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PREFACE

This book presents a broad coverage of its topic: variance components
estimation and mixed models analysis. Although the use of variance components
has a long history dating back to the 1860s, it is only in the last forty years or
so that variance components have attracted much attention in the statistical
research literature. Numerous books have maybe a chapter or two on the subject
but few are devoted solely to variance components. This book is designed to
make amends for that situation.

The introductory Chapter | describes fixed, random and mixed models and
uses nine examples to illustrate them. This is followed by a chapter that surveys
the history of variance components estimation. Chapter 3 describes the 1-way
classification in considerable detail, both for balanced data (equal numbers of
observations in the classes) and for unbalanced data (unequal numbers of
observations). That chapter, for the 1-way classification, details four main
methods of estimation: analysis of variance (ANOVA), maximum likelihood
(ML), restricted (or residual) maximum likelihood (REML) and Bayes.

Chapters 4 and 5 deal with ANOVA estimation in general, Chapter 4 for
balanced data and 5 for unbalanced. Chapter 6 covers ML and REML estimation
and Chapter 7 describes the prediction of random effects using best prediction
(BP), best linear prediction (BLP) and best linear unbiased prediction (BLUP).
Chapters 812 are more specialized than 1-7. They cover topics that are of
current research interest: computation of ML and REML estimates in 8; Bayes
estimation and hierarchical models in 9; binary and discrete data in 10;
estimation of covariance components and criteria-based estimation in 11; and
the dispersion-mean model and fourth moments in 12.

This broad array of topics has been planned to appeal to research workers,
to students and to the wide variety of people who have interests in the use of
mixed models and variance components for statistically analyzing data. This
includes data from such widely disparate disciplines as animal breeding, biology
in general, clinical trials, finance, genetics, manufacturing processes, psychology,
sociology and so on. For students the book is suitable for linear models courses
that include something on mixed models, variance components and prediction;

vii



viii PREFACE

and, of course, it provides ample material for a graduate course on variance
components with the pre-requisite of a linear models course. Finally, the book
will also serve as a reference for a broad spectrum of topics for practicing
statisticians who, from time to time, need to use variance components and
prediction.

More specifically, for graduate teaching there are at least four levels at which
the book can be used. (1) When variance components are to be part of a solid
linear models course, use Chapters 1, 3 and 4 with Chapter 2 (history) being
supplementary reading. This would introduce students to random effects and
mixed models in Chapter 1, and in Chapter 3, for the 1-way classification, they
would cover all the major topics of ANOVA and ML estimation, and prediction.
(As time and interests allowed, additional aspects of these topics could also be
selected from Chapters 5, 6 and 7.) And Chapter 4 provides results and
methodology for a variety of commonly occurring balanced data situations. (2)
This same material, presented slowly and in detail, could also be the basis for
an easy-going course on variance components. (3) For an advanced course we
would recommend using Chapters 1 and 2 for an easy introduction, followed
by a quick overview of Chapters 3-5 (l-way classification, and ANOVA
estimation from balanced and unbalanced data) and then Chapters 6 and 7 in
detai. { »1 _ and REML, and prediction). We suggest following this with sections
8.1-8.3, (introduction to computing ML and REML) and all of Chapters 10
(binary and discrete data) and 11 (covariance components and criteria-based
estimation). Then, for a general overview of Bayes, ML and REML, use Sections
9.1-9.4, and for a mathematical synthesis of ML and REML from a pseudo
least squares viewpoint, Chapter 12 is appropriate. (4) Finally, of course,
Chapters 1-7, and then 8-12, could constitute a detailed 2-semester (or
2-quarter) course on variance components.

Considering the paucity of books devoted solely to variance components,
we have attempted a broad coverage of the subject. But we have not, of course,
succeeded in a complete coverage—undoubtedly that is impossible. Some
readers will therefore be irked by some of our omissions or slim treatment of
certain topics. For example, much emphasis is placed on point estimation, with
only some attention to interval estimation. The latter, for ANOVA estimation,
is very difficult, with only a modicum known about exact intervals (e.g., Table
3.4); although, for ML and REML asymptotic properties of the estimators
provide straightforward derivation. Also, even for estimation we chose to
concentrate on methodology with sparse attention to interpreting analyses of
specific data sets—and thus few numerical examples or illustrations will be
found. And topics that receive slim treatment are criteria-based estimation and
non-negative estimation (in Sections 11.3 and 12.7 respectively). The former
(e.g., minimum norm estimation) is not, in our opinion, a procedure to be
recommended in practice; and it already has its own book-length presentation.

Sections within chapters are numbered in the form 1.1, 1.2, 1.3,...; e.g., Section
1.3 is Section 3 of Chapter 1. These numbers are also shown in the running
head of each page: e.g., [1.3] is found on page 7. Equations are numbered
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(1), (2),... throughout each chapter. Equation references across chapters are
few, but include explicit mention of the chapter concerned; otherwise “equation
(4)” or just *(4)” means the equation numbered (4) in the chapter concerned.
Exercises are in the final section of each chapter (except Chapters | and 2),
with running heads such as [E 5] meaning exercises of Chapter 5. Reference
to exercise 2 of Chapter 5, for example, is then in the form E 5.2.

Grateful thanks go to Harold V. Henderson and Friedrich Pukelsheim for
comments on early drafts of some of the chapters; and to students in Cornell
courses and in a variety of short courses both on and off campus who have
also contributed many useful ideas. Special thanks go to Norma Phalen for
converting handwritten scrawl to the word processor with supreme care and
accuracy; and to Pamela Archin, Colleen Bushnell, April Denman and Jane
Huling for patiently and efficiently dealing with occasional irascibility and with
almost endless revisions for finalizing the manuscript: such helpful support is
greatly appreciated.

SHAYLE R. SEARLE
Ithaca, New York GEORGE CASELLA
April 1991 CuarLEs E. McCuLLocH
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CHAPTER 1

INTRODUCTION

Statistics is concerned with the variability that is evident in any body of data.
A traditional (and exceedingly useful) method of summarizing that variability
is known as the analysis of variance table. This not only presents a partitioning
of observed variability, but it also summarizes calculations that enable us to
test, under certain (normality) assumptions, for significant differences among
means of certain subsets of the data. Sir Ronald Fisher, the originator of analysis
of variance, had this to say about it in a letter to George Snedecor dated
6/Jan/’34 that was on display at the 50th Anniversary Conference of the
Statistics Department at lowa State University, June, 1983:

The analysis of variance is (not a mathematical theorem but) a simple method of
arranging arithmetical facts so as to isolate and display the essential features of
a body of data with the utmost simplicity.

Initially this analysis of variance technique was developed for considering
differences between means, but later came to be adapted to estimating variance
components—as indicated in Chapter 2 and presented in detail in Chapters 3-5.
Although Fisher’s descriptions of analysis of variance methodology were in
terms of sums of squares of differences among observed averages, the trend in
recent decades has been to present many of the ideas behind the analysis of
variance in terms of what are called linear models, particularly that class of
linear models known as fixed effects models (or just fixed models). These are
described in Section 1.3. Numerous books are available on this topic at varying
levels of theory and application. Eight examples of those that are at least
somewhat theoretic are: Searle (1971), which emphasizes unbalanced data; Rao
(1973), with its broad-based mathematical generality; Graybill (1976), which
emphasizes balanced data; Seber (1977), with its concentration on the full-rank
model; Arnold (1981), which uses a co-ordinate-free approach and emphasizes
similarities between univariate and multivariate analyses; Guttman (1982),
which is mainly an introduction; Hocking (1985), which is very wide-ranging;

1



2 INTRODUCTION [1.1]

and Searle (1987), which is confined to unbalanced data, needs no matrix algebra
for its first six chapters, and does offer some brief comments on statistical
computing packages.

Variation among data can also be studied through a different class of linear
models, those known as random effects models (or just random models)—see
Section 1.3; and also those called mixed models, which are models that have a
mixture of the salient features of fixed and random models. For some situations,
data analysis using these models is closely allied to traditional analysis of
variance, but in many instances it is not. The various analysis techniques that
are available for random and for mixed models have been developed over many
years in the research literature, with certain facets of those methods being
available in a chapter or two of a number of books, e.g., Anderson and Bancroft
(1952), Scheffé (1956), Searle (1971), Rao (1973), Neter and Wasserman (1974),
Graybill (1976), Hocking (1985) and Searle (1987), to name a few. In contrast,
this book is devoted entirely to random and mixed models, with particular
concentration on estimating the variances (the components of variance, as they
are called), which is the feature of these models that makes them very different
from fixed effects models. We begin with some useful terminology and then,
through a series of examples, illustrate and explain fixed effects and random
effects. Chapter 2 is a brief history of the development of methods for estimating
variance components, and as such it serves as an introductory survey of the
array of methods available. Chapter 3 begins the description of those methods
in detail.

1.1. FACTORS, LEVELS, CELLS AND EFFECTS

In studying the variability that is evident in data, we are interested in
attributing that variability to the various categorizations of the data. For
example, consider a clinical trial where three different tranquilizer drugs are
used on both men and women, some of whom are married and some not. The
resulting data could be arrayed in the tabular form indicated by Table 1.1.

TABLE 1.1. A FORMAT FOR SUMMARIZING DATA

Marital Status

Married Not Married
Drug Drug
Sex A B C A B C

Male

Female
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The three classifications , sex, drug and marital status, that identify the source
of each datum are called factors. The individual classes of a classification are
the levels of the factor; e.g., the three different drugs are the three levels of the
factor “drug”; and male and female are the two levels of the factor “sex”. The
subset of data occurring at the “intersection” of one level of every factor being
considered is said to be in a cell of the data. Thus with the three factors, sex
(2 levels), drug (3 levels) and marital status (2 levels), there are 2 x 3 x 2 = 12
cells.

In classifying data in terms of factors and their levels the feature of interest
is the extent to which different levels of a factor affect the variable of interest.
We refer to this as the effect of a level of a factor on that variable.

The effects of a factor are always one or other of the two kinds, as has already
been indicated. First are fixed effects, which are the effects attributable to a
finite set of levels of a factor that occur in the data and which are there because
we are interested in them. In Table 1.1 the effects for the factor sex are fixed
effects, as are those for the factors drug and marital status. Further quality
discussion of fixed effects is in Kempthorne (1975). In a different context the
effect on crop yield of three levels of a factor called fertilizer could correspond
to the three different fertilizer regimes used in an agricultural experiment. They
would be three regimes of particular interest, the effects of which we would want
to quantify from the data to be collected from the experiment.

The second kind of effects are random effects. These are attributable to a
(usually) infinite set of levels of a factor, of which only a random sample are
deemed to occur in the data. For example, four loaves of bread are taken from
each of six batches of bread baked at three different temperatures. Whereas the
effects due to temperature would be considered fixed effects (presumably we
are interested in the particular temperatures used), the effects due to batches
would be considered random effects because the batches chosen would be
considered a random sample of batches from some hypothetical, infinite
population of batches. Since there is definite interest in the particular baking
temperatures used, the statistical concern is to estimate those temperature effects;
they are fixed effects. No assumption is made that the temperatures are selected
at random from a distribution of temperature values. Since, in contrast, this
kind of assumption has then been made about the batch effects, interest in them
lies in estimating the variance of those effects. Thus such data are considered
as having two sources of random variation: batch variance and, as usual, error
variance. These two variances are known as variance components; their sum is
the variance of the variable being observed.

Models in which the only effects are fixed effects are called fixed effects
models, or sometimes just fixed models. Models that contain both fixed and
random effects are called mixed models. And those having (apart from a single,
general mean common to all observations) only random effects are called random
effects models or, more simply, random models. Further examples and properties
of fixed effects and of random effects are given in Sections 1.3 and 1.4.
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1.2. BALANCED AND UNBALANCED DATA

a. Balanced data

Data can be usefully characterized in several ways that depend on whether
or not each cell contains the same number of observations. When these numbers
are the same, the data shall be described as balanced data; they typically come
from designed factorial experiments that have been executed as planned.

A formal, rigorous, mathematical definition of balanced data is elusive.
Although the word “balanced” is used in a variety of contexts in statistics
(see Speed, 1983), its use as a descriptor of equal-subclass-numbers data is now
more widely accepted and has been formalized by a number of authors, e.g.,
Smith and Hocking (1978), Seifert (1979), Searle and Henderson (1979) and
Anderson et al. (1984); and an explicit definition of a very broad class of
balanced data is given in Searle (1987). These details are not pursued here.

b. Special cases of unbalanced data

In a general sense all data that are not balanced are, quite clearly, unbalanced.
Nevertheless, there are at least two special cases of that broad class of unbalanced
data that need to be identified. So far as analysis of variance is concerned, they
can be dispensed with because their analyses come within the purview of the
standard (so-called) analyses of balanced data. These analyses can be used for
variance components estimation either by adapting the techniques for balanced
data (Chapter 4), or by using the methods available for unbalanced data in
general (Chapters 5-12). However, in most instances of these special cases of
unbalanced data estimating variance components would not be judicious
because there are often impractically too few levels of the factors. Nevertheless,
we briefly illustrate both cases, to ensure that the reader realizes we deem them
to be outside the ken of what we generally refer to as unbalanced data.

-i. Planned unbalancedness. Certain experimental designs are planned so
that they yield unbalanced data. There are no observations on certain, carefully
planned combinations of levels of the factors involved, e.g.,, latin squares,
balanced incomplete blocks and their many extensions. We call this planned
unbalancedness. An example shown in Table 1.2 is a particular one-third of a
3-factor experiment (of rows, columns and treatments with 3 levels of each),
that is a latin square of order 3, as shown in Table 1.3. In each of the 9 cells
defined by the 3 rows and 3 columns, only one treatment occurs, and not all
three treatments. This is displayed in Table 1.2 as unbalanced data (planned
unbalancedness) with zero or one observation per cell of the 27 cells of a
3 x 3 x 3 (3-factor) experiment. The customary display of this latin square is
shown in Table 1.3.

Another example of planned unbalancedness is an experiment involving 3
fertilizer treatments A, B and C, say, used on 3 blocks of land in which one of
the 3 treatment pairs A and C, A and B, and B and C is used in each block.
This is a simple example of a balanced incomplete blocks experiment that can
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TABLE 1.2. AN EXAMPLE OF PLANNED UNBALANCEDNESS: THE LATIN SQUARE
Number of Observations
Treatment
A B C
Column Column Column
Row 1 2 3 1 2 3 1 2 3
1 1 0 0 0 1 0 0 0 1
2 0 1 0 0 0 1 1 0 0
3 0 0 1 1 0 0 0 1 0

TABLE 1.3. A LATIN SQUARE OF ORDER 3

(TREATMENTS A, B, C)

Column
Row 1 2 3
| A B C
2 C A B
3 B C A
TABLE 1.4. NUMBER OF OBSERVATIONS IN A
BALANCED INCOMPLETE BLOCKS EXPERIMENT
Block
Treatment | 2 3
A | | 0
B 0 | |
C | 0 |

be represented as a 2-factor experiment, each factor having 3 levels, with

certain cells empty, as shown in Table 1.4.

Analyses of variance of data exhibiting planned unbalancedness of the nature
just illustrated are well known and are often found in the same places as those
describing the analysis of variance of balanced data. In a manner more general
than either of the two preceding examples, planned unbalancedness need not
require that a planned subset of cells be empty; it could be that subsets of cells
are just used unequally; e.g., Table 1.4 with every 0 and 1 being a 1 and 2,

respectively, would still represent planned unbalancedness.
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-ii. Estimating missing observations. The second special case of unbalanced
data is when the number of observations in every cell is the same, except that
in a very few cells the number of observations is just one or two less than all
the other cells. This usually occurs when some intended observations have
inadvertently been lost or gone missing somehow, possibly due to misadventure
during the course of an experiment. Maybe in a laboratory experiment,
equipment got broken or animals died; or in an agricultural experiment,
farm animals broke fences and ate some experimental plots. Under these
circumstances there are many well-known classical techniques for estimating
such missing observations [e.g., Steel and Torrie (1980), pp. 209, 227 and 388],
as well as some newer, computer-intensive techniques (see Little and Rubin,
1987). After estimating the missing observations, one uses standard analyses of
variance for balanced data. We therefore give no further consideration to
estimating missing observations.

¢. Unbalanced data

After defining balanced data and excluding from all other data those that
can be described as exhibiting planned unbalancedness or involving just a few
missing observations, we are left with what shall be called unbalanced data.
This is data where the numbers of observations in the cells {defined by one
level of each factor) are not all equal, and may in fact be quite unequal. This
can include some cells having no data but, in contrast to planned unbalancedness,
with those cells occurring in an unplanned manner. Survey data are often like
this, where data are sometimes collected simply because they exist and so the
numbers of observations in the cells are just those that are available. Records
of many human activities are of this nature; e.g., yearly income for people
classified by age, sex, education, education of each parent, and so on. This is
the kind of data that shall be called unbalanced data.

In describing unbalanced data this way we give no consideration to whatever
mechanism it was that led to the inequality of the numbers of observations in
the cells. For example, with milk yields of dairy cows sired by artificial
insemination, bulls that are genetically superior have more daughters than other
bulls, simply because of that superiority. This effect should, of course, be taken
into account in estimating between-bull variance, as was considered by Harville
(1967, 1968). We do not deal with such difficulties and so, in the sense that
unbalanced data are balanced data with some observations missing, we are in
effect assuming that those are what Little and Rubin (1987) call missing-at-
random observations.

Within the class of unbalanced data we make two divisions. One is for data
in which all cells contain data; none are empty. We call these all-cells-filled
data. Complementary to this are some-cells-empty data, wherein there are some
cells that have no data. This division is vitally useful in the analysis of fixed
effects models (Searle, 1987) where Yates’ (1934) weighted-squares-of-means
analysis is very useful for all-cells-filled data but is not applicable to some-cells-
empty data. This is of less importance for random and mixed models than for
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fixed effects models, although the weighted-squares-of-means analysis is indeed
one possible basis for variance components estimation from all-cells-filled data.
(See Chapter S.)

1.3. FIXED EFFECTS AND RANDOM EFFECTS

The two classes of effects, fixed and random, have been specified and described
in general terms. We now illustrate the nature of both classes, using some
illustrative examples to do so, and emphasizing properties of random effects in
the process.

a. Fixed effects models

Example 1 (Tomato varieties). Consider a home gardener carrying out a
small experiment with 24 tomato plants, 6 plants of each of 4 varieties that the
gardener is particularly interested in, through having tried them occasionally
in recent summers. Comparison of the four varieties is now to be made in the
12’ x 8’ garden space available. Each plant is allocated randomly to one
of the 2' x 2’ squares. If y;; is the yield of fruit from plant j of variety i
(fori=1,...,4and j=1,...,6), a possible model for y;; would be

E(}’u) = K (n

where E represents expectation and y, is the expected yield from a plant of
variety i. If we wanted to write y; = 4 + «; we would then have

E(yy)=pu+ao, (2)

where u is a general mean and o, is the effect on yield of tomatoes due to the
plant being variety i.

In this modelling of the expected value of y,; each g, (or u and each «;) is
considered as a fixed unknown constant, the magnitudes of which we wish, in
some general sense, to estimate; e.g., we might want to estimate u, and pu4 or
Uy — Uq- In doing this the y;s, (or the a,s) correspond to the four different
varieties that the gardener is interested in. They are four very specific varieties
of interest, and in using them the gardener has no thought for any other varieties.
This is the concept of fixed effects. Attention is fixed upon just the varieties in
the experiment, upon these and no others, and so the effects are called fixed
effects. And because all the effects in (2) are fixed effects, the model is called a
fixed effects model. It is also called Model I, so named by Eisenhart (1947).

Armed with (2), we now define the deviation of y,; from its expected value
E(y,;) as residual error:

ey=y;— E(yy)=yy—(n+a).
This gives
Yy=putotey (3)

or equivalently y; = y; + ¢;; .
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A consequence of the definition of the residual e;; is that it is a random
variable with mean zero:

E(e;) = E[y; ~ E(yy)] = 0. 4)

But that definition carries no consequences so far as second moments are
concerned. Therefore we attribute a variance and covariance structure to the
e,s: first, that every e;; has the same variance, 62, and second, that the e;s are
independently and identically distributed and that pairs of different e;;s have
zero covariance. Thus, using var(-) to denote variance and cov(, -} for covariance,

var(e;)) =02 V i and j (5)
(with ¥V meaning “for all”) and
cov(e;, ey ;) =0 exceptfori=i"and j=j'. (6)
In light of (4), this means that
var(e;) = 6} = E(e})
and
E(ej ey ;) =0 exceptfori=i"and j=j . (7

The manner in which data are obtained always affects inferences that can
be drawn from them. We therefore describe a sampling process pertinent to
this fixed effects model. The data are envisaged as being one possible set of
data involving these same tomato varieties that could be derived from repetitions
of the experiment, repetitions for each of which a different sample of 6 plants
of each variety would be used. This would lead on each occasion to a set of es
that would be a random sample from a population of error terms having zero
mean, variance ¢ and zero covariances. It is the probability distribution
associated with the es that provides the means for making inferences about
functions of the s (or of u and the a;s) and about o2 .

The all-important feature of fixed effects is that they are deemed to be
constants representing the effects on the response variable y of the different
levels of the factor concerned, in this case the varieties of tomatoes. These varieties
are the levels of the factor of particular interest, chosen because of interest in
those varieties in the experiment. But they could just as well be different fertilizers
applied to a corn crop, different forage crops grown in the same region, different
machines used in a manufacturing process, different drugs given for the same
illness, and so on. The possibilities are legion, as are the varieties of models
and their complexities, reaching far beyond those of (1)-(7). We briefly offer
two more examples.

Example 2 (Medications). Consider a clinical trial designed for testing the
efficacy of a placebo and 3 different medications intended for reducing blood
pressure. The placebo and drug are administered to 24 executives of the same
N.Y. City corporation, all aged 40-45 and earning salaries in the range
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$100,000-$250,000 per annum. Six executives are chosen at random to receive
the placebo and six others for each of the three medications. After 30 days of
treatment, blood pressure is measured again, and for each of the 24 executives
the change in blood pressure from before treatment to after treatment is
recorded. The difference for the jth patient on treatment i, for i = 1, 2, 3,4 and
j=12,...,6,is denoted y;;. Then for studying the effect of treatment on change
in blood pressure, the same model could be used as that suggested in
Example 1 for studying effects of the four varieties on yield of tomatoes. Just
as with the four different varieties of tomatoes, so with the four different
treatments (placebo and 3 medications) on the executives: the y;s (or u and
a;s) are considered as fixed, unknown constants. This is because the four
treatments being used are the four treatments that have been decided upon as
being of interest. They are the treatments on which our attention is fixed. The
effects in the model corresponding to those treatments are therefore fixed effects.

Although medications other than those we have used could be envisaged,
the ones chosen for the experiment are, insofar as the experiment is concerned,
the treatments of interest. In no way are the four chosen treatments deemed to
be a sample from a larger array of possible treatments.

Example 3 (Soils and fertilizers). The growth of a potted plant depends
on the potting soil and the fertilizer it is grown in. Suppose 30 chrysanthemum
plants, all of the same variety and age, are randomly allocated to 30 pots, one
per pot, where each pot contains one combination of each of 6 soil mixtures
with each of 5 fertilizers. A suitable linear model for y;;, the growth of the plant
in soil i used with fertilizer j would be

E(y))=u+a;+ 8 (8)

where 4 is a general mean, o, is the effect on growth due to soil i and f; is the
effect on growth of fertilizer j. Since the 6 soils and the 5 fertilizers have been
specifically chosen as being the soils and fertilizers of interest, the a;s and f;s
are fixed effects corresponding to those soils and fertilizers—with i =1,2,...,6
and j=1,2,...,5 As with the drug treatments, the soils and fertilizers in the
experiment are the specific items of interest and under no circumstances can
they be deemed as having been chosen randomly from a larger array of soils
and fertilizers. Thus the o;s and f;s are fixed effects. This is just a simple extension
of Examples 1 and 2, which each embody only one factor: variety effects
on yield of tomatoes, and treatment effects on blood pressure. With the
chrysanthemums there are two factors: soil effects and fertilizer effects on growth.

b. Random effects models

Example 4 (Clinics). Suppose a new form of injectable insulin is being tested
using 15 different clinics in New York State. It is not unreasonable to think of
those clinics (as do Chakravorti and Grizzle, 1975) as a randomly chosen sample
of clinics from a population of clinics (i.e., doctors who administer the injectious).
If clinic i has n; patients in the trial and the measured response of patient j in
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clinic i is y;; then a possible model would be
E(,Vu)':#"rag fori=1,...,n;. (9)

Although (9) is algebraically the same as (2) for Examples 1 and 2, some
assumptions underlying it are different. In Example 2 each « is a fixed effect,
the effect on blood pressure of the patient having received treatment i, a treatment
that is a pre-decided treatment of interest. But in (9) a; is the effect on blood-sugar
level of the observed patient having been injected in clinic i; and clinic i is just
one clinic, that one from among the randomly chosen clinics that happened to
be numbered i in the clinical trial. Since the clinics have been chosen randomly
with the object of treating them as a representation of the population of all
clinics in New York State, and from which inferences can and will be made
about that population, the one labelled i is of no particular interest of itself to
the trial; it is of interest solely as being one of the 15 clinics randomly chosen
from a larger population of clinics. This is a characteristic of random effects:
they can be used as the basis for making inferences about populations from
which they have come. Thus «; is a random effect. As such it is, indeed, a random
variable.

More precisely, a, corresponding to the clinic that has been assigned label i
is the (unknowable) realization of a random variable “clinic effect” appropriate
to that clinic labeled i. However, for notational convenience we judiciously
ignore the distinction between a random variable and a realized value of it and
let a; do double duty for both.

With the a;s being treated as random variables, we must attribute probability
properties to them. There are two that are customarily employed: first, that
all a;s are independently and identically distributed (i.i.d.); second, that they
have zero mean, and then, that they all have the same variance, gZ. We
summarize this as

o ~iid.(0,62) Vi.
Consequences of this are

E())=0 Vi, (10)
var(o;) = E[e; ~ E(«)]* = E(a}) = 03, (11)

and
covio, o) =0 Vi#k. (12)

There are, of course, properties other than these that could be used, e.g., non-zero
values for cov(a;, a, ). In point of fact, these elementary properties lead to enough
difficulties insofar as estimation is concerned that alternatives seldom get used.
Nevertheless, some of these alternatives are mentioned briefly in Chapter 3.

A second outcome of treating the «;s as random variables is that we must
consider E(y;;) = p + a; of (9) with more forethought, because it is really a
conditional mean. Suppose for the moment that a* represents the random
variable “clinic effect”, and that for the clinic labeled i, «, is the realized (but
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unobservable) value of a*. Then in reality (9) is the expected value of y;; given

that a* is «;, i.e,, that a* = a,. Hence (9) is the conditional mean
E(yjla* =) =pu+a; . (13)

As already indicated, for notational simplicity we drop the use of a* and write
(13) as

E(yyla)=p+a; . (14)
Taking expectation over a;, as in (10), then gives
E(yy))=n. (15)

Note that E(a;) = 0 of (10) involves no loss of generality in (14) and (15)
because if E(a;) # 0 but E(a;) = 7, say, then E(y;lo;) =p+ 7+ a; — T gives
E(y;;) = p + . Therefore, on defining u’ as 4’ = u + 7 and a; = ; — 7, we have
E(y;jla;) = 4’ + a;, which is (14) with u’ in place of y and «; in place of «;, and
the form of (14) and (15) is retained.

Finally, we introduce the residual, similar to e;; = y;; — E(y,;) defined earlier
for fixed effects models. The definition here is

e;=Yij— E(yyla) = yi; — (u + o), (16)
so that e; is a random variable; and (16) gives an equation
Yy=u+o;+ey (17)

similar to (3). Then e;; has properties similar to those of Example 1. Thus
E(e;;) = 0 and attributing uniform variance ¢ to each e, gives

var(e;) = 6 = E(e}), (18)

similar to (5). Furthermore, we also treat the e;;s as being independent of each
other and of every «; so that

cov(ej,e;;)=0 Vi i and j, j excepti=iand j=j
and (19)
cov(e;, o) =0 Vi jand k.

Hence, for the same values of i, i, j, j' and k

E(e e ;) =0 and E(e;a)=0. (20)

In view of (17), the variance of y;; is
var(y;;) = var(pu + o; + e;),

which is

o2=02+0?, [Use(18)-(20)]. (21)

In this way we see that 62 and ¢ are components of 62, the variance of y;
thus they have attracted the name components of variance or variance components.
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Nevertheless, we also note that a2 is the intra-class covariance, i.e., the covariance
between every pair of observations in the same clinic:

COV(yyy, Vi p) = COV(H + oy + €, 4 + o + €) = e} forj#j .

Parenthetical statements. The phrase enclosed in square brackets in (21) is the
first use of a practice that re-occurs in subsequent chapters: an isolated phrase
that indicates to the reader the reasoning behind the derivation of the equality
on that line. In (21) that reasoning is quite straightforward, but such is not
always so.

It is important to recognize that a model is not just its equation such as
(17), but also everything that prescribes properties of the elements in that
equation. Thus the model is not just equation (17) but it is that and all the
equations and other properties described between equations (10) and (20). It
is these properties that distinguish this model from that used in Examples 1
and 2. In Example 1, for instzrcce, the model equation is (3), but the model is
(3) and everything from (2) d»wn to (7).

Model equation (17) has u as a fixed effect, and «; and e;; as random. Thus
everything except u is random. This is the characteristic of what is called a
random effects model, or just a random model. It was named Model II by
Eisenhart (1947), a name that is somewhat disappearing from use.

Example 5 (Dairy bulls). It is common practice for dairy farmers today,
rather than mating their own bulls to their own cows, to have their cows
inseminated by a technician who is supplied with bull semen from an artificial
breeding corporation. That corporation’s business is to own bulls that generally
sire daughter cows that are high-yielding producers of milk. It can achieve that
by each year buying some 80--150 young bulls that are considered to be a
random sample from the population of bulls (of some particular breed—mainly
Holstein, in the U.S.A.). Then semen from those bulls is used enough so that
three years later there will be approximately 60 daughter cows per bull that
have milk production records. Letting y;; be the record of the jth daughter of
the ith sire, an appropriate model for y,; is then precisely the same as in Example
4, based on the model equation

Yyy=pu+ot+e;

butfori=1,...,150and j = 1,..., 60. Because the bulls are considered random,
each o, is a random effect, with var(«;) = 62 and cov(«;, o) = O for i # k, and
with all the other specifications given in Example 4.

To the animal breeder and farmer, who are both interested in using breeding
to help increase the production of economically important products from farm
animals (e.g., eggs, milk, butter, wool, tallow and bacon), the variance components
6? and a2 are of much interest. They are needed, for example, for the ratio
h = 462/(6? + 6?), which is a parameter called heritability that is of great
importance in genetics, not only in the breeding of animals but of plants too.
A similar ratio is 62/(62 + a2), the intra-class correlation; it also occurs in
psychological and educational testing, where it has the connotation of reliability.
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Another aspect of this model that is often of particular interest is that of
predicting the value of «; corresponding to the bull labeled i. This is important
for ranking the bulls on the basis of the predicted values of the «;s because
those predictions act as estimates of the bulls’ genetic merits as sires of daughter
cows that are valued for high milk production.

Note how this example differs from the preceding ones. On one hand, it is
quite reasonable to assume that the bull effects are a random sample of possible
values, and we accordingly treat bull as a random factor. On the other hand,
we are interested in predicting the value of a; for a specific bull that occurs in
the data. Thus the distinction between fixed and random effects centers on
whether we are willing to assume that the levels of a factor are sampled randomly
from a distribution, not whether we are specifically interested in the levels of
that factor.

Given that the exact genetic contribution (a random half of his genetic
make-up) of a bull to his daughter cows is, in fact, different for each daughter,
we cannot estimate a, in the sense that we estimate fixed effects. With «; being
a random variable, the best we can do is to consider the expected value of «;,
given the records that we have from all the daughters of all 150 of the bulls.
Thus we seek to estimate the conditional mean E(a;|y), where y is the vector
of all records. This estimator (which is nowadays called a predictor) turns out
to be, as derived in (40) of Chapter 3,

= ——————(J;. — 1) 21
az+”‘a:(y B) (21)

where bull i has n; daughters with mean record y;, = X}, y;;/n; and i is the
estimator of u:

Tiwid o ! P (22)

= W, = = .
# W, " var(j,) mo? + o2

as derived in (34) of Chapter 3. The estimator (21), which is known as the best
linear unbiased predictor (BLUP), can also be written as

= (5, )
Carm—nn TR

where h = 462 /(6% + 62), as before. Details of these results and generalization
of them are given in Chapter 7. Clearly, in order to use &; in practice, estimates
of 2 and a2 are needed. That is what this book is all about, estimating variance
components.

Example 6 (Ball bearings and calipers). Consider the problem of manufacturing
ball bearings to a specified diameter that must be achieved with a high degree
of accuracy. Suppose each of 100 different ball bearings is measured with each
of 20 different micrometer calipers, all of the same brand. Then a suitable model
equation for y,;, the diameter of the ith ball bearing measured with the jth
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caliper, could be

E(y)=u+a+8. (23)

This is the same model equation as (8) in Example 3; but it is the equation of
adifferent model because the a; and the f; are here random effects corresponding,
respectively, to the 100 ball bearings being considered as a random sample from
the production line, and to the 20 calipers that were being considered as a
random sample of calipers from some population of available calipers. Hence
in (23) each «; and f; is treated just as is o, in Examples 4 and 5, with the
additional property of taking the o;s and B;s as being independent of one
another. Similar independence is taken for the o;s and f;s and e;s. Thus

cov(a;, ﬂ,) = cov(ay, € j4) = COV(B;‘, el'j'k) =0

and similar results for expected values of corresponding products, as in (7) and
(12).

¢. Mixed models

Example 7 (Medications and clinics). Suppose in Example 2 that blood
pressure studies were made at 15 different, randomly chosen clinics throughout
New York City, with 5 patients on each of 4 treatments (placebo and 3
medications) at each clinic. In this case a suitable model equation for the kth
patient on treatment i at clinic j would be

E(yy) = u+ o + B; + vy (24)

where a;, f; and y;; are the effects due to treatment i, clinic j and treatment-
by-clinic interaction, respectively. The range of values for i,j and k are
i=1...,4 j=1,...,15and k = 1,..., 5. Since, as before, the treatments are
the treatments of interest, «; is a fixed effect. But the clinics that have been used
were chosen randomly, and so f; is a random effect. Then, because y,; is an
interaction between a fixed effect and a random effect, it is a random effect,
too. Thus the model equation (24) has a mixture of both fixed effects, the «;s,
and random effects, the ;s and y;;s. It is thus called a mixed model. It incorporates
problems relating to the estimation of both fixed effects and variance components.

In application to real-life situations, mixed models have broader use than
random models, because so often it is appropriate (by the manner in which
data have been collected) to have both fixed effects and random effects in the
same model. Indeed, every model that contains a u is a mixed model, because
it also contains a residual error term, and so automatically has a mixture of
fixed and random elements. In practice, however, the name mixed model is
usually reserved for any model having both fixed effects (other than u) and
random effects, as well as the customary random residuals.

Example 8 (Varieties and gardens). Example | deals with 4 different
varieties of tomatoes. Suppose they are to be compared in 15 different gardens
in Tompkins County of New York State. Then (24) of Example 7 would be an
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appropriate model, with a; being the fixed effect for variety of tomato, and ;
the random effect for garden; and y;; the interaction effect—a random effect.
This and Example 7 would then be essentially the same—4 different treatments
(fixed effects) being used ineach of 15 randomly chosen places (random effects).

1.4, FIXED OR RANDOM?

Equation (8) involving soils and fertilizers is indistinguishable from (23) for
the ball bearings and calipers. But the complete models in these two cases are
different because of the interpretation attributed to the effects: in the one case
fixed, and in the other, random. In these and the other examples most of the
effects are readily seen to be categorically fixed or random: thus tomato varieties
and medications are fixed effects, whereas clinics and dairy bulls are random
effects. But such clear answers to the question “fixed or random™? are not
necessarily the norm. Consider the following example.

Example 9 (Mice and technicians). A laboratory experiment designed to
study the maternal ability of mice uses litter weights of ten-day-old litters as a
measure of maternal ability. Suppose there are four female mice, each of which
has six litters. The experiment is supervised by a laboratory technician, a different
technician for each successive pair of litters that the mice had. One possible
model for y;;, the weight of the kth litter from mouse i with the experiment
being supervised by technician j, would be

E(yp)=u+m+1,+ ¢y, (25)

where 4 is a general mean, m; is the effect due to mouse i, ; is the effect due
to technician j and ¢;; is an interaction effect.

Consider the m;s and the mice they represent. The data relate to maternal
ability, a variable that is assuredly subject to variation from animal to animal.
The prime concern of the experiment is therefore unlikely to center specifically
on those four animals used in the experiment. After all, they are only a sample
from a population of mice: and so the m;s are random effects. But what of the
1,5, the technician effects? If the technicians each came and went, as a random
sample of employees, so to speak, with many more such people also being
available, then the 7;s could reasonably be treated as random effects. But suppose
three particular people were the only candidates available for the position of
technician, and each wanted it as long-term employment. Then we are specifically
interested in just those three technicians and want to assess differences between
them, and pick for the job the one deemed best. In that case we would be
unwilling to assume that the technician effects were sampled from a population
of values, and they would be fixed effects, not random effects. Thus it is that
the situation to which a model applies is the deciding factor in determining
whether effects are to be considered as fixed or random. Extensive discussion
of this is to be found in the landmark paper of Eisenhart (1947), with further
comment available in Kempthorne (1975) and Searle (1971).
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In some situations the decision as to whether certain effects are fixed or
random is not immediately obvious. Take the case of year effects, for example,
in studying wheat yields: are the effects of years on yield to be considered fixed
or random? The years themselves are unlikely to be random, for they will
probably be a group of consecutive years over which the data have been gathered
or the experiments run. But the effects on yield may reasonably be considered
random, subject, perhaps, to correlation between yields in successive years. Of
course, if one was interested in comparing specific years for some purposes,
then treating years as random would not be appropriate.

In endeavoring to decide whether a set of effects is fixed or random, the
context of the data, the manner in which they were gathered and the environment
from which they came are the determining factors. In considering these points
the important question is that of inference: are the levels of the factor going to
be considered a random sample from a population of values? “Yes”—then the
effects are to be considered as random effects. “No”—then, presumably,
inferences will be made just about the levels occurring in the data and the effects
are considered as fixed effects. Thus when inferences will be made about a
population of effects from which those in the data are considered to be a random
sample, the effects are considered as random; and when inferences are going
to be confined to the effects in the model, the effects are considered fixed.

Another way of putting it is to ask the questions “Do the levels of a factor
come from a probability distribution”? and “Is there enough information about
a factor to decide that the levels of it in the data are like a random sample™?
Negative answers to these questions mean that one treats the factor as a fixed
effects factor and estimates the effects of the levels. Affirmative answers mean
treating the factor as a random effects factor and estimating the variance
component due to that factor. In that case, if one is also interested in the realized
values of those random effects that occur in the data, then one also uses a
prediction procedure for those values (see Section 3.4).

It is to be emphasized that the assumption of randomness does not carry
with it the assumption of normality. Often this assumption is made for random
effects, but it is a separate assumption made subsequent to that of assuming
effects are random. Although most estimation procedures for variance
components do not require normality, if distributional properties of the resulting
estimators are to be investigated then normality of the random effects is often
assumed.

1.5. FINITE POPULATIONS

Random effects occurring in data are assumed to be from a population of
effects. The populations are usually considered to have infinite size, as is, for
example, the population of all possible crosses between two varieties of tomato.
They could be crossed an infinite number of times. However, the definition of
random effects does not demand infinite populations of such effects. They can
be finite. In addition, finite populations may be very large, indeed so large as
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to be considered infinite for most purposes; an example would be all the mice
in New York State on July 4, 1990! Hence random effects factors can be
conceptual populations of three kinds insofar as their size is concerned: infinite,
finite but so large as to be deemed infinite, and finite.

We shall be concerned with random effects coming solely from populations
assumed to be of infinite size, either because this is the case or because, although
finite, the population is large enough to be taken as infinite. These are the most
oft-occurring situations found in practical problems. Finite populations, a propos
variance components, are discussed in several places, e.g., Bennett and Franklin
(1954, p. 404) and Gaylor and Hartwell (1969). Rules for converting the
estimation procedure of any infinite-population situation into one of finite
populations are given in Searle and Fawcett (1970).

1.6.

a. Characteristics of the fixed effects model and the random effects model for
the 1-way classification

SUMMARY

Characteristic Fixed Effects Model

Random Effects Model

Model equation Yu=u+a+e

Yyy=un+ao+ey

Mean of y;, E(yy)=pu+a E(yylo)=p+ o
E(y)=u
a Fixed, unknowable constant #, ~ iid.(0,62)
€ ey =y, — E(yy) ey =Yyy— E(Vulal)
=y —{u+a) =yy—(u+a)
€y~ i.i.d.(o, 6‘2,) ey~ i.i.d.(o, 63)
E(e;;) E(ey) = a;E(e;) =0 E(e o) =0
var(y;;) var(y;) = o} var(y;) = 0l +al
cov(y; y”') cov(yy Yt'J-) cov(yy, }’rj')
» forie fand = i al+0? fori=iandj=j
=% fori=randj=; _J 5 fori=i'andj #J'
0 otherwise .
0 otherwise
b. Examples
No. Page Content Classification Model
1 7 Tomato varieties 1-way Fixed
2 8 Medications l-way Fixed
3 9 Soils and fertilizers 2-way Fixed
4 9 Clinics 1-way Random
5 12 Dairy bulls 1-way Random
6 13 Ball bearings and calipers 2-way Random
7 14 Medications and clinics 2-way Mixed
8 14 Varieties and gardens 2-way Mixed
9 15 Mice and technicians 2-way Mixed or random
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¢. Fixed or random?

For any factor, the following decision tree has to be followed in order to

decide whether the factor is to be considered as fixed or random.

IS IT REASONABLE TO ASSUME THAT LEVELS OF THE FACTOR
COME FROM A PROBABILITY DISTRIBUTION?

|
No
i
Treat factor
as fixed

1
Yes
i

Treat factor as random

l
WHERE DOES INTEREST LIE?

|
ONLY IN THE
DISTRIBUTION
OF THE
RANDOM EFFECTS
!
Estimate the variance
of the random effects

|
IN BOTH THE DISTRIBUTION
AND THE
REALIZED VALUES
OF THE RANDOM EFFECTS
i
Estimate the variance
of the random effects
and calculate predictors
(BLUP) of the realized
values of the random effects

[1.6]



CHAPTER 2

HISTORY AND COMMENT

This chapter gives a brief history of the different methods now available for
estimating variance components. In so doing, it provides a skeleton survey of
many of the topics that are detailed in ensuing chapters. We begin with an
introductory section on analysis of variance because, historically, that is the
starting point of methods of estimating variance components.

2.1. ANALYSIS OF VARIANCE

The starting point of Fisher’s analysis of variance table was the array of
different means or averages available from a body of data. Thus in Example 1
of Chapter 1, where y;; is the yield from plant j of variety i, there are variety
means J;, and the overall mean j ... From that example of the 1-way classification
we generalize notation to have

Yij

n a
Z, Yij Z 7
}7“=1—1 and }_)“=t=lj 1 =i 1 (1)
n an a

llM:
1] s

fori=1,...,a and j=1,...,n. In that example, a =4 and n = 6. Thus, in
general, a is the number of groups or classes (tomato varieties in the example)
with the number of observations (plants) in each being n.

We begin with the identity

Yiy—V.=Wy— b))+ (. —y.). (2)
Squaring each side of (2) and summing over i and j gives, in contrast to the
linear identity of (2), what can be called a quadratic identity:
Z Z vy — y.)i= Z Z (yij — v+ Z Z (. —5.)%. (3)
i=1j=1 i=1j=1 i=1j=1

19
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This arises because in squaring the right-hand side of (2), the cross-product
term is zero:

a n u n a
Z Z (J’u - )P — V)= Z [ Z (,Vu - }7:-)](}7:. —-y.)= Z 0(5.—5.)=0.
i=1j=1 i=1Lj=1 i=1
Note that each term in (3) is analogous to the sum of squares used in the
customary estimation of variance from a simple sample of k observations,
Xiy X3, ..4 X, Namely

k k
z (xr—i)z Z Xy
s2="1 for =121 (4)
r—1 r

Thus the term on the left-hand side of (3) is the total sum of squares of deviations
of all the observations from their mean, and the two terms on the right-hand
side of (3) are sums of squares of deviations of observations from their group
means, j,., and of those group means from their mean, y.. Thus (3) is a
partitioning of the total sum of squares (or total sum of squares corrected for
the mean) into two other sums of squares, all three of them being available for
calculating estimated variances after the manner of s? in (4). This partitioning,
namely the identity (3), is easily summarized in tabular form as in Table 2.1,
wherein the labels SSA, SSE and SST,, have been given to the sums of squares.
SST,,, the total sum of squares adjusted for the mean (a.f.m), is used for distinc-
tion from SST = X{., Z}., y}, with SST, = SST — anj2 = ,Z(y,, — 7.)%
All of this is just straightforward algebra. Now we introduce certain statistical
properties that originate from the customary assumptions of independence and
normality: that the y,; are realized values of independent random variables that
are normally distributed with E(y;)=y; and var(y;) = o2. Under these
circumstances it was Fisher’s work that showed that SSA and SSE are each
distributed as a multiple of a y2-distribution, that they are stochastically

TABLE 2.1,  PARTITIONING THE SUM OF SQUARES IN
THE l.way CLASSIFICATION, BALANCED DATA

Source of Sum of
Variation Squares
Groups SSA=Y Y (5.—-7.)

i=1j=1

Y (= Fu)?
) j=1

™=

Within groups SSE =
i

i

Total (afm) SSTm = i i (y,'_] - P)Z

i=1j=1
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TABLE 2.2.  ANALYSIS OF VARIANCE FOR A 1-WAY CLASSIFICATION WITH BAI;ANCED DATA

Source of
Variation d.r! Sum of Squares Mean Square F-Statistic
Groups a—1 SSA=n Y (5.-§.)? MSA = SSA/(a ~ 1) F = Eé
i=1 MSE
Within groups  a(n—1) SSE=Y Y (y,—j.)*  MSE=SSE/a(n—1)
=y j=1
a b
Total afm. an—1 SSTu=Y ¥ (yy— 7.0
i=1j=1
'd.l. = degrees of l[reedom
independent and that
SSA/(a-1
F=__/(_._)~37:(;1”, (5)
SSE/a(n — 1)

meaning that F is distributed according to Fisher’s F-distribution (so named
by Snedecor) with a — | and a(n — 1) degrees of freedom for the numerator
and denominator, respectively. This calculation and its intermediate steps are
summarized in the familiar analysis of variance table of Table 2.2, which is
simply an expansion of Table 2.1.

The simplest use for which Fisher designed the analysis of variance table is
that in Table 2.2, on assuming normality and the model equation

E(y;)=p+a (6)
the F-statistic of (5) and Table 2.2 is a test statistic for testing the hypothesis
H o¢g=a=-=q,. (7)

As has been said, this is for the fixed effects model. But for the random effects
model, which is more pertinent to this book, the important question is “How
does Table 2.2 get used in the random model?” This is answered by considering
two questions that are more specific.

The first is “In the random model, what use is F?” The difference between
the fixed model and the random model is what is essential here. In the fixed
model, the as correspond to specific, carefully chosen, levels (e.g. tomato
varieties) of specific interest; and in the random model the as correspond to a
random sample of levels from some larger population (e.g., a sample of bulls).
In the fixed effects case we are most interested in just the particular as that
occur in the data—and in only those effects. In the random eflects case we are
interested in the effects that occur in the data only inasmuch as they are a
sample from a population and can therefore be used to make inferences about
that population—in particular about its variance. Hence fixed effects models
focus concern upon means: random effects models focus concern upon variances.
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Thus for the fixed effects model the assumption of normality leads to F = MSA/
MSE [of (5) and Table 2.2] being a test statistic for the hypothesis
H: a, = a, = --- = a, shown in (7). But in the random model that same
F-statistic tests H: a2 = 0.

The preceding F = MSA/MSE is a test statistic for H: ¢ = 0 only for the
1-way classification (see Sections 3.5d-v and 3.6d-v). But the reader is cautioned
that this obviously useful result, of an F-statistic being available for testing a
hypothesis that a variance component is zero, does not extend to every F-statistic
that arises in analysis of variance tables of data of all mixed or random
models—not even for balanced data. And this caution leads to another. Users
of computer packages that have F-values among their output must be totally
certain that they know precisely what the hypothesis is that can be tested by
each such F-value. This is so both for fixed effects models (e.g., Searle, 1987),
and for random and mixed models, too. Thus for the t-way classification of
Table 2.2, with the random model the statistic F does not have an F-distribution
when using unbalanced data, unless 62 = 0.

The second question concerning Table 2.2, which is particularly pertinent
to this book, is “ What part does the analysis of variance table play in estimating
components?” The answer to this question occupies Chapters 3-5 that follow,
dealing not just with the analysis of variance of Table 2.2, but with many
extensions for both balanced and unbalanced data.

2.2. EARLY YEARS, 1861-1949

a. Sources

The following brief history emphasizes the development of methods of
estimating variance components, much of it being akin to Searle (1988a, 1989).
The early years of 1861-1939 are dealt with in more detail than is 1940
onwards, because publications are sparser and, for many readers, harder to
locate than those since 1940. For this early history we draw heavily, plagiaristically
in some cases, on Anderson (1978, pp. 11-25), with his kind permission; and
he, in turn, utilized Scheffe (1956). For the more recent period, heavy reliance
is placed on (and free use made of) the excellent survey of Khuri and Sahai
(1985)—again, with their kind permission. The proliferation of papers in the
last fifteen years or so is extremely well summarized by those authors and the
interested reader is encouraged to read their article and use their comprehensive
bibliography as an entré to almost all aspects of variance components. In relying
on their survey, the account given here of the recent years does, for some topics,
refer to just an early paper and a recent one, so providing the reader with both
a starting point and something up-to-date. To encompass all the literature
would be to repeat Khuri and Sahai’s (1985) paper, the reference list of which
is extensive; and even more so are the bibliographies of Sahai (1979) and Sahai,
Khuri and Kapadia (1985).
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Much of the early story of variance components revolves around the 1-way
classification that has already been set out in Chapter 1, summarized as follows:

Yy=u+o;+e; wthi=12..a (8)
var(a;) = 62; var(e;) = 6?; all covariances zero; (9)
i=12,...,n Vi for balanced data; (10)
i=12,...,n;, for unbalanced data . (11)

For consistent notation, changes have been made to what some authors have
used (even within direct quotations), and a unified set of equation numbers has
been employed, with authors’ numbers shown in square brackets.

b. Pre-1900

An excellent telling of the early history of variance components is given in
Scheffé (1956) and is enlarged upon in Anderson (1978, 1979a). Both of these
accounts are drawn on extensively in what follows.

Legendre (1806) and Gauss (1809) are well known as the independent fathers
of the method of least squares. Plackett (1972) has an intriguing discussion of
their relative rights to priority. An interesting aspect of those two early papers
is, as pointed out by Scheffée (1956), that they were both published in books
concerned with problems arising from astronomy: the orbits of the comets were
Legendre’s concern and Gauss dealt with conic sections. But what is even more
interesting is that whereas Legendre and Gauss were implicitly dealing with
fixed effects aspects of linear models (although they wrote no model equations
as would be recognized today), the subject of random effects models also seems
to have originated from problems in astronomy.

The first known formulation of a random effects model (although not called
such) seems to be that of Airy (1861, especially Part 1V). Scheffé (1956) refers
to this work as being "very explicit use of a variance-components model for
the one-way layout ... with all the subscript notation necessary for clarity.” He
(Scheffé) describes the work (Airy, 1861, Sec. 118; Sec. 113 in the 3rd edition)
as being concerned with making telescopic observations on the same phenomenon
for a nights, n; observations on the ith night. It is noteworthy (as remarked
upon by Anderson, 1978) that in this earliest known use of a variance
components model there is provision for unequal numbers of observations on
the different nights. Then, with a footnote that he has changed Airy’s capital
letters to lower case, and that he has “added the general mean u since he [Airy]
writes the equations for the observations minus u instead of for the observations,”
Scheffé describes Airy’s model as follows [ but now using the notation we have
set out in (8)-(11)]:

Airy assumes the following structure for the jth observation on the ith night:

[2.1] Yy=#n+ o+ ey (12)

where g is the general mean or “true™ value, and the {«;} and {e;;} are random
effects with the following meanings: He calls «; the “constant error”, meaning it
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is constant on the ith night; we would call it the ith night effect; it is caused by
the “atmospheric and personal circumstances™ peculiar to the ith night. The {e;}
for fixed i we would call the errors about the (conditional) mean u + «; on the
ith night. It is implied by Airy’s discussion that he assumes all the ¢;; independently
and identically distributed, similarly for the «;, that the {e,} are independent of
the {a;}, and that all have zero means. Let us denote the variances of the {e;}
and the {«} by ¢? and o?.

Nowadays this seems to be accepted as the first occurrence of a random effects
model in the literature. Yet Airy himself must not have thought of it as being
the first, for in the preface of his book, quoted by Anderson (1978), he writes
“No novelty, I believe, of fundamental character, will be found in these pages.”;
and “...the work has been written without reference to or distinct recollection
of any other treatise (excepting only Laplace’s Théorie des Probabilités)....”
As Anderson (1978) says, this, insofar as attempts at establishing the exact
origin of the components of variance concept are concerned, is an unfortunate
style of writing,

Quoting from Scheffé (1956, p. 256) again, it is interesting to note that Airy
estimates what we would call a2 by first calculating

62 = zj(yij - y—“)z

(13)

for the ith night and then averages the square roots of the values given by (13)
to estimate a2 by

5 = [i (az.o*/a]z . (14)
=1

It is noteworthy to see such an early use of n; — 1 as denominator of (13),
although Anderson (1978) states that this is not an original use. “In establishing
acriterion for the rejection of discordant observations,” he writes, “ Pierce (1852)
specified “the sum of squares of all errors’ as being (N — m)e2, where N is the
total number of observations, m is the number of unknown quantities contained
in the observations and &2 is the mean error (sample variance). Clearly,
astronomers understood the concept of degrees of freedom (but without using
the term) as early as the year 1852.”

The second user of a random effects model appears, according to Scheffé, to
be Chauvenet (1863, Vol. 11, Articles 163 and 164), who, although he did not
write model equations, certainly implied such models and derived the variance
of y. = Z{., )., y;;/an of (1) as

2 2
var(y.) = RLHLY

Chauvenet suggests that there is little practical advantage in having n greater
than 5, and refers to Bessel (1820) for this idea; but Scheffé says that the reference
is wrong, although it “does contain a formula for the probable error of a sum
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of independent random variables which could be the basis for such a conclusion.
Probably Bessel made the remark elsewhere.” If so, the question is “Where?”;
and might that other reference be the first germ of an idea about optimal design?
Preitschopf (1987) has searched the 1820-1826 and 1828 yearbooks containing
Bessel (1920) and finds not even a hint about not having “n greater than 5”;
the only pertinent remark is on page 166 of the 1823 yearbook which has,
with x; being the “random error of part i, i=1,...,n, total error is
y=Jxt+..+x2”

Apart from some inconsequential comments by Yule (1911, Chap. XI) that
indicate his unawareness of Airy (1861) and Chauvenet (1863), the next
and major foundational ideas on estimating variance components are seen in
the work of R. A. Fisher.

c. 1900-1939

-i. R. A. Fisher. In an essay on the status of quantitative genetic theory,
Kempthorne (1977) remarks: “Without doubt, the basic and seminal paper in
the theory of quantitative genetics is that of Fisher (1918).” However, considering
that the motivation for Fisher’s paper was his having foreseen that the basis
for “...a more exact analysis of the causes of human variability” lay in
reconciling the continuous variation of a metric trait with the discrete nature
of Mendelian inheritance processes, Kempthorne’s remark can also be applied
to Fisher’s contribution to variance component theory. In this connection, some
notable aspects of Fisher’s paper are [ adapting freely from Anderson (1978)]:

(i) Inceptive use of the terms “variance” and “analysis of the variance”.

(ii) Implicit, but unmistakable, use of variance components models.

(iii) Definitive ascription of percentages of a total variance to constituent
causes; €.g., that dominance deviations accounted for 21% of the total
variance in human stature.

Following that genetics paper, Fisher’s book (1925, Sec. 40) made a major
contribution to variance component models through initiating what has come
to be known as the analysis of variance method of estimation: equate sums of
squares from an analysis of variance to their expected values (taking expectations
under the appropriate random or mixed model) and thereby obtain a set of
equations that are linear in the variance components to be estimated. This idea
arose from using an analysis of variance for deriving an estimate of an intra-class
correlation from data from a completely randomized design. The pertinent
passage in Fisher (1925, p. 190) is as follows.

Let a quantity be made up of two parts, each normally and independently
distributed; let the variance of the first part be 4, and that of the second part, B;
then it is easy to see that the variance of the total quantity is 4 + B. Consider a
sample of n' values of the first part, and to each of these add a sample of k in
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each case. We then have n’ classes of values with k in each class. In the infinite
population from which these are drawn the correlation between pairs of numbers
in the same class will be

P2 (15)
A+ B

From such a set of kn’ values we may make estimates of the values of A and
B, or in other words we may analyze the variance into the portions contributed
by the two causes; the intraclass correlation will be merely the fraction of the
total variance due to the cause which observations in the same class have in
common. The value of B may be estimated directly, for variation within each class

is due to this cause alone, consequently

kn'
S(x-%,)=n'(k—1)B. (16)
1
The mean of the observations in any class is made up of two parts, the first
part with variance A, and a second part, which is the mean of k values of the
second parts of the individual values, and has therefore a variance B/k; consequently
from the observed variation of the means of the classes, we have

n

kS (%, = %)* =(n' — 1)(k4 + B). (17N

1

S in (16) and (17) represents summation; the notation of Table 2.1 has these
equations as :

E Z Y (yy—5.)=a(n—1)el,

i=1j=1
ie., (18)
E(SSE) = a(n — 1)a},
and
En ‘Zl (i — 5.)% = (a — 1)(ne? + a2),
i.e., (19)

E(SSA) = (a — 1)(na? + 62).

Fisher did not write the expectation operator E, nor did he even use the
phrase “expected value”, but he clearly had that idea in mind when, preceding
(15), he wrote “In the infinite population from which these are drawn...” —even
though it applies there to the correlation of (15) and not to the sums of squares
of (16) and (17). But it is definitely implicit in (16) and (17), and therein hangs
Fisher’s germinal contribution to the analysis of variance (ANOVA) method
of estimating variance components. For that is precisely what (16) and (17)



[2.2] EARLY YEARS, 1861-1949 27

represent, as we see from rewriting their equivalent forms (18) and (19) as
SSE = a(n — 1)6?

and (20)
SSA = (a — 1)(né2 + 62).

Definitive priority for this idea undoubtedly goes to Fisher, based on his sentence
“The value of B may be estimated directly...” immediately prior to (16),
although the actual doing of it must go to some reader of Fisher (1925) who
did what (at least nowadays seems) was obviously intended, namely

52 SSA/(a—1)—32 MSA - MSE

(21)
n n

These, for balanced data (of a classes with n observations in each), in a 1-way
classification random model, are what are known as the ANOVA (analysis of
variance) estimators of the variance components. They are akin to method-of-
moments estimators.

Had Fisher foreseen even a small part of the methodology for estimating
variance components that was heralded by (16) and (17) he might have given
more attention to this topic. But he did not. Section 40 of Fisher (1925) remains
quite unchanged in subsequent editions (e.g. 8th ed., 1941, p. 215 and 12th
ed., 1954, p. 221), even after variance component principles were well established.
Furthermore, even when Fisher extended the analysis of variance to a 1-way
classification model with unbalanced data, to a 2-factor model with interaction
and to more complex settings, he did not address the estimation of variance
components in those settings.

-ii. L. C. Tippett. As noted by Urquhart, Weeks and Henderson (1973),
Fisher “did not use linear models to explain the analysis of variance of designed
experiments even though his writings on regression and correlation (both simple
and multiple) lean toward linear models.” In contrast, Tippett (1931; Secs. 6.1,
6.2 and 10.3) not only clarified the analysis of variance method of estimating
variance components from balanced data but also extended it (apparently for
the first time) to the 2-way crossed classification, without interaction, random
model. The following quote from Tippett (1931, p. 89} illustrates this point.

Let it be assumed, for example, that a quantity x is subject to random variations,
and to others associated with two factors A and B; then the value of any one
observation of x is

x=¢+a+ B+,



28 HISTORY AND COMMENT [2.2]

where & is the mean, o and f are deviations arising from A and B, and ¢' is the
random deviation. The square of its [i.e., x’s] deviation from the mean is

(x =& =a? + B2+ &2 + 2uf + 20 + 2p¢’

and this may be summed for a sample of N individuals, and divided by the degrees
of freedom (N in this case, since we have not found the mean ¢ from the sample,
but have assumed it). Thus we obtain [with S = X]

S(x —&)?* Sa? Sp* S¢ 2§ 2Saf’  2SpE

Stx— &) S SBT ST 2Saf | 28ac’ 2SBC

N N N N N N N

and as N becomes indefinitely large, the last three terms of this equation tend to

zero if o, f and &' are independent; the other terms are the squares of the standard
deviations or variances, so that finally

ol=0}+0}+0} ... [16] (22)

Hence the variance of x is the sum of the random variance and of those due to
A and B.

It is interesting that by relying on the notation of uncorrelated random
“deviations”, Tippett (especially in Sec. 10.3) overlooked the possibility of having
interaction effects in linear models whereas Fisher (1925, Sec. 42), despite his
non-usage of a linear model, not only used the term “interaction” (p. 200), but
also described an interaction effect between two factors 4 and B.

Tippett (1931, Sec. 6.2, pp. 92-93) describes the analysis of variance method
for estimating variance components as follows. It yields the estimators a little
more explicitly than do (16) and (17) from Fisher (1925).

If v? is the mean variance between shrubs [amongst classes mean square], and
v2 the mean variance within a shrub [ error mean square], as found from the sample

v2 - no? +o,2}

vl — no?

[18] (23)

where n is the number of readings per shrub, o2 is the variance “within a shrub”,
o? is the mean variance “between shrubs” and — denotes “that the quantity
on the left is an estimate of that on the right, and that the former approaches
the latter as the size of the sample” (number of degrees of freedom in both
parts) increases indefinitely. Having for a set of data obtained values of v? and
v? 0f 261.492 and 3.057, respectively, and with n = 100, Tippett continues (p. 93)

Using the relations of equations [ 18]
261.492 — 10002 + o
3.057 - o
whence
258.435 - 10002
2584 5 0?.
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The preceding methodology is extended in Tippett (1931, Sec. 10.3, p. 180)
to the 2-way crossed classification model, using deviations from the grand mean,
an analysis of variance table, and expected mean squares; and the preceding
expressions for calculating variance components estimates of Tippett’s first
edition of 1931 were extended in the second edition of 1937 (p. 182), in terms
of an example.

With a method of estimating variance components established (notwith-
standing its restriction to balanced data), the problem of selecting an optimal
sample design for any particular experiment could be studied definitively. Thus
the “best way of distributing the observations between and within groups” for
a 1-way model was addressed by Tippett (1931, Sec. 10.1, p. 182), as it had
been by Chauvenet (1863) and perhaps Bessel (1820).

-iii. The late 1930s. Despite Tippett’s consideration of optimal design just
mentioned, the comprehensive study on sampling for yield in cereal experiments
by Yates and Zacopanay (1935), which dealt with designs corresponding to
higher-order models, would appear to be an early beginning to optimal sampling
design. In the same year Neyman, Iwaszkiewicz and Kolodziejczyk (1935)
examined the comparative efficiency of randomized blocks and Latin squares
designs and, in contradistinction to all previous studies, they made extensive
use of linear models (including mixed models) and associated mathematical
concepts,

Neyman et al. (1935) also have some claim to originating the term “variance
component”. In an acrimonious review of that paper, Fisher (1935) used the
term “components of variation”, which, coupled with the paper’s use of
the term “error components”, undoubtedly influenced ultimate adoption of
“components of variance” (or “variance component”). However, this cannot
be asserted unequivocally because Daniels (1939), who appears to have been
the first to use the phrase “components of variance”, did not mention either
Neyman et al. (1935) or Fisher (1935) in this regard when he wrote that
variability

...is the result of factors..., each factor being responsible for its quota of the
dispersion, and it is natural to use the analysis of variance techniques not only
to detect possible sources of variation but to arrive at estimates of the components
of total variance assignable to each factor. The components of variance can then
be used to establish an efficient sampling scheme....

Both Daniels (1939) and, a few months later (across the Atlantic), Winsor
and Clarke (1940) derive the equivalent of (16) and (17) that Fisher (1925) has.
In doing so, both papers use the “expected value” concept; Daniels mentions
Tippett (1931) but not Fisher. whereas Winsor and Clark describe their
derivation as being “a straightforward extension of the suggestions of
R. A. Fisher in his Statistical Methods for Research Workers [Sec. 40].”
Presumably this is the seventh edition, published in 1938, in which Sec. 40 is
the section dealing with the intraclass correlation, exactly as does the same
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section, unchanged, in both the first edition of 1925 and the twelfth edition of
1954. Yet, as we have seen, although Fisher (1925) has the idea of taking
expected values, he has not there specifically formulated it using the E operator
as do Daniels, and Winsor and Clarke.

At about the same time as both the Daniels and the Winsor and Clarke
papers were published (the latter in what, even at that time, must have been
somewhat of an obscure journal for statisticians), Snedecor’s third edition (1940)
became available with, as far as can be seen, no reference to variance components
at all. Page 205 contains discussion of estimating the intra-class correlation as
A/(A + B), just as does the 1938 seventh edition of Fisher (1925). The nearest
thing to characterizing 4 as a variance component is the description that “A
is the same for all ... samples—it is the common element, analogous to
covariance.” And that is, of course, the case: the covariance between y;; and
yy for j #j' is 6.

The work of Daniels (1939) was significant in two other respects:

(i) Sampling variances of variance component estimates were derived,
for balanced data, up to the complexity of a 3-way crossed classification
random effects model, complete with all interactions.

(ii) Inderiving expected mean squares, account was taken of the possibility
that the population of effects for a random factor could be of finite size.
This was motivated by Tippett’s (1937, Sec. 10.13) treatment of the l-way
random model for which he derived the estimator of the variance component
due to classes (62) as (1 — 1/n)"'(MSA — MSE). This estimator differs from
the corresponding infinite population estimator of (21) through multiplication
by (1 —1/n)7%; ie, it is (1 — 1/n)"! times the estimator given by [15] of
Fisher (1925).

Since linear models have nowadays become an integral part of describing
variance components, it is interesting to note that this had become widely
accepted by 1939; e.g., Neyman et al. (1935), Welch (1936), Daniels (1939) and
Jackson (1939). Moreover, the models specified here were surprisingly up-to-date
in some cases. Consider the following sentence from the appendix of Welch
(1936):

x,; are a set of N = kn observations consisting of k groups (¢ =1,2,...,k) of n
individuals in each group (i = 1,2,..., n) such that x, = « + y, + z,; where y and
z are normally and independently distributed about zero with S.D.s [standard
deviations] o, and o,, respectively.

Welch then utilizes properties of y2-variables to derive essentially the same
results as Fisher (1925), shown earlier as (16) and (17). Stemming from his
reliance on normality for deriving expectation of sums of squares, Welch’s
sentence about the unbiasedness of the resulting variance component estimators
suggests that he may not have realized that the assumption of normality is not
necessary for establishing that unbiasedness.
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Jackson (1939) also assumed normality for random effects and error terms
in his description of a mixed model for a no-interaction 2-factor situation with
one factor random and the other non-random. He writes the model as
ya = A+ B, + C, + z,, with A being “a measure of the effect common to all
individuals...”, B, as being “a measure of the trial effect”, C, as “a measure of
the individual effect” and z,, as “the error of measuring...”. This seems to be
the first occurrence in the literature of the word “effect” in what is now its
customary usage in the context of linear models; and this description of a mixed
model, although not so called at that time, may well be its first occurrence
in the literature also.

Considering the detail of the descriptions that Welch (1936) and Jackson
(1939) give to their models, it is surprising that it was not until Eisenhart (1947)
that the first precise distinction was made between “fixed” and “random” models
(Eisenhart’s Models I and II, respectively), and that the name “mixed model”
or “mixed analysis of variance” had not been suggested before 1947. Clearly,
it was recognized before then that there is a need to specify which of the effects
in a linear model are fixed and which are random. Albeit, it is a distinction
that Yates (1967) later took great exception to.

-iv. Unbalanced data. Almost all of the work described so far concerns
balanced data; e.g., k observations in each of the n’ classes of Fisher’s description
of the 1-way classification. The case of unbalanced data was given but a passing
comment by Tippett (1931, Sec. 6.5, p. 96): “In such cases, the relations [18]
do not hold, for in summing the squares of the deviations of the group means
from the grand mean, each group has been given a different weight, n, [the
number of observations in group s].” Nevertheless, Section 9.6 (p. 166)
subsequently provides an approximation to allow the calculation of an intraclass
correlation coefficient from such data. In contrast, Snedecor (1934, Sec. 31,
p. 20) simply stated “The direct relation between analysis of variance and
intraclass correlation disappears if there are unequal frequencies in the classes.”

It is nowadays well known that estimating variance components from
balanced data is generally much easier than from unbalanced data. A comment
on the history of this state of affairs is that although Airy (1861) made provision
for unbalanced data—see (12) and (13)—and estimation from balanced data
first appeared (implicitly) in Fisher (1925), it was to be fourteen years before
something appeared for unbalanced data—in Cochran (1939). And this was
for only the simplest case, the 1-way classification random model. With data
consisting of a groups having n; observations in group i, Cochran states
that “the mean square variance between groups is an estimate of ¢2 +
(Zyn; — Zin} /Zin;)6} /(a — 1), where o is the variance within groups and ¢}
the true variance between groups.” This expression is, of course, the expected
value of the between-group mean square. Although Cochran goes on to use his
result in a manner that we might not use today, he certainly seems to be the
first in print with a procedure for handling unbalanced data—albeit for the
simplest possible case, the 1-way classification random model.
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Cochran follows the result with the comment that “if n, = n in all groups,
the coeflicient of a: reduces to n; otherwise the coefficient is somewhat smaller
than the average number of sampling units per group.” With A, denoting this
average, this latter observation is valid because

i — I —Zind [Zin, _ Iin _ [ In _ Iin} :|
' a—1 a a—1 (a—-NHZImnm

= [Ziniz _ (zlnl)z] 1
a (a — 1)Zn,

_Edm— i)t
(a — H)Zn,
Whereas Cochran (1939) was not specifically concerned with estimating
variance components from unbalanced data in the 1-way random model, Winsor

and Clarke (1940) certainly were. The essence of their results is the pair of
expectations

c Iin—Ent/Z
E Z n(j. —5.) =(a— 1)[ i ini [Zin 0:+03]

i=1 a—1

and (24)

aq ny
EY Y (vy=5)?=(n—a)ol,

i=1 j=1
for unbalanced data, something that Daniels (1939) does not address himself
to. Interestingly enough, Snedecor (st edn, 1937) touches obliquely on this
subject in Example 10.2t (p. 195), where, in referring to unbalanced data of
Table 10.8, he asks the question “Why can’t you calculate intraclass correlation
accurately?” for such data. Winsor and Clarke’s results (24) would show that
you could. Needless to say, that example does not appear in the completely
rewritten fourth edition (1947) nor, of course, in Snedecor and Cochran (1989).

Notation In (24) E represents the expectation operator. It is often written in
the form E(-) or E[-] but for clarity, as in (24), we also use E followed by a
space, to mean the expectation of the expression that follows that space.

d. The 1940s

The general method of estimating variance components by equating analysis
of variance mean squares (or, quite equivalently, sums of squares) to their
expected values, under either mixed models or random models, is now known
as the ANOVA method of estimation. It was firmly in place by 1934. The 1940s
saw a number of extensions to that method; they were but a prelude to the
flood of developments that came later. For example, Ganguli (1941) applied it
to the k-way nested classification, and Crump (1946) to the 2-way crossed
classification, random model, with interaction.
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Both Ganguli (1941) and Crump (1946) drew attention to a deficiency of
this method of estimating variance components, namely that it can, depending
on the data, produce negative estimates. And, as a method of estimation, it
does, of course, have no provision for preventing this embarrassment (of having
a negative estimate of a parameter that, by definition, is positive). Whenever
this does occur, both authors suggested truncating negative values to zero; but
this sacrifices the property of unbiasedness that is implicit in the ANOVA
method.

Under normality assumptions, Crump (1947) also derived sampling variances
of this class of estimators for the 1-way and the 2-way crossed classification
random models. Sampling variances for the 1-way model were also derived by
Hammersley (1949), but for arbitrary distributional form. However, to obtain
“usable” results, fourth cumulants of the random effects distributions had to
be set to zero (their correct value under normality). Crump (1947) also invoked
normality for considering maximum likelihood estimation, as summarized in
Crump (1951), a procedure later used by Hartley and J. N. K. Rao (1967) in
developing quite general results (see Section 2.4a which follows).

Three other papers in the 1940 decade are of particular note: Satterthwaite
(1946), who dealt with approximate sampling distributions of variance
component estimates (and in doing so also gave us the procedure still known
by his name for calculating approximate degrees of freedom for approximate
F-statistics in random models), and Wald (1940, 1941), who considered
confidence intervals for ratios of variance components in 1-way and 2-way
classifications with unbalanced data.

2.3. GREAT STRIDES: 1950-1969

The years from 1950 to 1969 brought major developments in methods of
estimating variance components, starting with important extensions of the
methodology already in place and ending with establishment of new methods
based on maximum likelihood and minimum norm criteria.

Early on came the Anderson and Bancroft (1952) book, the first to contain
substantial discussion (four chapters) of variance components. This really set
the subject on a firm footing, and solidly established the procedure of equating
analysis of variance sums of squares to their expectations as a method of
estimating variance components. The book deals very thoroughly with estimation
from balanced data for both mixed and random models; it also deals with
unbalanced data for nested classifications and, after considering incomplete
blocks designs, it poses a number of pertinent research problems, many of which
have still not been answered satisfactorily. In all, the book is a milestone in the
history of variance components estimation. It was followed two years later by
Bennett and Franklin (1954) who, in their long (160-page) chapter on analysis
of variance, show numerous expected mean squares in terms of variance
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components, including details pertaining to finite-sized populations, a subject
later taken up by Searle and Fawcett (1971).

a. The Henderson methods

A landmark paper dealing with the difficult problem of how to use unbalanced
data for estimating variance components is Henderson (1953). The paper was
motivated by what was to be its author’s lifetime work with the statistical
analysis of dairy cow records [ e.g., Example 5 of Chapter 1, and see Henderson
(1984)]. The paper in 1953 is important because it presents three different ways
of using unbalanced data, from random or mixed models, with as many crossed
and/or nested classifications as one wishes. All three are adaptations of the
ANOVA method of equating (for balanced data) analysis of variance sums of
squares to their expected values. Those three adaptations have come to be
known as the three Henderson methods. Method I uses sums of squares that
are unbalanced-data analogues of those used with balanced data; Method II
adjusts the data for whatever fixed effects are in the model, and then uses
Method 1 on those adjusted data; and Method I1I is based on sums of squares
that result from fitting a linear model and its submodels (i.e., from the method
of fitting constants). Details of these three methods, based largely on Searle’s
(1968) matrix reformulation of them, are given in Chapter 5. All three have
been used extensively, in a wide variety of applications.

