (7.13)

The term skedastic was coined by Pearson (1905) and it is based on the Greek
words sk«́dash 5scattering, and sk«dastó§ 5scattered.
R : the graphs (h(x),x) and (g(x),x) for all x[RX, constitute what we call the
regression and skedastic curves, respectively.

(1) Bivariate Normal As shown above, in the case of the bivariate Normal distribution
(7.9) with f:5(m1,m2,s11,s12,s22), the conditional density of Y given X5x is also
Normal of the form:

(y |X5x),N m11 (x2m2) , s112 , x[R. (7.14)

This shows that w1:5(m2,s22), w2:5(b0,b1,s2) and the regression and skedastic functions
take the form given below:

E(Y |X5x)5b01b1x, Var(Y |X5x)5s2, x[R,

b05(m12b1m2)[R, b15 [R, s25 s112 [R1. (7.15)

As we can see, the regression function for the joint normal is a linear function of x and the
skedastic function is free of x.

The regression and skedastic functions (7.15) are shown in figures 7.1 and 7.2, respec-
tively, with parameter values m151.5, m251, s1151, s2251, and three different values
of s12520.8, 0.1, 0.9. As we can see, the slope of the regression line depends on the sign
of the covariance. In figure 7.2 we can see the corresponding skedastic curves which are
parallel to the x-axis, as expected. The Normal regression model is one of the few such
models where the marginal distribution of X can be ignored because, as shown in section
4 below, X is weakly exogenous with respect to the parameters w2.

Linear regression In the case where the conditional mean takes the form given in (7.15),
the regression function is said to be linear in x.

C . It is important to distinguish between linearity in x and linearity in the
parameters. The second degree polynomial of the form:

h(x)5a01a1x1a2x2, (7.16)

is non-linear in x but linear in the parameters (a1,a2,a3). On the other hand, the function:

h(x)5g12g3(x2g2)2,

is non-linear in both the parameters (g1,g2,g3) and x. N that there is a direct relation-
ship between the two sets of parameters: a05g12g3g2

2, a152g2g3, a252g3. This sug-
gests that the particular parameterization of interest is often a matter of choice.

The regression function (7.15) is linear in both x and the parameters (b0,b1) but from
(7.14) it is obvious that it is non-linear in the primary parameters (m1,m2,s11,s22,s12).

2s 2
12

s22
12s12

s22
1

242s 2
12

s22
1342s12

s22
131
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Homoskedasticity In the case where the conditional variance does not depend on the
conditioning variable, i.e., for some constant c0[R:

Var(Y |X5x)5c0, x[RX,

it is said to be homoskedastic (see (7.15)).

Heteroskedasticity In the case where the skedastic function depends on the values of the
conditioning variable, i.e.:

Var(Y |X5x)5g(x), x[RX,

it is said to be heteroskedastic.
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Figure 7.1 Normal regression lines

Figure 7.2 Normal skedastic lines
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It is interesting to  that the notions (and the terminology) of homoskedasticity/
heteroskedasticity were first introduced by Pearson (1905).

(2) Bivariate Student’s t In the case of the bivariate Student’s t distribution with n.2
degrees of freedom, denoted by:

(7.17)

the conditional density of Y given X5x and the marginal density of X are also Student’s
t (see Appendix B). The regression and skedastic functions take the form given below:

E(Y |X5x)5b01b1x, Var(Y |X5x)5 11 [x2m2]2 , x[R,

b05(m12b1m2)[R, b15 [R, s25 s112 [R1. (7.18)

As we can see, the parameters b0, b1 and s2 coincide with those of the conditional
Normal in (7.10). The skedastic function differs from that of the Normal in so far as
(7.18) is heteroskedastic: a function of the conditioning variable. In figure 7.3 we can see
three Student’s t skedastic functions (n54,8,20) with parameters (m251, s2251,
s12520.8). The curvature of the skedastic curve is inversely related to the degrees of
freedom parameter: the smaller the value of n the greater the curvature of the skedastic
function. It is interesting to  that in the case where n520 the skedastic curve is very
close to a straight line (a Normal skedastic line).

(3) Bivariate Exponential In contrast to the form of the regression and skedastic func-
tions of the bivariate Normal, in the case of the bivariate Exponential distribution the
regression and skedastic functions are highly non-linear in x (and thus heteroskedastic):

E(Y |X5x)5 , Var(Y |X5x)5 , x[R1 ,u.0.[(1 1 u 1 ux)2 2 2u2]
[1 1 ux]4

(1 1 u 1 ux)
(1 1 ux)2

2s 2
12

s22
12s12

s22
1

61
ns22

5ns2

n 2 1

1Y
X2 ,St13m1

m2
4,3s11  s12

s12  s22
4;n2,
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Figure 7.3 Student’s t skedastic curves
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The parameter u is non-linearly related to the correlation coefficient via:

r :5211 (e2x/(11ux))) dx,

with some typical values given below:

u5 0.01 0.2 0.5 1 2 3 4 8 12 20 600
2r5 0.01 0.148 0.278 0.404 0.538 0.614 0.665 0.770 0.820 0.870 0.990

In figure 7.4 we can see three Exponential regression curves (u51,2,3) and the corre-
sponding skedastic curves are shown in figure 7.5.

Regression: additional continuous distributions
Several additional examples of regression and skedastic functions associated with other
joint distributions are shown below in an attempt to dispel the erroneous impression that
the linearity of the regression function and the homoskedasticity of the skedastic func-
tion is the rule.

(4) Bivariate Pearson type II

E(Y |X5x)5b01b1x, 22(n12) ,x, 2(n12)

Var(Y |X5x)5s2 12 , x[R

b05(m12b1m2)[R, b15 [R, s25 s112 [R1.

The regression function of the Pearson type II distributions coincides with that of the
Normal and Student’s t distributions. Its skedastic function, shown in figure 7.6 for three
different values for the degrees of freedom (n51,2,3) and (m251,s2251,s12520.8), is

2s 2
12

s22
12s12

s22
1

62(x 2 m2)2

s22
121

(2n 1 3)15

Ïs22 ][Ïs22 ][

E`

0
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Figure 7.4 Exponential regression curves
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heteroskedastic but unlike that of the Student’s t, it has a finite range (compare figures
7.3 and 7.6).

Elliptically symmetric family The fact that the regression functions of the Normal,
Student’s t and Pearson type II distributions coincide is a special case of a general result.
All three distributions belong to the elliptically symmetric family of distributions which
share the same regression function (when the required moments exist). Moreover, the
skedastic function for all distributions but the Normal are heteroskedastic (see Spanos
(1994) for further discussion). The basic difference between these three elliptically sym-
metric distributions is in terms of their kurtosis: the Normal is mesokurtic (kurtosis5
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Figure 7.6 Pearson type II skedastic curves

Figure 7.5 Exponential skedastic curves
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3), the Student’s t distribution is leptokurtic (kurtosis.3) and the Pearson type II is
platykurtic (kurtosis,3).

(5) Bivariate Pareto

E(Y |X5x)5u11 x, Var(Y |X5x)5 x2, x[R1,

y.u1.0, x.u2.0, u3.0.

In figures 7.7 and 7.8 we can see the Pareto regression and skedastic curves with parame-
ters (u151,u251.5) and three different values of u352,4,8, respectively.

1u1

u2
2

2
 

(1 1 u3)
(1 1 u3)u2

3
1u1u3

u2
2
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Figure 7.7 Pareto regression lines

Figure 7.8 Pareto skedastic curves

V
ar

(Y
|X

5
x)

E
(Y

|X
5

x)

x

x



(6) Bivariate Logistic

E(Y |X5x)512 loge 11exp 2 , x[R,

Var(Y |X5x)5 p22152.29, m[R, s[R1.

In figures 7.9 and 7.10 we can see regression and skedastic curves from the Logistic dis-
tribution with parameters (m51,s50.5,1.2,4.5), respectively. As can be seen, the bivari-
ate Logistic distribution yields a highly non-linear regression curve and a homoskedastic
conditional variance function. It is worth noting that the bivariate Logistic is among
very few distributions with a constant skedasticity function.

1
3

42(x 2 m)
s13
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Figure 7.9 Logistic regression curves

Figure 7.10 Logistic skedastic line

E
(Y

|X
5

x)
V

ar
(Y

|X
5

x)

x

x



(7) Bivariate Beta

E(Y |X5x)5 (12x), Var(Y |X5x)5 (12x)2,

for x[ [0,1], where u1.0,u2.0,u3.0.

In figure 7.11 we can see skedastic curves from the Beta distribution with parameters
(u1520,u2520,u351), (u154,u254,u354), (u151,u251,u358). In view of the fact
that the correlation coefficient takes the form:

r52 ,

we can see that the slope of these lines is directly related to the correlation. In figure
7.12 we can see the corresponding skedastic curves.

Î u1u2

(u1 1 u3)(u2 1 u3)

3 u2u3

(u2 1 u3)2(1 1 u2 1 u3)4
u2

[u2 1 u3]
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Figure 7.11 Beta regression lines

Figure 7.12 Beta skedastic curves
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(8) Bivariate Gamma (Kibble)

E(Y |X5x)5u2(12u1)1u1x, x[R1, u1[(0,1), u2[R1,

Var(Y |X5x)5(12u1)[u2(12u1)12u1x], x[R1.

In figures 7.13–14 we can see regression and skedastic curves from the Gamma (Kibble)
distribution with parameters (u151.0,1.5,2.0, u252.0). N that u1 is the correlation
coefficient.
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Figure 7.13 Gamma (Kibble) regressions

Figure 7.14 Gamma (Kibble) skedastic curves
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(9) Bivariate Gamma (Cherian)

E(Y |X5x)5u21 x, x[R1, (u0,u1,u2)[R1
3,

Var(Y |X5x)5u21 x2, x[R1.

In figures 7.15–16 we can see regression and skedastic curves from the Gamma
(Cherian) distribution with parameters (u050.1,2.0,20.0, u152.0,u251). N that the
correlation coefficient takes the form r5 , and thus for the above three

values of u0 the correlation takes the values: 0.066, 0.577, 0.930, respectively. The slope

u0

Ï(u1 1 u0)(u2 1 u0)

3 u0u1

(u1 1 u0)2(1 1 u1 1 u0)4

4u0

(u1 1 u0)3
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Figure 7.15 Gamma (Cherian) regressions

Figure 7.16 Gamma (Cherian) skedastic curves
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of the regression lines is higher the higher the correlation and the curvature of the
skedastic curves being higher the higher the correlation.

(10) Bivariate Gamma (McKay)

E(Y |X5x)5 1x, x[R1, (u1,u2,a)[R1
3,

Var(Y |X5x)5 , x[R1,

E(X |Y5y)5 y, y.x[R1, (u 1,u 2,a)[R1
3,

Var(X |Y5y)5 y2, y.x[R1.

I  . This bivariate Gamma distribution illustrates an important issue
in relation to regression type models. Given the dominance of the bivariate Normal dis-
tribution, there is a misconception that all bivariate distributions are symmetric with
respect to the random variables X and Y. In the above case of the McKay bivariate
Gamma distribution the conditional distributions f(y |x;u) and f(x |y; u) are very
different, leading to conditional moments which bear no resemblance to each other. For
instance f(y |x;u) gives rise to a homoskedastic function but f(x |y;u) gives rise to a hetero-
skedastic function.

(11) Bivariate F

E(Y |X5x)5 1 x, x[R1, (u 0,u 1,u 2)[R1
3,

Var(Y |X5x)5 (u01u1x)2, x[R1, (u11u2).4.

In figures 7.17–18 we can see three regression and skedastic curves from the F distribu-
tion with parameters (u0580,u154,u252), (u0512,u158,u258), (u055,u1560,u25

60). N that the correlation coefficient takes the form:

r5 ,

and thus for the above three sets of values the correlation is 0.035, 0.444, and 0.952,
respectively. The regression lines have a higher slope the higher the correlation and the
skedastic curves exhibit higher curvature the higher the correlation.

(12) Bivariate log-Normal

E(Y |X5x)5 em11 s2
, x[R1, s25s112(s 2

12/s22)[R1,

Var(Y |X5x)5 e2m11s2(es221), x[R1, b5 [R.

Figure 7.19 shows three regression functions from a log-normal distribution with
parameters (m151,m251,s250.4) and three different values of b50.2, 0.4, 0.8. N

that the main difference between these regression curves and the corresponding skedastic
curves shown in figure 7.20 is the scaling factor (es221).

1s12

s22
21 x

m2
2

2b

1
21 x

m2
2

b

Î u1u2

(u1 1 u0 2 2)(u2 1 u0 2 2)

3 2(u1 1 u2 1 u0 2 2)
u2(u1 1 u0 2 4)(u1 1 u0 2 2)24

3 u1

(u0 1 u1 2 2)4
u0

(u0 1 u1 2 2)

3 u1u2

(u1 1 u2)2(1 1 u1 1 u2)4

3 u1

(u1 1 u2)4

3u1

a24

3u1
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Regression: discrete distributions

(13) Bivariate Binomial

E(Y |X5x)5u2(12u1)(n2x), Var(Y |X5x)5 (n2x),

u1[(0,1), u2[(0,1), n51,2,…, u11u2,1, x50,1,…

(14) Bivariate Poisson

E(Y |X5x)5(u22u3)1 x, x50,1,2, …, u1.0, u2.0, u3.0,

Var(Y |X5x)5(u22u3)1 [u12u3] x, x50,1, …, u 3,min (u1,u2).2u3

u2
1

1

1u1

u3
2

u2(1 2 u1 2 u2)
(1 2 u1)
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Figure 7.17 F regression lines

Figure 7.18 F skedastic curves
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(15) Bivariate Negative Binomial

E(Y |X5x)5 (u11x), x50,1,2, …, u2[(0,1), u1.0,

Var(Y |X5x)5 (u11x), x50,1,2,…

We conclude this subsection by  that among the above examples, the Normal is
the only joint distribution with a linear regression function and a homoskedastic condi-
tional variance. The majority of the above distributions have heteroskedastic condi-
tional variances and several have non-linear regression curves.

u2

(1 2 u2)2

u2

(1 2 u2)
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Figure 7.19 Log-Normal regression curves

Figure 7.20 Log-Normal skedastic curves
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7.2.3 Clitic and kurtic functions

The question that naturally arises at this stage is: Why consider only the first two condi-
tional moment functions (regression and skedastic) in modeling dependence? We know
that in general we need many (often and infinite number) of moments to characterize dis-
tributions (see chapter 3). The fact of the matter is that there is no convincing argument
why the modeler should consider only the first two conditional moment functions unless
the distribution is assumed to be Normal; see chapter 3. Once more this situation arose
because the Normal distribution has exercised its well-known undue influence. In econo-
metric modeling there is an almost exclusive focus on the regression function with rare
excursions into the skedastic function territory. A cursory look at current traditional
econometric literature, however, reveals a kind of schizophrenia about the specification
of the linear model as it is traditionally called. On the one hand, traditional textbooks
extol the virtues of the Gauss Markov theorem, based on a linear regression and a homo-
skedastic function (see chapter 13), because of its non-reliance on the Normality
assumption. The question, however, arises: Why specify only the first two conditional
moments if one does not assume Normality? On the other hand, there is an unexplained
attachment to the Normal distribution even in cases where heteroskedasticity is explic-
itly modeled (see Spanos (1995a)). Moreover, the tendency in modeling heteroskedastic-
ity is to use ad hoc functions instead of specific functional forms related to joint
distributions other than the Normal. The above examples suggest that there are several
other distributions that give rise to different forms of heteroskedasticity which remain
unexplored; see Spanos (1994) on results relating to the symmetrically elliptic family.

Probability theory suggests that there are good reasons to believe that when dealing
with non-symmetrically elliptic joint distributions some additional conditional moment
functions will be needed to capture higher-order dependence. The next two central
conditional moment functions, first introduced by Pearson (1905), are:

(iii) clitic function: E([Y2E(Y |X5x)]3 |X5x)5g3(x), x[RX,
(iv) kurtic function: E([Y2E(Y |X5x)]4 |X5x)5g4(x), x[RX.

Examples
(i) In the case of the bivariate Beta distribution these functions take the form:

E([Y2E(Y |X5x)]3 |X5x)5 (12x)3, x[ [0,1],

E([Y2E(Y |X5x)]4 |X5x)5 (12x)4.

As we can see, the bivariate Beta distribution yields heteroclitic and heterokurtic func-
tions. The notions and the terminology homoclitic/heteroclitic were introduced by
Pearson (1905).
(ii) In the case of the bivariate Student’s t distribution these functions take the form:

E([Y2E(Y |X5x)]3 |X5x)50, x[R,

E([Y2E(Y |X5x)]4 |X5x)5 [Var(Y |X)]2, x[R.3(n 2 1)
(n 2 3)

3 3u2u3(2u2
2

2 2u2u3 1 u2
2u3 1 2u2

3 2 u2u2
3)

(u2 1 u3)4(1 1 u2 1 u3)(2 1 u2 1 u3)(3 1 u2 1 u3)4

3 2u2u3(u3 2 u2)
(u2 1 u3)3(1 1 u2 1 u3)(2 1 u2 1 u3)4
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As we can see, the bivariate student’s t distribution yields homoclitic and heterokurtic
functions; the latter is of a special form being a function of the skedastic function. Both
features are due to the elliptic nature of the distribution.

7.3 Reduction and stochastic conditioning

Having dealt with the problem of many conditional distributions by extending the
notion of moments to conditional moment functions, let us return to the original reduc-
tion:

f(x,y;f)5f(y |x;w2) ·fx(x;w1), for all (x,y)[RX3RY. (7.19)

We observe that on the right-hand side there exists a family of conditional densities,
where each one is weighted by the corresponding marginal probability. In defining the
conditional moment functions:

hr(x)5E(Yr |X5x), x[RX,

we ignored the marginal weights and concentrated exclusively on the family of condi-
tional densities {f(y |X5x;w2), (x,y)[RX3RY}. In some sense this amounts to assum-
ing that the different values taken by the random variable X occur with probability one:

hr(x)5E(Yr |X5x), where P(X5x)51, for all x[RX. (7.20)

However, as shown in (7.19) this is not quite correct. A more appropriate way to specify
these functions is to take into consideration the marginal probabilities associated with
the different values x[RX. The problem is to specify these functions without ignoring
the fact that different values of X occur with different probabilities as given by the mar-
ginal density f(x;w1). N again that in the case of continuous random variables, as
mentioned in chapter 3, the weights are not proper probabilities.

The formal way to deal with this problem is to extend the concept of conditioning one
step further: to account for all events associated with the random variable X; not just its
range of values. That is, instead of concentrating exclusively on conditioning events of
the form:

{s:X(s)5x}, for all x[RX,

in the context of the probability space (S,I,P(.)), we consider the s-field generated by the
random variable X (for all possible events associated with X; see chapter 3):

s(X):5s(X21(2`,x][I, for all x[RX).

This enables us to define the stochastic conditional moment functions:

hr(X)5E(Yr |s (X)), for X,DX(.), (7.21)

where DX(.) denotes the marginal distribution of the random variable X. This condi-
tioning is meaningful because s (X),I. The question, however, is: What meaning do
we attach to such stochastic conditioning functions? It is obvious that the functions
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hr(X)5E(Yr |s (X)) are different from those in (7.20) because the former are random
variables, being a function of the random variable X; hence a random variable itself!
They look like conditional moments but they are stochastic in nature!

R : without any loss of generality we concentrate on the simple case r51. This is
because for any random variable Z and any function of the form Zr we can define a new
random variable Y5Zr.

7.3.1 Meaning of E(Y|s (X )) 

We first encountered conditioning in the context of the probability space (S,I,P(.)) in
relation to events A,B[I. We remind the reader that the mathematical notion of proba-
bility P(.) requires the modeler to specify the set of all events of interest associated with
S, say I, and the mathematical setup is defined by the probability space (S,I,P(.)). In
this context, the conditional probability of A given B takes the form:

P(A |B)5 , for P(B).0,

and conditioning on B it can be intuitively understood that “it is known that event B has
occurred.” Conditioning in general is defined relative to knowing that certain event(s)
have occurred. In this sense the conditional density:

f(y | )5 , y[RY,

should be understood as the revised density of the random variable Y given that the
event {s:X(s)5 } has occurred. At this point it is crucial to emphasize once more that a
conditional distribution is defined at a particular value of the conditioning variable.
Using the conditional density we can define the conditional expectation unambiguously
as:

E(Y |X5 )5
y[RY

yf(y | )dy.

In view of the above discussion the expression:

E(Y |X), (7.22)

makes no mathematical sense because the conditioning is not relative to an event; a
random variable is not an event (a subset of the reference outcomes set S). Intuitively,
however, we know that for each value X5x this is well defined and so one can think of
(7.22) as a function of X and hence a random variable itself. Our intuition is indeed
correct but we need to formalize it. For a random variable X defined on S, the event
{s:X(s)5 } constitutes an element of I, in the sense that X21( )[I. Indeed, by defini-
tion (see chapter 3):

X21(x)[I, for all values x[RX.

In view of this we can deduce that the only way (7.22) could make mathematical sense
is to turn the conditioning random variable into a set of events. That is, define s(X): the

xx

xEx

x

f(x,y)
fx(x)

x

P(A>B)
P(B)
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s-field generated by the random variable X (see chapter 3). In this sense the conditional
expectation:

E(Y |s(X)), (7.23)

should be meaningful because, at least intuitively, this represents the expectation given
that “some event related to X has occurred.” Common sense suggests that the ordinary
expectation E(Y) can be viewed from this angle as:

E(Y |D0), where D05{S,Ø}, the trivial event space (non-informative).

Viewed in this light s(X) constitutes a restriction on I (all-informative) in the sense that
(see chapter 3):

{S,Ø},s(X),I.

Having agreed that (7.23) does make intuitive sense we need to ensure that it also
makes mathematical sense.

A simple case Before we consider the general case let us discuss first the case where both
random variables Y and X are discrete and take only a finite number of values, i.e.:

RY:5{y1,y2,…,yn}, RX:5{x1,x2,…,xm}.

In this case the conditional mean (7.23) can be thought of in terms of the events:

B:5{Bk, k51, …, m}, where Bk:5{s:X(s)5xk}, (7.24)

which constitute a partition of S, in the sense that:

S5 m
k51Bk, and Bk>Bi5Ø, iÞk, i,k51,2, …, m.

In terms of these events we can think of s(X) as defined by their 2m unions; no intersec-
tions or complementations are needed because B constitutes a partition of S.

Example
Consider the example of tossing a coin twice, S5{(HH),(HT),(TH),(TT)}, I is chosen
to be the power set, and define the random variables:

X(TT)50, X(HT)5X(TH)51, X(HH)52,
Y(TT);5Y(HH)52, Y(HT)5Y(TH)51.

Taking the pre-image of the random variable X we can see that:

B05X21(0)5{(TT)}, B15X21(1)5{(HT),(TH)}, B25X21(2)5{(HH)},

showing that this constitutes a partition of S, since:

B0>B15Ø, B1>B25Ø, B0>B25Ø, and S5B0<B1<B2.

Hence, s (X)5{S,Ø,B0,B1,B2,B0<B1,B0<B2,B1<B2}.

<
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Returning the conditional mean (7.23), we can view it in terms of the events Bk:

E(Y |Xk5xk)5 n
i51yi ·P(Y5yi |X5xk), k51,2, …, m, (7.25)

which defines a sequence of conditional means, one for each value of X, where:

P(Y5yi |X5xk)5 , i51,2, …, n, k51,2, …, m. (7.26)

In this sense the different conditional means in (7.25) can be interpreted in terms of the
random variable:

Z(.):5E(Y(.) |s (X(.))): S → R, (7.27)

such that when X(s)5xk then Z(s)5zk, k51,2, …, m. Moreover, substituting (7.26) into
(7.25) and re-arranging the terms yields:

E(Y |Xk5xk) ·P(X5xk)5 n
i51yi ·P(Y5yi,X5xk), k51,2, …, m.

At this stage we should resist the temptation to interpret the conditional mean (7.23) as
the summation:

m
k51E(Y |Xk5xk) ·P(X5xk)5 m

k51
n
i51yi ·P(Y5yi,X5xk), (7.28)

because, as shown above, s(X) involves more events than just m
k51Bk. A moment’s reflec-

tion, however, suggests that this summation (7.28) defines the stochastic conditional
mean:

E(Y(.) |B): S → R.

Reminding ourselves that going from B as defined in (7.24) (not a s-field) to s(X) we just
add all unions of the events Bk[B, the random variable (7.27) can be thought of in
terms of all events B[s(X) as:

B[s(X)
E(Y |s(X)) ·P(B)5

B[s(X)

n
i51yi ·P (Y5yi,B) for all B[s (X). (7.29)

It is clear that E(Y |s(X)) is a random variable relative to s(X).

Example
Consider the following joint distribution:

x\y 21 0 1 f(x)

21 0.1 0.2 0.1 0.4
1 0.2 0.1 0.3 0.6

f(y) 0.3 0.3 0.4 1
(7.30)

The conditional distribution(s) of (Y |X5x) for x521 and x51 is given below:

y 21 0 1 y 21 0 1

f(y |x521) f(y |x51) (7.31)1
2

1
6

1
3

1
4

1
2

1
4

ooo

<

ooo

o

P(Y 5 yi,X 5 xk)
P(X 5 xk)

o
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Moreover, the conditional means in these cases are:

E(Y |X521)5(21) 10 11 50, E(Y |X51)5(21) 10 11 5 .

E(Y |s (X)) is a random variable relative to s (X) in the sense that it can take two values
0, with probabilities (0.4,0.6), respectively:

x 21 1

P(X5x) 0.4 0.6

E(Y |s (X)) 0 (7.32)

The general case More mathematically inclined books express (7.29) in the general case,
where (X,Y) are arbitrary random variables, using the rather unappetizing expression:

E(Y |s (X)) ·dP5 Y ·dP, for all B[s (X). (7.33)

This says that the average of E(Y |s (X)) over B is the same as the average of Y itself over
the all subsets B,s(X) ,I.

N that in general YÞE(Y |s (X)) because Y is not necessarily a random variable rel-
ative to s(X). This result was first proved by Kolmogorov (1933a), but the mathematics
needed to derive the above relationship rigorously are rather demanding (see Ash (1972)
for a more rigorous derivation). However, an intuitive understanding of (7.33) can be
gained by viewing the expectation as a smoothing operator.

The most convenient way to get rid of the unappetizing integrals (or summations) in
(7.33) (and (7.29)) is to use the indicator function in conjunction with the expectation
operator, i.e.:

Z ·dP:5E[Z ·IB],

where IB denotes the indicator function of the set B: IB(s)5
1, if s[B,5 0, if sÓB.

This enables us to express (7.33) in the less intimidating form:

E[E(Y |s (X)) · IB]5E[Y ·IB], for all B[s (X). (7.34)

R : in view of the fact that s(X) includes all possible Borel functions of the
random variable X, we can define E(Y |s(X)) in terms of such functions via:

E[E(Y |s(X)) ·g(X)]5E[Y ·g(X)], for any Borel function g(X),

assuming that E[Y ·g(X)],`; see Parzen (1962).

A further extension The above definition of conditional expectation (7.34) in the context
of the probability space (S,I,P(.)),can be extended further to:

E[E(Y |D) · ID]5E[Y ·ID], for any D[D,I,

E
B

E
B

E
B

1
6

21
61

1
621

2121
6121

3121
4121

21
1
4
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where the definition of the random variable E(Y |D) revolves around the choice of D. At
the one extreme of the spectrum we can choose D to be the non-informative sub-field
D0:5{S,Ø} in which case:

E(Y |D0)5E(Y),

where Y0:5E(Y |D0) can be viewed as a degenerate random variable of the form:

Y0(.): S → E(Y), with probability one (w.p.1).

N that this is a random variable with respect to any D,I; all s-fields include
{S,Ø}. Viewed as a smoothing operation, the random variable Y is completely
smoothed down to a constant. At the other extreme of the spectrum we can choose D to
be the all-informative (for Y) sub-s-field DY:5s(Y), in which case the conditioning
gives rise to:

E(Y |DY)5Y, where Y(.): S → RY.

Viewing the conditional expectations as a smoothing operation, the random variable Y is
left intact. N that in general Y is not a random variable with respect to D0. Between
these two extreme cases we can choose D to be any sub-s-field such that:

D>DY5D*ÞØ. (7.35)

This enables us to think of D* as the amount of information about Y that D contains
and E(Y |D ) can be viewed as a smoothing operation whose effect is inversely related to
how close D* is to DY. In particular, the choice D0:5{S,Ø} contains no information
about Y (yielding a degenerate random variable) and the choice DY contains all the rele-
vant information about Y (yielding the random variable Y itself). The choice DX:5s(X)
for which (7.35) holds, will give rise to some smoothing of Y which lies between these two
extremes.

Stochastic conditional expectation function Collecting the above threads together we
define E(Y |s (X)) as a random variable which satisfies the following properties:

(i) E(Y |s (X)) is a random variable relative to s (X),
(ii) E(Y |s (X))5h(X), for some h(.): R → R,
(iii) E[E(Y |s (X)) · IB]5E ([Y ·IB] for all B[s (X)).

N that we need to establish existence as well as uniqueness of E(Y |s (X)). The exis-
tence is established by the mathematical derivation of (7.33) (using the so-called Radon-
Nikodym derivative). The uniqueness of the conditional expectation E(Y |s(X))5h(X)
also stems from the same mathematical apparatus but it is an almost sure (a.s.)
(see chapter 3) uniqueness which says that for any two conditional expectations
E(Y |s(X))5h1(X) and E(Y |s(X))5h2(X), it must be true that:

P(h1(X)5h2(X))51 or h1(X)5h2(X) a.s.

This notion of conditional expectation can be extended to any sub-s-field D,I,
since we can always find a random variable X such that s(X)5D, in the sense that all
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events (X#x)[D, for all x[R. This is another way of saying that the information D
conveys to the modeler what the random variable X does. N that X could easily be a
random vector.

Example
It is interesting to note the two extreme cases of such a conditional expectation which are
D05{S,Ø} and D5I:

E(Y |{S,Ø})5E(Y), E(Y |I)5Y.

The first follows from the fact that D0 is non-informative and the second because I
includes all relevant information including s(Y).

7.3.2 Determining hr(X)5E(Yr|s(X)) 

Having established the existence and the a.s. uniqueness of E(Yr |s(X)), we proceed to
consider the question of determining the functional form of hr(X)5E(Yr |s(X)).
Common sense suggests that the similarity between (7.20) and (7.21) will carry over to
the functional forms. That is, when the ordinary conditional moment functions takes the
form:

E(Yr |X5x)5hr(x), x[RX, r51,2, …,

we interpret the stochastic conditional moment functions as:

E(Yr |s(X))5hr(X), for X,DX(.), r51,2,… (7.36)

In this sense one can conjecture that:

E(Yr |X5xi)5hr(xi), for all xi[RX ⇒ E(Yr |s(X))5hr(X). (7.37)

This conjecture turns out to be valid. That is, the functional form of the ordinary and the
corresponding stochastic conditional moment functions coincide. The only difference
being that the stochastic conditional moment functions are random variables.

The question which naturally arises is how does one determine the function hr(x) in the
first place. The answer from the modeling viewpoint is that both the conditional densities
as well as the conditional moment functions are determined by the joint density as
shown in (7.19). However, this answer is not always feasible and we need to consider
alternative ways to determine these functions. Again, without any loss of generality we
consider the simplest case r51.

Defining property Let X and Y be two random variables defined on the same probability
space (S,I,P(.)) such that E( |Y | ),`, then

E(Y |s (X))5h(X), defined via: E[(Y2h(X)) ·g(X)]50, for all g(.), (7.38)

where g(.): RX → R is any bounded Borel function.
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7.3.3 Properties of stochastic conditional expectation

From the discussion above it is obvious that any attempt to operationalize the reduction
of the joint distribution in (7.3) will require not just ordinary conditional distributions of
the form encountered in chapter 6, but products of the form:

f(x,y;f)5f(y |x;c2) ·f(x;c1), for all (x,y)[RX3RY. (7.39)

As argued above, the notion of the corresponding conditional moment functions
changes to:

E(Yr |s(X))5hr(X), r51,2,…

In order to be able to handle such random moments we proceed to state certain useful
properties of the conditional expectation E(Y |s(X)). We note at the outset that for the
purposes of the discussion that follows E(Y |X5x) can be profitably viewed as a special
case of E(Y |s(X)).

Consider the three random variables X, Y, and Z defined on the same probability
space (S,I,P(.)), whose moments, as required in each case, exist. The first important
property is that the conditional expectation enjoys the same linear mathematical struc-
ture as the ordinary expectation (see chapter 3).

Linearity
CE1 E(aX1bY |s(Z))5aE(X |s (Z))1bE(Y |s (Z)), a and b constants.

This property can be easily adapted to the special case: E(aX1bY |Z5z).
A second important property is that the conditional expectation is related to the

ordinary expectation by taking another expectation with respect to the conditioning
variable.

The law of iterated logarith (lie)
CE2 E(Y)5E[E(Y |s(X))].

This property follows directly from the definition of the conditional expectation
since:

E[E(Y |s (X)) · Is(X)]5E[Y · Is(X)]5E(Y).

N : the double expectation is defined as follows:

E[E(Y |X)]5 y ·f(y |x)dy ·f(x)dx.

In other words, to derive the (marginal) mean using the conditional mean, we take
expectations of the conditional expectation, with respect to the marginal distribution of
the random variable X.

Example
Consider the joint distribution (7.30) together with the conditional densities (7.31). Let

4E`

2`
3 E

`

2`

Reduction and stochastic conditioning 363



us derive E(Y) via the conditional expectations. The property CE2 suggests taking
expectations of E(Y |X) over X i.e.

E(Y)5(0.4)E(Y |X521)1(0.6)E(Y |X51)50.1,

which coincides with the direct evaluation of the expectation:

E(Y)5(21)(0.3)10(0.3)11(0.4)50.1.

Similarly, the conditional distribution(s) of x given y521,0,1 are given below:

E(X |Y521)5(21) 11 5 , E(X |Y50)5(21) 11 52 ,

E(X |Y51)5 (21) 11 5 .

E(X)5(0.3)E(X |Y521)1(0.3)E(X |Y50)1(0.4)E(X |Y51)50.2

which coincides with the direct evaluation: E(X)5(21)(0.4)11(0.6)50.2.

A third property of the conditional expectation is that any Borel function of the random
variable X (which is a random variable relative to s(X)) passes through the conditioning
unaltered.

Taking out what is known property
CE3 E(h(Y) ·g(X) |s (X))5g(X) ·E(h(Y) |s (X)).

This property implies that in the case where Y is a random variable relative to s(X):

E(Y |s(X))5Y a.s.

The property CE3 can be easily adapted to the special case E(h(Y) ·g(X) |X5x), and
can be used to enhance our intuition. When a conditioning random variable is “nailed
down” at some value X5x, this indirectly “nails down” any functions of X.

Example
Consider the functions h(Y)5 , g(X)5X2:

E(h(Y) ·g(X) |X521)5(21)2E( |X521)5E( |X521).

The above properties are particularly useful in the context of regression models for
numerous reasons which will be discussed in the next few sections. At this point it is
instructive to use these properties in order to derive an important result in relation to
linear regressions.

Example. In the case of the bivariate Normal distribution the conditional mean takes
the form:

E(Y |s(X))5b01b1X, (7.40)
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where the parameters (b0,b1) take the form given in (7.10). If we start from (7.40), the
question that arises is: How are the parameters b0 and b1 related to the moments of
f(x,y)? Using the lie (CE2) we can deduce that E(Y)5b01b1E(X) i.e.

b05E(Y)2b1E(X). (7.41)

Applying the lie (CE2) and the “taking out what is known” (CE3) properties we can
deduce that:

E(X·Y)5E[E(X·Y |s(X))]5E[X·E(Y |s(X))].

Substituting the form of the stochastic conditional mean we can deduce that:

E(XY) 5E[X · (b01b1X)]5E{X · [E(Y)2b1E(X)1b1X]}5

5E(X) ·E(Y)1b1E{[X2E(X)] ·X}5

5E(X) ·E(Y)1b1{E(X22E(X) ·E(X)}5

5E(X) ·E(Y)1b1[E(X2)2 [E(X)]2]5E(X) ·E(Y)1b1Var(X),

⇒ Cov(XY)5E(X ·Y)2E(X) ·E(Y)5b1Var(X),

b15 . (7.42)

This result implies that, irrespective of the nature of the joint density f(x,y), if the
regression function is linear, when expressed in the form E(Y |s (X))5b01b1X, the
parameters b0 and b1 are related to the moments of f(x,y) via (7.41) and (7.42). Also note
that in view of the relationship between the covariance and correlation coefficient
Corr(X,Y)5 , b1 can also be expressed in the equivalent form:

b15 Corr(X,Y).

This is the reason why in section 2 we related the linear regression functions to the
correlation coefficient even in cases of non-symmetric distributions where the correla-
tion is not an adequate measure of the distribution dependence. The bottom line is that
when one postulates (7.40) the implicit parameterization coincides with the parameter-
ization under the bivariate Normality assumption given in (7.10).

The best least-squares predictor property
CE4 E[Y2E(Y |s(X))]2 # E[Y2g(X)]2 for all g(.).

This means that from among all possible functions g(.) of X,(E(Y2g(X))2,`) the dis-
tance, referred to as the mean squared error (MSE): E(Y2g(X))2, is minimized by the
function: g(X)5E(Y |s (X)).

That is, the conditional mean provides a best mean squared error predictor. This is a
particularly useful property because it renders conditional expectation the obvious
choice for a predictor (forecasting rule).

The last property of stochastic conditional expectation is related to the size of the
conditioning information set.

3ÎVar(Y)
Var(X)4

Cov(X,Y)
ÏVar(X)·Var(Y)

Cov(X,Y)
Var(X)
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The corset property
CE5 E{E(Y |s (X,Z)) |s(X)}5E{E(Y |s(X)} |s(X,Z)}5E(Y |s (X)).

The intuition underlying this property is that in sequential conditioning the smaller
conditional information set (note that s (X),s (X,Z)) dominates the conditioning. Like
wearing two corsets; the smaller will dominate irrespective of the order you are wearing
them!

7.4 Weak exogeneity*

In the previous two sections we discussed the question of dealing with the reduction:

f(x,y;f)5f(y |x;w2) ·f(x;w1), for all (x,y)[RX3RY. (7.43)

In section 2 we ignored the marginal distribution f(x;w1) and argued that we can deal
with the many conditional distributions (one for each value of X) by extending the
notion of conditional moments to functions. In section 3 we extended the concept of
conditional moment functions to its stochastic version which takes account of the
weights as defined by the marginal distribution.

The question which naturally arises at this stage is whether there exist any circum-
stances under which the modeler can actually ignore the marginal distribution and
model in terms of the conditional moment functions. This would be useful because by
ignoring the marginal distribution we reduce the number of unknown parameters and
thus deal with the problem of overparameterization. As argued in the introduction, the
reduction in (7.3) offers no relief from the problem of overparameterization. In order to
make the discussions less abstract we will discuss this issue in relation to a specific
example.

Example
As shown above, in the case where f(x,y;f) is bivariate Normal as given in (7.9), the
conditional and marginal densities are also Normal:

(Y |X5x),N(b01b1x,s2), x[R, X,N(m2,s22),

b05m12b1m2, b15 , s25s112 . (7.44)

The reduction has induced a re-parameterization of the form: f → (w1,w2):

f:5(m1,m2,s12,s11,s22)[F:5 (R33R1
2),

w1:5(m2,s22)[F1:5(R3R1 ),
w2:5(b0,b1,s2)[F2:5(R23R1),

but the number of unknown parameters has not changed.

This suggests that unless there is some way to ignore certain parameters, say the para-
meters w1 of the marginal distribution, there is no real simplification of the modeling
problem because, in a sense, we are still dealing with the joint distribution. The question

1s2
12

s22
21s12

s22
2
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which naturally arises at this stage is to what extent can we concentrate exclusively on
the conditional distribution and its parameters in the case where the marginal distribu-
tion is of no intrinsic interest. The answer in a nutshell is it depends on how the two sets
of parameters w1[F1, w2[F2 constrain each other. The answer is yes in the case where
F2 (the set of permissible values of w2) is not affected by any of the values taken by w1[

F1 and vice versa, but no otherwise. The concept we need is the so-called variation free-
ness.

Variation freeness We say that w1 and w2 are variation free if for all values of w1[F1, the
range of possible values of w2 remains in the original parameter space F2 and not some
proper subset of it.

Using the notion of variation freeness we can give a more formal answer to the above
question on whether we can concentrate on the conditional distribution.

Weak exogeneity In the case where the parameters of interest are those of w2 (or some
function of them) only and w1 and w2 are variation free, then X is said to be weakly exoge-
nous with respect to w1 and f(x;w1) can be ignored. In cases where X is not weakly ex-
ogenous with respect to w1 we need to construct the statistical model taking into
consideration both the conditional and marginal distributions in (7.43); (see Engle,
Hendry and Richard (1983)).

The notion of weak exogeneity will be illustrated below in the context of specific exam-
ples, beginning with the Normal bivariate case.
(i) Bivariate Normal. In the case where f(x,y;f) is bivariate Normal, as given in (7.9),

we note that w1[F1:5R3R1and w2:5(b0,b1,s2)[F2:5R23R1. Hence, one can
argue that X is weakly exogenous with respect to w2 because, no matter what values
of w1 in F1 one chooses, the parameters w2 can take all their possible values in F2.

(ii) Bivariate Student’s t. In the case of the bivariate Student’s t distribution with n.2
degrees of freedom, denoted by:

(7.45)

the conditional density of Y given X5x and the marginal density of X are also Student’s
t of the form:

(y |X5x),St b01b1x, 11 [x2m2]2 n11 , x[R.

X,St(m2, s22;n), (7.46)

where the parameters (b0,b1,s2) coincide with those of the bivariate Normal (see (7.44)).
The parameterizations involved take the form:

f:5(m1,m2,s12,s11,s22)[F:5R33R1
2,

w1:5(m2,s22)[F1:5R3R1,
w2:5(b0,b1,m2,s22,s2)[F2:5R33R1

2.
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In view of these results one can argue that X is not weakly exogenous with respect to w2

because the parameter values taken by w2 in F2 can be directly restricted via w1, because
(m2,s22) appear in both sets of unknown parameters. As a result of this, the modeling
cannot ignore the marginal distribution of X, even if the parameters of interest are those
in w2. In this sense the above conditioning is rather misleading; we should have used
conditioning on the s-field s(X) instead, with the regression and skedastic curves being:

E(Y |s(X))5b01b1X, Var(Y |s(X))5 11 (X2m2)2 . (7.47)

We conclude this section by noting two important features of weak exogeneity.
(i) The concept of weak exogeneity is inextricably bound up with the joint distribution

and its parameterization in relation to that of the conditional and marginal distrib-
utions.

(ii) In view of the results in the previous two sections, weak exogeneity is likely to be the
exception and not the rule in practice.

7.5 The notion of a statistical generating mechanism (GM)

As argued in chapter 1, for observed data to provide unprejudiced evidence in assessing
the validity of a certain theory it is imperative that we built the statistical model (a conve-
nient summary of the data) in terms of non-theory concepts. In chapters 2–6 we intro-
duced several probabilistic concepts purporting to provide the foundation and the
scaffolding of the framework in the context of which such statistical models can be built.
The concept of a statistical model defined so far has just two components, the probability
and the sampling models. Although this is sufficient for simple statistical models, for
modeling economic phenomena which exhibit dependence and heterogeneity we need to
introduce a third component we call a statistical generating mechanism (GM). The
primary objective of this component is to provide a bridge between the statistical model
and the theoretical model, as suggested by economic theory. The ultimate objective of
empirical modeling is not just the summarization of the systematic information in the
data in the form of a parsimonious parametric model, but the use of such models to
understand economic phenomena. In this sense relating such statistical models to eco-
nomic theory models is of fundamental importance. In the present book relating an ade-
quate statistical model to the economic theory models in question is called identification
(see also Spanos (1986,1990)).

7.5.1 The theory viewing angle

The above thesis should be contrasted with the traditional textbook approach to econo-
metric modeling (see inter alia Gujarati (1995)) which assumes at the outset that the sta-
tistical GM and the theoretical model coincide apart from some error term, irrespective
of the nature and structure of the observed data. Let us consider the theory-model
known as the absolute income hypothesis:

C5a1bYD, where a.0, 0,b,1,

61
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where C and YD denote the theoretical variables consumption and income, respectively.
This model is metamorphosed into the Linear Regression model:

Ct5a1bYt
D1«t, «t,NIID(0,s2), t51,2, …, T, (7.48)

(i) by pretending that these theory variables coincide with whatever the available
observed data happens to measure, and

(ii) by attaching a (Normal) white-noise error term to the theory model.

It goes without saying that (i) is childlike naive and (ii) destroys at the outset any possibil-
ity that the data might provide unprejudiced evidence in assessing the validity of the
theory in question. The modeler is simply forcing the theory on the data and then pro-
ceeds to play Procrustes; chop off the bits that seem to stick out! Moreover, this view-
point gives the impression that a theory model in the form of a linear equation between
two observable variables is a pre-requisite for the modeler to be able to specify a linear
regression model. This constitutes the theory viewing angle: contemplating (7.48) from
right to left, as a mechanism that generates Ct given (Yt

D,«t). The argument is that this
viewpoint assumes that:

(a) the error term «t is an autonomous prosthesis to the theoretical model,
(b) the theoretical parameters (a,b) enjoy a clear theory interpretation (a-subsistence

income, b-the marginal propensity to consume), they are the invariants of the
system and unrelated to the variables (Ct,Yt

D).

This viewing angle is appropriate for analyzing the theoretical aspects of the theory
model as a system but it can be shortsighted and misleading when used to analyze the
statistical aspects of the model. For the latter we need to introduce an alternative view-
point which contemplates (7.48) in purely probabilistic terms and is directly built upon
the structure of the observed data. This viewpoint contemplates (7.48) as a statistical
GM which, in a nutshell, constitutes an orthogonal decomposition of the random vari-
able Ct given the information set associated with the value of the random variable Yt

D.
Let us consider this concept in some detail.

7.5.2 The notion of a conditioning information set

Let the probability space of interest be (S,I,P(.)). In view of the fact that all events of
interest are elements of I, we define information in terms of subsets of I, i.e., D consti-
tutes information in the context of the probability space (S,I,P(.)) if D,I,where D
ranges from the non-informative case D05{S,Ø}, we know this a priori, to the fully
informative case D*5I, we know everything. In view of the fact that we can always
define a random variable X such that the minimal s-field generated by X coincides with
D, i.e., s(X)5DX,we can think of information as a restriction on the event space I rel-
ative to some observable aspect of the chance mechanism in question. This will enable
us to operationalize expressions of the form E(Y |D), which can be interpreted as the
conditional expectation of the random variable Y given the subset D: a set of events
known to the modeler. In addition, we know that by transforming information there is
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no possibility to increase it but there is some possibility that the transformation might
decrease it. More formally, for any well-behaved (Borel) function g(.) of X:

s(g(X)),s(X),

but the converse is also true only in the case where the function is one-to-one, i.e.

s(g(X))5s(X), only if g(.): RX → R is one-to-one.

7.5.3 Orthogonal decompositions and the statistical GM

The statistical GM relating to the first stochastic conditional moment of a response
random variable Y (assuming that E( |Y |2),`), relative to the information set D is spec-
ified to be the orthogonal decomposition of the form:

Y5E(Y |D)1u, (7.49)

E(Y |D) : the systematic component,

u5(Y2E(Y |D)) : the non-systematic component,

relative to the conditioning information set D. The existence of such an orthogonal
decomposition is guaranteed by the existence of the second moment (square integrability
for the mathematical connoisseurs) of the random variable Y. Its uniqueness is the almost
sure (or with probability one) equivalence discussed above; see also chapter 9. By viewing
the random variables with bounded variance as elements of a linear space, E(Y |D)
represents an orthogonal projection and the decomposition (7.49) is analogous to the
orthogonal projection theorem (see Luenberger (1969)), with E(Y |D) the best predictor
in the sense defined by property CE4 above. The connection between orthogonal projec-
tions and conditional expectations can be traced back to Kolmogorov (1941a,b), extend-
ing the work of Wold (1938).

The non-systematic component is often called the error or the disturbance term. The
two components satisfy the following properties:

(i) E(u |D)50,
(ii) E(u2 |D)5Var(Y |D),`, (7.50)
(iii) E(u · [E(Y |D )])50.

The above orthogonal decomposition is made operational when the conditioning
information set D is related to observable random variables as in the case where: D5s

(X), X being a vector of random variables defined on the same probability space
(S,I,P(.)). N that in this case (7.49) is a regression function decomposition.

The above orthogonal decomposition can be easily extended to higher conditional
moment functions in the sense that (assuming the required moments exist):

ur5E(ur |D)1vr, r52,3, …,

where u5(Y2E(Y |D)). Of particular interest are the first few conditional central
moments.
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I : the above decompositions assume implicitly the existence of moments up
to a certain order. In general, the orthogonal decomposition of the rth conditional
moment exists when the moments up to order 2r are bounded, i.e. E( |Y |2r),`.

In section 2 it was argued that the main objective of regression models is to model (7.6)
via the first few conditional moment functions as defined in (7.11). Using the above
orthogonal decompositions we can proceed to specify regression models in terms of the
first four conditional moment functions as follows:

Yt5E(Yt |s(Xt))1ut,

ut
r5E(ut

r |s(Xt))1vr t, r52,3,4.

Let us consider several examples of such decompositions.

Simple statistical GM
In order to understand the role of the conditioning information set D, let us first con-
sider the case where there is no dependence information. In this case we choose D to be
the non-informative set D05{S,Ø}. D0 is said to be uninformative because, as men-
tioned above, for any random variable Y defined on S, E(Y |D0)5E(Y). In this case the
decomposition in (7.49) takes the form:

Yk5E(Yk)1«k, k[N,

and the conditions [i]–[iii] are trivially true.

Simple Normal model

[1] Statistical GM: Yk5E(Yk)1«k, k[N,
[2] Probability model:

F5 f(y;u)5 exp 2 (y2m1)2 , u[R3R1, x[R,

u:5 (m1,s11), E(X)5m1, Var(X)5s11,

[3] Sampling model: Y:5(Y1,Y2, …, Yn) is a random sample.

This is a particularly important example of a simple statistical model which will be
widely used in chapters 11–15.

Hence, in the case of simple statistical models (a random sample is postulated), we can
supplement the probability and sampling models with a statistical GM of the simple
form given above.

Regression statistical GM
In the case where D includes some dependence information as in the case of the regres-
sion models where:

Dt5(Xk5xk),

661
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the statistical GM takes the general form:

Yk5E(Yk |Xk5xk)1uk, k[N.

By design, the systematic and non-systematic components, defined by:

m(xk):5E(Yk |Xk5xk), uk5Yk2E(Yk |Xk5xk), k[N,

respectively, are orthogonal. This follows directly from the conditional expectation prop-
erties CE1–CE3 (see above):

[i] E(uk |Xk5xk)5E{[Yk2E(Yk |Xk5xk)] |Xk5xk}5

5E(Yk |Xk5xk)2E(Yk |Xk5xk)50, k[N,

i.e., uk conditional on Xk5xk, has no systematic mean effects. Moreover:

[ii] E{uk ·m(xk)}5E(E{uk · [E(Yk |Xk5xk)]} |Xk5xk)5

5 E(Yk |Xk5xk) ·E{(uk |Xk5xk)}50, k[N,

from CE2, CE3, and [i], i.e., uk and E(Yk |Xk5xk), conditional on Xk5xk, are mutually
orthogonal; denoted by:

uk'E(Yk |Xk5xk), k[N.

In addition to properties [i]–[ii] we can show that uk and Yk have the same conditional
variance:

[iii] E(uk
2 |Xk5xk)5Var(Yk |Xk5xk), k[N,

from CE1. Moreover, the unconditional mean of uk is also zero:

[iv] E(uk)5E(E(uk |Xk5xk))50, k[N,

from CE2 and from CE2 and CE3, i.e. uk is orthogonal to Xk.

I : It is important to note that conditional zero mean for the non-systematic
component implies unconditional zero mean:

E(uk |Xk5xk)50 ⇒ E(uk)50,

but the converse is not true: E(uk)50 ⇒ / E(uk |Xk5xk)50.

In order to see this consider the following example.

Example
Returning to the joint distribution (7.7) and the related conditional distributions, we
observe that neither of these conditional expectations is zero. On the other hand, the
unconditional expectation of Y, evaluated using the law of iterated expectation is:

E(Y)5E{E(Y |X5x)}5(1/5)(0.5)2(1/5)(0.5)50.

Similarly, conditional orthogonality between Xk and uk implies unconditional
orthogonality:

E(Xk ·uk |Xk5xk)50 ⇒ E(Xk ·uk)50,
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but the converse is not true: E(Xk ·uk)50 ⇒ / E(Xk ·uk |Xk5xk)50.

R : The intuition behind this result is that for the unconditional mean there is one
more averaging (over the values of X), beyond the conditional mean.

Normal/linear regression The most widely used regression model is the Normal/Linear
regression, whose statistical GM takes the form:

Yt5b01b1xt1ut, t[T,

where the error term ut, satisfies the properties [i]–[v] derived above. The complete
specification of the Normal/linear regression model takes the form:

[1] Statistical GM: Yt5b01b1xt1ut, t[T,

[2] Probability model:

F5 f(yt |xt;u)5 exp 2 , u[Q, yt[R ,

u:5 (b0,b1,s2), Q:5R23R1, (7.51)

b0:5E(Yt)2b1E(Xt), b1:5 , s2:5Var(Yt)2 .

[3] Sampling model: (Y1,Y2, …, Yn) is an independent sample, sequentially drawn from
f(yt |xt;u), t51,2, …, T.

A direct comparison between the simple Normal and Normal/linear regression models
reveals some interesting differences. Comparing the two probability models we can see
that the regression model is specified in terms of the conditional distribution f(yt |xt;u)
but the simple Normal model in terms of the marginal distribution f(yt; u). A compari-
son of the sampling models reveals that in the regression case the sample is no longer
random (independent and identically distributed), it is just independent. This is the case
because the conditional densities f(yt |xt;u), t[T are changing with t, because the condi-
tional means are changing with xt:

(Yt |Xt5xt),NI(b01b1xt, s2), t[T,

i.e., they are not identically distributed.
As argued above, using the conditional moment functions (often the regression and

skedastic functions) introduced in the previous section, we can specify a different regres-
sion model for each bivariate distribution. The Normal/linear regression model can be
very misleading as the basis of regression models in general because a number of impor-
tant issues do not arise in its context. Beyond the Normal/linear regression model several
new issues are raised. Some idea of the difficulties raised by other regression models can
be gained by considering the Student’s t/linear regression model.

Student’s t linear regression

[1] Statistical GM: Yt5b01b1Xt1ut, t[T,

ut
25 11 [Xt2m2]2 1v2t,41

ns22
3ns2

(n 2 1)

[Cov(Xt,Yt)]
2

Var(Xt)
Cov(Xt,Yt)

Var(Xt)
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[2] Probability model:

F5{f(yt |xt;u) · f(xt;f2), u:5(b0,b1,m2,s2,s22)[R33R1
2, (xt, yt)[R2},

f(yt |xt;u)5 (n21)p ht(xt)
2 11

2 (n12),

f(xt;f2)5 [nps22]2 11 [xt2m2]2 2 (n11), m25E(Xt),

s225Var(Xt), b05E(Yt)2b1m2, b15 , s25Var(Yt)2 .

[3] Sampling model: (Y1,Y2, …, Yn) is an independent sample, sequentially drawn from
the distribution f(yt |xt;u), t51,2, …, T. (7.52)

This model differs from the Normal/linear regression in two important respects:

(i) X is not weakly exogenous with respect to the parameters of the conditional distri-
bution, and thus we cannot ignore the marginal distribution f(x;u2).

(ii) The conditional variance is heteroskedastic and thus we need to supplement the
orthogonal decomposition of the regression function with that of the skedastic
function.

In concluding this subsection we note that the traditional econometric literature until
the 1980s confined itself to the regression function. Recently, however, there have been
attempts to relate economic theory to the skedastic function, especially in connection
with theoretical models in finance. The fact that higher conditional moments have not
been considered is the result of viewing these moments from the theory viewing angle
which requires economic theory to introduce relationships connected with these
moments.

7.5.4 The statistical viewing angle

The statistical GM as defined in (7.49) with properties (7.50) defines the statistical view-
point in contrast to the theoretical one discussed in the previous subsection. As we can
see, the statistical GM is defined for all statistical models, not just regression models, and
has a purely probabilistic interpretation. For example, in the case of the Normal/linear
model the statistical viewing angle contemplates:

Yt5b01b1xt1ut, t[T, (7.53)

from left to right as an orthogonal decomposition of the observable random variable (Yt)
into a systematic component E(Yt |Xt5xt), and a non-systematic (unmodeled) compo-
nent ut5Yt2E(Yt |Xt5xt). In contrast to the implicit assumptions (a)–(b) of the theory
viewing angle, the statistical viewing angle explicitly postulates that:

(a)* the error term ut is derived and bound up with the probabilistic structure of
(Yt,Xt),

[Cov(Xt,Yt)]
2

Var(Xt)
Cov(Xt,Yt)

Var(Xt)

1
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2
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(b)* the statistical parameters (b0,b1,s2) enjoy a clear probabilistic interpretation and
they are inextricably bound up with the probabilistic structure of (Yt,Xt).

A closer look at the other statistical models specified above reveals that all the parame-
ters have a probabilistic interpretation in terms of the moments of the observable
random variables involved and there is no part defined in terms of theory concepts. In
the next few chapters these models will be extended in a number of directions but their
basic structure will remain the same.

A stochastic generating mechanism
It turns out that for certain aspects of statistical analysis the statistical GM could profit-
ably be viewed as a stochastic generating mechanism. That is, a viewpoint that contem-
plates (7.53) from right to left, as a mechanism that generates Yt given (xt,ut). This
alternative interpretation appears at first to have a certain affinity with the theory view-
point but in fact the similitude turns out to be more apparent than real.

The statistical GM of the simple Normal model, when viewed as a stochastic gener-
ating mechanism, is expressed in the form:

Yk5m11(s11) ek, ek,NIID (0,1), k[N. (7.54)

The easiest way to interpret this is as the mechanism which when simulated using pseudo-
random numbers (see chapter 5) will yield data with the same probabilistic structure as
the postulated sample; Normal, Independent and Identically Distributed (NIID).
Similarly, the statistical GM of the Normal and Student’s t linear regression models, as
stochastic generating mechanisms, take the form:

Yt5b01b1xt1set, e t,NIID(0,1),
t[T, (7.55)

Yt5b01b1Xt1(h(Xt)) et, et,St(0,1;n11), Xt,St(m2,s22;n),

where h(Xt)5 11 [Xt2m2]2 , respectively.

There are several things to note about this interpretation.
First, this is a statistical interpretation because the primary aim is to simulate (using

pseudo-random numbers) a probabilistic structure for the sample (Y1,Y2, …, Yn) as
defined by its joint distribution. Second, an integral part of the simulation viewpoint is
the statistical interpretation of the parameters involved. As seen above, these parameters
are defined in terms of the moments of the observable random variables involved and
thus well-designed simulations should take this into consideration since they represent
implicit restrictions. This is particularly crucial when designing Monte Carlo simulations
to tackle difficult sampling distribution problems. A design which ignores any of the
implicit constraints relating the parameters and the moments of the underlying distribu-
tions is likely to give rise to misleading results. Third, the stochastic generating mecha-
nism interpretation is based on the statistical GM of the first conditional moment but it
should be modified to involve the information contained in the higher conditional
moments. In the case of the simple Normal and the Normal/linear regression models
there is no additional information because the second moment is constant. In the case of

41
ns22

3ns2

(n 2 1)

1
2

1
2
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the Student’s t regression model, however, this is no longer true and the additional
information should be integrated into the statistical GM as shown above.

7.5.5 Dependence ratio*

The notion of a statistical generating mechanism (GM), introduced above, suggests a
natural way to measure the dependence between Y and the random variable(s) X, defin-
ing the conditioning information set. Corresponding to the orthogonal decomposition
based on the conditional mean:

Y5E(Y |X)1u,

there exists a relationship between the variances of the three terms:

Var(Y)5Var[E(Y |X)]1Var(u). (7.56)

This follows directly from the orthogonality of the systematic and non-systematic com-
ponents and indirectly from the equality:

Var(Y)5E[Var(Y |X)]1Var[E(Y |X)],

and the fact that (CE2 property above):

E[Var(Y |X)]5E[E(u2 |X)]5E(u2)5Var(u).

Given that u represents the non-systematic component (the unmodeled part) of the
statistical GM, a measure of dependence which suggests itself is, the dependence ratio:

Dr(Y |X)5 512 512 .

This was first introduced by Kolmogorov (1933a), who called it the correlation ratio,
attributing the idea to Pearson (1903). As mentioned in chapter 6, this a measure of
dependence which can be used whatever the measurement system of the random vari-
ables in question.

The dependence ratio, as a measure of dependence, satisfies certain desirable proper-
ties:

[1] 0#Dr(Y |X)#1,
[2] Dr(Y |X)50 if X and Y are independent,
[3] Dr(Y |X)51 if and only if Y5h(X) a.s.

The first property stems from (7.56) directly. The second property follows from the fact
that when X and Y are independent:

E(Y |X)5E(Y) ⇒ Var[E(Y |X)]50.

The if part of the third property is trivial since Dr(Y |X)51 implies that:

E{[Y2E(Y |X)]2}50 ⇒ Y5h(X) a.s.

The only if part follows from the fact that if Y5h(X) then the function s(h(X)),s(X),
and thus h(X)5E(Y |X) with probability one (a.s.).

Var(u)
Var(Y)

E{Var(Y |X)}
Var(Y)

Var{E(Y |X)}
Var(Y)
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In view of property [3], Dr(Y |X) can be interpreted as a measure of probabilistic
dependence analogous to the notion of mathematical functional dependence Y5h(X),
where the function h(.) coincides with the regression function of Y given X5x. To take it
a step further, this property can be used to characterize the regression function. That is,
Dr(Y |X) can be interpreted as the maximal correlation between Y and all possible func-
tions h(X), with the maximum achieved for the regression function h0(X)5E(Y |X):

Dr(Y |X)5max
h(·)

Corr2[Y,h(X)]5Corr2[Y,h0(X)]. (7.57)

Renyi (1970) introduced such a characterization by adding the following conditions:

[1] E[h0(X)]5E(Y),
[2] Var[h0(X)]5Var(Y) ·Dr(Y |X),
[3] E[h0(X) ·Y].0.

This follows from property CE4 which says that the conditional mean of Y given X
provides the best predictor (in the mean square error sense) of Y.

R :
(i) The dependence ratio is not a symmetric function of Y and X, as is the correlation

coefficient. The intuitive reason for the asymmetry is the fact that the two regres-
sion functions, say E(Y |X)5h(X) and E(X |Y)5g(Y) do not necessarily have the
same functional form.

(ii) In the case where the regression function is linear in X, E(Y |X)5b01b1X, the
dependence ratio coincides with the squared correlation coefficient:

Dr(Y |X)5 [Corr(X,Y)]2.

This follows from the fact in this case: Var[E(Y |X)]5 .

In concluding this section we note that an important advantage of the dependence ratio
is that it can be easily extended to the case where X is a vector of random variables, say
X:5(X1,X2, …, Xm):

Dr(Y |X)5 512 .

In the case where the regression function E(Y |X) is linear in X, Dr(Y |X) coincides with

the multiple correlation coefficient R2, where: R25max
a

Corr2(Y,a9X),

a9X5 m
i51aiXi and Corr2(.), the square correlation (see Spanos (1986), chapter 15).

7.6 The biometric tradition in statistics

As argued in Spanos (1995b), the traditional textbook approach can be viewed as a
hybrid of two older traditions in statistics: the theory of errors and the experimental
design traditions. It was also argued that both of these traditions are better suited for
modeling experimental data as opposed to observational (non-experimental) data; the
result of passively observing a system without the means to interfere with or control the
data generating process. It was mentioned in chapter 1 that the biometric tradition,
developed in the late 19th and early 20th centuries is better suited for modeling with

o

E(Var{Y |X)}
Var(Y)

Var{E(Y |X)}
Var(Y)

[Cov(X,Y)]2

Var(X)
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observational data. In this section we digress shortly to trace the roots of the biometric
tradition. For a more extensive discussion see inter alia Stigler (1986), Porter (1986),
MacKenzie (1981) and Kevles (1985)).

7.6.1 Galton
The concept of regression is one of very few concepts in statistics whose roots are both
clear and unquestionable. The concept was first proposed by Galton (1877), formalized
in Galton (1885,1886), extended by Pearson (1894,1895,1896) and related to the least-
squares tradition by Yule (1897). The father of modern statistical inference R. A. Fisher
credits Galton and his pioneering studies in inheritance as providing the foundations of
modern statistics. In the foreword of Fisher (1956) he praises the pioneering studies of
Galton and continues:

Galton’s great gift lay in his awareness, which grew during his life, of the vagueness of many of
the phrases in which men tried to express themselves in describing natural phenomena. He
was before his time in his recognition that such vagueness could be removed, and a certain
precision of thought attempted by finding quantitative definitions of concepts fit to take the
place of such phrases as “the average man”, “variability”, “the strength of inheritance”, and
so forth, through the assembly of objective data, and its systematic examination…

(Fisher (1956), p. 2)

Galton was greatly impressed by the variety of measured variables whose histogram
Quetelet (1849) was able to describe using the Normal distribution (known at the time as
the law of error), ranging from the number of suicides and rapes in Paris over a year, to
several anthropomorphic measurements. Galton’s interest was primarily in eugenics:
improving the human stock of Britain using selective breeding (see Kevles (1985)).
According to MacKenzie (1981, p. 11):

One specific set of social purposes was common to the work of Galton, Karl Pearson and R.
A. Fisher. All were eugenists. They claimed that the most important human characteristic,
such as mental ability, were inherited from one generation to the next. People’s ancestry,
rather than their environment, was crucial to determining their characteristics. The only
secure long-term way to improve society, they argued, was to improve the characteristics of
the individuals in it, and the best way to do this was to ensure that those in the present genera-
tion with good characteristics (the “fit”) had more children than those with bad character-
istics (the “unfit”)…

In a terrible twist of fate, the appalling cause of eugenics was used by Hitler to provide
pseudo-scientific justification for his racist policies, provided the primary impetus for the
development of modern statistics. Let us retrace the first tentative steps of modern statis-
tics that led to regression and correlation.

Quetelet applied extensively the earlier statistical tradition, the theory of errors (see
Spanos (1995b)), first developed in astronomy and geodesy, to the statistical analysis of
social measurements with the hope of developing social physics. In the theory of errors
tradition, center stage was given to errors of measurement. The observed data were
viewed as measurements of the same (true) variable but each observation had a measure-
ment error which could be described as random. Moreover, when several observations
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were collected they tended to exhibit the chance regularity pattern associated with the
bell-shaped Normal distribution. In this context the primary objective of modeling was
to uncover the true variable by minimizing the errors of measurement. Gauss introduced
the Normal distribution as that which, under certain restrictions, uncovers the true vari-
able via the mean of the distribution. Quetelet adapted this procedure to give rise to
social physics by associating the mean with l’homme moyen (the average man), repre-
senting some sort of an ideal, and viewing social behavior as deviations from the average
man; see Stigler (1986), Porter (1986).

Galton, continuing the tradition associated with Quetelet, used the frequency curve of
the law of error (Normal) to describe several data sets of anthropomorphic measure-
ments, such as mental ability and physical characteristics of human populations, such as
height and weight, and was amazed by how well the Normal curve described these data.
The first problem Galton had to face was the interpretation of the deviations from the
mean inherited from Quetelet. When describing mental ability using the Normal curve
the obvious question is does a genius constitute an error of nature and the average mind
the ideal? For a eugenist the answer was certainly not! Moreover, for Galton the varia-
tion around the mean was not an error to be minimized. In his memoirs Galton (1908,
p. 305) explains how he had to break with the theory of errors tradition:

The primary objects of the Gaussian Law of Error were exactly opposed, in one sense, to
those to which I applied them. They were to get rid of, or to provide a just allowance for
errors. But these errors or deviations were the very things I wanted to preserve and know
about…

In this sense Galton turned the tables on the theory of errors tradition by viewing ran-
domness as inherent in nature and not introduced by our attempt to observe and
measure. Moreover, the variability associated with this randomness was the very thing he
was interested in. As a result of this change of attitude the observable random variables
took center stage and the mean was just a characteristic of the distribution describing
this variability. Indeed, Galton (1875a) went a step further and proposed replacing the
notion of the mean and the probable error with the notions of the median and the inter-
quartile range (see chapter 3) as more appropriate measures for anthropomorphic
measurements. Galton’s break with the theory of errors tradition can be easily discerned
from his proposal to replace the term standard error (known at the time as probable
error) with the term standard deviation; deviations from the mean were no longer viewed
as errors.

The second major departure from the theory of errors initiated by Galton was moti-
vated by his interest in discovering the dependence between variables which led naturally
to joint and conditional distributions. The most influential concepts introduced by
Galton were those of regression and correlation, which as shown in this and the last chap-
ters are based on the conditional and joint distributions and can be used to model (and
quantify) the dependence among random variables. The term regression was coined by
Galton (1885) in the context of studying inheritance in human populations. In his
attempt to discover a relationship between the height of the parents and the height of
their children, he introduced the notion of a regression curve in the context of Normal
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populations. Interestingly enough, he formulated the concept of regression by studying
the relationship between two data sets using scatterplots. Let us consider this in some
detail.

The notion of regression was first proposed by Galton (1877) in studying the inher-
ited characteristics between two generations of sweet peas and was initially called
reversion. The paper that established regression in statistics was Galton (1885), stud-
ying the connection between the height of the parent and that of the offspring. Galton
(1885), looking at the distribution of height from one generation of humans to the
next, observed that the height distribution (histogram) of his sample population
appeared to remain the same, as in the case of sweet peas (see Galton (1877)). To be
more specific, in his study of inheritance, Galton noticed that the histogram of the
measurements:

Xt – the height of the mid-parent and Yt – the height of the offspring,

could be described with an almost identical Normal frequency curve. He defined the
height of the mid-parent as:

Xt:5 ,

where X1t is the height of the father, X2t is the height of the mother. The scaling by 1.08
was based on the difference between the average height of men versus that of women.

The question that naturally arose in Galton’s mind was the same as in the case of sweet
peas:

How is it that although each individual does not as a rule leave his like behind him, yet succes-
sive generations resemble each other with great exactitude in all their general features?…

(Galton (1877), p. 492)

His ultimate explanation of this apparent puzzle relied primarily on the regression line
defined by:

[E(Yt |Xt5xt)2E(Yt)]5 [ xt2E(Xt)], xt[R. (7.58)

How he derived the regression line is a fascinating story that is worth telling in some
detail.

Step 1 He plotted the scatterplot of the two data sets {(xt, yt), t51, …, T}.
Step 2 He joined the data points with approximately the same frequency of occurrence

and realized that these equal-frequency curves formed concentric elliptical con-
tours.

Step 3 Using the argument that “as the number of observations increases the equal-
frequency curves get smoother and smoother” he assumed that at the limit they
form perfect ellipses.

Step 4 Realizing that his mathematical training was insufficient to take him from these
concentric elliptical contours of the corresponding bivariate distribution, he
requisitioned the help of his mathematician friend Dickson. With Dickson’s
help, he derived the bivariate Normal density (see appendix to Galton (1886)).

1Cov(Yt,Xt)
Var(Xt) 2

X1t 1 (1.08)X2t

2
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Step 5 Using an ingenious argument, Galton suggested that the line which describes
best the relationship between (Xt,Yt) (what he called the regression line) is the
one that passes through the center of the ellipses (the point at which the two
principal axes meet) and cuts the ellipses at their point of tangency with the lines
parallel to the y-axis. In figure 7.21 we can see the contours of a bivariate
Normal density with parameters:

E(Yt)51.0, E(Xt)52.0, Var(Yt)50.8, Var(Xt)51.8, Cov(Xt,Yt)50.6,

and both regression lines:

E(Yt |Xt5xt)50.33310.333xt,

E(Xt |Yt5yt)51.2510.75yt.

Note that the regression line:

E(Xt |Yt5yt)5E(Xt)1 [yt2E(Yt)], yt[R,

also passes through the center of the ellipses but cuts them at the point of tan-
gency with straight lines parallel to the x-axis; another Galton insight!

Cov(Yt,Xt)
Var(Yt)
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What is fascinating from our viewpoint is that Galton was able to proceed from the
observed data, generate the theoretical bivariate density underlying these data using the
scatter plot, and then proceed to define the regression line.

R :
(i) Galton implicitly assumed that E(Yt)5E(Xt):5m and Var(Xt)5Var(Yt), in which

case the above regression line reduces to the proportional relationship:

[E(Yt |Xt5xt)2m]5r(xt2m), xt[R, (7.59)

r:5Corr(Xt,Yt), |r |#1. (7.60)

From this Galton concluded that there is a tendency to regress to the mean (due to
|r |#1) in the sense that very tall mid-parents produce offsprings who are not as
tall and very short mid-parents produce offsprings who are not as short.

(ii) Galton viewed (7.59) as the law of heredity which underlies the apparent stability
of the population features in successive generations. Galton was clearly wrong in
drawing causality implications based solely on the regression curve, because by the
same token, from the statistical viewpoint, the reverse regression:

[E(Xt |Yt5yt)2m]5r (yt2m), yt[R,

has as much justification as the original. The reverse regression cuts the ellipses at
their point of tangency with the lines parallel to the x-axis (see figure 7.21).

(iii) It is worth noting that Galton assumed implicitly joint and marginal Normality for
both random variables Xt and Yt.

To a modern student of statistics it looks very odd that the notion of correlation was
introduced by Galton (1888) (initially as co-relation) via that of regression by utilizing
the slopes of the regression and reverse-regression lines:

[E(Yt |Xt5xt)2m]5 (xt2m), xt[R,

[E(Xt |Yt5yt)2m]5 (yt2m), yt[R.

Multiplying the two slopes gives rise to the square of the correlation coefficient:

[Corr(Xt,Yt)]25 .

For the details of this fascinating story see Stigler (1986).

7.6.2 Karl Pearson

Karl Pearson was the first to appreciate the importance of Galton’s contributions in rela-
tion to regression and correlation and proceeded to formalize both and extend them in
different directions.

The first crucial contribution by Pearson (1895,1896) was the formalization of the
procedure for fitting frequency curves to observed data, by utilizing the first four

3Cov(Xt,Yt)
Var(Yt) 43Cov(Xt,Yt)

Var(Xt) 4

3Cov(Xt,Yt)
Var(Yt) 4

3Cov(Xt,Yt)
Var(Xt) 4
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moments (see chapter 3); the fitting of the Normal distribution before Pearson took the
form of drawing the bell-shaped curve over the histogram of the observed data. It is
interesting to  that the notion of moments has been used during the 18th and 19th
centuries but Pearson coined the term and introduced the concept into statistics;
Chebyshev utilized the notion of moments in probability theory in relation to the
Central Limit Theorem in the 1870s, but the two developments were largely separate
until the mid-20th century. Pearson (1895) was also the first to introduce the notions of
skewness and kurtosis.

Pearson began his statistical work on issues raised by Weldon’s attempt to apply
Galton’s results on correlation to populations of crab; Weldon was a distinguished
zoologist at University College where Pearson was a Professor of Applied
Mathematics. It turned out that the histogram of the measurements for Naples crabs
was both asymmetrical and bimodal and Pearson (1894), in his first statistical paper,
attempted to show that the histogram might be described by the sum of two Normal
curves with different means and variances; the first attempt to deal with the hetero-
geneity problem. The asymmetry exhibited by biological data and Edgeworth’s price
data convinced Pearson that the Normal distribution was not of universal applicabil-
ity, as previously believed by Quetelet and Galton. This realization led to Pearson’s
second crucial contribution to the biometric tradition which came in the form of what
we call today the Pearson family of distributions which includes the Normal and most
of the most widely used distributions, including several non-symmetric distributions,
as special cases (see chapter 4).

Related to the modeling procedure of fitting Pearson family frequency curves to
observed data is Pearson’s third important contribution, the chi-square test for assessing
the goodness of fit as part of his modeling strategy; see Pearson (1900). This test consti-
tutes the first misspecification test (see chapter 15) which had a crucial impact on the
development of statistical inference in the 20th century. Pearson is best known by social
scientists with any interest in statistics for this test than for any of his other contribu-
tions.

Pearson’s fourth important contribution was the formalization and extension of
regression and correlation from bivariate to multivariate distributions; see Pearson
(1896,1901,1902,1903,1904). The modern formulae for correlation and regression
coefficients are largely due to Pearson. In relation to these formulae we should also
mention Yule (1895–96,1896) who was the first student of Pearson’s and later his assist-
ant; in his publications he gives full credit to this teacher. The extensions of correlation
and regression include not only multiple correlation but also partial correlation. It is
interesting to  that Pearson was also the first to warn the modeler of the problem of
spurious correlation in the case of variables measured as ratios with common denomina-
tors or/and numerators (see Pearson (1897)).

The fifth, and arguably the least influential of his contributions, is his extension of
regression and higher conditional moment functions to non-Normal joint distributions;
see Pearson (1905,1906,1920,1923a–b,1924,1925). Pearson was the first to appreciate the
generality of the concept of regression and proceeded to argue that the concept applies
to all joint distributions whose first two moments exist. He conjectured that linearity and
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homoskedasticity were inextricably bound up with the joint Normality assumption and
urged modelers to explore non-symmetric joint distributions. Pearson’s joint research
with Weldon on populations of crabs led him to non-symmetric distributions and he
conjectured that the regression curve is unlikely to be linear and homoskedastic in such
cases. However, Pearson could not offer tangible examples of other functional forms of
regression curves because there were no other bivariate distributions at the time.
Unfortunately, before such distributions became generally available his suggestion was
overtaken by certain crucial developments.

In a seminal paper Yule (1897) went further than both Galton and Pearson and put
forward a direct link between Galton’s regression and the linear relationship between
two variables as suggested by the theory of errors (least-squares) tradition:

yt5b01b1xt1«t, «t, IID(0,s2), t51,2, …, T.

He went on to point out that:

(a) (7.58) can be estimated using the least-squares method (see chapter 13), and
(b) the Normality assumption plays no role in the estimation.

He proceeded to argue in favor of using least-squares to approximate a regression
line even in cases where the imaginary line through the cross-plot “is not quite a
straight line” (Yule (1897), p. 817).

Karl Pearson objected immediately to Yule’s apparent generality and argued in favor
of retaining the Normality of the joint distribution for specification purposes:

Pearson wanted to start with a frequency surface and, if a regression line was sought, find that
line appropriate to the surface. If the surface followed the normal law, then he could accept
the route to straight lines fit by least squares. But, “why should not another law even symmet-
rical frequency lead to the pth powers of the residuals being minimum?”…

(Stigler (1986), p. 352)

Unfortunately for statistics Pearson was much less persuasive than Yule and as a
result, the linear regression model is often confused with a number of different linear
models, such as the Gauss linear model (see Spanos (1986,1999)). Pearson’s conviction
had no impact on statistics because his efforts to generate non-symmetric bivariate dis-
tributions via a pair of partial differential equations was largely unsuccessful until the
1930s (see chapter 6 and Mardia (1970). The major stumbling block was the availability
of joint distributions whose conditional moment functions could be derived analytically
and then used to specify regression models. The partially successful attempts by
Pretorius (1930) and then Van Uven (1947a–b,1948a–b) had very little impact because
by the 1930s Yule’s success was complete. From the regression viewpoint Van Uven’s
results (see chapter 6) are interesting in so far as the conditional distributions implied by
the restricted partial differential equations belong to the Pearson family in the sense that
they satisfy the general relationship:

.

The extent of Yule’s success was such that even the earlier success by Narumi
(1923a–b), who reversed the procedure by specifying the regression and skedastic

 ln f(y |x)
y

5
g1(x,y)
g2(x,y)
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functions and then proceeded to derive the joint distribution, went largely unnoticed.
Narumi’s results are of interest in the present context and are summarized for refer-
ence purposes; for more details see Mardia (1970). Yule’s impact can be partly
explained by the fact that he wrote the first widely used textbook in statistics (see Yule
(1911)).

Motivated by the relationship:

f(x,y;f)5f(y |x;w2) ·fx(x;w1), for all (x,y)[RX3RY,

Narumi’s bivariate density function takes the restricted form:

f(x,y)5c1(x) ·w1 , f(x,y)5c2(y) ·w2 .

This bivariate distribution is restricted because it belongs to the location-scale family of
distributions. The conditional densities take the form:

f(y |x)5c1 ·w1 , f(x |y)5c2 ·w2 ,

where c1 and c2 denote two normalizing constants. Although Narumi explored several
cases by specifying the functional form of the regression and skedastic functions, the
most interesting from our viewpoint are the following.

1 Linear regression and homoskedastic conditional variance By postulating:

m(y |x)5b01b1x, m(x |y)5g01g1x,

s2(y |x)5s 1
2, s2(x |y)5s2

2,

he derived conditional and marginal densities which turned out to be Normal, yielding a
bivariate Normal distribution.

2 Linear regression and heteroskedastic conditional variance (linear) By postulating:

m(y |x)5b01b1x, m(x |y)5g01g1x,

s2(y |x)5a11x, s2(x |y)5a21y,

he derived a joint density of the general form:

f(x,y)5c0(ax1b)u1(gy1d)u2(ax1by1c)u3.

This joint distribution includes the bivariate Beta, Pareto and F distributions (see appen-
dix B) as special cases. By restricting the conditional variance of Y given X to be

s2(y |x)5a1,

Narumi derived the bivariate density:

f(x,y)5c0(ax1b)u1e2u2y(ax1by1c)u3.

which includes the (McKay) Gamma distribution (see appendix B) as a special case.

1x 2 h2(y)
g2(y) 21y 2 h1(x)

g1(x) 2

1x 2 h2(y)
g2(y) 21y 2 h1(x)

g1(x) 2
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3 Linear regression and heteroskedastic conditional variance (parabolic). By postulating:

m (y |x)5b01b1x, m (x |y)5g01g1x,

s2(y |x)5 , s2(x |y)5 ,

he showed that the joint density takes the general form:

f(x,y)5c0(ax21by212u1xy12u2x12u3y1c)m.

This joint distribution includes the bivariate Cauchy, Student’s t and Pearson type II-dis-
tribution (see appendix B) as special cases.

R : the discerning reader would have noticed the connection between Narumi’s
and Van Uven’s results (see chapter 6).

A century after Pearson’s first unsuccessful attempt to generate joint distributions we
can now argue that Pearson was right all along. Section 2 above can be interpreted as
testament to Pearson’s thesis presenting several regression models associated with
different bivariate distributions. Indeed, if Yule’s suggestion is followed when estimating
regression models such as that associated with the bivariate Exponential distribution,
the result is likely to be way off the target! In the next subsection we revisit Pearson’s
modeling strategy.

7.6.3 Revisiting Pearson’s modeling strategy

From the point of view of empirical modeling Pearson’s modeling strategy (see Pearson
(1905, 1923a–b,1924,1925)) makes perfectly good sense and provides the foundation for
the approach adopted in this book. Galton’s approach to the Normal/linear regression
can be easily extended to several other regression models as discussed in section 2. In
chapter 6 we considered the question of using the scatterplots in order to get some idea
of the nature of the bivariate density by smoothing the stereogram (bivariate histogram).
This is simply a modern version of Galton’s procedure as described above. The
smoothed stereogram surface (see chapter 6) will give the modeler ideas as to the most
befitting bivariate distribution, and this information can be used in order to postulate the
appropriate regression model.

In order to illustrate the relationship between the bivariate density and the regression
curves let us return to the bivariate distributions discussed in chapter 6.

In figures 7.22–7.23 we can see the bivariate F density with u:5(12,8,8) and the corre-
sponding equiprobability contours which are clearly non-elliptic and asymmetric. The
relationship between the joint distribution and the regression line can be seen in figure
7.23 which has a certain affinity with that of the joint Normal distribution in figure 7.21
but there is also an obvious difference. The Normal and F regression lines are similar in
so far as the sign of the correlation coefficient determines their slope but differ in so far as
the latter does not pass through the mode of the bivariate density.

Moreover, there is no apparent simple relationship between the slope of the contours at
the points of intersection with the regression line as pointed out by Galton in the case of

Ïa2 1 y2Ïa1 1 x2
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Figure 7.22 Bivariate F (23,8,8) density surface

Figure 7.23 Bivariate F (12,8,8) contours and regression line



the bivariate Normal density. N that the correlation coefficient in figures 7.22–7.23 is
r50.444.

In figures 7.24–7.25 we can see the same graphs in the case where the correlation
between the random variables (X,Y) is quite high (r50.953). As we can see the regres-
sion line is much closer to (but does not coincide with) the principal axis of the asymmet-
ric near elliptic contours. As in the case of the Normal distribution, increasing the
correlation coefficient has the effect of squashing the contours.

The connection between the correlation coefficient and the regression line becomes
clearer in figures 7.26–7.27 where the correlation between the random variables (X,Y) is
low (r50.035); confirming the direct connection between the correlation coefficient and
the slope of the regression line.

In figures 7.28–7.29 we can see the bivariate Gamma (2,3,4) (Cherian) density and the
corresponding contours with the regression line inserted, respectively. As we can see, the
bivariate Gamma is very similar to the F distribution but with a different form of asym-
metry. The regression line is similar to both the Normal and F regression lines in so far
as they are directly related to the correlation coefficient. This is the general result
derived in section 3 above which says that in the case of linear regressions, the line takes
the form:

E(Y |s (X))5E(Y)2 [ X2E(X)]. (7.61)

In figures 7.30–7.31 we can see the bivariate Beta (3,3,6) density and the correspond-
ing contours with the regression line inserted, respectively. Again, the asymmetry exhib-
ited by the contours is quite different from both the F and Gamma bivariate
distributions. As shown in appendix B, this form of the bivariate Beta distribution allows
only for negative correlation and thus the regression line, also of the general form (7.61),
can only have negative slope.

In an attempt to avoid the misleading impression that “regression curves are usually
straight lines” we present two bivariate distributions with non-linear regression func-
tions.

In figures 7.32–7.33 we can see the bivariate Exponential density and the correspond-
ing contours with the regression curve inserted, respectively. Again we note the apparent
lack of any connection between the slope of the contours and the regression curve at the
points of intersection. The form of the regression functions for this and the other distri-
butions discussed above were given in section 2 above.

In figures 7.34 and 7.35 we can see the bivariate (standard) Logistic density and the
corresponding contours with the regression curve inserted, respectively.

A comparison between figures 7.35 and 7.29 suggests that deciding whether the regres-
sion is linear or non-linear by just looking at the scatterplot can be risky! A better model-
ing strategy will be to evaluate the smoothed stereogram contours (see chapter 6) before
any decisions relating to the nature of the regression function are made. Indeed,
Pearson’s modeling strategy might be the best choice: decide upon the joint distribution
first (utilizing the smoothed stereogram contours) and then proceed to the regression
and other conditional moment functions; see Pearson (1905,1920,1923a–b,1924,1925).
This strategy can be supplemented by the non-parametric kernel smoothing regression

Cov(X,Y)
Var(X)
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Figure 7.24 Bivariate F (5,60,60) density surface

Figure 7.25 Bivariate F (5,60,60) contours and regression line
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Figure 7.26 Bivariate F (80,4,1) density surface

Figure 7.27 Bivariate F (80,4,1) contours and regression line
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Figure 7.28 Bivariate Gamma (2,3,4) (Cherian) density surface

Figure 7.29 Bivariate Gamma (2,3,4) contours and regression curve
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Figure 7.30 Bivariate Beta (3,3,6) density surface

Figure 7.31 Bivariate Beta (3,3,6) contours and regression line
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Figure 7.32 Bivariate Exponential (u51) density surface

Figure 7.33 Bivariate Exponential (u51) contours and regression curve
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Figure 7.34 Bivariate Logistic density surface

Figure 7.35 Bivariate Logistic contours and regression line



procedure discussed next so as to assess the appropriateness of the postulated joint dis-
tribution.

7.6.4 Kernel smoothing and regression

The kernel smoothing techniques introduced in chapters 5–6 can be utilized to provide
the modeler with a further visual aid in deciding on the appropriateness of the postu-
lated regression model. The basic idea is to use the information conveyed by the scatter-
plot in order to evaluate a non-parametric regression curve directly.

As argued above, the regression function is defined by:

E(Y |X5x)5
y[RY

y ·f(y |x)dy5h(x), x[RX.

Substituting f(y |x)5 into this definition yields:

E(Y |X5x)5
y[RY

y · dy5h(x), x[RX.

From this relationship we can see that the modeler can get a non-parametric evaluation
of the regression curve from the smoothed histogram (see chapter 5) and stereogram (see
chapter 6), which represent the empirical equivalents to the densities fx(x) and f(x,y),
respectively:

f̂ x(x)5 n
k51KX , hx.0,

f̂ (x,y)5 n
k51KX ·KY , hx.0, hy.0,

where both kernels satisfy the properties.

[a] K(z)$0, [b] ∫ z[RZ K(z)dz51.

The regression function can be evaluated empirically via:

E(Y |X̂ 5x)5
y[RY

y · dy5 5 n
k51wk ·yk, x[RX, (7.62)

where the weights take the form:

wk5 .

The right-hand side of (7.62) follows from the fact that:

y[RY

KY(y)dy51 and
y[RY

y ·KY(y)dy50.

The non-parametric evaluator of the regression function in (7.62) is known as the
Nadaraya-Watson “estimator.” For more sophisticated evaluators of the regression
function based on kernel smoothing and other techniques see Härdle (1990).
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Intuitively, the above regression curve smoother amounts to taking a weighted average
(wk, k51,2, …, n being the weights) of all points (xk,yi) within the interval (xk6hx) as k
varies over all values of X. In figure 7.36 we can see one such interval (0.660.1) within
which several points will be averaged vertically to reduce them to a point.

In this book we consider the above non-parametric evaluator of the regression func-
tion not as a substitute of the modeling strategy expounded above but as a comple-
ment in evaluating the appropriateness of the postulated regression model. This is
because the smoothed regression evaluator ignores the other conditional moment
functions. In contrast, postulating a bivariate distribution enables the modeler to
derive the higher conditional moment functions. As we have seen in section 2 above,
most bivariate distributions give rise to heteroskedastic conditional variance func-
tions. Hence, the best use of the smoothed regression is for the modeler to superimpose
the theoretical regression curve (which corresponds to the postulated bivariate distrib-
ution) and the empirical non-parametric regression curve in a scatterplot in order to
assess visually the appropriateness of the former. For alternative uses of such non-
parametric evaluators see chapter 15.
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7.7 Summary

The main objective of the previous three chapters has been the extension of the simple
statistical model, built on the notion of a random sample, toward more realistic
models which can accommodate some dependence and/or heterogeneity. Having
argued that the best way to model dependence and heterogeneity is via the joint distri-
butions, we proceeded to find ways to deal with the problems of multidimensionality
and overparameterization arising from such distributions. In chapter 6, in addition to
developing a number of dependence notions, it was shown that sequential condi-
tioning provides a most efficient way to deal with the dimensionality problem raised by
joint distributions. Any joint distribution can be reduced into a product of univariate
conditional distributions. However, this product often represents an infinite family of
densities whose information cannot be modeled using the ordinary conditional
moments. The main purpose of the present chapter has been to develop the notion of
the stochastic conditional moment function. These functions are defined in terms of
the conditional moments but are viewed as functions of the conditioning variables.
The best-known conditional moment functions are the regression and skedastic func-
tions. Another objective of this chapter has been to show that the conditional moment
functions (regression, skedastic, clitic and kurtic) can be integrated into the specifica-
tion of statistical models by introducing an additional component, the statistical
generating mechanism (GM). The statistical GM will play an important role at the
estimation and the identification stage: relating a statistical model to a theoretical
model.

The approach proposed in this chapter for modeling dependence/heterogeneity
using general regression models can be traced back to the biometric tradition founded
by Galton, formalized and extended by Karl Pearson (and to some extent Yule) and
transformed into modern statistics by Fisher (see chapters 11–15). Our interest in the
biometric tradition has been restricted to its empirical modeling dimension and no
reference has been made to its connection to the subject of Biology; for that see
MacKenzie (1981) and Kevles (1985). However, it is important to mention the crucial
lesson that was learned from the failure of the biometric tradition to give rise to statis-
tical biology, as originally envisioned by Karl Pearson. The lesson is that statistical
models by themselves provide description and not explanation. For the latter we need
to synthesize empirically adequate statistical models with theory models (see chapter
1). When Fisher (1930) synthesized the biometric statistical tradition with Mendel’s
theory of heredity, the hybrid turned out to be a major success! Fisher’s claim to fame is
not just as the father of modern statistics but also as a major figure in 20th century
genetics; see MacKenzie (1981).

7.8 Exercises

21 Explain how the notion of conditioning enables us to deal with the dimensionality
problem raised by joint distributions of samples.
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22 Explain why in the reduction f(x,y)5f(y |x) ·fx(x), using conditional moments for
modeling purposes raises a problem in relation to x[RX.

3 Consider the joint distribution as given below:

x\y 1 2 3 fx(x)

21 0.10 0.08 0.02 0.2
0 0.15 0.06 0.09 0.3
1 0.02 0.20 0.10 0.5

fy(y) 0.45 0.34 0.21 1

(a) Derive the conditional distributions of (Y |X5x) for all values of the random
variable X.

(b) Derive the regression and skedastic functions for the distributions in (a).

4 Let the joint density function of two random variables X and Y be:

x\y 0 1 2

0 0.1 0.2 0.2
1 0.2 0.1 0.2

(a) Derive the following conditional moments:

E(Y |X51), Var(Y |X51), E{[Y2E(Y |X51)]3 |X51}.

(b) Verify the equalities:
(i) Var(Y |X51)5E(Y2 |X51)2{E[Y |X51]}2.
(ii) E(Y)5E{E(Y |X)}.
(iii)* Var(Y)5E{Var(Y |X)}1Var{E(Y |X)}.

25 Compare and contrast the concepts E[Y |X5x] and E[Y |s (X)].

26 Define and explain the following concepts:
(a) Conditional moment functions,
(b) Regression function,
(c) Skedastic function,
(d) Homoskedasticity,
(e) Heteroskedasticity.

27 From the bivariate distributions of chapter 7 collect the regression functions which
are linear and the skedastic functions which are homoskedastic.

28 Explain the notion of linear regression. Explain the difference between linearity in x
and linearity in the parameters.

29 Consider the joint normal distribution denoted by:

1Y
X2 , N11m1

m2
2,1s11  s12

s12  s22
22.
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(a) For values m151, m251.5, s1151, s12520.8, s2252, plot the conditional
expectation E(Y |X5x) and conditional variance Var(Y |X5x) for x50,1,2.

(b) Plot E(Y |X5x) and Var(Y |X5x) for x50,1,2 for a bivariate Student’s t
distribution whose moments take the same values as those given in (a) for
n53,5,7.

(c) State the marginal distributions of Y and X.

10 Explain the notion of stochastic conditional moment functions. Why do we care?

11 Explain the notion of weak exogeneity. Why do we care?

12 Explain the notion of a statistical generating mechanism. Why do we need it?

13 Let Y be a random variable and define the error term by: u5Y2E(Y |s(X)).

Show that by definition, this random variable satisfies the following properties:
[i] E(u |s(X))50,
[ii] E(u ·X |s(X))50,
[iii] E(u)50,
[iv] E{u · [E(Y |s(X)] |s(X)}50.

14 Explain the difference between temporal and contemporaneous dependence.

15 Compare and contrast the statistical GMs of:
(a) the simple Normal model,
(b) the linear/Normal regression model, and
(c) the linear/Normal autoregressive model.

16 Compare and contrast the simple Normal and Normal/linear regression models in
terms of their probability and sampling models.

17 Compare and contrast the Normal/linear and Student’s t regression models in
terms of their probability and sampling models.

18 Explain Karl Pearson’s strategy in postulating regression models.

19 “The argument that, looking at graphical displays of bivariate distributions and the
associated contour plot with the regression curve, is very misleading when one has
m.2 variables, is tantamount to telling the astronomers to abandon their tele-
scopes because they can only see 2 percent of the universe at best.” Discuss.
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8 Stochastic processes

8.1 Introduction

In chapter 6 we set out to broaden the intended scope of the simple statistical model,
based on the notion of a random sample (a set (X1,X2, …, Xn) of Independent and
Identically Distributed (IID) random variables), to encompass stochastic phenomena
which cannot be considered as realizations of random samples. In that chapter we dis-
cussed the concept of dependence in general. The question of modeling dependence was
pursued in chapter 7 where we reached the conclusion that an effective way to deal with
the modeling issues raised was through the conditional distributions and in particular
via the stochastic conditional moment functions. The discussion in both chapters was con-
fined to the two variables case in order to sidestep several additional issues raised by the
general case. The main objective of the present chapter is to return to the general n-vari-
able case and tie together all the loose ends. The basic concept required is that of a sto-
chastic process which extends the notion of a random variable.

8.1.1 The story so far

As shown in chapters 6 and 7, the qualifier simple in a simple statistical model stems from
the fact that the random sample assumption simplifies the analysis considerably; the
joint distribution of the sample is reduced to a product of univariate (identical) marginal
distributions:

f(x1, …, xn;f)I fk(xk;uk)III f(xk;u), for all x :5(x1, …, xn)[RX
n. (8.1)

As shown in chapter 6, in the case of a non-random sample the corresponding reduction
based on sequential conditioning takes the form:

f(x1, …, xn;f)
non-IID

5 f1(x1;c1)
n

k52
fk(xk |xk21, …, x1;ck), for all x[RX

n. (8.2)

By comparing the two reductions (8.1) and (8.2) we can see that the key to modeling the
non-randomness comes in the form of conditional distributions. Indeed, from the

p

p
n

k51
p

n

k51
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preliminary discussion of the problem of measuring dependence in chapter 6 we con-
cluded that the most promising way comes in the form of conditional moments. In
chapter 7, however, it became obvious that conditional moments could not do the job
because for each k:

{fk(xk |xk21, …, x1;ck), (xk21, …, x1)[RX
k21}, (8.3)

represents a whole collection of density functions; one for each possible value in RX
k21,

each one with its own conditional moments. The solution to this problem comes in the
form of conditional moment functions, such as the regression and skedastic functions.
Even these functions, however, do not suffice to deal with the problem because they
ignore the probabilistic structure of the conditioning variable. In chapter 7 we extended
the conditional moment functions to take account of the probabilistic structure of the
conditioning variables in the form of stochastic conditional moment functions.

Throughout the discussion in both of the previous chapters we concentrated on the
simple two variable case:

f(x,y;f)5f(y |x;w2) ·fx(x;w1), for all (x,y)[RX3RY, (8.4)

for a very good reason: to sidestep two interrelated problems that arise in the context of
the sequential conditional distributions (8.3):

(i) The changing conditioning information set: the number of conditioning variables
changes with the index in the sense that the number of conditioning variables
involved in fk(xk |xk21, …, x1;ck) changes with k52,3, …, n, rendering these densi-
ties different, e.g.. for n55:

f2(x2 |x1;c2),
f3(x3 |x2,x1;c3),
f4(x4 |x3,x2,x1;c4),
f5(x5 |x4,x3,x2,x1;c5).

(ii) The inherent heterogeneity: in addition to the fact that the conditional densities can
be different for each k (fk(. | .), k51,2, …, n), there is also the problem of the hetero-
geneity introduced by the changing conditioning information set.

In order to motivate the discussion that follows, let us proceed to apply the solutions
proposed in chapter 7 to the general case (8.3). In particular, let us consider the concepts
of conditional moment functions in the case of the sequence of conditional densities
(8.3). The first thing that becomes apparent looking at these densities is that we cannot
use the ordinary conditional moment functions because the marginal densities are cer-
tainly relevant. With the exception of the last Xn random variables the others appear on
both sides of the conditioning. Hence, we need to consider the stochastic conditional
moment functions. The first two stochastic conditional moment functions, known as the
autoregressive and autoskedastic functions, take the general form:

E(Xk |s(Xk21, …, X1))5hk(Xk21, …, X1), k52,3, …, n,

Var(Xk |s (Xk21, …, X1))5gk(Xk21, …, X1), k52,3, …, n. (8.5)
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A glance at (8.5) reveals that these do not yield operational models because they are
changing with the index k. This indicates that without some restrictions on the depen-
dence and heterogeneity of the set of random variables (X1,X2, …, Xn) no operational
models will arise via the stochastic conditional moments; the question of imposing such
restrictions will be pursued in this chapter.

8.1.2 Random variables and ordering

In the case of a random sample (X1,X2, …, Xn), the ordering of the random variables
involved, although specified, is immaterial because the random variables are replicas of
each other and we cannot distinguish between, say X1 and X3 even if we wanted to, unless
the realization of these values takes place at successive instances and their order is noted.
This is apparent in (8.1) because any re-shuffling of the sequence will make no difference
to the right-hand side. In contrast to this, in the case of a non-random sample the reduc-
tion in (8.2) makes it abundantly clear that the ordering is all important.

The notion of a random variable X (see chapter 3) defined on a probability space
(S,I,P(.)), (where S denotes the outcomes set, I the appropriate set of events of interest
and P(.) a probability set function), as a function of the form:

X(.) : S → R, such that X21(2`,x][I,

is basically dimensionless and cannot be endowed with dependence and heterogeneity. In
our attempt to define the notion of a non-random sample we need to endow the notion
of a random variable with dependence and heterogeneity. Both of these concepts are
defined relative to some ordering of the random variables involved. This requires us to
endow the notion of a random variable with a dimension (an index) that represents this
ordering and often represents time, spatial position, etc. The indexed sequence of
random variables {X1,X2, …, Xn,…}, called a stochastic process, is the required exten-
sion. The discerning reader would have noted that the notion of a stochastic process was
implicitly used in the previous three chapters, when the sample was specified.

8.1.3 A bird’s eye view of the chapter

The main objective of this chapter is to define and explain the notion of a stochastic
process, and related restrictions of dependence and heterogeneity, needed to specify
operational statistical models which can be used for modeling non-IID data.

The discussion of stochastic processes can end up being one of the most involved and
confusing parts of probability theory mainly because of the numerous overlapping types
of stochastic processes one encounters. The difficulties of mastering the material are
alleviated when the discussion is structured in a way that makes it easier to compare and
contrast the various stochastic processes. In an attempt to mitigate the confusion for the
uninitiated we use the following learning aids:

(i) We begin the discussion with a brief overview of the early developments in sto-
chastic processes. This is to lessen the problem of introducing too many concepts
too quickly and to establish some basic terminology.
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(ii) The probabilistic structure of stochastic processes is discussed in relation to the
three basic categories of probabilistic assumptions:

(D) Distribution, (M) Dependence, (H) Homogeneity. (8.6)

This renders the comparison between different processes much clearer and more
intuitive.

(iii) We use several taxonomies of stochastic processes, commencing the discussion
with the discrete/continuous distinction.

(iv) In view of the fact that most stochastic processes are specified indirectly as func-
tions of other (often simpler) stochastic processes, we emphasize the distinction
between the distributional and constructionist viewpoints.

In section 2 we define the concept of a stochastic process and discuss its basic structure.
In section 3 we consider briefly the early development of some of the most important
stochastic processes and the associated dependence and heterogeneity restrictions. A
more complete discussion of dependence and heterogeneity restrictions for stochastic
processes is given in sections 4 and 5, respectively. Emphasis is placed on the distinction
between the distributional and constructionist approaches to specifying stochastic
processes; the former refers to the specification via the joint distribution of a finite
number of elements of the process and the latter to specifying a stochastic process via a
function of another (often simpler) process. Section 6 introduces some of the stochastic
processes used as building blocks for constructing such processes. The major categories
of stochastic processes, Markov processes, random walk processes, martingale
processes, Gaussian processes, and Point processes, are discussed in sections 7–11. In
relation to the specification of a stochastic process we wrap up the question of specifying
operational statistical models by imposing dependence and heterogeneity restrictions in
section 10.

8.2 The notion of a stochastic process

8.2.1 Defining a stochastic process

A stochastic process is simply an indexed collection {Xt, t[T} of random variables
defined on the same probability space (S,I,P(.)), i.e., Xt is a random variable relative to
(S,I,P(.)), for each t in the index set T.

Example
The number of telephone calls arriving in a telephone exchange over the interval [0,t] can
be modeled using such an indexed sequence of random variables where Xt measures the
number of calls up to time t; its possible values are: 0,1,2,3,…

Reminding ourselves that a random variable X(.) is a function from an outcomes set S to
the real line R, we observe that a stochastic process is a function with two arguments:

X(.,.) : S3T → R.
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A more heedful notation for a stochastic process is:

{X(s,t), s[S, t[T}.

In view of the two arguments, we can look upon a stochastic process from two different
but interrelated viewing angles.

(i) The random variable viewing angle. For a given t5 , {X(s, ), s[S}:

X(., ) : S → R,

is an ordinary random variable on (S,F,P(.)) with its own distribution and density
functions as before. For a given subset of T, say {t1,t2, …, tn}, {X(.,t1),X(.,t2), …,
X(.,tn)} is just a collection of random variables like the ones we used to define the
notion of a sample in the previous chapters. The probabilistic structure of this col-
lection is fully described by their joint cumulative distribution or their joint density
function f(x(t1),x(t2),x(t3), …, x(tn)).

(ii) The functional viewing angle. For a given s5 , {X( ,t), t[T}:

X( ,.) : T → R,

is just an ordinary function from T to R. The graph of this function is often called
a sample path (or sample realization) because this is the feature of the stochastic
process that we often associate with observed data. In figure 8.1 and 8.2 we can
see the sample paths of a discrete and a continuous stochastic process, respec-
tively.

Allowing s to change (always within S), and take the values, say {s1,s2,s3, …, sk}, the
functions {X(s1,.),X(s2,.),X(s3,.), …, X(sk,.)}, t[T, define a collection of different sample
paths, called an assemble. The mathematical structure of the assemble also plays an
important role in the formalization of the notion of a stochastic process.

N :
(a) It is important to stress at this stage that it is common practice to connect the points

of a sample path of a discrete process. This suggests some caution when looking at
data plots to avoid confusing a discrete process with a continuous one because one
observes a continuous sample path (see figure 8.2).

(b) We often cannot resist the temptation to interpret t as time for convenience, but it
could easily be some other dimension we are interested in, such as space and
geographical position, as long as the index set for the particular dimension is
ordered.

(c) The index t can easily be multidimensional in the sense that the stochastic process
{Xt, t[R3} could represent the velocity of a particle suspended in liquid with t
being its position in the three-dimensional Euclidean space.

(d) The stochastic process {Xt, t[T} can be easily extended to the case where Xt is a
k31 vector of random variables: Xt:5(X1t,X2t, …, Xkt)Á.

From the modeling viewpoint there is a very important difference between having a
realization xT :5(x1,x2,x3, …, xT) from a random sample (X1,X2,X3, …, XT) or from a

s
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non-IID stochastic process {Xt, t[T}. In the random sample case, due to the fact that
each value xt comes from the same distribution f(x;u), the date t is immaterial since the
random variables are replicas of each other. As a result of this we can use the t-averages
(sample moments) such as:

T
t51xt

r, r51,2,… (8.7)

to estimate the corresponding distribution moments (probability averages):

E(Xr)5
x[RX

xrf(x)dx, r51,2,… (8.8)

In a sense (8.7) is defined by averaging over t[T and (8.8) by averaging over s[S;
remember the probability space (S,I,P(.)).

These two types of averaging can be visualized in the context of figure 8.3 which
depicts 5 sample paths from a Normal IID stochastic process. The t-averaging takes
place horizontally and the distribution averaging takes place vertically. When these
sample paths constitute realizations of IID samples the t-averages (sample moments)
will converge to the distribution averages (moments) because we know that the random
variables involved have common moments and as shown in chapter 9 the t-averages

E

o1
T
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T
t51xt

r converge to these common moments. However, the situation in the context of a
non-random sample is drastically different because, without any dependence and hetero-
geneity restrictions, each value of Xt comes from a different distribution and thus there
are no common moments to which the t-averages will converge!

Another way of looking at this problem is to note that for a non-IID stochastic
process the unknown parameters ut in ft(xt;ut) are by definition functions of the
moments which change with t:

E(Xt
r)5mr(ut,t), r51,2, …, t[T.

In a sense the problem is that we have just one observation for each set of unknown para-
meters ut. The question that suggests itself at this stage is whether only in the case of IID
random variables, the t-averages will converge to the distribution averages (moments).
The answer is, not necessarily, but the random variables involved are required to have
something in common for the convergence to take place. This something in common is
defined in terms of restrictions on the probabilistic structure of the process in question
so as to enable the modeler to use t-averages such as (8.7) as reliable estimates of the
unknown parameters (moments). This calls for dependence/heterogeneity restrictions
which will be the focus of the present chapter.

o1
T
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8.2.2 Classifying stochastic processes

The structure of the stochastic process {Xt, t[T} depends partly on the nature of two
sets: the index set T and the range of the random variable X, say RX. In view of the fact
that the range of the random variable Xt might change with t, we define the range of the
stochastic process {Xt, t[T} to be the union of the sets of values of X(.,t) for each t, say
RX(t):

Rx5<t[TRX(t),

known as the state space of the stochastic process. What renders the stochastic processes
mathematically different is whether the sets (T,Rx) are countable or uncountable; a dis-
tinction already encountered in chapter 2.

(a) In the case where T is a countable set, such as T5{0,1,2,3,…}, we call {Xt, t[T} a
discrete index stochastic process. On the other hand, when T is an uncountable set,
such as T5 [0,`), we call {X(t), t[T} a continuous index stochastic process. When
we need to emphasize the distinction between continuous and discrete index
processes for expositional purposes, we will use the  : {X(t), t[T} for a
continuous index process.
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(b) Similarly, the state space Rx of the stochastic process {Xt, t[T}, can be countable
or uncountable, introducing a four way index set/state space (T,R) classification of
stochastic processes:

Index set T State space R Example

D–D countable countable Simple random walk
D–C countable uncountable Normal process
C–D uncountable countable Poisson process
C–C uncountable uncountable Brownian motion process

This classification constitutes a schematic, mutually exclusive grouping of stochas-
tic processes which is useful for organizing our thoughts at the initial stages of mas-
tering the material, but it is not the only, or even the most useful classification
because it ignores the probabilistic structure of a stochastic process. A number of
other overlapping classifications of stochastic processes, such as stationary/non-
stationary, Markov/non-Markov, Gaussian/non-Gaussian, ergodic/non-ergodic,
are based on their probabilistic structure and provide useful groupings of stochas-
tic processes. A bird’s eye view of a categorization based on the probabilistic struc-
ture of stochastic process is given in figure 8.4 (see Srinivasan and Mehata (1988)
for more details).

8.2.3 Specifying a stochastic process

In view of the fact that the probabilistic structure of a set of random variables is best
described by their joint distribution, it is only natural to use the same device for specify-
ing the probabilistic structure of a stochastic process. This, however, raises the question
of specifying infinite dimensional distributions because a stochastic process {Xt, t[T}
often has an infinite index set. An effective solution to this problem was proposed by
Kolmogorov in the same 1933 book that founded modern probability.

N  . In many cases during the discussion that follows we are going to
discuss concepts which are applicable to both discrete and continuous index stochastic
processes. The notation for discrete index processes is of course more natural and less
complicated than that of a continuous index process and more often than not the former
will be used. However, in cases where we want to emphasize the general applicability of a
concept we use a notational device which in a sense enables us to use the discrete notation
to cover both cases. Instead of using the sequence {Xk}`

k51 which is clearly discrete we use
{Xtk

}`
k51, such that:

0,t1,t2,t3, ···,tn, ···,`, where tk[T, for k51,2,3, …, n,…

A stochastic process {Xt, t[T} is said to be specified if its finite joint cumulative dis-
tribution function (cdf):

F(xt1
,xt2

,… xtn
),
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is defined for all finite subsets {t1,t2, …, tn},T. This result is very useful because its con-
verse is also true (see Kolmogorov (1933a)).

Kolmogorov’s extension theorem
For each n let Fn(xt1

,xt2
,… xtn

) be the joint cumulative distribution function. If the fol-
lowing consistency condition holds:

(xtn11)→`
lim Fn11(xt1

,xt2
,… xtn

,xtn11
)5Fn(xt1

,xt2
,… xtn

),

for each (n11) .1 and (xt1
,xt2

,… xtn
)[Rn, there exists a probability space (S,F,P(.)),

and a stochastic process {Xt, t[T} defined on it, such that Fn(xt1
,xt1

,… xtn
) is the joint

cumulative distribution function of (Xt1
,Xt2

, …, Xtn
) for each n (see Billinsgley (1986)). In

this sense we are safe to assume that the probabilistic structure of a stochastic process
can be described completely using only finite dimensional joint distributions.

It is interesting to  that the above extension theorem enables the modeler to
proceed from the joint distribution F2(xt1,xt2) to the marginal 

(xt2)→`
lim F2(xt1

,xt2
)5F1(xt1

)
and then to the conditional F2 |1(xt2

|xt1
)5 ∫x2

2` du.
Viewing a stochastic process via the joint distribution of a finite subset of the compo-

nents is called the distributional viewpoint. Historically, however, the notion of a stochas-
tic process emerged in the early 20th century as functions of simple IID processes. This
constructionist viewpoint amounts to specifying a stochastic process {Yk, k[N}, by

f(xt1,u)
f1(xt1)
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defining it as a function of a simpler stochastic process (often IID or just independent)
{Xt, t[T}:

Yk5g(Xt1
,Xt2

, …, Xtk
), k[N. (8.9)

This means that we can think of a lot of stochastic processes as systems built using
simpler building blocks. The probabilistic structure of the constructed process
{Yk,k[N} is determined from that of the simpler process {Xt, t[T} via the mapping
(8.9).

Examples

(i) Consider the following function:

Yk5X1 cos vk1X2 sin vk, Xi,NIID(0,s2), i51,2, k[N.

This defines a stochastic process {Yk,k[N}.

(ii) A very important mapping which plays a crucial role for the constructionist view-
point is the mappings defining the partial sums of a process {Xk, k[N}:

Yk5 k
i51Xi, k[N.

The stochastic process {Yk,k[N} has played an important role in the development
of the notion of a stochastic process as argued below.

It must be emphasized, however, that even in the context of the constructionist approach
the best way to understand the structure of a stochastic process is to derive the joint dis-
tribution of the constructed processes.

Returning to the joint distribution of a finite subset of elements of a stochastic
process, as the most general description of a stochastic process, we note that for model-
ing purposes we need to tame the process by imposing some probabilistic structure on it.
The reason is that as it stands (without any restrictions) the joint distribution does not
yield operational models. Beginning with a general stochastic process {Xt, t[T} we
proceed to tame it by imposing certain distribution, heterogeneity, and dependence
restrictions. These restrictions enable us to deal with both the problems of dimensional-
ity and overparameterization raised in chapters 6–7.

In an attempt to explore some of the concepts concerning restrictions of dependence
and heterogeneity, we provide a brief historical perspective for some of the earlier
attempts to come to grips with the notion of a stochastic process.

8.3 Stochastic processes: a preliminary view

The mathematical concept of a stochastic process as given above was formulated in the
early 1930s. Before that time the notion of a stochastic process existed only in the form of
a model for specific stochastic phenomena. These models of stochastic phenomena were
almost exclusively in physics. The notable exception to this is the attempt by Bachelier

o
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(1900) to put forward a model for the behavior of prices in the Paris stock market. From
the probabilistic viewpoint the concepts one needs to define a stochastic process were not
developed until the 1920s. Indeed, from the time of Cardano (1501–1576), when the
notion of independence between two events was first encountered and then formalized
by de Moivre in the 1730s, until the late 19th century, dependence was viewed as a nui-
sance and interpreted negatively as non-independence. Beyond the well-charted land of
independence there is situated an unexplored territory known as non-independence/het-
erogeneity. We begin with a short account of the early attempts to formulate a model for
the physical phenomenon known as Brownian motion.