With the hope of providing a criterion for assessing relative optimality, several
papers between 1956 and 1968 developed formulae for (or that could lead to)
sampling variances of ANOVA estimators and of Henderson methods estimators
in particular. The unbiased property of ANOVA estimators demands no
distributional assumptions of the random effects and the residual error terms
in a model, but all sampling variance results [ save those of Hammersley (1949)
mentioned earlier] have been developed on the basis of assuming normality.
With this, and for unbalanced data, the following cases have been dealt with:
extending the 1-way classification results of Crump (1951) to include covariance
components, Searle (1956); Method I estimation for the random model, for the
2-way crossed classification in Searle (1958), for the 2-way nested classification
in Searle (1961), for the 3-way nested in Mahamunulu (1963) and the 3-way
crossed in Blischke (1966). Method III estimation for the 2-way crossed
classification without interaction was dealt with by Low (1964). And very general
results for Method III are given in Rohde and Tallis (1969). Except for the
latter, all of these results are set out in Searle (1971, Chap. 11), and all of them
lead to the sampling variance of almost every estimator except 62 being a
quadratic function of the population a2s having very complicated functions of
the numbers of observations as their coefficients. Despite this, Ahrens (1965)
provides a mechanism (described in Searle, 1971, Section 10.2) for estimating
such a variance unbiasedly, provided unbiased estimates of the a s are available,
This is always the case with ANOVA estimation methodology. Nevertheless,
the only currently available expressions for the sampling variances, to which
we can apply Ahrens’ method, are those derived under normality assumptions,
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and even then, closed form expressions for the distributions of estimated variance
components are unknown (save, in many cases, that of 42).

b. ANOVA estimation, in gencral

The ANOVA name given to the method of estimating variance components
by the procedure of equating sums of squares to their expected values initially
applied to balanced data for which it is particularly apt, because with such data
the sums of squares that are used are indeed those of the analysis of variance
of those data. But for unbalanced data there is no unique set of sums of squares
that can be used. Nevertheless, the method is still called the ANOVA method;
and the Henderson methods are just three of the many possible variations of
the ANOVA method. Other possibilities are, for example, to use the sums of
squares from the weighted squares of means analysis or from the analysis of
unweighted means— when the data have all cells filled (see Yates, 1934). Indeed,
almost any set of quadratic functions of the observations can be used—as is
discussed in detail subsequently.

The 1950-1969 era includes many published results on properties of
estimators obtained by the ANOVA method. We comment briefly on some of
them.

A first description of ANOVA estimation in its general form is as follows.
Let 62 be the vector of variance components to be estimated in some model,
and let s be a vector of sums of squares. Then, when each sum of squares has
an expected value that is a linear function of the variance components, E(s) is
a vector of such linear functions, which we will represent as Ca?2, so that

E(s) = Ce?. (25)

Hence, for non-singular C the ANOVA estimator of 62 is based on (25) and
is the solution for 62 to

s = Cé2,
namely
62=C7ls. (26)

-i. Negative estimates. It is clear from (26) that each element of 62, i.e.,
each estimated variance component, is a linear combination of the sums of
squares in s. Moreover, there is nothing inherent in (26) to ensure that every
element of &2 is always non-zero. Thus it is that ANOVA estimates can be
negative. For example, 62 of (21) will be negative whenever MSA < MSE. And
whether this inequality occurs or not is simply a function of whatever the data
are that are used in calculating MSA and MSE. And when it does occur it
produces the embarrassment of having a negative estimate of a parameter that,
by definition, is positive. Nevertheless, this is a characteristic of ANOVA
estimators: they can yield negative estimates. What to do about them is discussed
in Chapters 3 and 4, as in Searle (1971).
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-ii. Unbiasedness. The estimator in (26) is always unbiased:
E(@*)=C 'E(s)=C " !'Ce? =0a?.

This is the case for all ANOVA estimators. They are unbiased.

Although unbiasedness is a property of estimators that is deemed to have
merit in the case of estimating means (e.g., in designed experiments), there are
at least two reasons for questioning its merit when estimating variance
components. The first is that if the unbaisedness of ANOVA estimators is
attractive, using such estimators can nevertheless yield negative estimators of
positive parameters, which can be rather awkward, to say the least. Explaining
to someone in a subject-matter discipline that we will use a negative estimate
of an essentially positive parameter is not easy. Estimators that avoid this
embarrassment, even if not unbiased, may therefore be appealing.

A second reason for questioning the merit of unbiasedness stems from the
concept underlying it. In the situation of a designed experiment, for example,
the concept of unbiasedness is that over many repetitions of exactly the same
experiment the average value of the (unbiased) estimator of a parameter would
be the parameter itself. The trouble with this is that, when estimating variance
components, the data available often do not come from carefully designed and
executed experiments, for which many repetitions can be idealized; instead, data
for estimating variance components are often voluminous and come from
situations where repetition of exactly the same data-gathering process is a totally
unrealistic idea; e.g., gathering milk yield from exactly the same sample of, say,
400,000 Holstein cows in New York and Pennsylvania as were available in
1989. Repeated data-gathering can be envisaged but, especially in the case of
unbalanced data, not necessarily with the same pattern of unbalancedness nor
with the same set of (random) effects in subsequent data sets. Replications of
data are not, therefore, just replications of data from the same structure as in
an initial data set. Indeed, not only might the whole idea of re-sampling inherent
in the idea of unbiasedness be impractical but the data may be so voluminous,
1,500,000 records, say, that one might want to think of a variance component
estimate more as a descriptor of those data than as a sample of one from the
sampling distribution of the estimator being used. Mean unbiasedness may
therefore no longer be pertinent, and replacing it with some other criterion
might be considered. Modal unbiasedness is one possibility, suggested by Searle
(1968, discussion), although Harville (1969b) doubts if modally unbiased
estimators exist and questions the justification of such a criterion on decision-
theoretic grounds. Nevertheless, as Kempthorne (1968) points out, mean
unbiasedness in estimating fixed effects “... leads to residuals which do
not contain systematic effects and is therefore valuable ... and is fertile
mathematically in that it reduces the class of candidate statistics (or estimates)”.
However, “... in the variance component problem it does not lead to a fertile
smaller class of statistics”. Unbiasedness is therefore, in our opinion, not
necessarily a property of variance components estimators that should be
slavishly accepted as meritorious. We say this at this juncture, in the midst of
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this brief history, because unbiasedness appears so often in the development of
methods of estimating variance components that we feel that comments about
its lack of merit in this context deserve to be mentioned early on.

-iii. Best unbiasedness. The general property of an estimator being best
unbiased is that among all unbiased estimators of a parameter that which has
minimum variance is called best unbiased. For balanced data Graybill (1954)
investigated sampling variances of ANOVA estimators of variance components,
and for the general k-fold nested, random-effects model showed that in the class
of quadratic functions of the observations that are unbiased estimators of
variance components, ANOVA estimators have minimum variance; i.e, ANOVA
estimators are best quadratic unbiased estimators (BQUE). With the added
assumption of normality, Graybill and Wortham (1956) showed for any random
model (with balanced data) that ANOVA estimators are unbiased functions of
jointly complete sufficient statistics, and therefore by the Lehmann-Scheffé
Theorem (Casella and Berger, 1990, p. 344) they are uniformly best unbiased
estimators (BUE); that is, in the class of all unbiased estimators (as distinct
from just the quadratic unbiased subclass), ANOVA estimators under normality
have minimum variance; i.e., they are BUE. As well as reiterating the latter
result, Graybill and Hultquist (1961) extended Graybill (1954) to apply to all
models; namely, without any distributional assumptions at all (save a fully
random model and balanced data), ANOVA estimators are BQUE. The same
results for mixed models were established by Albert (1976). Thus ANOVA
estimators from balanced data are BQUE, and they are BUE under normality,
whether the underlying model is a mixed model or a random model. Anderson
(1978) rightly notes that such or kindred optimality properties have yet to be
demonstrated for mixed models that include a covariate, which is not surprising
because the presence of covariates effectively converts balanced data into
unbalanced data.

In contrast to balanced data, variance component estimators that are
uniformly best do not exist in the case of unbalanced data. The essential problem
is well summarized by Scheffé (1959; Sec. 7.2): Although the ANOVA

procedure is commonly used also in the unbalanced cases, it loses there the intuitive
justification it has for this writer. At the present writing, the “best” tests and
estimates in the unbalanced cases of random-effects models and mixed models are
not known, even in a rough intuitive sense. The basic trouble is that the distribution
theory gets so much more complicated. We have nothing to offer the reader on
the unbalanced cases outside the fixed-effects models except for some results for
the completely nested cases in Sec. 7.6.

And as a footnote to the penultimate sentence of the preceding quotation,
Scheffe adds

In the one-way layout, for example, there are three unknown parameters, u, o2,
and ¢2. In the case of balance the (minimal) number of (real) sufficient statistics
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is three; in the case of unbalanced it is greater. The sum of squares between groups,
Zwi(y; — 7.)%, where 5. = Z,w;y,/Z,w;, is not distributed as a constant times a
non-central chi-square, no matter what (known) weights w; > 0 are used. There
is no unbiased quadratic estimate of a2 of uniformly minimum variance, etc.

An interesting omission of Scheffé’s is that of not citing Henderson (1953),
especially since in his Sec. 7.6 (referred to above) he in fact uses Henderson’s
Method [ [the same procedure as that of Ganguli (1941), also uncited] in
estimating variance components for the random effects nested model with
unbalanced data. Moreover, Scheffé did not discuss in detail estimating variance
components from unbalanced data with mixed models. A remark from the
preface of his book is revealing:

What I feel most apologetic about is the little I have to offer the reader on the
unbalanced cases for the random-effects models and mixed models. They cannot
be generally avoided in planning biological experiments, especially in genetics, the
situation being unlike that in physical science.

This promotes the question as to what prompted his reference to genetics and
thus why was there no reference to Henderson (1953) of six years prior to
Scheffé (1959). The earlier book, Anderson and Bancroft (1952), had dealt with
the random effects nested model with unbalanced data; in that, not only was
the work of Ganguli (1941) clearly outlined (Sec. 22.4), but so too was that of
Cochran (1939).

-iv.  Minimal sufficient statistics. For balanced data, minimal sufficient
statistics for a random model are, on the basis of normality assumptions, the
arithmetic mean of the data and the sums of squares of the analysis of variance.
The ANOVA estimators of variance components, being linear functions of those
sums of squares, are (with j) therefore minimal sufficient statistics. They are
also complete. These properties of ANOVA estimators were first derived by
Graybill and Wortham (1956). Details for the !-way and 2-way crossed
classifications, and for several nested classifications (all with balanced data) are
available in Graybill (1976, Chapter 15); see also Hultquist and Graybill (1965).

For unbalanced data, the situation is much more difficult because, even under
the usual normality assumptions, for the sums of squares “the distribution
theory gets so much more complicated”, as Schefle (1959) says, and there are
more minimal sufficient statistics than there are variance components. This is
commensurate with the general lack of uniqueness of the ANOVA method for
unbalanced data.

-v. Lack of uniqueness. We have already mentioned that the three
Henderson methods are simply three sets of possible sums of squares that can
be used as elements of s in (25) and (26). Indeed, there is even greater generality
in being able to use not just sums of squares as elements of s but also a limitless
range of quadratic forms of the observations (which includes sums of squares,
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of course). This is so because if q is a vector of quadratic forms such that
E(q) = Be?, (27)

then, if B is non-singular, (27) yields 62> = B~ !q as an unbiased estimator of
a2, just like (26).

Even more generality can be introduced. Suppose we use more elements in
q than there are elements in 6% Then, provided the form of (27) still applies,
but with B having full column rank,

6% = (B'B)"'Bq (28)

is an ANOVA estimator of 2. It is unbiased, too. And it is B~!q when B is
non-singular.

So there is a broad array of specific uses of the ANOVA method of estimating
variance components. If the resulting estimates were invariant to what one used
as elements of q, there would be no problem of a lack of uniqueness about
ANOVA methodology. But this is not so for unbalanced data. In broad terms
this situation does not arise with balanced data because analysis of variance
sums of squares used in q have been shown (see Sec. 2.3b-ii) to have attractive
properties. But with unbalanced data, the lack of uniqueness is a real problem.
It is avoided in Henderson’s Methods I and 11, but only by definition, since
Method IT uses Method I and Henderson (1948) specifically defined his Method
I to be that procedure which utilizes “analogous sums of squares” (analogous
to those used with balanced data). But it does arise in Method III, and this
has brought criticism of Henderson’s methods, as has the complete absence of
any criteria for deciding which of the three methods is optimal in any sense.
An example of this criticism is that of Rao (1971b):

Essentially, analysis of variance techniques are used but the theoretical basis is
not clear. The procedures suggested are ad hoc in nature and much seems to
depend on intuition. No general method is put forward to cover all experimental
situations and, where alternative methods are suggested, no principle is laid down
for choosing one among them as appropriate in a given problem.

Blischke’s (1968) phrase “methods of a basically ad hoc nature” refers to methods
more general than Henderson’s but certainly includes them. And the label is
appropriate, for any use of the ANOVA method, because the method can be
applied to almost any quadratic function of the observations. Thus in Example
4 of Chapter 1, one naive application of (27) is

E (y,3— y1.7)2 = 2“3 and E (y,;— YZ.5)2 = 2(“3 + 03) .

That, like each of the Henderson methods and like any other application of
the ANOVA method, yields estimators that are unbiased, but having no general
analytic properties that can be used to determine relative optimality of any one
application of the general ANOVA method over another. There are some
features of the Henderson methods that condition their applicability to certain
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models (as shall be discussed later), but none of them really contribute to the
difficulty of being unable to judge relative optimality of the different applications.

2.4. INTO THE 1970s AND BEYOND

The realization that ANOVA estimation had serious weaknesses was slow
todawn. Not only did Henderson’s Method I provide a procedure for estimating
variance components from unbalanced data, where none had been previously
available, but it was also reasonably computable for those pre-computer
days-—at least when judged by the standards of computing feasibility of those
days. Method 11 was a little more difficult (see, e.g., Henderson, Searle and
Schaeffer, 1974), and Method III was almost totally impractical from the
computing point of view. Nevertheless, whatever computability considerations
there were, the weaknesses of ANOVA estimators remained: negativity, lack of
distributional properties and no useful way to compare different applications
of ANOVA methodology. In light of these weaknesses it was natural that an
alternative would be sought, and so maximum likelihood estimation duly came
to be considered.

a, Maximum likelihood (ML)

Estimation by ML demands attributing a distribution to the data, which, in
the case of random and mixed models, suggests doing just that for the random
effects. This is, of course, not a requirement of ANOVA estimation, other than
requiring finite variance components and, as in (25), that E(q) contain no terms
in the fixed effects.

To date, nearly all closed-form results for ML estimation of variance
components are on the basis of normality assumptions: e.g., for the 1-way
classification of (8)-(11), that the random effects have the first- and second-
moment properties well defined, and are additionally taken as being normally
distributed. It is under these conditions, and their direct extension to multi-way
classification, that the development of ML methodology has proceeded.

The beginning appears to lie with Crump (1947, 1951), who dealt with the
1-way classification for both balanced and unbalanced data, in the latter case
deriving equations that have to be solved iteratively. Herbach (1959) derived
explicit maximum likelihood (ML) estimators for certain balanced data models
and took account of the necessity that such estimators must be non-negative
(because the method of maximum likelihood prescribes maximization over the
parameter space—and variance components are non-negative). Corbeil and
Searle (1976b) summarize a number of these balanced data cases, showing their
biases and sampling variances.

The landmark paper for ML estimation in general is Hartley and J. N. K.
Rao (1967), wherein a methodology is developed for a very wide class of models:
all mixed and random models, with or without covariates, balanced or
unbalanced data. One may wonder why there was a delay of some forty or so
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years between Fisher’s (1922, 1925) derivation of the method of maximum
likelihood and its general application to the estimation of variance components:
undoubtedly it was the matrix specification of a mixed model that Hartley and
Rao (1967) used that was instrumental to their deriving ML equations for the
general case. Solving those equations for a data set, and calculating ML
estimates, involves iterative calculations on the ML equations—and for some
years this was an impediment to any widespread use of ML estimation of
variance components. Computing methods have to be able to deal with sparse
matrices of very large dimension, with equations that are very non-linear, with
iterative procedures that lead to a global rather than a local maximum, and
with adapting those procedures to take account of the ultimate non-negativity
of the estimates. Fortunately, with the advent of supercomputers and the
development of new computing packages (e.g., Thompson, 1980; Giesbrecht,
1983, 1985), these problems are getting to be circumvented.

Miller (1973, 1977) also worked on ML estimation, dealing with both
balanced and unbalanced data. For the 2-way classification, random model,
with or without interaction, he showed very explicitly that the maximum
likelihood equations can be written with (relatively) disarmingly looking
simplicity, but that they cannot be solved analytically. Miller also looked at
asymptotic properties of the estimators; and Searle (1970) derived an expression
for the large-sample dispersion matrix of ML estimators in the general
unbalanced data case.

b. Restricted maximum likelihood (REML)

W. A. Thompson (1962) also considered ML estimation, and it was he who
introduced the idea of maximizing that part of the likelihood which is invariant
to the location parameters of the model; i.e., to the fixed effects. This has now
come to be known as restricted maximum likelihood (REML), and is sometimes
called marginal (or, in Europe, residual) maximum likelihood. It was put on a
broad basis for unbalanced data by Patterson and R. Thompson (1971). The
computational difficulties of ML are also equally as pertinent to REML as to
ML, since REML methodology is effectively (see Harville, 1977) no more than
ML on certain linear combinations of the data rather than on the data
themselves. One of the interesting features of REML is that for balanced data,
solutions to REML equations are identical to ANOVA estimators. Also, the
REML methodology takes account of the implicit degrees of freedom associated
with the fixed effects, whereas ML does not. ML and REML are coming to be
the preferred method of estimation, especially from unbalanced data.

¢. Minimum norm estimation

Attempts at finding minimum variance quadratic unbiased estimators of
variance components (an analogue of best linear unbiased estimation of the
mean in linear models) began with Townsend (1968), Harville (1969a) and
Townsend and Searle (1971). This was quickly followed by LaMotte’s (1970,
1971, 1973a,b, 1976) work on minimum variance estimation and C. R. Rao’s
(1970, 1971a,b, 1972) papers on minimum-norm quadratic unbiased equation
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(MINQUE). The resulting estimators have, in some broad sense, a minimized
generalized variance, stemming from the minimizing of a Euclidean norm, which,
under normality, equates to a minimum variance property.

MINQUE estimation demands no distributional properties of the random
effects or error terms in the model. Nor does it involve iteration, just the solution
of linear equations. However, estimators obtained by MINQUE are functions
of a priori values used in place of the variance components in the estimation
procedure itsell. Thus the MINQUE procedure has what we deem to be a
serious deficiency: the minimality property applies only at those a priori values.
It also has the feature that from the same data set and the same model, N
different people, each with their own set of a priori values, could yield N different
sets of estimators. Nevertheless, no matter what the a priori values are, MINQUE
estimators are unbiased.

For a given set of a priori values, the MINQUE equations are linear in the
variance component estimators and can thus be solved without iteration. But
the presence of the a priori values suggests iterating on those equations using
successive solutions as a priori values. The resulting solutions, once convergence
is reached, are called I-MINQUE estimates. They are the same as REML
estimates (Hocking and Kutner, 1975), and under large sample theory are
normally distributed (Brown, 1976). Similarly, any MINQUE estimate is the
same as a first-round iterate from REML, using a priori values needed for
MINQUE as the starting values for REML iteration. These connections of
MINQUE to REML add weight, we feel, to our opinion that MINQUE is not
a practical method of estimating variance components. Readers who disagree
with us are referred to Rao and Kleffe (1988), a book that is devoted almost
entirely to MINQUE. And we do briefly describe the method in Section 11.3d.

d. The dispersion-mean model

Consider a vector having elements that are all the squares of, and products
two-at-a-time of, the observations. A particular variant of that vector was shown
by Pukelsheim (1976) to have expected value that can be expressed as a set of
linear combinations of the variance components. In this way one has a linear
model with the vector of variance components being the parameters to be
estimated. It is called the dispersion-mean model and is described in Chapter
12. Generalized least squares applied to this dispersion-mean model yields
MINQUE, and applied to a mild variation of the model it yields ML (Anderson,
1978). Brown (1978), using a vector of residuals, also developed MINQUE in
a similar way.

e. Bayes estimation

Estimation of variance components using Bayesian principles is found in
Hill (1965, 1967), who dealt with balanced data from the 1-way classification
model. So did numerous other workers, followed thereafter by similar work on
the 2-way classification, both nested and crossed; see Khuri and Sahai (1985,
pp. 283-284). As those authors write (p. 290), “There have been only a few
published papers on ... unbalanced models”, i.e., unbalanced data. Gnot and
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Kleffe (1983) is another good paper on this topic. We offer Chapter 9 on this
topic.

f. The recent decade

In contrast to 1940-1980 there seems to have been only one major
development of a new methodology for estimating variance components over
the last ten years or so. This is the work of Smith and Murray (1986) and of
Hocking et al. (1989) for balanced data [and Green (1988) for unbalanced
data], who formulate variance components as covariances and then use the
ANOVA procedure of equating quadratic forms of the data to their expected
values. This formulation is described in Section 11.2.

But, as opposed to new estimation procedures, there has been work in a
variety of other topics. With the plethora of methods already available for
unbalanced data, one emphasis has been the attention given to comparing
different methods, mostly by the use of relatively small sets of simulated data.
The papers range from Townsend and Searle (1971), for the 1-way classification
without an overall mean, to Swallow and Monahan (1984). Their results
“indicate that unless data are severely unbalanced and ¢2/62 > 1, ANOVA
estimators are adequate” (Khuri and Sahai, 1985, p. 291). Comparisons have
also been made for the 2-way crossed classification models (Corbeil and Searle,
1976b) and the split-plot design (Li and Klotz, 1978). Generally speaking,
maximum likelihood is the favoured methodology in these studies: or perhaps
REML is even more favored.

A second topic that has attracted research is that of designing experiments
so that variance components can be estimated with some optimal properties.
This has long been an interest of R. L. Anderson who, along with co-workers,
has published a series of papers on the subject dating from Bush and Anderson
(1963) and Anderson (1975) to Muse, Anderson and Thitakamol (1982). Khuri
and Sahai (1985) provide an extensive collection of references (many of them
by Anderson’s students) and a delightfully clear survey of them.

Another matter of current interest is estimating variance components from
discrete data, of which binary data are an important case. Chapter 10 describes
methods for doing this.

Developing confidence intervals for variance components and for functions
of them has attracted considerable interest in recent years, especially for F. A.
Graybill and colleagues. Some of the earliest work is that of Satterthwaite
(1941). For the 1-way classification, random model, with balanced data, a
summary of confidence intervals for the variance components and some ratios
of them is given in Searle (1971, Table 9.14), and a comprehensive survey of
numerous papers on the subject is given in Khuri and Sahai (1985). They have
a similar account for unbalanced data, ranging from Wald (1940) to the
comprehensive review of Burdick and Graybill (1984); and a more recent survey
is Burdick and Graybill (1988).

Finally, a current topic of great importance is that of successful computing
procedures for calculating ML and REML estimates. Some of the difficulties
involved are listed in Section 6.4, and further details are given in Chapter 8.



CHAPTER 3

THE 1-WAY CLASSIFICATION

The collecting of patient data from 15 clinics discussed as Example 4 in
Chapter 1 is an example of a 1-way classification: clinics are the only way of
classifying the data. This chapter deals with the 1-way classification more
generally, introducing inter alia many topics concerning variance components
that re-occur in subsequent chapters in more complicated situations and with
more detail than is needed here. So, as well as dealing with the 1-way classification
in its own right, this chapter also introduces a variety of topics dealt with in depth
in subsequent chapters.

3.1. THE MODEL

Describing the random model for the 1-way classification is somewhat
repetitious of some of Section 1.3b, but it is done for the sake of completeness.
The situation envisaged is that of having data that are grouped by classes, those
classes being considered a random sample from some population of classes.
The model equation that shall be used is

Yyy=p+oa;+ey n

where y;; is the jth observation in the ith class, 4 is a general mean, o, is the
effect on the y-variable of its being observed on an observational unit that is
in the ith class, and ¢, is a residual error. The number of classes in the data
shall be denoted by a, and the number of observations in the ith class by n,.
Thusi=1,2,...,aand j=1,2,...,n, for n; 2 1. For balanced data there is
the same number of observations in every class, n say, so that n; = n for every
class, i, n;=nVi.

a. The model equation

In the fixed effects model of Section 1.3a, both u and a; are taken as fixed
constants and the starting point is to assume E(y;;) = 4 + «;. Then e;; is defined
as ¢;; = y;; — E(yy), from which y;; = p + o; + ¢;;.

44
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For the random model we must take account of o; being a random variable.
To do so, we first assume that

E\(¢)=0. (2)

where E, represents expectation over the population of as. Lest it be thought
that (2) implies some loss of generality, the reader is referred to the
paragraph following (15) in Chapter 1.

Now consider some particular class, and label it the ith class. Its n,
observations, y;; for j = 1,..., n;, are considered to be a random sample from
that class. Then, for E, representing expectation over repeated sampling from
class i, the expected value of y;; for that class is 4 + «;. We denote this by the
conditional expected value.

Ey(yyloa)=pu+ o . (3)
Then, analogously to defining e;; = y;; — E(y;;) in the fixed effects model, we
define ¢, for the random model as
e;=y;— Ex(yjle)=y; —(p+ o). (4)
This gives the model equation
Yy=put+ote;. (5)
b. First moments
From the definition of ¢;; in (4)
E,(e;ley) = Ex(yislay) — Ex(yylay) =0, (6)

and on using E to represent expectation over repeated sampling from class i
and E, for expectation over all classes,

E(e;) = E Ej(eyla) =0. (7)
Similarly, using (5) and (6),
Ey(yijleg) = Ey(p + o + eyla) = p + oy,

which is our starting point (3). And on using (2)~(7),

E(yy) = E\E)(yly) = Ey(u+a))=p. (8)

c. Second moments

The first moments of (2), (7) and (8) are either definitions or direct
consequences of definitions. But those definitions produce no comparable results
for second moments. In contrast we have to attribute second-moment properties
to the o;s and the e;;s. Insofar as covariances are concerned, it is usual in random
models to define all covariances as zero:

cov(e,, epp) =0 exceptfori=i"and j=j . (9)
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This means that the covariance between every pair of different e;; terms is zero;
similarly, for the a; terms,
cov(oy, o) =0 Vis#i; (10)
and likewise for the covariance of each a; with every e;;:
cov(e;, epp) =0 Vi i'and j . (1)

Whenever stochastic independence of the e;s, of the a;s, and of the o;s and e;;s
is assumed, these zero covariances are, of course, a direct consequence of those
independencies. Conversely, on assuming normality of the &;s and the e;s
(usually just called the “normality assumptions”), these zero covariances imply
independence.

Now consider (9) and (10) for i =i’ and j =j'. These lead to variances,
defined as follows:

var(e;) =¢? Viand j, and var(q)=02 Vi. (12)

These variances, 62 and 62, are called variance components because they are
the components of the variance of an observation:

o =var(y,)=var(u +a, + ;) =02 + o2 . (13)

Note also, starting from the definition of variance and covariance, and using
E(e;) = 0 and E(a;) = 0, that

ol = var(e;) = E[e; — E(e;)]* = E(e}),

i = var(a) = E(a}), (14)
cov(ay, 0.) = E(oya, ) =0 Vi#i,
cov(a;, e;;) = E(aye;;) =0 Viand i, (15)

cov(e;, e ;) =0 except fori=1iand j=j .

Moreover, although «; and ¢;; are uncorrelated, the y;;s are not. For those in
the same class

cov(yy, yip) =covip + o, + e, p+ oy +ey) =02 for j#],
whereas for those in different classes
cov(yis Yrp)=covip+o; + ey p+ap+e ;) =0 fori#i.

Equations (2), (3), (4) and (9)-(12) specify the usual random model.
Although these details have been given as applying to the 1-way classification,
they are, in fact, the definitions and assumptions used in most variance
components models. That is, any random effect in most such models usually
has attributed to it the same properties as have been given for the «; in (2),
(10), (11) and (12), namely zero mean, zero covariances with each other and
with residual terms, and homoscedastic variances. Also, when there is more
than one random factor, covariances of effects of one factor with those of another
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TABLE 3.1,

AN EXAMPLE OF THE |-WAY CLASSIFICATION
(3 CLASSES WITH 4 OBSERVATIONS EACH)

Data y;;
Total Mean
Class Yiu Yi2 Yis Yia Yi. V.
i=1 3 3 12 2 20 5
i=2 I 13 17 7 48 12
i=3 4 2 I 33 40 10
Grand total, y,, = 108 9=7j.
= grand mean

are also usually taken as zero. These properties are used extensively in all that
follows, with little further mention of the details shown here.

3.2, MATRIX FORMULATION OF THE MODEL

A matrix formulation of the model is introduced by means of an example.

a. Example 1

Suppose we have 4 observations on each of 3 classes, as in Table 3.1.
The model equations (1) for the observations in Table 3.1 are

-

Y11
Y12
Y13
Y1a
Y

Y22
Y23

Y24
Y1
Va2
Va3
Y34J

ro1
3 ro1
12 1o
2 ]
11
13
17 | =
J

4
2
1

33

[ 3] B . .

L . L. . . _.J

oy

a3

re“-

€12
€13
€14
€21
£22 16
€33 (16)
€24
€3,
€32

€33

eau

where the vectors and matrix have been partitioned corresponding to the three
classes in the data, and a dot as an element of a matrix represents zero. Denote
by y and e the vectors of observations and residual errors, respectively, in (16).
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Also define
a=[o, o a3]" and B=[p o a, a3]'=[p a]. (17)
Then (16) is
y=Xp+e
for
(11 T [17] 1 ]
1 1 1 1
1 1 1 1
1 1 1 1
1 1 : 1 1 2,
Xp = : : =t u+ : % |. (18)
1 1 %2 1 1 o5
1 1 % 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| ! 1] 1] L 1]
We now utilize the summing vector I, =[1 1 ... 1] of k'elements 1 and

in doing so introduce the reader to Appendix M following Chapter 12. It
contains a variety of definitions and reminders about matrix algebra. Equation
(18) can then be rewritten as
1,
XB=|12/,4+ ' l4 ’ a. (19)
A

By expressing 1,, and the 12 x 3 matrix as direct products (Appendix M.2),
the model equation becomes

y=(LL+I,@L)a+e. (20)
b. The general case
Appendix M.3 introduces new notation for writing A of order r x ¢, namely

{ay}fori=1,...,rand j =1,...,c, where a,is the element in row i and column
jof A Ttis

A={, alj}l=rl.j=€l ={m aij}ij =1{m “.‘j}»
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with the i and j and/or their ranges being omitted for brevity provided context
permits. The m indicates that the elements a;; are arrayed as a matrix, and by
the use of r, c and d one similarly represents rows, columns and diagonal
matrices; e.g., {, b;},%, is a 1 x k row vector. This notation is useful because
it can be used operationally without having to give a matrix symbol to every
matrix involved. For example,

{mayt{ct} = {. Zayt;};

avoids having to write “A is a matrix {q;;} and t is a column of elements ¢,
and therefore At is a column of elements Z;a;;t;.”

We now use this notation to define vectors of observations and error terms,
respectively, as

Yy={c{cyiu} 2}l = {cvy) ;2. 20 (21)
and
e={{cey} ;2 )i ={cey} ;00 20, (22)
in each of which the elements are arranged in lexicon order, ordered by j within
i. Then with e definedasea = [&; a, ... a,] forthe general case of a classes,
the model equations for n observations in each class are, like (20),
y=1,81L)p+(I,®1)a+e. (23)

Searle and Henderson (1979) and Anderson et al. (1984) use extensions of this
formulation for multi-way classifications to develop a variety of properties of
random models. It has also been used by many other writers: e.g., Seifert (1981)
and Smith and Murray (1984).

A distinction between balanced and unbalanced data (see Section 1.2) must
be noted. Although the example has balanced data (4 observations in each
class), the definitions in (21) and (22) provide for unbalanced data (m,
observationsin class i). But with unbalanced data, the direct product formulation
of (23) does not exist because, for example, the diagonal terms 1, of (19) will
no longer be all the same. Thus, if n; = 3, n, = 4 and ny = 2, those terms would
be 14, 1, and 1,, and this would not permit of a direct product multiplying &
in (20). (See Section 3.2d, and Exercise E 3.1.)

¢. Dispersion matrices
-i. The traditional random model. The dispersion (variance—covariance)
matrices of y, & and e are from (9) and (12)

var(e) = o21,,; (24)
and similarly from (10) and (12)
var(a) = 021, . (25)
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Then from (9)-(12) and (23)
V =var(y) =(L,® lu)agln(la ® ln)’ + aezlan
=02(I,®J,)+c2(1,®L)=1,®(a2J, + al,). (26)
These forms of dispersion matrices arise directly from the variance—covariance
structures attributed in (9)-(12) to the random «,;s and e;;s in the traditional
form of the random and mixed models. But, although they are the structures
most frequently employed and to which most of this book is therefore directed,

they are by no means the only structures that could be envisaged. The possibilities
are almost endless. We show but three in the following paragraph.

-ii. Other alternatives. First, although forms of var(a) and var(e) other
than (24) and (25) are sometimes employed, one property of & and e that is
almost universally adopted is to take cov(ay, ;) = O for all i, j and k, as in
(11). This gives

cov(a,e’) =0, of order a x an, (27)

the orders of & and e’, namely a and an, respectively, determining the order of
cov(a, e'). But for var(a) there may be situations when adopting

cov(ay, o) = pal fori# i

is reasonable. This gives, for a = 5 (for ease of illustration),

(1 p p p p]
pl pp o
var(@)=oZ|p p 1 p pl|,
ppp 1 p
lp o p p 1]
with its general form being
var(a) = o2[(1 — p)I, + pJ,] . (28)

An example of this in animal genetics could be where the classes were sires that
were all paternal half-sibs.

In a different context, if time series data are under consideration, with
i=1,...,a representing a series of time intervals, it may be appropriate to
adopt either the structure

pel Vi—i'=+1,
0 otherwise

cov(ay, o) = {

or

cov(a, ap) =a2p ~ " Vi,
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in which case (for a = S again)

F1 p - o T = p pd p
p 1 p p 1 pt p?
var(@)=a2f - p 1 p - | and var(a)=062|p> p 1| p p?],
p 1 p p> PP p L p
- o 1 [ p* 0 0 p 1]
respectively.

Along with any of the above, a variety of possibilities exists for var(e). For
example, if a model is to provide for different variances within each class, e.g.,
var(e;;) = o}, then
[ ail, ]

var(e) = a?l, ,

L ol |
which, with the notation of Appendix M.3, can also be written as

var(e) = {daizln}l:l = @ aizln= {daiz}l:l®ln'
i=1

Covariances among e;;s could also be incorporated; for example, the adoption
of cov(e;, ;) = pjo} ¥ j #j leads to o1, in the preceding expressions being
replaced by ¢?[(1 — p)1, + p;d,], similar to (28). Clearly, the variations are
manifold.

d. Unbalanced data

-i. Example2. A smallexample ofunbalanced datais shown in Table 3.2.
The model equations for these data are, like (16),

FYH- i 3— r 1 1 ’ ] Fen-
Y12 3 1 1 ’ ’ €12
Y13 12 LTI I €13
Va1 11 1 1 ; e,
vyl 13T |1 1 |t ey,
Vs 17 1 . 1 . o5 €54
Y24 J Lo Ll €24
Va1 4 1 ) ) 1 €31

LYJ:_‘ L 2__ | 1 ’ ) 1 | [ €32
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TABLE 3.2. UNBALANCED DATA FROM A |-WAY CLASSIFICATION

Data y;;
Total Mean
Class Yi Yiz Vi3 Via Vi n; Vi
i=1 3 3 12 18 3 6
i=2 11 13 17 7 48 4 12
i=3 4 2 6 2 3
Grand total, y. =72 p. =9 8=j.
= grand mean
These still have the form y = XB + e, but now Xp is
I
Xp=1lou+| - 1, - |a. (29)

1,

The matrix multiplying « is still a diagonal matrix of summing vectors, but in
contrast to (19) of the balanced data case where those summing vectors all
have the same order they now have, for unbalanced data, different orders,
namely the numbers of observations in the classes.

-if. The general case. Generalizing from (29), the model equation for
unbalanced data is, for N = n, = Z;n,,

y=lyu+{41,}Sia+e. (30)
-iii.  Dispersion matrix. Correspondingly, the dispersion matrix of y is
V=var(y)={41,} 2, 0iL{a 15} 21 + 0l1y
=al{,dn}i +0lly
={403J"‘+031m},, (31)

where i takes values i = 1,..., a. Whenever n; = n ¥ i, the form in (31) does, of
course, reduce to (26) for balanced data.

3.3. ESTIMATING THE MEAN

In a fixed effects model represented as y = Xp + e with var(y) = var(e) =V,
the ordinary least squares estimator (OLSE) of the estimable functions X is

OLSE(XB) = X(X'X) X'y = XX 1y, (32)
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where (X'X) " is a generalized inverse of X'X and X* is the Moore-Penrose
inverse of X (see Appendix M.4). This estimator makes no use of any information
about covariances that is contained in V. In contrast, this information is utilized
in the generalized least squares estimator

GLSE(XB) = X(X'V™!X) X'V ly. (33)

Derivation of (32) and (33) is briefly described in Section S.1. (Appendix S
contains short reminders of some results in mathematical statistics.)

We utilize (33) to estimate y in the unbalanced data, one-way classification,
random effects model of (30), wherein E(y) = uly, having X of (33) as X =1,
and var(y) = V of (31). For this (33) is

GLSE(1yp) = 1y(Ix{a 023, + 621, } '1y) '3 {4020, + 21, } 7'y

where, for clarity, the limits of the indicator variable from i = 1 to i = a have
been omitted. (This omittance is continued whenever context permits.) Then,
since 1, is a vector, GLSE(1,u) yields

;v{d(ag"n, + 631"')_1})'

’N{d (dg‘]m + Jfln’)—l }lN

Because, using (ii) of Section M.1,

1 2
(aan, + a’f'n,)_l == (ln, —a‘an,),
ag

2
b o, + n;o,

2 a o a
( n0,);. ) Z ny;. Z var(j,.)

af + n;a? =102+ n,af s

( "_‘26“2__> B i M ‘Z 1/var(y;.)

ol + n;a? 10 +mel i1

GLSE(y) =

(34)

b

1
p
GLSE(k) = =
ol

for var(y,) = 62 + a2 /n, being the variance of j,, since the model equation
for j. from (1)is j, =pu + o; + ¢é,.

In the final form of (34) we see that GLSE(u) is the weighted mean of the
cell means, weighted by the inverse of their variances. And the second form
then shows very easily that when n; = n, we have

for balanced data GLSE(u)=7j... (35)
It can also be noticed from (32) that
in all cases OLSE(u)=7j. . (36)

The juxtaposition of (35) and (36) may prompt the question “When does a
GLSE of a parameter (or function of parameters) equal the OLSE from the
same model?” This is discussed in Sections 4.9, 5.10 and 12.4b.

Both GLSE(u) of (34) and OLSE(u) = j.. of (36) are unbiased estimators
of u; so also is T{., j,./a. All three are special cases of a weighted average of
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the observed class means, the j;.:
R = ZWiJi. /2w,
where
1

GLSE(u) of (34) i ith w; = —————,
(u) of (34) is A, with w, PRy

OLSE(p)=7p.. is A, withw,=n,

and
Y j./a is p, withw,=1.
i=1

In the random model all of these are unbiased for u. But they have different
variances, with

n -1
var[GLSE(p)] (Z' " 03) ) (37
This, as shown by Searle and Pukelsheim (1986), never exceeds var(g,), no
matter what values are used for the w; in 4,; i.e., in the random model, GLSE(u)
is that weighted average of the class means which has smallest variance among
all weighted averages.

In the fixed effects model, OLSE(u) = y., would be the estimator used for
i In that model it has variance that never exceeds that of fi,,; moreover, the
variance of OLSE(u) in the fixed effects model never exceeds the variance in
the random model of GLSE(u), which in turn never exceeds the variance of
OLSE(p) in the random model. Exercise 3.4 is concerned with these results,

3.4. PREDICTING RANDOM EFFECTS

The model equation y;; = u + ; + ¢;; for an observation leads to y;, = u +
o; + &, for the mean of n; observations in class i. Suppose j,. is the average of
n, 1Q test scores of college freshman Ronnie Fysher, with «; being his true,
unobservable, 1Q value. If Ronnie Fysher is considered as randomly chosen
from some population of college freshman then, insofar as true 1Q values of
that population are concerned, «; is just a random sample of one from the
population of a-values corresponding to the population of freshmen. Although
Ronnie Fysher is a specific person, his a;-value is just one of the population of
o-values, one that happens to have some name attached to it. The value &; can
thus be considered as the realized (albeit unobservable) value of a random
variable representing true 1Q values.

Although «; is unobservable (just as it is when it is a fixed effect) we do have
some information about it, namely j, , the average of Ronnie Fysher’s n, scores.
A natural question to ask is, therefore, “How can we put some numerical value
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to «; based on §,.7” Let us denote that value by &,. Whatever we do to derive
a;, we do not call it an estimator [as Henderson (1950) first did] because
estimation applies to parameters and «, in the random model is not a parameter,
it is a random variable. Instead, &, is called a predictor or prediction of «,;.

In predicting the (unobservable) realized value of a random variable, which
is what we want to do, it might seem sensible to take as the predictor the mean
of the random variable; i.e., take &; as E(a;). But E(%;) =0. And & = E(o;) =0
makes no use of data. Yet, if the average of Ronnie Fysher’s test scores, namely
¥:., were considerably above the overall freshman average then we would expect
a; to be positive. With this thought in mind we are motivated to use the
conditional mean E(;|j;.) rather than E(a;) = 0 as our assessment of the true
IQ of a freshman having an average 1Q test score of y,.. This means that for
each freshman having the same number of IQ tests as Ronnie Fysher and whose
average test score is the same y,, as Ronnie Fysher’s, we assess his or her a-value
as the mean of the a-values of all freshmen that have or might have the same
n; and same test score y;.. Thus our predictor is

& = E(o1y;.), (38)

meaning that & is the expected value of a-values of the sub-population of
freshmen for each of whom average test score, on the same number of tests,
n,., is (or would be if it were to be available) the observed value that has, for
some paticular i, been labeled ;..

In Chapter 7 we show from several viewpoints that (38) is a reasonable
predictor of «;. In the meantime, we give an easy derivation of an expression
for &, that is more practical than simply E(a,|y,.). To do so we invoke normality
assumptions for the @; and the ¢;; in y;; = u + a; + ¢;;. Doing this with the usual
first- and second-moment properties detailed in (2)-(12) leads to «; and j,.
being jointly distributed with a bivariate normal density having mean and

variance
0 2 2
E[f“]:[] and var[f‘]=[“; , ] (39)
Ji. H ¥i. os a; +ai/n

Moreover, from a well-known property of the bivariate normal distribution
(see Appendix S.2), we have

E(|7.) = E(a;) + cov(a, 3.) [var(y.)] ™' [ 3. — E(9..)],

which, from (39), is
2

E [ -," = ____G__ y . .
(o1 ¥:.) ol ¢ Uf/ni(yi H)
Thus our predictor of a; is
- n.'a',z _
(3. — ). (40)

=
ne? + o
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Notice that (40) has here been derived from (38), which was introduced solely
on the grounds of its seeming to be reasonable. In Chapter 7 we show that (38)
and (40) are special cases of general prediction procedures derived from several
different starting points, such as regression, best prediction, best linear prediction
and Bayes estimation. In the meantime we observe that &; explicitly involves
n;, not just in its occurrence in y,. but also in the coefficient multiplying 7, — u.
For large n;-values, &, is closer to y,, — u than it is for small n-values.

Moreover, it is easy to rewrite &; as

al/m

- m (7. — m),

& =(y.—n
which shows that &, regresses towards ;. — u as n, increases. This means that

when ;. exceeds u then & is less than j;. — u; whereas for y; less than u then
a, exceeds y,. — p. Hence

& 2y, —pu accordingas j,.Su.

Thus when y,, exceeds u, which suggests that «; is better than average (i.e. better
than 0), we predict it to be better but only by a fraction of y,. — y, and not by
7. — u itself. Conversely, when j,, is less than p, we predict a; as being poorer
than average but only by a fraction of y;. — u and not by j, — u itself. For
example, 62 =90, 62 = 60, n, = 6 and pu = 100 give & = 0.9(y,. — 100); and
when 7, = 110 > 100, the predictor is & =9 < 10 =110 — 100, but when
y;. = 80 then &, = —18 > — 20 = 80 — 100.

The example used for introducing the idea of predicting a random variable
has been that of predicting 1Q from test scores. It is an idea that applies in
many other situations, some of the most notable being in agriculture, where
the production of economically important animal products can be increased
through well-planned breeding programs. In increasing milk production, for
example, it is very useful to be able to predict a bull’s genetic value (¢;) from
the milk production of his daughter cows. Animal breeders do this using &; of
(40). With hdefined as h = 462 /(a2 + o), a parameter well known to geneticists
as heritability (which leads to a2/a2 = 4/h — 1), the predictor (40) becomes

N n;
&

nh
(5. — n) = :

- M M G, 41
m+ (@/h—1) = Dhya e H (41)

a familiar expression to animal breeders.
Note that (40) and its equivalent (41) are in terms of parameters o2, g2 and
u. To have a numerical value of &, therefore demands having estimates of these
parameters. Estimating u by its GLSE(u) of (34) and using this in & gives what
is known as BLUP of «;, the best linear unbiased predictor:
a;

n -
BLUP(w) = ——-*— [}, ~ GLSE(u)]

e iYa
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Its general derivation is given in Chapter 7. It gets its name from the fact that
it is a linear function of the observations, it is unbiased in the sense that its
expected value equals the expected value of «;, i.e.,

E[BLUP(a‘)] = E(al')s

which in this case is zero; and among all linear functions of the observations
that have expected value E(a;) it is the one with minimum variance. It also has
other optimal properties, which are discussed in Chapter 7. They are also dealt
with by Peixoto and Harville (1986), who consider bias and mean-squared error
properties of a variety of different predictors of a;, of which BLUP(«;) is one
special case.

A natural extension of BLUP(«;) is

BLUP( + ;) = GLSE(y) + BLUP(a,)

no? _
= GLSE(s) + ~——*— [Ji. — GLSE()] . (42)

iYa e
Both are special cases of BLUP in general, the direct derivation of which is
given in Chapter 7. Practical usage of them requires, of course, estimates of the
variance components, in this case 62 and o2. This is an example of what

motivates the subject of this book.

3.5. ANOVA ESTIMATION—BALANCED DATA

a. [Expected sums of squares
As indicated in Table 2.1, the two sums of squares that are the basis of the
analysis of variance of balanced data from a 1-way classification are

SSA = ¥ n(5. — 5.)?
i=1
and (43)
SSE=Y Y (y;—9:.)%
i=1 j=1

totaling to
SST, = Z Z (yu - f)z . (44)

The ANOVA method of estimation is based on deriving the expected values
of SSA and SSE from the definitions and their consequences in (1)~(15). One
then equates observed and expected values and solves for estimators. We show
some details of one method of deriving the expected values for balanced data,
and a slightly different but equivalent method in the next section for unbalanced
data.
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-i. A direct derivation. From the model equation (1),
yy=#+o,+ey fori=1,...,aand j=1,...,n
we get
Jo=pu+a+é., foré. =Y e;/n
and
j.=u+da +é. ford. =) a/aande.= ) &./a.

Therefore

E [(o—a)+(é —e)]?

™.

i

E(SSA) = E [n S (i - _)7__)2] -n
i=1 1
=1 3 [E( - &) + E(& — .1,

i=1

using E(a;e;;) = 0 of (15). Then, on using E(«;) = 0 = E(ey;) of (4) and (5),

E(SSA) =n i [var(a; — &.) + var(é. — é.)]
i=1

9 a2 20?2 a (g2 g2 2no?
=nZ(a§+—“— “)+nZ(-£+—"— :
i=1 a i

a =1\ N an han

=n(a—1)a? + (a — 1)a2 = (a — 1)(no} + a?),
as shown in (19) of Section 2.2¢-i. And with MSA = SSA/(a — 1) this gives
E(MSA) = EGSSA) _ ne? +a?.
a—1
It is left to the reader (as Exercise 3.7) to use the same methods to derive

E(SSE) _a(n—1)a? _ .2
an—1) amn-1)  °°

E(MSE) =

~ii. Using the matrix formulation. When E(y) =0 and var(y) =V, we
write y ~ (0, V) and then, as in Theorem S1 of Appendix S.5,

E(y'Ay) = tr(AV) + 0'A0 . (45)
Now for y of (23) we have y ~ (8, V) with
0=1,u=01,1)y and V=I1,® (a2d, + all,), (46)
where ® is the Kronecker product operator (see Appendix M.2). Then, since
SSA=nY (§.—3.) =nY y2—anj’,
i=1 i=1
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we can also express SSA, using the J, definition of Appendix M.1, as
SSA =y'({ada}i21 =)y =y (L, ®J, —Ja)y=yAy,  (47)
where A, is defined as
A=18),-3,=L®l,-1,®),=(1-1)],. (48)
Hence, using (47) and (46) in (45) gives
E(SSA)=tr{[(I, - 1) ® J,1[L, ® (23, + 0l1,)1}
+u(1,® L)1, - 1) ®J,1(1,® 1,)u
=tr[(I, - J,)®(a7J, + 023,)]1 +0, (49)
the zero because 1,(I, — J,) = 1, — 1, = 0. Thus
E(SSA) = [tr(I, — J)1[tr(62d, + 021,)] = (a — 1)(na? + 0?),

as before. It is left to the reader to use similar methods to derive E(SSE).

Naturally one gets the same results as when using the direct derivations;
and although the matrix methodology is cumbersome in this instance, it is
extremely useful for later, more complicated (usually unbalanced data) situations.
The preceding details are foundation for those cases.

b. ANOVA estimators
Having derived
E(SSA) = (a — 1)(no} + 62) (50)
and
E(SSE) = a(n — 1)a2, (51)
we use the “equate sums of squares (or, equivalently, mean squares) to their
expected values” principle, which is called the ANOVA method of estimation.
The resulting equations, which are linear in the variance components, are now
written using the estimators ¢2 and 2, so that the equations are, from (50)
and (51),
SSA = (a — 1)(né2 + 62) (52)
and
SSE = a(n — 1)é6?2. (53)
These yield the estimators
SSE
a(n-—-1)

2

= MSE (54)

and

62=<SSA_63)/n=MSA—MSE. (55)

* a-—1 n
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TABLE 3.3. 1.WAY CLASSIFICATION. BALANCED DATA

Expected Value of
Source of Sum of Squares
Variation d.f. Sum of Squares Under Random Modei

General Case

Classes a—1 SSA = nZ;(j. —y.)? (a - 1)(ne? + 62)
Within classes an—1) SSE = Z,Z,(y;; — 7i.)? a(n — 1)o?
Total (a-f.m.) an — l SSTM = z,z_,(y” - }-J_.)z

Example 1 (Table 3.1.)

Classes 2 SSA = 104 2(406? + 62)
Within classes 9 SSE = 828 962
Total (a.fm.) 11 SST,, =932

They are unbiased estimators: E(¢2) = 62 and E(8?) = o2, as the reader may
easily verify (Exercise 3.8).

The expected values of (50) and (51) are summarized in the format of an
analysis of variance table in Table 3.3, the lower part of which shows the
calculated values for the data of Table 3.1. Using these, the estimation equations
(54) and (55) therefore give for the example

¢} = MSE = 828/9 =92
and
62 = (MSA — MSE)/n = (104/2 - 92)/4 = — 10, (56)

where MSA = SSA/(a — 1) = 104/2. These are the ANOVA estimates of ¢2
and o2 from the data of Table 3.1.

¢. Negative estimates

The estimate of 62 in (56), the ANOVA estimate, is negative, —10. This
negativity is not universal. Indeed, one always hopes that ¢2 will not be
negative; but it will be whenever MSA < MSE. And such an occurrence is a
characteristic of data: with some data it will happen that MSA < MSE, and
with some data it will not happen. There is nothing in the ANOVA method of
estimation that will prevent a negative estimate occurring should MSA < MSE.
This leads to some embarrassment: a negative estimate of a parameter which
by definition is non-negative. Variances are never negative.

Two questions immediately arise: (1) What can be done with a negative
estimate? (2) How can negative estimates be avoided? The broad answer to (1)
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is that a negative estimate either may be indicative of using a wrong model, in
which case we could try changing the model, or it may be an indication that
the true value of the variance component is zero, i.e., that 62 = 0. If 2 is
especially large and negative, that and its unbiasedness might well be suggestive
that g2 = 0. If this is taken to be so then it effectively reduces the model to be
Y = 1 + e, for which the ANOVA estimator of ¢2 is 2 = SST,,/(an — 1).

To avoid negative estimates, two trite answers to question (2) would be first
to check the data for erroneous values and to check one’s arithmetic, and second
to collect more data in the hope that the total set of data would then yield
positive estimates. A more serious alternative would be to use a method of
estimation that explicitly excludes the possibility of negative estimates—
maximum likelihood (ML), restricted maximum likelihood (REML) and Bayes
estimation are three such methods. Alternatively, if one has strong prior
information on the true value of the components, one might try a minimum
norm method (MINQUE) method of estimation. All these methods are described
in their general forms, in Chapters 6, 9 and 11.

This problem of negative estimates is discussed in a more general setting
than here in LaMotte (1973a) and Styan and Pukelsheim (1981). Changing the
model is considered by Hocking (1973, 1985) and Smith and Murray (1984),
who, instead of modeling y; in the manner done here, simply define a
variance—covariance structure for the y;;s as

0 fori # i,

cov(yip, Yiy) =< pa® fori=1i'andj #J,

2

c fori=iandj=j".

Thus o2 is the variance of each y,;, and p is the correlation between y;s in the
same class. Then for the n observations in class i the dispersion matrix is

Var{c yij}l="1 = 02[:(1 - P)I,. + pJn] = vc
say, so that
v={dvc}i:l =Ia®vc'

Then, although Hocking et al. (1989) in extending Smith and Murray (1984)
use a variation of the ANOVA method that appears to be different from usual,
itis in fact precisely the same as (54)and (55)except that those equations are now

MSE = (1 — )6 and MSA =(np + | — p)é?.

These lead to

62=MSA+(1—1)MSE=63+63
n n
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and
MSA — MSE

p= with pé? = 62 .
(n — 1)MSE + MSA

In the context of p being a correlation parameter, the occurrence of negative
p when MSA < MSE is now of no concern. But on wanting to convert these
parameters p and o2 into o2 and o2, one comes right back to (54) and (55),
with 82 of (55) being negative when MSA < MSE. Moreover, in using this
correlation model, which involves equal correlation between all pairs of
observations in the same class (for every class), p is not entirely free to be any
value in the (—1, 1) range as is usually the case for a correlation. This is so
because V. =0o2[(1 — p)I, + pJ,] is, through being a dispersion matrix,
non-negative definite, and so has a non-negative determinant. This leads to p
having to satisfy p > —1/(n — 1). Hence, if n is 11 or larger, p cannot be more
negative than — 0.1, which is somewhat of a limitation to its being a correlation
that can be negative. Non-negative, minimum biased estimators are given by
Hartung (1981) as nMSA/(1 + n?) and MSE. Estimators of this nature are
discussed more fully by Kleffe and Rao (1986), Rao and Kleffe (1988) and
Mathew et al. (1991a).

Further comment on negative estimates is given in Sections 4.4 and 12.7.

d. Normality assumptions

Except for a brief mention of normality in Section 3.4 (predicting «;), it is
to be noted that up to this point no assumptions have been made about the
form of the probability density functions of the random o;s and e;;s, other than
that they have zero means and finite variances. The ANOVA method of
estimation, although it uses sums of squares traditionally encountered in an
analysis of variance table, does not invoke normality. Neither is normality
needed, of course, in the analysis of variance table itself until F-statistics
calculated from those sums of squares are used in a confidence interval or
hypothesis-testing context.

The assumptions that are called the usual normality assumptions in the
random model are that the «;s and ¢;;s are taken as being normally distributed,
with the first- and second-moment properties of (6)~(12). Stated succinctly in
matrix notation, this means that

a 0)Je21, O
[ (H5 o) &
and, using (26)

y~AN(ul, V) forV=10(:J,+01,)]. (58)

-i.  y’-distributions of sums of squares. From Theorem S2 of Section S.4
we have for

y~ A(0,V) that yAy~ y(ra, 0'A0) (59)

if AV is idempotent, where r, is the rank of A.
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Notation. y%(r, 4) represents the non-central y2-distribution with r degrees
of freedom and non-centrality parameter 4. Details and references are given in
Appendix S.4. x2 represents the central y >-distribution with r degrees of freedom,
just as F] is for the F-distribution in (5) of Chapter 2.

This notation shall be used in two ways. One is when we want shorthand
for statements like “u has a y2-distribution with k degrees of freedom”, which
shall be written as u ~ y2. An example is (59). A second usage will be when
“the probability that u ~ y2 is less than some value c¢” is abbreviated to
Pr(yZ <c¢).

To apply (59) to SSA we write SSA = y'A,yfor A; = (I, — J,)® J, of (48)
and with V of (58) we find, using the algebra of J-matrices and of direct (or
Kronecker) products set out in Appendix M, that [A,/(no? + ¢2)]V is
an idempotent matrix with A, having rank a — 1. Also, 40'A0 of (59) here has
0’'A = ul,,A, =0, because 1'A, = 0. Hence (59) gives

SSA/(noi + 62) ~ 231, (60)

a y2-distribution with a — 1 degrees of freedom. A similar use of (59) shows
that for

SSE=y'A,y with A,=1,—{,J,}
SSE/0? ~ Yam-1) - (61)
-ii. Independence of sums of squares. Theorem S3 of Appendix S.5 shows
that fory ~ A"(y, V),
y'Ay and y'By are independent if AVB =0 . (62)

Applying this to A VA, of the preceding paragraph, we find that A VA, reduces
to 0 and so therefore

SSA and SSE are independent. (63)

This is a simple example of a well-known property of sums of squares of balanced
data.

-iii. Sampling variances of estimators. The independence (under normality)
of SSA and SSE has been established and each has a distribution that is
proportional to a x?; and the variance of the (central) y3-distribution is 2f.
From this we derive sampling variances of the estimators. The important results
(Appendix S.3b) are that for a sum of squares SS being distributed proportionate
to a y? with f degrees of freedom and mean square MS = SS/f,

2
var(MS) = QE(?_S)]_ (64)

and

(MS)?
f+2

[E(MS))?

is an unbiased estimator of (65)
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Hence
2[E(MSE)]? _ 2q¢

2y = = = 66
var(62) = var(MSE) =) pYPR—T: (66)
is unbiasedly estimated by
var(2) = —20¢ (67)
¢ aln—1)+2 '
Similarly
- 2 2
var(2) = var(MSA MSE) _ %{[E(MSA)] 4 [E(MSE)] } (68)
n n a-1 a(n—1)
2 [(na? + a2)? ol ]
== — , 69
n’l: a—1 +a(n—1) (69)

which is unbiasedly estimated by

2 [ (n6? + 62)? ¢4 ]
ar(é2) == ‘ £+ ud . 70
var(d) n’[ a+1 aln—1)+2 (70)
And the covariance of ¢? with ¢2 is
_ —2g4
cov(d2, 62) = cov[(MSA — MSE), MSE] _ _var(MSE) _ o, o
n n an(n—1)
for which an unbiased estimator is
. -24}
cov(d2, 62) = (72)

nfa(n—1)+2]

Thus, although the sampling (co)variances in (66), (69) and (71) are
quadratic functions of ¢Z and a2, we can estimate those sampling (co)variances
by replacing a2 and o therein by 62 and é2, and adding 2 to denominator
degrees of freedom. This gives unbiased estimators of those sampling
(co)variances, as shown in (67), (70) and (72). And best invariant unbiased
estimators of mean square errors of 62 and 2 are derived by Hartung and
Voet (1986).

Using Edgeworth series and third and fourth cumulants, Singha (1984)
develops, in the absence of normality, approximate expressions for the variance

of 82 and 62 and for the means and variances of various ratio functions of ¢2
and ¢62.

-iv. An F-statistic to test H: 6> = 0. In the fixed effects model (where the
a;s are fixed effects), F = MSA/MSE tests the hypothesis H: a;s all equal. In
that model, we have, under that hypothesis, that F ~ #45. 1, the F-distribution
(Section S.4) on a — 1 and a(n — 1) degrees of freedom.

In the random effects model, provided the data are balanced, the x? and
independence properties of SSA and SSE of (60), (61) and (63) lead to

SE
MSA /M— ~ 3"':(;11);

nel + o/ ol
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ie., to
oeF _ ga (73)
no? + o? aln=1) -

Therefore, under the hypothesis H: ¢2 = 0, the left-hand side of (73) reduces
to F, which then has an # -distribution and so F = MSA/MSE provides a test
of H: ¢ = 0. Note that in the random effects model F = MSA/MSE has a
distribution that is a multiple of a central # -distribution, whereas in the fixed
effects model F has a non-central #-distribution when H: ;s all equal is not true.

-v. Confidence intervals. Exact confidence intervals are available for 2,
02/(62 + 02),0%/(c2 + ¢?)and 62/5?. Define xi | and x? y by the probability
statement

Pr{ii <xi<riovl=1l-«
for some probability value a( = .05, say). Then (61) gives

SSE
—5 < x:(n—l), U} =1-a,
e

Pr{xf(,,_ nLE

which is equivalent to

Pr{ SSE <ol< SSE }=1_a’

2 2
Xa(n- 1), U Xa(n- 1), L

so leading to the 100(1 — )% confidence level SSE/x2, -1, v t0 SSE/xZm-1). L
shown on the first line of Table 3.4.
Similarly, on defining upper and lower points of the #-distribution as F,
and F, by
Pr{F . < Fioly<Fl=1-q

we have, for F = MSA/MSE,
oiF

Pr{F, € ———
(F nel + ol

SFu}=1—a.

But the two-sided inequality within this probability statement is equivalent to

The confidence interval shown in the last line of Table 3.4 comes from the
preceding statement. Further manipulations of that statement, similar to those
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TABLE 3.4. CONFIDENCE INTERVALS ON VARIANCE COMPONENTS AND FUNCTIONS THEREOF. IN THE
1-WAY CLASSIFICATION. RANDOM MODEL. BALANCED DATA

Confidence Interval!

Lower Upper Confidence
Line Parameter Limit Limit Coefficient
SSE SSE
1 ol 3 3 | I
Xatn-1),u Xatn- 1)L
SSA(1 — F SSA(1 —
2 ol “2 Fu/F) “2 FL/F) | — 2%
Nya-1.u Nya-1.1
3 ol F/Fy, -1 F/F —1 |
———— — — — a
6! + o} n+ F/Fy—1 n+ F/F, — 1
2
4 _ % " " |-«
6l + al n+ F/F, -1 n+ F/Fy -1
2 F/Fy—1 F/F -1
5 = —_—_— - I —a
ol n n
! Notation: F = MSA/MSE,
Prixi sxi<xivl=1-a

Pr{F < Floly<Fyl=1-u

that established it, yield the confidence intervals for ¢2/(a? + %) and for
a?/(a? + a2) shown in Table 3.4. (Exercise 3.10.)

For a2 there is no exact confidence interval, but by considering the intersection
of confidence intervals on ¢2 + 62 and on ¢2/(na? + o), based on the
distributions of SSA and of F, Williams (1962) derived the confidence interval
for a2 shown on the second line of Table 3.4. An excellent description of deriving
this Williams interval is g’ en in Graybill (1976, pp. 618-620). The intervals
for 62/(a2 + a?) and a2/(a? + 6?) are given in Graybill (1961, p. 379; 1976,
pp. 617-618), and for ¢2/a? by Scheffé (1959, p. 229).

-vi. Probability of a negative estimate. Section 3.5¢ describes how it is
possible for ¢2 to be negative, and gives a trite example thereof. From the
distribution of F in (73) one can derive the probability of such negativity
occurring:

Pr{é? <0} = Pr{MSA < MSE}
=Pr{F <1}

2
= Pr{(naz“ )9"“(" y < 1}, from (73)
ae

a2
=Pr{f,,(,, l,<—" }
a +na
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We now use the well-known fact that the reciprocal of #% has the #!¢
distribution. We also define t as the ratio of the variance components and p
as the intra-class correlation:

2 2 T

and p = —2% _ = ;
b ol+0} 147

T=-—2,
e

and then have the probability of ¢2 being negative as
P=Pr{62<0} =Pr{F V> 1 +nt}. (74)

Calculated values of this probability are shown in Table 3.5 for a, the number
of classes, being 2, 5, 10, 25 and 50 and for n, the number of observations per
class, being 5, 25 and 100. For the resultant fifteen pairs of (a, n) values, P is
shown for = .01, .05, .10 and .25 (and for each t the corresponding values of
p and h are also shown). The most noticeable feature of these values is, as
would be expected, that P decreases as either a or n increases. This characteristic
of P is very evident in Figure 3.1, which shows, when t = .01, contour lines for
P =4 3,.2, .1,.05 and .01 plotted on (a, n) co-ordinates, ranging from 2 to
360 for ¢ and from 2 to 100 for n. When similar plots were made for other
values of 1 it was found, as would be indicated by the P-values in Table 3.5,

TABLE 3.5. PROBABILITY OF THE ANOVA ESTIMATOR OF G',z BEING NEGATIVE WHEN OBTAINED FROM
BALANCED DATA OF @ CLASSES EACH WITH N OBSERVATIONS. UNDER NORMALITY ASSUMPTIONS

P=Pr{¢2<0}=P{F" V> +nt}lort=al/al;

ol T 4q2
= t = and h = 2 _=4
6+ 1+1 ol + a2 P
=01 t=.05
p =.0099 h=.0396 p=.0476 h=.1904
a n=>5 n=25 n= 100 n=>5 n=25 n =100
2 .65 .62 52 .60 49 32
5 55 47 .26 46 22 .04
10 St .38 A2 38 .09 0
25 47 26 02 27 0 0
50 43 16 0 A8 0 0
1=.10 1=.25
p=.0909 h=.3636 p=.20 h=2.80
a n=>5 n=25 n=100 n=>,5 n=25 n=100
2 .56 40 24 48 .29 16
5 .38 11 01 22 .03 0
10 27 02 0 10 0 0
15 13 0 0 .01 0 0
50 .05 0 0 0 0 0
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360

310

260

210

160

110

a, the number of classes

70

30

0 10 20 30 40 50 60 70 80 90 100
n, the number of observations per class

Figure 3.1. Contours of P = Pr{d? <0} = Pr{F« V> | +nt} = 4,.3,.2.1, .05 and 01, for
t=02/e? =0l

that in all cases the pattern of contour lines was similar to those in Figure 3.1.
For 7 < .01 the lines were more separated than those in Figure 3.1, spreading
out more and more away from (0, 0). This implies that as t gets very small, the
probability of a negative 62 is appreciable over a larger range of (a, n) values.
Conversely, for t > .01, the contour lines bunched up more and more towards
(0, 0), until for t = 1 there were, from a practical point of view, no lines of any
consequence at all. For example, with t = 1, P is effectively zero (less than .01)
for all (a, n) pairs further from (0, 0) along either axis than (3, 99), (4, 25), (5, 12),
(6,8)and (7, 6);and fora > 4, P < .09 for n 2 5. For 7 larger than unity, t = 5,
say, this occurrence of non-zero P is even closer to (0, 0); at (2, 5), P is only
.15, and it is zero everywhere beyond (5, 5). For t = 10, P is .11 at (2, 5) and
.03 at (2, 100) and is zero everywhere beyond (3, 5), where it is only .02.

This discussion of P, the probability of ¢2 having a negative value, yields
the following useful conclusions.

(i) Forany a(or any n) P decreases as n (or a) increases, decreasing faster
for large a (or n) than for small.

(ii) For a2 > a2, P is zero except for small values of g, and it exceeds .1
only for a < 4.

(iii) For a2 < f502, P can be appreciably large, e.g., fora =10 and n = §,
P =.27at 6} = {402 and P = .51 at 62 = 14502, as is evident in Table 3.5.

In general, there seems to be no need for the data analyst to worry about the
possibility of having ¢2 negative provided the number of classes is not too
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small; having many classes is more important than having many observations
per class. This is what one would expect: numerous classes are needed if one
wants to estimate the class variance component with any degree of optimality.
Three hundred observations on each of two classes is only giving information
about two classes; it is better information on those classes than five observations
on each of them would be, but it is still only two classes.

-vii.  Distribution of estimators. The distributional result SSE/o2 ~ x2,_,,

in (61) gives
2
62 = MSE ~ ——% 2.,
a(n—1)

by which notation is meant that 42 is distributed as a x2, - ;)-variable multiplied
by 62/[a(n — 1)]; more precisely a(n — 1)MSE/6? ~ x2,_,,. In contrast, for
62 = (MSA — MSE)/n, although MSA and MSE are each distributed as a
multiple of a x2, and are independent, MSA — MSE is not distributed as a
multiple of a x2. Therefore neither is ¢2. In fact 62 has no simple, closed form
distribution. A somewhat complicated and more general form can be obtained
from Fleiss (1971), and an alternative form based on the confluent hyper-
geometric function is available in Robinson (1965).

3.6. ANOVA ESTIMATION—UNBALANCED DATA
The analysis of variance sums of squares for unbalanced data are

SSA = Z n(¥. — y.)? = Zmyl. — Ny~

i=1

and (75)
a n;
SSE = Z Z (yi; — }71.)2 = zlzjyizj - 21"1}712.
i=1 j=1
these being the same as in (43) for balanced data, except for having n; in place
of n, and with N = Zn,

Notation. In the right-most expressions of (75) two notational conventions
have been adopted that will be used throughout: X; and X; represent £{_, and
X% |, respectively, and N is the total number of observations.

a. Expected sums of squares
As in Section 3.5a, we show details of two methods for deriving expected

values of sums of squares.

-i. A direct derivation. The balanced data sums of squares in Section 3.5a-i
were handled as sums of squares of deviations among means, similar to the
first expression in (75). But unbalanced data sums of squares are sometimes
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more tractable when expressed as linear combinations of crude sums of squares,
as in the second expression of (75).

Expected values of the three different terms in those expressions are now
given, Derivation is, of course, based on exactly the same model as described
in Section 3.1, making particular use of the results in (12)-(15), such as E(a;) = 0,
E(«?) = 62and E(a;a;.) = Ofori # i’;and E(e;)) = 0, E(e}) = 0%, E(e;e;;) =0
unless i = i’ and j = j', and E(a;e;;) = 0. Thus we have

E(Nj2) = NE(u + Z;ma;/N +¢.)?

Inta? + T mnpayap,  T,Zjel + I IX e e
= NE\ p? + I'V’:‘ + ‘;; Al

N
NZ,Z,02
0+ l‘w’a"'+0+0+0+0

=Np?+062Z;n?/N + 62 (76)

2uz;n; 2X.né
+ H A:l".“i+2#e-"+ t"te--“i>

- N2+ NZ;n?o?

Similarly
E(Zny?) =EZmE(n+ o, + &) = Nu* + Noi + ao;
and
E(ZZ,y}) =Z.Z;E(n+ o; +e;)* = Nu* + Noi + No? .

Using these in (75) gives

E(SSA) = (N — Z;n2/N)62 + (a — 1)a2 (77)
and

E(SSE) = (N —a)s?. (78)

-ii. Using the matrix formulation. 1t is not difficult to confirm that the
expressions in (75) are equivalent to
SSA =yA,y forA,={;J,}-Jy (79)
and

SSE = y’Azy fOl' Az = IN - {d ]"‘} (80)

where the {; } notation for block diagonal matrices is as described in Appendix
M.3. That (79) is a generalization of (47), from balanced to unbalanced data,
can be noted; i.e., (47) is (79) with n; =n V i.

With

Y~(IN“9v={d6:Jn,+a:ln,}) (81)



[3.6] ANOVA ESTIMATION—UNBALANCED DATA 12!

from (30) and (31), we now use (79) and (81) in Theorem S1, just as in (45),
to derive the expected value of SSA as

E(SSA) = E(y'A,y) = tr(A,V) + E(y)A, E(y)
=tr[({a Jn)} = IN{a03dn + 2L, )]+ pu1({a 3} — IW)Inue .
Recalling that 1'Q1 for any Q is the sum of all elements of Q gives
E(SSA) = of[tr{4J,J,} — tr(Qn{a Jn})]
+o2(tr{ygd,} —trJy) + ;42<2,~fi2 - -N—z)
n N

2 z.n2 .
=03<zlf’__._'"_')+aez<ziﬂ_ﬁ)

n; N n, N

zn?
=<N——"1'-)ag+(a—1)az,

N

just as in (77). Similar manipulations yield
E(SSE) = tr(A,V) + ulyA,1yu = (N —a)al,

as in (78). These derivations, although appearing tedious, involve methods that
are very useful in more complicated models.

b. ANOVA estimators

Using exactly the same reasoning that led from (50) and (51) to the estimation
equations (52) and (53) for balanced data, of equating sums of squares in their
expected values, gives

SSA = <N - Z—I‘Vﬂ)éﬁ +(a—1)é? and SSE = (N — a)é?
for unbalanced data. Therefore
¢z = MSE (82)
and
2 _ MSA — MSE
* (N=Zni/N)/(a-1)

are the ANOVA estimators for unbalanced data. They do, of course, reduce to
those for balanced data (n; = n V i) in (54) and (55).

(83)

Example 1 (continued). The data of Example 2 are in Table 3.2. They and
calculation of SSA and SSE are shown in Table 3.6, from which the analysis
of variance table is shown in Table 3.7.

The estimation equations (82) and (83) give

62 =108/6 = 18 (84)
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TABLE 3.6. DATA OF TABLE 3.2 AND ANOVA CALCULATIONS

Yij
i=1 i=2 i=3
11 4 SSA =3(6—8)2+4(12—8)2+2(3-8)> =126
3 13 2
12 17
_ 1 _ SSE = 2(32) + 62 + 2(1% + 5?) + 2(1%) = 108
Yi. 18 48 6 y.=172
n 3 4 2 N=9
i 6 12 3 y.=8 N—-Z,n,-’/N=9—(3’+42+22)/9=‘.}

TABLE 3.7. 1-WAY CLASSIFICATION, UNBALANCED DATA (TABLE 3.2)

Expected Value of

Source of Sum of Squares
Variation df Sum of Squares Under a Random Model
Classes a—1=2 SSA = 126 202 + 20}
Residual N—a=6 SSE = 108 602
Total N—-1=8 SST,, = 234
and
63 — 18
62=__—  — 1543 85
N CT (83

¢. Negative estimates

Data being unbalanced does not eliminate the possibility of obtaining a
negative ANOVA estimate for ¢2. As illustration, suppose in the example of
Table 3.6 that the data for i = 2 are 2, 2, 37 and 7 instead of 11, 13, 17 and 7.
The values of n,, N, j,. and y.. are unchanged so that SSA is also unchanged.
ButSSEisthen 108 — 2(12 + 5%) + (10% 4 102 + 252 + 52) = 906. Hence, with
that replacing 108 in Table 3.7,

2=M6ﬁ=_m_
‘ 52/18 '

As with balanced data, there is nothing inherent in the ANOVA method of
estimation that prevents the possibility of such negativity. Mathew et al. (1991b)
consider non-negative estimators from unbalanced data for models that have
two variance components, of which the 1-way classification is a special case.
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d. Normality assumptions
Similar to (58) but now using V of (81), the normality assumptions are

-G )

Y~'/V[”1va= {dde,,'ﬁ-O'fl,,'}] (86)

«i. y*-distributions of sums of squares. As is usual, the basis for considering
x? properties is Theorem S2 summarized in (59). For SSE = y’A,y of (80),

and

A2v = (IN - {d Jn,}){d aaan, + Ufln,} (87)
= aaz{d Jnl - Jn,Jn,} + af{d lm - Jn:}
=02{41, - J,} =0lA,. (88)

Therefore, since A,V/a? is idempotent, SSE/s? has a y2-distribution with
degrees of freedom r(A,) = tr(A;) =N —a; ie,

SSE/6? ~ X} -a - (89)
We begin similarly for SSA = y’A,y of (79):
AV =({s3,} = IN{a 023, + 0ll,} (90)
=0i({aJdndn} = In{adn}) + 02({a 30} — In)
=0;({adn} — W m1L}/N) + 02({a 30} — In) . (1)

Inspection of (A,V)? using (91) reveals that in general neither A,V nor any
multiple of it is idempotent; it is if n, = n V i, or 62 = 0. Therefore neither SSA
nor a multiple of it has a y?-distribution. This is in sharp contrast to the
balanced data situation where n, = n V i reduces (91) to

Alv = Uf(la ®Jn - lanl'an/a) + 0'3(]“®J,, - Jan)
=0;(L,®J,~3,®3,)+0}(1,®],-1.®],)
= (naf + aez)[(la - Ja) ® Jn]; (92)

and so for balanced data A,V/(no? +¢2)=[(I,—J,)®3J,] which is
idempotent, so yielding the x? result in (60). SSA not having a y-distribution
in the random model with unbalanced data is also in sharp contrast to the
fixed effects model with unbalanced data. In that case, under the hypothesis
H: a;s all equal, one effectively has o2 as zero in (91) and so then A,V/o2 =
{aJn} — Iy, which is idempotent. Hence SSA/s2 has a y? (non-central)
distribution—as is well known. But with unbalanced data, for 62 # 0, there is
no y*-distribution associated with SSA.