8.3.1 Brownian motion and the foundations of probability

The Brownian motion process was coined after the botanist Robert Brown (1773–1858)
who noted the erratic movement of a particle of pollen suspended in fluid, as far back as
1827. It was erroneously believed at the time that the erratic behavior was the result of
live molecules. It turned out that this movement was the result of the bombardment of
the particle by millions of fluid molecules caused by thermal diffusion. The effect of the
particle colliding with any one of the molecules is negligible but the cumulative effect of
millions of such collisions produces the observable erratic behavior which exhibits
certain chance regularity patterns.

The first systematic attempt to model the observable chance regularity patterns of the
particles’ erratic behavior was made by Einstein in 1905 using a stochastic differential
equation of the form:

5d ,

where d :5
Dt→0
lim , is the coefficient of diffusion and f(x,t)dx is the probability that X(t)

lies in the interval (x,x1dx). Solving this differential equation subject to the initial con-
dition X(0)50, it can be shown that the particle displacement distribution (after
sufficiently long time t) takes the form:

f(x,t)5 exp .

This is the Normal density with moments:

E(X(t))50, Var(X(t))52dt.

Intuitively, this can be explained by the fact that the net displacement of the particle
X(t) during any time interval (t,t1t) will be the sum of numerous small (largely inde-
pendent) contributions of individual molecule impacts. The Central Limit Theorem (see
chapter 9) suggests that under such conditions the erratic displacement of the particle
can be approximated by a Normally distributed random variable X(t).

The Brownian motion as a stochastic process can be viewed as the integral of an NIID
process:

X(t)5 Z(u)du, Z(t),NIID(0,1), t[(0,`). (8.10)Et

0

52
x2

4dt6
n

Ï4pdt

1(Dx)2

2Dt 2

12f(x,t)
x2 2f(x,t)

t
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The first attempt to formulate this process as a model for the changes of stock
exchange rates was made by Bachelier (1900). Unfortunately, his thesis was not appre-
ciated by mathematicians such as Poincare (one of his two examiners) and his results,
reported in his book The Calculus of Probability (published in 1912), went unnoticed
until the early 1930s when Kolmogorov (1931) referred to them in unflattering terms
for their mathematical rigor. Mathematical rigor aside Bachelier should be credited
with the first formulation of the stochastic process known today as Brownian motion.
It is interesting to note that Bachelier understood the problem of modeling much
better than some of the mathematicians in the 1920s. He went as far as recognizing the
necessity of dependence/heterogeneity restrictions and introducing what came to be
known afterwards as Markov dependence and Markov homogeneity (see Von Plato
(1994)). The first rigorous mathematical formulation of the Brownian motion stochas-
tic process was given by Wiener in 1920s and elaborated further by Levy in the 1930s
and 1940s.

The Brownian motion is by far the most important continuous index stochastic
process whose study initially was based on its sample paths. However, the paths followed
by the irregular movement of particles were found to be continuous but nowhere
differentiable. That was a shock to the scientific community because that meant that par-
ticles travel with infinite speeds! Einstein’s theory was confirmed in 1916 by Pierre Perrin
who received the Nobel prize in 1926 for his efforts. The ball was squarely in the court of
the probabilists who did not have a consistent theory of probability to cover Einstein’s
model. The classical theory of probability based on the model of a lottery was seriously
inadequate for such a purpose. By the late 1920s Wiener proved the existence of proba-
bilities for Einstein’s model but a consistent theory of probability which covered this
model had to wait until 1933 when Kolmogorov published his classic book on the foun-
dations of probability theory (1933a).

Kolmogorov’s extension theorem, roughly speaking, suggests that phenomena which
exhibit chance regularity can be modeled within the mathematical framework demar-
cated by the probability space (S,I,P(.)), endowed with the mathematical structure
given in chapter 2, unless they contain inconsistencies of the form stated in the theorem.
Kolmogorov’s foundation became an instant success because it cleared up all the mess
created with the study of Brownian motion and freed the subject from the straitjacket
forced upon it by the lottery model of probability.

8.3.2 Partial sums and associated stochastic processes

A number of important stochastic processes, such as Markov, random walk, inde-
pendent increments, and martingales and their associated dependence and hetero-
geneity restrictions, can be viewed in the context of the constructionist approach as
partial sums of independent random variables. It is only natural that the first
attempts to extend the IID stochastic processes {Zt}t[T would be associated with
simple functions of such processes such as the sum. Indeed, the Brownian motion
process as defined by (8.10) is the integral (summation over a continuum) of a NIID
process.
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Consider a sequence of IID random variables {Zt}t[T which for 0,t1, ···,tk, ···,`,
tk[T, k51,2, …, is partially summed to create a derived process {Sk}`

k51:

Sk5 k
i51Zti , k51,2,3,… (8.11)

The first to venture into the uncharted territory of non-IID stochastic processes from
the probabilistic viewpoint was Markov in 1908 who noticed that the derived process
{Sk}`

k51 is no longer IID; it has both dependence and heterogeneity. To see this let us sim-
plify the problem by considering the first two moments (assuming they exist) of the IID
sequence:

(i) E(Ztk)5m, k51,2,3, …,
(ii) Var(Ztk)5s2, k51,2,3,…

Using the linearity of the expectation (see chapter 3) we can deduce that:

(a) E(Sk)5km, k51,2,3, …,

(b) Var(Sk)5ks2, k51,2,3, …,

(c) Cov(Sk,Sm)5s2 min (k,m), k,m51,2,3,… (8.12)

The results (a) and (b) are trivial to derive but (c) can be demonstrated as follows:

Cov(Sk,Sm)5E{(Sk2km)(Sm2mm)}5E (Zti2m ) (Ztj2m) 5

Cov(Sk,Sm)5 E[(Zti2m)(Ztj2m)]5 E(Zti2m)25s2 min (k,m),

since Cov(Zti,Ztj)50, iÞ j. The sequence of the partial sums {Sk}`
k51 was later called a

random walk process and provided the impetus for numerous developments in stochastic
processes.

C . The reader is reminded again that the above structure is only indicative of the
more general dependence structure of partial sums because we concentrated exclusively
on the first two moments, which in general might not even exist!

Markov was working in the context of a discrete state space/discrete index set frame-
work and concentrated mostly on the dependence structure of such processes. In partic-
ular, he realized two things:

(i) all the elements of the process {Sk}`
k51 are mutually dependent irrespective of the

distance between them, but
(ii) the dependence becomes easier to model when viewed via the conditional distribution.

What is so special about this process?

The conditional distribution of Sk given its past (Sk21,Sk22, …, S1) depends only on the
most recent past, i.e.

fk(sk |sk21, …, s1;ck)5fk(sk |sk21;wk), for all s(k)[Rk, k52,3,… (8.13)

o
min(k,m)

i51
o

m

j51
o

k

i51

62o
m

j51
12o

k

i51
15

o
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That is, the dependence structure between Sk and its past (Sk21, …, S1) is fully captured
by its conditional distribution given its most recent past Sk21; we call it Markov depen-
dence. Processes which satisfy this dependence restriction are called Markov processes.
Markov’s result was formalized in its full generality by Kolmogorov (1928b,1931); see
section 7.

It is very important to emphasize that Markovness does not involve any heterogeneity
restrictions. An obvious way to deal with the problem of heterogeneity in this context is
to assume homogeneity of the conditional distributions, i.e.

fk(xtk |xtk21;wk)5f(xtk |xtk21;w), k52,3, …, n,

which we could call Markov homogeneity. N that this involves only the conditional
densities; there is no homogeneity assumption for the marginal density f1(xt1;c1) which
can still be a source of heterogeneity.

Another important stochastic process that arises by partially summing independent
random variables is the random walk process.

The stochastic process {Sk}`
k51 is said to be a random walk if it can specified as the

partial sum of IID random variables {Zt}t[T, i.e., for 0,t1,t2,t3, ···,tn, ···,`,
tk[T, k51,2, …, i.e.:

Sk5
k

i51Zti , where Zti, IID(.), i51,2, …, k51,2,3,… (8.14)

N that this notation enables us to define the partial sum process (a discrete index
process) in terms of an IID process {Ztk}`

k51 which can be either a discrete or continuous
index process. For a continuous partial sum process we need to replace the summation
with an integral as in (8.10).

In terms of our taxonomy of probabilistic assumptions, both a Markov and a random
walk process are defined without any distribution assumptions and thus one should be
careful when discussing their dependence and heterogeneity structure in terms of
moments. The tendency to concentrate on the first two moments of the process can be
very misleading because:

(a) they might not exist (Zi,Cauchy(0,1), i51,2,…),
(b) they capture only limited forms of dependence/heterogeneity.

In a certain sense the notion of a random walk process is an empty box which can be
filled with numerous special cases by imposing some additional probabilistic struc-
ture. By choosing the distribution to be discrete (e.g., Poisson) or continuous (e.g.,
Normal) we can define several different kinds of stochastic processes which, neverthe-
less, share a certain common structure. It is instructive to discuss briefly this common
structure.

The probabilistic structure imposed on the generic notion of a random walk is via its
definition as a sequence of partial sums of IID random variables. The probabilistic
structure of the IID process {Zk}`

k51 (we use the discrete index notation for convenience)
is transformed via the partial sums to determine indirectly the probabilistic structure of
the random walk process {Sk}`

k51 . Let us consider the problem of determining the prob-
abilistic structure of {Sk}`

k51 from first principles.

o
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First, let us consider the dependence structure of a random walk process. From (8.14)
we can deduce that the partial sum process can be written in the form:

Sk5Sk211Zk, k51,2,3, …, with S050. (8.15)

As we can see, the random walk process has a Markov dependence structure because:

f(sk |sk21,sk22, …, s1)5f(sk |sk21), k52,3,…

It is important to note that the notion of a Markov process is considerably more
general than that of a random walk. In the case of the latter the Markovness is
induced by the transformation of the partial sums. The Markov dependence, however,
does not depend on the partial sum transformation as exemplified by the following
example.

Example
Let {Zk}`

k51 be an IID process with zero mean (E(Zk)50, k51,2,..). Then the sequence
defined by the recursion:

Yk5h(Yk21)1Zk, k52,3, …,

for any well-behaved (Borel) function h(.) is a Markov process.

This demonstrates most clearly that the Markov dependence structure does not depend
on the linearity of the transformation but on its recursiveness.

Returning to the dependence structure of a random walk process we conclude that its
form is restricted to that of Markov dependence. In view of the above discussion it
should come as no surprise to discover that the heterogeneity structure of a random walk
process is also of a special type. This also stems from the fact that, as shown above, the
process {Sk}`

k51 has increments {Sk2Sk21}`
k51 which are IID random variables. Hence,

the joint distribution takes the form:

f(s1,s2, …, sn;f)5f1(s1;u1) fk(sk2sk21;uk)5f1(s1;u1) f(sk2sk21;u), s[Rn.

(8.16)

where the first equality follows from the fact that the increments process {Sk2Sk21}`
k51

is independent and the second from the ID assumption for the same process. This sug-
gests that the heterogeneity structure of the random walk process {Sk}`

k51 will have a
component which is common to all subsets of the process and a component which
depends on the distance from the initial condition S050; what we call separable hetero-
geneity.

This is best exemplified using the first two moments (assuming they exist!) derived
above. Looking at (8.12) we can see that the first two moments are separable in the sense
that they have an ID component (the corresponding moment of the IID process) and a
heterogeneous component which is a function of the index of the random variables
involved. A more general formulation of this type of heterogeneity, known as second-
order separable heterogeneity, takes the form:

p
n

k52
p

n

k52
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(a) E(Xk) :5mk5h(k) ·m, k51,2, …,

(b) Cov(Xk,Xm) :5vk,m5q(k,m) ·s2, k,m51,2,… (8.17)

N that in the case of a random walk process {Sk}`
k51:

h(k)5k, q(k,m)5min(k,m).

Such forms of heterogeneity give rise to operational models in a number of interesting
cases encountered in practice. This should be contrasted with arbitrary heterogeneity
which means that the moments are functions of the index with the type of functional
dependence unspecified (the first equality in (a) and (b)).

Historically, the notion of a Markov process was introduced in the early 1900s and by
the early 1920s (see Kolmogorov (1928a, b)) several other forms of stochastic processes,
often motivated by the partial sum formulation, made their appearance. We have already
encountered the IID increments process associated with a random walk process. A
natural extension of this is to relax the ID assumption and define a process {Xt}t[T

which has independent increments for all 0,t0, t1,t2, ···, tn,`, the increments
{Xtk2Xtk21}n

k21 are independent:

f(xt1,xt2, …, xtn;f)5f1(xt1;u1)
n

k52 fk(xtk2xtk21;uk), x[Rn. (8.18)

In terms of its dependence structure, we know from the above discussion that an inde-
pendent increments process {Xt}t[T is Markov dependent:

fk(xtk |xtk21;wk)5fk(xtk2xtk21;uk), k52,3,… (8.19)

What an independent increments sequence has in addition, however, is a sort of linearity
built into the structure of the sequence of random variables {Xt}t[T, when taking the
difference between adjacent random variables. This can be seen by defining the indepen-
dent sequence {Ytk}`

k51, where:

Yt1 :5Xt1, Ytk :5Xtk2Xtk21, k52,3, …,

and observing that:

Xtk5
k

i51Yti, k51,2,3, …, n.

From this we can deduce that Xtk is linearly related to the previous increments:

Xtk5Xt11
k

i52 (Xti2Xti21).

This partial sum linearity restricts the joint distribution f(xt1
,xt2

, …, xtn
;f) in so far as

the distribution of Xt32Xt1 must be the same as the distribution of the sum (Xt3
2Xt2

)1

(Xt2
2Xt1

). Conversely, if {Ytk
}`

k51 is an Independent process, then for some arbitrary
random variable Xt1

, the process {Xtk
}`

k51 defined by:

Xtn
2Xt1

5
n

i51Yti
, n$1,

is a stochastic process with independent increments.
Returning to (8.18) we observe that the definition of a sequence with independent

o

o

o
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increments raises a problem of homogeneity beyond the Identical Distribution assump-
tion, in so far as the definition involves the marginal as well as the distributions of the
differences fk(xtk

2xtk21
;uk), k52,3… One obvious solution is to impose the ID assump-

tion on the marginal distributions of both sequences {Xtk
}`

k51 and {Xtk
2Xtk21

}`
k51:

(i) fk(xtk
;ck)5f(xtk

;c), k51,3, …,

(ii) fk(xtk
2xtk21

;uk)5f(xtk
2xtk21

;u), k52,3, …,

The homogeneity assumption (ii) might be called Identically Distributed increments.
N that in view of the relationship (8.19), this is equivalent to Markov homogeneity.

The homogeneity conditions introduced above led to the important notion of
Stationarity. Khinchine (1934) noticed that the homogeneity condition (ii) amounted to
the restriction that the joint distribution of two adjacent random variables depends only
on the difference of the dates not the actual dates, i.e. for any two dates: 0, t1,t2,`:

ft1,t2
(xt1

,xt2
;u)5ft22t1

(xt1
,xt2

;u).

Continuing along the same line, this can be extended to the n-variable case{Xt1
,Xt2

, …,
Xtn

}, 0,t1,t2, ···,tn,`, such that the joint density depends only on the (n21)
differences {t22t1,t3– t1,t42t1, …, tn2t1}, i.e.

(iii) ft1,t2,…,tn
(xt1

,xt2
, …, xtn

;u)5ft22t1,t32t1,t42t1,…,tn2t1
(xt1

,xt2
, …, xtn

;u).

Khinchine showed that these homogeneity conditions amounted to the restriction
that the joint distribution of {Xt1

,Xt2
, …, Xtn

} is invariant to a shift t of the dates, i.e.

ft1,t2,…,tn
(xt1

,xt2
, …, xtn

;u)5ft11t,…,tn1t (xt11t,xt21t, …, xtn1t;u). (8.20)

This is known as the strict stationarity condition which became the dominant homo-
geneity restriction in the development of such sequences of random variables.

Another important stochastic process motivated by the partial sums formulation is
the martingale process. The importance of this process stems from the fact that it allows
for sufficient dependence and heterogeneity for the partial sums process to behave
asymptotically like a simple IID process. The notion of a martingale process was intro-
duced in the late 1930s but its importance was not fully appreciated until the 1950s. The
notion of a martingale process, in contrast to the Markov process, concentrates mostly
on the first conditional moment instead of the distribution itself.

Consider the partial sums stochastic process {Sk}`
k51 where:

Sk5
k

i51Zi , where Zi,D(0,.), i51,2, …, k51,2,3,… (8.21)

are independent but non-ID distributed random variables with zero means (E(Zk)50,
k51,2, …, n) . As shown above the partial sums process can be written in the form:

Sk5Sk211Zk, S050, k51,2,3,…

We can show that the conditional expectation of Sk given its past takes the form:

E(Sk |Sk21,Sk22, …, S1)5E((Sk211Zk) |Sk21,Sk22, …, S1)5Sk21, k52,3, …, n.
(8.22)

o
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This follows from the property CE4 “taking what is known out” (see chapter 7) and the
fact that s (Sk21,Sk22, …, S1)5s (Zk21,Zk22, …, Z1), i.e., the two event spaces coincide in
view of the one-to-one mapping between them, and thus:

E(Zk |Sk21,Sk22, …, S1)5E(Zk |Zk21,Zk22, …, Z1)5E(Zk)50.

The essential element of this argument is not the independence of the Zks but the combi-
nation of the conditional and unconditional zero means:

(a) E(Zk)50, k51,2, …,

(b) E(Zk |Zk21,Zk22, …, Z1)50, k52,3,…

neither of which requires independence but the existence of the first moment. In section
8 we will call the process {Zk}`

k51 satisfying (a)–(b) a martingale difference process.
Collecting the above elements together, we say that the stochastic process {Yk}`

k51 is a
martingale if

(i) E(|Yk|),`, k51,2, …, k51,2, …,

(ii) E(Yk |s (Yk21,Yk22, …, Y1))5Yk21, k52,3, …, n. (8.23)

A martingale process is specified exclusively in terms of the first conditional moment
on which it also implicitly imposes a heterogeneity restriction. This is because the mar-
tingale dependence condition (8.23) implies that if we use property CE1 “the law of iter-
ated expectation” we get:

E[E(Yk |s (Yk21,Yk22, …, Y1))]5E(Yk)5E(Yk21), k52,3, …, n,

which holds only in the case where the mean of the process is constant. This is a homo-
geneity restriction which is defined in terms of the first moment and called first-order (or
mean) homogeneity.

In figure 8.5 we summarize the relationship between the stochastic processes discussed
above for reference purposes. As we can see, the random walk and the independent incre-
ments processes are subsets of the Markov process category. On the other hand, martin-
gale processes are not a proper subset of the Markov process category because the
former impose the additional restriction of a bounded first moment which none of the
other categories requires.

8.3.3 Gaussian process

As mentioned many times so far, the Normal (Gaussian) is by far the most important
distribution in probability theory and statistical inference. When we apply the above
notions of dependence (Markov, independent increments, martingale) to a Normal
(Gaussian) stochastic process {Xk}`

k51 we find ourselves looking at bivariate Normal dis-
tributions of the form (see chapter 4):

f(x1,x2;u12)5 exp 2 22r 1 (8.24)621x2 2 m2

Ïs22
2

2

1x2 2 m2

Ïs22
21x1 2 m1

Ïs11
21x1 2 m1

Ïs11
2

2(1 2 r2)21

2
 15(1 2 r2)2

1
2

2pÏs11s22
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where u12 :5(m1,m2,s11,s22,r)[R23R1
23 [21,1],(x1,x2)[R2. This is because these

forms of dependence can be captured by adjacent random variables. As argued in
chapter 6, under Normality the only form of dependence possible is first-order depen-
dence captured by the correlation coefficient r.

The above reasoning in relation to the Normal distribution gave rise to a form of
dependence specified in terms of the first two moments of any two random variables Xk

and Xm (m.k); known as linear dependence defined by (see chapter 6):

rk,m :5Corr(Xk,Xm)Þ0. (8.25)

As with the other notions of dependence, the notion of correlated random variables
raises the problem of the homogeneity associated with it. In direct analogy to strict sta-
tionarity (8.20) we can specify the following conditions in terms of the first two
moments:

(i) E(Xk)5E(Xk1t), for all k,t51,2,…
(ii) E(XkXm)5E(Xk1t Xm1t), for all k,m,t51,2,…

These conditions ensure that the correlation (8.25) will be free of the dates. A more trans-
parent but equivalent way of expressing this is that the first two moments depend neither
on k nor on m but on the difference |m2k | :

(a) E(Xk)5m, for all k51,2, …,

(b) E[Xk2E(Xk)]25s2, for all k51,2, …,
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(c) E{[Xk2E(Xk)] [Xm2E(Xm)]}5h(|m2k | ), k,m51,2,…

The conditions (a)–(c) define what is known as weak (or second-order) stationarity.

8.4 Dependence restrictions

Having introduced a number of important notions using the historical development of
stochastic processes, we proceed to define a number of dependence and heterogeneity
restrictions. We limit ourselves to very few examples because the rest of this chapter will
be devoted to the usefulness of the notions introduced in this section in the context of
different stochastic processes. For notational convenience we use the discrete index nota-
tion but with minor modifications the following concepts can be written in the more
general notation 0,t1,t2, ···,tn,` .

8.4.1 Distribution-based notions

Historically, the earliest dependence restriction adopted was the extreme case of no
dependence.

Independence The stochastic process {Yt, t[T} is said to be independent if:

f(y1,,y2, …, yT;f)5 T
i51 ft(yt;ct), for all y :5(y1, …, yT)[RY.

This concept has been discussed extensively in the previous chapters. We proceed to
define less restrictive assumptions relating to dependence.

Markov dependence The stochastic process {Yt, t[T} is said to be Markov dependent if:

fk(yk |yk21,yk22, …, y1;wk)5fk(yk |yk21;ck), k52,3,…

This notion of dependence can be easily extended to higher-orders as follows.

Markov dependence of order m The stochastic process {Yt, t[T} is said to be Markov
dependent of order m if for m$1:

fk(yk |yk21,yk22, …, y1;wk)5fk(yk |yk21,…yk2m;ck), k5m11, m12,….

The intuition behind this form of dependence is that the conditional information rele-
vant for predicting yn is only the recent past which goes back only m periods.

Martingale difference dependence The stochastic process {Yt, t[T} is said to be martin-
gale difference dependent if E(Yk)50, k51,2, …, and:

E(Yk |s (Yk21,Yk22, …, Y1))50, k52,3,…

That is, the process is first-order conditionally independent of its past.

m-dependence The stochastic process {Yt, t[T} is said to be m-dependent if
for t$m.0:

p
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f(y1, …, yn,yn1t,yn1t11, …, y2n1t;f n,t)5f(y1, …, yn;cn) · f(yn1t , …, y2n1t; cn,t).

The intuition behind this form of dependence is that when the elements of the stochastic
process are m or more periods apart they are independent. This form of dependence
arises naturally when the modeler considers an IID, mean zero sequence {Xt}`

t51 and
defines:

Yk5Xk ·Xk1m, k51,2,…

The stochastic process {Yt}`
k51 is an m-dependent process.

Asymptotic independence The stochastic process {Yt, t[T} is said to be asymptotically
independent if as t → ̀ :

f(yn1t |yn,yn21, …, y1;fn,t).f(yn1t ;cn1t).

The intuition behind this form of dependence is that the elements of the stochastic
process become independent as the distance between them increases to infinity.

8.4.2 Correlation-based notions

Historically, the earliest dependence restriction based on the first two moments was the
extreme case of non-correlation.

Non-correlation The stochastic process {Yt, t[T} is said to be uncorrelated if
E( |Y t

2 | ),` for all t[T, and:

Corr(Yt,Yk)50, for tÞk, t,k[T.

This notion of no linear dependence can be extended to non-correlation m or more
periods apart.

mth order non-correlation The stochastic process {Yt, t[T} is said to be mth order
uncorrelated if E( |Yt

2 | ),` for all t[T and:

Corr(Yt,Yk)
ctkÞ0, for |t2k |#m.0,

Corr(Yt,Yk)
55 0, for | t2k |.m.0,

t,k51,2,….

The intuition behind this form of dependence is that when the elements of the stochastic
process are m or more periods apart they are uncorrelated.

Asymptotic non-correlation The stochastic process {Yt, t[T} is said to be asymptoti-
cally uncorrelated if E( |Yt

2 | ),` for all t[T and:

Corr(Yt,Yt2t) → 0, as t → ̀ .

The intuition behind this form of dependence is that the elements of the stochastic
process become uncorrelated as the distance between them increases to infinity.
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Asymptotic average non-correlation The stochastic process {Yt, t[T} is said to be
weakly asymptotically uncorrelated if E( |Y t

2 | ),` for all t[T and:

limT→`

T

i51Corr(Yt,Yt2t)50, for any tÞ0. (8.26)

This is a weaker form of asymptotic non-correlation because it requires not the individ-
ual correlations but their average to go to zero as T goes to infinity. This condition is of
interest because it is sufficient for ergodicity (see below).

8.4.3 Mixing conditions

Mixing conditions have recently replaced ergodicity (see below) as the most widely used
restrictions of asymptotic independence for statistical inference purposes. These mixing
conditions amount to certain forms of asymptotic independence.

In chapter 6 we introduced a number of measures of dependence based on s-fields
which can be adapted to provide measures of temporal dependence. Let (S,I,P(.)) be
the relevant probability space and consider two event subspaces A and B of I. As
shown in chapter 6, several measures of dependence between these sub-s-fields can be
defined:

(1) a(A,B)5 sup
A[A,B[B

|P(A>B)2P(A) ·P(B) | ,

(2) f (A,B)5 sup
A[A,B[B

|P(A |B)2P(A) | , for P(B).0,

(3) c (A,B)5 sup
A[A,B[B

, for P(B).0, P(A).0.

In the present context of a stochastic process we can choose A and B to correspond to
the future and the past (t periods apart):

A :5I`
n1t5s (yn1t,yn111t,…), B :5In

2`5s (…,y1,y2,…,yn), (8.27)

where s(…,y1,y2,…,yn) denotes the minimal s-field generated by (…,y1,y2,…,yn). Using
these measures we can define several notions of asymptotic independence, which take the
general formulation:

j-mixing: if j(t) → 0, as t → ̀ , for j(t)5sup
n

j(I`
n1t,In

2`),

where j stands for any one of:

a(t)5sup
n

a(I`
n1t,In

2`),f(t)5sup
n

f(I`
n1t,In

2`), c(t)5sup
n

c(I`
n1t,In

2`),

where a(t),f(t) and c(t) were defined above.
A closely related notion is asymptotic non-correlation, defined in a more general way

than in the previous subsection via:

r(t)5
X[I`

n1t,Y[I n
2`

sup |Corr(Xn1t,Xn) | , if E(Xt
2),` for all t[T.

|P(A>B) 2 P(A)·P(B)|
P(A)·P(B)

o1
T
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It can be shown that all the above measures of dependence are non-negative and
satisfy the following inequalities (see Hall and Heyde (1980)):

a(t)# , f(t)#1, c(t)#1, r(t)#1.

Moreover, some of the above mixing conditions are weaker than others:

c(t) → 0 ⇒ f(t) → 0 ⇒ r(t) → 0 ⇒ a(t) → 0, as t → ̀ ,

assuming that the required second moments exist. This suggests that the weakest form of
asymptotic independence (and the most widely used) is that of a-mixing. Another inter-
esting result is that all the above mixing conditions are stronger than ergodicity (see next)
in the sense that when we impose stationarity on a stochastic process {Yt, t[T}, then
any one of the above mixing conditions implies ergodicity.

Another widely used form of asymptotic independence, which combines the notions
of martingale dependence and mixing, is that of a mixingale first introduced by McLeish
(1975). In an attempt to motivate the notion of a mixingale consider a stochastic process
{Xt, t[T} with a bounded second moment E( |Xt |2,`) . The variance of a partial sum
of the process, without any restrictions, takes the form:

Var
n

k51Xk 5
2 n

k51Var(Xk)12
n21

k51

n2k

m51Cov(Xk1m,Xk) .

N : the reason we consider the asymptotic negligibility of the variance of a partial
sum will become apparent in the context of limit theorems in chapter 9. The assumption
of bounded variance ensures that the first term after the equality is asymptotically
negligible. The left-hand side will converge to zero if we impose certain restrictions on
the temporal covariances. Consider the instances 1#k#m,` and define the s-field:
Ik

m5s(Xk,Xk11, ··· ,Xm21,Xm). Then:

Cov(Xk1m,Xk)5E([Xk1m2E(Xk1m)] [Xk2E(Xk)])5

Cov(Xk1m,Xk)5E{E([Xk1m2E(Xk1m)] [Xk2E(Xk)]) |Ik
2`}5

Cov(Xk1m,Xk)5E([E(Xk1m |Ik
2`)2E(Xk1m)] [Xk2E(Xk)]),

where the second equality follows from the property CE2 and the third from the CE4
property of conditional expectations (see chapter 7). Using the Cauchy–Swartz inequal-
ity we can deduce that:

|Cov(Xk1m,Xk) | # (E{[E(Xk1m |Ik
2`)2E(Xk1m)]2}) [Var(Xk) ].

In view of the fact that the last term is bounded, we concentrate on the other term which
we require to converge to zero as m → ̀ .

Mixingale The stochastic process {Xt, t[T} with bounded second moment E( |Xt |2),`,
is said to be a mixingale if there exist constants ck and cm:

(E{[E(Xk1m |Ik
2`)2E(Xk1m)]2}) # ck1mcm,

such that: ck1m,`, cm → 0, as m → ̀ .

1
2

1
2

1
2

4ooo321
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Examples

(i) Consider the independent process {Xt, t[T} with bounded second moment
E( |Xt |2,`) . Then,

E(Xt1m |It
2`)5E(Xt1m) for m$1,

and thus we may choose c051, cm50, for m$1, ct5 [Var(Xt) ].

(ii) Consider the m-dependent process {Xt, t[T} with bounded second moment
E( |Xt |2,`) . Then,

E(Xt1k |It
2`)5E(Xt1k) for k$m,

and thus we may choose ck51, for k,m, and ck50, for k$m,

ct5
0#k#m
sup (E{[E(Xt1k |It

2`)2E(Xt1k)]2}) .

8.4.4 Ergodicity

Historically, the most important early restriction on the dependence associated with sta-
tionary stochastic processes came in the form of ergodicity. Intuitively, ergodicity refers
to the property of a stationary stochastic process which will enable us to use a single
sample path (realization) in order to estimate reliably the moments of the distribution
underlying the stochastic process in question (see figure 8.4).

To explain the notion of ergodicity we need to use the notation X(s,t), introduced at
the beginning of this chapter, where s[S (outcomes set), t[T. If for every well-behaved
(Borel) function:

h(.): R → R such that E(| h(Xt)|),`,

lim
T→`

T
t51h(X(s,t))5E(h(X(s,t))) :5 ∫x[RXh(x(t,s)) f(x(s,t)) dx(s),

the stationary stochastic process {Xt, t[T} is said to be ergodic. That is, if the limit as
T→ ̀ of the time averages of such functions ( T

t51h(X(t))) converges to the distribution
averages E(h(X(t))), then the process is said to be ergodic. It is important to emphasize
that the t-average is over a subset of the index set T but the distribution average is over
s[S.

R : the notion of limit in this context is not the same as the mathematical limit
because h(X(t)) are random variables (see chapter 9).

The above definition has two interrelated conditions. The first is whether the limit of
the time-average exists, i.e., there exists a constant x,` and:

x5 lim
T→`

T
t51h(X(s,t)).

The second condition is whether the constant x coincides with jh :5E(h(X(t))) . Let us
illustrate these conditions in the simplest case possible.

h
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h
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T
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2
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Example
Consider the second-order stationary stochastic process {Xt, t[T} with moments:

(i) E(Xt)5m, t51,2,3,…
(ii) Cov(Xt,Xt2t)5c( |t | ), t,t51,2,3,…

For the simple function h(Xt)5Xt its distribution average is m. The question we are

interested in is whether  lim
T→`

T
t51Xt exists, and if it does whether it coincides with m.

Taking convergence in probability (see chapter 9) as our relevant mode of convergence,
we can answer yes to both questions if:

Var T
t51Xt T→

→̀ 0.

In view of the fact that Var T
t51Xt 5 T

t51c(0)12 T
t.s c(t2s) , we know

T
t51c(0)

T→
→̀ 0, but the second term in the above brackets goes to zero only under

certain circumstances, such as:

c(t)
t→
→̀ 0, (8.28)

i.e., the dependence dies out as the distance between observations increases. We can say
that {Xt, t[T} is mean-ergodic if:

lim
T→`

T21
t50c(t)50. (8.29)

N that condition (8.28) implies (8.29). The latter is the so-called Cesaro sum which
ensures that when the average of a sequence of partial sums converges its limit is the
same as the original sequence.

The general result for mean ergodicity is as follows. Consider the stochastic process
{Xt, t[T} with moments:

(i) E(Xt)5m, t51,2,3,…
(ii) Cov(Xt,Xs)#c0, t,s51,2,3,…

Define the covariance between the sample means:

mt5
t
k51Xk, t52,3,…

and the last element Xt:

v(t)5Cov(mt,Xt)5 t
k51E(XkXt).

A necessary and sufficient condition for ergodicity in the mean is that (see Parzen
(1962)):

lim
t→`

v(t)50,

i.e., the covariance between the sample mean and the last element of the process involved
weakens as t increases.

This result can help us delineate certain important features of the notion of ergodicity.
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First, to be able to talk about convergence to certain quantities such as moments we need
to impose at least asymptotic stationarity on the process at the outset. The condition for
a bounded covariance amounts to second-order asymptotic stationarity because
Cov(Xt,Xs)#c0 holds for all t,s51,2,3,… if:

lim
t→`

Var(Xt)5v0 # c0.

This is because the variance dominates the covariances and we know that a bounded
sequence with positive terms converges. Second, stationarity and ergodicity, although
related as we just stated, are very different concepts. Condition (8.28) which is sufficient
for mean ergodicity has nothing to do with stationarity; it is a dependence restriction. Let
us now return to the general notion of ergodicity.

Although the above definition of ergodicity is defined in terms of arbitrary well-behaved
(Borel) functions h(X(t)), in practice we are interested in particular functions such as:

(i) y(t)5
51, if (X(t)#x)50, if (X(t).x)

, (ii) hr(X(t))5X(t)r, r51,2,…

The random variable y(t) takes values in RY :5{0,1} with probabilities P(X(t)#x) and
P(X(t).x), respectively. Hence:

E(y(t))5P(X(t)#x) :5F(x),

where F(x) is the cumulative distribution function, leading to the notion of distribution
ergodicity. On the other hand, the expected value of X(t)r gives rise to the raw moments of
the process. In the same way we can proceed to define other Borel functions whose expecta-
tions give rise to joint moments. Examples of such moments are the mean and covariance
leading to mean ergodicity and covariance ergodicity respectively, based on the conditions:

lim
T→`

T
t51X(t)dt5E(X(t)) :5

x[RX

x(t)f(x(t))dx,

lim
T→`

T
t51X(t)X(t1t)dt5E(X(t)X(t1t)) :5

x[RX

x(t)x(t1t)f(x(t))dx.

Distribution ergodicity can be viewed as mean ergodicity for the stochastic process
{yt, t[T}. The latter process is mean ergodic if:

lim
T→`

T
t51 [F(x1,x2;t)2F(x1) ·F(x2)]50, (8.30)

where F(x1,x2;t) :5P(X(t1t)#x1,X(t)#x2) . Sufficient condition for (8.28) is:

F(x1,x2;t)
t→
→̀ F(x1) ·F(x2).

That is, the dependence weakens as t → ̀ .

8.5 Homogeneity restrictions

The most restrictive form of homogeneity for an independent process {Yt, t[T} is that
of complete homogeneity: identical distributions.

o1
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8.5.1 Identically distributed

An independent stochastic process {Yt, t[T} is said to be Identically Distributed if:

ft(yt;ut) :5f(yt;u) for all t[T, (8.31)

where equality denotes the same formula as well as the same u.

8.5.2 Strict stationarity

The stochastic process {Yt, t[T} is said to be strictly stationary if:

f(yt1
,yt2

, …, ytn
;u) :5 f(yt11t,yt21t, …, ytn1t;u), for any t, (ti1t)[T, (8.32)

i.e., the joint distribution remains unchanged if we shift each point 1,2, …, T by a con-
stant t.

The main attraction of this notion of homogeneity is the following invariance prop-
erty.

Lemma If the stochastic process {Yt1
,Yt2

, …, Ytn
,…} is strictly stationary, then the

transformed sequence {Xt1
,Xt2

, …, Xtn
,…}, where:

Xtk
:5g(Ytk

), k51,2, …,

and where g(.) is a well-behaved (Borel) function, is also strictly stationary.

In the case where n51, (8.32) implies that:

ft(yt;ut) :5f(yt;u) for all t[T,

a condition which coincides with (8.31). That is, strict stationarity implies Identical
Distribution (ID) for all the marginal distributions. In this sense we can think of strict sta-
tionarity as an extension of the ID homogeneity assumption to the case where there is
some dependence. This can be easily seen in the case where n52, where (8.32) implies that:

f(y1,y2;u) :5f(y11t,y21t;u), for any (t1t)[T, (8.33)

which suggests that the unknown parameters u cannot depend on the actual dates but
only on the difference between the dates, i.e.

f(yt,ys;u (t,s)) :5f(yt,ys;u ( |t2s | ), for all t,s[T. (8.34)

Examples
The Normal process as defined above is not stationary because its moments depend on t.
However, if we assume that:

(a) E(Xt)5m, t51,2,3,…

(b) Cov(Xt,Xs)5c( |t2s | ), t,s51,2,3,…

then it becomes stationary.
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Concepts which involve the distribution function are often difficult to handle in the
context of empirical modeling. This has been ascertained many times before and the
usual way out has been to introduce similar concepts which involve only certain
moments of the distribution. With this in mind let us introduce several notions of sta-
tionarity which involve only moments.

8.5.3 First-order stationarity

The stochastic process {Yt, t[T} is said to be first-order stationary if:

E(Yt)5E(Yt1t)5m, for all (t1t)[T.

Example
Consider the stochastic process {Yt, t[T}, which is assumed to be a martingale, i.e.:

E(Yt |s (Yt21,Yt22, …, Y0))5Yt21.

As shown above, taking another expectation yields:

E{E(Yt |s (Yt21,Yt22, …, Y0))5E(Yt)5E(Yt21), t51,2, …,

which suggests that the last equality holds if and only if E(Yt)5m, for all t[T, i.e., the
martingale process is first-order stationary.

8.5.4 Second-order stationarity

The stochastic process {Yt, t[T} is said to be second-order stationary if:

(i) E(Yt)5E(Yt1t), for any (t1t)[T,

(ii) E(YtYs)5E(Yt1t Ys1t), for any (t1t)[T,(s1t)[T

or equivalently:

(a) E(Yt)5m, for any t[T,

(b) Cov(Yt,Yt1t)5c( |t | ), for any t,t1t[T.

Examples
Consider the stochastic process {Yt, t[T} defined via:

Yt5X1cos ut1X2sin ut,

where Xi,IID(0,s2),i51,2. The process {Yt, t[T} is not strictly stationary because
some of the moments higher than the second depend on t:

E(Y t
3)5h3(t).

It is, however, second-order stationary since:

E(Yt)50, Var(Yt)5s2, Cov(Yt,Ys)5s2cos (t2s).
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Hence, in the case where Xi,NIID(0,s2),i51,2, the process is also strictly stationary.
This follows from the fact that the odd moments of the Normal distribution are zero and
the even ones are stationary functions of the variance.

N : It is important to emphasize the fact that strict stationarity does not imply and
is not implied by second-order stationarity. The reason is that the latter assumes the
existence of the moment E( |Yt

2 | ),`. The two coincide, however, in the case of
Normality.

The above definitions of first- and second-order stationarity are special cases of a
more general notion of stationarity defined below.

8.5.5 Stationarity of order m

The stochastic process {Yt, t[T} is said to be stationary of order m if for all positive inte-
gers m1,m2, …, mn such that n

i51mi#m:

E(Yt1
m1 ·Yt2

m2 ·Yt3
m3 ···Ytn

mn)5E(Y t1 1t
m1 ·Ym2t2 1t ·Ym3t3 1t ···Ymntn 1t) for any (t1ti)[T.

(8.35)

It is instructive to illustrate this notion using the special cases m51 and m52.

(i) In the case m51 the only combination of positive integers such that n
i51mi#1 is to

set any one of the mis to one, say m151 (mi50 for i52,3, …, n), and (8.35) reduces to:

E(Yt1
)5E(Yt11t) for any (t1t1)[T.

This can only happen if E(Yt)5m for all t[T.

(ii) In the case m52 there are five possibilities which involve two mis (say m1,m2):

m51: (m151,m250), (m150,m251)
m52: (m152,m250), (m150,m252), (m151,m251).

Hence, for any (t1ti)[T, i51,2, (8.35) gives rise to:

m51: E(Yt1
)5E(Yt11t), E(Yt2

)5E(Yt21t),
m52: E(Y 2

t1
)5E(Y 2

t11t), E(Y 2
t2

)5E(Y 2
t21t), E(Yt1

Yt2
)5E(Yt11t Yt21t).

These conditions coincide with those given above for the second-order stationarity. To
verify this all we need is to remind ourselves of the following formulae:

Var(X)5E(X2)2 (E(X))2, Cov(X,Y)5E(X ·Y)2(E(X) ·E(Y)).

8.5.6 Exchangeability

The stochastic process {Yt, t[T} is said to be exchangeable if for every finite subse-
quence (Y1,Y2, …, Yn), the joint distribution of each subset (Y1,Y2, …, Ym), m51,2, …,
n, is the same for any permutation of (1,2, …, m) or equivalently, any reordering of
(Y1,Y2, …, Ym) ; see Chow and Teicher (1978). That is,

o

o
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f(yk;c)5f(y;c) for all k51,2,3, …,
f(yk,yh;w)5f(yi,yj;w) for all k,h,i,j51,2,3, …,
f(yk,yh,y,;f)5f(yi,yj,ym;f) for all k,h,,,i,j,m51,2,3, …,
: :

f(y1,y2, …, ym;q)5f(yi1,yi2, …, yim;q), (i1,i2, …, im) :5permutation(1,2, …, m).

This suggests that exchangeability is an extension of the notion of Identical Distribution
which involves only the marginal distributions. Exchangeability involves all joint distrib-
utions (k random variables at a time, where k51,2,3,…) as well because it does not pre-
suppose Independence.

Example
Consider the case where the stochastic process {Yt, t[T} is Gaussian (Normal) with
parameters:

E(Yk)50, k51,2,3,…
Var(Yk)511r, k51,2,3,…
Cov(Yk,Y,)5r k,,51,2,3,… (8.36)

This process is exchangeable because (using the notation of chapter 4):

m51: Yk,N(0,11r), k51,2,…

m52: , k,h51,2,…

m53: , k,h,,51,2,…

: : :

These joint distributions remain the same for all values of the index. In other words, the
joint distribution of (Y1,Y13) is the same as that of (Y11,Y102), (Y2,Y13,Y111) has the same
distribution as (Y20,Y11,Y1), and so on.

This example shows most clearly that exchangeability does not presuppose indepen-
dence but some kind of distribution symmetry among the random variables (Y1,Y2, …,
Yn) . The random variables are clearly dependent but the dependence is of a very special
type: invariant with respect to the index, as in the case of stationarity, but unlike station-
arity the dependence is not a function of the distance between the random variables, as
can be seen from (8.36). In this sense the concept of exchangeability imposes not only
almost complete homogeneity on the stochastic process but also a restricted form of
dependence which is of limited value for modeling purposes. It turns out, however, that
exchangeable processes are of great value in providing an intrinsic definition of probabil-
ity itself (see chapters 2 and 10). Hence, an exchangeable stochastic process should be
seen as the first step beyond IID processes, because the latter is always an exchangeable
process but the converse is not true.
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8.6 “Building block” stochastic processes

As mentioned above, it might be more appropriate to view a stochastic process via the
joint distribution of a finite subset of the components (the distributional viewpoint), but
for modeling purposes it is often advantageous to construct a process as a mapping
of a much simpler process (the constructionist viewpoint). That is a stochastic process
{Yn, n[N} is defined as a function of a simpler stochastic process {Xt, t[T}:

Yn5g(X1,X2, …, Xn), n[N. (8.37)

The probabilistic structure of the process {Yn, n[N} is determined from that of the
simpler process {Xt, t[T} via the functional form 8.37. In the next section we consider
the simpler stochastic processes that are often used as building blocks.

8.6.1 IID stochastic processes

The simplest form of a building block stochastic process {Xt, t[T} is the one where the
Xts constitute a sequence of Independent and Identically Distributed (IID) random vari-
ables. We encountered this family of random variables already in our discussions relating
to random samples (see chapter 4). In terms of the index set/state space (T,R) taxonomy
this stochastic process could belong to any one of the four categories. Its simplicity arises
from the fact that its probabilistic structure is very restrictive:

(i) Dependence: independence,
(ii) Heterogeneity: complete homogeneity.

The Bernoulli IID process
Let {Xn, n51,2,3,…}, be an IID Bernoulli process with density function:

f(xn;p)5pxn(12p)12xn, xn50,1, p[ [0,1], n51,2,…

P(Xn51)5p, P(Xn50)512p, n51,2,…

The first two moments take the form:

(i) E(Xn)5p, (ii) Cov(Xn,Xm)5
5 p(12p), n5m,50, nÞm

, n,m51,2,3,…

N that Cov(Xn,Xm) for n5m denotes the Var(Xn). Moreover, because of indepen-
dence:

P(Xn51, Xm51, Xk50)5P(Xn51)·P(Xm51)·P(Xk50)5

P(Xn51, Xm51, Xk50)5p2(12p), nÞmÞk, n,m,k51,2,…

In terms of the index set/state space (T,R) taxonomy the IID Bernoulli process
belongs to category D2D: T :5{1,2,3,…}2countable, Rx :5{0,1} 2countable.

In the case where the Bernoulli process {Xn, n51,2,3,…} is just independent (not ID)
the first two moments take the form:

E(Xn)5pn, Var(Xn)5pn(12pn), Cov(Xn,Xm)50, nÞm, n51,2, …
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This shows that no operational model arises without additional information relating to
the heterogeneity of the process.

An interesting variation on this process is the one defined by:

Yn :52Xn21, n51,2,3,… (8.38)

The mean, variance, and covariance of the Bernoulli-type process, with R :5{21,1},
take the form:

(i) E(Yn)52p21, (ii) Cov(Yn,Ym)5
h4p(12p), n5m,50, nÞm

, n,m51,2,3,…

The Exponential IID process
Let {Xn, n51,2,3,…}, be an IID Exponential process. Its density function takes the form:

f(xn;l)5le2lxn, xn[ [0,`), l[(0,`), n51,2,…

In terms of the index set/state space (T,R) taxonomy the IID Exponential process
belongs to category D2C: T :5{1,2,3,…} 2countable, R :5 [0,`) 2uncountable. As
far as the probabilistic structure of the process is concerned, the mean, variance, and
covariance of this process take the form:

(i) E(Xn)5 , (ii) Cov(Xn,Xm)55 , n5m,

0, nÞm, , n,m51,2,3,…

The Normal IID process
Let {Xn, n51,2,3,…}, be an IID Normal process, denoted by:

Xn,N(m,s2), n51,2,…

Its density function takes the form:

f(xn;m,s2)5 exp 2 , xn[R, n51,2,… (8.39)

In terms of the index set/state space (T,R) taxonomy the IID Normal process belongs to
category D2C: T :5{1,2,3,…} 2countable, R :5R 2uncountable. As far as the proba-
bilistic structure of the process is concerned, the mean, variance, and covariance of this
process take the form:

(i) E(Xn)5m, (ii) Cov(Xn,Xm)5
hs2, n5m,50, nÞm

, n,m51,2,3,…

8.6.2 Uncorrelated, second-order homogeneous processes

If instead of independence we impose the less-restrictive assumption of uncorrelatedness,
and instead of the identically distributed assumption, we assume the homogeneity of the
first two moments we can define a number of widely used building block processes. It must
be noted at the outset that, although non-correlation and second-order homogeneity
seem less restrictive than IID, both concepts assume the existence of the first two
moments; not presumed by the IID assumptions.

6(xn 2 m)2

2s251
sÏ2p

1
l21

l
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The white-noise process
The stochastic process {Zt, t51,2,3,…}, where:

(i) E(Zt)50, (ii) Cov(Zt,Zs)5
hs2, t5s,5 0, tÞs, t

, t,s51,2,3,…

is said to be a white-noise process. The definition of this process involves only the first two
moments which are assumed homogeneous: constant for all the values of the index. Its
simplicity arises from the fact that its probabilistic structure is:

(i) Dependence: non-correlation,
(ii) Heterogeneity: second-order homogeneity.

As argued in chapter 5, non-correlation amounts to linear independence, which is much
less restrictive than independence.

The Normal white-noise process Consider the case where the white-noise process
{Zt, t51,2,3,…}, is assumed to be Normally distributed, i.e.:

Zt,N(0,s2), t51,2,3,…

Its density function coincides with f(xt;m,s2) in (8.39) (m50).
N that the Normal white-noise process coincides with an IID Normal process.

The reason is that the Normal distribution is completely determined by the first two
moments and the only form of dependence that can be modeled via the Normal distribu-
tion is linear dependence.

8.7 Markov processes
A stochastic process {Xt}[T, is said to be Markov if for:

0,t1,t2,t3, ···,tk, ···,`, where tk[T, k51,2,3, …,

fk(xtk |xtk21, …, xt1;wk)5fk(xtk |xtk21;ck), x(k) :5(xt1, …, xtk)[Rk, k52,3,…
(8.40)

There are several implications that follow from the above definition worth noting.
First, a Markov process is also Markov relative to a reversal of the time dimension:

ft(xt |xt11,xt12, …, xt1k;ct)5ft(xt |xt11;ft), for all t[T. (8.41)

Second, as mentioned in section 3 above, Markov dependence is a form of conditional
independence (see chapter 6) in the sense that, for any three instances m,k,n:

f(xn,xm |xk;cn,m)5fn(xn |xk;cn) · fm(xm |xk;cn), for all (xn,xm,xk)[R3. (8.42)

Related to this property is the following relationship among the conditional densities
of the three instances m,k,n:

fn(xn |xm;cn,m)5 fn(xn |xk;cn,k) ·fk(xk |xm;ck,m)dxk, for all (xn,xm,xk)[R3,
(8.43)

E`

2`
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known as the Chapman-Kolmogorov equation. This equation is interesting because it
enables one to bridge the big gap between n and m using two smaller bridges; see Chung
(1982) for further details.

Third, in the case where the moments exist (and this might not be the case in general):

E(Xt
r |s (Xt21,Xt22, …, X1))5E(Xt

r |s (Xt21)), r51,2,3, …, t[T.

In terms of the basic taxonomy of probabilistic assumptions, a Markov process is
composed of the following ingredients:

(D) Distribution: arbitrary,
(M) Dependence: Markov (conditional independence),
(H) Heterogeneity: unrestricted.

Given this, we can see that in terms of the index set/state space (T,R) taxonomy a
Markov process can belong to any one of the four categories (see figure 8.4). The distribu-
tion can be chosen to be either discrete or continuous and the same applies to the index set.
Of particular interest is the case where the distribution is discrete giving rise to the so-
called Markov chains introduced by Markov in the early 20th century; see Markov (1951).

In order to understand the implications of Markov dependence, let us return to the
problem posed in the introduction and consider what would happen if we impose
Markov dependence on the reduction (8.2):

f(x1,x2, …, xn;f)
Markov

5 f1(x1;c 1)
n

k52 fk(xk |xk21;ck), for all x[Rn. (8.44)

Comparing (8.2) with (8.44) we can see that the assumption of Markov dependence
has simplified the situation considerably. The problem of the increasing conditioning set
has been dealt with in a most effective way and the Markov solution amounts to trading
the marginal fk(xk;uk) with conditional densities fk(xk |xk21;wk), k51,2, …, n. However,
despite the simplification, (8.44) does not as yet yield operational models because we
need to impose certain heterogeneity restrictions as well.

8.7.1 Markov chains

The most well-known stochastic process is the so-called Markov chain process. This is a
special Markov process whose distribution (state space) is discrete (countable); their
index set can be either discrete or continuous. For convenience we assume that the state
space is a subset of the integers Z5{0,61,62,…}.

The stochastic process {Xtn, tn[N} is said to be a Markov chain if for arbitrary times
0#t1,t2, ···,tn21,tn:

P(Xtn5xn |Xtn215xn21, Xtn225xn22, …, Xt15x1)5P(Xtn5xn |Xtn215xn21).

The joint distribution of the process takes the form:

P(Xtn5xn,Xtn215xn21, Xtn225xn22, …, Xt15x1)5

5P(Xt15x1) 
n

k52
P(Xtk5xk |Xtk215xk21),p

p
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where P(Xt15x1) is called the initial conditions and:

pij
(k) :5P(Xtk5 j |Xtk215 i), k52,3, …,

the one-step transition probabilities. A particularly important case is when the process is
homogeneous in time:

pij
(k)5pij , for all k52,3,…

In this case the n-step transition probabilities take the form:

pij(n)5P(Xtn1k5 j |Xtk5 i), n$1, k52,3,…

An important property of such homogeneous Markov chain processes is that the initial
conditions and the local behavior determine the global behavior as the following rela-
tionship, known as the Chapman–Kolmogorov equation, attests:

pij(n1m)5 pik(m)pkj(n), n,m$1.

Example
Consider the simple random walk process {Sn, n51,2,3,…}, where the state space is
R5{0,61,62,…}:

pij5
5 p if j5 i11,

pij55(12p) if j5 i21,

pij(n)55 (n1j2i)
n

p (n1j2i) (12p) (n1j2i) if n1 j2 i is even,

0, otherwise.

Consider the Markov chain process {X(t), t[T} whose transition probabilities take the
form:

pij(t,t) :5Pr (X(t1t)5 j |X(t)5 i), t$0.

If we assume that these depend only on the difference between the times, i.e.:

pij(t) :5Pr (X(t1t)5 j |X(t)5 i)5

pij(t) :5Pr (X(t)5 j |X(0)5 i), t$0, t[T,

then the process is said to be stationary.

8.8 Random walk processes

As mentioned above, the generic notion of a random walk is defined as the partial sum
process of IID random variables, i.e. the process {Yt}`

t51 is said to be a random walk if it
takes the form:

Yt5
t
k51Zk, t51,2,3,…

where {Zt, t51,2,3,…} is an IID process. A number of well-known stochastic processes
can be classified under this category if we introduce some additional probabilistic

o
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2

1
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o
k
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structure. In order to avoid confusion, however, we reserve the term random walk
only for the generic case. Moreover, processes which relax the assumptions of the
generic case are not classified under this random walk category. For example the
process {Zt, t51,2,3,…} cannot be a white noise process because it is uncorrelated,
not independent. There are other forms of stochastic processes such as the martingale
difference and innovation processes which can easily accommodate white noise
processes (see below).

8.8.1 Second-order random walk

Consider the sequence of IID random variables {Xn, n51,2,3,…}, such that:

(a) E(Xi)5m, i51,2,3, …, n, …,
(b) Var(Xi)5s2, i51,2,3, …, n, …,
(c) Cov(Xi,Xj)50, iÞ j, i,j51,2,3, …, n,… (8.45)

The stochastic process of partial sums {Sn5 n
i51Xi, n51,2,3,…}, specified by:

Sn5Sn211Xn, S050, n51,2,3, …, (8.46)

is said to be a second-order random walk.
As shown in section 3, the partial sums stochastic process has the following moments:

(a) E(Sn)5nm, n51,2,3, …,
(b) Var(Sn)5ns2, n51,2,3, …,
(c) Cov(Sn,Sm)5s2min (n,m), n,m51,2,3,… (8.47)

We can see that the summation of an IID process, in contrast to the latter, enjoys some
degree of both dependence and heterogeneity.

Dependence Homogeneity

{Xn, n51,2,3,…} independent identical distribution
{Sn, n51,2,3,…} dependent non-homogeneous

In terms of the basic taxonomy of probabilistic assumptions, a random walk process
is defined by:

(D) Distribution: arbitrary,
(M) Dependence: Markov (conditional independence),
(H) Heterogeneity: separable heterogeneity.

In terms of the index set/state space (T,R) taxonomy the random walk process
{Sn, n51,2,3,…} is discrete, on the basis of the index set T :5{0,1,2, …,}, but its state
space can be either discrete or continuous. As seen in the previous section the simple
random walk process has a discrete (countable) state space but the Wiener process has a
continuous (uncountable) state space.

o
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8.8.2 Simple random walk

Consider the case where the sequence of IID random variables {Xn, n51,2,3,…}, has a
Bernoulli-type distribution with values 1 and 21 instead of the usual 1 and 0 (see (8.38)).
That is, its range is RX :5{1,21} and the distribution of Xn takes the form:

P(Xn51)5p, P(Xn521)512p, n51,2,…

The stochastic process {Sn, n51,2,3,…} where:

Sn5 n
i51Xi, n51,2,3, …, (8.48)

is called a simple random walk process.
The term random walk is due to the fact that (8.48) can be written in the recursive form:

Sn5Sn211Xn, S050, n51,2,3, …, (8.49)

which can be thought of as taking a random step Xn from the previous position Sn21. If it
helps, we can think of Sn as the position (in a two-dimensional Cartesian space) of a par-
ticle, starting at 0, which moves in steps of 1 and 21. The term simple stems from the fact
that the distribution of the processes is Bernoulli type.

In this case the notion of homogeneity can be related to different dimensions of the
process. It is trivial to show that this process is spatially homogeneous:

P(Sn5k |S050)5P(Sn5k1b |S05b),

P(Sn5k |S050)5P( n
i51Xi5k)5P(Sn5k1b |S05b).

This process is not just spatially but also temporally homogeneous:

P(Sn5k |S050)5P(Sn1m5k |S050),

P(Sn5k |S050)5P( n
i51Xi5k)5P( n1m

i5m11Xi5k)5P(Sn1m5k |S050).

The distribution of Sn, being the sum of Bernoulli distributed random variables, is
Binomially distributed (see chapter 11), taking the form:

P(Sn5k)5 p (n1k)(12p) (n2k),

E(Sn)5n(2p21), Var(Sn)54np(12p).

This suggests separable heterogeneity in the first two moments; the homogeneous part
being (2p21) and 4p(12p), respectively, and the heterogeneous part n.

In terms of the basic taxonomy of probabilistic assumptions, a simple random walk
process is defined by:

(D) Distribution: Bernoulli (Binomial),
(M) Dependence: Markov (conditional independence),
(H) Heterogeneity: temporally and spatially homogeneous, random walk

heterogeneity.
In terms of the index set/state space (T,R) taxonomy this stochastic process belongs to

category D2D: T :5{1,2,3,…} 2countable, R :5{61,62,63,…} – countable.

1
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8.9 Martingale processes

Martingale A stochastic process {Yn, n[N}, is said to be a martingale if the following
conditions hold:

(1) E( |Yn | ),`, n[N,

(2) E(Yn |s (Yn21,Yn22, …, Y0))5Yn21, n[N. (8.50)

That is, the conditional expectation of Yn given its past s (Yn21,Yn22, …, Y0) is equal to
the immediate past.

Examples
(i) Consider an IID process {Xt, t51,2,…}such that E(Xt)50, t51,2,3,… The

random walk process defined by the partial sums:

{St5
t
k51Xk, t51,2,…},

is a martingale because St5St211Xt, and s (St21, …, S1)5s (Xt21, …, X1):

E(St |s (St21,St22, …, S1))5E(St211Xt |s (St21,St22, …, S1))5St21.

N that in the case where E(Xt)5mÞ0, t51,2, …, {St5
t
k51Xk, t51,2,…} is

no longer a martingale but the process {Yt5(St2mt), t51,2,…} with S050 is a
martingale.

(ii) Consider the IID process {Xt, t51,2,3,…} such that E(Xt)50, E(Xt
2)5s2,`,

t51,2,3,… The process {Vt, t50,1,2,…} defined by

{V050, Vt5(St
22s2t), t51,2,…},

where St5
t
k51Xk, is a martingale. This can be shown as follows:

E(Vt |s (St21,St22, …, S1))5E(St
2 |s (St21,St22, …, S1)) 2s2t. (8.51)

In view of the fact that St5St211Xt, and, St21 and Xt are independent, we can
deduce that:

E(St
2 |s (St21,St22, …, S1))5E(S2

t2112St21Xt1Xt
2 |s (St21,St22, …, S1))5

5S2
t2112St21E(Xt)1E(Xt

2)5S2
t211s2. (8.52)

Returning to (8.51) and noting that s (St21,St22, …, S1)5s (Vt21,Vt22, …, V1,V0):

E(Vt |s (Vt21,Vt22, …, V1,V0))5S2
t211s2–s2t5S2

t212s2(t21)5Vt21.

(iii) Consider the IID process {Xt, t51,2,3,…} such that E(Xt)51, t51,2,3,… The
process {Mt, t51,2,3,…} defined by Mt5

t
k51Xk, is a martingale because the

process can be written in the form Mt5Mt21 ·Xt, and thus:

E(Mt |s (Mt21,Mt22, …, M1))5E(Mt21 ·Xt |s (Mt21,Mt22, …, M1))5

5Mt21E(Xt |s (Mt21,Mt22, …, M1))5Mt21,(8.53)

p
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where the second equality follows from property CE3 (“take out what is known”
see chapter 7). N that in the case where E(Xt)5mÞ0, t51,2, …, for {Mt, t5

1,2,3,…} to be a martingale we need to define it as:

Mt5
t
k51Xk.

8.9.1 Probabilistic structure of a martingale

As shown in section 3, a martingale process involves both a dependence and a homo-
geneity restriction:

E(Yn)5E(Y1)5m[R, n51,2,…

The dependence restriction of a martingale is related to that of a Markov process in
so far as the only relevant information from its past for predicting Yn is contained in
Yn21. However, a Markov process does not assume the existence of any moments, while
a martingale process assumes the existence of the mean. In addition a martingale
process imposes first-order homogeneity in contrast to the Markov process which
assumes none. If we assume that for a certain Markov process the mean exists, then
(8.40) implies that:

E(Yn |s (Yn21,Yn22, …, Y1))5E(Yn |Yn21), n[N. (8.54)

Comparing (8.50) with (8.54) we can see that a martingale imposes a certain form of lin-
earity on the conditional mean in contrast to a Markov process which makes no assump-
tions on the functional form of the conditional mean (when it exists!).

In terms of the basic taxonomy of probabilistic assumptions, a martingale process is
composed of the following ingredients:

(D) Distribution: arbitrary (existence of first moment),
(M) Dependence: martingale dependence,
(H) Heterogeneity: first-order stationarity.

In order to appreciate the power of the notion of a martingale in handling the depen-
dence structure of an arbitrary process whose first moment is bounded consider the fol-
lowing examples.

Examples
(i) Taming a wild process. Consider an arbitrary stochastic process {Xn, n[N} whose

only restriction is the existence of the mean: E( |Xn | ),`, n[N; no homogeneity or
dependence restrictions. This wild stochastic process could be tamed in two steps:
Step 1: Take deviations from its conditional mean given its own past:

Zn :5Xn2E(Xn |s (Xn21,Xn22, …, X1)), n[N.

Step 2: Take the partial sums of the new stochastic process {Zn, n[N}:

Yn :5 n
k51Zk5 n

k51Xn2E(Xk |s (Xk21,Xk22, …, X1)), n[N. (8.55)oo

p11
m2

t
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The stochastic process {Yn, n[N} satisfies the restriction E( |Yn | ),`, n51,2, …,
and in view of the fact that (8.55) it is a martingale since:

Yn5Yn211Zn, n[N,

E(Yn |s(Yn21,Yn22, …, Y1))5E(Yn211Zn |s (Yn21,Yn22, …, Y1))5Yn21.

This follows from property CE3 (“take out what is known”; see chapter 7):

(i) E(Yn |s(Yn21,Yn22, …, Y1))5Yn21, (ii) E(Zn |s (Yn21,Yn22, …, Y1))50, n[N.

This is a remarkable result which illustrates the usefulness of two different model-
ing notions which lead to the taming of an arbitrary process:

(i) the idea of centering a process at its conditional mean and
(ii) the notion of taking partial sums.

The above result, as it stands, although remarkable is non-operational because we
do not know E(Xk |s (Xk21,Xk22, …, X1)) to be used in the context of (8.55), without
some additional restrictions on the probabilistic structure of the process.

I  Before we consider the next important example of a martingale it is
important to note that the general notion of a martingale is more general than the defin-
ition given above in the following sense. A martingale can be defined relative to any
increasing sequence of s-fields, say G1,G2, ···,Gn21,Gn, assuming that Yn is a
random variable relative to Gn for all n51,2,…That is, {Yn, n[N} is a martingale rela-
tive to {Gn, n[N} if:

(1) E( |Yn | ),`, n[N,
(2) E(Yn |Gn21)5Yn21, n[N. (8.56)

(ii) Doob martingale Consider a random variable Y such that E( |Y | ),`, and a sto-
chastic process {Xn, n[N} defined on the same probability space (S,I,P(.)) . The
stochastic process {Zn, n[N} defined by:

Zn5E(Y |s (Xn,Xn21, …, X1)),

is a martingale relative to {s (Xn21,Xn22, …, X1), n[N} because:

E(Zn11 |s (Xn,Xn21, …, X1))5E[E(Y |s (Xn11,Xn, …, X1)) |s (Xn,Xn21, …, X1)]5

5E(Y |s (Xn,Xn21, …, X1))5Zn, (8.57)

where the second equality follows from the “corset” property (see CE5 in chapter 7)
which says that the smaller of the two s-fields in the conditioning dominates. This
particular example demonstrates the flexibility of the concept of a martingale and
its significance in prediction.

The notion of a martingale process is of considerable value for statistical inference pur-
poses because it has enough dependence and heterogeneity restrictions to allow the
assumption of IID to be replaced by martingale dependence and heterogeneity in limit
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theorems (see chapter 9). However, for modeling purposes a martingale, as defined
above, is of limited value because it involves only the first moment. For this reason we
often supplement the notion of a martingale difference with additional assumptions
relating to higher moments. For example, we often supplement the structure of a martin-
gale with bounded moments assumptions such as:

E( |Yn | p),`, for some p.1.

Of particular interest for statistical inference and modeling purposes is the case p52:

E( |Yn |2),`,

the stochastic process {Yn, n[N}, is called a second-order martingale.

8.9.2 Martingale difference process

Martingale difference A stochastic process {Xn, n[N} is said to be a martingale
difference if the following conditions hold:

(1) E( |Xn | ),`, n[N,

(2) E(Xn |s (Xn21,Xn22, …, X0))50, n[N. (8.58)

The crucial property is that the conditional mean with respect to its past is zero. Using
the law of iterated expectations (lie) (see chapter 7) in conjunction with (2) we can deduce
that the marginal mean is not just bounded but equals zero, i.e.:

E(Xn)5E(E(Xn |s (Xn21,Xn22, …, X0)))50, n[N.

The term martingale difference stems from the fact that this process can always be gen-
erated as a difference of a martingale process {Yn, n[N:}. That is, we can define the
process {Xn, n[N} as:

{Xn :5Yn2Yn21, n[N}.

Then by definition s (Xn21,Xn22, …, X0)5s (Yn21,Yn22, …, Y0) and thus:

E(Xn |s (Xn21,Xn22, …, X1))5E(Yn2Yn21 |s (Xn21,Xn22, …, X1))5

5E(Yn |s (Xn21,Xn22, …, X1))2Yn2150. (8.59)

Reversing the argument, consider the martingale difference process {Xn, n[N}, such
that (8.59) holds, then:

Yn5 n
k51Xk, n[N,

is a martingale. In this sense a martingale difference process can be thought of as a build-
ing block process for a martingale.

As in the case of a martingale we often need to supplement the probabilistic structure
of a martingale difference with assumptions relating to the higher moments. This is done
directly in terms of assumptions such as E( |Xn | p),`, for some p.1, or indirectly by

o
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making distribution assumptions about the process {Xn, n[N}. Let us consider the case
of assuming the existence of the second moment.

Consider the martingale difference process {Xn :5Yn2Yn21, n[N}, with a bounded
second moment E( |Xn |2),`, and take i, j:

E(XiXj |Xj21,Xj22, …, X1)5XiE(Xj |Xj21,Xj22, …, X1)50, i,j51,2,…

This, however, implies that the elements of a second-order martingale difference process
are uncorrelated:

Cov(XiXj)5E(XiXj)50, i, j, i,j51,2, …,

and thus the variance of the summation is the summation of the individual variances:

Var(Sn)5 n
k51Var(Xk).

These two properties render this process an ideal replacement of the IID process in limit
theorems (see chapter 9).

The importance of the notion of the second-order martingale difference can be best
appreciated in the context of the following example. Consider the stochastic process {Xt,
t[N}, which is assumed to be a white-noise process, i.e., zero-mean and uncorrelated.
Supplementing these with the assumption that the process is Student’s t with n degrees of
freedom, i.e., for the subset (X1,X2, …, Xn) :

,St

we can proceed to show that {Xt, t[N}, is a martingale difference process:

E(Xt |s (Xt21,Xt22, …, X1))50, t51,2,…

The distribution assumption enables us to talk about higher moments and in particular
the second conditional moment (see Spanos (1994)):

E(X t
2 |s (Xt21,Xt22, …, X1))5 11 t21

k51 X t
2

2k , t51,2,…

There are several things worth noting in relation to this example.

(i) This is an example of a stochastic process for which non-correlation does not coin-
cide with independence. Hence, a white-noise process does not mean that its past is
irrelevant for forecasting its future.

(ii) The unconditional process is white-noise but its conditional formulation is a mar-
tingale difference with the past affecting all even moments, i.e.:

E(Xt
r |Xt21,Xt22, …, X1)5hr

t
k515Xk

2 , r52,4, …, t51,2,…

N that the odd moments are zero due to the symmetry of the Student’s t distribution.
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8.9.3 Martingale and innovation process

Another important stochastic process which is related to a second-order martingale is
the innovation process.

Innovation process A stochastic process {Zn, n[N} is said to be an innovation process if
it satisfies the following conditions:

(i) E(Zn |s(Zn21,Zn22, …, Z1))50, n51,2,3,…

(ii) Cov(Zn,Zm |s(Zn21,Zn22, …, Z1))5
5s2, n5m,50, nÞm

, n,m51,2,3,…

This process can be defined in terms of a second-order martingale process {Yn, n[N}:

(1) E( |Yn |2),`, n[N,
(2) E(Yn21 |s (Yn21,Yn22, …, Y1))5Yn21, n[N.

The process {Zn :5Yn2Yn21, n[N}, turns out to be an innovation process. Reversing
the argument, we can claim that an innovation process {Zn, n[N} can be used to define
a second-order martingale process {Yn, n[N} via:

Yn5 n
k51Xk5Yn211Zn, n[N.

This follows from the fact that:

E(Yn |s(Zn21,Zn22, …, Z1))5E([Yn211Zn] |s (Zn21,Zn22, …, Z1))5Yn21, n[N.

in view of (2) above.
The probabilistic structure of an innovation process involves no distribution assump-

tion but it involves strict dependence and heterogeneity restrictions:

(D) Distribution: arbitrary (existence of first two moments),
(M) Dependence: martingale difference dependence,
(H) Heterogeneity: 2nd order stationarity.

White-noise versus innovation process.
The innovation process is often confused with a white-noise process. In a nutshell an
innovation process differs from the white-noise process mainly in terms of their depen-
dence assumptions with the former being more restrictive since:

(i) From the tower property of conditional expectation (see chapter 7):

E(Zt)5E[E(Zt |s(Zt21,Zt22, …, Z1))]50, t51,2,3,…

(ii) Using the notation Z0
t21 :5(Zt21,Zt22, …, Z1) we know that:

Cov(Zt,Zs)5E(Cov(Zt,Zs |s (Z0
t21)))1Cov(E(Zt |s(Z0

t21)) E(Zs |s (Z0
t21))),

and thus:

Cov(E(Zt |s (Z0
t21)) ·E(Zs |s (Z0

t21)))5Cov(0·Zs)50.
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This implies that:

E(Zs |s (Z0
21

0))5Zs, ⇒ Cov(Zt,Zs)5 s2, t5s,
E(Zs |s (Z0

t21))5Zs, ⇒ Cov(Zt,Zs)550, tÞs,
t.s51,2,3,…

This result suggests that the white-noise and the innovation are similar in so far as they
are both defined in terms their first two moments, but differ in terms of their dependence
structure. The IID process assumes that all its components are independent. The white-
noise process assumes that its components are pairwise uncorrelated. The innovation
process assumes that every component Zt is martingale difference independent with
respect to its past s (Z0

t21).
An innovation process belongs to the category of simple stochastic processes which

are used as basic building blocks for derived processes. The other three members of this
category are the IID, the white-noise, and the martingale difference processes. An inno-
vation process differs from a second-order martingale difference process in one impor-
tant respect: the conditional variance of the former is constant. It is interesting to note
how these four processes differ in terms of their dependence structure.

8.10 Gaussian processes

8.10.1 Normal processes: the distributional viewpoint

A stochastic process {Xt, t[T} whose joint distribution f(x1,x2, …, xn;f) for any finite
collection (X1,X2, …, Xn) is Normal, i.e.

,N , (8.60)

is said to be a Normal (or Gaussian) process. That is, the only definitional characteristic is
the distribution assumption of Normality. As argued in the previous chapters without
restrictions on the dependence and heterogeneity of this process no operational model is
possible. The only possible reduction of the joint distribution is the one based on sequen-
tial conditioning:

f(x1,x2, …, xn;f)
non-IID

5 f1(x1;c1) 
n

k52
fk(xk |xk21, …, x1;ck), for all x[Rn. (8.61)

with the conditional distributions in (8.61) being Normal. The autoregressive and
autoskedastic functions (see the introduction above) take the form (see Spanos (1986)):

E(Xk |s (Xk21, …, X1))5b 0(k)1
k21

i51 bi(k)Xk2i, k52,3, …, n,

Var(Xk |s(Xk21, …, X1))5s0
2(k), k52,3, …, n. (8.62)
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This, however, does not give rise to an operational model because the overparameteriza-
tion problem remains: the number of unknown parameters in {c1,c2, …, cn} is the same
as those in f (and increasing with n). This problem is demonstrated by the above
example where:

ck :5(b0(k),b1(k), …, bk21(k),s0
2(k)), k52,…,n.

There are (k11) unknown parameters for each value of k52, …, n. If we add all the
unknown parameters in (c1,c2, …, cn) we conclude that the original number of
unknown parameters remains the same, i.e., the sequential conditioning has no effect on
the number of unknown parameters.

As argued in the previous chapter, the way to deal with both problems, the increasing
conditioning information set and the overparameterization, is to impose some restric-
tions on the dependence and heterogeneity of the set of random variables (X1,X2, …, Xn) .
Let us pursue that line of argument by imposing Markov dependence without any het-
erogeneity restrictions first in order to bring out the role of each set of restrictions and
then proceed to impose Markovness and stationarity to derive the family of models
known as autoregressive.

8.10.2 The probabilistic reduction approach: autoregressive models

Consider the case where in addition to Normality we also impose Markov dependence:

(D) Distribution: Normal,
(M) Dependence: Markov,
(H) Heterogeneity: unrestricted heterogeneity.

The Markov dependence assumption when applied to the reduction in (8.61) yields:

f(x1,x2, …, xn;f)
Markov

5 f1(x1;c1) 
n

k52 fk(xk |xk21;ck), for all x[Rn. (8.63)

Moreover, under the Normality assumption the first two stochastic conditional
moments take the form:

E(Xk |s(Xk21, …, X1))5a0(k)1a1(k)Xk21, k52,3, …, n,

Var(Xk |s(Xk21, …, X1))5s 0
2(k), k52,3, …, n.

If we compare these moments with the unrestricted ones in (8.62) we can see the
Markov dependence assumption deals with the problem of the increasing condition-
ing information set but the parameters are still index dependent. In order to deal with
the last problem we need to impose some restrictions on the heterogeneity of the
process.

For argument’s sake let us impose second-order stationarity as well, i.e., consider the
following combination of assumptions:

(D) Distribution: Normal,
(M) Dependence: Markov,
(H) Heterogeneity: second-order stationarity.

p
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Under both the Markov dependence and Stationarity assumptions, the reduction in
(8.61) takes the simplified form:

f(x1,x2, …, xT;f)
Markov

5 f1(x1;c1) 
T

t52 ft(xt |xt21;ct)5

Stationary
5 f(x1;c1) 

T

t52 f(xt |xt21;c). (8.64)

The first equality follows after imposing Markovness and the second from the station-
arity assumption. Roughly speaking, stationarity deals with the overparametrization
problem and Markovness with the increasing conditioning information set. It is easy to
see that by supplementing these assumptions with some distribution assumption, such as
Normality, the above decomposition gives rise to operational models.

Assuming Normality and Markov dependence enables us to concentrate only on a
bivariate joint distribution, i.e.

.

The conditional density takes the form:

(Xt |Xt21),N(a0(t)1a1(t)Xt21, s0
2(t)),

where the unknown parameters are: ct :5(a0(t),a1(t),s0
2(t)), where:

a0(t) :5m(t)2a1(t)m(t21), a1(t) :5 , s0
2(t) :5s(t,t)2 .

In order to see what Markov dependence implies for a Normal (Gaussian) process
consider the case where {Xt, t[T}, is zero mean (E(Xt)50 for simplicity) and take three
successive points: t1,t2,t3. The covariance of such a Markov Gaussian process takes
the form:

Cov(Xt1
,Xt3

)5 .

This can be demonstrated as follows:

Cov(Xt1
,Xt3

)5E(Xt1
Xt3

)5E{E(Xt1
Xt3

) |Xt2
}5E{E(Xt1

|Xt2
)E(Xt3

|Xt2
)}5

Cov(Xt1,Xt3)5E Xt2 Xt2 5

Cov(Xt1,Xt3)5 ,

where the first equality follows from the iterated expectation property of conditional
expectations (see CE3 in chapter 7), the second equality follows from the Markov depen-
dence and the third from the Normality assumption. N that in the case of non-zero
mean the above holds for the mean deviations of the process.

If, in addition to the Markov and Gaussian assumptions, we impose stationarity then:

Cov(Xt,Xs)5 5 5Cov(Xt2s,X0)5c(t2s).

The last equation can be written in the form:

c(0) ·c(t2s)5c(0) ·c(t1s)5c(t) ·c(s). (8.65)

c(s)·c(t)
c(0)

Cov(Xs,X0)·Cov(X0,Xt)
Var(X0)

Cov(Xt1,Xt2)·Cov(Xt2Xt3)

Var(Xt2)

Cov(Xt1,Xt2)·Cov(Xt2Xt3)·E(X2
t2)

[Var(Xt2)]262Cov(Xt3,Xt2)

Var(Xt2)12Cov(Xt1,Xt2)

Var(Xt2)15

Cov(Xt1,Xt2)·Cov(Xt2Xt3)

Var(Xt2)

s(t,t 2 1)2

s(t 2 1,t 2 1)
s(t,t 2 1)

s(t 2 1,t 2 1)

1 Xt

Xt21
2,N13m(t)

m(t 2 1)4,3 s(t,t)
s(t 2 1,t)

  
s(t,t 2 1)

s(t 2 1,t 2 1)42

p
p
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The solution to this functional equation depends on the range of values of t and s.

(i) In the case where t and s take continuous values, say, t,s[R1, (8.65) is the well-
known Cauchy (Exponential form) functional equation (see Eichhorn (1978))
whose unique solution is:

c(t)5c(0)exp{2dt}, d.0 a real constant, (8.66)

implying that c(t)
T→
→̀ 0 at an Exponential rate. In figures 8.6 and 8.7 we can see the

exponential function with two different values of d . As we can see, for bigger values
of d the rate of decrease is very rapid; it reaches zero just after t.2. In contrast, for
small values of d the Exponential function decreases very slowly; for values of t up
to 1000 the rate of decrease looks linear.

(ii) In the case where t and s take discrete values, say, t,s50,1,2, …, (8.65) implies the
solution (see Doob (1953), p. 237):

c(t)5c(0)at, |a |#1 a real constant. (8.67)

The two cases are clearly related via: d5 ln .11
a2
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Taking the above results together we can conclude that assuming that the
Normal stochastic process {Xt, t[T}, T :5{0,1,2,…} is both Markov and
Stationary, then its dependence decays at an Exponential rate (see (8.67)). The con-
ditional density f(xt |xt21;c) is Normal and takes the form:

(Xt |Xt21),N(a01a1Xt21, s0
2), t52,3,…

That is, stationarity gets rid of the index in both the density and the parameters,
since:

E(Xt)5m, Var(Xt)5s(0), Cov(Xt,Xt21)5s(1), t[T,

a0 :5(1–a1) m, a1 :5 , s0
2 :5s(0)2 .

It is interesting to  that the coefficient a1 coincides with a in (8.67) and the
two values of d in figures 8.6 and 8.7 correspond to the values a50.01 and a5

0.999, respectively.
These moments can be used to specify the so-called Normal/linear first-

order autoregressive model (AR(1)), in terms of the statistical GM with
Dt :5s (Xt21,Xt22, …, X1):

s(1)2

s(0)
s(1)
s(0)
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Xt5E(Xt |Dt)1ut5a01a1Xt211ut, t52,3, …, (8.68)

ut5Xt2E(Xt |Dt), t52,3, …, (8.69)

is an innovation process. As shown in chapter 7, the process {ut, t[T}, enjoys the
following properties:

(i) E(ut |Dt)50, t52,3,…

(ii) E(ut ·us |Dt)5

hs2, t5s,50, tÞs
, t.s, t,s52,3,…

(iii) E(ut · [E(Xt |Dt)] |Dt)50, t52,3,… 

Normal autoregressive model

[1] Statistical GM: Xt5a01a1Xt211ut, t[T,
[2] Probability model:

F5 f(x1,x2, …, xT;u)5f(x1;u1) exp 2 , u[Q,x[RT ,

where u :5(a0,a1,s0
2)[Q :5R23R1, x :5(x1,x2, …, xT)

[3] Sampling model: (X1,X2, …, XT) is a stationary and Markov dependent sample,
sequentially drawn from f(xt |xt21;u), t[T.

The results derived above can be easily extended to the case where we replace Markov
dependence with pth order Markov dependence giving rise to the pth order autoregres-
sive model (AR(p)), in terms of the statistical GM:

Xt5a01
p

k51akXt2k1ut, t5p11,p12, …, (8.70)

ut5Xt2E(Xt |s (Xt21,Xt22, …, X1)), t5p11,p12, …, (8.71)

is an innovation process with the same properties as those of (8.69).
The autoregressive (AR(p)) model in the form (8.70) was first proposed by Yule (1927)

as a stochastic difference equation. That is, it was originally viewed from the theoretical
viewpoint (see chapter 7) and not from the statistical viewpoint as above. Looking at the
last edition of Yule’s textbook (see Yule (1911)), published jointly with Kendall in 1950,
one can see that the relationship between the AR(p) and the linear regression model is
not given explicitly. For the purposes of this book this relationship is particularly impor-
tant because it unifies all models of dependence (contemporaneous or temporal) via
conditioning, under the same umbrella: the adapted Pearson research strategy (see
chapter 7).

The above Normal/linear AR(p) models constitute the most important members of
the Autoregressive family of models which is based on the following assumptions:

(D) Distribution: arbitrary continuous distribution,
(M) Dependence: Markov,
(H) Heterogeneity: strict stationarity.
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The results of chapter 7, relating to the regression and skedastic functions of bivariate
distributions, can be easily modified to specify a number of AR(1) models such as the
following (for the notation see chapter 7):

1 Student’s t:

E(Xt |Xt21)5a01a1Xt21, Var(Xt |Xt21)5 11 [Xt21–m]2 .

2 Pareto:

E(Xt |Xt21)5a11 Xt21, Var(Xt |Xt21)5 X 2
t21.

3 Exponential:

E(Xt |Xt21)5 , Var(Xt |Xt21)5 .

4 Log-Normal:

E(Xt |Xt21)5 em1 s2, Var(Xt |Xt21)5 e2m1s2 · [es2–1].

The autoregressive models which are based on the above conditional moment func-
tionals can be viewed as a systematic way to specify non-linear and/or heteroskedastic
time series models (see Spanos (1986, forthcoming)).

8.10.3 The constructionist approach: moving average processes

An important stochastic process can be constructed by taking a moving average of a
Normal white-noise process. Consider the Normal white-noise stochastic process «t,
t51,2,3,…}, where:

«t,NIID(0,s2), t51,2,…

The stochastic process {Yt, t51,2,3,…}, defined by:

Yt5a01
m

k51ak«t2k1«t, t51,2,… (8.72)

is said to be a moving average process of order m, denoted by MA(m). By construction
the latter process is Normal with probabilistic structure of the form:

(i) E(Yt)5a0, t51,2,3,…

5s2(11 m
k51ak

2), t50,

(ii) Cov(Yt,Yt2t)5 s2(at1a1at111 ···1am2t am), t51,2, …, m,

0, t.m.

In terms of the basic taxonomy of probabilistic assumptions, a MA(m) process con-
sists of the following ingredients:

(D) Distribution: Normal (or white noise),
(M) Dependence: m-dependence,
(H) Heterogeneity: second-order stationarity.

o

o

1Xt21

m 2
2b1

21Xt21

m 2
b

[(1 1 u 1 uXt21)2 2 2u2]
[1 1 uXt21]4

(1 1 u 1 uXt21)
(1 1 uXt21)2

31a1

a2
2

2
 (1 1 a3)
(1 1 a3)a2

3
44a1a3

a2
3
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The derivation of the mean is trivial because all the white-noise terms have zero
means. Let us derive the covariance for the simple case m52, t.0:

Yt5a01a1«t211a2«t221«t. (8.73)

Cov(Yt,Yt2t)5E([Yt2a0] [Yt2t2a0])5

5E ([a1«t211a2«t221«t] [a1«t212t1a2«t222t1«t2t])5

5E(a1
2«t21«t212t1a1«t21«t2t1a1a2«t22«t212t1a2

2«t22«t222t1a2«t22«t2t1«t2t «t),

where the cross-product terms with different indexes have already been put equal to zero.
Taking expectations of the terms inside the brackets yields:

5
s2(11a1

21a2
2), t50,

Cov(Yt,Yt2t)5
s2(a11a1a2), t51,
s2a2, t52,
0, t.2.

N that the MA(m) process is often specified without the Normality assumption.
The view taken in this book is that the generality claimed without the Normality is more
apparent than real.

8.10.4 Autoregressive versus moving average processes*

The reader should note that in this section we will use a number of linear space concepts.
In the discussion above the autoregressive model (AR(p)) was introduced using the

reduction from the joint distribution of the Normal process approach but the moving
average model (MA(q)) was introduced via the constructionist approach. The aim of this
section is to demonstrate that the two formulations are related.

In order to simplify the derivation consider a zero mean (to get rid of a0) Normal
process {Xt, t[T :5{0,61,62,…} . The AR(p) formulation is based on the statistical
GM:

Xt5
p

k51akXt2k1ut, t[Tp :56 (p11),6(p12), …,

where the error process with Dt21 :5s(Xt21,Xt22, …, X1,X0,X21…):

ut5Xt2E(Xt |Dt21), t[Tp, (8.74)

is an innovation process {ut, t[T}. By design the error process enjoys the following
properties:

(a) E(ut |Dt21)50, t[Tp,

(b) E(ut ·us |Dt21)5
s2, t5s,50, tÞs,

t.s,t,s[Tp,

(c) E(ut · [E(Xt |Dt21)] |Dt21)50, t[Tp.

o
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In view of the fact that this error process is a linear function of the process
{Xt, t[T :5{0,61,62,…}:

s (Xt21,Xt22, …, X1,X0,X21…)5s (ut21,ut22, …, u1,u0,u21…):5Dt21.

Viewing these random variables as elements of a Hilbert space (a sophisticated linear
space), the fact that the error process is orthogonal enables us to use a Fourier series type
expansions (see Luenberger (1969)) to express it in the following form:

Xt5
`

k50 [s22E(Xtut2k)]ut2k, t[T,

which, for ak5 [s22E(Xtut2k)], this can be expressed in the form of a MA(`) representa-
tion:

Xt5
`

k51akut2k1ut, t[T. (8.75)

An alternative way to view this is to re-write the statistical GM of the AR(p) formula-
tion as a polynomial in the lag operator LkXt :5Xt2k:

Xt2
p

k51akXt2k :5 12
p

k51akLk Xt5ut, t[Tp. (8.76)

The fact that the inverse of the polynomial can (under certain restrictions) be expressed
as an infinite polynomial enables us to express the AR(p) formulation in the MA(`)
form:

Xt5 12
p

k51akLk
21

ut5a`(L) ·ut :5
`

k51akut2k, t[Tp, (8.77)

where a`(L) is an infinite polynomial in the lag operator L:

a`(L) :511a1L1a2L21 ···1akLk1 ···

This relationship between the AR(p) and MA(`) formulations is very interesting
because in view of the fact that a MA(m) model has a dependence structure we called m-
dependence (see above), this result suggests that any AR(p), p$1 has infinite memory.
As it stands the MA(`) representation is only of theoretical interest because it involves
an infinite number of unknown parameters. For modeling purposes the AR(p) repre-
sentation is certainly more parsimonious but there is a modification of the above
MA(`) representation which yields very parsimonious formulations. The theoretical
basis of such a modification is that under certain regularity conditions the infinite poly-
nomial a` (L) can be approximated by a ratio of two finite polynomials (see Dhrymes
(1971)):

a`(L)5 :5 , p$q$0.

Using this approximation we can proceed to specify the autoregressive, moving average
model ARMA(p,q) popularized by Box and Jenkins (1976)):

Xt5
p

k51dkXt2k5
q

k51gkut2k1ut, t[Tp.oo

(1 1 g1L 1 g2L2 1 ··· 1 gqLq)

(1 1 d1L 1 d2L2 1 ··· 1 dpL p)

gq(L)

dp(L)

o2o1

2o12o1

o

o
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Such models proved very efficient in capturing the temporal dependence in time series
data in a parsimonious way but failed to capture the imagination of economic modelers
because they find it very difficult to relate such models to economic theory.

The AR(p) and other related models are discussed further in Spanos (1986).

8.10.5 The constructionist approach: the Wiener process

Consider the case where {Xt, t51,2,3,…} is an IID Normal process with moments:

(i) E(Xt)5m, (ii) Cov(Xt,Xs)5
hs2, t5s,50, tÞs

, t,s51,2,3,…

The stochastic process {Wt, t51,2,3,…}, defined by:

Wt5
t
k51Xk, (8.78)

is called a Wiener process. The joint density, based on the index subset 0,t1,t1, …,,tn

is:

f(w1,w2, …, wn;f)5f1(w1;c1)
n
k52 ftk2tk21(wtk2wtk21;ctk2tk21)5

5 , (8.79)

ftk2tk21(wtk2wtk21;ctk2tk21)5 exp2 . (8.80)

Due to the Normality assumption, the probabilistic structure of a Wiener process can
be seen from any bivariate distribution of (Wt,Ws) for t.s (see chapter 4 for the nota-
tion):

, t.s[T,

(a) E(Wt)5mt, t[T,
(b) Var(Wt)5s2t, t[T,
(c) Cov(Wt,Ws)5s2min (t,s), t,s[T.

R : in a number of publications it is noted that from (c) follows that for any t.0
the autocorrelation is:

Corr(Wt,Wt1t)5 , for all (t1t)[T.

This is often interpreted as suggesting that for large values of t, and irrespective of the
distance between observations t:

Corr(Wt,Wt1t) t→
→̀ 1.

Notice first that the autocorrelation is a function of both t and t, i.e., the process is index-
heterogeneous. Second, this interpretation should be viewed with caution because
the event t → ` does not represent anything interesting; t is just an index, it has no

t
Ï(t2 1 tt)

1Wt

Ws
2 , N11mt

ms2,1s2t,
s2s,

  
s2s
s2s22

6
(wtk 2 wtk21)2

2s2[tk 2 tk21]51
sÏ2p[tk 2 tk21]

exp52
1

2s2 3
(wt1)2

[t1]
1

(wt2 2 wt1)2

[t2 2 t1]
1

(wt3 2 wt2)2

[t3 2 t2]
1 ··· 1

(wtn 2 wtn21)2

[tn 2 tn21] 46
Ï(2ps2)n11t1[t2 2 t1][t3 2 t2]···[tn 2 tn21]

p

o
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connection to the sample size! This is better shown by the following alternative way to
express the autocorrelation:

Corr(Yt,Ys)55 , if t#s,
, if t$s.

In terms of the basic elements of a statistical model, a Wiener process is composed of the
following ingredients:

(D) Distribution: Normal,
(M) Dependence: martingale dependence,
(H) Heterogeneity: partial sum heterogeneity.

In view of the above moments the Wiener process is not stationary because its
moments depend on t, but it has second-order separable (partial sum) heterogeneity. Let
us ignore for a moment the fact that we constructed the Wiener process as a sequence of
partial sums of IID Normal random variables and consider the properties of the
difference process {DWt :5Wt2Wt21, t[T}:

E(DWt)5E(Wt2Wt21)5mt2m (t21)5m, t51,2,…

Var(DWt)5Var(Wt)1Var(Wt21)22Cov(Wt,Wt21)5

5s2t1s2(t21)22s2(t21)5s2, t51,2,…

Cov(DWt,DWt2t)50, t$1, t51,2,… 

These results show that the process {DWt, t[T} is both second-order and strictly sta-
tionary because for a Gaussian process second-order stationary implies strict stationarity.

In terms of the index set/state space (T,R) taxonomy the Wiener process {Wt, t51,2,
…} belongs to category D–C: T5{1,2,…}2countable, R5 (2`,`)2uncountable. This
process is closely related to the Brownian motion process {B(t),~t[ [0,`)} (see below) but
differs from it in one important respect; the latter has an uncountable index set: T5 [0,`).

8.10.6 The Brownian motion process

The Brownian motion process {B(t), t[ [0,`)} is of particular interest in the context of
stochastic processes for several reasons. First, the process itself can be used to model the
behavior of prices in financial markets (e.g., stock returns, exchange rates and interest
rates). Second, it constitutes the principal element for a class of stochastic processes
called diffusions which are based on the stochastic differentials:

dX(t)5m(X(t)) dt1s(X(t)) dB(t),

so that the change in X(t) is made up of two components: a drift of m(X(t)) and a
Brownian increment with variance s2(X(t)) . Third, it is useful for the description of the
asymptotic behavior of a number of estimators and test statistics based on the partial
sums discussed above; see Dhrymes (1998) for an extensive discussion.

T  : there is a confusion in the literature in so far as the process first
noticed by Brown is called a Brownian motion or a Wiener process. In the finance litera-

Ïs/t
Ït/s
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ture the confusion is even more pervasive because this process is often confused with the
random walk process as well. To minimize the confusion and also give credit where it is
due, it was decided in this book to call the original continuous process a Brownian motion
but its discrete counterpart a Wiener process; this, however, is not standard terminology.

The stochastic process {B(t), t[ [0,`)} is said to be a standard Brownian motion process
if the following conditions hold:

(i) B(t1h)2B(t),N(0, |h | ), for (t1h)[ [0,`),
(ii) B(t) has independent increments, i.e. for 0#t1,t2,t3,`,

.

The joint density, based on the index subset 0,t0,t1, …,,tn,takes the same form as
(8.79) with:

ftk2 tk21
(b(tk)2b(tk21);ctk)5 exp 2 ,

(iii) B(0)50.

R : the condition (iii) is just a normalization in the sense that in the case where B(0)
Þ0 we can define the process {B(t)2B(0), t[ [0,`)} which is now a Brownian motion.

In terms of the index set/state space (T,R) taxonomy the Brownian motion process
belongs to category C–C: T :5 [0,`) – uncountable, R :5R – uncountable.

In view of the above definition the only thing we need in order to determine the com-
plete distribution of the Brownian motion process {B(t), t[ [0,`)} is its covariance
structure for 0#t1,t2:

E(B(t1) ·B(t2))5E{B(t1)[B(t2)2B(t1)]1B(t1)2},5E(B(t1)2)5t1.

In general, for any t1[ [0,`), t2[ [0,`) : Cov(B(t1),B(t2))5min (t1,t2).
Using this result we can show that for 0#t1,t2,t3,t4:

E([B(t2)2B(t1)] [B(t4)2B(t3)])5 [Cov(B(t2),B(t4))2Cov(B(t2),B(t3))] 2
E([B(t2)2B(t1)] [B(t4)2B(t3)])2 [Cov(B(t1),B(t4))2Cov(B(t1),B(t3))]5
E([B(t2)2B(t1)] [B(t4)2B(t3)])5(t22t2)2(t12t1)50.

which proves that {B(t),t[ [0,`)} is indeed an independent increments process.
In terms of the basic taxonomy of probabilistic assumptions, a Brownian motion

process is composed of the following ingredients:

(D) Distribution: Normal,
(M) Dependence: martingale dependence,
(H) Heterogeneity: partial sum heterogeneity.

Interesting properties of a Brownian motion process

(i) The Brownian motion is a Markov process. This follows directly from the fact that
if {B(t), t[ [0,`)} is a Brownian motion then:

B(t21t1)5B(t1)1 [B(t11t2)2B(t1)],

6[b(tk) 2 b(tk21)]2

2[tk 2 tk21]51
Ï2p(tk 2 tk21)

1B(t1) 2 B(t2)
B(t2) 2 B(t3)2, N 110

02 1t2 2 t1

0,
  

0
t3 2 t2

22
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which suggests that the new state B(t21t1) is the sum of the old state B(t1) and an
independent Normal random variable [B(t21t1)2B(t1)]. This property was first
noted by Bachelier in 1900.

(ii) The sample paths {B( ,t),t[ [0,`)} ( is a given element of the outcomes set S) of a
Brownian motion process are continuous but almost nowhere differentiable. If we
can think of the zig-zag trace of a particle in a liquid we can understand why it is
non-differentiable.

(iii) The scaling property. The Brownian motion processes , t[ [0,`) and
{B(t), t[ [0,`)} have the same joint distribution.

(iv) The Brownian motion is a Normal (Gaussian) process. This property follows
directly from the definition but what is surprising is that the reverse is also true.
That is, every stochastic process with independent increments is Gaussian if its
sample paths are continuous with probability one (see Breiman (1968)).

Stochastic processes related to the Brownian motion
For reference purposes we mention three related stochastic processes.

1 The stochastic process {B*(t), t[ [0,`)} is said to be a Brownian motion with a drift
and variance s2 if:

{B*(t)5mt1sB(t), t[ [0,`)}

where {B(t), t[ [0,`)} is a standard Brownian motion.

2 The stochastic process {X(t), t[ [0,`)} is said to be a Brownian bridge if:

{X(t)5B(t)2tB(1), t[ [0,1]}

where {B(t), t[ [0,`)} is a standard Brownian motion. By definition the first two
moments of a Brownian bridge process are:

E(X(t))5E(B(t))2 tE(B(1))50,

Cov(X(t),X(s))5Cov([B(t)2tB(1)],[B(s)2sB(1)]), for t$s, (t,s)[ [0,1]3 [0,1],
Cov(X(t),X(s))5Cov(B(t),B(s))2sCov(B(t),B(1))2
Cov(X(t),X(s)) 2tCov(B(s),B(1))1stCov(B(1),B(1))5

Cov(X(t),X(s))5s2st2ts1st5s(12 t).

3 The stochastic process {X(t), t[ [0,`)} defined by:

{X(t)5 e2btB(e2bt), t[ [0,`)},

where {B(t),t[ [0,`)} is a standard Brownian motion, is said to be an
Ornstein–Uhlenbeck process. This process constitutes a more realistic model for the
motion of small particles suspended in liquid because its sample paths are also
differentiable, providing a measure for the velocity of the particle. It was first proposed
by Ornstein and Uhlenbeck in 1930 and it was based on Newton’s second law of motion
as formulated by Langevin (see Breiman (1968), Bhattacharya and Waymire (1990)).
The Ornstein–Uhlenbeck process can be viewed as stationary version of the Brownian

Ïa
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motion process in the following sense. It was shown above that the standard Brownian
motion {B(t), t[ [0,`)} is not stationary because its first two moments are linear func-
tions of t. However, consider the transformation of the index:

t5 ln t or t5et,

which, in conjunction with the scaling property of the Brownian motion process defines
the new process:

X(t)5e2tB(e2t), t[ [0,`).

This is a second-order stationary process because its first two moments are:

E(X(t))5E(e2tB(e2t))5e2tE(B(e2t))50, t[ [0,`),

E(X(t) ·X(t))5e2(t1t)E(B(e2t)B(e2t))5e2(t1t)e2min(t,t)5e2 | t2t | , t[ [0,`).

This is an example of how a simple transformation of the index can lead to a tempo-
rally homogeneous process. The Ornstein–Uhlenbeck stochastic process is a scaled
version of this process with moments:

E(X(t))50, E(X(t) ·X(t))5ae2b | t2t | , t[T,t[T.

Both of the above processes are also strictly stationary because of Normality.

4 The stochastic process {X(t), t[ [0,`)} is said to be an Integrated Brownian motion
process if:

X(t)5 B(u)du, t[ [0,`) .

It can be shown that (see Parzen (1962)):

E(X(t))5 ∫ t
0 E(B(u)) du50,

E(X2(t))5 ∫ t
0 ∫ t

0 E(B(u)B(v)) dudv5 ∫ t
0 [ ∫ u

02udu] dv5 ,

E(X(t)X(s))5E(X2(s))1(t2s)E(X(s)B(s))5s2 , t.s$0.

5 The stochastic process {X(t), t[ [0,`)} is said to be a Geometric Brownian motion
process if:

{X(t)5exp (B(t)), t[ [0,`)}.

The name stems from the fact that this process can be viewed in relation to an IID
process:

Z(t)5 , t[ [0,`) .

Taking X(0)51, we can deduce that Z(t) is the geometric mean of the X(t)s, i.e.

Z(t)5 X(k), or equivalently ln Z(t)5 ln X(k).o
t

k51
p

t

k51
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In view of the fact that the X(t)s are IID, ln Z(t), would converge to the Geometric
Brownian motion.

Brownian motion as a limit of a random walk
The Brownian motion process constitutes an important variation of the simple random
walk. Consider the case where the sequence of IID random variables {Xn, n51,2,3,…},

has a symmetric distribution p5 and instead of steps of 1 and 21, takes steps of mag-

nitude h every d seconds. By defining Bd(t) to be the accumulated sum up to time t, i.e.:

Bd (t)5h(X11X21X31…1Xn)5hSn, where n5 ,

and simultaneously shrinking both the size of the jumps (h → 0) and the time between
jumps (d → 0), the resulting process {B(t), t[ [0,`)}, where T :5 [0,`) is the non-negative
part of the real line, is a continuous time process. Let us see this in some detail.

The mean and variance of the process {Bd(t), t[ [0,`)} are:

E(Bd(t))5hE(Sn)50, Var(Bd(t))5h2nVar(Xn)5h2n5h2 ,

since Var(Xn)54p(12p)51 for p5 . Defining h5s and letting both go to zero we
define a continuous-time process {B(t), t[ [0,`)} which begins at the origin and has
mean and variance:

E(B(t))50, Var(B(t))5 s
2

5s2t.

Also, by noting that as d → 0, n5 → ̀ , we can use the Central Limit Theorem (see chap-

ter 9) to argue that the distribution of the stochastic process {B(t), t[ [0,`)} approaches

the Normal, i.e., f(b(t);s2)5 e2 b(t)2; see Bhattacharya and Waymire (1990).

8.11 Point processes

8.11.1 The constructionist approach

Point processes can be thought of as generalizations of the Poisson process.
A stochastic process {N(t), t[ [0,`)} is called a point (or renewal) process if:

N(t)5max{n:Sn#t},

where Sn5 n
i51Xi for n$1, S050, and {Xn, n51,2,…} is a sequence of IID, non-

negative random variables. In terms of the index set/state space (T,R) taxonomy a point
process {N(t), t[T} has a discrete state space but the index set T, can be either discrete
or continuous.

From the process {N(t), t[ [0,`)} we can proceed to construct the other two processes
associated with it:

Sn5min {t:N(t)5n}, Xn5Sn2Sn21, n51,2,…

where {Sn, n51,2,…} and {Xn, n51,2,…}. The most important member of this class of
processes is the Poisson process considered next.
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8.11.2 The Poisson process

Consider the partial sums stochastic process {Sn, n51,2,3,…}, where Sn5 n
i51Xi,

S050, and {Xn, n51,2,3,…} is an IID Exponential process. If it helps, think of each Sn

as the time at which the telephone rings for the nth time. N that:

Xn5Sn2Sn21, n51,2, …,

denotes the time interval between telephone calls n21 and n.
Consider the following function of the partial sum process:

N(t)5max {n:Sn#t}, t[ [0,`)},

which denotes the number of calls up to time t. N(t) is constant until an event occurs, at
which point it increases by 1. This function defines the so-called Poisson process {N(t), t[

[0,`)}. In terms of the index set/state space (T,R) taxonomy the stochastic process {N(t),t
[ [0,`)} belongs to category C–D: T :5 [0,`) – uncountable, R :5{0,1,2,…} – countable.

In a more general set up we can define the three interrelated processes as follows:

(a) N(t): the number of arrivals in the time interval [0, t),
(b) Sn : the arrival times 05S0,S1,S2, ···,Sn, ··· is related to N(t) via:

Sn5min {t:N(t)5n},

(c) Xn: the times between arrivals (see figure 8.8).

The joint density of a Poisson process, based on the index subset 0, t0,t1, …,,tn,
and the corresponding integers k0#k1#k2 · · ·#kn, takes the form:

P(N(t0)5k0,N(t1)5k1, …, N(tn)5kn)5 e2l(t,2t,21) k,2k,21.

This is because:

P(N(t0)5k0,N(t1)2N(t0)5k1–k0, …, N(tn)2N(tn21)5kn2kn21)5

5P(N(t0)5k0) 
n
,51 P(N(t,)2N(t,21)5k,2k,21)5

5P(N(t0)5k0) 
n
,51 P(N(t,2t,21)5k,2k,21) .

Noticing that the event (N(t)$k) is equivalent to the event (Sk#t), it follows that:

P(N(t)$k)5P(Sk# t).

In view of the fact that Sn is the sum of IID exponentially distributed random variables
we can deduce that its distribution is Gamma (see chapter 3). Hence, the density function
of N(t) takes the form:

p
p

[l(t, 2 t,21)]
(k, 2 k,21)!

e2lt(lt)k0

k0!  p
n

,51

o
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P(N(t)5k) :5fN(k)5P(Sk#t)2P(Sk11# t)5

5 e2lvdv5 ,

i.e., {N(t),t[ [0,`)} is a Poisson stochastic process with mean and variance:

E(N(t))5lt, Var(N(t))5lt.

That is, the Poisson process is not stationary because as we can see its first two
moments depend on t, but it enjoys separable heterogeneity.

8.12 Exercises

21 Why do we need the notion of a stochastic process? How does it differ from the
concept of a random variable?

22 Explain the notion of a sample path of a stochastic process.

23 Compare the notions of time and probability averages. When do the two coincide?
What happens if they are unrelated?

24 Explain the classification of stochastic processes using the index set and the state
space.

25 Explain intuitively the Kolmogorov extension theorem. What is its significance?

26 What is the difference between the distributional and constructive approaches to
specifying stochastic processes?

27 Explain the notions of Markov dependence and homogeneity.

28 Explain the relationship between Markov and independent increments processes.

29 What is the relationship between identically distributed increment processes and
stationarity?

10 Explain the notion of a partial sum stochastic process.

11 Compare and contrast a partial sum processes and a martingale processes.

12 Explain the probabilistic structure of a random walk process.

13 Explain the notion of separable heterogeneity.

14 Discuss briefly the role of a Brownian motion process in the formation of the foun-
dations of probability theory.

15 Explain the following notions of dependence:
(a) Independence,
(b) Markov dependence,
(c) Markov dependence of order m,
(d) m-dependence,
(e) asymptotic independence,
(f) non-correlation,

e2lt(lt)k

k!1lkvk21

(k 2 1)!
2

lk11vk

k! 2E1
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(g) a-mixing,
(h) f-mixing.

16 Explain the relationship between c-mixing and a mixingale.

17 Explain the notion of ergodicity.

18 Explain the following notions of heterogeneity:
(a) Identical Distribution,
(b) strict stationarity,
(c) first-order stationarity,
(d) second-order stationarity,
(e) mth-order stationarity,
(f) exchangeability

19 Define the block stochastic processes:
(a) IID Bernoulli process,
(b) IID exponential process,
(c) white-noise process,
(d) innovation process,
(e) martingale difference process.

20 Compare and contrast the stochastic processes:
(a) white-noise process,
(b) innovation process,
(c) martingale difference process.
Explain why a martingale difference process can accommodate dynamic het-
eroskedasticity but the innovation process cannot.

21 A Markov chain is a special Markov process. Explain.

22 Explain the notion of a Poisson process.

23 Explain the probabilistic structure of a martingale process.

24 Consider the IID process {Xt, t51,2,3,…} such that E(Xt)5mÞ0, t51,2,… Show

that the process {Mt, t51,2,3,…} defined by Mt5
t
k51Xk is a martingale.

25 Explain the probabilistic structure of a Gaussian Markov process.

26 Explain how a Gaussian, Markov stationary process can give rise to an AR(1) model.

27 “An ARMA(p,q) representation constitutes a parsimonious version of a MA(`).”
Discuss.

28 Explain the probabilistic structure of a Wiener process.

29 Explain how a Brownian motion process can be changed into a second-order sta-
tionary process by a transformation of the index.

30 Compare and contrast the Normal autoregressive model and the Normal/linear
regression model specified in chapter 7.

p11
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9 Limit theorems

9.1 Introduction to limit theorems

The main purpose of this chapter is to introduce the reader to one of the most fascinat-
ing and at the same time one of the most difficult areas of probability theory. The
material is naturally technical and it is often served as a dreary catalogue of theorems.
An attempt is made to deal with both problems using the following devices:

(i) The historical development of limit theorems is used as a backdrop for the discus-
sion. A number of concepts are first introduced as part of the historical develop-
ment in order to avoid the high concentration of concepts when stating or proving
the theorems themselves. Moreover, the historical development enables us to bring
out one of the most important dimensions of limit theorems: the gradual weakening
of the conditions giving rise to the results.

(ii) This gradual weakening is considered in conjunction with the basic taxonomy of
probabilistic assumptions into:

(D) Distribution, (M) Dependence, (H) Homogeneity. (9.1)

This brings out another important aspect of limit theorems: the trade off between
assumptions from different categories.

9.1.1 A bird’s eye view of the chapter

After some important introductory remarks relating to (a) why we care, (b) terminology,
and (c) certain misconceptions about limit theorems, we proceed to discuss briefly the
historical development of the various limit theorems in section 2. In sections 3 and 4 we
consider the Law of Large Numbers which comes in two flavors, the weak and the strong,
respectively. In section 5 we discuss briefly the Law of Iterated Logarithm. Section 6 dis-
cusses the development of the Central Limit Theorem. Section 7 comments briefly on
how the results of the limit theorems can be extended to arbitrary functions of a
sequence of random variables. In section 8 we discuss the so-called Functional Central
Limit Theorem which constitutes a recent refinement of the classical Central Limit
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Theorem. Section 9 considers the various modes of convergence for random variables in
some more detail. The chapter concludes with a general summary and discussion.

9.1.2 Why do we care?

Limit theorems constitute the mathematical backbone of probability theory. For model-
ing purposes limit theorems are useful mainly because they provide approximate answers
to the question of determining the behavior of statistics (estimators, test statistics, and
predictors) of interest in statistical inference.

The most important problem in statistical inference is the determination of the distrib-
ution of a function of random variables:

Y5g(X1,X2, …, Xn),

when the distribution of (X1,X2, …, Xn) is known; the latter distribution is usually given
by the postulated statistical model. Theoretically the distribution of Y is determined by:

F(Y#y)5P{(X1,X2, …, Xn)[Bx}5 ··· f(x1,x2, …, xn)dx1dx2 ···dxn,

Bx

Bx5 [g21(Y#y)] :5{g(x1,x2, …, xn)#y}. (9.2)

However, multiple integrals are difficult to solve at the best of times, and thus it should
come as no surprise to learn that this is often a very difficult problem to solve even for
simple functions g(.). For this reason the results in this area are rather sparse and related
mostly to simple functions of certain distributions such as the Normal and the Binomial.
In statistical inference, however, we need to solve this problem somehow before we can
derive results on estimation, testing, and prediction. In cases where the problem posed in
(9.2) does not have a usable solution, we usually resort to approximate solutions, based
on n → ̀ , utilizing the limit theorems that follow. This is the primary usefulness of limit
theorems.

9.1.3 Terminology and taxonomy

The term limit theorems is used to refer to a group of results which relate to the behavior
of well-behaved functions (Borel functions) of a set of random variables (X1,X2, …, Xn),
as n goes to infinity, i.e.:

Yn :5g(X1,X2, …, Xn), as n → ̀ .

The most important sub-categories of these limit theorems are:

(i) the Weak Law of Large Numbers (WLLN),
(ii) the Strong Law of Large Numbers (SLLN), and
(iii) the Central Limit theorem (CLT).

All these limit theorems have three things in common:

5EEE
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(a) they all postulate a sequence of random variables {Xn}`
n51:5{X1,X2, …, Xn, …}.

(b) they all impose certain restrictions on the probabilistic structure of this sequence,
(c) they are all concerned with the behavior of scaled versions of summations:

cn
21Sn :5cn

21( n
k51 [Xk2E(Xk)]), as n → ̀ , (9.3)

where {cn}`
n51 is a sequence of appropriately chosen real numbers.

They differ in two important respects:

(d) the scaling sequences {cn}`
n51, and

(e) their conclusions:

(i) WLLN : an
21Sn→

P
0, (ii) SLLN : an

21Sn→
a.s.

0, (iii) CLT : cn
21Sn→

D
F (x).

The details of these, including the symbolism, will be discussed at length in what follows.
Limit theorems are useful in deriving approximate results for the behavior of the

summation, irrespective of the distribution of (X1,X2, …, Xn). It must be emphasized at
the outset that these limit theorems provide only approximations to the actual behavior
of ( n

k51 [Xk2E(Xk)]) for a given n, and can be misleading for a small n. Hence, such
results should be used as a last resort; when the distribution of ( n

k51 [Xk2E(Xk)]) cannot
be derived by the methods discussed in chapter 11.

It must be noted that these three generic names of limit theorems refer to three cate-
gories of limit results, which, however, do not exhaust all limit theorems.

9.1.4 Popular misconceptions

It is imperative to clear up at the outset certain misconceptions in connection with limit
theorems and in particular the CLT.

(i) The WLLN does not say that in a given run of n tosses of a fair coin the difference
between the number of “Heads” and the number of “Tails” will be small. This mis-
conception is discussed in the next section.

(ii) The most popular misconception about the CLT is the well-known lame excuse for
using Normality even in cases where it is clearly inappropriate. The excuse is that
“all distributions converge to the Normal as the sample size increases.” The CLT
does not say that! No! No! The nature of a distribution does not usually change
with the sample size. What does change is the nature of the distribution of certain
scaled summations of random variables, but always under certain restrictions.
These restrictions can be crudely summarized by saying that they are designed to
ensure that no one random variable in the sequence {Xn}`

n51 dominates the behavior
of the summation ( n

k51 [Xk2E(Xk)]). The conditions that ensure the insignificance
of the individual random variable when compared with the summation take
numerous forms and this is why we have numerous versions such limit theorems.

(iii) Another misconception is related to the aggregation of data by averaging and it
concerns the so-called CLT effect. It is often mistakenly argued that in cases
where daily data are aggregated to weekly or even monthly data by averaging, i.e.,
xw :5 n

kxk, the CLT effect means that the weekly observations will have a distrib-o1
n

o

o
o

o
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ution that tends to the Normal, irrespective of the distribution of the daily
observations. The fallacy here is a bit more subtle than (i) but it is a fallacy all the
same. In view of the fact that a week has only seven days and a month only four
weeks, etc., no CLT effect can be called upon. In other words, n in the above aver-
aging does not increase to infinity in any sense and thus the most important
ingredient of the CLT is missing!

(iv) The Normal distribution is not the only distribution scaled summations con-
verge to. There is a Central Limit Theorem for every member of the so-called
Levy–Khintchine family of distributions which includes not just the Normal,
Poisson and Cauchy distributions but a whole group known as the infinitely
divisible distributions (see Hoffmann-Jorgensen (1994)). Moreover, continuous
functions of scaled summations of random variables converge to several well-
known distributions including the Chi-square (in case of quadratic functions).

(v) When we consider other functions (not scaled summations) of stochastic
sequences, such as their maximum, the limit distributions are never Normal.

9.2 Tracing the roots of limit theorems

James Bernoulli in 1713 proved the first Law of Large Numbers. This thread was taken
up by de Moivre who proved the first Central Limit Theorem in 1718. Laplace in 1812,
drew together and extended the previous two limit theorems. Apart from some marginal
weakening of the conditions underlying the LLN by Poisson in the 1830s, the next
important milestone was the founding of the Russian school of probability by
Chebyshev in the 1870s. Chebyshev was the first to recognize the generality of these limit
theorems and provided the foundation upon which the other members of this school of
thought, his students Markov and Lyapunov, extended the limit theorems to their
modern form. The last member of that illustrious school, Kolmogorov, not only
improved upon the work of his predecessors but, in 1933, provided probability theory
with its modern mathematical foundations. Let us see how the story of limit theorems
unfolds in some more detail.

The first limit theorem was proved by James Bernoulli (1654–1705) in his book Ars
Conjectandi, published posthumously in 1713. Bernoulli revealed his views about the
importance of the theorem by calling it the golden theorem; today it is known as the Law
of Large Numbers (LLN), a term first introduced by Poisson in 1837. According to
Bernoulli’s LLN:

if we toss a fair coin n times and it falls k times heads (H’s), then, by increasing the number of

tosses the probability of the event | 2 |,« goes to one.

In order to understand what this theorem says it is important to clear a misinterpreta-
tion of this law, known as gambler’s delusion:

if a fair coin, when tossed 8 times, yields the sequence {T,H,T,H,H,H,H,H} i.e., falls heads
for the last 5 consecutive tosses, the probability of getting tails in the next toss is (somehow)
greater than that of heads.

61
21k

n25
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This is based on the misguided intuition that for Bernoulli’s LLN to be true, after
many tosses the number of heads (#H) and tails (#T) will be more or less equal. We
know, however, that coins have no memory and the probabilities remain the same for all
trials. The fact is that Bernoulli’s LLN says nothing about the difference [(#H)2(#T)];
indeed conditions of the form [(#H)2 (#T)],«, for some small «.0, would invalidate
the independence of the sequence of tosses. What the law talks about is the

probability associated with the difference of the ratio and or by implication

with the difference of the ratio and 1.

Bernoulli’s LLN is better understood when expressed in terms of Bernoulli distrib-
uted random variables:

{Xk51}5{H}, {Xk50}5{T}, P(Xk51)5P(Xk50)5 , k51,2, …

In terms of the sequence of Bernoulli random variables {Xn}`
n51, we can express the ratio

of heads to the total number of tosses in the form

:5 5 n
i51Xi, (9.4)

and Bernoulli’s LLN can be written as:

lim
n→`

P( | n
i51Xi2 |,«)51, for any «.0. (9.5)

The next important milestone in the history of limit theorems was provided by
Abraham de Moivre (1667–1754) in his book Doctrine of Chances, first published in 1718.
In the second edition of his book, published in 1734, de Moivre evaluated the probabili-
ties associated with the event n

i51Xi5 , using the equivalent event of getting n heads in
2n tosses (with a fair coin) being:

P 2n
i51Xi5n 5 222n.

Given that , where n!5n · (n21)·(n22)··· (2) ·1, it is easy to see that for large n

(and k) it was impossible to use this formula to evaluate the probabilities. Instead de
Moivre used Stirling’s formula (Stirling was a friend of his) to derive the approximation:

P 2n
i51Xi5n . .

He noticed, however, that this probability goes to zero as n increases to infinity unless the
event is pre-multiplied with the factor . By scaling these quantities he was able to
derive a number of useful approximations. In terms of the sum in (9.4) the scaling takes
the form:

Zn :5 n
i51Xi2 5 n

i51Xi2 .

Using this insight de Moivre went on to derive the general approximation:

lim
n→`

P(Zn#z)5 `
k50 (21)k , for z[R.

What he didn’t know at the time was that the right-hand side is a series expansion of the
Normal distribution with E(Z)50 and variance Var(Z)5 :1

4
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`
k50 (21)k 5 e22x2dx, for z[R.

This was first recognized by Pierre-Simon Laplace (1749–1827) in the third edition of his
book Analytic Theory of Probability, published in 1820. The Normal distribution was
discovered a decade earlier by Legendre and Gauss and independently by Robert Adrain
(1777–1855), a little known American surveyor. Laplace extended this result to the case
of a general Bernoulli distribution with P(X51)5p and P(X50)512p. For this
reason the above result is known as the De Moivre–Laplace central limit theorem.

At this point it is interesting to note that the above Central Limit Theorem assumes
that p is fixed and it can be used to provide reasonable approximations to Binomial prob-
abilities when p is not close to either 0 or 1. For the case where p is close to zero it was
found that the Normal provided a poor approximation. A much better approximation
was provided by the Poisson distribution which turns out to be the limit distribution if
we consider the asymptotic behavior of the partial sums assuming that as n → ̀ , p → 0.
The result is known as Poisson’s limit theorem or the Law of Small Numbers.

Poisson’s limit theorem Consider a sequence of independent Bernoulli trials such that
the partial sum Sn5 n

i51Xi has a Binomial distribution of the form:

Sn,Bi(n,pn), npn → l as n → ̀ ⇒ lim
n→`

P(Sn5k)5e2l .

The next important development in relation to Bernoulli’s LLN was provided by Emile
Borel (1871–1956) who proved in 1909 a more profound result:

P s : lim
n→`

n
k51Xk(s) 5 51, (9.6)

where we attach a probability to the set of elements s[S (the original probability space

being (S,F,P(.))) for which n
k51Xk(s) converges to as n → `. In Bernoulli’s result

(9.5) the convergence takes place in terms of the probabilities. The latter does not involve

any convergence of n
k51Xk.

Example
Consider the random experiment of tossing a coin indefinitely and noting whether it
turns up heads (H) or tails(T). The outcomes set S consists of all infinite sequences of Hs
and Ts, i.e., the elementary events are of the form s :5{s1,s2, …, sn,…}. Define the
random variable:

Xk(s)5h1 if sk5H,
Xk(s)550 if sk5T,

and Yn(s) :5 n
k51Xk(s). What we would like to say, but of course we cannot, is that:

lim
n→`

n
k51Xk(s) 5 ,

because firstly the limit might not exist, and secondly there might be infinite sequences
such as sT :5{T,T, …, T,…}, sH :5{H,H, …, H,…}, whose limit is certainly not .1
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1
24o1

n3
o

o1
n

1
24o1

n3

21
24o1

n31

lk

k!

o

Ez

0

Î2
p

2k·z2k21

k!(2k 1 1)o2
Ï2n

Tracing the roots of limit theorems 467



What we can claim, however, is that (9.6) holds for almost all sequences in S. That is,
for a large n, the probability of the subset S0,S of the form:

S05 s : lim
n→`

n
k51Xk(s) Þ ,

(e.g. S0 includes sequences such as sT and sH) is negligible and as n → ̀ , the set S0 involves
fewer and fewer sequences such as sT and sH; in measure theoretic terminology S0 is said
to be a set of measure zero.

At this stage it is imperative to take stock of the various convergence results encountered
so far before we proceed to discuss further the historical development of these results.

9.2.1 Convergence in limit theorems: a first view

We begin with the type of convergence involved in Bernoulli’s LLN, known as conver-
gence in probability to a constant, which can be expressed equivalently as:

lim
n→`

P s[S : | n
k51Xk(s)2 |ù« 50, for any «.0. (9.7)

This convergence has two components:

(i) the events associated with the distances: {| n
k51Xk(s)2 |$«},

(ii) the tail probabilities associated with these events, say {pn}`
n51, defined by:

pn :5P s[S : | n
k51Xk(s)2 |$« .

The convergence takes place at the level of the tail probabilities, always in conjunction
with the events in (i), and amounts to:

lim
n→`

pn50.

The theorems along the lines drawn by Bernoulli, and associated with convergence in
probability, are known as the Weak Law of Large Numbers (WLLN) in contrast to the
Strong Law of Large Numbers (SLLN) associated with Borel’s result (convergence
almost surely), considered next.

The convergence mode associated with Borel’s theorem is known as converges almost
surely to a constant:

P s : lim
n→`

n
k51Xk(s) 5 51. (9.8)

Again the convergence has two components:

(i) the set of events associated with the distances: | n
k51Xk(s)2 |$« , defined by

S0 :5 s : | n
k51Xk(s)2 |$« , a subset of S, and

(ii) the probability of this subset: P(s : s[S0)50.

In contrast to convergence in probability, the convergence here takes place at the level of
n
k51Xk(s) in the sense that as n → ̀ the set S0 becomes a null event.
In terms of the indefinite tossing of a coin in the example discussed above, we

can think of S0 as the set of points of S which includes elements of the form

o1
n
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sT :5{T,T, …, T,…} and sH :5{H,H, …, H,…}. As n increases such events become
rarer and rarer (shrinking of the set S0) rendering it a set of probability zero.

Intuitively, it feels as though convergence almost surely is a more powerful result then
convergence in probability. Our intuition is indeed valid and we can prove (see section 8)
that the former implies the latter, i.e., the conditions needed for the SLLN are more than
adequate for the WLLN to hold.

As mentioned in section 2, the LLN says nothing about the rate of convergence. De
Moivre was the first to notice that by multiplying the difference | n

k51Xk(s)2 |with ,
the probability of the standardized quantity did not go to zero but converged to some-
thing non-degenerate. In this sense we can think of the CLT as providing information
about the rate of convergence of the LLN.

The De Moivre–Laplace result entails a different mode of convergence known as con-
verges in distribution:

lim
n→`

Fn(x)5F(x),

where Fn(x) and F(x) denote the cdf of n
k51Xk and that of the Normal distribution,

respectively. The convergence here takes place only at the level of the cumulative
distribution function as an ordinary convergence of bounded functions,  that
F(2`)50 and F(`)51, both being continuity points of F(.). The group of results
developing the De Moivre–Laplace result is known generically as the Central Limit
Theorem. As shown in section 8, convergence in distribution is the weakest of the three
modes and convergence in probability implies convergence in distribution.

The next three sections can be viewed as a gradual weakening of the initial restrictions
giving rise to the above three theorems.

9.3 The Weak Law of Large Numbers

As a prelude to the discussion that follows we make it clear at the outset that when we
refer to a sequence of random variables {Xn}`

n51 :5{X1,X2, …, Xn….} we are in effect
talking about a stochastic process as defined in chapter 8. The reader is strongly advised
to refer back to chapter 8 for a number of concepts used in this chapter.

The WLLN, in its general form, can be stated crudely as saying that under certain
restrictions on the sequence of random variables {Xn}`

n51 :

limn→` P | n
k51Xk2 n

k51E(Xk) |,« 51, for any «.0. (9.9)

9.3.1 Bernoulli’s WLLN

In an attempt to bring out the gradual weakening of the conditions giving rise to the
WLLN let us begin with the general form of Bernoulli’s WLLN; see Bernoulli (1713).

Bernoulli’s WLLN Let {Xn}`
n51:5{X1,X2, …, Xn….} be a sequence of random variables

which satisfy the following conditions:

(D) Bernoulli: f(xk;uk)5uk
xk(12uk)12xk, xk50,1, k51,2,…

2o1
no1

n1
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n
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(M) Independence: f(x1,x2,…,xn;w)5 n
k51 f(xk;uk),

(H) Identical Distribution: uk5u, for all k51,2, …,

lim
n→`

P | n
k51Xk2u |,« 51, for any «.0, (9.10)

and denoted by:

n
k51Xk→

P
u.

That is, the probability of the event {| n
k51Xk2u |,«} approaches one, as n goes to

infinity (n → ̀ ).
There are several things to  about this result.

(i) The function whose behavior the theorem is about is n
k51Xk.

(ii) The event of interest is the difference between n
k51Xk and its expected value

E n
k51Xk 5u .

(iii) What converges is the probability of this event, not n
k51Xk itself.

(vi) I . The basic assumptions underlying the result (9.10) can be viewed in
the context of the fundamental taxonomy (9.1) used throughout the discussion in
chapters 4–8. This is no coincidence; there is a direct connection between opera-
tional statistical models and limit theorems as shown in chapters 11–15.

Proof It is instructive to prove this result using Chebyshev’s inequality (which, by the
way, was not available to Bernoulli 1713):

P( |X2E(X) |e) # , for any e.0, (9.11)

(see chapter 3), in order to bring out the role of the above conditions (1)–(3). Note that
the above inequality pre-supposes that the random variable X has finite mean and vari-
ance (E(X),` and Var(X),`). The proof amounts to a simple application of this
inequality to the case of the random variable n

k51Xk above.

Step 1 Derive the mean and variance of n
k51Xk:

(i) E n
k51Xk 5 n

k51E(Xk)5 n
k51u5u,

(ii) Var n
k51Xk 5 n

k51Var(Xk)5 n
k51 (u [12u])5 (u [12u]),

using E(Xk)5u and Var(Xk)5u(1–u) for all k51,2, …, n.
Step 2 Apply the Chebyshev inequality to deduce that:

P | n
k51Xk2u |$« # , or P | n

k51Xk2u |,« $12

Step 3 Consider the limit of this probability as n → ̀ :

→ 0, ⇒ limn→` P | n
k51Xk2u |,« 51. j

If we take a closer look at this proof, we can see that some of the conditions assumed in
the Bernoulli WLLN play only a minor role in establishing the result.
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(i) The distribution assumption of a Bernoulli distribution played no role beyond the
boundedness of the first two moments:

(a) E(Xk)5u,`, (b) Var(Xk)5u (12u),`, for all k51,2,…

(ii) The Independence assumption played a role in so far as at the last step it ensured
that:

Var n
k51Xk n→

→̀ 0.

(iii) The Identical Distribution assumption played some role at step one in ensuring that
the mean of the average equals the mean of any Xk:

E n
k51Xk 5u.

In a certain sense these remarks sketch out the progression of weaker and weaker
conditions giving rise to the conclusion (9.10).

9.3.2 Poisson’s WLLN

The first condition to be weakened was that of Identical Distribution (complete homo-
geneity) when Simeon Denis Poisson (1781–1840) proved in 1837 that (iii) could be
relaxed without affecting the result.

Poisson’s WLLN Let {Xn}`
n51 be a sequence of random variables which satisfy the fol-

lowing conditions:

(D) Bernoulli: f(xk;uk)5uk
xk(12uk)12xk, xk50,1, k51,2,…

(M) Independence: f(x1,x2,…,xn;w)5 n
k51 f(xk;uk),

(H) Heterogeneity: uiÞuj, i, j51,2,…

limn→`P | n
k51Xk2 n

i51uk |,« 51, for any «.0. (9.12)

At first sight this appears to suggest that Poisson was able to allow for complete hetero-
geneity for the sequence {Xn}`

n51, by allowing a different un for each Xn:

E(Xn)5un, Var(Xn)5un(12un), n51,2,…

This, however, is illusory because in conjunction with the Bernoulli assumption (D) we
know that for each un:

(a) 0,un,1, (b) un(12un)# , n51,2,…

These indirect restrictions on the heterogeneity imply that

[1] lim
n→`

n
k51uk 5q,1, [2] lim

n→`

n
k51uk(12uk) 5c# .

This follows from the fact that in both cases we have sequences of partial sums with non-
negative terms which are bounded (as shown in (a)–(b)); thus they converge (see Knopp
(1947)). As we can see, the conditions [1]–[2] amount to asymptotic homogeneity and thus
some form of homogeneity has been indirectly imposed. This is in accordance with the
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discussion throughout this book that for operational models one needs to impose certain
restrictions from all three categories of probabilistic assumptions (see especially chap-
ters 7–8).

9.3.3 Chebyshev’s WLLN

The first general (in its modern form) WLLN was proved by Chebyshev (1821–1884), the
founder of the Russian school of thought which included Markov (1856–1922),
Lyapunov (1857–1918), and Kolmogorov (1903–1989). This school of thought had a
profound effect on probability theory.

In addition to the complete homogeneity relaxed by Poisson, Chebyshev noticed that
when using the inequality bearing his name to prove the WLLN:

(a) the Bernoulli distributed assumption seemed totally unnecessary; it is only role in
the above proof was in deriving the mean and variance of n

k51Xk,
(b) the Independence assumption was unnecessarily restrictive; its only role is in ensur-

ing that the variance of the sum is equal to the sum of the individual variances. In
the case of dependence:

Var n
i51Xi 5 n

i51Var(Xi)1
iÞj

Cov(Xi,Xj) . (9.13)

For the last term to be zero, however, one does not need to assume complete inde-
pendence; non-correlation will suffice. Chebyshev in 1867 went on to impose the
somewhat stronger dependence restriction of pairwise independence, because
the difference between the latter condition and non-correlation was not very clear
at the time.

Chebyshev’s WLLN Let {Xn}`
n51 be a sequence of random variables which satisfy the

following conditions:

(D) Bounded moments: E(Xk),`, Var(Xk),c,`, k51,2,…
(M) Pairwise independence: f(xi,xj;w)5fi (xi;ui) ·fj(xj;uj), iÞ j, i, j51,2,…
(H) Heterogeneity: E(Xk)5mk, Var(Xk)5sk

2, k51,2,…

limn→`P | n
k51Xk2 n

k51E(Xk) |,« 51, for any «.0. (9.14)

Proof The result follows directly from applying the Chebyshev inequality (see (9.11)) to
the random variable n

k51Xk and noting that:

Var n
k51Xk 5 n

k51Var(Xk)#
n→
→̀ 0.j (9.15)

There are several things to note about the above conditions.

(i) The boundedness of the first two moments assumed by Chebyshev’s WLLN ensures
that there is asymptotic homogeneity of the variance:

limn→`
n
k51sk
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(ii) From chapter 3 we know that if mr9 exists for some r.1, then all moments of order
lower than r also exist. In other words, in connection with the above theorem we
could have left out the existence of the mean because if the variance exists so does
the mean!

(iii) The most important departure from the previous results that Chebyshev’s WLLN
establishes, is the replacement of the distribution assumption by the existence of
moments, and therein lies the value of such limit theorems.

The relationship between distribution and existence of moments assumptions has
been discussed in chapter 3, where it was argued that existence of moments and smooth-
ness conditions are in effect indirect distribution assumptions. This is because existence of
moments and smoothness assumptions amount to a narrowing down of the set of poss-
ible distributions, in the sense that these conditions constitute indirect exclusion of
certain distributions. In chapter 11 it is argued that for modeling purposes the use of
direct distribution assumptions gives rise to more precise results. On the other hand, the
use of indirect distribution assumptions, in the form of existence of moments, compels
the modeler to use inequalities, such as that of Chebyshev and related inequalities, which
are often very crude compared with what one can get when postulating a distribution
assumption. In the context of limit theorems, however, this is no drawback because the
very purpose of these theorems is the derivation of approximate results when exact
results are not available. In such cases limit theorems are indispensable.

9.3.4 Markov’s WLLN

Andrei Markov, a student of Chebyshev, was the first to exploit in full the opportunities
offered by the proof of the WLLN using Chebyshev’s inequality in order the relax the
assumptions giving rise to the result. He saw that even the non-correlation was too
restrictive.

Markov’s LLN Let {Xn}`
n51 be a sequence of random variables which satisfy the follow-

ing conditions:

(D) Bounded moments: E(Xk),`, Var(Xk),c,`, k51,2,…

(M) Asymptotic non-correlation: Var n
k51Xk n→

→̀ 0,

(H) Heterogeneity: E(Xk)5mk, Var(Xk)5sk
2, k51,2,…

Then (9.14) holds. Condition (M) is called asymptotic non-correlation because in view
of (9.13), it holds only if:

iÞj
Cov(Xi,Xj) n→

→̀ 0.

Examples
(i) Consider the sequence of discrete independent random variables {Xn}`

n51 with
probability distribution:

4oo31
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P(Xn50)512222n, P(Xn562n)522(2n11), n51,2,…

(a) E(Xn)52n(22(2n11))22n(22(2n11))50,
(b) Var(Xn)5(2n)2(22(2n 1 1))1(22n)2(22(2n11))51,

Var n
k51Xk 5 n

k5115
n→
→̀ 0.

Hence, the sequence of random variables {Xn}`
n51 obeys the Weak Law of Large

Numbers.

(ii) Consider the sequence of discrete independent random variables {Xn}`
n51 with

probability distribution:

P(Xn561)5 (1222n), P(Xn562n)522(n11), n51,2,…

(a) E(Xn)50,

(b) Var(Xn)5(1)2 (1222n)1(21)2 (1222n)1

1(2n)2(22(n11))1(22n)2(22(n11))51222n12n,

Var n
k51Xk 5 n

k51(1222k12k)
n→
→̀ `.

Does this mean that {Xn}`
n51 does not obey the Weak Law of Large Numbers? The

answer is we do not know because the asymptotic non-correlation condition (M) is
only sufficient, not necessary. It turns out that in this particular case the WLLN
does hold despite the above result!

(iii) Consider the sequence {Xn}`
n51 as specified above with the asymptotic non-correla-

tion condition (M) replaced by the Markovness assumption:

f(x1,x2,…,xn;w)5 n
k51 fk(xk |xk21;uk), (x1,x2,…,xn)[Rn.

Does {Xn}`
n51 satisfy the Weak Law of Large Numbers?

Let rk,k11 :5Corr(Xk,Xk11):

Var n
i51Xi 5 n

k51sk
2 12 n21

k51rk,k11sksk11 .

If we replace all variances with their upper bound c we can deduce that the
sequence obeys the WLLN since:

Var n
i51Xi # 1 n21

k51 |rk,k11 | →
n→` 0.

The result follows from the fact that rk,k11 constitutes a bounded sequence. Since
the left-hand side cannot be negative its limit must be zero.

9.3.5 Bernstein’s WLLN

Bernstein, building on the results of Chebyshev and Markov, was able to prove in 1918
the following theorem.
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Bernstein’s LLN Let {Xn}`
n51 be a sequence of random variables which satisfy the fol-

lowing conditions:

(D) Bounded moments: E(Xi),n,`, Var(Xi),c,`, i51,2,…
(M) Asymptotic non-correlation: Corr(Xi,Xj)#r ( | i2 j | )#1, i,j51,2,…

r(0)51 and limn→` r(k)50,
(H) Heterogeneity: E(Xi)5mi, Var(Xi)5s i

2, i51,2, …,

limn→`P | n
i51Xi2

n
i51m i |,« 51, for any «.0. (9.16)

There are three things to  about this theorem.

(i) Condition (D) ensures that the heterogeneity does not persist asymptotically in the
sense that:

(a) lim
n→`

n
i51mi 5m,n,`, (b) lim

n→`

n
i51s i

2 5s2,c,`.

(ii) The dependence condition ensures that the correlation between the Xi and Xj

decreases as the distance between them| i2 j | increases. This ensures that the linear
dependence dies out as the distance between random variables increases.
Intuitively, we can think of the variance of the sum:

Var n
i51Xi 5 n

i51
n
j51ri, jsisj # n

i51
n
j51 |r ( | i2 j | ) | .

In view of the fact that r ( | i2 j | ) is a bounded sequence (hence it converges) the
right-hand side converges to zero and thus the asymptotic non-correlation condi-
tion holds.

(iii) Bernstein’s theorem can be applied to second-order stationary processes, in which
case:

Var n
i51Xi 5 n

i51
n
j51r (i2 j) 5 n21

k50r(k)2 n21
k51 r(k),

using the fact that r(k)5r(2k). Given that the sequence {r(k)}`
k50 is bounded, the

condition limk→`r(k)50 implies asymptotic average non-correlation:

lim
n→`

n21
k50r(k)50.

9.3.6 Kolmogorov’s WLLN

The above theorems provide sufficient conditions for the WLLN to hold. Kolmogorov
(1927,1928a,b) proposed a condition that is both necessary and sufficient for (9.14) to
hold. For:

n21Sn :5 n
i51 (Xi2E(Xi)),

the WLLN (9.14) holds if and only if: lim
n→`

E 50.

To understand this condition we need to note that the quantity involved in (9.14) is:

n
i51Xi2

n
i51E(Xi) 5 n

i51 (Xi2E(Xi))5n21Sn,o1
n4o1

no1
n3
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n
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but even then this condition is of limited use because it refers to the behavior of the sum
and not the individual random variables involved.

9.3.7 Khintchine’s WLLN

The discerning reader would have noticed that, in addition to the gradual weakening of
the initial conditions used by James Bernoulli, the above theorems also show a trade off

between the restrictiveness of the three types of conditions. For instance Poisson, by
retaining the Bernoulli assumption, was able to relax the complete homogeneity condi-
tion to asymptotic homogeneity. This trade off is made in Khintchine’s WLLN, proved
in 1928 by retaining the IID assumptions, we can relax the boundedness of the variance;
we do not need to assume a finite variance.

Khintchine’s WLLN
Let {Xn}`

n51 be a sequence of random variables which satisfy the following conditions:

(D) Bounded mean: E(Xk)5m,`, k51,2,…
(M) Independence: f(x1,x2,…,xn;w)5 n

k51 fk(xk;uk),(x1,x2,…,xn)[Rn,
(H) Identical Distribution: fk(xk;uk)5f(xk;u), for all k51,2,…

limn→`P | n
k51 |Xk2m |,« 51, for any «.0. (9.17)

The progressive weakening and the trade off between the three types of restrictions can
also be seen in relation to the Strong Law of Large Numbers (SLLN) which we consider
next.

9.4 The Strong Law of Large Numbers

As argued above, the convergence involved in the SLLN is stronger than that of the
WLLN and thus the conclusions are more powerful: the validity of the SLLN implies
the validity of the WLLN. For this reason we did not continue with the weakening of the
restrictions for the validity of the WLLN with sequences such as martingales and station-
ary-mixing stochastic processes. This weakening can be seen in the context of the SLLN
results. It must be noted, however, that the more powerful conclusions of the SLLN are
based on restrictions that are often more stringent than those for the validity of the
WLLN.

The SLLN, in its general form, can be stated crudely as saying that under certain
restrictions on the sequence of random variables {Xn}`

n51:

P lim
n→`

n
k51Xk2 n

i51E(Xk) 50 51. (9.18)

We begin the discussion with Borel’s result that provided the spark for the SLLN
results.
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9.4.1 Borel’s SLLN

Let {Xn}`
n51 be a sequence of random variables which satisfy the following conditions

(see Borel (1909)):

(D) Bernoulli: f(xk;uk)5uk
xk(1–uk)1–xk, xk50,1, k51,2,…

(M) Independence: f(x1,x2,…,xn;w)5 n
k51 f(xk;uk), (x1,x2,…,xn)[Rn

(H) Identical Distribution: uk5u, for all k51,2, …,

P lim
n→`

n
k51Xk 5u 51. (9.19)

This is the first and least general SLLN in the sense that it is tied up with the Bernoulli
distribution. But as in the case of the WLLN this restriction, under closer examination,
proved unnecessary. The progressive weakening of the restrictions runs parallel to the
results of the WLLN.

9.4.2 Kolmogorov’s SLLN

The result analogous to Chebyshev’s WLLN but with a stronger convergence mode was
proved by Kolmogorov (1930).

Kolmogorov’s first SLLN Let {Xn}`
n51 be a sequence of random variables which satisfy

the following conditions:

(D) Bounded moments: E(Xk),`, Var(Xk),`, `
k51 ,`,

(M) Independence: f(x1,x2,…,xn;w)5 n
k51 fk(xk;uk), x[Rn,

(H) Heterogeneity: E(Xk)5mk, Var(Xk)5sk
2, k51,2,…

P lim
n→`

n
k51Xk2 n

i51E(Xk) 50 51, (9.20)

and denoted by: n
k51(Xk2E(Xk) n→

→̀a.s.
0.

The proof of this result depends on an important result about convergence of series.

Kronecker’s lemma Let {an}`
n51:5{a1,a2, …, an…} be a sequence of real numbers such

that:

`
k51 ,`, then limn→`

n
k51ak50.

A heuristic proof of Kolmogorov’s SLLN goes as follows. Define the new random vari-
ables Yk:5 Xk. Since:

Var n
k51Yk 5 n

k51Var(Yk)5 n
k51 Var(Xk),`, (9.21)

we can deduce that (this is a theorem we take for granted!):

P lim
n→`

n
k51 [Xk2E(Xk)] ,` 51.221
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Using Kronecker’s lemma in relation to:

n
k51[Xk2E(Xk)]5

n
i51k ,

the result follows; see Petrov (1995).
There are several things to  about Kolmogorov’s SLLN.

(i) The above theorem holds if we replace the condition

`
k51 ,`, (9.22)

with (see Gnedenko and Kolmogorov (1954)):

`
k51 ,`, (9.23)

{bk}`
n51 being an increasing sequence of positive real numbers such that bk → ̀ .

(ii) The main difference with Chebyshev’s WLLN is that the restrictions:

E(Xk),`, Var(Xk),c,`, k51,2, …,

have been replaced with (9.22). In the context of Chebyshev’s WLLN the
boundedness of the variances enabled us to derive (9.15). It is not very difficult to
show that (9.22) is a stronger condition than (9.15) because the latter follows from
the former but not vice versa. That is, the stronger result follows by strengthening
(9.15) to (9.22).

(iii) Condition (9.22) is satisfied in the case where the variances are bounded by the
same constant in the sense that:

Var(Xk),c,`, k51,2, …,

since `
k51 #c `

k51 5c ,`.

(iv) Condition (9.22) is indeed a boundedness condition because the result follows that
if we replace it by the moments condition (see Williams (1991)):

(1)9 E(Xk)5m, E(Xk
4),c,`, k51,2,…

or by the conditions (see Revesz (1967)):

(1)9 E(Xk)50, E( |Xk |2r),`, and `
k51 ,`, r $ 1, k51,2,…

(v) If we weaken the Independence assumption to that of non-correlation then the
moment restriction should be strengthened to (see Doob (1953), p. 158):

`
k51 ,`.

The trade off between the restrictions from the three different categories of assumptions
is further illustrated by the second theorem by Kolmogorov where the strengthening of
the homogeneity restriction can be traded against the existence of only the first moment.

(ln k)2·Var(Xk)
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E(|Xk|2r)
kr11o
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Kolmogorov’s second SLLN Let {Xn}`
n51 be a sequence of random variables which

satisfy the following conditions:

(D) Bounded mean: E( |Xk | )5m,`, k51,2,…
(M) Independence: f(x1,x2,…,xn;w)5 n

k51 fk(xk;uk), x[Rn,
(H) Identical Distribution: fk(xk;uk)5f(xk;u), k51,2,…

These conditions are both necessary and sufficient for:

P lim
n→`

n
i51Xi2m 50 51. (9.24)

9.4.3 SLLN for martingales

It is instructive to consider the SLLN in the case where {Sn, Fn}`
n51 is a martingale (see

chapter 8). As argued in chapter 8, a martingale {Sn,Fn}`
n51 where Fn :5s(S1,S2, …, Sn),

has by construction certain restrictions built into its structure which we can summarize
as follows:

(D) Bounded mean: E( |Sk | ),`, k51,2, …,
(M) Martingale dependence: E(Sk |Fk21);5Sk21, k52,3, …,
(H) First-order homogeneity: E(Sk)5m, k51,2,…

We also know that every martingale can be expressed as the partial sum of a martingale
difference process, i.e.:

Sn :5 n
k51Xk, or Xk :5(Sk2Sk21), k52,3, …,

E(Xk |Fk21)50, where F k21 :5s (S1,S2, …, Sk)5s(X1,X2, …, Xk).

As seen above, the key to both Laws of Large Numbers is the behavior of the variance
of the summation. Hence, the simplest case of the SLLN is an adaptation of
Kolmogorov’s first theorem, by assuming the existence of its variance Var(Sk),`, k5

1,2, …, the so-called square integrable martingale case, denoted by L2. It turns out that a
square integrable martingale difference process behaves like a sequence of uncorrelated
random variables. To see this let us investigate the behavior of this variance, assuming
E(Sk)50, k51,2, …, for simplicity:

Var(Sk)5 n
k51E(Xk

2)12 n
k

n
,51

k.,
E(Xk ·X,).

Concentrating on the second summation we observe that since E(Xk |Fk21)50:

E(Xk ·X,)5E{E(Xk ·X, |Fk21)}5E{X, ·E(Xk |Fk21)}50,

and thus: Var(Sk)5 n
k51E(X k

2).

That is, in terms of the variance, a square integrable martingale behaves like a sum of a
sequence of uncorrelated random variables. Hence, it should come as no surprise to
learn that the SLLN holds for such sequences.
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SLLN for L2 martingales Let {Sn,Fn}`
n51 be a martingale sequence with

{Xn :5(Sn2Sn21),Fn}`
n51 the corresponding martingale difference sequence which satis-

fies the following conditions (see Shiryayev (1984), pp. 471–2):

(D) Bounded moments: E(Xk
2),`, k51,2, …, n

k51 ,`,

(M) Martingale dependence: E(Xk |Fk21)50, k52,3,…
(H) Heterogeneity: E(Xk)50, E(X k

2)5sk
2, k51,2,…

P lim
n→`

n
i51Xi 50 51. (9.25)

As argued in chapter 8, the usefulness of the martingale concept emanates from its
power to tame arbitrary stochastic processes. Commencing with an arbitrary stochastic
process {Yn}`

n51, whose only initial restriction is the existence of the first moment, i.e.,
E( |Yn | ),`, n51,2, …, we can proceed to define the martingale difference process
{Xn,Fn :5s (Y1,Y2, …, Yn)}`

n51:

Xn :5Yn2E(Yn |s (Y1,Y2, …, Yn)),

with the restrictions (D)–(H) above built into this process.
If we are not prepared to impose the existence of the second moment, as in the previ-

ous theorem, we need to impose certain additional homogeneity restrictions in order for
the process {Xn,Fn}`

n51 to satisfy the LLN. For example, supplementing the built-in
conditions (D)–(H) with the homogeneity restriction that this stochastic process is
bounded by a random variable X:

P( |Xn |.x)#cP( |X |.x) for all x$0, n$1, (9.26)

enables us to deduce the WLLN (for any «.0):

lim
n→`

P | n
k51[Yk2E(Yk |Fk 2 1)] |,« 51. (9.27)

N . The importance of the boundedness condition (9.26) stems from the fact that the
process {Xn,Fn}`

n51 will be nearly stationary given that the process {X1,X2, …, Xn,…} is
an IID process and thus trivially stationary.

For the Strong Law of Large Numbers to hold we need to replace the boundedness
condition (9.26) with the strict stationarity of the stochastic processes in question.

SLLN for L1 martingale differences Let the martingale difference process
{Xn :5 [Yn2E(Yn |Fn21)],Fn}`

n51 satisfy the following conditions:

(D) Bounded mean: E( |Xk | ),`, k51,2,…
(M) Martingale dependence: E(Xk |Fk21)50, k52,3,…
(H) Strict stationarity: f(x1,x2, …, xn)5f(x11t,x21t, …, xn1t), for any t.

P lim
n→`

n
k51(Yk2E(Yk |Fk21)) 50 51.24o1
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9.4.4 SLLN for stationary processes

SLLN for strictly stationary processes Let {Xn}`
n51 be a sequence of random variables

satisfying the following conditions:

(D) Bounded moments: E( |Xk |21d),`, d.0, k51,2, …,

(M) a-mixing: a(k) 
k→
→̀ 0, such that `

k51 a(k) ,`,

(H) Strict stationarity: f(x1,x2, …, xn)5f(x11t,x21t, …, xn1t), for any t,

P lim
n→`

n
i51Xi2m 50 51. (9.28)

9.5 The Law of Iterated Logarithm*

The Law of Iterated Logarithm (LIL) provides fluctuation bounds for the sequence of
partial sums {Sn}`

n51 in the SLLN. The SLLN states that the mean deviations of partial
sums converge to zero with probability one, as n → ̀ , but provides no information about
the speed of convergence: How fast does n

i51Xi2m converge to zero?
It turns out that the speed of convergence depends crucially on the restrictions

imposed on the distribution of the sequence {Xk}`
k51. For example, if the only thing the

modeler is prepared to assume is the existence of the mean of the process, then nothing
can be said about the speed of convergence. At the other extreme, if the modeler assumes
that all moments of the sequence {Xk}`

k51 exist and are bounded, then one can show that
for any «.0:

Hausdorff: P lim
n→`

#M 51, for some 0,M,`.

Intuitively, this can be interpreted as saying that the paths of {[Sn :5 n
k51Xk2m]}`

n51

fluctuate within the Hausdorff (1914) bounds 6n 1«, for any «.0.
The LIL deals with the speed of convergence of the partial sums where the restrictions

on the distribution of the sequence {Xk}`
k51 lie between the two extremes. From the

outset it is apparent that this rate of convergence must be a sequence {c(n)}`
n51 such that:

n ,c (n),n.

The earliest result in relation to the speed of convergence of partial sums was derived
by Hardy and Littlewood in 1914; see Hardy, Littlewood and Polya (1952). The result
was in the context of number theory and assumed a simple random walk sequence
{Xk}`

k51 (see chapter 8), proving that the rate of convergence is c (n)5 , i.e.

Hardy and Littlewood: P lim
n→`

#M 51.

The first general result was derived by Khintchine (1924) who sharpened the bounds pro-
vided by Hardy and Littlewood.

23|Sn
k51 Xk 2 m|
Ïn ln(n) 41

Ïn ln(n)
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Khintchine’s LIL Let {Xn}`
n51 be a sequence of random variables which satisfy the fol-

lowing conditions:

(D) Bounded mean and variance: E( |Xk | )5m, Var(Xk)5s2,`, k51,2,…
(M) Independence: f(x1,x2,…,xn;w)5 n

k51 fk(xk;uk), x[Rn.
(H) Identical Distribution: fk(xk;uk)5f(xk;u), k51,2,…

Khintchine: P lim
n→`

sup 5 51.

N :
(i) The above form was first proved by Hartman and Wintner (1941).
(ii) Intuitively, this result says that the paths of the stochastic sequence

{[Sn :5 n
k51Xk2m]}`

n51 fluctuate within the Khintchine bounds 6 .
(iii) The LIL is often written in the form:

P lim
n→`

sup 5s 51, P lim
n→`

inf 52s 51.

(iv) Kolmogorov (1928a,1929a) was instrumental in the development of the Hartman
and Wintner form of the LIL proving the result for sequences of bounded random
variables; see Petrov (1995).

(v) In order to get some idea on how the Khintchine bounds improve upon the result
by Hardy and Littlewood, we plot the bounds for the fluctuations of {[Sn :5

n
k51Xk2m]}`

n51 for n$100 up to n510000, in figure 9.1.
(vi) The relationship between the Khintchin and Hausdorff bounds exemplifies once

more the principle of more restrictions more precise results, encountered many
times in the discussion so far; it will be discussed further in the context of non-
parametetric versus parametric inference in chapter 10.

9.6 The Central Limit Theorem

The LLN provides information about the probability of the event that a particular func-
tion of a sequence of random variables, their sum n

i51Xi, differs from its expected
value by some positive real number e. This convergence result forms the basis of a
number of related results which can help us in our quest for approximate distributions
for well-behaved functions g(X1,X2, …, Xn). For example, by standardizing the sum, sub-
tracting its mean and dividing by its standard deviation, we can often derive its asymp-
totic distribution: its distribution as n → ̀ . This group of results are collectively referred
to as the Central Limit Theorem. As mentioned in section 2, the Central Limit Theorem
(CLT) can be viewed as convergence to a non-degenerate random variable after rescaling
the distance used in the LLN.

The CLT, in its general form, can be stated crudely as saying that under certain restric-
tions on the sequence of random variables {Xn}`

n51, for Sn5 n
i51Xi :

lim
n→`

P øz 5F(z):5 e2 u2du, for all z[R. (9.29)
1
2Ez
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9.6.1 De Moivre–Laplace CLT

Let us begin with a formal statement of the first Central Limit Theorem.

De Moivre–Laplace CLT Let {Xn}`
n51 :5{X1,X2, …, Xn…} be a sequence of random

variables which satisfy the following conditions:

(D) Bernoulli: f(xi;ui)5ui
xi(12u i)1–xi, xi50,1, i51,2,…

(M) Independence: f(x1,x2,…,xn;w)5 n
k51 f(xi;ui), x[Rn.

(H) Identical Distribution: ui5u, for all i51,2, …,

then for Sn5 n
i51,Xi, and Zn :5 , we can deduce that:

lim
n→`

P (Zn#z)5F(z) :5 e2 u2du, for all z[R, (9.30)

where F(z) is the cumulative distribution function of the standard Normal distribution
denoted by:

→
D

Z,N(0,1), or even ,a N(0,1).2Sn 2 E(Sn)

ÏVar(Sn)12Sn 2 E(Sn)

ÏVar(Sn)1

1
2Ez

2`

1
Ï2p

2Sn 2 E(Sn)

ÏVar(Sn)1o

p
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It is important to  that Zn is a standardized version of Sn (E(Sn)5nu and
Var(Sn)5n[u (1–u)]), which is often expressed in a number of different forms:

Zn :5 5 5 .

It is apparent from these forms that the CLT deals with the same distance (Sn2E(Sn)) as
the Laws of Large Numbers but standardized; divided by its standard deviation.

As with the LLN, some of the conditions imposed on the sequence {Xn}`
n51 by the De

Moivre–Laplace CLT do not contribute significantly to the result. Since the 19th century
numerous extensions of this theorem, in the form of weaker conditions on the Xis, have
been proposed in the literature. The first serious attempt to extend the De
Moivre–Laplace CLT was made by Chebyshev in the 1870s who proposed the following
theorem.

Chebyshev’s “near” CLT Let {Xn}`
n51 be a sequence of independent random variables

such that: E(Xk)50, Var(Xk)5sk
2, k51,2,… and|Xk |#b.0, k$1. Then for:

sn
2 :5Var( n

k51Xk)5 n
k51sk

2,

lim
n→`

P n
k51Xk#z 5 e2 u2du, for all z[R. (9.31)

Chebyshev’s claim was invalid ! His approach, however, was essentially valid. His stu-
dents, Markov and Lyapunov, in their attempt to correct his mistakes and improve upon
his result provided the foundation upon which numerous extensions of the CLT since the
1880s have been erected.

Firstly, Chebyshev’s primary mistake was pointed out by Markov who proved that for
the result (9.31) to go through one needs to impose the additional condition:

sn
2 :5Var( n

k51Xk) n→
→̀ `.

This condition was the predecessor of the now famous Lindeberg condition discussed
below.

Secondly, Chebyshev’s “proof” amounted to demonstrating that the moments of the
quantity n

k51Xk converge to those of the standard Normal distribution, unaware of
the moments problem (see chapter 3). Indeed, his presumption was instrumental in
raising the question of whether the moments determine the distribution uniquely.

Thirdly, Chebyshev, in order to ensure the existence of all moments, required the
boundedness condition |Xk |#b.0, k$1; moments of all orders exist for random vari-
ables with bounded support (see chapter 3). This condition was rather restrictive because
it included random variables with distributions such as the Beta and the Uniform but
excluded most well-known distributions such as the Normal, Student’s t, Exponential,
Gamma, and Pareto. Markov circumvented this problem by introducing a technique
widely used today known as the truncation method which amounts to the following:

Let X be a random variable whose range might be unbounded. We introduce the artificial
random variable X̃ :

o1
sn

o

1
2Ez

2`
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X̃:5X ·I{|X|#b}5
X for |X |#b,50 for |X |.b,

where IA is the well-known indicator function. That is, X̃ is obtained by setting to zero the
values of |X | exceeds some b.0.

For the truncated random variable X̃ all moments exist and can be used in proving a
number of results in probability theory, e.g., apply Chebyshev’s inequality. To ensure
that the same result holds for X, all we need to show is that the difference between the two
random variables is asymptotically negligible for the purposes needed. Given that the
feature of interest in a random variable is its probabilistic structure, we need to relate
the truncation to that. This takes the form P( |X |#b) :5P(X ·I{|X|#b})51 or equivalently
P( |X |.b) :5P(X ·I{|X|.b})50 for some b.0.

Using the truncation method for a sequence of random variables {Xn}`
n51 we can

define an important condition known as the Uniform integrability condition:

lim
b→` 1#k#n

sup E{Xk · I{|X|.b}} 50,

which is a useful result in the context of convergence of random variables.
Another important notion which can be defined by combining P( |Xk |.«)50 for

some «.0, k51,2,… with Markov’s condition sn
2

n→
→̀ `, is known as the uniformly

asymptotic negligibility condition:

UAN: lim
n→` 1#k#n

max P .« 50.

i.e., each random variable Xk in the sequence {Xn}`
n51 is small compared with the summa-

tion n
k51Xk. As argued below this condition forms the cornerstone on which modern

versions of the CLT are built.
Fourthly, in his attempt to avoid Chebyshev’s boundedness conditions, Lyapunov

introduced a moments-boundedness condition appropriately known as Lyapunov’s
condition whose key aspect is the (u.a.n.) component (see below).

9.6.2 Lyapunov’s CLT

The first modern Central Limit Theorem was proved by Lyapunov in 1901.

Lyapunov’s CLT Let {Xn}`
n51 be a sequence of random variables satisfying the following

conditions:

(D) Bounded moments: E( |Xk |21d),`, d.0, k51,2, …, such that:

n
k51 |Xk2mk |21d

n→
→̀ 0,

(M) Independence: f(x1,x2,…,xn;w)5 n
k51 fk(xk;uk), x[Rn

(H) Heterogeneity: E(Xk)5mk, Var(Xk)5sk
2, k51,2,…

lim
n→`

P n
k51 (Xk2mk) #z 5F(z) :5 e2 u2du, for all z[R. (9.32)

1
2Ez

2`

1
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There are several things to  about Lyapunov’s CLT.

(i) Heuristically, this theorem suggests that for large n the distribution of the sum
n
k51Xk is approximately N( n

k51mk,
n
k51sk

2).
(ii) The heart of the theorem is Lyapunov’s condition:

n
k51 |Xk2mk |21dp

n→
→̀ 0,

which for d51 and nn
3 :5 n

k51 |Xk2mk |3 amounts to: limn→` 50.
This condition ensures that no one random variable Xk dominates the summation.

(iii) The theorem allows for moment heterogeneity but imposes boundedness condi-
tions for moments higher than the second.

(iv) We mentioned in section 3 above that the approximations based on inequalities are
often very crude; see also chapter 10. The same can be said for the approximations
provided by the CLT. In relation to this, we state the following result due to Berry
(1941) and Esseen (1945).

Berry–Esseen theorem Let {Xn}`
n51 be a sequence of IID random variables with

bounded moments of order 3, i.e., E |Xn |3,`, n51,2,… There exists an absolute con-
stant C (where 0.4097#C#0.7975 and is unrelated to the nature of the distribution of
Xn; see Beeck (1972)) such that:

sup
z[R

|P n
k51(Xk2m) #z 2F(z) | # C .

Roughly speaking, the Berry–Esseen upper bound estimate suggests that for accuracy up
to two decimal places we need n510000! This should not come as a surprise because as
demonstrated in chapter 10, without explicit distribution assumptions, probabilistic
statements are often very crude.

(v) When the modeler is prepared to make assumptions about the existence of the
fourth moment of the underlying (unknown) distribution, the Normal
approximation might be improved upon using higher-order terms in the asymp-
totic expansion of the cdf (or the density or the characteristic functions); the
Normal approximation provided by the CLT is viewed as the first term of this
expansion. The most well-known expansion is known as the Edgeworth expansion
which is based on terms with different powers of n and takes the form:

Fn(x)5F(x)2w(x) 1w(x) 1 1O(n2 ),

where (a3,a4) denote the skewness and kurtosis coefficients (see chapter 3) and
(F(x),w(x)) denote the standard Normal cdf and density function, respectively.
The term O(n2 ) denotes the remainder of this expansion which is to be under-
stood in the sense that when multiplied by n 1« for any «.0, it converges to zero;
for further details see Cramer (1972), Spanos (1986) and Barndorff-Nielsen and
Cox (1989,1994).

1
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9.6.3 Lindeberg–Feller’s CLT

The most well known Central Limit Theorem is known as the Lindeberg–Feller
theorem. This theorem assumes the existence of the second moment and provides
both necessary (proposed by Feller in 1935) as well as sufficient conditions (Lindeberg
(1922)).

Lindeberg’s CLT Let {Xn}`
n51 be a sequence of random variables satisfying the following

conditions:

(D) Bounded moments: E(Xk)2,`, k51,2, …, such that for any «.0:

(L): lim
n→`

n
k51E[(Xk2mk)2 ·1{|Xk2mk|.«sn}] 50,

(M) Independence: f(x1,x2,…,xn;w)5 n
k51 fk(xk;uk), x[Rn,

(H) Heterogeneity: E(Xk)5mk, Var(Xk)5sk
2, k51,2,…

(CLT): lim
n→`

P n
k51 (Xk2mk) #z 5 e2 u2du, for all z[R.

(i) The heart of this theorem is the Lindeberg condition (L) which intuitively says that
no one random variable should dominate the summation. In an attempt to de-mystify
this condition we note the following results:

(a) It can be shown that if {Xn}`
n51 satisfies condition (L) then (see Shiryayev (1984)):

(UAN): lim
n→` 1#k#n

max P( |Xk2mk |.«sn) 50,

(F): lim
n→` 1#k#n

max 50,

where condition (F) is known as the Feller condition (see below). It is worth looking
at the result (L) ⇒ (F). Noting that:

R5{|Xk2mk |.«sn}<{|Xk2mk |#«sn},

sk
25E[(Xk2mk)2 · I{|Xk2mk|#«sn}]1E[(Xk2mk)2 · I{|Xk2mk|.«sn}]

#«2sn
21E[(Xk2mk)2 ·I{|Xk2mk|.«sn}].

Hence, we have:

1#k#n
max #«21

1#k#n
max E[(Xk2mk)2 · I{|Xk2mk|.«sn}]#

#«21 n
k51E[(Xk2mk)2 ·I{|Xk2mk|.«sn}].

In view of the fact that «.0 can be chosen arbitrarily small, the Lindeberg condi-
tion implies the Feller condition.

(b) The Lyapunov condition n
k51 |Xk2mk | 21d

n→
→̀ 0, implies the Lindeberg condi-

tion.
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Lindeberg–Feller’s CLT For a sequence of random variables {Xn}`
n51 satisfying the fol-

lowing conditions:

(D) Bounded moments: E(Xk),`, E(Xk)2,`, k51,2, …,
(M) Independence: f(x1,x2,…,xn;w)5 n

k51 fk(xk;uk), (x1,x2,…,xn)[Rn,
(H) Heterogeneity: E(Xk)5mk, Var(Xk)5sk

2, k51,2, …,

(L) ⇔ (CLT) and (F). (9.33)

That is, the Lindeberg condition implies that {Xn}`
n51 obeys the CLT and the Feller

condition, and the latter two imply the former. It is also interesting to note that:

(L) ⇔ (CLT) and (UAN). (9.34)

This equivalence brings out the role of the three conditions for the validity of the CLT.
In order to consolidate this role consider the following example.

Example
Let {Xn}`

n51 be a sequence of random variables such that Xk,N(0,sk
2) where s1

251,

sk
252k22 for k$2. Hence, sn

2:5Var( n
k51Xk)52n22, ,N 0, : n

k51Xk ,N(0,1).

Hence the CLT is satisfied trivially. However, the Feller and u.a.n. conditions:

lim
n→` 1#k#n

max 5 5 Þ0,

lim
n→` 1#k#n

max P | |.« $P | |.« 512 ∫ «
2«e2u2du .0,

are not satisfied. Thus, in view of fact that the Lindeberg condition is necessary and
sufficient for both (CLT) and (F) (see (9.33)) and the latter does not hold, it means that
the Lindeberg condition cannot be satisfied (see Stoyanov (1987)).

We are now in a position to return to Chebyshev’s theorem to see it in the light of the
Lindeberg–Feller theorem.

Chebyshev’s CLT A sequence of random variables {Xn}`
n51 obeys the CLT if it satisfies

the following conditions:

(D) Boundedness: E(Xk)2,`, k51,2, …, and

(UB): P( |Xn |,b)
n→
→̀ 1, for b.0,

(M): sn
2:5Var( n

i51Xi) n→
→̀ `,

(M) Independence: f(x1,x2,…,xn;w)5 n
k51 fk(xk;uk), (x1,x2,…,xn)[Rn,

(H) Heterogeneity: E(Xk)5mk, Var(Xk)5sk
2, k51,2,…

As we can see, by expressing Chebyshev’s boundedness condition in probabilistic
terms (known as the uniform boundedness condition) and adding Markov’s condition, the

CLT holds. The conditions (UB) and (M) imply the Lindeberg condition (L) since sn
2

n→
→̀ `

p
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implies that «sn n→
→̀ ` for any «.0 and n

k51E[(Xk2mk)2 · I{|Xk2mk|.«sn}] must grow less fast
than sn

2.

9.6.4 CLT for martingales

CLT for martingales For a martingale difference stochastic process {Xn,Fn}`
n51, where

F n:5s(X1,X2, …, Xn), the CLT holds if it satisfies the following conditions:

(D) Square integrability: E(Xk)2,`, k51,2, …, such that for any «.0:

(L): lim
n→`

n
k51E[X k

2 ·I{|Xk|.«sn}] 50.

(M) Martingale dependence: E(Xk |Fk21)50, k51,2,…
(H) Heterogeneity: E(E(X k

2 |Fk21))5sk
2 , k51,2,…

lim
n→`

P n
k51Xk #z 5 e2 u2du, for all z[R. (9.35)

9.6.5 CLT for stationary processes

Before proceeding to the next two CLT results, the reader is strongly advised to refer
back to chapter 8, where the notions of stationarity and mixing are discussed. We remind
the reader that the various mixing conditions denote different forms of asymptotic inde-
pendence.

CLT for strictly stationary processes Let {Xn}`
n51 be a sequence of random variables sat-

isfying the following conditions:

(D) Bounded moments: E( |Xk |21d),`, d.0, k51,2, …,

(M) a-mixing: a(k) 
k→
→̀ 0,

(H) Strict Stationarity: f(x1,x2, …, xn)5f(x11t,x21t, …, xn1t), for any t,

lim
n→`

P n
k51(Xk2m)]#z 5 e2 u2du, for all z[R. (9.36)

CLT for second-order stationary processes The sequence of random variables {Xn}`
n51

obeys the CLT (9.36) if it satisfies the following conditions:

(D) Bounded moments: E(Xk)2,`, k51,2, …,

(M) r-mixing: sn
2

n→
→̀ `, and lim

n→`

n
k51r(2k),`,

(H) 2nd order Stationarity: E(Xk)5m, Var(Xk)5s2, k51,2,…

9.6.6 Stable and other limit distributions*

Up until the 1930s the study of limiting distributions concentrated exclusively on
finding conditions for convergence to the Normal (and to a lesser extend the Poisson)
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distribution. In a series of papers in the 1920s and 1930s, Paul Levy showed that a whole
family of distributions share with the Normal the property that renders them limit distri-
butions for partial sums; see Levy (1937). For sequences of IID random variables this
family became known as the Stable family which includes the Normal and the Cauchy
distributions as a special cases. Even this family, however, was not large enough to
include all limit distributions of partials sums. In the case of sequences of Independent
but not necessarily Identical Distribution, the family of limit distributions is known as
the Infinitely Divisible family; as expected the stable is a subset of this family. For a more
balanced view of the limit theorems we need to consider these families of distributions
briefly.

Stable family of distributions
The property that renders a distribution a possible candidate for a limit distribution is
known as the self-reproducing property: in a sequence of IID random variables {Xn}`

n51,
the individual components and the scaled partial sums have distributions of the same
type. Two random variables X and Y, with cdfs FX(.) and FY(.), are said to have distribu-
tions of the same type if for:

Y5aX1b, a[R1, b[R,

FY(z)5FX , for all z[R.

It is interesting to note that being of the same type is an equivalence relation (symmetric,
reflexive, and transitive) which divides the set of all distributions into equivalent classes.

Stable family Let {Xn}`
n51 be a sequence of IID random variables with a non-degenerate

cdf F(x). The distribution F(x) is said to be stable if the distribution of Sn5 n
k51Xk is of

the same type for every positive integer n. A random variable is called stable if its distrib-
ution satisfies this property. This amounts to the existence of constants an.0 and bn such
that:

P #z 5P(X1#z), for all n.1.

Intuitively, this says that F(x) is stable if the distribution of Sn5 n
k51Xk is of the same

type as anX1bn where (X1,X2, …, Xn) are IID random variables with the same distribu-
tion as X. It turns out that the members of this family have explicit formulae density
functions only in special cases such as the Normal and the Cauchy distributions. For the
other members of the stable family, the characteristic function is used to specify them
(see Galambos (1995)).

Levy’s theorem Let {Xn}`
n51 be a sequence of IID random variables with Sn5 n

k51Xk.
Assume that there exist constants an.0 and bn such that:

lim
n→`

P #x 5F(x), where F(x) is non-degenerate.

Then F(x) is a stable distribution.

2Sn 2 bn

an
1

o

o

2Sn 2 bn

an
1

o

1z 2 b
a 2
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Max-stable family of distributions
Using the equivalence relation “being of the same type” we can unify another category
of limit distributions associated with the maximum (not the partial sum) of a sequence.

Max-stable family Let {Xn}`
n51 be a sequence of IID random variables with a non-

degenerate cdf F(x). The distribution F(x) is said to be max-stable if the distribution of:

Xmax (n)5max (X1,X2, …, Xn),

is of the same type for every positive integer n.

Gnedenko’s theorem Let {Xn}`
n51 be a sequence of IID random variables with Xmax(n)5

max (X1,X2, …, Xn). Assume that there exist constants an.0 and bn such that:

lim
n→`

P #x 5F(x), where F(x) is non-degenerate.

Then F(x) is a max-stable distribution. Fortunately, the members of the max-stable
family can be categorized into three types of distributions for Xmax(n) (see Galambos
(1995)):

(a) G1,a(x)5
exp (2x2a), for x.0,5 exp 0, for x#0.

(b) G2,a (x)5
exp (2 (2x)a), for x,0,5 exp 1, for x.0.

(c) G3,a (x)5exp (2e2x), for all x[R.

Infinitely divisible family of distributions
The infinitely divisible family of distributions constitutes a natural extension of the
stable family in the case where the random variables in the sequence {Xn}`

n51 are
Independent but non-ID. The basic result in relation to this family is that the limit distri-
bution (assumed to be non-degenerate) of the partial sums of Independent but not nec-
essarily ID random variables is infinitely divisible; for further details see Moran (1968)
and Galambos (1995).

9.7 Extending the limit theorems*

The first obvious extension of the above limit theorems is to the case of a random vector
X:5(X1,X2, …, Xm)[RX

m. In the case of the LLN this is trivially true because when the
law holds for every element it holds for the random vector. For the CLT, however, it is
different because the asymptotic distribution is defined in terms of the first two moments
which involve the covariances among the elements of the random vector.

Multivariate CLT Let {Xk}`
k51 be a sequence of IID random vectors with E(Xk)5m (an

m31 vector), and Cov(Xk)5S (an m3m matrix), for all k51,2, …, n, …, then under
certain restrictions which ensure that no random vector dominates the summation:

2Xmax(n) 2 bn

an1
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( n2m) ,a N(0,S), where n5 n
k51Xk.

The question which naturally arises at this point is to what extent the above limit theo-
rems can help our quest for approximate distribution results for arbitrary functions
g(X1,X2, …, Xn). After all the above theorems are related to a very specific function:

cn
21Sn:5cn

21( n
k51[Xk2E(Xk)]), n→`. (9.37)

The gap between asymptotic results of general functions and the results of the above
limit theorems is bridged in several ways. The first is trivial in the sense that the scaled
sum in (9.37) includes cases such as:

n
i51Xi

r, for r51,2,3, …,

when the modeler can ensure that the new random variables Zi5Xi
r for i51,2, …, satisfy

the conditions of the above limit theorems. As shown in chapters 11–15, numerous esti-
mators and test statistics (the stuff that statistical inference is built upon) fall into this
category of functions.

The second way we can bridge the gap between scaled sums as in (9.37) and arbitrary
functions is the following theorem which ensures that not only sums but any continuous
functions of them can be accommodated in a general limit theorem framework.

Mann and Wald theorem Assuming that {Xn}`
n51 is a sequence of random variables, X is

another random variable on the same probability space (S,F,P(.)), and g(.): R → R is a
continuous function, then:

(a) Xn →a.s.
X, ⇒ g(Xn) →a.s. g(X),

(b) Xn →P X, ⇒ g(Xn) →P g(X),

(c) Xn →D X, ⇒ g(Xn) →D g(X).

Examples

(i) An interesting example of this theorem is the following:

if Xn →D X,N (0,1), then X n
2 →D X 2,x2(1).

(ii) Let Xn →D X,N(0,1) and consider the function Yn5 . It turns out that:

Yn →D Z, where f(z)5 exp 2 , zÞ0,

despite the fact that g(x)5 is not continuous at x50, because the probability at this
point is zero, f(z) is known the inverse Gaussian distribution.

There are two things worth noting about the Mann-Wald theorem.

(i) Mann and Wald (1943) proved a more general result where g(.) is a Borel function
with discontinuities on a set of probability zero; just being a Borel function will not
work!

(ii) This theorem is more general than we need in the sense that the SLLN and the

1
x

61
2z251

z2Ï2p

1
Xn

o

o

o1
nX  X Ïn
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WLLN refer to convergence almost surely and in probability to a constant not a
random variable. Moreover, the CLT entails the convergence to a very specific dis-
tribution: the Normal. The above theorem refers to any limit distribution.

Another useful result in our quest for asymptotic distribution results is the following
theorem.

Cramer’s theorem Let g(.) : R → R be a function such that Þ0 is continuous in the
neighborhood of u[R. Assuming that:

(Xn2u) ,a N (0,s2),

then, (g(Xn)2g(u)) ,a N 0,
2
s2 .

The vector form of this theorem with:

g(.): Rm → Rk, with rank 5k,

(Xn2u) ,a N(0,S),

takes the form:

(g(Xn)2g(u)) ,a N 0, S
9

.

Example
Consider the case where:

( n2u) →D Z,N(0,s2),

and take g(x)5x2. We know that 52u and thus:

( 2
n2u2) →D Y,N(0,4u2s2).

It is clear from the above approximate result, often known as the delta method approxi-
mation, that it is a first-order Taylor’s approximation, which for linear functions g(.) pro-
vides an exact result. For non-linear functions, however, it can provide a poor
approximation. In such cases we can proceed to derive a second-order approximation as
follows.

The second-order Taylor’s approximation of a function g(.) : R → R at x5u such that
Þ0 takes the form:

g(x)2g(u). (x2u)1 (x2u)25 x2u1

2

2 .

N that the second equality follows by completing the square. Hence, for:

(Xn2u) ,a N (0,s2),

the second-order approximation takes the form:

Ïn

3dg(u)
du 4

2

3d2g(u)
du2 4

2223dg(u)
du 4

3d2g(u)
du2 4113d2g(u)

du2 4
2

3d2g(u)
du2 4
24dg(u)

du3

d2g(u)
du2

  X Ïn

dg(u)
du

  X Ïn

24g(u)
u34g(u)

u31Ïn

Ïn

24g(u)
u31

24dg(u)
du31Ïn

Ïn

dg(u)
du
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n(g(Xn)2g(u)). 1dn
2
2dn

2 , dn :5 .

We know that the square of a standard Normally distributed random variable is chi-
square distributed and thus:

1dn
2
,a x2(1;dn

2),

where x2(dn) denotes a chi-square with one degree of freedom and non-centrality para-
meter dn

2. Hence, the second-order approximation takes the form:

n(g(Xn)2g(u)). (x2(1;dn
2)2dn

2), dn:5 .

Example
Let us reconsider the above example where:

( n2u) →D Z,N(0,s2),

and take g(x)5x2. We know that 52u and 52. Using the second-order approxi-
mation we deduce that:

n( n
22u2) →D Y,s2[x2(1;dn

2)2dn
2], dn

25 ,

which is now an exact result.

We conclude this section on a positive note that the above results go a long way to help
the modeler extend the CLT and derive asymptotic distribution results for arbitrary
functions Yn5g(X1,X2, …, Xn); for a more detailed discussion and further results see
chapter 11 and Spanos (1986).

9.7.1 A uniform SLLN

In statistical inference the modeler often finds herself dealing with a function of the
random variables (X1,X2, …, Xn) which includes some unknown parameter(s) u, say:

n
k51h(Xk,u) where E(h(Xk,u))5t(u).

The modeler often assumes that if one replaces the unknown parameter with a good esti-
mator ûn (see chapter 12), then, using the SLLN one can deduce that:

n
k51h(Xk,u) →a.s.

t(u). (9.38)

This, however, will be an erroneous conclusion because the SLLN by itself is not strong
enough to yield (9.38).

It turns out that for (9.38) to hold we need to (a) restrict the parameter space Q to be
closed and bounded, (b) ensure that h(.) is well behaved with respect to both arguments
(such as continuous), and (c) strengthen the almost sure convergence to uniform conver-
gence in u:

o1
n

o1
n

nu2

4s2  X 

d2g(u)
du2

dg(u)
du

  X Ïn

Ïn3dg(u)
du 4

s3d2g(u)
du2 4

s23d2g(u)
du2 4
2

2Ïn(Xn 2 u)
s1

Ïn3dg(u)
du 4

s3d2g(u)
du2 4

22Ïn(Xn 2 u)
s11

s23d2g(u)
du2 4
2
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sup
u[Q

* n
k51h(Xk,u)2t(u) * →a.s.

0.

For further details see Bierens (1994).

9.8 Functional Central Limit Theorem*

The Functional Central Limit Theorem (FCLT) constitutes the latest important refine-
ment of the classical CLT considered above. The initial form of this theorem, which is
sometimes called the Invariance Principle, was first proved by Erdos and Kac (1946) and
generalized by Donsker (1951). Its current form was given by Prokhorov (1956); a
number of extensions have appeared since. The problem the FCLT purports to address
is the following. For a number of reasons we are often interested not just in the sum Sn5

n
i51(Xi2m), the focus of the CLT, but functions of the form h(S1,S2,…,Sn) which

involve a set of such partial sums, such as:

1#k#n
max k

i51(Xi2m)5max (S1,S2,…,Sn). (9.39)

This function cannot be handled using a function of Sn,, say g(Sn), because as seen from
(9.39) it cannot be expressed just as a function of Sn. In some sense the FCLT extends the
classical CLT to such situations.

To simplify the discussion that follows let {Xn}`
n51 be an IID stochastic process with

E(Xk)50 and Var(Xk)5s2. The classical CLT concerns the sequence of partial sums
{Sn, n51,2,…} where:

Sn5 n
i51Xi.

Define the function process {Yn(t), 0#t#1, n51,2,…} by:

Yn(0)50, Yn 5 Sk, 1#k#n.

Looking at this random function we can see that it is a function of k via ; the latter being

a proportion with upper bound one. Hence, by using a proportionality factor t[ [0,1]
directly we can define in terms of [nt], with the square brackets denoting the integer part
of the number (nt). As a result, we can express the random function of partial sums as:

k
n

k
n

1
Ïn1k

n2

o

o

o

o1
n
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S0:50, for 0#t# ,

( )21 S1:5X1, for #t# ,

( )21 S2:5X11X2, for #t# ,
Yn(t)5

( )21 S3:5X11X21X3, for #t# ,

: : : :

( )21 Sn:5X11X21 ···1Xn, for t51.Ïn
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Yn(t)5
[nt]
i51Xi, t[ [0,1].

More explicitly:
Intuitively, what we are doing here is to speed up the process by forcing it to take an

increasing number of steps in unit time while the size of the step gets smaller and smaller.
The CLT implies that as n → `, the distribution of the random variable Yn(t) for any
t.0 converges to N(0,t); to the distribution of a Brownian motion process Y(t).
Moreover, for any finite set of values 0,t1,t2, ···,tk the joint distribution of
(Yn(t1),Yn(t2), …, Yn(tk)) will be Normal. More specifically, the stochastic process {Yn(t),
t[ [0,1]}`

n51 maps the discrete process {Sn}`
n51 into a continuous scale process. The result

is that over any interval (t1,t2], [0,1] the difference (Yn(t2)2Yn(t1)) is the sum of a large
number (approximately [nt2]2 [nt1].n(t22t1) in number) and increasing with n IID
random variables:

X[nt1]11, X[nt1]12, …, X[nt2],

inducing a Central Limit Theorem effect (see section 6 above).
This is not a very easy random quantity to understand because it involves three

different arguments and thus it can be interpreted in a number of different ways. The
most general way to view Yn(t) is as a stochastic process with three arguments Y(n,s,t):

Y(.,.,.): (N3S3 [0,1]) → R.

In order to understand the structure of this random function, however, we need to
reduce the dimensionality of its domain by fixing certain arguments, leading to alterna-
tive viewing angles.

A first interesting viewing angle is created by fixing t[ [0,1]. In this case we can think
of Yn(t):5Y(n,s, ) as an ordinary stochastic process (a real-valued function from
(S3N) into R). In view of the fact that as [nt]

n→
→̀ `,

n→
→̀ t we can deduce that for

large n:

E(Yn(t))50, Var(Yn(t))5s2 .s2t, Cov(Yn(t1t),Yn(t))5s2 .s2t.

Moreover, we can call upon the classical CLT to conclude:

Yn(t) →D Z,N(0,s2t), for each t[ [0,1].

These results suggest that at the limit the process {Yn(t), t[ [0,1]}`
n51 behaves like a

Brownian motion (see chapter 8).
A second viewing angle becomes available by fixing s[S. In this case we can think of

Yn(t):5Y(n, ,t) as a function from (N3 [0,1]) into R, which defines an indexed sequence
of real-valued functions defined over the closed interval [0,1]. In order to make things
easier we proceed to consider a third narrow viewing angle created by fixing both s[S
and n[N. In this highly simplified case we can think of Yn(t):5Y( , ,t) as a function
from [0,1] into R, which by allowing t[ [0,1] to take all its values in that interval we define
a set of real-valued functions {Yn(t), 0#t#1}. The nature of this set of functions is of
interest because the convergence we have in mind involves this set. As defined above the
function Yn(t) is not continuous. For convergence purposes we prefer continuous func-

sn

s

1[nt]
n 21[nt]

n 2

1[nt]
n 2

t

1
Ïn

1
Ïn

1
Ïn

o1
Ïn
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tions and thus we smooth out its jumps by adding an interpolating term:

Yn*(t)5
[nt]
k51Xk1(nt2 [nt]) X[nt]11 , t[ [0,1]. (9.40)

Example
In order to enhance our understanding of the difference between these two stochastic
processes, consider the case where {Xn}`

n51 is an IID modified Bernoulli process with
P(Xk51)5 , P(Xk521)5 , E(Xk)50 and Var(Xk)51 and R5{21,1}. As shown in
chapter 8, the partial sum process in this case is a simple random walk. In figure 9.2 we can
see the graph of the process {Yk(t), t[ [0,1]}n

k51, for a realization of {Xk}
n
k51 size n520:

{1,21,1,1,1,21,21,1,1,1,21,1,1,1,1,21,1,21,21,21},

which is clearly a step function (non-continuous). N that on the vertical axis the

units of measurement are and on the horizontal axis are , and thus

the units are changing with n. In figure 9.3 we can see the graph of the process
{Yk*(t),t[ [0,1]k}

n
k51, which is a continuous polygonal line.

The new functions are continuous and thus the set: {Yn*(t), 0#t#1}, can be viewed as
a subset of the set of all continuous real-valued functions defined over the closed interval

51
n
, 

2
n
, …, 

n
n65 1

Ïn
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2
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Ïn6
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[0,1], denoted by C [0,1]. Embedding these smoothed functions into the space C [0,1] is
very significant because we can discuss convergence in this space using well established
results. For example we know that for two such continuous functions, say f,g[C [0,1], we
can define convergence in terms of the distance function:

d` (f,g):5
0#t#1
sup | f(t)2g(t) | , (9.41)

known as a uniform metric to the mathematical connoisseurs; see Dhrymes (1998).

We can now return to the previous viewpoint Yn(t):5Y(n, ,t) which enables us to con-
sider the convergence of such continuous functions within C [0,1]. The metric (9.41)
assures us that when a sequence of such functions {fn(t), 0#t#1n51}`

n51 converges, the
limit function f(t) exists and f(t)[C [0,1] (see Kolmogorov and Fomin (1970)). However,
this discussion of convergence ignores the essence of stochastic processes, their probab-
ilistic structure, since we kept s[S fixed.

To get the complete picture we need to return to Yn*(t):5Y*(n,s,t), and add to the dis-
cussion of convergence the probabilistic structure of {Yn*(s,t), s[S, 0#t#1}. Before we
do that, however, it is illuminating to consider a fourth viewing angle where we fix both
n[N and t[ [0,1], viewing Yn*(t):5Y*( ,s, ) as just a random variable (a function from
S to R) with:

tn

s
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Var(Yn*(t))5
[nt]
k51s

21(nt2 [nt])2s2 → ts2.

With the above discussion in mind let us return to the general viewpoint where
Yn*(t):5Y*(n,s,t):

Y*(.,.,.): (N3S3 [0,1]) → R.

In order to avoid thinking in four dimensions (!), it pays to fuse the sets [0,1] and R into
C [0,1]: the set of continuous real-valued functions, and interpret Y*(n,s,t) as:

Yn*(.): (N3S) → C [0,1].

Yn*(.) now represents a random function: a function from an outcomes set to a set of func-
tions. This fusion resulted in trading R for C [0,1], which obviously raises a few technical
problems because every element in R is a number but every element in C [0,1] is function.
However, mathematicians have already tackled these problems with spectacular success.
Indeed, the essence of a branch of mathematics known as Functional Analysis is the
economy of thought gained by treating dissimilar sets such as R and C [0,1] as sets with
the same mathematical structure, irrespective of the nature of their elements. It turns out
that if we attach a certain notion of distance to the two sets above then we can treat the
pairs (R, |a2b | ) and (C [0,1],

0#t#1
sup | f(t)2g(t) | ),as if they are the same for our purposes;

as it happens they are both complete and separable metric spaces (see Kolmogorov and
Fomin (1970)). All that is needed is to ensure that the sample paths of the relevant
processes in C [0,1] are well behaved. As far as our discussion is concerned, what matters
is that the notion of a stochastic process and the relevant joint distribution can be
defined on C [0,1] in a way very similar to the one with respect to R. The details, although
fascinating from the mathematical viewpoint, will take us far away from our main path
and thus we refer the interested reader to the excellent books: Billingsley (1968), Breiman
(1968), and Dhrymes (1998).

Donsker’s functional CLT Let {Xn}`
n51 be an IID stochastic process with E(Xk)50 and

Var(Xk)5s2, for Yn*(t) as defined by (9.40):

→D Z(.),B(.), (9.42)

where B(.) is a Brownian motion process defined over the interval [0,1], i.e.,
{B(t), t[ [0,1]} is the process defined by:

(i) B(t1h)2B(t),N(0, |h | ), for (t1h)[ [0,1],
(ii) B(t) has independent increments, i.e. for 0#t1,t2,t3#1,

(iii) B(0)50 (see chapter 8).

It is important to  that this theorem constitutes a refinement of the classical CLT
because we can derive the latter as a special case. Choosing t51, the above theorem yields:

1B(t1) 2 B(t2)
B(t2) 2 B(t3)2 ,N110

02,1t2 2 t1,
0,

  
0

t3 2 t2
22

1Y*n(.)
s 2

2o11
n
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→D Z,B(1)5N(0,1).

It extends the classical CLT in important directions, however, because it enables us to
deduce other limit results on distributions which relate to any continuous functions g(.)
(defined on C [0,1]) of Yn*(t) in the sense given in the following theorem.

Continuous mapping theorem Let Yn(.) →
D Z(.),B(.), then for a continuous function:

g(.):C [0,1] → R ⇒ g(Yn(.)) →
D g(Z(.)),g(B(.)).

Example

→D Z2(.),(B(.))2.

It is interesting to  that the above result is valid for any continuous function from
the metric space (C [0,1], d` (f,g)), to any other separable and complete metric space,
including itself or (R, |a2b | ).

Example

1Y*n(.)
s 2

2

1Y*n(1)
s 2
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The figures 9.4–9.7 show how the FCLT can be seen pictorially in the case of the
simple random walk process used in the example shown in figure 9.3. The effect of
increasing the size of n is to render the graph increasingly more polygonous as we
proceed from n520 to n550 to n5100 to n5200 to n51000 (see figures 9.4 to 9.7,
respectively). The graph of {Yk*(t), t[ [0,1]}n

k51 for n51000 looks very much like the
graph of a Brownian motion process.

As with the classical CLT several extensions of the FCLT have been proved since the
early 1950s by adding minor additional restrictions on those giving rise to the result. In
view of the extensive discussion of such variations on the basic theme of the LLN and
CLT we will consider only one such extension in the present context; see Herrndorf
(1984).

FCLT for second-order stationary processes Let the sequence of random variables
{Xn}`

n51 satisfy the following conditions:

(D) Bounded moments: E(Xk)2,`, k51,2, …,

(M) r-mixing: sn
2

n→
→̀ `, lim

n→`

n
k51 [r(2k)]r,` for r5 ,1,

(H) Second-order Stationarity: E(Xk)5m, Var(Xk)5s2, k51,2,…

1
2o
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then for Yn(t)5
[nt]
i51 (Xi2m), t[ [0,1]:

→D Z(.),B(.). (9.43)

N that, in general, the smoothing term is not needed for the result to go through (see
Billingsley (1968)).

If we compare this FCLT with the corresponding CLT we observe that for the former
result to hold we require the additional restriction: lim

n→`

n
k51[r (2k)] ,`.

In unit root asymptotics (see Banerjee et al. (1993)) we are interested in quantities of
the form:

#t# Yn(t)5 #t#
[nt]
i51 (Xi2m)5 (S11S21 ···1Sn).

It should be  that this constitutes an example of what is known in the divergent
series literature as a Cesaro sum which with the appropriate scaling is summable. It
should come as no surprise to discover that:

#t# (Yn(t)) →D Z(.), ∫ 1
0 B(t)dt.

Such results can extend the above FCLT to unit-root, non-stationary stochastic pro-
cesses; see Phillips (1987), Dhrymes (1998), Stock and Watson (1988).
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We conclude this section by summarizing the main steps of the FCLT without the (poss-
ibly) intimidating notation. The first step is to transform the partial sums process {Sn}`

n51 to
{Yk*(t), t[ [0,1]}n

k51 by forcing it to take an increasing number of steps within the confined
interval [0,1] and simultaneously decreasing the size of the steps to zero as n→`. This
induces a Central Limit Theorem effect with Yk*(t) converging to a Brownian motion
process. At the same time the state space of {Sn}`

n51 is mapped into C [0,1] inducing a proba-
bility set function on its Borel sets, which (happily) converges to that of a Brownian motion,
defined on the same space. With the help of the continuous mapping theorem this result can
be extended to any continuous functions of Yk*(t) converging to the same continuous func-
tions of a Brownian motion process; see Davidson (1994) and Dhrymes (1998).

9.9 Modes of convergence

In section 2 above we considered briefly the three different types of convergence involved
in the WLLN, the SLLN, and the CLT. In this section we take that discussion one step
further by comparing these convergence notions in order to understand the differences
between the results. We begin, however, with a review of some important notions of con-

Modes of convergence 503

Figure 9.7 {Y*k(t ), t[ [0,1]}n
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vergence in calculus and real analysis.
The basic object of interest in convergence of real analysis is that of a sequence of real

numbers {an}`
n51:5{a1,a2, …, an….} where an constitutes a function from the set of

natural numbers N:5{1,2, …, n,…} to the real line:

an: N → R.

We say that the sequence {an}`
n51 converges to a limit a[R, and we write lim

n→`
an5a, if for

every «.0 there is an integer N such that:

|an2a |,« whenever n$N(«),

where N(«) indicates that the integer N depends on the value of the chosen «. That is, far
out in the sequence the terms can be made arbitrarily close to the limit.

This notion of convergence of sequences of real numbers can be easily extended to
that of a sequence of real-valued functions {fn}`

n51 of the form:

fn(.) : A → R,

where A is an arbitrary set and R denotes the real line. The difference between a real-
valued sequence and a sequence of real-valued functions is the new element in the
domain (A) of a sequence of functions. A more formal way to think about this sequence
of functions is in terms of two arguments:

f(.,.): (N3A) → R.

The presence of the domain A of the function enables one to distinguish between two
different modes of convergence.

Pointwise convergence A sequence of real-valued functions {fn}`
n51 is said to converge

pointwise to a function f, and we write lim
n→`

fn(x)5f(x), if for each «.0:

| fn(x)2f(x) |,«, for each x[A, whenever n$N(«,x).

Uniform convergence A sequence of real-valued functions {fn}`
n51 is said to converge uni-

formly to a limit function f if for each «.0:

| fn(x)2f(x) |,«, for all x[A, whenever n$N(«).

Intuitively, uniform convergence of fn(x) to f(x) means that for n$N(«) the graphs of
fn(x) and f(x) become indistinguishable; see Binmore (1980).

N that the integer N does not depend on the particular value x[A and thus,
uniform convergence implies pointwise convergence but not the converse.

These notions of convergence can be applied without any changes to a sequence of
random variables {Xn}`

n51:5{X1,X2, …, Xn….} because, as seen in chapter 8, this is
just a sequence of indexed functions from an outcomes set S (part of the probabil-
ity space (S,F,P(.)) in the context of which all of these take place) to the real line:
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Xn(.):S → R.

This is the reason why we left the domain of the functions (A) above unspecified!
These notions of convergence for a sequence of random variables are not very inter-

esting, however, because they ignore a fundamental feature of a random variable, its pro-
babilistic structure.

The probabilistic convergence encountered in the context of the limit theorems
(WLLN, SLLN, CLT) is directly related to the above notions of convergence of real-
valued functions which in turn can be seen as an adaptation of pointwise convergence.

Convergence almost surely A sequence of random variables {Xn}`
n51 converges almost

surely to a random variable X, denoted by:

Xn →a.s.
X,

if for each «.0, the set C,S, defined by:

C:5{s[S: |Xn(s)2X(s) |,«, whenever n$N(«,s)},

has probability one, i.e.

P s: lim
n→`

Xn(s)5X(s) 51, (9.44)

which is the same as P(s: s[C)51, or equivalently P( )50.

If we compare this with pointwise convergence we  that in pointwise convergence
the requirement “for each s[S” means that C5S and thus the adaptation is that we do
not require that C be the whole of the outcomes set but we do require that its comple-
ment has probability zero.

In terms of the repeated tossing of a coin example discussed above we can think of
as the set of points of S for which { |Xn(s)2X(s) |.«}, for n$N(«,s), i.e. the set which
includes elements of the form sT:5{T,T, …, T,…} and sH:5{H,H, …, H,…}.
Intuitively, we can think of almost sure convergence as a shrinking of the set to one of
probability zero.

Proving convergence almost surely is not a trivial exercise and we can do with as many
criteria as we can gather. The following theorem provides a simple but often useful criter-
ion.

Borel–Cantelli lemma Let {Xn}`
n51 be a sequence of random variables. If for every «.0:

`
n51P(s[S: |Xn(s)2X(s) |$«),`, then Xn→a.s.

X.

The convergence underlying the SLLN is a special case of the convergence almost
surely because the limit is degenerate (a constant) random variable.

Convergence in probability A sequence of random variables {Xn}`
n51 converges in proba-

bility to a random variable X, denoted by:

Xn →P X,

o

C

C

C

21
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if for each «.0:

lim
n→`

P(s[S: |Xn(s)2X(s) |,«)51. (9.45)

We can think of this convergence as a convergence of a sequence of real numbers associ-
ated with the probability of a sequence of events. Consider the sequence of probabilities
{pn}`

n51:

pn:5P(s[S: |Xn(s)2X(s) |$«),

which refer to the tail probabilities of the random variable Yn:5 |Xn(s)2X(s) | , i.e.

pn5
{Yn$«}

fn(y)dy,

where for expositional purposes we assume that fn(y) is the density function of Yn.
Convergence in probability amounts to:

lim
n→`

pn50.

The convergence underlying the WLLN is a special case of the above convergence
probability because the limit is a degenerate (a constant) random variable

A comparison between (9.44) and (9.45) suggests that convergence almost surely is a
stronger form of convergence. This becomes apparent when we use the following
lemma.

Lemma 1 For the sequence of random variables {Xn}`
n51: Xn →a.s.

X, if and only if for each
« . 0,

lim
n→`

P s[S:
`

k5n |Xk(s)2X(s) |$« 50. (9.46)

This shows most clearly that in terms of the events Ak(s):5{s[S: |Xk(s)2X(s) |$«}:

Xn→P X ⇔ lim
n→`

P(An(s))50,

Xn→a.s.
X ⇔ lim

n→`
P

`

k5nAk(s) 50.

Hence, in view of the fact that P
`

k5nAk(s) 5P(supk$nAk(s))$P(An(s)):

[Xn→a.s.
X] ⇒ [Xn→P X],

but the converse may not be true.

Example
Consider the sequence of discrete random variables {Xn}`

n51 with probability distribu-
tion:

P(Xn51)5 , P(Xn50)512 , n51,2,…1
n

1
n

2<1
2<1

2<1

E
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Noting that E(Xn)5
n→
→̀ 0, and for 0,«,1, P( |Xn20|.«)5

n→
→̀ 0, we can deduce

that Xn→P 0. On the other hand:

P
`

k5nAk(s) 5 12 `
k5m 12

n→
→̀ 1,

since `
k5m 12

n→
→̀ 0, and thus Xn →/

a.s.
0.

Having gone the extra mile to define these two modes of convergence in terms of the
sequence of probabilities associated with the events An(s) we should take advantage of it
and define another mode of convergence, known as complete convergence, which implies
convergence almost surely.

Complete convergence A sequence of random variables {Xn}`
n51 converges completely to

a random variable X, denoted by Xn→c X, if for each «.0:

lim
n→`

n
k51P(s[S: |Xk(s)2X(s) |«),`. (9.47)

From the Borel–Cantelli lemma stated above, it is obvious that:

[Xn →c X] ⇒ [Xn→a.s.
X]. (9.48)

Moreover, the condition (9.47) can be written equivalently as:

lim
n→`

`
k5nP (Ak(s))50,

which, from axiom 3 of the probability set functions, implies that:

lim
n→`

P
`

k5nAk(s) # lim
n→`

`
k5nP(Ak(s)).

This shows most clearly that (9.48) always holds but the converse holds for sure when the
sequence {Xn}`

n51 is independent.
In view of these results we could think of Xn→P X as being valid when P(An(s))

n→
→̀ 0,

while Xn→a.s.
X, if in addition, the convergence is fast enough (Borel–Cantelli fast) that

their sum is finite.

Convergence in distribution A sequence of random variables {Xn}`
n51 converges in distrib-

ution to a random variable X, denoted by:

Xn →
D X,

if for each «.0, there exists a positive integer N(«,x) such that:

|Fn(x)2F(x) |,«, for n$N(«,x), whenever x is a point of continuity of F(x),

where Fn(x) denotes the cdf of Xn; this is often expressed by:

lim
n→`

Fn(x)5F(x), whenever x is a point of continuity of F(.). (9.49)

o2<1

o

o

21
k1p

421
k1p32<1

1
n21

n1
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This is a convergence of a sequence of functions with the qualification that one con-
siders only the continuity points of the limit function. The problem forcing us to use this
qualification is that neither Fn(x) nor F(x) may be continuous everywhere (e.g., discrete
distributions) and thus at the jump point Fn(x) may not converge to F(x).

The convergence underlying the CLT is a special case of the above convergence in dis-
tribution because the limit random variable has a Normal distribution (F(x)). In view of
the fact that the latter is continuous everywhere there was no need to refer to the qual-
ification about the points of continuity of F(x).

Convergence in distribution is the weakest mode of convergence which is implied by
all the previous modes. In summary, the implications which are valid are:

[Xn →c X ] ⇒ [Xn→a.s.
X ] ⇒ [Xn→P X ] ⇒ [Xn→D X ].

Intuitively, convergence in distribution is weaker than convergence in probability
because the former is defined exclusively in terms of the convergence of the distribution
functions without any direct references to the underlying random variables. On the other
hand, convergence in probability involves the random variables themselves via the
events: An(s):5{s[S: |Xk(s)2X(s) |ù«, n51,2,…} As a consequence of this, conver-
gence in distribution can be defined even in cases where the random variables involved
are defined on different probability spaces; something impossible for the other modes of
convergence.

The fact that convergence in distribution does not involve the random variables and
their values directly is apparent from the following result.

Lemma 2 For the sequence of random variables {Xn}`
n51: Xn→D X, if and only if:

lim
n→`

E(g(Xn))5E(g(X)), (9.50)

for every bounded continuous function g(x).
Although in general [Xn→D X ] →/ [Xn→P X ] there is one important special case for which

this is true. The following result is directly related to the above comment that conver-
gence in distribution does not entail the values of the random variables {Xn}`

n51 and X
directly.

Lemma 3 For the sequence of random variables {Xn}`
n51 and c a constant:

[Xn→D c] ⇒ [Xn→P c],

Another form of convergence which can help establish convergence in probability is
the so-called convergence in the rth mean.

Convergence in rth mean A sequence of random variables {Xn}`
n51 with bounded

moments of order r.0 (i.e., E |Xk |r,`, k51,2,…), converges in rth mean to a random
variable X, denoted by:

Xn →
r X,
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if for each «.0, there exists a positive integer N(«) such that:

E( |Xn2X |r),«, for n$N(«).

This is often expressed by:

lim
n→`

E( |Xn2X |r)50, for r.0. (9.51)

It is obvious that the higher the value of r the more stringent the condition since from
Jensen’s inequality we can deduce that:

[Xn→r X] ⇒ [Xn→s X] for 0,s,r.

Using the Markov inequality P( |X |ù«) # , we can deduce:

P( |Xn2X $ «) # ,

and in view of the fact that lim
n→`

E( |Xn2X |r)50, we conclude that:

[Xn→r X] ⇒ [Xn→P X].

That is, convergence in rth mean implies convergence in probability but the converse is
invalid in general. It is, however, true that for bounded random variables convergence in
probability implies convergence in rth mean.

Lemma 4 For the sequence of random variables {Xn}`
n51, with E |Xk |r,`, k51,2, …,

[Xnn→P X] ⇒ [Xn→r X],

if the sequence is bounded, i.e. P( |Xn2X |,c)51, for some 0,c,`.

A special case of the above result is the case where {Xn}`
n51 is uniformly integrable (see

section 6 above).
In general, convergence in the rth mean does not imply convergence almost surely. For

the latter to be the case we need to impose certain restrictions on the rate of convergence
of the former.

Lemma 5 For the sequence of random variables {Xn}`
n51, with E |Xk |r,`, k51,2, …:

[Xn→r X] ⇒ [Xn→a.s.
X],

if `
n51E( |Xn2X |r),`.o

E(|Xn 2 X |r)
«r

E(|X |p)
«p
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X]

[Xn→r X]
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We conclude this section by collecting together all the above implications that hold
without additional restrictions (see also McGabe and Tremayne (1993)):

9.10 Summary and conclusion

The main aim of this chapter has been to provide a readable and (hopefully) understand-
able account of one of the most important but at the same time one of the most difficult
chapters of probability theory: the limit theorems. Using the historical development as
our main axis and the taxonomy of probabilistic assumptions (9.1) as the cornerstone of
our discussion, we examined the WLLN, SLLN, CLT and FCLT trying to bring out two
important aspects of such theorems:

(a) the gradual weakening of the restrictions giving rise to the results, and
(b) the trade off between the three categories of assumptions.

In conclusion we emphasize again that, although the limit theorems are indispensable
for statistical inference purposes, it is a mistake, for modeling purposes, to trade in spe-
cific distribution assumptions for bounded moments assumptions. The latter give rise to
very crude results (probabilistic statements).

9.11 Exercises

21 “Going from weekly to monthly observations by averaging ensures that the CLT
effect induces Normality to the latter.” Explain the fallacy in this argument.

22 “There is no point in using the Student’s t distribution in modeling speculative
prices. One should adopt the Normal distribution at the outset because as the
number of observations increases (and in my case I have over 3000 observations) the
Student’s t converges to the Normal anyway.” Explain the fallacy in this argument.

23 A gambler betting on Red and Black at a roulette wheel contemplates: “for the last 6
times in a row the ball stopped in a Red, if the WLLN is valid, it means that the
probability that the next one will be Black must be greater than .” Discuss.

24 “The Law of Large Numbers and the Central Limit theorem hold for stochastic
processes for which we need to postulate restrictions of three types: (a)
Distribution, (b) Dependence, and (c) Homogeneity.” Discuss.

25 “Poisson’s WLLN postulates complete heterogeneity for the Bernoulli random
variables involved but implicitly assumes asymptotic homogeneity.” Discuss.

26 How is the Law of Large Numbers related to the Central Limit Theorem?

27 For the random variable X, where E(X)50 and Var(X)5 , derive an upper bound
on the probability of the event { |X20.6 |.0.1}. How does this probability change
if one knows that X,U(21,1)?

1
3

1
2
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28 For the random variable X, where E(X)50 and Var(X)51, derive an upper bound
on the probability of the event { |X20.6 |.0.1. How does this probability change if
one knows that X,N(0,1)? How accurate is the following inequality:

P( |X |$«)# e2 dx5 e2 , for x.«?

29 Explain the conclusion of Bernstein’s WLLN and discuss which assumptions are
crucial for the validity of the conclusion.

10 Compare and contrast Bernoulli’s WLLN with that of Bernstein.

11 Explain how the conditions underlying Lyapunov’s CLT ensure that no one random
variables in the sequence dominates the summation.

12 Discuss the relationship between the Lindeberg and Feller conditions and their
connection with the CLT.

13 Discuss the relationship between the Lindeberg and uniform asymptotic negligibil-
ity conditions.

14 How do we explain the fact that convergence in probability implies convergence in
distribution but we need more stringent conditions to prove the CLT than those for
the LLN?

15 Explain how the CLT can be extended beyond the scaled summations.

16 Explain how the FCLT improves upon the classical CLT.

17 Compare and contrast the classical CLT and FCLT in the case of second-order sta-
tionary processes.

18 Explain intuitively why converge in probability is a stronger mode of convergence
than convergence in distribution.

19 Explain intuitively why convergence almost surely is a stronger mode of conver-
gence than convergence in probability.

20 Compare and contrast convergence almost surely and rth-order convergence.

21 “For modeling purposes specific distribution assumptions are indispensable if we
need precise and sharp results. Results based on bounded moment conditions are
naturally imprecise and blunt.” Discuss.

22 “For modeling purposes specific distribution assumptions are indispensable as tes-
tified by the Berry–Esseen result.” Discuss.

«2

211
«2

1
Ï2p

x2

2
x
«E`

«

1
Ï2p
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10 From probability theory to
statistical inference*

10.1 Introduction

In chapter 2 we began a long journey into the part of mathematics known as probability
theory, in our attempt to set up a mathematical framework for modeling stochastic phe-
nomena: observable phenomena which exhibit, what we call, chance regularity. The main
path along which our discussion of probability theory unfolded has been that of empir-
ical modeling. Center stage in this discussion was given to the concept of a statistical
model, which provides the foundation upon which the second part of this book, known
as statistical inference, will be built. The primary aim of this chapter is to set up a tenta-
tive bridge between the mathematical framework we call probability theory and statisti-
cal inference.

10.1.1 The story so far in a nutshell

The mathematical set up for probability theory was motivated by formalizing a simple
chance mechanism we called a random experiment %. The basic mathematical struc-
ture arising from the formalization came in the form of a simple statistical space
[(S,I,P(.))n,Gn

IID], where S is the outcomes set (the set of all possible distinct outcomes),
I the event space (a set of subsets of S with the mathematical structure of a s-field), P(.)
the probability set function (an additive set function P(.) :I→ [0,1] which satisfies three
axioms) and Gn

IID a set of random trials (Independent and Identical trials). In chapters
3–4 the simple statistical space was then metamorphosed into a simple statistical model:

[i] probability model: F5{f(x;u), u[Q, x[RX},
[ii] sampling model: X :5(X1,X2,…, Xn) is a random sample.

The primary reason behind the metamorphosis is that, more often than not, the phe-
nomena which exhibit chance regularity are observed in the form of numerical data. As
we can see, the above statistical model is specified exclusively in terms of a random vari-
able X(.) whose primary role is to map events into numbers:

X(.) : S→R, such that X21((2`,x])[I, for all x[R.
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The cardinal aim of chapters 6–9 has been to extend this simple statistical model in the
direction of non-random samples in order to broaden its intended scope. The broadening
is necessary in order to enable us to model observable phenomena which exhibit depen-
dence and heterogeneity patterns. The mathematical framework for modeling depen-
dence and heterogeneity has been instituted in these chapters. It was argued that the
modus operandi of modeling dependence and/or heterogeneity is the notion of condi-
tioning and related concepts: conditional distributions and conditional moment func-
tions.

10.1.2 The missing bridge

The notion of a random experiment was used primarily in chapter 2 to motivate the
mathematical concepts and was subsequently largely ignored because the proposed
mathematical concepts and their structure acquired a life of their own. Apart from the
occasional motivating example, the discussion in chapters 2–4 and 6–9 belongs to the
realm of mathematics with one important difference: the emphasis was placed on ideas
and concepts rather than on theorems and proofs. The formal theory developed in these
chapters can be applied in any discipline where probability theory is used, in the same
way as calculus (differential and integral) can be used in physics, biology and economics
to model different dynamic deterministic phenomena.

Throughout the discussion in chapters 2–4 and 6–9, with the exception of a few exam-
ples, probability was just a set function of the form:

P(.) : I→ [0,1],

which satisfies the following axioms:

[1] P(S)51,
[2] P(A)$0 for all events A[I,
[3] If {An}`

n51 is a sequence of mutually exclusive events in I, for A5 `
n51 An,

P(A)5 `
n51P(An).

In a nutshell, probability is any function that satisfies the above mathematical struc-
ture, irrespective of any intrinsic interpretations. In this sense probability is purely a
mathematical concept in the same way the real line R is a mathematical concept.
However, when using a number of examples to illustrate the mathematical concepts,
such as the random experiment of tossing a coin twice, where:

S5{(HH),(HT),(TH),(TT)}, I5{A, ,S,u}, A5{(HH),(TT)},

we often went beyond the mathematical definition. As given, the mathematical definition
provides no way to evaluate P(A); all one can say is that since Aø 5u and Aø 5S:

P(A)512P( ).

In other words, the probability space (S,I,P(.)) offers us the rules to manipulate the
probabilities of the various events of interest, but does not provide ways to evaluate these
probabilities. This is why the mathematical theory of probability is often called the

A

AA

A
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calculus of probabilities. When utilizing such examples most books on probability theory
go beyond the mathematical definition. In a certain sense they beguile the reader by
invoking seemingly common sense arguments such as the physical symmetry of the
chance devises (fair coins). A typical example of this is the following argument:

Given that the coin is fair P(HH)5P(HT)5P(TH)5P(TT)5 , since for the random

experiment of tossing a coin twice there are four equally likely outcomes. Hence, P(A)5
because event A occurs when two out of the four outcomes occur.

As argued below, this argument implicitly uses the lottery-based interpretation of proba-
bility.

All of these common sense arguments have nothing to do with the mathematical
theory but are designed to add something to the intuitive understanding of the mathem-
atical concepts. This is pedagogically the correct way to proceed, assuming that the nec-
essary cautionary notes are spelled out. Examples in probability theory are easier to
comprehend when they refer to simple games of chance where the chance mechanism is
explicit and with the help of combinatorics one can define the relevant probabilities as
above. However, the intended scope of probability theory extends well beyond such
games and in particular to phenomena where the chance mechanism is not explicit. As
mentioned repeatedly, we aspire to include any observable phenomenon which exhibits
chance regularity patterns within its intended scope. For this to be possible, however, we
need to build a bridge between the mathematical concept of a statistical model and what
we called chance regularity.

Some tentative steps toward building such a bridge were taken in chapters 5 and 6
using graphical displays but the emphasis there was placed on intuition. In this chapter
we will tie together several loose ends and an attempt will be made to complete this
bridge. Building such a bridge is of paramount importance because its traits will deter-
mine to a large extent the nature of the statistical inference to be erected on the other
side. It turns out that the choice of a particular bridge between statistical models and
chance regularity will determine to a large extent the approach to statistical inference
one adopts; the main approaches being Classical, Bayesian, and Decision theoretic.
Efforts to build such a bridge are inextricably bound up with one’s interpretation of
probability which we discuss next as a prelude to the discussion of previous attempts to
build such bridges.

10.2 Interpretations of probability

It must be said at the outset that probability has a unique place in science in so far as it
represents a notion with more interpretations than any other concept in the history of
science. Any attempt to propose a taxonomy for all these interpretations is doomed
because there are no clear cut boundaries between them. Commonly used categoriza-
tions such as objective/subjective, epistemic/physical are only schematically useful
because a number of interpretations are hybrids of various components of these
categorizations. Be that as it may, we focus on a small subset of such interpretations
using the nature of statistical inference they are commonly associated with as the criter-

1
2

1
4
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ion. From the viewpoint of statistical inference we choose to consider the following three
interpretations of probability:

(i) the lottery-based,
(ii) the observed relative frequencies,
(iii) the degrees of belief.

T  : it should be noted that the lottery-based definition of probability is
often known as the classical definition. This, however, often leads to confusion with
regard to the classical approach to statistical inference which is based on the frequency
interpretation. For this reason we avoid the term classical interpretation of probability.

We note at the outset that for a proper understanding of the various interpretations of
probability one should discuss them in the context in which they were first developed (see
Hacking (1975)). As early as the 18th century all three basic interpretations of probabil-
ity were being used in different contexts without much thought of choosing one inter-
pretation for all purposes. The lottery-based interpretation was used in the context of
games of chance and was viewed as equal probabilities based on some sort of physical
symmetry. The relative frequency interpretation originated from mortality and natality
data gathered over long periods of time from the 16th century onwards. The degrees of
belief originated from attempts to quantify the relationship between the evidence pre-
sented in courts and the degree of conviction in the mind of the judge.

10.2.1 The lottery (classical) interpretation of probability
It is generally accepted that, historically, the theory of probability was developed in the
context of gambling based on games of chance such as casting dice or tossing coins. It
was only natural then that the first interpretation of probability was inextricably bound
up with the chance mechanism of such games. Although implicit in the calculations
going back to Cardano in the 17th century, the first explicit definition of the lottery
definition of probability is given by Laplace at the beginning of the 19th century.

The lottery definition Consider the random experiment % which has N equally likely out-
comes and event A occurs when NA of them occur, then according to the lottery definition
of probability:

P(A)5 .

The first important feature of this definition is its reliance on the nature of an explicit
chance mechanism such as casting dice or tossing coins. Its second crucial feature is that
it utilizes the apparent physical symmetry of the device underlying the chance mecha-
nism to define probability by evaluating it as “the ratio of the number of outcomes favor-
able to the event to the total number of possible outcomes, each assumed to be equally
likely” (see Laplace (1814)).

For the purposes of providing the missing link between the mathematical concept of a
statistical model and the notion of chance regularity, this definition of probability is
inadequate for a number of reasons including the fact that:

1NA

N 2
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(i) it is based on some explicit chance mechanism,
(ii) the chance mechnism has a build-in physical symmetry that leads to equally likely

outcomes, and
(iii) it assumes that one can partition the set of outcomes into a finite number of

equally likely events.

This definition has been severely criticized in the literature but the critics tend to concen-
trate their arrows on the equally likely clause. What do we mean by equally likely, and
how do we recognize equally likely outcomes? Laplace, in an attempt to avoid this
problem, proposed a principle for finding equally likely cases. This rule was later named
the principle of insufficient reason or the principle of indifference and amounts to the idea
that if we have no reason to favor one case over the another they are considered equally
likely. This principle has given rise to several paradoxes and has been widely discussed in
the literature (see Hacking (1975)).

In addition to the objection to the equally likely clause, there is one crucial objection
to the lottery definition that renders it a relic of a bygone age. It assumes that one can
partition the set of outcomes into a finite number of equally likely events. What happens
when the random experiment does not enjoy this symmetry, such as the case of a biased
coin? What about axiom (1) of the mathematical definition (see chapter 2)? In the case of
an infinite sample space the denominator of the above definition will get us into trouble
(see Barnett (1982) for further discussion).

In view of these problems the lottery interpretation of probability could not be used as
the cornerstone for the missing bridge between a statistical model and chance regularity
patterns. Having said that, there is nothing wrong with using the lottery interpretation of
probability as a means to evaluating certain probabilities in cases where the random
experiment allows its use: there exists an explicit chance mechanism which necessarily
enjoys a certain physical symmetry.

10.2.2 The frequency interpretation of probability

Our interest in the frequency interpretation of probability stems from the fact that it
underlies the approach to statistical inference discussed in this book and it is invariably
known as the classical approach (see Barnett (1982)).

The frequency interpretation of probability can be traced back to the statistical regu-
larities established during the 18th and 19th centuries. After the initial impetus provided
by Grant’s Bills of Mortality in 1622, there was a concerted effort to collect more and
more demographic, anthropomorphic, economic and social (crimes, violent deaths, etc.)
data. The descriptive analysis of these data led to an amazing conclusion:

despite the unpredictability at the individual level (people, firms etc.) there was a remarkable
stability of the relative frequencies at the aggregate level (groups) over long periods of time.

By the 1830s the main field of application became social statistics: numerical science
of society. Its focus was the unpredictability of human action and behavior and the
search for order (statistical regularity) in larger groups. The main conclusion arising

516 From probability theory to statistical inference



from these studies was that: regularity could emerge from disorder and irrationality!
Society could be characterized by relatively stable rates of height, weight, education,
intelligence, fertility, marriage, crime, suicides, and deaths. This in turn led to the search
for effects whose causes could be discerned in large numbers in an attempt to facilitate
the discovery of laws analogous to those of Newtonian mechanics in the domain of
society. The protagonist in this search was the Belgian polymath Quetelet who, by the
1870s, amassed an impressive collection of evidence of such large-scale statistical regu-
larities (see Stigler (1986)). So much so that the idea of disorder at the individual level
leading to order at the aggregate was brought into Physics. Maxwell and Boltzmann, in
their attempt to justify their statistical interpretation of gas laws, invoked the idea of a
model of numerous autonomous and unpredictable individuals (insignificant compared
with the assemblage), where regularities associated with the assemblage and can be used
to explain macroscopic behavior. This analogy was borrowed from Quetelet’s social
physics and founded an important pillar of modern physics known as statistical mechan-
ics (see Von Plato (1994)).

In the context of the frequency interpretation, the probability of an event A is viewed
as an empirical regularity associated with this event. The probability of event A repre-
sents the limit of the relative frequency with which A will be obtained if the experiment
related to A is repeated a large number of times under identical conditions.

The frequency definition Consider the case where one is able to repeat an experiment
under identical conditions, and denote the relative frequency of the event A after N trials
by , then the frequency definition of the probability of event A is defined as the limit
of this ratio as the number of trials goes to infinity, i.e.

P(A)5 limN→` .

The frequency interpretation of probability was first worked out during the mid 19th
century as the frequency of like events in the long run but its formal definition is credited
to John Venn (1866) (of the Venn diagrams fame). In this sense the number of favorable
outcomes NA and the limit of the relative frequency are defined in terms of what happens
on average if we were to imagine an infinite sequence of identical trials of the experiment.

In view of this it should come as no surprise to learn that initially the mathematical
foundation of this definition was thought to be the (Weak) Law of Large numbers
(WLLN). In the case where the probability of event A is the same, say P(A), for all trials,
it was customary to invoke the WLLN proved by James Bernoulli (1713):

lim
N→`

Pr * N
k51Xk2P(A) *,« 51, for any «.0, (10.1)

1 if A occurs at the kth trial,N
k51Xk5 , Xk550 if A does not occur at the kth trial.

However, in cases where the probabilities of the event A are allowed to fluctuate from
trial to trial, say the probability of A in trial k, is pk5Pk(A), k51,2,…, Poisson’s
WLLN:
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lim
N→`

Pr * N
k51Xk2 N

k51pk *,« 51, for any «.0,

was interpreted as a mathematical demonstration of the fact that the repetition of an
experiment does necessarily lead to a constant mean value. As argued in chapter 9,
however, the convergence of the average to some constant value:

lim
N→`

N
k51pk5p,

is not the result of some invisible hand forcing order upon the system but a consequence
of the mathematical restrictions:

(a) 0,pk,1, (b) (12pk) · pk# .

The secret is that (a)–(b) implicitly impose asymptotic homogeneity over the sequence of
probabilities but it is not obvious that the asymptotically homogeneous value p will co-
incide with P(A).

The issue often raised, when invoking the WLLN as a justification for the frequency
definition of probability, is that the argument suffers from some sort of circularity:

we use convergence in probability to define probability!

This is denied by some notable mathematicians such as Borel and Renyi. Renyi argues
that the concept of probability in convergence in probability is purely a mathematical
concept and as such it does not lead to a circular argument:

The “definition” of the probability stating that the probability is the numerical value around
which the relative frequency is fluctuating at random is not a mathematical definition: it is an
intuitive description of the realistic background concept of probability. Bernoulli’s law of
large numbers, on the other hand, is a theorem deduced from the mathematical concept prob-
ability; there is no vicious circle… (Renyi (1970), p. 159)

10.2.3 The degrees of belief interpretation of probability

Our interest in the degree of belief interpretation of probability stems from the fact that
it leads to an approach to statistical inference known as the Bayesian approach.

During the 17th, 18th and most of the 19th centuries, the objective and subjective
interpretations of probability coexisted happily even in the writings of the same mathe-
matician such as James Bernoulli. Poisson (1837) was the first to make explicit the dis-
tinction between the subjective and objective interpretations of probability and a decade
later the battle lines between frequentists and subjectivists were forged. The degree of
belief interpretation of probability covers both the subjective and objective interpreta-
tions of probability.

Degrees of subjective belief
The subjective interpretation considers the probability of an event A as based on the per-
sonal judgment of whoever is assigning the probability; the personal judgment being
based on the individual’s environmental experience. In this sense the probability of event
A is based on the person’s beliefs and information relating to the experiment giving rise
to event A.
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Example
In the case of tossing a fair coin a person is likely to assign the subjective probability
P(H)5 , because with no special information about the chance mechanism involved the
two outcomes seem a priori equally likely. In the case where the person in question has
additional information relating to the mechanism, such as the coin is bent, the subjective
probability is likely to change.

In view of the fact that a person’s assessment of probabilities is inextricably bound up
with his environmental and psychological experiences, probabilities can only be condi-
tional on an individual’s experience.

A most convenient way to think of subjective probabilities is in terms of betting odds,
even though historically risk in gambling and insurance did not have any appreciable
effect on the development of this interpretation. Let us consider the case of betting on
the occurrence of an event A and somebody offers odds 2 to 1, or in a ratio form . If the
person whose degrees of subjective belief we are trying to assess thinks that these are fair

odds, then we can proceed to evaluate her subjective probability via: 5 . More

generally, if the subjective probability for the occurrence of the event A is p (i.e. Pr(A)5

p), then the odds ratio ö and the corresponding subjective probability p take the form:

ö5 ⇒ p5 ·

As we can see, the subjective dimension of this probability arises from the fact that it is
the decision of a particular individual whether the odds are fair or not. Another individ-
ual might consider as fair the odds ratio ö9, which implies that her subjective probability
is p95 ?p. This is not surprising because the personal experiences which influence
judgment are often different between individuals.

The question which naturally arises at this stage is to whether such personal subjective
probabilities will behave in accordance with the mathematical definition of probability.
It turns out that this is the case as demonstrated by Ramsey (1926) and De Finetti (1937).

Degrees of objective belief
Another question with regard to the degree of belief interpretation of probability that
comes to mind is whether one could find some way to establish that a particular odds
ratio will be considered fair by any rational person; assuming a formal definition of ratio-
nal. In such a case the personal dimension of the interpretation will change to a more
objective one. The first to attempt such a recasting was Keynes (1921) and he was later
followed by Carnap (1950). The interpretation of subjective probability based on odds
ratios which will be considered fair by any rational person is often called logical probabil-
ity, as opposed to the personal subjective probability championed by Ramsey (1926), De
Finetti (1974), and Savage (1954); see Barnett (1982) and Fine (1973) for further discus-
sion.

ö9
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10.2.4 Which interpretation of probability?

We conclude this section by stating that on philosophical grounds both, the degrees of
belief and frequency interpretations of probability, are equally relevant and the discus-
sions about their relative merits are likely to continue for many years to come. On
methodological grounds, however, the present book adopts the frequency interpretation
of probability. For the empirical modeling of observational data (in a non-experimental
set up) we consider that the frequentist constitutes the most appropriate interpretation.
As argued in chapter 1, a statistical model is built upon the systematic information con-
tained in the observed data in an attempt to provide an appropriate description of the
stochastic mechanism that gave rise to the data. Given that in modeling with observa-
tional data the modeler has no control over the collection of the observations, the notion
of degrees of belief interpretation is difficult to justify. Moreover, if the data contain
systematic information, it must be possible to establish the model independently of the
modeler’s beliefs. Indeed, the bridge between probability and observed data proposed in
chapters 5–6 took a pragmatic attitude toward the essence of stochastic phenomena.
Chance regularity has to be assessed independently of the modeler’s beliefs. A statistical
model was contrasted to a theory model, arguing that the latter is built upon the behav-
ior of economic agents and not on the structure of the observed data. In view of this, the
degrees of belief interpretation of probability might be more appropriate for describing
the behavior of economic agents facing uncertainty.

The interpretation of probability adopted in this book has important implications for
the nature of statistical inference considered appropriate for observational data. As
argued in the next chapter the observational nature of the data raises several modeling
issues that are not as relevant in the context of modeling with experimental data.

10.3 Attempts to build a bridge between probability and
observed data

In this section we discuss briefly the two most notable attempts to bridge the gap between
a statistical model and the chance regularity pointed out in the above discussion: the
attempts by Von Mises and De Finetti. Von Mises adopts the frequency interpretation
and De Finetti the degrees of subjective belief interpretation of probability.