-ii. Independence of sums of squares. Despite SSA not having a y-density,
SSA and SSE are independent, just as in both the random model, balanced
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data case, and in the fixed effects model with either balanced or unbalanced
data. Using (79), (80) and (86) in (62) gives
A VA, = [U:({d Jn,} - 1N{r "il'n,}/N) + 03({d Jn,} - JN)][IN - {d Jn,}]
(93)
=02({qdn, — 330} — W{, ni1,, — w1, 1,1, /n}/N)
+0({a Jn,- - Jn,} In + 14, n1, /n}/N)
=g2(0-0)+ d2(0—Jy + Jy)
=0. (94)

Therefore, with y having been assumed normally distributed, SSA and SSE
are independent.

-iii. Sampling variances of estimators. Two of the three results are easy.
First, because SSE/a2 ~ % _,,

4
var(6?) = var(MSE) = —22¢_ (95)
—a
Second, using (82) and (83),
cov(d?, 87) = cov(MSA 2- MSE, MSE)
(N—=Zini/N)/(a—1)
20t
= % : (96)
(N — a)}(N = Zinf /N)/{a — 1)
On writing
_ —Tn?
6: = M for n, = u_l_lv“’ (97)
n, a-—1
and
n,6?=yBy forB= — —AL, (98)
a-1 N-—a
the tedious derivation is obtaining var(é2) from Theorem $4, that
y ~ A'(n, V)= var(y'By) = 2tr(BV)? + 4u'BVBp . (99)

In using B of (98) in (99) we find, with E(y) = p = uly of (83), that u'B is null,
because it is a linear combination of 1'A, and 1'A,, each of which, from (79)
and (80), is null. Therefore (99) becomes
AV AV )2
a-1 N_ a
_ z[tr(A,V)2 N u(A,V)Z]
(a—1?% (N -a)?

var(n,é; )—Zt(

(100)
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because A, VA, = 0, as in (94). Hence from (91) and (88)

var(n,d3) = trlo2({adn} — 1,15 }/N) + 62({4d,} — IW)T?

(a—1)

+ (_N———a)—ZU: “{a L, - j,.,}2~ (101)
After considerable usage (left to the reader as Exercise 3.12) of the algebra
of 1, J and J as in Appendix M.1, the ultimate simplification of (101) is
2N
(N*=Z;n})
. [ N(N —-1)a—-1)
(N —a)(N? — Zn})

var(62) =

ot + 20la?

sz.‘"(z + (Z‘nlz)z —_ 2Nzin130,4] . (102)

N(N? - Zn}) ¢

Crump (1951) was the first to derive this result; it occurs again in Searle (1956)
with 26267 erroneously shown as 6262, and is correct in Searle (1971). An
extension of (102) to the rth cumulant is developed by Singh (1989), and
Chatterjee and Das (1933) develop best asymptotical normal (BAN) estimators.

-iv. The effect of unbalancedness on sampling variances. A question of
long-standing interest is to what extent does unbalancedness of data affect the
minimum variance properties (Section 2.3b-iii) of the ANOVA estimators? At
first thought one might expect that a satisfactory method of answering this
question would be to study the behavior of the sampling variances of, and
covariance between, ¢2 and 62, for different degrees of unbalancedness, i.., for
different sets of n;-values for given N and a.

This is easy for var(¢2) and cov(d2, ¢2), since each is just a multiple of ¢2.
Clearly, var(62) of (95) for given N and a is unaffected by unbalancedness; and
cov(82,62) of (96) is affected only to the extent that Z;n? is. And since Z;n?
for Z,n; = N and n, > 1 is at its maximum for one n; being N — (a — 1) and
the others being unity, and is at its minimum for all n; being the same (or as
nearly so as every n, being an integer will allow), we see that cov(d2, ¢2)
increases, numerically, as the degree of unbalancedness increases; or, put the
other way, the closer that data are to being balanced, the smaller (numerically)
is that covariance.

Unfortunately, the behavior of var(é2) of (102) is not monotonic for changes
in the n-values, given N and a. The coefficients of ¢ and of 6242 each increase
as unbalancedness increases, but this is not the case for the coefficient of 62 in
(102). For example, with N = 25 and a = 5, the last term of (102) is 1.1066a ¢
forthe m being L, , t, t1 and tt, whereas it is .79630% for the more unbatanced
data case of the n; being 1,1, 1,1 and 21. A consequence of this is that, after
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TABLE 3.8, EXAMPLES OF var(¢2) o (102)
FORN =25,a=5aNDol =1

t=0;/0?
n-Values 25 5 1 10
LLLIL11 14 41 1374 113
1,1,1,1,21 20 49 1370 85

expressing var(¢?) as o} multiplying a quadratic in t = ¢2/02, it will be found
that var(a2) for some values of 7 increases as between the first of these sets
of n-values and the second, and it decreases for other values of . Examples
are shown in Table 3.8. Thus, for some values of t, var(é2) increases as
unbalancedness increases, and for other values it decreases.

The value of t at which var(é2) changes from increasing to decreasing as
unbalancedness increases is, of course, not the same for all situations, but
depends in no simple way on N, a and the n-values.

-v. F-statistics. The ratio F = MSA/MSE can, of course, be calculated.
In the fixed effects model F has a non-central # -distribution. In the random
model with balanced data F is distributed as a multiple of an # -distribution—
see (73). But in the random model with unbalanced data F does rot have even
a multiple of an #-distribution when o2 > 0. This is because, even though
MSA and MSE are independent with o2 being non-zero, MSA is then not
distributed as a multiple of a y2. Nevertheless, on defining

‘73 n;

"“var(j.) oi+4oi/m 1+nT

o?

and

h(7) % (- ziwtfi.)z
Fr=—"9  forh(r) = 2708
@_nMmsE OO = Lol z,w,

it is shown in Wald (1940) that F* ~ #4_. Moreover, g = 0 simplifies F*
to be F = MSA/MSE, thus providing F as a test statistic for H: a2 = 0, even
though F is not distributed as an #-variable when o2 > 0. [In concert with
F* ~ #4.1 when 62 =0, it can also be shown from (91) that SSA ~ a2y2_,
when a2 = 0.] Spjetvoll (1967) suggests that this test is nearly optimal for large
values of 1, and Westfall (1988, 1989) and LaMotte et al. (1988) have made
comparisons of this test with other exact tests. A summary of these results is
shown in Table 3.9. A further test, which is locally best, invariant, and unbiased
is developed by Das and Sinha (1987). They also consider both other models
and robustness.

-vi. Confidence intervals. Because SSE/a2 ~ x%_,, a confidence interval
on o? is easily derived in the same manner as for balanced data, in Section
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TABLE 3.9. F-DISTRIBUTIONS AND F-TESTS IN THE 1-WAY CLASSIFICATION

MSA Zowi(y. — w3 /Zw)? 1\7!
F=——and F* = - th w, = —
MSE * (@a—DMSE ___ MEtL
Balanced Unbalanced Balanced and
Model Data Data Unbalanced Data

Fixed' F~%la-1an—1),A] F~%F(a—1,N—-a, i) FtestsH:
;s all equal?®

Random

" ~Ful, F*~ F51 FtestsH: o2 =0?
T

! #°(-,-, ') represents the non-central & distribution: see Appendix S.4.
2 Putting all o;s equal reduces A to zero.
= 0 reduces both F/(1 + t) and F* to F.

3.5d-v, namely

Pr{ SSE <ol< ZSSE }=l—a.

Xﬁ—a. v XN-a.L

But because there is no readily tractable density function, no algebraic confidence
interval is available for 2. There is, however, a variety of approximate intervals,
which are fully reviewed by Burdick and Graybill (1988). The 1 — a approximate
interval that they say performs well is one developed by Burdick and Eickman
(1986), based on the following parade of definitions.

#" is a random variable having an # -distribution with numerator and
denominator degrees of freedom n and d, respectively. #j3(«) is the point on
the real line beyond which there is an area « in the distribution of #3; i.e.

Pr{#Fi>Fia)}=a.

Fora,, + a,, = & = a,, + a,,, which provides two opportunities for dividing
the a probability level into two pieces, define

fHi= faao-l(“u)y fi= f:(;ln(alz),
fi= faao_l(l —ay) fo=Fia- n(l —a3,) .
m=min{n}, M =max{n} k=[Z,(1/n)]"*

MSAl = z‘(}-"- - zll}—"'/a)z’
a—

1 MSA,
MSA, U= 1

fz MSE m’ f{MSE M’
Then,

<0; <

r{ kL(MSA) 2 < kU(MSA, )} |—a
fidd +kL)  ° T f;(1+kU)



78 THE |-WAY CLASSIFICATION [3.7]

An exact confidence interval for t = ¢2/a? is proposed by Wald (1940),
based on his F* shown in the title to Table 3.9. Because F* ~ #4_.,a 1 —«
confidence interval for F* is

h(z)
LS ——————= €
(a — 1)MSE

where h(t) is the numerator of F* and F, and Fy, are lower and upper limits

ofthe # 47! distribution, respectively, similar to their definition used in Table 3.4.

Wald (1940) shows that h(t) decreases as t increases. Therefore the confidence
limits on t, say tf and t{;, are based on the solutions to

h(t))=[(a —1)MSE]F, and h(ty)=1[(a—1)MSE]}F,.

Because h(t) is decreasing in 1, with h(0) = MSA/MSE and h(o0) = 0 (as may
be easily verified), there may be no solutions to either or both of these equations
when h(0) is less than F| or F;. When that occurs, the corresponding limit for
7, namely t} and t}, respectively, is taken as zero. Thus, in summary, a |1 — «
confidence interval for t is (t§, tfj), where

ot = {‘tL whenh?O) > Fy,
0 otherwise,

U

and

o* = {‘tu whenh(0) > F|,
v 0 otherwise .
The corresponding confidence interval for p = 62 /(a2 + 02) is
@t

<p< .
T+ PS4

A broad review of inference procedures for p is given by Donner (1986), including
much of what is in Shoukri and Ward (1984). Confidence intervals in the
unbalanced data case are considered by Burdick, Magsood and Graybill (1986).
They begin at the last line of Table 3.4 and extend Wald’s (1940) methods and
in doing so compare a variety of methods for deriving confidence intervals.
Extension to the 2-way nested classification is considered in Burdick, Birch and
Graybill (1986).

3.7.  MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Maximum likelihood estimation of variance components from data on a
continuous variable is often confined to situations based on the normality
assumptions. For unbalanced data, with

y~ JV(#‘N’V = {d 0’3.],,‘ + 0’,2],“}),
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the likelihood function is then defined as

exp[ —3(y — uly)’V ™ (y — uly)]
(2n)t¥|V[* ' (103)

L=LpV]y)=

This is the same as the density function for y, usually denoted as f(y| », V);i.e.,
Liw, Viy)=f(ylw V).

Although these two symbols represent exactly the same function, each is used
in its own particular context. The notation f(y|u, V) is used when interest lies
in the density of y, with 4 and V being treated as fixed. In contrast, L(y, V]y)
is used when we want to emphasize that the same function, namely the right-hand
side of (103), can also be viewed as a function of y and V for some given vector
of data, y. This is the context in which (103) is used as a basis of maximum
likelihood estimation of u and V, the MLE of V being V with 62 and ¢ replaced
by their MLEs.

With V in (103) involving the form al + bJ that is discussed at the end of
Section M.1, we get from that section

N I o2 -
Y 1={d_2([,,‘ ——J,,,>} and |V| =[] ¢2"~ a2 + n;a2),

T2 2
z o, +no; i=1

leading to

1 ol
-1 G 2 _ ___* . — N 2]}
L B exp{ 203[ i j(y_; #) ZI. 0'3 + nia: (y l#)

(2m)#¥g24N =@ [T (a2 + nyo2)?
i=1
(104)

Since parameter values maximizing L are equal to those maximizing its natural
logarithm, and because log L, which we denote by I, is often a more tractable
function than L, we deal with

| =log L =log[L(y V|y)]

= —4Nlog2n — (N — a)log a2 — 1Z,log(a2 + n;02)

_zizj(Yij_#)2+ 1 ¥ 03

2
Seruamrd 0 Nl .
202 202 ' 6} + n;0? v 2

a. Balanced data

-i. Likelihood. Balanced data has n, = n V i. This greatly simplifies log L
so that it becomes

I=logL= —4iNlog2n —}a(n — 1)log ¢? — 1a[log(a? + nal)]
_ zlzj(yij - #)2 + "20321(}7i. - #)2
202 202(a? + nal)
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The last two terms can be rearranged so as to display SSA and SSE:

_ zazJ(YU - #)2 + nzagxl(ft- - #)2
202 206%(0? + nol)

1 - - 2 nag - 2
=~ X (yy— i+ —n’— m—zz:"(}’a- — 4

L E 1 nog T.nl(v 5 = 2
~ 557 | SSEH (1=~ s | B = 5 4 5= h)

]

1 o
SSE + —2 _[SSA + an(y.. — u)*]; .
203{ o MZ[ (y.—n) ]}

Notation. Because the MLE ofa function of parameters is that same function
of the MLEs of the parameters, we simplify notation by writing

A=o0%+nol. (105)
Then ! becomes
| =log L= —4Nlog2n — ia(n — 1) log 6?
SSE _ SSA _ an(jy.. — p)?
262 21 20

e

—talog - (106)

-ii. ML equations and their solutions. The maximum likelihood equations
are those equations obtained by equating to zero the partial derivatives of log L
with respect to y, 62 and A:

ol _an(y.—p)

op A
ol _—a(n—1) SSE _ —-a(n—l)[az_ SSE ]
de: 202 26 20° * am-1]

8l —a SSA an(j.— p)? —a( SSA) an(y.. — p)?
—=—1 + =—|4- + .
oA 24 2A? 242 232 a 242

(107)

In equating these partial derivatives to zero we change the parameter symbols
4 62 and A to be the symbols i, 62 and 1 representing solutions to those
equations, and from the form of the derivatives get those solutions as

a=y., d’z:MSE, 1=&=<1—1>MSA
a a

and (108)
_A-¢2 (1-1/a)MSA — MSE
N n B n '

d:
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These are the solutions to the maximum likelihood equations. But they are not
necessarily the maximum likelihood estimators, even though L(g, V|y), which
is identical to L(4, d2, 62|y), is the maximum of L(y, 62, 62|y) for variation
in y, 02 and o2,

-iii. ML estimators. Denote the MLEs by fi, 2 and 2. The reason that
not all of zi, 62 and 62 are ji, 62 and 62, respectively, is that all of g, ¢2 and
62 do not always lie in the parameter space for u, 62 and o2. In particular, ¢2
of (108) can be negative, and when it is it is not in the parameter space (0, o0)
defined by 62 being a variance and thus non-negative, i.e., 0 < 62 < co. Thus,
in general, the solution ¢2 will be the MLE 62 only when it is non-negative.
The very definition of maximum likelihood demands that the likelihood be
maximized over the parameter space. Hence MLEs must be in the parameter
space, which means 62 > 0 and 62 > 0.

Fortunately, in the 1-way classification ¢2 is the only one of the three ML
solutions fi, 62 and 42 that is not necessarily in the parameter space, which is,
from the nature of the parameters, —o0 < u < 0,0 < 6? < 0w and0 < 62 < 0.
We consider the solutions fi, 62 and 42 in turn. First, st does not depend on
62 or ¢, and since i = j., is clearly in the space of y it is the MLE of u:

MLE(u)=f=p=y..

And 62 = MSE is in the parameter space for 62, since MSE is never negative
(and we exclude the naive case where y;; = ;. Vi and j, which would give
¢% = 0). But since ¢2 depends on ¢2, we must ensure not just that 62 is in the
parameter space for a2 but that the pair of estimators (62, 62) is in the 2-space
defined by (62, 62). As a result, we find that there is a condition under which
¢2 = MSE is not the MLE of ¢2.

We now consider ¢2 and ¢2 and invoke an argument similar to the original
one of Herbach (1959) to derive ML estimators 62 and &2 from the ML solutions
¢? and ¢2. To do so, we consider 62 and 1 = 6? + noZ, the latter in place of
o2. Then L is a positive function of positive parameters 62 and 4. It could be
plotted in a 3-dimensional figure with L being the third dimension above the
positive quadrant of the (62, 1)-plane of Figure 3.2.

Consider the line 62 = A shown in Figure 3.2. Since 62 > 0 implies 1 = 02 +
no? > ¢2, and in Figure 3.2 all points for which A > 67 are those on and below
the A = o? line, this is the region of the figure in which the MLE point (4, 62)
must lie. It is called the feasible region. Whenever (4, 62) is in that region, it is
the MLE point. In other words,

when 62> 0, 62 =6?and 6? =g2. (109)

This leaves us needing the MLEs when ¢2 < 0, which is when 4 < ¢2, an
example of which is shown in Figure 3.2. We argue by contradiction that when
62 <0, 62 must equal zero. Therefore assume that ¢ <0 but 62> 0, ie,
1> 2. We consider the two cases 2 < ¢2 and 62 > 62 separately. In the first
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[

(.62
*

Feasible region
A2 af = ag 20

-

0 A

Figure 3.2, The positive quadrant, for 2 = a2 + no2, of the (4, a2)-plane, showing the g2 = 1 line,
the feasible region (that line and all points between it and the A-axis) and a solution point (4,62)
that is not in the feasible region.

case 62 < d¢2, and from (107) we have, at the MLE,

Jlog L —a(n—-1)| . SSE —an-1) _ .
g ———-—[aﬁ— :|= —— (62 —62)>0.
a(n—1) 246
Therefore we can increase the log likelihood which, of course, is a function of
4 and a2, by increasing o2 from 42 and leaving A at A. This is a contradiction
to 62 being the MLE. Now consider the second case, 2 > ¢2, where

izél262>1. (110)

The first inequality is the requirement that the MLEs be in the feasible region;
the second inequality is our second case and the third inequality follows because
6% < 0. Now at the MLE, from (107) we have

2 ~4
aaz o} =a} 2a'e

dlogL| =:g(1_@)+an(i..—i..)z
oA |42F 212 a 272
a -
=—=(I-1
2,12( )

<0, from (110).

Hence we can increase the log likelihood by decreasing 4 from 4 and leaving
o2 at 2. This is a contradiction to 1 being the MLE. Therefore we have
contradicted the statement &7 > 0 when ¢ < 0, and so &7 must be zero; ie.,
&% = 0 and, equivalently, A = 2 when ¢2 < 0.

Thus, in order to find the ML estimator of x and of ¢? when 62 =0, we
must obtain them by maximizing log L subject to 4 = 2. This does not mean
that we are taking A = ¢2 (and hence g2 = 0) in the model, but that we are
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simply going to maximize log L confined to the plane A = ¢?2 in the 3-dimensional
space (L, a2, A). Thus, on denoting the log likelihood when 1 = a2 as () = ¢2),
we find that putting 2 = a2 in (106) gives

2 _SSA+S8SE  an(y. — Mk

I(A=0%) = —1iNlog2n — iN log a? 257 257 (111)

Maximizing this with respect to u and o? leads to ji = y.. = st and
., SSA+SSE SST,

G 112
N an (112)
-1 A -
_(a—1)MSA + a(n I)MSE=(1—1>MSE+1(1—1>MSA,
an n n a
=MSE+1|:(1 —~1—>MSA—MSE]
n a
=4} +d}. (113)
<dl. [¢2<0]

Note that 67 can never be sufficiently negative for (113) to be negative (because
¢? = SST,,/an and SST,, is never negative). Thus when 62 < 0, the MLEs are
62 = 0 and 62 = SST,,/an. In summary, then, the MLEs are as follows:

MSE if (l - 1) MSA = MSE,

e =1 ssT (11 (114)
m o (1——>MSA<MSE,
an a

and

0

[(1——1—>MSA—MSE]/n if (l—l)MSAZMSE,
a a

(115)

if (l —1>MSA< MSE .
a

Although this is certainly the correct way of stating the MLEs, we also state
them in a manner that may well be more immediately readable for data analysts.
This is because we state the data conditions first:

if (1 — 1) MSA = MSE then
a

and

if (1 - -1-> MSA < MSE then
a

the latter being 62 of (109).

[ -Jusa -]

&2 = MSE, (116)

(117)
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Example. The balanced data of Table 3.1, with analysis of variance in Table

3.3, have

a=3, SSA =104, MSA =52,

n=4, SSE =828, MSE =92,

SST,, =932.

From (56) the ANOVA estimates are
42=MSE=92 and ¢2=(MSA—-MSE)/n=1(52-92)=—10.

The ML solutions of (108) are

¢l =MSE =92
and
62 =l[(l —l)MSA —MSE]=1[@—92:|= —14}
n a 4 3
=42 - MSA/an= —10—13/3 = —14}. (118)

Since 62 < 0, the MLEs are, from (115)
62=0 and G2=62+62=92—144=773%.

-iv. Expected values and bias. E(MSE) =02 and E(MSA) = ne? + o}
so it is not difficult to derive

1 1
E(¢2) =6} and E(&f)=(l——)a:———a§,
a

Thus the solution ¢2 is an unbiased estimator of 62; and the solution 62 is a
biased estimator of 62.

Finding expected values of the ML estimators is more difficult because the
form of the estimators depends on whether d2 is positive or negative. Thus the
expectations depend on p of (74):

p = Pr{é2 <0}
= Pr{#F%7V > (1 - 1/a)(1 + n1)} (119)

for t = 62/6?.

First consider 62. It is 62 with probability 1 — p and zero with probability
p. Hence its expectation is (1 — p)E(é2| 42 > 0). The expectation involved here,
over only the non-negative part of the real line, is not easily derived because
the density of ¢2 is not a tractable function.

The expected value of ¢2 is no more tractable. Since 2 = MSE when 62 > 0
and 62 = SST,,/an when 62 <0, and because ¢2 > 0 with probability 1 — p,

E(62)= (1 — p)E(MSE |62 > 0) + pE(SST, |62 <0)/an . (120)
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Again these expectations, being conditional expectations over the non-negative
part of the real line, in one case, and over the negative part in the other, are
not tractable functions.

-v. Sampling variances. As a basis for comparison, we restate scalar results
from (66), (69) and (71) as the sampling dispersion matrix of the ANOVA
estimators:

1 -1
42 MSE _
N a(n—1) an(n—1)
var = var =20, N
42 MSA —~ MSE -1 i(lz/o, + 1 )
* n an(n—1) n*\a—-1 a(n-1)

(121)

And for the solutions of the maximum likelihood equations in (108)

a2 MSE
var 42 = varf (1 —1/a)MSA — MSE
* n
1 -1
—1 —
— 2g* a(n ) an(n — 1) (122)

¢ -1 L( A%/a? N 1 >
an(n—1) n*\a*/(a—1) a(n-1)

In both cases A2/g? = (1 + nt)? for T = 02/0?.

The only difference between (121) and (122) is that in the (2, 2) element of
(122) the term in 1%/0? has denominator a®/(a — 1) whereas in (121) it has
a — 1. And since a?/(a — 1) > a — 1, we have var(d2) < var(¢2).

To derive the asymptotic large-sample dispersion matrix for the MLEs, we
need the negative of the expected value of the matrix of second derivatives of
the likelihood (see Appendix S.7). Let I/, denote 0 log L/d0 for some scalar 6;
and similarly let lp , denote dly/d¢ for scalar ¢. Then from (107)

an(j.. — u) —a(n—1) SSE
=" " = 4 123
. y) ‘ 202 208 (123)
and
— s 2
I, = a  SSA + an(y. — p) . (124)

22 222 212

From this it is not difficult (Exercise 3.13) to obtain second derivatives, e.g.,

l,,» = —an/A, and the negative of their expected values, e.g., —E(l,, ,) = an/4,
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and hence derive the large-sample dispersion matrix of 3,62 and A = 62 + né2as

ﬁ [ '_E“u,/.t) _E(ly.cri‘) —E(lu,,{) =t
var &3 > —'E(ly.ﬁ) _E(lcr},.dz) '“E(lcri,l) (125)
) L-—E(l,;,z) —E(ls2,2) —E(l,2)
[ an 1" [ 4 ]
= 0 0 — 0 0
A an
o a(n—1) 3 20
- 202 B a(n—1)
a 2A2
0 el A
212‘ 0 0 p

Thus /i has zero asymptotic covariance with 2 and 1. Since 62 = (1 — 62)/n,
the large-sample dispersion matrix for the MLEs of the variance components
is, provided a2 > 0,

1 -1

&2 W oan=1 an(n — 1)
fla . 6
var[&s] 20} i l(lz/a‘,‘_._ | > (126)
an(n—1) n?\ a a(n—1)

Notice from (121), (122) and (126) that all three leading elements are the same,
i.e., all three estimators of 62 have the same variance, 26%/a(n — 1), and the
same covariance with §2, namely —2062/an(n — 1). This is true even though
42 = MSE = ¢2, but 2 can be SST,,/an if ¢2 < 0. The reason that var(g2) of
(126) is not different from var(é2) of (121) is that when ¢2 > 0, 62 = ¢2 = ¢2,
and var(62) of (126) is an asymptotic, large-sample variance; and in that
asymptotic situation 2, which is consistent, cannot be negatjve, and so in the
limit G2 = MSE always, with variance equal to var(MSE) = 202 /a(n — 1).

In contrast, the exact variance of ¢ is, recalling using p = Pr{¢2 < 0},

var(2) = E(a4) - [ E(52)]”
= (1 = p)E(MSE? |62 > 0) + pE(SSTZ| 67 < 0)/an® — [E(62)]? .
(127)

Again, intractability is apparent, and numerical evaluation would be necessary
in particular cases. [See Yu, Searle and McCulloch (1991).]

b. Unbalanced data

=i, Likelihood. Under the usual normality assumptions of (103) the log
likelihood is, as shown just before Section 3.7a,

= —4Nlog2rn — 4N —a)loga? — 1X,log 4,

1 5, o2ni(y. — u)?

128
20} A (128)

1
T 52 LI(yy—-mw+
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where
A‘.‘——'ag + n,o‘,z (]29)

as a generalization of (105). It is left to the reader as an exercise (see E 3.15)
to simplify the last two terms of (128) so that it becomes

SSE _3, n(yi. — p)? ‘

= —4Nlog2m — 4(N — a) log 62 — X, log 4, —
iN log 2n — 4(N — a)log 62 — 4Z,log 4, 57 o

(130)

The simplification is easily derived using the identity (where t = ¢2/02)

(131)

-ii. ML equations and their solutions. With 9A,/062 = 1 and 84,/d6? = n,
we differentiate log L of (130) to get (using l, = d log L/d6)

I“ = Z‘M’ (132a)
Ay
—(N —a) 1 SSE (. — u)?
lp=—eo =Y 4+ — 4+ I, ————, 132b
’ 20?2 ! "I 20 T TN 22 (1320)
and
n; n} (.~ u ?
l.=—-13,— + zi——(—l (132c)

7a A 222

i

The ML equations are obtained by equating the right-hand sides of (132)
to zero, after replacing the symbols y, 62 and 4, by 4, 62 and 4, = ¢2 + n,62,
respectively. Then £, 62 and 62 are the solutions to the ML equations. Carrying
out this procedure with [, of (132a) gives

n .
1=y M / m_ 716+ ndl _ T /var()
A=Y BT s n T /wG] (133)

162 4 n,62

This, it can be noted, is the same as GLSE(u) of (34) in Section 3.3, only with
0?2 and o2 replaced by 62 and 62; i,

var(y.) = 62 + 62 /n; .
Derivation of 62 and 62 comes from equating the right-hand sides of (132b)

and (132c) to zero, so giving

SSE N-a

¢t d¢?

s )2 1
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and

2= 12
ni(y. — i) n;
—_—— =) . 135
R (135)
With 1, = 62 + n,62 occurring in the denominators of the terms being summed
(over i) in these equations, there is clearly no analytic solution for the estimators;
there is when the data are balanced, ie.n,=nand 4, =41 Vi

-iii. ML estimators. As with balanced data, solutions s, ¢2 and 62 are
ML estimators only if the triplet (&, 62, ¢2) is in the 3-space of (y, 62, 62). And
in ensuring that this is achieved, the negativity problem raises its head again.
For each data set, equations (134) and (135) have to be solved numerically,
using some iterative method suited to the numerical solution of non-linear
equations. After doing this, we derive the ML estimators as follows:

when 62 > 0,

G2=¢2, §2=¢2 and =y (136)
when 62 <0,
G2 =SST,/N, 62=0 and ji=7.. (137)

In the latter case, when 62 < 0, the argument for having 62 = 0 is essentially
the same as with balanced data, whereupon it is left to the reader to show that
log L reduces to being such that on equating its derivatives to zero one obtains
&% = SST,, /N, as in (115) for balanced data and ji = j... (See E 3.16.)

Having been derived by the method of maximum likelihood, the estimators
in (136) and (137) are, as is well known, asymptotically normally distributed.
Their relationship to a weighted least squares approach is considered by
Chatterjee and Das (1983).

The question might well be raised as to what to do if the numerical solution
of (134) and (135) yields a negative value for ¢2. Fortunately, it can be shown that
L — 0 as o? tends either to zero or to infinity, and so L must have a maximum
at a positive value of ¢2. (See E 3.21.)

-iv. Bias. With balanced data we were able to specify p, the probability
of the solution for 2 to the ML equations being negative—in (117). But
with unbalanced data F = MSA/MSE does not have a distribution that is
proportional to an F, so this probability cannot be easily specified. Moreover,
although we know that 62 = SST,,/N with probability p, and the expected
value of SST,, is readily derived, the expected value of 62 when 62 < 0 cannot
be easily derived. Thus, in general, the bias in the solutions obtained to (134)
cannot be derived analytically.

-v. Sampling variances. Large-sample variances come from a matrix similar
to (125), namely the inverse of the negative of the expected value of the Hessian
(matrix of second derivatives) of log L with respect to u, 62 and ¢2. Keeping
in mind that, by definition, 2 > 0 (because if 62 = 0 the model and L change)
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TABLE 3.10. SECOND DERIVATIVES OF log L AND THEIR EXPECTED VALUES

Second Derivative of log L — (Expected Value)
== Z« 1 zl%:
hot=-Y, m(y;z— H) 0
=y Mo p) ni (}'1 = #) 0
st = 2; + ,l—f-%s.TE—Z,M(?;; n)? 1\/2;;_}_&2“1_1‘z
=iz, - g, O ) 5,2
R iz,

89

differentiating the three terms of (132) gives the derivatives and expected values

shown in Table 3.10.
The expected values are easily derived (E 3.17) utilizing

E(j.)=pn and E(§.—p)*=0i+al/n .

Hence arraying these expected values in the matrix similar to (125) gives

- - - -_1

A Z,;'—: 0 0
*Z, ;_z i’z, Az
il o sl 7]

var(')~(z n‘>-l = (Z s >-l
PE\&g, 62 + njo?
and (see overleaf for D)

o ni

é ) 17 —Z')._,’

T -3
va 2 n, N-a
a; _Z‘I‘i 3 + Zl:{li

0

14

var| &2 208

Therefore

(138)

(139)
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for
N —

b= Z, e +5 22 L5 2 (Z' /12>
These are the asymptotic (large-sample) variances—although var(j) is also the
exact variance of ji and of GLSE(u) of (34).

Three points are worth noting.

(A) The terms in (139) reduce, for balanced data, to what one would expect,
namely (126).

(B) D in (139) can also be expressed as g*D = NI,w — (X,w,)? for
w; = m;/A; as used in Searle (1956).

(C) The matrix in (139) can also be derived using the result from Searle
(1970) that

r -1
var(&z):2[{ (V‘ ov V“a—v>} ] ,
m 60, 6012 L,j=0

where var(y) =V and there are r + 1 variance components in the
model, 62 =c2and g2 fori=1,...,r

Establishing (A) and (B) is left to the reader in E 3.18; and (C) is derived
in Section 11.1e-ii.

3.8. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

An adaptation of ML is to maximize just that part of the likelihood that is
said to be location invariant. [ The reader interested in invariance more generally
will find a good discussion of it in Casella and Berger (1990).] In terms of the
1-way classification this means maximizing that part of the likelihood that does
not involve u. It is an idea that seems to have had its genesis in Anderson and
Bancroft (1952, p. 320) and was later extended by W.A. Thompson (1962) and
generalized by Patterson and R. Thompson (1971). We discuss REML in some
generality in Chapter 6, but here just demonstrate its applicability to the 1-way
classification, random model.

We can note in passing a characteristic of REML estimation that is often
considered to be one of its merits: it is a maximum likelihood method that,
even though it is not concerned with estimating fixed effects, does take into
account the degrees of freedom associated with the fixed effects of the model.
(REML estimation is also an example of marginal likelihood estimation
discussed in Chapter 9.) An elementary example of this is the case of estimating
the variance from a simple sample of n independent observations distributed
A (4, 62). If x,,..., x, are those data then

62 = Zi(x — f)z and &% = Zi(x; — f)z
n—1 n
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are two well-known estimators of 62. The first, 42, is unbiased; the second, 62,
is the ML estimator under normality. But 4 is also the REML estimator; and
we see that it has taken into account the single degree of freedom needed for
estimating u. (See E 3.19.)

a. Balanced data

-i. Likelihood. For balanced data this restricted likelihood (as it is called
nowadays) is easily derived. In doing so, we utilise the L(-|*) notation of (104)
to provide clarification of different parts of the likelihood, the starting point of

which is
i[SSE SSA (}7..—#)2]}
xp — o 5+ — +
p{ 2[ al A A/an

(21|:)*‘"'03”“"' 1)1 ) ta

L(p a2, 07ly) =

’

as reconstituted from log L of (106). Observe that since j.. is independent of
both SSE and SSA, the likelihood of the preceding expression can be factored as

L(u,02,62|y) = L(u|j.)L(c2,a}|SSA, SSE),
where L(u| j..) is the likelihood of u given y.., namely
(5 _ 2
exp[ (. — 1) ]
2A/an
(2m)*(4/an)*
o [ 1<SSE N SSA)]
Pl 72 o? A
(2n)i(an—l)O.ZIMn—l)l,{Ha— “(an)*

is the likelihood function of 2 and a2 given SSA and SSE. Note also that (141)
can be expressed as

L(uly.) = (140)

and

L(62,62|SSE, SSA) = (141)

L(a?, 62|SSE, SSA)=JL(;¢, a2, 02|y)du (142)

showing the marginal likelihood relationship. This, for the 1-way classification
with balanced data, is known as the restricted likelihood, or sometimes as the
marginal likelihood, the latter by analogy with the concept of marginal density
functions.

ii. REML equations and their solutions. REML estimation consists of
obtaining estimators for 62 and 6?2 that maximize (141) within the parameter
space 62 > 0 and 62 > 0. Denote the logarithm of that function by ly:

I, = log L(62, 52| SSE, SSA)
= —1(an - 1)log 2n — § log an — ta(n — 1) log 6}
SSE SSA

227 143
26 2 (14)

—4(a—-1)log A —
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The derivatives of this are

—a(n—1) SSE
IRo = + 144
R.al 202 204 (144)
and
—(a—1) SSA
g = .
R4 TR TE

Equating these to zero and replacing 62 and 4 by the solutions ¢2 g and Aas
we get those solutions as being 1z = SSA/(a — 1) = MSA and

SSE
a(n-1)
These are the REML solutions.

22
Oer

1
= MSE; and thus 623 =-(MSA — MSE). (145)
n

-iii. REML estimators. Similar to the situation with ML, the preceding
REML solutions are REML estimators only when both are non-negative. d2
can never be negative, but ¢2 ; can be, whereupon we have to maximize Iy
subject to d2 ; = 0, which leads to ¢2 5 then being SST,, /(an — 1). Thus the
REML estimators are

when 62,0, 62,=MSE and 62,= ! MsA - MSE);
n

(146)
2 SST,,

when 62, <0, G2, = and 62,=0.

an — 1

-iv. Comparison with ANOVA and ML. Comparing ¢2  and 62 3 of (145)
with the ANOVA estimators in (54) and (55), we see that they are the same;
i.e, that solutions of the REML equations are the ANOVA estimators. This
result is, in fact, true generally for all cases of balanced data (see Section 6.7f).

Comparing the REML estimators of (146) with the ML estimators of (114)
and (115), we see that the condition for a negative solution for ¢2 is not quite
the same in the two cases: in REML it is MSA < MSE, whereas in ML it is
(1 — 1/a)MSA < MSE; and the positive estimator is similarly slightly different:
(MSA — MSE)/nin REML but [(1 — 1/a)MSA — MSE]/nin ML. Also, when
there is a negative solution for 62, the resulting estimator of ¢? is not the same
in the two cases: SST,, /(an — 1) in REML but SST,, /an in ML. Each of these
differences has a common feature: that with REML we see SSA being divided
by a — 1 where it is divided by a in ML; and in REML the divisor of SST,, is
an — 1 whereas it is an in ML, In both instances the REML divisor is one less
than the ML divisor. In this way REML is taking account of the degree of
freedom that gets utilized in estimating u—even though REML does not
explicitly involve the estimation of u. Nevertheless, it is a general feature of
REML estimation of variance components from balanced data that degrees of
freedom for fixed effects get taken into account.
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In many applications t = ¢2 /02 is at least as useful a parameter as o2 or
o2. Under ANOVA estimation its estimator would be (F — 1)/nfor F = MSA/
MSE; under REML estimation it would be the positive part of this; and under
ML it would be the positive part of [(1 — 1/a)F — 1]/n. Loh (1986) considers
the admissability of these estimators and suggests that an improvement is the

pOSitiVC part of
(l—'—l)<a— ) '—'l /".
| a n—-1/a + 1 |

-v. Bias. What has just been said about REML might lead one to surmise
that REML estimators are unbiased. They are not. The same need for
non-negative estimates arises as with ML estimation. Similar to (119) we define,
for balanced data

pr = Pr{¢} ; <0} = Pr{MSA < MSE}
=Pr{F1 V> 1+ nt}, (147)
akin to (119). Then, based on (146), the expected value of 62 g is
E(62) =(1 — pr)E(MSE|¢% g > 0) + pg E(SST,, |62 g < 0)/(an —1).
(148)

-vi. Sampling variances. Based on the derivatives in (144), we can easily
find the large-sample dispersion matrix,

var[&:x] N [—E(la.az.az) —E(l, ,“)]",
T —E(lr. 1.62) —E(lg 4,1)

which leads to exactly the same results as in (121). And something comparable
but not very different from (127) could be derived if deemed worthwhile.

b. Unbalanced data
As in (104), the likelihood function for unbalanced data is

exp{ _ [zizj(yij - #)2 _ Z "303(}’-1. - #)2 :I}

202 i20%(02 + n,0?)

L(p 02, 02|y) = .
Q2n)tte W= [T (a2 + mod)t

i=1
There is no straightforward factoring of this likelihood that permits separating
out a function of u in the manner of (140) for balanced data. Nevertheless,
equations for REML estimators can be established—as a special case of the
equations for the general case. This is left until Chapter 6.

For the 1-way classification, random model, with unbalanced data, Westfall
(1987) makes numerical and analytical comparisons of a variety of estimators:
ANOVA, ML, REML and several forms of MINQUE (see Chapter 11). For
a few small designs, Khatree and Gill (1988) make similar comparisons and
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conclude that for estimating 02 REML seems to be the favored method, whereas
for a2 it is ANOVA; and for simultaneous estimation of ¢ and 2 ML is
favored. MINQUE(0), a variant of MINQUE (see Chapter 11), seems to be
the worst of the methods compared.

3.9. BAYES ESTIMATION

A briefintroduction to the basic ideas of Bayes estimation is given in Appendix
S.6. The salient result is the one labeled (3) there. It states that n(6]y), the
posterior density for the parameter @ that occurs in the density function f(y|6)
for the random variable y representing the data, is

fy10)2(0)
fr.f(y16)n(6) d6

n(6) is the prior density of 6 and R, is the range of possible values of 6. All
these terms are briefly described in Appendix S.6.

n(8]y) =

(149)

a. A simple example
From x = [x,,..., x,]’ ~ A" (ul, 6*I) we consider the estimation of a2, The
usual unbiased estimator is

z (x;— x)?
st = L——l-——, with

(n—Ds*
n— o2

Xn-1 - (150)

It is also well known that the ML estimator is
2 =(1~1/n)s?. (151)
Define
m=n-—1. (152)
Then from (150)
(m/a2)im52(im—l)e-ims’/n’

2 2y
fistle?) = T

(153)

For Bayes estimation we need a prior distribution (see Appendix S.6), for
a2, for which we will use inverted gamma distribution. This is a common choice
in estimating variances of normal distributions, not only because it is quite
realistic for a positive random variable, but also because it leads to a tractable
form for the resulting posterior density (Appendix S.6b). The general form of
the inverted gamma density is

x (@t D= 1bx

f(x)=—W, (154)
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with
1 1
E(x) = d var(x)= . 155
=G ™ S e (159)
We use this witha = 2and b = 1 as the priorfor g2:i.e., from (154)and (155)
n(g?) = (62)"3e~""; with E(¢?)=1 and var(¢?)=o0. (156)

Because var(g?) = oo, the prior density in (156) is imparting rather vague
information. It is chosen for its apparent lack of subjectivity and its mathematical
tractability.

As described in Section S.6, we need the posterior density of a2, which on
using (149) is

f(s*|a*)n(a?)
fr:f(s%|a?)n(a?) da?

n(o?|s?) = (157)

Its numerator is
— 1) —ms?/20? -3 —1/a?
(m/az)gmszum l)e ms?/ 20 [(0,2) 3e 1/o ]

2 2y _ 2| .2 2y _
f(S,O' )—f(s IO’ )7‘[(0’) r(%m)zim

(158)
mim  g2m=1),—(ims? + 1)/a?

r(%m)zgm 0,2(3+ tm)

(159)

And the denominator of (157) is

m}mszum—l) J'ao e—(}msz + t)/o? daz

f(s?) = r f(s?, a?) do? =
0

r(%m)zfm 0 0,2(3+§m)
To carry out the integration, make the transformation
ims? + 1 .. |0a?] dms? +1
——5—=u, With|—|="—"p—.
o ou u
This gives

4m_2(4m-1) ® —uyl+im g
) m*"s J\O e u u ~ mimszdm—l)r(z + %m) (]60)
S = F G dms? + D TGm)2(ms® + 7

Using (159) and (160) as the numerator and denominator, respectively, in
(157) gives
2 2 —(ims? + 1)/0? 2 4 2+4m
n(o,2|s2)=f(saa)=e S (%ms )
f(s?) g2Btim 2+ im)

B (0-2)'(“!"'“) e—l/[l/(gms3+ 1)]o2 B (a,z)—(an)e—l/ba?

T(2+3m) [1/Gms? +1)]2Him I'(a)b*

(161)
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for

1
ims? +1°
Thus (161) is (154) with a and b of (162). Hence the posterior distribution (161)
is an inverted gamma distribution, the same form of density as is the prior, in
this case (156) with a =2 and b = 1. This is a defining property of what is
called a conjugate prior: it leads to a posterior density that is in the same family
of densities as is the prior. In this case both are inverted gamma densities.

Comparing (161) with (154) and thus using (162) in (155) gives the mean
of the conditional variable 62 |s? as

a=2+4im and b= (162)

1 dms?+1 (n—1)s*+2
(@a-1b  im+1 n+ 1

E(c?|s?) =

n 1 2 n 2
= l._._ 2+—.l= ~2+ E 2, 163
n+1( n)s n+1() n+16 n+1 (%), (163)

where 62 is the ML estimator from (151), and E(g2) = 1 is the expected value

of a2 from n(o2) of (156). This weighted averaging is similar to (13) of Section S.6.
Similarly, (162) and (155) also yield

2(ms? + 2)?

var(c?|s?) = .
(%157 m(m + 2)?

On choosing to use E(o?|s?) of (163) as a Bayes estimator, call it 43, we
could derive its mean and variance in the usual (classical) manner. Thus with
(n—1)s*+2

63 = E(c?|s?) =
8 = E(6°|s%) T

from (163), and E(s*) = o2 and var(s?) = 26%/(n — 1), it is clear that

— g2 — gt
(n—1)o*+2 and var(6§)=2(n 1o

2y
Eds) = +1 (n+1)2

In comparing ¢3 and s? we find that ¢3 has bias —2(g2 — 1)/(n — 1) whereas
s? is unbiased; and

2(n—1)g* < 20*
n+1)? n-1

var(¢2) = = var(s?) .

Since ¢3 is biased, a better comparison than that of variances is to compare
mean square errors: variance plus squared bias.

4(o2 —1)> _2[(n+ 1)o* — 4o + 2]

SE 2y 2 _
MSE(é3) = var(83) + n T 1) T 1)
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and, because s2 is unbiased,
4

MSE(s?) = var(s?) = -2
n —

Therefore, 62 has smaller MSE than s when
(n—=D[(n+1)o*—462+2]—(n+1)%6*<0;
i, when

n+la 4+202>1,
n-—1

which certainly occurs whenever o2 > §.
b. The 1-way classification, random model
From (104), the likelihood is (with 4, = a2 + n;03)

1
exP{ - 292 [zizj(yu —u)? - Z —'(J’i - "iﬂ)z]}

iA‘
(2n)§Na.3[§(N-a)l n A?
i=1

L(p, 0z olly) =

Notice that

2
aﬂ
zizj(yij - #)2 - Z - - "i#)z
LA

= 4= 2 niog 2

=XZ(yy—Ji+ .- p) — Z‘ 1 (Ji. — n) (164)
i

2 nfol\ _ 5

=L Z(yy—n) +Z | n— p) (Js. — ) (165)
'
= N2

= SSE + 027, . = 1) (166)

4

The cross-product term from (164) disappears in (165) because .2 (y,; — 7..) =
0; and (166) comes from (165) by the definition of SSE and through
A, = a2 + n,0}. Thus, from (166), writing it as a density in the manner following

(104),
_ SSE n(yi. — u)
. exp( 263>exp[ 1Y, = o + mo? ]
S 02, 02) = —onw-an : (167)
‘ 2n)* ] (a2 + mo?)?
i=1

The density in (167) has three parameters: y, 02 and o2. Using it in Bayes
estimation would require a prior, n(y, 62, 62), on all three parameters. Then we
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would, in the manner of (149), develop a posterior density

f(y’ Hs ae’ 0.2)
J:[ f(y’ 12 Ge, az)dﬂ daz dO’

n(u, ok, ally) =

where

f(y’ %03,03) =f()’|ll,0e2,03)7t(ﬂ, ag,af),

just as was done for a2 in (157). This expression is customarily utilized with
prior densities of the form

n(, a?,03) = n(u)n(a?, a7), (168)

thus assuming that u is independent of 62 and 2. We then proceed in stages.
First, use n(u) to derive

f(YI03,0§)=Jf(YIM, al, a3)n(p) dp; (169)

second, obtain the posterior distribution of 62 and a7 using

2 2 2 2
n(al, 0lly) = S(ylee, 7a)nlae, o) :
f ffma:, 02)n(0?, 02) da? do?

In the absence of any good prior information on a location parameter such
as u, we use the non-informative prior #(u) = 1. Then the integration in (169)
requires “completing the square” for the quadratic in u that occurs in (167).
That quadratic is, using t; = n,/4,,

n(y ny, ny?
Zi—‘}__— ﬂz.}:—z Z Z-;_i

it L (Z5)?
=(Z;1 __:L> + I, - L
( )(ﬂ I Ly I

g \? AN
= (%, _#> +E.-t.-( &b
(Z )(ﬂ S Yi 3.,

Therefore the integration (169) becomes

2
jexp[: Z‘.n_(il_—)_]dﬂ
Vi
- _zitlfi- 2]f [_1 1 ( _Eilifi->2]
,.tl(y.u Tﬂ.-) exp Ea H S du

it,(p,.. - z; p’)2](2n)*(zz) ', (171)

(170)
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Hence using (167) in (169) and then (171) gives

exp(— SSE/202) exp[ — 1Z,1:(5i. — Zit, 5 /Zit)?12m) (Z0r) F
f(yldﬁ,af - P(asz-a/)] )exp[ — 1Z,0(; Vi /Zit)*12m)HZty) .

@)™ [T (02 + na2)?

i=1
(172)

Clearly, this is not very tractable. Nevertheless, it is the likelihood, L(a2, a2 |y),
and for maximum likelihood estimation of ¢ and a2 one could use numerical
maximization. However, because of the implicit intractability of (172) we turn
to balanced data.

c. Balanced data
Balanced data have n,=n Vi, whereupon each A, =1 =g2+ no? and
t; = n/Ai. Then (172) reduces to

exp(— SSE/2a7) exp[ — }(n/A)Z,(ji. — 7.)*1 (2r)¥(an/4) "}

2 2y _
f(y‘aevaa) - 0’3”0(”-”] (271')*";.*0
_exp(— SSE/2a?) exp(—~ SSA/24) 1 1 173
- a:lia(n-l)] sHa-1) (2n)“‘"“”(an)*’ ( )

which is the same as the restricted likelihood function in (141). Thus (173) is,
on replacing 4 by a2 + nal,

2, _ exp(— SSE/2a) exp[ — 1SSA/(a} + na?)]

2
f(y]ae,a, - 0'3“0("—”](03 + na:)i(a-l)(zn)i(an—l)(an)i : (174)

Equation (174) must now be used in (170), which also requires specifying
the prior, n(a2, a2). And (174) is both used in the numerator of (170), and has
to be integrated in the denominator of (170). All this is not at all tractable. Hill
(1965) tried all manner of approaches to simplify the process, for he had no
computing facilities of today’s power. Fortunately, on many occasions one does
not really need to consider the denominator of (170). It is just a function of y
and so, given y, is effectively a constant. Therefore the numerator of (170)
commands attention. That requires looking at (174) and at the same time
ascertaining if we can have a prior density n(g2, 62) that is both realistic and
tractable.

The right-hand side of (174) looks a little like a product of inverted
gammas—except that the ranges of 2 and 62 + no? are connected through
62 + nal never being less than 2. That makes for complications. For n(a?, 62)
one possibility is a product of inverted gammas defined in (154):

e~ 1/40t p—1/ho}

(175)

2 .2
n(e;,62) =k —rr——,
2(p+1 2(c+1)

g2t g2

foraconstant k thatisa function of ¢, b, pand g such that | n(a2, 62) do? do? = 1.
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Then, on substituting (174) and (175) into (170), and ignoring terms that
are not functions of 6? and 62, the log of the numerator of (170) is
SSlzi _ a(n — l)logaf SSA a—1
20: 2 2% 2

log f(y, 0%,0%) = log 4

—(c+ 1)loga?

1 1
- ——(p+1)logo; -
g (p+1)logo, -+

__i<SSE+1)_[a(n—1)+ +1]10 g2 SSA
a\2 'y 2 PO T T v el

—(c+1)logi.

1 1
log(o? + ne?) —
g(o; + no;) bo?
Differentiating this expression with respect to o2 and ¢? and equating the
derivatives to zero will yield the posterior modes, which are reasonable Bayes
estimators of variances:

,02, 02 E 1)1 -1 1 A
al°gfg'3 )=(% E)E—I:a(nz )+p+l]—¢i+2(a S—ls- no2)?
a—1
" 2(0? + ne?)
dlog f(y,02,07) _ nSSA n(a—1) 1 c+1
da? " 2(0? + no?)? " 2(6% + ne?)  be* a2

Equating these two expressions to zero and denoting the solutions by ¢2 and
&2 gives

d2 2
SSE SSA| ——
#SSE+ q .+ : (02 nd? )

é¢2 =
) {a—1)d?
%a(n—1)+P+l+m
and (176)
é2 L
nSSA| ——— | +-
s ()
* Ha—1)nd? '
_———dﬁ-i-ndﬁ +c+1

Solution of these equations and plotting of the solutions then indicates the
behavior of these as Bayes estimators. Figures 3.3a and 3.3b show an example
of plots of ANOVA and Bayes estimates of 62, and Figures 3.4a and 3.4b show
similar plots for a2. All four of these plots are for a = 12 and n = 5, and for
the parameters of the prior distribution (175) being p=10,¢=1, b =2 and
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Figure 3.3b. Bayes estimator ¢ of (176), for a = 12 and n = 5, with parameters of the prior
distribution (175) being p=10,q=1,b=2and c = 6.
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Figure 3.4a. ANOVA estimator ¢2 = (MSA — MSE)/n = {SSA/(a — 1) — SSE/a(n— 1)]/n =
75SSA — 745SSE of (55), whena = 12 and n = 5.

&2, BAYES

Figure 3.4b Bayes estimator ¢ of (176), for a = 12 and n = 5, with parameters of the prior
distribution (175) being p=10,g=1,b=2and c = 6.
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¢ = 6. Two features of the figures warrant comment. First, negative ANOVA
estimates ¢2 are evident in Figure 3.4a, but the Bayes estimates ¢2 in Figure
3.4b are never negative. (This is, of course, also true for any values of a and n
and for any prior distribution.) Second, applying (155) to the two inverted
gammas of (175) gives E(d2) = 1/[q(p — 1)] = 4 and E(¢2) = 1/[b(c — 1)] =
{5- Equating these means to the ANOVA estimators, i.c.,

1 =MSE =SSE and 7 = }(SSA — %SSE),

gives SSE = 5.33 and SSA = 6.72, and indicates approximately how these values
relate to SSE and SSA. Examination of Figures 3.3 and 3.4 suggests how Bayes
estimation pulls the ANOVA estimates towards prior values 62 = and 62 = {4
at SSA = 6.72 and SSE = 5.33. This effect is, perhaps, easiest to see as between
Figures 3.3a and b. There, Bayes estimation of ¢2 in Figure 3.3b seems to
represent a non-linear pull of the ANOVA estimate in Figure 3.3a toward (0, 0),

which is an approximation of the prior values.

3.10. A SUMMARY

We list here a brief summary of many of the main results from this chapter.
Alongside each of them is the equation number (or other reference) where it is

derived.

The chapter is sectionalized (aside from Sections 3.5 and 3.6) by methods; in
contrast, this summary is dichotomized into balanced and unbalanced data, so
that results will be easily available for the analyst whose data will always be either
one or thyother.

a. Balanced data
Model
Vi=u+o+e; withi=1,...,aand j=1,...,n; (5)
a~(0,02L), e~(0,02L,), cov(xe)=0,, 4,
E(y)=ul and var(y)=V = {4021, +02J,},2,.
Estimating u
GLSE(g) = y.. = OLSE(y) . (35),(36)

Predicting o;

(6)-(14)

2

. no, -
& no? + o2 (yi. — u) (40)
B no? - _
BLUP(u + o) =j. + ——"= (. — J.) . (42)

nol + ol



104 THE 1.WAY CLASSIFICATION [3.10]

Sums of (and mean) squares

SSA =nZ,(y.—j.)> SSE= ZZ(yy — 7% (43)
MSA = SSA , MSE = SSE .
a—1 a(n—1)

Normality assumptions
a~A(0,621,) and e~ A4°(0,021,). (57)

Everything that follows, except what is marked .#'nn (normality not needed), is
based on normality assumptions.

ANOVA estimation

62 =1(MSA——MSE) [A4'nn]; (55)
n
] L2 L
var(d.) = n? a—1 * a(n—1)] (69)

Unbiased estimation of (69):

2 2,2 4
2[(na,+a,) N ¢4 ]; (70)

var(6?2) is estimated unbiasedly by -
n

a+1 aln—1)+2
6} =MSE [A'nn]; (54)
208 264

var(4?) = * __, estimated unbiasedly by ——°¢ - 66), (67
6= 1) Y sz 6D

—204 ) LYY
cov(62, 62) = ge , estimated unbiasedly by I S . (71),(72)

an(n — 1) nla(n —1) + 2]
Testing H: 62 =0
MSA -

F=M—SE~§:(,I1”. (73)

Confidence intervals (Section 3.5d-v). Based on normality assumptions

(Section 3.5d),
Pr{ SSE <al< SSE }=l—a,

Xam-1),U Xan- 1)L
-1 2 -1
Pr{———FU/F sg%s———FL/F }=1—a-
n a; n

For a2 see Table 3.4.
Probability of negative 62
Pr{é2 <0} =Pr{F2 "> 1+ nol/al}. (74)
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Maximum likelihood estimation

ML solutions:
(1 —1/a)MSA — MSE

62 =MSE, ¢2=
n
ML estimators:
when 62 >0, 62=¢2, &2=d;
. SST
when 62 <0, §2=—2, 62=0
an
Large-sample variances :
20? . var(6?
£, cov(§2,8))=— (%)
n

~2 =
var(d;) pYFRETY
4 2 2)2 4
var(62) = ZL; [(a' *19a)/0e
n a

5
aln—1)]°

Restricted maximum likelihood estimation

105

(108)

(115)

(115)

(126)

When ANOVA 42 >0, REML estimators are ANOVA estimators;

when ANOVA 62 <0, REML (62) = —oim
an —

Large-sample variances: these are the same as (126) above.

Bayes estimation

Simple example :
X =[xg,....,x,) ~ A(ul,03l),

§2 = Zix; - f)z
n—1

Inverted gamma density with a =2 and b = 1 as prior
n(0?) = (02) %=1/,

2y _ (n—1)s+2
Bayes (63) il
2 20%(n—1)
var[ Bayes(65)] = i 1)

REML (62) = 0. (146)

(156)

(163)

(164)

I-way classification: this demands numerical solution. See (176).
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b. Unbalanced data
Model

yy=n+a+e; withi=1.,aandj=1,..,n; (5)
a
N=n=2Y n;
i=1
a~(0,02L), e~(0,0ly), cov(a,e)=0,,n,
E(y)=pl, V=var(y)={402I, +02J,}:2,.

Estimating u

ny;.
i 2 2
BLUE(y) = GLSE(y) = ——= 1 "% [ 400 (34)
n;
tg? + no?
1
var[GLSE(p)] = ———— [#'nn]. (37)
Y M
ig? + nal
Predicting o;
2
~ nlaa -
o = — .- ; 40
i n,af,+a§(y' ) (40)

oz

BLUP(u + o) = BLUE(k) + —=*— [§;, ~ BLUE(w)] [¥nn]. (42)

iYa e
Sums of (and mean) squares
SSA =Z;n(y,. — f’..)z, SSE = zxz;(YU - 91-)2,

MSA = SSA, MSE = SSE .
a—1 N-—-a

(75)

ANOVA estimation

_ MSA - MSE
(N —Zn{/N)/a—1

for S, = X;n} and S, = L;n}

&2

[A'nn]; (83)

.
]

var(62) =

2N [N(N - 1)(a— 1)a?

2 + 20202 N2S, + S2 — 2NS§, 4]
N -_— Sz

(N—a)(N*—5;) N(NT-5;)
(102)
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42 =MSE [A4'nn]; (82)
20
6y =—"2_ 95
var(6e) = o (95)
-2 4
cov(42, 62) % (96)

T(IN=a)(N -z /N)f(a—-1)

Unbiased estimates. The terms (102), (95) and (96) can be estimated
unbiasedly: see Section 5.2e.

Testing H: 62 = 0. Use F = MSA/MSE. See Table 3.9.

SSE SSE
Confidence intervals. For ¢2: Pr{ . Sol<— } =1-a.
AN-au AN-aL

For 6?2 see Section 3.6d-vi.

Maximum likelihood estimation. First obtain solutions 4, ¢2 and 1 to

=3, /Z u (133)

162 4 né2| <62 + ng?
s::E_Nd—:a+Zin,(i.-.iiz—;i)’_zl%:o (134)
and
y MO (135)
i 12 i1
Whend2 >0, =4 62=62 and 62 =4l (137)
whenél <0, g=j. 6l= SSI;F"‘ and 62=0.

Large-sample variances:

~ n; -t
var(i) = (z ﬁ) : (138)

to; + no;
2
~2 n ]
| L Bm L
var =z N ‘ Ol (139)
~2 n, —a
0 I R M kP Vb
with
N—-ag n} 1 « n? n \?
PrTE bty by

n _ 1
2 2 ="
6; +na; var(y.)

=[NZwi — (Zw)*]o;* forw, = ? =
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Restricted maximum likelihood estimation. The general procedure of Section
3.6 has to be used.

Bayes estimation. This is very intractable. See (172).

3.11. EXERCISES

E 3.1. For each data set A and B write the model equation (1) in matrix
and vector form including the use of direct products where

appropriate.
Data A
j=1 j=2 j=3
i=1: 10 12 8
i=2: 10 12 14
i=3: 6 11 7
i=4: 18 17 7
Data B
j=1 j=2 j=3 j=4
i=1 12 8 6 10
i=2. 17 13
i=3 16 11 15

E 3.2. Suppose Data A are to be analyzed using the model equation
Yiy=#+ o + B; + e;. Write this equation for Data A, both with
and without using direct products.

E 3.3. Suppose a data set consists of n observations in each of b columns
that are nested within each of a rows. Write the model equation
Vg =mt+ o+ B+ e
for such data, using direct products.
E 3.4. With the notation

fi, = GLSE(n), f, = OLSE(p),

and with varg(-) and varg(-) denoting variance in the random and
fixed models, respectively, show that

(a) in the random model, varg(Q,) < varg(f,)
(b) in the fixed effects model, varg(,) < varg(A,)

(c) varg(f,) < varg(f,) < varg(4,).
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E35.

E 3.6.
E3.7.

E38

E 3.9.

E 3.10.

E3.11.

E 3.12.
E3.13.
E3.14.
E3.15.

E 3.16.

E3.17.
E 3.18.

E 3.19.
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Hint: Use the Cauchy—Schwartz inequality

() <(£)(£ )

For the model having equation (30) and dispersion matrix V of
(31), show that &; of (40) comes from

&=0g2Z'V ' (y—ul) forZ={41,},2,.

Why in (28) must p exceed —1/(a — 1)?

Use the method (a) of subsection i, and (b) of subsection ii of Section
3.5a, to derive E(MSE) = g2.

Show that ¢2 and é2 of (54) and (55) are unbiased.

Using Theorem S2 of Section S.4, together with the algebra of
J-matrices and Kronecker products in Appendix M, derive the
results in (60), (61) and (63).

Derive the confidence intervals for ¢2/(62 + ¢2) and for a2/
(62 + 62) shown in Table 3.4.

Suppose an experimenter sets out to estimate ¢2 and 62 from an
experiment of 4 observations from each of 5 classes, with prior
knowledge that ¢ is likely to be 514% of 62. What is the probability
that the ANOVA estimate of 62 will be negative?

Derive (102) and (101).

Derive (126).

Why from (106) can the MLE of u be derived without differentiation?
Show that

ntel(y,. — #)Z:I

|
- [2121(}’” —p)? - Z, )

20;

--SSE 5y n(yi. — p)?
202 Y

(a) Usinglog L of(130),show that ML estimators when 2 = 0 are
62 =S8ST,/Nand i=7j..

(b) Show that(134)and (135)reducefor balanced data to (108).
Derive the expected values in Table 3.10.

Verify (A) and (B) following (139).

For (B) recall that X,a?X;b? — (X;a,b)* = ZX(a;b; — a;b;)* and
i)

that w; = n;/4; implies w; /n; = (1 — w;62)/0l.

Suppose x = [x,,..., x,)" ~ A (ul, a21).

(a) Using L(y, 62|x), show that the ML estimator of 62 is s2/n
for s? = I;(x; — x)%
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E 3.20.

E3.21.

E 3.22.
E 3.23,
E3.24.

E 3.25.
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(b) Derive L(c?]|s?) and use it to show- that the REML estimator
of g% is s3/(n— 1),

Show that minimizing (141) subject to 62, =0 yields 62, =
SST,./(an —1).

(a) Fc-fixed o find the limiting value of ji = siof (133)and (136):

(i)as 62— 0 and (ii) as a2~ co.
(b) Forfixed 2, find the limiting value of i = g1of (133)and (136):
(i)as 62 =0 and (ii) as a2 - c0.

(c) What is an explanation for your results in (a) and (b)?

(d) Prove that the likelihood function implicit in (128) can have
a maximum (i) at a negative value of a2, but (ii) at only positive
values of a2.

Derive (14) and (15) of Section S.6.

Verify (155).

For the following data from a 1-way classification having a = 3 and
N=17

(a) calculate ANOVA estimates of variance components, their
sampling variances and unbiased estimates thereof;

(b) try to repeat (a), using ML estimation: at least write out the
ML equations, and the terms of the asymptotic sampling dispersion
matrix for 62 and 2.

Data
i=1 i=2 =3
10 3 17
14 7
18
22

Consider the following three separate variations on the 1-way
classification, random model, with var(a) = 621 and cov(a, e') = 0
as is usual. With ¢, =[e;,;, e;;:e,] for i=1,...,a, and with
every e; and e; having zero covariance,

(i) var(e) = o?l,,
(ii) var(e) = 021, + pa?(d, — I,)
(iii) var(e) = 021, + pio2(dy, — Ip)

(a) For balanced data derive ANOVA estimators of o2 and o2.
(b) For balanced data under normality, derive sampling variances
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of your estimators in (i), and unbiased estimators of those
sampling variances.

(c) Try repeating (b) for (ii) and (iii).
E 3.26. Try using equations (176) for Data A of E 3.1.



CHAPTER 4

BALANCED DATA

Balanced data, as discussed in Section 1.2, are defined by the nature of the
numbers of observations in the cells of the data. A “cell” is a subclass of the
data defined by one level of each factor by which the data are being classified.
To emphasize this we might use the descriptor “sub-most cell”. For example,
in Table 1.1, the data for married men receiving drug A are a sub-most cell of
the data; married men are a subclass, too, but not a sub-most cell. We defined
balanced data as data wherein every sub-most cell has the same number of
observations. This omits what we have called planned unbalancedness such as
Latin squares and variants thereof (see Section 1.2b-i).

Estimating variance components from balanced data is, generally speaking,
much easier than from unbalanced data. We therefore devote a chapter to
balanced data. Admittedly, balanced data are usually the outcome of a designed
experiment, wherein the number of levels of each factor is usually relatively
small, say 6, 10 or maybe 20. This is not an ideal situation for estimating the
variance component for any such factor, because if that factor has, say, 6 levels,
then no matter how many observations there are in each level there are still
only 6 levels, and the situation is akin to estimating a variance from 6
observations. Indeed, a sample of only 6 effects (from a hypothesized population
of effects) occurs in the data. Nevertheless, there are many circumstances where
researchers do want to estimate variance components from balanced data. Such
data have a number of interesting characteristics that lead in many cases to
ANOVA estimators of the variance components being not only easy to calculate
(e.g., Tables 4.8, 4.10, 4.12 and 4.14) but having attractive optimal features.
Also, although ML methodology does not require ANOVA tables, ML
estimators from balanced data are, in a number of cases, simple functions of
the mean squares in an ANOVA table, e.g., Tables 4.9, 4.11, 4.13 and 4.15. On
the other hand, there are also some balanced data cases for which MLEs do
not exist in any explicit form, e.g., Sections 4.7f-i and ii; they can be derived
only as numerical solutions of non-linear equations.

We begin with ANOVA estimation from balanced data that are classified
in a factorial manner, consisting of crossed and nested classifications and

112
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combinations thereof. For such data, there are easy rules of thumb by which,
no matter how complicated the classifications are, nor how numerous, the
ANOVA estimators of variance components can be straightforwardly derived.
These rules lay out procedures for determining (1) the lines in the analysis of
variance, (2) their degrees of freedom, (3) formulae for calculating sums of
squares and (4) expected values of mean squares. Most of the rules are based
on Henderson (1969) except that Rule 9 comes from Millman and Glass (1967),
who rely heavily on the Henderson paper for a similar set of rules.

The description of the rules is purposefully brief, with no attempt at
substantiation. For this the reader is referred to Lum (1954) and Schultz (1955).

4.1. ESTABLISHING ANALYSIS OF VARIANCE TABLES

a. Factors and levels

The analysis of variance table is described in terms of factors 4, B, C, ...,
with the number of levels in them being n,, n,, n,,..., respectively. When one
factor is nested within another the notation will be C:B for factor C within
factor B, and C:BA for C within AB subclasses, and so on. A letter on the left
of the colon represents the nested factor and letters on the right of the colon
represent the factors within which the nested factor is found. With a nested
factor, C for example, n, is the number of levels of factor C within each of the
factors in which it is nested. Factors that are not nested, namely those forming
cross-classifications, will be called crossed factors.

Within every sub-most cell of the data we assume there is the same number
of observations, n,,, either one or more than one. In either case these observations
can, as Millman and Glass (1967) point out, be referred to as replications within
all other subclasses. Following Henderson (1969), we refer to these as the
“within™ factor, using the notation W:A4ABC ..., the number of levels of the
“within” factor (i.e, number of replicates) being n,. The total number of
observations is then the product of the ns, namely N = n,nyn, ...n,,.

b. Lines in the analysis of variance table

Rule 1. There is one line for each factor (crossed or nested), for each
interaction, and for “within”.

¢. Interactions

Interactions are obtained symbolically as products of factors, both factorial
and nested. Any possible products of two, three, four, ... factors can be
considered. For the sake of generality all crossed factors are assumed to have
a colon to the right of the symbol; e.g., A: and B: and so on.

Rule 2. Every interaction is of the form ABC ...: XYZ ..., where ABC ...
is the product on the left of the colon of the factors being combined and XYZ
... is the product on the right of the colon of the factors so associated with A,
Band C....
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Rule 3. Repeated letters on the right of the colon are replaced by one of
their kind.

Rule 4. If any letter occurs on both sides of a colon that interaction does
not exist.

Examples
Factors Interaction
Aand B AB (Rule 2)
Aand C:B AC:B (Rule 2)
A:Band C:B AC:BB = AC:B (Rule 3)

A:B and B:DE AB:BDE, nonexistent (Rule 4)

The symbolic form W:ABC ... for replicates does, by Rule 4, result in no
interactions involving W. Furthermore, the line in the analysis of variance labeled
W:ABC ..., being the “within” line, is the residual error line.

d. Degrees of freedom

Each line in an analysis of variance table refers either to a crossed factor
(such as A4:), to a nested factor (such as C:B) or to an interaction (e.g., AC:B).
Any line can therefore be typified by the general expression given for an
interaction in Rule 2, namely ABC ...: XYZ ....

Rule 5. Degrees of freedom for the line denoted by
AB:XY are (n,—1)(n,— )n.n,.

The rule is simple. Degrees of freedom are the product of terms like (n, — 1)
for every letter A on the left of the colon and of terms like n, for every letter
X on the right of the colon.

Rule 6. Thesum of all degrees of freedomis N — 1, with N = n, n,n,n, ....

e. Sums of squares

The symbols that specify a line in the analysis of variance are used to establish
the corresponding sum of squares. The basic elements are taken to be the
uncorrected sums of squares (see Section 4.1f) with notation

a = uncorrected sum of squares for the 4-factor,
ab = uncorrected sum of squares for the AB-interaction factor
= (number of observations in each level of the 4B-interaction factor)

x (sum of squares of the observed mean in each level of the
AB-interaction factor),

and so on, and
1 = Nj?,

the correction factor for the mean, where jis the grand mean of the N data values.
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Rule 7. The sum of squares for the line denoted by
AB:XY is (a— 1}(b— 1)xy = abxy — axy — bxy + xy .

Again the rule is simple: symbolically, a sum of squares is the product of terms
like (a — 1) for every letter A on the left of the colon and of terms like x for
every letter X on the right of the colon. This rule is identical to Rule 5 for
degrees of freedom: if in the expression for degrees of freedom every n, is
replaced by f, the resulting expansion is, symbolically, the sum of squares:e.g.,

(n, — 1)(ny — 1)n,n, becomes (a — 1)(b — 1)xy = abxy — axy — bxy + xy .

After expansion, interpretation of these products of lower case letters is as
uncorrected sums of squares, as given by Rule 6.

Note that all sums of squares are expressed essentially in terms of crossed
factors. Even when a factor is nested, sums of squares are expressed in terms
of uncorrected sums of squares calculated as if the nested factor were a crossed
factor. For example, the sum of squares for 4:B (A within B)is(a — 1)b = ab — b,
where ab is the uncorrected sum of squares of the AB subclasses.

Rule 8. The total of all sums of squares is £y — Nj2, where Zy? represents
the sum of squares of the individual observations, wabc ... in the above notation,
and where Nj? is the correction factor for the mean, as in Rule 6.

Example. Table 4.1 shows the analysis of variance derived from these rules
for the case of two crossed classifications 4 and B, a classification C nested
within B, namely C:B, their interactions and the within factor W:ABC.
Application of these rules is indicated at appropriate points in the table.

f. Calculating sums of squares

The uncorrected sums of squares denoted by lower case letters such as a and
ab in Rule 7 have so far been defined solely in words; for example, ab is the
uncorrected sum of squares for AB subclasses. Henderson (1969) has no formal
algebraic definition of these terms. As the uncorrected sum of squares for the
AB subclasses, ab is the sum over all such subclasses of the square of each

TABLE 4.1. EXAMPLE OF RULES 1 -8: ANALYSIS OF VARIANCE FOR FACTORS A, B, C: B,
THEIR INTERACTIONS AND W:ABC

Line Degrees of Freedom Sum of Squares

(Rules 1-4) (Rule 5) (Rule 7)

A n, — 1 (a-1)=a-1

B n,— 1 (b-1)=b-1

C:B (n.— 1)n, (c=1)b=bc—-b

AB (n, — 1}(n, - 1) (a-1)b—-1)=ab—a-b+1
AC:B (n, = 1)(n, — 1)n, (a=1)c—=1)b=abc —ab—~bc+b
W:ABC (n, — )n,nyn, (w — 1)abc = wabc — abc

Total N — 1 (Rule 6) Ty? — Ny* = wabc (Rule 8) — 1
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subclass total, the sum being divided by the number of observations in such a
subclass (the same number in each). However, Millman and Glass (1967) give
a neat procedure for formalizing this. It starts from an expression for the total
of all the observations. We state the rule using as an example the uncorrected
sum of squares bc in a situation where y,; is the observation in levels h, i, j
and k of factors 4, B, C and W, respectively.

Rule 9.
(i) Write down the total of all observations:

Na nh ne N

Z Z Yhijk -

h=1i=1j=1k=1

(ii) Re-order the summation signs so that those pertaining to the letters in
the symbolic form of the uncorrected sum of squares of interest (bc, in this case)
come first, and enclose the remainder of the sum in parentheses:

ny ne ny Ny
Z Z (Z Z )’huk)-
i=1j=1 \h=1k=1

(iii) Square the parenthesis and divide by the product of the ns therein.
The result is the required sum of squares: e.g,,

% i (h"Z %)’mﬂ«)z

i=1 j= =1 k=1
bc = !

n,n,

As a workable rule this is patently simple.

4.2. EXPECTED MEAN SQUARES, E(MS)

Mean squares are sums of squares divided by degrees of freedom. Expected
values of mean squares, to be denoted generally by E(MS), can be obtained by
an easy set of rules. They are based on using means, variances and covariances
of random effects that are applications of equations (6)—(15) of Chapter 3 to
all random effects factors. This means that all the effects of each factor are
assumed to have zero mean, the same variance and zero covariance with each
other [as in equations (7), (14) and (10), respectively, of Chapter 3]. Furthermore,
all effects of each random factor are assumed to have zero covariance with
those of each other factor and with the error terms. And error terms all have
zero means and the same variance and zero covariance with each other
[e.g., equations (11) and (13) of Chapter 3].