10.3.1 The frequency approach: Von Mises’ collective

The first systematic attempt to build a bridge between probability and chance regularity
using the frequency interpretation was made by Von Mises in the 1920s (see Von Mises
(1957)). The backbone of the bridge comes in the form of a collective: an infinite
sequence {vk}`

k51 of outcomes drawn from a set V and characterized only by which
attribute of V they manifest. This collective satisfies two conditions:

(1) convergence: limN→` 5p<, <51,2,…,m,

(2) randomness: limw(N→`) 5p<, <51,2,…,m,1w(N,)
w(N) 2

1N,

N 2
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where N< denotes the number of occurrences of an outcome with attribute <, and the
function w(.) constitutes a mapping of place-selection chosen before the realization of
the sequence {vk}`

k51. The place selection mapping is designed in order to select sub-
sequences from a collective which will converge to the same probabilities. The idea was
that in the context of a collective the relative frequencies of occurrence of the attributes
of interest converge to certain limits (interpreted as probabilities) and these limits are
invariant to transformations of place-selection. Intuitively, one can think of a Von Mises’
collective as a gambling machine that generates a sequence of integers and offers odds:

{ö1, ö2, ö3,…,öm} where ö<5 , <51,2,…,m,

for each different integer between 1 and m. N that the probabilities are not sub-
jective; the implicit probability distribution is given by:

P :5{p1(u),p2(u),…,pm(u)}. (10.2)

The randomness condition is designed to ensure that in the long run the machine cannot
be defeated by any gambling scheme (a place selection mapping). That is, the sequence of
outcomes produced exhibit no patterns that can be utilized to predict systematically the
next integer in an ongoing sequence of bets.

Von Mises’ notion of a place-selection mapping was rather vague and was made more
precise by Church (1940) using the idea of a recursive selection rule. The recursive nature
of the place selection mapping is crucial for mathematical (the algorithmic computabil-
ity) as well as modeling purposes (Independence and Identical Distribution are defined
in terms of a pre-specified ordering of the random variables). The version as improved by
Church amounts to saying that there is no recursive place-selection algorithm w(.) which
selects an infinite sub-sequence {w(vk,k)}`

k51 whose relative frequencies of the attributes
converge to a set of different limits than those of the whole sequence (see Stigum (1990)).
It turned out that even the new version of a collective, as improved by Church, had major
problems. Ville (1939) showed that there exist sequences which satisfy the conditions of a
collective but a judicious choice of a gambling strategy can still make money for the
gambler. Moreover, certain limit theorems relating to the fluctuations of the limits of
sequences do not hold for the Von Mises–Church collectives; see the Law of Iterated
Logarithm in chapter 9.

Von Mises’ collective was an attempt to build a bridge between the concept of proba-
bility and what we called chance regularity patterns in this book. The convergence condi-
tion purports to bridge the gap between relative frequencies and the notion of a
probability model such as (10.2) where the probabilities can be functions of some
unknown parameter(s) u. The randomness condition purports to bridge the gap between
the sequence of observations and the notion of a random sample (a set of IID random
variables). Von Mises’ randomness purports to operationalize the notion of IID random
variables by associating independence with the invariance to the place-selection in a
sequence of realizations.

Von Mises’ attempt has been criticized severely over the years by many philosophers
and mathematicians on a number of grounds. The most crucial weaknesses of his
formulation being the ones inherited from the frequency definition of probability: the
convergence condition has zero empirical content because it cannot be verified or

1 p,

1 2 p,
2
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falsified. In his attempt to reply to this charge Von Mises invoked a number of arguments
including the speed of convergence of such sequences and the Law of Large Numbers.
As argued in the previous section, however, both of these arguments have been criticized
as suffering from circularity because they employ probabilistic statements to define prob-
ability (see above for the case of the WLLN). For example invoking the Strong LLN:

P limN→` 5p< 51,

presupposes the notion of convergence with probability one! Renyi (1970) disagrees by
saying that the latter convergence is a purely mathematical concept and there is no
circularity in the argument (see above). Be that as it may, we conclude this subsection by
stating that a Von Mises collective does have some empirical content because, as argued
below, the IID assumptions are testable in practice (see also chapters 14–15 on testing).

10.3.2 The Bayesian approach: De Finetti’s representation theorem

As mentioned above, the degrees of belief interpretation of probability has its roots in the
attempt to quantify judges’ degree of belief, in view of the evidence presented in a court.
Utilizing a combination of intrinsic evidence (information based on the nature of things)
and from the extrinsic evidence (testimonies), a studious judge forms a degree of sub-
jective belief with regard to the guilt or innocence of the accused. Leibniz (1705) viewed
the calculus of probabilities as a mathematical translation of legal reasoning that care-
fully proportioned degrees of belief to the kinds of evidence submitted.

The problem facing the mathematicians of that time, including the Bernoullis (James
and Nicholas) and Poisson, was to find ways to combine the two sources of information
so as to quantify this degree of belief into probabilities. There were endless discussions
on the relative merits of intrinsic versus extrinsic evidence with Hume (1739) using the
case of miracles to nullify the value of intrinsic evidence by arguing that “miracles are by
definition violations of the laws of nature, and therefore their intrinsic probability is
zero.”

The first attempt to quantify this degree of belief was made by James Bernoulli using
his WLLN (10.1). By interpreting the probabilities with respect to which the limit is
taken as the quantification of degrees of belief, Bernoulli thought that (10.1) provided
the way to utilize the evidence in the form of the relative frequencies to quantify them. As
the number of observations (repetitions) increases the degree of belief increases but
there was no clear answer to the question: How many observations warrant what degree
of belief ? The real problem with Bernoulli’s argument was much deeper. What the
WLLN could give an answer to is the question: Given the probability Pr(A), how likely is
it that the sequence of relative frequencies would approximate it to any degree of preci-
sion? The question posed by the quantification attempt was the converse: Given the
observed frequency how likely is it to approximate the unknown probability? This
became the problem of inverse probabilities and solutions were given independently by
both Bayes (1763) and Laplace (1774) in the form of the what is known today as Bayes’
theorem (see chapter 2):

Pr(A |e)5 , for Pr(e).0,Pr(A)·Pr(e |A)
Pr(e)

22N,

N11
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where Pr(A |e) denotes the conditional probability of event A given the evidence e, Pr(A)
is the a priori probability of A, Pr(e) is the weight of the evidence, and Pr(e |A) the weight
of the evidence given A. Bayes’ theorem can be seen as a coherent way one can update
one’s degrees of belief relating to an event A in the light of evidence e.

This result, although intuitively appealing for quantifying degrees of belief, was
largely ignored for the analysis of statistical observations because of the subjective inter-
pretation of probability. Jeffreys (1939) should be credited with renewing interest in
Bayes’ theorem as a systematic way to revise one’s degrees of belief in view of the evi-
dence furnished by observations. This gave rise to what is known today as the Bayesian
approach to statistical inference with Ramsey, De Finetti, and Savage as the main pio-
neers.

The first attempt to provide a bridge between observable phenomena exhibiting
chance regularity and statistical models within the degrees of subjective belief paradigm
was made by De Finetti (1937). Within this paradigm, probability distributions such as
(10.2), reflect an individual’s beliefs about a feature of the real world; they do not reflect a
feature of the real world itself.

What distinguishes the degrees of belief approach to inference from that of other
approaches is that any parameter u constitutes part of the same system of an individ-
ual’s beliefs and thus it is a random quantity defined on the same probability space
(S,I,P(.)), where S is the outcomes set, I is the event space of interest (a s-field), and
P(.) :I→ [0,1], i.e.

u(.) :S→Q, such that u21 (Bu)[I for all Bu[B(Q),

where B(Q) is a Borel-field associated with Q. Moreover, as in the case of an ordinary
random variable X(.),u(.) induces a probability set function, via Au5u21(Bu), of the
form:

P(Au)5Pu21(Bu)5Pu(Bu).

In the case where Q,R we can define the cdf and density functions of u, say F(u) and
f(u), respectively.

N : when we need to emphasize the random nature of u within the Bayesian
framework we will use the notation u(s), s[S.

De Finetti’s modus operandi for operationalizing the notion of a simple statistical
model was the concept of exchangeability encountered in chapter 8 and repeated here for
convenience.

Exchangeability A stochastic process {Xt, t[T} is said to be exchangeable if for every
finite subsequence (X1,X2,…,Xn), the joint distribution of each subset (X1,…,Xm),
m51,2,…,n, is the same for any permutation of (1,2,…,m) or, equivalently, any re-
ordering of (X1,…,Xm). That is, the joint distribution of any subset (X1,…, Xm) of (X1,
…,Xn)  depends only on m (for m51,2,…,n) but does not depend on which m random
variables are involved.

This suggests that exchangeability is an extension of the notion of Identical distribu-
tion which involves only the marginal distributions. Exchangeability involves all joint
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distributions (k random variables at a time, where k51,2,3,…) as well because it does
not presuppose Independence.

Using the concept of an exchangeable sequence of random variables De Finetti was
able to prove the following remarkable theorem for Bernoulli distributed random vari-
ables.

De Finetti’s representation theorem (Bernoulli) The sequence of Bernoulli distributed
random variables {Xk}`

k51 is exchangeable if and only if for any n.0 the joint density
function of the random variables involved takes the form:

f(x1,x2,…,xn)5
n

k51uxk(12u)12xkdF(u)5 u n
k51

xk(12u) n
k51

(12xk)dF(u),

(10.3)

where F(u) denotes a proper cdf over the interval (0,1) and dF(u) can be thought of as
equivalent to f(u)du (in the sense of the Stieltjes integral) when F(u) is continuous.
Furthermore, exchangeability of {Xk}

`
k51 implies that:

(ii) P lim
n→`

n
k51Xk(s) 5u(s) 51,

where (ii) is evaluated with respect to any mixing cdf F(u), irrespective of its nature.

As it stands, the importance of this theorem is not apparent, and thus we need to add
some explanatory comments. The result in (10.3) suggests that the random variables
(X1,X2,…,Xn) are conditionally IID given u(s)5u. Using the notion of conditional inde-
pendence introduced in chapter 6 in the case of a sequence of random variables {Xk}

`
k51,

we say that this process is conditionally independent of its past given Y5y, with condi-
tional density f(x |y) and marginal density f(y), when the joint density of (X1,X2,…,Xn)
takes the form:

f(x1,x2,…,xn)5
y[RY

n

k51 f(xk |y) · f(y)dy.

Thus, conditional independence reduces to: f(xk |y,xk21,xk22,…,x1)5 f(xk |y).
The identically distributed property follows from the fact that in (10.3) all the condi-

tional densities have the same parameter u.
An equivalent but more expressive way to state the above representation theorem is in

terms of the sum of the sequence: Sn :5 n
k51Xk which represents the number of suc-

cesses in n exchangeable Bernoulli trials:

(i) f(sn5r)5 ur(12u)(n2r)dF(u),

(ii) F(u)5 lim
n→`

P Sn#u . (10.4)

It turns out that this form of the representation theorem is somewhat misleading
because it seems to suggest that the probability distribution F(u) of u arises naturally in
this context. As shown in Spanos (1996b), this arises largely because of the restrictive
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nature of the Bernoulli distribution where the parameterization of the empirical cumu-
lative distribution is unique. To see this let us consider a more general form of the repre-
sentation theorem.

De Finetti’s representation theorem (non-parametric) The sequence of random variables
{Xk}

`
k51 is exchangeable if and only if the random variables are IID conditional on the

limit of their empirical cumulative distribution function (ecdf) F̂n(x) defined by:

F̂n(x)5 :5
n

i51 I(2 `,x]Xi, x[R,

where I(2`,x](Xi) is the indicator function defined by:

I(2`,x](Xi)5
1 if Xi[(2`,x],50 if XiÓ(2`,x].

The theorem takes the form of the existence of a probability set function Q(.) (see
Bernardo and Smith (1994), p. 177):

P(X1#x1,X2#x2,…,Xn#xn)5 F(xk)dQ(F), (10.5)

P is the space of all distribution functions in R and:

Q(F)5 lim
n→`

P(F̂n). (10.6)

This is referred to as the non-parametric version of the representation theorem because
the cdf F(.) does not involve any parameters explicitly. This form of the representation
theorem says that exchangeability of the sequence of random variables {Xk}

`
k51 is equiv-

alent to assuming that this sequence constitutes a random sample conditional on an
unknown cdf F(x). The latter is directly related to the limit of the empirical distribution
function (ecdf) in the sense given in (10.5)–(10.6). In other words, conditional on the par-
ticular form of the cdf, F(x), as suggested by the ecdf as the number of observations
increases, exchangeability coincides with IID. The question that naturally arises at this
stage is how do the unknown parameters u come into the picture? In the case of
Bernoulli distributed random variables the parameter u entered the result because the
cdf has a unique parameterization. In general, however, this is rarely true. As it stands,
the form of the representation theorem given by (10.5)–(10.6), suggests the existence of
some F(x) in P, the space of all distribution functions in R, whose nature is determined
by the limit of the F̂n(x). In view of the fact that:

Q(F) :B(R)→P, and, P(F̂n) :B(Rn)→P,

F(x) can be interpreted as an infinite dimensional unknown element of P. In a certain
sense this poses the problem of specification in its most general form: choosing the distri-
bution that describes the probabilistic structure of a sequence of observable random
variables {Xk}

`
k51. De Finetti’s theorem says that in the case of exchangeable random

variables the modeler should look no further than the limit Q(F) of the ecdf. If the latter
assigns all its probability to the set of Normal distributions, then F(x) is finitely

p
n
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parameterized in terms of certain parameters, say u :5 (m,s2) [R3R1 . In this sense a
parametric family of cdfs:

FF5{F (x;u), u[Q, x[RX}, (10.7)

constitutes a mapping of the form:

P0→Q,Rm, 0,m,n, P0,P.

De Finetti’s representation theorem (parametric) The sequence of random variables
{Xk}

`
k51 is exchangeable if and only if:

P(X1#x1,X2#x2,…,Xn#xn)5
u[Q

F(xk;u)dQ(u), (10.8)

where u[Q defines the space of the relevant distribution functions in P0. According to
Bernardo and Smith (1994, p. 179):

The general form of representation for real-valued exchangeable random quantities is there-
fore as if we have independent observations x1,x2,…,xn conditional on F, an unknown (i.e.
random) distribution function (which plays the role of an infinite dimensional parameter in
this case), with a belief distribution Q for F, having the operational interpretation of what we
believe the empirical distribution function would look like for a large sample…

N :
(i) The parameters u can also be viewed as finite parameterizations of F(x) via its

moments. This is exemplified by Feller (1971) in his proof of De Finetti’s repre-
sentation theorem by showing that the representation is inextricably bound up with
the moments of the sequence {Xk}

`
k51 (see also Diaconis and Freedman (1990)).

(ii) In the case of a Bernoulli sequence the parameter u was built into the probability
set function directly and thus appeared as the limit of the first sample moment. In
general, however, without prior information relating to the distribution of the
sequence {Xk}

`
k51, the unknown parameters do not arise naturally as functions

related to F(x).

The question that naturally arises at this stage is: What about the subjective (degrees
of belief) interpretation of probability adopted by De Finetti? The fact of the matter is
that the only subjective judgment involved is in going from P(F̂n) to Q(F); a judgment
which has to be made by the modeler in view of the observations. This, however is not
the same thing as choosing a prior distribution for u, as it seems in the Bernoulli form of
the representation theorem. The subjective belief acquires empirical content when it is
tested against the observations. The judgment is subjective but testable against the
observations at the misspecification stage of the modeling. The Bernoulli representa-
tion theory is somewhat misleading because it creates the impression that there is a
direct relationship between Q(F) and a particular u, which is certainly not true. In the
general case the mixing distribution is the limit of the ecdf whose relationship to any
parameters is neither direct nor obvious. Moreover, any distributions relating to

p
n
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unknown parameters will be induced distributions via the probability attached to the
observables.

A direct comparison between (10.5) and (10.8) brings out the main difference between
parametric from non-parametric statistical models. In a nutshell in the former case the
modeler postulates a probability model of the form (10.7) and thus restricts the set of all
possible models to a subset P0, but in the latter case the modeler works with F(x)[P
directly, where P is an infinite dimensional space. This will be discussed further in section
6 below.

10.3.3 Von Mises versus De Finetti

Having discussed Von Mises’ and De Finetti’s attempts to build a bridge between the
mathematical concept of probability and the empirical notion of chance regularity let us
take stock of their similarities and differences.

In contrast to Von Mises’ randomness, which places the emphasis on imposing an
extreme dependence restriction (the impossibility of devising a winning gambling strat-
egy), De Finetti’s exchangeability places the emphasis on an extreme heterogeneity
restriction. Both concepts, however, implicitly involve a certain restriction from the other
category. Randomness involves (asymptotic) homogeneity of the marginal distributions
of (X1,X2,…,Xn) and exchangeability allows for a very restricted form of dependence;
the form of dependence which arises from the symmetry of equidimensional joint distri-
butions. The essence of De Finetti’s theorem is: conditional on the limit of the ecdf, the
exchangeable sequence becomes an IID sequence. The only apparent difference seems to
be Von Mises’ convergence condition which does not seem to play any role in De Finetti’s
result. A moment’s reflection, however, reveals that the existence of the limit of the ecdf
constitutes an implicit assumption whose only difference from Von Mises’ is that it
involves the ecdf and not the relative frequencies directly. In view of this, it should come
as no surprise to learn that exchangeability of the sequence {Xk}

`
k51 for all k.0 implies

that, with probability one, the underlying experiment will give rise to a Von Mises collec-
tive (see Spielman (1976)).

In the next section we proceed to discuss a tentative bridge between the mathematical
concept of a statistical model and the empirical notion of chance regularity which
borrows several elements from both of the above attempts. The Von Mises–Church col-
lective is relied upon to provide an intuitive formalization of the chance component and
the De Finetti representation theorem is used to build a bridge between the regularity
component and the concept of a probability model. In a nutshell, the chance component
is related to numerical sequences which when tested appear to satisfy the probabilistic
assumptions postulated a priori. The quintessential form of a chance sequence is a
sequence of Uniform, Independent, and Identically Distributed (UIID) random vari-
ables. Other forms of chance sequences can be viewed as transformations of this primary
form. Hence, the emphasis will be placed on UIID chance sequences. The regularity
component will be related to the empirical cumulative distribution function and its
empirical content will be established using a number of limit theorems which do not
suffer from the apparent circularity noted above in relation to the Law of Large
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Numbers. The De Finetti representation theorem will also be reinterpreted to provide
the foundation of an alternative approach to the specification of statistical models for
observational data: the probabilistic reduction approach.

10.4 Toward a tentative bridge

It is no coincidence that, in chapter 2, we chose to motivate the mathematical theory of
probability by formalizing the notion of a random experiment %, defined by the condi-
tions:

[a] all possible distinct outcomes are known a priori,
[b] in any particular trial the outcome is not known a priori but there exists a percept-

ible regularity of occurrence associated with these outcomes, and
[c] it can be repeated under identical conditions.

The latter represents the simplest form of a stochastic phenomenon: a phenomenon
which exhibits chance regularity. It must be said that condition [c] prejudices our discus-
sion in favor of the frequency interpretation of probability. Other interpretations of
probability such as the degrees of belief interpretation do not necessarily need such a
condition. We will see, however, that De Finetti’s attempt requires an infinite sequence of
trials.

The final formalization of the conditions [a]–[c] defining a random experiment took
the form of a simple statistical model as specified above. As mentioned many times in the
previous chapters, the statistical model represents a chance mechanism that purports to
model the stochastic mechanism that gave rise to the observed data by capturing the
systematic information in the latter. The chance mechanism, however, is not fully defined
before the values of the unknown parameters are determined. Hence, the unknown para-
meter(s) u constitute the focus of the modeler’s attention in statistical inference. In a
certain sense the original uncertainty in relation to the particular outcomes of the sto-
chastic phenomenon has been reduced to uncertainty in relation to these unknown para-
meters. Once the value of u is (somehow) established utilizing the observed data, the
statistical model can be used to draw conclusions beyond the observed data in hand. This
is the built-in inductive argument we referred to throughout the discussion in the previ-
ous chapters.

It should be emphasized once more that a statistical model is a purely mathematical
construct but throughout the discussion in chapters 2–9 we purposefully kept one eye on
the connection between these mathematical concepts and their empirical counterparts
by relating them to chance regularity patterns in data plots. The first attempt to build a
bridge between the mathematical construct of a simple statistical model and certain
chance regularity patterns was made in chapter 5 where a number of important theoret-
ical concepts were related to observed data via the graphical display of a t-plot and
related plots. This tentative bridge was reinforced in chapters 6–7 with some additional
links established between theoretical concepts, such as dependence, and real data using
the graphical display of a scatterplot and related plots. In both cases, however, we used
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intuitive arguments and no attempt was made to provide a more formal link between the
observed data and the theoretical concepts.

10.4.1 What do we mean by chance regularity?

As argued in chapter 2, the essence of chance regularity comes in the form of two
entwined characteristics of stochastic observable phenomena:

chance: an inherent uncertainty relating to the occurence of particular out-
comes,

regularity: an abiding regularity of occurence associated with the several out-
comes.

As suggested in chapter 5, the empirical characterization of chance can be viewed as the
unpredictability of any one observation given the other observations. This can be seen in
figure 10.1 (reproduced from chapter 5) as the observer moves from the first to the last
observation and attempts to predict the next observation given the past; the direction of
time can be easily reversed without changing anything. The empirical characterization of
regularity comes in the form of the relative frequencies shown in figure 10.1 as the pile
created when rotating the t-plot and letting the points drop vertically.

10.4.2 Formalizing chance?

Giving a precise definition to the notion of chance (randomness) has proved even more
elusive than the definition of another fundamental feature of nature: beauty. Like
beauty, chance cannot be defined but we think we can recognize it when we see it. Unlike
beauty, however, recognizing chance in science should not be left to the eye of the
beholder. With that in mind, let us consider a number of sequences and try to recognize
the chance component of chance regularity.

Let us begin the discussion with the following two sequences of integers 0–9:

s15{4,1,4,2,1,3,5,6,2,3,7,3,0,9,5,0,4,8,8,0,1,6,8,8,7,2,4,2,0,9,6,9,8,
0,7,8,5,6,9,6,7,1,8,7,5,3,7,6,9,4,8,0,7,3,1,7,6,6,7,9,7,3,7,9,9,0,7,
3,2,4,7,8,4,6,2,1,0,7,0,3,8,8,5,0,3,8,7,5,3,4,3,2,7,6,4,1,5,7,2,7,…},

s25{1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,2,
8,8,4,1,9,7,1,6,9,3,9,9,3,7,5,1,0,5,8,2,0,9,7,4,9,4,4,5,9,2,3,0,7,8,
1,6,4,0,6,2,8,6,2,0,8,9,9,8,6,2,8,0,3,4,8,2,5,3,4,2,1,1,7,0,6,7,9,…}.

A close look at these sequences reveals that at first sight they appear to exhibit no
recognizable patterns and intuition suggests that they seem to constitute chance
sequences. In contrast, the sequence:

s35{8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,…},
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is clearly not a chance sequence because we can easily recognize the simple pattern of a
repeated digit. Deciding on whether the next sequence is a chance sequence is slightly less
obvious:

s45{5,4,8,3,8,7,0,9,6,7,7,4,1,9,3,5,4,8,3,8,7,0,9,6,7,7,4,1,9,3,
5,4,8,3,8,7,0,9,6,7,7,4,1,9,3,5,4,8,3,8,7,0,9,6,7,7,4,1,9,3,
5,4,8,3,8,7,0,9,6,7,7,4,1,9,3,5,4,8,3,8,7,0,9,6,7,7,4,1,9,3,
5,4,8,3,8,7,0,9,6,8,…}.

Sequence s4 is not a chance sequence because after 15 integers the same pattern of inte-
gers is repeated. This particular sequence raises the crucial issue of having a large enough
realization of a sequence in order to notice the repeated pattern. For example the
sequence s5 shown below appears to be a chance sequence.

s55{3,1,9,5,8,7,6,2,8,8,6,5,9,7,9,3,8,1,4,4,3,2,9,8,9,6,9,0,7,2,1,6,4,
9,4,8,4,5,3,6,0,8,2,4,7,4,2,2,6,8,0,4,1,2,3,7,1,1,3,4,0,2,0,6,1,8,
5,6,7,0,1,0,3,0,9,2,7,8,3,5,0,5,1,5,4,6,3,9,1,7,5,2,5,7,7,3,1,9,5,…}.
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However, this is misleading because, as shown below, if we add another 30 terms in the
sequence it is apparent that after 96 terms the sequence repeats itself!

s55{3,1,9,5,8,7,6,2,8,8,6,5,9,7,9,3,8,1,4,4,3,2,9,8,9,6,9,0,7,2,1,6,4,
9,4,8,4,5,3,6,0,8,2,4,7,4,2,2,6,8,0,4,1,2,3,7,1,1,3,4,0,2,0,6,1,8,
5,6,7,0,1,0,3,0,9,2,7,8,3,5,0,5,1,5,4,6,3,9,1,7,5,2,5,7,7,
3,1,9,5,8,7,6,2,8,8,6,5,9,7,9,3,8,1,4,4,3,2,9,8,9,6,9,0,7,2,1,6,4,9,…}.

With the above examples in mind we can say that the essence of chance is the apparent
lack of recognizable patterns or irregularity which renders the prediction of the next
integer at any point of the sequence with any certainty impossible. What the sequences
s3, s4 and s5 have in common is that, in view of what is observed, one can easily guess the
rest of the integers with certainty. These should be contrasted with sequences s1 and s2

which do not exhibit any discernible patterns to help us guess the next few digits with any
certainty. How do we operationalize this notion of chance? Intuitively, we follow Von
Mises and think of a gambling machine that fabricates (somehow) such sequences of
integers and we are asked to place bets on the next number to be produced with the odds
chosen by the machine. If there is no winning strategy, i.e. over the long run, the machine
cannot be beaten by some strategy, the sequence exhibits chance regularity behavior.
This involves not just the unpredictability of the next integer in the sequence but also
the fact that the odds reflect the long-run relative frequencies of the various integers.
Whatever the odds, no machine can make money using sequences such as s3 or s4!

The above intuitive explanation of chance, however, is not enough to provide a formal-
ization of the concept. Several important recent developments have shed some additional
light on the notion of chance regularity by quantifying the notion of lack of patterns. The
most promising of these developments is based on the idea of Kolmogorov Complexity
(see Kolmogorov (1965,1969)) which quantifies the notion of lack of patterns in terms of
whether the sequence can be compressed (algorithmically). For instance, the sequence s3

can be easily generated by a very simple algorithm in contrast to s1 and s2 where the only
way to generate them is apparently to list their elements; see Solomonoff (1964), Chaitin
(1966), Martin-Lof (1966a,b), Li and Vitanyi (1997) for further discussion. In this
chapter we will adopt a more pragmatic attitude toward chance sequences. We consider a
sequence as a chance sequence if when the probabilistic assumptions underlying the
sequence are tested using a finite realization they are not rejected. It goes without saying
that testing involves more formal ways to assess the chance attributes of sequences such
as s1 and s2 than just eye-balling them (see chapter 15).

10.4.3 Formalizing regularity?

Before we can decide whether sequences s1 and s2 are amenable to modeling using some
statistical model, we need to establish the regularity attribute at the aggregate level. As
mentioned above, this regularity has to do with the odds offered by the gambling
machine generating these sequences. For example, in the case of the data shown in figure
10.1 if the odds offered for values around zero (0)  are the same as those around four (4)
then somebody will make money in the long run by betting on the former values simply
because the values around 0 come up much more often than those around 4. As
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mentioned above, the odds (ö<,<51,2,…,m) reflect the probabilities (p<,<51,2,…,m)
only in the case where:

ö<5 , <51,2,…,m.

Hence, when these odds are offered no one can make money in the long run. Needless to
say that we abstract from any personal attitudes toward risk on behalf of the gamblers.

The question that arises at this stage is whether in addition to the apparent chance
attribute the sequences s1 and s2 also enjoy a regularity attribute. Clearly, any decision
with regard to that should be made on the basis of whether the observed part of the
sequence suggests a possible abiding regularity concerning occurrence of different out-
comes. For large enough sequences we can consider the relative frequencies of the
various integers involved and establish whether, as we increase the number of terms, the
relative frequencies involved stabilize at certain constant values.

Consider the sequence s1 first. The relative frequencies of the integers 0–9 for s1, using
the first 100 terms, yielded:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s1) 0.100 0.070 0.080 0.110 0.090 0.070 0.100 0.180 0.120 0.080nn

The general picture leaves some doubts with regard to the conjecture of a uniform distri-
bution; the relative frequency of 7 is more than twice that of 5. However, increasing the
number of terms to 1,000 it appears as though the conjecture has some basis:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s1) 0.108 0.098 0.108 0.083 0.100 0.104 0.091 0.103 0.113 0.092

This becomes more apparent as we increase the number of terms to 10,000:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s1) 0.095 0.100 0.100 0.098 0.102 0.100 0.103 0.096 0.103 0.102

The sequence s1 after 50,000 terms yields relative frequencies which appear to converge
toward , indicating a (possibly) uniform distribution:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s1) 0.099 0.101 0.100 0.100 0.101 0.103 0.099 0.099 0.099 0.100

Let us consider the sequence s2. Using the first 100 terms the relative frequencies for
the same integers are:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s2) 0.080 0.080 0.120 0.110 0.100 0.080 0.090 0.070 0.130 0.130

As we can see, the relative frequency of 8 is almost twice as much as that of 7. On the
other hand, the relative frequencies using the first 1,000 terms yielded:

1
10

1 p,

1 2 p,
2
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Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s2) 0.093 0.116 0.103 0.102 0.094 0.095 0.094 0.095 0.101 0.105

The possible convergence is more apparent in the case of the first 10,000 terms of the
sequence whose relative frequencies are:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s2) 0.097 0.102 0.102 0.975 0.101 0.105 0.102 0.969 0.949 0.101

Again, the sequence s2 after 50,000 terms yields relative frequencies which appear to con-
verge towards a uniform distribution:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s2) 0.101 0.101 0.097 0.099 0.100 0.101 0.100 0.100 0.101 0.100

On this evidence one might proceed to conjecture that for both sequences the regular-
ity attribute can be modeled using a (discrete) uniform distribution:

f(x)5 , and F(x)5 , x50,1,…,9.

In a certain sense this is the most basic form of chance regularity, with the gambling
machine offering the same odds for all 10 integers.

It must be obvious to the reader that the sequences s1 and s2 were not generated by a
regular icosahedron (symmetric die with twenty faces) with the same digit on opposite
faces. Instead, they were generated using the sequence of digits from the decimal expan-
sions of two irrational numbers:

s15decimal expansion ( ), s25decimal expansion (p).

By the same token the sequences s4 and s5 represents the first 100  digits of the decimal
expansion of the rational numbers and , respectively. It is well-known from ele-
mentary number theory that the decimal expansions of all rational numbers is either
finite or periodic but that of irrational numbers is non-periodic (see Courant and
Robbins (1941)).

The conjecture that the regularity associated with the sequences s1 and s2 comes in the
form of the Uniform distribution is of considerable interest in mathematics (number
theory) because it concerns the decimal expansions of irrational numbers. For some
additional evidence in relation to the regularity of the decimal expansions of irrational
numbers consider yet another sequence of integers which represent the decimal expan-
sion of the irrational number e:

s65{7,1,8,2,8,1,8,2,8,4,5,9,0,4,5,2,3,5,3,6,0,2,8,7,4,7,1,3,5,2,6,6,2,4,
9,7,7,5,7,2,4,7,0,9,3,6,9,9,9,5,9,5,7,4,9,6,6,9,6,7,6,2,7,7,2,4,0,7,
6,6,3,0,3,5,3,5,4,7,5,9,4,5,7,1,3,8,2,1,7,8,5,2,5,1,6,6,4,2,7,4,…}.

31
97

17
31

Ï2

x 1 1
10

1
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The relative frequencies of the integers 0–9 using the first 100 terms is:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s6) 0.050 0.060 0.120 0.080 0.110 0.130 0.120 0.160 0.070 0.100

The frequencies using the first 1000 terms are:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s6) 0.100 0.096 0.097 0.109 0.099 0.086 0.099 0.099 0.103 0.112

For the first 10,000 elements of the sequence s6 the relative frequencies become:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s6) 0.097 0.099 0.100 0.101 0.098 0.099 0.108 0.101 0.099 0.097

Increasing the terms to the first 50,000, the relative frequencies appear to converge to 0.1:

Integer value 0 1 2 3 4 5 6 7 8 9

Rel. frequency (s6) 0.099 0.101 0.099 0.101 0.099 0.101 0.103 0.099 0.099 0.099

Having let the rabbit out of the hat, several important questions arise naturally.
The first question concerns our conjecture that the relative frequencies of the digits

0–9 in the decimal expansions of irrational numbers converge to the uniform distribu-
tion. This is an educated conjecture with numerous precedents in the history of
mathematics. The most famous precedent is arguably Gauss’s law of the distribution of
prime numbers; a prime number is an integer greater than 1 which has no divisors (among
integers) other than itself and one. Gauss conjectured in 1849 that the number of prime
numbers not exceeding x for very large values of x is approximately equal to:

F(x). du, for integer x.106.

Additional evidence for the conjecture was given by Chebyshev in 1854 who provided
bounds for the approximation:

F(x). , for integer x.106.

The conjecture was proved fifty years later by Hadamard and Poussin in 1896; see Klein
(1972) for a brief history of this result. The major difficulty of the proof is the existence
of a smooth function f(x) such that F(x). ∫x

2 f(u)du. This is indeed the essence of the
problem in proving the conjecture hazarded above.

The second question concerns the use of deterministic mathematical formulae (algo-
rithms) to generate chance sequences! In a certain sense there is no uncertainty with
regard to the next digit in the decimal expansion of because the algorithm canÏ2

x
ln x

Ex

2

1
ln u
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produce it with certainty! Does this mean that all the discussion relating to these
sequences and chance regularity is nonsense? The answer is clearly not because the
chance attribute of sequences can only be assessed in terms of the initial finite realization
of the sequence. If the information that this is the decimal expansion of a specific irra-
tional number is not available, there is no way one can guess the generating rule by
looking at these sequences. To put it differently if we were to leave out the first several
dozen digits of the decimal expansion of a particular irrational number no one will be
able to guess the irrational number and hence the generating algorithm. This is similar to
the situation the modeler finds herself in when faced with observational data from an
ongoing data generating process that started some time ago and will continue into the
future. The assessment on whether a certain sequence is a chance sequence or not has to
be made on pragmatic grounds by testing the probabilistic assumptions defining its
chance regularity features. In the above cases we need to test three basic assumptions:
uniformly distributed, independent and identically distributed. As shown in chapters
5–9 there are numerous forms of chance regularity sequences based on different pro-
babilistic assumptions.

The above discussion suggests that both chance and regularity are features which
come up not just in nature (games of chance, counts of emitted particles, etc.) but also in
man-made notions such as the decimal expansions of irrational numbers or the distribu-
tion of prime numbers. The connection between the basic form of chance regularity and
irrational numbers was first discovered by Weyl (1916) who proposed sequences
obtained by considering the fractional part of multiples of an irrational number a:

{uk :5fractional part of [ak], k51,2,…}.

In other words, one multiplies the irrational number a by 1,2,3,4,… and retains only the
decimal part of the multiplication. The result will be a sequence of real numbers between
0 and 1 which will be Uniformly distributed over this interval. Using the terminology
introduced in chapter 5, this can be expressed in the language of mathematical connois-
seurs:

{uk :5 [ak] modulo 1, k51,2,…,T}.

This suggestion has eventually led to numerous algorithms of the form:

(i) {uk11 :5 [auk] modulo 1, k51,2,…},
(ii) {uk11 :5 [a1uk]m modulo 1, m.0, k51,2,…},
(iii) {uk11 :5 [buk1c] modulo m, m.0, k51,2,…},

for generating what we called in chapter 5 pseudo-random numbers: numbers which
behave as if they were a realization of an IID sample from a Uniform distribution.

As mentioned above, such pseudo-random sequences constitute the quintessential
form of a random sequence because they can be transformed into many other forms of
chance regularity. As argued in chapter 5, the probability integral transform and its
inverse provide the modeler with a way to transform Uniform IID processes into
(continuous or discrete) IID processes with arbitrary distributions. For convenience we
repeat these results below.
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Probability integral and its inverse transformations For any continuous random variable
X, with a cdf FX(x) such that y5FX(x) is invertible and x5F X

21(y).

(a) For the random variable Y5FX(X),

Y5FX(X),U(0,1). (10.9)

(b) Let Y,U(0,1) and define X5FX
21(Y). Then X has a distribution with cdf FX(.).

Formally we should call the sequences s1 and s2 pseudo-random sequences because they
are special cases of such deterministic algorithms whose fabrication of numbers appears
to exhibit chance regularity and the algorithm cannot be deduced from the sequences
themselves. As such the sequences s1 and s2 are not very good because their regularity
attribute is not apparent in relatively small runs of 100 terms; typical sample sizes for real
observations. A lot of effort has gone into algorithms designed to give rise to sequences
of pseudo-random numbers which exhibit both chance and regularity in small runs; for
further discussion of such algorithms see Niederreiter (1992). Part of the effort has been
channeled into testing the IID attributes of such sequences. Several tests have been devel-
oped including the Kolmogorov distance test for the distributional attribute, the gap
and run tests for Independence and the Kiefer test for homogeneity (see Knuth (1981),
Niederreiter (1992) for the details). Some of these tests will be discussed in chapter 15.

The final question concerns the question posed at the beginning of this subsection. If
the conjecture relating to the relative frequencies of the integers, hazarded above, turns
out to be unprovable. How do we formalize the regularity noticed in all of the sequences
we rendered chance sequences? The notable efforts by Von Mises and De Finetti focused
primarily on formalizing the notion of probability. The modus operandi for Von Mises
was the concept of a collective and for De Finetti it was the concept of exchangeability.
In what follows we use the concept of an empirical cumulative distribution function (ecdf)
instead of relative frequencies as the modus operandi. Instead of seeking the convergence
of the relative frequencies at different points in an attempt to define the notion of proba-
bility at a point, we proceed to consider the convergence of cumulative frequencies over
the whole of the real line. As noted above, De Finetti’s representation theorem is implic-
itly based on the convergence of the ecdf. With that in mind we proceed to discuss the
empirical distribution function in some detail.

The empirical cumulative distribution function

Let h(z) be the heaviside function defined by: h(z)5
0, if z,0,5 1, if z$0.

Define the empirical stochastic process {Fn(x,s)}`
n51 (see chapter 8) by:

Fn(x,s)5
n

k51h(x2Xk(s)), x[R, s[S, (10.10)

or equivalently in terms of the indicator function IA(x) defined above:

Fn(x,s)5 n
k51I(2`,x](Xk(s)), x[R, s[S. (10.11)o1

n

o1
n
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As a stochastic process (see chapter 8) this can be thought of as a mapping:

Fn(.,.) : S3R→Un,

Un :5 0, , , …, , 1 .

Viewing (10.11) Fn(x,s) as the average of a set of random variables I(2`,x](Xi(s)),
i51,2,…,n, we note that these are IID Bernoulli distributed random variables with:

P(I(2`,x](Xi)51)5F(x), P(I(2`,x](Xi)50)5 [ 12F(x)].

Since, nFn(x,s)5 n
k51 I(2`,x](Xi(s)), we show in chapter 11 (lemma 1) that its distribution

is Binomial, i.e.

nFn(x,s),Bi(n,F(x)), x[R.

Hence, the first two moments of this process take the form:

E(Fn(x,s))5F(x), Var(Fn(x,s))5 F(x)[12F(x)], x[R.

As argued in chapter 8, in order to understand the structure of a stochastic process we
should look at it from the two different viewing angles: the random variable and the
sample paths viewpoints. In the case of the above empirical stochastic process the
functional viewpoint is particularly important. For a given realization of the sample
X :5(X1,X2,…,Xn), say x :5(x1,x2,…,xn),(given s[S, say ), the above empirical sto-
chastic process reduces to the empirical cumulative distribution function (ecdf):

F̂n(x)5 5 n
k51 I(2`,x](Xk),

where the general form of this function is: F̂n(., ) : R→Un.
For a fixed x[R, say , the ecdf is:

F̂n( ,.) : S→Un,

and is just a random variable defined on the probability space (S,I,P(.)).
As mentioned above, in the present context given s[S refers to a sample realization

and thus F̂n(., ) refers to the relative frequency of the observations not exceeding the
value x. When viewed as a function of the observations (x1,x2,…,xn), F̂n(x) has the fol-
lowing properties:

(a) uniquely defined,
(b) its range is [0,1],
(c) non-decreasing and continuous on the right, and
(d) it is piecewise constant with jumps multiples of at the observed points,

i.e., it enjoys all the properties of its theoretical counterpart, the cdf. In terms of the
ordered sample (X[1]#X[2]#…#X[n]) (see chapter 4) and its realization:

x[1]#x[2]#…#x[n], (10.12)

the ecdf function F̂n(x) is defined by:

21
n1

s

x

x
s

o1
n

[no. of (X1,X2, …, Xn) whose realization do not exceed x]
n

s

1
n

o

6(n 2 1)
n

2
n

1
n5
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5
0 for x,x[1],

F̂n(x) :5 for x[k]#x,x[k11], k51,2,…, n21,

1 for x$x[n].

In the case where all the values in (10.12) are distinct, strict inequalities hold, and at each
point x[k] the function F̂n(x) has a jump equal to . In the case where some of the values
are the same, say m of them have the same value, then at that point the function F̂n(x) has
a jump equal to . That is, the ecdf assigns to each set Ak :5xk21,Xi#xk, on the real line
the proportion of the sample observations that lie in that set.

Kolmogorov (1933b), taking a break after founding the mathematical theory of prob-
ability with his monograph (published the same year), posed and answered the crucial
question regarding whether the ecdf F̂n(x) is a good approximation for the cdf F(x).

Kolmogorov’s distance theorem Let X1,X2,…,Xn,… be IID random variables with cdf
F(x). Choosing the distance:

Dn :5sup
x[R

* F̂n(x)2F(x) *,

Kolmogorov went on to prove that in the case where F(x) is continuous:

lim
n→`

P( Dn#z)5122 `
i51(21)k11e22k2z2, for z.0, uniformly in z. (10.13)

There are several things to  about this result.

(i) The usefulness of this result stems primarily from the fact that the asymptotic
approximation in the case of a continuous F(x) does not depend on the nature of
the latter. It is crucial to  that in the case of a discrete F(x) the asymptotic
approximation does depend on the nature of F(x).

(ii) The asymptotic approximation based on (10.13) is excellent for even small values
such as n.20.

(iii) In view of the fact that the range of values of the ecdf is Un :5 0, , , …, , 1 ,
taking the limit as n→` amounts to filling up the interval [0,1].

(iv) The asymptotic behavior of F̂n(x) is relatively easy to trace because the stochastic
process defined by:

{Zn(t)5 [F̂n(yt)2F(yt)], yt5F21(t), t[ [0,1]},

converges to a Brownian Bridge process (see chapter 8).
A moment’s reflection suggests that the above result can be used as the bridge between

the regularity component of stochastic phenomena, because the result in (10.13) renders
testable and thus bestows empirical content to the cdf. The convergence in (10.13)
involves probabilities (implicitly) but the convergence itself is convergence of ordinary
functions. This is in contrast to convergence in probability and almost sure convergence
underlying the LLN. Moreover, if we accept Renyi’s viewpoint, the various limit theo-
rems hold for the ecdf and can be used to corroborate the empirical content of the result
in (10.13).

Ïn

6(n 2 1)
n
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1
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Glivenko-Canteli theorem Let X1,X2,…,Xn,… be a sequence of IID random variables
with cdf F(x). Then:

P(lim
n→`

Dn50)51.

It should come as no surprise to learn that Renyi (1970), who will be quite happy to use
this theorem as the bridge between regularity in observations and a probability model
(see the quotation above), calls this the fundamental theorem of mathematical statistics.

Using the Law of Iterated Logarithm (see chapter 9) we can measure the speed of con-
vergence (or the extreme fluctuations) for the almost sure convergence of the Glivenko-
Canteli theorem.

Law of Iterated Logarithm (LIL) Let X1,X2,…,Xn,… be a sequence of IID random vari-
ables with cdf F(x). Then:

P lim
n→`

sup 5sup
x[R

51.

N that the LIL brings out the dependence of the convergence on the nature of F(x)
in the case where the latter is discrete, since in the case of a continuous cdf:

sup
x[R

5 .

In this case the LIL can be expressed in the form:

P lim
n→`

sup 51 51.

Central Limit Theorem (CLT) Let X1,X2,…,Xn,… be a sequence of IID random vari-
ables with cdf F(x). Then:

(F̂n(x)2F(x)),a N(0,F(x)[12F(x)]).

At this stage the discerning reader might be wondering why the emphasis on the ecdf
F̂n(x) even though the discussion in chapter 5 emphasized the smoothed histogram or
what we might call the empirical density function f̂ n(x). It turns out that there is a direct
link between the ecdf to the empirical density function in the sense that:

f̂ n(x)5 [F̂n(x1cn)2 F̂n(x2cn)], as cn n→
→̀ 0 and ncn n→

→̀ `,

where {cn}`
n51 is an appropriately chosen sequence of constants that goes to zero at a suit-

able rate.
For reference purposes we also note the relationship between the ecdf and certain

other forms of the empirical density function used in chapter 5.

(i) The rolling histogram takes the form:

f̃ n(x)5 [F̂n(x01(k11)cn)2 F̂n(x01kcn)], x[ [x01kcn,x01(k11)cn],
1

2cn

1
2cn

Ïn

23 Ï2n Dn

Ï2 ln ln n41

1
2ÏF(x)[1 2 F(x)]

2ÏF(x)[1 2 F(x)]3 Ïn Dn

Ï2 ln ln n41
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(ii) The kernel smoother takes the form:

f̂ n(x)5
n

k51K .

The above limit theorems refer to the asymptotic behavior of F̂n(x) at a particular
point X5x, but implicitly cover the interval (2`,x]. From this we can proceed to the
probabilities themselves by considering the behavior of F̂n(x) over an arbitrary set of
points:

{x0,x1,x2, ···,xN21,xN}, where x052` and xN5`,

{05 F̂n(x0), F̂n(x1), ···, F̂n(xN21), F̂n(xN)51}.

The empirical distribution function (ecdf) at a particular point xk is viewed as an
accumulation of random variables:

F̂n(xk)5
k

j51 nj, where nk :5
n

i51 I(xk21,xk](Xi(s)), k51,2,…,N.

The random variable I(xk21,xk](Xi(s)),denotes the number of realizations of the event
Ak :5{xk21,Xi ø xk} in n independent trials. Moreover:

E[I(xk21,xk](Xi(s)) ]5P(Ak)5pk, k51,2,…,N,

where the probabilities are defined via the cdf:

pk :5F(xk21)2F(xk), k51,2,…,N.

It is also important to  that the concept of an ecdf can be easily extended to
higher dimensions. For example in the case of the cdf for the vector (X,Y) the ecdf takes
the form:

F̂n(x,y)5 , (x,y) [RX3RY.

Taken together, the above results provide a bridge between the theoretical concept of a
cumulative distribution function (cdf) F(x) and its empirical counterpart the ecdf F̂n(x).
This is also the backdrop for De Finetti’s representation theorem which says that specify-
ing the joint distribution of an exchangeable sequence of random variables {Xk}`

k51can
be done by utilizing the nature of the distribution that arises as the limit of the empirical
distribution function (ecdf).

In concluding this subsection we note that the intended scope of the above limit theo-
rems extends to the case of non-continuous F(x) because the dependence on the nature
of the unknown cdf presents no insurmountable difficulties in the context of parametric
statistical inference; the form of F(x) is always postulated a priori. The crucial feature of
the regularity component in chance regularity is the convergence of the cumulative rela-
tive frequencies to a stable law.

[no. of vectors (XkYk) such that Xk#x and Yk#y]
n

oo1
n

1x 2 Xk

cn
2o1

ncn
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10.4.4 Chance regularity and statistical models

The above results can be used to establish a direct link between the ecdf F̂n(x) and the cdf
F(x) and thus bestow empirical content on the latter. Using the parametric form of the
cdf F(x;u) we can proceed to define a Probability model of the form:

FF5{F(x;u), u [Q, x[RX}. (10.14)

The unknown parameters u are viewed as a finite parameterization of F(x), in the sense
explained in the context of the parametric De Finetti representation theorem: restrict the
set of all possible models P (whose elements are infinite dimensional) to a subset P0. In
addition, as argued below the De Finetti representation theorem (reinterpreted) can be
used to operationalize the specification problem of statistical inference: the choice of the
appropriate Statistical model in view of the observations.

The Probability model defined in terms of the parametric family of densities:

F5{f(x;u), u [Q, x[RX}, (10.15)

is clearly a special case of (10.14) which is particularly useful because it is easier to assess
utilizing graphical techniques such as the smoothed histogram (see chapter 5). Its empir-
ical content emanates from the fact that the distribution assumption involved when
postulating a Probability model of the form (10.15) is testable. In addition to the
Kolmogorov distance test there are several additional tests which utilize difference dis-
tances between theoretical concepts such as the ecdf and their empirical counterparts.
N that the P-P and Q-Q plots discussed in chapter 5 are based on such comparisons.

In order to complete the bridge between chance regularity and the concept of a simple
statistical model we need to consider the other pillar relating to the chance component
and the concept of a random sample:

X :5(X1,X2,…,Xn) a set of IID random variables with cdf F(x;u).

In the above discussion of chance we mentioned the availability of tests which are
designed to assess this attribute in either pseudo-random numbers or in real observa-
tions. Some of these tests will be discussed in chapter 15 after we introduce hypothesis
testing.

We conclude this section by emphasizing that the concept of a statistical model derives
its empirical content from the fact that the probabilistic assumptions making up the
model are testable. This brings out the importance of several neglected aspects of empir-
ical modeling, such as misspecification testing and respecification, to be discussed in the
next chapter.

10.5 The probabilistic reduction approach to specification

According to the De Finetti representation theorem the sequence of arbitrarily distrib-
uted random variables {Xk}`

k51 is exchangeable if and only if for any n.0:

P(X1#x1,X2#x2,…,Xn#xn)5
u[Q

F(xk;u)dQ(u).p
n

k51
E
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That is, conditional on Q(F), where:

Q(F)5 lim
n→`

P(F̂n), Q(F) : P→Q,Rm, 0,m,n,

the sequence {Xk}`
k51 is IID. This result has been extended in a number of directions. For

instance by imposing restrictions such as spherical symmetry and invariance the above
representation gives rise to more specific distributional reductions which involve distrib-
utions such as the Normal and the Exponential. Moreover, when the exchangeability
assumption is weakened to that of partial exchangeability the above reduction gives rise
to products of conditional distributions, relaxing the Identically Distributed assump-
tion, and thus extending the notion of a random sample to just an independent sample.
In addition, by extending these results to vectors of random variables the above repre-
sentation can accommodate various forms of dependence (see Bernardo and Smith
(1994) for a detailed discussion).

Reinterpretation In the present context we interpret the De Finetti representation
theorem as a formal way to reduce the joint distribution of the observable random vari-
ables (X1,X2,…, Xn)  into a simplified product of distributions by imposing certain pro-
babilistic assumptions. To be more specific, the reduction of the joint distribution of the
observable random variables is achieved by imposing assumptions from the three broad
categories used throughout chapters 4–9:

(D) Distribution, (M) Dependence, (H) Heterogeneity. (10.16)

It should come as no surprise to the reader to discover that ever since chapter 4 we have
been viewing statistical modeling in terms of reductions of joint distributions. In chapter
4 we argued that under the assumptions of a random sample the joint distribution of
(X1,X2,…,Xn), known as the Haavelmo distribution (see Spanos (1989b)), can be reduced
into a (simplified) product of univariate (identical) marginal distributions:

f(x1,x2,…,xn;f)5
I

fk(xk;uk)
IID
5 f(xk;u), for all x :5(x1,x2,…,xn)[Rn.

(10.17)

Moreover, in the case of a non-random sample the corresponding reduction based on
sequential conditioning takes the form:

f(x1,x2,…,xn;f)
non-IID

5 f1(x1;c1)
n

k52
fk(xk |xk21,…,x1;ck), for all x[RX

n , (10.18)

which is non-operational without restrictions on the dependence and heterogeneity of
the sample. In chapter 8 we showed that restricting the dependence to Markov depen-
dence and the heterogeneity to stationarity, the joint distribution f(x1,x2,…,xT;f) is sim-
plified to:

f(x1,x2,…,xT;f)
Markov

5 f1(x1;c1)
T

t52 ft(xt |xt21;ct)5
(10.19)

f(x1,x2,…,xT;f)
Stationary

5 f(x1;c1)
T

t52 f(xt |xt21;c).p
p

p

p
n

k51
p

n

k51
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This reduction can give rise to numerous operational models the most well-known being
the Normal Autoregressive (AR(1)) model:

[1] Statistical GM: Xt5a01a1,Xt211ut, t[T,
[2] Probability model:

F5 f(x1,x2,…,xT :u)5 exp 2 , u[Q, x[RT ,

where u :5(a0,a1,s0
2)[Q :5R23R1.

[3] Sampling model: (X1,X2,…,XT) is a stationary and Markov dependent sample,
sequentially drawn from f(xt |xt21;u), t[T.

We remind the reader that the reduction assumptions for this model were:

(D) Distribution: Normal,
(M) Dependence: Markov,
(H) Heterogeneity: Stationarity.

Under the Normality assumption the conditional density f(xt |xt21;c) is Normal and
takes the form:

(Xt |Xt21),N(a01a1Xt21, s0
2), t52,3,…

E(Xt)5m, Var(Xt)5s (0), Cov(Xt,Xt21)5s(1), t[T,

a0 :5(12a1)m, a1 :5 , s0
2 :5s(0)2 .

It turns out that most statistical models can be viewed as reductions of the Haavelmo
distribution derived by imposing assumptions from these three broad categories (10.16).
As exemplified in the next several chapters, this reduction enhances our understanding
of the probabilistic structure of the statistical models and provides a framework which
enables the modeler to consider the modeling procedure in a coherent way. In the next
chapter it is argued that this framework is much broader than just postulating a statisti-
cal model and enables the modeler to consider a number of neglected facets of statistical
modeling, such as specification, misspecification and respecification, in a coherent and
internally consistent way.

10.5.1 The nature of statistical models

In chapter 1 we gave a tentative answer to the question: what is a statistical model and
how does it differ from other types of models? The answer concentrated on how statisti-
cal models differ from theory models. A statistical model differs from other types of
models in so far as it specifies a situation, a mechanism, or a process exclusively in terms
of a probabilistic structure. In chapters 2–8 we elaborated on what constitutes probabil-
istic structure and specified general forms of statistical models beyond the simple. In this
section we return to the original question in an attempt to elaborate on the nature of sta-
tistical models as they compare with theory models.

s(1)2

s(0)
s(1)
s(0)

66(xt 2 a0 2 a1xt21)2

s 2
0

1
25(s0)21

Ï2pp
T

t52
5
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Statistical models are viewed as first stage models in the sense that their primary goal is
to provide statistically adequate descriptions of observable stochastic phenomena; statis-
tical models do not pretend to offer explanation. In this sense there are several things
worth noting about the nature and structure of statistical models. First, statistical
models are specified exclusively in terms of the observable random variables that presum-
ably have given rise to the observed data. This should be contrasted with theory models
(see chapters 1 and 7) which are defined in terms of theoretical concepts that might or
might not have a direct connection with observational data. Even though the choice of
the observed data is theory dependent, once chosen the observed data as such are no
longer theory laden (see Van Fraassen (1980)). Second, as argued above, statistical
models purport to provide probabilistic descriptions in the form of stochastic mecha-
nisms. Probability theory furnishes a purely descriptive language which can be used to
summarize (parsimoniously) the systematic information in the observed data in a theory-
neutral way. As argued in chapter 1, the theory neutrality of the description is imperative
if the data are to be used as an unprejudiced witness in the assessment of the theory’s
validity. It is claimed that this observational language, which is free of theory concepts,
provides the appropriate framework for an adequate description and discovery of empir-
ical (or stylized) facts.

Taken together, the above comments on the nature and structure of a statistical
model suggest that a statistical model is viewed in a descriptivist/semantic/relativist/
empiricist/anti-realist light (see inter alia Caldwell (1982), Mäki (1989), Van Fraassen
(1980), Boylan and O’Gorman (1995)). The descriptive nature of statistical models
requires no further explanation because the primary objective of a statistical model is
stated to be descriptive not explanative. The semantic and relativist nature of a statistical
model, however, need to be discussed further. As shown throughout chapters 2–8, a sta-
tistical model is not a linguistic entity but it is defined in terms of a set-theoretic language
(outcomes set, event space, probability set functions, etc.), leading to a semantic concep-
tion of a statistical model; see Suppe (1989) for the details. A statistical model describes
the set of all possible stochastic mechanisms within the boundaries demarcated by its
probability and sampling models. Moreover, a statistical model is defined relative to the
probabilistic structure demarcated by the theory of probability as formulated at the time.
As shown in chapter 8 the notion of probabilistic structure has changed considerably
over the last century or so. As we come to recognize additional forms of chance regular-
ity patterns, the probabilistic structure is enriched with additional concepts purporting
to model the newly discovered systematic information; a primary example of this is the
notion of dependence in the early 20th century. Moreover, the description as well as sta-
tistical adequacy are substantiated relative to the probabilistic structure available to the
modeler. A statistical model is nothing more than a chance mechanism defined in terms
of a set of probabilistic assumptions. When these assumptions are tested against the
observable data in question and not rejected, we call the chosen model statistically (or
empirically) adequate. In a nutshell, the adequacy of a statistical model is judged by the
appropriateness of the assumptions (making up the model) in capturing the systematic
information in the observed data. That is, the issue of whether a statistical model is truly
independent of the conceptual framework in terms of which these facts are expressible,
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does not arise; truth is only relative to an overarching conceptual framework we call
probability theory. This framework, however, changes over time (hopefully pro-
gressively) and there is no reason to believe that what we consider true in the present
framework will be an absolute truth (whatever that means). For this reason we avoid the
term truth and we use validity instead. For example, in the 1920s we had no idea of how
to assess the validity of temporal dependence and until the 1970s temporal dependence
was often assumed to coincide with temporal correlation. In the 1980s we learned to rec-
ognize and model second order temporal dependence (see chapter 8) but we have no idea
what third-order dependence (see chapter 6) looks like as a chance regularity pattern.
Moreover, there is no reason to believe that the distributions which are currently known
exhaust all possible distributions necessary for empirical modeling. If the history of
probability and statistics so far is any guide, we expect several new distributions, as well
as additional forms of dependence and heterogeneity, to be uncovered (invented) in the
future, enriching the overarching conceptual framework.

The empiricist dimension of a statistical model, as used in this book, comes very close
to that of constructive empiricism as proposed by Van Fraassen without subscribing to
the latter’s denial of “any objective modality in nature” (Van Fraassen (1980), p. 202).
Following Van Fraassen, the primary assessment criterion for a statistical model is its
empirical adequacy. This empirical adequacy is assessed within the boundaries demar-
cated by the observed data in question, but in contrast to constructive empiricism, it is
viewed relative to the overaching conceptual framework of probability theory. In this
sense statistical models can be used for both descriptive and predictive purposes but they
lack real explanatory power.

In contrast to a statistical model, a theory model (as well as an estimable model; see
Spanos (1986)) is viewed in a more realistic light (see Devitt (1997), Caldwell (1982),
Mäki (1989) and Poirier (1995)). Realism in current philosophy of science, however, has
lost its precise meaning because, by some calculations, there are more sects of realism
(see Leplin (1984)) than Bayesianism (see chapter 11). In the present context we use the
term realism to include the following two conditions:

(i) the existence of an objective reality which is independent of the conceptual frame-
work in terms of which this reality is expressible and

(ii) the main objective of a theory model is to uncover this objective reality, always
within the human cognitive limitations. That is, the primary objective of a theory
model is to explain this objective reality.

Given the difference in the nature and structure of a statistical and a theoretical
model, the question that naturally arises at this stage is: How are the two models related?
In terms of figure 1.2 in Spanos (1986), p. 21, a statistical model and a theory model are
fused at the stage we call identification to give rise to what we called an econometric
model. In the context of this model the statistical and theoretical information is synthe-
sized by reparameterizing/restricting an empirically adequate estimated statistical
model. In this sense a statistical model acquires explanatory power after it transmigrates
into an econometric model. Hence, an econometric model is a second stage model whose
primary objectives include description, explanation, and prediction.
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The above discussion on the nature and structure of models (statistical and theoret-
ical) touches upon several issues which are currently debated in the philosophy of science
literature; for further discussion of some of these issues see Boylan and O’Gorman
(1995). The thing that stands out from the above discussion is the possibility of enter-
taining different types of models whose nature and structure differ substantially without
giving rise to any contradictions in the context of empirical modeling; a modeler can be
an anti-realist, a quasi-realist, and a realist, at different stages of empirical modeling.

10.6 Parametric versus non-parametric models

10.6.1 The terminology

The notion of a statistical model as formulated in chapters 3 and 4 has its roots in Fisher
(1922a). This was in fact one of the decisive departures from the Pearson paradigm
where no such model was postulated a priori. In Pearson’s approach, modeling com-
menced with the observed data and the modeler would proceed to choose a descriptive
model in terms of the Pearson family frequency curves using the observed data as the
only guide (see chapter 13). In contrast, statistical inference proper commences with the
modeler postulating a priori a statistical model purporting to describe the stochastic
mechanism underlying the observed data; not the observed data themselves. Parametric
inference refers to the statistical inference (Fisher’s approach) based on statistical models
specified in terms of a parametric probability and a sampling model. The term paramet-
ric stems from the fact that the probability model is specified in terms of a family of den-
sities (or distribution functions) indexed by some unknown parameters u:

F5{f(x;u), u [Q, x[RX}.

In contrast, the term non-parametric has been used to denote a variety of notions in
different contexts and thus one has to be careful when using the term. In the discussion
that follows we use the term non-parametric (or distribution free) to denote a simple sta-
tistical model whose probability model component is specified by:

F(x) [PF,P, (10.20)

where P, denotes the set of all possible distributions and PF denotes a proper subset of
it. The latter is not defined directly in terms of a specific family of densities but indirectly
using assumptions relating to features of the distribution such as:

(a) the support set of the distribution,
(b) the existence of moments, and
(c) the smoothness of the distribution (discrete, continuous, differentiable, etc.).

These indirect distribution assumptions purport to narrow down the set of all possible
distributions P to a feasible subset. Note that in parametric statistical inference PF5F.
For other interpretations of the term non-parametric see Stuart and Ord (1991).

The term non-parametric model often creates the erroneous impression that the asso-

546 From probability theory to statistical inference



ciated statistical inference does not involve the use of a statistical model. The fact is that
the non-parametric approach is statistical inference proper (within the Fisher para-
digm), based on statistical models whose only difference from parametric inference is the
use of implicit (instead of explicit) distribution assumptions. That is, in the context of
the non-parametric approach there is an explicit sampling model which very rarely goes
beyond the random sample assumption.

10.6.2 What difference does it make?

At first sight it seems as though the non-parametric approach has certain distinct advan-
tages over the parametric in so far as the modeler does not commit herself to as many
assumptions and thus the postulated model is less susceptible to the problem of statisti-
cal inadequacy. It turns out that this is more apparent than real in the sense that non-
parametric models are often specified in terms of assumptions which are not even
testable. What is real is the attempt to sidestep the problem of assessing the adequacy of
the postulated model. The result of a vague and non-testable specification is at best the
precision of the statistical inference results and at worst their validity.

The question of comparing parametric and non-parametric inference boils down to
how effective the narrowing down of the set of all possible distributions can be in the two
approaches, so as to ensure that the chosen subset PF,P includes the appropriate distri-
bution. Once this is assured, the problem becomes one of using the data to reduce this
subset to a singleton:

PF V
data

F0(x).

In parametric statistical inference the last step takes the form of a good estimator û of u.
On the other hand, in non-parametric inference PF is rarely reduced to a singleton,
unless a non-parametric estimator of F(x), such as the empirical cumulative distribution
F̂n(x), is used (see above).

The use of an implicitly defined broad subset PF is often viewed as an important safe-
guard against misspecification; choosing an inappropriate statistical model. Common
sense suggests that the broader the subset the higher the likelihood of containing the
appropriate distribution. By the same token, the parametric approach is more suscept-
ible to misspecification because it narrows down the set of all possible distributions
considerably when a particular parametric family of densities is postulated. The problem
is that this common sense reasoning is flawed. Firstly, the problem of misspecification
has many other dimensions in addition to the distribution assumption. For simple statis-
tical models, the validity of the independent and identically distributed assumptions is
often more serious than the distribution assumption. Guarding against misspecification
with regard to the distribution assumption, regardless of the other possible misspecifica-
tions, is a recipe for disaster as demonstrated by graphical techniques in chapter 5.
Secondly, there is no reason to believe that a broader subset chosen on the basis of indi-
rect assumptions is more reliable than a narrower subset chosen felicitously. It all
depends on the nature of the appropriate distribution and on how the choice was made.
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Example
Consider the case where the non-parametric modeler narrows down the possible distrib-
utions by postulating the indirect distribution assumption of the existence of the first
four moments (a very broad subset indeed!) and the parametric modeler postulated the
parametric family of the Student’s t distribution. If the appropriate distribution is the
Cauchy it is clear that the non-parametric modeler has no advantage over the parametric
modeler. Indeed, as shown in chapter 5 the judicious use of Q-Q plots for checking the
Student’s t assumption will lead to the Cauchy distribution. Moreover, there are much
more reliable ways to guard against misspecification than just being vague about the
appropriate distribution.

Statistical adequacy In this book we pay particular attention to the problem of
misspecification and guard against this potential problem in two ways. First, at the
specification stage we propose several graphical techniques which, when utilized prop-
erly, can narrow down the set of all possible distributions drastically, to just a few para-
metric families. Second, at the misspecification testing stage the adequacy of the
assumptions of the postulated statistical model is tested against the observed data before
any statistical inference conclusions are drawn; see chapter 15.

Making minimal assumptions with regard to the distribution underlying the observed
data, by implicitly defining a broad subset PF at the specification stage, very often gives
rise to vague statistical inference conclusions. As a general rule, the more specific the pro-
babilistic assumptions making up the statistical model are, the more precise our statisti-
cal inference procedures will be: more accurate estimators (smaller variance), more
powerful tests and shorter confidence and prediction intervals. Let us see how these indi-
rect distribution assumptions contribute to the vagueness of the conclusions.

10.6.3 The effectiveness of indirect distribution assumptions

As argued in chapter 4, the basic components of a probability model (10.15) from the
modeling viewpoint, are:

(i) the particular form of the density function f(x;u), with the associated unknown
parameters u and their domain Q, and

(ii) the support of the density RX*:5{x[R : f(x;u).0}.

Regardless of the narrowing down of the set of possible distributions using the existence
of moments or smoothness restrictions, the modeler is required to decide on the support
set of the appropriate distribution. This choice also contributes in the narrowing down.
The fact that the two decisions are separated might lead to some potential problems in
modeling. For example, returning to the marks data in chapter 1 (see table 1.6), the
modeler can easily commit one of two obvious errors. He can either ignore the observed
data and proceed to leave the support unrestricted (i.e., RX*5 R) or he can decide on the
support by just looking at the numbers in hand, say [40,100]. The range of values of the
observed data is clearly relevant but not at the expense of ignoring the fact that the pos-
tulated model purports to model the phenomenon underlying the data, not the data
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themselves. At the same time leaving the support unrestricted will add to the vagueness
of the specification. The observed data in question have a finite range of values but we
need to keep in mind that some values that are possible might not have occurred in the
specific data set. Hence, the random variable underlying the data has the support set
[0,100] ; or expressed in terms of proportions the support set is: [0,1]. In this case allowing
for distributions with support (2`,`) is clearly inappropriate. As remarked in chapter 4,
in parametric inference the Beta probability model appears to be more appropriate
because it utilizes all the information available.

Existence of moments and precision of inference
We consider the existence (or otherwise) of any moments as an indirect distribution
assumption in the sense that the existence of the moments (boundedness of the inte-
grals):

m9r 5
x[RX

xrf(x)dx,`, r51,2,…

depends exclusively on the nature of the density function f(x) and its support. In particu-
lar, the existence of certain moments depends crucially on the thickness of the tails of the
density function, as indicated by the following result.

Moments and tails lemma For a random variable X and a positive real number p, (p [R1)

lim
x→`

xpP(| X |.x)50 ⇒ E(| X |r),` for 0#r,p.

For example the Normal distribution has slimmer tails than the Student’s t and all its
moments exist; for the latter distribution the moments after a certain p do not exist.

In relation to the support set we  that all moments exist when:

RX5 [a,b], a,b,`, a and b being real numbers,

irrespective of the nature of f(x). In this bounded support category we include distribu-
tions such as the Uniform and the Beta. At the other extreme we encountered the case of
the Cauchy distribution, with support RX5 (2`,`), that has no moments! Between these
two extremes we have numerous distributions, such as the Normal, the Student’s t, the
Chi-square, the Exponential, the Extreme value, the Gamma, the Logistic, and the
Weibull (see appendix A), whose support set is infinite but some moments do exist. In
this category we have distributions for which all moments exist (e.g., the Normal) and
distributions for which only the first few moments exist. For example the Student’s t dis-
tribution with n55, has moments up to order 4, but no higher moments exist. Another
example is the Pareto distribution whose moments exist only up to a certain order less
than its shape parameter.

The problem of moments The discussion of the problem of moments in chapter 4, sug-
gests that, in general, moments do not determine distributions uniquely even if we use an
infinite number of them. In addition, in general, no distribution is determined by a finite

E
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number of moments. In view of the fact that for modeling and statistical inference pur-
poses we can only deal with a small number of moments (and certainly finite), using a
few moments to narrow down the set of all possible distributions to a manageable subset
is certainly the wrong approach. In chapter 4 it was also argued that the moments
become effective in narrowing down the set of all possible distributions. However, if we
are prepared to limit ourselves to a specific class of distributions the problem becomes
tractable. As mentioned in chapter 4, if we limit the set of all possible distributions to
that of the Pearson family, the modeler requires at most four moments to determine the
particular distribution (see also chapter 12). Another example of a multivariate para-
metric family of distributions is the elliptically symmetric family where the first two
moments characterize the particular members of the family (see Fang, Kotz and Ng
(1990).

The question which arises at this stage is why don’t we use existence of moments
assumptions in modeling, given that they are more general than specific distribution
assumptions? The answer in a nutshell is that distribution assumptions give rise to more
accurate and sharp probabilistic results in statistical inference. Existence of moments
restrictions compel the modeler to use inequalities, such as those mentioned in chapter 3,
which are often very crude compared with what one can get when postulating a distribu-
tion assumption. The following examples attempt to give some idea of the crudeness of
such inequalities when compared with direct distribution assumptions.

Examples
(i) Consider the distribution of the number of dots on the uppermost face of a fair die
when cast, as shown below, and consider evaluating the probability associated with the
event {|X2E(X) |.2.5}, when (a) the exact distribution is used and (b) using some
inequality.

outcomes 1 2 3 4 5 6

probabilities *
E(X)51 12 13 14 15 16 53.5,

Var(X)5(123.5)2 1(223.5)2 1(323.5)2 1

(423.5)2 1(523.5)2 1(623.5)2 52.9166

(a) Using the above probability distribution we can deduce that:

P( |X2E(X) |.2.5)5P( |X23.5 |.2.5)5P(1.X.6)50.

(b) In contrast, Chebyshev’s inequality yields:

P( |X23.5 |.2.5), 50.467.

(ii) Consider the case where X is uniformly distributed with parameter u:

2.9166
(2.5)2
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X,U(2u,u), i.e., f(x;u)5 , E(X)50, Var(X)5 .

We can evaluate the actual probability to be:

P( |X |$ 1.5 )5P |X |$ 1.5 52P( |X |$0.866u))52(0.067)50.134.

On the other hand, the upper bound given by the Chebyshev inequality is:

P( |X |$ (1.5) )5P |X |$ (1.5) # 50.444.

(iii) Consider the case where X has a geometric distribution, i.e.

f(x;u)5u (12u)x21, 0#u # 1, x51,2,3,…, E(X)5 , Var(X)5 .

Let us assume that u5 (i.e., E(X)52, Var(X)52) and «52. Evaluation of the true
probability utilizing the nature of the distribution yields:

P( |X2E(X) |.( ) )5 `
x55 u(12u)x215 50.0625.

On the other hand, the upper bound given by the Chebyshev inequality is:

P( |X2E(X) |.( ) )5P( |X2E(X) |.( ) ) # 50.5.

As one can see from the above three examples, the estimate of the probability given by
Chebyshev type bounds is very crude compared with the actual probability. The reader
should be warned that these examples are typical and not extreme cases; when highly
skewed distributions are used the results are much cruder!

We will see in chapters 12–15 that the results on estimation and testing are in effect
probabilistic statements which without distribution assumptions will often be rather
crude because they depend on inequalities such as those given in chapter 3. What is very
important for our purposes here is that the more we are prepared to postulate in terms of
additional assumptions (thus narrowing down the set of possible distributions even
further), the sharper the results we can get from inequalities. Consider the example where
we are prepared to postulate the existence of additional higher moments.

Example
Let {Xn}`

n51 :5{X1,X2,…,Xn....} be a sequence of Independent and Identically Bernoulli
Distributed (IID) random variables. It can be shown that:

Sn :5 n
k51Xk,Bi(nu,nu(12u)).

Using Chebyshev’s inequality (which assumes the existence of the moments up to the
2nd order) yields:

P( |n21Sn2u |.«) # .

On the other hand, if we assume the existence of the moments up to order 4, we can use
Markov’s inequality (see chapter 3) which yields:

P( |Y2E(Y) | 4.«) # .E( |Y 2 E(Y ) |4)
«4

u(1 2 u)
n«2

o

1
(Ï2 )2Ï2Ï2ÏVar(X )Ï2

1
16oÏVar(X )Ï2

1
2

(1 2 u)
u2

1
u

1
(1.5)22Î1u2

3 21ÏVar(X )
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Noting that E( |n21Sn2u | 4)5nu [113u (12u)(n22)] this yields:

P( |n21Sn2u |.«) # .

As can be seen, the estimate of the upper bound given by Markov’s inequality converges
much faster because it utilizes more information in relation to the existence of moments.

Finally, let us consider the case where we are prepared to make additional smoothness
assumptions.

Example
Let X be a random variable with E(X)5m and Var(X)5s2. If in addition we are pre-
pared to assume that X is:

(i) continuous, and (ii) unimodal with median m0,

then, we can get the sharper Chebyshev-type inequality (see Biswas (1991)):

P( |X2m0 | $ «) # E(X2m0)2.

This upper bound is less than half of the ordinary (ignoring (i)–(ii)) Chebyshev upper
bound:

P( |X2m0 | $ «) # E(X2m0)2.

The ordered sample
In addition to the extensive use of inequalities in non-parametric statistical inference
there is a pervasive use of ordered samples and their properties. The cornerstone of these
results is the probability integral transformation, first encountered in chapter 4. This
result says that in the case of a continuous cdf F(x), irrespective of its nature, the random
variable defined by Y :5F(X) is Uniformly distributed:

Y :5F(X),U(0,1).

N that the continuity of F(x) is indeed an indirect distribution assumption. This
result enables the modeler to transform the original sample to a Uniformly distributed
sample by applying the above transformation. This transformation, however, requires
the modeler to know the exact form of the cdf function F(x). Without this information,
the modeler is forced to resort to asymptotic results.

Of particular interest is the ordered sample (Y[1],Y[2],…,Y[n]) (which contains all the
relevant data information), the associated distribution results mentioned in chapter 4
and the empirical cumulative distribution (see chapter 10). These results enable the
modeler to have an asymptotic distribution for the ordered sample, irrespective of the
nature of the probability model and thus the modeler can proceed to derive a number of
statistical inference results on estimation, testing, and prediction (see Dudewicz and
Mishra (1988), Bickel and Doksum (1977)). However, these statistical inference results
are in general less reliable and precise than the corresponding results based on paramet-
ric models.

1 1
«22

1 4
9«22

3
(16)n2«4
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Within the same class of techniques we include a number of methods based on the
empirical cumulative distribution function (see above) including the various smoothing
techniques designed to approximate certain features of an unknown Probability model
(see Silverman (1986), Hardle (1990)).

10.6.4 Non-parametric models and statistical adequacy

Having called into question the conventional wisdom that the broader the postulated
subset P*,P the lower the likelihood of misspecification, we proceed to consider the
nature of the assumptions underlying the non-parametric models as they relate to assess-
ing statistical adequacy. In view of the current popularity of kernel smoothing techniques
it is interesting to discuss the assumptions underlying such statistical models. More often
than not, the statistical model underlying the kernel smoothing results postulates a random
sample and a probability model of the form (see Thompson and Tapia (1990), p. 46):

PF :5{f(x) :f(x) has properties (a)–(c)}.

(a) f(x) has support [a,b], a,b,`, a[R, b[R,
(b) f(x) is bounded on [a,b],
(c) f(x) has continuous derivatives of up to order three except at the end points.

It is apparent that assumptions (b)–(c) are unverifiable and there is no way to assess their
adequacy using the observed data. This constitutes a typical example of non-parametric
statistical models whose stated purpose is to:

sacrifice a small percentage of parametric optimality in order to achieve greater insensitivity
to misspecification… (Scott (1992), p. 33)

The fact of the matter is that the recent trend in the derivation of techniques using
non-parametric models leads statistical modeling toward models based on unverifiable
assumptions. As for the insensitivity to misspecification it is apparent from the above dis-
cussion that the inference based on non-parametric models is likely to be insensitive to
information not just misspecification. When the modeler assumes Normality but the data
in question reject it as inappropriate, the modeler has learned something which can be
exploited by respecifying the statistical model. Being oblivious to such non-Normality
amounts to ignoring systematic information.

The first to be critical of non-parametric inference was Fisher, in relation to testing
with experimental data:

They [the tests] assume less knowledge, or more ignorance, of the experimental material than
do the standard tests, and this has been an attraction to some mathematicians who often
discuss experimentation without personal knowledge of the material. In inductive logic,
however, an erroneous assumption of ignorance is not innocuous; it often leads to manifest
absurdities… (Fisher (1935), p. 49)

Non-parametric models and robustness
It is well-known that the early literature on robustness was motivated by the undue
reliance of the statistical inference literature on the assumption of Normality. In this
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sense most of the early results on robustness have been derived having the Normal distri-
bution in mind and the meaning of the concept was colored by this motivation. A prime
example of this attitude is the case of the robustness of estimators and test statistics to
outliers. Ignoring the case where a data point has been typed incorrectly, an outlier is an
unusual observation considered to be unlikely given the support of a certain implicit
distribution. This, however, begs the question because a certain observation might be
viewed as an outlier when the underlying distribution is Normal but perfectly acceptable
if the underlying distribution is the Student’s t! If, indeed, the appropriate distribution is
the Student’s t and the modeler chooses an estimator which is robust to observations in
the extreme tails, the modeler ignores the most crucial observations in his sample; the
chosen estimator is insensitive to information, not to misspecification. Oversimplifying
the argument for the sake of the discussion, if we push the notion of robustness to its
extreme, the best robust estimator will be the one which is completely oblivious to all
systematic information in the data!

The more recent literature on robust statistics is at great pains to distinguish itself
from non-parametric models. Hampel et al. (1986, p. 9) argue:

Robust statistics is often confused with, or at least located close to nonparametric statistics,
although it has nothing to do with it directly. The theories of robustness consider neighbor-
hoods of parametric models and thus clearly belong to parametric statistics. Even if the term
is used in a very vague sense, robust statistics considers the effects of only approximate fulfill-
ment of assumptions, while nonparametric statistics makes rather weak but nevertheless
strict assumptions (such as continuity of distribution or independence)…

10.6.5 Is there a role for non-parametric procedures?

Non-parametric techniques are very useful and have an important role to play in empir-
ical modeling. This role, however, does not include using exclusively non-parametric
models for empirical modeling. The above discussion brings out several limitations of
these models when used as the exclusive vehicles of empirical modeling. In summary,
non-parametric models usually:

(i) depend on (implicit) probabilistic assumptions which are often non-testable,
(ii) often require a large number of observations,
(iii) are not parsimonious,
(iv) provide no bridge to relate them with the theory models,
(iv) give rise to imprecise inference results.

The examples of indirect distribution assumptions forcing the modeler to use inequal-
ities as an integral part of non-parametric inference, show most clearly that if the
modeler wants precise and decisive inference (estimators and tests) in modeling, she
should go the extra mile and postulate a specific parametric family of distributions. This,
of course should be done in conjunction with assessing the credibility of the postulated
statistical model, i.e., test the adequacy of the distribution assumption postulated.
Hence, if the primary objective of the modeler is precise and reliable statistical inference,
the combination of specification (postulating parametric statistical models), careful
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misspecification testing (testing the assumptions underlying the postulated model) and
respecification (choosing a different model if the original is misspecified) is the procedure
recommended in this book; see chapter 11 for more details.

The justification for using non-parametric inference based on the likely avoidance of
potential misspecifications is not convincing for three reasons. First, the problem of
departures from the assumptions of the postulated model, as argued above, can be dealt
with more effectively in the context of specification, misspecification testing, and
respecification of parametric models. Second, there is a price to be paid when the
modeler chooses to be vague with the assumptions of the postulated model:

vague assumptions lead to nebulous inference conclusions!

Third, non-parametric models are often justified in cases where the modeler senses that
the Normality assumption is inappropriate in an attempt to protect the validity of the
results at the expense of some imprecision. This is a lame excuse because there are
numerous distributions to postulate when the Normality assumption is invalid. As
argued above, in such cases the modeler should respecify not indulge in damage control
with doubtful benefits.

The question that naturally arises at this stage is whether there is a role for non-para-
metric inference in empirical modeling. The answer is unquestionably yes, but not for
inference modeling as such. Indeed, it will be difficult to overestimate the usefulness of
non-parametric techniques for both stages of modeling referred to above: specification
and misspecification testing. At the specification stage non-parametric techniques,
such as kernel smoothing, can be invaluable as an integral part of the preliminary
(exploratory) data analysis. As argued in chapters 5–6, raw data plots, such as t-plots and
scatterplots can, sometimes, be misleading because they are by definition data specific.
The postulated statistical model, however, aspires to describe the stochastic mechanism
that underlies the observed data, not just the observed numbers in hand. Smoothing
techniques can reduce the data-specificity of such plots and provide the modeler with
heedful ideas about appropriate parametric models. At the misspecification stage the aim
is to assess the empirical adequacy of the postulated parametric model by testing the
validity of the underlying assumptions. The modeler has to assess null hypotheses whose
negation (the implicit alternative) is by its very nature non-parametric (cannot be speci-
fied in terms of the parameters of the postulated model). In this context non-parametric
techniques are again invaluable because no parametric alternative hypotheses against
which the null could be assessed are readily available; this is discussed further in chapter
15. It goes without saying that what the modeler learns during the misspecification
testing against non-parametric implicit alternative hypotheses will be of paramount
importance for the respecification stage of modeling (assuming that the original model
turns out to be misspecified).

We conclude this section by reiterating once more that in this book we view non-para-
metric procedures, such as smoothing techniques, as complements, not substitutes, of
parametric modeling procedures.
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10.7 Summary and conclusions

It is interesting to note that between the 17th and early 20th centuries the distinction
between observed relative frequencies and probabilities was commonly blurred. This was
to be expected given the fact that the theory of probability as a mathematical discipline
was formalized in the 20th century. During this early period there was no need for build-
ing a bridge between chance regularity patterns and probability concepts because it was
implicitly assumed given. This is most apparent in the following often-quoted passage
from Galton extolling the virtues of the Normal distribution (it should be read with
figure 10.1 in mind):

I know of scarcely anything so apt to impress the imagination as the wonderful form of
cosmic order expressed by the “Law of Frequency of Error.” The law would have been per-
sonified by the Greeks and deified, if they had known of it. It reigns with serenity and in com-
plete self-effacement amidst the wildest confusion. The huger the mob and the greater the
apparent anarchy, the more perfect is its sway. It is the supreme law of Unreason. Whenever a
large sample of chaotic elements are taken in hand and marshalled in the order of their mag-
nitude, an unsuspected and most beautiful form of regularity proves to have been latent all
along… (Galton (1889), p. 86)

The bridge between empirical regularities and probability proposed in this chapter
comes in the form of the empirical cumulative distribution function (ecdf) and its rela-
tionship to its theoretical counterpart: the concept of a cumulative distribution function.
The limit theorems that connect ecdf and cdf utilize only mathematical concepts of con-
vergence and there is no circularity in the argument. As shown in the next four chapters
the various facets of statistical inference, such as estimation (see chapter 13) and testing
(see chapters 14–15), can be viewed directly or indirectly in terms of this relationship
between the ecdf and the cdf.

10.8 Exercises

21 Explain briefly the following interpretations of probability:
(i) the lottery-based,
(ii) the frequency, and
(iii) the degrees of belief.

22 “The lottery (classical) interpretation of probability is now considered to be a relic
of a bygone age.” Discuss.

23 Explain briefly the difference between the frequency and degrees of belief interpreta-
tions of probability. Why do we care?

24 Compare and contrast the two alternative flavors of the degrees of belief interpreta-
tion of probability.

25 Explain why the frequency interpretation of probability might be more appropriate
for the empirical modeling of observational data but by the same token the degrees
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of belief interpretation might be more germane to the analysis of experimental
data.

26 Discuss Von Mises’ attempt to build a bridge between chance regularity and the
notion of probability.

27 Discuss De Finetti’s representation theorem and compare its non-parametric and
parametric forms.

28 How does De Finetti’s representation theorem provides a bridge between chance
regularity and the notion of a simple statistical model? How does the distribution of
u come into the picture?

29 Explain the notion of chance discussed in relation to the decimal expansions of
irrational numbers in relation to predictability and lack of patterns.

10 Explain the notion of regularity discussed in relation to the decimal expansions of
irrational numbers in relation to the existence of stable laws.

11 “Weyl’s result shows that uniformly distributed chance sequences arise naturally in
the theory of numbers. Starting with such sequences one can generate most other
forms of chance regularity patterns.” Discuss.

12 “The various limit theorems relating to the asymptotic behavior of the empirical
cumulative distribution function bestow empirical content to the mathematical
concept of a cdf F(x).” Explain and discuss.

13 Discuss Reyni’s view that the Law of Large Numbers bestows empirical content to
the concept of probability because there is no circularity problem in the argument.

14 “Misspecification testing bestows empirical content to the notion of a statistical
model.” Explain.

15 Compare and contrast parametric and non-parametric statistical inference.

16 “Non-parametric statistical models give rise to imprecise statistical inference
results.” Discuss.

17 “Non-parametric inference is proper statistical inference within the Fisher para-
digm.” Discuss.

18 “Robustness is part of parametric statistical inference and is often believed part of
non-parametric inference.” Discuss.

19 Discuss the use of non-parametric techniques in preliminary data analysis.

20 Discuss the possible role of non-parametric inference in misspecification testing.

21 “Non-parametric inference can be viewed as an inappropriate attempt to deal with
the problem of misspecification.” Discuss.
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11 An introduction to
statistical inference

11.1 Introduction

In the previous chapter a bridge was proposed between the mathematical concept of a
statistical model and the empirical notion of chance regularity in an attempt to confer
empirical content on the former. The central pillar supporting the bridge is the concept
of the empirical cumulative distribution function (ecdf) F̂n(x) which was shown to be the
empirical counterpart to the cumulative distribution function F(x). It must be noted,
however, that the proposed bridge, as well as the discussion leading to it, predisposes the
reader towards a particular approach to statistical inference known as the classical (or
frequentist) approach, associated with the frequency interpretation of probability. To be
more precise, the discussion that follows is partially in favour of what is known as para-
metric statistical inference. Moreover, the discussion of statistical inference in the next
few chapters focuses attention on methods of the classical approach which are appropri-
ate for the analysis of non-experimental (observational) as opposed to experimental data.
These choices are not as arbitrary as they might seem at first sight, but they need to be
justified. One of the aims of the present chapter is to justify these choices in order to
place the discussion which follows in a less prejudiced perspective.

The main issues discussed in this chapter include:

(a) classical versus Bayesian statistical inference,
(b) experimental versus non-experimental data analysis, and
(c) sampling distributions.

11.1.1 A bird’s eye view of the chapter

In section 2 we present a bird’s eye view of the traditional facets of the classical approach
to statistical inference: estimation, testing and prediction, as a prelude to the discussion
which follows. In section 3 we discuss briefly the differences between the classical and
Bayesian approaches in an attempt to provide additional insight into the classical
approach. In section 4 we compare and contrast non-experimental and observational
data as they relate to empirical modeling in an attempt to bring out certain neglected
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facets of empirical modeling: specification, misspecification and respecification;
these facets are of secondary importance when modeling with experimental data. These
neglected facets are discussed in section 5 where we propose a more coherent modeling
procedure for modeling non-experimental data. In section 6 we provide a preliminary
discussion of the notion around which the classical approach to inference revolves: the
notion of a sampling distribution. Estimators, test statistics and predictors constitute
functions h(X1,X2, …, Xn) of the postulated sample (X1,X2, …, Xn) and thus they are
random variables themselves with distributions we call sampling distributions. All infer-
ence results depend crucially on such sampling distributions. In section 7 we consider the
general problem of determining the distribution of h(X1,X2, …, Xn), assuming the joint
distribution of (X1,X2, …, Xn) is known. Because of the inherent difficulties associated
with this problem we often resort to approximations of such sampling distributions
using hypothetical sampling procedures which are discussed in section 8.

It is of paramount importance to emphasize at the outset that in empirical modeling,
the joint distribution of (X1,X2, …, Xn) is not actually known but assumed by the
modeler in the form of the postulated statistical model. Hence, the validity of the sam-
pling distribution results depend crucially on the validity of the postulated model. The
neglected facets of modeling hold the key to ensuring that the modeler does not proceed
mindlessly to use invalid inference results!

11.2 An introduction to the classical approach

The classical (frequency) approach to statistical inference was formulated by R. A.
Fisher (1890–1962) by recasting the biometric tradition founded by Francis Galton and
formulated by Karl Pearson and his co-workers. The first signs of Fisher’s recasting of
the inherited paradigm are discernible in his first statistics paper (see Fisher (1912))
written when he was a first year graduate student; immediately afterwards he abandoned
his graduate studies at the University of Cambridge (England), where he also studied for
his first degree; for what it is worth both Galton and Pearson also studied at Cambridge.
Fisher (1922b) is arguably the paper that founded modern statistical inference and con-
stitutes both a continuation and a break away from the inherited paradigm formulated
by Pearson; see Fienberg and Hinkley (1980) for a commentary on this and other papers
by Fisher. It took a very long time for the statistics profession to realize the shift of para-
digms (see Spanos (1995b)). Indeed, Karl Pearson died in 1936 but even in his last paper
(see Pearson (1936)) he does not seem to be fully aware of the fact that Fisher had turned
the tables on him and that was the main reason he lost the argument to the superiority of
maximum likelihood over his method of moments method of estimation; even though
the method of maximum likelihood is completely hopeless in the context of the Pearson
paradigm (see Fisher (1937) and chapter 13 for the details).

H   . It is interesting to note that there was no love lost between Karl
Pearson and R. A. Fisher, with the animosity between them going back to the mid 1910s
when Pearson rejected two papers by Fisher when the latter submitted them for publica-
tion in Biometrika, the house journal of the biometric tradition which was under the
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complete control of Pearson. The extent of this animosity between these two giants of
modern statistics is easily discernible in the following passage written by Fisher, 20
years(!) after Pearson’s death:

The terrible weakness of his (Pearson’s) mathematical and scientific work flowed from his
incapacity in self-criticism, and his unwillingness to admit the possibility that he had anything
to learn from others, even in biology, of which he knew very little. His mathematics, conse-
quently, though always vigorous, were usually clumsy, and often misleading. In controversy,
to which he was much addicted, he constantly showed himself to be without a sense of justice.
In his dispute with Bateson on the validity of Mendelian inheritance he was the bull to a skill-
ful matador… (Fisher (1956), p. 3)

For more on the controversies between Pearson and Fisher see chapter 13.

11.2.1 The Fisher paradigm

Statistical inference, as formulated by Fisher, commences by postulating a priori a statis-
tical model that purports to provide an adequate (probabilistic) description of the sto-
chastic mechanism that presumably gave rise to the observed data in question. The
simplest generic form of a statistical model is:

[i] Probability model: F5{f(x;u ), u[Q, x[RX},
[ii] Sampling model: X(n) :5 (X1,X2, …, Xn) is a random sample.

The modeler views the observed data x :5(x1,x2, …, xn) as a particular realization of
the stochastic mechanism represented by the specified statistical model. In particular the
observations are viewed as specific values taken by the random variables making up the
sample in question. The sample, as a set of random variables can be thought of as:

X(n)(.) : S→ X,

where X denotes the set of all possible values (often Rn), known as the sample space. The
observed data x :5(x1,x2, …, xn), viewed as a sample realization, are interpreted as a
point belonging to this space; one of many possible points. This, in effect, provides the
basis for the inductive argument with respect to which statistical inference differs from
descriptive statistics. This inductive argument, however, is embedded in a deductive argu-
ment which in a nutshell says:

if the premises are valid certain inference results necessarily follow.

The premises is nothing more than the postulated statistical model. Hence, the most
crucial problem of parametric statistical inference is to ensure that the premises are valid
(statistical adequacy) because otherwise the inference conclusions do not necessarily
follow. Despite its impertinent nature, the common saying:

garbage in, garbage out,

describes the situation aptly. That is, the inference results depend crucially on the
validity of the assumptions making up the model; assumptions such as independence
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and identical distribution in the case of a simple statistical model. Once, the parame-
ter(s) u are determined by the data, the stochastic mechanism that underlies the
observations, a specific form of the postulated statistical model, is completely specified
and can be used to draw a number of conclusions relating to the stochastic phenome-
non in question.

It is important to mention at this stage that Fisher did not just recast the Pearson par-
adigm but introduced most of the concepts, ideas and inference procedures in modern
statistics. The overwhelming majority of the concepts and ideas in estimation, including
properties of estimators and methods of estimation (maximum likelihood) can be traced
back to Fisher (1912, 1922a, 1922b, 1925a, 1925b, 1935); see chapters 12–13. As far as
testing is concerned we argue that Fisher’s procedure has not been superseded by that of
Neyman and Pearson as the traditional treatment would have us believe. Fisher testing is
revisited in chapter 14 and a case is made in chapter 15 that it is tailor made for
misspecification testing purposes. We mention in passing that Fisher (1935b) established
the experimental design tradition as a legitimate paradigm in statistics; it has been the
dominating paradigm in statistics for the last 50 years or so.

11.2.2 Basic concepts

Before we proceed to discuss the various facets of statistical inference in the context of
the classical approach, it is imperative to take stock as well as emphasize some of the
important notions mentioned in passing in the above introduction. To help us along we
use the simple Bernoulli model:

[i] Statistical GM: Xi5E(Xi)1ui, i[N,
[ii] Probability model: F5{f(x;u)5ux(12u)12x, 0#u#1, x50,1},
[iii] Sampling model: X :5(X1,X2, …, Xn) is a random sample. (11.1)

The probability model comes in the form of the family of Bernoulli densities, one
density for each value of u as it varies in the parameter space Q :5 [0,1]; and thus the
probability model represents an infinite set of such densities. The sampling model comes
in the form of the random sample; a set of independent and identically distributed
random variables (a random vector) X(n) defined by:

X(n)(.) :S→{0,1}n :5{0,1}3{0,1}3 ···3{0,1} ,

n times

where X :5{0,1}n is the sample space.
The first important distinction is that between a sample and a sample realization.

Sample A set of random variables X(n) :5(X1, X2, …, Xn) with a specified probabil-
istic structure is referred to as the sample. As such a sample represents a random
vector of the form: X(n)(.) : S→X.

Sample realization On the other hand a sample realization x :5 (x1,x2,. . .xn) is just
one point belonging to the sample space X.

5
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In the case of the Bernoulli model the sample realization x, say n530:

x :5(0,0,1,0,1,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1,0,1,0,0,0,1,1,0,0),

is viewed as one point of the sample space X :5{0,1}n. In other words, each random
variable making up the sample takes one of two values as shown below.

Sample: X(n) :5 (X1, X2, X3, X4, X5, X6, ··· X30)
↓ ↓ ↓ ↓ ↓ ↓ ↓

Sample realization: x :5 (0) 0 1 0 1 1 0)

The random variables X1,X2, …, X30, however, could have taken different values in
another sequence of 30 trials, say:

x(1)5(1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1),
or 
x(2)5(1,0,0,1,0,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0,0,1,0,1,1,1,0,0,1,0).

These sample realizations are all elements of the sample space X :5{0,1}n, which repre-
sents all the possible sequences of zeros and ones, of size 30.

The second important issue raised above is that of statistical inference versus
descriptive statistics. Postulating a statistical model a priori is the primary feature that
renders statistical inference different from descriptive statistics. In descriptive statistics
the modeler begins with a set of data in search of a model that conveniently summa-
rizes the information in these data. In the context of descriptive statistics we can
summarize this information in the form of a histogram or a pie chart but we cannot use
such summaries to draw conclusions about the chance mechanism underlying the
observed data. Statistical inference reverses the order by postulating a statistical model
a priori and interpreting the data in its context. This will then enable us to use the one
realization of the sample to draw conclusions about u and thus about the chance mech-
anism described by the statistical model in question. In this sense the approach to sta-
tistics as formalized by Karl Pearson is clearly within the realm of descriptive statistics
and does not constitute statistical inference in the modern sense of the term (see
chapter 13).

After this short digression on the above two important issues we return to the question
of coalescing the postulated statistical model with the observations. The first stage of
this fusing of information comes in the form of amalgamating the probability and sam-
pling models to define what we call the distribution of the sample.

Distribution of the sample The joint distribution of the random variables (X1,X2, …, Xn)
making up the sample, defined by:

D(X1,X2, …, Xn;u ),

is referred to as the distribution of the sample (see figure 11.1).
The second stage combines the a priori information fused in the context of the distrib-

ution of the sample with the observed data to define the likelihood function:
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L(u;x1,x2, …, xn)~D(X1,X2, …, Xn;u ),

where ~ reads proportional to; see chapter 13 for further details.
The statistical inference procedures such as estimation, testing, and prediction are

based on the information summarized by D(X1,X2, …, Xn;u ). In this sense the appropri-
ateness of these procedures depends crucially on the validity of the assumptions under-
lying the statistical model postulated. In cases where the underlying assumptions are not
valid for the data in question, the inference results built on invalid assumptions will be
very misleading.

Statistical inference constitutes a set of procedures for drawing valid conclusions
about the stochastic mechanism underlying the observed data using (a) the a priori
information, in the form of the postulated statistical model, in conjunction with (b) the
sample realization x :5(x1,x2,…,xn) as shown in figure 11.1.

Having introduced the basic concepts of the classical approach, we proceed to provide
a bird’s eye view of the main practical facets of statistical inference, traditionally known
as estimation, testing, and prediction. It is noted at the outset that these facets do not
provide a complete picture of what the classical approach to statistical modeling entails.
Indeed, as argued in section 4 these three facets of inference provide a misleading picture
of statistical modeling, especially in the case of non-experimental data.

11.2.3 Estimation

How would we go about estimating an unknown parameter u?

In the context of a postulated statistical model the data information comes in the form of
a particular value of X :5(X1,X2, …, Xn) in X,Rn and we seek a value of u in Q which is
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(somehow) best supported by the sample realization x. In order to take into account the
fact that x represents just one point in X, we define a rule which (hopefully) chooses the
most representative value of u in Q as a mapping from X to Q:

h(.) : X → Q.

This mapping, denoted by û 5h(X1,X2, …, Xn), is referred to as an estimator of u; see
figure 11.2. The particular value taken by this estimator based on the sample realization
X5x is referred to as an estimate:

û5h(x).

N that we use the same symbol û to denote both the estimator, which is a function,
and its value, which is just a number. When û is used without the right hand side, the
meaning should be obvious from the context.

Example
It was shown above that in the Bernoulli model:

u5E(X).

This suggests that an obvious choice of an estimator of u is the sample mean:

û5 n
i51Xi.

In chapter 13 we argue that this intuition can be used in a more general context in order
to define estimators.

o1
n
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The estimator û5 n
i51Xi, being a function of the random variables X :5(X1,X2, …, Xn),

is a random variable itself, and the estimate is just one of the many values û could have
taken. In the case of the above Bernoulli example for each sample realization, say x(i),
i51,2,... there is a different estimate, say:

û(1)50.40, û(2)50.55, û(3)50.45, û(4)50.50, û(5)50.35,

but all these are values of the same estimator û5h(X). That is, these are values taken by
the random variable û5h(X) as specified by its sampling distribution, say f(û). The latter
gives all the possible values of û5h(X) along with the corresponding probabilities; see
chapter 3 for the case of continuous random variables and the density function. The
empirical counterpart to f(û) can be fabricated by continuing the above process of
getting additional sample realizations of X of size 30. Let us consider the (hypothetical)
situation where the modeler can get N such size n sample realizations, say:

[x(1),x(2),…,x(N)],

where N is large enough. These sample realizations would give rise to the corresponding
estimates:

û(k)5h(x(k)), k51,2,…,N,

whose histogram constitutes an empirical counterpart to f(û); actually the smoothed
histogram (see chapter 5) might provide a better approximation to f(û). This simple idea
has several ramifications which enables us to derive approximations for f(û); two such
approximating methods, the naive Monte Carlo and the Bootstrap, will be discussed in
section 8.

This sampling distribution can be derived theoretically from the assumptions of the
statistical model (assuming they are valid); see sections 6–7. The sampling distribution of
û represents the different possible values of u and the probabilities associated with these
values. Hopefully, the true value u0 has a better chance of occurring on average, in the
long-run as represented by the sampling distribution. In chapter 12 this notion of
optimality will be formalized.

As we can see, interpreting the observed data as one of many different realizations
of the sample, which is assumed to be representative of the chance mechanism from
where the sample emanates, enables us to go beyond the data in hand and draw
conclusions about the chance mechanism itself. This is so because once u is given a
numerical value (estimated), the chance mechanism as specified by the statistical
model chosen a priori, becomes its idealized description of the phenomenon in ques-
tion.

Defining a single valued function h(.) : X→Q of the form:

û5h(X1,X2, …, Xn),

is said to be the point estimation. Another form of estimation is region estimation which
amounts to specifying a multi-valued function which defines a region in Q (see figure
11.3).

o1
n
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Example
In the case of the Bernoulli model we might be interested in specifying an interval estima-
tor of u which hopefully includes the true value of u, say u0. This amounts to specifying
an interval:

(û l,ûu),

where û l5h1(X) and ûu5h2(X) are two mappings from X to Q, such that u0 is captured
within this interval with a high probability, say 95 percent, i.e.

P(û l#u0#ûu)50.95.

Given that the two bounds û l and ûu are mappings from X to Q, they represent random
variables (being functions of the sample X). The above probabilistic statement says that
in a long-run sequence of sample realizations, the intervals defined by (û l, ûu) are likely to
include the true value of u, 95 percent of the time. In any one sample realization,
however, it is not known whether the interval includes u0 or not.

11.2.4 Hypothesis testing

Another form of statistical inference relates to testing hypotheses of interest about u
such as:

(a) u50.5, (b) u$0.8, (c) u#0.7.

As we can see, all these hypotheses define subsets of the parameter space Q :5 [0,1] and
our task is to construct a test which enables us to decide whether the hypothesis that the
true u belongs to this subset, say Q0,Q, is supported by the data.

A Neyman–Pearson test A Neyman–Pearson test constitutes a decision rule which
enables one to decide whether the observed sample realization (x1,x2, …, xn) leads to the
decision that u[Q0 or u[Q1 :5Q2Q0.

In terms of the observation and parameter spaces this amounts to specifying a
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mapping t (.) which divides the observation space X into two sub-sets C0 and C1 which
correspond to Q0 and Q1, respectively (see figure 11.4).

The mapping t (.) is also a function of the sample X and thus any probabilistic state-
ments relating to the hypothesis in question will be based on its sampling distribution.
Given that we can never be sure that the decision taken on the basis of a particular
sample is correct or not, we would like to make probabilistic statements about whether in
a long-run sequence of trials we are likely to make the correct decision to accept or reject
the hypothesis in question with high probability or not.

11.2.5 Prediction (or forecasting)
Prediction (or forecasting) is concerned with specifying appropriate functions of the
sample X1,X2, …, Xn which enable us to predict beyond the data in hand such as the
observation of X at n11, denoted by Xn11. That is, define an optimal function q(.) such
that:

X̂n115q(X1,X2, …, Xn).

A natural choice of the function q(.), which is optimal in a mean square sense is the
conditional expectation of Xn11 given X1,X2, …, Xn. As shown in chapter 7 the only func-
tion q(X) which minimizes the mean of the squared error:

E{Xn112q(X)}2,

is none other than the conditional expectation:

q(X)5E(Xn11 |X1,X2, …, Xn).

Example
In the case of the Bernoulli model the obvious way to derive the predictor of Xn11 is to
utilize the statistical GM (see chapter 7) which is indeed based on such a conditional
expectation. From the statistical GM we can see that the best way to predict Xn11 is to
extend it beyond the sample period, i.e., postulate:

Xn115u1un11.
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Given that u is unknown and E(un11)50 the natural predictor is X̂n115û. In this sense
the mapping q(.) is a composite mapping from X to Q and then from Q to the prediction
space by Xp:

q(h(.)) : X→Q→XP.

From this we can see that q(X) is also a random variable whose sampling distribution
depends on that of û . Hence, any probabilistic statements about the accuracy of X̂n11

will be based on the sampling distribution of û .
We conclude this section by reiterating that classical procedures of statistical inference

are constructed and assessed through the idea of a sampling distribution.

11.3 The classical versus the Bayesian approach

The purpose of this section is to present very briefly the Bayesian approach, and contrast
it to the classical approach to statistical inference; for a more detailed and (possibly)
more balanced comparison between these two approaches see Poirier (1995). For
completeness we also mention the approach which straddles these two approaches and is
known as the decision theoretic approach.

As argued by Barnett (1982) the various approaches to statistical inference can be use-
fully classified using three primary issues:

(a) the interpretation of probability,
(b) what constitutes relevant information for statistical inference purposes, and
(c) whether the role of statistics is inferential or/and prescriptive (decision-making).

11.3.1 The classical (frequency) approach

The classical approach is the approach adopted in this book and it will be discussed exten-
sively in the next several chapters. For comparison with other approaches, however, we will
discuss the classical approach very briefly with regard to the above primary issues.

(a) The interpretation of probability underlying this approach to statistical inference is
the frequency interpretation discussed extensively in the previous chapter.

(b) In the context of the frequency interpretation of probability the observed data con-
stitute the only relevant information.

(c) The classical approach as shaped by Fisher is primarily inferential in nature but the
dimension added by Neyman and Pearson is prescriptive.

Classical statistical inference begins with the modeler postulating a statistical model:

S :5(F,X(n)),

where F5{f(x;u ), u[Q, x[RX} denotes the probability model and X(n) :5(X1,X2, …,
Xn) the sampling model, as defined in the previous chapters.

In the context of the classical approach the modeler interprets the observed data
x :5(x1,x2, …, xn) as a particular realization of the stochastic mechanism represented by
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the specified statistical model. In particular the observations are viewed as specific values
taken by the random variables making up the sample in question. This, in effect, provides
the basis for the inductive argument with respect to which statistical inference differs
from descriptive statistics. This interpretation leads naturally to statistical inference pro-
cedures which emphasize, long-run behavior under essentially similar circumstances.

11.3.2 The Bayesian approach

In order to avoid any misleading impressions we note at the outset that there are more
versions of Bayesianism than ice-cream flavors! In this section we discuss some of the
elements of the Bayesian approach which are shared by most versions of Bayesianism.

(a) The Bayesian approach to statistical inference adopts the degrees of belief inter-
pretation of probability. The dominating version adopts the degrees of subjective
(or personal) beliefs interpretation (see Bernado and Smith (1994)).

(b) In the context of the Bayesian approach, relevant information includes:
(i) the observed data and
(ii) the prior beliefs relating to the distribution of u.
Moreover, the observed data constitute a unique outcome of a unique experiment,
not one of many possible realizations.

(c) The Bayesian approach is primarily inferential in nature.

In view of the above degrees of subjective beliefs interpretation, it should come as no
surprise to learn that the statistical inference procedures suggested by this interpretation
emphasize the revision of prior beliefs in view of the observed data. That is, the primary
role of the data is to revise the personal prior beliefs related to the values of u in the para-
meter space Q.

The prior beliefs are initially represented by the prior density (weighting) function:

p(.) : Q→ [0,1],

which represents the modeler’s assessment of how likely the various values of u in Q are a
priori. For example if the modeler believes that u50.1 is less likely than u50.5 she
should attach a higher density (weight) to the latter.

Using the information in the sample as summarized by the joint distribution of the
sample X(n) :5 (X1,X2, …, Xn), denoted by f(x;u ), the prior is revised to derive the poste-
rior, denoted by v– (u |x), via Bayes’ formula:

v– (u |x)5

Since the denominator does not depend on u we can consider it as a constant and express
the above as a proportionality relationship of the form:

v– (u |x)~p(u) · f(x;u ),

where ~ denotes proportionality. This procedure is summarized in figure 11.5.

p(u) · f(x;u)

# f(x;u)du
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11.3.3 The decision theoretic approach in a nutshell

The purpose of statistical inference as formalized by R. A. Fisher has always been infer-
ential. Beginning with Neyman and Pearson (1928a,b,1933a,b), however, another
dimension had been added: the decision theoretic dimension. As argued in chapter 14,
the purpose of a Neyman–Pearson test is to decide whether to accept or reject a hypoth-
esis concerning u. This dimension was later extended and formalized by Wald (1950) by
adding:

(i) a set of possible actions and
(ii) a weighting (utility) function which assesses the gains and losses which would arise

from different actions in different circumstances.

(a) The interpretation of probability underlying this approach to statistical inference
can be either the frequency interpretation or the degrees of belief interpretation of
probability. The latter is used especially when a priori information relating to u is
utilized.

(b) The relevant information in the context of the decision theoretical approach
includes not only the sample information and any a priori information on u, but
also includes all consequential losses or gains that relate to the decision under
consideration.

(c) The decision theoretic approach as shaped by Wald, as the name suggests, is pri-
marily decision oriented.

11.4 Experimental versus observational data

As argued in chapter 1, an important consideration in the statistical analysis of observed
data is whether the modeler has an active role in the determination of the numerical
values of some of the variables being measured. At one extreme we have the case where
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the modeler, working in the controlled environment of a laboratory, controls the
environment and some of the factors (we call the inputs) and traces their effects on the
other factors (we call outputs), establishing a causal relationship between inputs and
outputs. At the other extreme we have the observational data where the modeler has no
influence whatsoever, on the determination of the values of any of the variables involved
(input and output). These often come in the form of historical data gathered by some
agency which usually has nothing to do with the modeler.

11.4.1 Experimental data
Since the early 17th century, after Galileo’s experiment of rolling balls down inclined
planes of various heights (to confirm the law of falling bodies), the experimental method
in conjunction with causal explanation, had been gaining ground to become almost syn-
onymous to the method of science by the early twentieth century. The data from experi-
ments which are performed on ideal substances and where the modeler has total control
over all possible influences, do not usually require statistical analysis. More often than
not, they reveal the causal relationship in question by mathematical approximation tech-
niques. The majority of experiments in modern physics and chemistry, which take place
in laboratories, belong to this category. The aim of such experiments is to isolate some
aspects of a certain phenomenon of interest and by manipulating some of the factors, we
call inputs, trace their effects on other magnitudes we call outputs, establishing a causal
relationship between inputs and outputs. The key to a valid experiment is the isolation of
the phenomenon of interest from any other (uncontrolled) influences. Such uncontrolled
factors can influence the inputs, the outputs, as well as the environment in the context of
which the experiment takes place. If this isolation cannot be achieved, the experiment is
badly designed and the conclusions based on the resulting data can be very misleading.
In order to minimize the possibility of uncontrolled influences, most experiments in
physics, chemistry, and biomedical sciences take place in the controlled environment of a
laboratory.

In a number of fields, such as biology and agriculture, it is not always possible to
perform experiments in such a completely controlled environment. Consider the
example of assessing the effect of a new fertilizer on yield; by controlling the input
(amount of fertilizer applied) the modeler wants to establish a causal relationship
between this input and the output: the crop yield. The experiment is likely to take place in
a field where a number of factors that might influence the crop yield, such as rainfall,
sunshine, quality of soil, cannot be completely controlled. As the modeler moves away
from purified substances and cases where complete control is possible, a number of tech-
niques, such as randomization, have been designed to neutralize the effects outside the
modeler’s control. In other words, the modeler purports to achieve isolation not by direct
control but by other means. Techniques such as randomization, blocking and replication
constitute powerful tools for the statistical analysis of data from such experiments devel-
oped in the first half of the 20th century. The father of modern experimental design tech-
niques is R. A. Fisher whose monograph in 1935, entitled The Design of Experiments,
established the field as a legitimate branch of statistics; the efforts to analyze data from
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such experiments go back to the German tradition in agricultural experiments in the
early 19th century (see Gigerenzer et al. (1989)). To this early German tradition we can
trace the crucial insight that the experimental design and the proper method for analyz-
ing the resulting data are inextricably bound up. This insight is best encapsulated in
Fisher’s view that:

To understand one aspect of the problem is to understand the other. Statistical procedure and
experimental design are only two different aspects of the same whole, and that whole com-
prises all the logical requirements of the complete process of adding to natural knowledge by
experimentation… (Fisher (1935), p. 3)

This suggests that the statistical model specification and the design of the experi-
ment are the two sides of the same coin. The design purports to isolate the causal rela-
tionship between inputs and outputs and what is beyond the control of the
experimenter should be non-systematic; often a white-noise error. In cases where the
residuals from the estimated statistical model exhibit systematic information, chances
are that the design has ignored certain influences which cannot be assumed away. The
next step is to redesign the experiment in order to account for or at least neutralize
these systematic effects.

The idea of experiments where the modeler does not have complete control over the
environment, such as the one above, led eventually to experimental designs where the
environment in the context of which the study takes place is not under the direct control
of the modeler.

11.4.2 Sample survey data

In some fields where the design of controlled experiments is not possible, but the modeler
is facing a fixed population of study units, several techniques of survey sampling have
been developed. The design of laboratory experiments purports to isolate the phenome-
non of interest by controlling or neutralizing all the factors involved. The design of
surveys purports to isolate the phenomenon of interest by accounting for all influencing
factors using a carefully designed sample survey. This entails the careful selection of the
units to be sampled as well as the information to be collected.

The most widely used sample surveys are those relating to the voting intentions of a
certain cohort of voters. The ideal experiment in this case is to have the voters vote twice,
once for the pollsters and one for real. Of course one cannot ask the whole population of
voters to register their intentions before the polling day and instead a sample survey is
designed to cover only a small proportion of the voting population. For this sample
survey to be reliable, however, the modeler has to choose the subset of the voting popula-
tion carefully so as to be representative of the population. The survey designer will
account for the different factors which influence voting intentions by carefully selecting
the subset of voters to be asked and designing the questionnaire appropriately. The dis-
cussion of how one can design an effective questionnaire will take us well beyond the
scope of this book but it is instructive to mention briefly some of the methods used to
select the subset of voters in the context of sample survey data.
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Stratified sampling This method of sampling is useful in cases where there is a priori
information relating to the heterogeneity of the target population from one group to
another; the elements of each group are roughly homogeneous. In order to utilize this
heterogeneity information to improve the accuracy of the results, the modeler divides the
population into these heterogeneous groups (strata) and proceeds to collect data from
each stratum using random sampling; hence the name stratified sampling. It can be
shown that the accuracy of the estimated mean for the population, as estimated by its
variance, increases with the difference in the means between strata.