Rule 10. Denote variances by 2 with appropriate subscripts. There will be
as many os, with corresponding subscripts, as there are lines in the analysis
and variance table. The variance corresponding to the W-factor is the error

variance: 0., = 02.
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Example. Where there is an AC:B interaction, there is a variance o2 .,.
When n,, = 1, there is no W-line in the analysis of variance, although it may
be appropriate to envisage o2 as existing.

Rule 11. Whenever a o2 appears in any E(MS), its coefficient is the product
of all ns whose subscripts do not occur in the subscript of that o2,

Example. When the factors are 4, B, C:B and W:ABC, the coefficient of
ol isn,.
This rule implies that the coefficient of 02.,.... is always unity.

Rule 12. Each E(MS) contains only those o2s (with coefficients) whose
subscripts include all letters pertaining to the MS,

Example. For the AC:B line ELMS(AC:B)] = n,0%., + 02 ...
According to this rule, 62 = 62.,,... occurs in every E(MS) expression.

The above examples of Rules 10-12 are part of the expected values shown
in Table 4.2. These are the expected values, under the random model, of the
mean squares of the analysis of variance of Table 4.1.

Rule 13. If the model is completely random, leave as is; for a fixed or mixed
model, o3-terms corresponding to fixed effects and interactions of fixed effects
get changed into quadratic functions of these fixed effects. All other o2-terms
rematin, including those pertaining to interactions of fixed and random effects.

This rule is equivalent to that given by Henderson (1969) but differs from
that of the 1959 first edition of that paper, where it is stated that some o 2-terms
“disappear” from some of the expectations of mean squares. Explanation of
this difference is included in the discussion of the 2-way classification that now
follows.

TABLE 4.2, EXAMPLE OF RULES 10—12: EXPECTED VALUES, UNDER THE RANDOM MODEL.
OF MEAN SQUARES OF TABLE 4.1

Variances (Rule 10) and Coefficients (Rule 11)

Mean
Square "h"c"wdaz "u"t"wabz "a"watz:b "t"wazb "wazc:b ai:ubc = 03
Terms included (Rule 12)

MS(A) . ® . .
MS(B) . . . . .
MS(C:B) » . .
MS(AB) . . *
MS(AC:B) . .
MS(W:ABC) .

s denotes a o2-term that is included; e.g., myn.n,0? is part of ELMS(A)].
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4.3. THE 2-WAY CROSSED CLASSIFICATION

a. Introduction

We now introduce a model for one of the most important and useful
applications of the linear model. It is useful both in the practicalities of analyzing
data and in illustrating many of the numerous mathematical and statistical
difficulties that can arise in more general applications of the linear model. Indeed
it is the simplest situation that illustrates these difficulties.

Suppose data can be classified by two factors. For example, in horticulture
plants can be classified by variety of plant and fertilizer treatment used in
growing them; in animal agriculture beef cattle can be classified by breed and
the feed regimen they are given; in clinical trials patients can be classified by
clinic and medication; and so on. In these examples, and whenever data can
be classified according to the levels of two factors, those data can be conveniently
arrayed in tabular form where the levels of one factor are rows of the table and
those of the other factor are columns. We henceforth refer to the factors
generically as rows and columns, letting y,;; be the kth observation in the
(#, j)-cell, namely the cell defined by the ith row and jth column. Denote by a,
b and n the number of rows, columns and number of observations per cell,
respectively, so that i = 1,...,a, j=1,...,b and k =1,..., n. Then the model
we use is

E(yp)=p+a;+ By + vy, (1)
where y represents a general mean, o is the effect due to y,;, being an observation

in the ith row, B, is the effect due to column j and y;; is the interaction effect
of row i with column j. Defining the residual error as

Cik = Yk — E(Ym) (2)
gives the customary model equation for y,; as
Yig=#+o+ B+ y,+ e (3)

The definition of e, in (2) gives the expected value as E(e;;,) = 0, and the
variance—covariance properties we attribute to the ¢;;,s are

Var(e,»ﬂ() = 0'3
and (4)
cov(e, e pe) =0 unless i=i,j=jand k=Fk".

b. Analysis of variance table

The analysis of variance table for balanced data of a 2-way crossed
classification is as shown in Table 4.3, where the means of the data in row i,
column j, cell (i, j) and the grand mean are, respectively,

Z Z Yigs V. = g": Z::yuk

bn, 1 k=1
| 1

a b n (5)
o=t w5l 8 3 E
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And the corresponding totals are these means with denominators omitted:

b n
Vi.. = bny,, = Z Z Yij -

j=1k=1
A popular method of estimating variance components from balanced data
is the analysis of variance method (ANOVA). For the 2-way classification this
consists of equating expected values of the sums of squares (or equivalently
mean squares) of Table 4.3 to their observed values. Depending on whether
none, all or some of the effects a;, f; and y,; of the model equation (3) are taken
as random effects, the model will be a fixed, random or mixed model. And
although the prime concern of this book is variance components we shall, for
the sake of completeness, look at expected mean squares here for all three models.

c. Expected mean squares

The starting point is to substitute the model equation (3) into the means of
(5) and then put those into the sums of squares of Table 4.3. We then want
expected values of those sums of squares. Derivation begins with taking u and
the as, fs and ys as fixed effects so that with E(e;;) =0

E(#euk) = E(aieijk) = E(ﬂjei_}k) = E()’ueuk) =0 Vi jandk;
and from (4)
E(ét)=ol/bn,
E(é.e.)=E(é e.) = E(¢;¢é.) = a?/abn,

E(é..é.;.) = cZ/abn (6)
and
E(é..—é.)* = (a— 1)a?/abn,
E(é; —e.)* =(b— 1)a?/abn,
E(éy.—¢&.—¢é;+¢é.) =(a—1)(b—1)o2/abn (7)
and

E(e;n — €5) = (n—1)aZ/n.

Expected values of the mean squares in Table 4.3 then simplify to be

E(MSA) = 2 § E(t,— &+, —7.)% + o2,
a— 1=
_ an _ - - 2
E(MSB) = - B.+7;,—7.)+0al, (8)
a b
E(MSAB)= ———— ¥ Z E(yy— 3.~ 7;+7.)% + ol

(a— 1)(b —-1)i53
and
E(MSE) =¢?.
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Notice that these expected values still contain expectation operators. This is
because we have not yet specified a model vis-a-vis the a;, f; and y,, effects; i.e,
we must specify the model as fixed, random or mixed. This is now done, based
on the expressions in (8) which hold whether the model is fixed, random
or mixed. Each model determines the consequence of the expectation operations
shown on the right-hand sides of (8).

-i. The fixed effects model. In the fixed effects model all the as, fs and ys
are fixed effects. Therefore the expectation operations on the right-hand sides
of (8) just involve dropping the E-symbol. The results are shown in Table 4.4,
where

a-l’Ua

&'=‘§a:1 a’ g

and 7, 7.; and .. are defined similarly.

Readers may wonder why the expected values in Table 4.4 contain expressions
suchas Z,(a; — d. + 7;. — 7..)? rather than the more familiar Z,a?. This is because
Table 4.4 does not involve what are sometimes called the “usual restrictions”
or “X-restrictions” such as X;0; =0 and Z;y,;, =0 V i. It is these restrictions
that reduce X,(a; — &, + 7;. — 7..) to Z,a?. They are equivalent to defining

E(.Vijk) = Uy
and
B=f., d=p — ., ﬁj =py;—@. and Yy =p;— g — gt Q..
9

Then the model equation is

Vi = ﬂ + a + ﬁj + '}’U -+ €ijks (10)

TABLE 4.4. EXPECTED MEAN SQUARES OF A 2.WAY CROSSED
CLASSIFICATION INTERACTION MODEL, WITH BALANCED DATA

Fixed Effects Model

b a
E(MSA) = 2 % (a,— & + j,. — 7.)? + a2
a-—1=
E(MSB) = -B+7,-7.)° +a}
E(MSAB) = ——— Z Z (y—9.—74+7.) + 0}

(a 1)(1;-1)‘=.,=
E(MSE) = P

® o~
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with, for example, I{., &; = Z{. (f. — fi.) = 0; i.e, the dotted terms in (9)
satisfy the Z-restrictions

$6=0 X,8,=0, £j,=0Vi and Z;j,;=0Vi. (11)

Nevertheless, on comparing (10) and (3), we can conclude from Table 4.4 that
the expected value of MSA is

bn

a—

a
E(MSA)= % % (- & + 7.~ ) =——£af, (12
a—1 i=1 1

because of (11). Hence X;a? has precisely the same meaning as
(o — & — §,. + 7.)% of Table 4.4. It is to be emphasised that the Z-restricted
models (10) and (11) are equivalent in this manner to the unrestricted model
(3) only for balanced data. This equivalence does not occur for unbalanced
data, because the sums of squares used with such data have expected values
that do not involve the means of the effects in such a simple manner as with
balanced data. [ See, e.g., Searle (1987, Table 4.8).] Restrictions that are in terms
of weighted sums of the effects are sometimes suggested for unbalanced data,
although these have no simplifying effect when there are empty cells, as is often
the case with unbalanced data.

-ii. The random effects model., 1In the random model all the «-, f- and
y-effects are taken as being random, with zero means, variances 62, o5 and o2,
respectively, and all covariances zero:

E(a;) =0, E(ﬂj) =0, E(yy) = 0, (13)
var(a;) = E(a?) = 62, cov(ao;) = E(a,00)=0 Vi#i; (14)

with similar statements for the fs and ys. Also
cov(ay, B;) = 0 = cov(a, yyy) = cov(ay, ey), (15)

with similar statements for the fs and ys. They represent the customary
formulation of random effects in random or mixed models, and as such are a
direct and natural extension of equations (9)-(15) in Chapter 3. Applying this
formulation to (8) leads to the expected values shown in Table 4.5. It is left to
the reader (E 4.6) to derive those expected values.

-iii. The mixed model. Suppose the a-effects are fixed effects and the fs
are random. Then the ys, being interactions of the a-factor with the p-factor,
are random. The expectation operations on the right-hand sides of (8) therefore
involve dropping the E-symbol insofar as it pertains to as and using properties
like those of (13), (14) and (15) for the fs and ys. This leads to the results
shown in Table 4.6.

The difference between the random and mixed models is that the as are
random effects in the random model and are fixed effects in the mixed model.
Since only the first equation in (8) involves as, only the first entry in Table 4.6
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TABLE 4.5. EXPECTED MEAN SQUARES OF A
2.-WAY CROSSED CLASSIFICATION
INTERACTION MODEL, WITH BALANCED DATA

Random Effects Model

E(MSA) = bng? + no? + o}
E(MSB) = anc} + nol + o?
E(MSAB) = ne? + o}
E(MSE) = o?

TABLE 4.6. EXPECTED MEAN SQUARES OF A 2-WAY CROSSED
CLASSIFICATION INTERACTION MODEL, WITH BALANCED DATA

Mixed model: as fixed, fs and ys random

b a
E(MSA):-—"—I ¥ (o — &) +no? + o2
a—1;=
E(MSB) = ano} + no? + ol
E(MSAB) = nol + a;
E(MSE) = al

differs from the corresponding entry in Table 4.5, and then only through having
a quadratic term in the as instead of a term in o2,

<iv. A mixed model with Z-restrictions. The expected mean squares in
Table 4.5 for the random model have been arrived at without any use of
Z-restrictions of the kind shown in (11) for the fixed effects model. This is
appropriate, because with the a;s that occur in the model equations for the data
being taken as realized values of random variables, it is not realistic to have
them summing to zero, ie., ;o =0 is not appropriate. Moreover, having
3,0, = 0 is never even considered in the case of unbalanced data, for which
expected mean square derivations all reduce to those of Table 4.5 for balanced
data.

Likewise, Z-restrictions are not involved in Table 4.6 either. Neither do we
think they should be. Nevertheless, some presentations of the mixed model
(for the case being considered here, the 2-way crossed classification, mixed model
with one factor fixed, balanced data) do incorporate, either explicitly or
implicitly, Z-restrictions. This leads to expected mean squares that differ from
those in Table 4.6. We therefore proceed to give an explanation of those
differences, similar to Searle (1971, Chap. 9). Other explanations are available
as, e.g., in Hocking (1973, 1985), and Samuels et al. (1991), but they are effectively
equivalent to what follows.

In the model equation

Yk =p+a;+ B+ vy, +epn (16)
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where o, is taken as fixed effect and f; as random, y,; is then the interaction
between a fixed and random effect. It is therefore taken as a random effect.
That is how it is treated in deriving Table 4.6. Nevertheless, there is debate
over whether or not, because it is the interaction involving a fixed effect, it
should be defined subject to partial Z-restrictions in the form that sums of y;
over the levels of the fixed effects factor be defined as zero, ie., Z{., y;; =0 V j.
To follow the effect of such a definition we write the model as

Yk =W +ap+ B+ i+ ey (17
with the restrictions
Y aj=0 and Y y;,=y,=0 forallj. (18)
i=1 i=1

The prime notation used here distinguishes the model (17) with the restrictions
(18) from the model (16) with no such restrictions; and it is also distinctive
from the model (10). In (17) the «'s are fixed effects and the f's and y’s are
random effects with zero means and variances o3 and y2, respectively, and
with the f’s and y’s being uncorrelated with each other and the es. All this is
exactly the same as in the mixed model described earlier, except for (18).

In (18) it is the restriction on the yj;s that is particularly noteworthy. It
implicitly defines a covariance between every pair of y;;s that are in the same
column, i.., between y;; and y;, for i # i’. Suppose this covariance is the same,
for all pairs:

covi(yipyip)=c Vi#i. (19)
Then, from (18)

var( Y y},) =0
i=1

as? + a(a— )c =0,

and so

giving
c=—62/(a—1). (20)

Note that this covariance pertains only to y’s within the same level of the
p-factor, arising as it does from (18). The covariance between y's in the same
level of the a-factor is zero, as usual:

cov(yi, 7iy) =0 foralliand j#j . (21)

Prior to utilizing (18), the expected mean squares for the model (17) can be
derived from equations (8) with primes on g, the as, fs and ys. Upon invoking
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7.;= 0 from (18), and hence 7.. = 0, equations (8) become

E(MSA) = bn [Z a;? + Z E(ﬂ.)’] +al,
a—1L=1 (=1
+ 02, (22)
a b
_ [ Y ] 2
E(MSAB) = (——a T 1)‘; ; E(yy—7.)° + of
and
E(MSE) = o2 .

In carrying out the expectation operations in E(MSA) and E(MSAB), use is

made of (21) to give
- 1 b(b-1)0 o2
E '. 2 = 2, - — = -
(?( ) ay [b + b2 :I b
and
. 1 2\ (b-1)s2
Eyy—7.) =0l +-—"]|=—-—1L.
(?u 7i.) g, ( b b) b
As a result, expressions (22) reduce to those shown in Table 4.7.

The results in Table 4.7 differ from those in Table 4.6 in two important ways.
First, in Table 4.7, whenever o2 occurs it does so in the form ne /(1 — 1/a),
whereas in Table 4.6 the term appears as just ne?. Second, E(MSB) in Table
4.7 has no term in o2, whereas in Table 4.6 it contains no?. This is the reason
why Rule 13 at the end of Section 4.1d differs from the first edition (1959) of
Henderson (1969) but is the same as in the second. The first edition specifies
a general rule that leads to the absence of o2, from E(MSB) on the basis of
v,; =0, as in (18), whereas the second specifies a general rule that retains o2
in E(MSB) as in Table 4.6, using a model that has no restrictions like (18).

TABLE 4.7. EXPECTED MEAN SQUARES OF A 2-WAY CROSSED
CLASSIFICATION INTERACTION MODEL, WITH BALANCED DATA

Mixed Model, with Restrictions on Interaction Effects:

y!; =0 for All j
E(MSA)——— Z +nal/(1—1/a)+ ol
E(MSB) = ana}. + g
E(MSAB) = no? /(1 — 1/a) + o?

E(MSE) = i
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This dual approach to the mixed model is evident in many places. For
example, Mood (1950, p. 344) and Kirk (1968, p. 137) use the Table 4.6
expectations whereas Anderson and Bancroft (1952, p. 339), Scheffe (1959,
p. 269), Graybill (1961, p. 398) and Snedecor and Cochran (1989, p. 322) use
those akin to Table 4.7. Mood and Graybill (1963) do not discuss the topic.
Although results like Table 4.7 predominate in the literature, those of Table 4.6
are consistent with the results for unbalanced data, and this fact, as Hartley
and Searle (1969) point out, is strong argument for using Table 4.6.

The second difference between Tables 4.6 and 4.7 is the occurrence of
1/(1 — 1/a) in the terms in the interaction variance component in Table 4.7.
This is a consequence of the restriction y’; = 0 of (18), as shown also, for example,
in Steel and Torrie (1960, pp. 214, 246).

One criterion for deciding between the two forms of the mixed model is the
following. Consider, momentarily, the possibility of redefining the fs as fixed.
If that would lead to redefining the ys as fixed then one should, when the fs
are random, have Z;y;; = 0 as part of the mixed model. But if redefining the fs
as fixed would not lead to redefining the ys as fixed but would leave them as
random then the Z-restrictions Z,;y;; = 0 should not be part of the mixed model.
The difficulty with Z,;y,; = 0 V j is that after using it with unbalanced data the
resulting analysis does not for n;; = n ¥ i, j reduce to the well-known analysis
for balanced data.

A connection between Tables 4.6 and 4.7 can be established as follows. The
model for Table 4.6 is (16). Suppose it is rewritten as

Yw=W+a)+(y—a)+(B;+7,)+(vy—7,) +eu.
Then, on defining
W=p+d, aj=0—4d, ﬂ} = ﬂj + 7, and )’31 == T (23)

we have exactly the models (17) and (18) used for Table 4.7. Not only do the
definitions in (23) satisfy (18), but it is easily shown (see E 4.6) that (19)—(21)
are also satisfied and that

ol =(1~1/a)s2, (24)

as is evident from comparing the values of E(MSA) and E(MSAB) in Table
4.6 with those in Table 4.7. Moreover,

o} =0j+o0l/a. (25)

The question of which form of the mixed model to use, that without the
X-restrictions (Table 4.6) or that with them (Table 4.7) remains open; and seems
likely to remain so. It is irrelevant to ask “Which model is best?”, because this
question really has no definitive, universally acceptable answer. The important
thing is to understand that there are two models and that although they are
different, they are closely related. Then in analyzing any particular set of data
one is in a position of understanding the two models and their relationship,
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and can decide which is the more appropriate to the data at hand. Lengthy
discussion of the models (17) and (18) that lead to Table 4.7 is to be found in
such papers as Wilk and Kempthorne (1955, 1956) and Cornfield and Tukey
(1956) as well as in Scheffé (1959). Nevertheless, the model that is used for
unbalanced data (of which balanced data are a special case) is the one without
the X-restrictions that leads to Table 4.6. And that table is what one gets when
simplifying the procedures for unbalanced data to the case of balanced data.
Also, when there is no within-cell replication, i.e., n = 1, and hence no SSE,
Table 4.6 provides a test of H: o} = 0 whereas Table 4.7 does not then provide
a test of the analogous, but distinctly different, hypothesis H: aﬁ, =0.

d. ANOVA estimators of variance components

The ANOVA method of estimating variance components from balanced data
is to equate mean squares of the analysis of variance to the expected values.
The latter are linear combinations of variance components. The resulting
equations are solved for the variance components and the solutions are the
estimated variance components. All this is just as was done in Chapter 3 for
the 1-way classification. Applying it to the fixed effects model of the 2-way
classification means applying it to just E(MSE) = 62 of Table 4.4 and so
¢? = MSE. Applied to the random model of Table 4.5 it yields

MSB — MSAB

¢ = MSE, b =—-r
an
MSAB — MSE MSA — MSAB
6‘3 =———— . = — (26)
n bn
For the mixed model, without X-restrictions, Table 4.6 leads to
MSAB — MSE MSB — MSAB
é? = MSE, 6‘,2 =— — —— and 6‘} = (27)
n an

These estimates, it will be noticed, are the same as in (26) for the random model,
except that there is no estimator for a?—because, of course, the as are being
taken as fixed effects. This is the situation with all mixed models using balanced
data. There will always be as many mean squares having expectation that
contain no fixed effects as there are variance components to be estimated.
In the case of Table 4.6 this number is 3. And the estimated variance components
will thus always be a subset of those obtained if all the fixed effects (except u)
were taken as random.
For the mixed model with X-restrictions we use Table 4.7. This gives
(MSAB — MSE)(1 — 1/a)

MSB — MSE
62 = MSE, 62 = and 8} = —————.
n

(28)
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Other than é2, these are different from the estimators of the mixed model
without X-restrictions. But the two sets of estimators are related:

by - MSABMSE(, 1) () _1),
n a a
from (27), and in accord with (24). And

62 = M, from (28),
s an

_ MSB — MSAB + MSAB — MSE

an
= ______andﬁ + ndﬁ from (27),
an ’
=8} +6%/a,

in accord with (25). Thus the connection between the two sets of estimators is
very simple and, naturally, is the same as that between the two sets of components
in (24) and (25).

4.4, ANOVA ESTIMATION

Having derived estimators, the next step would be to consider their properties:
e.g., sampling variances, confidence intervals, and so on. But before doing so
we introduce some general results, which can then be applied not only to the
2-way classification but also to any combination of crossed and nested fixed
or random factors,

The methodology of ANOVA estimation of variance components from
balanced data is clearly demonstrated using the expected mean squares of Table
4.5 and the estimators in (26); and equally so for the mixed model by using
the last three lines of Table 4.6 and (27). Each of these is a special case of
equating mean squares (of the analysis of variance table) to the expected values
and using the solutions for the variance components as the estimators thereof.
The generalization of this is to let m be the vector of mean squares, having the
same order as 62, the vector of variance components in the model. Suppose P
is such that

E(m) = P¢?. (29)
Then the ANOVA estimator of 62 is 62, obtained from m = Pé? as

=P 'm (30)
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provided P is nonsingular, as is the case in most standard analyses. In the case
of Table 4.6

[bn 0 n 17] a2
0 an n 1|l o}
E(m) = ’
0 0 n 1}|a}
o 0 0 1]le2
with
- -
1 -1 0
bn bn
0 l __l 0
P != an an ,
o o L+ _I
n n
o 0 0o 1|

commensurate with (26).
Clearly, the estimators in (30) are unbiased, because

E(6?)=P 'E(m)=P 'Pe? =o?.

Thus, when using balanced data, for either random or mixed models, ANOVA
estimators of all variance components are unbiased. But this unbiasedness is
not necessarily a feature of all applications of ANOVA methodology to
unbalanced data—as is discussed in Chapter 5.

The estimators in (30) have the smallest variance of all estimators that are
both quadratic functions of the observations and unbiased. That is to say, they
are minimum variance, quadratic unbiased (MVQU). This property was
established by Graybill and Hultquist (1961) and applies to all ANOVA
estimators from balanced data. Note that it does not demand any assumption
of normality. When such assumptions are made, the estimators in (30) have
the smallest variance from among all unbiased estimators, both those that are
quadratic functions of the observations and those that are not. And this, too,
is the case for all ANOVA estimators from balanced data. Thus, under normality,
ANOVA estimators of variance components are minimum variance, unbiased
(MVU). This result is presented in Graybill (1954) and Graybill and Wortham
(1956). It is to be emphasized that it applies only to balanced data.

The possibility of ANOVA methodology yielding a negative estimate of a
variance component is discussed briefly in Section 3.5c. Clearly, such an
occurrence is an embarassment, because variances are positive parameters (well,
at least non-negative), and so interpretation of a negative estimate is a problem.
Several courses of action exist, few of them satisfactory.
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(i) Accept the estimate, despite its distastefulness, and use it as evidence
that the true value of the component is zero. Although this interpretation may
be appealing, the unsatisfying nature of the negative estimate still remains. This
is particularly so if the negative estimate is used in estimating a sum of
components. The estimated sum can be less than the estimate of an individual
component. For example, in (56) of Chapter 3 we got 62 = 92 and 62 = — 10,
giving var(y) = ¢2 + 62 = — 10 + 92 = 82 < ¢2, which does not make sense.

(ii) Accept the negative estimate as evidence that the true value of the
corresponding component is zero and hence, as the estimate, use zero in place
of the negative value. Although this seems a logical replacement such a truncation
procedure disturbs the properties of the estimates as otherwise obtained. For
example, they are no longer unbiased, but their mean squared error is less.

(iii) Use the negative estimate as indication of a zero component to ignore
that component in the model, but retain the factor so far as the lines in the
analysis of variance table are concerned. This leads to ignoring the component
estimated as negative and re-estimating the others. Thompson (1961, 1962)
gives rules for doing this, known as “pooling minimal mean squares with
predecessors”, and gives an application in Thompson and Moore (1963).

(iv) Interpret the negative estimate as indication of a wrong model and
re-examine the source of one’s data to look for a new model. In this connection,
Searle and Fawcett (1970) suggest that finite population models may be viable
alternatives because they sometimes give positive estimates when infinite
population models have yielded negative estimates. Their use is likely to be of
limited extent, however. In contrast, Nelder (1965a, b) suggests that at least for
split plot and randomized block designs, randomization theory indicates that
negative variance components can occur in some situations. Such an apparent
inconsistency can arise from the intra-block correlation of plots being less than
the inter-block correlation.

(v) Interpret the negative estimate as throwing question on the method
that yielded it, and use some other method that yields non-negative estimators.
Two possibilities exist. One is to use a maximum likelihood procedure, as
discussed in Chapter 6. A second possibility is to use a Bayes estimator, for
which the reader is referred to Section 3.9 for an introduction and to Chapter
9 for more general consideration.

(vi) Take the negative estimate as indication of insufficient data, and follow
the statistician’s last hope: collect more data and analyze them, either on their
own or pooled with thos that yielded the negative estimate. If the estimate
from the pooled data is negative that would be additional evidence that the
corresponding component is indeed zero.
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Obtaining a negative estimate from the analysis of variance method is solely
a consequence of the data and the method. It in no way depends on normality.
However, when normality is assumed, it is possible in certain cases to derive
the probability of obtaining a negative estimate, as illustrated in Section 3.5d-vi.
Generalization of this is shown in Section 4.5, which follows.

4.5. NORMALITY ASSUMPTIONS

No particular form for the distribution of error terms or of the random
effects in a model has been assumed in this chapter up to now. All the preceding
results in the chapter are true for any distribution. We now make the normality
assumptions that the error terms and the random effects factor are normally
distributed with zero means and the variance-covariance structure discussed at
the start of Section 4.2. That is, the effects of each random factor have a
variance-covariance matrix that is their variance (component) multiplied by
an identity matrix; and the effects of each random factor are independent of
those of every other factor and of the error terms. Under these conditions we
assume normality. Thus, for example, for the 2-way crossed classification of (1)
and (2) we define

a={cal}l:l’ B={cﬂ]}]£l’
7={c7u}1.1 and °={cem}:.1,m (31)

where in ¥ and e the elements are arrayed in lexicon order, ie., ordered
respectively by j within i, and by k within j within i. Then the normality
assumptions, based on (13)-(15), are

a o}l, 0 0 0
0 o3l 0 0
Pl 0, o (32)
Y 0 0 ol, 0
e 0 0 0 o2,

a. Distribution of mean squares
Let f;, S;and M, be the degrees of freedom, sum of squares and mean square

M; =S,/ (33)

in a line of an analysis of variance of balanced data. Under the normality
assumptions just described it can be shown that

S x/ and the S;s are independent .
E(M))

Hence (34)
fiM, 2

~——— ~ yf; and the M,s are independent .
E(M,) xf, i p
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Result (34) is derived by writing S;/E(M,) as a quadratic form of y’Ay in
the observation vector y, and applying Theorems S2 and S3 of Appendix S. In
applying these theorems to random or mixed models V is not a1, as it is in
the fixed model, but is a matrix whose elements are functions of the as of the
model, as illustrated in (58) of Chapter 3. Nevertheless, for the A-matrices
involved in expressing each S,/ E(M,) as a quadratic form y'Ay it will be found
that AV is always idempotent. Furthermore, for the random model, p has the
form ul, and p’'Ap = ul’Aly will, by the nature of A, always be zero. Hence,
for the random model the x%s are central, as indicated in (34). Pairwise
independence is established from Theorem S3, whereupon the underlying
normality leads to independence of all the Ss (and Ms). For the mixed model,
(34) will also apply for all sums of squares whose expected values do not involve
fixed effects; those that do involve fixed effects will be non-central y2s. This is
illustrated further in Section 4.6.

b. Distribution of estimators

The ANOVA method of estimation, that of equating mean squares to their
expected values, yields estimators of variance components that are linear
functions of mean squares. These mean squares have the properties given in
(34). The resulting variance components estimators are therefore linear functions
of multiples of y2-variables, some of them with negative coefficients. No closed
form exists for the distribution of such functions and, furthermore, the coefficients
are themselves functions of the population variance components.

Example. In Table 4.5

(a— 1)MSA 2
bno? + ne? + ¢ a1

and, independently,
(a—1)(b — 1)MSAB

2

naf +0',2 ~ Xia-1yp-1) -
Therefore
SA —
42 _ MSA — MSAB -
bn
¢ [ bno + noj + 0l , no; +a; 2
= ; - a- _—“—e_ a- - ’ 36
[ bn(a — 1) Xa-1 bn(a — 1)(b — I)X( 0e-1) (36)

where the notation x = y means that x and y have the same distribution. No
closed form of the distribution of (36) can be derived, because linear combinations
of independent y2-variables (other than simple sums) do not have a x3-
distribution. This state of affairs is true for these kinds of variance components
estimators generally, Were the coefficients of the y*s known, the methods of
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Robinson (1965), Wang (1967) or Fleiss (1971), or numerical integration, could
be employed to obtain the distributions.
In contrast to other components, the distribution of ¢2 is always known
exactly, under normality assumptions:
0.2
¢} = MSE ~ — ¢*(fuse), (37)
MSE
where fygg is the degrees of freedom associated with MSE.
Generalization of (36) arises from (30), which is 42 = P~ 'm. The elements
of m follow (34) and so, for example, M, ~ E(M,) f ' x(f;). Now write

C={4 fl_lez,}i:u
where there are k lines in the analysis of variance being used. Then from (30)

é2 = P~'CE(m) = P~'CPo? . (38)

In this way the vector of estimators is expressed as a vector of multiples of
central y2-variables.

¢. Tests of hypotheses

Expected values of mean squares (derived by the rules of Section 4.2) often
suggest which mean squares are the appropriate denominators for testing
hypotheses that certain variance components are zero. Thus in Table 4.6
MSAB/MSE is appropriate for testing the hypothesis H: 62 =0; and
MSB/MSARB is the F-statistic for testing H: o3 = 0. In the random model all
ratios of mean squares are proportional to central F-distributions, because all
mean squares follow (34). In the mixed model the same is true of ratios of mean
squares whose expected values contain no fixed effects.

The table of expected values will not always suggest the “obvious”
denominator for testing a hypothesis. For example, suppose from Table 4.2 we
wished to test the hypothesis 6 = 0. From that table we have, using M,, M,,
M, and M, respectively, for MS(B), MS(C:B), MS(AB) and MS(AC:B),

E(M,) = E[MS(B)]
E(M,) = ELTMS(C:B)]
E(M,) = ELMS(4B)]
E(M,) = ELIMS(AC:B)]

where we have here written the coefficients of the o2, the products of ns shown
in the column headings of Table 4.2, as ks: e.g.,, k, = n,n.n,,. It is clear from
these expected values that no mean square in the table is suitable as a
denominator to M, for an F-statistic to test H: o7 = 0, because there is no
mean square whose expected value is E(M, ) with the ¢ term omitted, namely

E(M,) — k,0% = ky0l, + ksol, + kyol., + 62 . (39)

kyol + kyo02, + kyol, + keol, + 02,

2 2 2
kzac:b + k4aat:b + G,

2 2 2
k3 Oap + k4aat:b + Oe»

2 2
k4aac:b + Og
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However, there is a linear function of the other mean squares whose expected
value equals E(M,) — k, 02, namely

E(M;) + E(M3) — E(M,) = k0%, + k30l + kyolop + ol . (40)

From this we show how to use the mean squares in (39) and (40) to calculate
a ratio that is approximately distributed as a central F-distribution.

In (40) some of the mean squares are involved negatively. But from (39) and
(40) together it is clear that

E(M,) + E(M,) = kya} + E(M;) + E(M3;) .
From this let us generalize to
EM, + - +M)=ke?+EM, +--+M,) (41)

and consider testing the hypothesis H: ¢2 = 0 where o2 is some component of
a model. The statistic suggested by Satterthwaite (1946) for testing this
hypothesis is

M M+ + M,

e el B i
M M.+ +M,

which is approximately ~ #1, (42)

where it is implicitly assumed that no mean square occurs in both numerator
and denominator of (42), and where

. (M,+"‘+M,)2 _ (Mm+”'+Mn)2
PEMIf T Mg, L VEN YA VI

(43)

In p and q the term f; is the degrees of freedom associated with the mean square
M,;. Furthermore, of course, p and ¢ are not necessarily integers and so, in
comparing F against tabulated values of the & -distribution, interpolation will
be necessary.

The basis of this test is that under H: ¢2 = 0 both numerator and denominator
of (42) are distributed approximately as multiples of central x2-variables (each
mean square in the analysis is distributed as a multiple of a central x2).
Furthermore, in (42) there is no mean square that occurs in both numerator
and denominator, which are therefore independent, and so F of (42) is distributed
approximately as # ¢ as shown.

Both M’ and M"” in (42) are sums of mean squares. p of (43) was derived
by Satterthwaite (1946) from matching the first two moments of pM'/E(M’)
to those of a central y2 with p degrees of freedom. This yielded p of (43) with
pM'/E(M’) being distributed approximately as xZ. (A similar result holds for
M" with q degrees of freedom.) More generally, consider the case where some
mean squares are inciuded negatively. Suppose

M0=M1—M2>0,
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where M, and M, are now sums of mean squares having f; and f, degrees of
freedom, respectively. Let

_EMy) b=
E(M;) M,

and
_ -y
fo Yy YAV N
(B + 1/12)
Then, simulation studies by Gaylor and Hopper (1969) suggest that
foMo . :
29" % s approximately ~ x?
E(M,) pp y X

provided

P>9"f 0975, J1 <100 and f, <2f;,

where F4 0975 is deﬁned by Pr{#} < #§ o975} = 0.975. They further suggest
that p > F4 .75 “appears to be fulfilled reasonably well” when

p> fjf,oms x ffz,o-so .

Under these conditions, Satterthwaite’s procedure in (42) and (43) can be
adapted to functions of mean squares that involve differences as well as sums.

d. Confidence intervals

In ANOVA tables of balanced data, mean squares are, under normality
assumptions, distributed independently as multiples of x?-distributions, as in
(34). Therefore an exact 1 — a confidence interval on any E(M,) is, similar to
line 1 in Table 3.4,

i M
I By <2
v XfL

(44)

where ¢}y, and x}, . are, for the x2-variable x7, defined by

Pr{y} . <xi<xjul=1-0a. (45)

E(M,) is, of course, a linear combination of ¢7s, e.g, ana} + no? + o2 of
Table 4.5.
Likewise, a 1 — a confidence interval on a ratio E(M,;)/E(M;) is

M, E(M,) _

i < ,
M, Skt E(M,) M, 5 40

(46)
where the & -values for the #-distribution with f; and f; degrees of freedom
are defined by

The intervals (44) and (46) are those of Theorem 15.3.6 of Graybill (1976, p. 625).
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Suppose, as is often the case with balanced data, that two expected mean
squares differ by only a (multiple of a) ¢2; e.g.,

E(M)) = ke® + E(M;) . (48)
Then a 1 — 2 approximate confidence interval on o2 is

SM(1 = F;, 1 ulF) ol < SiM(t — F ;- 1/F)
kaz,.U kaz,,L

where F = M;/M; and the & are just as in (47), except that there f; is the
numerator degrees of freedom and here it is f;. This is a special case of Theorem
15.3.5 of Graybill (1976, p. 624), which has a linear combination of variance
components in place of 62 in (48) and hence in (49) also. That in turn is an
extension of the Williams (1962) result given as line 2 of Table 3.4.

One general method for deriving approximate confidence intervals on a linear
function of expected mean squares is that given by Graybill (1961, p. 361; 1976,
p. 642) using upper and lower limits of the y2-density, as defined in (45). An
approximate confidence interval on Xk, E(M,), provided ,k; M, > 0, is given by

Pr{'z":‘M‘ < ZkE(M) < w} —1—q, (50)
Xr.U Xr.L

(49)

where
L (ZdaM)?
ZkiMif;

analogous to (43). Since r will seldom be an integer, x?; and x,’_u are obtained
from tables of the central y2-distribution, using either interpolation or the
nearest (or next largest) integer to r. An adjustment to x2y and x2_ in (50),
when r < 30, is given by Welch (1956) and recommended by Graybill (1961,
p. 370), where details may be found.

An improved confidence interval for Z;k,E(M;) when every k; is positive is
given by Graybill and Wang (1980). For u ~ # we define #} ,, akin to F
and Fy of Chapter 3, by Pr{u> #],} = a so that

Priu<#j,} =1—« and hence Pr{iu<#},_,}=a.

For independent mean squares M; with f; degrees of freedom, define
1

Fh

o, W

and q; = -1

"R

1 —a
forl >a,>0andi=1,2,...,s Then an approximate 1 — « confidence interval
on Xk, E(M,) is

LM, — /Zi(pikiM)? < T,k E(M)) < ZkiM; + /Zi(qikiM)?

Khuri (1984) shows, with balanced data, how to deal with the general mixed
model so as to develop simultaneous confidence intervals for functions of the
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variance components based on Khuri (1981); and, when the ANOVA table
provides no exact confidence intervals on estimable functions of fixed effects,
Khuri (1984) develops a method for deriving suitable intervals. His work is
inspired by results given in Scheffé (1956; 1959, Chap. 8) for the 2-way
classification, extended by Imhof (1960).

Other methods for finding simultaneous confidence intervals on ratios of
variance components are to be found in Broemeling (1969). And Boardman
(1974) contains results of some Monte Carlo studies for comparing some of
these intervals for cases like (48). These and a host of other (mostly approximate)
confidence intervals are reviewed in very readable form in Burdick and Graybill
(1988).

e. Probability of a negative estimate
Whenever M; and M are such that (48) is true, the ANOVA estimator of 62 is

0% = (M, — M,)/k . (51)
Then the probability of 42 being negative is
Pr{é? is negative} = Pr{M,/M; < 1}

_pe { M/E(M)) _ E(M,)}
M;/E(M;) ~ E(M)

= Pr{fﬁ < M} . (52)
E(M,)
This provides a means of calculating the probability of the estimator (51) being
negative. It requires giving numerical values to the variance components being
estimated because E(M ;) and E(M,) are functions of the components. However,
in using a series of arbitrary values for these components, calculation of (52)
provides some general indication of the probability of obtaining a negative
estimate. The development of this procedure is given by Leone et al. (1968).
Clearly, it could also be extended to use the approximate F-statistic of (42) for
finding the probability that the estimate of o2 of (41) would be negative.
Verdooren (1982) also deals with the probability of obtaining negative estimates.
An example of (52) is Pr(¢2 < 0) given in Section 3.5d-vi.

f. Sampling variances of estimators

Sampling variances of variance component estimators that are linear functions
of x2-variables can be derived even though the distribution functions of the
estimators, generally speaking, cannot be. The variances are, of course, functions
of the unknown components.

From 6% = P~ 'm of {30), where m is a vector of mean squares,

var(¢?) =P 'var(m)P !’ . (53)
And with

2
var(M;) = _2_[_E(fﬂ)_]_ and cov(M;, M) =0, (54)
i
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from (34)

Z[E(M')JZ}P“'.
7

Then on using M?/(f; + 2) as an unbiased estimator of [ E(M,)]*/f;, from
Appendix S.3b, we have an unbiased estimator of var(&*) as

2M? ,
vﬁr(&2)=P“{ ——'}P“ ) (56)
afi+2

An example is given in Section 3.5d-iii.

var(6?) = P“{ (55)
d

4.6. A MATRIX FORMULATION OF MIXED MODELS

Section 3.2 shows a matrix formulation of the model for balanced data from
a l-way classification, introduced there largely by means of an example. We
now extend that formulation, first to be applicable to any mixed model and
then show the specifications for balanced data.

a, The general mixed model
The starting point is the traditional fixed effects linear model written as

y=Xp +e

wherey isan N x 1 vector of data, B is a p x 1 vector of fixed eflects parameters
occurring in the data, X is a known N x p coefficient matrix and e is an error
vector defined as e =y -— E(y) = y — XP and thus has E(e) = 0. To e is usually
attributed the dispersion matrix var(e) = a2Iy. X is often a matrix of zeros and
ones, in which case it is known as an incidence matrix, because then, in the
expected value of the data vector, it indicates the incidence of the parameters
that are in B. But X can also include columns of covariates, and in regression
these may, apart from a column that is 1y, be its only columns. To cover
all three of these possibilities, X is nowadays called a model matrix
(Kempthorne, 1980).

In variance components models the random eflects of a model can be
represented as Zu, of a nature that parallels Xp when X is an incidence matrix,
u will be the vector of the random effects that occur in the data and Z the
corresponding matrix, usuvally an incidence matrix. Moreover, u can be
partitioned into a series of r sub-vectors

v=[uw; v, ... wl, (57)

where each sub-vector is a vector of effects representing all levels of a single
factor occurring in the data, be it a main effects factor, an interaction factor or
a nested factor. r represents the number of such random factors. For example,
the I-way classification random model, with model equation y; = u + o; + ¢;;,
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has r = 1 and u; = a. The 2-way classification random model, y;; = p + o, +
B+ v+ ey, hasr=3 withu; =a,u, =fandu; =y.

Incorporating u of (57) into y = Xp + e gives a general form of model
equation for a mixed model as

y=Xp+ Zu +e (58)

with B representing fixed effects and u being for random effects. X and Z are
the corresponding model matrices, with Z often an incidence matrix, and e is
a vector of residual errors. Definition of e is based on first defining

E(y)=Xp and E(ylu)=Xp + Zu (59)
and then
e=y— E(ylu). (60)

E(y|u) is the conditional mean of y, given that u represents the actual random
effects as they occur in the data. Put more carefully, by E(y | u) we would mean

E(YIU=u)=Xp + Zu, (61)

where Y and U would be vectors of random variables for which y and u are
the realizations in the data. Thus (61) would be the expected value of the
random variable Y, given that the random variable U has the value u. This use
of capital letters as random variables is standard in much of the writing of
mathematical statistics, but when used as here in vector form it conflicts with
our preferred use of capital letters as matrices. Therefore the notation of (58)
is retained: y and u do double duty as random variables and as realizations
thereof.
For (58) we therefore have

E(y)=Xp and E(e)=0. (62)
To e we now attribute the usual variance—covariance structure for error terms:

every element of e has variance 62 and every pair of elements has covariance
zero, i.e.,

var(e) = ally . (63)
Similar properties are attributed to the elements of each u;:
var(w) =a?l, Vi (64)

with ¢; being the number of elements in w,, i.e., the number of levels of the
factor corresponding to u, that are represented in the data. And to elements of
u; and to those of u; are attributed a zero covariance. Thus

cov(u,uy)) =0 Vi#j (65)
and similarly for all elements of u and e:
cov(u,e’)=10. (66)
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Models incorporating (64)-(66) have all possible covariances zero, and so
provide no opportunity for dealing with situations where components of
covariance would be appropriate. Models that do include components of
covariance are discussed in Section 11.1.

Utilizing (64)-(66), the variance structure of u is

oil,
ol
D = var(u) = 2 ={40ll,}. (67)
a,zlq,
Then partitioning Z conformably with u of (57) as
Z=[Z, Z, ... Z,]
gives
y=Xp+Zu+e=Xp+ Y Zu +e. (68)
i=1
Hence, from (58)-(67)
V=var(y)=ZDZ' + 621 = ¥ ¢}Z,Z; + oll,. (69)

=1

A useful extension of this is to observe that since e is a vector of random
variables just as is each u;, we can define e as another u-vector, u, say, and
incorporate it into (68); i.e., define

y=e Zy=Iy and ol=o?
and so have
y=Xp+ igo Zy, (70)
and
V= X':Z, ot (71)

i

0

The originators of this formulation were Hartley and Rao (1967), who use
it to great advantage for unbalanced data. We now illustrate this formulation
for balanced data from a 2-way classification, from which we generalize to any
multi-factored model for balanced data.

b. The 2-way crossed classification

-i. Model equation. Section 3.2a develops the general form
y=(L®L)u+(1,®1,)a+e
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and
V= (la ® J")U: + (la® l,,)d'g

for the 1-way classification having model equation y; = u + a, + ¢;; for

i=1,...,a and j=1,...,n. We now do the same for the 2-way crossed
classification with interaction with model equation, of (3),
Y =p+ o+ B+ vy + ey (72)

fori=1,...,a,j=1,...,band k=1,...,n Suppose a=2,b=3 and n=2;
then arraying the y; in lexicon order (ordered by k within j within i) in a
12 x 1 vector gives

ﬂ- 1 -] P L] T
1 1 - 1 - - R
1 1 1 1
1 1 1 1 Y11
1 1 111 B, 1 Y12
1 1 |[e, S A o s
y= u+ + + +e.
1 . l[az} 1 - -, I N | FO
1 1 R S TR | P
1 1 1 N L},n-
1 1 .. N
1 1 1 |
LI_J ol B I
I,®1
=llzﬂ+(lz®16)a+[3 2]B+(l6®12)7+l12e
L®1,

=(1L,RLIL)u+(L,R®L®1)a+ (1,91, ® 1,)f
+(LALEAL)Y+ (1R, ®1,)e.

For the general 2-way crossed classification this form is

y = (la® lb® l,,)ll + (la® lb® ln)a + (la®lb® ln)p
+(L®L®L)Y+(L®L®I,)e. (73)

Several features of (73) need to be noted. First, every coefficient matrix in
(73) is a Kronecker product (KP) of three terms: three, because it is a 2-way
classification and 3 = 2 + 1 (two main effect factors plus error). Second, every
term in every KP is a 1 or an . Third, the orders of the three terms in every
KP are a, b and n, respectively, the number of levels of the two factors and the
number of observations in each cell; and the sequence of these orders, a, b and
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then n matches, and is determined by, the nature of the lexicon ordering of the
data in y, i within which j is ordered, within which k is ordered.

Fourth is a characteristic that determines the form of each KP that is a
coefficient matrix in (73): every term in every KP is a 1 except that it is I for
the term corresponding to the parameter vector which that KP is multiplying.
For example, in (I, ® 1, ® 1,)a the vector being multiplied is &, and so the first
term in the KP is I, and not 1,. Similarly, in (1, ® I, ® 1,)p the second term
of the KP is I,, corresponding to the p being multiplied. This principle easily
adapts itself to the other KP matrices in (73). Thus by thinking of y as requiring
a and P for its definition (since y;; is an interaction effect of the a-factor with
the p-factor), then in the term (I, ® I, ® 1,)y in (73) the I, and I, occur rather
than 1, and 1,. Likewise for the last term, (I, ® I, ® I,)e, thinking of ¢, as
being nested within the (i, j) cell then requires &, B and e itself for defining e;,
and so I, I, and 1, is appropriate. And finally in the first term, (1,® 1, ® 1,)4,
defining u requires neither &, p nor e, and so the KP has 1,, 1, and 1,.

-ii. Random or mixed? In comparing (73) with y = Xp + Zu + e, the
determination of which parts of (73) constitute Xp and which are Zu depends
entirely on the decision as to which parts of (73) are fixed and which are random;
and this decision is quite external to the algebraic form of (73). u is always
fixed: and so in random models XBis (1, ® 1, ® 1,) . If a is also to be considered
fixed then in the resulting mixed model Xp is the first two terms of (73).

-iti. Dispersion matrix. The terms of (73) that determine V do, of course,
depend upon which terms of (73) are taken as random. Whichever are so defined,
they are assumed to have variance and covariance properties in accord with
(64)-(66). Hence, for example, on taking & as random

Var[(la ® lb ® l,,)a] = (Ia ® ]b ® ln)U:la(la ® lb ® ]n),
=(L®1,®1,)(®1,®1,)
= U:(la ®Jb®J’.)1

after using the properties of KPs in Appendix M.2. Using this kind of result,
and results like cov(a, p') = 0 and cov(a, €’') = 0 from (65) and (66), it is easily
seen that for the as, fs and ys all being taken as random in (73)

V=(® J,® Jn)aaz +J.® lb ® Jn)a';
+ (Ia ® Ib®Jn)U)2; +(la®lb®ln)az . (74)
And for a mixed model with a representing fixed effects the term in o2 in (74)
would be dropped.

c. The 2-way nested classification
The model equation for a 2-way nested classification, with §;; nested within
o, is

Yin = B+ o + By + e (75)
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with, for balanced data, i=1,...,a, j=1,...,b for each i, and k= 1,...,n.
Algebraically, this is the same as (72) for the 2-way crossed classification except
that ; in (72) is deleted and y,; is replaced by g;; in (75). Making these changes
in (73) leads to the vector form of the model equation (75) being

y=(la®lb® ln)ﬂ +(la®lb®ln)a

+(la®lb® ln)ﬂ +(la®lb®ln)e’ (76)
with, for the random model,
v = (la ® Jb ® Jn)aaz + (la ® lb ® Jn)U; + (la ® lb ® ln)az . (77)

d. Interaction or nested factor?

In the with-interaction model equation of (73), note that the coefficient of
v, namely (I, ® I, ® 1,), is the same as the coefficient of p in the nested model
of (76). How then, one well might ask, does one identify y in (73) as representing
interactions and § in (76) as representing a nested factor? The answer relies on
characteristics of this way of formulating models. Consider y in (73). It represents
interaction between factors 4 and B, and so they are both needed for defining
v. Therefore its KP has I for both A and Band sois (I, ® I, ® 1,). Next consider
B in (76). It represents a B-factor that is nested within A. Therefore it needs
both A and B for defining it, and so it too has (I, ® I, ® 1,) as its KP. Therefore,
since both v in (73) and P in (76) are pre-multiplied by the same KP, the
question is how, without knowing that y in (73) and B in (76) represent different
kinds of factors, can we ascertain this distinction just from the model equations
(73) and (76)? Easily. In (73) there is a term that represents the A-factor, and
there is also one that represents just the B-factor: therefore, in answering our
question, the y-term that has both 4- and B-factors represented by I in its KP
is an interaction term. And complementary to this, in (76), where there is no
term representing a main effect B-factor, that tells us that p (which also has
both A- and B-factors represented by I in its KP) must represent a factor nested
within A. It is that absence of a term in just B in (76) that triggers the conclusion
that B represents nesting within A.

e. The general case

The preceding examples and as many more as one cares to consider will
provide convincing evidence that (even in the absence of rigorous proof) this
style of formulation applies quite generally. As Cornfield and Tukey (1956) so
rightly say in a similar context, in carrying out detailed steps such as those of
the examples, the “ systematic algebra can take us deep into the forest of notation.
But the detailed manipulation will, sooner or later, blot out any understanding
we may have started with.” Furthermore, having accomplished this, we would
then, so far as developing general results is concerned, be no more than “ready
for another step of induction and so on” as Cornfield and Tukey aptly put it.
We therefore give the general result towards which this type of induction
apparently leads.
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-i.  Model equation. In the model equation for a linear model of p — 1
main effect factors (crossed and/or nested) the coefficient of the vector of effects
corresponding to each factor, and to each interaction of factors, can be
represented by a KP of p matrices each being an I-matrix or a 1-vector. Thus
each term in the model equation can be represented in the form

(1@ 15, ® 15,8 @ 14)a, (78)
where 1, is a summing vector of order n,, with i, = 0 or 1, with 12,, being the
zero’th power of the 1, -vector and hence (in accord with scalar algebra where,
for example, 7° = 1) is given the value L. Since in (78) it is the values of ipyoresiy
that determine the nature of the KP, and which are determined by what the

factor (represented by a) is, we can in fact use i = [i, ... i,] and write any
linear model equation as

I .
y= Y (1h @15 @ @ 1) (19)
i=0

In this general formulation, every element of i is 0 or 1. When every element
is unity, i = 1,, every term in the KP is a 1-vector, and the corresponding a,
is u; hence the term in a is u1; and when every element in i is zero, i = 0, every
term in the KP is an I-matrix and the corresponding &, is . And since every
value of i in (79) is a binary number, there are 2” possible terms in (79). In
practice, of course, the a; corresponding to many of those binary numbers will
not exist in the model and so (79) will have fewer than 2” terms. An example
is (73) where p — 1 = 2, with 27 = 8, but only 5 terms occur in (73).

This formulation of a model for balanced data has been used by a
variety of authors; e.g., Nelder (1965a, b), Nerlove (1971), Balestra (1973),
Smith and Hocking (1978), Searle and Henderson (1979), Seifert (1979) and
Anderson et al. (1984).

We can also note that the order of a; is the product of the n; s that correspond
to non-zero i, in i. This can be written as IT7_, [1 + (m;, — 1)i,] since i, is either
Oor 1.

-ii.  Dispersion matrix. When (79) represents a random model, with every
a; therein being a random effect (except &; = ) the variance-covariance matrix
of y is

1,
V=var(y)= Y 6(J: @Ik @ ®J,), (80)
i=0
where
0; = var(a;) .

Searle and Henderson (1979) have a useful result for the inverse of V. First

define
1 1 1 1 1 1
T""[o n,]®[o n,_,]®"'®[o nl]
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and
0, =[0..00 .. 01 bo..10 0.1 .
Then the vector of 2 (possibly) distinct eigenvalues of V is given by
2, =T,0,. (81)
Now define

v_[ 1 1 1 1 ] (82)
P '1-000 )~0...0I AO...IO AI...II ’

the vector of reciprocals of the eigenvalues of V (and thus the eigenvalues of
V1), Then write

_ 1{n, -—1 1 {n,_, -1 Iln -1
T i=—_|"" | et - S e}
P npl:O | ]®np_,|: 0 | :l® ®n1[0 | ] (83)

Calculate

—T-1
p"Tp vp’

and the inverse of V is
I .
Vit= Y gl @3 1@ ®dh). (84)
i=0

It is to be noticed that V™! in (84) is a linear combination of the same
matrices (KPs of Js to the power of 0 or 1) as is V of (80). The only difference
is in the coefficients: 8s in (80), which are a2, and ts in (84); and through
(81)—(83) the ts arederived from the fs. An interesting feature of this relationship
is that the pattern of non-zero s is not necessarily the same as the pattern of
non-zero Os. Thus it is possible to have a zero 6; for some i and t; for the same i
can be non-zero. An example of this is shown in Searle and Henderson (1979),
wherein the only non-zero s for the random model of the 2-way classification
with interaction (Table 4.5) are 8oo0 = 62, 8001 = 62, 8011 = 6 and 0101 = 0}.
These are the four non-zero coefficients in V. In V™!, the four 7-values with
the same subscripts as these 0s are non-zero, but so also is t;;;, whereas 6;;
is zero.

The determinant of V is also available from Searle and Henderson. With the
eigenvalues of V being given by (81), and labeled 14 through 4,, as indicated
in (82),

p .
the multiplicity of 4 =4,; ., ism=[] (n,—1)' 7%,
r=1
where the number of levels of the rth factor is n,. Therefore

1
IVI= [T (4)™.
i=0
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4.7. MAXIMUM LIKELIHOOD ESTIMATION (ML)

Many of the general principles of estimating variance components by
maximum likelihood are discussed in Section 3.7: the use of normality, the
derivation of ML equations, the solutions of which [e.g., (108) of Chapter 3]
are ML estimators only if they are in what is called a feasible region (Section
3.7a-iii) wherein o2 is positive and all other as are zero or positive. And if one
or more solution is negative then the whole set of solutions has to be adapted
[e.g., as in (114) and (115) of Chapter 3] in order to have estimators that are
in the feasible region.

a. Estimating the mean in random models.

As noted following (79), the term in a; in (79) is u1, or, more exactly, uly
when N = T17_, n, is the number of observations. Hence the likelihood under
normality is

_expl— 4y —p)V " (y — 4]
n)tN| V¢

L(p,V]y) = , (85)

as following (103) of Chapter 3. Differentiating log L with respect to y, and
equating to zero, gives as the equation for the ML solution of u, namely f, as

1'V- 113 =1V" Yy, (86)
where V-1 is le of (84) but with ML estimators of the ¢2s replacing the o2s
themselves. V™! is given by (83); and for (86) we want

I'v'!'=(1,Q1, ®-®1,) 2 4Jr @Iz Q- ®J)
1
® (1,35)

But, because i, = 0 or 1,

0 M-

ie — 1!
1,d =nil, .

Hence

—l

- g o

ni’>13v = ql}

i

=1

P

1
and so (86) is gly1yji =qlyy forg= Y ti<n nﬁ'), thus giving
i=0 t

fi=7, (87)

the grand mean of all N observations. Thus for all random models the ML
estimator of u is the grand mean of the data.
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b. Four models with closed form estimators.

We here summarize the ML estimators of variance components obtainable
from balanced data of four different models. The first, for the sake of
completeness is the 1-way classification of Section 3.7. For none of them do we
show the derivation, preferring to simply quote the results so that they are
readily available for use by an interested reader who can, if so inclined, carry
out the derivation based as it is, on assuming that y follows a muiti-normal
distribution. There are at least two ways of doing this. One starts with
partitioning the sum of squares in the exponent of the likelihood of y. That
partitioning is done so as to be in terms of the sums of squares that occur in
the analysis of variance for the model at hand. Then differentiating the likelihood
will lead, via what is often tedious algebra, to ML equations for the variance
components. An example of this is the 1-way classification, random model,
balanced data, in Section 3.7a-i.

A second method is to use the result for the general model

y=X+ 5 Zn
introduced in (70). That resuit, derived in Section 6.2b, is that the ML equations
are
{msesq(Z;V~ '2))}:./206% = {. sesq(Z,Py)} 2o,
where sesq (A) represents the sum of squares of every element of A; and
P=V ! - VIIX(XVIX)X’'v~!.

Whichever of these methods is used the algebra can, as just mentioned, get to
be quite tedious.

-i. The I-way random model. The model equation is
Yy=u+o+ey

i=1,..,a and j=1,...,n.

TABLE 4.8.  ANALYSIS OF VARIANCE OF A 1-WAY CLASSIFICATION

Source df Sum of Squares Mean Square
A a—1 SSA = Zn(j,. — j..)? MSA =SSA/(a— 1)
Residual a(n—1) SSE = Z,Z(yy — yi.)? MSE = SSE/a(n — 1)
Total an — 1 SST,, = Z,Z,(y; — 7.)?
ANOVA estimators:

42 = MSE 62 = (MSA — MSE)/n

ML solutions:
¢2 = MSE 32 =[(1 — 1/a)MSA — MSE]/n
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TABLE 4.9. MLESTIMATORSOF 02 ANDG? INA 1-WAY RANDOM MODEL

Conditions

satisfied by ML Estimators

the ML

solutions 62 62

6220 62 =MSE ¢2=[(1-1/a)MSA — MSE]/n
62 <0 SST,,/an 0

-ii. The 2-way nested random model. The model equation is

Vi = b+ o+ B+ e
i=1,...,a, j=1...,b and k=1,...,n.

TABLE 4.10. ANALYSIS OF VARIANCE OF A 2-WAY NESTED, RANDOM MODEL

Source df. Sum of Squares Mean Square

A a—1 SSA = Z,bn(j,.. - j..)? MSA =SSA/(a—1)

B within A a(b—1) SSB:A =Z,Zn(j, — j..)? MSB:A = SSB:A/a(b— 1)
Residual ab(n — 1) SSE = Z,Z,Z.(yip — ¥iy.)? MSE = SSE/ab(n — 1)

Total abn - ] SSTm = z,-zjzk(yu,, - }').“)2

ANOVA estimators:
MSB:A — MSE

_MSA-MSBIA . MSBA-MSE . . yop

62
* bn n

ML solutions:

(1 — 1/a)MSA — MSB:A
bn
The ML estimators are as shown in Table 4.11.

The formal statement of the ML estimator of each variance component is
obtained by reading down the columns of Table 4.11, e.g.,

¢ =

, ¢3=6} and ¢2=¢2=MSE.

( SSA/a — MSB:
/a SB:A whend? > 0andd} >0,
bn
=2 _ _ a2
Ia < SSA/a - é. whend? > 0andd} <0,
bn
‘0 otherwise .

In contrast, each row of Table 4.11 indicates what the ML estimators are for
a particular set of circumstances that the data can produce, vis-a-vis positive
and negative values of 2 and ¢}.
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TABLE 4.11.  MLESTIMATORSOF 02,07 ANDG? INA 2-WAY NESTED CLASSIFICATION, RANDOM MODEL

Conditions
satisfied MLE
by the ML
solutions 62 &2 a2
SSA/a — MSB: MSB:A — M
4130410 SoA/a~ MSB:A SB:A — MSE -
bn n
— 42 .
s130,03<0 oAM= d. 0 SSE + SSB:A
bn albn— 1)
62 <0,6 20 0 1(___SSA + SSB:A _ MSE) MSE
n ab
Z SS
42 <0,d;<0 0 0 To
abn

-iii.  The 2-way crossed, with interaction, mixed model. The model equation

Vi = H+ o+ B+ v + ey
i=1..,a j=1,...,b and k=1,...,n; os fixed.

TABLE 4.12.  ANALYSIS OF VARIANCE FOR THE 2-WAY CROSSED CLASSIFICATION WITH INTERACTION

Source df. Sum of Squares Mean Square
SSA
A a-1 SSA = Lbn(§,. — 5..)? MSA =
a-
~ SSB
B b—1 SSB = Zian(y,;. — y..)? MSB = 71
SSAB
AB (a—1)(h—1) SSAB=ZLZn(y; — j. — J,. +J.)? MSAB= —————
(@a—hib-1
SSE
Error ab(n - 1) SSE = £,E,%,(yip — 5i;.)? MSE =
ab(n ~ 1)
Total abn — 1 SST, = Z,L, L yin — 7.0}

ANOVA estimators:

61 = MSB - MSAB, 82 MSAB - MSE,
an n

62 = MSE .

ML solutions:
(1 — 1/b)(MSB — MSAB) 62 (1 — 1/b)MSAB — MSE

an ’ n

61 = 62 = MSE .
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TABLE 4.13. ML ESTIMATORS OF G}, G2 AND G2 IN THE 2-WAY CROSSED CLASSIFICATION, MIXED

MODEL
Conditions
satisfied by MLE
the ML
solutions R &2 G2
63>0,6220 6} G2 62
1 (SSB SSE + SSAB SSE + SSAB
620,62 <0 _(___"__) 0
an\ b abn—a—-b+1 abn—a—-b+1
T 5 _ 5 )2
0} <0,6220 0 i Zgh(Piy — §...) #2
ab -1
SST
63<0,62<0 0 0 m
abn

-iv. The 2-way crossed, nointeraction, mixed model. The model equation is

Y =n+o+ B +epu
i=1..,a _]=l,,b and k=1,...,n d‘SﬁXCd.

TABLE 4.14.  ANALYSISOF VARIANCE FOR A 2.-WAY CROSSED CLASSIFICATION, NO INTERACTION MODEL

Source df. Sum of Squares Mean Square
A a—1 SSA = Z;bn(j,.. - j..)? MSA =SSA/(a - 1)
B b—1 SSB = Zjan(y,;. — j..) MSB = SSB/(b — 1)
Error abn—a— SSE = Z,%,Z,(yi — Ji. — J.j. + 5..)*  MSE =SSE/

b+1 (abn —a—b+1)

Total  abn—1 SST,, = Z,Z;Z(yip — §..)2

ANOVA estimators:

g2 - MSB—MSE & 42—MSE.
a an e

ML solutions:

a—1

SSB/b — 62
b(an — 1)

an

6} = and d§=[l— ]MSE.
Notice that the form of the ML estimators in Table 4.15 is the same as that

in Table 4.9 for the 1-way classification.
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TABLE 4.15. ML ESTIMATORS OF d: AND
03 IN A 2-WAY CROSSED CLASSIFICATION,
MIXED MODEL, &-EFFECTS FIXED

Conditions

satisfied by MLE

the ML

solutions é; G2

6;20 d} d?

d; <0 0 S5T,
abn

¢.  Unbiasedness
Most ML estimators are biased, and so are many ML solutions if they are
used as estimators. For instance, the example of Table 4.12 has E(d¢2) =
E(MSE) = ¢, and so ¢2 is unbiased. But
(1 — 1/b)E(MSAB) — E(MSE)
n

E(¢}) =

_(1—=1/b)(ne? +02)— 0} 52— nel + ol
n ’ bn

’

showing tha df is not unbiased for a,’. Second, the solutions of the ML equations
are not, as has been emphasized, the ML estimators. The estimators are truncated
versions of the solutions, as for example in Table 4.13; and this truncation
further negates unbiasedness. For example, suppose 62 =0 in the 1-way
classification. The ANOVA estimator ¢ is unbiased yet it can be negative. And
it will be negative often enough to balance out the occurrence of positive
values to average zero. Deleting those negative values and substituting zero, to
get the ML 62 therefore gives 62 as biased upwards. Moreover, in Table 4.13,
the ML estimator of ¢ is represented by the last column of the table, and the
expected value of that estimator will involve the probabilities of solutions ¢}
and ¢? being negative either singly or together—just as such a probability is
illustrated in Section 3.7a-iv.

Readers interested in the bias of the solutions of the ML equations for the
four models of sub-section b will find details in Corbeil and Searle (1976b)—
wherein the solutions are wrongly referred to as ML estimators!

d. The 2-way crossed classification, random model

Lest the reader be led astray by the preceding examples into thinking that
ML estimators of variance components from balanced data are always in closed
form (as in those examples), we now consider the 2-way crossed classification
random model, for which the ML estimators from balanced data are not in
closed form.
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Replacing u in L of (85) by ji = j of (87) leads to what is called the profile
likelihood, which can be used for deriving ML estimators of variance components
of the random model. Using balanced data, it is

_exp[—3(y = y1)V 'y — y1)]
B (2n)" V(¥ ' o

where V is the appropriate form of (80) and V™! is available from (84).
ML equations are obtained by equating to zero dL/da? for each a2 in the model.
Applying this methodology to any particular random model involves nothing
that is particularly difficult except that the whole process can be somewhat
tedious (see E 4.11 for the 2-way nested classification). An alternative method
of derivation, applicable to unbalanced data, but for which balanced data are
a simplifying case, is given in Chapter 6, and even that simplification can be
tedious. We therefore omit derivation of the ML equations that follow for the
2-way crossed classification, random model.

L

-i. With interaction. Details of this model are given in Section 4.3. For
writing the ML equations we define the following linear combinations of the
variance components:

6, = o2, 0, = o2 + ne? + bnal,

0, =062 + nol, 0,, =02+ ne?+ anc}
and (89)
04 = 62 + no? + bno? + anc} =0,, +0,, -0, .

Then, using the sums of squares defined in Table 4.3, the ML equations are

1 a-1 b-1 (a—1)b—-1) ab(n—1) SSA SSB SSAB SSE
A N P A A A A
et _ssa

s 0y 0%, (90)
1 bl _Ss8B

04 012 1
i+a—l+b—l+(a—l)(b—l) =S_SA+@+§_S_/E

0, 6 6y 6, 01, 0, 6

Despite the tantalizingly apparent simplicity of these equations [ which were first
derived by Miller (1977)], they are in fact nonlinear in the fs (even after using
6, =0,, +0,, — 0,)except, through subtracting the last equation from the first,
for 62 = MSE. Otherwise, there is no closed form of solution for the ¢2s. It has
to be found, for each particular set of data, by using numerical methods. Since this
is also the manner in which ML estimates have to be calculated from unbalanced
data, discussion of such techniques is left until Chapter 8.
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A re-writing of (90) that might be useful for iterative purposes is the following.
First, requiring no iteration, subtracting the last equation of (90) from the first
gives

SSE
fp = ———— = MSE .
° " ab(n—1)

Then the second and third equations can be written as

; 0,
= MSA — ,
" (a—l)(9“+912—9,)

2
f,, = MSB — 12

(b—1)(0,, +60,,—6,)
And subtracting the second and third equation from the fourth gives
0F
(a=1)(b—1)(0;; + 6, ~0,)

These last three equations are clearly amenable to iteration.

6, = MSAB +

-il. No interaction. If the no-interaction form of the model is used, its ML
equations are derived from (89) and (90) by putting 62 = 0 and combining SSAB
and SSE, and omitting the last equation of (90). Thus with

0, =0,=02, 0, =0%+bns?, 0,,=o0?+anc} (91)
and
0, =02 +ano} +bnol =0, +0,, -0,

the ML equations are

1 a—l+b-—1+abn—a—b+1__SSA+SSB+SSAB+SSE
0. 0 e, A CHE P 05
1 a-1 SSA
1y =2 (92)
04 011 91;1

1 b~ 1 SSB
A ¥ T

4 12 12

These two are nonlinear in the fs and have no closed form solution for them or
the ¢3s.

e. Existence of explicit solutions

The absence of explicit, closed form solutions to the ML equations in the
preceding example may come as a surprise, considering that it is for balanced
data, for which one so often has a strong intuitive feeling along the lines that
“everything is straightforward”. But this is not so. Indeed Szatrowski and Miller
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(1980) have a theorem that tells us when explicit ML solutions exist for balanced
data from a mixed model.

Suppose a mixed model has r random factors (excluding the error terms); and
denote the number of different symbols used as subscripts in the model equation
by s. Define t,, as a row vector of order s that is null except for unity as its gth
element when the pth random factor of the model has the gth subscript; and
defineto =1, . Let T, . 1yxs=1[ty ... t]" Letwy,...,w, be the columns of
T and wy, = 1.

Recall a * b as the Hadamard product of two vectors a and b, it being a vector
having elements a;b,. Define # as the smallest set containing wg, wy,..., W,
closed under Hadamard multiplication of vectors. Let n(%") be the number of
distinct columns in #"; distinct, not necessarily linearly independent.

Theorem. The model has explicit ML solutions ifand only ifn() = r + 1.

Example 1. The 2-way crossed classification, with interaction, random
model has equation y;; = u + o; + B; + v, + e; with r =3 and s = 3.

T= >n(W)=5>4=3+1=r+1,

— e Y

1 1

1 0
, W=

1 1

1 1

o O O -
—_ O - -
o O O -
—_ O O =

1
1
0
1
Therefore this model has, as we have seen in (90), no explicit ML solutions.

Example 2. The 2-way crossed classification, with interaction, mixed model,
with as fixed has r =2 and s = 3.

I O
T=(0 1 0|, ={1 0 O0|=2n(¥#)=3=2+1=r+1.
1 10 1 10
Therefore this model has explicit ML solutions, as in Table 4.15.

f. Asymptotic sampling variances for the 2-way crossed classification

The general theory of maximum likelihood estimation has it that the
large-sample dispersion matrix of a vector of ML estimators is the inverse of
the matrix whose elements are minus the expected value of the second derivatives
of the likelihood function. Details of this are shown in Chapter 6 in terms of
the matrix formulation of a linear model

y=Xp+ Y Zu +e
i=1

of (68) with V of (69). The result is that
var(6?) = 2[{, tr(V~'Z,Z;V~ '2,Z)} <017, (93)
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consequences and implications of which are dealt with in Chapter 6. It suffices
to say here that (93) can be used for the 2-way crossed classification, with
interaction, random model of the preceding subsection, c-i. That in turn can be
used for the no-interaction case of d-ii, and also for all of the four cases of the
preceding subsection b, each of which can be treated as a special case of c-i.
We deal with these six cases.

-i. The 2-way crossed classification, with interaction, random model. The
result of applying (93) to the 2-way crossed classification, with interaction,
random model is that

G2 tee lu/bn tggfan  t,/n]7!
G2 tea abn?/6% t,,/b
var| |2 10t (94)
%8 symmetric fos oo/ a
&y by
for
ab(n—1) t, 5 2(a—l l)
= Iy g = b +—),
o 62 n? 6%, 82
(95)
b—1 1 (a-1)b—-1) a-1 b-1 1
tgy = a’n? + = d t,= 2[ + + +—1
g ( 0% 62) LA z o, 6, o

with the s of (89). Note that (94) is an asymptotic equality, because it is a
large-sample result.

Note: The occurrence of “symmetric” (or “sym”) in a matrix as in (94) indicates
that the matrix is symmetric.

<ii. The 2-way crossed classification, no interaction, random model. For
this model put af = 0 in (95) and delete the last row and column of (94). This
gives for the s of (91), with

_abn—a-b+l a—-1 b-1 1

+ + +
¢ 7 o, o5, ol
-1 T (a—l |> (b—l 1\ 1
&2 ¢ bl — + — an| — + —
0}, 0} 03, 03)
-1 1 abn?
62 | =2 bznz(a +—> — 96
" 0, 0 o ©6)
b—1 1
G} symmetric 4
b ﬁ- b y e . ( 0%1 oi)d
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We can now use (94) and (95) to derive large-sample dispersion matrices for the
four cases in sub-section b—the cases where the ML solutions are in closed
form. In each of those cases the solutions are linear functions of independently
x2-distributed mean squares and so sampling variances and covariances of those
solutions could easily be found, as was done in Section 4.5f for ANOVA
estimators. This was also done for the l-way classification in (123) of
Chapter 3. And at (127) of that chapter an expression for var(§2) was obtained
taking into account the probability of 42 being negative. Neither of these
derivations are being made here. What is being derived is large-sample variances
and covariances, akin to (126) of Chapter 3. Indeed, we show in detail how that
result is derived from (96).

~iti. The 2-way crossed, with interaction, mixed model. With as taken as
fixed effects all we need to do is use 62 =0 in the 6s of (89) and delete the
second row and column of (94). This gives, with

2 2
0o =0z, 0, =0+no}=0,,

0., =62 + no + anoj = 6,, (97)
ab(n—1) 1, abn? a-1 1
= W = and ¢, = bn? +— 98
e e e " o Ton) Y
62 [t tgp/an t,/n]"?
var 63 ~2 tﬁﬁ tm,/a
62 symmetric ¢,,
- -1
aln—1) an
3 +w =
90 612
2 2,2 2 a-1 1
=3 atn? an , forw= o o (99)
0 oo
symmetric nw
C o . ~o '
aln—1) an(n — 1)
2 (62 +ne2)*/(a—1)+ 6}, — (62 + na?)?
b a’n? an*(a—1)
2 2y2 4
symmetric _15[(% +noy) + 2 ]
i n a—1 a(n—1)

(100)

-iv. The 2-way crossed, no interaction, mixed model. In taking the as as
fixed effects we adapt the preceding case to have no interactions by putting
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o2 = 0. This gives (97) and (98) as

00'—-63:01:011 and 012=63+an0’3=04

and
a-1 1
t.., = bnz[ + ], 101
" o¢ (02 + anc})? (10D
so that
_blan—1) b and ton = a’bn?
e ol (62 + ana})? o (62 + ana})®’

This leads to (99), after deleting its last row and column, being

2 an — 1 + 1 an -1
¢ 2] o (62 + anc})? (o? + anc})?
var 52 zE an a’n? (102)
. (62 + anc})? (¢ + anc})?
20? ! 71;1
=—f (103)
blan—1)| —1 1+ (an—1)(1 + anc}/c?)?
an a’n?

Note that although putting 62 = 0 in (99) and deleting its last row and column
yields (102), the same operations on (100) do not yield (103)—as neither they
should. (The inverse of a submatrix is not necessarily part of the inverse of the
matrix of which it is a submatrix.)

g. Asymptotic sampling variances for two other models

<i. The 2-way nested classification, random model, Taking the model
equation as y;; = pu + o + f; + e, of sub-section 4b-ii, we can derive its
information matrix from (94) by putting ¢} = 0 in (89), changing 2 to o2 and
deleting the third row and column of (94). The changes in (89) and (95) lead to

8 =02, 0,=02+nc}=0,, and 6,=02+no}+bne?=0,,
with (104)
ab(n — 1)t ab®n? (b -1 1 )
lye = ————+ 15, t,= and gy, = an? +—=1.
o8 63, ¥ 67 6%

These ¢s are exactly the same as in (98) except for notation changes: ¢, instead
of £, Lgg in place of t,,, ¢} in place of 62, qf in place ofaﬁl, aand b interchanged,
and 6,, in place of 8,,. Therefore the dispersion matrix will be the same as
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(100), only with these same changes. Thus, with

_ (02 + naj)?