Cluster sampling This method of sampling is useful in cases where the target population
is naturally divided into clusters and we need to economize on the cost of sampling. A
way to do that is to draw a random sample of clusters first and then proceed to collect the
data using random samples whose size reflects the proportion of the population repre-
sented by the cluster in question. For example, for a household consumption survey of
the USA instead of drawing a random sample of, say, 5000 households from the whole of
the USA by random sampling, one might draw a random sample of 100 counties first
and then proceed to sample these proportionately to their population using random
sampling.

Quota sampling This is a popular method for public-opinion polls in which the inter-
viewer is instructed to poll a pre-specified quota of people with certain specific
characteristics such as sex, age, income, etc. The aim in this case is to try to account for
the factors influencing the decision, ignoring the randomness of the sample. This
method can introduce all kind of unknown biases into the analysis of the data.

From the point of view of the statistical analysis of these data it is important to empha-
size that the statistical model to be used for the analysis of the sample survey data is
decided at the time of the survey design. In this sense, survey data are similar to experi-
mental data where the statistical model specification and the design of the experiment
are the two sides of the same coin. As mentioned above, the modeler aims at isolating the
relationship between inputs and outputs by accounting for all influencing factors using a
carefully designed sample survey. If the isolation is effective, what is not accounted for by
the survey should be non-systematic. The relationship purports to be causal but estab-
lishing causality with sample survey data is considerably more difficult than in the
context of a laboratory controlled environment. In cases where the residuals from the
estimated statistical model exhibit systematic information the chances are that not all
influencing factors have been accounted for.

The terminology developed for sample survey data analysis in the 1930s and 1940s was
bequeathed to statistical inference in general. The term population was first introduced in
the context of sample surveys to mean “a set of units such as people, states, households,
and government agencies, about which the modeler wants some information.” The term
sampling was first introduced in this context to mean selecting a subset of the target
population. The term random sample, discussed extensively in chapters 4–10, was first
developed in the context of survey sample data to mean selecting a subset of the target
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population in such a way so that every unit in the population has the same probability of
being selected. Unfortunately, as argued in the next subsection, this terminology can be
very misleading in the context of observational data and their analysis.

11.4.3 Observational data

By observational data we mean data whose collection does not interfere with the phe-
nomenon being measured. The observer is passive in the sense that she cannot influence
(in any way) the numerical values of the variables being observed. This is in contrast to
experimental and sample survey data where the modeler has an active role to play in the
determination of the numerical values involved.

The question that naturally arises at this stage is whether the above experimental
design framework can be used in the case of observational data. Historically, one of the
strengths of statistics has been the ease by which a technique developed in the context of
one discipline could be transferred to other disciplines. However, as argued by
Gigerenzer et al. (1989, p. 273):

The techniques could be compared to the Trojan horse, packed with assumptions about
content and interpretation that may or may not be made explicit, and that may or may not fit
the new context of application. But these assumptions and their consequences come to light
only once they are already within the gates of the discipline…

As argued in Spanos (1995b) (see also chapter 1), a case can be made that the experi-
mental design paradigm has influenced unduly the statistical analysis of observational
data. Traditional econometrics can be viewed as a hybrid of the experimental design
and the theory of errors tradition going back to Gauss. The problem with this hybrid is
that both of these traditions are appropriate for modeling observed data emanating
from nearly isolated systems by courtesy of the experimenter or nature. The theory of
errors tradition was developed in the context of astronomy and geodesy (see Stigler
(1986)) where nature often plays the role of the experimenter, such as the example of
estimating Kepler’s second law. It is worth emphasizing that in this case, if the observa-
tions on:

r – the distance of the planet from the sun and
q – the angle between the line joining the sun and the planet and the principal axis of
the ellipse

refer to a planet such as Venus, it will be very difficult to discern the elliptical motion
because of the third body problem; Venus is close to the earth. On the other hand, for
planets such as Jupiter or even Mars, whose distance from the next planet is substantial,
discerning the elliptical motion will be much easier. In the former case nature is not as
generous in isolating the phenomenon of interest: the planets’ motion around the sun. In
the latter case the isolation is almost as good as the one in a laboratory. Hence, for such
data there is no problem utilizing methods developed in the context of experimental
design. However, in the case of observational data, which cannot be viewed as emanating
from a nearly isolated system, such methods of data analysis are often inappropriate.
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Viewing observational data as if they represent measurements in the context of a con-
trolled experiment can be very misleading indeed. First, the terminology population
versus sample is inept. Calling a hypothetical population the underlying stochastic mech-
anism, does not change the fact that for observational data this terminology is
inappropriate because it carries connotations of observing an isolated system. What is
the hypothetical population when observing the gyrations of exchange rates? What we
usually observe is some on-going process which cannot be isolated from the rest of the
economic system, not a population from which we select a representative sample.
Unfortunately, the term sample has been ingrained in the statistical literature and thus
we retain it but redefine it to mean a set of random variables with a specified probabilistic
structure. Second, specifying an appropriate statistical model by attaching white-noise
error terms to a theoretical model is well-suited for experimental data but inappropriate
for most forms of observational data. As argued above (see also Spanos (1995b)), in
modeling experimental data the problem of choosing a statistical model is relatively
simple and thus no explicit discussion of it is often encountered in statistics textbooks. In
the next section, we argue that for observational data the process of statistical inference
in traditional textbooks, including the problem of specification, needs to be modified.

11.5 Neglected facets of statistical inference

In section 2 we argued that the traditional facets of statistical inference, estimation,
testing, and prediction, do not provide a complete picture of the classical approach to
statistical modeling. In what follows we argue that these three facets of inference provide
a misleading picture of statistical modeling in the case of observational data.

The father of modern statistics, R. A. Fisher, in his classic 1922a paper “On the
mathematical foundations of theoretical statistics,” defined the main purpose of statis-
tics to be the reduction of a large quantity of data to a few numerical values (parameters);
a reduction which adequately summarizes all the relevant information in the original data
(ibid., p. 311, see also Fisher (1925a), pp. 5–6). He went on to classify the problems of
statistics into three broad headings:

(i) Specification – the choice of an appropriate statistical model,
(ii) Estimation – the choice of statistics for estimating the unknown parameters, and
(iii) Distributions – the derivation of the sampling distributions of the statistics in (ii).

R : Fisher classified hypothesis testing under estimation.
Of the three headings, the one which received the least attention since then is that of

specification. Statistical inference (and modeling) pays little attention to the question of
how a statistical model should be chosen. This attitude is aptly caricatured by Dawid
(1982) as quoted by Lehmann (1990):

Where do probability models come from? To judge by the resounding silence over this ques-
tion on the part of most statisticians, it seems highly embarrassing. In general, the theo-
retician is happy to accept that his abstract probability triple (S,I,P(.)) was found under a
gooseberry bush, while the applied statistician’s model “just growed”…
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On the issue of specification Fisher (1925a, p. 8) explained that:

This is not arbitrary, but requires an understanding of the way in which the data are supposed
to, or did in fact, originate. Its further discussion depends on such fields as the theory of
Sample Survey, or that of Experimental Design.

The main reason why the problem of specification received little attention is that the
theory of modeling confined itself to sample survey and experimental design data. The
purpose of this section is to provide an introduction to statistical model specification in
the case of observational data, retaining the spirit of Fisher’s view that the principal task
of statistics is the reduction of data.

Another aspect of modeling that received relatively little attention is that of statistical
adequacy. Under the heading problems of distribution, Fisher raises the problem of
testing the adequacy of the specification (the postulated statistical model):

(iii) Problems of Distribution include the mathematical deduction of the exact nature of the
distribution in random samples of our estimates of the parameters and other statistics
designed to test the validity of our specification (test of Goodness of Fit)…

(Fisher (1925a), p. 8)

In this book we consider the issue of statistical adequacy of paramount importance
and consider this aspect of modeling as a crucial component of specification.

Collecting the above arguments together we argue that the classical approach to statis-
tical inference comprises the following stages:

(1) Specification,
(2) Estimation,
(3) Misspecification,
(4) Respecification,

6 Statistically adequate model

(5) Testing, confidence regions,
(6) Prediction.

11.5.1 Specification

The first stage in classical statistical inference is referred to as specification:

postulating an appropriate statistical model for the data in question.

That is, in view of the observed data and the theoretical question of interest we proceed
to choose what we consider the appropriate statistical model. This facet of modeling
is crucial not only for observational data but for any type of data because an
inappropriate choice at this stage will undermine the rest of the statistical inference
results.

To see this consider the simplest case of sample survey data where the data refer to
voting intentions, i.e., answers to the question:

Will you vote for the Republican (R) or the Democratic (D) candidate in the
next election?
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Given that there are only two answers, R and D, we can define the random variable
X(R)50 and X(D)51 which suggests that the Bernoulli model, as specified in section 2,
might be an appropriate statistical model. For reference purposes it is instructive to note
the assumptions underlying the Bernoulli model:

(D) Distribution: Bernoulli,
(M) Dependence: Independent,
(H) Heterogeneity: Identical Distribution.

11.5.2 Misspecification

Given the importance of ensuring that the statistical model postulated is adequate for
the data in question, it is only natural that we should test the assumptions underlying the
model to ensure that our choice is indeed appropriate. Misspecification testing is con-
cerned with testing the validity of the underlying assumptions of the postulated statisti-
cal model. If any of the assumptions underlying the statistical model of our choice are
invalid for the data in question, the statistical inference results derived on the assumption
that the model is adequate will be, in general, invalid. How to test the adequacy of the
various probabilistic assumptions underlying the statistical model will be discussed in
chapter 15.

Let us return to the Bernoulli model postulated above to discuss the question of statis-
tical adequacy at an informal and intuitive level. Under what circumstances would this
model be an appropriate choice? Given that by definition the random variable takes only
two values the assumption of the Bernoulli distribution needs no justification but the
other two assumptions of Independence and Identical Distribution need to be assessed
and their validity established. As mentioned above a random sample in sample survey
data corresponds to a case where the sample of people asked was selected from the
population of potential voters in a way which gives every voter the same chance of being
asked. For example, in the case where the election is for the next president of the USA but
the people asked came from the same town it cannot be called a random sample.
Similarly, if people were asked by dialing telephone numbers generated by a random
number generator, it cannot be a random sample because this excludes people without
phones. In the same way if we ask more than one person in each family we might intro-
duce dependence because it is likely that people in the same family might influence each
other’s voting intentions.

Taking the argument a bit further, it might be reasonable to assume that different
states often have different voting patterns (heterogeneity). In the case where there exists
heterogeneity of voting intentions among states, the above statistical model is likely to be
inappropriate because it does not utilize the systematic information that voting inten-
tions are different among States.

11.5.3 Respecification

What does the modeler do in the case where the postulated model turns out to be statisti-
cally inadequate? The modeler has to respecify: choose another (hopefully) more
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appropriate statistical model. For instance, in the case of the above example, we need to
respecify in order to allow for the heterogeneity of the sample in the sense that different
States have different voting patterns (u is different from state to state). As argued in the
previous section, this entails two things. First, the modeler has to change the original
Bernoulli model to a non-homogeneous Bernoulli model:

[i] Statistical GM: Xik5uk1uik, k51,2,…,N, i[N,
[ii] Probability model

Fk5{f(xk;uk)5uk
xk(12uk)12xk, 0#u#1, xk50,1, k51,2,…,N},

[iii] Sampling model: X(n) :5(X1,X2,…,Xn), n5 nk, an independent sample. (11.2)

Second, the random sampling technique has to be replaced by stratified sampling:
divide the voting population into strata and use random sampling within each stratum
(State) (see above). For accurate results the modeler has to ensure that each sample size
nk is large enough and it contains a reasonable number of observations from each State
so we can estimate each uk adequately.

The above discussion pinpoints potential problems when modelers go ahead and pos-
tulate statistical models without worrying about their validity. Choosing an adequate
statistical model (appropriate specification) is the most important stage in statistical
inference and often the most difficult. This is because such decisions cannot be based on
prescribed recipes but have to be decided by the modeler on the basis of the question of
interest and the particular data set in question.

11.6 Sampling distributions

The problem of establishing the sampling distributions of estimators and tests was con-
sidered by Fisher as one of the three basic facets of statistical inference, the other two
being specification and estimation, as follows:

(iii) Problems of Distribution include the mathematical deduction of the exact nature of the
distributions in random samples of our estimates of the parameters. . .

(Fisher (1925b), p. 8)

By definition, an estimator û 5h(X1,X2, …, Xn) :5h(X) is just a function:

Y5h(X1,X2, …, Xn),

of the random variables making up the sample. In theory its distribution can be derived,
using the (joint) distribution of the sample D(x1, …, xn;u ), by way of the following rela-
tionship:

n times

F(û;x)5P(h(X1, …, Xn)#u)5 ··· D(x1, …, xn;u)dx1…dxn.

{(x1, …, xn) : h(x1, …, xn)#u}
(11.3)

5

EEE

o
N

k51
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N that the range of values over which the integration takes place is defined by:

Q(X) :5 {(x1, …, xn) : h(x1, …, xn)#u, u[Q}.

The distribution of a statistic h(X) is called a sampling distribution, with its cdf and
density functions denoted by F(û;x), f(û;x) to emphasize its dependence on the
sample.

The relationship (11.3) suggests that to derive F(û;x) we need first to determine the dis-
tribution of the sample. The latter is determined by the form of the postulated probabil-
ity and sampling models.

Example 1 Bernoulli
In the case of the simple Bernoulli model, we assume that the sample (X1,X2, …, Xn) con-
stitutes a set of Independent and Identically Distributed (IID) Bernoulli random vari-
ables. This information implies that:

D(x1,x2, …, xn;u)5 n
i51 f(xi;u)5 n

i51 u
xi(12u)12xi,

where the first equality follows from the IID (random sample) assumptions and the
second utilizes the information specified by the probability model. Hence, the form of
the distribution of the sample is:

D(x1,x2, …, xn;u)5uOn
i51 xi(12u)On

i51 (12xi).

Example 2 Normal
Similarly, the distribution of the sample for the Normal (one parameter) model is:

D(x1,x2, …, xn;u)5 n
i51 f(xi;m)5 n

i51 exp 2 (xi2m)2 5

5
n
exp 2 n

i51 (xi2m)2 .

Having specified the distribution of the sample utilizing the assumptions of the
postulated statistical model, we can proceed to derive the distribution of the function
û 5h(X1,X2, …, Xn) using (11.3). It is well known in mathematics that multiple integrals
(or summations) are difficult to handle at the best of times. In order to get some idea
about the difficulties involved, let us consider the derivation of sampling distributions in
the case of two simple models, the Bernoulli and Normal models.

11.6.1 The Bernoulli model and related sampling distributions

In this subsection we assume that the underlying model is the Bernoulli, as specified
above. Let us consider derivation of the distribution of the function:

û:5h(X)5 n
i51Xi,

First, we need to determine the range of values of this function. Given that the
random variables (X1,X2, …, Xn) take only two values 0 and 1, the range h(X)5 n

i51 Xio

o

6o1
2521

Ï2p1

61
251

Ï2ppp

pp
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is Q (X) :5{0,1,2,…,n} (ensure you understand why). The formula in (11.3) suggests
summing the joint density:

D(x1,x2, …, xn;u)5uOn
i51xi(12u)On

i51(12xi),

for all the values of h(X) in Q(X). To understand what this entails let us consider a heuris-
tic derivation of the distribution for a particular value of h(X), say h(x)53 and n54.
One way to get h(x)53 in 4 trials is to get one zero first and then three ones, i.e.

x :5(x1,x2,x3,x4)5 (0,1,1,1).

the probability of this event is:

f(x1,x2,x3,x4;u)5u3(12u),

because:

P(Xi51)5u, P(Xi50)512u for i51,2,3,4,

and the random variables X1, X2, X3, X4 are independent, implying that:

f(x1,x2,x3,x4;u)5P(X150) · P(X251) · P(X351) · P(X451).

The value h(x)53, however, arises in three other orderings of zeros and ones:

(x1,x2,x3,x4)5 (1,0,1,1), (x1,x2,x3,x4)5(1,1,0,1), (x1,x2,x3,x4)5(1,1,1,0).

In view of (11.3), we need to add all the probabilities associated with the value h(x)53.
Hence, the probability of the random variable h(X) taking the value 3 is:

f(h(x)53)54u3 (12u).

In general, the probability of h(X) taking the value k, in n trials takes the form:

f(h(x)5k)5 uk(12u)n2k, k50,1,2,…,n,

where (N : 4!54·3·2·1) denotes the number of different orderings of k
ones and n2k zeros (see Feller (1968) for a discussion of combinatorics). This suggests
that the sampling distribution of h(X)5 n

i51Xi is an (n-trial) Binomial with mean nu and
variance nu (12u ):

n
i51Xi,Bi(nu,nu (12u );n).

This result is particularly important in statistical inference and for reference purposes we
state it as a lemma. We will collect the most important results in connection with this and
other simple statistical models, such as the Normal, in a collection of lemmas.

Lemma 1
If X1,X2, …, Xn are Independent and Identically Distributed (IID) Bernoulli distributed
random variables with parameter u, i.e.:

Xk,Bi(u,u (12u );1), k51,2,…,n,

o

o

1n
k25  

n!
k!(n 2 k)!

1n
k2
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then the function Yn5 n
k51Xk is Binomially distributed with parameter u:

Xk,Bi(nu,nu (12u );n).

11.6.2 The Normal model and related sampling distributions

A very important statistical model is the simple Normal model. Initially we will consider
the simplest form of this model, the Normal (one parameter) statistical model:

[i] Statistical GM: Xi5m1«i, i[N,
[ii] Probability model:

F5 f(x;u)5 exp 2 (x2m)2 ,u :5m[R, x[R ,

[iii] Sampling model: X :5(X1,X2,. . .Xn) is a random sample. (11.4)

In the case of the Normal (one-parameter) model, deriving the distribution of

h(X)5 n
i51Xi ,

via (11.3) turns out to be considerably more involved than that of the Bernoulli model.
To give the reader a taste of what such derivations entail, let us consider the simplest

case where n52, i.e., derive the distribution of Z5X11X2. From the results in the next
section we know that the density function of Z takes the general form:

f(z;m)5 f(z2x2,x2;m)dx2, 2`,z,`.

In the present case X1 and X2 are independent, and thus:

f(z;m)5 f1(z2x2;m ) · f2(x2;m)dx2, 2`,z,`,

where f1(.) and f2(.) denote the marginal distributions of X1 and X2, respectively. Using
the normality of these densities we can deduce that:

f(z;m)5 ∫`
2` exp 2 (z2x22m)2 exp 2 (x22m)2 dx2,

f(z;m)5 ∫`
2` exp 2 [(z2x22m) 21(x22m)2] dx22`,z,`.

After some algebraic manipulations we can express this in the form:

f(z;m)5 exp 2 (z2m)2

2
∫̀
`

exp 2 x22 z
2

dx2,

which reduces to: f(z;m)5 exp 2
2

2`,z,`,

because 
2
∫̀
`

exp 2 x22 z
2

dx251, being an integral of the form

∫`
2` f(v)dv, where f(v) is the density of N v, . Looking at the formula for f(z;m), we

recognize the density function of Z5X11X2, to be:

(X11X2),N(2m,2).

21
2

1
21
26421

21Ï231
25Ï2

1
Ï2p1

62(z 2 2m)
Ï211

251
Ï2p21

Ï21

6421
21Ï231

25Ï2
Ï2p261

45(Ï2)21

Ï2p1
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251
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461
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This result can be extended to the case of any n, but the derivation of the distribution of
n
i51Xi is much more complicated. We state the result, however, that for IID normal

random variables:

Xi,N(m,1), i51,2,…,n,

Xi,N(nm,n).

This is a special case of a more general result given in the following lemma.

Lemma 2
If X1,X2, …, Xn are Independent, Normally distributed random variables with parame-
ters uk :5(mk,sk

2), i.e. non-identically distributed random variables:

Xk,N(mk,sk
2), k51,2,…,n,

then the function Yn5 n
k51Xk is also Normally distributed:

Xk,N( n
k51mk,

n
k51sk

2).

As mentioned above, distributional results for functions of the sample (such as estima-
tors and test statistics) are at a premium. In practice, determining the sampling distribu-
tion of û, when the distribution of the sample (X1,X2, …, Xn) is assumed known, can be a
very difficult mathematical problem (see next section). Indeed, the distributional results
known in this area are few and often relate to simple functions of distributions such as
the Normal, the Binomial, and the Exponential. Because of this we summarize some of
these results in the following lemmas.

Lemma 3
Let Z be a Normally distributed random variable:

Z,N(m,s2),

the function Y5exp(Z) is log-Normally distributed with mean m5exp m1 s2 and
variance t25exp{(2m1s2)(es221)}:

exp(Z), ln N(m,t2).

Lemma 4
If Z1,Z2,…,Zn are IID Standard Normal random variables:

Zk,N(0,1), k51,2,…,n,

then the function Vn5 n
k51Zk

2 is Chi-square distributed with n degrees of freedom:

Zk
2,x2(n).o

n

k51

o

61
25

ooo
n

i51

o

o
n

i51

o
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Lemma 5
If Z1 and Z2 are IID Standard Normal random variables:

Zk,N(0,1), k51,2,

then the function U5 is Cauchy distributed:

,C(0,1).

Lemma 6
Let Xk,N(mk,sk

2), k51,2,…,n, be independently distributed, then the function:

Yn5 ,

is distributed as non-central Chi-square with n degrees of freedom and non-centrality
parameter d5 n

k51(mk /sk)2 (see Spanos (1986)):

,x2(n;d).

Lemma 7
Let Z and V be two independent random variables of the form:

Z,N(0,1), V,x2(m).

Then the ratio is Student’s t distributed with m degrees of freedom:

,St(m).

Lemma 8
Let V1 and V2 be two independent Chi-square random variables with m1 and m2 degrees
of freedom:

V1,x2(m1), V2,x2(m2).

(a) The ratio U5 is (Fisher’s) F distributed with m1 and m2 degrees of freedom:

,F(m1,m2).

(b) The sum V5V11V2 is also chi-square distributed with m5m11m2 degrees of
freedom:

(V11V2),x2(m11m2).

1 
V1

m1

V2

m2

2
1V1/m1

V2/m2
2

Z

Î1V
m2

1 Z
(V/m)2

1Xk

sk
2

2o
n

k51

o

1Xk

sk
2

2o
n

k51

Z1

Z2

Z1

Z2
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Lemma 9
Let X1 and X2 be two independent Exponential random variables with the same parame-
ter u:

X1,Ex(u), X2,Ex(u).

(a) The difference Y5X12X2 is Laplace distributed with parameters (0,u):

(X12X2),Lp(0,u).

(b) The sum W5X11X2 is Gamma distributed with parameters (u,2):

(X11X2),Gamma(u,2).

Lemma 10
If Z1,Z2,…,Zn are Independent, Binomially distributed random variables:

Zk,Bi(u,nk), k51,2,…,n,

then the function Yn5 n
k51Zk is Binomially distributed:

Zk,Bi(u, n
k51nk).

As we can see, the above results are of limited value because they cover only simple func-
tions of very few variables. The question which naturally arises at this stage is:

What do we do in cases where the distribution of h(X1,X2, …, Xn) is unknowable?

In such cases we have to rely on approximate results, as n goes to infinity, which we need
to derive using limit theorems (see chapter 9).

11.6.3 Is there a systematic way to derive sampling distributions?

The brief answer to the question posed above is: No! However, the discussion relating
to the derivation of sampling distributions in the previous two subsections might give a
misleading impression of what is involved. The truth of the matter is that such results
are difficult to derive but in some cases there are certain methods which can be utilized
effectively. In the next section we provide an overview of a number of useful tech-
niques.

11.7 Functions of random variables

This is a very important issue for both probability theory and statistical inference
because we often find ourselves faced with functions of random variables whose distrib-
ution we need but we only know the distribution of the original variables. The thing to
note at the outset is that a Borel function of other random variables (random variables) is a
random variable itself.

oo
n

i51

o
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R : we remind the reader that a Borel function is one which is a random variable
relative to the Borel-field B(R), i.e., a function of a random variable X, say Y5h(X) is a
Borel function if:

(h(X)#y) [B(R) for all y [R;

see chapter 3 for more details.

11.7.1 Functions of one random variable

Consider the case where the distribution of the random variable X is known and we want
to derive the distribution of the random variable Y:

Y5h(X), where h(.) : RX→RY is a Borel function.

Discrete random variables.
In the case of discrete random variables, as shown in chapter 3, we can go directly to the
density function and argue from first principles as follows:

fy(y)5P(Y5y)5P(h(X)5y)5
{x:h(x)5y}

fx(x), y [RY. (11.5)

We first identify the range of values of the random variable Y; via RY5{y :y5h(x), x[

RX}, and then proceed to evaluate the probabilities associated with each value y by
adding together the probabilities of X associated with that value, i.e., {x :h(x)5y}.

Example
Consider the random variable X with a density function as given below and let Y5X2.
Let us derive the density function of Y.

x 22 21 0 1 2

fx(x) 0.2 0.1 0.2 0.3 0.2

Since RX :5{22,21,0,1,2} we can deduce that RY5{0,1,4}. Using (11.5):

P(Y50)5P(X50)50.2,
P(Y51)5P(X521)1P(X51)50.4,
P(Y54)5P(X522)1P(X52)50.4

y 0 1 4

fy(y) 0.2 0.4 0.4

Continuous random variables
As shown in chapter 3, in the case of continuous random variables we cannot define the
density function directly from first principles and instead we proceed using the cumula-
tive distribution function (cdf). Thus, the cdf of Y takes the form:

FY(y)5P(Y#y)5P(h(X)#y), y [RY. (11.6)

o
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The problem, however, is how to determine the probability of events of the form:

(h(X)#y), y [RY, (11.7)

since they involve both random variables. The obvious solution is to transform the
inequality (h(X)#y) into an inequality which involves the random variable X only.

Invertible h(.) Intuitively, we can think of a way to solve this problem in the case where
h(.) has an inverse by transforming (11.7) into:

(X#h21(y)), y[RY, (11.8)

and then proceed to derive the distribution of Y by evaluating the probabilities of the
events (11.8). These probabilities can be evaluated using FX(.):

FY(y)5FX(h21(y))5P(X#h21(y)), y [RY. (11.9)

Although this intuitive argument is basically correct, this case is of limited value because
for h(.) to have an inverse it has to be a bijection: one-to-one and onto; the onto part
amounts to h(RX)5RY. That is, the equation:

y5h(x), has a unique solution x[RX for each y[RY.

From chapter 3 we have the following results which can be utilized.

Probability integral and its inverse transformations For any continuous random variable
X, with a cdf FX(x) such that y5FX(x) is invertible and x5FX

21(y).

(a) For the random variable Y5FX(X):

Y5FX(X),U(0,1). (11.10)

(b) Let Y,U(0,1) and define X5FX
21(Y). Then X has a distribution with cdf FX(.).

These results depend crucially on the fact that both FX(x) and FX
21(y) are increasing

functions. Part (a) follows from (11.9) directly:

FY(y)5P(FX(X)#y)5P(X#FX
21(y))5FX(FX

21(y))5y, 0#y#1.

N that FY(y)5y, 0#y#1 defines the cdf of the Uniform distribution over [0,1] .

Part (b) amounts to showing that FX(x)5F(x):

FX(x)5P(X#x)5P(FX
21(Y)#x)5P(Y#F(x))5F(x).

This is a remarkable result because it holds whatever the distribution of the continu-
ous random variable X. Moreover, in cases where F(x) is invertible this result can be used
to transform a Uniformly distributed random variable into another random variable
with a specific distribution. Part (b) can be extended to cases where F(x) is not invertible
by using the quantile transformation (see chapter 3). This enables us to use random
numbers generated from a Uniform distribution to generate random numbers for several
other distributions (see chapter 5).
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The result in (11.9) can be specialized even further in terms of density functions as the
following lemma demonstrates.

The change-of-variable lemma for densities Consider the function Y5h(X), where X is a
random variable and h(.) satisfies the properties:

(a) h(.) is strictly monotone (increasing or decreasing),
(b) h(.) has a continuous non-vanishing derivative over the support set:

RX*:5{x : fx(x).0, x [RX}.

Then, Y is also continuous with density function satisfying the properties:

fy(y)5fx(h21(y)) * * , y [RY*:5h21(RX*). (11.11)

There are several things to  in relation to this result.

(1) A function h(.) :A→B is strictly monotone if for any x1[A, x2[A:

if x1.x2 ⇒ h(x1).h(x2) (increasing),

if x1.x2 ⇒ h(x1),h(x2) (decreasing).

(2) If h(.) is a strictly monotone function then it is one-to-one and onto.
(3) The assumption (b) is equivalent to assuming that h(.) has a differentiable inverse;

hence the use of in the above lemma. It is also equivalent to assuming that h(.) 

is differentiable and its derivative is either positive or negative for all x[RX*.
(4) The result follows from (11.9) by differentiation using the chain rule:

5 · * * .

Examples
(i) Consider the case where the density function of X takes the form:

fx(x)5e2x, x.0,

and define the increasing function Y :5h(X)5 . The inverse function and its
derivative are x5h21(y)5y2, y.0 and 52y. Hence:

fy(y)5fx(h21(y)) * *5(e2y2) (2y)52ye2y2, y.0.

(ii) Consider the case where the density function of X takes the form:

fx(x)5e2x, x.0,

and define the decreasing function Y :5h(X)5e2X. The inverse function and its
derivative are x5h21(y)52 ln y, 0#y#1 and 52 . Hence:

fy(y)5fx(h21(y)) * *5(eln y) * * 5y 51, 0#y#1.

Hence, the distribution of Y5e2X is in fact uniform over [0,1].

21
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(iii) Consider the case where the density function of X takes the form:

fx(x)52x, 0,x,1,

and define the increasing function Y :5h(X)53X21. The inverse function and its
derivative are: x5h21(y)5 , 21,y,2 and 5 . Hence:

fy(y)5fx(h21(y)) * *52 5 , 21,y,2.

It is interesting to  that in the case of discrete random variables the above lemma
requires only the existence of the inverse of h(.) and because of its one-to-one property
(11.5) reduces to:

fy(y)5fx(h21(y)), y [RY :5h21(RX).

After this short digression using monotonic functions h(.) and densities for both
random variables, let us return to the general result given by (11.6) to consider the ques-
tion of transforming (h(X)#y) into an inequality which involves the random variable X
only. To get some idea of the difficulties involved let us consider a simple example.

Example
Consider the case where h(X)5X2, x [RX. In view of the fact that:

(X2#y) ⇒ (2 #X# ),

we deduce: FY(y) :5P(X2#y)5P(2 #X# )5FX( )2FX(2 ).

Using this example we can systematize the general approach into the following steps:

step 1: using y5h(x), identify RY :5{y :y5h(x), x [RX}; use the graph of h(x),

step 2: using a typical value y, identify the intervals By5(Y#y) and Ax5(h(X)#y),

step 3: identify in terms of y the endpoints of the interval Ax,

step 4: equate FY(y) with the probability that X belongs to the set Ax.

The general procedure amounts to mapping the event By5(Y #y) into a statement
about X via X[Ax where Ax5(h(X)#y) and then specifying the probability of By using
the distribution of X via:

FY(y)5P(X[Ax)5 fx(x)dx.

N that By,RY and Ax,RX. It is interesting to emphasize that the result of the above
procedure depends crucially not only on h(.) but also on RX.

Example
Consider the case where Y5X 2, where X,U(0,1). In view of the fact that:

BY :5{y :y5h(x), x [(0,1)}5(0,1),

E
By

ÏyÏyÏyÏy

ÏyÏy

12(y 1 1)
9 221

312y 1 1
31dx

dy

1
3

dx
dy

y 1 1
3
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for By5(X 2#y), Ax5(0#X# ), since x [ (0,1),

we deduce: FY(y) :5P(X 2#y)5P(0#X# )5FX( )5 .
The last equality follows from the fact that the cdf of the Uniform distribution over [0,1]
takes the form FX(x)5x.

11.7.2 Functions of several random variables

The problem we are facing in this section is the following. We know the joint distribution
of the random variables (X1, X2, …, Xn) and we want to find the distribution of a func-
tion of these random variables:

Y5h(X1,X2, …, Xn).

Discrete random variables.
In the case of two discrete random variables (X1, X2), we can define directly the density
function and argue from first principles as follows:

fy(y)5P(Y5y)5P(h(X1,X2)5y)5
{(x1,x2): h(x1,x2)5y}

f(x1,x2), y[RY. (11.12)

We first identify the range of values of Y via: RY5{y :y5h(x1,x2), x1[RX1
, x2[RX2

},
and then proceed to evaluate the probabilities associated with each value y by adding
together the probabilities of X associated with that value, i.e., {(x1,x2) : h(X1,X2)5y}.

Example
Let Y52X11X2, where the joint distribution of X1 and X2 is:

x2\x1 0 1 2

0 0.2 0.2 0.2
2 0.1 0.1 0.2

The range of values of Y takes the form RY5{0,2,4,6} and thus:

P(Y50)50.2, P(Y52)5(0.110.2)50.3,
P(Y56)50.2, P(Y54)5(0.110.2)50.3.

y 0 2 4 6

f(y) 0.2 0.3 0.3 0.2

Continuous random variables
In the case of continuous random variables we cannot define the density function
directly but indirectly via the cdf. In the case where Y is a function of two continuous
random variables, say Y5h(X1,X2), its cdf can be derived via:

FY(y)5P(Y#y)5P(h(X1,X2)#y)5

{(x1,x2): h(x1,x2)#y}

f(x1,x2),dx1dx2. (11.13)EE

oo

ÏyÏyÏy

Ïy
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As in the univariate case the problem with this derivation is to transform the event:

(h(X1,X2)#y),

into an event in terms of X1 and X2 whose probability we can evaluate in terms of y.

Example
Consider the case where Y5X11X2 and the density functions of two independent
random variables X1 and X2 take the form:

f1(x1)5e2x1, x1.0, f2(x2)5e2x2, x2.0.

note that RY5(0,` ). Using the general result in (11.13) as follows:

FY(y)5P(Y#y)5P(X11X2#y)5 ∫ y
0 ∫ 0

y2x1 e2x12x2dx1dx25

FY(y)5 ∫ y
0e2x1e2x2 *x250

x25y2x1 dx15 ∫ y
0e2x1(12e2y1x1dx15

FY(y)5 ∫ y
0(e2x1 2e2y) dx15e2x1 2x1e2y *x150

x15y
12e2y2ye2y.

Hence, the density function of Y takes the form:

fy(y)5ye2y, y.0. (11.14)

It is interesting to note that in the above example we considered a very simple case of two
independent random variables because in more general cases the manipulations involved
are quite complicated. In the n-variable case the theoretical result is straightforward
since:

n times

FY(y)5P(h(X1, …, Xn)#y)5 ··· f(x1, …, xn)dx1 ...dxn.

{(x1, …, xn) : h(x1, …, xn)#y}
(11.15)

However, this is of theoretical importance because only rarely can the modeler use
(11.15) to derive the distribution of Y5h(X1,X2, …, Xn).

We conclude this section by mentioning the multivariate extension of the change-of-
variable lemma for density functions. It turns out that it can be generalized directly with
suitable notation. Suppose that X :5 (X1,X2, …, Xn) are random variables with known
joint density f(x1,x2,…,xn), and define the n random variables Y :5(Y1,Y2,…,Yn) via the
one-to-one transformation and its inverse:

Y15h1(X1,X2, …, Xn), X15h1
21(Y1,Y2,…,Yn),

Y25h2(X1,X2, …, Xn), X25h2
21(Y1,Y2,…,Yn),

l: : : :

Yn5hn(X1,X2, …, Xn). Xn5hn
21(Y1,Y2,…,Yn).

In matrix notation this transformation can be written in the form:

Y5H(X), X[RX
n , Y[RY

n, where H(.) : RX
n→RY

n.

5

EEE
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As in the univariate case, when this transformation is both differentiable and invertible
we can proceed to derive the joint density of Y:

fy(y1,…,yn)5fx(h1
21(y1,…,yn),h2

21(y1,…,yn),…,hn
21(y1,…,yn)) |J(y1,…,yn) | ,

(11.16)

where J(y1,y2,…,yn) denotes the Jacobian determinant of the inverse transformation:

J(y1,y2,…,yn)5det ,

which is assumed to be non-zero. As we can see, the Jacobian determinant replaces

in (11.11). It is important to note that this result provides us with the joint distrib-

ution of Y :5(Y1,Y2,…,Yn) and thus if we require any of the marginal distributions we
need to use the integrating out method discussed above.

Examples
Consider the case where the independent random variables (X1,X2) have density func-
tions:

f1(x1)5e2x1, x1.0, f2(x2)5e2x2, x2.0.

(i) Let the functions of interest be: Y15X11X2 and Y25X1. The first thing we need to
establish is the range of values of the vector (X1,X2):

{(y1,y2) :y1.0, 0,y2,y1}.

The inverse functions take the form X15Y2, X25Y12Y2.
Jacobian of the transformation:

J(y1,y2)5det 5det 521.

Hence, the joint density of (Y1,Y2) takes the form:

fy(y1,y2)5e2y22(y12y2)(1)5e2y1, y1.0, 0,y2,y1.

The marginal density of Y1 is derived by integrating out Y2:

f1(y1)5 e2y1dy25y1e2y1, y1.0},

which coincides with the answer derived directly in (11.14) above.

(ii) Let the functions of interest be:

Y15 and Y25X1.
X2

X1

Ey1

0

10
1

  
1

2 121
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y1

x2

y1
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The first thing we need to establish is the range of values of the vector (X1,X2):

{(y1,y2) :y1.0, y2.0}.

The inverse functions take the form: X15Y2, X25Y1 · Y2.

Jacobian of the transformation:

J(y1,y2)5det 5det 52y2.

Hence, the joint density of (Y1,Y2) takes the form:

fy(y1,y2)5e2y22(y1·y2)(y2)5y2e2y2(11y1), y1.0, y2.0.

Distributions of the basic arithmetic functions The result in (11.16) can be used to derive
general results for the basic arithmetic functions of random variables. In order to avoid
problems of discontinuities we assume at the outset that we are dealing with two random
variables X1 and X2 which take only positive values and have an unknown joint density:

fx(x1,x2), x1.0, x2.0.

(i) Distribution of the sum Let the functions of interest be: Y15X11X2 and Y25X1.
The range of values of the vector (X1,X2) takes the form:

{(y1,y2) :y1.0, 0,y2,y1}.

The inverse functions take the form: X15Y2, X25Y12Y2. As shown the previous
example the Jacobian is J(y1,y2)521. The joint density of (Y1,Y2) takes the form:

fy(y1,y2)5fx(x1,y12x1), y1.0, 0,y2,y1.

The density function of Y1 is derived by integrating out X1:

f1(y1)5 fx(x1,y12x1)dx1, y1.0.

In the general case where:

fx(x1,x2), x1[R, x2[R,

this result does not change in any appreciable way:

fx11x2
(y1)5 fx(x1,y12x1)dx1, y1.0. (11.17)

(ii) Distribution of the product Let the functions of interest be: Y15X1X2 and Y25X1.
The range of values of the vector (X1,X2) takes the form:

{(y1,y2) :y1.0, y2.0}.

The inverse functions take the form: X15Y2, X25 .
Y1

Y2

E`

2`

E`

0

1 0
y2

  
1
y1
21

x1

y1
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y2

x2

y2
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Jacobian of the transformation:

J(y1,y2)5det 5det 52 .

The joint density of (Y1,Y2) takes the form:

fy(y1,y2)5 fx x1, ,y1.0, y2.0.

The density function of Y1 is derived by integrating out X1:

f1(y1)5 fx x1, dx1, y1.0.

In the general case where:

fx(x1,x2), x1[R, x2[R,

this result does not change in any appreciable way:

fx1 · x2
(y1)5 fx x1, dx1, y1.0. (11.18)

(iii) Distribution of the quotient Let the functions of interest be: Y15 and Y25X1.
The range of values of the vector (X1,X2) takes the form:

{(y1,y2) :y1.0, y2.0}.

The inverse functions take the form: X15Y2, X25Y1 · Y2. As shown above, the Jacobian
of the transformation is J(y1,y2)52y2. The joint density of (Y1,Y2) takes the form:

fy(y1,y2)5x1 fx(x1,y1x1), y1.0, y2.0.

The density function of Y1 is derived by integrating out X1:

f1(y1)5 x1 fx(x1,y1x1)dx1, y1.0.

In the general case where:

fx(x1,x2), x1[R, x2[R,

this result does not change in any appreciable way:

f (y1)5 | x1| fx(x1,y1x1)dx1, y1.0. (11.19)

We conclude this section by noting that the above result depends on the restriction
that the transformation H(.) is assumed to be one-to-one and onto. In view of this we
extend this result in two directions. The first is to allow for transformations which are
not onto:

Y5H(X), X[RX
n, Y[RY

m, where H(.) : RX
n → RY

m, m,n.
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The second is to relax the onto restriction and allow for transformations which are not
one-to-one. For the details of these extensions which are rather involved, see Hoffmann-
Jorgensen (1994).

11.8 Computer intensive techniques for approximating
sampling distributions*

In the previous section we discussed the mathematical problem of deriving sampling dis-
tributions and the first impression is that these results are difficult to come by. Given that
without them no statistical inference is possible we need to tackle the problem of sam-
pling distributions somehow. One approximate solution to the problem is provided by
the limit theorems discussed in chapter 9. Another way is to derive computer intensive
approximations to sampling distributions by resampling. These techniques will be dis-
cussed in this section.

11.8.1 The multi-sample method

In section 2 above we discussed the (hypothetical) scenario where the modeler is in a
position to get not just one sample realization X5x, where X :5 (X1,X2, …, Xn), but N
such realizations:

(x(1),x(2),…,x(N)). (11.20)

The idea is that under this scenario the modeler could view the estimates:

û(k)5h(x(k)), k51,2,…,N,

as observations from the sampling distribution f(û) of the estimator û of u, and for large
enough N evaluate the (smoothed) histogram of û(1), û(2),…, û(N)) to provide an
approximation to f(û).

The problem with this scenario is that in practice the modeler rarely has more than one
sample realization and when he/she does, the number of realizations N is often not large
enough to proceed along the lines of the above scenario. This practical difficulty,
however, does not render this scenario of no interest. As the number crunching capacity
of personal computers becomes generally available, the modeler could very easily replace
the actual sample realizations (11.20) with hypothetical ones. In this section we consider
two such methods which enable the modeler to derive approximations to the sampling
distribution f(û) or some of its numerical characteristics such as its moments and its
quantiles.

11.8.2 The naive Monte Carlo method

Monte Carlo is a computer intensive method concerned with providing approximate
solutions to mathematical problems by utilizing basic convergence results between pro-
babilistic concepts and their sample counterparts (see Fishman (1996)). The most
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general way to describe the Monte Carlo method is as controlled statistical experiments
designed and executed on the computer using pseudo-random numbers. Hence, several
techniques developed in the context of the experimental design approach to statistical
inference become relevant. In the present context we will focus mainly on the problem of
using the Monte Carlo method to provide an approximation to the sampling distribution
f(û), where û is an estimator of an unknown parameter u.

The idea underlying the Monte Carlo method is to replace the N sample realizations
(11.20) (which are usually unavailable) with pseudo-random number realizations:

(x̃(1),x̃(2),…, x̃(N)), (11.21)

which satisfy the properties of the postulated sample. In chapter 5 we discussed the ques-
tion of generating such pseudo-random numbers using the probability integral trans-
formation in conjunction with Uniform pseudo-random numbers. Armed with a large
number of designed realizations generated by a computer the modeler can proceed to
derive the estimates:

ũ(k)5h(x̃(k)), k51,2,…,N,

and view them as observations from the sampling distribution f(û). The intuitive way to
proceed is to approximate f(û) using the histogram (or the smoothed histogram) of the
estimates (ũ(1),ũ(2),…, ũ(N)). It turns out that our intuition is correct for good theoret-
ical reasons.

In chapter 10 we discussed the issue of using the empirical cumulative distribution func-
tion (ecdf) defined by:

F̂n(x)5 , (11.22)

in order to approximate the true cdf F(x). The Glivenko–Canteli result shows that the
ecdf F̂n(x) converges to the true cdf F(x) almost surely (or with probability one), i.e.

F̂n(x) →
a.s.

F(x). (11.23)

Given the direct relationship between the ecdf and the various empirical forms of
density function, say f̂ n(x), such as the histogram, the rolling histogram, and the
smoothed histogram (see chapter 10), we can consider them as good approximations of
underlying density function f(x). Indeed, under certain regularity restrictions:

f̂ n(x) →
a.s.

f(x). (11.24)

In order to illustrate the generality of the Monte Carlo method we note that utilizing
other convergence results for sample statistics the modeler can use the simulated pseudo-
random sample estimates (ũ(1),ũ(2),…, ũ(N)) to approximate other numerical
characteristics of the underlying sampling distribution. The quintessential result in this
context is the convergence of the sample raw moments to the distribution moments. As
shown in chapter 12, in the context of a simple statistical model, we have almost sure
(a.s.) convergence (see chapter 9) results of the form:

m̂r :5
n
k51Xk

r →
a.s.

mr :5 ∫xPR x
xrf(x)dx, r51,2,…,4o1

n3

[no. of (X1,X2, …, Xn) whose realization do not exceed x]
n
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where mr denote the distribution raw moments (see chapter 3) and m̂r the corresponding
sample moments. The idea underlying the Monte Carlo method is that any mathematical
problem which can be expressed in the form of the right-hand side integral can be solved
approximately (to any desired degree of approximation) by utilizing left-hand side aver-
aging. It is surprising to realize that numerous problems in mathematics, which often
have nothing to do with probability, can be reduced to this form. For example, the
problem of evaluating a multiple integral of the form:

···

x[Rm

h(x)dx,

can be tackled using a Monte Carlo procedure which views this as E(h(x)) with the
underlying distribution being Uniform.

Full information Monte Carlo designs
The above procedure is called naive Monte Carlo because it makes no attempt to exploit
some of the finer results of probability theory associated by introducing additional
information into the structure of the problem in order to increase the efficiency of this
method. This additional information includes the nature of the distribution f(x), con-
trolled dependence and designing more sophisticated forms of sampling models (see
section 4 above); see Hendry (1984), Fishman (1996). It is interesting to note that in the
context of the Monte Carlo method the design of experiments for exploiting the struc-
ture of different sampling models plays a very important role.

One of the strengths of the Monte Carlo procedure is that it can be easily adapted to
provide approximate distributional results in the context of statistical models beyond the
random sample case. The real difficulty in the case of non-random samples is to be able
to simulate pseudo-random sample realizations which reflect the structure of the postu-
lated statistical model. A particularly important concept in ensuring this is that of the
appropriate statistical generating mechanism (GM) introduced in chapter 7. To illustrate
the issues involved let us consider the normal autoregressive model (see chapter 8):

[1] Statistical GM: Xt5a01a1Xt211ut, t[T,

[2] Probability model:

F5 f(x1,x2, …, xT :u)5 exp 2 , u[Q, x[RT ,

where u :5(a0,a 1,s0
2)[Q :5R23R1 .

[3] Sampling model: (X1,X2, …, XT) is a stationary and Markov dependent sample,
sequentially drawn from f(xt |xt21;u), t[T. (11.25)

As we can see from this, the underlying sample is Normal, stationary, and Markov
dependent. The most widely used method to simulate pseudo-random sample realiza-
tions for this model is to use the statistical GM written in the form:

Xt5a01a1Xt211s0«t, «t,NIID(0,1), t[T, (11.26)

66(xt 2 a0 2 a1xt21)2

s2
0

1
25(s0)21

Ï2pp 
T

t52
5

EE
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where «t,NIID(0,1) stands for standard Normal, Independent, and Identically
Distributed random variables; the pseudo-random numbers required for the simulation.
Armed with these pseudo-random numbers the modeler can generate the pseudo-
random realizations via (11.26). For the generated sample realizations to reflect the
structure of the postulated model, the specified parameters need to be related to the
underlying probabilistic structure of the process {Xt}t [T in the sense that (see chapter 7):

a05(12a1)E(Xt), a15 , s 0
25Var(Xt)2a1Cov(Xt,Xt21).

The problem of ensuring that these constraints are built into the simulation system is
not as trivial as it might seem at first sight. In the traditional approach the modeler
often focuses almost exclusively on the system properties of the generation mechanism
to the demise of the statistical properties of the process as defined by the joint distribu-
tion. As a result, the implied parameterization sometimes differs from the one which
apparently generates the pseudo-random numbers and the whole analysis can be very
misleading.

In order to avoid some of these difficulties it is often preferable to generate the sample
realizations for such models directly in terms of the joint distribution. In the case of the
AR(1) model this entails simulating pseudo-random numbers from the bivariate Normal
distribution:

, t[T, (11.27)

where m5E(Xt), s(0)5Var(Xt), s(1)5Cov(Xt,Xt21). N that the Markov depen-
dence enables us to specify the structure of the process using a bivariate distribution (see
chapter 8). Given that there exists a one-to-one mapping between the parameters
(a0,a1,s0

2) and the distribution moments (m,s(0),s(1)), we can ensure the design values of
the parameters without any difficulty. The above observations are particularly relevant
to situations where the AR(1) model is sensitive to the initial conditions such as the case
of a unit root (see Spanos (1990), Spanos and McCuirk (1998)).

11.8.3 The Bootstrap method

In an attempt to motivate the Bootstrap method let us consider the scenario where
instead of replacing the actual sample realizations (11.20) with the pseudo-random
number realizations (11.21), the modeler generates pseudo-realizations by sampling with
replacement from the one actual realization X5x. That is, using the observed data
x :5(x1,x2, …, xn) generate the pseudo-realizations:

(x̆(1),x̆(2),…, x̆(N)), (11.28)

where each x̆(k) :5(x̆1
(k),x̆2

(k),…, x̆n
(k)), k51,2,…,N, constitute pseudo-realizations created

by selecting n numbers from (x1,x2, …, xn) using simple random sampling with replace-
ment; N that if we sample without replacement there is only one such pseudo-
realization possible, the original sample realization, but with replacement we can
generate numerous pseudo-realizations. The question which arises at this stage is:

1Xt

Xt21
2,N13m

m4,3s(0)
s(1)

  
s(1)
s(0)42

Cov(Xt,Xt21)
Var(Xt)
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What are the properties of the pseudo-realizations (11.28)?

The fact that we generated (11.28) by simple random sampling with replacement
amounts to giving each observation the same probability of being picked at each
selection. This is reminiscent of the way we defined the ecdf (11.22) above. This means
that if the original sample realization includes more values from a certain interval this
should be reflected in the pseudo-samples (11.28). Hence, these samples can be viewed as
samples from the ecdf. Given the relationship between the ecdf F̂n(x) and the true cdf
F(x), we can think of these pseudo-realizations as indirectly relating to F(x).

The idea underlying the Bootstrap method (proposed by Efron (1979)) is that, in cases
where the number of observations n is large enough to render the approximation of F(x)
by F̂n(x) reasonable, the pseudo-samples (11.28), called Bootstrap sample realizations,
should reflect the properties of the underlying distribution F(x). The Bootstrap samples
constitute random sample realizations from the ecdf F̂n(x) and thus indirectly from the
underlying distribution F(x). Moreover, as argued in chapter 3, the unknown parameters
are related in some way to F(x). For example in the case where the parameters are related
to the moments we know that:

m9r(u)5
x[RX

xrdF(x;u)5
x[RX

xrf(x;u)dx,

where the last equality holds when the density function exists. In this sense the unknown
parameter(s) u can be viewed as a functions of F(x):

u5g(F),

and thus the estimator û 5h(X) can be viewed as a function of the ecdf:

û5g(F̂n),

assuming that the function g(.) is continuous or at least well behaved in the sense that a
small distance in the domain is mapped into a small distance in the range. Hence, the
Bootstrap sample realizations (11.28) can be used in the same way as the real (11.20) and
the pseudo-random number (11.21) realizations in order to derive approximations to
the sampling distribution f(û). Armed with a large number of pseudo-realizations
(usually generated by a computer) the modeler can proceed to derive the estimates
(ŭ (1), û(2),…, û(N)):

û(k)5h(x̆(k)), k51,2,…,N,

and proceed is to approximate f(û) using the histogram (or the smoothed histogram) of
the estimates. Often, the estimates are used to approximate the first few moments of the
sampling distribution. The Bootstrap procedure to approximate the mean of the sam-
pling distribution f(û) follows the same steps as the Monte Carlo method described
above.

Viewed in the above light, the Bootstrap method differs from both the multisample
and Monte Carlo in one important respect: the distribution underlying the postulated
model is replaced with the ecdf of the observed sample. That is, by taking N→` the

EE

11
n2
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ecdf of the pseudo-realizations [x̆(1),x̆(2),…, x̆(N)] will converge to F̂n(x) and not to F(x).
This renders the Bootstrap method vulnerable to two modeling problems. The first is the
data specificity of the ecdf which will be reflected in the approximation results. This
problem can be alleviated somewhat by reducing the data specificity of the ecdf by
employing smoothing techniques (see chapter 5) associated with the empirical density
function. This entails generating the pseudo-realizations (11.28) not from the ecdf but,
say, the smoothed histogram which is less data specific. The second modeling problem
with Bootstrap approximations is that they are vulnerable to misspecifications in the
sense that if the postulated model is misspecified the Bootstrap approximation to any
sampling distribution f(û) will be misleading. For example, if the modeler has postu-
lated a random sample but the observed realization exhibits dependence and/or hetero-
geneity, then F̂n(x) will not, in general, be a good approximation of the postulated F(x).
This can play havoc with the Bootstrap approximations based on such an ecdf.
Judicious empirical modeling, however, could turn this weakness into a strength by uti-
lizing Bootstrap approximations as part of assessing the statistical adequacy of the pos-
tulated model.

In view of the data specificity problem, the Bootstrap method is rarely used to derive
approximations to the sampling distribution f(û), but it is often utilized to derive
approximations to the moments of this distribution.

Approximating the standard deviation of an estimator
To illustrate the Bootstrap procedure let us consider the case where the problem is to
approximate the standard deviation of the estimator û 5h(X).

Step 1 Generate N pseudo-realizations [x̆(1),x̆(2),…, x̆(N)] by simple random sampling
from the sample realization x5(x1,x2, …, xn).

Step 2 For each evaluate the function h(.):

[h (x̆(1)),h (x̆(2)),…,h (x̆(N))] (11.29)

these constitute the Bootstrap estimates ŭk5h(x̆(k)), k51,2,…,N.
Step 3 Form the sample mean of the Bootstrap estimates:

ŭ5 n
k51h(x̆(k)).

Step 4 Evaluate the standard error of ŭ:

SE(ŭ) :5 5 N
k51 (11.30)

This provides a measure of precision for ŭ which can be utilized to control the
accuracy of the approximation. We remind the reader that for any random vari-
able Z with bounded variance Chebyshev’s inequality (see chapter 3):

P .« # , for any «.0,

provides an upper bound on the accuracy of the difference |Z2E(Z) |. Hence,
from (11.30) we can deduce that the precision of the approximation can

1
«22|Z 2 E(Z) |

ÏVar(Z)1

5(h(x̆(k)) 2 ŭ)2

(N 2 1) 6o1
NÏVar(ŭ)

o1
N
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be increased by increasing the number of pseudo-random number sample real-
izations N.

The basic convergence result underlying the above procedure is that, in the case of a

random sample, the sample mean n :5 n
k51Xk converges to the distribution mean

m :5E(X), i.e.

n
k51Xk →

a.s.
∫x[RX xf(x)dx.

At a more mundane level, the sample mean n :5 n
k51Xk has the properties:

E( n)5m, Var( n)5 ,

irrespective of the nature of the underlying distribution D(m,s2); see chapter 12. For a
thorough discussion of the Bootstrap method see Efron (1982), and Efron and
Tibshirani (1993).

11.9 Exercises

21 Explain briefly the difference between descriptive statistics and statistical inference
when faced with the problem of analyzing a set of observed data.

22 Define the concept of a sample and contrast it to that of a sample realization.

23 Explain briefly the difference between the frequency and subjective interpretations
of probability. Why do we care?

24 How do we interpret the observed data in the classical (frequency) approach to sta-
tistical inference.

25 Explain the concept of the distribution of the sample.

26 Explain why estimation testing and prediction amounts to defining mappings
between the sample and parameter spaces.

27 Compare briefly the frequency and Bayesian approaches to statistical inference.

28 Explain the main differences between experimental and observational data with
regard to statistical inference.

29 Explain the following methods of sampling:
(i) simple random sampling, (ii) stratified sampling, (iii) cluster sampling, and (iv)
quota sampling.

10 Explain briefly the notions of specification, misspecification, and respecification.

11 Explain why the concept of a sampling distribution is crucial for statistical infer-
ence.
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n
  X   X 
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12 “Defining the sampling distribution of a statistic is theoretically trivial but practi-
cally very difficult to derive.” Discuss.

13 Explain the relationship between the Bernoulli and Binomial distributions.

14 “Linear functions of normally distributed random variables are normally distrib-
uted.” Explain.

15 Explain the relationship between the Normal and the following distributions:
(i) Log-Normal, (ii) Chi-square, (iii) Student’s t, and (iv) Cauchy distributions.

16 Derive the distribution of Y5 | X | assuming that the distribution of X is given
below:

x 22 21 0 1 2

fx(x) 0.3 0.1 0.1 0.2 0.3

17 Explain how the naive Monte Carlo method can be used to derive an approximation
to the sampling distribution of an estimator.

18 Explain how the Bootstrap method can be used to derive an approximation to the
sampling distribution of an estimator.

19 Compare and contrast the Monte Carlo and Bootstrap methods for deriving
approximations to the sampling distribution of an estimator.

20 Explain how one can use the Bootstrap method to derive an approximate variance
for an estimator.
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12 Estimation I: Properties
of estimators

12.1 Introduction

For any form of (parametric) statistical inference, as described in the previous chapter,
the modeler needs two basic components:

(a) statistical model: S :5(F,X), F – probability model, X – sampling model,
(b) set of data: x :5(x1,x2,…,xn).

The data are then interpreted as a realization of the chance mechanism specified by the
statistical model. The primary objective of statistical inference is to utilize the informa-
tion in the data to draw conclusions relating to the chance mechanism in question.
Estimation amounts to utilizing the information in the data to choose a particular value
of u from Q. Once the parameter is estimated by some estimator û, we have a probabil-
istic description of the chance mechanism in question Ŝ :5(F̂,X). In the case of a simple
statistical model, this stochastic mechanism can be described using the estimated proba-
bility model:

F̂5{f(x;û), x[RX}. (12.1)

It is important to emphasize at the outset that estimation of u is not the ultimate objec-
tive of modeling; estimating u is a means to an end. The ultimate objective is to obtain an
empirically adequate statistical description of the stochastic mechanism that gave rise to
the data which, in the above case, is the estimated statistical model (12.1).

The theory of estimation in its modern form begins with Fisher’s 1922 seminal paper
“On the mathematical foundations of theoretical statistics” where some of the funda-
mental concepts of estimation, such as likelihood, information, efficiency, and consis-
tency, were first proposed.

12.1.1 Bird’s eye view of the chapter

In section 2 we discuss the notion of an estimator and related concepts and illustrate
them using two basic examples which form the backbone of the discussion in this
chapter. A crucial concept is that of a sampling distribution which forms the basis of the
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discussion of what constitutes a good estimator. The notion of a good estimator is
formalized in terms of several properties defined in terms of the sampling distribution of
the estimator. The properties of estimators are separated into finite sample properties
(unbiasedness and efficiency) discussed in section 3 and asymptotic properties (consis-
tency, asymptotic Normality, and asymptotic efficiency) discussed in section 4.
Throughout the discussion we use two very simple statistical models, the Bernoulli and
the Normal (one-parameter) in order to illustrate the various ideas and concepts. These
examples are chosen to keep the mathematical manipulations to an absolute minimum.
In section 5 we discuss the most widely used simple statistical model, the simple Normal
model, in an attempt to bring out some of the more subtle features of optimal estima-
tion. In section 6 we discuss a property of a statistic (a function of the sample) which can
be used to devise optimal estimators: the property of sufficiency.

12.2 Defining an estimator

Estimating the unknown parameter u, amounts to defining a function of the form:

h(.) : X→Q,

where X is the sample space (the set of all possible sample realizations), and Q denotes
the parameter space (the set of all possible values of u). The function, denoted by:

û5h(X1,X2,…,Xn),

is referred to as an estimator of u. An estimator, (being a function of the random vari-
ables (X1,X2,…,Xn)), is itself a random variable which takes different values depending
on the sample realization. A particular value of this estimator, based on a particular
sample realization (x̆1,x̆2,…, x̆n), is called an estimate of u, and denoted by:

û5h(x̆1,x̆2,…, x̆n).

The meaning of û is always clear from the context, depending on whether it denotes a
random variable or a value of a random variable (a number).

Example 1
Consider the simple Bernoulli model:

[i] Statistical GM: Xi5u1«i, i[N,
[ii] Probability model: F5{f(x;u)5ux(12u)12x, 0#u#1, x50,1},
[iii] Sampling model: X :5(X1,X2,…,Xn) is a random sample.

The following functions constitute likely estimators of u:

(a) û15X1, (b) û25 (X11X2),

(c) û35 (X11X21Xn), (d) ûn5 n
i51Xi,

(e) ûn115 n
i51Xi , (f) ûn125 n

i51Xi ,o21
n 1 21o21

n 1 11
o1

N
1
3

1
2
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Counter-examples
The following functions h(X1,X2,…,Xn) do not constitute estimators of u:

(g) û45(X12Xn). The range of this function is not Q :5 [0,1]; it can take values outside
it when X150 and Xn51.

(h) û55 n
i51Xi

a. The domain of the function is not the sample space; it depends on
some unknown scalar a.

(i) û650.8. Its domain is not the sample space.

Example 2
Consider the simple (one parameter) Normal model:

[i] Statistical GM: Xi5m1«i, i[N,
[ii] Probability model:

F5 f(x;u)5 exp 2 (x2m)2 , u :5m[R, x[R ,

[iii] Sampling model: X :5(X1,X2,…,Xn) is a random sample.

N that the probability model is defined in terms of: X,N(m,1).
The following functions constitute possible estimators of m:

(i) m̂15X1, (iii) m̂35(X12Xn), (v) m̂n115 n
i51Xi,

(ii) m̂25 (X11X2), (iv) m̂n5 n
i51Xi, (vi) m̂n125 n

i51Xi.

Given that the parameter m takes values over the whole of the real line (R), it will be
impossible to define a function of the sample (X1,X2,…,Xn) which is not an estimator of
m. In view of the fact that it is very easy to define numerous possible estimators, the
question which naturally arises is: How does one choose among such estimators?
Intuitively, the answer to this question is obvious: we choose the estimator which approx-
imates the true unknown parameter u0 as accurately as possible. Formalizing the notion
accurate approximation turns out to be rather involved because we cannot define it in the
usual mathematical form | û2u0 |.0, This is because such a distance:

(a) depends on the unknown parameter u0, and
(b) û5h(X1,X2,…,Xn) is a random variable which can take many different values.

However, the fact that an estimator û 5h(X1,X2,…,Xn) is a random variable, suggests
that any formalization of accurate approximation will involve its distribution, which we
call the sampling distribution of û.

12.2.1 Sampling distributions of estimators

The sampling distribution of an estimator û 5h(X1,X2,…,Xn) :5h(X) is defined as the
distribution of the function h(X1,X2,…,Xn). Its density function is denoted by:

f(û;x1,x2,…,xn) :5f(û;x),

o21
n 1 21o1

n
1
2

o21
n 1 11

661
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in order to emphasize its dependence on the sample (X1,X2,…,Xn). As argued in chapter
11, the problem of establishing such sampling distributions was considered by Fisher as
one of the three basic facets of statistical inference, the other two being specification and
estimation:

(iii) Problems of Distribution include the mathematical deduction of the exact nature of the
distributions in random samples of our estimates of the parameters …

(Fisher (1925b), p. 8)

From the discussion in chapters 4 and 11 we know that mathematically we can define
the cumulative distribution function (cdf) of any function û 5h(X1,X2,…,Xn) via:

P(û #y)5 ··· f(x1,x2, …, xn;u)dx1dx2 ···dxn, (12.2)

{h(X1,X2, …, Xn)#u}

where

(a) Q(X) :5{h(X1,X2,…,Xn)#y} denotes the range of values of Y5h(X1,X2,…,Xn)
for all (x1,x2,…,xn) [X.

(b) f(x1,x2,…,xn;u) denotes the distribution of the sample: the joint distribution of the
random variables X :5(X1,X2,…,Xn).

Example 1 Bernoulli (continued)
Armed with lemma 1 of chapter 11, which says that a summation of IID Bernoulli distrib-
uted random variables is Binomially distributed, we can proceed to derive the sampling
distributions of estimators (a)–(e). In view of the fact that all these estimators are linear
functions of the sample, we can deduce that their sampling distributions are all
Binomial. All that remains is to derive their mean and variance utilizing the properties of
E(.) (see chapter 3). For example the sampling distribution of ûn5 n

i51Xi is Binomial
with mean and variance:

E(ûn)5 E( n
i51Xi)5 · nu5u,

Var(ûn)5 2 n
i51Var(Xi)5 2(nu(12u))5 u(12u).

These results are derived using the independence of the sample and the properties of the
mean and the variance (see chapter 3). Hence, the sampling distributions are as follows:

(a) û1,Bi(u, u(12u);1), (d) ûn,Bi u, ;n ,

(b) û2,Bi u, u(12u);2 , (e) ûn11,Bi u, ;n ,

(c) û3,Bi u, u(12u);3 , (f) ûn12,Bi u, ;n .

These distributional results suggest that the estimators (a)–(d) have sampling distribu-
tions with the same mean u (equal to the parameter it purports to estimate) but different
variances. The variance of ûn is smaller than any of the others, for any sample size n.3.
Indeed, the variance of ûn is n times smaller than the variance of the random variables in

2nu(1 2 u)
(n 1 2)21 n

n 1 22121
31

2nu(1 2 u)
(n 1 1)21 n

n 1 12121
21

2u(1 2 u)
n1

21
n121

n1o21
n1

21
n1o21

n1

o1
n

5EEE
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the sample! The sampling distribution of ûn11 is not centered at u but its variance is
smaller than the others. On the basis of its sampling distribution ûn seems to be the best
estimator of u in this group. This intuitive argument of best estimator will be formalized
in the next section.

Example 2 Normal (continued)
Using lemma 2 of chapter 11, which says that the sum of Independent Normally distrib-
uted random variables is Normally distributed, we can deduce that for the Normal
model the sampling distributions of estimators (i)–(vi) are:

(i) m̂1,N(m,1), (iii) m̂3,N(0,2), (v) m̂n11,N m, ,

(ii) m̂2,N(m, ), (iv) m̂n,N m, , (vi) m̂n12,N m, .

On intuitive grounds m̂n appears to be the best estimator in this group because its sam-
pling distribution has mean equal to m (the parameter it purports to estimate) and its
variance Var(m̂n)5 is n times smaller than the variance of the individual random vari-
ables Var(Xi), i51,2,…,n. In figure 12.1 we can see how much the variance is reduced by
as small a sample size as n512. This is an important result which is often exploited by
various resampling techniques such as the Monte Carlo and the bootstrap methods (see
chapter 11.8).

N : the discerning reader will have noticed that the best estimators in both the
Bernoulli and Normal models coincide. The question that naturally arises is:

Is it a coincidence that for the parameters u and m of the Bernoulli and Normal
models, respectively, the best estimator seems to be n

i51Xi?

The fact of the matter is that there is a good reason for this result. In both cases the para-
meter we want to estimate is the distribution mean E(X) and the best estimator n

i51Xi is
the sample mean. The idea of estimating a distribution moment using the corresponding

o1
n

o1
n

s2

n

2n
(n 1 2)21 n

n 1 22121
n11

2

2n
(n 1 1)21 n

n 1 121
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sample moment has a long history in statistics going back to the nineteenth century (see
chapter 13, section 2).

12.3 Finite sample properties

12.3.1 Motivation: the ideal estimator

As shown in the previous section, it is very easy to define estimators. This raises the
problem of choosing the best among these estimators. Given that estimators are func-
tions of the sample (random variables) they are random variables themselves. Hence, any
discussion of best would be related to their distribution.

The problem of defining a good estimator resembles a situation where an archer is
standing at the foot of a hill with the target on the other side of the hill beyond his vision.
What he has to do is devise a strategy (rule) relating to factors within his control, such as
the shooting angle and the pulling power, which will ensure that the arrow will land as
close to the target as possible. The modeler has to choose a rule (an estimator) in a way
that ensures proximity to the unknown value of the parameter u.

In order to motivate some of the optimal properties of estimators, let us consider first
the notion of the ideal estimator. Ideally, we want to have an estimator, say:

u*5h(X),

which takes only one value (u0 the true value of u), with probability one, irrespective of
the sample realization. That is, the sampling distribution of u* takes the form:

P(u*5u0)51,

i.e., u* equals u0 with probability one; it has a degenerate distribution. In figure 12.2 we
can see the ideal estimator and what appears to be a good approximation of its sampling
distribution.
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In terms of the archer analogy, the ideal estimator amounts to a procedure that
ensures that the archer hits the bull’s eye every time. Unfortunately, for a given sample
size n, no such estimator exists. Feasible estimators usually yield different estimates for
different sample realizations. Thus, we need to consider optimality criteria which are
based on a non-degenerate sampling distribution of the estimator in question. The best
among such estimators will be the one which comes closest to the ideal estimator. How
do we formalize the notion closest to the ideal estimator?

In view of the fact that no feasible estimator could approximate the sampling distribu-
tion of the ideal estimator (being degenerate), let us consider approximations based on
the first two moments. Heuristically, we can view the ideal estimator in terms of its first
two moments:

(i) E(u*)5u0, (ii) Var(u*)50.

This suggests that an optimal estimator will be one whose mean is located at the true value
of the parameter it purports to estimate and its variance is zero. For a finite sample size n,
the second property cannot be emulated by feasible estimators, but as n goes to infinity
some estimators can indeed emulate it. Because of this we distinguish between finite
sample properties (valid for any n) and asymptotic properties (valid as n goes to infinity).

12.3.2 Unbiasedness

We formalize the location property in the form of unbiasedness.
An estimator û is said to be an unbiased estimator of u if its sampling distribution has

a mean equal to the parameter u0 it purports to estimate, i.e.

E(û )5u0.

Otherwise û is said to be biased, the bias defined by: b(û ;u0)5E(û)2u0.

R : In order to avoid cumbersome notation, the subscript of u0 will be omitted
when it does not seem necessary.

Example 1 (continued)
In the case of the estimators (a)–(f) above, we can see that û1,û2,û3 and ûn are unbiased
estimators of u but ûn11 and ûn12 are not. The bias of these estimators is:

(e) b(ûn11)52 u, (f) b(ûn12)52 u.

Does this mean that the estimators ûn11 and ûn12 are inferior to the other estimators? As
shown below, the answer is not as obvious as it appears at first sight, because unbiased-
ness is not the only property, or even the most desirable property for good estimators.
Other properties related to higher moments are often more important.

The notion of unbiasedness is intuitively appealing but is not without its problems.

1 Unbiased estimators do not always exist.

1 1
n 1 221 1

n 1 12
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Example 2
Consider the simple Exponential model:

[i] Statistical GM: Xk5(1/u)1uk, k[N,
[ii] Probability model: F5{f(x;u)5u exp{2ux}, u.0, x.0},
[iii] Sampling model: X :5(X1,X2,…Xn) is a random sample.

It can be shown (see Schervish (1995), p. 297) that no unbiased estimator of u exists!

2 Unbiased estimators are not invariant to transformations of the unknown parameters.
That is, if ûn :5h(X) is an unbiased estimator of u, i.e.

E(ûn)5u,

then, in general, for q5g(u), where g(.) : Q→Q, and q̂n5g(ûn):

E(q̂n)?q.

Example 3 Exponential (continued)
Consider the simple Exponential model as specified above. We have seen that no unbi-
ased estimator of u exists, but we can show that for q5 , the estimator q̂n5 ( n

i51Xi) is
unbiased. This follows from the fact that:

E(q̂n)5 n
i51 E(Xi)5 n

i51q5 nq5q.

12.3.3 Efficiency

The notion that the sampling distribution should be as concentrated around the true
value of u as possible can be formalized in terms of the variance of the sampling distrib-
ution of an estimator. This property is referred to as efficiency: how dispersed the estima-
tor is around the true value of u. We consider two forms of efficiency: relative and full
efficiency.

Relative efficiency For two unbiased estimators û and q̂ of u, û is said to be relatively
more efficient than q̂ if:

Var(û)#Var(q̂).

Example 1 Bernoulli (continued)
In the case of the unbiased estimators û1,û2,û3 and ûn,û2 is relatively more efficient than
û1,û3 is relatively more efficient than û2, and ûn is relatively more efficient than û3, i.e.

Var(ûn) # Var(û3) #Var(û2) # Var(û1).

Relative efficiency is not such a hot property because the comparison is always relative
to some specific alternative estimators. This, however, suggests that an estimator which
is better than some terrible estimators is not necessarily a good estimator. Hence, the

1
no21

n1o1
n

o1
n

1
u
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question which immediately comes to mind is whether there is an ultimate low beyond
which the variance of no estimator can go. This raises the issue of absolute or full
efficiency.

The challenge of devising an absolute lower bound was met successfully in 1945–6 by
two pioneers of modern statistics H. Cramer (1946a) and C. R. Rao (1945). Using
different approaches they both reached the same conclusion. The absolute lower bound
for unbiased estimators is related to a concept introduced by Fisher (1922a) and sub-
sequently coined the Fisher information.

Fisher information for the sample
In the context of Probability theory we defined information in the context of a our uni-
verse of discourse, the probability space (S,I,P(.)), in a very simple way. Any form of
knowledge that reduces I to some subset of it, is viewed as information. That is,
knowing that our event space has been reduced from I to I1 where:

I1,I,

is viewed as information.
In statistical inference, information has to do with how the modeler utilizes the

information to draw conclusions relating to the stochastic mechanism that gave rise to
the data. Intuitively, information has to do with how well the modeler can filter the
systematic information out of the observed data. The degree of our utilization of the
systematic information in the data will be reflected by the precision of our estimates and
test statistics relating to the unknown parameters u. One such information measure is the
Fisher information for the sample for regular probability models.

Regular probability models A probability model F is said to be regular if the distribution
of the sample f(x;u) :5 f(x1,x2,…,xn;u) satisfies the following regularity conditions:

(Rf1) the parameter space Q is an open subset of Rm, m,n,
(Rf2) the support of the distribution X0 :5{x :f(x;u).0} is the same for all u[Q,

(Rf3) exists and is finite for all u[Q, x[X0,

(Rf4) for h(X) we can interchange differentiation and integration, i.e.

… h(x) · f(x;u)dx1…dxn 5 … h(x) f(x;u) dx1…dxn,`.

The first condition excludes boundary points to ensure that derivatives (from both sides
of a point) exist. For such regular probability models we can proceed to define the Fisher
information for the sample which is designed to provide a measure of the information
rendered by the sample for a parameter u[Q.

The Fisher information for the sample (X1,X2,…,Xn) is defined by:

In(u) :5E
2

. (12.3)

There are several things to  about this concept.

651d ln f(x;u)
du 2

4

u3EE2EE1

u

1 ln f(x;u)
u 2
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(1) Difficulties arise when the range of X depends on u; see example 4 below.
(2) Under the regularity conditions (I)–(III) it can be shown that:

In(u) :5E
2

5E 2 .

This often provides a more convenient way to derive Fisher’s information and thus
the Cramer–Rao lower bound.

(3) The form of the Fisher information depends crucially on the postulated statistical
model and it has nothing to do with estimators or test statistics. For example, in the
case of an independent sample:

E 5 n
i51E ,

and in the random sample case Fisher’s information takes the even simpler form:

In(u)5nI(u) :5nE
2

,

where f(x;u) denotes the density function of any one IID random variable Xk,
k 5 1,2,…,n and:

I(u) :5E
2

,

represents the Fisher information for a single observation. Its dependence on the
form of the probability model can be illustrated in the case of a random sample
from a Normal (one parameter) distribution: Xk,N(u,1), k51,2,…,n, i.e.

f(x;u)5 e2 (x2u)2, ln f(x;u)5 (x2u), I(u)51, In(u)5n.

N : the term information of the sample stems from the fact that the variance of the
best unbiased estimator equals the inverse of this. As the information increases this vari-
ance decreases and thus more information about u is gained.

The Cramer–Rao inequality Using Fisher’s information for the sample Cramer (1946a)
and Rao (1945) proposed an absolute lower bound for unbiased estimators.

Cramer–Rao lower bound Assuming that the Fisher information for the sample exists
and In(u).0 for all u[Q, the variance of any unbiased estimator of a parameter u, say û,
cannot be smaller than the inverse of In(u), i.e.

Var(û) $ CR(u) :5In
21(u) :5 E

2 21
. (12.4)

In the case where the modeler is interested in some differentiable function of u, say q(u),
and q̂(u) is an estimator of q(u), the Cramer–Rao lower bound takes the form:

Var(q̂(u)) $ CR(q(u)) :5 E(q(u))
2I n

21(u). (12.5)

Using (12.5) we can extend the Cramer–Rao lower bound to the case of any estimator,
say ũ, (not necessarily unbiased):

Var(ũ) $
2

E
2 21

, (12.6)

for any estimator ũ of u.

61d ln f(x;u)
du 251dE(û)

du 2

2d
du1

61d ln f(x;u)
du 25

d
du

1
2

1
Ï2p

651d ln f(x;u)
du 2

651d ln f(x;u)
du 2

1d ln f(xi ;u)
du 2o1d ln f(x;u)

du 2

d2 ln f(x;u)
du2 21651d ln f(x;u)

du 2
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The following example illustrates the usefulness of condition Rf2 for the derivation of
the Cramer–Rao lower bound.

Example 4
Consider the simple Uniform model:

[i] Statistical GM: Xk5E(Xk)1ek, k[N,
[ii] Probability model: F5{f(x;u)5(1/u), u[(0,`), 0,x,u},
[iii] Sampling model: X :5(X1,X2,…Xn) is a random sample.

In this case, the range of X depends on u, and the regularity condition Rf2 is not satisfied.
If we use the Cramer–Rao (C–R) lower bound in this case we will get very misleading
results because what appears to be a C–R lower bound:

5 5 (2n lnu)52 ⇒ In(u)5
2
,

is not in fact applicable.

Full efficiency An unbiased estimator û is said to be a fully efficient estimator of u if its
variance achieves the C–R lower bound:

Var(û)5CR(u) :5I n
21(u).

A necessary and sufficient condition for an unbiased estimator û of u to achieve this
bound is that (û 2u) can be expressed in the form:

(û2u)5h(u) , (12.7)

for some function h(u).

Example 2 Normal (continued)
In the case of the Normal (one parameter) model, the distribution of the sample takes
the form:

f(x;u)5
n
exp 2 (xi2u)2 , ln f(x;u)52 ln(2p)2 (xi2u)2.

The first and second derivatives take the form:

5 n
i51(xi2u), 52n.

Hence, In(u)5n, and the C–R lower bound is CR(u)5 , confirming that the estimator 

m̂n5 n
i51Xi is a fully efficient estimator. Equality (12.7) holds in this case since:

(m̂n2m)5 5 n
i51 (Xi2m).

Example 1 Bernoulli (continued)
As shown above, the distribution of the sample for the Bernoulli model is:

f(x;u)5uOn
i51 xi(12u)On

i51 (12xi).

o1
n4d ln f(x;m)

dm31
n

o1
n

1
n

d2 ln f(x;u)
du2od ln f(x;u)

du

o
n

i51

1
2

n
26o

n

i51

1
251 1

Ï2p2

4d ln f(x;u)
du3

2n
u1

n
u

d
du1 1

un2d ln
du

d ln f(x;u)
du
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Hence:

ln f(x;u)5( n
i51Xi) ln u1( n

i51 [12Xi]) ln(12u),

5 ( n
i51Xi) 2( n

i51 [12Xi]) ,

52 ( n
i51Xi) 2( n

i51 [12Xi])
2
.

E 2 5 .

This follows from the fact that:

E( n
i51Xi)5nu, E( n

i51 (12Xi))5n2 n
i51E(Xi)5n(12u),

and thus:

CR(u)5 .

If we return to the estimators (a)–(d) for u, we can see that the only unbiased estimator of
u, which is fully efficient is ûn, since:

Var(ûn)5 5CR(u).

Example 4* Uniform (continued)
Consider the unbiased estimator ûn5 max(X1,X2,…,Xn) of u. It can be shown that
the sampling distribution of the largest order statistic Y :5max(X1,X2,…,Xn) is
f(y;u)5 , 0,y,u (see chapter 10). Using this, we will be led to the misleading
conclusion that ûn is a super fully efficient estimator since:

E(ûn) :5 y 5u, Var(ûn)5 , ,

assuming that I n
21(u) :5 is the lower bound. Of course this argument is erroneous

because the Fisher information is not definable in the case of the Uniform distribution
because the regularity conditions do not hold.

12.3.4 Minimum MSE estimators

The above measures of efficiency enable us to choose between unbiased estimators but
they offer no guidance on the question of choosing between a biased and an unbiased
estimator such as (ûn11,ûn12) and (û1,û2,û3), respectively, in the context of the Bernoulli
model. This is interesting because fully efficient and unbiased estimators do not always
exist and unbiased estimators are not always good estimators. There are cases where we
might chose a biased estimator in preference to an unbiased one, because the former has
smaller variance. In the case of û1, û2 and û3 above, we can see that their variance can be
considerably larger than those of (ûn11,ûn12) for any reasonable value of n.

How do we compare biased and unbiased estimators?

1u2

n22

1u2

n221 u2

n(n 1 2)2
nyn21

unEu

0
1n 1 1

n 2

nyn21

un

1n 1 1
n 2

u(1 2 u)
n

u(1 2 u)
n

ooo

n
u(1 2 u)2d2 ln f(x;u)

du21

1 1
1 2 u2o1 1

u22od2 ln f(x;u)
du2

1 1
1 2 u2o11

u2od ln f(x;u)
du

oo

Finite sample properties 613



If we want to penalize for the bias of an estimator q̂, we should not use its variance as
a measure of its dispersion, because this ignores the fact that E(q̂)?u0. Instead, we
should use a measure of variation around u0. The most widely used such measure is the
Mean Square Error defined at u5u0 to be:

MSE(q̂;u0) :5E{(q̂ 2u0)2}.

N that in the case of an unbiased estimator û, MSE(û;u0)5Var(û), but in the case of
a biased estimator:

MSE(q̂;u0) :5E{(q̂ 2E(q̂)1E(q̂)2u0)2}5Var(q̂)1 [b(q̂;u0)]2,

where the bias was defined above to be:

b(q̂;u0)5E(q̂)2u0.

This can be derived directly from the definition of the MSE (verify!).
An estimator û is said to be a minimum MSE estimator of u if:

MSE(û ;u) # MSE(q̂;u),

for any other estimator q̂ and all values of u.

Example 1 Bernoulli (continued)
In terms of MSE, (ûn11,ûn12) are better estimators than û1,û2 and û3 since for n.3:

MSE(ûn11)5 u(12u)1
2
5 #MSE(û i), i51,2,3,

MSE(ûn12)5 u(12u)1
2
5 #MSE(û i), i51,2,3,

and most values of u. Moreover, MSE(ûn11).MSE(ûn12).

Inadmissibility of estimators The above minimum MSE property can be utilized as an
extension of both forms of efficiency defined above. In the case of any two estimators q̂2

and q̂1, if:

MSE(q̂2) # MSE(q̂1) for all u[Q,

we say that q̂2 dominates q̂1 in the MSE sense and q̂1 is said to be inadmissible.

Example 1 Bernoulli (continued)
In the case of (ûn11,ûn12):

MSE(ûn12) # MSE(ûn11) for all u[ [0,1],

and thus ûn11 is inadmissible. However, both estimators achieve their respective
Cramer–Rao lower bounds:

E(ûn11)5 u, 5 , E(ûn12)5 u, 5 .1 n
n 1 22

dE(û)
du1 n

n 1 221 n
n 1 12

dE(û)
du1 n

n 1 12

nu(1 2 u) 1 u2

(n 1 2)21 2 u

(n 1 2)21 n
(n 1 2)22

nu(1 2 u) 1 u2

(n 1 1)21 2 u

(n 1 1)21 n
(n 1 1)22
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Hence, from (12.6) the Cramer–Rao lower bounds for these biased estimators are:

CR(ûn11)5
2

5 , CR(ûn11)5
2

5 ,

which equal their respective variances.

There is another sense in which (ûn11,ûn12) are much better estimators than the unbiased
estimators û1, û2 and û3. This arises from the fact that the variances of û1, û2 and û3 are not
only bigger than those of (ûn11,ûn12), but they do not decrease as additional observations
are added to the sample.

This brings us conveniently to the asymptotic properties of estimators. We call such
properties asymptotic because, in contrast to the above finite sample properties which
relate to the finite sampling distribution f(û;x), they relate to the sequence of sampling
distributions {f(ûn;x)}`

n51. In a nutshell, the asymptotic properties amount to extending
the limit theorems discussed in chapter 9 (for the function n

k51Xk), to the case of arbi-
trary functions ûn :5h(X1,X2,…,Xn).

12.4 Asymptotic properties

Since the ideal estimator u* defined by P(u*5u)51, is not possible for a fixed sample size
n, the modeler would like to have estimators that achieve this ideal form as the sample size
increases to infinity. That is, estimators whose sampling distribution approaches the ideal
sampling distribution P(u*5u)51, in some probabilistic sense as n→`.

The probabilistic sense in terms of which this can be achieved asymptotically comes in
two versions: convergence in probability and almost sure convergence encountered in rela-
tion to the Law of Large Numbers (LLN) discussed in chapter 9. Convergence in proba-
bility, associated with the Weak LLN gives rise to the property known as consistency,
while almost sure convergence gives rise to the property known as strong consistency.
Moreover, the Central Limit Theorem can often be used to derive the distribution of ûn :
5h(X1,X2,…,Xn) as n→`. The latter can be used as an approximation of the finite
sample distribution of the estimator in question. It is noted again that without a sam-
pling distribution no statistical inference is possible.

12.4.1 Consistency

An estimator ûn is said to be a consistent estimator of u, if for any «.0:

lim
n→`

P( | ûn2u |,«)51, denoted by: ûn →
P

u. (12.8)

This reads “the limit of the probability of the event that ûn differs from the true u by less
than some positive constant «.0, goes to one as n goes to infinity”; see chapter 9.

R :
(i) ûn in this definition stands for a generic estimator and not the particular estimator

used in example 1; the sub-script n is used to emphasize the role of the sample size.

o

nu(1 2 u)
(n 1 2)21u(1 2 u)

n 21 n
n 1 22

nu(1 2 u)
(n 1 1)21u(1 2 u)

n 21 n
n 1 12
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(ii) In a certain sense, consistency is an extension of the LLN for functions of the
sample, say h(X1,X2,…,Xn), other than the sum.

(iii) In the case where ûn has a bounded variance, we can verify its consistency using
Chebyshev’s inequality (see chapter 3):

P( | ûn2u | #«) $ 12 .

This is because E(ûn2u)2 is just the mean square error of ûn. Hence, if MSE(ûn)→0

as T→` then → 0 and (12.8) holds.

Using the definition MSE(ûn;u)5Var(ûn)1 [b(ûn;u)]2 we can see that:

MSE(ûn)→0 if Var(ûn) → 0 and b(ûn;u)→0.

This suggests two easily verifiable conditions for ûn to be a consistent estimator of u when
the required moments of its sampling distribution exist:

(a) limn→` E(ûn)5u, (b) limn→` Var(ûn)50.

This suggests that in the case where ûn has bounded variance, we can verify its consis-
tency by checking the above (sufficient) conditions; they are only sufficient conditions
because ûn could be consistent even though its variance might not exist. The notion of
consistency based on (a)–(b) is sometimes called mean-square consistency.

Example 1 Bernoulli (continued)
In the case of the estimators û1, û2 and û3 we know that they are unbiased so that (i) is sat-
isfied automatically. However, given that:

(a) Var(û1)5u(12u), (b) Var(û2)5 u(12u) (c) Var(û3)5 u (12u),

we can deduce that none of these estimators satisfies the second condition, and thus they
are all inconsistent. Another way of looking at this is that the second moment of the sam-
pling distributions of these estimators do not change as n changes. In other words for the
precision of these estimators it does not matter whether one has n55 or n5105. In
contast, the estimators (ûn11,ûn12), are consistent because:

(e) lim
n→`

E(ûn11)5 lim
n→`

5u, lim
n→`

Var(ûn11)5 lim
n→`

50,

(f) lim
n→`

E(ûn12)5 lim
n→`

5u, lim
n→`

Var(ûn12)5 lim
n→`

50.

It is important to emphasize the fact that consistency is a minimal property. That is, when
an estimator is inconsistent it is not worth serious consideration, but the fact that it is
consistent does not render it a good estimator. There are numerous examples of consis-
tent estimators, however, which are practically useless (see Rao (1973), p. 344). The esti-
mators û1, û2, and û3, being inconsistent, can be eliminated from the list of good
estimators of û and the choice is now between ûn and ûn11. Given that ûn is both unbiased
and fully efficient and ûn11 is biased, we prefer ûn to ûn11.

1nu(1 2 u)
(n 1 2)2 21 nu

(n 1 2)2

1nu(1 2 u)
(n 1 1)2 21 nu

(n 1 1)2

1
3

1
2

E(ûn 2 u)2

«2

E(ûn 2 u)2

«2
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Example 2 (continued)
Using the sampling distributions of the estimators (i)–(vi), derived above, we can see
that:

(i) E(m̂1)5m, Var(m̂1)51, i.e., unbiased but inconsistent,

(ii) E(m̂2)5m, Var(m̂2)5 , i.e., unbiased but inconsistent,

(iii) E(m̂3)50, Var(m̂3)52, i.e., biased and inconsistent,

(iv) E(m̂n)5m, Var(m̂n)5 , i.e., unbiased, fully efficient,

(v) E(m̂n11)5 , Var(m̂n11)5 , i.e., biased but consistent,

(vi) E(m̂n12)5 , Var(m̂n11)5 , i.e., biased but consistent.

From the above comparison we can conclude that m̂n5 n
i51Xi is the best estimator of u.

It is important to note that in the case of the above examples (and in most cases in prac-
tice), we utilize only their first two moments when deciding the optimality of the various
estimators; the sampling distribution is not explicitly utilized. For statistical inference
purposes in general, however, we often require the sample distribution itself, not just its
first two moments.

12.4.2 Strong consistency

An estimator ûn is said to be a strongly consistent estimator of u, if:

P(lim
n→`

ûn5u)51, denoted by: ûn →a.s.
u.

This is exactly the asymptotic version of the ideal estimator property defined above. The
notion of convergence underlying strong consistency is known as almost sure (a.s.) con-
vergence. In chapter 9 it is shown that almost sure convergence is stronger than conver-
gence in probability and not surprisingly, the former implies the latter.

Example 1 Bernoulli (continued)
In the case of the estimator ûn of u discussed above, we can use Borel’s Strong LLN (see
chapter 9) directly to deduce that: ûn →a.s.

u.

Example 2 Normal (continued)
In the case of the estimator m̂n of m discussed above, we can use Kolmogorov’s second
Strong LLN (see chapter 9) to deduce that: m̂n →a.s.

m.

As mentioned above, consistency (weak and strong) is an extension of the Law of Large
Numbers to functions of the sample, say h(X1,X2,…,Xn), beyond the sum n

i51Xi. In the
same way the next asymptotic property, known as asymptotic Normality, is an extension
of the Central Limit Theorem (CLT), discussed in chapter 9.

o

o1
n

n
(n 1 2)21 nm

n 1 22

n
(n 1 1)21 nm

n 1 12

1
n

1
2
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12.4.3 Asymptotic Normality

An estimator ûn of u is said to be asymptotically Normal if we can find a normalizing
sequence {cn}`

n51 such that:

cn(ûn2u),a N(0,V`(u)), for V`(u)?0.

R :
(a) “,a ” reads “asymptotically distributed”.
(b) V` (u) denotes the asymptotic variance of ûn.
(c) The sequence {cn}`

n51 is a function of n. For example, in the case of a random
sample the normalizing sequence is defined by cn5 .

Example 1 Bernoulli (continued)
In the case of the estimators ûn and ûn11 of u discussed above, we can show that they have
the same asymptotically Normal distribution:

(ûn2u),a N(0,u (12u)), (ûn112u),a N(0,u (12u)). (12.9)

Example 2 Normal (continued)
In the case of the estimators m̂n and m̂n11 of m discussed above, we can show that they
have the same asymptotically Normal distribution:

(m̂n2m),a N(0,1), (m̂n112m),a N(0,1). (12.10)

For consistent and asymptotically Normal (CAN) estimators of u, we use the asymptotic
variance in order to choose between them. The smallest possible asymptotic variance, in
the case where the Cramer–Rao regularity conditions are satisfied is given by the asymp-
totic Fisher information defined in terms of:

I`(u)5 limn→`

2
· In(u) , CR`(u)5 [I`(u)]21,

where CR`(u) stands for Asymptotic Cramer–Rao lower bound.

Example 1 Bernoulli (continued)
In the case of the Bernoulli model we showed above that E 2 5 .
Hence:

I`(u)5 limn→` 5 ⇒ CR`(u)5u (12u).

Example 2 Normal (continued)
In the case of the Normal model discussed above, we showed that E 2 5n.
Hence:

I` (u)5 limn→` n 51 ⇒ CR`(u)51.221
n11

2d2 ln f(x;u)
du21

1
u(1 2 u)2111

n2 
n

u(1 2 u)

n
u(1 2 u)2d2 ln f(x;u)

du21

21 1
cn
21

ÏnÏn

ÏnÏn

Ïn
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12.4.4 Asymptotic efficiency

A CAN estimator ûn of u is said to be asymptotically efficient if:

cn(ûn2u),a N(0,[I`(u)]21), assuming I`(u)?0.

That is, the asymptotic variance equals the asymptotic Cramer–Rao lower bound.

Example 1 Bernoulli (continued)
In the case of the Bernoulli model we have shown above that the estimators in (12.9) are
indeed asymptotically efficient.

Example 2 Normal (continued)
In the case of the Normal model we have shown above that the estimators in (12.10) are
indeed asymptotically efficient.

This suggests that the CAN estimators ûn and ûn11 are both asymptotically efficient
because they achieve the asymptotic Cramer–Rao lower bound. As we can see the esti-
mator ûn stands out because it satisfies all the desirable properties, finite sample and
asymptotic.

12.4.5 Sampling distributions and properties of estimators

The discussion in this and the previous section revolved mostly around the first two
moments of the sampling distributions of the estimators. This might give the erroneous
impression that the sampling distribution itself is not needed and only the first two
moments are required. We defined unbiasedness and efficiency in terms of the mean and
variance of the sampling distribution of an estimator, respectively. Although the defini-
tion of consistency:

lim
n→`

P( | ûn2u |,«)51,

brings forth the role of the sampling distribution in evaluating the sequence of probabil-
ities:

{pn}`
n51, where pn :5P( | ûn2u |,«),

the most convenient way to prove consistency is often asymptotic behavior of the MSE;
the latter involves only the first two moments. Similarly, the other asymptotic properties
involve the sampling distribution but often this is not explicitly obvious. The fact of the
matter is that in statistical inference what is often needed is the sampling distribution of
the estimator itself, not just the first few moments. Our focus on the first two moments is
primarily based on convenience. There are several other properties which are not defined
in terms of the moments of the sampling distribution but some other numerical
characteristic.
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Mode unbiasedness An estimator ûn of u is said to be mode unbiased if the sampling dis-
tribution of ûn has a mode which coincides with the unknown parameter u:

Mode(ûn)5u, for all u[Q.

Example 4* Uniform (continued)
Consider the estimator of u defined by:

û [n]5max(X1,X2,…,Xn).

It can be shown (see chapter 11) that the sampling distribution of û [n] is:

f(x;u)5 , 0,x,u.

In view of the fact that for any u.0 the density function f(x;u) has a unique maximum at
the point h(u)5u, the estimator û [n] is a mode unbiased estimator of u:

Mode(û [n])5u, for all u[(0,`).

Median unbiasedness An estimator ûn of u is said to be median unbiased if the sampling
distribution of ûn has a median which coincides with the unknown parameter u:

Median(ûn)5u, for all u[Q.

Example 2 Normal (continued)
In the case of the Normal model we have shown above that the estimator m̂n5 n

k51Xk is
mean unbiased with a Normal sampling distribution. The latter implies that m̂n is also a
mode and median unbiased estimator.

In addition to using numerical characteristics of the sampling distribution, there are
other ways to define closeness of an estimator to the true value of the parameter which
bring out the role of the sampling distribution more clearly. For example we can define
the notion of closeness of two estimators û and ũ of the unknown parameter u to the true
value u0 using the following concentration measure:

P( | û2u0 | # c)$P( | ũ2u0 |#c), for all c.0.

In the case where the above condition is valid and strict inequality holds for some
values of c.0, then û is said to be more concentrated around u0 than ũ. As we can see,
the above comparison involves the sampling distributions of the two estimators
directly. A measure of closeness along these lines is Pitman’s closer measure (see
Pitman (1937)):

P( | û2u0 |, | ũ2u0 | ) $ , for all u[Q.

Such measures will not be pursued any further in this book but they are noted to empha-
size the role of the sampling distribution in assessing the optimality of estimators.
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nxn21
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620 Estimation I: Properties of estimators



12.5 The simple Normal model

In the previous section we use two very simple examples in an attempt to keep the techni-
cal difficulties at a minimum and concentrate on the ideas and concepts. In this section
we utilize (arguably) the most widely discussed model in statistics in an effort to illustrate
some of the finer points of good estimators.

12.5.1 The sampling distribution of the sample mean

Example 5
Consider the simple Normal (two parameter) model:

[i] Statistical GM: Xk5m1«k, k[N,
[ii] Probability model:

F5 f(x;u)5 exp 2 (x2m)2 , u :5(m,s2)[R3R1, x[R ,

[iii] Sampling model: X :5(X1,X2,…Xn) is a random sample

We have already decided that the best estimator of m, in the case of a one-parameter
Normal model is:

m̂n5 n
i51Xi. (12.11)

The intuitive argument why this estimator turns out to be a good estimator was given
above as the matching of the distribution and the sample moments, what we call the
moment matching principle in the next chapter. That is, it seems as though m̂n turned out
to be an optimal estimator because the unknown parameter m is the mean of the Normal
distribution (E(X)5m) and the above estimator is just the mean of the sample (X1,X2,…,
Xn). Using the same intuitive argument for s2, where we know that Var(X)5s2,we
should consider the sample variance as a possible estimator of s2:

ŝn
25 n

i51(Xi2m̂n)2. (12.12)

Using lemma 2 of chapter 11 we can deduce that the sampling distribution of m̂n takes
the form:

m̂n,N m, .

This sampling distribution can then be used to establish the properties of this estimator.
In the case of the one-parameter Normal model (s251), we have seen above that m̂n is an
unbiased, fully efficient and strongly consistent estimator of m. The only thing that
changes is the Cramer–Rao lower bound but as shown below m̂n is fully efficient because
it achieves the new lower bound.

Consider the new distribution of the sample:

f(x;m,s2)5
n
exp 2 n

i51(xi2m)2 ,

ln f(x;m,s2)52 ln(2p)2 ln(s2)2 n
i51(xi2m)2,o1

2s2
n
2

n
2

6o1
2s251 1

sÏ2p2

2s2

n1

o1
n

o1
n
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5 n
i51(xi2m), 52 1 n

i51(xi2m)2,

5 n
i51(21), 5 2 n

i51(xi2m)2,

52 n
i51(xi2m).

In this case the Fisher information matrix for the sample takes the form:
(

E 2 E 2
)

In(m,s2) :5

E 2 E 2

and the Cramer–Rao lower bound for any unbiased estimators of (m,s2) is:

CR(m,s2) :5 [In(m,s2)]21.

Since E 2 50, the Fisher information matrix takes the form:

In(m,s2) :5
0

0
,

and thus the Cramer–Rao lower bound for any unbiased estimators of the two parame-
ters is:

CR(m)5 , CR(s2)5 . (12.13)

As we can see, m̂n achieves this bound. Moreover, we can easily show that m̂n enjoys all the
optimal asymptotic properties: consistency, asymptotic Normality, and efficiency:

(m̂n2m),a N(0,s2).

12.5.2 The sampling distribution of the sample variance

In order to derive the sampling distribution of ŝn
2 we note that it is a quadratic function of

Normally distributed random variables; (X1,X2,…,Xn) are NIID by assumption and m̂n

is Normal as a linear combination of these random variables. Using lemma 4 (the sum of
squares of n independent standard Normal random variables is chi-square with n
degrees of freedom), we can deduce that:

given that Zi5 ,N(0,1) ⇒ n
i51Zi

25 n
i51

2
,x2(n).

Our estimator, however, is not exactly in this form because it involves m̂n instead of m and
the two are quite different; the former is a random variable, the latter is a constant. But
we can show that:

n
i51

2
5 n

i51
2
1n

2
, (12.14)1m̂n 2 m

s 21Xi 2 m̂n

s 2o1Xi 2 m

s 2o

1xi 2 m

s 2oo1xi 2 m
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(see Spanos (1986), p. 240). Given (12.11) we can deduce that:

n
2
,x2(1).

In addition, we can show that n
2

and n
i51

2
are independent since the latter

can be written as a function only of (X22m̂n,X32m̂n,…,Xn2m̂n)  and these quantities
are independent of m̂n. Firstly, we note that:

n
i51(Xi2m̂n)2 5(X12m̂n)21 n

i52(Xi2m̂n)25 [ n
i52(Xi2m̂n)]21 n

i52(Xi2m̂n)2,

because of the fact that n
i51(Xi2m̂n)50 and thus (X12m̂n)5 n

i52(Xi2m̂n), i.e.

ŝn
25g(X22m̂n,X32m̂n,…,Xn2m̂n).

The independence of ŝn
2 and m̂n follows from the fact that when any random variables are

independent so are any functions of them (see chapter 4).
In view of the fact that the left-hand side of (12.14) is distributed as x2(n) and the

right-hand side is composed of two independent random variables and one has a x2(1)
distribution, it follows from lemma 8(b) (see chapter 11) that:

5 n
i51

2
,x2(n21). (12.15)

Using the fact that the mean of a chi-square distributed random variable equals the
degrees of freedom (see appendix A), we can deduce that E 5(n21), which implies
that ŝn

2 is a biased estimator of s2 since:

E(ŝn
2)5 s2?s2.

Because of this bias, the alternative, unbiased estimator:

sn
2 :5 ŝn

2 5 n
i51(Xi2m̂n)2, E(sn

2) :5s2.

is often preferred in practice.
The question which arises is whether sn

2, in addition to unbiasedness, has any further
advantages over ŝn

2. To derive the variance of the unbiased estimator sn
2 we use the result

that the variance of a chi-square distributed random variable is equal to twice its degrees
of freedom (see appendix A), to deduce that:

Var 52(n21) ⇒ Var(sn
2)5 .CR(s2)5 .

That is, the estimator sn
2 does not achieve the Cramer–Rao lower bound.

Searching for fully efficient estimators using the Cramer–Rao lower bound has left
two important questions unanswered. First: What do we do when the regularity condi-
tions are not met? A partial answer to this is provided by the Chapman–Robbins inequal-
ity (see Stuart and Ord (1991)). Second: How do we judge estimators, like sn

2, which do
not achieve the lower bound?

The answer is provided by (12.7) above, since 5 n
i51(xi2m)2 2s2 ,

which implies that:

n
i51 (xi2m)2 2s2 5 . (12.16)4d ln f(x;m,s2)

ds2312s4
n 224o1
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Hence, the only unbiased estimator of s2 that will achieve the CR(s2) is n
i51(xi2m)2

which constitutes an estimator, however, only if m is known. In other words we know that
there is no unbiased estimator that achieves this bound unless m is known. In view of this
information: How do we judge the optimality of sn

2?

Let us compare sn
2 to ŝn

25 sn
2:

(i) Var(ŝn
2)5

2
5 s4,

(ii) MSE(ŝn
2)5 s41 s22s2 2

5 s4.

This enables us to argue that in terms of Mean Square Error ŝn
2 has smaller concentra-

tion around the true value of s2 than sn
2:

MSE(ŝn
2)5 s4 , MSE(sn

2)5 s4.

In turn, ŝn
2 does not achieve the Cramer–Rao lower bound for biased estimators given

that:

CRB(s2)5
2

E
2 21

5
2

5 s4.

After all the above comparisons between the estimators ŝn
2 and sn

2 we are no wiser as to
which one is optimal in terms of their concentration around the true value of s2 mainly
because the Cramer–Rao lower bound cannot be achieved by either of these estimators.
We know from (12.16) that no unbiased estimator of s2 that achieves the CR(s2) bound
exists. The question that naturally arises at this stage is: Is there another estimator that
comes closer to this bound? The answer is provided by another lower bound which is
more achievable.

Bhattacharyya (1946), viewing the Cramer–Rao inequality as based on the correlation

between an estimator h(X) and 5 , proposed a sharper inequality based

on the multiple correlation between h(X) and:

, , , ·· · , , m$1.

Instead of being able to express the difference (ûn2u) as a linear function of the first
derivative (see (12.7)), it is extended to include higher derivatives in the sense that:

(û 2u)5h(u) m
k51ak , m$1, (12.17)

for a function h(u) and constants k51,2,…,m. In the case where (12.7) holds, we can use
the Bhattacharyya lower bound:

Var(û)$ m
i,j51cij(u) · aiaj, for some m$1, (12.18)

where cij :5E , and the coefficients are defined by the system of
equations:

m
,j51cij(u) · aj51, i51,2,…,m.o

22d jf(x;u)
du j

1
f(x;u)12dif(x;u)

du i
1

f(x;u)11

o

4dkf(x;u)
duk3o41

f(x;u)3

2dmf(x;u)
dum

1
f(x;u)12d3f(x;u)

du3
1
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du2

1
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1
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In the case where [cij(u)]m
i,j51 is positive definite with an inverse of the form [cij(u)]m

i,j51, the
Bhattacharyya lower bound is:

Var(û)$ m
i,j51cij(u), for some m$1.

In our case we have two unknown parameters and we cannot use (12.17) directly; it
should be extended to include the cross-product terms. To show that the unbiased esti-
mator sn

2 achieves this bound we observe that:

:5 5 1 n
i51(xi2m̂n)21 (m̂n2m)2,

:5 1
2
5 1 (m̂n2m)2.

Taking the following linear combination of these two derivatives we can show that:

[sn
22s2]5 2 ,

which confirms that the unbiased estimator sn
2 is the better in the sense that it achieves the

Bhattacharyya lower bound.
In terms of their asymptotic properties both estimators ŝn

2 and sn
2 of s2 enjoy all the

optimal asymptotic properties: consistency, asymptotic Normality and asymptotic
efficiency:

(ŝn
22s2),a N(0,2s4), (s22s2),a N(0,2s4),

in view of the fact that the asymptotic Fisher’s information matrix is:

I`(m,s2)5 lim
n→`

In(m,s2) :5
0

0
.

12.5.3 Reducing the bias: jackknife estimators

There are occasions in practice where we need to reduce the bias of a certain estimator.
Let ûn(X) be a biased estimator of the unknown parameter u and the bias expressed in the
following convenient form:

E(ûn(X))2u5 1 1 ··· 1 ··· (12.19)

N that in most cases encountered so far the bias is of the first-order form, i.e.

E(ûn(X))2u5 .

Jackknifing Consider the sequence of estimators of u specified with n21 observations:

ũn21(X(k)), k51,2,…,n, (12.20)

where X(k) :5(X1,X2,…Xk21,Xk11,…,Xn). That is, we use the same formula as that of
ûn(X) but we leave the kth observation out every time. We proceed to define the average
(the arithmetic mean) of these estimators:

ũn(X) :5 n
k51 ũn21(X(k)), (12.21)o1

n

a1(u)
n

ak(u)
nk
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and then take a convex combination of this and the original estimator to define the jack-
knife estimator:

ūn(X)5nûn(X)2 (n21)ũn(X). (12.22)

Quenouille (1956) showed that for the new estimator ūn(X) the first-order bias dis-
appears, i.e.

E(ūn(X))2u5 1 ··· 1 ··· (12.23)

In the case where the bias was first order the jackknife estimator is now unbiased.
Moreover, the first-order bias can be estimated using:

Bias(ûn(X))5(n21)[ũn(X)2ûn(X)]. (12.24)

Example
Consider the Normal model as specified above and the estimation of the parameter s2.
Let us apply the jackknife estimator in the case of the biased estimator:

s n
2 :5

n

k51
(Xk2 )2.

As shown above, the bias of this estimator is of first order and takes the form:

E(ŝn
2)2s252 .

ûn(X)5 n
i51(Xi2 )25 n

i51Xi
22 ( n

i51Xi)2,

ũn21(X(k))5 n
i51
iÞk

Xi
21 n

i51
iÞk

Xi

2

ũn(X)5 n
i51 ũn21(X(i))5 n

i51Xi
22 [ n

i51Xi
2)1(n22)( n

i51Xi
2].

After substituting these into the jackknife estimator we get:

ūn(X)5
n

i 51
Xi

22
n

i 51
Xi

2

2
n

i 51
Xi

21
n

i 51
Xi

21
n

i 51
Xi

2

5

5
n

i 51
Xi

22
n

i 51
Xi

2

5
n

i 51
(Xi2 )2.

As we can see the jackknife estimator coincides with the unbiased estimator s2 discussed
in the previous subsection.

The common sense idea underlying the notion of jackknifing is almost trivial but its
intrinsic intuition is far reaching. Let us see how jackknifing works to eliminate the first-
order bias of an estimator. Beginning with the general form of the bias as given in (12.19)
one can argue that the estimator ũn21(X(k)) satisfies the similar relationship but based on
(n21) observations:

E(ũn (X))2u5 1 1 ··· 1 ···

E(nûn(X)2 (n21)ũn(X))2u52 1 ···a2(u)
n(n 2 1)
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n
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What makes jackknifing a very interesting idea, however, is the fact that it involves the
smoothing operation in the form of averaging as shown in (12.21). This is best seen in
the context of the example where the smoothing amounts to averaging of the aver-
ages:

ũn(X) :5 n
k51 ũn21(X(k))5 n

i51
n
i51
iÞk

Xi
21 n

i51
iÞk

Xi

2

.

This idea has its roots in the mathematical theory of Cesaro summability of divergent
series going back to the late 19th early 20th centuries. There are cases where the series

sn5 n
k51ak

`
n51 diverges but its smoother version tn5 n

k51sk
`
n51 converges (see Knopp

(1947)). Moreover, when the series sn5 n
k51ak

`
n51 converges then tn5 n

k51sk
`
n51 also

converges to the same limit, i.e.

if lim
n→`

sn5s ⇒ lim
n→`

tn5s.

We conclude this section by noting that the idea of jackknifing can be easily extended
to higher-order bias reduction.

12.6 Sufficient statistics and optimal estimators*

The discussion of optimal estimators so far has not shed any light on the circumstances
under which best estimators may be obtained. Returning to the analogy of an archer
standing at the foot of a hill with the target on the other side beyond his vision, we have
discussed only the question of assessing the closeness once the arrow has landed. The
question of devising a strategy relating to factors within his control, such as the shooting
angle and the pulling power so as to ensure that the arrow will land as close to the target
as possible, has not been discussed. The property of estimators known as sufficiency
addresses this very question and in terms of this analogy it proposes attaching a kind of
net to the arrow designed in a way that ensures optimal coverage.

12.6.1 Sufficiency

The idea of sufficiency goes back to Fisher (1922b) but the concept was formalized in
the early 1930s. The notion of sufficiency raises the possibility of reducing the dimen-
sionality of the observed data without any loss of information. The original sample
information comes in the form of a set of data x :5(x1,x2,…,xn), viewed as a realization
of a particular sample X :5(X1,X2,…,Xn) as specified a priori by the statistical model
S :5 (F,X). A statistic h(X), a function defined on the sample space X (not necessarily
an estimator), is sufficient if it summarizes the whole of the relevant information for
the postulated statistical model S. It is often called a sufficient statistic for u because the
statistical model is determined once u is determined. Intuitively, sufficiency refers to
how well an estimator (a function of a statistic) utilizes the information in the sample
as it relates to the postulated statistical model F. The usefulness of the notion of

6o1
n56o5

6o1
n56o5

42o11
(n 2 1)2o1

(n 2 1)3o1
no1

n
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sufficiency arises from the fact that the statistic h(X) is often of much lower dimension
than the n-dimensional sample. Before embarking on definitions it is important to
explain the intuition underlying the property using an example.

Example 1 Bernoulli (continued)
In the case of the Bernoulli model we know that the sample X :5(X1,X2,…,Xn) is made up
of IID Bernoulli distributed random variables with P(Xk51)5u and P(Xk50)5(12u).
A sample realization will involve a sequence of zeros and ones, e.g.

x :5(0,1,0,0,1,…,1).

In view of the fact that the exact location of ones in this realization is irrelevant because
of the IID assumptions, it is intuitively obvious that knowing the sum is equivalent to
knowing the exact realization. In this case it looks as though the statistic h(X)5 n

k51Xk

contains all the relevant information as it relates to the Bernoulli statistical model F.
That is, knowing the whole realization x is equivalent to knowing just the sum h(x)5

n
k51xk. The bottom line is that instead of carrying the n numbers of the sample realiza-

tion we carry just one, their sum; a significant reduction in dimension. Hence, intuitively
it seems that this statistic is sufficient for F (or u).

This example brings out the desirability of a sufficient statistic by showing that the sta-
tistic itself contains the same information about u as the original sample but it has a
much lower dimensionality. The attraction of a sufficient statistic arises from the fact
that if there exists a best estimator then it is necessarily a function of the sufficient statis-
tic. Moreover, finding a sufficient statistic can be used as the first step to defining an
optimal estimator. Let us discuss all these results beginning with the definition of
sufficiency.

Intuitively, sufficiency of a statistic Y5h(X) for a parameter u means that when the
value of the statistic is given, every other form of information is irrelevant for u. This
suggests that knowing the realization of whole sample X, when the value of Y5h(X) is
known, adds no information relevant for u (or F). Formalizing this intuitive idea gives
rise to the following definition of sufficiency.

Sufficiency A statistic h(X) is said to be a sufficient statistic for u if and only if the condi-
tional distribution of the sample X given h(X)5y does not depend on u:

f(x |h(x)5y;u)5q(x), for all x[X, u[Q. (12.25)

This definition, although intuitive, does not provide the modeler with a direct way to find
sufficient statistics. The modeler has to guess h(X) first and then proceed to verify (12.25),
which does not look trivial. The next theorem, due to Halmos and Savage (1949), simpli-
fies the task of the modeler considerably.

Factorization theorem A statistic h(X) is said to be a sufficient statistic for u if and only if
there exist functions g(h(X);u) and v(X), where the former depends on X only through

o

o
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h(X) while the latter is free of u, such that the distribution of the sample factors into the
product:

f(x;u)5g(h(x);u) · v(x), for all x[X, u[Q. (12.26)

Finding a sufficient statistic using this theorem entails inspection of the distribution of
the sample and some imagination to be able to notice the factorization.

Example 2 Normal (continued)
Consider the Normal (one-parameter) model (s2 assumed known):

f(x;m)5
n

k51
5e25 (xk2m)265 2 exp 2 n

k51(xk2m)2 5

f(x;m)5
2 exp 2 n

k51(xk2 1 2m)2 5

f(x;m)5
2 exp 2 n

k51(xk2 )21n( 2m)2 .

This result can be used to factor the distribution of the sample into (12.26):

f(x;m)5 exp 2 ( 2m)2 · 2 exp 2 n
k51(xk2 )2 ,

where the first factor in square brackets depends on m only through the statistic
5 n

k51Xk, and the second is free of m. In view of the above theorem, the statistic is
sufficient for m.

It is important to  that the factorization theorem is directly related to the necessary
and sufficient condition for the full efficiency of an estimator û of u in the sense that the
condition:

(û 2u)5h(u) ,

implies that the distribution of the sample has the form (12.26). This suggests that an
efficient estimator exists if and only if a sufficient statistic exists; the converse, however, is
not necessarily true.

Example 5 Normal (continued)
Consider the Normal (two-parameter) model (s2 assumed unknown). Using the equal-
ity:

n
k51(Xk2m)25 [ n

k51Xk
2]22m [ n

k51Xk]1nm25h2(X)22m [h1(X)]1nm2,

we can proceed to factor the distribution of the sample into:

f(x;m,s2)5
2 exp 2 n

k51(xk2m)2 5g(h(x);m,s2) · v(x)5

f(x;m,s2)5
2 exp 2 h2(X)22m [h1(X)]1nm2 · [ 1].461
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Hence, the statistics (h1(X) :5 n
k51Xk, h2(X) :5 n

k51Xk
2 are sufficient for the unknown

parameters (m,s2). Using these statistics we can define the estimators:

m̂n5 h1(X)5 n
k51Xk,

sn
2 :5 [h2(X)2 (h1(X))2]5 n

k51(Xk2m̂n)2,

for the parameters (m,s2), respectively. In the previous section it was demonstrated that
these two estimators are indeed optimal.

Example 4 Uniform (continued)
The distribution of the sample in this case takes the form:

f(x;u)5
n

k51 5 , for 0#x[1]#x[n]#u,

where X[1]5min (X1,X2,…,Xn) and X[n]5max (X1,X2,…,Xn) are the two extreme order
statistics. Using the heaviside function:

h(x)5
0, for x,0,51, for x$1,

we can express f(x;u) as: f(x;u)5 (h(u2x[n])) · [h(x[1])]. This suggests that X[n] is

a sufficient statistic for u and when looking for optimal estimators we should consider

functions of X[n]. We remind the reader that we used the estimator ûn5 X[n], in one of

the illustrations relating to the Cramer–Rao lower bound.

12.6.2 Sufficiency and unbiasedness

Let us return to our primary goal which is to devise a strategy for defining optimal esti-
mators. We will see in this section that there exists a direct relationship between sufficient
statistics and unbiased estimators. Intuitively, the relationship between sufficiency and
unbiasedness is that if the modeler begins with some arbitrary unbiased estimator and
then defines another estimator by conditioning on a sufficient statistic, the resulting esti-
mator will often have a smaller variance than the original unbiased estimator.

In order to derive this relationship we recall two important properties of conditional
expectations for any two random variables X and Y such that Var(X),`, Var(Y),`:

(a) E(E(Y |X))5E(Y),
(b) Var(Y)5E(Var(Y |X))1Var(E(Y |X)); see chapter 7, section 3.

Rao–Blackwell theorem (see Blackwell (1947), Rao (1949)) Let û be an unbiased estima-
tor of u (E(û)5u), and let h(X) be a sufficient statistic for u. The statistic defined by:

ũ 5E(û |h(X)),

satisfies the following properties:
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(i) ũ is an estimator of u,
(ii) unbiased: E(ũ)5u,
(iii) relatively more efficient than û : Var(ũ)#Var(û).

Property (ii) follows from the fact that:

E(û)5E[E(û|h(X))]5E(ũ)5u,

and property (iii) from:

Var(û)5Var(E(û|h(X)))1E[Var(û|h(X))]5

Var(û)5Var(ũ)1E[Var(û |h(X))] $ Var(ũ).

The discerning reader might be wondering if sufficiency is required for the above results
to hold since no use of sufficiency is made in deriving (ii)–(iii). The truth of the matter is
that ũ is an estimator (it does not depend on unknown parameters) exactly because h(X)
is a sufficient statistic.

The Rao–Blackwell theorem provides a way to improve upon an unbiased estimator by
offering a relatively more efficient estimator than the original but it does not tell us anything
about the full efficiency of the resulting estimator. The modeler can proceed to check the
Cramer–Rao lower bound but if the resulting estimator does not attain it, she is no wiser.

12.6.3 Minimal sufficiency
The above results suggest that when seeking best unbiased estimators the best strategy
for the modeler is to check for the presence of sufficient statistics and then proceed to
define optimal estimators in terms of these sufficient statistics using the Rao–Blackwell
theorem or just inspiration. However, the sample itself X (and any one-to-one function
of it) is a sufficient statistic (the trivial sufficient statistic) and this strategy will be fruitful
only if it can be based on a sufficient statistic which economizes on the dimensions. This
leads to the notion of a minimal sufficient statistic which achieves the maximum possible
data reduction without any loss of information. In view of the fact that when seeking
optimal estimators of u we should consider functions of a sufficient statistic h(X), say
g(h(X)), we call the latter a necessary statistic. The necessary statistic does not necessarily
contain all the relevant information in the data. But when a statistic is both necessary
and sufficient it must be a minimal sufficient statistic.

Minimal sufficient statistic A sufficient statistic h(X) is minimal if every other sufficient
statistic g(X) is a function of it, i.e. for every sufficient statistic g(X):

g(X)5q(h(X)) for some function q(.).

It is important to note that for any statistical model, as defined in this book, there
always exists a minimal sufficient statistic; not excluding the sample itself in dimension.

Neither the definition of a sufficient statistic nor the factorization theorem provides an
easy way to devise sufficient statistics. The following result, however, provides a relatively
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easy way to derive minimal sufficient statistics. The idea is due to Lehmann and Scheffe
(1950).

Lehmann–Scheffe theorem 1 Suppose that there exists a statistic h(X) such that for two
different sample realizations x and z (x[X, z[X), the ratio:

is free of u, if and only if h(X)5h(Z),

then h(X) is a minimal sufficient statistic for u.

Example 1 Bernoulli (continued)
In the case of the Bernoulli model the ratio:

5 5 On
k51(xk2zk),

is free of u if and only if: n
k51Xk5 n

k51Zk. Hence, the statistic ( n
k51Xk) is not just

sufficient but minimal sufficient.

Example 5 Normal (continued)
Consider the Normal (two-parameter) model (s2 unknown). The ratio:

5 5

[EQN5exp 2
n

k51xk
22

n

k51zk
2 1

n

k51xk2
n

k51zk ,

is free of (m,s2) if and only if:

n
k51Xk

25 n
k51Zk

2, n
k51Xk5 n

k51Zk.

Hence, the statistics ( n
k51Xk

2, n
k51Xk) are not just sufficient but minimal sufficient.

12.6.4 Completeness

Returning to our primary goal which is to find optimal estimators using sufficient statis-
tics, we observe that the notion of the minimal sufficient statistic cannot guarantee the
uniqueness of this estimator because any one-to-one function of a minimal sufficient
statistic is also minimal sufficient. To ensure the uniqueness of optimal estimators we
need another property of sufficient statistics called completeness.

Completeness is a property of a family of densities and intuitively means that the only
unbiased estimator of zero is zero itself. The family of densities F5{fx(x;u), u[Q} is
said to be complete if, for every function t (X), the following relationship holds:

E(t(X))50 ⇒ t(X)50 (a.s) for all x[ {x :fx(x;u).0}.

This notion can be transplanted unchanged to the case of the distribution of the
sample f(x;u) by replacing X by the sample X in the above relationship. In the case of a
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k51
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k51
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f(x;u)
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sufficient statistic we need to define completeness in terms of the distribution of this sta-
tistic.

Completeness A sufficient statistic Y5h(X) is said to be complete if the family of densi-
ties G :5{fy(y;u), u[Q} is complete.

N : the usefulness of the property of completeness stems from the fact that if h(X) is
a complete sufficient statistic and û 5g(h(X)) an unbiased estimator of u, i.e.

E(g(h(X)))5u,

then this estimator is unique.

The relationship between a complete sufficient statistic and a minimal sufficient statis-
tic is that a complete sufficient statistic is minimal sufficient (see Lehmann and Scheffe
(1950)). This brings us to the end of our search for best unbiased estimators by utilizing
sufficient statistics. The main result is given by the following theorem (see Lehmann and
Scheffe (1955)).

Lehmann–Scheffe theorem 2 Let h(X) be a complete sufficient statistic for u (or better, for
a statistical model S). If there exists an unbiased estimator û of u, which is a function of
h(X) (i.e. û 5g(h(X))), then this estimator is both best and unique.

Example 4 Uniform (continued)
In an attempt to illustrate some of the above results let us return to the problematical
Uniform model discussed above. In view of the fact that:

E(X)5 ,

it might be tempting to use the correspondence between the distribution and sample

moments to derive the estimator û 52
n

k51Xk . This is certainly not a bad estimator

because it is both unbiased:

E(û)52 n
k51(Xk) 5 5u.

and consistent:

Var(û)5 →0 as n→`.

However, it is not the best estimator. We know from the above discussion that:

X[n]5max (X1,X2,…,Xn),

is a sufficient statistic for u. Using the Rao–Blackwell theorem we proceed to define the
estimator:

ũ 5E(û|X[n])5E 2
n

k51Xk |X[n] 5 X[n].

It turns out that the family of densities under consideration is complete and thus this
estimator is the best unbiased estimator of u; it is also unique.

1 n
n 1 1222o1

n11

u2

3n

12
n2 1nu

2 22o1
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2o1
n1

u

2
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The main drawback of the above mentioned strategy lies with ensuring that a certain
minimal sufficient statistic is also complete. To get a taste of the difficulties consider the
relatively simple case in the following example.

Example 1 Bernoulli (continued)
In the case of the Bernoulli model the statistic Sn :5

n

k51Xk is minimal sufficient with a
sampling distribution (see lemma 1) of the form:

f(sn;u)5 us(12u)n2s, u[ [0,1].

Consider an estimator l(X) such that E (l(X))50 for all u[ [0,1]:

n

s50l(X) us(12u)n2s50, for all u[ [0,1].

In view of the fact that the function g(u)5
n

s50 l(X) us(12u)n2s is a polynomial in

with roots at most n, it is equal to zero if and only if: l(X)50, for all s50,1,2,…,n.

This suggests that Sn :5 n
k51Xk is also a complete sufficient statistic.

Combining the above theorem with that of Rao–Blackwell, the modeler can form the
following strategy: in the case where a complete sufficient statistic exists, she should
begin with an arbitrary unbiased estimator and then proceed to derive the conditional
expectation given the sufficient statistic; see Casela and Berger (1990).

Returning to the analogy of an archer standing at the foot of a hill with the target on
the other side beyond his vision, the question of devising a strategy relating to factors
within his control, can now be answered: attach a net we call a complete sufficient statis-
tic on the arrow in an attempt to specify an unbiased estimator.

12.6.5 Exponential family of distributions

There is an important family of densities for which the problem of finding a minimal
sufficient statistic, that is also complete, is relatively easy. This is the exponential family
(not the exponential model).

Exponential family of densities A probability model F5{f(x;u), u[Q} is said to belong
to the exponential family if the density function can be expressed in the form:

f(x;u)5c(u) · h(x) exp( k
i51gi(u) · ti(x)),

(a) c(u)$0,
(b) h(x)$0,
(c) gi(u), i51,2,…,k : real-valued functions (free of x),
(d) ti(x), i51,2,…,k : real-valued functions (free of u).

o

o
1 u

1 2 u2
1n

s2o

1n
s2o

1n
s2

o
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Many well-known distributions such as the Normal, Gamma, Beta, Binomial, Poisson,
and Negative Binomial belong to this family. For this family, the statistics:

( n
j51ti(xj), i51,2,…,k),

are minimal sufficient statistics for (gi(u), i51,2,…,k), and in the case where the number
of unknown parameters in u is k, these statistics are also complete.

12.7 What comes next?

The aim of this chapter has been to formalize the notion of an optimal estimator. Using
the intuitive notion of an ideal estimator we motivated the finite sample properties of
unbiasedness and efficiency and the asymptotic properties of consistency, asymptotic
Normality and asymptotic efficiency. Using the notion of optimal reduction of the rele-
vant information in the data we motivated the property of sufficiency. In the next chapter
we proceed to discuss methods of estimation which often give rise to optimal estimators.

12.8 Exercises

21 Explain briefly what we do when we construct an estimator. Why is an estimator a
random variable?

22 “Defining the sampling distribution of an estimator is theoretically trivial but deriv-
ing it is very difficult.” Discuss.

23 For the Bernoulli statistical model:
(i) Discuss whether the following functions constitute possible estimators of u:

(a) û15Xn, (b) û25 (X12X2), (c) û35 (X12X21Xn),

(d) ûn5 n
i51Xi, (e) ûn115 n

i51Xi,

(ii) For those that constitute estimators derive their sampling distributions.

24 Explain briefly the properties of unbiasedness and efficiency of estimators.

25 “In assessing the optimality of an estimator we need to look at the first two
moments of its sampling distribution only.” Discuss.

26 Explain briefly what a consistent estimator is. What is the easiest way to prove con-
sistency for estimators with bounded second moments?

27 Explain briefly the difference between weak and strong consistency of estimators.

28 “Asymptotic Normality of an estimator is an extension of the Central Limit
Theorem for functions of the sample beyond the sample mean.” Discuss.

29 Explain the difference between full efficiency and asymptotic efficiency.

o1
n 1 1o1

n

1
3

1
2

o
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10 Explain the notion of the ideal estimator and explain intuitively how its definition
relates to the properties of unbiasedness, efficiency, and consistency.

11 Explain the difference between the Cramer–Rao and Bhattacharyya lower bounds.

12 Explain the notion of sufficiency.

13 Explain the notion of a minimal sufficient statistic and how it relates to best unbi-
ased estimator.

14 Explain the Rao–Blackwell theorem and how it can be used to derive best, unbiased
estimators.

15 Consider the Normal (two parameter) statistical model.

(a) Derive (not guess!) the sampling distributions of the following estimators:

(i) m̂15Xn, (ii) m̂25 (X11X21X3),

(iii) m̂35(X12Xn), (iv) m̂n5 n
i51Xi,

(H : State explicitly any properties of E(.) or any lemmas you use).

(b) Compare these estimators in terms of the optimal properties, unbiasedness,
efficiency, and consistency.

(c) Compare and contrast the estimators ŝn
25 n

i51 (Xi2m̂n)2, and
sn

25 n
i51(Xi2m̂n)2, in terms of their properties.o1

n 1 1

o1
n

o1
n

1
3
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13 Estimation II: Methods
of estimation

13.1 Introduction

In the previous chapter we discussed estimators and their properties. The main desirable
finite sample properties discussed in chapter 12 were:

Unbiasedness, Efficiency,

with Sufficiency being a property relating to specific probability models. The desirable
asymptotic properties discussed in the previous chapter were:

Consistency, Asymptotic Normality, Asymptotic efficiency.

The notion of the ideal estimator was used as a comparison rod in order to enhance the
intuitive understanding of these properties. The question of how one can construct good
estimators was sidestepped in the previous chapter. The primary objective of this chapter
is to consider this question in some detail by discussing four estimation methods:

1 The moment matching principle,
2 The least-squares method,
3 The method of moments, and
4 The maximum likelihood method.

13.1.1 A bird’s eye view of the chapter

In section 2 we discuss an approach to estimation that has intuitive appeal but lacks gen-
erality. We call this procedure the moment matching principle because we estimate
unknown parameters by matching distribution and sample moments. The relationship
between the distribution and the sample moments is also of interest in the context of the
other methods. Section 3 introduces the least-squares method, first as a mathematical
approximation method and then as a proper estimation method in modern statistical
inference. In section 4 we discuss Pearson’s method of moments and then compare it
with the parametric method of moments, an adaptation of the original method for the
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current paradigm of statistical inference. The maximum likelihood method is discussed
in section 5.

13.1.2 Methods of estimation: a preliminary view

The discussion that follows differs from the traditional textbook discussion in a number
of ways which we summarize at the outset. It is argued that the moment matching princi-
ple arose during the 19th and early 20th century as part of the broader confusion
between relative frequencies and probabilities. The same confusion permeates the
method of moments as proposed by Pearson in 1895, designed to use the data in order to
choose an adequate description in the form of a frequency curve from the Pearson
family. Both of these procedures were developed in the context of what we nowadays call
descriptive statistics. Pearson’s method, however, was later adapted to suit the modern
approach to statistical inference. In order to distinguish between Pearson’s method and
the adapted method we refer to the latter as the parametric method of moments. A partic-
ular thesis taken in the discussion that follows is that all estimation methods are better
understood in the context of the statistical framework (paradigms) in which they were
first developed. In this sense the only estimation method specifically developed for the
modern approach to statistical inference, which entails postulating a statistical model a
priori and interpreting the data as a realization of the stochastic mechanism described
by this model, is that of maximum likelihood, proposed by Fisher in the 1920s; its roots
can be traced back to Fisher (1912). The other three methods were developed in the
context of different paradigms and it is important to keep that in mind when we discuss
these methods. The least-squares method, as a mathematical approximation technique
(approximating an unknown function over an interval), was developed in the early 1800s
in the context of a statistical paradigm known as the theory of errors. In section 3 we
propose an alternative interpretation of least squares as the sample equivalent to the
orthogonal decomposition used to define the concept of a statistical generating mecha-
nism (GM) in chapter 7.

The maximum likelihood (ML) method was specifically developed to utilize all the
information available at the specification stage of modeling: the statistical model and
the observed data. Because of that, the ML method has certain obvious advantages
over the other methods. For example, the moment matching principle and the method of
moments often yield less efficient estimators, because they do not utilize all the available
information in the statistical model; they ignore part of the information relating to the
probability model. This can be explained by the fact that the paradigm in the context of
which these methods were developed, did not involve postulating a statistical model a
priori. Instead, the modeling proceeded from the data to the best descriptive model in the
form of a frequency curve. Similarly, least squares was originally developed as a curve
fitting technique for functions defined over a certain domain. The probabilistic structure
was later introduced into the formulation via the error of approximation in a non-essen-
tial way. In contrast, the method of maximum likelihood was designed for an approach
where the modeler postulates a statistical model a priori and the observed data are viewed
as a realization of the chance mechanism as specified by the postulated statistical model.
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13.2 Moment matching principle

The moment matching principle cannot be credited to any one famous statistician
because a case can be made that it essentially arose out of a fundamental confusion
between distribution and sample moments. In his classic paper, that provided the foun-
dations of modern statistical inference, Fisher attributed the neglect of the theoretical
basis of statistical methods to two reasons:

(i) A philosophical reason: since statistics is “a subject in which all results are liable to
greater or smaller errors, precise definition of ideas or concepts is, if not impossible,
at least not a practical necessity” (Fisher (1922b), p. 311).

(ii) A methodological reason: “it has happened that in statistics a purely verbal confu-
sion has hindered the distinct formulation of statistical problems; for it is custom-
ary to apply the same name, mean, standard deviation, correlation coefficient, etc.
both to the true value which we should like to know, but can only estimate, and the
particular value at which we happen to arrive by our methods of estimation”
(Fisher (1922b), p. 311).

Fisher pointed to a confusion between three different concepts: the moment of a prob-
ability distribution, its estimator and the corresponding estimate based on a specific
sample realization. A confusion brought about owing to the use of the same term for all
three different notions. Unfortunately for statistics this choice of inappropriate terminol-
ogy still permeates the subject. The price of this inappropriate and often confused termi-
nology is paid by the students and teachers of statistics who need to waste a lot of valuable
time trying to distinguish between different concepts that carry the same terminology.

Table 13.1 presents three very different groups of moments carrying the same names.
The first column presents these moments in the context of descriptive statistics where
they represent ways to summarize the observed data using measures of location, disper-
sion, etc. As such these moments refer to the moments of what we call the relative fre-
quencies of the observed data and they denote just summarizing numbers. These
numbers should be contrasted with the sample moments in the third column where the
formulae look identical apart from the fact that we use capital instead of small letters for
X. Despite the appearance the sample moments are qualitatively very different from the
descriptive statistics moments. The sample moments are functions of a sample (X1,X2,
…,Xn) whose probabilistic structure is determined a priori by the statistical model
chosen. As such the sample moments represent random variables as opposed to just
numbers as in the case of the descriptive statistics moments. The latter, as pointed out by
Fisher, also differ qualitatively from the particular values taken by the sample moments
based on the particular sample realization, even though we often use identical notation;
they represent a particular value of a random variable not just summarizing numbers.
Finally, the moments of a probability distribution differ from all these other moments in
so far as they represent unknown constants which are defined in terms of particular
density functions. We chose to define these moments for continuous random variables in
terms of integrals in order to make the contrast more apparent. For discrete random
variables the raw moments are defined via:
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mr9 :5E(Xr)5 x[RX xrf(x), r51,2,…

What distinguishes these moments from all the other ones is the presence of a particular
density function in the definition. As argued in chapter 3, the probability distribution
moments are often the best way to handle the unknown parameters u. This follows from
the fact that these moments depend crucially on the nature of the density function,
which in turn is a function of u, and thus the moments are functions of u. This relation-
ship is exemplified by the raw moments below:

mr9 :5E(Xr)5
x[RX

xrf(x;u)dx5mr9(u), r51,2,…

The confusion between the various uses of the term moments is compounded by the
fact that in statistical inference we often talk about the moments of the sample moments.
In an attempt to deal with that difficulty we utilize the notation (mr9(.),mr(.)) which enables
us to be specific on which moments we are referring to when it is not obvious from the
context. Hence, the notation mr9( ), r51,2,3,…, denotes the raw moments of the sam-
pling distribution of the sample mean.

During the 18th and 19th centuries the distinction between probabilities and relative
frequencies did not exist; in the mind of the mathematicians of that time the two coin-
cided. In view of this, it should come as no surprise to anyone to learn that the transition
from descriptive statistics to statistical inference during the first part of the 20th century
went largely unnoticed even by pioneers such as Karl Pearson (see below). Hence, the
endemic practice of conflating distribution and sample (descriptive statistics) moments
during this transition period became much later the moment matching principle:

defining estimators by matching distribution moments with sample moments.

  X 

E

o

Table 13.1. Moments

Frequency Probability Sample

mean
i51

n

xi :5 , m19 :5

x[RX

xf(x)dx, m̂19(X)5
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Xi :5 ,

variance
i51

n

(xi2 )2, m2 :5

x[RX

(x2 )2f(x)dx, m̂2(X)5
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n

(Xi2 )2,

raw
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(xi2 )r, mr :5

x[RX
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The moment matching principle is implemented in two steps:

Step 1 Relate the unknown parameter u to the moments of the distribution in terms of
which the probability model is specified, say,

u5g(m19,m29).

Step 2 Substitute the sample moments in the place of the distribution moments:

m̂915 n
i51Xi, m̂925 n

i51Xi
2,

i.e., construct an estimator of u, via: û 5g(m̂91,m̂92).
N : it is worth noting at this stage that this procedure is the reverse of the one used

for the Method of Moments (see below), where we have the relationship specified in
terms of the moments, say m195h1(u1,u2), m295h2(u1,u2), substitute the sample moments
in place of (m19,m29) and then solve for (u1,u2) to define their estimators.

Example 1 Consider the simple Bernoulli model:

[i] Statistical GM: Xk5u1«k, k[N,
[ii] Probability model: F5{f(x;u)5ux(12u)12x, u [ [0,1], x50,1},
[iii] Sampling model: X :5(X1,X2,…Xn) is a random sample.

In view of the fact that for the Bernoulli model the unknown parameter u coincides with
the mean of X:

E(X)5u ,

the moment matching principle suggests that a natural estimator for u is the sample
mean:

û5 n
i51Xi.

Example 2
Consider the simple Normal model:

[i] Statistical GM: Xk5m1uk, k[N,
[ii] Probability model:

F5 f(x;u)5 exp 2 (x2m)2 , u :5(m,s2) [R3R1 , x[R ,

[iii] Sampling model: X :5(X1,X2,…Xn) is a random sample.

For the Normal model specified above the unknown parameters u :5(m,s2) are related to
the distribution moments via:

E(X)5m , Var(X)5s2.

The moment matching principle proposes the sample mean and the sample variance,
respectively, as the obvious estimators of these parameters, i.e.

m̂5 n
i51Xi, ŝ25 n

i51(Xi2m̂)2.o1
no1

n

661
2s251

sÏ2p5

o1
n

o1
no1
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Example 3
Consider the Normal linear regression model:

[i] Statistical GM: Yt5b01b1xt1ut, t[N

[ii] Probability model:

F5 f(yt |xt;u)5 exp52 (Yt2b02b1xt)
26, u :5(m ,s2) [R23R1 , yt[R ,

[iii] Sampling model: Y :5(Y1,Y2,…,YT) is an independent sample.
sequentially drawn from f(yt |xt;u), t51,2,…,T.

In this case the unknown parameters are related to the moments of the random variables
y and X via:

b05E(Yt)2b1E(Xt), b15 , s25Var(Yt)2 .

By substituting the sample moments, in place of the distribution moments, we get the
following moment matching principle estimators:

b̂05 2b̂1 , b̂15 , ŝ25
T

t51
(Yt2 )22 .

In all the above cases the estimators suggested by the moment matching principle turn
out to enjoy several optimal properties. For example, as shown in the previous chapter, û

is an unbiased, efficient, and consistent estimator of u, and m̂ is an unbiased, efficient,
and consistent estimator of m. The question which naturally arises is whether the estima-
tors suggested by the moment matching principle always enjoy such optimal properties.
The answer is that such estimators tend to have good properties but often not as good as
these examples suggest. Let us consider this statement in some more detail.

13.2.1 Sample moments and their properties

As argued above, the raw and central moments of a univariate random variable X :

mr9(u) :5

x[RX

xrf(x;u)dx, r51,2,… mr(u) :5

x[RX

(x2m)r f(x;u)dx, r52,3…

correspond to the sample moments:

m̂r95 n
i51Xi

r, r51,2,3… m̂r5
n
i51(Xi2m̂)r, r52,3… 

Similarly, in chapter 4 we defined the joint distribution raw and central moments:

m̂r9,s(u)5

x[RX y[RY

xrysf(x,y;u)dxdy, r,s51,2,3…

m̂r,s(u)5

x[RX y[RY

(x2mx)r(y2my)s f(x,y;u)dxdy, r,s51,2,3…EE
EE

o1
no1
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EE
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T
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1
T

 oT
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T
 

1
T o

T

t51
 (Yt 2Y )(xt 2 x)

1
T

 oT

t51 (xt 2 x)2
xY 

(Cov(Yt,Xt))
2

Var(Xt)
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The corresponding sample joint raw and central moments are:

m̂r9,s5
n
i51X i

rYi
s, m̂r,s5

n
i51(Xi2m̂x)r(Yi2m̂y)s, r,s51,2,3…

For implementing the moment matching principle, table 13.2 summarizes the first few
distributions and the corresponding sample moments.

Of interest in the present context are the sampling distributions of the above sample
moments and their properties. In general the distribution of any sample moment
depends crucially on the probability and sampling models postulated. As we saw in the
previous chapter, in the case of a random sample from the Bernoulli distribution, the
estimator û5 n

i51Xi (the sample mean) is Binomially distributed and turns out to be an
unbiased, fully efficient, and consistent estimator of u. Moreover, in the case of the
simple Normal model, the estimator m̂5 n

i51Xi is normally distributed and turns out to
be an unbiased, fully efficient, and consistent estimator of m.

In practice the moment matching principle estimators are often used in cases of
incomplete simple statistical models where no explicit probability model is postulated a
priori. In such cases, of course, we cannot determine the sampling distribution of an
estimator (unless we resort to asymptotic theory) and the available results often relate to
the first few moments of this unknown distribution. In the case of an incomplete simple
statistical model (i.e., irrespective of the explicit nature of F, but assuming that the
required moments exist) we can derive the results in table 13.3 for the sample raw
moments.

These results suggest that, in the case of a random sample, irrespective of the underly-
ing distribution (assuming the required moments exist), the sample raw moments
provide unbiased and consistent estimators for the distribution raw moments.

o1
n

o1
n

o1
no1

n
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Table 13.2. Moments

Distribution Sample

E(X) :5m m̂5
n

i51
Xi,

Var(X) :5s2 ŝ25
n

i51
(Xi2m̂)2,

SD(X) :5s ŝ 5
n

i51
(Xi2m̂)2 ,

a3 :5 â35
n

i51
(Xi2m̂)3 /ŝ3,

a4 :5 â45
n

i51
(Xi2m̂)4 /ŝ4,

Cov(X,Y) :5sxy ŝxy5
n

i51
(Xi2m̂x)(Yi2m̂y).o1

n

2o1
n1m4

s4

2o1
n1m3

s3

1
22o1

n1
o1
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Consistency follows from the fact that the variance of the sample raw moments Var(mr9)
goes to zero as n→` .

A particularly important example of such moments is the sample mean whose first few
moments are shown in table 13.4.

The formulae for the sample central moments are not as simple as those of the sample raw
moments because they involve the sampling variation of the sample mean. Table 13.5 shows
the approximation of the first two moments of the sample central moments (see Stuart and
Ord (1994)) where the notation o(nk) and O(nk) denotes the order of approximation.

The  an5o(nk), for some k?0, denotes a sequence {an}`
n51 of order smaller

than nk, i.e.

lim
n→`

50,

and the notation an5O(nk) denotes a sequence {an}`
n51 at most of order nk, i.e.

lim
n→`

# K where 0,K,` ,

(see Spanos (1986)). N that for k.0: an5O(nk) ⇒ an5o(nk11).

1|an|
nk 2

1an

nk2
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Table 13.3. Sample raw moments

E(m̂r9)5mr9, r51,2,3, …,

Var(m̂r9)5 (m92r2[mr9]2), r51,2,3, …,

Cov(m̂r9,m̂s9)5 (m9r1s2mr9[m9s]2) r51,2,3,…

Table 13.4. Sample mean m̂5 n
i51Xi

E(m̂) 5 m,

Var(m̂) 5 s2,

m3(m̂) :5E(m̂ 2m)3 5 E(X2m)3,

m4(m̂) :5E(m̂ 2m)4 5 E(X2m)41 [E(m̂ 2m)2]2.

Table 13.5. Sample central moments

E(m̂r)5 12 mr1 mr22m21o(n21)5mr1O(n21),

Var(m̂r)5 (m2r2mr
21r2m2m

2
r2122rmr21mr11)1o(n21)

Cov(m̂r,m̂s)5 (mr1s2mrms1rsm2ms21mr212rmr21ms112smr11ms21)1o(n21)
1
n

1
n

r(r 2 1)
2n2r

n1

3(n 2 1)
n3

1
n3

1
n3

1
n

o1
n

1
n

1
n



To get some idea on what these approximations refer to, let us consider the moments
of the sample variance, shown in table 13.6. The covariance of ŝ2 and m̂ suggests that in
the case where the random sample comes from a symmetric distribution (m350), m̂ and
ŝ2 are uncorrelated i.e. Cov(m̂,ŝ2)50.

N that mr, r52,3,4 denote the distribution moments of the underlying probability
model. In the case of higher sample central moments, the results in table 13.5 are only
approximate results in the sense that in the case where r is even:

Cov(m̂,m̂r)5 (mr112rm2mr21)1o(n21),

and thus for a symmetrical distribution mr11,mr21 will be zero because they are odd
moments and thus uncorrelated to order n21:

Cov(m̂,m̂r)501o(n21).

The results on the sample central moments suggest that since:

(a) lim
n→`

E(m̂r)5mr, (b) lim
n→`

Var(m̂r)50, for r52,3,… ⇒ m̂r →
P

mr,

i.e., m̂r is a consistent estimator of mr, for r52,3,…
In the case of the joint raw sample moments we can show (see table 13.7) that the

results are very similar to the ordinary sample raw moments (see Stuart and Ord (1994)).
The most widely used statistic based on the second sample joint moment is the correla-

tion coefficient:

r̂ 5 .

As we can see, the variance of the sample correlation coefficient is a highly compli-
cated function of several joint moments of the distribution underlying the postulated

on
i51 (Xi 2 m̂x)(Yi 2 m̂y)

Ï[on
i51(Xi 2 m̂x)2][on

i51(Yi 2 m̂y)2]

1
n

Moment matching principle 645

Table 13.6. Sample variance

E(ŝ2) 5 s2,

Var(ŝ2) 5 2 1 ,

Cov(m̂,ŝ2)5 m3,

Table 13.7. Sample joint moments

E(m̂9r,s)5mr,s, r,s51,2,3,…,

Var(m̂9r,s)5 (m92r,2s2 [m̂9r,s]2) r,s51,2,3,…
1
n

1n 2 1
n 2

m4 2 3m2
2

n3
2(m4 2 2m2

2)
n2

m4 2 m2
2

n

1n 2 1
n 2



probability model. In the case of the bivariate Normal model with unit variances (see
chapter 6) this expression reduces to:

Var(r̂)5 (12r2)21o(n21).

It turns out that the above results for the sample moments simplify appreciably in the
case of the simple Normal model; in table 13.9 we summarize these simplifications (see
Stuart and Ord (1994)).

The results in relation to the first few moments of the sample moments show most
clearly the difficulty in both deriving and operationalizing such results. To derive even
approximate results for sample moments higher than the fourth turns out to be very
messy and complicated. Fisher (1929), however, showed us that this is not the best way to
proceed. Instead, he demonstrated that the so-called k-statistics related to the sample
cumulants are much easier to handle because their sampling cumulants can be derived
using combinatorial methods (see McCullagh (1987)).

So far we found that in the case of a random sample, estimators suggested by the
moment matching principle are in general consistent and sometimes unbiased; the
primary example of this procedure’s success is the case of the raw moments.

What about efficiency and asymptotic normality?

Estimators suggested by the moment matching principle are often inefficient because the
estimators ignore important information relating to the probability model: the nature of
the underlying distribution. They are, however, asymptotically Normal. This result
follows from the fact that a standardized form of the sample raw moments is normal
with mean zero and variance [m92r2(m9r )2] i.e.

(m̂r92m9r),a N(0,[m92r2(m9r)2]),

where ,a reads asymptotically distributed as. Similarly:

(m̂r2mr),a N(0,V`(mr)), where V`(mr)5(m2r22rmr21mr112mr
21r2m2m

2
r21).

13.2.2 Functions of the sample moments

As argued above, the estimation of a parameter u using the moment matching principle
involves relating it to certain distribution moments and then replacing the latter with the
corresponding sample moments. Hence, often the above results cannot be used directly
unless u coincides with a certain distribution moment. In this sense it is of interest to
consider the sampling distribution of function, say g(.), of the sample moments. The

Ïn

Ïn

1
n
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Table 13.8. Sample correlation coefficient

E(r̂)5r1o(n21),

Var(r̂)5 1 1 1 2 1 1o(n21).62m13

m11m02

m31

m11m20
122m22

m20m02

m04

m2
02

m40

m2
20

11
4

m22

m2
11

5r2

n



easiest way to deal with this problem is to derive approximate results based on a Taylor’s
series expansion of the function of the sample moment (see Serfling (1980)):

g(m̂9r)5g(m9r)1 (m̂r92m9r)1 (m̂r92mr9)21…

In view of the fact that E(m̂r92m9r)50, this expansion can be utilized to derive approxi-
mate results for the first few moments of this function (see Sargan (1974)):

E(g(m̂9r)).g(m9r)1 E(m̂r92m9r)2,

Var(g(m̂9r)).
2

E(m̂r92m9r)2,

where . denotes the asymptotic approximation. Using these results we can deduce that
in the case of a differentiable function g(.) of the sample moments whose derivative at m9r

(the true value) is non-zero, i.e., ?0:

(g(m̂9r)2g(m9r)),a N 0,
2
[m92r2(m9r)2] .

The derivations get a bit more complicated when the function g(.) involves more than
one sample moment. Consider the case where g(m̂91,m̂92,…,m̂9m), m,n :

g(m̂91,m̂92,…, m̂9m)5g(m91,m 92,…,m9m)1 m
k51 (m̂9k2m9k)O(n21),

where m5(m̂91,m̂92,…, m̂9m). From this we can deduce that:

E(g(m̂91,m̂92,…, m̂9m)).g(m91,m 92,…,m9m)

Var(g(m̂91,m̂92,…, m̂9m)).E m
k51 (m̂9k2m9k

2
5

5
m

k51

2
Var(m̂9k)1

m

k51

m

,51
kÞ,

Cov(m̂9k,m̂9<).2g(m9)
m9,

12g(m9)
m9k

1oo4g(m9)
m9k

3o

62g(m9)
m9k

o5

g(m9)
m9k

o

24g(m9r)
m9r

31Ïn

g(m9r)
m9r

42g(m9r)
(m9r)

23

2g(m9r)
2m9r

1
2

2g(m9r)
(m9r)

2
1
2

g(m9r)
m9r
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Table 13.9. Variances of common statistics

Simple generic statistical model Normal
model

m̂91: (m2), (m2)

m̂2: (m42m2
2)1o(n21), (2m2

2)

: (m62m3
2)1o(n21), (m2)

m̂3: (m42m2
226m4m219m2

3)1o(n21), (6m2
3)

m̂4: (m82m4
228m5m3116m3

2m2)1o(n21), (96m2
4)

â3: 26a4191 (9a4135)2 1o(n21),

â4: 2 14a4
32a4

2116a4a3
22 216a3

2 1o(n21),
24n(n 2 1)2(n 1 5)21

(n 2 3)(n 2 2)(n 1 3)28m3m5

m4
2

4m6m4

m5
2

m8

m4
2

11
n

6n(n 2 1)
(n 2 2)(n 1 1)(n 1 3)23m3m5

m4
2

a2
3

4
m6

m3
2

11
n

1
n

1
n

1
n

1
n

1
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1
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We remind the reader once more that these results are based on the restrictive assump-
tion of a random sample.

13.3 The least-squares method

13.3.1 The principle of least squares

The principle of least squares was originally proposed as a mathematical approximation
procedure by Legendre in 1805; see Harter (1974–76). The principle provided a way to
approximate:

an unknown function y5g(x), by a half-known function h(x)5 k
i50aifi(x)

where f0(x),f1(x),f2(x),…,fk(x) are appropriately chosen known functions of x:

(e.g., f0(x)51, f1(x)5x, f2(x)5x2,…,fk(x)5xk),

in a way which ensures that the g(x) and h(x) agree as well as possible over a certain
domain D; often a set of T discrete points (T.k). The notion of optimal approximation,
in the least-squares sense is defined in terms of minimizing the sum of squared errors,
where the error is defined by:

et5(yt2
k
i50aifi(xt)),

over the domain D5{(yt,xt), t51,2,…,T} That is, the parameters a0,a1,a2,…,ak are
chosen in order to minimize the objective function:

<(a0,a1,a2,…,ak)5 T
t51(yt2

k
i50aifi(xt))2.

N :
(i) For the least-squares method the linearity that matters is the linearity in the para-

meters a0,a1,…,ak; not the linearity in x as in the case of the Normal/linear regres-
sion model (see Spanos (1986, forthcoming)),

(ii) No probabilistic assumptions are involved in the above problem.

Example
In the simple case where k51 and f051, f15x, the objective function takes the form:

<(a0,a1)5 T
t51 (yt2a02a1xt)2.

In view of the fact that the function is infinitely differentiable we can find the minimum
using calculus. The first-order conditions give rise to the so-called normal equations:

5(22) T
t51 (yt2a02a1xt)50, 5(22) T

t51 (yt2a02a1xt) xt50,

whose solution yields:

â05 2â1 , â15 , for T
t51(xt2 )2?0,xooT

t51(yt 2 y)(xt 2 x)

oT
t51sxt 2 xd2xy

o,

a1
o,

a0

o

oo

o

o
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where 5 T
t51yt and 5 T

t51xt. This can be viewed geometrically as fitting a line to a
scatter plot of {(xt,yt), t51,2,…,T} as shown in figure 13.1.

Legendre’s main justification for the least-squares method was that in the case where the
approximating function is a constant, i.e., h(x)5a0, the value of a0 which minimizes the
function:

<(a0)5 T
t51 (yt2a0)2,

coincides with the arithmetic mean:

â05 T
t51yt.

This follows from the first-order condition:

5(22) T
t51 (yt2a0)50.

At that time, the arithmetic mean was considered to be the best way to summarize the
information contained in the T data points y1,y2,…,yT.

od,

da0

o1
T

o

o1
Txo1

Ty

The least-squares method 649

Figure 13.1 Least-squares fitted line



The first probabilistic interpretation of least squares was proposed by Gauss in 1809. He
argued that for a sequence of T independent random variables y1,y2,…,yT, whose
density functions f(yt) satisfy certain regularity conditions, if the arithmetic mean is the
most probable combination for all values of the random variables and each T$1, then
for some s2.0 (see Heyde and Seneta (1977)) their density function is Normal:

f(yt)5 [2ps2]2 exp 2 yt
2 .

Using this argument, Gauss went on to recast the least-squares approximation argu-
ment in the following probabilistic form:

yt5
k
i50aifi(xt)1et, et,NIID(0,s2), t51,2,…,T,

and f0(x),f1(x),…,fk(x) are known functions of x; NIID stands for Normal,
Independent and Identically Distributed.

A more convincing argument for the use of the Normal distribution for the errors was
provided by Laplace in 1812 in the form of the law of the errors; known as the Central
Limit Theorem (see chapter 9). The idea was that in cases where the errors represent the
sum of several influencing factors, which individually do not dominate the summation,
the distribution of the sum approaches the normal as the number of influencing factors
increases to infinity. Laplace also noted that the minimization of:

T
t51 (yt2h(xt))2,

is equivalent to the maximization of the logarithm of the joint distribution of the errors:

ln f(e1,e2,…,eT)52 ln(2ps2)2 T
t51 (yt2h(xt))2.

This idea can be viewed as a predecessor of the method known today as the maximum
likelihood method (see below).

In terms of finite sample properties of least-squares estimators, the most celebrated
result is the Gauss–Markov theorem discussed next.

13.3.2 Gauss–Markov theorem

Let the statistical relationship between yt and the xits be:

yt5
k
i50aifi(xt)1et, t51,2,…,T,

where f0(x),f1(x),…,fk(x) are known functions of x. Under the assumptions:

(i) E(et)50, t51,2,…,T,

(ii) Cov(et,es)5
s2, t5s,50, t?s,

t,s51,2,…,T,

(iii) f0(x),f1(x),…,fk(x) are linearly independent (in the mathematical sense) func-
tions of x,

we can deduce that the least-squares estimators:

o

o1
2s2

T
2

o

o

61
2s25

1
2

y
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âi5
T
t51gt(i)yt, i50,1,2,…,k, (13.1)

(where gt(i) are functions of f0(x), f1(x),…,fk(x)), are:

(a) Best (relatively efficient): Var(âi)#Var(ăi), i50,1,2,…,k, for every other linear esti-
mator ăi which is also unbiased,

(b) Linear functions of (y1,y2,…,yT),
(c) Unbiased estimators of ai : E(âi)5ai, i50,1,2,…,k.

That is, the least-squares estimators (13.1) are best, within the class of linear (in terms of
yt) and unbiased estimators (BLUE).

N :

(a) There is no distributional assumption involved in the above specification and thus
we cannot consider the question of full efficiency.

(b) The Gauss–Markov theorem depends crucially on the linearity of the statistical
GM in terms of the unknown parameters (a0,a1,…,ak). On the other hand, the lin-
earity of the Normal/linear regression, discussed in chapter 7, is with respect to the
conditioning variables.

(c) The Gauss–Markov theorem is useful in cases where we only want to consider esti-
mators which are linear in yt. If we allow estimators which are non-linear in yt we
can do much better than the least-squares estimators (see Judge et al. (1988)).

Asymptotic properties
â1 can be shown to be both consistent and asymptotically normal under certain restric-
tions on the behavior of T

t51xt
2 as T→`. In particular:

(i) T
t51xt

2→`, as T→`, implies â1→
P

a1.

(ii) lim
T→`

T
t51xt

2 5qx, implies (â12a1),a N(0,s2[1/qx]).

Before we proceed to a more statistical interpretation of the method of least squares, it
is important to emphasize that despite the introduction of the probabilistic terminology,
such as distributions and means, the method, as described above, is essentially one of
mathematical approximation. Moreover, its probabilistic interpretation is not as robust
to changes in the distributional assumption of Normality as often assumed (see Pearson
(1920)).

13.3.3 The statistical least-squares method

The purpose of this section is to reinterpret the least-squares method as a general estima-
tion method in the context of the statistical model specification given in chapter 7. In
particular, to relate the least-squares method with the specification of the statistical
Generating Mechanism (GM).

As argued in chapter 7, the statistical GM for the statistical models in this book are
based on the following decomposition scheme:

yt5E(yt |Dt)1ut, t[T. (13.2)

ÏT2o1
T1

o
o

o
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where yt is a random variable such that Var(yt),`. The primary aim for the modeler is to
choose Dt so as to ensure that no systematic information in the data is left in the non-
systematic component (error) ut. The idea is to choose Dt in order to minimize the
non-systematic component ut, defined as the unmodeled part of yt:

ut5yt2E(yt |Dt), t[T,

or equivalently to choose Dt in order to maximize the systematic component:

mt5E(yt |Dt), t[T.

By construction the error is non-systematic relative to the information set Dt, i.e.

(i) E(ut |Dt)50,

6 t[T (13.3)
(ii) E(mt · ut |Dt)50,

(see chapter 7). On the basis of the probabilistic assumptions, the systematic component
will take a parametric form, say:

E(yt |Dt)5g(xt;u), t[T. (13.4)

The least-squares method ensures that the properties (13.3) are satisfied by the esti-
mated systematic and non-systematic components. This is ensured by choosing the
value of the unknown parameter u, say ûLS, that minimizes the sum of squares of
the errors {ut, t51,2,…,T}. That is, least-squares suggests minimizing the loss func-
tion:

<(u)5 T
t51(yt2g(xt;u))2,

with respect to u. For the value ûLS the loss function takes its minimum at the point:

<(ûLS)5 T
t51(yt2g(xt;ûLS))2,

and the estimated systematic and non-systematic components are:

m̂t5g(xt;ûLS) and ût5yt2g(xt;ûLS).

The optimality of the least-squares estimators stems from the fact that the conditions
(13.3) are valid for the estimated components in the sense that:

T
t51 ût50, and T

t51(g(xt;ûLS) · ût)50.

Example 1 Bernoulli (continued)
The statistical GM of the Bernoulli model takes the form:

Xi5E(Xi |Di)1ui, i[N;{1,2,3,…},

where Di5{S,u} (the non-informative set) and thus E(Xi |Di)5E(Xi)5u. The least-
squares method for estimating u based on the sample (X1,X2,…,Xn) amounts to mini-
mizing:

<(u)5 n
k51(Xk2u)2.o

o1
To1

T

o

o

652 Estimation II: Methods of estimation



From elementary calculus we know that the easiest way to locate the minimum of a
differentiable function is to solve the first-order condition:

5(22) n
k51(Xk2u)50 for u, which yields: ûLS5 n

k51Xk.

We know that <(ûLS)5 n
k51(Xk2ûLS)2 is a minimum of <(u) since: * u5ûLS

52n.0. ûLS

and ûk5(Xk2ûLS) satisfy the properties:

(a) n
k51 ûk50, (b) n

k51 ûLS ûk50,

since n
k51(Xk2ûLS)5 n

k51Xk2nûLS5 n
k51Xk2 n

k51Xk50,

n
k51(ûLS[Xk2ûLS])5ûLS

n
k51(Xk2ûLS)50.

N that the least-squares estimator of u coincides with the estimator suggested by
the moment matching principle and shares the same optimal properties: unbiased, fully
efficient, consistent, and asymptotically normal.

Example 2 Normal (continued)
The statistical GM of the Normal model takes the same form:

Xt5m1ut, t[N,

and thus the least-squares method for estimating m based on the sample (X1,X2,…,XT)
amounts to minimizing:

<(m)5 T
t51(Xt2m)2.

Solving the first-order condition 5(22) T
t51(Xt2m)50 for m, yields:

m̂LS5 T
t51Xt.

As in the Bernoulli case m̂LS and û t5 (Xt2m̂LS) satisfy the sample equivalents to the con-
ditions (13.3). Again, the least-squares estimator of m coincides with the estimator sug-
gested by the moment matching principle, and it enjoys the same optimal properties such
as unbiasedness, full efficiency, consistency, and asymptotic Normality (see chapter 12).
The least-squares method does not suggest an estimator for s2, but intuition suggests
that we can use the minimum of the objective function <(u) to define the following esti-
mator of s2:

ŝ25 T
t51(Xt2m̂LS)2.

This is also the estimator suggested by the moment matching principle. As shown in the
previous chapter the sampling distribution of ŝ2 takes the form:

5 T
t51 ,x2(n21),

and thus ŝ2 is a biased estimator of s2 since E(ŝ2)5 s2?s2. Because of this bias, the
alternative estimator:

(T 2 1)
T

1Xt 2 m̂

s 2
2

o1Tŝ2

s2 2

o1
T

o1
T

od,

dm

o

oo
oooo

o1
no1

n

1d2,

du22o
o1

nod,

du
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s25 T
t51(Xt2m̂LS)2,

is often used in practice (see the discussion in chapter 12).

13.3.4 Properties of least-squares estimators

In the above statistical interpretation of least squares it is clear that the finite sample
properties of least-squares estimators depend crucially on the probabilistic assumptions
relating to the random variable yt and the conditioning information set Dt. In view of
this, the only general optimality results for least-squares estimators are asymptotic.
Under certain regularity conditions and in view of the fact that the estimated systematic
and non-systematic component:

m̂t5g(xt;ûLS), ût5yt2g(xt;ûLS),

respectively, satisfy the orthogonality conditions:

(a) T
t51 ût50, (b) T

t51[g(xt;ûLS)ût]50,

we can show that the least-squares estimator ûLS of u, is both consistent and asymptoti-
cally normal. The regularity conditions relate to the function g(xt;u), ensuring the exis-
tence and uniqueness of the least-squares estimator ûLS as a solution to the minimization
of the loss function:

<(u)5 T
t51(yt2g(xt;u))2.

In particular, in the case of an independent sample:

ûLS →
P

u ,

and:

(ûLS2u),a N(0,V`(u)),

but ûLS is not necessarily asymptotically efficient.

13.4 The method of moments

The method of moments was originally proposed in 1895 by Karl Pearson in the
context of what we nowadays call (sophisticated) descriptive statistics. The original
method was proposed as both a specification and an estimation method but was later (in
the 1920s) adapted as just an estimation method in the context of modern statistical
inference. In order to understand the limitations of the method in the latter context, it is
advisable to consider the method in the context originally intended. The current
approach to statistical inference replaced descriptive statistics only gradually and to
some extent, this change went largely unnoticed. The change of paradigms from
descriptive statistics to statistical inference proper was under way in the 1910s but it was
not completed until the mid 1930s. The confusion between the distribution and sample
moments in the statistical literature of the first quarter of the 20th century attests to the

ÏT

o

o1
To1

T

o1
T 2 1



fact that the switch of paradigms was neither obvious nor clear to many participants.
Karl Pearson died in 1936 without realizing that his method was inferior to the
maximum likelihood method mainly because it was developed for a very different
approach to statistics; an approach for which the maximum likelihood method was
useless.

13.4.1 Pearson’s method of moments

Descriptive statistics, as an approach to data modeling, proceeds from the data and using
techniques such as the histogram seeks a parsimonious summary of the data in terms of
a frequency curve: a descriptive model. When Pearson proposed his method of moments
the idea was that the modeler would use the data raw moments in order to choose the
most appropriate frequency curve from a specific family, the Pearson family. This is very
different from the classical approach to statistics where a statistical model (a chance
mechanism) is postulated a priori and the observed data are interpreted as a realization
of the postulated chance mechanism.

The Pearson approach to statistics can be summarized as shown in figure 13.2.
The Pearson family of frequency curves can be expressed in terms of the following

differential equation in four unknown parameters:

5 f(x) . (13.5)

Depending on the values taken by the parameters (a,b0,b1,b2), this equation can generate
numerous frequency curves such as the normal, the Student’s t, the Beta, the Gamma,
the Laplace, and the Pareto; in the context of modern probability they are known as
density functions. Pearson invented this family of frequency curves by noticing that the
normal density function f(x) satisfies the following differential equation:

5f(x) , where m5a and s252b0.

Using the corresponding difference equations associated with the Binomial and
Hypergeometric distributions, he went on to extend this to the differential equation (13.5).

In the context of probability theory we have seen that we can relate the unknown para-
meters, say (u1,u2,u3,u4), to the moments of a given density function f(x;u1,u2,u3,u4) (see
chapter 3) via:

mr9(u1,u2,u3,u4)5
x[RX

xrf(x;u1,u2,u3,u4)dx, for r51,2,…

By interpreting frequency curves as density functions, one can adapt the above relation-
ship in conjunction with the differential equation (13.5) to relate the Pearson family to
the raw moments by integrating both sides:

E

3(x 2 a)
b0

4df(x)
dx

3 (x 2 a)
b0 1 b1x 1 b2x24df(x)

dx
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x[RX

xr(b01b1x1b2x2)df5
x[RX

xr(x2a)f(x)dx, for r51,2,…

Collecting terms of the same power in x, we get the following recursive relationship
among the moments and the parameters (see Stuart and Ord (1991)):

kb0m9k211{(k11)b12a}m9k1{(k12)b211}m9k1150, k51,2,…

From this we can see that the first four moments m91, m92, m93, and m94 are sufficient to select
the particular f(x) from the Pearson family via the first four equations:

(b12a)1 (2b211)m9150
b01(2b12a)m911(3b211)m9250
2b0m911(3b12a)m921(4b211)m9350
3b0m921(4b12a)m931(5b211)m9450.

Pearson proposed substituting the first four raw data moments m̂91, m̂92, m̂93, and m̂94, in the
above system and solving it for the parameters (a,b0,b1,b2). The solution to these equa-
tions would deal with two different problems simultaneously:

(a) specification: the choice of a descriptive model (a frequency curve) on the basis of
the particular values of m̂91, m̂92, m̂93,and m̂94, and

(b) estimation: attribution of numerical values to the unknown parameters (a,b0,b1,b2).
For example, in the case where the derived numerical values of the parameters
were: b0,0, b1.0, and b2.0, the data suggest that the most appropriate descrip-
tive model, among those of the Pearson family, is the Normal frequency curve.

It is instructive to view the above procedure in the context of classical statistical inference
where the statistical model is chosen a priori and the data are viewed as a realization of
the chance mechanism described by the postulated model. The first important difference
between the two approaches is that there is no built-in inductive argument in the Pearson
approach which is essentially one of descriptive statistics. Second, the Pearson approach
seems to ignore the notion of a sampling model. In effect the approach involves the
implicit assumption that the data constitute a realization of a random sample. In other
words, it only considers simple statistical models. The third important limitation of the
Pearson approach is that the family of descriptive models is restricted to the ones in the
Pearson family.

In addition to being important from a historical viewpoint, the Pearson method of
selecting a density function using the estimated moments is also of some interest in the
context of statistical inference, in cases where the finite sample distribution of a statistic
is unknown and the asymptotically normal distribution is suspected to be misleading. In
such cases it might be of interest to consider fitting the Pearson family in order to get
some idea as to the nature of the non-normality.

13.4.2 The parametric method of moments

The parametric method of moments (PMM) is an adaptation of the above method for
application to statistical inference proper. In the latter case the appropriate probability

EE
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model is chosen a priori and thus the only role left for the method of moments is to esti-
mate its parameters using the sample moments. As argued in chapter 3 the best way to
handle unknown parameters is to relate them to the moments of the density function in
question via:

mr9(u1,u2,…,uk)5
x[RX

xrf(x;u1,u2,…,uk)dx, r51,2,…

The idea behind the PMM is to match the required population raw moments to their cor-
responding sample moments:

m̂9r5
T
t51Xt

r, r51,2,3,

and solve the resulting system of equations for the unknown parameters (u1,u2,…,uk).

Example 2 (continued)
In the case of the Normal model we have two unknown parameters u :5 (m ,s2) and thus
we need at least two raw moments. The first step is to derive the relationship between
these parameters and the population moments:

mr9(m ,s2)5
x[RX

xrf(x;m,s2)dx, r51,2.

In view of the fact that the moment generating function (mgf) is: mx(t)5emt1 s2t2 (see
chapter 3), we can deduce that:

m915 * t505emt1 s2t2 m1 s2t * t505m,

m925 * t505emt1 s2t2 m1 s2t 21(emt1 s2t2)s2 * t505m21s2.

The second step is to equate the population and sample moments and solve for the
unknown parameters, i.e.

m̂91 :5 T
t51Xt5m, m̂92 :5 T

t51Xt
25s21m2.

Solving these for m and s2 we deduce that the PMM estimators are:

m̂5 T
t51Xt, ŝ25 T

t51(Xt2m̂)2.

From our previous discussion we know that these estimators coincide with the estima-
tors suggested by the moment matching principle and the least-squares method and they
enjoy several optimal properties. In particular, m̂ is an unbiased, fully efficient, and con-
sistent estimator of m. ŝ2 is not unbiased, but it can be transformed into an unbiased esti-
mator using s25 ŝ2. s2 is not just unbiased, it is also relatively efficient, consistent,

and an asymptotically normal estimator of s2.

Example 4 Consider the simple Gamma model:

[i] Statistical GM: Xt5ab1ut, t[N,
[ii] Probability model:

1 T
T 2 12

o1
To1

T

o1
To1

T

1
221

21
1
2

d2mx(t)
dt2

21
21

1
2

dmx(t)
dt

1
2

E

o1
T

E
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F5 f(x;u)5
a21 exp 2 ,u :5(a,b)[R1

2, x.0 ,

[iii] Sampling model: X :5(X1,X2,…,XT) is a random sample.

In view of the fact that the mgf is: mx(t)5(12at)2b, we can deduce that (see chapter 3):

m15 * t5052b(2a)(12at)2b21 * t505ab,

m25 * t505ba2(b11)(12at)2b22 * t505b(b11)a2,

or equivalently E(X)5ab, Var(X)5ab2. Hence, the PMM estimators are derived by
solving the system of equations: m̂915ab, m̂925b(b11)a2, yielding:

b̂ 5 ( 2 / ŝ2), â 5(ŝ2 / ),

where 5 T
t51Xt and ŝ25 T

t51(Xt2 )2.

Example 5 Consider the simple log-Normal model:

[i] Statistical GM: Xt5u1ut, t[N,
[ii] Probability model:

F5 f(x;u)5 exp 2 2 , u :5(m,s2),x.0 ,

[iii] Sampling model: X :5(X1,X2,…XT) is a random sample.

This example will bring out the non-invariance of the PMM estimator to transforma-
tions. In view of the following relationships:

m915em1 s2, m925 em1 s2 es2,

the most direct way to derive PMM estimators of u :5(m,s2) is to solve the following
equations for the unknown parameters:

n
k51Xk5em1 s2, n

k51Xk
25 em1 s2 es2.

This yields the following estimators:

m̂5 ln , s25 ln .

Another way to derive PMM estimators of u :5(m ,s2) in this case is to utilize the infor-
mation that: E(ln X)5m , Var(ln X)5s2,to derive the alternative PMM estimators:

m̂5 T
t51Xt, ŝ25 T

t51(ln Xt2m̂)2,

which are indeed very different from those above.

Finally, it is important to note that PMM estimators do not coincide with the estimators
suggested by the moment matching principle. The obvious counter example is provided by
the linear regression model, discussed above, where the method of moments cannot be
applied directly because we are dealing with conditional moments.

o1
To1

T

6
1
T

ST
t51X2

t

31
T

ST
t51Xt4256ÏT31

T
ST

t51Xt42

ÏST
t51X 2

t5

2
1
21o1

n

1
2o1

n

2
1
21

1
2
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13.4.3 Properties of PMM estimators

In general, the only optimal properties that PMM estimators enjoy are asymptotic. As
shown above, in the case of a random sample (X1,X2,…,XT), the sample raw moments:

m̂9r5
T
t51Xt

r, r51,2,…

are consistent estimators of the population raw moments (assuming they exist), i.e.

m̂r9 ⇒
P

mr9.

In the case where mr9(u1,u2,…,uk) is a well-behaved function of the us we can deduce that
for the PMM estimators û:5(û1,û2,…, ûk), where û i :5û i (m̂91,m̂92 ,…, m̂9k), i51,2,…,k:

ûPMM ⇒
P

u, and (ûPMM2u),a N(0,V`(u)),

but these estimators are not necessarily asymptotically efficient.
The question of the optimal properties of PMM estimators as opposed to those of

maximum likelihood estimators, discussed next, goes back to the 1930s. Fisher (1937)
argued that the method of moments gave rise to inefficient estimators except in cases
where the distribution in question was close to the normal. Karl Pearson mounted a spir-
ited reply but lost the argument because he did not realize that Fisher had changed the
rules of the game from those of descriptive statistics (use the data to choose a descriptive
model) to those of statistical inference (postulate a statistical model a priori and use the
data to estimate the parameters of this model). As argued below the method of
maximum likelihood is tailor-made for statistical inference but it is completely useless in
the context of the Pearson approach. The fact that the PMM method often gives rise to
less-efficient estimators should not come as a surprise because a glance at the above dis-
cussion reveals that the method does not utilize all the information contained in the pos-
tulated model. From the probability model it utilizes only the part of the information
referring to some of the moments of the postulated density, and it is well known that,
more often than not, knowing a finite number of moments is not equivalent to knowing
the distribution itself (see chapter 3).

13.5 The maximum likelihood method

13.5.1 The likelihood function

As mentioned in the introduction, the maximum likelihood (ML) method was
specifically developed for the modern approach to statistical inference proposed by
Fisher (1912,1922b,1925a). This approach postulates a statistical model S :5(F,X) pur-
porting to describe (probabilistically) the stochastic mechanism that gave rise to the
observed data x :5(x1,x2,…,xn). As shown in figure 13.3, the a priori information in
the form of the statistical model is encapsulated by the distribution of the sample
X :5(X1,X2,…,Xn):

ÏT

o1
T

The maximum likelihood method 659



D(X1,X2,…,Xn;u),

the joint distribution of the random variables making up the sample.

N : in order to emphasize the difference between the sample and a sample real-
ization, we use the notation D(X1,X2,…,Xn;u) and not the notation f(x1,x2,…,xn;u) used
in the previous chapters.

The likelihood method, viewing the observed data x as a realization of the sample,
defines the likelihood function to be proportional to the distribution of the sample, but
interpreted as a function of u:

L(u;x1,x2,…,xn)~D(X1,X2,…,Xn;u)

In this sense the likelihood function appraises the likelihood, associated with the different
values of u, to have been the true parameters of the stochastic mechanism that gave rise
to the particular sample realization x. N that the proportionality is important for
mathematical purposes because L(u;x1,x2,…,xn) is interpreted as a function of u but
D(X1,X2,…,Xn;u) is a function of X and they usually have very different dimensions. An
equivalent way to define the likelihood function is:

L(u;x1,x2,…,xn) :5k(x) · D(X1,X2,…,Xn;u),

where k(x) depends only on the sample realization x and not on u. Formally, the likeli-
hood function is defined by:

L(.;x) : U→ [0,`),

and thus likelihood could not be interpreted as attaching probabilities to u.
The fact that the maximum likelihood method is tailor-made for the modern approach
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to statistical inference can be seen from diagram. 13.3, where the distribution of the
sample is defined so as to incorporate all relevant information contained in the statistical
model postulated. This is in contrast to the parametric method of moments where only
the information relating u the moments of f(x;u) is utilized.

In an attempt to provide some intuitive understanding for the notion of the likelihood
function let us consider the following example.

Example 1 (continued)
In the case of the Bernoulli model the distribution of the sample takes the form:

D(X1,X2,…,Xn;u)5 f(xk;u)5 uxk(12u)12xk5u
n
k51xk(12u)

n
k51(12xk).

The first equality follows from the sampling assumption of a random sample (IID
random variables) and the second from the probability assumption that the Xks are
Bernoulli distributed. The likelihood function is defined by:

L(u;x)~u
n
k51xk(12u)

n
k51(12xk).

In figure 13.4 the likelihood function L(u;x) is shown in the case where k(x)51000
(chosen to avoid very small numbers) and the sample realization is:

oo

oop
n

k51
p

n

k51
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x :5(0,0,0,1,0,0,1,0,0,1).

As we can see, L(u;x) is a continuous function of u, in contrast to D(x;u) which is a dis-
crete function of x or equivalently yn5 n

k51xk.

13.5.2 Maximum likelihood estimators

In order to be able to derive results of some generality we confine the discussion to
regular statistical models which satisfy the restrictions Rf1–Rf4 which ensure the exis-
tence of the Fisher information (see chapter 12). The extent to which these regularity
conditions restrict the probability models has been discussed in the previous chapter; see
Gourieroux and Monfort (1995) for more details.

For simplicity of exposition and notational convenience, let us consider the case where
u is a scalar. Estimating by maximum likelihood amounts to finding that particular value
û 5h(x) which maximizes the likelihood function, i.e.

L(û;x)5max
u[Q

L(u;x).

û 5h(X) is referred to as the maximum likelihood estimator (MLE) of u and û 5h(x) as
the maximum likelihood estimate. There are several things to note about this definition:

(a) the MLE ûML may not exist,
(b) the MLE ûML may not be unique,
(c) the MLE may not have a closed-form expression û 5h(X).

Despite the pathological cases for which existence and uniqueness of the MLE û is not
guaranteed (Gourieroux and Monfort (1995)), in the overwhelming number of cases in
practice û exists and is unique.

In order to reduce the pathological cases for which û may not exist we often restrict
our discussion to cases where:

Rf5 L(.;x) :U→ [0,`), is continuous at all points u [U.

Moreover, in an attempt to reduce the pathological cases for which û may not be unique
we restrict our discussion to cases where u is identifiable:

Rf6. For all u1?u2 where u1[U, u2[U, f(x;u1)?f(x;u2), x[Rn
X.

In the case where the likelihood function is differentiable one can locate the maximum
by differentiating L(u;x). The MLE is derived by solving the first-order conditions:

5g(ûML)50, given that * u5ûMLE ,0.

Often, it is preferable to maximize the log likelihood function instead, because they have
the same maximum (the logarithm being a monotonic transformation):

5<(ûML)5 5 g(ûML)50, given L?0.

Example 1 (continued)
In the case of the Bernoulli model the log likelihood function is:

11
L2

dL(u;x)
du11

L2
d ln L(u;x)

du

d 2L(u;x)
du 2

dL(u;x)
du

o
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ln L(u;x)5const1( n
k51xk) ln u1 ( n

k51[12xk]) ln (12u),

where const stands for the constant of proportionality. Differentiating the log likelihood
with respect to u yields:

ln L(u;x)5 ( n
k51xk)2 ( n

k51[12xk])50,

or

( n
k51xk)(12û)5û(n2 n

i51xk) ⇒ ûML5 n
i51Xi.

As we can see, the maximum likelihood Estimator (MLE) coincides with the estimator
suggested by all three previous methods, the moment matching principle, the least-
squares and parametric method of moments (PMM). We can ensure that this is indeed a
maximum by considering the second derivative evaluated at u5ûML. Since, ûML.0 and n
.( n

i51xn) we can deduce that ûML defines a maximum since the second-order condition

evaluated at ûML is negative:

ln L(u;x)52 n
k51xk2

2. ( n
k51[12xk]) | u5û MLE ,0.

The score function
The quantity ln L(u;x) was encountered in chapter 12 in relation to full efficiency, but at

that point we used the log of the distribution of the sample, ln f(x;u), instead of ln L(u;x)
to define the Fisher information:

In(u) :5E 2 (13.6)

In terms of the log-likelihood function the Cramer–Rao inequality takes the form:

Var(û)$ E 2 21, (13.7)

for any unbiased estimator û of u.
The function s(u;X) :5 ln L(u;X), when viewed as a function of X, is called the score

function and enjoys the following properties:

(sc1) E[s(u;X)]50,
(sc2) Var[s(u;X)]5E[s(u;X)]25E 2 ln L(u;X) :5In(u).

As shown in the previous chapter, an unbiased estimator û of u achieves the
Cramer–Rao lower bound if and only if (û2u) can be expressed in the form:

(û2u)5h(u) · s(u;X),

for some function h(u).

Example 1 (continued)
In the case of the Bernoulli model the score function takes the form:

s(u;X) :5 ln L(u;X)5 ( n
k51Xk)2 ( n

k51[12Xk]).o1 1
1 2 u2o1

u

d
du

2d2

du21

d
du

461 ln L(u;x)
u 253

61 ln f(x;u)
u 25

d
du

o21
1 2 u1o1

u2
d2

du2

o

o1
noo

o21
1 2 u1o1

u

d
du

oo
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In view of the fact that:

(ûML2u)5 s(u;X),

we can deduce that ûML5 n
i51Xi is indeed fully efficient. This is confirmed using the

Fisher information:

52( n
i51Xi) 2( n

i51[12Xi])
2
.

E 5 ⇒ CR(u)5 .

Single-parameter case

Example 6 Consider the simple exponential model:

[i] Statistical GM: Xt5u1uk, k[N

[ii] Probability model: F5{ f(x;u)5 exp{2 }, u.0,x.0}.
[iii] Sampling model: X :5(X1,X2,…Xn) is a random sample.

The distribution of the sample takes the form:

D(X1,X2,…,Xn;u)5 f(xk;u)5 exp {2 xk}5
n
exp xk ,

and thus the log-likelihood function is:

ln L(u;x)5const2n ln(u)2 n
k51xk.

ln L(u;x)52 1 n
k51xk50, ⇒ ûML5 n

k51Xk.

In view of the fact that E(Xt)5u , this estimator coincides with the estimators suggested
by the moment matching principle, the parametric method of moments as well as the
least-squares method. The second-order condition:

ln L(u;x)5 2 n
k51xt| u5ûML52 ,0,

ensures that ln L(û;x) is a maximum and not a minimum or a point of inflection. Using
the second derivative of the log-likelihood function we can derive the Fisher informa-
tion:

In(u) :5E 2 ln L(u;x) 5 .

13.5.3 Multi-parameter case

In the case where u contains more than one parameter, say u :5(u1,u2), the first-order
conditions for the MLEs take the form of a system of equations:

50, 50,

which need to be solved simultaneously in order to derive the MLEs.

1 ln L(u;x)
u2

21 ln L(u;x)
u1

2

n
u22d2

du21

n
û2

ML
o2

u3

n
u2

d2

du2

o1
no1

u2
n
u

d
du

o1
u

652
1
u
 o

n

k51
21

u121
u1

1
up

n

k51
p

n

k51

1x
u2

1
u

u(1 2 u)
n

n
u(1 2 u)12

d2 ln f(x;u)
du2 2

1 1
1 2 u2o1 1

u22od2 ln L(u;x)
du2

o1
n

3u(1 2 u)
n 4
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Example 2 (continued)
In the case of the Normal model, the random sample assumption implies that the likeli-
hood function takes the form:

L(m,s2;x)~ exp(2 (xk2m)2) 5
n
exp 2

k51

n

(xk2m)2 .

The log-likelihood function is:

ln L(m,s2;x)5const2 ln s22 n
k51(xk2m)2.

Hence, we can derive the MLEs of m and s2 via the first-order conditions:

52 (22)
k51

n

(xk2m)50, 52 1
k51

n

(xk2m)250.

Solving these for m and s2 yields:

m̂ML5 n
k51Xk and ŝ2

ML5 n
k51(Xk2m̂ML)2.

Again, the MLEs coincide with the estimators suggested by the other three methods.
ln L(û;x) for û :5(m̂,ŝ2) is indeed a maximum since the second derivatives at u5 û take
the following signs:

* u5ûMLE52 * u5ûMLE52 ,0,

* u5ûMLE52
k51

n

(xk2m) * u5ûMLE50

* u5ûMLE5 2
k51

n

(xk2m)2 * u5ûMLE52 ,0,

and thus 2 * u5ûMLE.0.

For the simple Normal model the second derivatives of the log-likelihood and their
expected values are:

52 , E 5 ,

52
k51

n

(xk2m), E 50, (13.8)

5 2
k51

n

(xk2m)2, E 5 .

These results suggest that the Fisher information matrix takes the form:

In(u)5
0,

0
.

Hence, Cramer–Rao lower bounds for any unbiased estimators of m and s2 are (see
chapter 12):

(a) CR(m)5 (b) CR(s2)5 .

In view of the fact that (see chapter 12):

(i) m̂ML,N m, , (ii) ,x2(n21).2n ŝ2
ML

s212s2

n1

2s4

n
s2

n

2n
2s4

n
s2,1

n
2s412

2 ln L(u;x)
s4 2o1

s6
n

2s412 ln L(u;x)
s4 2

12
2 ln L(u;x)

s2m 2o1
s412 ln L(u;x)

s2m 2

n
s212

2 ln L(u;x)
m2 2n

s212 ln L(u;x)
m2 2

12 ln L(u;x)
s2m 212 ln L(u;x)

s4 212 ln L(u;x)
m2 2

n2

ŝ 6o1
s6

n
2s412 ln L(u;x)

s4 2

o1
s412 ln L(u;x)

s2m 2

n
ŝ21 n

s2212 ln L(u;x)
m2 2

o1
no1

n

o1
2s4

n
2s21lnL(u;x)

s2 2o1
2s21lnL(u;x)

m 2

o1
2s2

n
2

6o1
2s2521

sÏ2p121
2s2

1
sÏ2p1p

n

k51
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m̂ML is an unbiased, efficient, and consistent estimator of m but ŝ2
ML is not unbiased, it is,

however, consistent and asymptotically Normal and asymptotically efficient (see chapter
12 for the details).

At this point it is important to digress for a few seconds in order to introduce a concept
sometimes used in place of the Fisher information matrix. The concept is called the
observed information matrix and it is defined by:

Jn(u)52 .

In the case of the simple Normal model this matrix takes the form:

Jn(u)5                 

,
k51

n

(xk2m)

Jn(u)

(

k51

n

(xk2m), 2 1
k51

n

(xk2m)2

)

As we can see this is much easier to evaluate because there are no expectations to be
taken.

Before the reader jumps to the erroneous conclusion that all three methods of estima-
tion yield identical estimators, let us consider the following example where the MLE and
the PMM estimators are different.

Example 4 (continued)
In the case of the Gamma model, the distribution of the sample takes the form:

D(X1,X2,…,Xn;a,b)5
n

k51 f(xk;a,b)5
n

k51 exp 2 .

The log-likelihood function, with u:5(a,b) takes the form:

lnL(u;x)5const2n lnG[a]2na lnb1(a21)
k51

n

ln xk2
k51

n

,

where G[b ] is the Gamma function (see appendix A).

52 1
k51

n

xk50, 52nc9[a]2n ln b1
k51

n

ln xk50,

where c9[z] :5 ln G[z], is known as the di-gamma function (see Abramowitz and

Stegum (1970)). Solving the first equation yields: b̂ML5 ,where n5 n
k51Xk.

Substituting this into the second equation yields:

,(a)52nc9[a]2n ln 1 n
k51 ln Xk50, (13.9)

which cannot be solved explicitly for â; it can be solved numerically. Before we consider
the question of numerical evaluation it is worth noting that these MLEs are different
from the PMM estimators of a and b :

b̂PMM5 , âPMM5 , (13.10)

derived in the previous section.

ŝ2

Xn

X 2
n

ŝ2

o2Xn

â1

o1
n  X Xn

â

d
dz

o1 ln L(u;x)
a 2o1

b2
na

b1 ln L(u;x)
b 2

1xk

b 2oo

61xk

b 251b2axk
a21

G[a] 2pp

o1
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2s4o1

s4
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12 ln L(u;x)
uu9 2
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Numerical evaluation
As in the case of the simple Gamma model discussed above, when solving the first-order
conditions for MLEs the modeler will often have to use numerical methods because no
closed form expression û 5h(X) can be derived. The problem is then to solve numerically
the score function equation:

,(u)50,

which is a non-linear function of u . There are several numerical algorithms which can be
used to solve this problem which are appropriate for different circumstances. One of the
simplest and most widely used algorithms is the Newton–Raphson which we can describe
briefly as follows.

Step 1 Choose an initial (tentative) solution: u0.
Step 2 The Newton–Raphson algorithm improves this solution by choosing:

u15u02 [,9(u0)]21,(u0), where ,9(u0)5 .

This is based on taking a first-order Taylor approximation:

,(u1).,(u0)1(u12u0),9(u0),

setting it equal to zero: ,(u1)50, and solving it for u1. This provides a quadratic approxi-
mation of the function ,(u).

Step 3 Continue iterating using the algorithm:

ûk115ûk2 [,9(ûk)]21
,(ûk), k51,2,…,N11,

until the difference between ûk11 and ûk is less than a pre-assigned small value e, say
e50.00001, i.e.

| ûN112ûN |,e.

N that [2,9(ûk)] is the observed information (matrix) encountered above.

Step 4 The MLE is chosen to be the value ûN11 for which: ,9(ûN11). 0.

As can be seen, this algorithm requires the choice of an initial guess for the estimator
which often is chosen to be the PMM estimator.

A related numerical algorithm, known as the method of scoring, replaces ,9(ûk) with
the Fisher information In(u), the justification being the convergence result:

,9(ûk) →a.s. In(u),

yielding the iteration scheme:

ûk115ûk2 [In(ûk)]21
,(ûk), k51,2,…,N11.

I : It turns out that all the modeler needs to do in order to achieve asymptot-
ically efficient estimators is to use any one of the above iteration schemes for one itera-
tion! One iteration is sufficient for asymptotic efficiency.

For an extensive discussion of such numerical algorithms used in econometrics, see

1
n

1
n

d,(u0)
du

The maximum likelihood method 667



Gourieroux and Monfort (1995), Hendry (1995), and Davidson and McKinnon
(1993).

Example 7
Consider the simple Logistic (one parameter) model:

[i] Statistical GM: Xk5E(Xk)1ek, k[N,

[ii] Probability model: F5 f(x;u)5 , u [R, x[R ,

[iii] Sampling model: X :5(X1,X2,…Xn) is a random sample.

The log-likelihood function and the first-order conditions are:

ln L(u;x)52
k51

n

(xk2u)22
k51

n

ln[11exp (2(xk2u))],

5n22
k51

n

50.

The MLEs of u can be derived using the Newton–Raphson algorithm with:

,9(u)522
k51

n

,

and n as an initial value for u. For comparison purposes we  that:

( n2u),a N 0, , where 53.2899, and (ûMLE2u),a N(0,3).

Example 4 (continued).
In the case of the Gamma model, the MLEs of u:5(a,b) can be derived using the
Newton–Raphson algorithm with:

c0[a],
,9(u)5n

(

,

)

,

where c0[z] :5 ln G[z], is known as the tri-gamma function (see Abramowitz and
Stegum (1970)). The scoring method simplifies this to:

c0[a],
In(u)5

(

,

)

.

Both numerical algorithms require some initial estimates for (a,b) for which the modeler
can use the PMM estimates (13.10). Using the Newton–Raphson algorithm to evaluate
(13.9) yields the iteration scheme:

âk115âk1 , k51,2,…

Likelihood and the Kullback–Leibler distance*
Some intuition on what MLEs are all about can be gained by considering the relation-
ship between the log-likelihood function and the Kullback–Leibler distance (see

1
n S

n
k51 ln Xk 2 ln(Xn) 2 c9[â k] 1 ln(â k)

c0 [â k] 2
1

âk

a

b2
1
b

1
b

d2

dz2

2Xn 2 ab

b3
1
b

1
b

Ïnp2

32p2

31  X Ïn

  X 

exp(xk 2 u)
[1 1 exp(xk 2 u)]2o

exp( 2 (xk 2 u))
[1 1 exp( 2 (xk 2 u))]od ln L(u;x)

du

oo

6exp( 2 (x 2 u))
[1 1 exp( 2 (x 2 u))]25
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Kullback (1959)). Consider the simple statistical model whose probability model takes
the form:

F5{f(x;u) :5 [p1(u),p2(u),…,pm(u)], corresponding to [x1,x2,…,xm], u [Q}.

Assuming that nk represents the number of Xis taking the value xk, the average log-
likelihood function in this case takes the form:

ln L(u;x)5 n
k51 ln f(xk;u)5 m

k51 ln pk(u).

The last expression can be related to the Kullback–Leibler information distance
between two densities:

K( f0, f1):5E ln 5
x[RX

ln f0(x)dx,

first encountered in chapter 6 in relation to measuring dependence. This measure in the
case where the two distributions involved are:

f̂ (x) :5 …, and f(x;u) :5 [p1(u),p2(u),…,pm(u)],

takes the form:

K( f̂ , f )5 m
k51 ln 52 m

k51 ln pk(u)1 m
k51 ln .

In view of the fact that the last term is a constant, this suggests that an equivalent way to
view the derivation of the MLE ûML is by minimizing the Kullback–Leibler distance.
Intuitively, this implies that the MLE is derived by minimizing the distance between the
postulated probability model and the empirical frequencies. For the mathematical con-
noisseurs this can be written more formally in terms of the distance between the empiri-
cal cdf and the postulated cdf using the Riemann–Stieltjes integral (see Stuart and Ord
(1994)):

K(F̂,F)5
x[:

ln dF̂(x).

This observation strengthens the case argued in chapter 10 that the estimated cdf pro-
vides the bridge between probability theory and statistical inference.

Example
For argument’s sake let us assume that in the case of the Bernoulli model, Q takes only two
values, say Q5{0.2}<{0.8}; instead of the usual [0,1]. Remembering that u5P(X51):
What is the likeliest value of u to have given rise to the sample realization

x :5(0,0,0,1,0,0,1,0,0,1)?

In view of the fact that the event X51, has occurred only in three out of the ten cases,
intuition suggests that the true value of u is more likely to be u50.2 instead of u50.8.
In terms of the Kullback–Leibler distance the empirical frequency is much closer to
u50.2 than u50.8.

3
10

1 dF̂(x)
dF(x;u)2E

1nk

n 21nk

n 2o1nk

n 2o4
(nk)

n
pk(u)31nk

n 2o

nm

n 21n1

n
, 

n2

n
,

2f0(x)
f1(x)1E2f0(x)

f1(x)1

1nk

n 2oo1
n
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13.5.4 Properties of MLEs

Finite sample properties
Maximum likelihood estimators are not unbiased in general but enjoy a very useful
property instead: they are invariant with respect to well-behaved functional parameteri-
zations.

[1] Parameterization invariance
For f5g(u) a well-behaved (Borel) function of u, the MLE of f is given by:

f̂ML5g(ûML).

Example 6 (continued)
In the case of the Exponential model specified above, we are often interested in f5 .
From this property of MLEs we can deduce that the MLE of f is:

f̂ML5 5 . (13.11)

In order to confirm this let us express the density function in terms of f, i.e.:

f(x;u)5f exp{2fx},

and derive the MLE of f by maximizing the log-likelihood function:

ln L(f;x)5const1n ln(f)2f n
k51xk,

Given that ln L(f;x)5 2 n
k51xk50, the result is (13.11).

This property is particularly useful in the context of the approach advocated in this book
because the theoretical parameters of interest rarely coincide with the statistical parame-
ters and this property enables us to derive the MLEs of the former. In view of the fact
that in general:

E(f̂ML)Þg(E(ûML)),

we can think of the bias in some MLEs as the price we have to pay for the invariance
property. Thus, if ûML is an unbiased estimator of u, i.e. E(ûML)5u, there is no reason to
believe that f̂ML is going to be an unbiased estimator of f; in general E(f̂ML)Þf.

[2] Unbiasedness – full efficiency
In a regular statistical model (see chapter 12), if an unbiased estimator, which also
attains the Cramer–Rao lower bound, exists, say ûU, then it coincides with the maximum
likelihood estimator ûML, i.e., ûU5ûML.

Example 8
Consider the simple Poisson model:

[i] Statistical GM: Xk5E(Xk)1ek, k[N,

[ii] Probability model: F5 f(x;u)5 , u.0, x[N05{0,1,2,….} ,61e2uux

x! 25

on
f



f

o

n
Sn

k51Xk

1
ûML

1
u
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[iii] Sampling model: X:5(X1,X2,…,Xn) is a random sample.

In view of the fact that E(Xt)5u, we can deduce that the estimator suggested by the pre-
vious three estimation methods would be: ûU5 n

k51Xk. Using the linearity of E(.) (see
chapter 3) we can show that:

E(ûU)5u and Var(ûU)5 .

From the distribution of the sample:

D(X1,X2,…,Xn;u)5
n

k51
f(xk;u)5

n

k51
u

xke2u (1/(xk)!)5uOn
k51xk e2nu

n

k51
(1/(xk)!),

we can derive the Cramer–Rao lower bound. In view of:

ln L(x;u)5 2n1 n
k51Xk 52 n

k51Xk .

In(u)5E 2 ln L(x;u) 5 , ⇒ CR(u)5 .

This suggests that ûU is both unbiased and fully efficient. In view of the above property of
MLEs, ûU must coincide with the MLE of u. In order to verify this result, let us derive the
MLE of u. The first-order condition:

ln L(x;u)52n1 n
k51Xk50, ⇒ ûML5 n

k51Xk.

This, indeed, coincides with the unbiased, fully efficient estimator ûU.

[3] Sufficiency
As argued in chapter 12, the notion of a sufficient statistic is best operationalized using
the Factorization theorem.

A statistic h(X) is said to be a sufficient statistic for u if and only if there exist functions
g(h(X);u) and v(X), where the former depends on X only through h(X) while the latter is
free of u, such that the distribution of the sample factors into the product:

f(x;u)5g(h(x);u) ·v(x), for all x[X, u [Q. (13.12)

This suggests that if there exists a sufficient statistic h(X) then the MLE is a function of
it because:

L(x;u)5 [k(x) ·v(x)] g(h(x);u),

and maximizing the likelihood function is equivalent to maximizing g(h(x);u), which
depends on the sample only through the sufficient statistic.

Asymptotic properties (random sample)
Let us consider the asymptotic properties of MLEs in the simple random sample case
where:

In(u)5nI(u). (13.13)

In order to be able to derive general results we need to impose some regularity conditions
in addition to Rf1–Rf6 used so far:

o1
no1

u

d
du

u

n
n
u2d2

du21

2o1
u212o1

u1d
du

d2

du2

ppp

u

n

o1
n
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Rf7. E(ln f(x;u)) exists,

Rf8. ln L(u;x) →a.s.
E(ln f(x;u)) for all u[Q.

[4] Consistency

(a) Weak consistency Under these regularity conditions, MLEs are weakly consistent,
i.e., for some «.0,

lim
n→`

P( | ûML2u |,«)51, denoted by: ûML→
P

u .

(b) Strong consistency Under these regularity conditions, MLEs are strongly consis-
tent, i.e.

P( lim
n→`

ûML5u)51, denoted by: ûML →a.s.
u .

See chapter 9 for a discussion regarding these two different modes of convergence.

[5] Asymptotic Normality
For asymptotic Normality of MLEs we need to ensure that in addition to the regularity
conditions Rf1–Rf6, mentioned above, the following conditions hold (Gourieroux and
Monfort (1995)):

Rf9 The Fisher information for one observation: 0,I(u),`,

where I(u) :5E 5E ,

Rf10 ln L(u;x) is twice differentiable in an open interval around u.

Under the regularity conditions Rf1–Rf10, MLEs are asymptotically Normal, i.e.

(ûML2u),a N(0, V` (u)),

where V` (u) denotes the asymptotic variance of ûML.

[6] Asymptotic Efficiency
Under the same regularity conditions the asymptotic variance of maximum likelihood
estimators achieves the asymptotic Cramer–Rao lower bound, which in view of (13.13)
takes the form:

V` (ûML)5I21(u).

Examples
(1) The Bernoulli model. The above results in relation to this model suggest that:

(ûML2u),a N(0,u (12u)).

(2) The Exponential model. The above results in relation to this model suggest that:

(ûML2u),a N(0,u2).

(3) The Normal model. In view of the results in (13.8) we can deduce that:

Ïn

Ïn

Ïn

13d2 ln f(x;u)
du2 4213d ln f(x;u)

du 422

1
n
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(m̂ML2m),a N(0,s2), (ŝ2
ML2s2),a N(0,2s 4).

Asymptotic properties (non-ID but independent sample)
The above asymptotic properties need to be modified somewhat in the case where the
sample is independent but non-identically distributed. In this case, the relationship
between the individual observation Fisher information I(u) and the sample Fisher infor-
mation In(u) are not related as in (13.13). Instead, the two are related via:

In(u)5 n
k51Ik(u), where Ik(u)5E , (13.14)

because of independence. For the above properties to hold we need to impose certain
restrictions on In(u). These restrictions will be related to its asymptotic behavior and in
particular its order of magnitude (see Spanos (1986), ch. 10). In crude terms these condi-
tions amount to:

(1) lim
n→`

In(u)5`.

(2) There exists a sequence {cn}`
n51 such that

lim
n→`

In(u) 5I` (u), where 0,I 21
` (u),`.

The first condition ensures consistency and the second ensures asymptotic Normality.
Asymptotic Normality under these conditions takes the form:

cn(ûML2u),a N(0, I 21
` (u)).

Example 3 (continued)
Consider the simple Normal linear regression model. It turns out that the MLEs of
u :5 (b0,b1,s2) coincide with the moment matching principle estimators:

b̂05 2b̂1 , b̂15 , ŝ25
k51

n

(yt2 )22 . (13.15)

To see this let us define the likelihood function:

L(b0,b1,s2;y)~ n
k51 exp 2 (yk2b02b1xk)2 5

5(s22)n(2p)2 exp 2 n
k51(yk2b02b1xk)2 .

As is often the case, for locating the MLEs we use the log likelihood function, which in
the present case is:

ln L(u;y)5const2 ln s22 n
k51 (yk2b02b1xk)2.

Hence, by solving the first-order conditions:

52 (22) n
k51(yk2b02b1xk)50,

52 (22) n
k51(yk2b02b1xk)xk50,

52 1 n
k51(yk2b02b1xk)250,o1

2s4
n

2s2
 ln L(u;y)

s2

o1
2s2

 ln L(u;y)
b1

o1
2s2

 ln L(u;y)
b0

o1
2s2

n
2

6o1
2s25n

2

61
2s251

sÏ2pp

11
n S

n

k51
(yk 2 y)(xk 2 x)22

1
n Sn

k51(xk 2 x)2yo1
n

S
n

k51
(yk 2 y)(xk 2 x)

Sn
k51(xk 2 x)2xy

21
c2

n
1

13d ln f(xk;u)
du 422o

ÏnÏn
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we get the MLEs (13.15). In order to see the difficulties in relation to the order of magni-
tude of the Fisher information matrix let us derive it. The second derivatives and their
expected values yield:

52 , ⇒ E 2 5 ,

52 n
k51xk

2 ⇒ E 2 5 n
k51xk

2,

52 n
k51xk ⇒ E 2 5 n

k51xk,

52 n
k51uk ⇒ E 2 50,

52 n
k51ukxk ⇒ E 2 50,

52 2 n
k51uk

2 ⇒ E 2 5 ,

where ut5yt2b02b1xt. Hence, the information matrix takes the form:(
n
k51xk 0  

)

In(b0,b1,s2)5    n
k51xk

n
k51xk

2 0      . (13.16)

0 0

For consistency we require this information matrix to converge to infinity as in (1). This
is achieved if:

n
k51xk

2 
n→
→̀ `.

However, for the asymptotic Normality of the estimator b̂1 the modeler is also required

to know the rate of convergence of n
k51xk

2 in order to define the normalizing sequence

{cn}`
n51. In the absence of any such information he/she can always use:

cn5 n
k51xk

2 ⇒ n
k51xk

2 (b̂12b1),a N(0, s2).

Asymptotic properties (non-random sample)*
In the case of a non-random sample Xn:5 (X1,X2,…,Xn) the Fisher information does not
satisfy either (13.13) or (13.14). The easiest way to derive a comparable form is via the
sequential conditioning employed in chapters 6–8 for non-random samples. In view of
the fact that:

D(X1,X2,…Xn;c)5D(X1;u1) · 
n
k52Dk(Xk |Xk21,…X1;uk), X[:.

In cases where the parameter index-dependence can be restricted by imposing a certain
heterogeneity restriction, the weaker form of which is: lim

n→`
un5u, the log-likelihood

function can be expressed in the form:

ln Ln(u;x) ~ n
k51 ln Dk(Xk |Xk21,…X1;u), u [Q,o

p

1
22o1

1
22o1

2o1

o

n
2s4

o1
s2o1

s2

o1
s2

n
s2

n
2s422 ln L(u;y)

s 41o1
s6

n
2s422 ln L(u;y)

s 41

22 ln L(u;y)
s2b1

1o1
s422 ln L(u;y)

s2b1
1

22 ln L(u;y)
s2b0

1o1
s422 ln L(u;y)

s2b0
1

o1
s222 ln L(u;y)

b1b0
1o1

s222 ln L(u;y)
b1b01

o1
s222 ln L(u;y)

b2
1

1o1
s222 ln L(u;y)
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1

1

T
s222 ln L(u;y)
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1n
s222 ln L(u;y)

b2
0

1
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where for k51 the distribution is the initial marginal D(X1;u). The score function takes
the form:

sn(u;x) :5 ln Ln(u;x)5 ln Dk(Xk |Xk21,…, X1;u) :5 uk(u;x), u [Q.

Hence, viewing sk(u;.) and uk(u;.) as functions of the past history of Xk11 :

Xk :5(X1,X2,…,Xk),

we can deduce that for s0(u)50:

(i) uk(u;Xk)5sk(u;Xk)2sk21(u;Xk21), k51,2,…,n,
(ii) sn(u;X)5 n

k51 [sk(u;Xk)2sk21(u;Xk21)],

or equivalently:

sk(u;Xk)5sk21(u;Xk21)1uk(u;Xk), k51,2,…,n.

These results suggest that the processes {sk(u;Xk)}`
k51 and {uk(u;Xk)}`

k51 are a martingale
and a martingale difference process relative to s(Xk21), respectively, since:

(iii) E(uk(u;Xk) |s (Xk21))50,
(iv) E(sk(u;Xk) |s (Xk21))5sk21(u;Xk21),

k51,2,…,n;

see chapter 8. Moreover, {sk(u;Xk)}`
k51 is a zero mean martingale because:

E(sk(u;Xk))5E{E(sk(u;Xk) |s(Xk21))}50, k51,2,…,n,

confirming property sc1 of the score function mentioned above.
Given that the MLE ûML is a root of the score function equation sn(u;X)50, and

{sk(u;Xk), s(Xk21)}`
k51 is zero mean martingale which can be written as a summation:

sn(u;X)5 n
k51uk(u;Xk),

we can use the limit theorems of chapter 9 to prove both consistency and asymptotic
Normality. The easiest way to see this is to define the conditional information (second-
order) process:

jn(u;X)5 E(uk
2(u;Xk) |s(Xk21)),

which is also a martingale, because the martingale difference process {uk(u;Xk)}`
k51

behaves like an uncorrelated process (see chapter 8). N that the Fisher information is
just the mean of this process, i.e.

In(u)5E(sn
2(u;X))5E(jn(u;X)).

Under certain regularity conditions analogous to the conditions on the information
matrix in the non-ID case, it can be shown that:

(a) [In(u)]21 n
k51uk(u;Xk) n→

→̀a.s.
0,

(b) [In(u)]2 n
k51uk(u;Xk) n→

→̀D N(0,1),o
1
2

o

o
n

k51

o

o

o
n

k51



uo
n

k51



u
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Example 9
Consider the Normal autoregressive model:

[1] Statistical GM: Xk5aXk211uk, k[N,
[2] Probability model:

F5 f(x1,…,xn;u)5 f(x1;u) f(xk |xk21;u), u [(21,1)3R1, x[Rn ,

f(x1;u)5 exp 2 , f(xk |xk21;u)5 exp 2 

u:5(a,s 0
2), a5 , s 0

25E(X2
k21)2 ,

[3] Sampling model: (X1,X2,…,Xn) is a stationary and Markov dependent sample,
sequentially drawn from f(xk |xk21;u), k[N.

The distribution of the sample X :5 (X1,X2,…,Xn) is determined via:

X1,N 0, .

,N , , k,t51,2,…,n.

The log-likelihood function takes the form:

ln L(u;x)5 ln (12a2)2 ln s0
22 {d0022ad011a2d11},

dij5 xkxk1i2j, i, j50,1.

The first-order conditions are:

52 1 {d0022ad011a2d11}50,6 ⇒
52 2 50,

ŝ 025 {d0022âd011â2d11},

d11 â31 d01 â22 d111 â 1d0150.

The first equation gives the MLE of s2 but the second is a cubic equation with three roots
but the only relevant one is the root related to the interval (21,1) . Although there is a
closed-form solution to this equation it is highly complicated and often a is estimated
using a numerical approximation algorithm such as the Newton–Raphson described
above.

The derivation can be simplified significantly by leaving the distribution of the first
observation out and obtain the approximate MLE based on:

ln L(u;x)52 ln s0
22 n

k52 (xk2axk21)2.

Hence, we get the approximate MLEs by solving the first-order conditions:

o1
2s2
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n 2 1
2

42d00

n1342n 2 2
n1341n 2 1

n 23

1
n

ad11 2 2d01

2s2
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a

(1 2 a2)
 ln L(u;x)

a

1
2s4
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n
2s2

0

 ln L(u;x)
s2
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o
n2i

k5j11

1
2s2
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n
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1
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241 s2
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1 2 a22a|t|

1 s2
0
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1 s2

0

1 2 a22
1 s2
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1 2 a22a|t|330
0411Xk
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2s 2
0
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0
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5 n
k51 (xk2axk21)xk2150, ⇒ â 5 ,

52 1 (xk2axk21)250, ⇒ ŝ 025 (xk2âxk21)2.

52 n
k52x2

k21 ⇒ E 2 |s(Xk21) 5 n
k52x2

k21,

52 n
k52 (xk2axk21)xk21 ⇒ E 2 |s(Xk21) 50,

5 2 n
k52 (xk2axk21)2 ⇒ E 2 |s(Xk21) 5 .

The conditional information matrix takes the form:(
n
k52x2

k21 0   
)

jn(a,s0
2;X)5

0                 

which reminds one of the linear regression discussed above. Given that:

In(a)5E E 2 |s(Xk21) 5 E( n
k52x2

k21)5 5 .

Hence, we can conclude that:

(â2a),a N(0, (12a2)), (ŝ 02–s0
2),a N(0, 2s 0

4).

Heyde (1975) suggests using the conditional information for normalization:

(â 2a),a N(0, s0
2).

13.5.5 The maximum likelihood method and its critics

The results relating to MLEs discussed above justify the wide acceptance of the
maximum likelihood (ML) as the method of choice for estimation purposes. It turns out
that there are good reasons for the ML method to be preferred for testing purposes as
well (see chapter 14). Despite the wide acceptance of the ML method there are also
critics who point to several examples where the method does not yield satisfactory
results. Such examples include cases where (a) the sample size is inappropriately small,
(b) the regularity conditions do not hold, and (c) the postulated model is ill-specified. As
far as the first category of examples is concerned, searching for a good estimator in cases
where the sample size is inappropriately small, the criticism is completely misplaced
because the modeler is looking for the famous free lunch. The criticism of the ML
method based on examples which do not satisfy the regularity conditions is also some-
what misplaced because if the modeler seeks methods with any generality the regularity
conditions are inevitable. Without regularity conditions each estimation problem will be
viewed as unique; no unifying principles are possible. The third category deserves more
discussion because it brings out an important problem in empirical modeling. In this cat-
egory we classify all statistical models which specify unknown parameters which either
increase with the sample size or are related to some extraneously imposed operation such
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as truncation or censoring of the sample (see Cohen (1991)). From the latter category let
us consider the quintessential example.

Example 10
Consider the Neyman and Scott (1948) model:

[i] Xij5E(Xij)1eij, i[N, j[N,

where E(Xij)5mi,

[ii] F5 f(x;u)5 n
i51

N
j51 e{2 (xij 2 mi)2},u [Rn3R1 , xij [R ,

[iii] X :5(X1,X2,…,Xn), Xk:5(Xk1,Xk2,…,XkN) an independent sample.

The “MLEs” are derived by solving the first-order conditions:

5 N
j51(Xij2mi)50, 6

52 1 n
i51

N
j51 (Xij2mi)250,

⇒

m̂i5
N
j51Xij, ŝ 25 n

i51
N
j51 (Xij2m̂i)25 n

i51si
2,

where si
2 :5 N

j51(Xij2m̂i)2. The commonly used argument against the ML method is
based on the result that:

E(si
2)5 s2 ⇒ ŝ 2 →a.s.

s2,

and thus ŝ 2 is an inconsistent estimator of s2.
A moment’s reflection, however, reveals that the inconsistency argument based on

n→`, is ill thought out because at the same time the number of unknown parameters
(m1,m2,…,mn) increases to infinity! The modeler should be skeptical of any method of
estimation which yields a consistent estimator of s2 without imposing some additional
restrictions relating to what happens to mn as n→` . We consider the fact that the ML
method does not yield optimal estimators in cases where the statistical model is ill-
specified as an argument in its favor, not against it!

13.6 Exercises

21 Compare the first two moments of the sample raw and sample central moments as
they relate to the parameters they purport to estimate.

22 Compare least squares as a mathematical approximation method and the statisti-
cal least-squares method.

23 Compare and contrast Pearson’s method of moments with the parametric method
of moments.

24 Explain why it constitutes an anachronism to compare the maximum likelihood
method to the parametric method of moments.

(N 2 1)
N

(N 2 1)
N

o1
N

o1
noo1

nNo1
N

oo1
2s4

nN
2s2

 ln L(u;x)
s2

o1
s2

 ln L(u;x)
mi

6
1

2s2
1

sÏ2ppp5
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25 “Comparing maximum likelihood and parametric method of moments estimators
on efficiency grounds is not a very interesting exercise.” Discuss.

26 Describe the main drawbacks of Pearson’s approach to deriving a descriptive
model.

27 Explain the moment matching principle and compare it with the parametric
method of moments.

28 For the Bernoulli statistical model derive the least-squares estimator of u, its sam-
pling distribution and its properties.

29 Consider the simple Normal statistical model.

(a) Derive the MLEs of (m,s2) and their sampling distributions.
(b) Derive the least-squares estimators of (m,s2) and their sampling distribu-

tions.
(c) Compare these estimators in terms of the optimal properties, unbiasedness,

full efficiency and consistency.

10 Consider the simple Normal statistical model with m50, i.e. the probability model
is:

F5 f(x;u)5 exp 2 x2 , u :5s2.0, x[R .

Derive the MLE of u and compare it with the estimator:

s̃25 n
k51Xk,

in terms of their MSE.

11 Consider the simple Laplace statistical model based on the probability model:

F5 f(x;u)5 e2 | x |, u.0, x[R .

Derive the MLE of u and compare it with the PMM estimator.

12 Consider the simple Pareto statistical model based on the probability model:

F5{ f(x;u)5ux0
ux2(u11), u.0, x.x0.0, x[R}.

Derive the MLE of u and compare it with the PMM and least-squares estimators.

13 State the optimal properties of maximum likelihood estimators (finite sample and
asymptotic).

14 Explain the difference between:

(a) Fisher’s sample and individual observation information,
(b) Fisher’s information and observational information matrix,
(c) Fisher’s information and conditional information matrix.

15 “The maximum likelihood method minimizes the distance between the theoretical

61
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probabilities and their empirical counterparts as defined by the empirical cumula-
tive distribution function (ecdf).” Discuss.

16* Derive the iterative scheme for the score method in evaluating the MLE first-order
conditions in the case of the simple Logistic model.

17* Derive the iterative scheme for the score method in evaluating the MLE of a in the
case of the simple Gamma model.

18* Explain why the processes {sk(u;Xk)}`
k51 and {uk(u;Xk)}`

k51, defined in section 5.4,
constitute a martingale and a martingale difference process relative to s(Xk21),
respectively.
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14 Hypothesis testing

14.1 Introduction

14.1.1 The inherent difficulties in mastering hypothesis testing

Hypothesis testing is one of the most important but also one of the most confusing parts
of statistical inference for several reasons, including the following:

(i) the need to introduce numerous new concepts before one is able to define the
problem adequately,

(ii) the fact that the current textbook discussion of the problem constitutes an inept
hybrid of two fundamentally different approaches to testing (what Gigerenzer
(1987) called the “hybrid theory”), and

(iii) the fact that there is no single method for constructing “good” tests under most
circumstances, comparable to the method of maximum likelihood in estimation.

An attempt is made to alleviate these problems by utilizing a number of teaching tech-
niques, the most important of which is the historical development of testing since the
late 19th century. It must be said that this is used as a teaching device and no attempt is
made to provide a complete account of the historical development of testing; a major
task which is yet to be undertaken. The historical dimension of testing is used primarily
to ease the problem of introducing too many concepts too quickly and to bring out the
differences between the Fisher and the Neyman–Pearson approaches to testing.

As a prelude to the discussion we summarize a number of crucial differences between
the traditional account of testing and the interpretations proposed in the discussion that
follows:

(a) the testing hybrid “forged” by the statistical textbooks in the 1960s is deficient,
(b) the Neyman–Pearson formulation has not superseded that of Fisher,
(c) the two formulations are fundamentally different but complementary,
(d) the Neyman–Pearson approach is better suited to testing within the boundaries

demarcated by the postulated model, and
(e) the Fisher approach is better suited to testing outside the same boundaries.
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The discussion throughout this chapter is interspersed with examples and some of the
most difficult concepts are often introduced via such examples.

14.1.2 A bird’s eye view of the chapter

In section 2 we discuss the Fisher approach (often called pure significance testing), con-
sidered as a natural extension of the testing procedures inherited from Edgeworth and
Pearson. In section 3 the Neyman–Pearson approach is examined, paying particular
attention to its relationship with the Fisher approach. Section 4 discusses briefly the
three asymptotic test procedures: likelihood ratio, efficient score and Wald test proce-
dures. In section 5 the two approaches are compared and contrasted. It is argued that the
Fisher approach is better suited to testing hypotheses which go beyond the boundaries
demarcated by the postulated statistical model. On the other hand, the Neyman–
Pearson approach is essentially testing within the boundaries of the postulated statistical
model. In this sense the two approaches, although fundamentally different, are consid-
ered as complementary.

I : like every other form of statistical inference, hypothesis testing com-
mences with the modeler postulating a statistical model which purports to describe the
stochastic mechanism that gave rise to the observed data in question and thus the infer-
ence results depend crucially on the adequacy of the postulated statistical model.

14.2 Leading up to the Fisher approach

Hypothesis testing during the early 19th century amounted to nothing more than an
informal comparison between the values of the parameters specified by the hypothesis in
question and the corresponding estimates. That is, the test of a hypothesis of the form:

u5u0, (14.1)

took the form of checking whether the discrepancy between an estimate û of u and the
specified value u0 was “close to zero” or not, i.e.

| û 2u0 |<0. (14.2)

How large should the discrepancy be to be considered “large enough” was never formal-
ized adequately.

At this early stage we can discern several features which will be retained in the subse-
quent development of hypothesis testing. These features include:

(i) a primitive notion of a hypothesis of interest: u5u0, and
(ii) a distance function: | û 2u0 |.

This is clearly the prehistory of testing. The actual history of testing begins with
Edgeworth.
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14.2.1 Edgeworth

A typical example of a testing procedure at the end of the 19th century is provided by
Edgeworth (1885) in comparing the difference between two means. The idea was to com-
pare two different samples (or sub-samples) in order to assess whether they have the same
mean or not. One way to view this problem is to begin with a sample X:5(X1,X2, …, Xn)
and divide it into two subsamples of size n1.2 and n2.2 observations (n5n11n2),
respectively:

X:5(X1,X2, …, Xn1,Xn111, …, Xn).

Common sense and statistical knowledge at the time suggested looking at the first two
subsample moments (retrospectively interpreted as moment matching principle estima-
tors):

m̂15
i51

n1

Xi, ŝ 125
i51

n1

(Xi2m̂1)2, m̂25
i5n111

n

Xi, ŝ 225
i5n111

n

(Xi2m̂2)2,

Edgeworth argued that if the standardized distance between the two subsample means is
greater than some pre-specified constant:

j (X)5 .2 , (14.3)

the difference between the two means could not be justified as “accidental” and it
would appear to be significant. Where did the constant come from? At the time the
only distribution available for this kind of statistical analysis was the Normal and
inevitably the constant 2 was related to it. It turns out that the probability of the
Normal distribution beyond the value62 is equal to 0.005; the value of accidental
occurrence.

Retrospectively, Edgeworth’s test could be interpreted as a test of the hypothesis:

m15m25m,

allowing for the possibility that the variances are different, i.e.

Xk ,N(m1,s1
2), k51,2, …, n1, Xk,N(m2,s2

2), k5n111, …, n,

in the context of a simple Normal model:

[i] Statistical GM: Xk5E(Xk)1uk, k[N,
[ii] Probability model: (14.4)

F5 f(x;u )5 exp 2 (x2m )2 , u :5 (m,s2)[R3R1, x[R ,

[iii] Sampling model: X:5(X1,X2, …, Xn) is a random sample.

Comparing this result with the primitive notion of testing before Edgeworth’s time we
can see that he added two features:

(iii) the notion of a (standardized) distance: j(X),
(iv) a rejection rule: j(X).2 .Ï2
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1)

o1
n2

o1
n2

o1
n1

o1
n1

Leading up to the Fisher approach 683



All four features were developed further by Pearson and later formalized by Fisher in the
early 20th century.

14.2.2 Pearson

The first important test which straddles both the Pearson and Fisher statistical traditions
(see chapter 13), is the so-called Pearson’s chi-square test. Pearson (1900) proposed this
test as a way to measure the “goodness of fit” in the case of choosing a descriptive model
for a particular data set from within the Pearson family (Pearson (a,b0,b1,b2)), as
described in chapter 13.

Using the first four raw moments of the “sample” X :5(X1,X2, …, Xn), Pearson’s pro-
cedure would estimate the four parameters that define the Pearson family. In turn these
estimates û :5(â, b̂0, b̂1, b̂2) would select a member of the Pearson family, say f0(x), that
best describes the data with f0(x;û) its empirical counterpart. The hypothesis of interest
for Pearson was whether the choice of f0(x) is a valid one, i.e.

f(x)5f0(x), where f(x)[Pearson (a,b0,b1,b2). (14.5)

Given that the Pearson procedure amounted to fitting a curve over the histogram it is
not surprising to discover that Pearson derived the test by comparing the empirical
frequencies (not relative frequencies) ( f̂ i, i51,2, …, m) to the corresponding theoreti-
cal frequencies (fi, i51,2, …, m) (as specified by f0(x)), where the intervals (i51,2, …,
m) are mutually exclusive and cover the range of values of the random variable in
question. The standardized distance function took the sum of standardized squares
form:

h(X)5 . (14.6)

It was shown that, assuming that the theoretical frequency curve f0(x) is appropriate,
h(X) has asymptotically a chi-square distribution with m21 degrees of freedom, i.e.

h(X) ,a x2(m21). (14.7)

N :

(i) The use of asymptotic distributions was used routinely during the 19th and early
20th centuries. What eventually changed this practice was the seminal result by
Gosset (1908).

(ii) The important thing about this result is that the (asymptotic) distribution does not
depend on either the nature of the frequency curve chosen by the data or the
number of data points; it is very sensitive, however, to the number of intervals m.

(iii) The distributional result in (14.7) is derived on the implicit assumption that the
hypothesis of interest is valid; this is an assumption which was made explicitly by
Fisher.

Intuition suggests that the larger the value of h the worse the fit. Hence, for a given
value of h(X), say h(x) (based on the observed data x), the modeler would decide

( f̂i 2 fi)
2

fio
m

i51
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whether the distance was large enough to indicate a “bad fit” using the tail probability
of x2(m21):

P(h(X).h(x))5p. (14.8)

A small value of p corresponds to a large value of h, and thus the smaller the value of p
the worse the fit.

Karl Pearson’s contributions to testing can be summarized as follows:

(a) the broadening of the specification of the hypothesis of interest,
(b) the derivation of a distance function whose distribution is free of f0(x), and
(c) the use of the tail probability for assessing the validity of the hypothesis of interest.

The use of the tail probability is implicit in Edgeworth but Pearson formalized that by
bringing out explicitly the (asymptotic) distribution of the distance function. Thus,
Pearson, in addition to improving some of the inherited features, added some more:

(v) the distribution (14.7) of a distance function and
(vi) the tail probability (14.8).

The common sense logic of the tail probability was that if the value of h(X) happened to
belong to a high probability area of the chi-square distribution then the observed data
apparently lend support to the hypothesis of interest, but if it falls into a very low prob-
ability area (in the remote right tail of the distribution) it does not.

Although the above goodness of fit test was developed by Pearson for testing within
the Pearson family, when viewed in the context of statistical inference, its applicability is
broader than its original intended scope, as the following example illustrates.

Example
Consider one of the most important historical examples using Mendel’s data based on
his classic breeding pea-plants experiment as it relates to the shape and color of peas.
Mendel’s theory of heredity with regard to the random variables X – shape, Y – color,
defined as follows:

X(round)50, X(wrinkled)51, Y(yellow)50, Y(green)51,

gave rise to a bivariate distribution of the form:

Table 14.1. The bivariate distribution f(x,y)

y\x 0 1 fy(y)

0 0.5625 0.1875 0.750
1 0.1875 0.0625 0.250

fx(x) 0.750 0.250 1.000

In a random sample of size 556, Mendel’s data gave rise to the observed relative frequen-
cies as given in table 14.2.
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Table 14.2. Observed relative frequencies

y\x 0 1 f̂ y(y)

0 50.566 50.182 0.748

1 50.194 50.058 0.252

f̂ x(x) 0.760 0.240 1.000

Applying Pearson’s chi-square test using the expected frequencies:

(0.5625)(556)5312.75, (0.1875)(556)5104.25, (0.0625)(556)534.75,

h(X)5 1 1 1 50.470.

Using the tail probability of x2(3) yields: P(h(X).0.470)50.925.

In view of this value, the data provide excellent support for Mendel’s theory. It should be
noted that a lot of statisticians, including Fisher, consider these data suspiciously “accu-
rate.”

In concluding this subsection we note that when one views Pearson’s contribution retrospec-
tively (from the point of view of modern statistical inference, and not in the context of
Pearson’s descriptive statistics (see chapter 13)), two important issues are apparent:

(i) hypotheses are ultimately statements about distributions and not about parameters
as such,

(ii) testing can be within or without the boundaries of the postulated statistical model.

In the case of the chi-square test given above the testing is without because the hypothe-
sis goes beyond the boundaries of the postulated model; it tests its validity.

14.2.3 Gosset

Gosset’s 1908 seminal paper provided the cornerstone upon which Fisher founded
modern statistical inference. At that time it was known that in the case of the simple
Normal model (see (14.4)), the estimator m̂n5 n

i51Xi had the following “sampling” di-
stribution:

m̂n,N m, ⇒ t (X;m,s2):5 2 (m̂n2m )5 ,N(0,1).

It was also known that in the case where s2 is replaced by the estimator
s5 n

i51 (Xi2m̂n)2, the distribution of the function:

t(X;m)5 ï N (0,1), (14.9)Ïn(m̂n 2 m)
s

o1
n 2 1

Ïn(m̂n 2 m)
s

1
22s2

n12s2

n1

o1
n

2(32 2 34.75)2

34.7512(101–104.25)2

104.2512(108 2 104.25)2

104.2512(315 2 312.75)2

312.751

232
55612108

5561

2101
55612315

5561
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where ï reads “is not distributed as.” It was well-known that it was Normal only
asymptotically:

t(X;m)5 ,a N(0,1). (14.10)

This is because t(X;m)5 is a ratio of a Normally distributed random variable m̂n

and the square root of the random variable s2, whose distribution was not known.
Gosset went on to “guess” the distribution of s2 by deriving its first four raw moments
and substituting them into the four equations of the Pearson family (see chapter 13).
This exercise led him to conclude that s2 most probably had a chi-square distribution.
After establishing that m̂n and s2 were uncorrelated (and erroneously thinking that this
was the same as being independent), he went on to derive the distribution of the ratio
(14.9) using an almost heuristic argument by today’s standards. In today’s terminology,
using lemma 7 of chapter 11, t(X;m) is the ratio of two independent random vari-

ables, the numerator U5 is Normally distributed and the denominator

V5 , is chi-square distributed, hence:

t(X;m)5 ,St(n21), (14.11)

where St(n21) denotes a Student’s t distribution with (n21) degrees of freedom. The
most remarkable thing about this result is that, in contrast to (14.10), it was the first
finite sample result; a distributional result that was valid for any sample size, not just for
large n.