0 ,
b-—1
. B 4 gt .
52 a, 0 g,
b(n-1) bn(n — 1)
. 2 o + 6%, -6
var 0: 2; —l')—z‘nT' W (105)
1 a?
62 mmetric —| &+ ¢ ]
/ » nz[ b(n— 1)

~ii. The I-way classification, random model. The 2-way crossed classifica-
tion, no interaction, random model can be converted to the l-way model
equation by dropping f8;; and effectively putting 07 = 0 and b = 1. Doing this
in (91) gives
6o=02=6,=6,, and 0, , =d2+no2=29,.

Making these changes in (96), along with dropping its last row and column, gives

52 a(n—1) a an -1
¢ 4 (62 + ne2)* (o2 + no?)?
var ~2
52 an an?
¢ (62 + no?)? (62 + na?)?
-1
4 n
_ 2o L (106)
aln—1)| -1 14+ (n—1)1 +no2/c?)?
n n?

which is, of course, the same as (126) of Chapter 3.

h. Locating resulits

The sequence chosen for presenting the preceding results was governed by
ease of derivation. As a consequence, locating results for each of the six cases
presented might be found a little confusing. Table 4.16 should ease this confusion.

4.8. RESTRICTED MAXIMUM LIKELIHOOD (REML)

The general concept of REML estimation is introduced in Section 3.8. Details
of REML applicable to unbalanced data are given in Chapter 6. Moreover, in
Chapter 11 it is shown that when we seek minimum variance quadratic unbiased
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TABLE 4.16.  SUBSECTIONS CONTAINING RESULTS FOR ML ESTIMATION

Subsection
Asymptotic

Classification and Model Estimators  Dispersion Matrix
l-way, random b-i g-ii
2-way nested, random b-ii g-i
2-way crossed

with interaction, mixed b-iii f-iii

no interaction, mixed b-iv f-iv

with interaction, random d-i f-i

no interaction, random d-ii f-ii

estimators of variance components for unbalanced data generally, under the
usual normality assumptions, we arrive at the same equations as are used for
REML. But since, for balanced data, we already know that ANOVA estimators
under normality assumptions are minimum variance unbiased, and are quadratic,
we therefore have the result for balanced data that solutions of the REML
equations are the same as ANOVA estimators, i.e.,

for balanced data: REML solutions = ANOVA estimators .

Other derivations of this result are available in Anderson (1979b) and
Pukelsheim and Styan (1979), who add the telling phrase that this result “need
not be checked explicitly” (as they do for unbalanced data—see Section 6.7).
We therefore say no more about REML solutions for balanced data.

REML estimators are obtained from REML solutions by applying the same
procedures to ensure non-negativity requirements as is done with deriving ML
estimators from ML solutions. This has been illustrated in Tables 4.9, 4.11, 4.13
and 4.15.

4.9. ESTIMATING FIXED EFFECTS IN MIXED MODELS

In random models the only fixed effect is u, and its MLE has been shown
in (87) to be ji = y. Its sampling variance is var(i) = 1'V1/N?, using var(y) = V
as in Section 4.6a. In that same section the fixed effects of the mixed model
equationy = XP + Zu + e are § with the elements of Xp always being estimable
functions of elements of B. The ordinary least squares estimator of P
(see Appendix S.1) is

OLSE(XB) = X(X'X)"X'y. (107)

This, it will be noticed, does not involve V, and so OLSE(XP) can be derived
without having to estimate variance components. Moreover, for balanced data,
X can always be written as a partitioned matrix of submatrices that are
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Kronecker products of I-matrices and 1-vectors. For example, in the 2-way
crossed classification of (73), were & to be taken as fixed (along with u) then
X would be

x=[la®1b®ln la®lb®ln]' (108)

A consequence of this is (e.g., Searle, 1988b) that OLSE(XB) of (107) always
has a simple form. For example, X of (108) reduces (107) to be the familiar

OLSE(4 + &) = ji.. . (109)

This style of result is true for all cases of balanced data from mixed models:
OLS estimators of estimable functions of fixed effects are based on cell means
and factor level means, the kind of result that one sees in standard analyses of
designed experiments.

The variance components are taken into account when estimating fixed effects
by utilizing V as in

GLSE(XB) = X(X'V™!'X)"X'Vly, (110)

as outlined in Appendix S.1. But for balanced data V is a linear combination
of Kronecker products of I- and J-matrices, as exemplified in (74). Indeed, for
the 2-way crossed classification with as fixed, for which (108) is the X-matrix,
V is (74) without the o2-term:

V=J,®L,®J)6 +(I,@1I,®J,)62 + (I,®1,®1,)d. (111)
Using this and X of (108) in (110), it will be found (E 4.23) that (110) reduces to
GLSE(y + o)) = j,.., (112)
the same as OLSE of (109). Thus in this case
GLSE(XB) = OLSE(XB) . (113)

However, this is a result that is true for all cases of balanced data from any
customary mixed model (e.g., Searle, 1988b) excluding the use of covariates,
which effectively causes data to be unbalanced. Result (113) is true, as shown
by Zyskind (1969), if and only if there is some matrix Q for which VX = XQ,.
For unbalanced data this is established using (70) developed in Chapter 12,
namely that there does exist a Q, such that Z,Z;X = XQ,. Then it follows for
V =X{_,0?Z,Z; of (71) in this chapter that

VX =Y 6?ZZX =X ¥ 07Q, = XQ
i=0 i=0

for Q = Zi_, 0} Q,.
Maximum likelihood estimation (under normality) of fixed effects in a mixed
model is simple for balanced data. This is so because the ML equation for Xf is

XV 1Xg=XxV-1ty,
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which leads to
Xp=X(XV-1X)"X'V-ly, (114)

¥ -! being the ML estimator of V, namely V with each a? replaced by its
corresponding &2. But since, for balanced data, X of (114) is the same as
GLSE(XB) of (110), only with V in place of V, and from (113) we have
GLSE(XB) = OLSE(Xp), which involves no variance components, so likewise
for Xp. Thus, for balanced data

OLSE(XpB) = GLSE(XB) = MLE(Xp) = BLUE(XB), (115)

where the last of these four is the best linear unbiased estimator.

Insofar as REML estimation is concerned it is an estimation method
applicable only to variance components and it gives no direction whatever on
how to estimate XB. But in view of (115) this is of no concern.

4.10. SUMMARY

Establishing analysis of variance tables: Section 4.1

Linesin the table: Rule 1
Interactions: Rules 2, 3 and 4
Degrees of freedom: Rules 5 and 6
Sums of squares: Rules 7 and 8

Calculating sums of squares: Rule 9
Expected mean squares: Section 4.2
Rules 10, 11, 12 and 13

The 2-way crossed classification: Section 4.3
Sums of squares and meansquares: Table 4.3
Expected mean squares:

Fixed effects model: Table 4.4
Random effects model: Table 4.5
Mixed model: Table 4.6

Mixed model with Z-restrictions: Table 4.7
ANOVA estimators of variance components: Section 4.3d

ANOVA estimation and negative estimates: Section 4.4

E(m) = Pe?; (29)
62=P 'm. (30)
Normality assumptions: Section 4.5
fiMi 2
o~ X (34)
EM)

&* ~ P~y 1}/fi} Pe’, (38)
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Hypothesis testing: Section 4.5¢
Satterthwaite procedures (42), (43)
Confidence intervals: Section 4.5d
Probability of a negative estimate: Section 4.5¢
Sampling variances: Section 4.5f

2
var(62)=P_‘{ 3[—€(}W—')]}P“', (55)
d ;
A(a2) — p-) 2M12} — 56
vir(62)=P {dﬁ+2 | JaL (56)

Matrix formulation: Section 4.6

r

y=xp+Zu+e=XB+ Z Z,u""'e; (58)’(68)
i=1
E(y)=Xp, E(e)=0, var(e)=ally; (62),(63)
D = var(u) = {yvar(w)} = {407 L, }; (64), (67)
V = var(y) = ZDZ' + o2l = i Z,Z,6? + o1, (69)
i=1

w=e Z,=I,, di=9d2
y=Xp+ Z Zu, V= Z Z,Zc? . (70), (71)
i=0 i=0

Kronecker product notation: Sections 4.6b, ¢, d, and e
€.g. (la ® lb ® ln)a . (73)

Maximum likelihood: Section 4.7
Estimating the mean in random models: Section 4.7a

A=7. (87)

Closed-form estimators: Section 4.7b
Classification and model

(b-i) 1-way random Tables 4.8 and 4.9
(b-ii) 2-way nested random Tables 4.10 and 4.11
(b-iii) 2-way crossed classification mixed Tables 4.12 and 4.13
(b-iv) 2-way crossed, no interaction, mixed Tables 4.14 and 4.15

No closed-form estimators: Section 4.7d
The 2-way crossed classification, random model:
(d-i) With interaction (90)
(d-ii) No interaction (92)
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Existence of explicit solutions: Section 4.7¢
Asymptotic samp!’ 1g variances
The 2-way crossed classification: Section 4.7f
Model
(f-i)  With interaction, random (94)
(f-<ii) No interaction, random (96)
(f-iii) With interaction, mixed (100)
(f-tv) No interaction, mixed (103)
Two other models
(g-i) The 2-way nested random (105)
(g-ii) The 1-way random (106)
Note: The preceding sub-sections pair up as follows: Table 4.16
b-i and g-ii; b-ii and g-i;
b-iii and f-iii; b-iv and f-iv;
d-i and fi; d-ii and f-ii .
Restricted maximum likelihood: Section 4.8
Estimating fixed effects: Section 4.9
OLSE(XB) = X(X'X) XYy, (107)
GLSE(XB) = X(X'V™'X) X'V-ly. (110)

E4.1.

E4.2
E43.

4.11. EXERCISES

Suppose you have balanced data from a model having factors 4,
B, C within AB-subclasses, and D within C. Set up the analysis of
variance table, and give expected values of mean squares for (i) the
random model, (ii) the mixed model when A is a fixed effects factor
and (iii) the mixed model when both 4 and B are fixed effects factors.
Repeat E 4.1 for a model having factors 4, B, D, and C within AB.

A split plot experiment, whose main plots form a randomized
complete blocks design, can be analyzed with the model equation

Yip =g+ o+ 04+ 84 B+ 0, + e,

where o, represents a treatment effect, p, is a block effect and g, is
the effect due to the kth sub-plot treatment. Set up the analysis of
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E44.

E4.5.
E 4.6.

E4.7.

E 4.8

E49.

E 4.10.
E4.11.

E4.12.
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variance table, and give expected values of mean squares for the
following cases:

(a) random model;

(b) mixed model, ps and ds random;

(c) mixed model, only the fs fixed;

(d) mixed model, only the as fixed.

(a) From (4) derive (6) and (7).

(b) Derive (8).

(c) Using(11),showthat E(MSB)ofTable4.4is anzjﬁ"f‘/(b - 1)
Use (13), (14) and (15) to derive Table 4.5 from (8).

In the context in which (23) is used, show that it leads to (18)—(21)

being satisfied; and to

2
2 ay
y

%= 1—-1/a
Calculate ANOVA estimates of variance components from the
following data of 3 rows, 4 columns and 2 observations per cell. Use
(a) the random model;

(b) the mixed model with rows fixed;

(c) the mixed model of (b), with X-restrictions.

, cov(B),yu)=0 and cov(yy,7yy)=0 forj#j .

Data
10 16 12 9
14 22 18 19

23 17 24 18
25 21 32 24
13 8 16 7
17 12 12 19

(a) Use (49) and (50) to derive confidence intervals on o2 and o}
of Table 4.5.

(b) Use thedata of E 4.7 to calculate values of the intervals derived
in (a).

(a) Use (56) to derive unbiased estimators of sampling variances

of and covariances between estimated components of variance
derived from Table 4.5.

(b) Use the data of E 4.7 to calculate estimates from the unbiased
estimators in (a).

For the model of Table 4.5 find V = var(y) and V™.

Use (76) of Section 4.6¢c, together with (80) and (81), to derive the
ML solution of Section 4.7b-ii.

Confirm V™! and | V| obtained in E 4.11 by writing V as
V=1,®(D-CA™'B)
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forD =1,®(0}J, + 621,)WithA™! = —g2andC=B'=1,1,
and use Appendix M.5.

E 4.13. Derive the dispersion matrix (100) from equation (99).

E4.14. Consider data sets A and B:

A B
8 8 11 L7 2,6 4,7
4 10 19 L3 4,6 811

Treating Data Set A as a 1-way classification of 3 classes and 2
observations, calculate for a random model

(a) ANOVA estimates of variance components;

(b) unbiased estimates of the sampling variances and covariances
of estimators, assuming normality, used in (a).

E4.15. RepeatE 4.14 with A but treatit as having 2 rows and 3 columns.
E4.16. Repeat E 4.14 with B but treat it as having 2 rows and 3 columns
with 2 observations per cell.

E4.17. Data sets P-U are examples of a 2-way nested classification with
a=3b=2and n =4

P Q
a, a; a, a, a a,
6 4 410 5 4 3 2 2 3 3 2
4 2 56 6 8 4 3 1 2 2 1
53 6 8 31 31 3 3 1 1
5 3 6 8 2 3 2 2 1 1 1 1
R S
a, a, a, a, a, a,
2 3 1 3 6 2 2 14 8 4 8 6
2 2 1 3 7 1 4 10 50 64
1 6 2 1 4 4 610 5 4 12 6
3 5 0 5 7 1 4 14 6 8 14 8
T U
a a, as a, a, as
3 2 81 10 7 6 2 0 1 11 10
4 1 14 10 8 8 1 2 7 5§
7 4 0 12 5§ 7 1 2 6 10 7
6 S5 115 16 6 3 5 1 3 12 2
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E 4.18.

E 4.19.
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(a) Calculate ANOVA estimates of the variance compounents for
the random model.

(b) Under normality assumptions, derive sampling variances and
covariances of the estimators in (a).

(c) Derive unbiased estimators of the sampling variances in (b).

(d) Re-do your calculations using b =4 and n = 2.

Suppose a clothing manufacturer has collected data on the number
of defective socks it makes. There are 6 subsidiary companies
(factor C) that make knitted socks. At each company there are 5
brands (B) of knitting machine, with 20 machines of each brand in
each company. All machines, of all brands, are used on the different
types of yarn (Y ) from which socks are made: nylon, cotton and wool.

At each company data have been collected from just two machines

(M) of each brand, when operated by each of 4 locally resident

women (F), using each of the yarns; and on each occasion the

number of defective socks in two replicate samples of 100 socks was
recorded.

(a) Key-out the analysis of variance for these data: for each line
in the analysis give a label (both symbolic and verbal); and give
the degrees of freedom.

(b) Decide which factors are to be considered random-and give
brief reasons for your decisions.

(c) For each of just the random main effects factors, and their
interaction with each other,

(i) derive the expected mean square in the analysis of variance
of part (a) using (b);

(ii) using x for an observation, with appropriate subscripts (that
include those for the factors in the sequence C, B, Y, M, F) show
what the sum of squares is corresponding to each expected mean
square of (i).

(iii) Write down the terms of V = var(y) that involve the
variance components o2.cg, 02c and oly.cs- Use Kronecker
products of I-matrices and J-matrices.

In the 2-way crossed classification show that

a b
i=zl _/¢j2= | By = Yy ) Fig. — V.p) B MSA — MSAB

b(a—1)(b-1) bn

and hence that its expected value is o2. This is the estimator
suggested by Hocking et al. (1989), as providing an explanation as
to why 42 can be negative. It is a pooled product-moment
correlation, of the y;;-means in each pair of columns, pooled over
all pairs.
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E 4.20.

E4.21.

E 4.22.
E 4.23.
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Using either the likelihood function or the general results given in
Chapter 6, derive ML results given in Section 4.7 (sub-sections
containing the results are shown in parentheses):

(a) 1-way random model (b-i and g-ii);

(b) 2-way nested random model (b-ii and g-i);

(c) 2-way crossed, with interaction, mixed model (b-iii and f-iii);
(d) 2-way crossed, no interaction, mixed model (b-iv and f-iv);
(e) 2-way crossed, with interaction, random model (d-i and f-i);
(f) 2-way crossed, no interaction, random model (d-ii and f-ii).

Show for balanced data from a 3-way crossed classification with
allinteractions and one fixed effects factor, that explicit ML solutions
for the variance components do not exist.

Derive (109) from (107) using (108) for the model equation (72).

Derive (112) from (110) using (108) and (111).



CHAPTER §

ANALYSIS OF VARIANCE
ESTIMATION FOR UNBALANCED
DATA

The previous chapter describes the ANOVA method of estimating variance
components from balanced data. Extending that method to unbalanced data
began with the 1-way classification (Chapter 3) as in Cochran(1939) and Winsor
and Clark (1940)—see Chapter 2. Extending it to higher-order classifications
would nowadays appear to have been an obvious thing to do, and yet it seems
to be that it was the Henderson (1953) paper that gave this extension its first
major fillip—prompted, no doubt, by his interest in estimating variance
components in a genetic setting where available data can be voluminous but
severely unbalanced.

This chapter considers somewhat briefly the ANOVA method generally, as
applicable to unbalanced data, and gives lengthy description of the three
adaptations of ANOV A methodology suggested by Henderson (1953). Although
those Henderson methods (as they have come to be known) are coming to be
superseded by maximum likelihood (see Chapter 6) and other techniques, we
know of no book that gives a detailed account of the Henderson methods, so
this we proceed to do. For some readers this chapter may be mainly of historical
interest. But it is important history, because for nigh on forty years the Henderson
methods have been very widely used, in many cases on enormously large data
sets. Moreover, they are methods that are likely to go on being used. This is
because some researchers have solid confidence in understanding analysis of
variance of balanced data and of expected mean squares derived therefrom, and
feel that they can easily transfer that confidence to using the same concepts for
unbalanced data. Furthermore, there is attraction in the fact that one of the
Henderson methods is relatively easy to understand and to compute. In contrast,
those same researchers can be quite apprehensive about maximum likelihood,
for example. They might feel it is “too theoretic”, and they might be overawed
by the mathematics involved, by the lack of closed form expressions for
estimators, and by the need for iterative techniques and sophisticated computing

168
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programs to carry out those techniques. In addition, of course, there are
situations where the necessary computing power may not be available, and so
resort has to be made to something more easily computed than maximum
likelihood estimators, such as some kind of ANOVA-style estimates. We
therefore deem it worthwhile to describe ANOVA methodology and especially
the Henderson applications of it.

5.1. MODEL FORMULATION

a. Data

We take unbalanced data to be data in which there is not the same number
of observations in every sub-most cell (see Section 1.2). For fixed effects models,
emphatic distinction between all-cells-filled data and some-cells-empty data has
been made by Searle (1987), but there seems to be less need for this distinction
with mixed models. Nevertheless, in many applications where variance
components are of interest the data frequently have empty cells, often with a
very large percentage of the cells being empty (e.g., 70% empty). The problem
of connectedness of the data (e.g., Searle 1987, Sec. 5.3) therefore raises its ugly
head. It is important because for disconnected data (e.g., loc cit., p. 157) certain
calculation procedures are not appropriate when singular matrices occur where
they would not do so with connected data.

The reader is assumed to be familiar with the R(-|-) notation for reductions
in sums of squares. For example

R(a|u) = R(p, &) — R(p)

is the difference between R(y, &), the reduction in sum of squares due to fitting
E(y;) = u + «; and R(u), the reduction in sum of squares due to fitting, to the
same data, the model E(y;;) = u. R(a|p) is thus often referred to as the sum
of squares due to a after u. Lengthy discussion of R(*|*) is given in Searle (1971,
pp. 246-247; 1987, pp. 26-28).

In the 2-way crossed classification the sums of squares R(p|x) and R(f| u, o)
are equal for balanced data but not for unbalanced data. Using the model
equation

E(yip)=u+ o, + B,

for i=1,...,a,j=1..band k=1,...,n; with n;; >0 when a cell has
no data,

R(BIw) = ‘zl (5. = 5.0
But
a b-1
RBIpa)=0rT 'r forr= { Yo — 2 "uy-i--}

c i=1 i=1
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where T, symmetric of order b — 1, has elements for j#j =1,...,b—1
that are

a pn2 a N
ty=ny~ % 4 and t,=-y WU
i=3 Ny, =1 n,
Details of these derivations are found, for example, in Searle (1971, p. 267; 1987,
pp. 124-125), wherein the letter c is used in place of .

b. A general model
The general model equation

y=Xp+Zu+e
developed in Section 4.6 for balanced data can still be used with unbalanced
data, although in the form
y=Xﬂ+Z1ul+“'+Zru,+e (l)
the matrices Z,, ..., Z, are no longer Kronecker products of identity matrices
and summing vectors. Taking the Zs as incidence matrices (with Os and 1s as

elements) they still have structure, but not such that it can be neatly formulated
as with balanced data.

-i. [Example 1: the 2-way crossed classification, random model. Suppose in
the 2-way crossed classification that the numbers of observations in a set of
data are as shown in Table 5.1. Then for the model equation

Yp=uto+ B+ v+ ep

withi=1,...,a,j=1,...,band k = 1,..., n;;, with n;; = 0 when cell (i, j) has
no data, the vector form

Y=ul+Za+Z,p+Zyy+e (2)
is _ _
l2
1 I
y=lypt+| - 1o - jJa+| l.l l. B
8
1, L
- 13 -
1, ]
. 13
. B ll . . .
+ T+e. (3)
S
A
- 13-
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TABLE 5.1. VALUES OF n

nu n,,
2 3 — 5
— 1 8 9
4 3 — 1
n; 6 7 8 21=n.=N

Note that the matrix multiplying B can be partitioned into 3 sets of rows
corresponding to the summing vectors in the matrix multiplying a. But in
contrast to that matrix, which can be described quite generally as {41, },2,,
the matrix multiplying B has no general specification. This is because the order
of the summing vectors in the coefficient of B depends on the numbers of
observations in each row of Table 5.1 and the manner in which those numbers
are spread across the columns of the table. For example, in Table 5.1 there are
five observations in row 1, two of them being in column 1 and three in column 2.
This gives rise to having 1, and 1, in columns ! and 2 of the matrix multiplying
Bin (3). Unfortunately, in the presence of empty cells, i.e., with some-cells-empty
data, there is no useful notation for this matrix, except that it is Q{4 1, },2,,
where Q is a permutation matrix (and thus orthogonal) that is determined by
the actual pattern of observations. As a result, a general form of (3) is

y=ply+{a1, }iZia+ Qa1 2B+ {afaln )2 Li2ir +e. (4)
-ii. Dispersion matrix. For the random effects represented by the u;s in (1)
we adopt the usual conventions of
E(w)=0, var(u)=od?l,, (5a)
where g, is the order of w;, and
cov(u,uy) =0, cov(w,e’)=0 and var(e)=oclly. (5b)

Applying this to (1) gives

V=var(y)= Y ZZjo} + olly. (6)

i=1

This notation can be made more compact by defining

u=e, ogi=02 and Z,=1I,. (7)
Then we have
y=XB+ Y Zu, and V=3 ZZg}, (8)
i=0 i=0

justasin(70)and (71) of Chapter 4. Considerable use is made of (7) and (8).
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-iii, Example 1 (continued). From (4), on omitting th¢ limits on i and j,

Zl = {d ln,.}’ with ZlZ’l = {d Ju,.}! (9)
Z,=Q{sl,}, withZ,Z,=Q{,J, }Q, (10)
Zy={y{s1,,};} with Z,Z5 = {; {4 J, };};s (11)
Zo = ]N’ Wlth ZoZz) = ]N . (12)

The Z,-matrices are used in the equation for y, and the Z,;Z;-matrices occur in
V = var(y). Simplification of Z,Z/, is not readily apparent.

5.2. ANOVA ESTIMATION
As developed for balanced data, ANOVA estimation is derived from equating
analysis of variance sums of squares to their expected values.

a. Example 2—the 1-way random model, balanced data
From equations (52) and (53) of Section 3.5b we have

E[SSE]=[a(n—l) 0 ][aﬁ]' (13)
SSA a—1 (a—1n]le?

From this come the estimation equations

a(n—1) 0 62 SSE
= . (14)
a—1 (a—Dn]lLd? SSA
These are, of course, easily solved in this simple case.

b. Estimation

-i. The general case. The principle of (13) and (14) is easily generalized.
For a mixed model

y=Xp+Zu+e
having r random factors suppose
s={csihido={cYAY}ilo (15)

isa vector of r + 1 quadraticformsin y such that A, is symmetric,i.c, A, = A} V i,
Then, from Theorem S1 of Appendix S.5,
E(s)) = E(y'A)y) = tr(A)V) + E(y')AE(y)
= tr(AY) + XA X, (16)
since E(y) = XB. This expectation will contain no terms in B, the fixed effects,
if X'A;X = 0. Thus, providing A; = A;is chosen so that X'A;X = 0, the expected

value of y’A;y contains only ag2-terms and no fixed effects. A series of such
quadratic forms can then be used in a generalization of the ANOVA method



[5.2] ANOVA ESTIMATION 173

of estimating variance components, namely equating observed values of such
forms to their expected values. With balanced data, X'A;X = 0 always holds
for the sums of squares of the analysis of variance table. With unbalanced data
it holds for some sums of squares and not others, and it depends on the model
being used, i.e,, on X, as well as on A,. For the usual completely random models
X'A;X = 0 reduces to 1’'A;1 = 0 (all elements of A, summing to zero) because
X8 is then XB = ul.
Then, because

E(s) =tr(A)V) = tr[As > ZJZQ"JZ]= Y. t(ZjAZ))e},
j=0 =0

E(s) = {m tr(Z;AZ))} 5{c 03} (17_)
which we write as
E(s) = Co?, with C = {, tr(Z;A,Z))},, and ¢l =, a}},éo . (18)

This immediately provides extension of the balanced data ANOVA method of
estimation given in (29) and (30) of Chapter 4: from (18) equate the expected
value of s to s and solve for the variance components. This gives

Cé2=s, or 62=C"ls, (19)

providing C is non-singular. This procedure, which includes the balanced data
case, of course, can be viewed in some sense as a special form of the method
of moments.

Equation (19) is what is called the general ANOVA method of estimating
variance components from unbalanced data: equate observed values of a set of
quadratic forms to their expected values and solve for the variance components.
The solutions are called ANOVA estimators of variance components. The only
limitations on what one chooses for those quadratics is that their expectations
contain only variance components; i.e., that X'A;X = 0. When symmetric A, is
non-negative definite, the condition X'A,X = 0 reduces to A, X = 0.

-ii. Example 2 (continued). An example of (19) is (14):
[a(n — 1 0 é2 SSE
Co?=s is a(n—=1) ] ']=[ ],
| a—1 (a-1)n]|é2 SSA
—~——l 0
- —
52— C-'s is a,] _| atn=1) [SSE] =[ MSE ]
| 62 -1 1 SSA (MSA — MSE)/n

an(ln—1) (a—1)n

as in (55) of Chapter 3.

-ifti,  Example 1 (continued). Although (18) applies for any choice of A,
that satisfies X'A,X = 0, when we decide to use some particular sum of squares
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as an element of s it is the nature of that sum of squares that determines its
corresponding A,. We illustrate this for SSA, one of the sums of squares in the
2-way crossed classification. It is

SSA = Zl n.(y. — }-')2 = y,({d jn,,} - jN)y
i=
=y'Ay forA={J,}-Jy.

Using the random model, E(y)= ply and 1,A =1y — 1y = 0. Therefore
E(SSA) as an element of E(s) of (17) is

al
o
E(SSA) = [tr(Z1AZ,) tr(Z,AZ,) tr(Z3AZ,) tr(Z,AZ,)] 2
a?
al
= a2 tr(AZ,Z}) + 0} tr(AZ,Z}) + a2 tr(AZ,Z%) + 62 tr(AZyZ}) .
On using Z; from (9), the first term in this expression is

02tr(AZ,Z)) = 6 tr[({q jn,.} - jN){d Jn..}]

o2 u({d 3} =~ I, ni.lz,.})

=02<N—§—ﬂ).
¢ N

The second term, using Z, from (10), is

a'g tr(AZZZ’z) = a'g tl’[Z'z({d jn‘.} - jN)ZZ]

| 1
= 2trl:Z'{ ——l,,lﬁ,}Z ——1YZ,(14Z,) |.
] 2 o e 27N 2(INZ,)

To simplify this, we use tr(XX') = sesq(X), the sum of squares of elements of X,
from Appendix M.5. Then

1 /
0127 tr(Azzz'z) = G;[U'(Z,z{ —F= ln,,}{ —1_ l;p,.}zz> — _SCSq(]NZZ):I
d \/—r; d /N N

1 2
= af,[sesq({ — 1:,,,}z2) — Zjn":l
a/n;. N
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the last expression’s first term being evident from the nature of Z, illustrated
in (3). The complete expression for E(SSA) is shown in E 5.2. It is left for the
reader to derive the terms other than those in 62 and .

Thus does (17) provide a mechanism for deriving the expected value of any
set of quadratic forms y’A,y having A, = A} and X'A, X = 0.

¢. Unbiasedness
Turning to properties of 82, it is easily seen that &2 is unbiased since, from (19),

E(8%)=E(C 's)=C 'E(s)=C 'Ce? =02, (20)

No matter what quadratic forms are used in elements of s, so long as C of
E(s) = Ce? is non-singular, > = C ™ 's is an unbiased estimator of ¢2.

In (18) and hence (19) we have implicitly assumed that s has as many elements
as does 62 Then C8% =s has as many equations as there are variance
components, C is square, and 62 = C™'s provided C~! exists. But C does not
have to be square. s can have more elements than ¢2. There are then more
equations than variance components in Cé2 = s, and the equations are unlikely
to be consistent. However, providing C has full column rank, one could always
adopt a least squares outlook and use 2 = (C'C)~'C’s as an unbiased estimator
of 62; it reduces to 2 = C~!s if C is square.

This unbiasedness arises without this method of estimation containing a
word of how to choose what quadratic forms shall be used as elements—only
that X'A,X = 0 be satisfied and that C~! exist; and these are not severe
limitations. But they provide no optimality characteristics of any sort for the
resulting estimators. The only built-in property is that of unbiasedness.

In the context of designed experiments, where estimation of treatment
contrasts, for example, is a prime consideration, unbiasedness may be a useful
property. This is because we conceive of repeating the experiment, and
unbiasedness means that over all conceivable repetitions the expected value of
our estimated contrast will equal the true contrast: e.g., E(};, — 7,) = 7, — 1,.
But when estimating variance components this concept of repeating the data
collection process may not be a practical feasibility. Many situations in which
variance components estimates are sought involve very large amounts of data;
e.g., a project having three million records at its disposal. Repetitions of the
process by which such data were gathered may be simply impractical. In those
circumstances unbiasedness may not be as useful a property as when estimating
treatment contrasts from designed experiments. Nevertheless, we can still
imagine conceptual repetitions of data collection and think of unbiasedness as
being over those conceptual repetitions. However, since unbiasedness is the
only property that is built into ANOVA estimators of variance components, it
may be worthwhile to abandon it as a property in favor of other estimators
that are not unbiased but which have better large-sample properties such as
large-sample normality and efficiency, as do maximum likelihood estimators,
for example. It is therefore useful to appreciate this situation as we discuss a
variety of ANOVA estimators that are available, some of which have received
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widespread use in applications. . -d notice that in mentioning large-sample
normality we are at once conceptualizing the idea of repeated sampling.

d. Sampling variances

Since ANOVA estimators are derived without reference to their variances,
and yet are quadratic functions of the observations, it is natural to think of
deriving sampling variances. We do this on the basis of assuming normality
throughout.

-i. A general result. With y ~ 4" (XB, V), we use var(y'Ay) = 2 tr(AV)?
+ 4p'AVAp of Theorem S4 in Appendix 8.5, together with X'A; X = 0 and (19).
With p = X this gives )
var(y'Ay) = 2tr(AV)? and cov(y'Ay, y'By)=2tr(AVBV).
Then the variance—covariance matrix of 62 = C™ 's is
var(6%) = C~! var(s)C ™"’
=2C"1{, tr(A,VA.V)},.C"
- 2C-l{ tr(A, Z ZIZ;G}A" Z ZI'Z;'G})} C_l’ (2]3)
m j=0 J=o0 i
=2C" 6% {m tr(AZ,Z)A,Z,Z})}, ;6% },,C7 . (21b)
In(21b) the inner matrix is not symmetric and so no further useful simplifications
seem readily available,
Since the derivation of (21b) from (21a) may not be clear to all readers, we

demonstrate their equivalence for the case of r = 2. Let W denote the expression
in braces in (21a). Then

2 2
W={ tr(A‘ Y Z2,Z0}A, ¥ z,,z;.a}.>}
m j=0 j=0 L'=0

= {m r[A(ZoZooj + Z,Z\ 0} + Z,Z),0})
X Ap(ZoZood + Z,Z 03 + Z,Z5063)]},,
= {m OO tH(AZoZoA, ZoZy) + 61 (A\Z,Z1ALZ, 7)) + 0 tr(AZ,25A, Z,Z))
+ 030i[tr(AZoZoALZ,ZY) + tr(AZ, 2, A Zo 1Y)
+ 0202[tr(AZoZ,A, Z,ZY) + tr(AZ,Z25A,Z,Z,)]
+ 0}03[tr(AZ,Z A, Z,Z)) + tr(AZ,Z,A,Z,Z))] ),

2

For the coefficient of c3a? note that the two trace terms are equal:

tr(AZoZoA;Z,Z)) = tr(AZoZoA, 2, ZY) = tr(Z,Z1A: ZoZoA))
= tr(AZ,Z} A, ZoZ)) .
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Hence

W=< [6 o} oi]
tr(AZoZpAr ZoZy) tr(AZeZyAZ,Z,) tr(AZoZbA,Z,Z,) [ 03
x tr(A;Z,Z,AZ,Z}) tr(AZ,Z\AZ,Z,) || 62 |3,
symmetric tr(A,Z,Z5A,Z,2)) || 62

for i,i’ =0, 1,2. This is the essence of (21b).

Notice that in using (19) as a method of estimation, nothing has been said
about what quadratic forms of the observations shall be used as elements of s.
Nothing. Results (19) for any quadratic forms y’A;y having X'A;X = 0 lead to
(20) and (21); and that methodology gives no guidance whatever as to what
quadratics are optimal. Moreover, it is the quadratics that do get used as
elements of s that determine C of (18) and (21). This all leads to an extremely
difficult optimization problem, which is developed thoroughly in Malley (1986),
wherein, building on results of Zyskind (1967) and Seely (1971), conditions are
developed under which quadratic functions of data can be optimal estimates
of variance components.

-ii. Example 2 (continued). To illustrate the use of (21b), we use the 1-way
classification random model, balanced data, giving some of the details here and
leaving others to the reader as an exercise (E 5.1). Starting from (14),

62_’og]=[a(n-1) 0 ]“[SSE]
"~ Lé? a—1 (a=1)n SSA

: 0

a(n_l) I:y’(la®ln_la®jn)y]
B ~1 1 y(I,®J,—-3,8173,)y

| an(n—1) (a-—1)n]

B 1

= a(n—1) [y’(l,,@C,.)y] forC,=1,—1J,.
1 1 Y (C,®3,)y T

| an(a—1) (a—1)n]

Then for
1
Cc!= al(n—1)
-1 1 ’

an(n—1) (a—1)n

62=c—1[y'Aoy] with A; =I,®C, and A, = C,®J, .
YAy
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We then have (21b), with V = (I, ® )62 + (I, ® J,)62, as

¢¥] -, , s [tr(AilA,,l) tr[AJA(,®J,)] ]
Va'[az]‘c {m[”‘ I gm eALL®I)AL® )]

Write this as
2
var["e]=c-l[‘°° ‘°‘]c-*. (22)
él. foy Iy
Then

= [o? z][tr(A%) tr[A(I,®J,)] :I[o'f]
tOO =L6, O, sym tr[Ao(ln®J")]2 6¢2

azl[tru,@q)’ tr[(l..@cn)’a,@.l,)]][of]
. sym (L, ® C)(I,®J,)] JLa )’

® N

= [o’
and because C,J, = 0,

too = [02 oﬁ][a(no_ ][6‘:] =a(n— 1)¢¢ because tr(C,)=n-1.
O,

0

It is left to the reader (E 5.1) to show that ty, = Oand t,, = (a — 1)(62 + nal)?,
and hence that (22) reduces to

20} -2q}
¢l ain—1) an(n —1)
‘= s 23
var[&:] 1 [ 20 2(a2 + na,’)z] (23)
sym  — +
n*la(n-1) a—1

which has the same results as (66), (68) and (71) of Section 3.5d-iii.

-iii. A direct approach. In each of the preceding examples we have seen
that derivation of even one element of E(s) or of var(é?2) through using tr(AV)
or 2tr (AV)?, respectively, is usually very tedious. That is why for any particular
model, e.g.,

Yk =W+oy+ B+ vy + e,

one often derives expected values and variances directly. For example, substituting
the preceding model equation into j,, and y.. gives

E(SSA)=E ZIn.(3,.—y.)?

=E Z;ni.[(a; - z':;'a'> + (z’”‘fﬂ! - z!?\-}ﬁ;)
n;,

Imyy, EEmS . P
+ ( T e | U?J> + (e‘__ - e):l .
n;, N
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Then, using properties of the random effects, stemming from (5), such as
E(a}) = 62, E(aa;) = O fori # i, and so on, one can evaluate this expectation
quite straightforwardly.

Similarly, deriving var(SSA) can be achieved a little more easily than
using (21). Its original derivation was obtained (Searle, 1958) by writing
SSA = I;n;52. — Ny2, and obtaining the individual terms in

var(SSA) = var(E;n,5;.)* + var(Nj2) — 2cov(Z;m 52, Ny2).

Thus by writing T, = E;n;52, and T, = Nj? for what may be called the
uncorrected sums of squares, we have SSA = T, — T, and

var(SSA) = var(T,) + var(T,) — 2cov(T,, T,) . (24)
Using T, and its natural extensions to other factors provides (see Appendix F)
a reasonably economic procedure for deriving variances of SSA and its
extensions, and of the covariances between these terms.

Variances of Ts and covariances between them were obtained directly from
applying the expressions for var(y’Ay) and cov(y’Ay, y'By) from Appendix S.5.
Although terms in u occur in the Ts they do not occur in sums of squares like
SSA. They were therefore ignored. Then although, as (21) shows, var(s)) is a
quadratic form in the o7, the coefficients of the squares and products of the
o?s turn out to be fairly complicated functions of the n;s. And derivation is
tedious. We therefore omit the derivation and simply quote one result: excluding
terms in u, and under the normality assumption y ~ A4"(ul, V)

232
buan(T,) = otz + of 5 Eo 3 EA0Y)

i#it NNy, i

4 (Z;nf)’ 4 2.2 2 2
+a3 ) — + acd + 202(6} + 62)T,T )0},

( nlj)z

g.

(25)
+ 20626%N + 20 ﬂazz

+ 2(a} + az)azz n”
;.

Of course, given a data set and a model, the A for each sum of squares (or
quadratic form) expressed as y’'Ay is known numerically; and if V is known,
or one is prepared to assign numerical values to the a2s and hence to V, then
one need not bother with algebraic forms of tr(AV)?2. Instead, with today’s and
tomorrow’s supercomputers, one can calculate it directly. Nevertheless, there
is value to having algebraic techniques available for when something other than
numerical results are needed.

e. Unbiased estimation of sampling variances

Unbiased estimation of sampling variances (of estimated components), under
normality assumptions, can be achieved for unbalanced data by a direct
extension of the method used for mean squares in Appendix S.3b.
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With &2 being the vector of all the variance components in a model, and &2
an unbiased ANOVA estimator, define

v = vech[var(6%)] and 7 = vech(a%c?),

where the matrix operator vech(X) is defined in Appendix M.7. Thus v is the
vector of all variances of, and covariances between, the estimated components,
and 7 is the vector of all squares and products of the a?s.

What we seek is an unbiased estimator of v = vech[var(6?)]. By (21), every
element in var(é2) is a linear combination of squares and products of a2s.
Hence every element in v = vech[ var(62)] is a linear combination of elements
in y = vech(e?6?'). Hence there is always a matrix, call it B, having elements
that are not functions of a2s, such that

v=By. (26)

Now ANOVA estimators are unbiased; and for any pair of unbiased estimators,
6% and 47,

E(8}) = var(é}) + of and E(8}6})=cov(é},6}) + o}al.

Therefore with § = vech(628?') being y with each o2 replaced by the
corresponding 47,

E@)=v+7y=(I1+B)y,

from (26). Hence ¥ is an unbiased estimate of (I + B)y. Thus (I + B)™ !4 is an
unbiased estimator of y; and since (26) has v = By,

v=B(I+B)™ '} 27
is an unbiased estimator of v. Thus for B defined by
vech[var(62)] = B vech(o26?%')
B(I + B)"! vech(6%8%') estimates v = vech[var(é?)] (28)
unbiasedly. Mahamunulu (1963) uses elements of this principle, although Ahrens
(1965) derived (28). In passing, note that B(I + B)~! = (I + B) " 'B.

Example 2 (continued). In the 1-way classification, with balanced data, we
have, from writing (23) in the form of (28), that B is the 3 x 3 matrix in

- 2 -
] 0
var(6?) a(n—1) a?
Uan —
var(67) |=|-—-an—1) 2 4 ot (29)
an‘(a—1)(n-1) a-1 n(a-1)
var(62,42) ola?
2
L — 0 0
an(n— 1) i
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Then calculating B(I + B)~! gives (27) as

2

_ 0 0
an—1)+2

var(a?)
vir(¢?) |=

cov(d2,83)

04

2 | | 2 4 .
—3 + 0! ’
nla+1l an—1)+2] a+1 n(a+1)
¢iod
. } eVa

_ 0
nfa(n—1)+ 2]

which is equivalent to the expressions in (67), (70) and (72) of Chapter 3. It is
left to the reader as E 5.3 to carry out the details, and as E 54 to do the same
for unbalanced data.

5.3. HENDERSON'S METHOD I

The Henderson (1953) paper is a landmark in the estimation of variance
components from unbalanced data. It established three different sets of quadratic
forms that could be used for s in the ANOVA method of estimation of (19).
All three sets are closely related to the sums of squares of analysis of variance
calculations for unbalanced data: an extension to multivariate data is suggested
by Wesolowska-Janczarek (1984). Although the methodology is the same with
each set of quadratics (equate them to their expected values), the three uses of
them have come to be known as Henderson’s Methods I, IT and III. In brief,
Method I uses quadratic forms that are analogous to the sums of squares of
balanced data; Method II is an adaptation of Method I that takes account of
the fixed effects in the model; and Method III uses sums of squares from fitting
whatever linear model (treated as a fixed effects model) is being used and
submodels thereof. Henderson (1953) describes these methods without benefit
of matrix notation. Searle (1968) reformulated the methods in matrix notation,
generalized Method 2, and suggested it had no unique usage for any given set
of data. But Henderson, Searle and Schaeffer (1974) show that this suggestion
is wrong, and they also give simplified calculation procedures. We draw heavily
on these papers in what follows. And in doing so, much of the description is
in terms of the 2-way crossed classification, with interaction, random model
and, of course, unbalanced data. This is the simplest case that provides
opportunity for describing most, if not all, of the features of the Henderson
methods.

a. The quadratic forms

Method 1 uses quadratic forms adapted directly from the sums of squares
of the analysis of variance of balanced data. In some cases these are sums of
squares and in others they are not. We use the 2-way crossed classification for
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illustration and begin with a familiar sum of squares used with balanced data;
namely bnZ(j,.. — j..)2. The corresponding form for unbalanced data is
SSA = Z;n,.(j,.. — j..)% which can also be recognized as R(a| ).

SSA can also be seen as a generalization of the balanced data sum of squares
(to which it is equal, of course, when all n;; = n), obtained by replacing bn by
n,., in both cases the number of observations in j,... Henderson’s Method I
uses SSA; and it also uses a quadratic form that comes from extending the
interaction sum of squares, which for balanced data is

E‘E_’n(f,j, - P‘,, - y_']‘ - P“.)z = E,Ejn_}-)lzj, o E,bn_}_)iz., - Ejan_}_)_zj, + abnf,z,_ .
Unbalanced-data analogues of this equality are
SSAB = Eizjnu(y_u, - yi.. - }7._]. + y..-)z
for the left-hand side and

v
SSAB* =Y. n'_f -y
if

for the right-hand side. But, despite what one might anticipate, SSAB and
SSAB* are, in general, not equal. (They are equal, of course, when all n;; = n.)
But their difference is

SSAB* - SSAB = —22‘2_,"‘](}7(., - }_)..-)(}-)-j- - }_’...)
= —2(2121"11}_’1--}7-1- - Nfz) .

SSAB is clearly a sum of squares; it is therefore a positive semi-definite quadratic
form. It can never be negative (for real values of y;;). In contrast SSAB* can
be negative. For instance, with data of 2 rows and 2 columns

" n,. In; n.

6 410
6,42 12 | 60
54 16 | 70
62 42 482 122 [10* 602 542 162) 702
SSAB*=—+ —+ —+— | —+— |- | =+ = | +—=-22.
1 1 2 1 (2+3) (3+2 3

Thus SSAB*, although it is a quadratic form, is not non-negative, and so it is
not a sum of squares. Nevertheless, this is what is used in Henderson’s Method 1.
The four quadratic forms that are used in Henderson’s Method I are thus

SSA = Zin. (§i. — 0
SSB = Z;n (7. — 7..)%
SSAB* = L,Zn,73. — Zin. gt — In i3 + Ny,

and
SSE = £,8,%, (Y — 7iy.)? -
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It is interesting to note that although these four expressions never occur all
together in any traditional partitioning of the total sum of squares for the fixed
effects model, they do add to that total,

SST,, = T, 2 (yin — J..)° .

The four never occur together for at least two reasons: SSA is R(a|u) and
SSB = R(B| u), and they never occur together; and SSAB* is not a sum of
squares. Nevertheless, they do represent a partitioning of SST,,,.

b. Estimation

The estimation method is to find the expected value of each of the four
quadratic forms and to equate those to the observed values of those forms—the
values calculated from the data. This gives, for the random model, four linear
equations in four variance components.

The tedious part is deriving the expected values. Two terms of E(SSA) are
shown in Section 5.2b-iii, and the complete expression for E(SSA) is given in
E 5.2. Expected values of SSB and SSAB* are derived in similar fashion; and,
of course, E(SSA) = (N — s)a2, where s is the number of filled cells. To simplify
notation in the estimation equations, define

k=Y, 2;"'21 k=Y, Tf (30)
kyy =Z,Zn}
and for any k, define
k, =k, /N .
Then for N' =5 — a — b + | the estimation equations are
N~k ky—k ky— ki, a—17][é2 SSA
ky— Kk, N-—k ky — ki b—1 | 6} _ SSB G
kK —k, kiy—ky N—ky—ky+kyy N 62 SSAB*
0 0 0 N —s ][ 62 SSE

where the expected value of the right-hand side of (31) is the left-hand side with
cach 6 replaced by the corresponding a2. That, through the ANOVA estimation
principle of equating quadratic forms to their expected values, is the origin of (31).
Having the condition X'A,X = 0 in (16) is salient to ANOVA estimation of
variance components. It takes the form 1'A;1 = 0 in random models. This
condition for the terms in (31) has, for example, SSA = y'A,yfor A, = {4 J, } — Iy
from Section 5.2b-iii, and so
2 2
a1=y " _N _N_nN=o.
tn, N
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Solutions to (31) can, on defining

Nk, ky—k, ky — kis
P=|k,—k, N-k ky — ks : (32)
k'l—k4 k’z'—k3 N'—‘ks_k4+k’z3

be expressed as

42 = SSE = MSE
N-—s
and
é? SSA — (a - 1)MSE
6; |=P'| SSB—(b— 1)MSE | . (33)
62 SSAB* — (N')MSE

These are the Henderson Method I estimators of the variance components in
a 2-way cross-classification, random model.

¢. Negative estimates

It is clear that 42 = MSE is always positive. But from (33) it is equally as
clear that estimates of the other variance components are not necessarily
non-negative. So here we are, back at the familiar problem of having an
estimation method that does not preclude negative estimates. The reason is that
nothing is built into the estimation method to ensure that negative estimates
do not occur. This is true of all applications of ANOVA methodology.

d. Sampling variances

On the basis of assuming normality, namely y ~ A4"(ul, V) for the random
model, expressions can be derived that lead to sampling variances of the Method 1
estimators. For 82 we have SSE/a2? ~ x%_, and so

4
2a;

|

var(¢2) =

But for the other estimators the results are not so simple. Writing SSA, SSB
and SSAB* in terms of uncorrected sums of squares, like T, = Z;n,.j2., gives

T,
SSA 1 00 -1

Ty
SSB |=] 0 1 0 —1ft fort= (34)
SSAB* -1 -1 1 1 48

T
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Using Theorem S4 of Appendix S.5 to show that MSE is independent of SSA,
SSB and SSAB*, and on defining

1 00 -1 a—1
H=} 0 1 0 —-1] and f=|b-1|{, (35)
-1 -1 1 1 N’

we can, from (33), write

i
var| 63 | =P~ '[Hvar()H' + var(6)ff' P~ "' (36)
4

Searle (1971, p. 482) gives the elements of var(t). There are ten of them, each
a quadratic in 62, 63, 62 and ¢Z; and thus each of the ten different elements
of var(t) is a linear combination of the ten squares and products of 62, a}, af
and ¢2. The coefficients of those squares and products are therefore set out in
a 10 x 10 matrix. Those coefficients involve 28 different k-terms, of which but
five are shown in (30). The full set of 28 is shown in Table F.1 of Appendix F.
Also shown there are detailed formulae for three nested-classification random
models, and for four forms of the 2-way crossed classification, embodying the
double dichotomy of with and without interaction, and of random and mixed
models. Searle (1971, pp. 491-493) also has details of Henderson I estimators
for the 3-way crossed classification with all interactions, random model. That
model has 8 variance components, t has 8 elements and so var(t) has 36 different
elements, each involving the 36 squares and products of the 8 variance
components. The required coefficients, developed by Blischke (1968) asa 36 x 36
matrix, are given in Searle (1971, pp. 494-514). Printing those twenty-one pages
is only necessary once!

It is clear that expression (36) is not at all amenable to studying the behaviour
of sampling variances of estimated variance components obtained by the
Henderson Method 1. And this is seen to be true for the specific models in
Appendix F. Each element of (36) is a quadratic form of the unknown ¢ 2s. But
the coefficients of the squares and products of the ¢%s are complicated functions
of the numbers of observations in the cells and subclasses of the data. For
example, in (36), the matrix P! has, by virtue of (30) and (32), elements that
are in no way simple functions of the n;-values. This precludes any thought
whatever of making analytical studies of the variance functions as to how they
behave either for different sets of values for the o2s, or for different sets of
n,-values. Even for the 1-way classification, as discussed in Section 3.6-iv, these
kinds of studies were demonstrated as not being readily feasible. With two and
more factors the intractability of expressions leading to sampling variances
becomes increasingly aggravated.
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e. A general coefficient for Method 1
After substituting the model equation y;;, = p + o + f; + 7, + € into J..
of T, = T;m; 2., it is not difficult to show that the coefficient of 6} in E(T)),
which we shall denote by c[o}: E(T,)] is
b b
. X 2 ni

i=1 & j=1
clo}: E(T))= ¥ m" =}
i=1 B .

One of the minor advantages of Henderson’s Method I is that the quadratic
forms are all linear combinations of uncorrected sums of squares like Ts.
Therefore, similar to c[6} : E(T,)], one can write down a general expression for
the coefficient of any a2 in the expected value of any such T.

Suppose there are n.,;, observations in the tth level of the ith factor of a
multi-factor model, their total being y.,,. Let g; denote the number of levels of
the ith factor that occur in the data. Then the T for the ith factor is

9
T= Y naiie-
=1
Let uy;, be the effect for the sth level of the jth random factor, and let n,,);,
be the number of observations in the cell defined by the tth level of factor i
and the sth level of factor j. Then, for r random factors (main effect factors,
interactions or nested)

r q 2
@ ["-rm“*’ Y X "-unsm“sm*'e-zm:l

j=1s()=1
T= )

=1 R

Hence, similar to c[aﬁ : E(T,)], the coefficient of af in T, is

4q;
2
Z URTHTT))

4 -
clo}:E(M]= Y e
(=1 By

It is easily shown that
c[#:E(T)]=N and c[o}:E(T)]=q0!.

These results can be used as needed for the application of Henderson’s Method I
to any random model. The quadratic forms that are used are analogous to the
analysis of variance sums of squares for balanced data, like those in the preceding
sub-section b, for the 2-way crossed classification. They are formed as contrasts
of the Ti-terms, of which (34) is an illustration.

As indicated in sub-section g that follows, Method I should not be used with
mixed models. Hence the results of this sub-section being confined to random
models is no restriction so far as Method I is concerned.
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f. Synthesis

Synthesis is the name given by Hartley (1967) to his method of calculating
coefficients of variance components in expected quadratic forms without needing
to know the algebraic expressions for those coefficients. It operates as follows.
Denote the sth column of Z; in (1) by z,;. Then in any quadratic form y'Ay
the coefficient of ¢} in E(y'Ay) is

c[o}:E(y'Ay)] = Z,z;/Az,; . (37)

Observe that z;;Az; is the same quadratic form in z,; as y’Ay is in y. Hence if
y'Ay is a sum of squares SS(y), the coefficient of 67 in E[SS(y)] is obtained
by summing SS(z,;) for every column of Z,. Thus (37) represents a very general
procedure for calculating the numerical coefficients in any particular case. Use
each column z; of Z; as data for the sum of squares and add over s = 1,2,....
Do this for each j =0,1,...,r. It is feasible, but not so useful, for algebraic
derivations, as illustrated in the following example.

Example 2 (continued). Inthe 1-way classification, random model, balanced
data, Z, corresponding to the random effect & is Z, =1,®1,. And in
SSA = (5. — 7.)

c[o2: E(SSA)] = Y SSA(z,)

s=1

where SSA(z,,) is SSA for the 1-way classification analysis of variance of the
sthcolumn of Z, = I, ® 1, used as data. Thus, since SSA(y) = Z{_, n(j;. — J..)%,
and each column of Z, has # unities and an — n zeros,

2 2
SSA(z,,) = (an —n)(0—1> +n(1 —1> =n(1 —l> .
an an a

This is the case for all a columns of Z, and so
2 1

c[a?:E(SSA)] = Y n(l - -) =nla—1)
i=1 a

as one would expect (see Table 3.3).
The reason for (37) is almost self-evident:

E(y'Ay) = tr(AV) = tr(A Y Z,-Z}a}) .
j=0

Therefore the coefficient of a} is
9
c[o}: E(y'Ay)] = tr(AZ;Z)) = tr(Z}AZ)) = Y z,Az,; .

s=1

Something similar can also be done for sampling variances. See Hartley (1967).
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g. Mixed models

At several points we have stated that Method I can be used only on random
models. This is so because (with unbalanced data) any attempt at using Method I
results in the expected mean squares containing functions of fixed effects that
do not drop out as do the terms in p? We illustrate this for the 2-way crossed
classification.

Suppose the A-factor is a fixed effects factor. Then with X, = {31, }, as is
Z, in the random effects model, the terms in y and elements of & that w1]l occur in
E(SSB)are(ul + X,a)'B(ul + X,a)for Bdefined by SSB = £;n, ;5. — Nj2.
y'By. Motivated by SSA = y’Ay for A = {3 J,. } — Jy, one might expect B to
be {4 J,, } — Jy. But it is not. The form of A depends on the fact that y has its
elements ordered by j with i: if they were ordered by i within j then B would
be as expected. But with elements of y ordered by i within j, the matrix B is,
for Q being some permutation matrix,

B= Q[{d jn.,} - jN]QI = Q{d jn.,}Q’ - jN .

Then the term in p is
NZ
pl'Blp = p2(1'Q{4 3, }Q'1 = I'Jyl) = p ( "{a ..,}1——1\7)=0-
But using B for the term in as in E(SSB) will be difficult because no

specific form of the permutation matrix Q is known. Nevertheless, using
E(SSB)=E Zn (j.;. — j..)?,itis easily shown that the term in as in E(SSB) s

2
nu n;.
0, =2Xn, — - = . 38
1 n j[Zﬂl(n'j n)] (38)

EssaBt) - £(3,5, -3 2y i, 22

n. Tin; on.

Similarly in

the term in the as is
(Zin.0,) _ (Zinye)’

02 =
n.. J n,

(39)

It can be noted that both 6, and 6, reduce to zero for balanced data; and that
if the as were random effects, 6, and 6, become the corresponding coefficients
of ¢2 in (31), since the estimators in (31) are unbiased. See E 5.6.

The important feature of 8, and 8, in (38) and (39) is that they are functions
of fixed effects that occur in expected values of quadratic forms. Thus in equating
the observed values of those quadratic forms to their expectations we cannot
simply solve for the variance components. The s get in the way. Although u
drops out of the expected sums of squares, the other fixed effects do not. What
this amounts to is that for mixed models X is not just 1, and whereas 1’'Al = 0,
which is X'A,X = 0 for X = 1 for random models, the X of mixed models and
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the A-matrices of Method I are such that, for unbalanced data, X'AX # 0; i.e,
the condition for fixed effects to drop out of E(y'A;y) of (16) is not satisfied.
Thus it is that with unbalanced data one cannot use Henderson’s Method 1
for mixed models. It is suitable only for random models.

Because the arithmetic of Method 1 is the easiest of all methods, one can be
tempted to use it on mixed models, even though one is then knowingly
introducing error. The two ways of doing this are either (a) ignore the fixed
effects, i.e., drop them from the mixed model entirely, or (b) treat the fixed
effects as random and estimate variance components for them under that
assumption. In either case the resulting variance components estimators for the
true random effects are not unbiased.

h. Merits and demerits
The merits of Method I include the following.

(i) Computation is easy even for very large data sets. No matrices are
involved except for one or two of order no more than the number of variance
components—and that is usually a small number.

(ii) Estimators are unbiased.

(iii) In many cases unbiased estimators are available for the sampling
dispersion matrix of the variance components estimators—assuming normality
of the data.

(iv) For balanced data Method I simplifies to be identical to the (unique)
ANOVA method.

Demerits include the following.

(i) The method does not preclude the possibility of negative estimates.

(ii) Under the usual normality assumptions, the probability density
function of the estimators cannot be specified in closed form—save for that of
the error variance, which is often proportional to a x2.

(iii) This method can be used only for random models. It cannot be used
for mixed models.
i. A numerical example

We use the small, hypothetical data set of Table 5.2 to illustrate the
calculations of Method I, for a 2-way crossed classification of 2 rows and

3 columns.

TABLE 5.2. DATA FOR A 2-WAY CROSSED CLASSIFICATION

Vi Vi, Vi Vi ni; n;
19 6 2 24 8 6 2 6 2 1 1 4
8 48 12 32 8 6 12 8 1 2 1 4
y, 24 18 14 56 =y.. J,. 8 6 7 7 n;, 3 3 2 8=n,
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SSA =4(6 — 7)* + 4(8 — 7)? =38,
SSB=38-72+3(6—-7)>+2(7T-17)*=6,
SSAB* = 2(82) + 1(62) + 1(22) + 1(8%) + 2(6%) + 1(122) — [4(67) + 4(8%)]
— [3(8%) + 3(6%) + 2(7%)] + 8(7%) = 42,
SSE=2+8 =10.

From (29) and (30)
ky=4>+42=32, k,=3"+32422=22,

22412412 12422412 22412 22412 12412
ks s T =73 3 2 3
kyy =224+12+ 12+ 12422 +12=12,

32 .22 .1
k’,=§=4, k2=?=2g, 23=?=12¥,

Then (31) is
8—4 3-23 3—14 21 fé? 8
44-4 8-23 41— 11 3-1 ai| | 6
444 23-3 B8-3-4l+14 6-2-3+1]| 42 42|
0 0 0 8—6 62 10
ie.,
4 1 14 1[é? 8
bosho2% 2lép| | 6
-1 -1 24 2|62 42
0 0 0 2jé? 10
with solution
1o 248 6009, 63 = =92 70,
121 121
1609.
aZ=-—9ﬁ=13.3025, 62=5.

Y 121

5.4. HENDERSON'S METHOD Il

The purpose of Method 11 is to provide a method of estimation that retains
the relatively easy arithmetic of Method I but which is usable for mixed models
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that contain a term ul for a general mean u. It achieves this by adjusting the
data (in some sense) for the fixed effects, and from the adjusted data the variance
components are estimated by a variant of Method 1. Method 11 can therefore
be thought of as an adaptation of Method I that overcomes the deficiency of
Method I that the need for having X’A,;X = 0 in Method I makes it unavailable
for mixed models; i.e., Method I cannot be used for mixed models. Method II
can be used for mixed models, but only for those containing no interactions
between fixed and random effects (see subsection f which follows). Method 11
involves adjusting the data in a manner that produces a vector of adjusted
observations for which the linear model is a completely random model consisting
of a general mean and all the random effects parts of the model for y—except
for a transformation of the error term. Aside from that transformation, Method I
is then used on those adjusted data based on that random model. This idea
of adjusting records to get rid of fixed effects and then using a standard method
on the adjusted records can nowadays, with benefit of hindsight, be viewed as
a precursor of REML estimation (restricted maximum likelihood, see Chapter 6),
That method adjusts data for the same reason, and then uses maximum
likelihood on the adjusted data. Thus the general idea of Method II is
straightforward; and the necessary calculations are mostly not difficult. But
describing the underlying details and characteristics is. In this respect Method
I1 is the most difficult of all three of the Henderson methods.

The general procedure is as follows. In the usual mixed model equation
y = Xp + Zu + e separate out ul from the fixed effects and redefine &P as
excluding ul and then write the model equation as

y=ul+Zp+Zu+e. (40)

Throughout this whole section we use this meaning of ZP: it excludes ul.
The general procedure of Method II is based on computing f=Lyfor L
chosen in such a way (as described in sub-section a that follows) that
Yo=Y % B has a model equation on which it will be easy to use Method 1.

Thus B Ly is chosen so that

Yo=Y —EP=pol + Zu +e, (41)

i.e,, so that the model equation for y, has the random effects in it in the same
form as they are in y, namely Zu. Then Method II consists of using Method 1
on y,. This is straightforward insofar as the random effects of u are concerned,
because Zu in y, of (41) is the same as Zu in y of (40)—and we know how to
do Method T on y. But account must be taken of the fact that € of (41) is not
e of (40) butis ¢ = (I — ZL)e for B Ly; also, ug depends on L, and is a scalar
different from p. But its actual value is of no importance. The question is “how
is f} derived in order to achieve this?” Henderson (1953) shows this largely by
means of an example; Searle (1968) gives a general description, which we follow
here.

a. [Estimating the fixed effects

No matter how B, as a linear function of the data, is calculated, it will be
B Ly for some L. Then y, =y —.Q'B = (I — L)y, for which the model
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equation is, using (40),

Ya=u(I—ZL)1 + (1 -ZL)ZB+ (1 - XL)Zu + (1 - ZL)e. (42)
In wanting to choose L so that (42) reduces to (41), the easiest way of eliminating
B from (42) would be to pick L so that the coefficient of B in (42) is null; ie,
so that & — ZLX = 0. Such is achieved by having L as a generalized inverse
of &. This is what Searle (1971) calls a generalized Method II. But this is not
necessarily successful for achieving our ends.

In addition to ridding (42) of p by having L be a generalized inverse of &,
we also want the coefficient of u to be the same in (42) as in (41), i.e., we need
Z — XLZ = Z, and hence FLZ = 0. And to get the pg1 term in (41), we need
u(1 — L)1 to be of the form Al for some scalar A. This is achieved if the
elements in each row of 'L all add to the same value, say d,; i.c, ZL1 = 6,1
for some &,. Furthermore, although it seems as if we also need & = L as
already discussed, we can in fact settle for (¥ — LX) having the form J,1
for some scalar &,. For then, although (¥ — ZLZ)p will not have disappeared
from (42) through being a null vector, it will have effectively disappeared through
having the form &,1 and ultimately being incorporated in uol of (41). This
occurs if  — LA has all its rows the same, ie, ¥ — FLE = 1¢'. Thus the
three conditions required for L are

(i) FLZ=0;
(i) 'L having all row sums the same, i.e.,

ZL1 =4,1 for some scalar d; (43)
(ili) & — FLX having all rows the same, ie,,

¥ — XLX = 1t for some row vector t’ .

With L satisfying (i), (ii) and (iii), we then have (42) reducing to
Y. = ligl + Zu + (I — ZL)e, (44)
where g =pu— 6, + t'p.
b. Calculation .
We now show details of how Henderson’s method of choosing L of p = Ly

satisfies (43). In doing so we are led to the calculation of estimates from
Method II as follows.

(i) Use the model
E(y)=ul + 2B + Zu
as if u were fixed effects and where g # 0. The normal equations would be
' v VYZ[a 1y
1 rx TZ|pl={2y]. (45)
Zl 7% ZZ]| 4 Zy
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(ii)  Since these equations are always of less than full rank, simplify solving
them by taking 4 = 0. This reduces the equations to

7 22 le)-[%]
Z¥ Z7Z]6 Zy |
These equations are usually not of full rank; their many solutions are obtainable
by using generalized inverses of
! IZ
c- [z T x ] _ (46)
7z Z'Z
(iii) For Henderson's Method II a generalized inverse of C is chosen as
follows (Searle, 1968, pp. 758-760):

Strike out from C as many rows and corresponding columns as is necessary to
leave a matrix of full rank (equal to the rank of C). As many as possible of the
struck-out rows and columns must be through &'%. (This is the crux of
Henderson’s Method 11.)

Call the remaining full rank submatrix B. It will consist of some rows and
columns through &'& and some through Z'Z. Within C replace B by B~',
element for element, and in the struck-out rows and columns put zeros. The
result is a generalized inverse

0 0 0
C =|0 B! 0 =[§“ i”], (47)
0 0 0 21 22
where the partitioning into the P-matrices is conformable with (46). Then
B=Ly=[P,, P,ZJ[:,;] . (48)

(iv) Carry out Henderson’s Method I on
V.=y—2P=pol +Zu+ (I~ ZL)e.

Using y’ Ay, for each A that would be used in applying Method I to y if there
were no fixed effects, E(y,Ay,) will contain the same terms in the variance
components as does E(y’Ay), except for terms in ¢2. This is because Z and u
are the same in the model equation for y, as in that for y.

(v) The term in o2 in E(y,Ay,) is (k, + 6,)02, where E(y’Ay) contains
k02, and where § 4 is calculated as the trace of a matrix derived through the
following steps.

Partition & and Z as

F=(2, Z2,] and Z=[Z, Z,] (49)

so that in deriving C~ of (47) from C of (46) the rows and columns through
' of C that are deleted to obtain B correspond to the columns of & and
of Z,, with &, having as many such columns as possible.
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On using (49) in (46), we then have C~ of (47) as

0 0 0 0 0 0 0 0

B o[z;zz z;zl]-lo |0 Qs Q.0 _[p,, p,z]
olz,a, ziz,] of {0 Q, Q. 0| [Py Py
0 0 0 0 0 0 0 0

(50)

where the second equality in (50) defines the Q-matrices, and the third defines
each P;; as a matrix having Q;; and three nulls as submatrices. Then (k, + 54)0l
of (v), wherein k, is defined, has

0.=trA(Z,Q,,%3). (51)
The corresponding value ofﬁ in (48) is
7B P, B
B, Q1 23 + Q1,ZY)y
ie.,
L= [ 0 :| . (53)
Q%5+ Qy,Z)

c. Verification

We prove that L of (53) satisfies conditions (i), (ii) and (iii) of (43). The crux
of the proof lies in properties of [ Z] that arise from the manner in which
rows and columns were deleted from C of (46) to obtain C~ in (50). With &,
of (49) defined as having as many columns as possible, the number of columns
(deleted from C) in Z, is as small as possible—the total number of columns
in Z, being dependent on the rank of [£ Z]. A consequence of this is that
among the columns of Z, are those pertaining to all levels of one of the random
factors. Our proof hangs entirely on this fact. Denote those columns pertaining
to all levels of whichever random factor has all its levels represented in Z, by
Z,, and partition Z, as

Zl=[le ZIA le], (54)

where Z,, and/or Z, ; may be dimensionless. Then, since in [Z Z] the sum
of the columns pertaining to all levels of each factor is 1, we also have

ZlAl = lN . (55)
With L of (53) we now prove (i), (ii) and (iii).

si. The matrix ¥LZisnull. InZ =[Z, Z,] each of the random factors
that has (so to speak) some columns in Z; also has some columns in Z,; and
for each such factor adding its columns in Z, and its columns in Z, gives 1,
which is, by (55), also the sum of columns in Z,,. Therefore Z, = Z,K for
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some K, and so, on using L from (53),

ILZ = XLZ,[1 K]=I[ , 0 , ][l K]
Q. 252, +Q,,Z\Z,

=I[2][l K]=0 (56)

because, from the non-null submatrices of (50)
Q7 %,+Q,2:%,=1 and Q,¥,2Z, +Q,,Z1Z,=0. (57)
-ii. Row sums of ZL are all the same. Because of (54) and (55),
(¥, &, Z,, Z,, Z,5 Z,]J[0 0 0 1" 0 O] =1y (58)
therefore, fort’' = [0 1’ 0]conformablewithZ, =[Z,, Z,, Z,;],with

Zit=1, (59)
0 0
0 0

(z, 2, Z, Zz]t =[Z Z]t =1y. (60)
0 0

Pre-multiplying both sides of the second equality in (60) by [ Z]' and
extracting part of the result produces

z‘l ! ’
Bl e ] g
Z, 7%, Z\Z, ]t
Then, using (53), it can be seen that L1y involves the left-hand side of (61),

from which we get, with the aid of (57), L1y = 0. Therefore row sums of ZL,
which are elements of ZLI1, are zero, i.e., they are all the same.

-iii. All rows of ¥ — XLX are the same. From (49) and (53)
0
' ' ][Il z.2]
Q. %) + Qy,Z)
=[Z, %,]-[2,Q,,%;+Q,,Z))¥, Z,], using(57),
I'
=[Il - Z,[Qn Qu](Zf)Il 0]- (62)

1

r-ITr=[2, %,]1-0%, 3‘2][

The reasoning used with Z, and Z, concerning sums of certain of their columns
adding to 1y also applies to &, and & ,: the sum of certain columns in &, and
in &, is also 1,. But (58) and (60) give Z,,1 = 1y = Zt. Therefore

z =2, Zl][:‘], (63)
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where S is some matrix of elements that are eachOor t,and T=[0 J 0].
Therefore pre-multiplying (63) by [Q,, Q,,]1[Z, Z,] gives

x L ¥ S
[Qu QIZ][Z;]II =[Q, Q”][Z’:][Iz Zl][T],

S
=[1 0 =8 64
TH o
from (57). Substituting (64) and (63) into (62) gives
z-zw=[[zz Z,](:)—I,S 0]=[Z,T 0]. (65)
But
0
L T=[Z,, Z,, Z;3]jJ|=Z,,J=1J
0

by (55), and so (65) becomes & — FLX = [J 0], which has all its rows the
same.

d. Invariance

Since execution of Method I depends, as in (iii) following (46), upon deletion
of rows and columns of C for deriving C 7, it might be thought that the resulting
variance components estimates would not be invariant to the manner in which
this deletion is carried out (as suggested by Searle, 1971, p. 443). That is false,
as proved by Henderson, Searle and Schaeffer (1974). We give their proof here.

-i. Rank properties. By the very choice of &', and Z,, therank of [Z, Z,]
equals the number of its columns and it is the rank of [ Z]; i.e., for r(X)
being the rank of &,

HZ, Z)=r(Z)+r(Z)=rZ Z). (66)
Furthermore, since Z, has as many columns as possible, subject to (66),
nZ)=r(Zy). (67)

In addition, we confine attention to models wherein
"(Z Z)=r(Z)+r(Z)-1. (68)

This requirement excludes models that have interactions between fixed and
random effects, but these are excluded, anyway, by other characteristics of
Method IT (see sub-section f which follows). Also excluded by (68) are models
having any confounding between fixed and random effects.
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Conditions (66)-(68) are used in proving that Method II is invariant to
whatever solution B isusediny, =y - & B for applying Method II to y,. The
proof depends upon the estimability of a certain function of B, upon the
relatlonshlp of one form of p to another, and upon the quadratic forms used
in Method 1

Since (67) is equivalent to r(Z,) =r(Z, Z,), we have

Z,=Z,H (69)

for some H. Also, (59) is Z,t = 1; therefore, because (¥, Z,) has full column
rank, 1 and columns of &, are linearly independent. Thus 7(1  &,) =1 + r(¥,)
and so from (66), (67) and (68)

rl X,)=1+rE Z)—rZ)=1+r(T Z)-HZ)=1+rZ)—1
=r®@)=r(1 T, T,).

Hence &, =[1 4&,]R for some matrix R, which can be written as
R'=[w W] so that

T, =1w+X,W, (70)
for some row vector w’ and matrix W. Hence from Zt = 1 of (59)
T, =7Z,tw +2Z,W. (71)

-ii. Anestimable function. Themodel (40),y = ul + P + Zu + e,isnow
’ p
y=[1 &, Z]|p |+[; 1][ ’]
u;

On now using Z,t = 1 of (59) together with (71) and (69) for &, and Z,,
respectively, this becomes

i

y=[Zst Z,w +Z,W ZH]|p, |+, z,][f’]n
u, '

0 W 0 # B
=[Z, Z,] , ] B | +([2; Zn][ 2]+e

|t tw H u,

u;

[ Wi, + 8, ]

=[%, Z )
L% l]L;1t+tw’|$,+||1+l~ln2 te (72)

Since [¥, Z,] has full column rank, we conclude from (72) that

WP, + B, is an estimable function . (73)
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-iii. Two solutions. Suppose in the class of models satisfying (68) that p°
is any solution of the normal equations (45) for the model that treats the random
effects as if they were fixed; and B° is assumed to differ from p = Ly. Then for

ya =y — ZP°
Y- Ya=y—ZP° —(y—ZP)
= ,(B, — B9) + Z,(B, - BY),
and from (70) this is
¥o—yo=1w(B, —BY) + Z,[WB, + B, — (WBS +891.  (74)

But WP, + B, is, by (73), estimable. Therefore Wﬁl + |§2 = WB? + B9 and so
(74) reduces to

yo=y,+ 41 for A=w(p —p?).

-iv. The quadratic forms. Method 1l is to use Method I on y,. But the
quadratic forms of Method I, say y’Ay, have A = A’ and are such that 1’'A = 0.
Therefore when those same quadratic forms are used on y, and y?

yJ'Ay? = (y, + Al')A(y, + Al) = y,Ay, .

Hence Mettod I on y? calculates the same quadratic forms as on y,. But, of
course, for the expected values of those Method I quadratic forms to have the
same values as they do on y (other than a2-terms) the y, that one uses must
be of the form required for Method II, namely y, =y — Ly for L of (53).