Gosset’s result (14.11) is important for hypothesis testing because it represents the first
pivotal quantity, the quintessence of many test statistics.

A pivotal function for u is a monotonic function of u of the form q(X,u):

q(.,.) :X3Q → R,

whose “sampling” distribution is free of the unknown parameters (u). That is, given the
distribution of the sample D(X;u), the distribution of q(X,u) is the same for all u [Q.

The function (14.11) is a pivot because its distribution is known and free from the
unknown parameters (m,s2) of the underlying statistical model because St(n21) does
not involve these parameters. Another important pivotal quantity has already been
encountered above:

n(X,s2)5 ,x2(n21).

Again its distribution is free of any unknown parameters.

A statistic h(X), in contrast to the notion of a pivotal function, is a function of the form:

h(.) :X → R.

That is, it does not involve any unknown parameters (see chapter 11).

(n 2 1)s2

s2

2Ïn(m̂n 2 m)
s1

(n 2 1)s2

s2

Ïn(m̂n 2 m)
s

Ïn(m̂n 2 m)
s

Ïn(m̂n 2 m)
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14.2.4 Fisher’s formulation

The result (14.11) was formally proved and extended by Fisher (1915) and used subse-
quently as a basis for several tests of hypotheses associated with a number of different
statistical models in a series of papers, culminating with his 1925 book.

Fisher used the result (14.11) to derive a test for what he called:

Null hypothesis: H0 :m5m0.

In terms of the modern statistical inference framework, Fisher considered the question
of deriving a test for the above null hypothesis in the context of the simple Normal model
(see (14.4)). His reasoning was based on defining a standardized distance such that the
further away the “true” value of m is from the value specified by H0, the larger the dis-
tance, leading to:

5 .

Fisher went on to derive a test statistic arguing that even though (14.11) holds for the
“true” value of m , under the assumption that H0 is valid, the true value is m0 and one can
infer:

t(X)5 ,
H0 St(n21), (14.12)

where “ ,
H0 ” reads “under H0 is distributed as”.

A test statistic The essence of Fisher’s result (14.12) is that he transformed Gosset’s
pivotal function t(X,u ) into a test statistic t(X): distance function of the sample (a statis-
tic) whose distribution is known and does not depend on any unknown parameters u.
This was achieved by deriving the distribution of the statistic t(X,u0), which does not
involve any unknown parameters under H0:u5u0; that is, derive the sampling distribu-
tion of t(X,u) assuming that the null hypothesis is valid.

Using this result, Fisher proceeded to derive a measure of “how much a particular
sample realization deviates from H0,” based on the probability of the tail area of the dis-
tribution (14.12) beyond the observed value t(x) of the statistic t(X). This measure,
known as the probability value or p-value for short, takes the form:

P(t(X)$t(x); H0 is valid)5p. (14.13)

By definition the p-value evaluates the worst-case scenario for the null hypothesis in the
sense that it involves the observed value of the statistic and realizations more damning
for the null. It measures the probability of observing a sample realization that would
produce a statistic value equal to or worse than the one already observed. Fisher’s inter-
pretation of the p-value can be considered as a formalization of the inherited view:

if the p-value is small this implies that either the observed realization of the test statistic
constitutes a very rare event or the postulated null hypothesis is invalid.

In cases where the p-value is small the first choice is considered practically impossible and
themodeleradopts theviewthat thepostulatedhypothesis is invalid. Inviewof the fact that

2Ïn(m̂n 2 m0)
s1

Ïn(m̂n 2 m0)
s

(m̂n 2 m0)
Ïs2/n
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the greater the value of t(x) the smaller the p-value, the modeler can interpret small values
of p as evidence against H0; the smaller the value of p the less plausible is H0. In a certain
sense the p-value might be interpreted as a measure of how appropriately the null hypothesis
describes the mechanism giving rise to the observed data. In the early stages of his work
Fisher suggested p-values of 0.05 and 0.01 to be used as intuitive thresholds. Later on,
however, he insisted that one should separate the p-value from the decision to accept or
reject H0 (see Fisher (1935a, 1956)).

In summary, Fisher built on the previous work of Edgeworth and Pearson but pro-
vided more structure to the hypothesis testing procedure by:

(a) introducing explicitly the notion of a null hypothesis,
(b) utilizing the notion of a pivotal function,
(c) introducing the notion of the finite sample distribution of the pivot under H0,
(d) formalizing the notion of a p-value,
(e) introducing the inferential nature of hypothesis testing.

In the context of the Fisher approach, to define a test one requires a “distance function”
which utilizes a “good” estimator of the parameter in question. This is, then, trans-
formed into a pivotal function, such as (14.11). This pivotal function, under H0, involves
no unknown parameters and thus it becomes a test statistic. To make a decision on the
validity of H0, one uses a measure of how much a particular realization deviates from
H0. For Fisher the decision to be made is whether the evidence suggests that the null
hypothesis is plausible or not.

Examples
1 In the case of the simple Normal model (see (14.4)), using the marks data in table 1.6

(see chapter 1), consider testing the null hypothesis:

H0 :m570.

For the scores data (see table 1.6): m̂n571.686, s2513.606 and n570. Substituting
these into the pivotal function (14.12) yields:

t(x)5 53.824, P( |t(X) |$3.824;m0570)50.00014,

where the value 0.00014 is found from the St(69) tables. The relatively low p-value
indicates that the data do not support the validity of H0.

2 Arbuthnot’s conjecture. The most widely discussed hypothesis during the 18th
century was the famous hypothesis of Arbuthnot (1710) based on the observation
that in the city of London, for a period of 82 consecutive years, there were systemati-
cally more male than female births in any one year; Arbuthnot’s conjecture was that
the odds of males to females in newborns is not “fair.” The “fair game” hypothesis
can be formulated in the context of the simple Bernoulli model:

[i] Statistical GM: Xi5E(Xi)1ei, i[N,
[ii] Probability model: F5{f(x;u)5ux(12u)12x, u [ [0,1], x50,1}, (14.14)
[iii] Sampling model: X:5(X1,X2, …, Xn) is a random sample.

Ï70(71.686 2 70)
Ï13.606
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The random variable is defined by: {female}5{X51}, {male}5{X50}, and the
null hypothesis is specified as follows:

H0 :u50.5.

3 N. Bernoulli’s conjecture N. Bernoulli took the conjecture one step further and pro-
posed the odds 18:17 for males (see Hacking (1965)). The Bernoulli conjecture can be
formulated in the form of the null hypothesis:

H0 :u50.4857.

Both of the above hypotheses take the general form: H0 :u5u0, u0[ (0,1). The dis-

tance function which suggests itself in this case is: | ûn2u0 | , where ûn5 n
k51Xi;

shown in chapter 12 to be the “best” estimator of u. Given that ûn is a random
variable, | ûn2u 0 | is an event whose probability of occurrence can be appraised using
the sampling distribution of ûn. In chapter 12, it was also shown that ûn is Binomially
distributed with mean u and variance [u(12u )/n], denoted by:

ûn,Bi u, ;n .

This suggests that: t(X;u) :5 ,Bi((u2u0),1;n). Hence, we can proceed to

derive the test statistic:

t(X) :5 ,
H0 Bi(0,1;n). (14.15)

Testing Bernoulli’s conjecture The observed data refer to the number of births (male,
female) during the period 1974–6 in Cyprus: n525928, 13375 males and 12553
females.

ûn5 50.48415, t(x)5 520.49988.

P(| t(X)| .20.49988;u50.4857)50.617.

The high p-value suggests that the evidence is strongly in favor of H0; Bernoulli’s
conjecture is supported by the data in the case of Cyprus!

Although Fisher initially offered some rules of thumb in relation to p-values and the
strength of evidence for or against the null hypothesis, he was later at great pains to
explain that they were just crude guidelines. In the following table we offer similar “rules
of thumb” guidelines to help the uninitiated, knowing that they can be easily criticized as
ad hoc and unwarranted.

p-value Interpretation

p.0.10: data indicating strong support for H0,
0.05,p,0.10: data indicating some support for H0,
0.02,p,0.05: data indicate lack of support for H0,

p,0.01: data indicate strong lack of support for H0.

Ï25928(0.48415 2 0.4857)
Ï0.4857(0.5143)

12553
25928

Ïn(ûn 2 u0)
Ïu0(1 2 u0)

Ïn(ûn 2 u0)
Ïu0(1 2 u0)

2u(1 2 u)
n1

o1
n
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14.2.5 Summary

Testing in the context of the Fisher approach commences with the specification of a null
hypothesis, whose simplest form is:

H0 :u5u0.

Despite appearances, a null hypothesis is not just a statement about a parameter, it is ulti-
mately a statement about the underlying statistical model and as such it can take a number
of different forms. For simplicity we restrict ourselves to this simple form in this section.

The construction of a test can be summarized in the following steps.

Step 1 Specify a “distance” which intuitively makes sense to consider H0 as valid when
this distance is “small.” Typically this entails choosing a good estimator, say û of
the unknown parameter u and taking a function of the difference between this esti-
mator and the value specified by the Null hypothesis such as | û 2u0 | or (û 2u0)2.

Step 2 Transform the distance function into a pivotal function. This often entails stan-
dardizing the distance (û 2u0) using the distribution of û under H0 (assuming H0

is valid):

t(X)5 or t(X)5 ,

and determining the distribution of t(X). This sometimes involves substituting
out any unknown parameters and then deriving the distribution of t(X) assum-
ing H0 is valid. In cases where the exact distribution of t(X) under H0 is
unknown, we approximate it using the asymptotic distribution of t(X) under
H0, instead.

Step 3 Using the distribution of t(X) under H0, specify the p-value as follows:

P(t(X)$t(x); H0 is valid)5p. (14.16)

Hence, the main elements of a Fisher test {t(X),p} are:

(i) a null hypothesis H0,
(ii) a test statistic t(X),
(iii) the distribution of t(X) under H0,
(iv) the p-value P(t(X)$t(x); H0 is valid)5p,

where t(x) denotes the value of the test statistic t(X), given the particular sample
realization X5x. The p-value may be seen as indicating how satisfactory H0 is,
given the observed data. In a certain sense the p-value represents the worst-case
scenario for the null hypothesis, taking into account not just the observed
sample realization but also more unfavorable realizations. The question of
accepting or rejecting H0 is a separate issue and the p-value should not be con-
fused with the significance level of the Neyman–Pearson testing framework dis-
cussed next.

(û2 u0)2

Var(û) 
|û2 u0|

[Var(û)] 
1
2
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14.3 The Neyman–Pearson framework

The above summary brings out an important limitation of the Fisher approach:

How does the modeler choose the test statistic t(X)?

The common sense arguments used by Fisher do not amount to an optimal procedure
for deriving the “best” possible test, analogous to that of a “best” estimator. This pro-
vided the motivation for Neyman and Pearson (1928a) whose stated purpose was to deal
with this limitation of the Fisher approach; something that Fisher never accepted and
that led to numerous heated exchanges between Neyman and Fisher (see, e.g., Fisher
(1956)). Neyman and Pearson (1928a,b,1933a,b) motivated their own approach to
testing by arguing that Fisher had no logical basis for:

(a) his choice of test statistics such as (14.12) and
(b) his use of the p-value as a measure of credence bestowed upon H0 by the sample

realization.

It was clear that for each null hypothesis one could construct several test statistics and
the Fisher approach did not provide a way to decide which one is the most appropriate
among these functions. Their solution to this problem was to view hypothesis testing as a
choice between rival hypotheses and thus change the focus of hypothesis testing from pro-
viding a measure of how much credence the observed data lend to the null, to deciding
whether to accept or reject the null hypothesis on the basis of the observed data. The key
to their approach was the introduction of the notion of an alternative hypothesis to sup-
plement the notion of the null hypothesis and thus transform testing into a choice
among different hypotheses.

In an attempt to keep our eyes on the forest we will consider the unfolding of the
Neyman–Pearson argument in stages. Before we set out to consider the Neyman–
Pearson procedure it is worth repeating again that underlying every form of statistical
inference there exists (a) a statistical model (F,X) postulated a priori and (b) a set of
observed data x:5 (x1,x2, …, xn) viewed as a realization of the sample X:5(X1,X2, …,
Xn); x constitutes a point in the n-dimensional sample space :,Rx

n (see chapters 10–11).

14.3.1 Stage I – The notion of an alternative hypothesis

The hypothesis of interest in connection with the simple Normal and Bernoulli models
was of the simple form:

H0 :u5u0.

The Neyman–Pearson specification of the null and alternative hypotheses often takes
the form:

H0 :u5u0 against H1 :uÞu0, but u [Q2{u0}. (14.17)

This specification divides the parameter space Q of the statistical model in question, into
two mutually exclusive subsets:
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Q0 :5{u0} and Q1 :5Q2{u0}, where Q0>Q15Ø, Q0<Q15Q.

Examples
(a) In the case of the simple Normal model the null hypothesis H0 :m510, can now be

reconsidered in the Neyman–Pearson formulation in conjunction with an alterna-
tive hypothesis, taking the form: H0 :m510 against H1 :m[R2{10}, where
Q0 :5{10} is a single number and Q1 :5R2{10}; R excluding the number 10.

(b) In the case of the simple Bernoulli model the null hypothesis H0 :u50.5, can now
be reconsidered in the Neyman–Pearson formulation in conjunction with an alter-
native hypothesis, taking the form: H0 :u50.5 against H1 :u[ [0,1]2{0.5}, where
Q0 :5{0.5} and Q1 :5 [0,1]2{0.5} is the interval [0,1] excluding the number 0.5.

A more general formulation of the Neyman–Pearson specification of the null and the
alternative hypotheses takes the form:

H0 :u[Q0 against H1 :u [Q1 :5Q2Q0. (14.18)

Examples
(i) In the case of the simple Normal model (see (14.4)) the null and alternative hypothe-

ses can be of the form: H0 :m[ [40,100] against H1 :m[R2 [40,100], where
Q05 [40,100] and Q15R2 [40,100].

(ii) In the case of the simple Bernoulli model the null and alternative hypotheses can be
of the form: H0 :u[ [0,0.5] against H1 :u [(0.5,1].

The Neyman–Pearson specification of the null and alternative hypotheses given in
(14.18) in effect divides the postulated (original) probability model:

F5{ f(x;u), u[Q, x[RX},

into mutually exclusive subsets using the partition of the parameter space Q5Q0<Q1 :

F05{ f(x;u), u[Q0, x[RX}, F15{ f(x;u), u[Q1, x[RX}.

This formulation brings out the fact that the null and alternatives hypotheses are ultimately
about distributions and not parameters as it appears at first sight. Hence, assuming that the
“true”probability distribution for the data in question is f(x), a more heedful way to specify
these hypotheses is in terms of their Probability models implicit in each case:

H0 : f(x)[F0 against H1 : f(x)[F1. (14.19)

Simple versus composite hypotheses
In the case where F0 or F1 include only one element (distribution), we say that the null or
the alternative is simple, respectively; otherwise we call it composite. In the examples (a)
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and (b) above the null hypothesis is simple but the alternative is composite. In the exam-
ples (i) and (ii) both the null and alternative hypotheses are composite.

Example
Consider the simple Normal model (see (14.4)) and the hypothesis:

H0 :m5m0, against H0 :m5m1, (m1.m0).

Case A: s2 is known. The null and the alternative hypotheses H0 and H1 are simple
because the probability models under H0 and H1, are respectively:

F05{f(x;m0), x[RX} and F15{ f(x;m1), x[RX}.

That is, H0 and H1 are simple because F0 and F1 contain just one element.

Case B: s2 is unknown. In this case the null hypothesis: H0 :m5m0 is composite because
F05{f(x;m0,s2), s2[R1x[RX}, represents a whole family of such density functions,
one for each value of s 2.0. By the same token, the specification:

H0 :m5m0, s25s0
2 against H1 :m5m1, s25s1

2,

has a simple H0 and a simple H1, because both F0 and F1 are singletons:

F05{f(x;m0,s0
2), x[RX} and F15{f(x;m1,s1

2), x[RX}.

An even more flexible form of the Neyman–Pearson specification of the null and alter-
native hypotheses is:

H0 :u [Q0 against H1 :u [Q1, Q, Q1> Q05Ø. (14.20)

Examples
(i) In the case of the simple Normal model the null and alternative hypotheses can be

of the form: H0 :m5m0 against H1:m.m0.
(ii) In the case of N. Bernoulli’s conjecture, the specification of the null and the alterna-

tive hypotheses would take the form: H0 :u50.4857 against H1 :u.0.4857. This is
because we are only interested in alternatives in the direction of a “fair game.”

In these cases the alternative hypothesis is not defined in terms of the complement of
Q0 with respect to Q, but as a subset of it. This is designed to provide the modeler with
the flexibility to ignore certain parts of the parameter space of no interest in order to
improve the properties of the test (in terms of power; see below).

14.3.2 Stage II – The rejection region

The main aim of testing becomes the formulation of a decision rule which for any realiza-
tion x of the postulated sample X enables the modeler to decide whether to accept or
reject H0. In the case of a null hypothesis as specified in (14.17), the decision to accept or
reject H0 will be based on a test statistic t (X). In effect the test statistic implies a partition
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of the sample space : into two complementary sets C0 and C1, known as the acceptance
and rejection regions, respectively:

C0<C15: and C0>C15Ø.

The decisions to accept or reject H0 can be specified in terms of these two regions (see
figure 14.4):

(i) if x[C0 :accept H0, (ii) if x[C1 :reject H0.

Examples
(i) In the case of the simple Normal model, testing the hypotheses: H0 :m570 against

H1 :mÞ70, could be based on the test statistic:

t(X)5 ,
H0 St(n21),

and intuition suggests that the likely rejection region will be of the form:

C15{x : | t (X) | .c},

for some c.0 chosen appropriately.

(ii) In the case of the simple Bernoulli model, testing Bernoulli’s conjecture:

H0 :u50.48 against H1 :u .0.48, (14.21)

t(X) :5 ,
H0 Bi(0,1;n),

and again intuition suggests that the likely rejection region will be of the form:

C15{x :t (X).c},

for some c.0 chosen appropriately.

Ïn(ûn 2 0.48)
Ï0.48(0.52)

2Ïn(m̂n 2 70)
s1

The Neyman–Pearson framework 695

Figure 14.1 Defining a Neyman–Pearson test

T
yp

e 
I 

an
d 

II
 p

ro
ba

bi
lit

ie
s

Type II probability

Type I probability

c



14.3.3 Stage III – The two types of errors

In the case of both hypotheses as specified above the decision to accept or reject H0 is
accompanied by the possiblity of committing one of two types of errors:

(i) type I error: reject the null hypothesis when in fact it is valid,
(ii) type II error: accept the null hypothesis when in fact it is invalid.

It is interesting to note that Neyman and Pearson (1928a) criticized Fisher for recog-
nizing only the type I error and ignoring the type II error. This criticism, however,
was rather misplaced because Fisher did not see hypothesis testing as a decision to
accept or reject H0. He viewed hypothesis testing as an inferential procedure which
enabled the modeler to assess the support bestowed by the data on the hypothesis in
question.

H0  H0 

Accept H0 correct decision type II error
Reject H0 type I error correct decision

(a) The probability of type I error
The probability of type I error at a point u5u0, in its general form can be expressed by:

P(x[C1; u5u0)5a.

Consider the simple Bernoulli model (see (14.14)) and the hypothesis as specified by:

H0:u50.5 against H1 :uÞ0.5.

Intuition suggests that the rejection region for H0 will take the form |un20.5 |.c, where c
is some constant and the statement “when in fact H0 is valid” suggests that the relevant
distribution for evaluating the probability of type I error is (14.15). That is, we need to
evaluate:

P( | ûn20.5 |.c; H0 is valid)5a,

for different values of c50.005, 0.01, 0.02, 0.05, 0.1, 0.2, using the Binomial probabil-
ities tables:1

P( | ûn20.5 |.0.005).0.472, P( | ûn20.5 |.0.050).0.239,
P( | ûn20.5 |.0.010).0.444, P( | ûn20.5 |.0.100).0.078,
P( | ûn20.5 |.0.020).0.388, P( | ûn20.5 |.0.200).0.0024.

N that n550. As we can see, by making the interval around ûn smaller the probabil-
ity of type I error increases (see figure 14.1). The question which naturally arises at this
stage is:
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Why don’t we just make this interval very large?

In the case where the interval is rather large, say 0.1,ûn,0.9, i.e., c50.4, the probability
of making the wrong decision is very close to zero. In particular:

P( | ûn20.5 |.0.4).0.000.

The problem with this suggestion is that as we enlarge this interval we increase the prob-
ability of making another incorrect decision: accept the null when it is invalid (type II
error).

(b) The probability of type II error
The probability of type II error at a point u5u1, in its general form, can be expressed by:

P(x[C0; u5u1)5b(u1).

In the case of the simple Bernoulli model, to be able to evaluate the probability of type II
error we need the distribution of the test statistic (14.15):

t(X):5 , under H1 :uÞ0.5.

This raises the problem: Which values in Q1 :5 [0,1]2{0.5} do we choose? For the sake
of the argument let us choose the value u50.55. This implies that the relevant distribu-
tion for the test statistic is:

t(X;u):5 ,
H1 Bi ,1;n . (14.22)

In the case of type II error, making the wrong decision amounts to deciding to accept
H0; deciding that the difference | ûn20.5 | is not “significantly different from zero”.
Using the distribution (14.22) we can evaluate the probability of type II error using
the same values of c as for the type I probability c50.005, 0.01, 0.02, 0.05, 0.1, 0.2,
P( | ûn20.5 |#c; u50.55)5b(0.55), as follows:

2Ïn(0.55 2 0.5)
Ï0.55(1 2 0.55)1Ïn(ûn 2 0.5)

Ïu(1 2 u)

Ïn(ûn 2 0.5)
Ïu(1 2 u)

The Neyman–Pearson framework 697

Figure 14.2 Type I and type II probability

f(
x)

x

ca

(0.5a)(0.5a)

2ca



P( | ûn20.5 |.0.005).0.043, P( | ûn20.5 |.0.050).0.422,
P( | ûn20.5 |.0.010).0.089, P( | ûn20.5 |.0.100).0.645,
P( | ûn20.5 |.0.020).0.178, P( | ûn20.5 |.0.200).0.984.

From these probabilities we can see that in contrast to the type I error, the probability of
type II error decreases as the interval around the null hypothesis becomes smaller.

How do we interpret the two types of errors? The interpretation of Neyman and
Pearson is in terms of repeating the experiment a very large number of times (the long
run). That is, a 0.05 type I probability means that in repeated trials of the same experi-
ment (statistical model) 5 percent of these cases will be erroneously rejected (see Neyman
and Pearson (1933a)). This interpretation was the focus of disagreement between
Neyman and Fisher for several decades. Fisher kept insisting that even if this procedure
is appropriate for long sequences of trials in quality control, it is completely inappropri-
ate for scientific inference (see Fisher (1956)).

Rejection Region P(type I error; u50.5) P(type II error; u50.55)

(x: | ûn20.5 |#0.005) 0.472, 0.043,
(x: | ûn20.5 |#0.010) 0.444, 0.089,
(x: | ûn20.5 |#0.020) 0.388, 0.178,
(x: | ûn20.5 |#0.050) 0.239, 0.422,
(x: | ûn20.5 |#0.100) 0.078, 0.645,
(x: | ûn20.5 |#0.200) 0.002, 0.984.

The above table and figure 14.1 suggest that there is a trade-off between the probabil-
ities of type I and type II errors: as we decrease the probability of type I error the prob-
ability of type II error increases and vice versa.

How do we solve this trade-off problem?

14.3.4 Stage IV – Constructing optimal tests

The Neyman–Pearson (1928a,b,1933a,b) solution is to treat the null hypothesis as more
important than the alternative. This means that we would rather ensure that the prob-
ability of rejecting the null when valid (type I error) is small, and then choose a test which
minimizes the probability of type II error. In the above context, this amounts to deciding
that the type I error probability is small, say a50.05 or a50.01, and choose a test which
minimizes the type II error. That is, assuming that we reject the null when|t (X) |.ca, for
some constant ca, we choose the test statistic t(X) in such a way that:

(a) P( |t(X) |.ca; H0 valid)5a,
(b) P( |t(X) |# ca; H1(u) valid)5b(u) for u[Q1 is minimized.

N : the notation H1(u) is used to emphasize the dependence of H1 on u as the latter
varies over the parameter space Q1.

698 Hypothesis testing



The above solution amounts to a convention which views the type I error as much
more serious and thus the null and alternative hypotheses are treated asymmetrically. By
fixing the type I error to be a small number, say 0.01, we view it as much more important
than the type II error. Hence, we consider the mistake to reject the null when valid to be
much more serious than accepting the null when false. An emotionally charged way to
rationalize this conventional choice is in terms of the analogy with a criminal offense
trial. The jury in a criminal offense trial are instructed by the judge to find the defendant
not guilty unless they have been convinced “beyond any reasonable doubt” by the evi-
dence presented in court during the deliberations. That is, they are instructed to choose
between:

H0: not guilty, against H1: guilty.

The clause beyond any reasonable doubt amounts to fixing the type I error to a very
small value. This is designed to protect innocent people from being found guilty (see
Neyman–Pearson (1928a,b,1933a,b)). This strategy, however, increases the risk of
“letting a lot of crooks off the hook.” The reader should be  that the use of
the above analogy is designed to make the Neyman–Pearson convention easier to accept.
In particular, to make the asymmetric treatment of the null and the alternative seem
natural.

The above optimization problem is rather involved and we are going to avoid the
details until the next subsection. Once the test statistic t(X) is chosen, we can use its dis-
tribution under H0 in order to derive the value ca, beyond which|t(X) | is considered to
be “significantly different from zero.” Because of this, a is sometimes called the
significance level. This amounts to solving for the unknown ca in the probabilistic equa-
tion:

P( |t(X) |.ca;H0 valid)5a. (14.23)

R : It is important to note that this probabilistic equation does not always have a
unique solution ca, especially in the case where the distribution of t(X) is discrete. In
such cases we use approximate values as in the Bernoulli example.

Formally ca is defined as the point beyond which the probability, as determined by the
distribution of the test statistic, is equal to a. This, however, depends on whether the test
in question is one-sided or two-sided as in the above case.

One-sided versus two-sided tests
In the case of the simple Normal model discussed above we concentrated almost exclu-
sively on the hypothesis:

H0 :m5m0 against H1 :mÞm0, (14.24)

which is a two-sided hypothesis. The fact that the alternative hypothesis is of the form
H1 :mÞm0 means that H0 can be invalid for values of m̂ smaller or larger than m0. On the
other hand, the hypothesis:

H0 :m5m0 against H1 :m.m0, (14.25)
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is one-sided because H0 can be invalid only for values of m̂ larger than m0. The one-sided
and two-sided features of the hypotheses are crucial because they affect both the form of
the rejection region as well as the value ca.

Example 1
Let us return to the simple Normal model (see (14.4)).
Case A: s2 is known. For testing (14.24) and (14.25) it turns out that the test statistic coin-
cides:

k(X):5 ,
H0 N(0,1). (14.26) 

However, the rejction regions for (14.24) and (14.25) are, respectively:

C15{x : |k(x) |.ca} and C15{x :k(x).ca}.

This, in turn, effects the value of ca in the sense that for the two tests:

∫`
ca f(z)dz5 a and ∫`

ca f(z)dz5a,

where f(z) is the standard normal density (see figures 14.3 and 14.4), respectively.

Standard Normal tables

One-sided values Two-sided values

a50.100: ca51.28, a50.100: ca51.65,
a50.050: ca51.65, a50.050: ca51.96,
a50.025: ca51.96, a50.025: ca52.00,
a50.010: ca52.33, a50.010: ca52.58,
a50.001: ca53.10. a50.001: ca53.30.

Case B: s2 is unknown. As in case A, for testing (14.24) and (14.25) it turns out that the
test statistic is the same:

t(X):5 ,
H0 St(n21). (14.27)

In addition to (14.24) and (14.25) we can consider the one-sided hypothesis:

H0 :m5m0 against H1 :m,m0, (14.28)

The rejction regions for (14.24), (14.25) and (14.28) are, respectively:

C15{x : |t(x) |.ca}, C15{x :t(x).ca} and C15{x :t(x),ca}.

The value of ca for the three tests are, respectively:

∫`
ca w(z)dz5 a, ∫`

ca w(z)dz5a and ∫`
ca w(z)dz512a,

where w(z) is the Student’s t density. The test defined by {t(X), C1,a} above is known as
the t-test.

1
2

Ïn(m̂n 2 m0)
s

1
2

Ïn(m̂n 2 m0)
s
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Student’s t tables (n560)

One-sided values Two-sided values

a50.100: ca51.296, a50.100: ca51.671,
a50.050: ca51.671, a50.050: ca52.000,
a50.025: ca52.000, a50.025: ca52.300,
a50.010: ca52.390, a50.010: ca52.660,
a50.001: ca53.232. a50.001: ca53.460.

In order to avoid misleading the reader into thinking that for two-sided tests ca is always
determined via ∫`

ca f(z)dz5 a , we  that this is the case only when dealing with sym-
metric distributions.

1
2
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Example 2
Let us return to the simple Bernoulli model (see (14.14)) to reconsider Arbuthnot’s and N.
Bernoulli’s conjectures in the context of the Neyman–Pearson approach. The observed
data refer to the number of births (male, female) during the period 1993–5 in Cyprus:
n530862, 16029 males and 14833 females. It should come as no surprise to discover that
the pivotal function and the test statistic remain the same as those derived in the Fisher
approach:

t(X;u) :5 , t(X) :5 ,
H0 Bi(0,1; n).

(i) Arbuthnot’s conjecture might be expressed in the following form:

H0 :u50.5 against H1 :u ,0.5. (14.29)

ûn5 50.48062, t(x)5 526.8092.

In view of the fact that the alternative is one-sided the rejection region is:

C15{x :t(x),ca},

where ca can be evaluated using the Normal tables because the sample size is large
enough for the Normal approximation to the Binomial to be reliable. For a
significance level a50.01, ca522.33 thus we reject H0.

(ii) N. Bernoulli’s conjecture can be expressed in the following form:

H0 :u50.4857 against H1 :u .0.4857. (14.30)

ûn5 50.48062, t(x)5 521.7856.

In view of the fact that the alternative is one-sided the rejection region is:

C15{x :t(x).ca},

where ca can again be evaluated using the Normal tables. For a significance level
a50.01, ca52.33 and since the value of the statistic is considerably smaller, we
accept H0.

14.3.5 A general formulation: summary

The general formulation of a hypothesis in the Neyman–Pearson approach is:

H0 : u [Q0 against H1: u [Q1 :5Q2Q0. (14.31)

(i) H0 :u [Q0 is referred to as the null hypothesis, where Q0,Q.
(ii) H1 :u [Q1 :5Q2Q0 is referred to as the alternative hypothesis.

As argued above, the principal element of a test is the test statistic t(X) which provides
the basis for accepting or rejecting H0. This amounts to separating the sample space :
into two mutually exclusive regions, C0 and C1 :X5C0<C1 and C0>C15Ø:

Ï30862(0.48062 2 0.4857)
Ï0.4857(0.5143)

14833
30862

Ï30862(0.48062 2 0.5)
Ï0.5(0.5)

14833
30862

Ïn(ûn 2 u0)
Ïu0(1 2 u0)

Ïn(ûn 2 u0)
Ïu0(1 2 u0)
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C0 :5{x :t(x)#ca} – the acceptance region, and

C1 :5{x :t(x).ca} – the rejection region (see figure 14.4).

The decision rule takes the form:

(i) if x[C0, accept H0, (ii) if x[C1, reject H0.

The choice of the test statistic t(X) is made so as to ensure that:

(a) P(x[C1; H0 valid)5a,
(b) P(x[C0; H1(u) valid)5b(u) for u [Q1 is minimized.

The main components of a Neyman–Pearson (N–P) test {t(X),C1,a} are:

(i) a null (H0) and an alternative (H1) hypothesis,
(ii) a test statistic t(X),
(iii) the distribution of t(X) under H0,
(iv) the significance level (or size) a, and
(v) the rejection region C1.

N :
(i) Significance level and p-value. It is very important to distinguish between the

notion of a p-value in the context of a Fisher test and that of a significance level in
the context of the Neyman–Pearson approach. Even though the two can be related
mathematically, they constitute very different notions in different contexts. The
role of the p-value is inferential and that of the significance level is decision
making. This is why the use of p-values in the context of the Neyman–Pearson
approach was considered to be a sacrilege by Fisher (1956).

(ii) Accept and fail to reject. Because of the asymmetric treatment of the type I and
type II errors, when we reject H0 we consider it invalid because the probability of
making a mistake is set to a small number a. On the other hand, when the modeler
accepts H0 he/she has no idea of the magnitude of the type II error; he/she has no
control over it; just the comforting thought that for a good test it must be reason-
ably high. For this reason some books use the terminology “fail to reject” H0

instead of “accept”.

(iii) Where is the type II error? It is important to emphasize that even though the type II
error does not seem to play any role in the above definition of a test, the fact of the
matter is that the test statistic t(X) and the rejection region are chosen by minimiz-
ing the probability of type II error.

14.3.6 Optimality of tests

The N–P test components (i)–(v) specify a test, but to determine how good the test is we
need to consider the question of minimizing the probability of type II error. An equiva-
lent way to consider the optimality of a test is to consider the power of the test.
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Power of a test The probability of rejecting the null hypothesis when it is invalid (taking
the correct decision when rejecting H0) is called the power of the test at some value
u1[Q1, and denoted by:

P(u1)5P(x[C1; H1 valid).

That is, the power of a test refers to the probability of rejecting H0 when H1 is valid, i.e.
the true distribution belongs to the family F15{ f(x;u), u[Q1, x[RX}.

Given that under the alternative H1 :u[Q1, F1 often includes more than one element,
we need to consider the power of a test over the whole of the parameter space specified
by the alternative hypothesis. With this in mind we define the power function as follows:

Pn(u)5P(x[C1) for u [Q, (14.32)

viewed as a function of u [Q. N that this function is defined over the whole of the
parameter space of the postulated statistical model. In view of this, we can use the power
function to define the probability of type I error as well. The subscript is used to empha-
size the dependence of the power function on the sample size.

In the case of a simple null hypothesis H0 :u5u0, the significance level can be defined
via the power function as:

Pn(u0)5a,

but in the case where under the null u takes more than one value, say u[Q0, and Q0 has
more than one point, we define the size of the test to be:

a5
u[Q0
max Pn(u),

where 
u[Q0
max denotes the maximum for all values of u [Q0. That is, the size of the test is

the maximum probability, over all possible values of u in Q0, of making the wrong deci-
sion to reject the null hypothesis.

Example
t-test In the case of the simple Normal model (see (14.4)) with the hypothesis:

H0 :m5m0 against H1 :mÞm0, (14.33)

and s2 unknown, to derive the power function (14.32) we need to know its distribution
under H1. However, it is clear that under H1, the test statistic (14.27) can no longer have
mean zero because E(m̂n)Þm0. In view of this, its distribution, under the assumptions of
the statistical model, is non-central Student’s t (see Spanos (1986), p. 112), with noncen-
trality parameter d5 , denoted by:

t(X)5 ,
H1 St(d ;n21). (14.34)

Let us see how this distribution arises. Under H1(say m5m1) the test statistic that has a
Student’s t distribution is:

t1(X)5 ,
H1 St(n21). (14.35)2Ïn(m̂n 2 m1)

s1

2Ïn(m̂n 2 m0)
s1

2Ïn(m 2 m0)
s1
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The problem is to relate the two quantities: t(X) and t1(X). After some obvious
manipulations one can show that:

t(X)5 t1(X)1 ,St(d ;n21),

where the non-centrality parameter is nothing more than the non-zero mean of the dis-
tribution, i.e. d5E . The power function for m[R2{m0} is:

Pn(m )5P(x : | t(X)|$ca)5

5P t1(X)$ca2 1P t1(X)#2ca2 .

As we can see from the above formula, given s2, the power of the t-test increases as n and
(m12m0) increase and thus the more available the observations and the further away u1 is
from the null (u0), the more the power (a very desirable property).

Using the power function we can define the notion of an optimal test. In a nutshell the
best test is the one with maximum power for all values of u[Q1 (when it exists!).

Uniformly most powerful tests (UMP) We say that a N–P test {t*(X),C1,a} is optimal if it
has greater power than any other test {t (X),C1,a}:

Pn(u;{t*(X),C1,a})$Pn(u;{t (X),C1,a}), for all u[Q1.

The test {t*(X),C1,a} is called uniformly most powerful.

The ideal test The notion of the ideal test is analogous to that of the ideal estimator and is
defined as the test {t*(X),C1} with the following properties:

(1) Pn(u;{t*(X),C1})50, for all u[Q0,
(2) Pn(u;{t*(X),C1})51, for all u[Q1.

That is, its probability of rejecting H0 when valid is zero and the probability of rejecting
H0 when invalid is one; its power takes the shape of the letter T at the point u5u0, as
illustrated by the solid line in figure 14.5.

Unfortunately, no such tests exist for a given sample size n, and thus we look for tests
that come as close to the ideal case as possible (see the dotted line in figure 14.5). The
dotted line suggests that a feasible but good test will be one that might tolerate low power
for values of u very close to u0, since the error in accepting H0 :u5u0 is not that serious.
On the other hand, as the distance |u2u0 | increases the power should increase with it
because accepting the null will be a more serious error.

Existence of UMP tests As we will see in the next subsection, UMP tests do often exist.
For cases beyond the simple case where we have only two distributions to compare, we
need to impose further restrictions on either the statistical model or the class of tests
considered in order to be able to find a best test. One such restriction on the class of
tests considered, which can help us decide among the above tests, is that of unbiased-
ness.

2Ïn(m1 2 m0)
s12Ïn(m1 2 m0)

s1

2Ïn(m1 2 m0)
s1

4Ïn(m1 2 m0)
s3
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Unbiased test A test for the null hypothesis H0 against H1 is said to be unbiased of size a,
if the probability of rejecting H0 when invalid is greater than the probability of rejecting
H0 when valid, i.e.

u[Q0
sup Pn(u)# a,

u[Q1
inf Pn(u).

Although in the case of the statistical hypothesis (14.24) there is no UMP test, the
t-test {t (X),C1,a} constitutes a UMP test within the class of unbiased tests.

Another desirable property for a test is that of consistency. Analogous to the case of
estimation, a consistent test is one which achieves the ideal test status asymptotically (as
the sample size n → `).

Consistent test A test {tn(X),C1,a} is said to be consistent if:

lim
n→`

Pn(u)51 for all u[Q1.

Example
The t-test, as defined by {t (X),C1,a} where:

t (X)5 , C15{x : |t (x) |.ca},

in testing the hypothesis H0 :m5m0 against H1 :mÞm0, in the context of the simple
Normal model, enjoys the following properties:

(i) unbiased,
(ii) UMP within the class of unbiased tests (see Lehmann (1986)), and
(iii) Consistent:

lim
n→`

Pn(u)5 lim
n→`

P t1(X)$ca2 1 lim
n→`

P t1(X)#2ca2 51.2Ïn(m1 2 m0)
s12Ïn(m1 2 m0)

s1

2Ïn(m̂n2 m0)
s1
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It is also interesting to note that the test statistic t (X) defines the optimal tests for the
one-sided alternatives:

(a ) H0 :m5m0, against H1 :m.m0, (b ) H0 :m5m0, against H1 :m,m0.

The tests defined by the rejection regions:

C 1
(a)5{x :t (x).ca} and C 1

(b)5{x :t (x),ca},

are UMP for the hypotheses (a) and (b), respectively. In terms of power, the one-sided
test based on C 1

(a) has more power than the two-sided test for values of m.m0 but less
power for m,m0. Similarly, the one-sided test based on C 1

(b) has more power than the
two-sided test for values of m,m0 but less power for m.m0 (see figure 14.6). Hence, for
mÞm0 there is no UMP test, but the test based on C1 above is UMP unbiased, because
the other two are clearly biased; their power functions fall below the size a of the test.

It is very important to emphasize that a Neyman–Pearson test is {t (X),C1,a}, not just
a test statistic, and the definition of the rejection region plays a crucial role for the opti-
mality of a test. For instance, using the same test statistic t (X)5 we can define
the tests {t (X),C1,a} and {t (X),C1,a} for the hypotheses:

(g) H0 :m5m0, against H1 :mÞm0,

based on: C15{x : |t (x) |$ca}, C 1
(a)5{x : |t (x) |#ca}. The power of the test based on

C1 is reasonable (a UMP unbiased test) but that of the test based on C 1
(b) is terrible; as

shown in figure 14.6, this test is uniformly biased: its power is uniformly lower than the
size of the test!

The one question we have not addressed so far is how we decide what is an appropriate
distance to be used as a basis for a test statistic. In the next subsection we will consider

2Ïn(m̂n2 m0)
s1
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two of the most important methods of finding optimal tests, the Neyman–Pearson
lemma and the likelihood ratio procedure.

14.3.7 Methods for finding optimal tests

In the context of the Neyman–Pearson (N–P) formulation, we can define an optimal
a-size test as {t (X),C1,a} derived by way of the following optimization:

u[Q1
max Pn(u) such that

u[Q0
max Pn(u)# a.

An optimal N–P test is a UMP test. Neyman and Pearson (1933a,1936b) were able to
solve the problem of deriving optimal tests only in the simplest of cases: when both H0

and H1 are simple. They showed that in this simple case a UMP test exists and they pro-
vided a procedure to derive it.

The Neyman–Pearson lemma
The Neyman–Pearson lemma provides the cornerstone upon which the whole procedure
is built. Its limitation, however, is that it provides optimal tests only in one simple case.

Consider the case where the statistical hypothesis is specified in terms of a simple H0

and a simple H1 as follows:

H0 :u5u0 against H1:u5u1. (14.36)

N that in this case: F05{f(x;u0), x[RX} and F15{f(x;u1), x[RX}. In view of the
fact that the decision to accept or reject will be based on a comparison between these two
densities, intuition suggests that their ratio will provide a basis for such a comparison. It
turns out that our intuition is perfectly correct. A size a test can be defined by:

C15 x : .k , k$0, such that P .k; H0 valid 5a. (14.37)

(a) Any test defined by (14.37) constitutes a UMP test of size a for (14.36).
(b) If there exists a test satisfying (14.37) for k.0, then every UMP size a test coincides

with (14.37).

It is important to emphasize that this lemma does not provide the modeler with a com-
plete answer to the question of deriving an optimal test, even in the case of a simple H0

and a simple H1. What it does is to guarantee the existence of an optimal test (in this
simple case) and provide us with the procedure to derive it. That is, it states that the test
statistic must be a function of the ratio , where f(x;u) denotes the distribution of the
sample, i.e.

t (X)5h .

The form of he function h(.) is determined by the modeler on a case by case basis.

Example
In the context of the simple Normal model (see (14.4)), assuming s2 is known, consider
the simple hypothesis:

2f(x;u1)
f(x;u0)1

f(x;u1)
f(x;u0)

24f(x;u1)
f(x;u0)316f(x;u1)

f(x;u0)5
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H0 :m5m0 against H1 :m5m1 (m1.m0). (14.38)

Note that the unknown parameter m in this case can only take one of two values, i.e.
m[{m0,m1}. In view of the random sample assumption:

f(x;m1)5 n
i51 f(xi;m1)5 n

i51 exp{2 [xi2m1]2},

f(x;m0)5 n
i51 f(xi;m0)5 n

i51 exp{2 [xi2m0]2}.

5 exp 2 [(xi 2 m1)2 2 (xi 2 m0)2] 5 e2{ (m12m0)m̂ n2 (m1
2 2 m0

2)}.

As it stands the ratio does not constitute a test statistic, but after some manipulation we
can define the well-known statistic (see Spanos (1986), p. 297):

t (X)5h 5 .

The optimal test is defined by the rejection region C15{x :t (x).ca}.

In practice, UMP tests constitute the exception rather than the rule. Beyond the simple
hypotheses case, there is no single method which will yield an optimal test. A method
which often yields good tests is the so-called likelihood ratio procedure.

Likelihood ratio test
The likelihood ratio test procedure can be viewed as a generalization of the
Neyman–Pearson lemma in the sense that its form is similar and the test can be applied
to cases where the null and/or the alternative are composite hypotheses.
For the likelihood ratio test:

(a) The hypothesis of interest can be of the general form:

H0 :u[Q0 against H1 :u[Q1.

(b) The test statistic is related to the ratio: Ln(X) :5 . (14.39)

(c) The rejection region is: C15{x :t (X)5h(Ln(X)).k}, (14.40)

where L(u;x) denotes the likelihood function (see chapter 12).
In figure 14.7 we can see the case where the maximum over u[Q coincides with the left

boundary point u0 of Q0 with û the overall MLE; the likelihood ratio is Ln(X)5 .
N : instead of the ratio Ln(X) most textbooks use its inverse:

ln(X)5 5 ,

with the rejection region modified accordingly to: C15{x :ln(X)# k*}.

Examples
1 Consider the simple Normal model (see (14.4)) and the hypothesis:

H0 :m5m0 against H1 :mÞm0.

OA
OB

max
u[Q0

L(u;X)

max
u[Q 

L(u;X)

OB
OA

2
max
u[Q

L(u;X)

max
u[Q0

L(u;X)1

Ïn(m̂n2m0)
s

2f(x;u1)
f(x;u0)1

n
2s 2

n
s 261

2s2 o
n

i51
5f(x;m1)

f(x;m0)

1
2s2

1
sÏ2ppp

1
2s2

1
sÏ2ppp
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From chapter 13 we know that the maximum likelihood estimators in the two cases are:

u[Q
max L(u;x) ⇒ m̂n5 n

i51 Xi and ŝ 25 n
i51 (Xi2m̂n)2,

u[Q0
max L(u;x) ⇒ s̃ 25 n

i51 (Xi2m0)2.

u[Q
max L(u;x)5L(û;x)5 n

i51 (xi2m̂n)2 (2pe) 2 ,

u[Q0
max L(u;x)5L(ũ;x)5 n

i51 (xi2m0)2 (2pe) 2 .

Hence, the likelihood ratio is: 5 5 11 .

N that: t (X) :5h 5 , is the test statistic for the t-test, which defines
a Neyman–Pearson test in conjunction with the rejection region:

C15{x : |t (x) |.ca}.

2 Consider the simple Normal model (see (14.4)) and the hypothesis:

H0 :s25s0
2 against H1 :s2Þs0

2.

From the previous chapter we know that the maximum likelihood estimators in the two
cases are as follows:

2Ïn(m̂n2 m0)
s2L(û ;X)

L(ũ;X)1

n
22t(x)2

n 2 11
n
22Sn

i51(xi 2 m0)2

Sn
i51(xi 2 m̂n)21L(û ;x)

L(ũ;x)

n
224o1

n31

n
224o1

n31

o1
n

o1
no1

n
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u[Q
max L(u;x)5L(û;x) ⇒ m̂n5 n

i51 Xi and ŝ 25 n
i51 (Xi2m̂n)2,

u[Q0
max L(u;x)5L(ũ;x) ⇒ m̂n5 n

i51 Xi .

u[Q
max L(u;x)5(2peŝ 2)2 ,

u[Q0
max L(u;x)5(2ps0

2)2 exp 2 .

Hence, the likelihood ratio is 5(v(x)e2v(x)11)2 , where v(x)5(ŝ 2/s0
2). In view of the

pivotal quantity:

n(X,s2)5 ,x2(n21), (14.41)

we can define the test statistic: n(X)5 ,
H0

x(n21), and thus the rejection region (14.40)
is transformed into:

C15{x :n(X).c2 or n(X),c1},

where for a size a test; the constants c1,c2 are chosen such that:

c(x)dx5 c(x)dx5 ,

where c(x) denotes the chi-square density function. The test defined by {n(X),C1,a}
turns out to be UMP unbiased (see Lehmann (1986)).

Whither UMP tests?
Good tests in the sense of uniformly most powerful (UMP) do not exist in general. In
order to be able to derive such tests we need to restrict both the family of statistical
models and the form of the hypotheses. In particular, restricting ourselves to simple sta-
tistical models, UMP tests exist in cases where:

(1) F5{f(x;u), u[Q, x[RX} has a monotone likelihood ratio, and
(2) the hypotheses of interest are one-sided, i.e., any one of the form:

(a) H0 :u5u0 against H1 :u.u0,
(b) H0 :u5u0 against H1 :u,u0,
(c) H0 :u#u0 against H1 :u.u0,
(d) H0 :u$u0 against H1 :u,u0.

Monotone likelihood ratio
A probability model F5{f(x;u), u[Q, x[RX} has a monotone likelihood ratio if there
exists a statistic t (x) such that for all u0,u1:

5h(t (x);u0,u1), where h(.) is an increasing or decreasing fuction of t (x).

Example
The well-known one-parameter exponential family of distributions (see chapter 12),
defines probability models with monotone likelihood ratios (see Lehmann (1986)).

L(u1;x)
L(u0;x)

a
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Ec1

0

nŝ2
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0
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Lemma 1 Let F5{f(x;u), u[Q, x[RX} have an increasing likelihood ratio. Then for
any significance level a, there exists a UMP test for testing:

H0 :u5u0 against H1 :u.u0,

defined by the rejection region: C15{x:t (X).ca}.
The same test is UMP for the hypothesis:

H0 :u # u0 against H1 :u.u0,

For testing:

H0 :u$u0 against H1 :u,u0,

the rejection region of an a significance level UMP test is: C15{x :t (X),ca}.

Lemma 2 Let F5{f(x;u), u[Q, x[RX} have a decreasing likelihood ratio. Then for any
significance level a , there exists a UMP test for testing:

H0 :u5u0 against H1 :u.u0,

defined by the rejection region: C15{x :t (X),ca}.
The same test is UMP for the hypothesis:

H0 :u$u0 against H1 :u.u0,

For testing the hypothesis:

H0 :u$u0 against H1 :u,u0,

the rejection region of an a significance level UMP test is: C15{x :t (X).ca}.

Example
Consider the simple Exponential model:

[i] Statistical GM: Xi5E(Xi)1ei, i[N,
[ii] Probability model: F5{f(x;u )5 e2 , u[(0,`), x[R1},

[iii] Sampling model: X:5(X1,X2, …, Xn) is a random sample.

Consider deriving an a-size test for the hypothesis:

H0 :u5u0 against H1 :u.u0,

at significance level a50.05. The denominator of the ratio refers to the estimated likeli-
hood function. The likelihood and likelihood ratio for u1.u0 are:

L(u;x)5
ne2 Ok xk and 5 5

ne2( )Ok xk.

1 1
u1
2n

e
2

1
u1

okxk

u1 2 u0

u1u02u1

u0
11 1

u0
2n

e
2

1
u0

okxkL(u0;x)
L(u1;x)

1
u21

u1

x
u

1
u
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Hence, the likelihood ratio is an increasing function of the statistic n
k51xk. In view of the

pivotal function:

j(X;u)5 ,x2(2n),

we can use the test statistic: j(X)5 ,
H0

x2(2n), to define a UMP test based on the 

rejection region: C15{x :j(X).ca}.

Where does this leave the Neyman–Pearson approach?
Neyman and Pearson (1928a) set out to improve upon Fisher’s approach to testing by
making the choice of a test statistic less ad hoc and arbitrary and replacing the question-
able p-value with a more formal decision rule. The success of their research program
should be assessed in terms of their stated objectives. In so far as the choice of a test sta-
tistic is concerned, it is generally accepted that they have improved upon Fisher’s legacy
but their success is not an unqualified triumph. Having defined what an optimal test is,
uniformly most powerful, it turns out that such optimal tests are the exception and not the
rule. The introduction of additional properties such as unbiasedness and consistency
can be interpreted by a cynic as a way to shrink the set of optimal tests so we can prove
existence in the context of the smaller set. In relation to methods of deriving optimal
tests the same cynic might argue that the only clear cut result in the Neyman–Pearson
approach is their namesake lemma which is just an existence result of very limited scope.
Constructing an optimal test using this lemma is not straightforward.

As far as the replacement of the p-value with a more formal decision rule is concerned,
we argued above that this has been achieved on the basis of a convention; we agreed to
treat the null and the alternative hypotheses asymmetrically. The same cynic who
objected to the choice of a test statistic will also object to this decision rule as arbitrary!
Indeed, as argued in the next section, the textbook hybrid on testing considers p-values
much less arbitrary than the choice of a significance level.

14.4 Asymptotic test procedures*

It is often the case in practice that sensible distance functions, such as the likelihood
ratio, do not often yield test statistics in the sense that their sampling distribution is
either unknown or it depends on unknown parameters. In such cases we often need to
resort to asymptotic theory; allow the sample size n to increase and consider the asymp-
totic behavior of functions of the likelihood ratio. Asymptotic theory, however, raises
certain difficulties in relation to the power, size and optimality of a test.

14.4.1 Asymptotic power and size

As argued above, one of the asymptotic properties good tests should enjoy is that of con-
sistency. If tests are not consistent we do not consider them as serious contenders when
comparisons of power are discussed. This, however, raises an important difficulty when

2S
n
k51xk

u

2S
n
k51xk

u

o
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comparing the asymptotic properties of the various tests because all consistent tests are
asymptotically indistinguishable in terms of power; they all have power one! There are
several useful ways to deal with this difficulty but no one offers the answer we seek: which
test is asymptotically best in a way comparable to maximum likelihood in estimation?
The basic difficulty arises because any asymptotic measure should take account of three
different dimensions:

(i) the size of the test: a[ [0,1],
(ii) the power of the test: b[ [0,1],
(iii) the parameter: u[Q.

A particularly useful way to combine all three dimensions comes in the form of the fol-
lowing concept:

Nt(a,b,u): the number of observations a particular test (actually a sequence of
test statistics {tn}`

n51) of size a required in order to achieve a certain
power level b given an alternative value of the parameter u.

More formally, Nt(a,b,u) can be defined in terms of the minimal size of the test for which
the power is not less than b, for 0,a,b :

an(b,u) :5
u[Q0
sup{P(x :tn(X)$cn)},

Nt(a,b,u)5
m$n
min{n :am(b,u)$ a}.

Using this concept we can compare two tests {tn}`
n51 and {t9n}`

n51 by defining the
efficiency of the former relative to the latter as:

RE(a,b,u)5 .

When this ratio is greater than unity the test defined by {tn}`
n51 is relatively more efficient

than the one defined by {t9n}`
n51 because, given the size a, the latter requires more

observations to achieve the same power. Although this concept of relative efficiency has
an obvious intuitive appeal, it turns out that, more often than not, it is very difficult, and
often impossible, to evaluate even for some values of u, let alone having to evaluate it for
all values u[Q1:5Q2Q0.

The obvious answer is to find a way to render this measure free of some of the three
dimension parameters (a,b,u); asymptotic arguments then enter the picture. The
problem of dealing with the three dimensions (i)–(iii) still remains and our only option is
to keep two of the dimensions fixed and let the other converge to some limiting value of
interest. This strategy gives rise to three different asymptotic relative efficiency (ARE)
measures:

Bahadur ARE(b,u):5 lim
a→0

ARE(a,b,u), for b[(0,1), u[Q1,

Hodges-Lehmann ARE(a,u):5 lim
b→1

ARE(a,b,u), for a[(0,1), u[Q1,

Pitman ARE(a,b,u0):5 lim
u→u0

ARE(a,b,u), for 0,a,b # 1.

Nt9(a,b,u)
Nt(a,b,u)
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In all three cases the hope is that at the limit the ARE measure will not depend on the
values of the two dimensions left free. This, however, is not always the case leading to
additional difficulties.

In econometrics the most widely used measure of ARE is Pitman’s, often called the
local Pitman drift. This specification of the null and the alternative often takes the 
form:

H0 :u5u0 against H1 :un5u01 , d.0.

This is called local Pitman drift because the alternative hypotheses are defined around
the null and as n→` they converge to the null hypothesis. The asymptotic power fuction
is defined by:

P`(u)5 lim
n→`

Pn(un) for un5u01 ,

where the limit depends crucially on the chosen level a, the asymptotic size:

sup
n→`

(P`(u0))5a.

In cases where the distribution under the null and the alternative are asymptotically
Normal, the Pitman ARE is the easiest to apply (see Gourieroux and Monfort (1995),
vol. II).

14.4.2 Asymptotic likelihood ratio test

In section 3 we interpreted the likelihood ratio (LR) test as a direct generalization of the
Neyman–Pearson ratio and defined by:

ln(X)5 · (14.42)

More often than not, however, this ratio does not yield a test statistic even after it has
been transformed. In such cases, we resort to asymptotic distribution theory which states
that under certain restrictions (see Wilks (1938)):

22lnln(X)522(ln L(ũ;X)2 ln L(û;X)) ,
H0
a x2(r),

where ,
H0
a reads “under H0 is asymptotically distributed as” and r denotes the number of

restrictions involved in restricting Q to Q0.
The rejection region of the asymptotic likelihood ratio test is defined by:

C15{x :22lnln(x)$ca}. (14.43)

The asymptotic likelihood ratio test defined by (14.43), under the same regularity con-
ditions required for maximum likelihood estimators, can be shown to be consistent and
have size a (see Wilks (1962)). In addition, the asymptotic likelihood ratio test is optimal
in the sense of asymptotic relative efficiency as defined above (see Brown (1971),
Kourouklis (1988)).

max
u[Q0

L(u;X)

max
u[Q

L(u;X)

d

Ïn

d

Ïn
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Example
Consider the simple Poisson model:

[i] Statistical GM: Xi5E(Xi)1ei, i[N,

[ii] Probability model: F5 f(x;u)5 , u[(0,`), x50,1,2,3, … ,

[iii] Sampling model: X :5(X1,X2, … Xn) is a random sample.

Consider a test for the hypothesis:

H0 :u5u0 against H1 :u?u0,

at significance level a. In view of the fact that H0 is simple the likelihood ratio (14.12)
takes the simpler form:

ln(X)5 . (14.44)

The denominator of the ratio refers to the estimated likelihood function L(ûn;X),where
ûn is the MLE of u. The likelihood and log-likelihood functions are:

L(u ;x)5 and lnL(u;x)52nu1 ln u n
k51xk 2 ln n

k51xk!,

ln L(u ;x)50 ⇒ ûn5 n
k51xk .

Hence, ln(X)5 5 5e2n(u02ûn) Okxk,

22ln ln(X)52n u02ûn1ûn ln .

The Bartlett correction
In an attempt to improve the finite sample approximation of the asymptotic likelihood
ratio statistic:

kn(X) :522ln ln(X) ,
H0
a x2(r),

Bartlett (1937) put forward a common sense argument to adjust this statistic. This argu-
ment proposes the choice of a sequence {cn}`

n51 such that:

(i) cnn→
→̀ 1, (ii) E(cnkn(X))5r.

The first condition is to ensure no changes in the asymptotic distribution and the second
to adjust the statistic to have a mean which coincides with the mean of the distribution
for each n;  that if v,x2(m), then E(v)5m.

More formally, if the expected value of the statistic kn(X) can be expressed in the form
of a Taylor’s series expansion (see chapter 12):

E(kn(X))5r 11 1O(n22) ,4b(X)
n3

42ûn

u0
13

2u0

ûn
1[e2nu0][u0

okxk][pn
k51xk!]21

(e2okxk)(ûn
okxk)[pn

k51xk!]21

max
u[Q0

L(u;X)

max
u[Q

L(u;X)

2o1
n1

d
du

p2o1e2nuuSkxk

pn
k51xk!

L(u0;X)
max
u[Q

L(u;X)

6e2uu
x

x!5
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where O(n22) denotes the residual term of smaller order than the retained part (see
Spanos (1986)) and b(X) is some known or estimable function, then:

cn5 11
21

.

The Bartlett adjusted test statistic takes the form:

kn
B(X)5 , with E(kn

B(X))5r1O(n22).

The Bartlett adjustment often leads to better approximations even in cases where the
equality in (ii) is only approximately valid.

14.4.3 Asymptotically equivalent tests

The above asymptotic likelihood ratio test gave rise to two other, asymptotically equiva-
lent tests.

For exposition purposes let us consider the simple form (14.44) of the likelihood ratio.
Taking a second-order Taylor’s approximation of the numerator

<(u0) :5 ln L(u0;x),

about ûn yields:

22ln ln(X)522[<(u0)2<(ûn)]522 (u02ûn)<(ûn)1 (u02ûn)2<0(ū) ,

where ū[(u0,ûn), <9(.) and <0(.) denote the first and second derivatives of the log-likeli-
hood function, respectively (see Gourieroux and Monfort (1995), vol. II). In view of the
fact that <9(ûn)50 (this is the first order condition for the derivation of the MLE of u),
we can conclude that:

22ln ln(X)52 (u02ûn)2<0(ū)52n(u02ûn)2 1op(1),

where op(1) denotes the asymptotically negligible terms (see Spanos (1986)).
From chapter 13 we know that:

E(2<0(u0))5In(u0), lim
n→`

5I`(u0),

where In(u0) and I`(u0) are Fisher’s information and asymptotic information, respec-
tively. Hence, the above approximation can be written in the form:

22ln ln(X)5n(u02ûn)2I`(u0)1op(1).

Using these results, Wald (1943) proposed the statistic:

w(X)5n(u02ûn)2I`(ûn).

In the case where I`(u) is a continuous function of u :I`(ûn)5I`(u0)1op(1), under H0,
and thus the two statistics are asymptotically equivalent, i.e.

22ln ln(X).a w(X),

2In(u0)
n1

1<0(u0)
n 2

61
25

2
kn(X)

1 1
b(X)

n1

4b(X)
n3
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where .a reads asymptotically equal; w(X) is known as the Wald test statistic. This means
that for testing the simple hypothesis:

H0 :u5u0 against H1 :u?u0,

the Wald test statistic gives rise to the same test (asymptotically) as 22ln ln(X), i.e.

w(X)5n(u02ûn)2I`(ûn) ,
H0
a x2(1).

Another asymptotically equivalent test can be derived using another approximate
equality derived in chapter 13:

(u02ûn).a <9(u0)I`
21(u0),

where <9(u0) is the score function evaluated at u5u0, i.e.

<9(u0) :5 ln L(u0;x)*
u5u0

5s(x;u0). (14.45)

We remind ourselves that the score function (viewed as a function of X[X given u)
satisfies the following properties:

[i] E[s(X;u)]5© 0,

[ii] Var[s(X;u)]5© E 2 ln L(u;X) :5In(u), (14.46)

[iii] s(X;u) ,©a N(0,I`(u)),

where © reads under the correct specfication. The properties [i]–[iii] can be used to derive
natural pivotal functions in testing hypotheses. For example, in the case of the simple
hypothesis:

H0 :u5u0, against H1 :u?u0

we can replace the true but unknown u by its value under H0 and define the asymptotic
test statistic:

s(X)5 [<9(u0)]2(I`(u0))21 ,
H0
a x2(1). (14.47)

Hence, all three test statistics 2ln ln(X), w(X) and s(X) have the same asymptotic distri-
bution under H0 (see Serfling (1980)). The test (14.47) was proposed by Rao (1947) and is
known as the (efficient) score test. This test statistic can be formally derived using opti-
mization subject to restrictions (see Silvey (1959)) and thus it is also known as a
Lagrange multiplier test, especially in econometrics.

The relationship between these three test statistics can be seen in figure 14.8 where
<(u) :5 ln L(u;X) is plotted against u (see Buse (1982)). As we can see, the score test statis-
tic is based on the slope of the tangent line at u5u0 and the likelihood ratio is based on
the distance [<(u0)2<(û)].

In the general case where the hypothesis of interest is composite and comes in the form
of r (possibly) non-linear restrictions:

H0 :h(u)50, against H1 :h(u)?0,

1
n

1
Ïn

2d2

du21

d
du

1
Ïn

Ïn
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the asymptotic test takes the form:

j(X) ,
H0
a x2(r), C15{x :j (X)$ca},

where j(X) is any one of the three (asymptotically equivalent) test statistics (see Spanos
(1986)):

(a) 22ln ln(X).a n(û2 ũ)9I`(u0)(û2 ũ),
(b) w(X)5(h(û)9 (Cov[h(û)])21(h(û)),
(c) s(X)5 (s(ũ;X))9 (I`(ũ))21(s(ũ;X)).

N that <(û) :5sup
uPQ

ln L(u;x) and <(ũ) :5  sup
h(u)50

(ln L(u;x)), i.e. û and ũ denote the

unrestricted and restricted MLE estimators of u, respectively. By comparing the above
three test statistics, the differences that stand out are:

(i) 22ln ln(X) is defined in terms of both the restricted and unrestricted MLEs,
(ii) w(X) is defined in terms of the unrestricted MLE only, and
(iii) s(û;X) is defined in terms of the restricted MLE only.

The choice of the distance underlying each of the above test statistics:

(a) || ũ2 û|| , (b) ||h(û) || , (c) ||s(ũ;X || ,

can be easily rationalized on intuitive grounds.  that h(ũ) or s(û;X) could not be uti-
lized to define test distances because by definition they are both equal to zero! It turns

1
n
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out that the distance ||h(û) || is not invariant to reparameterizations as are the distances
|| ũ2 û|| and ||s(ũ;X ||. For this reason the Wald test should be used with caution.

14.5 Fisher versus Neyman–Pearson

During the period when the statistical textbook hybrid approach was forged (more than
25 years after the controversy between Fisher and Neyman–Pearson began), Fisher
(1956) reiterated his disagreement in no uncertain terms:

It is to be feared, therefore, that the principles of Neyman and Pearson’s “Theory of Testing
Hypotheses” are liable to mislead those who follow them into much wasted effort and disap-
pointment, and that its authors are not inclined to warn students of these dangers.

(Fisher (1956), p. 92)

Is this just the rear guard action of a disillusioned scientist who lost the argument? Not
quite.

A hasty comparison between the Fisher and Neyman–Pearson approaches is likely to
reveal that the main difference between the two approaches is the fact that the null hypoth-
esis (H0 :u [Q0) in the former approach is supplemented with an alternative hypothesis
(H1:u [Q15Q2Q0) in the latter approach. After all, this alternative hypothesis gives rise
to the two types of errors in the Neyman–Pearson context and the choice of an optimal
test statistic arises as a result of maximizing the power function over the parameter space
Q1. All these concepts are inextricably bound up with the notion of an alternative hypoth-
esis. In addition to deriving (at least theoretically) the test statistic as part of an optimiza-
tion problem, the Neyman–Pearson approach replaces the p-value with a decision rule
based on the notion of the significance level (or size) a of a test. Hence, in cases where the
null and the alternative hypothesis of interest can be specified in terms of the parameter
space Q of the statistical model {F,X} postulated a priori by the modeler, the
Neyman–Pearson approach provides a more satisfactory solution to the problem of
choosing a test {t(X),C1,a}, a test statistic, and the associated rejection region, which are
optimal in a sense defined in terms of the power function. The modus operandi of the
Neyman–Pearson approach is the power function which ensures that the test chosen has
maximum power in the direction of the specified alternative. Moreover, the key to defining
the power function is the alternative hypothesis which takes an explicit parametric form.

In view of such a comparison, it is generally accepted that the Neyman–Pearson for-
mulation has added some rigor and coherence to the Fisher formulation and in some
ways it has superseded the latter. The Fisher approach is rarely mentioned in statistics
textbooks (a notable exception is Cox and Hinkley (1974)). However, a closer look at the
argument that the main difference between the Fisher and the Neyman–Pearson
approaches is the presence of an alternative hypothesis in the latter, suggests that this is
rather misleading.

The line of argument adopted in this book is that the Neyman–Pearson method consti-
tutes a different approach to hypothesis testing which can be utilized to improve upon
some aspects of the Fisher approach. However, the intended scope of the Fisher approach
is much broader than that of the Neyman–Pearson approach. Indeed, as argued in the
next chapter, the Fisher approach is more germane to misspecification testing.
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14.5.1 The basic objective of testing

The first important difference between the Fisher and Neyman–Pearson approaches to
testing is clearly their basic objective. The main objective of the Fisher approach is to use
the data as evidence to bear upon the validity of the null hypothesis. That is, the focus is
inferential:

to what extent does the sample realization lend credence to the null hypothesis.

On the other hand, the main purpose of the Neyman–Pearson approach is behavioral:

make a decision to accept or reject the null hypothesis by comparing its data based
support to that of the alternative hypothesis.

The differences, however, do not stop at the basic objective.

14.5.2 Testing within versus testing without

The key to the real difference between the Fisher and Neyman–Pearson approaches is
the fact that a null hypothesis is essentially a hypothesis concerning the “true” stochastic
mechanism that gave rise to the observed data as it relates to the postulated statistical
model. The fact that the hypothesis is often specified via the parameter space is of secon-
dary importance. In order to trace the implications of this let us consider a hypothesis in
the context of a simple statistical model.

As argued above, the Neyman–Pearson specification of a hypothesis takes the form:

H0 :u [Q0 against H1 :u [Q1 :5Q2Q0. (14.48)

In the case of a simple statistical model, this specification constitutes in effect a partition
of the postulated (original) probability model:

F5{f(x;u), u [Q, x[RX},

into two mutually exclusive subsets corresponding to the partition of the parameter
space Q5Q0<Q1:

F05{f(x;u), u [Q0, x[RX}, F15{f(x;u ), u [Q1, x[RX}.

In a sense, the null hypothesis is posing the question whether the “true” probability dis-
tribution, say f(x), belongs to a proper subset F0 of the originally postulated family of
distributions F:

does f(x)[F0,F? (14.49)

It turns out that a most useful way to bring out the difference between the two
approaches to testing is to view them in relation to how they complete this question.

(a) The Neyman–Pearson approach transforms this question into:

H0 : f(x)[F0 against H1 :f(x)[F1, F0<F15F. (14.50)
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(b) The Fisher approach transforms (14.49) into:

H0 : f(x)[F0 against H1 :f(x)[ [P2F0], (14.51)

P is the set of all possible statistical models (parametric or otherwise)!

N that we can view P as the set of all possible families of distributions without any
loss of generality given that, as shown in chapters 4–8, all dependence and heterogeneity
assumptions can be expressed in terms of distributions.

The notions of testing within and testing without can be visualized in terms of figure 14.9
where the arrows pointing inwards denote testing within the boundaries of the postulated
statistical model and those pointing outwards denote testing beyond these boundaries.

As argued above, in the context of the Neyman–Pearson approach the optimality of a
test depends crucially on the particular F ; the power function is defined in terms of
u[Q. The search for answering question (14.49) begins and ends within the boundaries
of the postulated statistical model. In contrast, a Fisher search begins with F0 but allows
for a much broader scouring.

At this stage the reader might object to the presence of an alternative hypothesis in the
context of the Fisher specification. After all, Fisher himself denied the existence of the
concept, as defined by Neyman and Pearson, in the context of his approach. However,
even Fisher could not deny the fact that for every null hypothesis in his approach there is
the implicit alternative hypothesis: the null is not valid. The latter notion is discernible in
all of Fisher’s discussions on testing (see in particular Fisher (1925a,1956)). We can
interpret Fisher’s objections as being directed toward the nature of the Neyman–
Pearson alternative, and in particular the restriction that the alternative should lie within
the boundaries of the postulated model. Hence, the crucial difference between the two
approaches is not the presence or absence of an alternative hypothesis but its nature.

In the case of a Fisher test the implicit alternative is much broader than that of a N–P
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test. This constitutes simultaneously a strength and a weakness of a Fisher test. It is a
strength because the modeler is assured that the “true” statistical model lies within the
union of the null and alternative hypotheses, i.e.

f(x)[P5F0< [P2F0].

No such assurance exists in the case of a N–P test; the possibility that f(x)[ [P2F] is a
real one. The Neyman–Pearson approach leaves the possibility open that both the null
and the alternative hypotheses are invalid, which will invalidate the N–P test. As argued
above, this approach pre-supposes statistical adequacy: the validity of the postulated
statistical model. This suggests that the crucial difference between the two approaches
can be best defined in terms of the concept of the implicit maintained hypothesis:

(a) Neyman–Pearson: F5F0<F1,where F5{f(x;u), u [Q, x[RX}
(b) Fisher: P5F0< [P2F0], F05{f(x;u ), u [Q0, x[RX},

which is nothing more than the union of the null and alternative hypotheses. This shows
that the implicit maintained hypothesis for a Fisher test is much broader since:

F1, [P2F0], and [P2F0] is not necessarily parametric.

An alternative but equivalent way to view the crucial difference between the Fisher
and Neyman–Pearson approaches is in terms of the domain of search for the “true” sta-
tistical model in the two cases. The Neyman–Pearson approach can be viewed as testing
within the boundaries demarcated by the postulated statistical model.

Example
Consider the case where the postulated statistical model is the simple Normal model (see
(14.4)). Testing the hypotheses:

(i) H0 :m5m0 against H1 :m?m0,
(ii) H0 :s25s0

2 against H1 :s2?s0
2,

(m,s2) [R3R1, (14.52)

constitutes testing within because in all cases the null and the alternative hypotheses
specify subsets of the postulated probability model:

F5{f(x;u)5 exp{2 (x2m)2}, u :5 (m,s2)[R3R1}.

In contrast, the Fisher approach can be viewed as testing without (outside) the bound-
aries demarcated by the postulated statistical model.

The vast domain of the implicit alternative is also the main weakness of the Fisher
approach because of the difficulties in operationalizing the notion of searching through
the set [P2F0]. In contrast, in the context of the Neyman–Pearson approach the search
through the set F1 is easily operationalized in terms of the power function, defined for all
u [Q. In the context of the Fisher approach this is clearly an open question which needs
to be explored further. However, it is worth mentioning certain obvious directions of
departure for such research.

(i) Fisher’s own results point toward a direction of local departures, in the sense that a
Fisher test statistic is evaluated at the null hypothesis and no attempt is made to
define tests with power in particular directions of departures; both the estimators

1
2s2

1
sÏ2p
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and test statistics are evaluated under the null in order to determine the p-value.
Naturally, any departures from the null that such a test statistic can be sensitive
toward could only be of a local nature, in general.

(ii) Another suggestion which arises by reading Fisher’s own testing is that opearation-
alizing the search beyond the boundaries of the null hypothesis can be based on fea-
tures of the postulated distribution (moments, quantiles, ordered sample, etc.)
beyond the pre-specified parameters of the statistical model u [Q. This is often
referred to as a non-parametric specification of the implicit alternative hypothesis.
A cursory glance at Fisher’s three books (see Fisher (1925a,1935a,1956)) reveals
that a number of tests favored by Fisher, such as goodness of fit, independence and
homogeneity tests, belong to this category. Within the same category one can clas-
sify the modern smoothing techniques (such as kernel smoothing) which attempt to
approximate theoretical concepts such as the density function and conditional
moments without postulating specific parametric forms a priori. The primary
danger with this procedure is to end up with data-specific summaries.

In connection with both of the above suggestions a modeler trained in the
Neyman–Pearson tradition is likely to question the appropriateness of such tests on the
ground that “they are likely to have low power with respect to certain directions of
departures from the null.” This of course begs the question: Why should these tests have
power against departures in specific directions, unless there is information that such
departures are likely? Moreover, one can go one step further and pose the question
whether “power” is indeed the relevant concept in the context of searching beyond the
boundaries of the null hypothesis?

Starting with the latter question first, even Fisher could not exorcize the notion of
“power” from his approach to testing. In an unguarded moment he conceded the rele-
vance of the power function “for comparing the sensitiveness, in some chosen respect, of
different possible tests of significance” (see Fisher (1925a), p. 11). This is hardly surprising
given that the presence of an implicit alternative hypothesis (the invalidity of the null) in
the Fisher approach cannot be denied. As a result, a more general notion, which measures
the sensitivity of a test statistic in detecting departures from the null, is both relevant and
desirable. However, there is no reason why this sensitivity should be considered only in
relation to the pre-specified parameters of the statistical model u [Q. This suggests that
the concept of sensitivity (power) should be extended to include such non-parametric
alternatives. Returning to the first question on power with respect to specific directions of
departures from the null hypothesis, it is clear that this question arises when there is infor-
mation for possible departures in these directions. As argued in chapters 11 and 15, in the
context of the probabilistic reduction approach to statistical model specification, such
information is often readily available and the issue of testing with respect to specific direc-
tions of departures from the null could be addressed in that framework. If this informa-
tion is not available local searching is indeed the natural way to proceed.

14.5.3 Fisher testing revisited
With the hindsight of the developments in testing since the 1930s and the above discus-
sion of the Fisher and the Neyman–Pearson approaches in mind, let us re-evaluate the
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initial criticisms of a Fisher test voiced by Neyman and Pearson (1928a) in relation to the
arbitrariness of the choice of the test statistic and the inappropriateness of the p-value.

The use of the p-value
The question which naturally arises at this stage is: What happened to the original
Neyman–Pearson criticism of the inappropriateness of the p-value? It is ironic that in
most modern textbooks on statistical inference the p-value is considered as part and
parcel of the Neyman–Pearson approach to testing! The commonly used justification for
using the p-value, often called the observed significance level, in the context of a N–P test,
is that:

the critical value ca depends on the significance level a, which is often arbitrary, except for the
requirement of being “small”… (Azzalini (1996))

Both Fisher and Neyman would turn in their graves if they were to find out how the
modern textbook hybrid on hypothesis testing managed to reconcile what they consid-
ered irreconcilable differences! As argued by Gigerenzer (1987) the current textbook
version of hypothesis testing constitutes a monstrous hybrid of these two fundamentally
different approaches to testing. After all, the significance level is a property of the test
itself, irrespective of any observed data, but the p-value is a measure which is inextricably
bound up with the specific data under consideration.

The choice of a test statistic
There is no doubt that initially the choice of pivotal functions and the resulting test statis-
tics seemed ad hoc and arbitrary. It is also generally accepted that the Neyman–Pearson
formulation has provided a more formal framework in the context of which such choices
could be made. However, the truth of the matter is that the only formal result in this
context remains the Neyman–Pearson lemma which is of very limited practical value. Of
more practical value is the likelihood ratio test, but again its value in relation to the
Neyman–Pearson stated objective is limited because it yields UMP tests only in a few cases
where the ratio is a monotone function of a certain statistic. In all other cases the modeler
finds himself scrambling to transform the likelihood ratio in ways that enable him to recog-
nize known pivotal quantities; the same thing Neyman and Pearson criticized Fisher for!
This was the case in testing the hypotheses (14.52). This solution, however, takes us all the
way back to Fisher’s view that there are certain natural “test distances” based on pivotal
functions whose form depends on the particular statistical model postulated.

By the 1940s it was known that there are certain natural pivotal functions associated
with the location/scale families of distributions (see Casella and Berger (1990)):

Type of density Form of density Pivotal functions
Location f(x2m ) (m̂n2m)

Scale f ( ) ( )
Location-scale f ( ) ( )

In addition, these pivotal functions can be used in conjuction with the following lemma
to derive more general results.

m̂n 2 m

s
x 2 m

s

1
s

m̂n

s

x
s

1
s
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Pivotal quantities lemma
Let q(X,<(u )) be a pivotal quantity for <(u ) and consider the hypotheses:

(a) H0 :<(u )5a0 against H1 :<(u )?a0,
(b) H0 :<(u )5a0 against H1 :<(u ).a0,
(c) H0 :<(u )5a0 against H1 :<(u ),a0,

where a0 is a known constant. In the case where:

t(X)5q(X,a0),

t(X) is a test statistic for testing all the above (a)–(c) hypotheses.

Example
The t-test discussed above is a particular case of this result with <(m)5m and the pivotal
quantity as given by Gosset (see (14.11)); see Barndorff-Nielsen and Cox (1994) for
further discussion on pivots.

Returning to the likelihood ratio method, the only general procedure for deriving
“optimal” (close to UMP) tests in the Neyman–Pearson approach, we note that in cases
where the modeler cannot recognize a known pivotal function (the rule rather than the
exception in econometric modeling), the only way to define a test is to use the asymptotic

form of the ratio. A glance at the likelihood ratio test statistic ln(X)5 reveals 

that it could not be used within the context of the Fisher approach because it confines
the testing to be within the boundaries of the postulated model; we include only models
parametrized by u [Q. As mentioned above, however, this test is asymptotically equiva-
lent to the score test which can be interpreted as a Fisher test because it only involves the
evaluation of the likelihood function under the null hypothesis! As shown above, for the
simple hypothesis H0 :u5u0:

s(X;u0) ,
H0
a N(0,I`(u0)),

can be used as the natural distance function to define an asymptotic test statistic of the
form:

s(X)5 [s(u0;X)]2(I`(u0))21 ,
H0
a x2(1).

Moreover, this result can be easily extended to the case of a vector of parameters as well
the case where the null hypothesis involves only a subset of the unknown parameters.
The crucial feature of the score test that in certain cases it enables us to view it as a Fisher
test is that the alternative hypothesis does not enter the derivation! By the same token,
the Wald test cannot be viewed as a Fisher test.

It is interesting to  that when the “heated” exchanges between Fisher and
Neyman–Pearson took place (see Hacking (1965)), between the late 1920s and the mid
1940s, the above asymptotic test procedures were yet to be developed. In a certain sense
the above result “takes the sting out of” the Neyman–Pearson argument that the dis-
tance functions for the Fisher tests are ad hoc and arbitrary. The fact of the matter is that
the score function often provides a natural distance for testing purposes because it

1
n

1
Ïn

max
u[Q0

L(u;X)

max
u[Q

L(u;X)
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constitutes a kind of natural “metric” for the particular family of distributions postu-
lated (see Rachev (1992) on probability metrics). There is a touch of irony in this result
because the leading proponent of finite sample statistical inference (Fisher) is vindicated
(at least partially) by asymptotic theory!

14.6 Conclusion
In the introduction to this chapter we refer to the thesis by Gigerenzer (1987) in relation to
the “hybrid theory of testing”. Gigerenzer et al. (1989, p. 106) described the situation as
follows:

Although the debate [Fisher versus Neyman–Pearson] continues among statisticians, it was
silently resolved in the “cookbooks” written in the 1940s to the 1960s, largely by non-statisticians,
to teach students in the social sciences “the rules of statistics”. Fisher’s theory of significance
testing, which was historically first, was merged with concepts from the Neyman–Pearson theory
and taught as “statistics” per se. We call this compromise the “hybrid theory” of statistical infer-
ence, and it goes without saying that neither Fisher nor Neyman and Pearson would have looked
with favor on this offspring of their forced marriage …

The above discussion proposes a reinterpretation of both the Fisher and the
Neyman–Pearson approaches to testing, viewing them as complementary not as substi-
tutes. Their two main differences come in the form of their:

(i) basic objective, and (ii) implicit maintained hypothesis.

This renders the Neyman–Pearson better suited for testing within and the Fisher
approach better suited for testing without the boundaries of the postulated model. As
argued in the next chapter, misspecification testing constitutes the quintessential form of
testing without and thus the Fisher approach, as formalized above, is tailor made for
such a purpose; the Neyman–Pearson approach needs to be modified in order to be used
for misspecification testing purposes.

14.7 Exercises

21 Compare a test as viewed by Edgeworth and Pearson. What has Pearson added to
testing a hypothesis of interest?

22 Describe the Fisher procedure for testing a hypothesis of the form:

H0 :u [Q0.

23 Explain the concept of a p-value as used by Fisher.

24 “A hypothesis of interest in a Neyman–Pearson test specified by:

H0 :u [Q0, against H1 :u [Q1,

is ultimately a hypothesis about distributions and not parameters.” Explain.

25 Explain the notions of a simple and a composite hypothesis.

26 Explain the notions of a type I and type II error. Why does one increase when the
other decreases?
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27 How does the Neyman–Pearson procedure solve the problem of a trade-off between
the type I and type II errors?

28 Explain why we care about one-sided tests.

29 “A Neyman–Pearson test is not just a test statistic.” Explain.

10 How do we define an optimal test? How is that related to the notion of an optimal
estimator? (hint: think of the ideal in each case).

11 Explain the notions of (a) the power of a test at a point and (b) the power function.

12 What do we mean by a uniformly most powerful test? “UMP tests are scarce.”Explain.

13 Explain the notions of (a) unbiased test and (b) Consistent test.

14 Explain the Neyman–Pearson lemma and comment on its limitations.

15 Explain the likelihood ratio test procedure and comment on its relationship to the
Neyman–Pearson lemma.

16 Explain why when the postulated model is misspecified all Neyman–Pearson type
tests will be invalid.

17 In the context of the simple Normal model derive tests for the following hypotheses:

H0 :m. 0, H1 :m#m0,
H0 :m,m0, H1 :m$m0,
H0 :s2.s 0

2, H1 :s2#s0
2,

H0 :s2,s0
2, H1 :s2$s0

2 .

18 Compare and contrast the Fisher and Neyman–Pearson approaches to hypothesis
testing.

19 “The main difference between the Fisher and Neyman–Pearson approaches to testing
is that the latter involves an alternative hypothesis.” Explain why this is a red herring.

20 Explain the notions testing within and testing without.

21 Using the following data on the number of births in Cyprus:
year males females total
1993 5442 5072 10514
1994 5335 5044 10379
1995 5152 4717 29869

test, in the Neyman–Pearson framework, the following hypotheses at a50.01:

(a) Arbuthnot’s conjecture for each year separately:

H0 :u50.5 against H1 :u ,0.5.

(b) N. Bernoulli’s conjecture for each year separately:

H0 :u50.4857 against H1 :u.0.4857.

(c) Repeat (a)–(b) as Fisher tests.

22 Explain how the power of the t-test increases with the sample size. State any desir-
able properties of the t-test.
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15 Misspecification testing

15.1 Introduction

Misspecification testing is concerned with testing the adequacy of the probabilistic
assumptions comprising the postulated statistical model, in the light of the observed
data. In the present book a statistical model is defined as a set of compatible probabilistic
assumptions from the three basic categories:

(D) Distribution, (M) Dependence and (H) Heterogeneity, (15.1)

(see chapters 4–14). A statistical model purports to provide an adequate description of
the stochastic mechanism that gave rise to the observed data in question; adequate in the
sense that it captures all the systematic (statistical) information in the data.

In order to make the discussion more specific, let us consider the simple Normal model:

[i] Statistical GM: Xk5E(Xk)1«k, k[N,

[ii] Probability model:

F5 f(x;u)5 exp 2 (x2m)2 , u [R3R1, x[R ,

u :5(m,s2), where m5E(Xk), s25Var(Xk), k[N, (15.2)

[iii] Sampling model: X :5(X1,X2,…,Xn) is a random sample.

This model comprises three probabilistic assumptions:

[1]: Xk,Nk(.), for all k51,2,…,n,
[2]: (X1,X2,…,Xn) are Independent,
[3]: (X1,X2,…,Xn) are Identically Distributed.

Misspecification testing amounts to assessing the validity of the assumptions [1]–[3],
given a particular data set x :5(x1,x2,…,xn). It is important to emphasize once more the
requirement for internal consistency of the model assumptions with regard to the coher-
ence of any form of statistical inference based on such models. For instance, in the above
case the distribution could not have been the Cauchy (see appendix A) because the
decomposition in [i] does not exist in the latter case since E(Xk)5`.
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15.1.1 A bird’s eye view of the chapter

After some introductory remarks tracing the roots of misspecification testing, the
problem of testing the assumptions underlying the postulated statistical model is formu-
lated in section 2. We proceed to discuss the appropriateness of the two procedures to
testing discussed in chapter 14, the Fisher and Neyman–Pearson approaches. It is argued
that the Fisher approach is better suited for misspecification testing purposes. In section
3 we discuss an assortment of misspecification tests proposed in the literature as a
prelude to a more systematic approach to the problem of deriving such tests in the
context of the probabilistic reduction (PR) approach discussed in section 4. It is argued
that the PR approach provides certain distinct advantages in misspecification testing. In
section 5 we consider several empirical examples in order to illustrate both misspecifica-
tion testing (testing without) and hypothesis testing (testing within).

15.1.2 Tracing the roots of misspecification testing

Historically we can trace the problem of misspecification testing back to the early 20th
century in connection with Pearson’s goodness of fit chi-square test (see chapter 14). This
was the first misspecification test whose primary objective was to assess the validity of
the modeler’s choice of a frequency curve to describe the data in question.

As argued in chapter 13, Pearson’s approach to statistics revolved around choosing a
frequency curve from the Pearson family which was supposed to describe the observed
data best. This choice was made on the basis of the first four sample raw moments.
Pearson’s chi-square test in this context amounted to assessing whether some distance
between the observed frequencies and the theoretical frequencies (the chosen frequency
curve) is significantly different from zero. This is a misspecification test for the adequacy
of a distributional assumption. As argued in chapter 13, Pearson’s approach to statistics
was essentially within the descriptive statistics framework, but a number of his results
can be re-interpreted in the context of modern statistical inference.

A statistical model, as defined in this book, also involves certain dependence and het-
erogeneity assumptions. These assumptions, however, were not explicitly specified in the
early 20th century. Indeed, at that time the independence assumption was implicit in
almost all modeling with the exception of certain discussions on temporal correlation
(see Hooker (1905)) in the emerging time series literature (see Morgan (1990) for further
details). Moreover, heterogeneity was viewed as a distribution problem in the sense that
the early view of bimodality was interpreted as being caused by the superposition of
different Normal densities (see Pearson (1895,1896)). As mentioned below, it was not
until the 1920s that the possibility of handling observed data exhibiting non-IID fea-
tures was raised.

The problem of misspecification testing itself is clearly stated for the first time in
Fisher’s classic1 Statistical Methods for Research Workers, first published in 1925:

730 Misspecification testing
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(iii) Problems of Distribution include the mathematical deduction of the exact nature of the
distribution in random samples of our estimates of the parameters and other statistics
designed to test the validity of our specification2 (test of Goodness of Fit). (p. 8)

In chapter 4 of the same book, Fisher discussed Pearson’s chi-square test and how it
can be applied to test not only the distribution assumption but also the independence
and homogeneity assumptions. It is true that the tests of the latter two assumptions are
limited to simple discrete random variables taking a small number of values, but the fact
of the matter is that, viewed retrospectively, they constitute the first simple misspecifica-
tion tests. Hence, when Fisher refers to goodness of fit in the above quotation he had
more in mind the testing the validity of the distribution assumption. Fisher’s utilization
of Pearson’s chi-square test in the context of experimental design modeling, and his
popularization of the t-test and F-tests, gave rise to numerous attempts to extend and
robustify them; render them less sensitive to departures from the Normality assumption.
Early attempts to test the randomness of the sample were based on the so-called runs (see
Gibbons (1985)). These results are known today as non-parametric tests which utilize
ordered samples (see chapters 4, 11) and ranks (see below). Naturally, these tests ignore
some aspects of the data such as the nature of the measurement scale and support set. By
the late 1930s, however, the result proved by Kolmogorov (1933b) provided the founda-
tion for a new class of misspecification tests for distribution assumptions based on the
empirical cumulative distribution function (see chapter 10).

The problem of testing the more general temporal independence and homogeneity
assumptions had to wait for a few more years. The necessity for testing the validity of the
temporal independence and homogeneity assumptions was noted by Yule (1921) but was
stated for the first time most clearly by Yule (1926), in his classic paper on non-sense
correlations. Referring to the formula of correlation he argued that:

it is generally as well to examine the particular assumptions from which it [a theoretical
formula] was deduced and see which of them are inapplicable to the case in point…(pp. 328–9)

Yule went on to refer explicitly to the notions of Independence and Identical distrib-
ution at an informal level and proceeded to call their validity into question in the case of
his data on marriage and mortality:

Neither series, obviously, in the least resembles a random series as required by assumption (3)
[temporal independence]… (p. 329)

After this classic paper by Yule, modelers dealing with time series data in the context
of the Normal/Linear regression:

[i] Statistical GM: Yt5b01b1xt1ut, t[T,

[ii] Probability model:

F5 f(yt |xt;u)5 exp 2 , u [R23R1, yt[R ,

u :5(b0,b1,s2), b05E(Yt)2b1E(Xt), b15 ,
Cov(Yt,Xt)

Var(Xt)

66(yt 2 b0 2 b1xt)
2

2s251
sÏ2p5
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s25Var(Yt)2 , (15.3)

[iii] Sampling model: (Y1,Y2,…,YT) is an independent sample,

were painfully aware of the dangers of deriving nonsensical conclusions. Indeed, one can
make a case that econometric modeling moved away from time series data until the early
1950s in an attempt to avoid invalid conclusions.

The first result in relation to deriving a misspecification test for temporal correlation in
the context of the simple Normal model (15.2) was given by Von Neumann (1941). He
proposed what is known nowadays as the Von Neumann ratio:

v(X)5 , where «̂k5Xk2m̂, m̂ 5 n
k51Xk.

It can be shown that this statistic can be approximated by:

v(X).2(12r̂), where r̂5 ,

showing most clearly that it is based on the first-order sample autocorrelation coefficient
of the process {Xk}`

k51. Von Neumann (1941) and Anderson (1942) gave the exact distri-
bution of this coefficient (see Anderson (1948)):

r̂5 (v(X)22),D(.);

see Anderson (1971), p. 345, for the table of percentage points of this distribution. This
test can be viewed as one of the earliest misspecification tests for temporal first-order
dependence. Indeed, even in the 1950s informal tests of temporal independence were pri-
marily based on the significance of the first few estimated sample autocorrelation
coefficients:

r̂(t)5 , t51,2,…

The Durbin–Watson test statistic extends the Von Neumann result to testing first-
order temporal dependence in the context of the Normal/Linear regression model (15.3)
and takes the form:

DW(X)5 , where ûk5Yk2b̂ 02b̂ 1xk, k51,2,…,n.

The distribution of this test statistic was tabulated by Durbin and Watson (1950,1951).
Despite this early recognition, the importance of misspecification testing was not fully

appreciated by the statistical and econometric literatures until the 1970s. Indicative of
this situation is the fact that until the early 1970s the only misspecification test (although
not explicitly recognized as such) printed out by most computer packages on linear
regression models was the Durbin–Watson test. The reason for this apparent neglect of
misspecification testing is twofold. Firstly, the distinction between testing within and
testing without has been blurred to this day and thus misspecification testing was not
separated from hypothesis testing. To the best of this author’s knowledge, the first
attempt to systematize misspecification testing and separate the two types of testing in a
textbook, was made in Spanos (1986); this attempt, however, was incomplete because at
the time the difference between the Fisher and Neyman–Pearson approaches was not
very clear to the author. Secondly, the fact that the mainstream statistical literature has

on
k52(ûk 2 ûk21)2

on
k51ûk

2

on
k5t11(Xk 2m̂)(Xk21 2m̂)

on
k52(Xk21 2m̂)2

1
2

on
k52(Xk 2m̂)(Xk21 2m̂)

on
k52(Xk21 2m̂)2
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n
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k52(«̂k 2 «̂k21)2
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k51«̂k
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2
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concentrated almost exclusively on statistical techniques for analyzing experimental type
data, where the problem of misspecification is less crucial, contributed to this neglect.

15.2 Misspecification testing: formulating the problem

In order to motivate some of the concepts needed to formulate the problem of
misspecification testing let us consider the simple Normal model as specified in (15.2).
The probabilistic assumptions specifying the model can be tested by the hypotheses:

(a) H0 :Xk,Nk(.), k51,…,n, H1 :Xk,Dk(.)?Nk(.),
(b) H0 : (X1,X2,…,Xn) are (I), H1 : (X1,X2,…,Xn) are non-(I),
(c) H0 : (X1,X2,…,Xn) are (ID), H1 : (X1,X2,…,Xn) are non-(ID).

As we can see, these hypotheses lie outside the boundaries of the postulated model (F,X)
with the implicit maintained hypothesis being P, the set of all possible probability models.

How do we specify the set of all possible models?

When postulating a statistical model (F,X) , as an adequate description of the stochastic
mechanism that gave rise to the observed data x :5(x1,x2,…,xn) , we view the latter as a
realization of the postulated sample X :5 (X1,X2,…,Xn). The key to the inductive argu-
ment of modern statistical inference is held by the assumption that the observed data
constitute one observation in the set of all possible sample realizations X, we called the
sample space (see chapter 11). In the above example of the simple Normal model, the
sample space takes the form X5Rn.

In general, the sample space is defined as the product of the support of the random
variables (X1,…,Xn) (see chapter 3), i.e.

X5RX13RX23…3RXn.

P can now be defined as the family of all joint distributions f(x1,x2,…,xn) over X. For
example, in the case where the support of the random variables making up the sample is
the real line, P includes all continuous joint distributions over Rn. Hence, the pair (P,X)
constitutes the modeler’s universe of discourse.

Postulating a statistical model amounts to choosing a subset Pu,P whose most
general form is:

Pu :5{f(x1,x2,…,xn;u), u [Q, (x1,x2,…,xn)[X}, where X5RX13RX23…3RXn.

For example, in the simple Normal model case this subset takes the form:

Pu :5 f(x1,x2,…,xn;u)5
n

k51
e{2 (xk2m)2}, u :5(m,s2)[R3R1, x[Rn .

Given that there is a one-to-one relationship between Q:5R3R1 and Pu, for simplicity
we often identify the latter with the parametric probability model F defined in terms of
the marginal distribution (see (15.2)).

 : it must be stressed that so far we assumed that Pu coincides with F only for
notational convenience; it should have been Pu all along but in the simple statistical

6
1

2s2
1
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model case it is notationally so much more convenient to use marginal instead of joint
distributions.

Using these concepts we can formalize misspecification testing in the form of the
general hypothesis:

H0 : f0(x)[Pu, against H1 : f0(x)[ [P2Pu], (15.4)

where f0(x) denotes the true (joint) distribution of the sample. This shows most clearly
that, by definition, misspecification testing constitutes a particular form of testing
without, where:

(i) the null (H0) is the postulated statistical model,
(ii) the implicit alternative (H1) is its complement with respect to the set of all possible

statistical models, and
(iii) the primary objective is to assess the validity of the postulated model in the light of

the observed data.

The main difficulty with the misspecification testing problem is:

How does one operationalize H1 : f0(x)[ [P2Pu]?

As shown in the next two subsections, this is still an open question, but a number of
suggestions have been made in the literature. Most of these suggestions amount to con-
fining H1 to the “neighborhood” of the postulated model. We discuss this question in
relation to the two alternative approaches to testing discussed in chapter 14.

15.2.1 The Fisher approach and misspecification testing
In view of the discussion in chapter 14 and the above arguments, it must be obvious to
the reader that the view adopted in this book is that the Fisher approach is the preferred
approach to misspecification testing for three reasons.

(i) The basic objective of misspecification testing coincides with that of Fisher
testing: to utilize the observed data information to bear upon the validity of the
hypothesis in question.

(ii) The hypothesis (15.4) defines a Fisher test with the implicit alternative being the
complement for the null hypothesis with respect to the set of all possible statistical
models.

(iii) The null and alternative hypotheses do not have to be defined in terms of the para-
meter space of the postulated model.

Indeed, one can go as far as pronounce the Fisher approach as tailor made for
misspecification testing purposes for an additional reason. A Fisher test, even in the case
of a parametric null hypothesis:

H0 :u5u0,

is implicitly about the validity of f(x;u) and less about u5u0 as such. Let us look at a
Fisher test more closely. The p-value:
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P(t (X). t(x); H0 valid)5p,

on the basis of which the data induced support for the null hypothesis is assessed,
depends crucially on the distribution of t(X) under the broader implicit null:

f0(x)[Pu0,Pu,

which includes H0 as part of the postulated statistical model. This implies that, when the
data do not seem to lend any credence to H0 it might be because the postulated model
(which includes the null as a subset) is invalid! For example, in the case of the null
hypothesis H0 :m570, in the context of a simple Normal model, the null might get no
support from the observed data because the Normality, or/and the Independence or/and
the Identical Distribution assumptions are invalid. Hence, a Fisher test for a parametric
null hypothesis is indirectly a test for the validity of the postulated model.

In summary, the main advantages of the Fisher approach for misspecification testing
purposes are its generality and its basic objective. The null hypothesis (H0) might take a
parametric form but the alternative (H1) will be non-parametric in the sense that it
cannot be defined in terms of the parameterization u [Q of the postulated model. In
contrast, the Neyman–Pearson approach requires both to be specified in terms of the
parameter space of a postulated model and its basic objective is to choose between the
null and the alternative hypotheses.

Fisher parametric (local) misspecification tests*
The question that arises at this stage is whether the Fisher approach can be used to derive
misspecification tests based on a parametric specification of the null hypothesis.
Returning to misspecification testing as defined in (15.4), this amounts to deriving
general misspecification tests based on the hypotheses:

H0 :u5u0, (u0[Q0), against H0 :f0(x)[ [P2Pu0]. (15.5)

As mentioned above, apart from the various pivotal functions for specific families of dis-
tributions, another promising approach seems to be the score function suggesting
natural distances as the basis of such tests. Let us consider that possibility in some more
detail. For simplicity we consider the question where u is a scalar.

In the previous section we argued that the score function enjoyed three useful proper-
ties (see chapters 13–14) whose validity depends crucially on the assumption of correct
specification. Let us return to those properties in order to explore that connection in
more detail. Assuming that f0(x) denotes the true distribution of the sample:

[i] E[s(X;u)]5©0,

where 5© reads equal under the assumption of correct specification, can be proved as
follows.

Step 1 Using the definition of the score function as a function of X, s(X;u)5 ln f(x;u):

E ln f(x;u) 5 ∫x[X ln f(x;u) f0(x)dx5 ∫x[X f0(x)dx.

Step 2 Assuming correct specification: f(x;u)5f0(x),

1df(x;u)
du 21

f(x;u)2d
du12d

du1

d
du
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∫x[X f0(x)dx5 ∫x[X dx5 ∫x[X f0(x)dx50,

where the second equality follows from the assumption that we can interchange
integration and differentiation. It is clear from the above derivation that in the
case where the assumption of correct specification does not hold, the score func-
tion does not have mean zero. Intuition suggests that even though the estimated
score function s(X;ûMLE) cannot be used as a test distance because it is zero by
definition, as argued in the previous section, there is no reason not to use s(X;u0).

Example
Consider the simple Normal model (15.2) with one unknown parameter u5m, (s2 is
assumed known for simplicity). The log-likelihood and the derivatives take the form:

<(m0) :5 ln f(x;u)52 ln (2p)2 ln (s2)2 n
k51(Xk2m0)2.

<9(m0) :5 5 n
k51(X2m0), 52 .

As shown in the previous section, the distance that suggests itself is:

s(X)5 [<9(m0)]2(I`(m0))215 n
k51(X2m0)

2
5 ,

H0
a x2(1).

This example brings out several interesting issues which deserve some further discussion.

The first is that the above test is asymptotically equivalent to the well known t-test dis-
cussed above. This confirms our conjecture above that, even in cases where a test in
connection with a parameter value is considered, the Fisher test will be implicitly a test of
misspecification. The lesson to be learned from this is that the score function will bring
out natural distance functions relating to a parameter(s) u, but the modeler should not
rely on the asymptotic distribution; he/she should look for finite sample results when
available or improve upon the asymptotic approximation. The second issue worth elabo-
rating on is that the above example brings out a weakness of the score test when used for
misspecification testing purposes. The weakness is that the resulting test will inevitably
revolve around the particular parameterization of the postulated model. This restricts
the scope of the misspecification test considerably.

Let us turn to the second property showing that the variance of the score function
coincides with the Fisher Information:

[ii] Var[s(X;u)]5©E(s2(X;u)) :5In(u).

Step 1 By definition: E(s2(X;u))5 ∫x[X
2

f0(x)dx.
In view of the fact that:

ln f(x;u)5 5 2
2
,

2
5 2 ln f(x;u).

Substituting this into the above definition:

∫x[X
2
f0(x)dx5 ∫x[X 2 ln f(x;u) f0(x)dx.2d2

du2
d2f(x;u)

du2
1

f(x;u)121df(x;u)
du 21

f(x;u)1

d2

du2
d2f(x;u)

du2
1

f(x;u)
df(x;u)

du 21
f(x;u)1

df(x;u)
du 21

f(x;u)1d2f(x;u)
du2

1
f(x;u)

df(x;u)
du 21

f(x;u)1d
du

d2

du2

21df(x;u)
du 21

f(x;u)1

1n( X 2 m0)2

s2 24o1
s23s2

n
1
n

n
s2

d2 ln f(x;u)
du2o1

s2
d ln f(x;u)

du

o1
2s2

n
2

n
2

d
du1df(x;u)

du 21df(x;u)
du 21

f(x;u)



Step 2 Under the assumption of correct specification:

∫x[X f0(x)dx5 ∫x[X dx5 ∫x[X dx50,

where the last equality depends on property [i], and thus:

E(s2(X;u))5 ∫x[X ln f(x;u) f0(x)dx :5Jn(u).

The above derivation makes it clear that the equality:

In(u) :5E
2

52E :5Jn(u),

holds only under the assumption of correct specification. Hence, intuition sug-
gests that an obvious distance to be used for testing the assumption of correct
specification is:

|In(u0)2Jn(u0)|.0.

White (1982) proposed the Information matrix test in the general case where u involves
k unknown parameters based on the sample analogues of these quantities. In such a case
these two matrices, because of symmetry, have at most r5 k(k11) different elements.
Hence, the best way to set up a test is to consider the elements defined in terms of the
derivatives of the log-density function:

d<(X;u)5 1 , <51,2,…,m, (m#r).

The sample equivalent of this quantity is:

d̂<(X)5 d<(Xk;û), <51,2,…,m,

and the test is defined in terms of the quadratic form of d̂(X) :5(d̂1(X),d̂2(X),…, d̂m(X))Á:

n(d̂(X))Á (Cov̂ (d̂(X)))21
d̂(X) ,

H0
a x2(m).

Example
Consider the simple Normal model with two unknown parameter u :5(m,s2). The log-
likelihood and the derivatives takes the form:

ln f(x;u)52 ln (2p)2 ln s22 (X2m)2,

5 (X2m), 52 ,

52 1 (X2m)2, 5 2 (X2m)2,

52 (X2m),

2
1 5 5 ,

2
1 5 1 2 1 ,1
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2s6
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4s8
1

4s4
2 ln f(x;u)

s42 ln f(x;u)
s21

1
s2

(X 2 m)2

s4
2 ln f(x;u)

m22 ln f(x;u)
m1

1
s4

2 ln f(x;u)
ms2

1
s6

1
2s4

2 ln f(x;u)
s4

1
2s4

1
2s2

 ln f(x;u)
s2

1
s2

2 ln f(x;u)
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1
s2

 ln f(x;u)
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1
2s2

1
2

1
2

o
n

k51

1
n

2 ln f(x;u)
uiuj

2 ln f(x;u)
uj

12  ln f(x;u)
ui

1

1
2

2d2 ln f(x;u)
du2122d ln f(x;u)

du11

2d2

du21

1df(x;u)
du 2d

du2d2f(x;u)
du212d2f(x;u)

du2
1

f(x;u)1
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1 52 1 2 ,

d̂1(X)5 2 50,

d̂2(X)5 23 ,

d̂3(X)5 .

These statistics show most clearly that the Information matrix test for the simple Normal
model yields the skewness-kurtosis test (15.22) discussed in the next section.

This example brings out the main weakness of the Information matrix test. As in the case
of the score test (see chapter 14), it cannot be a general test of misspecification because it
depends crucially on the parameterization of the postulated model. In this case the
Information matrix test provides a test for Normality but ignores the Independence and
Identical Distribution assumptions. To construct a more general test, we need to take
expectations of the score and the information matrix with respect to more general
(encompassing) models of the type proposed in section 4 below, in the context of the
Probabilistic Reduction approach to misspecification testing. Moreover, in view of the
fact that these tests depend exclusively on evaluating the postulated model under the
null, these tests can only have local power properties.

In concluding this section we note that Chesher (1984) has shown that the Information
matrix misspecification test can be re-interpreted as a score test for the heterogeneity of
the parameters u. The parameterization of the heterogeneity was chosen to be:

u, ID(u0,V), with H0 :V50.

In view of the above discussion of the Fisher parametric misspecification tests, this
should come as no surprise. The local nature of these tests suggests that there will be
several alternative re-interpretations of the Information matrix test based on
parametrizations relating to u.

15.2.2 The Neyman–Pearson approach and misspecification testing

As argued in the previous chapter, the Neyman–Pearson approach to hypothesis testing
constitutes testing within the boundaries demarcated by the postulated statistical model:

Pu :5{f(x1,x2,…,xn;u), u [Q, (x1,x2,…,xn)[X}.

Hence, as it stands the approach cannot be used to test the model assumptions for three
interrelated reasons:

(i) H1 by its very nature, lies outside the boundaries of the postulated model Pu,
(ii) H0 cannot not be specified in the form u [Q0,Q, and
(iii) a N–P test implicitly assumes that the postulated model Pu is valid.

As argued in chapter 14, the Neyman–Pearson approach reduces the testing problem to
a choice between two mutually exclusive subsets Pu0 and Pu1 of Pu where Q5Q0<Q1:

on
k51(X 2m̂)3

(ŝ 2)
3
2

1 1
2ŝ22

2on
k51(X 2m̂)4

(ŝ 2)211
4(ŝ2)2

2n
ŝ2

on
k51(X 2m̂)2

ŝ 211
ŝ2

(X 2 m)
s4

(X 2 m)3

2s6
(X 2 m)

2s4
2 ln f(x;u)

ms22 ln f(x;u)
s212 ln f(x;u)

m1
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Pu0 :5{f(x1,x2,…,xn;u), u [Q0, (x1,x2,…,xn)[X},

Pu1 :5{f(x1,x2,…,xn;u), u [Q1, (x1,x2,…,xn)[X}.

For this procedure to be logically coherent we require that the true distribution f0(x)
belongs to the postulated model Pu. If this assumption is invalid then the modeler
commits:

an error of the quintessential type.

The type I and II errors pale in comparison with the seriousness of this error: the test will
force the modeler to choose between two inappropriate models! Note also that any deci-
sion based on optimality considerations is likely to be erroneous in general. As argued in
chapter 14, in order to ensure logical coherence, the modeler is advised to use a N–P test
(for testing within) after the statistical adequacy of the postulated statistical model has
been established.

The question of modifying the Neyman–Pearson in order to be usable in the context
of misspecification testing will be discussed in some detail in section 4 below.

15.3 A smorgasbord of misspecification tests

In this section we consider an assortment of misspecification tests that have been dis-
cussed in the literature. These tests are grouped in terms of the fundamental taxonomy
(15.1). The procedure underlying the derivation of these tests is often ad hoc and relies
primarily on the imagination of the author to formulate the null hypothesis in an inter-
esting way. These misspecification tests are viewed as Fisher type tests whose formula-
tion is necessarily beyond the boundaries of the postulated model. In the next section we
propose a more systematic procedure to derive such tests in the context of the probabilis-
tic reduction framework.

15.3.1 Testing distribution assumptions

Pearson’s chi-square test
The first misspecification test for distributional assumptions was the chi-square test pro-
posed by Pearson (1900); see chapter 14. Over the last century this test has proved to be
one of the most general and flexible tests in the modeler’s armory. Its great virtue is that it
can be applied to both continuous and discrete as well as multivariate distributions.

A particularly insightful way to derive this test from first principles is in the context of
a multinomial distribution:

f(x1,x2,…,xn;u)5 n
k50u0

x0u1
x1 ···un

xn, xk50,1,2,…,n, k#n,

u :5 (u1,u2,…,un), x05n2 n
k51xk, u0512 n

k51uk.

Let us consider the (theoretical) hypothesis:

H0 :u15u1*, u25u2*,…,un5un* against H1 :u1?u1* or u2?u2* or ··· or un?un*.

oo

pn!
x0!x1!x2!…xn!
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The log-likelihood function is:

<(u)5 ln(n!)2 n
k50 ln(xk!)1 n

k51xk ln(uk)1x0(12 n
k51 ln (uk)).

The derivation of the MLEs takes the form:

5 2 50, ⇒ ûk5 , k51,2,…,n.

This leads to the asymptotic likelihood ratio test statistic:

22lnln(X)52
k50

n

xk ln(ûk/uk*) ,
H0
a x2(n).

This is clearly of theoretical interest only because if we view (X1,X2,…,Xn) as the rele-
vant random sample then the heterogeneity of the postulated model implies that in effect
we have one observation xk for each unknown parameter uk! However, as Fisher (1924)
showed, if the sample represents grouped random variables, (i.e. our random sample is
(X1,X2,…,Xm) where each Xk, represents a group of nk.1 random variables taking the
value k, where k50,1,2,…,m, and n

k50nk5n), then the MLE becomes ûk5 and the
asymptotic likelihood ratio statistic takes the operational form:

G2(X)52 m
k50nk ln ,

H0
a x2(m). (15.6)

Fisher derived this as an asymptotically equivalent test statistic to Pearson’s chi-
square which takes the form:

h(X)5 m
k50 ,

H0
a x2(m). (15.7)

N that nk is the observed frequency of the random variables taking the value k and
nuk the expected frequency. Interestingly enough Pearson’s test can be viewed as a score
test (see Azzalini (1996), pp. 136–7).

It turns out that the test statistics (15.6)–(15.7) are applicable to more general situa-
tions than just the multinomial distribution. They apply to any random variable X whose
distribution can be reduced to a finite set of probabilities: (p1,p2,…,pm), associated with
non-overlapping intervals which constitute a partition of RX, i.e.

(B1,B2,…,Bm), where Bi>Bj5Ø, i? j, i, j51,2,…,m, and Bk5RX.

Theoretically these probabilities can be defined by:

(a) continuous: pk5eBk f(x)dx,
(b) discrete: pk5 xi[Bk f(xi), 6 k51,2,…,m

The applicability of the tests based on (15.6)–(15.7) derives from the fact that in a
random sample (X1,X2,…,Xn) if we assume that Nk is the observed number of Xis in the
interval Bk, then Nk has a Binomial distribution with parameters (pk,n), k51,2,…,m;
assuming that the assumption relating to the form of the original distribution f(x) is
valid! Hence, E(Nk)5npk, giving rise to the statistic:

h(X)5 m
k51 ,

H0
a x2(m21). (15.8)

It is clear from this argument that in the case where the random variable X is discrete and
takes only a finite number of values the above test statistic takes all the information into

(Nk 2 npk)2

npko

o

<
m

k51

(nk 2 nuk)2

nuk
o

1 nk

nuk
2o

nk

no

o

xk

n
x0

u0

xk

uk

,(u)
uk
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consideration. However, when X is a continuous random variable it is obvious that
certain relevant information is ignored by the test statistic (15.8). Moreover, care should
be taken when the intervals (B1,B2,…,Bm) are chosen because the test statistic depends
crucially on this choice. Empirical studies suggest that the best choice is the case where
the associated probabilities under the postulated f(x) are the same, giving rise to an un-
biased chi-square test (see Mann and Wald (1942)).

Example
Let us return to chapter 10 where we conjectured that the probability of occurrence of
the integers 0–9 in the decimal expansion of irrational numbers is Uniform. It turns
out that the worst in terms of the chi-square test is that for the decimal expansion of e.
The relative frequencies of the decimal expansion of e form the 5000 term expansion:

Integer value 0 1 2 3 4 5 6 7 8 9

Frequency 4947 5056 4969 5026 4966 5046 5132 4959 4972 4925

Applying the chi-square test to the frequencies yields:

h(x)5 1 1 1 1 1

1 1 1 1 1 57.274.

In view of the fact that P(h(X).h(x);H0 is valid)50.609, the hypothesis appears to be
supported by the observations.