It can be noted in passing that because the only fixed effect term in the model
equation for y, is uol, the condition that y,Ay, be suitable for ANOVA
estimation, Z'AZ = 0,is 1'A1 = 0. This is satisfied because A is defined through
y'Ay being a Method I quadratic form, for which we know 1'A1 = 0.

e. Coefficients of o

Method H applied to y=pul + Zp+ Zu + e is Method I used on
Y. = #ol + Zu + £. This means calculating quadratic forms in y, that are the
same as those in y for Method I used on y = ul + Zu + e; for example, y'Ay,
say. Then Method Il equates y,Ay, to E(y,Ay,). Because Zu in y, is the same
asiny, E(y,Ay,)isidentical to E(y,Ay,)for they = ul + Zu + e model—except
for the term in a2, since y contains e and y, contains £ = (I — ZL)e of (44).
Let the term in 62 in E(y’'Ay) be k, 02 and that in E(y,Ay,) be (k, + 6,)a2.
Then, since the variance components terms in E(y'Ay) come from tr(AV) and
because a2 occurs in V as al, the 62 term in E(y’Ay) is

k,o? = tr(Ac?l) = a2 tr(A) . (75)
Similarly, with € = (I — L)e, the o2 term in E(y,Ay,) is
(kg +3,)02 =tr{Avar[(I—ZL)e]}.
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But from (49) and (53)
ZL=2,U forU=Q, 23+ Q,,Z, . (76)
Hence
ky+6,=tr[Al-Z,U)I-Z,U)]
=t[Al-UZT, - Z,U+ F,UUT},)]
=tr{A[l-UZ, - Z,U + 2,U(T,Q), +Z,Q,,)X5]}, (77)

from (76). But (76) gives (57) as UZ', =1 and UZ, = 0. Using these and (75)
in (77) gives

kA+6A=kA‘_'tr[A(U’.g"2+$2U—$2Q11£’2)] . (78)

Any Method I quadratic form y,Ay, is, in fact, a quadratic form in the
random factors’ subclass totals—i.e., in Z'y,. Therefore y,Ay, = y,ZMZ'y, for
some M. But Z=[Z, Z,] of (49)is, from (69), Z=Z[1 H] = Z,F, say,
for some F. Therefore y,Ay, =y,Z,FMF'Z)y,. Hence for 6, of (78)

tr(AZ,U) = tr(Z,FMF'Z, Z,U) = tr(UZ,FMF'Z ¥ ,) = 0,
because UZ, = 0, as precedes (78); i.e.,, tr(AZ,U) = 0. Therefore
0=tr(AZ,U) = tr(U'Z3A") = tr(UZ,A) = tr(AU'X}S) .
Hence (78) becomes 6, = tr(AX ,Q,,X,) of (51).

f. No fixed-by-random interactions

It is a restrictive feature of Method II that it cannot be used on data from
models that include interactions between fixed effects and random effects. This
is so whether such interactions are defined as being random effects (which would
be usual) or as being fixed effects. The reason that such interactions cannot be
accommodated is that their existence is inconsistent with conditions (i)-(iii) of
(43). This we now prove, taken from Searle (1968). But first an example, to
illustrate the relationships that exist between & and Z when a model has
interactions.

Example. Suppose for the 2-way crossed classification of two rows (factor 4)
and two columns (factor B) that the numbers of observations are

2 3|5
t 213
3 5|8

For these n;;-values the model equation

Vi =B+ o+ B+ vy + e,
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written as
y=ul + X a0+ TP+ T 57 + e
has
n 2, 2, 24 1

g1 -]
{1
tf1-]- 1] 1
tfr- -1
tfr-[-1]-1
l.ll...l.
l.l-l....l
RN RN RN

By inspection we see that &, and &', each have columns that are sums of
columns of & 4. This is a direct consequence of there being A-by-B interactions
in the model.

Suppose as represent fixed effects and fs represent random effects.
Then if the interactions are taken as random in the model equation
y=ul + P+ Zu + e, we would have for the example =2, and
Z=[%; Z,] Therefore some columns of & are sums of certain columns
of Z. This is true generally, whenever interactions of fixed effects factors with
some random factors are taken as random effects. Then, apart from permuting
columns of &, we can partition & as

z=[Z, Z.] (79)

where &, represents those columns of & that are sums of certain columns
of Z (e.g., of & ,p in the example) and so we have

ZX,=7ZM for some M. (80)
Similarly, if those interactions are taken as fixed effects, Z can be partitioned as
2=[2, Z,] (81)
with
Z,=2K forsomek. (82)

Note: [, %,]and [Z, Z,)do not represent the same partitionings of &
and Z, respectively, as are used in (49).

Now we prove that interactions of this nature, be they taken as random or
fixed, are inconsistent with conditions (i)—(iii) of (43). Suppose the interactions
are taken as random. Then from (80)

LY, = FLZM =0, from (i) of (43). (83)
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Therefore
-2 =(F, Z%,]-2L[Z, %,]
=[(¥, - TLZ,) (T, - TLL,)]
=[(¥, - ZLET,) Z,]

and so by (ii) of (43) every row of [(¥, — FLE,) &,] is the same. But this
means every row of &, is the same—and that is unacceptable because &, is
the coefficient of a sub-vector of § (which does not include u) in the model
equation.

Now suppose the interactions are taken as fixed effects. Then condition (i)
of (43) is FLZ = FL[Z, Z,] =0 and so FLZ, = 0. Therefore using (82)
gives FLZ, = FLZK = 0. This reduces, after post-multiplying (iii) of (43) by
K to get K — FLZK = I7'K, to be ZK = 17'K, so that by (82) Z, = 17'K.
But this means that every row of Z, is the same—again an unacceptable
situation. Thus data from models that include interactions between fixed and
random factors cannot be used for estimating variance components by any
method based on adjusted data y, =y — &P for = Ly where L satisfies (43).
And Henderson’s Method 11 is one such method. Thus, be they treated as fixed
or random, interactions can be part of the model when Henderson’s Method 11
is used only if they are interactions of fixed effects with each other, or of random
effects with each other, and not of fixed effects with random effects.

g. Merits and demerits
Merits of Method II include the following.

(i) The inapplicability of Method I to mixed models is overcome, at least
partially, by Method I1: it can be used for mixed models that have no interactions
between fixed and random factors.

(ii) Computation of y, =y — Xﬁ requires care, but after that the
computation is as easy as is that of Method I, save for coefficients of ¢2 in the
estimation equations.

(iii) Estimators are unbiased.

(iv) For balanced data Methods I and Il are the same, and are the same
as the ANOVA method for balanced data. (See E 5.18.)

Demerits include the following.

(i) Models with interactions between fixed and random factors cannot be
analyzed using Method I1.

(ii) No closed form expressions are available for sampling variances of
estimators. They could be developed from those of Method I (see Appendix F)
after taking account of (k, + 6,)a2 discussed in the preceding sub-section e.

(iii) Negative estimates are possible.
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5.5. HENDERSON’S METHOD 11l

Method III is based on borrowing sums of squares from the analysis of fixed
effects models. The sums of squares used are the reductions in sums of squares
due to fitting one model and various sub-models of it. We therefore begin a
description of Method IIT with a brief summary of these sums of squares.

a. Borrowing from fixed effects models

-i. Reductions in sums of squares. In writing a general mixed model
equation as y = Xp + Zu + e we clearly distinguish between fixed effects and
random effects, representing them by B and u, respectively. Suppose for the
moment that we remove this distinction and combine p and u into a single
vector b and write the model equation as

y=Wb+e. (84)

In this sub-section we consider (84) in its own right, forgetting that b contains
both fixed and random effects. We do this because some of the sums of squares
associated with fitting (84) as a fixed effects model and with fitting sub-models
of that fixed effects model are the basis of Method IIlL.

In fitting a fixed effects model having model equation (84) it is well known
that the best linear unbiased estimator of Wb is (see Appendix M for the A~
and A notation)

BLUE(Wb) = Wb = W(W'W) W'y = WW 'y, (85)
Then the residual error sum of squares after fitting the model is
SSE = (y — Wb°)'(y — Wb%) =y'y —yWW "y (86)

The partitioning of y'y into two sums of squares SSE and yYWW "y (to be
denoted by SSR) represented by (86) is summarized in Table 5.3. That table
is, of course, the basis of the analysis of variance table for fitting (84). That
analysis of variance usually includes calculating mean squares, which, on the
basis of assuming normality in the form y ~ A" (Wb,o21y), then provide,
through the F-statistic

_ SSR / SSE
r(W)/ N —r(W)’
a test of the hypothesis H: b = 0. All this is for the fixed eflects model. For
estimating variance components for mixed models we concentrate attention
on SSR.

SSR in Table 5.3 is seen to be the reduction in sum of squares due to fitting

the model y = Wb + e. We therefore denote it by R(b) and so have
R(b)=yW(WW) Wy=yWW'y, (87)

Method III is the ANOVA method of estimating variance components using
quadratic forms based on R(b).
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TABLE 5.3.  PARTITIONING THE TOTAL SUM OF SQUARES WHEN FITTING THE
FIXED EFFECTS MODEL Y = Wb + e

Reduction due to fitting the model SSR = yWW'y
Residual error SSE=y'y -yWW'y
Total SST=y'y

Consider partitioning Wb so that

E(y)= Wb, + W,b,, (88)
with R(b) now being denoted
R(b;,by) =y’ [W, W J[W, W,]"y. (89)
In fixed effects models we might want to compare the fitting of (88) with fitting
E(y)= Wb, (90)
which has
R(b))=yW,Wly. (o1

The comparison is based on the difference between the two reductions in sums
of squares:

R(bz I bl) = R(bn bz) - R(bl)
=y[W, W, J[W, W,]"y-yW Wy, (92)

Simplification of (92) comes from using WW™* = W(W'W)"W and the
generalized inverse of a partitioned W'W as given in (21) of Appendix M.4c.
This results in (92) reducing to

R(by|b;) =y M, W,(W,;M,;W,)"W,;M,y (93)
for
M, =1-W (W,W) W, =M,=M3, withMW,=0. (94)

It is sums of squares like (93) that are used in Method III. Although with fixed
effects models such sums of squares are used in numerators of F-statistics, for
which normality assumptions are required, no normality assumptions are
implied when using those sums of squares in the Method III estimation
procedure.

-ii. Expected sums of squares. Before specifically adapting (93) to the mixed
models we are interested in (through writing Wb as Xp + Zu), we consider a
general formulation of E[R(b, |b,)] that illustrates an important property of
Method III. It is not affected by having fixed effects in the model, as is Method
I; nor is it affected by having fixed-by-random interactions, as is Method II.
To do this, think of b as being any mixture of fixed and random effects, so that
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without knowing which is which we can, in broad generality, have
var(b) = E(bb’) — E(b)E(Db’) . (95)

For a sub-vector of b having elements that are the effects due to a random
factor, the corresponding diagonal elements in (95) will be a variance component;
and all other elements of (95) in the same rows and columns as those diagonal
elements will be zero. This arises from the properties given in (5a) and (5b).

Without having to know or formulate which elements of b are fixed effects
and which are random, the generalization (95) proves useful in considering
what we need for any form of the ANOVA method of estimation, namely the
expected value of a quadratic form y’Ay. With (95) we have

V = var(y) = var(Wb) + a2Iy = W var(b)W’ + o1
and so
E(y'Ay) = tr[AW var(b)W’ + Ac?I] + E(b )W AWE(b)
= tr[W'AW var(b) + W AWE(b)E(b")] + a2 tr(A)
= tr[WAWE(bb’)] + a2 tr(A) . (96)
This, for the quadratic form R(b,|by) of (93), where W = [W, W,], gives

1

W
ER(b,|b,) = tr{[w,'][lez(w'lewz)’W'lel[Wl Wz]E(bb’)}
2

+ a2 tr[M, W,(W;M, W,)"W;M,] . (97)

Using M, W, = 0 from (94), together with b’ = [b} b5 ] and the idempotency
of MW, (W,M,; W,)” W, M, reduces (97) to

ER(by|b,) = trf WiM, W, E(b,b3)] + 02(rpw, w,)— rw,), (98)

where the coefficient of 2 comes from (26) of Appendix M.4d; and rw, = r(W,),
the rank of W,. .

A notable feature of (98) is that, apart from a2, the only parameters of the
model that are in (98) are those in b,. They occur in the form E(b,b}). There
is no occurrence in (98) of the parameters of b, in any form. This means for
Method I11 that expected sums of squares of the form E R(b, | b,) never involve
b,. Therefore, so long as we formulate b, to always include the fixed effects of
our model, E R(b, | b,) never includes fixed effects. By this means, Method 111
avoids the deficiency of Method I being unsuitable for mixed models. And, by
the general nature of R(b, | b, ), there is no restriction, as there is with Method II,
of having to do without fixed-by-random interactions.

b. Mixed models
We now revert to the mixed model having model equationy = Xp + Zu + e.
For

M=I-XX"=IT-X(XX)"X'=M=M? withMX=0, (99)
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analogous to (94), we have from (98)
ER(u|B)=tr[Z’MZE(w’)] +o62(r[X Z]-r[X])
=tr[Z’MZ{,0}1,}]1+ ¢2(r[X Z]-r[X])
=Z,tr(ZMZ)es} +ol(r[X Z]-r[X]). (100)
In this we see at once that the fixed effects B do not occur at all.

Example 3. The 1-way classification, random model, with unbalanced data
yi=u+a;+e; has X=1y, B=y, Z={,1,} and u=a. Therefore with
SSA = R(u|B) = R(a|p)

E(SSA) = ER(a|p) = tr[(I1 - Jy)0i{aJ,}] + 02(r[1n {aJa}]1—r[1n])
=oitr[{4d,} — N 'y{n1,}1+ 62(a—1)
= (N ~Zin}/N)o} + (a — 1)o?
as in Section 3.6a.
Now consider a slightly more general case, of just two random effects,
represented by u, and u,. Then (100) gives
ER(uy,u,|B) = tr[M(Z,Z'6} + Z,Z,0})] + o2(r[X Z]-r[X]).
(101)
From (98) we can also obtain ER(u,|p,u,). It involves an M, based on
[X Z,],andisinfact I —[X Z,][X Z,]*, by the nature of M, in (94).
Thus
ER(uy|B,uy) = te{(I - [X Z,][X Z,]")Z,Z}03}
+a2(r[X Z]-r[X Z,)). (102)
We also have, of course, that
E(SSE) = E[y'y — R(B,u,,u;)] = (N —r[X Z])a?. (103)

Equation (102) demonstrates a feature of Method III that can sometimes
prove useful: just as each of E R(u,,u, | B) and E R(u, | B, u,) involve no terms
in elements of P, arising from (98) involving no b,, so also does E R(u, | B, u,)
of (102) not involve u,; it involves only u,, in the form of s%. This leads to
being able to write Method III as a series of equations in the estimated
components that can easily be solved progressively, first for 62 and then for
one of the other components and then for another, and so on. They are,
effectively, linear equations that have a triangular coefficient matrix. The
estimation equations from (101)—(103) are an example:

R(uy,u,|B) = tr(MZ,Z})é} + tr(MZ,Z})63} + (r[X Z]-r[X)Deél,

R(uy|B,u)) = i+ ([X Z]-r[X Z,])62

y'y — R(B,u;,u,) = (N—r[X Z])é;
(104)
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for
A=tu{(I-[X Z,][X Z,1%)Z,Z)}.

Note that ER(b, | b,) of (98) not involving b; has an underlying condition
that must not be overlooked: in deriving (98), b, and b, constitute all the
parameters of the model. Suppose R(b, | b,) is such that b, and b, do not make
up the whole model. Then there are more parameters in b than those in b, and
b,. Therefore the derivation of (97) from (96) would have to have W partitioned
not just as [W, W,] corresponding to b, and b, of R(b,|b,), but as
[W, W, W,], where W, corresponds to b,, which contains the parameters
in b that are not in b, and b,. This would lead to (98) containing terms in b,
and W, as well as b, and W,, and the principle evident in (98) as it stands,
that E R(b, | b,) involves only ¢ and b,, would be negated. And the triangular
nature of the estimating equations seen in (104) would be lost.

Although sums of squares defined in terms of only parts of a model
do not, as just described, fit into the algorithm of (98), they can often be
adapted so that (98) can be utilized. Consider E R(u,|§) for the model
E(y) = XB + Z,u, + Z,u,. Because u, and § of R(u, | ) do not constitute the
whole model, consisting of B, u, and u,, we cannot use (98) to derive E R(u, | §).
But

R(u;|B) = R(B,u,) — R(B)
= R(B,u;,u;) — R(B) — [R(B,u;,u;) — R(B, u)]
= R(uy,u;|B) — R(u; | B, u;),

with (98) being applicable to each of these last two terms. In this way, reductions
in sums of squares whose expected values cannot be obtained directly from (98)
can be expressed as the differences between two reductions that can utilize (98).

Notice in (104) that in place of R(u, | B,u,) it would be perfectly permissible
to have R(u, |P,u,)—with a correspondingly different expected value. This
means that there would then be two different sets of three sums of squares from
which to estimate the three variance components: (104), and (104) with
R(u,; | B,u,) in place of R(u,|B,u,). There could be a third set: the last two
equations of (104) together with R(u, |, u,). Herein lies one of the great
deficiences of Method III; it gives no indication as to which of such different
sets of equations is to be preferred.

¢. A general result

The result given in (102) for ER(u,, #|u,), where each of u, and u, represent
a single random factor, can be extended to where u; and u, each represent one
or more random factors. In particular, partition Z,u, as

Zyu, =Zuy, + Zy,uy, + - + Zymy,,

= Z Z,u,,

i=1
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where r, is the number of random factors having all their effects in u,, each
u,; being the effects for exactly one of those factors, with var(u,;) = a%,lq“.
Then with

i=1
the extension of (102) is
ER(uy|Bu) = Z ag,-tr{(l—[x Z ][X Zl]+)zzlz'2i}
i=1

+o2(r[X Z, Z,]-r([X Z,]). (105)

d. Sampling variances

In (21), for Method I, we established a general formula for var(62), knowing
that in 6% = C~'s each element of s was of the form y’A;y, where X’A,X = 0,
as in (16). We now show that this is also the case for Method III estimation,
which means that (21) for var(62) can also be used for Method III.

In terms of the vector s = {R(-|)} of reductions in sums of squares, we
have, as usual for ANOVA estimation, E(s) = Ca?, giving s = Cé2 for some C
and so 62 = C~!s. Denoting a typical element of s by y’A,y, we know from
(98) that by y’A;y being of the form R(-|B,), its expected value contains no
term in B. Therefore, since in general E(y’Ay) = tr(AV) + p’'X’'AXp, we know
for R(-|PB,-) that p'’X'AXp=0 VP and hence X'AX = 0; also, because
R(-|P,") is a sum of squares, A is real and n.nd. and so X'AX = 0 implies
AX =0

More direct derivation of this result is achieved by writing R(-|B,-) as
R(u, | B, u,) for some u, and u,. Then

R(uy|Bu) =y'M,Z,(Z,M,Z,)" Z,M,y, (106)
where M, of (94) is now

’ - xl
M, = [X ZIJ([:,][X ZIJ) [Z]
1 1

Recall that, in general T(T'T)"T'T = T. Using this with T =[X Z,] gives

W[ -B)

Therefore M;X =0 and so writing (106) as y'Ay gives AX =
M,Z,(Z,M,Z,)"Z,M,X = 0. Hence the expected value and variance of
y'M,TM,y for any T (and its covariance with any other quadratic form in y)
contains the term TM,Xp, which, with M, X = 0, is null. Therefore, under
normality, for A; having the form M,Z,(Z,M,Z,)” Z,M,,

var(y'A;y) = 2tr(A,V)®> and cov(y'Ay, Y'Ajy)=2tr(A;VA;V).
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Therefore, as in (21),
var(§%) = C~'var(s)C™ "' = 2C™ ' {, tr(A;,VA;V)}, “oC™ V. (107)

This is a succinct expression but its use is bedeviled with the usual complexities
of a sampling dispersion matrix of estimated variance components. First, through
its dependence on V, (107) is in terms of the unknown components, 62.
Nevertheless, for any particular data set one can always determine C,
numerically, and then, for any pre-assigned value of 6%, say 62, one can compute
var(6?) from (21) or (107). However, this does little for establishing closed form
expressions for sampling variances and covariances of Method 111 estimators,
which remains an intractable problem. Second, the numbers of observations in
the cells and subclass totals of the data occur in (107) in very intractable ways,
in the As and in the functions that are elements of C. Third, as a result, studying
the behavior of elements of (107) for changes in the number of observations is
well nigh impossible, analytically—and arithmetic studies through simulation
are fraught with the difficulties of all such studies: designing them in such a
way as to be reasonably likely to be able to draw some conclusions.

e. Maerits and demerits

(i) Method III is applicable to all mixed models; the restriction of having
no interactions between fixed and random factors that applies in Method 11
does not apply to Method I1I.

(ii) Estimates are unbiased.

(iii) For balanced data Methods I, II and III are the same.

But demerits include the following.

(i)  When there are two or more crossed random factors the method can
be applied, for a given model, in more than one way; and there is no way,
analytically, of deciding between one application and another (as illustrated in
Sections 5.6a-ii and 5.6¢c-ii, which follow).

(ii) Computationally, the method can involve the inversion of large-sized
matrices—of order equal to the number of levels of the effects in the model.
This disadvantage will decline as today’s computing power increases in speed
and declines in cost (per arithmetic operation).

(iii) Sampling variances can be calculated arithmetically, through a series
of matrix operations and with using estimated values for the variance
components, but specific closed form expressions are not available.

5.6. METHOD III APPLIED TO THE 2-WAY CROSSED CLASSIFICATION

The 2-way crossed classification is the easiest case for illustrating some of
the results of the preceding subsections. We begin with the no interaction,
random model.
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a. No interaction, random model
Taking the scalar form of the model equation

Yp=u+oa+ B+ ey,
its vector form is
y=uly+Z, o+ Zp+e (108)
where
Z,= {d ln..}i:l and Zy= {c {d‘ 1n.,}j£l}i=ll .

In Zg the d* is described at the end of Appendix M.3: it means that for n;; = 0
the symbol 1, has column position but no dimensions, i.e., no rows. Useful
products are

WZ,={n.} and 13Zz={n};

) ' ) (109)
Z,2,= {dJN,.}’ Z,Z,={sn.}, ZpZy={, "-1} .

-i.  One set of sums of squares. One partitioning of the total sum of squares
(corrected for the mean) that is used in the fixed effects model is

R(a}u) + R(B| u, o) + SSE = SST,, (110)
where
SSE =y'y — R(u,a,B) and SST,=y'y— Ny’ =ZZZ(yy — 7..)* .

To derive expected values of the terms on the left-hand side of (110), we use
(100) and (102), and to do so rewrite R(a| ) in (110) as

R(a|p)=R(a,Blp) - R(Blpa). (111)
Using (100) then gives

ER(a Blp) = tr[M(Z,Z}0} + ZpZpo})] + 02[r(1 Z, Zg)—r(1)],

(112)
where M is
M=1-1,y(131y) 1y=1-1J,.
Hence
ER(oB|p) = o tr[(1 = JNZ,Z, ] + oj tr[(1 — Jy)ZpZ})]
+oXa+b—-1-1). (113)

We now utilize (from Appendix M.6), for any matrix T,
tr(TT’) = Z,2;t} = sesq(T), (114)
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where “sesq” is mnemonic for “sum of squares of elements™. This reduces(113) to
1VZ 1.7,
ER(a,B|p) = af[sesq(ZA) - fﬂ(ﬁ"_”)] + gz[sesq(zs) - _Sesq_(NN s)]
+(a+b—2)0?

¥ n? 3 .5
= oﬁ(N - —‘,%)63 + (N - %ﬁ)aﬁ +(a+b-2)a2. (115)

Similarly, using (102) with M =1—-[1 X,J[1 X,]* gives
ER(B|u,a)=tr(MZBZ;,a,§)+aez[r(l Z, Zg)—r(1 Z,]. (116)
Zing;

=a§(N—zi—>+(b—l)a§. (117)

n;.
And, of course

E(SSE)=[N—r(1 Z, Zglo2=(N—a—b+1)o?. (118)

Itisleft tothe reader as E 5.7 toderive (117)from (116) and toexplain (118).
On defining for any r, k, = k,/N with, as in (30),

2 — 2
kl =z‘n‘,, kz —zln.j,

(Zin};

2
k3=2ig’f‘"—“), k=Y, (119)

i h.;
and
k23 = z‘z‘]né,

the estimation equations can be written in convenient form. They come from
using (115) and (118) with (111), together with (117) and (118), and are

R(a|p) = (N —Kk3)8] + (ks — k3)8} + (a — 1)8Z,
RBipa)= (N = k;3)é; + (b —1)8], (120)

SSE = (N—a—-b+1)8%.
-ii. Three sets of sums of squares. The preceding results stem from (110),

but that is only one of the two possible partitionings of SST,, that are used in
the fixed effects model. The other is

R(BIu) + R(a |, B) + SSE = SST,, . (121)

By direct analogy (interchanging « with B, and i with j) with (120)—see
E 5.7(d)—using expected values of the terms in (121) gives

R(BIp) = (ky — KY)62 + (N —ky)é} + (b — 1)éZ,
R(a|u,B) = (N ~ k,)é? +(a—1)62,
SSE = (N-—a——b+1)6§. (122)
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So this is a second set of equations that is available for estimating the o2s: it
is not, of course, the same as (120).

Notation. It is convenient to define

T,n? 3 .nt
hy=N—ki=N-200 p - N_k,=N—2"
N N
50k
hy=N —kyy = N — == (123)
N
Znj I;n},
h4—N—k3=N—Z‘———-, h7=N—k4=N_Z X
ni- Jn.]

he is defined in (137) and its calculation is described in Table F.3.

There are now two options for estimation: (120) or (122). Both have the
same last equation, rewritten as (124a) below. Having thus obtained ¢2, one
could use the middle equations of (122) and (120) for calculating 62 and 6},
respectively: these are shown as (124b) and (124c). Doing this fails to utilize the
first equations of (120) and (122). But a feature of them is that in each the sum
of the first two equations is the same:

R(o,B|p)=R(a|p) + R(B|p,a)
=R(Btu) + R(a| 1, B)
=(N — k)62 + (N — ky)82 + (a + b — 2)42

which has been rewritten as estimation equation (124d).

62 = SSE - Elzjzkyizjk — R(p, 0, B) (124a)
* N—-a—-b+1 N—-—a-b+1 ’
— — a2 _ . 52 __ —_ 2
é’: = R(G'ﬂ, ﬁ) (a 1)0'¢ — R(”’a’ ﬁ) E]n-_ly-j' (a l)de , (124b)
h7 h7
— — 2 — Y o2 — _ 2
(9; = R(ﬁ | ”’a) h (b l)de = R(”s a’ﬁ) Eln’:'yl'- (b l)de , (1240)
4 4

h 62 + hy8} = R(p,a,B) — N2 ~ (a + b —2)62 . (124d)

Therefore, since (124¢) is the second equation of (120) and (124d) is the sum
of the first and second, equations (120) are equivalent to (124a,c,d). Similarly,
(122) is equivalent to (124a,bd).

Equations (124a,c,d) come from the partitioning of SST,, shown in (110).
Thus they are equivalent to using SAS Type I sums of squares, with the factors
ordered A, B. Similarly, (124a,b,d) come from (121) and are equivalent to using
SAS Type 1 sums of squares with the factors ordered B, A.
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When R(B| u,e) of (110) is used for fixed effects models, it has a different
purpose from that of R(et|u,B) in (128): e.g, R(P|u, ) tests H: f§; all equal,
and R(o|u,B) tests H: o; all equal. Distinguishing between the utility of
R(B| u, &) and of R(e |, B) is therefore easy in the fixed effects model. But this
distinction of purpose does not carry over to the use of these sums of squares
in Method I11. The method includes no way of deciding which of the two sets,
a, c, d, or a, b, d of equations (124) should be used. Indeed, a third set of
equations that includes (124a) is now apparent: Method III permits us to also
use a, b, ¢. This is equivalent to the last two equations of each of (120) and (122),
and so is the same as using SAS Type II sum of squares. Thus we have three
possible ways of applying Method III to this case. They are set out in Table 5.4.
That table identifies which equations a, b, ¢, or d of (124) can be put together
to form a set of three equations for estimating the variance components ¢2, 62
and ¢}. It can also be interpreted as showing similarities between the three
resulting sets of estimates. Thus 62 is the same in all three options, 2 is the
same in options 2 and 3 as obtained from (124b), and 4} is the same in options
1 and 3, obtained from (124c).

It is the availability of more than one set of estimation equations 6% = C™'s
that gives to Method I1I its unhappy characteristic of not always being uniquely
defined for a given model. The method contains absolutely no criteria for
deciding, for example, between options 1, 2 and 3 of Table 5.4. And in models
with more than two crossed random factors there will be even more than three
such sets of possible quadratic forms. Moreover, not only does the method itself
provide no means for deciding between one option and another but, just as
with trying to compare any forms of ANOVA estimation, the analytic
intractability of sampling variances, for example, makes comparison on that
basis effectively impossible. Numerical comparisons can be made, of course,
but are fraught with all the usual difficulties already discussed.

1

TABLE 5.4. THREE OPTIONS FOR USING METHOD Iil ON THE 2-WAY CROSSED
CLASSIFICATION, NO-INTERACTION, RANDOM MODEL

Equations from (124)

Estimate Option 1 Option 2 Option 3
62 a a a
é2 b
é; c d c

Equivalent to

Partitioning of SST,, (110) (121)

Estimation equations (120) (122) Last two of
(120) and (122)

SAS sums of squares Type | Type | Type 11

AB B,A
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Of course, one could always use the least-squares approach and, after arraying
all the equations in the form E(s) = Co?2 use 62 = (C'C)"'C’s as an unbiased
estimator of a2 (See Section 5.2c).

-iii. Calculation. The only difficult term to calculate in equations (124) is
R(p, a, ), the sum of squares due to fitting the no-interaction model having
equation E(y;;) = p + o; + B;. A computational method is given in Table F.3
of Appendix F. It is exactly the method given in Searle [1971, Chpt, 7,
equation (26); 1987, Chpt. 5, equation (32); Chpt. 9, equation (99)].

-iv. Sampling Variances. Low (1964) derived sampling variances (under
normality) for estimated o?s obtained by one of the three possible estimation
options of Table 5.3, namely option 3, based on equations a, b and c of (124).
Those sampling variances and covariances are shown in Appendix F.6e.

b. No interaction, mixed model

Suppose the fs in the model equation y;; = u + o, + B, + ¢, are taken as
fixed effects. Then the sums of squares are calculated exactly the same as in the
random model of the preceding section. With the fs being fixed the only sum
of squares having expected value that contains no fs is R(a|u,B); and that
expected value is precisely the same as in the random model. Therefore the
estimation equations are the last two equations of (122), namely (124a,b):

62 = zizjzkyizjk - R(”’ o, ﬂ)
‘ N—a—-b+1

and
_R(ma,B) - Epny% —(a—1)é2
h,
These are the only equations for estimating ¢2 and o2 that Method III yields

for this model. Hence this is a case where Method III is unique—in contrast
to the random model case of Table 5.4, where it is not.

62

c. With interaction, random model
The with-interaction model has equation

Yiw=s+o+ B+, +ey.
Its vector form is thus

exactly the same as in the no-interaction case of (108) except for the addition
of Zcy with

Zc={,{q ln,,}jzl}jgl forn; #0
which we write more simply as
Zc={41,} - (126)
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Useful products involving Z. are
WZc={,n;}, ZcZ= {4 Jn.,} and Z¢Zc = {gn;}.

To take account of the possibility that some cells may contain no data, we
define

s = number of filled cells . (127)

«i. One set of sums of squares. Corresponding to (110) for the no-
interaction case, one partitioning of SST,, used in the fixed effects model for
the with-interaction case is

R(a|p) + R(Blma) + R(y| s, p) + SSE = SST,, (128)

where SSE = y'y — R(y, @, B, y) and SST,, = Z,Z,Z,(y;% — 7..)>. In order to use
(100) and (102) for R(a | u), we write it as

For this, similar to (112),
ER(a,B,y|4) = tr{M(Z,Z,0} + ZgZpoj + ZcZcoy)} + ai[r(1 Z) — 1]
(130)

with, as following (112), M =1 — J,. Comparing this with (112), we conclude
that the first two terms in (130) are the same as in (115); and the Jast two terms
of (130) are

o} tr(MZcZe) + a2[r(1 Z)— 1) =02tr(ZZy — INZZe) + o2(s — 1)

sesq(1yZ)

N ]+o§(s—l)

= of[sesq(ZC)—
2
- og(N - %"ﬂ) +oX(s—1). (131)

Therefore, with (131) and those first two terms of (115) used in (130),

In} T n?
ER(a,$, = g2 N_L)_'_ 2(N_._j._.'l)
( ﬂ‘f|#) a( N oﬂ N

T n? (132)
+05(N—%!n—”)+o§(s— 1.

Similarly, akin to (116),

ER(B, v &) = tr[M(ZyZjo} + ZcZcoy)] + ol[r(1 Z)—r(1 Z,)]
(133)
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with the same M as used in (116). It is left to the reader to show that this
reduces to

2 2
ER(ﬂ,vlu,a)=a§(N—Zi?ﬂ)+af(N—Z,.z—;"i’)+a3(s—a).
1
(134)
The second term of (128) is

Its expected value is obtained from using (134) and E R(y| u, &, B). But deriving
the latter is difficult. From (105) it involves only two terms, ¢Z and ¢2, with
that in o2 being

ci[r(1 Z)—r(1 Z, Zg)l=o0cis—a—-b+1).
Hence,
ER(YIpu o B) = hea? + 2(s —a— +1), (136)
where from (105)
he=tr{(I-[1 Z, ZgI[1 Z, Zg1*")Z.Z.}. (137)

Unfortunately, a tractable form of hg is difficult to obtain—because
[1 Z, ZgI[1 Z, Zg]" hasno tractable form. A procedure for calculating
itis given in Table F.3 of Appendix F, taken from Searle and Henderson (1961).
It would be nice to have something algebraically tractable rather than just that
computing procedure.

On using (132) and (134) with (129); and (134) and (136) with (135); and
(136) itself, together with E(SSE) = (N — s)o2, we now have estimation
equations similar to (120):

R(a|u) = (N — k)87 + (ks — k)85  + (ks —k33)8] +(a - )82,
R(B|pa)= (N — k3)6} + (N = ky — he)é? + (b - 1)é2,
R(y|p o B)= hg? + (s —a—b + 1)82,
SSE = (N —s)82.

(138)

-ii. Three sets of sums of squares. Just as (110) and (121) are two
partitionings of SST,, for the no-interaction model, so are (128) and

R(Bln) + R(o|p,B) + R(y|p, o B) + SSE = SST, (139)

for the with-interaction model. Equation (139) is the with-interaction form of
(121)just as (128) is of (110). Therefore, just as (122) is a second set of estimation
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equations analogous to (120), so is the analogy of (138) for the terms in (139),
as follows—derivable from (138) by interchanging a with f and i with j:

R(BIp) = (ki — k)83 + (N —k3)8]  + (ks — k33)87 + (b - 1)},
R(a]pB) = (N —k,)é] +(N ~ky — h)8] +(a - 1)é2,
R(y|p o, )= hgd? + (s —a—b + )62,
SSE = (N ~s)82.

(140)

So, just as (122) is a set of equations second to (120) in the no-interaction case,
so is (140) second to (138} in the with-interaction case.

Both sets of equations, (138) and (140), have the same last two equations
and in each set the sum of the first two equations is the same:

R(o,Blpu)=R(a|pu)+ R(Blu )
= R(B|u) + R(a| 1, B)

= (N —kj)62 + (N — ky)é3 + (N — ky; — hg)é? + (a + b — 2)82 .

(141)

This leads, by exactly the same kind of reasoning as was used in deriving
(124a,b,c,d) to having the following estimation equations for the with-interaction
case—using (123).

SSE - zlzjzk(yljk - }-’u-)z

42 = (142a)
N-—s N-—s
8 = R w o B) = (s —a = b+ 1)47]
6
1
= [Z.Zn,5%. — R(u,a,B) — (s —a — b + 1)61], (142b)
6
1
67 = P [R(x|p,B) — (hy — hg)82 — (a — 1)82]
7
1 _
= E‘ [R(p, &, B) — zjn-jy-zj- —(h, — hs)éyz —(a— l)éﬁ]
,
and on substituting for hgé? from (142b) this is
82 = hi [EE 5. — En,5, — (s — b)82] — 67 . (142¢)
7

Similarly

1 - _
6} = o [Z.Zn,5% — Zin.gi. — (s —a)8l] — 62 . (142d)
4
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Finally, from (141)
hi83 + hy6f = R(a, B|p) — (N — k3 ~ he)é; — (a + b — 2)8]

Equations (142a) and (142b) are the third and fourth equations of (138);
(142d) is equivalent to the second; and (142e¢) is the sum of the first and second
equations of (138). Therefore (142a,b,d,e) are equivalent to using (138). This
in turn is equivalent to SAS Type I sums of squares when ordering the factors
A, B and A+ B. Similarly, (142a,b,c,e) are equivalent to (140), which is equivalent
to SAS Type I sums of squares when ordering the factors B, A and BsA. Finally,
Method II1 permits using (142a,b,c,d), which are equivalent to using R(e | B, u),
R(B|u @), R(y|u,a,p) and SSE—and so they are the SAS Type II sums of
squares. Thus, as with the no-interaction model in equations (124), we again
have three possible ways of applying Method III to the random model. They
are set out in Table S5.5.

Again, it is the availability of more than one set of sums of squares, and
hence more than one set of estimates, that characterizes Method III as being
not always uniquely applicable to a set of data.

-ifi. Calculation. As with the equations (124) for the no-interaction model,
so also for (140) for the with-interaction model. The only difficult sum of squares
is R(u, o, B) with the additional difficult coefficient, h;. Computing procedures
for both of these are given in Table F.3.

-iv. Sampling variances. No specific expressions are known to be available
for sampling variances and covariances of the estimates available from equations
(142). A matrix formulation of the estimators could be used in Theorem S4 of

TABLE 5.5. THREE OPTIONS FOR USING METHOD 111 ON THE 2-WAY CROSSED CLASSIFICATION.
WITH-INTERACTION, RANDOM MODEL

Equations from (142)

Estimate Option 1 Option 2 Option 3
&2 a a a
é? b b b
é2 e c c
é} d e d

Equivalent to

Partitioning of SST,, (128) (139)

Estimation equations (138) (140) Last three of
(138) and (140)

SAS sums of squares Type I Type I Type I1

A,B, A»B B,A, B»A
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Appendix S.5, but it would not be at all tractable. It could yield computational
procedures, no doubt, and they would involve quadratic forms of the unknown
variance components. Rohde and Tallis (1969) have considered this approach.

d. With interaction, mixed model

As was done in the no-interaction model, suppose the ;s are fixed effects.
Then since the only trio of equations (for estimating o2, 62 and ¢2) that do
not have ;s in them are (142a, b and c), these are the equations that are used.
Therefore these are the estimation equations for the 2-way crossed classification,
mixed model, with f;s being fixed effects. Das (1987) considers the special case
of this model when e;; ~ A#°(0,57), i.c, having a different within-cell variance
for each cell.

5.7. NESTED MODELS

It is difficult to make generalizations about the applicability of ANOVA
estimation methods to mixed models that include nested factors. But, for
completely nested models, those having no crossed factors at all, one or two
general statements can be made. LaMotte (1972), for example, gives a general
formulation of the dispersion matrix var(y) applicable to any completely
nested model.

For completely nested, random models the nested feature of such models
makes the sequence of sums of squares for Method III self-evident, and that
leads to Henderson’s Methods I, 11 and I1I being all the same for these models;
and they are the same as using the customary analysis of variance sums of
squares. Details for the 1-way, 2-way and 3-way nested models are shown in
Appendix F; also E 5.13.

For completely nested, mixed models, estimation of variance components is
easy when all random factors are nested within fixed factors; by this is meant,
for a 4-factor case, for example, that if the primary and secondary factors are
fixed, and the tertiary factor nested within the secondary factor and the fourth
factor nested within the tertiary one are both random, then the variance
components for those two factors and for error are estimated from the three
sums of squares for those three random contributions to the data. These will
generally be the last three of the five sums of squares displayed in a partitioning
of the total sums of squares. Thus if the factors are represented by 4, B, C and D,
with B nested within 4, with C nested within B, and D nested with C, and with
C and D being random, then the sums of squares that are the basis of the
estimation equations are R(y|u, o, B), R(8| p, 0, B, ¥) and R(y, &, B, ¥, 8).

Some of the papers that deal with nested models include, for example,
Khattree and Naik (1990) who, for the 2-way nested model, derive locally best
tests for H: 62 = 0 and H: a/%;, = 0 using partially balanced data. Burdick and
Graybill (1985) deal with the same model, and data having the same number
of observations in each sub-most cell, but unequal numbers of levels of the nested
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factor. They suggest an approximation for the distribution of a sum of squares
and use that to develop an approximate confidence interval for the sum of the
three variance components. And for the 3-way nested classification, random
model, with unbalanced data, Tan and Cheng (1984) compare four different
ratios of mean squares as statistics for testing H: ¢2 = 0. In the case of the
random effects being distributed in some manner other than normally Westfall
(1986) provides conditions under which, for nested mixed models, the ANOVA
estimators of variance components obtained from unbalanced data have an
asymptotical multivariate normal distribution.

5.8. OTHER FORMS OF ANOVA ESTIMATION

Henderson’s three methods are just particular ways of using ANOVA
methods of estimation, just three different ways of choosing quadratic forms
for the ANOVA procedure of E(s) = Co? giving 62 = C™!s; indeed, in many
cases, more than three ways because Method III can, as illustrated in Tables 5.4
and 5.5, provide more than one way.

There are, of course, other sets of quadratic forms that have been used in
the ANOVA method. Two that have received some attention are the unweighted
means analysis and the weighted squares of means analysis, which are now
described for the 2-way crossed classification, each of which generalizes in a
straightforward fashion. There is also the symmetric sums method of Koch
(1967a, b, 1968), but since it has been little used in practice, it is not included
here, and also the method of Hocking et al. (1989) discussed in section 11.2.

a. Unweighted means method: all cells filled

An easily calculated analysis of all-cells-filled data is to treat the observed
cell means as observations and subject them to a balanced-data analysis of
variance. This was suggested by Yates (1934) as providing approximate F-tests
for fixed effects models. In the case of the 2-way crossed classification, random
model the mean squares from that fixed model analysis of variance provide
ANOVA estimators of variance components in the following manner.

Define

n;

Z Yijk

I 1 1
Xij = Yij. = . and ny, = prs Lz, n—,j’ (143)
with
) ) Iz
ji-='2—j%’ jj=_zLx_g and j=_'_j_x‘_j (144)
a ab

In doing so, take note that we are dealing only with data for which

n;>0 Viandj.
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Then the estimation equations are (using subscript u to denote “unweighted”)

MSA, = " (%, — %.)? = b2 + 62 + ny61
a—

MSB, = a T IR, - %) = a8} + 62 + n,é?

1
MSAB, = — 3.3 (x;, — % — %, — %.)* = 62 + n,é?
- Db-1) iZ(xy i b ) " h
MSE = ! X E (Vi — 7ii)? = é?
N — ap et Ve = Vi 2
(145)

These arise from the expected values of the mean squares being the right-hand
sides of (145) with a2s in place of ¢2s. (See E 5.9.)

b. Weighted squares of means: all cells filled

A second analysis that Yates (1934) suggested for all-cells-filled data from
fixed effects models is known as the weighted squares of means analysis. Its
mean squares for the 2-way crossed classification, random model, used in the
ANOVA method of estimating variance components yield estimation equations

as follows.
1 1 1 1
e (5 E) = o) (GEs)

Define
_ zjl)]f,]

X (146)

and X,
w X,

% = WX,

1)

where x;. and x; are as in (144). Then the estimation equations are (with
subscript w denoting “weighted”)

1 . a2 ! Iwt 2 2 2
MSAW = zlwf(xi. - X’) = zlwi - (béa + dy) + 6e
a—1 (@a—1)b w,
1 1 T2
MSB, = —— X ,v,(%., — %,)? = v, — =L |(a8} + 62) + 82
b1 Xy = %)) (b—l)a( Vi p, (adp + &y)
MSAB = —— R(Y|p0,B)= ———h6——~62+62
(a—1b—1) o (a—Db-1) " °°
1 =
MSE = N _ab zizjzk(yljk - YU.)Z = ‘93

(147)
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Again, the right-hand sides of these equations, with a2s in place of ¢2s, are
expected values of the left-hand sides—in accord with the ANOVA method of
estimation. (See E 5.9.)

It is noticeable in both (145) and (147) that 62 = MSE; and (147) has 6:
the same as in Henderson’s Method III. [ The equation for MSAB contains kg,
which is the same h as used in equations (140)—-(142), and which is defined in
(137) and for which computing details are given in Table F.3 of Appendix F.]
Although the sums of squares in (147) are those customarily recognized as
constituting the weighted squares of means analysis, a variety of other weights
can be used in place of w; and v;, as discussed by Gosslee and Lucas (1965).

The cell means ;. of (143) have also been used by Thomsen (1975) and by
Khuri and Littell (1987) to establish tests of hypotheses that variance components
are zero in the 2-way crossed classification, with interaction random model
with unbalanced data, all cells filled.

5.9. COMPARING DIFFERENT FORMS OF ANOVA ESTIMATION

Applying the general ANOVA method of E(s) = Ce? giving 6> = C ™ !s to
the 2-way crossed classification, random model yielded five different sets of
estimation equations: Henderson I, II and III, and unweighted means and
weighted squarcs of means. Indeed, more than five because of the three forms
of Method III—Table 5.5. This multiplicity of available quadratic forms is
inherent in the general ANOVA method. So long as 1'Al1 = 0, the quadratic
form y’ Ay can be an element of s, for a random model. Any r + 1 such quadratic
forms can be the elements of s, where there are r random factors (main effect
or interaction factors). Within this only slightly restricted confine (1’Al = 0)
there is an infinite number of sets of quadratic forms that can make up s. They
all have just one thing in common: they yield unbiased estimators for random
models; as do the Henderson Method II quadratic forms for mixed models.

This property of unbiasedness might, however, be of questionable value. As
a property of estimators it has been borrowed from fixed effects estimation; but
in the context of variance component estimation it may not be appropriate. In
estimating fixed effects the basis of desiring unbiasedness of estimators is the
concept of repetition of data and associated estimates. The concept remains
valid, but not its applicability for unbalanced data from random models—
repeated data, perhaps, but not necessarily with the same pattern of unbalanced-
ness or with the same set of (random) effects in the data. Replications of data
are not, therefore, just replications of any existing data structure. This would
be particularly so when considering the possibility of repeating the data
collection of some of the very large data sets (e.g., 500,000 records) that get
used for variance components estimation in animal breeding work with farm
animals, such as dairy cows, beef animals and sheep. Under these circumstances
mean unbiasedness may therefore no longer be pertinent, and replacing it with
some other criterion might be worth considering. Modal unbiasedness is one
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possibility, suggested by Searle (1968, discussion), although Harville (1969b)
doubts if modally unbiased estimators exist and questions the justification of
such a criterion on decision-theoretic grounds. Nevertheless, as Kempthorne
(1968) points out, mean unbiasedness in estimating fixed effects “...leads to
residuals which do not contain systematic effects and is therefore valuable...
and is fertile mathematically in that it reduces the class of candidate statistics
(or estimates).” However, “...in the variance component problem it does not
lead to a fertile smaller class of statistics.”

All five modes of the ANOVA method that have been described reduce, for
balanced data, to the ANOVA method in that case (e.g., E5.18 and E 5.19),
which has optimum properties of being minimum variance quadratic unbiased
and minimum variance unbiased under normality. But for unbalanced data this
reduction to an optimal balanced data situation and the unbiasedness of the
resulting estimators are the only known properties of the methods. Otherwise,
the quadratic forms involved in each method have been selected solely because
they seemed “reasonable” in one way or another. The ANOVA methodology
itself gives no guidance whatever as to which set of quadratic forms is, or might
be, optimal in any sense. It includes no criteria for choosing one set of quadratic
forms over any other. Moreover, the “reasonableness” of the quadratic forms
in each case provides little or no comparison of any properties of the estimators
that result from the different methods. Probably the simplest idea would be to
compare sampling variances. Unfortunately this comparison soon becomes
bogged down in algebraic complexity. Not only are the variances in any way
tractable only if normality is assumed but also, just as with balanced data, the
variances themselves are functions of the variance components. The complexity
of the variances is evident in var(é2) for the 1-way classification given in (102)
of Chapter 3, where its behavior is briefly discussed. Yet that, apart from
var(é?) = 20%/(N — s), is the simplest example of a sampling variance (under
normality assumptions) of an estimated variance component. But, as is apparent
from (36), sampling variances in the 2-way crossed classification are considerably
more complicated than in the 1-way case. Certainly, they are quadratic functions
of the unknown variance components, but the coefficients multiplying the terms
in the o%s are such that their behavior, and hence that of the sampling variance,
for different sets of n,;-values, cannot be studied algebraically. The functions of
the n;;-values are just too complicated. Moreover, the behavior depends upon
what the values of the o2s are.

Two possibilities exist. One is for whatever particular data set is at hand. It
will have a set of n;;-values. We call that set an n-pattern, and then have

var(é?) = f(a?, n-pattern), (148)

where f is a vector of elements that are quadratic forms of the a ?s, with coefficients
that are those complicated functions of the n-pattern. Now calculate var(6?)
for each of a range of values of 62 around the estimate & Included in this
would be 2 itself, used in the manner of (28) to get an unbiased estimator of
var(é6?). This will give information about how changes in ¢ affect var(6%)—for
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that n-pattern. And one can do this for more than one estimator of 62, and
thus compare var(é62) for one estimator with that of another—but only for the
n-pattern of the data.

A second, and much more difficult, possibility is to try, arithmetically, to
study the behavior of var(é?) for different n-patterns. The difficulty is to decide
what n-patterns to use. Whereas the arithmetic of calculating var(62) is relatively
no longer time-consuming, the problem of what different n-patterns to choose
still remains. One objective might be to see how var(é2) [or even just var(a?),
where ¢ is some element of %] behaves for different degrees of unbalancedness.
But how can unbalancedness be categorized? What n-patterns will typify
different degrees of unbalancedness? Even in the 1-way classification we saw
in Section 3.6d-iv that var(é?2) was, for certain values of 2/a2, bigger for the
n-pattern (1, 1, 1, 11, 11) than for (1, 1, 1, 1, 21); and yet in some general sense
the latter would usually be considered to represent greater unbalancedness than
the former. This inconsistency with one’s intuition about unbalancedness is
occurring in a l-way classification with but 25 observations in 5 groups.
Contemplate how much more this may well arise with, say, 500 observations
in 80 groups, and even more so with a 2-way crossed classification, wherein
settling on n-patterns to use we have to decide on not only N but also on the
n;.- and n_;-values, and the n;;-values and the cells in which they will occur.
Even in the most trite (and totally impractical) case of all, a 2-way crossed
classification of but 2 rows and 2 columns with 8 observations and all cells
filled, there are at least 11 distinguishably different n-patterns, as shown
in Table 5.6. With something of even modest size, such as 50 rows and
80 columns, the number of n-patterns clearly becomes astronomically large.
Categorizing them on some monotonic scale of unbalancedness seems quite
impractical. And even if it were not, one would also need to select sets of values
for 6% and, using each set with each n-pattern, calculate var(a2) of (148). The
hope of matching those calculated values with unbalancedness in a manner
than informs us about how unbalancedness affects var(4%) seems unlikely to
be fulfilled.

Despite the difficulties just described, some numerical comparisons have been
reported in the literature. Kussmaul and Anderson (1967) studied a special case
of the 2-way nested classification that makes it a particular form of the 1-way
classification. A study of the latter by Anderson and Crump (1967) suggests
that the unweighted means estimator of 62 appears, for very unbalanced data,

TABLE 5.6.  ELEVEN DISTINGUISHABLE N-PATTERNS IN A 2.WAY CROSSED CLASSIFICATION OF 2 ROWS,
2 COLUMNS AND 8 OBSERVATIONS, WITH ALL CELLS FILLED

n-pattern
1 2 3 4 5 6 7 8 9 10 11
4
1

w W
—
[ S I ]
— N
N W
—
N —
[ S -
——
——
—tn

1
2

NN
NN
—— N
w N
—
——
——
N

W —




224 ANALYSIS OF VARIANCE ESTIMATION FOR UNBALANCED DATA [59]

to have larger variance than does the analysis of variance estimator for small
values of p = 62/a2, but that it has smaller variance for large p. The 2-way
classification, interaction model has been studied by Bush and Anderson (1963)
in terms of several cases of planned unbalancedness. With 6 rows and 6 columns
in a 2-way crossed classification, three of the designs they used had filled cells
(each with just one or two observations) either in an L-pattern in the 6 x 6
grid or in a diagonal band, more or less, across the grid. Designs such as these
[and others, e.g., Anderson (1975)] were used to compare Henderson’s
Methods I and III and a weighted means application of the ANOVA method.
Comparisons were made, by way of variances of the estimators, both of different
designs as well as of different estimation procedures, over a range of values of
the underlying variance components. For the designs used the general trend of
the results is that, for values of the error variances much larger than the other
components, the Method I estimators have smallest variance, but otherwise
Method III estimators have. Later, Swallow and Searle (1978) and Swallow
and Monahan (1984), in comparing ANOVA with other methods of estimation,
use 13 different n-patterns for the 1-way classification and in doing so illustrate
values of var(8?) for a variety of values of 62/02.

Comparing the three Henderson methods is therefore virtually not feasible.
Even with using a supercomputer so that vast arithmetic would be feasible,
there is no assurance that the desired calculations, vir(é?), say, could be
displayed in a manner that would reveal any underlying patterns if indeed such
patterns exist. For example, suppose in the 2-way crossed classification, we try
planning to calculate var(62) for a set of values of 62s, and a set of n-patterns.
How will one choose the set of ¢2s? Certainly we could consider just
[6}/6} o0}/a} a2/6} 1], but even this requires choosing triplets, and even
for 4 different values of each ratio that gives 64 different triplets. How, one
wonders, can the ultimate values of vir(é2) be arrayed over those 64 triplets
to yield information, if there is any, about how 62 affects var(é2)? And the
difficulty of this question is magnified greatly when one further considers
choosing a set of n-patterns and looking at each of the 64 values of var(&?),
itself a 4 x 4 matrix, for each n-pattern. In choosing n-patterns one has such a
large number of choices available: values for N, a, b and s; values forn, ., ..., n,.
and for ny, ..., n,; values for the nys, of which there are ab, with ab — s of
them having to be chosen as zero. So even for one set of values for N, a, b, s, n;,
and n,;, there will be a very large set of possible n-patterns. And although the
computing of var(é2) for the 64 sets of 62 for each n-pattern is nowadays quite
feasible, the big question is how can we relate those computed values of var(é?)
to the 64 values of 62, and to the multitudinous n-patterns, so as to be able to
draw conclusions about how var(é?2) is affected by different values of ¢ and
by different degrees of what we implicitly think of as unbalancedness.

So maybe the only comparisons available are those stemming from the
establishment of the methods—and they are not really very helpful. Method I
commends itself because it is the obvious analog of the analysis of variance of
balanced data, and it is easy to use; some of its terms are not sums of squares,



[5.10] ESTIMATING FIXED EFFECTS IN MIXED MODELS 225

and it gives biased estimators in mixed models. The generalized form of
Henderson’s Method 11 makes up for this deficiency, but his specific definition
of it cannot be used when there are interactions between fixed and random
effects. Method III uses sums of squares that have non-central y2-distributions
in the fixed effects model, and it gives unbiased estimators in mixed models;
but it can involve more quadratics than there are components to be estimated;
and it can also involve inverting matrices of order equal to the number of
random effects in the model. For data in which all subclasses are filled the
analysis of means methods have the advantage of being easier to compute than
Method III; the unweighted means analysis is especially easy. All of the methods
reduce, for balanced data, to the analysis of variance method, and all of them
can yield negative estimates. Little more than this can be said by way of
comparing the methods.

5.10. ESTIMATING FIXED EFFECTS IN MIXED MODELS

The basic formulae for estimating X in the model equationy = Xp + Zu + e
are the same for unbalanced data as for balanced data of Section 4.8:

OLSE(XP) = X(X'X) X'y
and (149)
GLSE(Xp) = X(X'V™!X)"X'V~ly.

However, when data are unbalanced, these formulae are not necessarily equal,
as they always are with balanced data and the customary mixed or random
model [see the discussion following (113) in Section 4.9]; nor do they reduce
to straightforward expressions for calculating estimates, as they do with balanced
data, e.g., equations (109) and (112) in Chapter 4.
For completely random models, where y is the only fixed effect, X = 1y and
ry—1

OLSE(u)=y5 and GLSE(y)= %V_Ti . (150)
Otherwise, there are few other general simplifications of the expressions (149)
except, of course, in the case of planned unbalancedness, such as discussed by
Harville (1986).

The general inequality of the expressions in (149) prompts the question
“What conditions on X and V will lead to GLSE(Xp) equalling OLSE(X)?”
This is a question of some practical interest because equality of the two estimators
means that GLSE can be calculated as the OLSE. And since GLSE utilizes
variances of the random effects factors, which requires knowing or estimating
those variances, being able to use OLSE, which does not require variances, is
very advantageous. Thus answering the question “When does GLSE equal
OLSE?” is of some importance and has engendered much research. The easiest
answer is that GLSE = OLSE if and only if there is a matrix F such that
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VX = XF. This is one of many equivalent answers given by Zyskind (1967)
and reviewed by Puntanen and Styan (1989). Establishing this condition is
relatively straightforward when V is nonsingular (see E 5.14). It is somewhat
difficult when V is singular—see Puntanen and Styan (1989).

When the condition VX = XF is not met, as is usually the case with
unbalanced data, the GLSE is an estimator that has two optimal properties:
unbiasedness and minimum variance. But its use requires knowing V, and this
is seldom the case. So something must be used in place of V. An obvious choice
is V=2%,10Z,Z.6? where 4} is an estimate of 62. The difficulty, of course, lies
in what estimator should be used as the basis for ¢?. Kackar and Harville
(1981) have shown that if the ¢7 are calculated as even-valued functions of y
{a function s(y) is even if s(y) = s(—y) for all y] and as translation-invariant
[meaning that s(y + XB) = s(y) for all y and $] then

GLSE(Xp) = X(X'V"'X)"X'V-ly
is an unbiased estimator of Xp. ANOVA estimators &2 satisfy these conditions

(even and translation-invariant), and so do the ML and REML estimators,
discussed in Chapter 6.

5.11. SUMMARY

Few details are given in this summary because details for any particular
model are mostly somewhat voluminous. Appendix F contains detailed formulae
for a variety of individual models; and this summary is mostly just a short list
of topics. The table of contents has the complete list.

A general model for fixed p and random u
y=Xp+Zu+e

=xp+iz,u,+e (1)
i=1
=Xp + ‘_Zo Zu; (8)
V = var(y) = i Z,Zo}? . (8)
i=0
Estimation
s={.YAY}ido; (15)
E(s) = {n U'(Z}Aizj)}i.j{j ‘7}} (17)
= Co?; (18)
62=C"ls; (19)
E(6%) = o?; (20)

var(é?) = 2C~ ' {,, 0¥ {, tr(AZ,Z}A, Z, Z})}, 62}, .C (21b)
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Unbiased estimation of var(62)

V = vech{var(62)] and ¥y = vech(o2¢?');

var(6%) = C !var(s)C™" = B exist for v = By; (26)

¥ = B(I + B) vech(6262) is unbiased for v . (28)

Henderson’s Methods 1, IT and II1: Sections 5.3, 54 and 5.5

The 2-way cross classification: Sections 5.3, 5.6, and 5.8

Analysis of means methods: Section 5.9

ES.1.

E5.2.

E5.3.

E54.

5.12. EXERCISES
Show that in (22), t,, =Oand ¢,, = (a — 1)(6% + no2)? and hence
derive (23).
Show that E(SSA) of Section 5.2b-iii is

T.n? Tny Ind
E(SSA)={ N ——= a2 + J_U_#)z
( ) ( N )0' (Zi n;. N 7
Tn: I XI.nk
+(Z.———’ ”—————‘A; ”)a§+(a— 1)a?.

ion,,

Derive B(I + B)™! of (28) for the ANOVA estimators stemming
from Tables 4.10 and 4.12.

Define S, = Z;n? and S; = Z;n},

2 —2N(a—1) 2N} (N =1)a—-1)
kl = ’ k2= s k3= ’
N-—a (N—-a)N*-35,) (N2 = 5,)*(N —a)
4N 2(N2S, + 52 — 2NS;)
k4= N ks = .
N2 -, (N2 = §,)?

Using Section 5.2e, derive unbiased estimators of the variances
of, and covariance between, the ANOVA estimators of variance
components { see (95), (96) and (102) of Chapter 3] in the 1-way
classification with unbalanced data. The results are

26

var(42) —N—ae+2’ cov(62,62) = var(éz)
- l

and

ir(d2) = (k kk4.4+k4&zéz+ké4)
T+ ks \ 1 +k
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ES.5.

E 5.6.

ES5.7.

ESS8.
E 5.9.

E 5.10.

ES5.11.

E 512

E5.13.
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Prove that SSAB* — SSABis asshown in Section 5.3a, and illustrate
it for the data given there.

(a) Derive (38) and (39).

(b) Show that (38) and (39) are both zero for balanced data.

(c) Show for the random model that 8, of (38) and (39) reduce to
what one would expect from (31).

(a) Derive (117) from (116).

(b) Derive (118).

(c) Establish (120).

(d) Derive (122) from (120).

Derive (134) from (133).

(a) Derive the expected value of MSA,, MSB, and MSAB,.
(b) Derive the expected value of MSA,, and MSB,,.

(a) From Tables F.1 and F.2 write down the variance of SSB.
(b) For balanced data show that it simplifies as expected.

Consider the following data from a 2-way classification of 2 rows
and 2 columns:

Data
3,7 17 25
2 6,10 —

For a random model, with interaction, calculate
(a) estimated variance components using Henderson’s Method I;
(b) the sampling variance of T, used in (a);

(c) estimated variance components using all versions of
Henderson’s Method III.

For a mixed model, with fixed rows, without interaction, calculate
(d) estimated variance components using Henderson’s Method 1.

Repeat E 5.11 for the data set

The 2-way nested random model has model equation

Yixk =H+ o+ By + ey

fori=1,....,a,j=1,...,b,and k = 1,...,n;. For convenience use
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the notation

a=02, f=o} and e=ql, O=a+f+e.

(a) For the following data write down V = var(y) in extenso:

Data
i=1 i=2
j=1 j=2 j=1 j=2 j=3
5 8 8 | 3
9 10 2 7
10 3
6

(b) Explain why, in general,

V= {d aJn,. + ﬂ{d Jn,,}]:ll + eln,.}i:l .
(c) Derive

by
v_l = { 'l'{ ll’u - ﬂ er}
a€la e+ np i=1

1 by a
—{ Jn, xn,.} }--
m(e+ngB)e+nyp) ™ ) =)t

(d) Verify VV™! =1 for V™! of (¢c).
(e) GivenSSA = Zin, (.. —j..)%, SSB:A =Z.Z;n;(5y — j.)
and SSE = L,Z,Z,(y; — Ji;.)% establish

2
E(SSA) = (N - 2’%)«: + [Z,. Gt = i,’””] ot + (a - 1)o?,

n;,

E(SSB:A) = [N T (2’"")] o2 + (b. — a)a?,

E(SSE) = (N —b)s2.

(f) Note in (e) that the coefficient of ¢2 can be written as

1 1
z‘n,z,<—— - _> .
n, N

Express the other five coefficients in forms that involve
differences between reciprocals, e.g.,

1 1
N - b_ = Z‘ijklz(— - —> .
1 ny;
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ES5.14.

E 5.15.

E 5.16.

ES.17.
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Conjecture corresponding results for the 3-way nested classi-
fication random model. [This is the formulation given by
Ganguli (1941).]

(a) For non-singular V prove that X(X'V'!X)"X'V'!=
X(X'X)~ X' if and only if VX = VF for some F.

(b) For the model y ~ {uly,6%[(1 — p)I, + pJ,1} prove that
GLSE(u) = OLSE(p).

(c) For the 1-way classification, random model, balanced data,
show that GLSE(u) = OLSE(u). Why is this not the case for
unbalanced data?

(d) Consider the usual 2-way nested classification, mixed model,
having model equation y;; = u + «; + Bi; + eju, Withi = 1,...,q,
j=1,...,band k = 1,..., n, where y and the as are fixed. Show
that F exists such that VX = XF.

Suppose unbalanced data from a 2-way crossed classification have
been wrongly analyzed using a computing routine for a 2-way nested
classification. The user of the routine is so perplexed that the routine
gets used again. As a result, there are now ANOVA variance
components estimates on both a f-within-a basis and a-within-.
Show how they can be used to get Henderson Method I estimates
for the 2-way crossed classification. (Use results shown in E 5.13.)

Equation (31) yields Henderson Method I estimators for the 2-way

crossed classification, with interaction, random model.

(a) Describe what amendments have to be made to those equations
to yield estimators for the no interaction form of the model.

(b) Carry out those amendments and show that they yield the
estimators in Appendix F.6b.

The following data are to be considered coming from a 2-way crossed
classification of three rows and three columns.

8,9 13 —
9 15 12
6 — 8

Estimate variance components using the Henderson methods,
denoted 1, 11 and 111, for the

(a) no interaction, mixed model, using IT and III;
(b) no interaction, random model, using I and III;
(c) with interaction, mixed model, using III;

(d) with interaction, random model, using I and III.
Note: Use rational fractions rather than decimals.
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Using Appendix F.4b, demonstrate the validity of method (b) at
the end of Section 5.3g.

For the 2-way classification having model equation
Yi=utou+Bi+e;

fori=1,...,aand j=1,...,b, with one observation in every cell,
show that Method Il is the same as Method I. Usea = 3and b = 2
to illustrate parts of your derivation.

Show that (145) and (147) reduce to the usual ANOVA estimators
for balanced data.



CHAPTER 6

MAXIMUM LIKELIHOOD (ML)
AND

RESTRICTED MAXIMUM LIKELIHOOD
(REML)

ANOVA methods of estimating variance components described in preceding
chapters have not required, for the actual derivation of estimators, any
assumption of an underlying probability distribution for the data. All that
has been needed is that the random effects and residual errors have finite
first and second moments, and satisfy some mild correlation assumptions
(e.g., Section S5.1b-ii). True, for balanced data (Chapter 4 and parts of
Chapter 3) we have seen that making some normality assumptions (Sections
3.5d and 4.5) leads to being able to test certain hypotheses and to establish
certain confidence intervals. And for unbalanced data (Chapter 5) those same
normality assumptions provide (by means of Theorem S4 of Appendix S.5) the
ability to provide expressions for, or that can lead to, computable forms of
sampling variances of, and covariances among, variance components estimators
(Sections 5.2d, 5.3d, 5.6a-iv and 5.6c-iv).

Abbreviations. We use ML acronymically for maximum likelihood and
MLE for “maximum likelihood estimat--,” with a variety of word endings,
depending on context; e.g., estimate, estimates, estimator, estimation and so on.

In using the ML method of estimation we are turning to an old
(e.g., Fisher, 1922), well-established and well-respected method of estimation
that has a variety of optimality properties. For straightforward situations
detailed description of these properties can be found in many mathematical
statistics books (e.g., Casella and Berger, 1990, Chap. 7). Therefore we just use
the method here, without detailing derivation of those general properties, the
special applications of which, to variance components estimation, can be found
in Hartley and Rao (1967), Anderson (1973) and Miller (1973, 1977).

232
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In contrast to the ANOVA method of estimation, one of the basic requirements
of ML estimation is that of having to assume an underlying probability
distribution for the data. A natural choice is the normal distribution, the
multivariate normal, of Appendix S.2. Normality is chosen not because it is
necessarily appropriate for all the different kinds of data for which one might
want to estimate variance components but, more practically, normality leads
to mathematically tractable methodology—even for unbalanced data. We
therefore refer the reader to Appendices S.3 and S.7 for brief accounts of certain
features of the multivariate normal distribution and of the method of maximum
likelihood estimation. With that as a base we proceed to show the derivation
of MLEs of variance components. And in Section 6.6 we describe an amended
form of ML estimation that we call restricted maximum likelihood (REML).
It also goes by the names of residual maximum likelihood and marginal
maximum likelihood.

6.1. THE MODEL AND LIKELIHOOD FUNCTION

We return to the linear model that is described in detail in Section 4.6a.
Only its essential features are repeated here. y, the N x 1 vector of observations,
is taken to have model equation

Yy=Xp+Zu+e (1)

as in (58) of Chapter 4. The fixed effects occurring in y are represented by B,
and the random effects by u, with Zu being partitioned as

u,
ZII = [Zl Z’] ' = Z Z,'ll‘-, (2)
i=1
u’

where u; is the vector, for random factor i, of the effects for all levels of that
random factor (be it a main effect factor, a nested factor, or an interaction
factor) occurring in the data. The number of such levels, and hence the order
of u,, is denoted by g,. In the customary random model the random effects
represented by u; have the properties

E(w;))=0 and var(u,)= al'zlql Vi

and
cov(u,u,)=0 fori#h. 3)

Thus
var(u) = {4 0?1, };2, (4)
as in (67) of Chapter 4. Also,

E(e)=0, var(e)=o02ly and cov(u,e)=0Vi. (5)
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Using these assumptions in (1) leads to

E(y) = Xp (6)
and

V=var(y)= Y ZZio} + oll. (7)
i=1

A notational convenience is to define
u,=e go=N and Z,=1,. (8)
This gives (1) and (7) as

y=Xp+ Y Zu, and V=Y Z,Zo} 9)
i=0 (=0
as in (70) and (71) of Chapter 4.
In Appendix S.2 the density function of the vector of random variables

X~ AN(@VY) (10)
is given as
e~ dx—prV lix—p)

S0 = (1)

For our data vector y ~ A y(XB, V), and the function corresponding to (11),
viewed as a function of the parameters pand V, is called the likelihood function

— 4y — Xprv '(y - Xp)
(m)N |V |t
similar to (103) of Chapter 3 and (85) of Chapter 4.

L=Lp.Vly)= . (12)

6.2. THE ML ESTIMATION EQUATIONS

Maximum likelihood estimation uses as estimators of p and V those values
of pand V that maximize the likelihood L of (12). More accurately, we maximize
L with respect to pand to 62 = [62 o? ... o}], the latter being used in V
as in (7) and (10).

a. A direct derivation
Maximizing L can be achieved by maximizing the logarithm of L of (12),
which shall be denoted by I:
I=logL=—4Nlog2n—4log|V|—4y—XB)V '(y—XB). (13)
To maximize I/, we differentiate (13), first with respect to B, using Appendix
M.7d, which yields

1,,=§'—1}=x'v-‘y—X'v"xp. (14)
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Second, differentiating (13) with respect to o} using Appendices M.7e and
f, together with

— =77, 15

gives, fori=0,1,...,r,

by = = —HU(VLZ) + Ay - XBVILZV - XD (16)

i

A general principle for maximizing ! with respect to p and the ¢ is to equate
(14) and (16) to zero and solve the resulting equations for B and the a?2s. In
general, values of p and ¢ that maximize I of (13) are solutions to equating
(14) and (16) to zero. But these solutions are not necessarily the maximum
likelihood estimators of B and the a?s, merely candidates. Completing the
maximization demands checking second derivatives (see Section 6.3¢c), and also
demands checking the likelihood function on the boundary of the parameter
space, since the maximization must be confined to the parameter space. In many
situations this confinement is not a restrictive requirement. For example,
equating lg of (14) to 0 gives, denoting a solution to p by p°,

X'V7IXBO = X'Vly, (17)

which yields the MLE XB° of Xp when V is known. Since for a typical element
of B, say f,, the parameter space is usually — o < B, < oo, there is no concern
in solving (17) as to whether elements of B° are positive, negative or zero. But
being unconcerned for solution values vis-a-vis B° does not carry over to
solutions for elements of 62 obtained from equating (16) to zerofori =0, 1,...,r.
This is because the parameter space for the variance components in the linear
model described in (1)-(10) is

62>0 and ¢220 fori=1,...,r. (18)

Therefore, if 32 and 67 are to be maximum likelihood estimators, they must
satisfy G2 > 0 and &7 > 0, conditions similar to (18). Denote the solutions for
¢? to the equations 0l/0p = 0 and {.dl/a?},7o =0 by 62 ={,d2};1,. Then
62 is the MLE of ¢? only when

62>0 and 6?20 fori=1,...,r; (19)

i.e., provided (19) is satisfied, the ML estimator is 62 = 62.

When (19) is not satisfied (usually by one or more 67 being negative), the
ML procedure is the extension of that described in Section 3.7a known as
pooling the minimum violator, which often results in replacing any negative
value with a zero, which is tantamount to dropping the corresponding factor
from the model. That extension is described in Herbach (1959) and Thompson
(1962). After applying it, one then uses the model so reduced to re-estimate 62,
obtaining a new 6% and applying (19) again.

Notation. Vand V are V with 6% and &2 used, respectively, in place of 62.
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The ML solutions are solutions to equating (14) and (16) to zero:
XV IXp=XV-ly (20)
and

tr(V'Z,Z) = (y — XPYV1Z,ZV-'(y—XB) fori=0,1,..r. (21)

An algebraically simpler expression for (21) is derived by defining

P=V ! - VIX(XV X)XV, (22)
Then from (20) it is clear that for P being P with V replaced by V
V- i(y — Xp) = Py, (23)
so that the ML equations (20) and (21) are
XV IXp=XV-ly (24)
and
{ctr(VT'Z,Z)}, 20 = {YPZ,ZPy}, L, . (25)

Before deriving alternative expressions for these equations we should notice
two features of them that are important. First, (24) is similar to but not the
same as the equation X'V " !'Xp°® = X'V ~ly that yields BLUE(XP). It is not the
same because (24) uses V where the equation for the BLUE uses V. Second,
equations (25) are nonlinear in the variance components. Elements of V are
linear in the ¢?s, but V occurs in (21) only in the form V™!, once in each
element of the left-hand side of (21) and twice in each right-hand element of
(21), together with its occurrences in . Thus equations (21), or equivalently
(25), are complicated polynomial functions of the variance components, an
illustration of which is evident in (134) and (135) of Chapter 3. Hence (except
in what turns out to be a very few cases of balanced data) closed form expressions
for the solutions of (25) cannot be obtained. Therefore on a case-by-case basis,
for each individual data set, solutions to (25) have to be obtained numerically,
usually by iteration. All the problems that this entails are in the ken of the
numerical analyst. They are mentioned briefly in Section 6.5, and considered
again in Chapter 8.

b. An alternative form
The left-hand side of the ML equation (25) is a vector of elements

tr(V71Z,Z) = tr(V 1 Z,Z;V V)

- tr(v AR z,z,é})
: v (26)
= j;) tr(V~'Z,Z;V~'Z,Z))6? = 120 sesq(Z;V~'Z,)d?

= ([ t(VIZZV'Z,ZY)) 00 67 = { sesq(ZiV 71Z)} ;2,62
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where, as in Appendix M.6, sesq(A) is the sum of squares of elements of the
matrix A. Therefore (25) can be written as

{m tr(V- 'Z‘-Z§V‘ leZ})}i.JLo"’z ={ Y'PZiZ;PY}.‘;o (27a)
or, equivalently, as
{msesQ(ZiV7'Z)}, =067 = { sesq(ZPy)}, 2, - (27b)

A cautionary note: equations (27) might seem to be linear in elements of &2,
the variance components estimates, but they are not. Those estimates also occur
in V™!, which is involved in the left-hand side of (27) and, through P, in the
right-hand side also. Thus the equations are non-linear in the elements of ¢2.

The form of equations (27) is not necessarily optimum for computing
purposes, but it is useful for illustrating how an iterative procedure for obtaining
a solution could be set up: use a set of starting values for 62 in V™' and P, so
that (27) is then linear in 2 and is easily solved for the next value of 62.

¢. The Hartley—Rao form
Hartley and Rao (1967) formulate the likelihood function in terms of H
defined by

V=He? with V'!=H"!/g2. (28)

Thus H has exactly the same form as V except that where 2 occurs in V there
isa 1 in H, and where there is g in V there is y; = g /o2 inH, fori=1,...,r.
This means that in the Hartley-Rao formulation of ML estimation it is B, o2
and y,,...,7, that are the parameters—in particular, y, instead of o2, for
i=1,...,r. This leads to a separate equation for 42 rather than having it be
included in (27).

We derive, for (28), the estimation equations of Hartley and Rao, using (25)
as the starting point. (The basis of being able to make this derivation, i.e., of
deriving estimation equations for o2 and y, from equations for a2, is the chain
rule used in Appendix S.7d.) First, (25) for i = 0 is

tr(V™!) = y'P2y, (29)
since i = 0 corresponds to a3 = g2 with Z, = 1. But using (23) gives (29) as
tr(V=1) = (y — XBy'V~2(y — Xp),
which, with (28), is
tr(H™') = (y — XBYH "*(y - Xp)/d2 .

Therefore
—XBYH ?(y —
52 = W XBYH 2y — XB). (30)
tr(H™ 1)
Now consider equations (25) for i = 1, 2,...,r (excluding i = 0):

tr(V-'Z,Z2) = yPZ,Z/Py . (31)
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Multiply (31) by 67 and sum over i = 1,2,...,r:

tr(V" _il Z,-Z,-d,?> = y’P(‘il Zl}df)l’y . (32)
This becomes, on using (23), (28) and
Y Z2,Zi6? =V — 62l = (H - 1)al, (33)

1

r

tr[H 16, 2(H — Dé2] = (y — XBYH 16 2(H - Dé2H 672 (y — XP),
which is equivalent to
Né? =(y — XpyYH '(y - Xp)

oo 2 3= XBYH 2y - xm]
+ tr(H )[ae ) .

But, by (30), the term in the square brackets is zero. Hence, on repeating (30),
o= XBYH(y~XB)_ (= XBYH 'y~ XB)

¢ tr(H™1) N (34
The equations that Hartley and Rao then have are
XV-IXp = XV ly,
6z =(y —XBYH '(y - XB)/N, (35a)

and .
{c tr(l:l”Z,-Z})},-;, ={(y— Xﬁ)’H”Z‘Z}H"(y - xﬁ)/di}i;l . (35b)

In(35b)itis not a2 that is estimated but y, = ¢? /a2 fori = 1,..., r; and, because
of (35a) and the fact that the y;s are ratios, iterative solution of (35a) and (35b)
may, in fact, be easier than of (25).

6.3. ASYMPTOTIC DISPERSION MATRICES FOR ML ESTIMATORS

As indicated in Appendix S.7, one of the attractive features of ML estimation
is that the large-sample, asymptotic dispersion matrix of the estimators is
always available. It is the inverse of what is called the information matrix,
var(®) ~ [1(8)] ~!. We now develop 1(8) for B, 62, and for [63 7'] where ¥
has elements y;, = ¢?/a3 for i = 1,..., r, of Hartley and Rao (1967).

a. For variance components
In (14) we used the symbol g for 0//0p. This is extended to using lgg for
021/0p OB’ and lg,: for 021/0p da*'. Then, from Appendix S.7c,

I[B]= _E[’an ’w]‘
a? lczp lczcz
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Since in (14)
lp=XVly—X'V~'X8,

-1 - (36)
lp=—-X'V7!X and I = —X'V'Z,Z;V~'(y — XB).
And with (16) being
l = —4tr(VT'Z,Z)) + }y — XB)'V 'Z,Z;V "\ (y — XB)
we get, with Appendix M.7e giving
-1
ov =-_—-V_'a—vV_l=—V_‘Z,-Z;V_‘,
da? do?
lyzgr = $tr(VT'Z,Z2,VZ,2) — My — XB)V'Z,Z)V'Z,Z;V~'(y — XB)
-y - XBYV7'Z,Z,V~'Z,Z}V~'(y — XB) (37

= %tr(V“Z,Z,’V“ZjZ}) —(Y—XB)V'Z,Z,V~'Z,Z)V~'(y - XB) .

In taking expected values of (36) and (37) we use E(y)= XB and hence
E(y— Xp)=0, and

E(y — XB)T(y — XB) = tr(TV) for non-stochastic T
gives
—Elgg=EXX'V'X)=X'V7'X,
—Elp: =XVIZ,ZV 'E(y—Xp)=0

and
—E 10‘1,,,1 =-3t(V'Z,Z,V'Z,Z) + tr(V'Z,ZV™'Z,ZV'V)

=1t(V'Z,Z)V'Z,Z)) .

Therefore the information matrix is

Bl [XV'X 0
1| |= ) R P (38)
o 0 Hot(V'ZZV'ZZ)},

Therefore, asymptotically,
-1
w o= (0]
g

[(x'v-lxrl 0 ]
B 0 2 {mtr(V'Z,ZVZ,Z))}, 01 ' L

as in Searle (1970). Hence, in the limit

var(f) - (X'VIX) 71, (40)
cov(fp,62) -0, (41)
var(6%) = 2[{m tr(V'Z,Z;V™'Z,Z)}, 2017} (42a)

=2[{msesq(Z;V'Z)}, Z0] 7" (42b)
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In these expressions &> denotes the vector of solutions to the maximum
likelihood equations when those solutions satisfy the non-negativity requirements
of (19) and so are therefore ML estimators. Similarly, f§ is the solution vector
from X'V~ !X = X'V 'y when using the true ML estimator &2 in deriving ¥
and not just any solution vector. Of course, making this distinction in (39) is
really unnecessary, because although ML estimators are not generally unbiased,
they are consistent. This means that in the limit (as sample size tends to infinity)
the estimators converge to the parameter values; and since (39) and its sequels
are only true in the limit, there is no problem about the solution & not being
the MLE. Nevertheless, we persist with this notation to be emphatic about
distinguishing between solutions and MLEs. Furthermore, although (40)—-(42)
are exact only in the limit, they are results that provide some information about
sampling variances even for finite-sized data sets. Even though the ML estimators
are not unbiased, use of (40)-(42) with o2 replaced with 2 may lead, with
small-sized samples of data, to under-estimation of variances of the ML
estimators. Nevertheless, calculated values of (40)—(42) using this replacement
are to be found in much of today’s computer package output for ML estimation,
and so will undoubtedly gain ever-increasing use. Even in the limit there are,
of course, difficult questions as to what is meant by “sample size tending to
infinity” in mixed models. For example, in a 2-way crossed classification what
does that phrase mean with regard to the numbers of levels of each factor, the
numbers of empty cells, the number of observations per filled cell and the total
number of observations. Both Hartley-Rao (1967) and Miller (1977) give
consideration to this kind of question. Finally, note that (39) is also the
Cramer—Rao lower bound for the variance-covariance matrix of unbiased
estimators. [ See Casella and Berger (1990, Theorem 7.3.1).]

b. For ratios of components
The Hartley~Rao equations (35) lead to direct estimation of ¢} and of
y={n}ii fory,=a}/o; (43)

rather than of 62 = {6?} fori = 0,..., r. On defining y, = 63 = a2 we have the
relationship between these two sets of parameters as

Yo |_ 1 0 3
HEHn g "

The information matrix for y, and y is then obtained from (44) by using the
theorem in Appendix S.7d. Through writing

0=02 and A= I:J’o], (45)
Y
the theorem is
06,
I(A) = SI(0)S' forS = {—} . (46)
oA,
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2 r
s={ 5 o=ly il )
m 0 )ij=0 LY 7l

and so, with (38) yielding

Therefore, from (44),

I(6%) = H{utr(VT'Z,ZIV'Z,Z)}, 0 (48)
ol 1y _ _ 1 0
e | v 1 ’ 1y .
l[y] [0 yol]%{mtr( v Z'Z’)}[v yol] (49)

Fori,j=1,2,...,r this is

l[a,’]_[l y’]l[ tr(V™2) {,te(V™2Z,Z})} ][1 0]
vl Lo o2)*{ tr(V2Z,Z)} {.tr(V'ZZV'ZZ)} ]y o)

(50)
which ultimately reduces (see E 6.6) to
g ﬁ { tr(H“Z,-Z;)}
I ) 1 ol . o}
o1 | 2| w(H"1Z,Z) }
Y= { —2} { —2—‘—- {mtr(H 1Z,Z;-H“Z,Z})}
[4 ae 4 ae
(51)
Further reduction seems difficult.
¢. Maximum?
The matrix of second derivatives, known as the Hessian, is
Q- [ log  lp: ]
_lo’p 10303
and from (35), (36) and (37) this is
Q =
[X'V"x {X'VTIZ,ZPy}, L, ]
sym Hao —te(V'Z,Z2,VZ,Z°) + 2y'PZ,Z;V~'Z,Z'Py}, -0 '

By standard results in advanced calculus (e.g., Buck, 1978, p. 426), Q will be
negative definite when evaluated at p = f and @ = &2 or at any local maximum
of the log likelihood, so long as the maximum is in the interior of the parameter
space. It is easy to see that Q need not always be negative definite; or even
negative definite at all points that satisfy the likelihood equations (20) and (21).
Consider Figure 8.1, which exhibits a log likelihood surface with two local
maxima and a saddlepoint. At the saddlepoint, equations (20) and (21) will be
satisfied but the Hessian will be indefinite.
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6.4. SOME REMARKS ON COMPUTING

Equations (24) and (25), or either of the alternative forms for (25), namely
(27) or (35), are clearly nonlinear in the elements of 62, and solutions are usually
obtained by numerical iteration. This raises all kinds of questions in numerical
analysis, such as the following.

(i) What method of iteration is the best to use for these equations?

(ii) Does the choice of iterative method depend on the form of the
equations used, (25), (27) or (35)? Or are there other forms that are even more
suitable?

(iii) Clearly, (27) is the most succint and easily understood form of the
estimation equations, but is it the best?

(iv) Is convergence of the iteration always assured?

(v) If convergence is achieved, can we be sure that it is at a value that
corresponds to a global maximum of the likelihood and not just a local
maximum?

(vi) Does the value of 6% chosen as an initial value for starting the iteration
affect the value at which convergence is achieved?

(vii) If so, is there any particular set of starting values that will always
yield a value at convergence that corresponds to the global maximum of the
likelihood?

(vili) What is the cost, in terms of computer time and/or money to do the
necessary computing? [ We might note in passing that as of March, 1990, the
time required for inverting matrices on Cornell’s supercomputer was quoted
for matrices of order 1000, 2000 and 9000 (an upper limit) as being approximately
17 seconds, 2 minutes and 2 hours, respectively.]

(ix) The matrix V is, by definition, always non-negative definite; and
usually positive definite. The latter has been assumed. What, therefore, is to be
done numerically if, at some step in the iteration, the calculated 62 is such that
the calculated V is not positive definite?

(x) More seriously, what is to be done if the calculated V is singular?
[Harville (1977) addresses this concern.]

(xi) Since ML estimators, as distinct from just solutions to the estimation
equations, must satisfy the conditions (19) that 62 > 0and 63 > Ofori = 1,...,r,
these conditions must be taken into account in computer programs that are
used for solving the ML equations to obtain ML estimators. Customarily, any
&7 that is computed as a negative value is put equal to zero—an action which
can sometimes be interpreted as altering the model being used. It also raises
the further difficulty of having a computer program which, for any ¢? that has
been put equal to zero after some iteration, enables that &} to come back into
the calculations again at some later iteration if it were then to be positive.
Conditions of this nature are considered in such papers as Hemmerle and
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Hartley (1973) and Jennrich and Sampson (1976). Maybe replacing the negative
solution by a small possible number, e.g., 0.5, would be better—as is done in
some packages; and the use of algorithms for solving nonlinear equations,
adapted by constraints such as g7 > 0 is also a possibility.

Clearly, these difficulties are not necessarily overcome in any easy manner
when building a computer package for estimating variance components by
maximum likelihood. It is a job for the expert, with a sound appreciation of
numerical analysis. Computer packages designed by those who are amateur in
this regard are usually to be deemed suspect. A more detailed discussion of
computing variance components estimates is given in Chapter 8.

6.5. ML RESULTS FOR 2-WAY CROSSED CLASSIFICATION, BALANCED DATA

Section 4.7b contains ML solutions and estimators for a variety of balanced
data cases, and Section 4.7d displays the ML equations for two cases of the
2-way crossed classification random model, with and without interaction. For
the with-interaction case we show here the details of deriving certain parts of
those equations—and leave it to the reader (E 6.8) to derive the others.

a. 2-way crossed, random model, with interaction
The scalar form of the model equation is

Vik =B+ o+ B+ yi; + e (52)
fori=1,...,a,j=1,...,band k = 1,..., n. The vector form is

y=uly, + Z,a+ 2, + Zyy + Zge

with
Z,=1,01,01,=1, Z,Z,=1,®1,®]1,,
Z,=1L1,®1, 2,2,=1,8J),®J, (53)
Z,=-1,01,81, 2,2,=),1,®1J,,
Z,=1,01,®1, 2,2, =1,01,®1J,
and
V=2,Z\0}+Z,Z505 + Z,Z50 + Z,Zy0? . (54)

-i. Notation. The ML equations turn out to be quite complicated. Relative
simplicity is achieved by relying on some substitutional notation. First, the
familiar sums of squares:

SSA = I;bn(§.. — j..)%
SSB = T;an(j.,;. — y..)%,

SSAB = Z.Z;n(yi;. — Ji. — J.j. + .05
SSE = L, XX, (yiu — Jis.)* -

(55)
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Next, for notational simplicity, define

0y = o2, 8,, = al + ne? + bnal,

8, =02 +nol, 0,,=a2+ nol+ ano} (56)
and

0, =02+ nol+bnel+ancj=0,,+06,-6,. (57)

-ii. Inverse of V. Using results of Henderson and Searle (1979), start with
V=020 ®JI®J)+0;(1;®I)®I,) +a;(J7 @I ®J;)
+a2(JI@1®J) (58)

from (80) of Chapter 4. Then with @ being ' = [¢2 o2 0 ¢ 0 o; 0 0],
the . = TO of equation (81) in Section 4.6e-ii is

L1 o[} Je[s o

r arAar 1 T

1 ol ol 0,

1 n ol 6% + not 6,

I - b 0 o2 0,

1 nb bn - - - - |la 6l + nol + bno} 0,

1 o ol - 0,
ln - - aa - - | d} ol + nol + anc} 0,,

1 «- b - a - ab - 0 K 0o

1 n b bn a an ab abn 6! + na? + bne? + anc} 0,

Hence with v having elements that are reciprocals of those of A, the equation
=T 'v of Section 4.6e-ii is

1 a 0 b O n O
t"%[—l 1]®[—1 1]®[-1 1]v

[ abn . . . . . . ’_]/90_ rfoooq
—ab ab N * " * M ‘ 1/9‘ toox
—an . an . . . . . 1/6, 0
1 a —-a —a a . ' . . 1/8 T
_- / 11 - 011 .(59)
abn | —bn - . : bn : S 1/8, 0
b -b . -b b ' . 1/6,, Tio1
n © -n - -n no- 1/8, 0
L—l 1 1 =1 { -1 -1 l_Ll/G,,_ KEm
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Thus

. _|<| l) . _1(1 |> (60)
" bn\e,, 6,) ' an\8,, 6,)

Therefore (86) of Chapter 4 gives
Vo =1500(LOLBL) + 1001 (L, O, ® J,)
+ton(L®1®J,) + 1,0, (1. L, ®J,) + 711, (1. R I, ® J,),
and on replacing ts by 6s, as in (60), this reduces to
VI1i=61,0LR®C,)+6;/(C,®C,®J,)+ 0} (C,®],®1],)
+60,(J.®C®I1,)+60;'J,®I,®17,) (61)

where, for example, C, is the centering matrix C, = I — J,. This form for V !
makes multiplication with Z,Z} very easy because any time that a J or J
multiplies a Cin a Kronecker product, the resulting Kronecker product is null.

-iii. The estimation equations. The form of the general estimation equations
that we use is

{tr(VT'ZZ)} Lo = {YPZ,Z( Py}, Lo = {. sesq(Z;Py)}, Lo . (62)
For simplifying the left-hand side of (62) it is useful to note that
tr(A®B) =tr(A)tr(B), tr(J,)=1 and tr(C,)=a—1. (63)

Simplification of equations (62) is demonstrated for just some terms. Others are
left for the reader.
First, the left-hand side of (62) for i = 0, for which Z; = Z, =1, is
tr(V™'ZyZy) = tr(V™Y)

ab(n—1) (a—-1)b—-1) a-—-1 b-1 1
= + + + +—. (64)
Bo 6, 0, 6,2 6,

And for i = litis
tr(V7'Z,Zy) = tr [V (1, @ J, ® J,)],
which, because of the property, C,J, = 0, and using J,J, = J,, is
tr(V™'2Z,Z)) = 07 r(C,®J,®J,) + 6 (1, ® I, ®J,)

b —1 b
_bna—1) b

. (65)
0” 04
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The right-hand side of (62) requires
P=V !V IX(XV X)XV, whereX=1,,=1,81,®1,.

Then with V™1 of (61), X'V™! = 1'V™!  which, after using the property,
1,C,=0,is

XV =07"154,3,®3,®3,) =015, .
Hence
e 0;1lubn(();llx’zbnlabn)_o;ll;bn
=V -0,y =V""'-0,'J,®J,®J,)
=6,'(L®L®C,)+0;(C,®C,®,)
+0;,1(C,®],®J,)+0,;)J,®C,®1J,).
Therefore for i = 1 the right-hand side of (62) is
YyPZ,Z Py = sesq(Z;Py)
=sesq[(I,® 1, ® 1,)Py]; and using (66) gives (67)
=sesq[07,'(C, @ 1, ® 1,)y] = 07" sesq {[(I, — J,) ® 1;, ]y}
=07 sesq[({o Lon}iZ1 — 4 x abn)Y]
= 07, sesq({. yi. — bny..},2)

(66)

_ bnSSA 68)
07, (
Hence on equating (65) and (68),
1 a-1 SSA
ot =5
04 011 011
and this is equation (62) for i =1, as in the second equation of (90) in

Chapter 4.
As another illustration of the right-hand side of (62), consider its value for

YPZ,Z Py = sesq(Z,Py)
=sesq[(I,® 1, ®1,)Py]
=sesq[0, (C,®C,® 1)y + 61,/ (C,® T, ® 1)y )
+05,'(J.®C®1,)y].

In general, note that when u'v=10

sesq(u + v) = sesq(u) + sesq(v) + 2u'v = sesq(u) + sesq(v) . (70)
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And for the terms in (69) the inner product of any one with another is
zero—because of the occurrence of products such as C,J, = 0 in the resulting
products of Kronecker products. Therefore (69) is

YPZ;Z3Py = 077 5esq[(C,® C, ® 1,)y] + 6 sesq[(C,® T, ® 1,)y]
+ 077 sesq[(J,®C, ® 1,)y] . (7
We deal with each term separately.
07% sesq[(C,® C, ® 1,)y]
=07 sesq{[(L, - L, ®J, -1, ®1,+1,)®1,]y}
=077 sesq[({a 1}idy ;20 = {adb won/b}il,
—A{m{aln/a};2i}ii% 1 + dap < apn/ab)y]

_ _ _ _ SSAB
=07 % sesq[{. yyy. — P — npy 4y}, 0] = 2 97 (72)
H
077 sesq[(C, ® J, ® 1,)y]
=077 sesq[(I,®1,/b® 1)(C,®1,® 1,)y]
~2p- _ nSSA
=0;b"?sesq[{a 1o} 2 {c yi. — bMy..}] = g2 (73)
11
Similarly,
bSSB
077 sesal(3, ® € ® 1,)y] = 2~ (74)
12

Therefore substituting (72)—(74) into (71) gives

nSSAB nSSA nSSB
'PZ,Z,Py = + + . 75
y 3&~3 y 0;; B%x 0%2 ( )
Simplifying the remaining terms of (62), namely the left-hand side for i = 2 and
3, and the right-hand side for i = 0 and 2, is left to the reader (E 6.8).

-iv. Information matrix. Even though no closed form exists for the variance
component estimators, their information matrix can be obtained. From (38), a
typical element of the information matrix is

tr(V™1Z,Z;V™1Z,Z)) = sesq(Z}V™'Z;) . (76)
This is evaluated using general results such as

2
sesq(C,) = a(l - l) + (a? — a)i2 =a-1,
a a

sesq(A + B) = sesq(A) + sesq(B) when AB = 0,
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and
sesq(A @ B) = sesq{,, a;B}, ; = Z,Z,aj sesq(B) = sesq(A)sesq(B) .

We derive four cases of (76) for (38) and leave the other six for the reader

(E 6.9). These terms are derived using (61).

sesq(ZyV ™ 'Zy) = sesq(V™!)
abn—1) (a-1)b—1) a—-1 b-1
- + + +
03 CH 61, 01,

1
4+ — =

52 t,., say.

sesq[V™'(I,®1,®1,)]
= sesq[ol_ll(ca ® lb ® ln) + G;I(Ja ® lb ® ln)]

sesq(Z,V ™~ 'Z,)

=4+ —=-=, say.

sesq(ZoV™'Z,) = sesq[V™!(1,®1,®1,)]
=sesq[6;;'(1,®C,®1,) +6;'(1,8],®1,)]

sesq(ZoV ™ 'Zy) = sesq[V H(I,®1,®1,)]
=sesq[o;l(ca®cb®ln)+ol_ll(ca®3b®ln)

+ ol_zl(Ja ® Cb® ln) + o;l(Ja®Jb ® ln)]
=(a— 1)(b - l)n+(a— l)n+(b— 1)n+ n

63 01, 61,  6:

The information matrix then turns out to be

t

Gl tee lua/bn tggfan t,/n
l&f 1 te abn?/0} t,/b
~2 =3
G 2 .
. symmetric oo 9p/
2
Y

Qe

has

7



[6.6] RESTRICTED MAXIMUM LIKELIHOOD 249
for
ab(n—1) t, (a -1 1 )
le=——F5— +—=, taa=b22 + =
03 n "\o5, a2 (78)

b—-1 1 (a—1)b-1) a-1 b-1 1
tpg = a’n’(———~ + —) and t,, = n’[ + + +—1.
" 01, 0% " o1 01 0, 63

And the dispersion matrix var(a?2)is the inverse of (77),as in (94) of Chapter 4.

b. 2-way crossed, random model, no interaction
The no-interaction model is easily derived from the with-interaction model
by putting y = 0 and Z, = 0, and adapting the 6s of (56) and (57) as follows:
0, =0,=0l, 8, =0}+bnol, 6,,=0?+anc}
and (79)
04 =0'5+ bnd’: +an0’; =011 + 012 —00 .

This reduces the estimation equations (90) of Chapter 4, for the with-interaction
model, to be (92) of Chapter 4, for the no-interaction model.

The information matrix will be that for the with-interaction case, with its
last row and column deleted and with the 0s defined as in (79): with

_abn—a—b+l a—1 b-1 1
03 0}, 0}, 0%

I bn(a—|+l) an(b—l+l)-

5 ? 07, " 02 07, 6}
1| 62 |= bznz<$+lz) abn’ (80)
- 0y, 0§ 03
]
, 2<b—| 1)
) an?| — + —
| symmetric 03, 02)J

This leads to (96) of Chapter 4.

6.6. RESTRICTED MAXIMUM LIKELIHOOD (REML)

A property of ML estimation is that in estimating variance components it
takes no account of the degrees of freedom that are involved in estimating fixed
effects. For example, when data are a simple random sample, x,,..., x,,
identically and independently distributed .4"(u, 6?), the unbiased ANOVA
estimatorof a2 is 42 = L;(x; — X)2/(n — 1); but the MLE is 6% = Z;(x; — x)?/n.
Likewise in the 1-way classification random model (e.g., Table 4.9), the ML
solution for ¢2 is ¢2 = (SSA/a — MSE)/n, wherein we might expect the
denominator « in SSA/a to be a— 1 as it is in the ANOVA estimator



250 MAXIMUM LIKELIHOOD AND RESTRICTED MAXIMUM LIKELIHOOD [6.6]

62 = (MSA — MSE)/n. Thus E(¢2) = (1 — 1/a)a? — ¢%/anandso 62 is biased;
whereas E(62) = 62 and so 2 is unbiased. Thus, although ANOVA estimators
have the attractive property under normality of being minimum variance
unbiased, ML estimators do not. (In particular, they are not even unbiased.)
Nor do ML solutions, if used as estimators. Even for balanced data, neither
ML estimators nor ML solutions are the same as ANOVA estimators. Thus
the minimum variance property is not applicable to ML estimation; we return
to this property in Chapter 11.

The feature of ML not taking account of the degrees of freedom used for
estimating fixed effects when estimating variance components is overcome by
what has come to be known as restricted (or, more usually in Europe, residual)
maximum likelihood (REML) estimation. First developed for certain balanced
data situations by Anderson and Bancroft (1952) and Russell and Bradley
(1958), it was extended by W.A. Thompson (1962) to balanced data in general
and by Patterson and R. Thompson (1971, 1974) to mixed models generally.
It has received all manner of descriptions in the literature, ranging from
consideration of negative estimates to “maximizing that part of the likelihood
which is invariant to the fixed effects’ [e.g., Thompson (1962); and also Harville
(1977, p. 325), who additionally suggests it is a method that is marginally
sufficient for 62 “in the sense described by Sprott (1975)"]. Whatever description
is preferred, a basic idea of restricted maximum likelihood (REML) estimation
is that of estimating variance components based on residuals calculated after
fitting by ordinary least squares just the fixed effects part of the model. REML
estimation can also be viewed as maximizing a marginal likelihood—as
described in Section 9.3d.

a. Linear combinations of observations

Rather than using y (the data vector) directly, REML is based on linear
combinations of elements of y, chosen in such a way that those combinations
do not contain any fixed effects, no matter what their value. These linear
combinations turn out to be equivalent to residuals obtained after fitting the
fixed effects. This results from starting with a set of values k'y where vectors
k’ are chosen so that k'y = k’Xp + k'Zu contains no term in B, i.e., so that

kXp=0 V§. (81)
Hence
k'X=0. (82)
Therefore, from Appendix M.de, the form of k must be k' = ¢’(I — XX ™) or
k'=c¢[I-X(XX)"X]=c¢(I-XX")=c'M (83)

for any ¢’ and where M is defined as

M=1-X(XX)"X'=1I-XX". (84)
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Harville (1977) refers to k'y for k' of this nature as being an “error contrast”:
its expected value is zero:

E(k'y)=k'Xp=0.

The number of linearly independent error contrasts depends on X: for X of
order N x p and rank r equation (81) is satisfied by only N — r linearly
independent values of k’. Thus, in using a set of linearly independent vectors
k’ as rows of K’ we confine attention to

Ky forK'=TM, (85)

where K’ and T have full row rank N — r. (There is clearly no point in having
more than N —r vectors k' because some of them will then be linear
combinations of others, as will the corresponding values k'y.)

b. The REML equations
With y ~ A7(XB, V) we have, for K'X = 0,
K'y ~ #/(0,K'VK) .

The REML equations can therefore be derived from the ML equations of (25),
namely

{cr(V'Z,Z)} 1o = { YPZ,Z;Py}, o, (86)
by making suitable replacements:
replace y by Ky and Z by K'Z
XbyKX=0 V by K'VK .

Then (86) becomes
{r[(K'VK) 'K'Z,Z/K]} 5o = { YK(K'VK) 'K'Z,ZK(K'VK) " 'K'y }, %o .

(87)
With
P=V ! -V IX(XVX) XV ! = K(K'VK) 'K (88)
from Appendix M.4f, (87) reduces to
{tf(PZ,Z)}, 50 = { YPZ,ZPy} Lo . (89)

These are the REML equations. Comparison with the ML equations of (86)
reveals that they have the same right-hand side as the ML equations: and the
left-hand sides are the same except that the P in REML replaces V™! of ML.

¢, An alternative form
Through direct multiplication, it is easily established that PYP = P. Hence
in the left-hand side of (89) we can use the identity

tr(PZ,Z}) = tr(PVPZ,Z)) = tr(PZZ;P ¥ Z,Z0?)= ) t(PZ,Z;PZ,Z})s} .
j=0 j=0
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Thus, similar to (27), the REML equations can be put in the form
{m tr(Z;PZJZQPZI)}i.jLO(’Z =1{c Y'PZiZQPY}zio . (90)
Whatever form of the REML equations are used, the comments made in
Section 6.5 about computing iterative solutions of the ML equations apply
equally as well to those REML equations, (89) or (90). For a particular class
of models often apppropriate to dairy breeding data, Smith and Graser (1986)
describe some computational simplifications for calculating REML estimates.
This is extended by Graser and Smith (1987) to avoid matrix inversion, using
instead a one-dimensional search involving just the variance part of the log
likelihood. A suggestion from Giesbrecht and Burns (1985) is to use only two
iterations of the REML equations.

d. Invariance to choice of error contrasts

It is clear from (88)-(90) that the REML equations (90) do not contain K.
It occurs only through its relationship to P in (88), although P, as defined in
(22), does not involve K. Therefore the REML equations are invariant to
whatever set of error contrasts are chosen as K'y so long as K’ is of full row
rank N — ry with K'X = 0. We can also observe this directly, from the likelihood
of K’y (see E6.11).

e. The information matrix
With Ly being the likelihood function of K'y define

lr =log Ly = —4(N — r)log 2n — 4 log| K'VK| —4y'’K(K'VK) "'K'y .
Then, using Appendix M.4f in the form

P 0
— = — K(K'VK) " 'K’
207~ ag7 NKVE)
JKVK’
= —K(K'VK)™! — (K'VK) 'K’
o;
ov
= —K(K'VK) " 'K’ — K(K'VK) " 'K’
06}
- pNp- _pzzP, (91)
da}
alR ' -y ' '
5= —Hu[(K'VK)'K'ZZK] ~ by’ (-~ )PZZiPy
{
= —4tr(PZ,Z)) + 4y'PZ,Z;Py . (92)
For the information matrix we need second derivatives of I;:
az’ ! ’ ! ! ’ ’
502—(;0? =4tr(PZ,Z,PZ,Z)) — 1y’ PZ,Z/,PZ,Z;Py — }y'PZ,Z;PZ 7Py
i Jj

=4 tr(PZ,Z)PZ,Z)) — y'PZ,Z,PLZ;Py . (93)
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Therefore, on using E(y'Ay) =tr(AV) + f’X'AXp from Theorem S1 of
Appendix S.5,

—41r(PZ,ZPZ,Z}) + tr(PZ,Z;PZ,Z;PV) — p'X'PZ,Z;PZ,Z;PXp

1
ry
TN
[3)
Q|
bt ¥ N
Q |®
-~
SN—’
[l

-3 tr(PZ,Z;PZ,Z)) + tr(Z,Z}PZ,Z;PVP) + 0, because PX =0,
= 4tr(PZ,Z}PZ,Z)), because PVP =P . (94)
Hence, denoting REML estimations by 63y, we have in the limit
var(&Faems) = 2[ {n tr(PZ,Z;PZ;Z))}, 017"
~ 2[{nsesq(Z{PZ)}, %01 ", (95)

exactly the same as (42) for ML, except for ML there is V™! where here we
have P.

f. Balanced data

Solutions of REML equations, for all cases of balanced data from mixed
models, are the same as ANOVA estimators—and this result is true whether
normality is assumed or not. That is, if one ignores normality but nevertheless
solves equations (90), which are the REML equations under normality, the
solutions are identical to ANOVA estimators—for balanced data from all mixed
models. Those solutions are, of course, not REML estimators unless one assumes
normality and takes into account the non-negativity requirement of the
maximum likelihood method of estimating variance components.

Several authors give lip service to this result, either in the form of a simple
statement of it, or with specific examples: e.g., Patterson and Thompson (1971),
Corbeil and Searle (1976b) and Harville (1977). Detailed (and necessarily
lengthy) proof that REML solutions are ANOVA estimators, without relying
on normality, is given in Anderson (1978, pp. 97-104).

g. Using cell means models for fixed effects

Suppose in the mixed model y = XB + Zu + e that the fixed effects f are all
taken to be cell means of the sub-most cells of the fixed effects factors. Then
XB will have the form

Xp={g1,}, 20 (96)
where p is of order s, the number of filled sub-most cells of the fixed effects
factors, with the tth such cell having n, observations and the tth element of p
being the population mean y, for that cell. Then, since the form of X in (96)
gives X'X = {4 n,},2,, the form of M is

M=1-XXX)X = {41, -J,}.3s. 97)
Under these circumstances, one form of K’, as described by Corbeil and Searle
(1976a), is M with its n,th, (n, + ny)th,...,(n, + ny + -+ + n,)th rows deleted.
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Thus K’ is M after deleting the last row of each submatrix on the diagonal of
M; and so, by reference to (97), we gather that

K={1-J,/n —1,/n}2 foroy,=n-1. (98)
It is easily shown that K(K'K) 'K’ = M.

6.7. ESTIMATING FIXED EFFECTS IN MIXED MODELS

a. ML
With ML estimation the equations for the fixed effects are

XV-IXp=XV"ly
for V being the MLE of V, i.e., V = Xi_, Z,Z,62. Hence the MLE of X§ is
MLE(XB) = X(X'V-1X)" X'V -1y, (99)
and its asymptotic dispersion matrix is
var[MLE(XB)] = X(X'V"'X)"X". (100)

b. REML

REML estimation includes no procedure for estimating fixed effects. However,
it would seem to be reasonable to use (99) and (100) with V being Xi_, Z,Z!6%,
where G2z is the REML estimate of ¢7. This is similar to empirical Bayes
estimation discussed in Section 9.3c.

6.8. ML OR REML?

It is our considered opinion that for unbalanced data each of ML and REML
are to be preferred over any ANOVA method. This is because the maximum
likelihood principle that is behind ML and REML is known to have useful
properties: consistency and asymptotic normality of the estimators; and the
asymptotic sampling dispersion matrix of the estimators is also known. This
provides some opportunity for establishing confidence intervals and testing
hypotheses about parameters. In contrast, ANOVA estimators have only
unbiasedness as an established property; and their sampling dispersion matrices
are often very difficult to derive. True, the ML and REML estimators are
based on assuming normality of the data, but in many circumstances that
assumption is unlikely to be seriously wrong. And of course, the asymptotic
variance~covariance properties are valid only in the large-sample sense, and
for small or modest-sized samples this may somewhat nullify their usefulness.
Nevertheless, these properties seem to us to be sufficiently reliable for us to
have more faith in ML and REML than in the ANOVA methods, for which
we often have no means for making a rational decision between one ANOVA
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method and another. Maximum likelihood, however, is firmly established as a
respected method of estimation. Initially, ML and REML were impractical
because of their computing requirements, but this impracticality is now fast
disappearing with the rapid development of bigger and faster computers.
Adequate software is probably a more limiting factor than adequate hardware.

As to the question “ML or REML?” there is probably no hard and fast
answer. Both have the same merits of being based on the maximum likelihood
principle—and they have the same demerit of computability requirements. ML
provides estimators of fixed effects, whereas REML, of itself, does not. But with
balanced data REML solutions are identical to ANOVA estimators which have
optimal minimum variance properties—and to many users this is a sufficiently
comforting feature of REML that they prefer it over ML.

6.9. SUMMARY

Model: Section 6.1

y=Xp+ Y Zu; V=Y ZZo}. 9
i=0 =0

Likelihood—under normality: Section 6.1

e~ HY - XBYV 'y~ Xp)

L= eIV . (12)

ML equations: Section 6.2
X'V IXp=X'Vly, (20)
and, fori=0,1,...,r,
(V™ Z,Z) = (y — XBYV™'Z,Z;V " (y — XB) . (21

Alternatively, for

P=V ! v IX(X'VIX)"X'V! (22)
{tr(VT'Z,Z)} 20 = { YPZ,Z Py}, (295)
or
{m5esQ(ZV7'Z))}, 2067 = {. sesq(ZiPy)}, <4, (27b)
where

sesq(A) = sesq{a,,} = L, Za2, .

Asymptotic variances: Section 6.3
var(B) =~ (X'V1X)7}, (40)
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var(§) =~ 2[{ tr(V ' Z,Z;V™'Z,Z))}, 0] " . (42)

Comments on computing: Section 6.4

Deriving some balanced data results: Section 6.5

V and V™! for the 2-way classification . (58),(61)

Restricted maximum likelihood (REML): Section 6.6
For K’X = 0, with K, . 5 of rank r = ry

P=V !'-VIX(XV X)XV ! =K(K'VK)"'K'. (88)

Estimation equations

{wtr(ZPZ,Z)PZ)}, o = { YPZZ Py} o . (90)

Estimating fixed effects: Section 6.7
ML or REML?: Section 6.8

E6.1.
E6.2.

E 6.3.

E64.

E 6.5.

E 6.6.
E6.7.

E6.8.

6.10. EXERCISES

Derive (20) and (21), showing all details

Use equation (20) to show that in any random model the MLE of
u, when the data are balanced, is y, the grand mean of the data.

Use equation (21), or one of its equivalent forms, to derive the ML
solutions of variance components for balanced data from the
following models:
(a) the 1-way classification (see Table 4.8);
(b) the 2-way nested classification (see Table 4.10);
(¢} the 2-way crossed classification, without interaction (see
Table 4.12).
Using
Q=H!-H 'X(XH !X) " X'H! = Po?
for P of (22}, recast (35b) in a form akin to (27).
Use the alternative form of I(0) given at the end of Appendix S.7c
to derive (38).
Reduce (50) to (51).

Use equation (20) and equation (21), or one of its equivalent forms,
to derive (133), (134) and (135) of Chapter 3.

Simplify the left-hand side of (62) for i = 2 and 3 and the right-hand
side for i = 0 and 2, and along with the other simplifications shown
in Section 6.6a, derive equations (90) of Chapter 4.
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E 6.10.

E6.11.

Eé6.12.
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Derive the six elements of the information matrix not derived in
Section 6.5a-iv.

For the l-way classification, random model derive the REML
equations from (89) or (90)

(a) for unbalanced data;

(b) for balanced data.

Notation: Use e to represent ¢, and a for 62, and A, for e + n,a.

(a) Write down the likelihood of K'y for K’'X = 0.

(b} Why does the numerator of that likelihood not involve K?

(¢} On defining I1(A) as the product of the non-zero eigenroots
of a square matrix A, prove that [I(AB) = [I(BA) when AB
and BA both exist.

(d) Use (c) to prove that log |[K'VK| = log |[K'K| — log I1(P).

(e} Explain why the matrix K plays no role in maximizing the
likelihood in (a), and therefore REML estimation is invariant
to K.

Derive (95) from (42) using the replacements that follow (86).



CHAPTER 7

PREDICTION OF RANDOM
VARIABLES

7.1. INTRODUCTION

Consider measuring intelligence in humans. Each of us has some level of
intelligence, usually quantified as 1Q. It can never be measured exactly. As a
substitute, we have test scores, which are used for putting a value to an
individual’s 1Q. An example of this is introduced in Section 3.4. It leads to the
problem “Exactly how are the test scores to be used?”, a problem that is
addressed very directly in the following textbook exercise taken from Mood
(1950, p. 164, exercise 23). With important changes it is also to be found in
Mood and Graybill (1963, p. 195, exercise 32), and in Mood, Graybill and Boes
(1974, p. 370, exercise 52).

23. Suppose intelligence quotients for students in a particular age group are
normally distributed about a mean of 100 with standard deviation 15. The 1Q,
say x,, of a particular student is to be estimated by a test on which he scores 130.
It is further given that test scores are normally distributed about the true IQ as
a mean with standard deviation 5. What is the maximum-likelihood estimate of
the student’s IQ? (The answer is not 130.)

This exercise, with its tantalizing last sentence, played a prominent role in
initially motivating C. R. Henderson in his lifelong contributions (e.g., 1948,
1963, 1973a,b, 1975) to the problem of estimating genetic merit of dairy cattle.
That and the estimation of 1Q represent the classic prediction problem of
predicting the unobservable realized value of a random effect that is part of a
mixed model.

One way of solving Mood's problem is achieved by starting with the model
equation

Yij=p+o;+e;

258
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for the jth test score of the ith person, where u + o, is that ith person’s true
1Q. We first operate conditional on the value of ; for the particular person
who has been given label i. But in thinking about people in general, that
particular person is really just a random person: and ¢, is, accordingly, simply
a realized (but unobservable) value of a random effect— the effect on test score
of the intelligence level of the ith randomly chosen person. Therefore we treat «;
as random and have 1Q and score, namely u + «; and y;;, jointly distributed
with bivariate normal density:

[P )

score Yy 1001} 152 152 +5%])"

From this, using (iv) of Appendix S.2, the conditional mean of u + a; given
yij = 130, namely E(u + o;}y;; = 130), is

152
E(k + 0] yy = 130) = 100 + 5= (130 - 100) = 127.

This is what is used to quantify the student’s [Q. It shows how one can obtain
a reasonable answer to Mood’s exercise other than 130, as alluded to in the
last sentence of the exercise.

Note that although Mood’s (1950) question asks for a maximum likelihood
estimate of the student’s IQ, we have used just the conditional mean. This is
because, once we confine ourselves to a particular student having a test score
of 130, we are then in the conditional situation of being interested only in
quantifying u + a; conditional on y;; = 130. And under these circumstances the
conditional mean, E(u + ;| y,; = 130), is what we use as a predictor of
[(u + a){y; = 130], namely of u + «; given that y; = 130. The connection
with the maximum likelihood estimation of Mood’s question is that under
the normality assumptions given in the question, the conditional variable
(u + ;)| y;; = 130 is indeed normally distributed with mean 127. Then, whilst
taking ji + & = 127 as the predictor of [(u + «;)| y; = 130] it is not, in the
strictest sense, a maximum likelihood estimator; but it does maximize the density
function of [(u + )| y;; = 130].

An interesting feature of the question in the Mood (1950) book is
that in its later forms in the 1963 and 1974 editions the “What is the
maximum likelihood estimate?” question is replaced by a “What is the Bayes
estimator?” type of question. With the general topic of Bayes estimation being
dealt with in Chapter 9, we here simply note that the above predictor,
E[(p + )|y = 130] = 127, is indeed the same as is derived using the results
given in that chapter. In particular, the derivation is

E[(p+ a;)|yy=130] = p + E(a;] y;; = 130)

}7.'. - }7 }7 - /‘ )
o2 +ne? o+ nol+ancl)

=u+na§(
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from (54) of Chapter 9. And with u =100, n=1, j.=130=j., 62 = 5%,
02 =152 and ¢} = 0, which are the characteristics of Mood’s question, this
becomes
152
E(p+ ;] y; = 130) = 100 + ———— (130 — 100) = 127 .
1545

There are many situations similar to that of the student’s 1Q, of wanting to
quantify the realization of an unobservable random variable. A biological
example is that of predicting the genetic merit of a dairy bull from the milk
yields of his daughters. A non-biological example is that of predicting instrument
bias in micrometers selected randomly from a manufacturer’s lot, using the
micrometers to measure ball-bearing diameters. And an example in psychology
is that just considered: predicting a person’s intelligence from IQ scores. In all
of these we have a vector of observations on some random variables from which
we wish to predict the value of some other random variable (or variables) that
cannot be observed.

A statement of the general problem is easy. Suppose U and Y are jointly
distributed vectors of random variables, with those in Y being observable but
those in U not being observable. The problem is to predict U from some realized,
observed value of Y, say y. Usually Y contains more elements than U, and
indeed U is often scalar. In the 1Q example U is the scalar, unknowable true
value of a person’s intelligence, and y is the vector of test scores.

Three methods of prediction are of interest: best prediction ( BP), best linear
prediction (BLP), and mixed model prediction, which leads to what is now
called best, linear, unbiased prediction (BLUP). Of these three methods of
prediction, BP is available when we know all the parameters of the joint
distribution of U and Y; i.e., when we know f(y,u). BLP and BLUP are methods
that are best in situations when we know some of the parameters of f(y, u) but
not all of them. For BLP only first and second moments are assumed known,
and for BLUP second, but not first, moments are assumed known. In each case
the less that is assumed known, the more restrictive are the resulting predictors.

The description that follows is strongly influenced by the work of C. R.
Henderson, who for thirty years sustained the interest of one of us (S.R.S.) in
the prediction problem in the context of animal breeding. In particular, the
opening paragraphs of Henderson (1973a) have been of especial assistance in
preparing this account of prediction.

Notation: WARNING. In contrast to the notation of (70) in Chapter 4
and of (19) in Chapter 6, the vector u no longer includes e. Rather than define
an adorned Z and u, such as Z and i, to represent Z without Zyo=1and u
without u, = e, we simply emphasize that in this chapter

Zu = Zlul + Zzuz + -+ Z,u,,
and the model equation is

Yy=Xp+Zu+e
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with
V = var(y) = ZDZ' + g1
for
D = var(u); and with C = cov(y,u’) = ZD.

The reason for excluding u, = e from u is that we are interested in predicting
elements of u that are random effects, but not those that are residual errors.

7.2. BEST PREDICTION (BP)

Suppose that U is scalar, U. When f(u, y) is the joint density function of the
random variables U and Y at the point u,y then with the predictor being
denoted by ii the mean square error of prediction is

E(ﬁ—u)z=f (@ — u)*f(u,y) dy du, (1

where E represents expectation. A generalization of this to a vector of random
variables u is

E(i—u)A(il —u) = Ji[(ﬁ —u)'A(dl — u)f(u,y)dy du, (2)

where A is any positive definite symmetric matrix. Clearly, for A being scalar
and unity (2) is identical to (1). In passing, note that decomposition of the error
of prediction, i — u, is discussed at length by Harville (1985) for four different
states of knowledge.

a. The best predictor

Our criterion for deriving a predictor is minimum mean square, ie., we
minimize (2). The result is what we call the best predictor. Note that “best”
here means minimum mean square error of prediction, which is different from
the usual meaning of “best” being minimum variance. Because variance is
variability around a fixed value and because u in (1) is a random variable,
(1) is not the definition of the variance of u. Thus, whereas as an estimation
criterion we use minimum variance for estimating a parameter, we use minimum
mean square for predicting the realized value of a random variable. Thus from
minimizing (2) we get

best predictor: ii = BP(u) = E(u|y); 3)

i.c., the best predictor of u is the conditional mean of u given y.

Noteworthy features of this result are: (i) it holds for all probability density
functions f(u, y), and (ii) it does not depend on the positive definite symmetric
matrix A.
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Verification of (3). In the mean square on the left-hand side of (2), to ii — u
add and subtract E(u | y), which, for convenience, will be denoted uy; i.e., with

up = E(uly),
E(@—uA(i—w=E(i—uy+uyg—u)A(ii —ug +uy —u)
= E (i — ug)'A(ii — ug) + 2E (il —up)'A(uy —u)
+ E (ug — u)YA(ug —u).

To choose a & that minimizes this, note that the last term, E (ug — u)’A(uy — u),
does not invoive #. And tn the second term,

E(u--ny)A(uy —u) = Ey{Eu[(ﬁ —ug)A(up —u)|yl}

= E{(1 — ug) A(ug — up)} =0

since, given y, only njy is not fixed with E (uly) = u,. Therefore
E(@a—u)A(@ —u)=E (i — uy)’A(2d — ug) + terms without @ .

Since E (@i — uy) A(ii — u,) must be non-negative it is minimized by choosing
@l = up; i.e., the best predictor is i = E(u|y).

Three features of this derivation merit comment. First, adding and subtracting
E(u|y)is simply centering about the conditional mean, and this is often a useful
methodological step. Second, the cross-product term is merely a covariance and
the centering often reduces it to zero. Third, the final step illustrates that the
problem of predicting a random variable is simply that of estimating its
conditional mean.

b. Mean and variance properties

First and second moments of the best predictor are important. They are
discussed in Cochran (1951) and in Rao (1965, pp. 79 and 220-222) for the
case of scalar U.

First, the best predictor is unbiased for sampling over y: for E, representing
expectation over y

Ey(ﬁ) = Ey[Euly(“lyn = E(u), 4)

as in E(g) of Appendix S.1. Note that the meaning of unbiasedness here is that
the expected value of the predictor equals that of the random variable for which
it is a predictor. This differs from the usual meaning of unbiasedness as defined
in the statistical literature when estimating a parameter. In that case unbiasedness
means that the expected value of (estimator minus parameter) is zero; e.g.,
E(f — B) =0, where B is a constant. With prediction, unbiasedness means
that the expected value of (predictor minus random variable) is zero; eg,
E(@ — u) = 0 where u is a random variable. The former gives E(B) = f, whereas
the latter gives E(ii) = E(u).

Second, prediction errors ii — u have a variance—covariance matrix that is
the mean value, over sampling on y, of that of u|y:

var(i —u) = E,[var(u|y)] . (5)
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Also,
cov(,u’) = var(i) and cov(i,y')=cov(uy’). (6)

Verification of (5) comes from using var(g) at the end of Appendix S.1, namely

var(g) = E,[var(g|y)] + var,[E(g]y)] .
With ii — u used for g this gives

var(i —u) = E,{var[(i —u)|y]} + var,{ E[(§ ~w)|y]}
= E,{var[(@i —u)|y} + var,(0), because E(ii|y) =ii = E(u]y)
= E,[var(u]y)],

which is (5).
The two results in (6) are established by using cov(g, h) developed in
Appendix S.1:

cov(g,h) = E,[cov(g|y, h|y)] +cov,[E(gly), E(h]y)].
With g = ii and h = o’ this is
cov(u,u’) = Ey[cov(ii|y, u'|y)] + cov,[E(d|y), E(v'|y)].

Note that the first term involves the covariance of u | y with its mean @i = E(u]y).
It is therefore zero. Hence

cov(ii,u’) = covy(i, &’) = var(ii),
which is the first result in (6). Likewise, for the second result we start with

cov(n,y') = Ey[cov(uly, y'|y)] + covy[E(uly), E(y'|y)].

In the first term the covariance is of u|y with the constant y’'|y. Therefore it
is zero, and so

cov(u,y’) = cov,(d,y’) .
Thus is (6) established.
¢. Two properties of the best predictor of a scalar
For scalar u there are two further properties of interest. The first is that the

correlation between u and any predictor of it that is a function of y is maximum
for the best predictor, that maximum value being

pli,u) = a;/a, . (7)

Second, selecting any upper fraction of the population on the basis of values
of ii ensures that

for that selected proportion, E(u) is maximized . (8)
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-i. Maximizing a correlation. Theccrrela‘ion between i and uis, using (6),

. cov(i,u) o
pliu) = —"" =1,
0,0, g,

which is (7). Now consider some function of y, say f, as a predictor of u different
from d. Then

cov(f,u)=E{[f — E(f)][u — E(u)]}, by definition,
=E{[f— E(f)J[u—i +id— E(#)]}, because E(ii) = E(u),
= E{[f — E(f)](u — @)} + cov(f, i)
= cov(f, ) + EyE,,({Lf — E(f))(u — @)} |y)
= cov(f,d) + Ey{[f — E(N)IE[(u — @)|y1},

because f being a function of y means that f |y is constant with respect to the
E-operator. And then, because E(u|y) = i, this becomes

cov(f,u) = cov(f, @) + E,{[f — E(f)1(i — @)}

=cov(f,i).
Hence
2 2 ~ 2
pA(fouy = 2L VD G i ayp2(a,u).

The maximum over all f is when p?(f,ii) = 1, ie., f = d. Hence (7) is the
maximum p(il, u). This proof follows Rao (1973, p. 265-266).

-if. Maximizing the mean of a selected proportion. Begin by contemplating
the selection of a proportion o of the population of u-values, using y in some
way as the basis of selection. We want to make the selection such that for given
a the value of E(u) is maximized. Hence we want a region of values of y, R
say, such that

jf(y)dyga and JJ uf(u,y) du dy is maximized .
R R~

The latter is equivalent to maximizing

f E(uly)f(y)dy,
R

which is equivalent to maximizing E(u) for the selected proportion. By a
generalization of the Neyman-Pearson Lemma [e.g, Cochran (1951), Rao
(1973, Sec. 7a.2) or Casella and Berger (1990, p. 372)], this maximum is attained
by the set of values of y for which i = E(u|y) = k, where k has the one-to-one
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relationship to o
jf(y)dy=a for R={y:E(uly)zk}.
R

Use this to determine k from a. Then selecting all those observational units for
which E(u|y)=1i 2 k yields a sample from the upper a-fraction of the
population of unobservable u-values in which E(u) is maximized.

Practitioners, in using estimates in place of the population parameters in
this procedure, may often be found using it not exactly as specified. After
choosing a value for a they might, for simplification, avoid determining k from
« and selecting on the basis of i > k but, instead, simply select the upper
a-fraction of fi-values. For small values of a (say .10 or less) and for a large
number of elements in u (100 or more, say) this simplified practice might not
be seriously different from the procedure as specified.

d. Normality

It is to be emphasized that i = E(u|y)is a random variable, being a function
of y and unknown parameters. Thus the problem of estimating the best
predictor ii remains, and demands some knowledge of the joint density f(u]y).
Should this be normal,

LGl V) ¢

then with C = DZ' as in Section 7.1, and using Appendix S.3,
i=EQuly)=p; +CV ' (y—py). (10)
Properties (5)—(8) of @ still hold. In (5) we now have from (9) that
var(uly) = D — CV™!C/, so that in (5)
var(ii ~u) =D - CV~!C’. (11)
And using (10) in (6) gives
_— . pp . eVl
cov(ii,u’) = var(ii) = CV~'C’, and hence p(i;,u;) = 3 (12)
o

where ¢; is the ith row of C.

The estimation problem is clearly visible in these results. The predictor is
given in (10) but it and its succeeding properties cannot be estimated without
having values for, or estimating, the four parameters py, py, C and V.

7.3.  BEST LINEAR PREDICTION (BLP)

a. BLP(«)
The best predictor (3) is not necessarily linear in y. Suppose attention is now
confined to predictors of u that are linear in y, of the form

i=a+ By (13)



266 PREDICTION OF RANDOM VARIABLES [7.3]

for some vector a and matrix B. Minimizing (2) for 4 of (13), in order to obtain
the best linear predictor, leads (without any assumption of normality) to

BLP(u) = ii = py + CV ™! (y — py), (14)

where py, By, C and V are as defined in (9) but without assuming normality
as there.

An immediate observation on (14) is that it is identical to (10). This shows
that the best linear predictor (14), derivation of which demands no knowledge
of the form of f(u,y), is identical to the best predictor under normality, (10).
Properties (11) and (12) therefore apply equally to (14) as to (10). And, of
course, BLP(u) is unbiased, in the sense described following (4), namely that
E(2) = E(u). Problems of estimation of the unknown parameters in (14) still
remain.

b. Example
To illustrate (14) we use the 1-way classification random model of Chapter 3.
It has model equation y;; = u + «; + e;;, or equivalently

y=uly+Za +e,
where
Z= {dln,}’ u=a,

py=uly, By =0,
V = var(y) = {4023, + 021, },
as in (81) of Section 3.6b, and
C =cov(u,y')=cov(n,u'Z') = [var(w)]Z' = 6?1, {; 1, }

= {d 0:1:1,} .

i)
a02\" eZ+nel " ’

as immediately precedes (104) of Section 3.7. Using these expressions in (14)

gives
- 200 1 aq
i=a=0+{40;1,} o L ——5——=d, ) ¢y — uly)

Also

d Ve a§+n,a,

{ % 1'}( 1,) (15)

- d0'3+n"0': n y uN'

Hence
2

n,o, -
BLP(a,) = ——— (§;. — u), 16
(o) a§+n;af(y' 1) (16)

as in (40) of Section 3.4.
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It is to be noticed that BLP(«a,) of (16) involves not only the unknown mean
u but also the unknown variance components, as is evident in the general result
(14) where they occur in C and V ~'. Hence, in order to use BLP(q;) in practice,
one must have estimates of those variance components. Then, on using /i in
place of 4, and on replacing each a2 in BLP(«;) by its estimate, 42 say, one has
an estimate of BLP («;) is nd: (yi.— )
Y62 4 né? Vi ’
which is no longer a best linear predictor; indeed, it is not even linear in y.

¢. Derivation

To derive ii = BLP(u) of (14), which, it is to be emphasized, needs no
assumption of normality, we use @i = a + By and minimize, for positive definite
symmetric A, the generalized mean squared error of prediction used in (2),
namely

g=E(i—u)A(i—u)
=E(a+By—u)A(a+ By —u). (17)

Using il = a + By ensures that u is linear in y, and since from (3) we know that
the best predictor is E(u|y), we now want a + By = E(u|y). Under normality,
this means, from (10), that

i=a+By=p, +CV 'y —py). (18)

However, although E(u|y) under normality is always linear in y, we do not
know its form under other distributions. Therefore, to derive i in a more general
framework, we begin with ¢ of (17) and have, after defining

t=By —u,
g=E(a+t)A(a+1t)
=a'Aa + 2a’AE(t) + E(t'At)

=[a+ E(t)]'A[a + E(t)] — E(¢')AE(¢t) + E(¢'At) . (19)
Clearly, this is minimized with respect to a by choosing
a=—E(t)= —E(By —u)=p, — Bp, . (20)

This makes the first term of (19) zero, and so minimizing the other two terms
of (19) with respect to B involves minimizing

g, =q—[a+ E(t)]A[a + E(t)]
= —E(V)AE(t) + E(t'At)
= tr[A var(t)], using Theorem S4 of Appendix S.5,
= tr[ A var(By — u)]
=tr[A(BVB' + D — BC' — CB')] .
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Since tr(AD) does not involve B, we minimize
4, = tr[A(BVB' — BC' — CB')]
=tr[A(B-CV 1 )V(B—-CV~!y —ACV~!C]. (21)

Then, because CV~'C’ does not involve B, minimizing g, with respect to B is
achieved by taking

B=Cv~!', (22)
This, together with (20), gives
i=a+By=p, +CV ' (y —py), (23)

as in (14). And it is identical to E(ul|y) under normality.
Note that @ of (23) does not depend on the A introduced for generality in
(2)and used in(17). But the mean squared error of prediction doesinvolve A

E [py+CV™i(y—ny)—ulAlpy + CVI(y — py) —u]
=E [CV 'y —py)—(u—py)JALCV ! (y — py) = (u—py)]
=tr(A{CV'E[(y — py)(y = my)IJVIC' + E (u—py)(u—py)
—2CV7E[(y — py)(w — py)'1})
=tr[A(CV™'C' + D — 2CV™'C)]
=tr[A(D - CV~'C)].

d. Ranking

Inestablishing (8), that selection on the basis of the best predictor &i maximizes
E(u) of the selected proportion of the population, Cochran’s (1951) development
implicitly relies on each scalar & having the same variance and being derived
from a y that is independent of other ys. Sampling is over repeated samples of u
(scalar) and y. However, these conditions are not met for the elements of i
derived in (10). Each such element is derived from the whole vector y, their
variances are not equal, and the elements of y used in one element of @ are not
necessarily independent of those used for another element of &i. Maximizing the
probability of correctly ranking individuals on the basis of elements in i is
therefore not assured. In place of this there is a property about pairwise ranking.

Having predicted the (unobservable) realized values of the random variables
in the data, a salient problem that is often of great importance is this: How
does the ranking on predicted values compare with the ranking on the true
(realized but unobservable) values? Henderson (1963) and Searle (1974) show,
under certain conditions (including normality), that the probability that
predictors of u; and u; have the same pairwise ranking as u; and u, is maximized
when those predictors are elements of BLUP(u) of (23); i.e., the probability
P(it; — d; 2 0| u; — u; 2 0) is maximized. Portnoy (1982) extends this to the
case of the usual components of variance model, for which he shows that ranking
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all the w;s of u in the same order as the ;s (the best linear predictors) rank
themselves does maximize the probability of correctly ranking the u;s. He does,
however, go on to show that in models more general than variance components
models, there can be predictors that lead to higher values of this probability
than do the best linear predictors, which are elements of the vector
BLP(u) =py + CV™}(y — py)

7.4. MIXED MODEL PREDICTION (BLUP)

The preceding discussion is concerned with the prediction of random
variables. Through maximizing the probability of correct ranking, the predictors
are appropriate values upon which to base selection; e.g., in genetics, selecting
the animals with highest predictions to be parents of the next generation. Since
we are concerned here with the prediction (and selection) of random variables,
the procedure might be called Model II prediction corresponding to Model II,
the random effects model, in analysis of variance. In this connection Lehman
(1961) has discussed Model I prediction, corresponding to the fixed effects
model. Consideration is now given to mixed model prediction, corresponding
to mixed models in which some factors are fixed and others are random.

a. Combining fixed and random effects
The model we use for y is the familiar

y=Xp+Zu+e (24)

for B being the vector of fixed effects and with u excluding e, just as at the end
of Section 7.1. Then, with

E(u)=0, (25)
we consider the problem of predicting
w=LPB+u (26)

for some known matrix L’, such that L'B is estimable; i.e.,, L' = T'X for some T'.
Since w involves both fixed effects and random variables, there might be debate
as to whether we should “estimate” w or “predict” w. We will “predict” w, and
will choose W as a predictor to have three properties:

“best” in the sense of (2): minimizing E (W — w) A(W — w), (27)
linear in y: W =a + By, with a and B not involving B, (28)
unbiased: E(W)= E(w). (29)

The resulting predictor is a best linear unbiased predictor (BLUP). Note that
unbiasedness is now a criterion of the prediction procedure and not just a
by-product of it as in Section 7.2. Introducing it as a criterion arises from the
presence of B in (26).
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It is clear from (25) and (26) that E(w) = L'B. We then have

G- He V) o

similar to (9), although without yet assuming normality. The unbiasedness
required of W in (29) demands that a + BXp = L’p for all B, and if a is not to
depend on P then a = 0 and BX = L'. Consequently, the predictor is W = By,
and in w =L’p + u the term L’P is an estimable function of B in the model
E(y) = XB. This limits the form of L’ in w, but it is obviously a reasonable
limitation, and the predictor is called BLUP, the best linear unbiased predictor.
It is, as we show in sub-section c that follows,

BLUP(w) =W = L'B® + CV~!(y — Xp°) (31)
with, as in Appendix S.2,
BLUE(Xp) = Xp° = X(X'V™!X)"X'V~ly. (32)

Recall (10): the best predictor under normality [and in (14) the best linear
predictor] is

i=py+CV7 'y —my).

When py = 0, and py, = E(y) = XB, then it = CV~!(y — Xp), which is the same
as the second term of (31) except that (31) has Xp°® where @i has Xp. Moreover,
w has L'B° where w has L’B. Thus in the predictor W of w = L'B + u, there are
two parts: L'B° the BLUE of L'B,and CV~'(y — XB?), the best linear predictor
of u when E(u) = 0 and with XP therein replaced by its BLUE, Xf° of (32).
To emphasize this we write the predictor as

W =L'p° + u® on defining u®= BLUP(u)=CV~!(y — Xp°%) . (33)

W is thus the sum of the BLUE of L’p and the BLUP of u, using B°. Result (33)
is given in Henderson (1973a) and that part of it not involving L'B is also in
Henderson (1963) in a slightly different context. Broad generalizations are
considered by Harville (1976).

b. Example

We continue with the example used for illustrating BLP(u) in Section 7.3b,
namely the l-way classification random model of Chapter 3. Suppose we
take w as

w=ul,+a,
Then
L'=1, p=p and X=1y
and (31) is
BLUP(w) = x#°1, + CV™ ! (y — u°1y). (34)
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C and V™! in (34) are exactly as in the example of Section 7.3b, and u° is,
from (32), given by
1,60 = 1,(1'V-11)"1'V -1y

This reduces, as shown in (34) of Section 3.3, to

i .
#o__l laf+n,a:

a n,
=1 0’3 + niaf

Thus, after substituting into (34) for CV ™! implicit in (15),
2

BLUP(w) = 4°l, + { e l;i}(y — K1),
a0+ no,
which gives
na;

————e v — 0 .
a_‘z? + niaz (yi- B )

BLUP(w;) = BLUP(u + o;) = p° +
This is the same as (42) of Section 3.4. Again, we notice that, in order to use
this in practice, estimates of 62 and ¢ must be available. In contrast to BLP(«;)
of (16), which involves u, we see that BLUP(u + a,) also uses u%; i.e., BLUP
includes estimation of the fixed effects whereas BLP does not.

¢. Derivation of BLUP

We start with w = L’B + u of (26) and the distributional properties of (30);
also with w = By with BX = L’ as discussed following (30). Then we choose B
by minimizing, with respect to elements of B and subject to BX = L/, the mean
squared error of prediction,

q*=E (W—w)A(W—w)
=E(—-LPp+By—uYA(—L'B+ By —u). (35)
This is just q of (19) but with a of (19) replaced by —L’B in (35). Conveniently,
this form of a is exactly as prescribed in (20) for minimizing (19), namely
a =pu, — Bp, with p;, = 0 and p, = XB, so that a = 0 — BXp = —L’B. Hence,
just as minimizing (19) was reduced to minimizing (21), so here, too, with (35),

except that it is to be done under the condition BX = L.
Thus, from (21), we seek to minimize, with respect to B,

q? =tr[A(BVB' — BC' — CB’')], subjectto BX =L’. (36)
To do this, define
T=X(XV'X)"XV!'=T? and Q=1-T=0Q? (37)

observing that
TVT'=TV=VT and QVQ'=QV=VQ'. (38)
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Further, note that
B = BT + BQ, (39)
in which
BT = BX(X'V!X)"X'V ! =L(X'V!X)"X'V~!, (40)
In (40) we see that BT does not involve B. Therefore minimizing g% subject to
BX = L' is achieved by substituting into g} of (36) the B of (39) after ignoring

BT; ie., by replacing B in g¥ with BQ and then minimizing with respect to
elements of B:

q* = tr[A(BQVQ'B’ — BQC' — CQ'B')] .
But on using (38) it will be found that
g% = tr[A(BQ — CV~'Q)V(BQ — CV~'Q) — ACV~'QVQ'V-!C'].

Therefore, since g% is just g, of (21) with B replaced by Q and CV ™! replaced
by CV~'Q, and because just as minimizing q, yielded B = CV~! of (22), so
now the minimization of g% yields

BQ=CV'Q. (41)
Substituting this and (40) into (39) and using (37) gives
B=LXXV X)XV !+ CVI-XX'VIX)"X'V 1],
Hence
w = By
is, using Xp° of (32),
w = BLUP(w) = L'g° + CV~!(y — Xp°),
which is (31).

d. Variances and covariances
A variety of results leading to var(W) is available:

var(L'®) = L'(X'V~1X)"L, (42a)
var(u®) = CV~!C’ — CVIX(X'V™!X)"X'V-IC, (42b)
cov(L'B%u®) =0, (42c)
var(W) = var(L'B°) + var(u®), (42d)
cov(u®,u’) = var(u?), (42¢)
var(u® — u) = D - var(u°), (42f)
cov(Lp%u') = L'(X'V X)"X'V~IC, (42g)

var(w — w) = var(L'p°) + var(u® — u) — cov(L'p° u’) — cov(u, p°'L) . (42h)

Derivation of these results is left to the reader (see E 7.1).
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e. Normality
All of the preceding results involve no assumption of normality. On
introducing that assumption, as in (9), with p, = 0 and p, = Xp, we have

=L L D C
YAl e V) e

y Xp cC Vv
Then XB° is the maximum likelihood (as well as the best linear unbiased)
estimator of Xp, for V assumed known, and since from (43), using Appendix S.3,

E(w|y)=LB+CV~'(y — XB),

it follows that for V known, w of (33) is the maximum likelihood estimator of
E(w|y). Furthermore, with u®=CV~!(y — Xp°%), u and u°® are normally
distributed with zero means and because of (42b) and (42c)

E(u|u®) = cov(u® u’) [var(u®)] 'u® = u®
and
var(u|u®) =V — cov(u® u’) [var(u®)]~! cov(u®,u’)
=D — var(u®)
var(u® —u), asin (42f).

And, of course, as has already been shown, the elements of u® have the property
of maximizing the probability of correct rankings. But this property does not
hold for elements of W, unless E(w) = L'B is of the form 61, for some scalar 6.

7.5. OTHER DERIVATIONS OF BLUP

The literature contains a number of other derivations of u® = CV~!(y — Xg°)
of (33), some of which are now outlined, with details left for the reader in E 7.7,
E7.10 and E7.11.

a. A two-stage derivation

Bulmer (1980, pp. 208-209) suggests a two-stage approach to the problem
of predicting u: first, form a vector of the data y corrected for the fixed effects
(in the genetic context, corrected for the environmental effects):

Yo=Yy — Xp°, (44)
where XB° is as in (32). Then, under normality assumptions, u is predicted by
the intuitively appealing regression estimator E(u|y,),

i = cov(u, y) [var(yo)]™'ye, (45)

which is well-known to be optimal among predictors based on y..
Gianola and Goffinet (1982) show that Bulmer’s i is identical to Henderson's
u® of (33), and include a discussion by Bulmer in which the equivalence is gladly
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acknowledged. A shorter verification than theirs of this identity, along with
the extension of replacing [var(y.)]™' in (45) by [var(y.)]", since var(y,)
is singular, uses the matrix P=V~! — V7 !IX(X'V!X)"X'V~! of (22) in
Chapter 6, with PVP =P, Then y, = VPy and so var(y,) = VPV and
cov(u,y.) = DZ'PV. Then, as can be easily shown (E 7.10), i of (45) reduces
to u® of (33).

b. A direct derivation assuming linearity

We confine attention to a predictor of u that is linear in y, say @ = a + By;
and that is unbiased, in the sense of E(ii) = E(u). Then with E(u) = 0 we have
E(a + By)=0 and so a =0 and BXp = 0. The latter is true for all p only
if BX = 0. But this implies B=K(I - XX*), for arbitrary K. More than
that, though, BX =0 is also BViV-{X =0 and so we can also take
BV! = K[I - V-iX(V-{X)*], which reduces (E7.11) to B=SVP, for
arbitrary S.

Having & = a + By and a = 0 gives ii = By. With B = SVP for arbitrary S,
unbiasedness of ii is assured, so in order for i = By to be BLUP(u) we must
also choose B = SVP such that By is BLP(u). But with

Gl e V)

of (9), we have from (14)
BLP(u) =py, + CV™H(y — py) .

Therefore if By is to be used for deriving BLP(u), it will, with p, =0 and
BXp = 0, be

BLP(u) = CB'(BYR') "By .

But we want B to be such that this is By. Therefore, with C = cov(u,y’') = DZ’,
because y = Xp + Zu + e, we want
CB'(BVB’) By = By .
Since B = SVP for arbitrary S, we find that this equality holds if S = DZ'V ™!,
This gives
i=By =SVPy=DZ'V 'VPy =DZ'V~'(y — Xp°).
Thus ii is obtained in this fashion is BLUP(u) of (33).

¢. Partitioning y into two parts

It is of interest to observe that y can be partitioned into two uncorrelated
parts, one of which yields BLUE(Xp) and the other yields BLUP(u). To do
this write y as

y=y— Xp° + Xp° = VPy + (I — VP)y . (46)
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Then, whereas VPy is the basis for @ = DZ'V ~!(VPy), the remaining portion
of y, namely
y—VPy=(1-VP)Xp + (I — VP)(Zu + e), (47)

which is uncorrelated with VPy, yields a generalized least squares estimator of
Xp that is Xp°® (see E7.7). Extensions to partitioning prediction error are
considered by Harville (1985).

d. A Bayes estimator
In developing (7) of Appendix S.6 we have
J(y)

as the posterior density of p, the parameter associated with the vector y. Adapted
to our mixed model

a(ply) =

y=Xp+Zu+e, (49)
we have

f(y,w) _ f(ylu)f(w)
J(y) fy

A Bayes estimator of u is then E(u|y). But, under normality assumptions
D DZ
(8] [ %)
y Xp ZD V
we know that

uly ~A4[0+DZV-'(y—-Xp),D—-DZ'V-'ZD]. (50)

Thus a Bayes estimator of u is DZ'V~!(y — XB), namely the best linear
predictor.

uly) =

7.6. HENDERSON'S MIXED MODEL EQUATIONS (MME)

a. Derivation

Henderson, in Henderson et al. (1959), developed a set of equations that
simultaneously yield BLUE(XB) and BLUP(u). They have come to be known
as the mixed model equations (MME). They were derived by maximizing the
joint density of y and u, which is, for var(e) = R and D of order g,

S(y,u) = f(ylu)f(u)
exp{ —4[(y — XB — Zu)R™'(y — Xp — Zu) + w'D " 'u]}
(Zn)ﬂN+4.)IRIQID|} .

(51)
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Equating to zero the partial derivatives of (51) with respect to elements first
of B and then of u gives, using B and @ to denote the solutions,

X'R™!Xp + X'R™!Zi = X'R !y
and (52)
ZR'XB+(ZR'Z+D Ha=2ZR"'y.

These are the mixed model equations, written more compactly as

XR™'X  XR'Z ][B]_[x'n-‘y] (53)

ZR!X ZR'Z+D7']ld ZR'y]’
Their form is worthy of note: without the D ~! in the lower right-hand submatrix
of the matrix on the left, they would be the ML equations for the model (49)
treated as if u represented fixed effects, rather than random effects.

The form of equations (53) is similar to that resulting from various diagonal
augmentation strategies [ Piegorsch and Casella (1989) give a history]. Many
such strategies arose from numerical, not statistical, considerations (e.g.,
Levenberg, 1944; Marquardt, 1963; Moré, 1977) designed to provide stable
numerical procedures involving ill-conditioned matrices.

A statistical strategy leading to equations like (53) is that of incorporating
prior knowledge into analysis of data, i.e., Bayes estimation. Although
Henderson’s derivation of (53) was essentially classical in nature, it yields the
same results as formal Bayes analysis, some details of which are shown in
Chapter 9. This analysis dates back to at least Durbin (1953), mostly in the
context of the fixed effects, and not the mixed, linear model. An outgrowth of
this statistical approach, combined with numerical advantages, led to procedures
such as ridge regression (e.g., Hoerl and Kennard, 1970; Hoerl, 1985) and

hierarchical Bayes estimation (Lindley and Smith, 1972) and to a variety of
other applications.

b. Solutions
Equation (53) has solutions that are even more noteworthy than its form.
First, substituting for ii from the second equation of (53) into its first gives

X'R™!Xp+X'R™'Z(ZR™'Z+D ') 'Z'R(y - X) = X'R"ly,
which is
X'BXp = X'By (54)
for
B=R !-R!'Z(ZR'Z+D ) 'ZR '=V"!, (55)
The equality B = V™! in (55) comes from (28) of Appendix M.S5. It gives (54)

as X'V~ !Xp = X'V~ 'y, which is the GLS equation for , and it yields X = Xp°
of (32).
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Second, ii of (53) is BLUP(u) of (33). We see this from rewriting the second

equation of (53) as

i=(ZR'Z+D ") 'ZR Yy - Xp),
which, on using the identity (D™'+ Z'R7'Z)"'Z'R™' =DZ'V™}, is
ii = DZ'V~!(y — XB); and this, since C = cov(u,y’) = DZ’, is u® as in (33).

Equations (53) not only represent a procedure for calculating a p° and @,
but they also are computationally more economic than the GLS equations that
lead to XB°. Those equations require inversion of V of order N. But the MMEs
of (53) need inversion of a matrix of order only p + q., the total number of
levels of fixed and random effects in the data. And this number is usually much
smaller than the N, the number of observations. True, (53) does require inversion
both of R and D, but these are often diagonal, e.g., R having o2 for every
diagonal element and D having g, diagonal elements ¢? for i = 1,...,r. This
makes those inversions easy.

An interesting aspect of the mixed model equations is that elements of them
can be used for setting up iterative procedures for calculating solutions to the
maximum likelihood (ML) and the restricted maximum likelihood (REML)
equations for estimating variance components (see Harville, 1977). Those same
elements can also be used for calculating the information matrices for ML and
REML estimation. We now show a derivation of these relationships of the
MME:s to ML and REML. Unfortunately the algebra is tedious—but is detailed
here to save readers from becoming embroiled in their own attempts at
establishing the results. Even more detail is available in Searle (1979).