The main purpose of Fisher (1924) was to show that in cases where the evaluation of the
probabilities (p1,p2,…,pm), depends on q unknown parameters u:

(p1(u),p2(u),…,pm(u)),

and thus the modeler has to estimate (u) before evaluating these probabilities, the statis-
tic becomes:

h(X)5 m
k51 ,

H0
a x2(m2q21). (15.9)

There followed a heated exchange between Fisher and Pearson with the latter maintain-
ing that estimating u does not affect the asymptotic distribution; Pearson was wrong in
his disagreements with Fisher!

Tests based on the ECDF
In chapter 5 we discussed several graphical techniques, such as the P-P and Q-Q plots,
which are related to the Empirical Cumulative Distribution Function (ecdf):

F̂n(x)5 ,

but no attempt was made to measure its difference from the postulated cdf F0(x).

[no. of (X1,X2, …, Xn) whose realization do not exceed x]
n

(Nk 2 npk(û ))2

npk(û )o

(4925 2 5000)2

5000
(4972 2 5000)2

5000
(4959 2 5000)2

5000
(5132 2 5000)2

5000
(5046 2 5000)2

5000

(4966 2 5000)2

5000
(5026 2 5000)2

5000
(4969 2 5000)2

5000
(5056–5000)2

5000
(4947–5000)2

5000
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Kolmogorov’s test In chapter 10 we discussed Kolmogorov’s distance theorem which
quantifies this difference in the case of a random sample X1,X2,…,Xn using the distance:

Dn :5
x[R

sup| F̂n(x)2F0(x) | .

Kolmogorov (1933b) proved that in the case where F0(x) is continuous:

lim
n→`

P( Dn#z)5122 `
k51(21)k11e22k2z2, for z.0, uniformly in z. (15.10)

In view of the fact that the right-hand side involves no unknown parameters, this result
can be used to derive a Fisher misspecification test for the hypothesis:

H0 : F(x)5F0(x), x[R. (15.11)

The p-value is defined by: P( Dn(X)$ ; H0 valid)5p.
Approximations to such probabilities exist in the literature (see Stephens (1970)).

The implementation of this test can be made even easier using the probability integral
transformation (see chapter 3) which says that F0(x) viewed as a transformation of the
random variable X reduces the latter to a Uniformly distributed random variable:

Z5F0(X),U(0,1). (15.12)

Using this result the distance simplifies to:

Dn :5
z[[0,1]
sup | F̂n(z)2z | .

This test can be extended to the more realistic case where F0(x;u) includes some
unknown parameters (u):

H0 :F(x)[F0(x;u), u [Q, x[Rx.

The distance takes the form:

D̂n(X)5
2`,x,`

sup |Fn(x)2F0(x;û) | , x[Rx,

where û is the MLE estimator of the parameter(s) u. In general, the asymptotic distribu-
tion of this statistic will depend on the nature of the underlying distribution (see
Stephens (1986)).

Using the division points for the range of the sample x :5(x1,x2,…,x1), say
t0,t1, ···,tm, one can show that the ecdf and the Pearson chi-square test are related
via:

h(X)5n m
k51 , where DF(tk) :5F(tk11)2F(tk). (15.13)

It turns out that Pearson (1900) chose the weights (1/DF0(tk)) for the sums of squares of
the distance between the observed frequencies and postulated probabilities because the
asymptotic distribution of h(X) is free of the true distribution F0(x). The next several
statistics can be viewed in the context of such weighted averages.

Quadratic statistics An alternative way to quantify the difference between the ecdf F̂n(x)
and the postulated cdf F0(x) is in the form of the Cramer–Von Mises statistic:

[DF̂n(tk) 2 DF0(tk)]2

DF0(tk)o

d Ïn

oÏn
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v25n∫`
2`(F̂n(x)2F0(x))2dF0(x), (15.14)

where dF0(x) can be thought of as f0(x)dx. This can be viewed as a weighted average of
the form:

v25 ∫`
2`(F̂n(x)2F0(x))2w(x)d(x), (15.15)

which is a continuous index analogue of (15.3) with weights w(x) :5nf0(x). It turned out
that this was an inappropriate choice of weight because the integral often diverges. Using
the transformed random variable Z (see (15.12)) this can be written in the form:

v25 ∫ 1
0v̂n

2(z)dz, where v̂n(z) :5 (F̂n(z)2z). (15.16)

As argued in chapter 8, ŷn(z) converges to a Brownian bridge. In terms of the ordered
(Uniform) sample this simplifies to:

v25 1 n
k51 Z[k]2

2
.

Watson (1961,1962) proposed a centered form of the Cramer–Von Mises:

U25n∫`
2`[(F̂n(x)2F0(x))2 ∫`

2`(F̂n(u)2F0(u)) dF0(u)]2 dF0(x), (15.17)

which, in terms of the ordered sample, simplifies to:

U25 1 n
k51 Z[k]2

2
2n( 20.5)2.

Another variant of the Cramer–Von Mises statistic is the distance:

A25n∫`
2` dF0(x), (15.18)

proposed by Anderson and Darling (1952,1954), which simplifies to:

A252n2 n
k51{(2k21)[ln Z[k]2 ln (12 ln Z[n11–k])]}.

The asymptotic distributions and the power of these statistics have been studied exten-
sively in the literature (see D’Agostino and Stephens (1986), Durbin (1973)).

We conclude this subsection by noting that the above test statistics (15.10), (15.17),
(15.14), and (15.18) can be used to quantify the distances discussed in relation to P-P and
Q-Q plots discussed in chapter 5.

Tests based on the ordered sample
Another family of misspecification tests for distributional assumptions related to P-P
and Q-Q plots (see chapter 5) is the one based on the ordered sample:

(X[1],X[2],…,X[n]) where X[1],X[2], ···,X[n].

As argued in chapter 5, the basic idea underlying these plots is that in the case where the
random variable X can be standardized by a location (a) and a scale parameter (b) , say
Y5 , we could use the ordered sample to derive the relationship:

E(X[k])5a1bE(Y[k]), k51,2,…,n. (15.19)

By choosing E(X[k]) and E(Y[k]) judiciously we could formulate a variety of graphical
techniques based on their cross-plot which, under the distributional assumption in

3X 2 a
b 4

o1
n

3(F̂n(x) 2 F0(x))2

F0(x)(1 2 F0(x))4

x422k 2 1
2n13o1

12n

222k 2 1
2n11o1

12n

Ïn
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question, is expected to give rise to a straight line. For example, a P-P plot utilizes the
cross-plot:

, FX(X[k]) , k51,2,…,n , where 5E[FX(X[k])].

On the other hand, a Q-Q plot utilizes the cross-plot:

{(FX
21(qk), X[k])), k51,2,…,n}, where FX

21(qk).E(X[k]);

see chapter 5 for the details regarding the transformation FX(X[k]) and its inverse.
In empirical modeling the relationship (15.19) is expected to be only approximate and

thus it can be profitably viewed in the context of an auxiliary regression of the form:

X[k]5a1bE(Y[k])1yk, k51,2,…,n,

where yk5X[k]2a2bE(Y[k]), k51,2,…,n. In this sense, the graphical techniques based
on closeness to a straight line can be also quantified in terms of goodness of fit measures
for this auxiliary regression; how close the observed points are to the hypothetical line.

Testing Normality In the case of a random sample (X1,X2,…,Xn) from the Normal dis-
tribution:

Xk,N(m,s2), k51,2,…,n,

and f(y)5 . Hence, the auxiliary regression takes the form:

X[k]5m1smk1yk, k51,2,…,n,

where mk :5E(Y[k]).FX
21 , FX

21 being the inverse of the standard Normal cdf.

The estimated s and the square correlation coefficients take the form:

ŝ5 , r̂25 5 .

Shapiro and Francia (1972) proposed a test for Normality based on the hypothesis:

H0 :r250,

and derived the empirical distribution of r̂2 using Monte Carlo simulations (see chapter
11). This test was proposed as an alternative (for sample sizes n.50) to the test put
forward earlier by Shapiro and Wilk (1965). The latter test is of a similar form to that of
r̂2 but based on the statistic:

W(X)5 , 0#W#1,

where the weights (ak, k51,2,…,n) were tabulated originally by the authors for n53 to
n550. Tables of the distribution of W have been derived by Monte Carlo simulation (see
chapter 11) and reported in Shapiro and Wilk (1965) for sample sizes up to n550; see
D’Agostino and Stephens (1986) for further details. The p-value is defined by:

P(W(X),W(x); H0 valid)5p.

[on
k51 akX[k]]2

[on
k51 (Xk 2X)2]

ŝ2on
k51(mk 2 m)2

[on
k51(Xk 2 X )2]

[on
k51(X[k] 2X) (mk 2 m)]2

[on
k51(X[k] 2X)2]·[on

k51(mk 2 m)2] 
on

k51(X[k] 2X) (mk 2 m)

on
k51(mk 2 m)2

1k 2 0.375
n 1 0.1252

exp( 2 y2)
Ï2p

k
n 1 162k

n 1 115
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Tests based on moments
As argued in chapter 3, assessing distributional assumptions using moments is not a good
idea in general, because the latter do not characterize the former. Moreover, when the
moments do characterize the distribution, more often than not, an infinite number of
moments is needed. On the other hand, when we confine ourselves within a certain family
of distributions, only a small number of moments are required to characterize individual
members of the family. The classic example is the Pearson family which is defined in terms
of the first four moments. Within this family we can characterize several distributions
using these moments. For example, the Normal distribution is characterized by:

a3 :5 50, a4 :5 53,

where (a3,a4) denote the skewness and kurtosis coefficients, respectively (see chapter 3).
This was recognized by Pearson (1895) in the paper that introduced the Pearson family.
He proceeded to estimate these coefficients using their sample analogues:

â3 :5 , â4 :5 ,

and derived their asymptotic distribution under the assumption:

H0 :Xk,NIID(0,s2), k51,2,…,n, (15.20)

,a N . (15.21)

Using this result, he derived the implied equal probability ellipses (see chapter 6). Using
the graphs of these ellipses, Pearson argued that the Normality of any random sample
could be assessed and recommended the use of the Pearson family when the departures
from Normality appear to be serious enough.

These results were first utilized by Fisher (1929) who suggested the asymptotic skew-
ness kurtosis test given by:

sk(X)5 â2
31 (â423)2 ,

H0
a x2(2), P(sk(X).sk(x); H0 is valid)5p. (15.22)

The next important development was made by E. Pearson (1930) who was able to derive
the third and fourth moments of (â3,â4) under the Normality of the sample assumption.
Fisher (1930a) and Hsu and Lawley (1939) derived the exact moments up to the sixth,
showing that these higher moments were important enough to call into question the use of
asymptotic results based on the first two moments. Using these results several attempts
were made to approximate the sampling distribution of (â3,â4) under the Normality of
the sample assumption. A good approximation to the sampling distribution of â3 was
suggested by D’Agostino (1970) using the Johnson’s SU distribution (see chapter 4). It was
later found that the same distribution can be used to approximate the sampling distribu-
tion of â4. In view of the fact that for testing Normality we need to combine (â3,â4), the
basic difficulty proved to be their dependence. It turns out that even under the Normality
of the sample assumption, â3 and â4 are uncorrelated but not independent:
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E(â3 · â4)50 but E(â3
2 · â4)?E(â3

2) ·E(â4)

(see Bowman and Shenton (1975)). In the light of this, the skewness-kurtosis test (15.22)
should be used with caution because it ignores not just the dependence between â3 and â4

but also the higher-order moments! In an attempt to take these factors into considera-
tion D’Agostino and Pearson (1973) proposed a test which is based on the approxima-
tion of the distribution of (â3,â4) under the Normality of the sample assumption:

D9AP(X)5h1
2(â3)1h2

2(â4) ,
H0
a x2(2), (15.23)

where h1(.) and h2(.) represent their Normalizing transformations:

h1(â3(X))5d ln [(Y/a)1 ],

h2(â4(X))5 12 2 ,

Y5â3 , d5(ln w)2 , a5 , w25 .

Z5 , V561 1 11 , U5

(see D’Agostino and Stephens (1986)).
The same Normalizing transformations have been used by D’Agostino (1970) to

propose a skewness test for Normality based on the test statistic:

h1(â3(X)) ,
H0
a N(0,1).

Similarly, a kurtosis test for Normality based on the following test statistic:

h2(â4(X)) ,
H0
a N(0,1).

Both of these tests can be used as one sided or two sided, depending on the situation.
They can be best used to shed some light on the source of the evidence against Normality
when the omnibus test (15.23) is used.

Tests based on the skewness and kurtosis coefficients can be used to assess other
distributional assumptions, especially within the Pearson family. This line of research
has not been explored extensively beyond the Normal distribution mainly because of the
inherent difficulties of characterizing distributions using moments.

15.3.2 Testing dependence assumptions

Assessing the appropriateness of the independence assumption using graphical tech-
niques, such as the t-plot and the scatterplot, has been discussed in chapters 5–6.

Non-parametric tests of independence
In its most general form independence of a sample (X1,X2,…,Xn) is defined in terms of
joint and marginal distributions by:

1
216(n 1 3)(n 1 5)

n(n 2 2)(n 2 3)2
6(n2 2 5n 1 2)
(n 1 7)(n 1 9)4

1
264

U252
U3

8
U

â4 2
3(n 2 1)

n 1 1

Î 24n(n 2 2)(n 2 3)
(n 1 1)2(n 1 3)(n 1 5)

Î213(n2 1 27n 2 70)(n 1 1)(n 1 3)
(n 2 2)(n 1 5)(n 1 7)(n 1 9) 2 21

1
222

w2 2 11
1
2

1
22(n 1 1)(n 1 3)

6(n 2 2)1

2
1
341 2 (2/V)
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F(x1,x2,…,xn;f) 5
I

Fk(xk;uk), for all x :5(x1,x2,…,xn)[Rn. (15.24)

As shown in chapter 6, in the case of dependence the corresponding reduction based on
sequential conditioning takes the form:

F(x1,x2,…,xn;f) 
non-I
5 F1(x1;c1) 

n

k52 
Fk(xk |xk21,…,x1;ck), for all x[Rn

X. (15.25)

The simplest form of testing contemporaneous independence comes in the case of the
two random variables where:

Independence: H0 : f(x,y)5fx(x) ·fy(y) for all (x,y)[RX3RY.

Spearman’s test This test is based on the following distance:

S(X,Y)53 [2Fx(x)21][2Fy(y)21] f(x,y)dxdy,

as a measure of dependence (see chapter 4). This test was proposed by Spearman in 1904
and the idea behind it is to measure the way the grades of X and Y co-vary.

First we arrange the values of X and Y in an ascending order, i.e., (x[1],x[2],…,x[n]) and
(y[1],y[2],…,y[n]), where x[1] is the smallest value taken by X,x[2] is the second smallest, and
x[n] the largest value. Next, we define

rank(xi)5the number of values xj less than or equal to xi.

Numerical illustration Consider the following sample realization:

(x1,x2,x3,x4,x5,x6)5 (2,8,1,6,4,9),
(x[1],x[2],x[3],x[4],x[5],x[6])5 (1,2,4,6,8,9),

(r1,r2,r3,r4,r5,r6)5 (2,5,1,4,3,6).

N that for the test to be used the random variables X and Y must be measured on the
ordinal scale or higher (see chapter 1). In the case of random variables measured on the
interval or ratio scales there is some loss of information when replacing the original
observations with their ranks.

Let the ranks of X and Y be denoted by ri and si, i51,2,…,n, respectively.
Spearman’s rank correlation coefficient is defined by:

rs(X,Y)52 .

In view of the fact that:

(i) :5 n
i51ri5 :5 n

i51si5 (n11),

(ii) n
i51 (ri2 )25 n

i51 (si2 )25 ,

we can deduce that:

rs(X,Y)5
i51

n

ri2 (n11) si2 (n11) 512
i51

n

(ri2si)2.

For small values of n, (n#10) the distribution of rs(X,Y) has been tabulated (see Kanji
(1993)). For large values of n we use the asymptotic distribution:

o6
n(n2 2 1)21

2121
21o12

n(n2 2 1)

(n2 2 1)
12so1

nro1
n

1
2o1

nso1
nr

on
i51(ri 2 r)(si 2 s)

Ï on
i51(ri 2 r)2on

i51(si 2 s)2

E`

2`
E`

2`

p

p
n

k51



( )rs(X,Y) ,
H0
a N(0,1).

The p-value for this test is defined by: P( |rs(X,Y) |.rs(x,y); H0 is valid)5p.

Kendall’s tau test This test is based on the following measure of dependence between
two random variables (X,Y):

t52P((X12X2)(Y12Y2).0)21,

where t can be viewed as the correlation coefficient of the indicator functions of
(X12X2).0 and (Y12Y2).0. As such it can be viewed as the product moment correla-
tion of signs of concordance (see chapter 6). Kendall’s test statistic is defined by:

t̂(X,Y)5 n
i51

iÞj

n
j51 sign(Xi2Xj) ·sign(Yi2Yj),

and purports to measure “the extent to which the two samples follow a monotone
order.” In this sense Kendall’s test can be applied to random variables whose measure-
ment scale is the Nominal scale (see chapter 1); this is in contrast to Spearman’s where
the random variables must be of ordinal scale or higher.

For small values of n, (n#10) the distribution of rs has been tabulated (see Kanji
(1993)). For large values of n we use the asymptotic distribution:

t̂(X,Y) ,
H0
a N(0,1).

The p-value for this test is defined by: P( | t̂(X,Y) |.t̂(x,y); H0 is valid)5p.
In concluding this subsection we  that the above misspecification tests for testing

contemporaneous independence between the pairs (Xk,Yk), k51,2,…,n, can be easily
modified for testing temporal independence using the pairs (k,Xk), k51,2,…,n.

Moment-based tests of independence
The discussion of dependence in chapters 6–7 suggested that the easiest way to opera-
tionalize dependence was in terms of the moments and in particular the relationship
between joint, marginal and conditional moments. In this section we will concentrate on
deriving a test for linear dependence using the second moments over time.

Assuming that {Xk}`
k51 is a second-order stationary stochastic process we can proceed

to measure the first-order dependence using the autocorrelation coefficients:

r(t)5 , t51,2,…,n21.

r̂n(t)5

n
k5tXkXk2t 2 n

k51X 2
k

, t51,2,…,n21.
n
k51X 2

k 2 n
k51Xk

2

An obvious way to specify the null hypothesis of no linear dependence is:

H0 :r(1)5r(2)5 ···5r(m)50, for m,(n21).

Box and Pierce (1970) proposed the test statistic:

q(X)5n m
t51 r̂n

2(t) ,
H0
a x2(m).o

4o1
n34o1

n3
4o1

n34o1
n3

Cov(Xt,Xt2t)
Var(Xt)

33Ïn(n 2 1)
Ï2(2n 1 5)4

oo1
n(n 2 1)

Ïn 2 1
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Ljung and Box (1978) proposed a better finite sample approximation:

LB(X)5 r̂n
2(t) ,

H0
a x2(m).

McLeod and Li (1983) have extended the above test to the case of second-order depen-
dence as measured by the correlation between the squares of the random variables
involved:

g(t)5 , t51,2,…,m,(n21).

g(t) can be estimated by: ĝn(t)5 , t51,2,…,,m,(n21), where

ûk :5Xk2m̂n, m̂n :5 n
k51Xk, ŝn

25 n
k51 ûk

2. The McLeod–Li test statistic takes the form:

ML(X)5 ĝn
2(t) ,

H0
a x2(m).

15.3.3 Testing heterogeneity assumptions

In the context of a sequence of Independent random variables {Xk}`
k51 the Identical

Distribution (ID) assumption amounts to:

H0 : Fk(xk)5F(xk), k51,2,…

This, however, is not directly testable when we only have a finite sample (X1,X2,…,Xn)
because we have only one observation for each Fk(xk). In order to derive operational tests
we need to make certain assumptions in relation to the type of heterogeneity the modeler
has in mind.

This can be illustrated in the case where the heterogeneity is related to the mean of the
postulated distribution. In this case the null hypothesis can be operationalized using the
specification:

H0 : Fk(xk2mk)5F(xk), where mk5d01d1k, for k51,2,…

Parametric In the case of a parametric statistical model (say the simple Normal model)
this can be embedded within the postulated model by extending its mean to be hetero-
geneous and then testing the hypothesis:

H0 :d150.

Non-parametric One of the earliest non-parametric tests for heterogeneity was based on
the signs of the differences:

(Xi2Xj), for all i? j, i,j51,2,…,n.

By defining the sign function:

Sij5
1 if (Xi2Xj),0,5 0 if (Xi2Xj).0,

we can define several test statistics of the form:

3n(n 1 2)
(n 1 t) 4o

m

t51

o1
no1

n

on
k5t (û2

k 2 ŝ2)(û2
k2t 2 ŝ2

n)
on

k51 (û2
k 2 ŝ2

n)2

Cov(X 2
t,X

2
t2t)

Var(X2
t )

3n(n 1 2)
(n 1 t) 4o

m
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1#i#j#n

cijSij, where cij denotes non-negative weights.

Two such test statistics are the Mann (1945) and Daniels (1950), defined by:

M5
1#i#j#n

Sij, D5
1#i#j#n

( j2 i)Sij,

respectively. Using the assumption that under the random sample assumption all n!
orderings of the sample (X1,X2,…,Xn) are equally likely, we can deduce that:

E(M)5 n(n21), Var(M)5 n(n21)(2n15),

E(D)5 n(n221), Var(D)5 n2(n21)(n11)2.

For large enough samples we can use their asymptotic distributions for specifying
misspecification tests. For small samples, it interesting to note the relationship between
these test statistics and Spearman’s test statistic in the case where the pairs are (k,Xk),
k51,2,…,n; e.g.

D5 (n32n)(11rs).

This relationship can be utilized to derive trend tests using the tables for Spearman’s
coefficient. As shown by Cox and Stuart (1955) (see also Bhattacharyya (1984)) these
tests have reasonably good asymptotic relative efficiency (see chapter 14).

In relation to all the above non-parametric tests it is important to note that they ignore
important systematic information which can be crucial in practice. For instance, what-
ever the nature of the stochastic process {Xk}`

k51 we reduce it to a binary process with
considerable loss of information relating to the support of the original process as well as
to its measurement scale, i.e. we reduce the original measurement scale to the ordinal
scale (see chapter 1).

Kiefer’s test Under the IID assumption, the empirical counterpart to F(xk) is the ecdf
F̂n(x), as defined above, which uses all n observations. Common sense suggests that one
way to test homogeneity is to use overlapping subsets of the sample (X1,X2,…,Xn) to
evaluate different ecdfs and then compare them. With this in mind consider the following
procedure.

Chose m,n and define the random vectors:

Yk :5(xk,xk11,…,xk1m21), k51,2,…,N.

We can proceed to define the ecdf for these vectors using:

F̂N(y) :5
N

i51 I(2`,y](Yi),

and the distance function:

DN :5 sup
y[Rm

| F̂N(y)2F(y) | .

Kiefer (1961) proved that in the case of continuous distributions, for any «.0 and some
constant c.0:

o1
N

1
12

1
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1
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1
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1
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P( DN#z)$12ce2(22«)z2, for z.0. (15.26)

This can be used in conjunction with the LIL:

P lim
N→`

sup 51 51,

to set up a test for the ID assumption similar to the Kolmogorov distance test discussed
above.

15.3.4 Testing randomness

In chapter 5 we used the notion of runs (up or down) in order to provide an intuitive way
to assess the absence of predictability. The notion of runs ignores the numerical values of
the data series and concentrates just on the sign of the differences between successive
observations, i.e. replace the original observations (x1,x2,…,xn) with the signs of the
sequence:

(d1,d2,…,dn21), where dk5xk112xk, k51,2,…,n.

For instance, the observations 65–105 in figure 5.4 give rise to the following pattern of
ups and downs:

1221212211121122121221211212111211211212.

From this sequence of pluses and minuses we discern no regular pattern to be utilized to
guess the next up or down. The patterns we have in mind come in the form of runs: a sub-
sequence of one type (pluses only or minuses only) immediately preceded and succeeded
by an element of the other type. In the above case, the runs do not exhibit any regularity
because the number of runs up and down are, respectively:

{1,1,1,3,2,1,1,1,2,1,3,2,2,1}1, {2,1,2,1,2,1,2,1,1,1,1,1,1,1}2.

In chapter 5 we considered informally the random variables (see Levene (1952)):

R2 number of runs of any size, E(R)5 ,

Rk2 number of runs of size k, E(Rk)52n 22 ,

Rk92 number of runs of size k or greater, E(Rk9)52n 22 .

For large enough sample size (we strongly advise the reader to avoid these tests for small
n), the standardized forms of these random variables can be shown to be approximately
Normally distributed. The test based on R takes the form:

P( |ZR |.zR; H0 is valid)5p,

ZR5 5
random sample

,a N(0,1).

The tests based on the other random variables are formulated similarly; for the variances
see chapter 5.

R 2 12n 2 1
3 2

Î16n 2 29
90

R 2 E(R)
ÏVar(R)

1k2 1 k 2 1
(k 1 2)! 21 k 1 1

(k 1 2)!2

1k3 1 3k2 2 k 2 4
(k 1 3)! 21k2 1 3k 2 1

(k 1 3)! 2

12n 2 1
3 2

23 Ï2N DN

Ï2 ln ln N41

ÏN
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It is important to note that these tests will be sensitive to departures from both the
independence and the identical distribution assumptions; hence the label tests for ran-
domness.

Examples
(i) In the case of the above data:

n540, R528, E(R)526.3, SD(R)52.606,

hence the null hypothesis of randomness is not rejected since:

P( |ZR |.0.652; H0 is valid)50.514.

(ii) In the case of the observed data shown in figure 5.24 (argued in chapter 5 that they
exhibit positive dependence) the observations 65–105 give rise to the following sequences
of runs up and down:

{5,4,2,1,1,2,1,2,3,3}1, {1,1,3,3,1,2,2,1,2}2.

For these data the null hypothesis of randomness is strongly rejected since:

P( |ZR |.24.604; H0 is valid)50.000.

(iii) In the case of the observed data shown in figure 5.25 (argued in chapter 5 that they
exhibit negative dependence) the observations 65–105 give rise to the following
sequences of runs up and down:

{1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1}1, {1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1}2.

For these data the null hypothesis of randomness is also strongly rejected since:

P( |ZR |.4.490; H0 is valid)50.000.

(iv) In the case of the exam scores data shown in figure 1.1 and figure 1.2, under two
different orderings, alphabetical and sitting order, we conjectured in chapters 1 and 5
that the latter exhibits positive dependence but the former exhibits randomness. Let us
consider these conjectures more formally.

(a) In the case of the scores data arranged in an alphabetical order we observe the fol-
lowing runs:

{1,1,4,1,1,3,1,1,1,1,2,1,1,1,1,1,1,2,2,1,1,2,3,1,1}1,

{1,1,3,1,1,2,2,1,2,1,2,2,3,1,2,1,2,1,2,1,2,1,1,1,1}2.

For these data the null hypothesis of randomness is accepted since:

P( |ZR |.1.063; H0 is valid)50.288.

(b) In the case of the scores data arranged in sitting order we observe the following
runs:

{3,2,4,4,1,4,3,6,1,4}1, {2,2,2,4,3,3,7,4,6,1,3}2,
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For these data the null hypothesis of randomness is strongly rejected since:

P( |ZR |.27.267; H0 is valid)50.000.

These results confirm the conjectures made in chapters 1 and 5.

An alternative asymptotic test can be derived using the result by Wolfowitz (1944) that
assuming k changes with the sample size n in such a way so as 5 , K.0:

lim
n→`

P(Rk5 j)5 , j50,1,2,…

That is, the asymptotic distribution is Poisson distributed.

Levene test The results in Levene (1952) can be used to derive a portmanteau test which
utilizes both the runs up and down of size up to some m : 1#m,n. Using the notation:

r̂k2number of runs up of size k, r̆k2number of runs down of size k,
k51,…,m,n

we can construct an asymptotic runs up and down chi-square test by noting that for
r :5(r̂1,r̂2,…, r̂m,r̆1,r̆2,r̆m)9:

RD(X):5(r2E(r))Á (Cov(r))21(r2E(r)) ,
H0
a x2(2m).

This test is likely to be sensitive to departures from the IID assumptions when they give
rise to systematic runs. For further details see Spanos (1996a).

15.4 The probabilistic reduction approach and
misspecification

It should come as no surprise to the reader that the thesis adopted in this book is that the
Probabilistic Reduction (PR) approach discussed in chapters 1, 7, 10, provides a frame-
work in the context of which misspecification testing can be systematically operational-
ized. The primary reason for this is that the PR approach provides a broader than the
traditional view of the statistical model which enables the modeler to visualize what lies
beyond the postulated statistical model. This broad view of the postulated statistical
model can be utilized for misspecification testing purposes:

(a) to provide guidance for a judicious choice of appropriate misspecification tests in
the light of the information provided by the observed data patterns, and

(b) to specify broader parametrically encompassing models in the context of which the
postulated model can be tested.

In an attempt to make the discussion more specific, we consider the question of deriv-
ing misspecification tests in the context of the simple Normal model (see (15.2)). As
argued in chapter 10, the PR approach views the specification of a statistical model as
the narrowing down of the set of all possible statistical models using judiciously chosen
reduction assumptions. The choice of these assumptions is made on the basis of

(2K) je22K

j!

1
K

(k 1 1)
n
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preliminary data analysis using (mostly) graphical techniques. This reduction is opera-
tionalized by viewing a statistical model as a reduction (simplification) of the joint
distribution of all the observable r.v.(s), say Xt, for the whole of the sample period,
t51,2,…,T:

D(X1,X2,…,XT;c);

the latter is referred to as the Haavelmo distribution.

R : it is important to  that concentrating on the joint distribution for
t51,2,…,T, entails no loss of generality; Kolmogorov’s extension theorem ensures that
the structure of any stochastic processes {Zt}`

t51 satisfying the consistency condition
(see chapter 8) can be specified in terms of finite joint distributions. In order to avoid
unnecessary additional notation we take this joint distribution to coincide with the
sample size even though the postulated statistical model holds beyond the observation
period.

The simplification of the Haavelmo distribution takes the form of reducing the joint
distribution using probabilistic assumptions from all three basic categories (15.1) uti-
lized throughout chapters 2–14. In the case of the simple Normal model, the reduction
assumptions regarding the process {Xt, t[T} are:

(D) Distribution: (N) Normal,
(M) Dependence: (I) Independent,
(H) Homogeneity: (ID) Identical Distribution.

The details of the Reduction as a narrowing down of the specification are given below:

D(X1,X2,…,XT;c)5
I

ft(xt;ut) 5
IID

f(xt;u), (x1,x2,…,xT)[RT. (15.27)

The first equality follows after the imposition of independence and the second by supple-
menting independence with the identical distribution assumption. The Normality
assumption ensures that the marginal distributions f(xt;u), t51,2,…,T, are Normal. In
an important sense the PR approach constitutes an attempt to operationalize the reduc-
tion of P to the subset we call the postulated model, as symbolically shown in figure 15.1.

It is interesting to note that in the case of this simple model there is a one-to-one corre-
spondence between the reduction and model assumptions (see (15.2)) in the sense that
the former imply and are implied by the latter:

Reduction assumptions Model assumptions
[D] D(X1,X2,…,XT;c) is N, [1] Xk,Nk(.), k51,…,n,
[M] (X1,X2,…,XT) are I,

⇔
[2] (X1,X2,…,Xn) are I,

[H] (X1,X2,…,XT) are ID,
6 5

[3] (X1,X2,…,Xn) are ID.

N :
(i) This result follows from the fact that under the assumptions of IID, the assumption

p
T

t51
p
T

t51
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of Normality of the marginal distributions implies joint Normality; without the
IID assumptions this does not follow.

(ii) It is important to  that in the case of more complicated statistical models,
such as the Normal/Linear regression model, the reduction assumptions imply the
model assumptions but not vice versa.

From the point of view of misspecification testing the above PR approach offers
several advantages. First, the Haavelmo distribution defines the relevant informational
universe of discourse. This is of fundamental importance when modeling observational
data because the Haavelmo distribution provides the most general (non-operational)
description of the relevant information and thus all misspecification tests should pose
the question of unaccounted systematic information relative to the information con-
tained in this distribution. In the case of the simple Normal model, the relevant informa-
tion for misspecification testing purposes can be formalized in the context of the most
general form of reduction which imposes no reduction assumptions beyond the exis-
tence of the relevant distributions. As shown in chapter 7, this takes the form of sequen-
tial conditioning:

D(X1,X2,…,XT;c)5 ft(xt |xt21,xt22,…,x1;u t), (x1,x2,…,xT)[RT. (15.28)

As shown below, a number of misspecification tests can be developed by making this
reduction operational via the imposition of reduction assumptions weaker than those
imposed by the ones giving rise to the postulated model. This raises the question of: How
are these weaker assumptions chosen? The answer to this leads naturally to the second
advantage of the PR approach.

The broader framework provided by the PR approach enables the modeler to make

p
T

t51
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educated guesses with regard to the direction of likely departures from the postulated
statistical model. We remind the reader that in chapters 5–6 we discussed the question of
assessing probabilistic assumptions using t-plots, scatterplots, and other related
graphs; directions of possible departures can be detected at the initial specification
stage.

Third, the PR approach brings out the collective nature of misspecification testing in
the sense that the model assumptions should not be considered in isolation but as part of
a broader (and internally consistent) set of probabilistic assumptions. This is apparent
when the model assumptions are viewed in relation to the reduction assumptions. Hence,
when testing any one of the model assumptions assuming that the others are valid can
lead to misleading conclusions. As shown in chapter 5, assessing the Normality assump-
tion when the temporal independence assumption is invalid can be very misleading; see
figure 5.39 where data from a Normal distribution give rise to a bimodal smoothed
density because of the presence of temporal dependence. Related to this is the (internal)
consistency of the operational forms of the alternative hypotheses. In some sense these
alternative hypotheses should not be mutually inconsistent; ideally these hypotheses
should form an internally consistent set of probabilistic assumptions, i.e., an alternative
encompassing model (not necessarily parametric). The way the PR approach circum-
vents these problems is to derive misspecification tests by weakening the reduction (as
opposed to the model) assumptions in the context of the general reduction (15.28). The
more general reduction will lead naturally to a consistent set of probabilistic assump-
tions which specify a statistical model which encompasses the postulated model para-
metrically.

In order to be more specific, let us return to the simple Normal model where, in view of
the random sample assumption, the information set presumed appropriate a priori is the
non-informative event space:

D05(S,0/ ).

In the context of the PR approach this choice yields the statistical Generating
Mechanism (GM):

Xt5E(Xt |D0)1ut, t[T,

with the corresponding orthogonal decomposition of higher conditional moments
being:

ut
r5E(ut

r |D0)1«rt, r52,3,….,t[T.

By combining the IID assumptions with some distributional assumption, Normality, in
the present case, leads to the postulated statistical model.

A more heedful way to view the above orthogonal decompositions is in relation to the
most general form of the conditioning information set in the context of the Haavelmo
distribution D(X1,X2,…,XT;c). This comes in the form of the past history of Xt, say
(Xt21,Xt22,…,X1), defining the information set:

D0
t215s(Xt21,Xt22,…,X1).
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Within this context the first two conditional moments under the reduction assump-
tions of NIID take the form:

E(Xt |s(Xt21,Xt22,…,X1))5E(Xt)5m,

Var(Xt |s (Xt21,Xt22,…,X1))5Var(Xt)5s2, 6 t[T.

Common sense suggests that an obvious way to proceed in the direction of
misspecification testing is to modify judiciously the reduction assumptions, individually
or in combination, and via the reduction procedure give rise to alternative statistical
models. Any departures from the reduction assumptions evident in the data in question
can be utilized to determine the direction of possible departures. Misspecification tests
which are known to have power (sensitivity) in these directions can then be chosen.

An interesting example of such a process is to modify the Normal in favor of, say, the
Student’s-t distribution, maintaining the IID assumptions. This will give rise to the
simple Student’s-t model with the same first moment as the Normal but variance:

Var(Xt)5 s2, t[T,

where n denotes the degrees of freedom. A moment’s reflection suggests that for the
modeler to entertain such a change in the reduction assumptions there must be some a
priori information indicating that departures from Normality in the direction of the
Student’s-t distribution are more likely than departures in the direction of the Gamma
or some other distribution. In the context of the PR approach this is often the case
because part of the specification process is a preliminary data analysis using a variety of
graphical techniques. This procedure will give rise to misspecification tests which search
beyond the boundaries of the postulated model in specific directions. However, this does
not seem to be the best way to proceed in cases where the a priori information is not very
specific. A safer alternative is to weaken (instead of modify) the reduction assumptions
and entertain scenarios where the reduction assumptions are more general than the ones
giving rise to the postulated model. Let us explain this in the context of the simple
Normal model.

15.4.1 Testing Independence

Consider the scenario where the Independence assumption is weakened to that of
Markovness, leaving the other assumptions the same. The presence of dependence abro-
gates the initial choice of the information set D0, rendering (Xt21,Xt22,…,X1), the past
history’ of Xt, relevant. In view of Markovness the relevant the information set is:

Dt215s(Xt21).

In turn this will give rise to different conditional moment functions:

E(Xt |Dt21)5a01a1Xt211ut, E(ut
2 |Dt21)5s0

2, t[T.

To see how the reduction procedure will lead to a different but encompassing model,
let us replace the above the reduction assumptions with:

1 n

n 2 22
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(D) Distribution: (N) Normal,
(M) Dependence: (M) Markov dependent,
(H) Homogeneity: (S) second-order stationary.

These reduction assumptions give rise to the simplification:

D(X1,X2,…,XT;c)5
M

f1(x1;w1) ft(xt |xt21;wt)
S&M
5 f(x1;w1) f(xt |xt21;w), (15.29)

for all (x1,x2,…,xT) [RX
T, where f(xt |xt21;w) is the conditional Normal distribution. As

shown in chapter 8, this reduction gives rise to the Normal autoregressive model:

[1] Statistical GM: Xt5a01a1Xt211ut, t[T,

[2] Probability model:

F5 f(x1,x2,…,xT;w)5f(x1;w1) exp 2 , w[C, x[RT ,

w :5(a0,a1,s0
2)[C :5R23R1, x5(x1,x2,…,xT),

[3] Sampling model: (X1,X2,…,XT) is a stationary and Markov dependent sample,
sequentially drawn from f(xt |xt21;w), t[T. (15.30)

This relation between the simple Normal and the Normal autoregressive models, respec-
tively, can be visualized in terms of figure 15.2 where the former is the postulated statisti-
cal model and the latter is the encompassing model.

The t-test
Within the Normal autoregressive model the modeler can proceed to test the inde-
pendence assumption, which is now specified in the form:

H0 : (X1,X2,…,XT) are Independent, H1 : (X1,X2,…,XT) are Markov dependent.

66(xt 2 a0 2 a1xt21)2

s2
0

1
25(s0)21

Ï2pp
T

t52
5

p
T

t52
p
T

t52
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Figure 15.2 The notion of an encompassing model and misspecification testing
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This test in the context of the encompassing model takes the parametric form:

H0 :a150, against H1 :a1?0. (15.31)

The optimal test for (15.31) is the well known t-test discussed extensively in chapter 14
based on the test statistic:

t(X)5 ,
H0 St(n22).

(i) ,
H0 reads asymptotically approximated under the null by,

(ii) â15 , s25 T
t51 (Xt2â02â1Xt21)2, â05 2â1 21,

5 T
t51Xt, 215 t51

T21Xt.

At this stage it is imperative to  that the problem of misspecification testing,
which is by its very nature testing without (the boundaries of) the postulated model, has
been transformed into testing within a parametrically encompassing model. This can be
seen by comparing the parameterization of the postulated model (simple Normal):

u :5 (m,s2)[Q :5R3R1,

with that of the encompassing model (Normal autoregressive):

w :5(a0,a1,s0
2)[C :5R23R1.

The restriction, as specified by H0 in (15.31), reduces the Normal autoregressive model
to the simple Normal model. This can be easily seen via the parameterizations of these
models:

a15 , a05E(Xt)2a1E(Xt21), s0
25Var(Xt)2a1Cov(Xt,Xt21),

and thus: w |a150 ⇒ u :a150 ⇒ a05E(Xt)5m and s0
25Var(Xt)5s2, which coincide with

the parameters of the simple Normal model. Hence, the testing without the postulated
model with parameter space Q has been transformed into testing within the parameter-
ization C. The role of the encompassing model in misspecification testing for the postu-
lated model can be visualized in figure 15.2.

When one compares the parameterization of a1 with the correlation coefficient with
one lag:

r(1)5 ,

it is apparent that the two coincide. Hence, the above t-test coincides with the test for the
hypothesis:

H0 :r(1)50, against H1 :r(1)?0.

In some sense the above encompassing model provides a coherent way to operationalize
the test based on the correlation coefficient using the auxiliary regression:

Xt5a01a1Xt211ut, t[T.

Cov(Xt,Xt21)
Var(Xt)

Cov(Xt,Xt21)
Var(Xt)

o1
T 2 1  X o1

T  X 

  X   X o1
T 2 2

oT
t51(Xt 2X)(Xt21 2X)
oT

t51(Xt21 2X)2

a

a

ÏT (â1)
s



As shown below, the PR approach operationalizes several tests (known and new) based
on auxiliary regressions.

The F-test
The Normal AR(1), viewed as an encompassing model for the simple Normal model,
can be easily extended to the AR(m) with statistical GM:

Xt5a01 m
k51akXt2k1ut, T.m$1, t[T, (15.32)

in order to give rise to a more general misspecification test. The hypothesis of interest:
H0 : (X1,X2,…,XT) are Independent, H1 : (X1,X2,…,XT) are Markov (m) dependent,

takes the parametric form:

H0 :a150, a250, ··· , am50, against H1 :a1?0, or a2?0, ··· , or am?0.

This hypothesis can be tested using the F-test statistic:

F(X) :5 ,
H0 F(m,T2m21), (15.33)

(i) F(m,n) denotes the F-distribution with m and n degrees of freedom,
(ii) T

t51 «̂t
2, «̂t :5(Xt2m̂), m̂5 T

t51Xt, denotes the residual sum of squares from the
statistical GM:

Xt5m1«k, t[T,

(iii) T
t51 ût

2, ût :5Xt2â02 m
k51 âkXt2k, denotes the Residual Sum of Squares from the

statistical GM (15.32); see Spanos (forthcoming) for the details with regard to the
estimation of the parameters.

As shown above, in the case where m51 discussed above, the F-test reduces to the t-
test. This F-test for independence was first proposed in Spanos (1986).

The above F-test can be seen as an alternative way to operationalize the hypothesis
specified in terms of the correlation coefficients:

H0 :r(1)5r(2)5 ···5r(m)50, for m,(n21).

The main difference between the F-test as specified above and the Box–Pierce (1970) or
the Ljung and Box (1978) tests discussed in the previous section, is that the former uti-
lizes the partial correlation coefficients (see chapter 6) instead of the ordinary correlation
coefficients for lags up to m. We recommend the F-test because of its superior power
properties (see Spanos (1986), p. 401).

Testing second-order dependence
The t- and F-test proposed above in relation to testing independence in the context of the
simple Normal model are clearly misspecification tests designed to detect first-order
dependence (see chapters 4, 6). This is because they are based on correlation and partial
correlation coefficients which measure first-order dependence.

As mentioned in the previous section, a natural way to measure second-order depen-
dence is via:

g(t)5 , t51,2,…,m,(n21).
Cov(X 2

t,X
2
t2t)

Var(X 2
t )

oo

o1
To

a1T 2 m 2 1
m 2oT

t51«̂2
t oT

t51û2
t

oT
t51û2

t

o
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Using the analogy with the correlation coefficient, an obvious way to embed g(1) in an
auxiliary regression is:

Xt
25g01g1X 2

t211vt, t[T, (15.34)

where g1 :5 . This gives rise to the hypothesis:

H0 :g150, against H1 :g1?0,

which can be tested using a t-test as discussed above. Similarly, the testing of the
extended hypothesis:

H0 :g15g25 ···5gm50, against H1 :g1?0 or g2?0 or ··· or gm?0, (15.35)

in the context of the auxiliary regression:

Xt
25g01 m

k51gkX2
t2k1 m

i51
m
i51
i.j

dijXt2iXt2j1vt, t[T, (15.36)

leads to the F-test discussed above.

R : it is important to note that in the context of the simple Normal model there is
no need to use the error in order to define the auxiliary regressions since «t5Xt2m.

The F-test for the hypothesis (15.35) can be interpreted as a substitute of the
McLeod–Li test discussed in the previous section, in the same sense that the F-test for
first-order dependence is a substitute for the Ljung–Box test.

We conclude this section by noting that this type of auxiliary regressions can be
extended to higher moments, not just the first two, but this will be considered in some
detail in Spanos (forthcoming), in the context of the Normal/linear model.

15.4.2 Testing Independence/homogeneity

Consider the scenario where in addition to the weakening of the Independence assump-
tion to that of Markovness, the modeler allows for some heterogeneity in the form of
trending means. For illustration purposes, let us assume that the trending means take the
form:

E(Xt)5d01d1t, t[T.

Using the reduction assumptions:

(D) Distribution: (N) Normality,
(M) Dependence: (M) Markov dependence,
(H) Homogeneity: (S) first-order linear trend, covariance stationarity,

in the context of the reduction in (15.29), enables us to concentrate only on the bivariate
joint distribution, i.e.

,N .13(d0 1 d1t)
(d0 1 d1(t 2 1))4,3s11

s12
  

s12

s22
421 Xt

Xt21
2

ooo

Cov(X 2
t,X

2
t21)

Var(X 2
t )
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The conditional density f(xt |xt21;f) takes the form:

(Xt |Xt21),N(a01gt1a1Xt21, s0
2),

a0 :5(d0(12a1)1a1d1), g5d1(12a1), a1 :5 , s0
2 :5s112 .

This gives rise to the Normal autoregressive model with a trend:

[1] Statistical GM: Xt5a01gt1a1Xt211ut, t[T,

[2] Probability model:

F5 f(x1,x2,…,xT;f)5f(x1;f1) exp 2 ,

f[C*, x[RT, f :5 (a0,g,a1,s0
2)[C*:5R33R1,

[3] Sampling model: (X1,X2,…,XT) is a stationary and Markov dependent and mean-
heterogeneous sample, sequentially drawn from f(xt |xt21;f), t[T. (15.37)

In the context of the new encompassing model the null hypothesis for testing both
Independence and Identical distribution takes the parametric form:

H0 :g50 and a150, against H1 :g?0 or a1?0. (15.38)

The optimal test in this case is also the F-test as specified in (15.33) with
ût :5Xt2 â02ĝt2 â1Xt21.

15.4.3 Testing Normality/Independence

The encompassing model can be extended further by also weakening the distributional
assumption of Normality. The idea is to postulate a family of distributions which includes
Normality as a special case. In cases where the IID assumptions are maintained this family
can be a univariate family such as the Pearson family. In cases where the modeler wants to
weaken the IID assumptions, as well, this family has to be multivariate. In both cases the
choice has to be guided by the observed data patterns revealed by a preliminary data
analysis. For example, in the case where there is information to suggest that although bell
shape symmetry is satisfied by the data, the Normality assumption is suspect, the elliptical
symmetric family might be an appropriate choice. Using the reduction assumptions:

(D) Distribution: («) Elliptically symmetric,
(M) Dependence: (M) Markov dependence,
(H) Homogeneity: (S) second-order stationarity,

the simplification in (15.29) gives rise to the elliptical autoregressive model:

[i] Statistical GM: Xt5a01a1Xt211ek, t[T,

[ii] Probability model:

F5 f(x1,x2,…,xT :u)5f(x1;u1) f(xt |xt21;c) [E2elliptically symmetric ,

c :5(a0,a1,s0
2,g) [V :5R23R13Rm, x[RT,

6p
T

t52
5

66(xt 2 a0 2 gt 2 a1xt21)2

s2
0

1
25(s0)21

Ï2pp
T

t52
5

s2
12

s22

s12
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[iii] Sampling model: X :5(X1,X2,…,XT) is a Markov/stationary sample.

As it stands this does not constitute an operational model. To give rise to an operational
parametric model we need to choose a particular member of the elliptically symmetric
family (see Fang et al. (1990)); the subset of parameters g vary with the particular distri-
bution. These parameters are related to the skedastic function which takes the general
form:

E(ut
2 |s(Xt21))5h(Xt21), t[T. (15.39)

As shown in Spanos (1995a), there is a general form for the function h(.) which applies to
the whole elliptically symmetric family which can be estimated non-parametrically. Such
non-parametrically estimated forms can be utilized to derive tests of dynamic hetero-
skedasticity, which in the context of the elliptically symmetric family constitute tests of
Normality. This is because within this family the Normal is the only distribution for
which:

E(ut
2 |s(Xt21))5s2, t[T.

It is interesting to  that the misspecification test based on the auxiliary regression
(15.34) can be placed within the context of (15.39) when the underlying distribution is
assumed to be Student’s t.

In concluding this subsection we reiterate again that in the context of the PR approach
the relevant information is often available by looking at a number of data plots (see
chapters 5–6), regarding specific directions of possible departures from the assumptions
of the postulated model. This information can be utilized to choose the encompassing
models and the resulting misspecification tests. In addition, this information can be uti-
lized to shed some light on the question of respecification (see chapter 10).

At this stage it is imperative to discuss the nature of the misspecification tests (t-tests
and F-tests) as presented above.

15.4.4 Are these Neyman–Pearson tests?

The question which naturally arises at this stage is whether the above parametric
hypotheses lead naturally to a parametric test in the Neyman–Pearson tradition of
testing within. After all both the t-test and F-test are well known Neyman–Pearson tests.
In relation to the parametric set up it looks as though this is indeed testing within the
encompassing model with the postulated model denoting the null hypothesis. Indeed,
the testing without (the boundaries of) the postulated model has been transformed into
testing within a parametrically encompassing model.

In the general case the parametrically encompassing model takes the form:

Pc :5{f(x1,x2,…,xn;c), c[C, (x1,x2,…,xn) [X}.

and the postulated model:

Pu :5{f(x1,x2,…,xn;u), u[Q, (x1,x2,…,xn) [X}.

where Q,C.
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In view of the above discussion, the first modification required for the
Neyman–Pearson approach to be used for misspecification testing purposes is to con-
struct an encompassing model in the context of which certain parametric restrictions
ensure that this model subsumes to the postulated statistical model. These restrictions
constitute a way to parameterize of the misspecification test in the context of the encom-
passing model.

Does this imply that the tests themselves are Neyman–Pearson tests?

The short answer is No, for several reasons.
First, in view of the fact that the Neyman–Pearson approach implicitly assumes that:

the encompassing model Pc is statistically adequate,

(see chapter 14), the possibility exists that neither model is appropriate. In view of the
fact that the implicit maintained model is C, the possibility that the true model lies in
[P2Pc] should be explicitly acknowledged. This possibility raises several issues the
most important of which is that the modeler should not adopt the alternative (encom-
passing model) when the data indicate no support for the null (the postulated model).
This is in contrast to the Neyman–Pearson framework, with a decision rule defined as
a choice between H0 and H1, and the modeler is supposed to adopt the alternative
model. In the terminology of chapters 1 and 10, the issue of misspecification testing
should be separated from that of respecification (choosing an alternative statistical
model).

Second, despite the testing within (the encompassing model) and the parameteriza-
tion of the hypothesis of interest in terms of C, the above misspecification tests are in
essence Fisher tests, where the set of all possible models P is restricted to the encompass-
ing model. The primary objective of these tests coincides with that of a Fisher test: to
determine the extent to which the observed data lend credence to the null hypothesis.
Hence, when a Neyman–Pearson test is used for misspecification testing purposes the
modeler needs to replace its basic objective with that of the Fisher test. The significance
level a, interpreted in terms of what happens in the long run when the experiment is
repeated a large number of times, is irrelevant because the question the modeler poses
concerns the particular sample realization.

In terms of figure 14.9 (modified opposite as figure 15.3), used to visualize the differ-
ence between testing without and testing within in chapter 14, we can view the encom-
passing model as a way to systematize the searching beyond the boundaries of the
postulated model. This should be contrasted with the ad hoc searching for possible
departures which relax one assumption at a time retaining the rest of the structure of
the postulated model (see figure 15.4). A number of misspecification tests in the tradi-
tional textbook approach constitute examples of such ad hoc searches which often give
rise to self-contradictory assumptions; a set of assumptions without internal consis-
tency. For example, the traditional literature proceeds to test for dynamic hetero-
skedasticity and/or non-linearity in the context of an autoregressive model and at the
same time maintain the Normality assumption (see Spanos (1995a) for the implicit
inconsistency). This, in effect reduces the set of specified statistical models down to the
empty set!
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15.5 Empirical examples
We conclude this chapter with empirical examples designed to emphasize some of the
important points relating to testing (both within and without) using observed data.

15.5.1 Econometrics exam scores

Consider the data given in table 15.1 which represent the exam scores in an Econometrics
exam in 1994, arranged in alphabetical order.

A cursory look at the t-plot shown in figure 15.5 suggests that the data do not exhibit
any dependence or/and heterogeneity (see chapter 5 on reading t-plots). Moreover, the
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Figure 15.3 The notion of an encompassing model and testing without

Figure 15.4 Ad hoc searching for departures from the postulated model
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smoothed histogram (see chapter 5) of the (standardized) data (compare the solid line in
figure 15.6 with the standard normal density in dotted line) suggests that the Normality
assumption does not seem unreasonable.

R : the apparent discrepancy between the smoothed histogram and the Normal
density does not seem at first sight serious enough to render the Normality assumption
inappropriate.

On the above evidence furnished by the simple graphical techniques, the modeler
might proceed by adopting the simple Normal model as appropriate to describe the sto-
chastic mechanism that has given rise to the above data. As part of the department’s
policy for the comparability of examination grading the professor is asked to provide
evidence that:

766 Misspecification testing

Table 15.1. Data on econometrics exam scores

69.0 77.0 96.0 93.0 51.0 85.0 71.0 62.0 56.0 69.0 70.0 46.0
78.0 92.0 41.0 65.0 80.0 44.0 51.0 64.0 91.0 61.0 80.0 76.0
56.0 43.0 53.0 80.0 67.0 64.0 99.0 45.0 70.0 78.0 88.0 68.0
91.0 55.0 58.0 82.0 58.0 65.0 50.0 60.0 85.0 61.0 57.0 51.0
74.0 58.0 73.0 98.0 70.0 86.0 80.0 42.0 70.0 72.0 79.0 94.0
62.0 47.0 74.0 69.0 83.0 84.0 91.0 69.0 74.0 56.0 81.0 72.0

Figure 15.5 Econometrics exam scores



H0 : m570 against H1 : m?70. (15.40)

Estimating the simple Normal model yielded:

Xt569.583
(1.774)

1
(15.056)

«̂t , T572, (15.41)

where the numbers in parentheses refers to the estimated standard errors.
Before we proceed to test the hypothesis (15.40) in the context of the estimated model

we need to assess its statistical adequacy. This is because as argued in chapter 14 a N–P
test depends crucially on the validity of the postulated statistical model. The
Neyman–Pearson theory is appropriate for testing within the boundaries demarcated by
the postulated model. In general, when any of the assumptions underlying the model in
question are invalid, the estimators involved are no longer optimal and they do not have
the distributions the modeler assumes they have. As a result the test statistics do not
follow the assumed distributions and in a sense the modeler is looking up the wrong
tables to calculate the size or/and the power of the test.

In the case of the simple Normal model (see (15.2) the underlying assumptions are:

(i) Normality: Xk,Nk(.), for all k51,2,…,n,
(ii) Independence of the sample (X1,X2,…,Xn), and
(iii) Identical distribution for the sample (X1,X2…,Xn).

Let us discuss the validity of these assumptions for the econometric exam scores in
reverse order.

Misspecification testing
It is important to emphasize at the outset that it is always advisable to apply the various
misspecification tests in conjunction with the corresponding graphical techniques dis-
cussed in chapters 5–6. As part of the preliminary data analysis we report the following
summary statistics:
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Sample mean: 5 T
k51xk569.583,

Sample variance: T
k51 (xk2 )25226.68,

Sample skewness: 0.009,

Sample kurtosis: 2.185,

Sample median: 70,

min(x1,x2,…,xT) : 41, max(x1,x2,…,xT) : 99,
1st quartile: 58, 3rd quartile: 80.

N that these sample summary statistics can be very misleading in cases where the
IID assumptions are not valid!

Testing homogeneity (ID)
Let us consider testing the ID assumption using the auxiliary regression with a first-
order trend polynomial:

Xt567.642
(3.602)

10.053
(0.086)

·t1
(15.122)

«̂t , T572. (15.42)

The misspecification test amounts to testing the significance of the coefficient of t, which
is the familiar t-test:

t(x)5 50.620[0.537].

This test indicates no departures from the ID assumption. This can be easily seen in
figure 15.5 where no apparent departures from homogeneity are discernible. The same t-
plot suggests that there is no need for other misspecification tests based on alternative
forms of heterogeneity.

A general graphical technique that can be used to assess the presence of heterogeneity
is the t-plot of the recursive estimates of the first two moments. In an attempt to allow the
data to indicate any departures from the Identical Distribution (ID) assumption, we esti-
mate the mean and the variance using an initial small sub-sample, say T1,T:

m̂(T1)5 T1
k51Xk, ŝ2(T1)5 T1

k51(Xk2m̂(T1))2,

and then update these estimates recursively by increasing the sample size by one observa-
tion at a time, i.e.

m̂(t)5 t
k51Xk, 6ŝ2(t)5 t

k51(Xk2m̂(t))2,
t5T111,T112,…,T.

This will give rise to two sequences of estimates:

{(m̂(T1),m̂(T111),…, m̂(T)), (ŝ2(T1), ŝ2(T111),…, ŝ2(T))},

which can be plotted over the index. The idea is that if the observed data exhibit hetero-
geneity over the index set t51,2,…,T, this will show as systematic departures from the

o1
t 2 1

o1
t

o1
T1 2 1o1

T1

10.053
0.0862

xo1
T 2 1

o1
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constant value assumed by the ID assumption. In figure 15.7 we can see the t-plot of the
recursive estimates for the mean using T1520 together with the dotted lines representing
one standard deviation on either side of the mean. Under normal circumstances we
would expect the recursive mean estimates to be relatively constant and the dotted lines
to exhibit a narrowing of the gap between them and m̂(t) as t→T (information
increases). The recursive mean estimates appear to hover just below the value 70 with the
one standard dotted lines exhibiting mild convergence. In figure 15.8 we can see the
recursive estimates of the standard deviation which appears to be hovering
just above the value 15, exhibiting signs of convergence.

(ÏVar(X))
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Figure 15.7 Recursive estimates of E(X) for the Econometrics exam scores

Figure 15.8 Recursive estimates of for the Econometrics exam scoresÏVar(X)
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Testing Independence

(i) The first misspecification test for temporal non-correlation to be applied is the
Ljung–Box test for m54:

LB(X)5 r̂n
2(t)53.259[0.515],

where the number in square brackets refers to the p-value. This test does not indi-
cate departures from first-order Independence. Applying this test using several
other values of m confirms this conclusion.

(ii) The second misspecification test to be applied is the N–P type encompassing test
which compares the estimated simple Normal model (15.41) with the AR(2) model:

Xt581.175
(12.211)

20.032
(0.121)

Xt2120.137
(0.121)

Xt221
(15.322)

ût , T570. (15.43)

The misspecification test is just the F-test for the joint significance of the
coefficients of Xt21 and Xt22:

F(x)50.662[0.519],

where F(x) denotes the value of the F-statistic with 2 and 67 degrees of freedom.
This result confirms the conclusion of the previous test.

As argued above, both of the above temporal dependence misspecification tests
restrict the form of possible dependence to first-order. It is often advisable to test
for higher-order dependence as well.

(iii) The McLeod–Li test for second-order temporal dependence which for m54
yields:

ML(X)5 ĝn
2(t)54.150[0.386],

which indicates no departures from the assumption of Independence. Applying
this test for several other values of m confirms this conclusion.

(iv) The F-test for second-order dependence based on the auxiliary regression:

X̂t
255883.648

(937.384)
20.283

(0.545)
X2

t2120.327
(0.474)

X2
t2210.468

(1.005)
Xt21Xt22, T570, (15.44)

which tests the joint significance of the coefficients of (X2
t21,X2

t22,Xt21Xt22), yields:

F(x)50.385[0.765],

confirming the conclusion of the previous test.

Testing Independence/homogeneity
The assumptions of IID define what we called throughout this book randomness. A first
stage misspecification test for randomness has been proposed above using the results in
Levene (1952). This is a first stage test because it can be used for any data set irrespective
of the nature of the measurement scale (see chapter 1) because it abstracts from the
numerical values of the data and considers only the so-called runs up and down (see also
chapter 5). The Levene test for randomness is based on the joint contribution of runs (up
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and down) up to a certain length m; often m is just the maximum length of the observed
runs. In the case of the econometrics exam scores data, the Levene randomness test for
m51,…,4 yields:

RD(x;2)53.290[0.193], RD(x;4)53.998[0.408],

RD(x;6)54.983[0.546], RD(x;8)55.863[0.193],

which indicate no departures from the IID assumptions.

(i) Another misspecification test for randomness can be devised by combining the F-
tests for Independence and Identically Distributed assumptions. That is, the auxil-
iary regression (15.42) can be combined with (15.43) and (15.44) in order to test
Independence and homogeneity jointly by assessing the joint significance of the
coefficients of (t,Xt21,Xt22) based on the auxiliary regression:

Xt579.289
(12.459)

10.074
(0.091)

·t20.032
(0.121)

Xt2120.142
(0.122)

Xt221
(15.361)

ût , T570,

F(x)50.659[0.580],

where F(x) denotes the value of the F-statistic with 3 and 66 degrees of freedom.
(ii) The F-test for second-order dependence and trend heterogeneity, based on the aux-

iliary regression:

X̂t
255639.490

(1044.297)
17.087

(13.057)
·t20.242

(0.553)
X2

t2120.292
(0.481)

X 2
t2210.384

(1.023)
Xt21Xt22, T570,

(15.45)

which tests the joint significance of the coefficients of (t,X2
t21,X2

t22,Xt21Xt22), yields:

F(x)50.385[0.765],

where F(x) denotes the value of the F-statistic with 4 and 65 degrees of freedom.

Both of the above tests indicate no departures from the Independence/homogeneity
assumptions.

Testing Normality
As discussed above, testing Normality can take a number of different forms.

(i) The first family of tests for the Normality assumption to be utilized is the
D’Agostino–Pearson which is based on the skewness and kurtosis coefficients. For
the above data:

â3520.009, â452.185.

The skewness-kurtosis and the D’Agostino–Pearson misspecification tests for
Normality yields:

sk(x)51.996[0.367], D9AP(x)54.025[0.134],

indicating no departures from the Normality assumption.
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(ii) Another group of tests for Normality, widely used in the literature, is the one uti-
lizing the Empirical Cumulative Distribution Function (see section 3):

Kolmogorov: Dn50.043[0.150],
Anderson–Darling: A250.271[0.664].

(iii) A third group of tests is based on the ordered sample. The initial test in this cate-
gory is:

Shapiro–Wilk: W50.964[0.110].

As we can see, none of these tests indicates apparent departures from Normality.

Testing within: Neyman–Pearson tests
Taken together the above misspecification tests suggest that the simple Normal model
appears to provide a statistically adequate description of the mechanism that gave rise to
the above data. This enables the modeler to proceed to test within the boundaries of the
postulated model the hypothesis (15.40). The appropriate statistic is the well known t-
test statistic:

t(X)5 ,
H0 St(n21), (15.46)

where ,
H0 reads under H0 is distributed as (see chapter 14).

For the above data: m̂n572.15, s513.335 and the sample size n572:

t(x)5 5 51.019.

In view of the fact that for a50.05, ca52.021, we can see that H0 is accepted in this case
because the value of the test statistic is within the acceptance region.

Another feature of the distribution which is of interest is the hypothesis:

H0 :s25144 against H1 :s2?144. (15.47)

The appropriate test statistic is given by (see chapter 14):

n(X)5 ,
H0

x2(n21).

Substituting the estimates into the test statistic yields:

n(x)5 548.160.

From the chi-square tables we can determine the values c1,c2 for the two-sided test for
a50.05 and d.f.539:c1524.433 and c2559.342. In view of the fact that the value of
the test statistic lies between these two critical values we accept H0. This decision does
not change even if we use a one-sided alternative H1 :s2.144, since the critical value for
a50.05 is c555.759.

A cautionary note
We conclude this subsection with a cautionary note. The fact that the various
misspecification tests applied to the Econometrics exam scores data indicate no depar-

(39)(13.335)2

(12)2

(n 2 1)s2

s2
0

1(6.32)(2.15)
13.335 21Ïn(m̂n 2 70)

s 2

1Ïn(m̂n 2 m0)
s 2

772 Misspecification testing



tures from the assumptions of the postulated model, does not mean that the modeler can
be sure that the postulated model is valid! For example, a closer scrutiny of the Normality
assumption using separate D’Agostino skewness and kurtosis tests reveals a somewhat
different story:

D9AS(x)520.034[0.486], D9AK(x)522.006[0.022].

These results indicate that, although the data do lend support to the symmetry assump-
tion, they call into question the mesokurticity of the underlying distribution. Indeed,
they suggest that the underlying distribution is symmetric but platykurtic; the
platykurticity is indicated by a negative sign. In the next subsection we pursue the
potency of the misspecification tests based on the skewness and kurtosis coefficients
further using the dice data. In the last subsection we return to the Econometrics exam
scores data in an attempt to reconsider the distribution assumption by respecifying the
simple Normal to the simple Beta model.

15.5.2 The dice data

A data set used in chapter 1 refers to 100 replications of casting two dice and adding the
number of dots appearing on the uppermost faces, shown in table 1.2 (see chapter 1). We
conjectured then that the observed data exhibit the random sample features (IID) and
the distribution is triangular as shown in figure 1.2. The discussion that follows consti-
tutes an attempt to warn the modeler of the dangers in choosing a statistical model
without putting much thought into it and then applying some of these misspecification
tests uncritically.

Let us assume that the modeler proceeds to choose the simple Normal because it is
very convenient in the sense that several statistical inference results relating to estima-
tion, testing and prediction are available. Moreover, these results are easily applied using
any statistical computer package. In contrast, if the modeler proceeds to choose a simple
statistical model such as the Beta, very few inference results are available and rarely
implementable using well known statistical computer packages.

Estimation of the simple Normal model using the dice data yielded:

Xt57.080
(0.245)

1
(2.448)

«̂ t , T5100. (15.48)

Assuming that this estimated model is statistically adequate, the estimate of the mean
seems very close to the true value known to be m57.0. Before we make any pronounce-
ments to that effect, let us proceed to consider the statistical adequacy of this estimated
model.

Misspecification testing

Testing homogeneity (ID)
In addition to the runs test applied in section 3 above let us consider testing the ID
assumption using the auxiliary regression with a first-order trend polynomial:

Xt57.193
(0.496)

20.002
(0.009)

·t1
(0.793)

«̂ t , T5100.
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The misspecification test amounts to testing the significance of the coefficient of t, which
is the familiar t-test:

t(x)5 50.263[0.793].

This test indicates no departures from the assumption of ID.

Testing Independence
Consider testing Independence using the same misspecification tests used above.

(i) The Ljung–Box misspecification test for m54:

LB(X)5 r̂n
2(t)53.667[0.453].

The p-value in square brackets suggests the data lend credence to the hypothesis of
Independence for these data.

(ii) The second misspecification test to be applied is the N–P type encompassing test
which compares the AR(1) model:

Xt57.856
(0.759)

20.103
(0.101)

Xt211
(2.425)

ût , T599,

with the estimated model (15.48). This is just the t-test for the significance of the
coefficient of Xt21 in the AR(1) model, which yields:

521.021[0.310],

confirming that the data do lend credence to the independence assumption.
(iii) The third misspecification test to be applied is the McLeod–Li test for second-

order dependence with m54:

ML(X)5 ĝn
2(t)53.469[0.483].

None of the above tests indicates departures from the Independence assumption.

Testing Independence/homogeneity
The Levene randomness test for m51,2,3 yields:

RD(x;2)51.906[0.386], RD(x;4)54.448[0.349], RD(x;6)55.651[0.463],

which indicates no departures from the IID assumptions.

Testing Normality
In an attempt to illustrate some of the dangers of using misspecification tests thought-
lessly, let us ignore (for a few minutes) that the underlying distribution for the dice data is
triangular (known to the modeler) and proceed to test whether the distribution is
Normal! The sample skewness and kurtosis coefficients are:

(â3520.035, â452.3362).

(i) The skewness-kurtosis (asymptotic) test yielded:

sk(x)5 (20.035)21 (2.36223)251.716[0.424].100
24
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The p-value suggests that the data do lend credence to the Normality assumption, if
we take this result at face value.

(ii) The D’Agostino–Pearson skewness-kurtosis test yielded:

D9AP(x)52.677[0.262],

which also suggests (not as strongly) that the data do lend credence to the
Normality assumption!

A moment’s reflection suggest that these results are misleading because we know that the
distribution is (a) discrete and (b) triangular. Ignoring the discrete nature of the random
variable in question for a moment, the question that arises is: Why do we get the above
results? The simple answer is that the above tests involve the joint hypothesis:

H0 :a350 and a453,

which assess both the symmetry and the mesokurtosis of the underlying distribution. As
with all joint hypotheses one component can be valid and the other invalid but the
overall result might go either way. In the present case, symmetry is not at issue but
mesokurtosis is. Hence, a more appropriate test for departures from Normality should
be based on the single hypothesis:

H0 :a453.

The D’Agostino kurtosis test yielded:

D9AK(x)521.629[0.051],

which gives some indication that the underlying distribution is more likely to be
platykurtic rather than mesokurtic (Normal)! The indication, however, is not clear cut.
N that the kurtosis coefficient of the distribution in table 1.3 is: a452.3657.

The above discussion brings out an important cautionary note in relation to
misspecification testing:

Do not rely exclusively on pre-packaged misspecification tests!

The idea of using a set of misspecification tests, as pre-packaged by the author of the
computer program, for all data sets, runs contrary to the spirit of the above discussion of
misspecification testing. As shown below, if the modeler were to use other misspecifica-
tion tests, some of them would indicate departures from Normality.
(iii) The Anderson–Darling test yields:

A250.772[0.044],

which indicates departures from Normality; ignoring again the discreteness of the
random variable

(iv) The Shapiro–Wilk test yields:

W50.958[0.015],

which indicates apparent departures from Normality.
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Testing the underlying distributional assumption
Returning to the distribution in figure 1.5, we can see that the above misspecification
tests are completely inappropriate because the underlying random variable is clearly dis-
crete! In the scores data, discussed above, the underlying variable can be viewed as
continuous (even though its observed values are all integers) because theoretically all
values between 0 and 100 are possible and the integers represent rounded off real
numbers.

In view of the discrete nature of the underlying random variable, the modeler should
proceed to assess whether the underlying distribution that gave rise to the observed data
is indeed the one specified in table 1.3 (see chapter 1). A natural misspecification test for
this assessment is Pearson’s chi-square test, which yields:

h(X)5 1 1 1 1 1 1

1 1 1 1 1 50.2591.

In view of the fact that P(h(X).h(x); H0 is valid)50.999, the observed data lend
(strong) credence to the hypothesis that the underlying distribution is the one defined in
table 1.3.

15.5.3 Macro-Economic Principles exam scores: sitting arrangement

Let us return to the macro-principles exam scores, first encountered in chapter 1,
which was informally discussed using graphical techniques in chapter 5. In both chap-
ters we speculated that the exam scores, when ordered according to the sitting
arrangement during the exam, exhibited positive dependence; cheating had taken
place. Let us consider testing this conjecture formally in the context of the simple
Normal model.

Estimating the simple Normal model using these data yielded:

Xt571.686
(1.6264)

1
(13.606)

«̂ t , T570.

Misspecification testing

Testing homogeneity (ID)
Let us consider testing the ID assumption using the auxiliary regression with a first-
order trend polynomial:

Xt569.986
(3.303)

10.048
(0.081)

·t1
(13.670)

«̂ t , T570.

The misspecification test amounts to testing the significance of the coefficient of t, which
is the familiar t-test:

t(x)5 50.570[0.556].

This test indicates no departures from the assumption of ID.

10.048
0.0812

(3 2 2.7778)2

2.7778
(6 2 5.5556)2

5.5556
(9 2 8.3333)2

8.3333
(11 2 11.111)2

11.111
(14 2 13.889)2

13.889

(17 2 16.667)2

16.667
(13 2 13.889)2

13.889
(11 2 11.111)2

11.111
(8 2 8.3333)2

8.3333
(5 2 5.5556)2

5.5556
(3 2 2.7778)2
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Testing Independence
(i) Consider first the Ljung–Box misspecification test for m54:

LB(X)5 r̂n
2(t)522.600[0.015].

The p-value in square brackets suggests the data lend no credence to the hypothesis
of Independence for these data.

(ii) The second misspecification test to be applied is the N–P type encompassing test
which compares the AR(3) model:

Xt557.015
(10.290)

10.486
(0.117)

Xt2120.036
(0.131)

Xt2220.243
(0.114)

Xt231
(11.097)

û t , T567, (15.49)

with the simple Normal model:

Xt571.642
(1.594)

1
(13.044)

«̂t , T567.

The N–P test is just the F-test for the joint significance of the coefficients of
(Xt21,Xt22,Xt23) in the AR(3) model which yields the F-statistic (with 3 and 63 degrees of
freedom):

F(x)5 5 59.395[0.000],

confirming the result of the previous test.
The question that naturally arises in the mind of a discerning reader at this stage is:

Why use three lags in the encompassing AR model and does it make much difference
if the modeler uses just one lag? The answer in a nutshell is that the primary objective of
the auxiliary regression (15.49) is to achieve a statistically adequate specification of the
conditional mean; a more satisfactory answer will take us well beyond the confines of
the present discussion (see the discussion in the context of the Normal/linear regression
model in Spanos (1986, forthcoming)) but we can reassure the reader that even if one
chooses the AR(1) as the encompassing model:

Xt538.175
(7.660)

10.468
(0.105)

Xt211
(11.511)

«̂t , T567.

the answer would be no different. The N–P t-test for the significance of the coefficient of
Xt21 in the AR(1) model:

54.457[0.000],

confirms the result of the above F-test.
R : the details about the choice between the t-test and the F-test in the AR

model are discussed further in the context of the Normal/linear regression model in
Spanos (forthcoming).

It is interesting to note that the McLeod–Li test for second-order spatial dependence
for m54 yields:

ML(X)5 ĝn
2(t)51.904[0.753],

which indicates that no second-order dependence seems to be present.
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Testing Independence/homogeneity
The Levene randomness test for m52,…,7 yields:

RD(x;4)556.712[0.000], RD(x;6)5109.488[0.000], RD(x;8)5142.295[0.000],

RD(x;10)5485.951[0.000], RD(x;12)5609.560[0.000], RD(x;14)51065.441[0.000].

The p-values are zero to at least 14 decimal places in all the above cases, indicating very
significant departures from the IID assumptions.

15.5.4 Macro-Economic Principles exam scores: alphabetical ordering

In contrast to the sitting arrangement of the exam scores in Macro-Principles, we conjec-
tured in chapter 1 that the data in alphabetical order exhibited no dependence. Let us test
this conjecture using proper misspecification tests.

Estimating the simple Normal model using these data yielded:

Xt571.686
(1.6264)

1
(13.606)

«̂t , T570.

It is interesting to  that the estimated unknown parameters are identical to those of
the sitting arrangement data. In a certain sense, the alphabetic ordering of the same data
disregards useful dependence information. As in the case above, before any hypotheses
within the boundaries of this model can be reliably tested, we need to consider its statisti-
cal adequacy.

Misspecification testing

Testing homogeneity (ID)
Let us consider testing the ID assumption using the auxiliary regression with a first-
order trend polynomial:

Xt570.952
(3.310)

10.021
(0.081)

·t1(13.699)
(13.699)

«̂t , T570.

The misspecification test amounts to testing the significance of the coefficient of t, which
is the familiar t-test:

t(x)5 50.255[0.799].

This test indicates no departures from the assumption of ID.
In an attempt to confirm this result we present the recursive estimates for the mean and

standard deviation for the Macro-Principles exam scores in figures 15.9–15.10. In figure
15.9 we can see the t-plot of the recursive estimates for the mean using T1520 together
with the dotted lines representing one standard deviation on either side of the mean. The
recursive mean estimates appear to hover just above the value 70 with the one-standard
dotted lines exhibiting mild convergence. In figure 15.10 we can see the recursive esti-
mates of the standard deviation which appear to be hovering around the
value 13. The plot also exhibits signs of convergence.

(ÏVar(x))

10.021
0.0812
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Testing Independence
As in the case of the previous empirical examples we test Independence using a variety of
first- and second-order dependence tests.

(i) The Ljung–Box misspecification test for m54 yields:

LB(X)5 r̂n
2(t)53.234[0.518].

In contrast to the data ordered by sitting arrangement, the p-value in square
brackets suggests the data in alphabetical order lend strong credence to the
hypothesis of Independence for these data.
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(ii) The N–P type encompassing test which compares the AR(3) model:

Xt572.294
(16.176)

20.091
(0.127)

Xt2110.108
(0.123)

Xt2220.026
(0.123)

Xt231
(13.184)

ût , T567,

with the simple Normal model:

Xt571.641
(1.594)

1
(13.044)

«̂t , T567.

The N–P type encompassing test is simply the F-test for the joint significance of the
coefficients of (Xt21,Xt22,Xt23) in the AR(3) model, which yields:

F(x)5 50.533[0.661],

confirming the result of the previous test.  that the conclusion does not change
when we use the AR(1) or AR(2) models.
(iii) The McLeod–Li test for second-order spatial dependence for m54 yields:

ML(X)5 ĝn
2(t)51.831[0.767],

which indicates that no second-order dependence appears to be present in the
observed data.

(iv) The N–P type encompassing test for second-order dependence based on the auxil-
iary regression:

X̂t
255487.187

(1009.719)
20.295

(0.458)
X2

t2120.078
(0.436)

X2
t2220.352

(0.887)
Xt21Xt22, T568,

which tests the joint significance of the coefficients of (X2
t21,X2

t22,Xt21Xt22), yields:

F(x)50.656[0.582].

This test reinforces the results of the previous tests, indicating no departures from the
Independence/homogeneity assumptions.

Testing Independence/homogeneity
(i) The Levene randomness test for m51,…,4 yields:

RD(x;2)51.961[0.375], RD(x;4)53.982[0.408],

RD(x;6)54.219[0.647], RD(x;8)55.032[0.754],

which indicate no departures from the IID assumptions.
(ii) The F-test for the joint significance of the coefficients of (t,Xt21,Xt22,Xt23) based

on the auxiliary regression yielded:

Xt571.561
(16.511)

10.107
(0.092)

·t20.091
(0.128)

Xt2110.106
(0.125)

Xt2210.025
(0.124)

Xt231
(13.282)

û t , T567,

F(x)50.413[0.799],

where F(x) denotes the value of the F-statistic with 4 and 62 degrees of freedom.
(iii) The F-test for second-order dependence and trend heterogeneity is based on the

auxiliary regression:
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X̂t
255389.490

(1095.475)
12.892

(11.986)
·t20.275

(0.469)
X2

t2120.058
(0.447)

X2
t2210.308

(0.911)
Xt21Xt22, T568,

(15.50)

and tests the joint significance of the coefficients of (t,X2
t21,X2

t22,Xt21Xt22). This
test yields:

F(x)50.499[0.737],

where F(x) denotes the value of the F-statistic with 4 and 63 degrees of freedom.

No indications of departures from independence/homogeneity are apparent on the
basis of all the above tests.

Testing Normality
In view of the discussion in connection with the Econometrics exam scores and the dice
data, we use a variety of tests in testing the Normality assumption.

(i) The D’Agostino–Pearson family of tests which are based on the skewness and
kurtosis coefficients:

â3520.024, â452.565.

The D’Agostino–Pearson test which combines the skewness and kurtosis
coefficients yields:

D9AP(x)50.559[0.756].

The D’Agostino skewness and kurtosis separate tests yield, respectively:

D9AS(x)520.091[0.464], D9AK(x)520.628[0.265].

(ii) The ecdf based tests yield:

Kolmogorov: Dn
250.033[0.974], Anderson–Darling: A250.139[0.150].

(iii) The ordered sample based test yields:

Shapiro–Wilk: W50.980[0.646].

As we can see, none of the above misspecification tests indicates departures from the
Normality assumption.

Testing within: Neyman–Pearson test
Having established the statistical adequacy of the scores data when arranged in alpha-
betical order, we can proceed to consider the hypothesis of interest:

H0 :m570 against H1 :m?70.

For the above data: m̂T571.686, s513.606 and the sample size T570:

t(x)5 5 51.037.1Ï70(71.686 2 70)
13.606 21ÏT(m̂n 2 70

s 2



In view of the fact that for a50.05, ca51.990, we can see that H0 is accepted in this case
because the value of the test statistic is within the acceptance region.

15.5.5 Revisiting the scores data: the simple Beta model

In modelling the scores data, on both the Econometrics and Macro-Principles exams, we
assumed that the simple Normal model is appropriate. The estimated statistical model in
the case of the Econometrics exam scores data took the form:

F̂5 f(x;û)5 exp 2 (x269.583)2 , x[R . (15.51)

The misspecification testing results confirmed that the initial choice appeared to be sta-
tistically adequate. The dice data discussed above, however, should serve as a warning
that sometimes the misspecification tests we use in particular cases might not be power-
ful enough to discriminate between distributions which are close in terms of the distance
employed by the test statistic in question. Indeed, the D’Agostino test for excess kurtosis
provides a hint that the underlying distribution might be platykurtic.

As argued in chapter 10, the choice of the Normal distribution ignores the fact that
the range of values of the scores data is actually restricted within well defined upper and
lower bounds. That is, the support of the Normal distribution is the real line R, but the
range of values for the exam scores is confined within the range [0,100]. In view of this,
the question which naturally arises at this stage is:

How does a modeler justify the choice of the simple Normal model?

The answer is often phrased in terms of convenience and simplicity. The simple Normal
model ignores the information about the range of values for the exam score data but in
exchange enables the modeler to stay within very familiar grounds where there exist
numerous (well tried) inference results relating to estimation and testing. This answer has
some merits but is not entirely convincing.

An alternative distribution which can account for the bounded range of the exam
scores data is the Beta distribution. In appendix A we specified the standard Beta distrib-
ution with density:

f(y;u)5 ya21(12y)b21, u :5(a,b) [R1
2, y[ [0,1],

whose support is the interval [0,1]. The exam scores data can be easily accommodated
within this range by dividing them by 100. The modeling of the scores data using the
simple Beta model where the support is specified as the interval [a,b], b.a:

[i] Statistical GM: Xk5a1 (b2a)1«k, k[N,

[ii] Probability model:

F5 f(x;u)5 , u :5(a,b) [R1
2, x[ [a,b] ,

E(X)5a1 (b2a), Var(X)5 (b2a)2,

[iii] Sampling model: X :5(X1,X2,…,Xn) is a random sample,

ab

(a 1 b)2(a 1 b 2 1)
a

a 1 b

6(x 2 a)a21(b 2 x)b21

(b 2 a)a1b21
1

B[a,b]5

a

a 1 b

1
B[a,b]

661
2(15.056)251

15.056Ï2p5
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is pursued further in Spanos (1998). It is shown that the latter model has certain distinct
advantages over the Normal model.

15.6 Conclusion

Misspecification testing constitutes one of the most crucial facets of empirical modeling
because it provides the means to assess the empirical validity of a statistical model,
which in turn offers the foundation for valid statistical inference. The primary aim of the
modeler is to utilize misspecification testing to detect departures from the underlying
assumptions of the postulated model. Such departures are viewed as a blessing (not a
nuisance) because they provide the modeler with an opportunity to take account of addi-
tional systematic information in the data. By its very nature misspecification testing is
testing without (outside the boundaries of the postulated model), and as argued above,
the Fisher approach, as formalized in chapter 14, is the approach of choice. The
Neyman–Pearson approach can be applied to misspecification testing only after it is
reformulated to take account of the nature of misspecification testing; this is because, as
argued in chapter 14, the Neyman–Pearson approach is essentially testing within (the
boundaries of the postulated statistical model). The notion of a parametrically encom-
passing model, as defined above, plays an important role in this reformulation, by trans-
forming the testing without to testing within.

As the above empirical examples exemplify, misspecification testing will often tax the
imagination and knowledge of the modeler and should be applied with thoughtfulness.
Empirical modeling should not rely exclusively on pre-packaged misspecification tests
viewed as a universally applicable battery. Computer software developers should allow
for a lot of flexibility in designing one’s own misspecification tests. As shown above, in
the context of the probabilistic reduction (PR) approach there are systematic ways to
design such tests with the only constraint being the imagination of the modeler.
Moreover, the graphical techniques discussed in chapters 5–6 constitute an indispens-
able component of misspecification testing. The modeler is advised to utilize a variety
of misspecification tests, always in conjunction with the appropriate graphical tech-
niques.

We conclude this chapter by admonishing the traditional attitude that the modeler
should be economical with the number of misspecification tests because otherwise (a)
the modeler abuses the data (somehow) and (b) the modeler cannot keep track of the
overall significance level. The first charge is often related to some metaphysical notion
that the modeler loses certain degrees of freedom every time a misspecification test is
applied; some traditional critics are often being sarcastic about applied papers, which,
according to them contain more misspecification tests than observations. The fact of the
matter is that the probabilistic structure of the data, the assessment of which constitutes
the primary objective, remains unchanged however many misspecification tests are
applied. For instance, if the observed data exhibit, say, temporal dependence, they will
continue to exhibit such a feature after as many misspecification tests as the modeler cares
to apply! The second charge relating to the overall significance level has already been
answered above, since the notion of a significance level has no place in misspecification

Conclusion 783



testing. What the modeler should be careful about is the traditional way to derive
misspecification tests by relaxing the model assumptions one at a time, assuming that the
rest are valid; this often leads to contradicting assumptions. The PR approach guards
against such a possibility by placing the emphasis of the derivation of such tests on the
reduction, not the model assumptions. Moreover, the PR approach naturally gives rise to
joint as opposed to individual assumption misspecification tests (see the discussion on
misspecification tests for the Normal/linear regression in Spanos (forthcoming).

15.7 Exercises

21 Discuss the notion of statistical adequacy and explain the role of misspecification
testing in establishing it.

22 “Goodness of fit tests are by definition misspecification tests.” Explain.

23 Specify the general form of misspecification testing for a statistical model Pu.

24 For the simple Normal model Pu state the underlying probabilistic assumptions
and the general form of the misspecification test for this model.

25 Explain why the Neyman–Pearson approach cannot be used in the context of the
postulated model Pu.

26 “In the context of misspecification testing using the Neyman–Pearson approach,
rejecting the null should never interpreted as accepting the alternative.” Explain this
statement and comment whether you agree or disagree and why.

27 Explain why the reduction approach offers certain advantages in dealing with the
misspecification testing problem.

28 Explain why a misspecification test in terms of its basic objective is a Fisher test.

29 “In the context of a parametric model Pu, a Fisher test for a hypothesis of the form:

H0 :u5u0,

is indirectly a test for the adequacy of the postulated model.” Explain; take a partic-
ular example such as the t-test if it helps.

10 Discuss the advantages and disadvantages of Pearson’s goodness of fit test.

11 The first 500 terms of the decimal expansion of the irrational number yields the
following relative frequencies for the integers (0,1,2,3,4,5,6,7,8,9):

Integer value 0 1 2 3 4 5 6 7 8 9

Frequency 4931 5064 4976 4977 5143 4969 4973 4990 4971 5006

Use the Pearson chi-square test to test the hypothesis that the distribution under-
lying this is discrete Uniform.

Ï2
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12 Explain why applying the Kolmogorov distance test to the data given in question 11
is not a good idea.

13 Explain the asymptotic skewness-kurtosis test for Normality and its D’Agostino–
Pearson formulation.

14 Discuss the conditional mean lemma and how it can be extended in order to provide
the basis on which misspecification tests based on the conditional moments can be
derived.

15 Explain why Spearman’s test statistic is essentially the sample correlation coefficient
between the ranks of two random variables.

16 Explain under what circumstances a modeler would naturally use Kendall’s tau and
not Spearman’s rank correlation test.

17 Explain the Daniels test for the presence of mean heterogeneity. What is its main
disadvantage when applied to data which exhibit Normality?

18 Discuss the Information matrix test and explain why it can only be a local
misspecification test.

19 Explain the idea that by postulating encompassing statistical models we transform
misspecification tests which are naturally testing without to testing within. Under
what conditions are these tests valid?

20* Using the encompassing elliptical autoregressive model, explain why under the
Student’s t distributional assumption the test H0 :a 150, based on:

Xk5a01a1Xk211ek, k[N,

is no longer a test for temporal independence.

21 Using the observations 65–105 in figure 5.4 derive misspecification tests for ran-
domness based on the number of runs (up or down) of:
(a) order 1,
(b) order 2, and
(c) order 2 or more.

22 Using the observations 65–105 in figure 5.5 derive misspecification tests for ran-
domness based on the number of runs (up or down) of:
(a) order 1,
(b) order 2, and
(c) order 2 or more.

23 Using the observations exhibited in figures 1.1 and 1.2 (see table 1.2) derive
misspecification tests for randomness based on the number of runs (up or down) of:
(a) order 1,
(b) order 2, and
(c) order 2 or more.
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24 Confirm that the distribution shown in figure 1.5 is platykurtic with kurtosis
coefficient: a452.3657.

25 Assess the identical distribution assumption for the dice data shown in table 1.2,
using the plot of the recursive estimates for the mean and variance. Explain the
common sense logic underlying these plots.

26 Compare the estimated simple Normal (see section 15.5.4) and Beta (see section
15.5.5) models for the econometrics exam scores and discuss the problem of choos-
ing between them.

27 Compare and contrast the Ljung–Box test and the F-test based on the auxiliary
regression (15.32).

28. Compare and contrast the McLeod–Li test and the F-test based on the auxiliary
regression (15.36).

29 Discuss the advantages of the probabilistic reduction approach for misspecification
testing purposes. Are there any disadvantages?

30 The probabilistic reduction approach can be utilized to specify parametrically
encompassing models which in conjunction with a modified Neyman–Pearson pro-
cedure can be used for misspecification testing purposes. What modifications are
necessary for the Neyman–Pearson procedure to be used for misspecification
testing purposes?
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as an encompassing model, 762
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bivariate distribution, 149
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a first view, 37
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Berry-Esseen bound, 486
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Beta function, 135
Beta distribution, 99, 138

bivariate, 186
chance regularity pattern of, 204
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Bienayme’s lemma, 107
big O, little o notation, 664
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bivariate, 139, 146
distribution, 83, 99, 136

bivariate distribution
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Exponential (Gumbel), 186, 305
Exponential (Marshall—Olkin), 186
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Gamma (Cherian), 187, 303
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generating via differential equations, 254
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Pearson type II, 188, 298
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via regression and skedastic functions, 325

Bonferroni inequality (see inequality)
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Borel (measurable) function, 88
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De Moivre-Laplace’s, 483
early results, 465–7
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and deterministic regularity, 7
and distributions, 199–205
and histogram, 12, 199
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and probabilistic concepts, 7–12
and randomness, 3
and statistical models, 13, 541
of dependence (alternating changes), 216,

218
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of heterogeneity (mean trend), 221
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of independence, 212
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characteristic function, 113

inversion theorem, 113
Chebyshev’s inequality (see inequality)
chi-square distribution, 138–9
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of bivariate Student’s t, 355–6

coefficient of variation, 130
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conditional expectation

best least-squares predictor, 365
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law of iterated expectation, 363
stochastic, 356–62
take what is known out, 363

conditional independence, 279
conditional moments, 163–4

conditional mean, 163
conditional variance, 163

conditional moment functions, 341, 356
conditional probability

between events, 71
and independence of events, 72

conditioning
key to modeling dependence, 265–7, 337–9
on a sigma-field, 357–9
sequential, 265
vs marginalization, 166–7

continuous mapping theorem, 500
consistency (see weak and strong consistency)
contours, probabilistic

bivariate Beta, 309–11
bivariate Exponential, 305–7
bivariate F, 307–8
bivariate Gamma (Cherian), 303–5
bivariate Logistic, 303
elliptical, 299–301
of Normal distribution, 295–7

convergence
pointwise, 504
uniform, 504

convergence complete, 507
convergence in distribution, 507–8

a first view, 469
convergence in probability, 505–6

a first view, 468
convergence in rth mean, 508–9
correlation, 275

nonsense, 731
partial, 281
properties of, 275

covariance, 152
partial, 280
properties of, 153

Cramer’s theorem, 493
Cramer–Rao lower bound, 611

asymptotic, 619
cross-product ratio, 284
cross-section vs time series, 26–8

myths, 26
countable set, 47
cumulants 112
cumulative distribution function, 89

empirical, 229–32
joint, 138
properties of, 89

data
Canadian/USA exchange rates, 11, 249–54,
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cross-section vs time series, 22, 26–7
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experimental, 571
limitations of, 28–9
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De Finetti’s representation theorem
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de Mere’s paradox, 9
delta method of approximation, 493

second order, 493–4
density function, 81, 90

conditional, 159, 160
conditional, properties of, 161
a first view, 33–4
joint, 150
joint, properties of, 150–1
multivariate, properties of, 154
Normal, 93
properties of, 91
relation to cdf, 90
support of, 176
truncated properties of, 165

dependence
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and correlation, 275–7
and the Elliptically symmetric family, 297–302
and graphical analysis, 281
and joint distributions, 290–3
and measurement scales, 247
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dependence ratio coefficient, 317
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Hoeffding’s measure of, 271
and the Normal distribution, 293–7
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Markov, 280
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dependence function, 314
dependence ratio, 376–7
descriptive statistics

vs statistical inference, 31–2
deseasonalizing, 228–9
detrending, 228–9
discordance, 285
distribution of a function of random variables

change of variables lemma, 587
one random variable, 585–9
product, 592
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several random variables, 589–94
sum, 592

disturbance term (see non-systematic
component)

econometric model
vs a statistical model, 20

economic data
cross-section, 22
early collection of, 20
Kuznets, Leontief, Mitchell, 231
measurement scales, 24–6
panel data, 22
time series, 22

Edgeworth’s expansion, 486
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empirical cumulative distribution function,

229–32, 536
and the empirical density function, 539
bivariate, 540
and Kolmogorov’s distance theorem,
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properties of, 537–8
and related graphs, 229–47

empirical modeling, 1
and misspecification testing, 2
respectification, 2
and specification, 1

ergodicity, 424–6
in mean, 425
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error (see non-systematic component)
event,
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estimation methods, 637
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maximum likelihood, 659
method of moments, 654
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estimator, 564–6, 603–4
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as a random variable, 565
sampling distribution of, 526, 604

estimator properties
asymptotic, 615
asymptotic efficiency, 619
asymptotic Normality, 618
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consistent, asymptotically Normal (CAN),
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events
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non-increasing sequence of, 68
the impossible event, 53
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vs outcomes, 48

exchangeability, 429–30, 523
exogeneity, weak, 366–8

and the Normal distribution, 367
and the Student’s t distribution, 367–8

expectation
properties of, 105–6

exponential distribution, 139
bivariate, 186–7
chance regularity pattern of, 201–3

exponential family of distributions, 179
definition of, 634–5

extreme value distribution (Gumbel), 139

F (Fisher’s) distribution, 139–40
bivariate, 187

families of density functions,
Elliptically symmetric family, 297–301
Exponential, 179
Johnson transformation, 180
Pearson, 178
Stable (Pareto-Levy), 179–80

Feller condition for CLT, 487
field of events, 56

generation of, 56–7
Fisher information (matrix), 610

asymptotic, 618
conditional, 677
vs observed information, 666

Fisher testing
and p-value, 691
elements of, 691
vs Neyman-Pearson testing, 720–7

Fisher, R. A.
and Karl Pearson, 559
and modern statistical inference, 560–8

function, 60–1
pre-image of, 80

Functional Central Limit Theorem (FCLT)
Donsker’s, 499
for second order stationary processes, 501

Galton
and correlation, 382
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and linear regression, 380–2
and standard deviation, 379
and the theory of errors, 378–80

gamma function, 135
Gamma distribution, 99, 140, 191

bivariate, 187–8
generalized distribution, 140

gamma, coefficient, 285

Gauss’ law of prime numbers, 534
Gauss–Markov theorem, 650–1
Gaussian (Normal) process, 444–53
Geometric distribution, 136
geometric Brownian motion process, 457
Glivenko–Canteli theorem, 539
Goodman–Kruskal tau, (see concentration

coefficient)
graphical models, 245
graphical techniques

and R. A. Fisher, 194
contour-plot, 319–20
early developments, 193–4
P-P plot, 232
Q-Q plot, 240
scatter-plot, 235
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standardized P-P plot, 235

hazard function, 165
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and density function, 205
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a first view, 14
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vs heterogeneity, 219–26

homoskedasticity, 343
Hypergeometric distribution, 136–7
hypothesis testing

a first view, 566–7
and Edgeworth, 583
and Fisher, 588–91
and Gosset (Student), 586–7
and Karl Pearson, 584–6
and Neyman-Pearson, 592–713
and pivotal functions, 587
and test statistics, 587
inherent learning difficulties, 681–2

identically distributed (ID)
a first view, 35–6
for a stochastic process, 427
for several random variables, 172–3
in terms of probability set functions, 146, 173

identifiability
of parameters, 177

independence
a first view, 14, 35–6
among several events, 169
among several random variables, 169–70
between two event sub-spaces, 270–1
between two events, 270
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independence (cont.)
between two random variables, 168, 271
conditional, 279–80
first order (zero covariance), 274–5
in terms of central moments, 274
in terms of conditional moments, 277–9
in terms of product moments, 274
in terms of the conditional distribution,

271
in the context of a stochastic process, 353
of two events, 71
pairwise vs joint, 72
vs non-correlation, 275–7
vs orthogonality, 277

index set, 23, 25, 407
indicator function (see random variable)
inequality

Bernstein, 131
Bonferroni, 69
Chebyshev, 109, 131
Holder, 132
Jensen, 132
Lyapunov, 132
Markov, 131
Minkowski, 132
Schwarz, 275

infinite divisible family of distributions, 491
information

statistical vs theoretical, 7
innovation process, 443

probabilistic structure, 443
vs white-noise process, 443

integrated Brownian motion process, 457
intersection of sets, 50
inverse probability integral transformation,

127–8

jacknifing method
for bias reduction, 625–7

Johnson transformation family (see families of
density functions)

joint distributions
and dependence, 290–3
Normal, 279
elliptically symmetric family, 297–8

joint moments, 151–2
and dependence, 274
central, 151
product, 151

kernel, see smoothing kernel,
Khintchine’s LIL, 482
Khintchine’s WLLN, 476
Kolmogorov’s distance theorem, 538
Kolmogorov’s extension theorem, 409
Kolmogorov’s second SLLN, 479
Kolmogorov’s SLLN, 477
Kolmogorov’s WLLN, 475
Kronecker’s lemma, 477
Kullback–Leibler distance

and the likelihood function, 668–9

kurtic function, 355
of bivariate Beta, 355
of bivariate Student’s t, 355–6

kurtosis, 117–19
bivariate, 154
leptokurtic, 119
mesokurtic, 119
Normal vs Logistic, 119
Normal vs Pearson type II, 120
Normal vs Student’s t, 119
platykurtic, 119
polykurtic, 122

Lagrange multiplier (score) test, 718
Laplace distribution, 141
Law of Iterated Logarithm (LIL)

Hardy and Littlewood, 481
Hausdorff, 481
Khintchine, 482

Law of Large Numbers, Strong (SLLN)
Borel’s, 477
for martingale differences, 480
for martingales, 479
for second-order martingales, 480
for stationary processes, 481
Kolmogorov’s, 477
Kolmogorov’s second, 479
uniform, 494–5

Law of Large Numbers, Weak (WLLN)
Bernoulli’s, 469
Bernstein’s, 474–5
Chebyshev’s, 472
Khintchine’s, 476
Kolmogorov’s, 475
Morkov’s, 473
Poisson’s, 471

least-squares
as a math. approx. method, 648–50
as an estimation method, 648–54
and Gauss, 650
and Laplace, 650
and Legendre, 648
and the Gauss–Markov theorem, 650–1
as a statistical estimation method, 651–4
estimators, properties of, 654

leptokurtic (see kurtosis)
likelihood function, 660
likelihood ratio test, 709

and Lagrange multiplier (score) test, 718–19
and Wald test, 718
asymptotic, 715–17
Bartlett correction, 716
monotone likelihood ratio, 711

limit theorems
and popular misconceptions, 464–5
Poisson’s, 467
tracing the roots, 465–8
why do we care?, 463

Lindeberg’s condition for CLT, 487
linear regression model (see Normal, linear

regression)
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linear regression, 342
vs linearity in parameters, 342

Lindeberg’s CLT, 487
Lindeberg-Feller’s CLT, 487–8
logarithmic series distribution, 137
logistic distribution, 141
log-likelihood, 662–3
log-Normal distribution, 141
Lyapunov’s CLT, 485–6

m-dependence, 420–1
m-th order non-correlation, 421
Mann and Wald theorem, 492
marginal distribution, 155

marginalization vs conditioning, 166–7
Markov chains, 434–5
Markov dependence, 280, 420
Markov process, 433–5

vs a martingale, 439
martingale difference process, 441–2

vs innovation process, 443
martingale process, 438

Doob’s, 440
probabilistic structure, 439

max-stable family of distributions, 491
Gnedenko’s theorem, 491

maximum likelihood
and asymptotic efficiency, 672
and asymptotic Normality, 672
and consistency, 672
and its critics, 677–8
and non-ID samples, 673–4
and non-random samples, 674
and sufficiency, 671
and the Kullback-Leibler distance, 668–9
and parameterization invariance, 670
as an estimation method, 659–78
estimator, 662
numerical evaluation, 667
unbiasedness and full efficiency, 670–1

mean, 105
properties of, 106

mean square error (MSE), 614
measure theory

and probability, 63
measurement scales

and dependence, 282–90
interval, 24
nominal, 24
ordinal, 24
ratio scale, 24

median, 124
mesokurtic (see kurtosis)
method of moments

parametric, 656–9
Pearson’s, 655–6

misspecification testing
and the Fisher approach, 734–8
and the information matrix approach, 734–8
and the Neyman-Pearson approach,

763–5

and the probabilistic reduction approach,
753–65

general formulation, 733–4
tracing the roots of, 730–1

mixed (continuous/discrete) random variables
joint distribution, 162–3
different types, 422–3

mixingale, 423
mode, 124
modes of convergence, 503–9
moment generating function (mgf), 110–11

uniqueness lemma, 111
moment matching principle

as an estimation method, 639–48
moments

and distributions, 109, 113–15
and tails lemma, 549
and unknown parameters, 104–5
Carleman condition, 114
conditional, definition of, 163–4
higher central, 116
higher raw, 109
joint central, 151–2
joint product, 151
lower moment lemma, 110
Krein condition, 114–15
problem of, 113
why do we care?, 104

Monte Carlo, (see resampling)
moving average process, 450

probabilistic structure, 450
vs autoregressive process, 451–3

negative binomial distribution, 137
bivariate, 186

Newton-Raphson algorithm, 667
Neyman-Pearson testing

and misspecification, 763–4
and the quintessential type error, 739
asymptotic power and size, 713–14
asymptotic procedures, 715–17
Bahadur ARE, 714
consistent test, 706
elements of, 703
Hodges-Lehmann ARE, 714
ideal test, 705–6
likelihood ratio test, 709–11
one-sided vs two-sided, 699–700
Pitman ARE, 714
power function, 704
significance level (size), 699
significance level vs p-value, 725
simple vs composite hypotheses, 693
specification of the null and the alternative,

693
the Neyman-Pearson lemma, 708–9
the notion of an alternative hypothesis,

692
the rejection and acceptance regions,

694–5
type I and II errors, 695–8
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Neyman-Pearson testing (cont.)
unbiased test, 706
Uniformly Most Powerful (UMP), 705
vs Fisher testing, 713, 720–7

non-central distributions
chi-square, 141–2
Student’s t, 142

non-correlation, 421
non-parametric models

and existence of moments assumptions,
549

and imprecision in inference, 550–2, 555
and indirect distribution assumptions, 459
and robustness, 553–4
and statistical adequacy, 553
is there a role for?, 554–6

non-systematic component (error), 370
properties of, 370
regression, 371

Normal kernel, 192
Normal distribution

bivariate, 151
bivariate standard, 151
cdf and density functions, 142–3
chance regularity pattern of, 197–200
conditional, 161
multivariate, 264

Normal, linear regression model, 373, 731
Normal model, simple, 175, 621, 729
Normal process (see Gaussian process)
Normality, testing for (see testing Normality)
null hypothesis, 688
numbers, sets of

natural, rational, integers, 47

observational data, 1–2, 319
observed data

and their accuracy, 28
as an unprejudiced witness, 2
categorical, 25
dimensions of, 23
discrete vs continuous, 25
experimental, 494
experimental vs observational, 2, 570–5
formalizing the dimensions, 22–4
index set, 23
quantitative vs qualitative, 25
sample survey, 572–4

ordered sample, 181
joint distributions, 183
marginal distributions, 182

Ornstein-Uhlenbeck process, 456
orthogonal decomposition

and regression models, 371–2
and simple statistical models, 371
and statistical GM, 370–4
of first conditional moment, 370
of higher conditional moments, 371

orthogonality
between two random variables, 277

outcomes set, 45

P-P plot, 233
Normal, 235
standardized, 235–40
standardized Student’s t, 251–3
uniform, 234
vs Q-Q plots, 243–7

p-value, 608
interpretation, 611
vs significance level, 643

parameterization
and reparameterization, 177
invariance, 670
statistical vs theoretical, 177
statistical, 98

parametrically encompassing model, 763–4
parametric family of densities, 98

a first view, 37
parametric method of moments estimators

properties of, 659
parametric vs non-parametric models, 546–55
Pareto distribution, 143

bivariate, 188
partial correlation

and Pearson, 383
Pearson family of densities, 37, 178, 323, 655

and Pearson’s method of moments, 655–6
Pearson’s chi-square test, 684–6
Pearson, Karl

and Fisher (see Fisher)
and non-Normal joint distributions, 383–5
and statistical inference, 654–6
and statistical terminology, 117–19, 383
and the method of moments, 655–6
and the Pearson family of densities, 383

pivotal function, 687
pivotal quantities lemma, 726

Platykurtic (see kurtosis)
point process, 458
Poisson distribution, 137

bivariate, 185
Poisson point process, 459–60
Poisson’s limit theorem (see limit theorems)
power exponential (error) distribution, 143

and kurtosis, 122–3
power function (see Neyman-Pearson testing)
power set, 54
prediction

a first view, 567–8
probabilistic assumptions

basic taxonomy, 13, 227, 403
probabilistic reduction approach

and de Finetti’s representation theorem, 542
and the Haavelmo distribution, 542

probability
degrees of belief interpretation, 518–19
the frequency interpretation, 516–18
the lottery (classical) interpretation, 515–16

Pearson type II distribution
bivariate, 188

probability distribution
infinite but countable outcomes set, 62
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simple, 61, 79
uncountable outcomes set, 63

probability integral transformation, 112, 536,
586

inverse, 127
probability model

a first view, 33–4
components of, 175–6
metamorphosis from probability space, 97–8
regular, 610

probability set function, 63
continuity property of, 68

probability space, 66
induced by a random variable, 87

probability theory
a pragmatic approach, 41–2
early milestones, 39–41
why do we care?, 31

problem of moments, 113
pseudo-random numbers

conguential method, 254–5, 535
generation, 254–8
Normal, 257
quantile transformation, 256
the inverse distribution function method,

255
the rejection method, 257
vector rejection method, 314
with dependence, 312–15

Q-Q plot, 240–3
Normal, 240–3

vs P-P plot, 243–7
quantile, 126

quantile function, 127
quantile transformation, 256

quartile
upper and lower, 126

Quetelet, 378–9

random experiment, 43
random sample, 173–4

an intuitive explanation, 34–6
random trials, 73
random variable, 87

a simplistic view, 34
degenerate, 81
discrete, 95
equality of, 88
functions of, 585–9
indicator, 81
simple, 78

random vector,
continuous, 149
discrete, 147

random walk process, 436
second order, 436
simple, 437

range of a random variable, 129
interquartile, 129
quartile deviation, 129

region (interval) estimation, 565–6
regression, 341

and Galton, 378–82
and Karl Pearson, 382–6
and inverse regression function, 322
and kernel smoothing, 395–6
history of the term, 380–2
linear, 341
of bivariate Beta, 349
of bivariate Binomial, 353
of bivariate exponential (Gumbel), 344
of bivariate F, 352
of bivariate Gamma, 350–2
of bivariate Log-Normal, 352
of bivariate Logistic, 348
of bivariate Normal, 344
of bivariate Pareto, 347
of bivariate Pearson type II, 345
of bivariate Poisson, 353
of bivariate Student’s t, 344

resampling methods
bootstrap method, 597–600
Monte Carlo method, 594–7

runs, up and down, 213–15
test, 751–3

sample, 561
distribution of, 562, 605
ordered, 181
non-random, 263–7
vs sample realization, 561–2

sample moments
as estimators of the distribution moments,

642–6
functions of, 546–7

sample realization, 561
sample space, 561–2
sampling distribution, 578–84

computer intensive methods, 594
sampling methods

cluster sampling, 573
quota sampling, 573
stratified sampling, 573

scatterplot, 315
and temporal dependence, 324–9
between Normal random variables, 316–17
bivariate Exponential, 333–4
bivariate Gamma (Cherian), 329–32

score (Lagrange multiplier) test and likelihood
ratio test, 638

score function, 663–4
scoring method algorithm, 667
sequential conditioning, 265, 400
set-theoretic operations

complementation, 50
difference, 52
intersection, 50
union, 49
Venn diagrams, 51

sets
countable, 47
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sets (cont.)
countable partition, 58
empty set, 53
equality between two sets, 52
mutually exclusive, 53
subset, 49
uncountable, 48

sigma-algebra (see sigma-field)
sigma-field, 58

Borel, 58
generated by a random variable, 80

simple Normal model
estimators and sampling distributions, 542

simple statistical model
a preliminary view, 33–7
Bernoulli, 157
Beta, 782
Gamma, 191
generic, 174
Normal, 175

simple statistical space, 73
to a simple statistical model, 174

skedastic function, 342
homoskedasticity vs heteroskedasticity,

343
of bivariate Beta, 349
of bivariate Binomial, 353
of bivariate exponential (Gumbel), 344
of bivariate F, 352
of bivariate Gamma, 350–2
of bivariate Log-Normal, 352
of bivariate Logistic, 348
of bivariate Negative Binomial, 354
of bivariate Normal, 344
of bivariate Pareto, 347
of bivariate Pearson type II, 345
of bivariate Poisson, 353
of bivariate Student’s t, 344

skewness coefficient, 117
bivariate, 154

smoothing kernel
bivariate, 317
biweight, 208–9
Epanechnikov, 208–9
Normal, 208–9
properties, 208–9
uniform, 208–9

square integrability condition, 489
stable (pareto-Levy) family, 167, 490–1

Gnedenko’s theorem, 491
Levy’s theorem, 490

standard deviation, 108–9
vs standard error, 379

Standardized P-P plot, 235
Normal, 238
Student’s t, 251

standardizing a random variable, 109
state space, 407
stationarity

first order, 428
mth order, 429

second order, 428
strict, 427, 360

statistical adequacy, 1, 16–20, 548, 553, 578,
729–86

“garbage in garbage out,” 560
and misspecification, 17–18
statistical vs theoretical, 22, 545
and stylized facts, 18

statistical generating mechanism (GM), 370
as a stochastic mechanism, 375–7

statistical inference
Bayesian approach, 569–70
classical vs Bayesian approaches, 568–70
decision theoretic approach, 570
misspecification, 577
respecification, 577–8
specification, 576

statistical information
and observed data, 1
vs theory information, 19–20

statistical model
a preliminary view, 13–18, 33–39
nature of, 543–6
vs theory models, 544–6

statistical space, 73
statistical systematic information, 13–20
statistical viewing angle, 374
stereogram

smoothed, 316–19
stochastic conditional expectation,

function, 361–2
properties, 363–6

stochastic conditioning, 357–61
stochastic phenomenon, 3–7

and chance regularity, 7–13
stochastic process, 403

assemble of sample paths, 405–7
Bernoulli IID, 431
different viewing angles, 404
exponential IID, 432
Gaussian (Normal), 418–20
IID, 413
independent increments, 416
index set/state space taxonomy, 408
Kolmogorov’s extension theorem, 409
Markov, 414–15, 420, 433–5
Normal IID, 432
Normal white-noise, 433
of partial sums, 412–13
Random Walk, 414
sample paths of, 406–7
state space of, 407
white-noise, 433

Strong Law of Large Numbers (see Law of
Large Numbers)

Student’s t distribution, 144
bivariate, 188–9
chance regularity pattern of, 204–5

Student’s t, linear regression model,
373–4

systematic component, 370
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t-plot, 195
and aspect ratio, 191
and homogeneity, 217–26
and identical distribution (ID), 219
and independence, 212–17
and mean heterogeneity, 221–7
and Normality, 198–9
and negative dependence, 214–16
and non-Normality, 200–4
and positive dependence, 214–16
and seasonality, 225–6
and the histogram, 199
and variance heterogeneity, 222–4

t-test, 706–7
teaching, pretend xvii
testing

Arbuthnot’s conjecture, 689
Bernoulli’s conjecture, 690
Mendel’s theory, 685–6
within vs without, 641

testing distribution assumptions
Anderson and Darling test, 743
Cramer–Von Mises test, 742–3
Kolmogorov’s test, 742
Pearson’s chi-square test, 739–41
Watson test, 743

testing error autocorrelation
Dubin–Watson test, 732
Von Neumann ratio, 732

testing heterogeneity
and recursive estimates, 768
Daniels’ test, 750
Kiefer’s test, 750
Mann’s test, 750

testing independence
Box–Peirce test, 748
F-test, 760
Ljung–Box test, 749
McLeod–Li test, 749
second-order test, 761
Spearman’s test, 744

testing kurtosis
D’Agostino-Pearson test, 746

testing normality
Anderson-Darling test, 743
D’Agostino-Pearson test, 746
Kolmogorov’s test, 742
Shapiro-Wilk test, 744
skewness-kurtosis test, 745

testing randomness
Levine test, 753
runs test, 751–2

testing skewness

D’Agostino–Pearson test, 746
testing within

vs testing without, 721–3
theory viewing angle, 368–9

vs statistical viewing angle, 369–72
think, things, through, systematically xviii
truncation

and density functions, 165

unbiasedness (see estimator properties)
uncorrelatedness (see non-correlation)
UMP test (see Neyman-Pearson testing)
uncertainty coefficient (Theil’s), 287
uncountable set, 48
uniform boundedness condition for CLT,

488
uniform distribution

chance regularity pattern of, 205–6
continuous, 144
discrete, 137–8

uniform asymptotic negligibility, 485
uniform integrability, 485
union of sets, 49
univariate distributions, 136–44

variance, 107
properties of, 107

variation, coefficient of, 130
variation freeness condition, 367
Venn’s diagrams, 51
Von Mises

collective, 520–2
randomness condition, 521
vs de Finetti, 527–8

Wald test, 718
weak exogeneity, 366–8

and bivariate Normal, 367
and bivariate Student’s t, 367–8

Weak Law of Large Numbers (see Law of Large
Numbers)

Weibull distribution, 101, 144
chance regularity pattern of, 203–4
density function, 103
vs the Normal, 104

white-noise process, 433
Normal, 433
vs innovation process, 443–4

Wiener process (see also Brownian motion)
definition of, 453
probabilistic structure, 454

Yule’s Q, 285
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