In the development of the MMEs of (53) and their solution (54) and (55)
the variance matrices var(u) = D and var(e) = R are perfectly general. But we
now confine them to their special forms of the traditional components model,
as in (4) and (5) of Section 6.1, namely

R=02ly and D={,0?1 };I,.
We then define two further matrices, to be denoted W and F,;, withgq. = Z{_, ¢,
being the order of both. The first is
W=(0+ZR'ZD) ' = {W;};,~y, withW™! -1 =ZR"'ZD.
(56)
The second is a variant of D:
F,, is D with unity in place of 67 and zero in place of ¢ for j #i. (57)
Then note that
DF“ = U,ZF“ and SO F“ = DF“/UIZ . (58)
Example. Forg, =2,9,=3and g, =4
0., O 0
Faa=| 0 L, 0
0 0 04,4
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¢. Calculations for ML estimation

«i. The estimation equations. The ML equations for the variance com-
ponents are written in (25) of Section 6.2a as

{tr(VT'ZZ)} L0 = {c y'PZZ Py}, L, . (59)

These are the equations we need to solve for the elements of ¢2 that occur in
elements of V and P. For notational convenience we here drop the dots, and
then show how each element of the two vectors of (59) can be written in terms
of the solutions of the MMEs, (53). First, in (59) separate out the elements
corresponding to i = 0 and use (34) of Chapter 6 with H™! replaced by 62V ~!:
thus, for i = 0,

o7 =0;(y— XB°)V~'(y - Xp°)/N
=aly'V7'(y - Xp°)/N (60)
because X'V~ !(y — Xp°) = X'V~ !y — X'V !XB° = 0. It is apparent in (60)

that 62 could be factored out of both sides, but leaving it there simplifies
subsequent results. With V™! of (55)

Vol(y = Xp°) =[R™' —~R™'Z(D™' + ZR™'Z) 'Z’R™'](y — XB°)
= R—l(y _ xpO) _ R—IZ(D—I + ZIR—IZ)—I
x (ZR 'y — ZR™'Xp°)
=R-!(y — Xp°) — R"'Zii, from (53),
=R !(y - XB° - Zi) . (61)
Therefore, using (61) in (60), together with R = o21, gives
oi =0alyR™!(y — Xp° — Za)/N = y'(y — XB° — Zi)/N .

Therefore, with superscript (m) denoting computed values after m rounds of
iteration, we have

g™ =y'y — Xp*™ ~ Za™)/N . (62)
Having, for i = 0 in (59) arrived at (62), we now consider
t(V7'Z,Z) = yPZZPy fori=1,...,r. (63)
First, from (55)
V''=R!'-R'Z(ZR"'Z+D ') 'ZR"!
=R '-~R'ZD(1+ Z'R"!ZD)"'Z'R™!
=R™!~ R 'ZDWZ'R™!, using (56). (64)
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Hence, using F;;, the left-hand side of (63) is
tr(V™1Z,Z;) = tr(V~'ZF,Z’), by the nature of F; in (57),
=tr(Z'V~'ZF})
=tr[Z(R™! — R™!'ZDWZ'R™Y)ZF,], using (64),
=tr[(ZR"'ZD — Z’R"'ZDWZ'R™'ZD)F;;/o?], using (58),
=tr{[W ' —T— (W™ ! ~)W(W~! ~1)]F,/0?}, using (56),
= tr[(I - W)F;/o}] (65)
_ 49— tr(Wy)
———-‘2 )
where W, is the (i, i)th submatrix of W. And the right-hand side of (63) is
Y'PZ,Z;Py = y'PZF,Z'Py = y'PZDF,DZ Py/c},
from (58). But
DZ'Py =DZ'V~!'VPy = DZ'V~!(y — Xp°) = i,
as in (33) with C = DZ’ . Hence

by the nature of F, (66)

) , iFa a@
YPZZPy=——=-":". (67)
o oy

Using (66) and (67) in (63) therefore gives (63) as

q: — tr(Wy) - %
af af

This is the result first noted in Patterson and Thompson (1971) and Henderson
(1973a). From it come two different iterative procedures:

~ s(m) ~ (m) 2(m) (m)
oz(mn)_“; ;" +o7 tr[Wy']

i (68a)
q;
or
~1{m) ~ (m}
A W R— (68b)
g;— tr[W;]

each along with (62)
ot = y'I(y - Xp"" — Zi™))/N .

e

Comments

(i) W=(I+ZR'ZD)! does exist because, on using Appendix M.5,
the determinant of I + Z’R™'ZD is [R™!||V| # 0.
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(ii)  tr(W,) > 0. This is so because
DiW-! = (I + D!Z’'R-!1ZD})D},
which implies
D!W = (1 + D!Z’R™!ZDY) " 'Dt = (1 + T'T)"'D}, (69)
for T =R {ZD! And I + T'T is positive definite. Its diagonal elements are
positive, as also are those of its inverse. Therefore, since D! is diagonal, the
diagonal elements of W in (69) are positive. Hence tr(W,) > 0.
(iii) ¢q, — tr(W,) = 0. From (66)
q; — tr(Wy)
2

]

=tr(V™1Z,Z)) = tr(Z;V-'VV~'Z) = var(Z,V~'y) 2 0.

These results, noted by Harville (1977), indicate that as iterative procedures
both pairs of equations, (62) and (68a), and (62) and (68b), always yield positive
values of 7. And these results are for population values of the g2 parameters
that are to be such that V is positive definite. But if for a computed iterate of
@2 the resulting V is not positive definite then these positive conditions may
not be upheld.

-ii.  The information matrix. From (38) of Section 6.3, the information
matrix is

Hate(V'ZZV'ZZ)},
_1[ tr(V~2) {(tr(V71Z,ZV- Y}, L, ] (70)
Letr(V'Z,ZiVv 0o, {ete(VTIZZVTIZZ0)), 5

The three different trace terms in (70) are now considered, one at a time. First,
in the (1, 1) position of (70)

tr(V"3)=tr(R™!' —=R"'ZDWZ'R~!)?, using (64),
=tr(R">-~ R"?2ZDWZ'R™!' —R"'ZDWZ'R"?
~R™'ZDWZ'R"?2ZDWZ'R™!)
=[tr(Iy) — tr(WZ'R™'ZD + WZ'R"'!ZD
~ WZ'R™'ZDWZ'R™'ZD)]/c?,
after using R = ¢2I and the trace property tr(AB) = tr(BA). Then, with (56)
yielding WZ’'R™'ZD =1, - W
tr(V™2) = [tr(ly) — te(I, — W+ I, — W — I, +2W — W?)]/o*
2
=N—q,-|;tr(W). o

g,

Second, an element of the row vector in the (1,2) position of (70) is
tr(V-'Z,ZV-') = tr(V 'ZF,Z'V™ 1),
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where, from using (64) and then (56),
ZV '=ZR '-ZR 'ZDWZR '=ZR ' - (W ' =)WZ'R!
=WZR™!,
Therefore
tr(V-'Z,Z,V~') = tr(R"'ZW'F,WZ'R"!)
= tr(FyWZ'R™'ZW')/62, because R = o1,
=tr[F;W(W™! —1)D"'W’']/62, using (56),
= tr[Fy(D~'W’' — WD~ 'W")]/a?2 .
But from (56) it is easily shown that D~ 'W’ = WD ™', Therefore
te(V'Z,ZV™Y) = tr[Fy (D~ 'W’ — D™ 'W'?)]/q?

tr(Wy) ~ Z tr(W, W)
k=1

- L , using (58), (72)
O0,0;

where W, is the (i, k)th submatrix of W. Finally, an element of the matrix in
the (2, 2) position of (70) is

tr(V'ZZ\V'Z,Z)) = tr(V 'ZF,Z’'V~'ZF ,Z’), by the nature of Fy;,
=tr(Z'V™'ZF,Z'V ' ZF)),
= tr[(1 - W)F,(1 — W)F /o6, see (65),
= tr(F,F, — F,WF,, — WF,F, + WF,WF,)/c}c? .

For i # j this is
0—0—0+tr(W,;W,)/o20} = tr(W,;W,)/cla} (73)
and for i =jitis
tr(F,; — 2F,WF; + F,WF,W)/o} = [g; — 2 tr(W;)) + tr(W})]/a? .

(74)
Hence on substituting (71)-(74) into (70) the information matrix is
N —q. + tr(W?) tr(Wy) — i tr(Wy W) ’

e e— k=1
1(82,) = % o ‘ olo} =1
sym { oylg; — 2te(Wy)] + tr(wijwjl)} r
L m aizajz ij=1d
(75)

where 4, is the Kronecker delta, with §;; = 1 and 6;; = 0 for i #j.
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d. Calculations for REML estimation

«i. The estimation equations. 1In equation (89) of Chapter 6 the REML
estimation equations are given as

{c tr(PZ,Z})}, Lo = { YPZZPy}, o . (76)
This is equivalent to
tr(P) =y'P%y fori=0 (77)
and
tr(PZ,Z)) = y'PZ,ZPy fori=12,...,r. (78)

We deal first with (77). Multiplying both sides of (78) by o, and summing
overi=1,...,r gives

tr(P il afZ,-Z}) =yP Y a?ZZPy.
i= i=1
Using V = X{_, 62Z,Z} + o1 reduces this to
tr[P(V ~ 021)] = y'P(V — a2I)Py,
tr(PV) — a2 tr(P) = y'Py — a2y'P%y, since PVP = P, (79)
tr(PV) = y’Py, on using (77). (80)
Therefore instead of (77) for i = 0 in (76) we use (80), which becomes
te[I— V7 'X(X'V™'X)"X'] = yPVV~!VPy,
N—rx=(y—Xp°)V~'(y — Xp°) (81)
=y'(y ~ Xp° — Z)/a’, (82)

where the left-hand side of (81) arises from I — V7!X(X'V™!X)" X' being
idempotent and hence having its trace equal to its rank. And the right-hand
side of (82) comes from (60) and (61). Therefore (82) gives

_Y'(y - Xp° - Zi)
‘N—rx ’

é? (83)

To deal with (78) we need a lemma, based on observing that since
V=1ZDZ' + R, putting Z =0 in

P=V ' -vIX(XV!X)"XV~! (84)
yields what shall be denoted as S:
S=R!-R!X(XR!'X)"X'R™'. (85)

Then we have the following lemma.

Lemma
P=S-SZ(D"'+ZS8Z)"'ZS.
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Proof. For K’ of full row rank N —rx and K'X =0 it is shown in
Appendix M 4f that

P = K(K'VK)"'K'.
Therefore, in this equation, as in deriving (85), put Z = 0 and get
S = K(K'RK) 'K’ (86)
But also
P =K[K'(ZDZ' + R)K] 'K’ = K(K'RK + K'ZDZ’K) 'K’
= K{(K'RK)"! — (K'RK)"'K'ZD[1I + Z’K(K'RK)"'K'ZD] !
x Z’K(K'RK)™'}K’, using (28) of Appendix M,
=S ~SZD(I + Z'SZD)"'Z’S, using (86),
=S—-SZ(D"!'+2'SZ)"'ZS. (87)
Q.ED.
Note that this result has a form similar to
VI=R!'-R'ZID'+2ZR'Z)"'ZR!. (88)
P of (87) is V™! of (88) with R™! replaced by S.
We return to (78). Its left-hand side is tr(PZ;Z;). In (66) we derived
tr(V71Z,Z) = [g, — tr(W,)]/o?

for W, being the (i, i)th submatrix of W = (I + Z'R~'ZD)~'. Therefore with
P of (87) being the same as V™! of (80) only with R™! replaced by S, we
immediately have

tr(PZ,Z)) = [q; — tr(Ty)1/a? (89)
for T; being the (i, i)th submatrix of W with R™! replaced by S, namely
T=(+2SZD)™'. (90)

Thus the left-hand side of (78) is (89). And the right-hand side of (78) is
identical to that of (63) and therefore equals (67). Thus the REML equation
(78) is the same as (68) only with T,; in place of W, as is evident on comparing
(66) and (89). Therefore, with this replacement of T for W we can immediately

rewrite (68a) and (68b) in the form of iteration equations as
~{(m)~(m) + 0',2('”) tr(T:;"))

0,2(M+l)=u' u; (913)
Uf]

or

~(m) ~ (m)
gpmrn o R T (91b)
g, —tr (Ty;")
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along with using (83) as

_ yl(y _ XBO(M) _ Zﬁ("'))
N — rx '

2(m+1)
6e

(92)

-ii. The information matrix. The same replacement of T for W in (75) gives

N —gq.+ tr(T?) tr(T;) — 3, tr(TyTy)
1 ae k:lz
l(&%EML) = 5 r aeal i=1
sym { oylq —2tr(Ty)] + tl'(TUTﬂ)} r
oglo? -
b m iY] 1j=1wd

(93)

e. Iterative procedures summarized

-i. Adapting the MME. The part that W of (56) plays in the MME of
(53) is that on defining v by means of

Dv =u, (94)

equations (53) can be written as

[X'R“X X'R™'ZD ][ﬁ] B [X’R"y] ©5)

ZR'X I+ZR'ZD || ¥ ZR 'y |

Even though the matrix on the left-hand side is not symmetric, there is a
computational advantage to these equations over (53). Suppose at some
intermediate round of a numerical (iterative) procedure for calculating variance
components estimates that one of the calculated g2-values is zero (which it can
be, under ML estimation). Using that zero in D makes D singular, and then

the D! occurring in (53) does not exist. But W = (I + Z'R™!ZD)"! always
exists, as pointed out by Harville (1977).

-ii. Using the MME. Using R = ¢2I, from (56), (95) and (94)

W™ = (621 + ZZD™) 1g?™ . (96)
xfx XIZD(M) (m) xr
[ , o ][ﬁ(m, = ,y], (97)
ZX W v 7'y
u("') = D(M)V(M), (98)

where symbols B*™ and @™ of (92) replaced here by B and u'™ emphasizes
that the latter are simply computed values.
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-iii. Iterating for ML

0_3(M+ 1) — y,(y _ xp(ﬂl) _ Zu(ﬂl))/N, (62)

2me 1) _ u/™u™ + o™ (W ’ (68a)
49

ot = _uu” (68b)

q: — tr(Wﬁ"’ .
Procedure

. . 0 0
1. Decide on starting values ¢2'” and ¢2'”, and set m = 0.

2. Calculate (96), solve (97) for '™ and v'™, and calculate (98).
3. Calculate (62) and either (68a) or (68b).
4a. If convergence is reached for the as, set % = 62™*". Denote the
resulting calculated termsas W = W™V B = g™* Y § = v Vandd = u™*".
Use &2 and W to calculate 1(§2) from (75).
4b. If convergence is not reached, increase m by unity and return to step 2.
At each repeat of step 3 use whichever of (68a) or (68b) was used on the first
occasion.

-iv. [Iterating for REML. From (85) and (90)

m Z'[1-X(X'X)"X']Zzp™) !
T”={l+ B : (99)
O
' ( {
aztm+n=Y(y—x5 ™ — Zu M))’ (92)
¢ N-—-r
- rx
iz(m+ n_ “;(M)“Sm + aiﬂm, tl‘(T::"))’ (91a)
qi
)(m)_ (m)
0‘2(M+‘) = uimuim (9]b)

a9 — tr(Tﬁf") .
Procedure

. . 0 0
Decide on starting values ¢2” and 62 and set m = 0.

1
2. Asfor ML, calculate (96), solve (97) for p™ and v'™, and calculate (98).
3. Calculate (99).

4. Calculate (92) and either (91a) or (91b).

5a. If convergence is reached for the a’s, set 62 = ¢ , and do st(ep+s”2
and 3 using 62™*". Denote the resulting calculated terms as W = W™ " !,
B=B""" v=v""" da=u"""and T=T""". Use 62 and T to calculate

1(62%) from (93).

2(m+1)
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5b. If convergence is not reached, increase m by one, and return to step 2.
At each repeat of step 4 use whichever of (91a) or (91b) was used on the first
occasion.

f. A summary

Henderson’s mixed model equations (53) are a convenient device for
simultaneously calculating BLUE(XpB) and BLUP(u). Elements of those
equations [equations (62) and (68)] can also be used to iteratively calculate
ML estimates of variance components and their information matrix, (75).
Equations (91), (92) and (93) show companion results for REML estimation.

7.7. SUMMARY

Model
Yy=Xp+Zu+e,

Best predictor: Sections 7.2a,b,c

i=E(uly); (3)

E () = E(u); (4)
var(i — u) = E,[var (u} y)]; (5)
cov(ii,u') = var(ii), cov(id, y') = cov(n,y’); (6)

p(d, u) is maximized; p(ii,u) = o;/0,. (7)

Under normality: Section 7.2d
i=E@ly)=py+CV iy —m); (10)
var(i —u)=D - CV~!(C/; (1)

cov(i,u') = var(it) = CV™!C

pli,u;) = J/e;V™ lci/‘"ﬁ, .

Best linear predictor: Section 7.3a

(12)

BLP(u) = p, + CV ' (y — py) . (14)

Mixed model prediction: Section 7.4
w=Lp+u; (26)
W =BLUP(L'B + u) = L'B° + CV~!(y — Xp°) (31)
=L'g° + u°, (33)

with
X = X(X'V™IX)"X'V-ly (32)
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and
u’=CV~'(y — Xp°); (33)
var(L'g°) = L'(X'V™'X) L, (42a)
var(u®) = CV-'C’' — CV™!X(X'V™'X)"X'V~!C, (42b)
cov(L'B% u®) =0, (42c)
var(w) = var(L'B°) + var(u?), (42d)
cov(u?, u’) = var(u®), (42¢)
var(u® — u) = D — var(u?), (420)
cov(L'%u) = L'(X'V!X)"X'V~!C, (42g)
var(W — w) = var(L'°) + var(u® — u) — cov(L'B° u)
~ cov(u,pL) . (42h)
Other derivations
Two-stage derivation: Section 7.5a (45)

A direct derivation assuming linearity: Section 7.5b.

Partitioning y into two parts: Section 7.5¢ (46)

A Bayes estimator: Section 7.5d (48)(50)

Henderson’s mixed model equations: Section 7.6 (53)
Used in ML: Section 7.6¢

Equations (68)

Information matrix (75)

Used in REML: Section 7.6d
Equations 91)

Information matrix (93)

7.8. EXERCISES

E7.1. Verify (42a) through (42h).
E 7.2. For the conditions of Section 7.6 derive inverses of

’ —]x -1
V, var uJ and C= XR_ X_R Z ]
y ZR'X ZR'Z+D
[Use (27) and (28b) of Appendix M.5.]
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E7.3.

E 74.

E7.5.

E 7.6.

E7.7.

E78.
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Based on E7.2 with W=[X Z] and P of (84), show that
WC !W' =R — RPR.

Prove that (D™!'+Z'R™'Z)"'=D - DZ'V™'ZD, in three
different ways.

[Henderson (1977).] Suppose in addition to u of the model equation
y = XB + Zu + e that we have v, another vector of random effects,
of the same nature as u but with no observations on them. Suppose
E(v) =0, var(v) =T and cov(u,v') = H.

(a) What is the best linear predictor of v?

(b) What is BLUP(v)?

(c) Show how to calculate BLUP(v) from BLUP(u).

(d) On defining
[Qll QlZ]___[D H]—l
QIZ QZZ H’ T ’

show that
X'R™'X X'R'Z 0 rp° X'R™ly
ZR'X ZR'Z+Q,, Q,,||u|=|ZR"y
0 Q). Q[ ¥° 0

yields BLUP(v) and B° and u® of (32) and (33).
Using the usual normality assumptions for the terms of the model
equation y = XP + Zu + e, derive and simplify L(y) — f(y,u),
where L(y) is the likelihood of y and f(y,u) is given in (51).
(a) Show that (I - VP)y and VPy are uncorrelated.
(b) Show that var(y — VPy) is V — VPV with generalized inverse
v~ —P
(c) Derive the GLSE of Xp from (47).

The model equation for the 2-way crossed classification can be taken
asyy;=p+o;+P;+e,fori=1,...,aand j=1,...,b If the a;s
are taken as random with dispersion matrix g2, and if the ;s are
taken as fixed, establish the following results.

_ 1 ol
(a) \4 l=la®a—ez'(lb—ln]b) forj.:mz.
0 0
(b) (X'V7'X)" =gl 1 bi )
0 (L+——1J
a<b+l—bﬂ. ’

(c) B=j,;
(d) & =bA(y;. — 7..)
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E79.

E 7.10.
E7.11.

E7.12.

E7.13.
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For the mixed model y = Xp + Zu + e of this chapter derive
the variances of BLP(u)—u, of BLUP(u)—u and of
BLUP(u) — BLP(u), and show a linear relationship between those
variances.

Show the details of reducing (45) to (34), as outlined in Section 7.5a.
Prove

(a) (D"'+2Z'R"'Z2)"'ZR'=DZ'V~},

(b) I+ Z'R™'ZD|=|V|/IR]|.

Define é = RV~ !(y — Xp°) for V= ZDZ’' + R and XB° of (32).
Prove that & = y — Xp° — Zi.

(a) Show that g* of (35) can be expressed as

e =o([_pa wasle v))

(b) Minimize g* with respect to B, subject to BX = L', using a
Lagrange multiplier matrix T to take account of the condition
BX=L"

(c) For B obtained in (b) show that By is W of (31).



CHAPTER 8

COMPUTING ML AND REML
ESTIMATES

8.1. INTRODUCTION

Maximum likelihood and restricted maximum likelihood estimation of
variance components in Chapter 6 produce, in general, no analytical expressions
for the estimators. Indeed, in only some cases of balanced data (see Section
4.8¢) are there analytical expressions for variance component estimators.
Furthermore, equating to zero the first derivatives of the log likelihood leads
to nonlinear equations, e.g., equations (25), (27a), (89) and (90) of Chapter 6.
Even solving these complicated systems of nonlinear equations is an over-
simplification of the situation, since the log likelihood must be maximized within
the parameter space. If the maximum occurs on the boundary of the parameter
space then the derivative of the log likelihood is unlikely to equal zero at the
maximum and the systems of equations no longer apply. In this chapter we
review considerations in computing ML and REML estimates and outline some
of the numerical techniques used for calculating the estimates.

The starting point for the numerical methods is the log likelihood rather
than its first derivative or the equations of Chapter 6 just referred to. We use
the log likelihood rather than the likelihood because it takes a simpler form
and is numerically more tractable. We operate on the log likelihood itself rather
than use derivative equations for two reasons. First, when techniques are based
just on setting the first derivatives equal to zero, it is not possible to distinguish
saddlepoints and minima from maxima. All three have first derivatives equal
to zero. Second, progression towards a maximum can be checked by making
sure that whatever iterative procedure is being used does increase the value of
the log likelihood at each iteration. Checking that the first derivative is decreasing
in absolute value towards zero is only peripherally related to increases in the
log likelihood.

Trying to maximize the log likelihood or restricted log likelihood is, in
general, a very difficult numerical problem. It, like the first derivatives of

290
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the log likelihood, is a complicated, nonlinear function of the parameters.
The likelihood contains the inverse of an N x N matrix for ML and an
(N — p) x (N — p) matrix for REML, a difficult computational problem in its
own right, especially for large data sets. In addition, the maximization problem
is a constrained maximization problem: even in the simplest situation of
estimating variance components, the variances must be constrained to be not
less than zero; and maxima can occur on the boundary of the parameter space.
For models with covariances between the random effects, the constraints become
even more complicated. Finally, the log likelihood surface can have local
maxima. So, for a particular data set, even if an algorithm has converged to a
local maximum, there is no guarantee that it is a global maximum.

Figure 8.1 illustrates some of the difficulties that can occur. It shows the log
likelihood surface for a two-way crossed classification, random model, with no
interaction. The error variance has been set equal to unity, so that the surface
is only a function of ¢ and ¢3. The surface exhibits two local maxima at
(0.1,5.5) and (6.2, 0.1). And each maximuin is near one of the boundaries. These
are some of the features of likelihoods that make it very difficult for numerical
algorithms to reliably find ML or REML estimates.

How then do numerical algorithms attempt to maximize the log likelihood
or restricted likelihood? We can first note that the problem is primarily one of
estimating the variance components and not the fixed effects. For example, in
Chapter 6 equation (25) does not involve the fixed effects and, given a solution

A Local
maximum

WLl
Local

aximu
—18{ Mmaximum

Log likelihood

i

ol
il
I

Figure 8.1. Log likelihood for a 2-way crossed classification, random model, with no interaction
and o2 = 1.0.
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to (25), it is a simple matter (weighted least squares) to solve equation (24) for
the ML estimator of B. Furthermore, equation (34), part of the Hartley—Rao
form of the equations, shows that it is also a simple matter to solve for the
error component given the others. Thus the difficult portion of maximizing the
log likelihood involves r parameters, the variances of the r random effects factors,
not including e. ’

A simple approach would be to numerically evaluate the log likelihood or
restricted likelihood for a fine grid of values of the variance components. The
values giving rise to the largest value of the log likelihood would then be a
close approximation to the ML or REML estimate. This is feasible for » = 1 or 2
but becomes unwieldy and time-consuming when the number of variance
components is much larger than that. This is how Figure 8.1 was generated.
To generate a grid with, say, 40 values per axis requires 40" total evaluations
of the log likelihood.

Numerical analysts have extensively studied the general problem of
maximization of nonlinear functions and a number of methods have been
proposed. The consensus is that iterative methods which use information about
the first and/or second derivatives of the function to be maximized tend to
perform best (Bard, 1974, p. 118; Gill, Murray and Wright, 1981, p. 93). Such
an approach is acceptable as long as the derivatives are relatively easy to
calculate. Statisticians have also developed other routines that exploit the special
features that are characteristic of likelihood functions.

Iterative methods all have a common structure. They must be provided with
starting values. Beginning with the starting values, they have a rule for getting
the next value in the iteration and a rule for deciding when to stop iterating
and declare the current value to be (in our case) the ML or REML estimate.
For doing this there are at least three characteristics that a good iterative
method should have. It should converge to a global maximum from a wide
range of starting values, at each iteration it should be relatively quick to compute,
and it should converge in relatively few iterations. Unfortunately, no known
techniques guarantee convergence to a global maximum from arbitrary starting
values.

8.2. ITERATIVE METHODS BASED ON DERIVATIVES

We first consider iterative methods that are explicitly based on the derivatives
of the log likelihood. These are called gradient methods in the numerical analysis
literature.

a. The basis of the methods

The heart of any iterative method is the rule it uses to find the next estimate
given the current one. Essentially two decisions need to be made. In which
direction will the next estimate be in relation to the current one, and how far
will the next estimate be from the current one? These are termed the step
direction and step size of the method.
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A logical choice of direction would seem to be the direction in which the
log likelihood increases the fastest near the current estimate, and a logical step
size would be to choose the step size as large as possible while still having the
likelihood increase. It can easily be shown (E 8.1) that the direction of fastest
increase is the vector of first derivatives of the log likelihood evaluated at the
current estimate. This is called the gradient of the log likelihood function. The
method defined by this choice of step size and direction is called the method of
steepest ascent. Unfortunately it performs very poorly in practice (Bard, 1974,
p. 88), tending to require many iterations before it converges.

Nevertheless, the gradient information is what is generally used to define the
step direction, but the direction chosen is usually something other than that of
steepest ascent. Before describing better methods, we will consider a general
class of methods that use the gradient to define the step direction. The step
direction is usually modified by a multiplier matrix M so that the direction
actually chosen is MVI, where V! is the gradient of the log likelihood function.
If 8™ represents the value of the estimate of the parameter vector 0 at the mth
iteration then we can represent the step by the equation

al
g+ = gim 4 cmpgim |
N < (1)

In this equation s'™, a scalar, is the step size for the mth step, M™ is the modifier
matrix for the mth step and dl/98|gm is the gradient calculated at 8 = 8™, Bard
(1974, p. 86) shows that as long as the matrix M™ is positive definite and the
iterations have not yielded a maximum log likelihood, there is some step size
s™ for which the likelihood will increase. The method of steepest ascent is (1)
with M™ = L,ie,0™* D = @™ + 5™ 9]/50|qm, where s™ is chosen as the largest
value such that the likelihood continues to increase in the direction dl/38]gm.
More specifically s is chosen by searching along the line that goes through
the point 8™ in the direction 6//88|g= until a maximum or approximate
maximum is found. This can be achieved in a variety of ways. One simple
method is to first find an interval in which the maximum lies and then bisect
it to find a subinterval. This process is repeated to achieve the desired accuracy.
Other line search methods are detailed in Kennedy and Gentle (1980, Sec. 10.1.4).

b. The Newton—Raphson and Marquardt methods

A method commonly used for maximizing nonlinear functions is the
Newton—-Raphson method. Suppose the function f that we are trying to
maximize is quadratic in 0:

f(@)=a+ b6 - 16'Co,

where C is positive definite. £(8) has gradient equal to b — C6, the matrix of
second derivatives of f(0) with respect to 8 is —C, and the global (and only)
maximum of f(0) is at @ = C~'b. If we try to maximize f(0) iteratively and
want to arrive at the maximum in a single step, no matter from where we start,
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then, on setting (1) equal to C~'b and substituting for 0//00 we would need
C 'b=0m+ =gm 4 smMM™ (b — CO"™)

to hold for all possible 8™, That can be achieved using s™ = | and M™ = C~ 1.
Since the matrix of second derivatives of a function f is called the Hessian of
that function, we denote it by H and so have in the above, quadratic, case
~C = H. Therefore the iteration step, which would always get us to the
maximum in a single step, would be

oM+ = gm 4 C-1(b — CO™)
= e(m) _ H—lvf(m) X

Of course, if the function were quadratic in 0, the iterative technique would
not be needed. Nevertheless, this idea is applied by assuming a more complicated
function can be approximated by a quadratic function and using the preceding
iteration idea in the form

9(m+1) =g (H(m))—-lvf(m), (2)

where H™ and V'™ indicate the Hessian and gradient vector, respectively,
with 0 replaced by ™. This is the Newton—Raphson method. One drawback
of it is that it requires computation of the first and second derivatives of the
log likelihood function.

A compromise between the Newton—Raphson and steepest ascent methods
has been suggested by Marquardt (1963). He suggests the iteration

9(m+ 1 9(m) _ (H(m) + T(m)l)— IVf(m),

where ™ is a scalar that partially determines the step size and I is the identity
matrix. If 7™ is small, the procedure approximates Newton-Raphson. If 1" is
large, a small step is taken in approximately the direction of steepest ascent.
The usual recommendations for choosing ™ are to choose progressively smaller
™ as long as the 8" increases the value of the function to be maximized (use
steps more and more like Newton—Raphson). If 0™ fails to increase the function
to be maximized then progressively larger values of ™ are used until it does
increase (take a short step in a direction near steepest ascent).

In the variance components estimation problem, letting @ denote all the
parameters to be estimated, i., 0 = [’ ¢%']for ML and 8’ = ¢’ for REML,
the Newton-Raphson iterations would be (2) with ™ replaced by I™:

gm+ 1) — gim _ (H'"'))"l ﬁ

59 nlﬂl

with the entries in the Hessian H given by (36) and (37) of Chapter 6 for ML

and by (93) of Chapter 6 for REML. In both cases H™ is found by replacing

V and § in H by Z,—Z,Z}G,""” and B™. And 0!/00|gm is found by similar

replacements in Chapter 6: in (14) and (16) for ML and (92) for REML.

Alternatively, the Hartley—Rao form of the likelihood (Section 6.2¢) could be
used with corresponding changes in the derivatives.
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¢. Method of scoring

To avoid the heavy computational burden of the second-derivative matrix,
another method that has been used is the method of scoring, in which —H ™!
is replaced by the inverse of the information matrix. That is, the Hessian is
replaced by its expected value (see Appendix S.8c). An advantage of this is that
the information matrix is often easier to compute than the Hessian. Comparing
(36) and (37) with (38)—in Chapter 6—shows, for example, that large sections
of the information matrix are zero, whereas the corresponding second derivatives
are not. Jennrich and Sampson (1986) report that the method of scoring is also
more robust to poor starting values than is the Newton--Raphson method.
They recommend an iterative algorithm which starts by using scoring for the
first few steps and then switches to Newton—Raphson,

The method of scoring thus uses an iteration scheme defined by

gm+1 — gm + [](o(m))]—l ﬂ
30y’

where I(8) is the information matrix calculated using 8 = ™. In Chapter 6
[1(8)] ' is given in (38) for ML and (94) for REML. Some details for the
method of scoring for the 1-way random model are given in Section 8.5 that
follows.

d. Quasi-Newton methods

A collection of popular methods for the maximization of nonlinear functions
is known as quasi-Newton methods. These are similar to Newton-Raphson
but they have the advantage of not requiring the calculation of second
derivatives. In quasi-Newton algorithms the Hessian in (2) is replaced by an
approximation which only requires the first derivatives. From a specified
beginning matrix (often the identity matrix), updates are made to this
approximate Hessian with simple-to-calculate matrices that have rank 2. For
more details on quasi-Newton methods see Kennedy and Gentle (1980,
Sec. 10.2.3).

e. Obtaining starting values

Any iterative technique needs a starting value and, in view of the difficult
functions encountered as likelihoods, having starting values close to the values
corresponding to the global maximum of the likelihood improves the chances
of converging to a global maximum. For the fixed effects, a logical starting
value would be any solution Xp‘® = X(X'X) X'y to the ordinary least squares
equations, since it is unbiased even when the elements of y are correlated and
does not require knowledge of the values of the variance components. For the
variance components any of the easy-to-calculate estimates, e.g., from ANOVA
estimators, could be used as starting values for the ML or REML iterations.
If any of the estimates are negative or zero, they need to be modified. Laird,
Lange and Stram (1987) and Jennrich and Schluchter (1986) give suggestions
for starting values for some special cases.



296 COMPUTING ML AND REML ESTIMATES [8.2]

f. Termination rules

There is no general consensus as to when iterative methods should be stopped
and the current values declared to be ML or REML estimates. Various
suggestions include the following:

(i) stop when changes in the log likelihood are small;

(ii) stop when changes in the current parameter values are small;
(iii) stop when the values of the gradient are small;
(iv) combinations of the above.

Kennedy and Gentle (1980, p. 438) and Bard (1974, p. 114) recommend
Marquardt’s (1963) idea of using suggestion (ii) above, to stop when

max [0 — 0] < &, (16{™] + &2), (3)
i

where &, = 10”* and &, = 1073, However, they make the point that some
algorithms tend to stall temporarily before reaching the maximum, and a safer
alternative would be to require (3) to hold over several iterations rather than
just a single one. They also note that methods based on the gradients are often
subject to rounding error. Combinations are typically implemented by requiring
a sequence of iterations to satisfy more than one stopping criterion. Lindstrom
and Bates (1988), quoting the method of Bates and Watts (1981), note that
none of the above methods are actually checks on whether the estimates have
converged to a maximum and they suggest an alternate method based on
comparing the size of the numerical variability to the radius of an asymptotic
confidence ellipse.

g. Incorporation of non-negativity constraints

As noted earlier, maximization with respect to the variance components is
a constrained maximization problem, since the variances must at least be
non-negative, It is possible that an iteration will give a negative value, which
is unfortunate for a positive parameter. Jennrich and Schluchter (1986) use
“step-halving” methods: if the step length in the iteration will yield a negative
value then a new step is attempted using half the length. If that step gives all
positive values then it is used to calculate the iteration, otherwise the step size
is halved again, and so on. Callanan and Harville (1989) recommend “active-
constraint” methodologies (see Gill, Murray and Wright, 1981, Sec. 5.2).
Techniques such as the EM algorithm (see Section 8.3) automatically keep
iterations in the parameter space.

h. Easing the computational burden

There are many techniques that can be applied to reduce the amount of
computation necessary for ML or REML iterative methods. Harville (1977),
Jennrich and Sampson (1986) and Hemmerle and Hartley (1973) give matrix
identities that greatly reduce the size of the matrices that must be manipulated.
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Lindstrom and Bates (1988) give a number of details on matrix decompositions
that can be exploited to speed iterations. And in Section 7.6, where we describe
what is widely known as Henderson’s mixed model equations, we give details
of how parts of these equations can be used to develop iterative procedures for
calculating ML and REML estimators. A method of computing REML
estimators (through using MINQUE, see Section 11.3) that avoids matrix
inversion is given by Giesbrecht and Burrows (1978) for nested models with
extensive details for unbalanced data from the 3-way nested model.

8.3. THE EM ALGORITHM

a. A general formulation

An iterative algorithm for calculating ML or REML estimates that differs
from those like the Newton—Raphson or scoring methods is the EM algorithm.
Its name stands for expectation-maximization, and it is so named because it
alternates between calculating conditional expected values and maximizing
simplified likelihoods. The EM algorithm only generates estimates and does
not give variance estimates as a byproduct, as do the Newton-Raphson and
methods of scoring. To obtain variance estimates extra computations must be
performed (e.g. Louis, 1982).

The EM algorithm was designed to be used for maximum likelihood
estimation for situations in which augmenting the data set leads to a simpler
problem. The key to applying the EM algorithm is therefore the decision as to
what to treat as the complete (augmented) data. The actual data set is typically
called the incomplete data in application of the EM algorithm. Thus it is that
for variance components estimation we think of the incomplete data as being
the observed data y and the complete data as being y and the unobservable
random effects u;, (i=1,2,...,r) of the usual mixed model described in
Section 6.1, where the random effects are all uncorrelated.

The reason this is convenient is that if we knew the realized values of the
unobservable random effects then we would estimate their variance with the
average of their squared values (they are known to have zero mean). More
explicitly, for a vector u, of g; random effects we would form

6‘2 = uu,/q; (4)

to calculate the maximum likelihood estimates (under normality) based on the
complete data. Being maximum likelihood estimators they are functions of the
sufficient statistics of the complete (augmented) data.

However, in real life we do not know the realized values of the random
effects. But the EM algorithm gives us a way to calculate values to use in place
of those realized random effects in order to effect this estimation scheme. Starting
with initial guesses for the parameters, we calculate the conditional expected
values of the sufficient statistics of the complete data, uju,, given the incomplete
data, y. These conditional expected values are then used in place of the sufficient
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statistics in (4) to form improved estimates of the parameters. This is the
maximization step, since (4) represents maximum likelihood estimation for the
complete data. We can then use the new dZ-estimates to re-calculate the
conditional expected value. and so on. This gives an iterative scheme that is
used until it converges. Convergence is guaranteed under relatively unrestricted
conditions (Dempster. Laird and Rubin. 1977: Wu. 1983).

An important feature of the EM algorithm is that. since it is performing
maximum likelihood estimation for the complete data. the iterations will always
remain in the parameter space. This is evident in (4).

b. Distributional derivations needed for the EM algorithm

As outlined. the EM algorithm is based on being able to calculate expected
values conditional on the incomplete (observed) data y. For this we need the
joint distribution ofy and u = [u; u, ... u;]".Intaking the model equation
for y as in (9) of Chapter 6.

y=Xp+ Y Zu +e
i=1

r

=Xp+ ) Zuy,

i=0
with u, = e, go = N and Z, = 1,, as in (8) of that same chapter, we have

r

cov(y,uj) = cov<Xp + 3 Z,-u,-,u}) =Z;cov(u,.u)) =djZ;.
i=1

Then. with
V = var(y} = ' Z,Lo} = i Z,Zo} + ogl,. (5)
i=0 i=1
the joint distribution of y and u,.u,....,u, is . I '(p. L), where
" Xp
0 ( 2 )
p=|: and 2=[( zvn r :IUZZiiifle' (6)
. i Ll laoiL iy
~ 0 -l
This gives a density function of
Sruu o u (Y0105, 0,) = (21) 704 B~ exp( ~10Q), (7)
where
y — Xp
u,
Q=[(y—-Xpy w, w, .. wlE| ' | (8)

u,



[8.3] THE EM ALGORITHM 299

To simplify (7) in terms of the variance components we first use the standard
result from Appendix M.5

‘A B
C D
to derive (with i = 1,2,...,r), from (6)

|EI—|{d al q,}llv {raizzi}{d (aiz)_llq,}{c alzz:}l

= H (e})*IV ~ Z,07Z,Zj)

i=1

=|D||A — BD!C|

= [T (62)1031yl, from (5),
i=1

= [T (7 1a3)"
i=1

= T (o2 9)
i=0

And, because V — X;_, 6?Z,Z, = 021, and
{a ai_zlq,} {calZi} = {. Z}},

the nonsingular analog of (22) in Appendix M.4c gives the inverse of (6) as

=1y ’ ! oy’ —
z _I:o {da‘_ZIQ.}]+[—{CZ;}:| o “In[1 {{Z;}]. (10)

Hence the log likelihood based on the complete data, y,u,,u,,...,u,, is, from
substituting (8), (9) and (10) into (7), and taking logs

I=—%<Zq,->]n2n— Z Ing? — Zu'—‘:‘

i=0 i=0 i=1 Oy
_ Ly —XB—Y Zu)(y - XB— ¥ Zu)/o?
1 1

!
u,u;

2
0 0

M«

—%(Z q,-)ann— Z Ino? -
i=0 i=0

becausey — Xp— Z/_, Zu, = e = u,.
From this it is a simple matter to derive the ML estimators based on the
complete data, namely y and the u;s, as

62 =uwuw/q, i=012..,r (11)

and

Xp = X(X’X)‘X’(y - Z z,.u,.> . (12)
i=1
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The estimator for a? in (11) is, of course, the same as in (4); and the estimator
for XB in (12) is equivalent to subtracting the random effects other than e from
y and then applying ordinary least squares.

To finalize the iteration steps for the EM algorithm we need the conditional
expected values of wju, and y — Xj_, Zu, (the sufficient statistics) given y. These
are straightforward using standard multivariate normal results and (6). The
conditional distributions of the u, given y are, from (iv) in Appendix S.3,

wly~ A[aPZV ™ (y — XB), ol, — ot ZV™'Z],

so that
E(wly)=0}ZV~'(y - Xp). (13)

Therefore, on using Theorem S1 in Appendix S.5,
E(ui;|y) = of(y — XBY'V ' Z,ZV "} (y — XB) + tr(a}l, — 0} ZV7'Z,) .
(14)

c¢. EM algorithm for ML estimation ( Version 1)
We can now make a formal statement of the EM algorithm for maximum
likelihood estimation. In the statement of the algorithm superscripts in

parentheses indicate either current values of parameters or functions of current
2(m)

values of parameters. For example, o™ is the computed value of o} after the
mth round of iteration and V™ is V with 62™ in place of ¢? for i =0, ..., r.
Step 0. Decide on starting values B and ¢2'”. Set m = 0.

Step 1 (E-step). Calculate from (14) the conditional expected value of the
sufficient statistics. Label them

£ = E(ujtt;| ¥)lp= o and o? = st
= af™(y = XB™) (V™)' Z,Zy (V™) ! (y — XB™)
+te[a? ™1, — ot ™ZYV™)T1Z,] . (15)
And, for (12), using (13),

§m = E(y - ‘Z Ziui | Y)|p.—.p""' and o¢? = '™
=1

=y— 3 ZZio™(Vim)"i(y — XP)
i=1
=y = (V" = g™ (V™) (y ~ Xp™)
= XB™ + ag™ (V') (y - Xp™). (16)

Step 2 (M-step). Maximize the likelihood of the complete data, based
on (12)

a_lz(m+l)=t‘gm)/q“ i=012,..,n (17
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and
XBm D = X(X'X)™ X'§™ (18)

Step3. [Ifconvergenceis reached, set 2 = 62" * " and p = p*1; otherwise
increase m by unity and return to step 1.

d. EM algorithm for ML estimation (Version 2)

Previously, in equation (99) of Chapter 6, we set out the result that, given
MLE:s of the variance components used in V to yield ¥, then MLE(XB) is
X(X'V-1X)~"X'V~'y. Laird (1982) suggests not calculating §™ and ™ in the
iterations of the EM algorithm but only calculating p at the end of iterating to
streamline the calculations. The rationale for this is as follows. If Xp™ were to
be the same form as Xf, say

xpgm) = X[x'(v(m))—lx]—x'(v(m))- ly,
then in (15) and (16) we would have (V™)™ !(y — XB4™), which is P™y, where,
based on (22) and (23) of Chapter 6,
P = (Vm)~1 (V)= IX[X' (V™) TIX ] X (V)1

Then B would no longer be explicitly needed in the iterations. Since Xp™ is
not, in general, of the form Xy, replacing (V™)™ !(y — Xp™) by P™y in the
algorithm is, strictly speaking, not EM. The differences are slight and probably
do not affect convergence properties of the algorithm. Nevertheless, this
replacement of (V™) ~!(y — Xp"™) by Py gives what we call a second version
of the EM algorithm. This modified version of the EM algorithm avoids a poor
property of Version 1 (see E 8.10).

Step 0. Obtain a starting value 62'”. Set m = 0.

Step 1 (E-step). Calculate from (14) the conditional expected value of the
sufficient statistics. Label them {™ for i =0,1,...,r:

B = E(uj; | y)lg: g1
= g} "y PMZZP™y + tr[a?™, — ot ™Z V™) TIZ] . (19)

Step 2 (M-step). Maximize the likelihood of the complete data, based
on (12).

a?" V= imyq, fori=0,1,...,r. (20)

Step 3. If convergence is reached, set &2=62""" and Xp=
X(X'V~1X)~ X'V~ 'y; otherwise increase m by unity and return to Step 1.

As pointed out by Laird (1982), this is the same as an algorithm that had
previously been proposed on an ad hoc basis by Henderson (1973a) [ see Harville
(1977), equations (61) and (62)].
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e. Equivalence of the EM algorithm to the ML equations

We now show how the steps of the EM algorithm are related to the ML
equations of (24) and (25) in Chapter 6. To do so, consider the situation
when iteration has ended. At that point, to some designated degree of
approximation, f = p™* Y = p™ and §* = 62" * ! = 62, Using these equalities,
and substituting (16) into (18), then gives

XB = X(X'X)"X'[XP + 63V~ '(y — XB)],
which reduces to
X(X'X) X'V IXp=X(X'X)"X'V-ly.
Pre-multiplication of this by X' gives
XV IXp=XV-ly,
which is (24) of Chapter 6. Likewise, substituting (19) into (20) gives
.8} = &ty PL,ZPy + ¢} — 6} t(Z,V'Z)),
which, so long as 62 # 0, reduces to
(V"' ZiZ)) = y PZZ;Py,
which is a typical term in the ML equation (25) of Chapter 6.

f. EM algorithm for REML estimation
Section 6.6b shows, for K’ of maximum full row rank N — p such that
K'X = 0, how

replacing y by Ky,
replacing X by K'X=0,
. (21)
replacing Z by K'Z
and replacing V by K'VK

leads to being able to derive the REML equations (89) from the ML equations
(86). Part of the derivation involves the identity developed in Appendix M.4f
that
P =K(K'VK) 'K’ (22)
for P defined as
P=V ! v IX(XV!X) XV, (23)

We can use the same replacements (21) and identity (22) to derive the EM
algorithm for REML from that (Version 2) for ML. In doing so, note that (21)
applied to Z;Py causes it to become Z;K(K'VK)™ 'K’y which, by (22), is Z;Py;
i.e., the replacements (21) cause no change in Z;Py. In this way the EM algorithm
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for REML is as follows.
Step 0. Obtain a starting value 62'”. Set m = 0.

Step 1 (E-step). From (19)for i =0, 1,...,r calculate
fm = ot ™(K'y) (K'V™K) " 'K'Z,ZK(K'V™K) 'K’y
+tr[o?™1, ~ o™ ZK(K'V™K) 'K'Z,]
= g} ™My PmMZ,Z;P™y + tr[ 0?1, — o} ZP™Z,] . (24)

Step 2 (M-step). Maximize the likelihood of the complete data, using (20)
fori=0,1,...,r:

20m+1) -
g =i"/q; .

. -~ +1 . .
Step 3. If convergence is reached, set 62 = 62™*"); otherwise increase m

by one and return to Step 1.

Thus, if for ML we use Version 2 of the EM algorithm, as in (19) and (20),
then the only difference between that and EM for REML is the appearance of
P in the trace term in (24) rather than V™! in (19). Since, by the nature of P
in (23), tr(Z,P™Z;) < tr[Z,(V™)~Z!], use of (24) leads to a larger value of
0™ than does (18), fori =0,1,...,r.

g A Bayesian justification for REML

The EM algorithm for REML estimation can also be derived using the
connection identified in (24) and (25) of Chapter 9. If we regard the fixed effects
as random effects with distribution given by p ~ A" (Bo, B) then the conditional
distribution of u, given y is

wly~A[e}ZW ™ (y ~ XBo), o, —a!Z;W™'Z,],
where W = XBX' + V. To obtain the EM iterations for REML we need the
limiting distribution as B~! — 0. For that we need the following.

Proposition. If W = XBX' + V then

lim W !=P=V"! -y IX(XvIX)"X'v-1t,
B '-0
Proof. First note that
(V+XBX )" !'XB=V IX(B~! +X'V°IX)"!,
which follows easily from the identity
XB(B™! + X'V !X)=(V + XBX')V'X.
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Then
W™l =(V + XBX')™!
=(V + XBX)"![(V+ XBX)V~! —XBX'V™!]
(matrix in square brackets is identity)
=V~ —(V+ XBX')"'XBX'V™!
=V ' VIX(B '+ X'V X)XV,
SV VIIX(XVIX)'!X'V ! =P asB ' 0. Q.ED.

Using the Proposition and PX = 0, the limiting distribution ofu;|yasB~! —» 0
is

Wiy~ N(6}ZPy, o\, — ol ZiPZ,).

As with the ML iterations, for REML the ML estimates based on the complete
data are given by ¢? = ujn,/q; for i = 0,1,2,...,r. We therefore have

E(ujn| y)lgi  gom = o}y PMZZP™y + tr(a?™1, — o} " ZPMZ)),
i=0,1,..,r
which gives the EM algorithm (24) for REML estimation.

h. Non-zero correlations among the u;s

We have seen that the calculations for the EM algorithm revolve around
the sufficient statistics for the complete data likelihood. If the model for y is
different from the model having equation y = Xp + Xj_, Zu,; (i.e, having
non-zero correlations among the u;s) then the sufficient statistics will also be
different and the EM algorithm will take a different form. Dempster, Rubin
and Tsutakawa (1981) give some details for covariance components estimation.
For some patterned variance—covariance matrices Andrade and Helms (1984)
give results, and for longitudinal data models Laird and Ware (1982), Laird,
Lange and Stram (1987) and Jennrich and Schluchter (1986) give specifics.

8.4. GENERAL METHODS THAT CONVERGE RAPIDLY FOR BALANCED DATA

The iterative algorithms identified so far (Newton-Raphson, Marquardt,
scoring, quasi-Newton and EM) are all general purpose algorithms that can
be applied whether the data are balanced or not. This generality comes at a
price, since the algorithms do not take advantage of the simplicity that arises
with balanced data. A consequence is that with balanced data, the aforementioned
algorithms will still require a number of iterations to converge, perhaps even
more than with unbalanced data. To address this concern Anderson (1973),
Thompson and Meyer (1986) and more recently Callanan and Harville (1989)
have devised generally applicable algorithms, which, when applied to some
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balanced data situations for which exact, analytic solutions exist, yield those
exact solutions in a single iteration.

Callanan and Harville (1989) studied a number of the traditional algorithms,
which they “linearized” to improve their convergence properties with balanced
data. Their goal was to improve the convergence properties of the algorithms
in general for use with balanced or unbalanced data. Under limited evaluation,
they preferred a linearized version of the Newton—Raphson algorithm,

8.5. POOLING ESTIMATORS FROM SUBSETS OF A LARGE DATA SET

The advent of supercomputers is rapidly reducing the computational effort
required for what have heretofore been tasks of unimaginable magnitude, e.g.,
inverting a matrix of order 1000 in 17 seconds; or of 2000 in 2 minutes.
Nevertheless, there will be occasions when, depending on local computing
facilities and the size of one’s data set, iterative solution of the maximum
likelihood equations for the whole data set will be effectively impractical. In
such cases, a method from Babb (1986) provides opportunity for dividing the
large data set into disjoint data sets (to be small enough to do maximum
likelihood on each one) and pooling the ML estimators from the subsets. Since
estimators from one data subset are not necessarily independent of those from
another, simple averaging of the subset estimators can be improved upon in
an approximate generalized least squares fashion. Details are as follows.

First, for each set of data that the complete data have been divided into,
calculate 2 from the ML equations (27) of Chapter 6. For the pth data set the
model equation will be

yp = xpo + Z Z,-pll,-p, (25)
i=0

with subscript p denoting the pth data set. Also, u;, is not necessarily the same
as u;, because u,, will have as elements only those of u; that actually occur in
the pth data set. Then, on writing

A,={ntr(Z,2,,V,'2,2; V- 1)} Lo (26)

tp"p

and
fp = {c y‘pppZipZ;pppyp}i.j;Ov (27)
the ML equations (27) of Chapter 6 yield, on convergence and ignoring
negativity constraints,
§2=A',. (28)

Second, suppose there are s data sets. An initial value for the estimator of
¢’ from the whole data set is

6'12)={c élz(O)}i=rO= Z 65/5- (29)
p=1
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With this, calculate the following three matrices for each data set; i.e., for
p=12,..s:

Vpp(O) = Val’()’;), calculated at &(2)

= Z le ;pélz(o) (30)

i=0
Ap(0)={ tr(lelevpp(O)ijle pp(O))}il o (31)
Poo) = Virtor = ViriorXp(X5¥ 5500 X5) ™ X,V ) - (32)

Third, we rewrite the model equation (25) for y, not just in terms of u,,, the
random effects that are in the pth data set, but in terms of u;, the random effects
that are in the whole data set:

¥, =X,B, + __io Zu; . : (33)

As a result, Z,,, has a column of zeros corresponding to each element of u; that
is not in w;,. But it is this formulation that permits having an expression for
the covariance of y, with y,:

Va0 = COV(Y,, ¥y), calculated at &3,

r
= -21 2,Z,6%, forp#tq=1,..,s. (34)

iz
Note that the summation here excludes a3 = a2, because no two data sets have
any error terms in common. Moreover, in any particular case, many of the
terms in (34) will be zero; indeed for many pairs of data sets (34) itself will be
zero. For example, when the random effects in a model constitute a two-way
classification, (34) will seldom involve the interaction variance component, for
the same kind of reason that it never contains ¢Z; and only for data sets that

have levels of the A-factor in common can it have 63, and so on.

Fourth, we are going to combine the estimators &2 from (28) for the individual
data sets by weighted least squares, making use of an approximation to the
sampling variance—covariance matrix of the vector

(6t & .. 7.
This is done as follows. In each equation (28) for p = 1,...,s, we treat A, as
non-random and f, as random. Then, since

cov(fp’ f:l) = {m cov(y;’PPZip tp pyw quququq a¥q }11 0
we calculate this at 2, calling it G ,,,:
G o) = 2{m tr[Pp0)ZipZip Py V pa0)P a0 Zig LigP g0y Y apioy 1 }is =0
= 2{m tr[Epgj0)(Epgij0) 1}ii%0 (35)
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o L .
for E_pq,uw) =Z;,Py0,Y pai0)PaoyZig- Then assemble these matrices into a single
matrix as

fy
Gy = var| : |= {m qu(o)}p.qsﬂ (36)

and define
[G(O)]-l = {m G(pdl),}p.q.;l . (37)

Thus, on treating A, and A, as non-random, the covariance of &‘3 and &qz is,
when calculated at 63,

— A—1 -1.
Cpq(OJ - Ap(OJqu(O)Aq(O)’
and
— s _ -1 s s ~1 s
C(O) - {m Cpq(O)}p.q=l - {d Ap(O)}p= 1 {m GPG(O)}P-¢=1 {d Ap(O)}P-'-'l .

Now the vector being estimated by every &: is 2. Therefore the vector
estimated by { &2},%, is { 6?},2, =1,®¢> =(1,®]1,,,)62. We therefore
estimate 6* by pooling the &2 vectors in a weighted least squares fashion, using

C?5, as the (p, q)'th submatrix of [Co,] .

&) =[(L,®L.)Cio) (1, ®L )] (1, ®L4,)Cp) {. 67} ,2,

(i > Crs',)"’ > (i Crg,)&:

p=14q=1 p=1 \q=1

1

s s -1 s 5
(Z > Am,Gr&Am,) Z, Ap(o,( Zl Grg,Aq(o,)az. (38)
pP= q9=

p=lq=l

One now iterates this process, using 6(2,, in place of &, in equations (30)-(32)
and then in (34)—(38). More study is needed to evaluate this procedure.

8.6. EXAMPLE: THE 1-WAY RANDOM MODEL

For the 1-way classification, random modet we show details for ML
estimation for two iterative algorithms: EM (Version 1) and the method of
scoring. In doing so we use the model equation

Yij=pnto+ey
fori=1,...,aand j=1,...,n; with vector equivalence

y=XB+ Z,u, + Zoyu,,

X=1y, B=pu Z,={1,}, uy=0a, q,=a, Zy=Iy and uyy=e.
(39)
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Also
2 |1 ol
var(y) =V = {4all, + ¢lJ,} and V- E dl"‘—mJ,, .
(40)
Other useful notations taken from Chapter 3 are
2
1
1= g? 2 p=Je gy Mo 41
(=0, + o, T e an %" S+ 1) (41)
a. The EM algorithm (Version 1)
Using (39), (40) and (41) in (14), it can be shown (E 8.8) that
(3. — #)? a 1
E(wuly) =12 Y ——— + as? — a1 42
( y) I-Zl(t+l/ )2 =1 T+ 1/n (42)
and
gl y)= 3 ¥ (ry—wi-ty el o pyhar 3 T
i=1 j=1 i=1(t + 1/n)? i=17+1/":
(43)

And likewise, using (13),

E(y—Zlully)={ { yu—%j%—/%)} } . (44)
¢ \¢ i Jj=1Ji=1

The iteration procedure then comes from using first (42) and then (43) as the
right-hand side of (15), which is then put into (17) to give

5o (m))Z
ag™t Y _ 2w (Ji.— o + ag?™ _ (m) 7m 45
Oa Z:(t(m)+’/n)2 0’ Z (m)+l/‘ ( )
and
5o (m))Z

No2™+D _ gz _ my Ji = # 2 4+ ngm

O, Z“,;(}’u u™) T Z‘(t‘"') n ’/n‘)z( nt™)
2(m) ™ 46
e Z"'1:‘""+l/n, (46)

Then, using (44) for 8™ in (16) and putting that in (18) gives [dropping the
first X on each side of (18)]

1 t("')(}'l - #(M))} " } a
m+1) _ _ - 7 , 47
# N N{c {c Yu ™+ 1/n Jyaidiey “7)
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which (see E 8.9) reduces to

Ni 1 T(m) -+ l/n ’
and this in turn can also be written as
(m) (m)
”(m+l)___ i n(.Vi/az +nl‘(m)/‘72m
=1 1/62™ 4 n,/a2™

This shows that u™* ¥ is the weighted average of weighted averages of y,.and u™.
One carries out the iterations by first setting m = 0, choosing starting values
1@, 62 and ¢2”, and using them in (45), (46) and (47) to get u"), 62" and
62'"). The latter are then used again in (45), (46) and (47) with m = 1;..., and
so on, until satisfactory convergence is attained.
We note in passing that when the iteration ceases, (48) will be fi and
(see E 8.9) it reduces to

- Yi. 1 Yi. 1

# Z‘ 61+ 6%/n, /Z 62+ 62/n, Zi var(y;. )/Z‘ var(y;.) (49)
where var(y,) = 62 + az/n‘ is the MLE of var(y;). Moreover, (49) is GLSE(u)
with 62 and &2 in place of 62 and 6Z; and, of course, for balanced data ji = j..

Note that for balanced data (48) reduces (see E 8.10) to

mety o Pe +(1__] ) (m) 50
# nt™ 4 1 ntt™ 4 1 # (30)

which is not j_; although it does, of course, reduce to ji = y.. when iteration
has ended. This is for Version 1 of the EM algorithm. In contrast, though, we
can show that Version 2 gives every u™ as j...

In Version 2 of the EM algorithm step 3 has

Xp=XXV X)XV ly. (51)
Using X and V™! of (39) and (40), this reduces to
1

= 52

A=2, var(y. / 2 var(y,.) (52)

just as in (49). So, for the (m + 1)th step it is

PN A

i var™(y,.)) < var"™(5;) .

Then for balanced data var(jy,.) = 62 + 62 /n, the same for all i, and so both ji
and pu™* Y reduce to

m+1) _ 5

a=pu =J.;

i.e., for every iteration Version 2 yields u™ = j.. for balanced data.
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b. The method of scoring algorithm
The general iteration equation for the method of scoring is the equation in
Section 8.2c:

gm+1) — gm _ [](olm)]~l ﬂ
00|y _gm
For the 1-way classification this is
pm+ ) pm u\T T L
g2 =1 g2 4 [ 1 62 2
0’3("' *h 0’2(”') 0’: Iu'z = ™, g2 = g2™ g1 = 2™

where the information matrix 1(0) and the first derivatives are available from
Chapter 3, in equations (138) and (132), respectively. Hence, for 4; = 62 + n;02,
using (138) of Chapter 3,

[ n 1
22‘—-—1?‘", 0 0
u(m+ 1) u(m) I“(ml
1 n
2m+1) | __ 2(m) ! m
o, =10, + 5 0 z(m) Ziu(m))z ‘(/1("'))2 I"«’ ’
2m+1) 2(m) ¢
o; o, n n2 Ia,‘“"'
0 Y Y
i 1imn2 i(1(m)y2
(4™) (Am)? |

where, from (132) of Chapter 3,

n (5, — u'™) i
( Zi ;sm)
I“IMI v
—(N-a) 1o 1 SSE (G —
lﬂzlm = (__a—) —_— - — + Z n (y ﬂz )
’ 20’2‘"“ 2 /‘.,!"” (0-2("'))2 i 2()$m))
| 2m € e
7 1 . 206 _ m)2
- .T'h"i'zn‘(y‘.. ﬂz))
2 &g T e T (g

It is clear that the iterations for 62 and 62 are somewhat complicated so we
will not detail them here. However, the iteration for u is given by

5 (. — 1)
(m) (m)
pme i = ym g 0T M0E T (53)
n;

zl 65("’)

+ ne z(m)

Again, when iteration has ceased, this reduces to (49), and thence to ji = j_ for
balanced data. When the data are balanced, (53) will always yield "™ = j. for
m > 0. Version 1 of the EM algorithm does not have this property, but Version 2,
which uses P™y in place of V"~ )(y — Xg"™), does. Figure 8.2 shows, as squares
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Figure 8.2. Convergence of two methods of solving the likelihood equations for the turnip data
of Snedecor and Cochran (1989, p. 238), a l-way classification with balanced data, a = n = 4:
EM algorithm and method of scoring.

and plusses joined by lines, the iterations of the method of scoring and of
Version 2 of the EM algorithm for the turnip data of Snedecor and Cochran
(1989, p. 238). The data set is balanced witha =4 =n.

While this is a very simple, balanced data example, it nevertheless illustrates
several of the points made in this chapter. It shows that the EM algorithm
requires a large number of steps to converge even though it is very close to the
maximum after only two steps. It shows that even though the data are balanced,
the iterative methods do not converge in a single step, and it illustrates the
ideas of step direction and step size.

8.7. DISCUSSION

a. Computing packages

We have outlined in this chapter some of the methods available for computing
ML and REML estimates. There are myriad difficulties involved in actually
implementing these methods including, but not limited to, stability of numerical
methods applied to the matrices involved, methods of avoiding the inversion
of large matrices and the details of diagnosing convergence or non-convergence
of the algorithms. All of these matters have to be attended to satisfactorily when
designing and writing computing packages—and this is not necessarily an easy
task. It is a job for an expert, who must have a sound appreciation of numerical
analysis. Computer packages designed by those who are amateur in this regard
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can therefore usually be deemed suspect. That said, we now make but a comment
or two on some of the widely-available commercial packages, and on some of
the recommendations given in the recent literature.

The computing packages SAS, GENSTAT 5 and BMDP all have (as of
1988) procedures for calculating variance components estimates in mixed
models. In SAS the procedure is VARCOMP. It calculates ANOVA estimators
(based on Henderson’s Method I11) from the SAS Type I sums of squares. It
also calculates MIVQUE(0) estimates—as described in Section 11.3g. For ML
and REML estimation it uses the W-transform (Hemmerle and Hartley, 1973)
to reduce the computational burden and a modified Newton—Raphson method
that protects against the value of the objective function going in the wrong
direction. Iteration commences with the MIVQUE(0) estimates, and convergence
is assumed to have been achieved when the objective function (log, | V| for ML
and log, |K'VK| for REML) changes by no more than 1078 GENSTAT 5
contains a REML routine developed by H.D. Patterson of Edinburgh, Scotland.

The BMDP package has several programs that compute variance components
estimates. From BMDP (1988) we find that program 3V is the primary one
for ML and REML estimation from unbalanced data of any mixed model. Its
iterative procedure (p. 1182) starts with the Fisher scoring method, and when
the change in the log likelihood becomes less than unity the algorithm changes
to Newton—Raphson. Starting values (p. 1182)are 6‘3(0’ =(y'y— Nj3)/(N = 1)
and 6‘,?‘0’ =0fori=1,...,r, and convergence is assumed (p. 1042) when the
relative change in log likelihood is less than 107 for a user-supplied p, the
default being p = 8. Program 8V also calculates variance components estimates,
but is confined to balanced data, although for almost any kind of mixed model
(p. 1115). For a mixed model with repeated measures program 5V is preferred
(p. 1026).

b. Evaluation of algorithms

Several recent research papers evaluate algorithms for variance components
estimation (Dempster, Selwyn, Patel and Roth, 1984; Jennrich and Schluchter,
1986, Laird, Lange and Stram, 1988; Lindstrom and Bates, 1988). While there
is no consensus on the best method, some general conclusions seem to be as
follows.

1. The Newton-Raphson method often converges in the fewest iterations,
followed by the scoring method and then the EM algorithm. In some cases the
EM algorithm requires a very large number of iterations. The individual
iterations tend to be slightly shorter for the EM algorithm, but this depends
greatly on the details of the programming.

2. The robustness of the methods to their starting values (ability to converge
given poor starting values) is the reverse of the rate of convergence. The EM
algorithm is better than Newton—Raphson.

3. The EM algorithm automatically takes care of inequality constraints
imposed by the parameter space. Other algorithms need specialized programming
to incorporate constraints.
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4. Newton-Raphson and scoring generate an estimated, asymptotic
variance—covariance matrix for the estimates as a part of their calculations. At
the end of the EM iterations, special programming [ perhaps a single step of
Newton-Raphson or use of the results of Louis (1982)] needs to be employed
to calculate asymptotic standard errors.

8.8. SUMMARY

Iterative methods of maximizing the likelihood begin with an initial estimate
0°” of ' = (B’,6%') and then proceed by calculating new estimates, 8*1),
m=0,1,2,.... Iteration continues until the estimates converge (Section 8.2f).
The iterations for the various methods are as follows.

Newton—-Raphson
gim+1) — gim _ (H("")-' ﬂ .
aooﬁll

where H™ is the Hessian of ! evaluated at 8™ [equations (36) and (38) for
ML and equations (108) for REML of Chapter 6] and dl/39 is given in (14)
and (16) for ML and (106) for REML of Chapter 6.

Scoring

ol
(m+1) _ gim) m)H1-1
0 o™ + [1(6"™)] e

where I(8"™) is the information matrix evaluated at 8™ [equation (38) for ML
and equation (108) for REML of Chapter 6].

EM algorithm version 1 (ML)

Xpm+ Y = Xp™ + o2™X(X'X)" X' (V™)™ Y (y — Xp™),

qot™ " = o} ™y — XY (V)T Z,ZY(V™) "N (y — XB™)
+tr[6?™1, — at™Z)(V™)'Z,], fori=0,1,2,...,r,

where V™ is var(y) evaluated at 0.
EM algorithm version 2 (ML)

qo?™* YV = g}y PMZZIP™ + e[} ™1, — oM Z(V™)T'Z,],

fori=0,12,...,r.

At convergence set X = X(X'V'X")"'X'P-1y.
EM algorithm version 2 (REML)
qio?™ " = g™y P™ZZP™y + tr[6}™1, — 0™ ZP™Z,],
fori=0,12,...,r.
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COMPUTING ML AND REML ESTIMATES [8.9]
8.9. EXERCISES

Show that the direction that a function f(8) increases most rapidly
at @ = 0* is given by Vf(8*).

Show that Xp° = X(X'X)~ X'y is an unbiased estimator of Xp under
the model y = Xp + Zu + e where E(u) =0 and E(e) = 0.

If ¢, in (3) is set equal to zero instead of 10~ then the stopping
rule is to stop when the relative change in all the parameter values
is less than 10~* = .01%. Why is this unsatisfactory?

Derive the log likelihood and MLEs for the complete data likelihood
l= (Z q,)loan——Zq,logo,—-EZ—ﬂ.
i=0

Derive (12) as the GLSE obtained fromy — ) Zu,.
i=1

Derive (13) and (14).
Show that for P=V~! — V"X(X’V"X)‘X’V“

t(ZPZ,) <tr(Z,V~'Z)).

Derive (42), (43) and (44) from (13) and (14).
(a) Derive (47) from (16), (18) and (44).

(b) Show that (47) simplifies to (48).

(c) Show that after iteration has ended

~ zl[yi /var(p;. )]
Z,[1/var(p,.)]’

where var(y,.) is the MLE of var(j,.).

For Version | of the EM algorithm for ML in the balanced 1-way
classification, random model, show that the iterations for u are of
the form

1:

u(m+ 1 — (] _ ”(m))j-,” + '7("')”("‘)’

where

ng2™

(m) .
n <1,
2("') + noz(""

What happens to the iterations if ¢2™ x 0?



CHAPTER 9

HIERARCHICAL MODELS AND
BAYESIAN ESTIMATION

In this chapter a slightly different approach to analysis of the mixed model is
explored, an approach that is arrived at through an amalgamation of many
views. Although the idea of modeling in a hierarchy has a distinct Bayesian
flavor, the purpose of hierarchical modeling goes beyond Bayesian analysis.
For example, hierarchical techniques can help both our understanding of models
and our estimation and interpretation of them. In particular, we will see that
only a few simple ideas are necessary to arrive at some broad estimation
principles.

9.1. BASIC PRINCIPLES

a. Introduction

A hierarchical model is one that is specified in stages, with each stage building
upon another. The advantage of building a model in stages is that each stage
can be relatively simple and easy to understand, while the entire model may
be rather complicated. Thus, sophisticated models may be built by layering
together relatively straightforward pieces.

Bayesian methods are strongly tied to hierarchical models. Recall from
Section 3.9 that Bayes estimation is based on calculating a posterior distribution,
which arises from combining a prior distribution with the sampling distribution.
(These ideas are covered in Appendix S.6.) The specification of the sampling
distribution and the prior distribution is an example of a hierarchical model.
For example, if we observe a random variable X with distribution f(x|8), and
suppose that  has a (prior) distribution n(8), then

X0~ f(x]6),

0 ~ n(0) )

315
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is a hierarchical specification. Here we have two levels in the hierarchy: the
first level deals with the distribution of the variable X (here the data) conditional
on 6, and the second level deals with the distribution of the variable 6 (here
the parameter), on which the distribution of X depends. The hierarchical
specification can continue. For example, if the distribution of § depended on
another variable 4, that is 8 ~ (6} 4), we could then specify a distribution for
the variable 4 in the third level of the hierarchy. In most cases three (or fewer)
levels in a hierarchy will suffice, but the theory knows no limit.

Once a hierarchical model, such as (1), is specified, we can use the hierarchy
to derive estimators using Bayesian methodology. Note that this estimation
method can be used no matter how the hierarchy is arrived at. For example, to
estimate 6 from the model in (1), we could use its posterior distribution (8| x),
given by

(0] x) = Sf(x|0)n(8)
{f(x10)n(6)d6’

where f(x | 8)n(6) is the joint distribution of X and 6, and j'f(x | 0)x(8)d6 = m(x)
is the marginal distribution of X. Of course, other estimation methods (e.g.,
maximum likelihood) can be used in a hierarchy such as (1). For now, however,
we will concentrate on the Bayesian estimation techniques that are natural for
the specified hierarchy.

From the posterior distribution we could obtain a posterior mean, posterior
variance, or any other parameter associated with a distribution. A common
choice for a point estimate of 6 is the posterior mean E(6 | x), given by

E(le)=j'8f(x|8)n(0)d8‘ 3)
§f(x|8)n(6)d6

Estimating the parameter 6 by the mean of its posterior distributions seems
quite reasonable, and is also justifiable on more formal grounds. If we assume
that our penalty for misjudging 6 is measured by squared error loss then the
posterior mean is an optimal estimator of 6.

(2)

b. Simple examples

Section 3.9 contains an example of Bayesian estimation using a hierarchical
model for a normal variance. For [x, ... x,] ~ 4 (ul,a?l) we estimate o2
under the following hierarchical model:

stla*~ f(s*|a®) = a’xa_,/(n— 1)
al ~ 7[(0'2) ___(0.2)—3e—l/a1 .

(4)

Applying formula (2), we can derive the posterior distribution of a2, or we
could use formula (3) to obtain a point estimate of a2, E(a?|s?), given by

sz+2/(n—1)=n-—lsz+ 2

E(c?|s?) =
14+2/(n—-1) n+1 n+1

(1). (5)
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The second expression in (5) shows that the posterior mean is a weighted
average, an occurrence that will often happen. Note that E(a? ] s?)is a weighted
average of s2, the sample estimator, and of 1, the prior mean from n(o?), with
weights that are dependent on the sample size. As the sample size increases,
more weight is given to the sample estimator. (More generally, the weights
reflect the relative variance of the sample and prior information.)

Whether a hierarchical model is considered a Bayesian model depends on
the interpretation of the prior distribution. There is a subtle difference here
between Bayesian estimation and Bayesian modeling. Bayesian estimation leads
to equations like (2) and (3), and can be used with any hierarchy. Bayesian
modeling, a branch of hierarchical modeling, arises when the second (or third)
level of a hierarchy reflects some prior (subjective) belief. If the distribution
n(c?) of (4) reflects a prior belief then (4) specifies a Bayesian hierarchical
model. If n(s?) is derived through some other means (as in the following
example), model (4) remains a hierarchical model, but is not a Bayesian
hierarchical model.

As an example of a hierarchical model that is not Bayesian, consider the
following classical model for insect populations. An insect lays a number of
eggs, A, according to a Poisson distribution with parameter 1. Each egg can
either hatch or not, and if it hatches it survives with probability p. The interest
is in estimating the number of surviving insects.

To specify this as a hierarchy, let X denote the number of survivors from a
batch of A eggs. We can then write

X | A ~ binomial(A, p),

. (6)
A ~ Poisson(4) .

Neither of the distributions specified in (6) came from a subjective belief, but
rather can be attributed to the structure of the problem. Therefore this hierarchy
does not specify a Bayesian model. To derive an expression for the number of
survivors, however, we could use Bayesian methods, or more generally the
calculus of probabilities. The conditional expectation of X given A is
E(X | A) = pA, which can be estimated using the marginal distribution of X,

a Poisson(pi). See E 9.1.

¢. The mixed model hierarchy
The general mixed model equation, for a data vector y, has been written as

y=Xp+Zu+e (7)

[as in (58) of Chapter 4], where P is an unknown, fixed parameter and u is an
unknown, random variable. The matrices X and Z are considered fixed and
known, and e is an unknown random vector. In the classical approach to
analysis of data using a mixed model the distinctions of fixed versus random,
known versus unknown, parameter versus statistic are all important. These
classifications dictate the type of estimation and inference that is possible. When
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analyzing the mixed model (or any model) using a hierarchical approach,
however, it only matters whether a specified quantity is observable or unobservable.

In equation (7)y, X and Z are observable (because we see their values), while
B, u and e are unobservable (because we do not see their values). No further
classifications are necessary. In particular, both fixed effects and random effects
are handled within the same general framework. In hierarchical modeling we
treat §, u and all variance components in the same way: they are unobservable.

For modeling the hierarchy the distribution of e gives the sampling distribution
which, in classical statistics, is the distribution of the data conditional on all
parameters. The distribution of B and u gives the prior distribution. In a
hierarchical model the first stage is always the sampling distribution, with prior
distributions relegated to other stages. The mixed model of equation (7) is
interpreted as a conditional ordinary (fixed) linear model in the following way.
For fixed (but unknown) values of  and u we would have a usual linear model
in equation (7). But these pieces can vary, so we model them in a hierarchy,
that is, we put distributions on them. Formally we can write the first level of
the hierarchy as

1. Given u=u, and p = B,, we have
Yy =XBo + Zu, + ¢, (8)

where e is the sampling error, e ~ f.(-). Thus, the first level of the hierarchy is
an ordinary fixed linear model. The second level of the hierarchy specifies the
distribution of the unobservables u and p. We write

2. (u,B) ~ fup(-,°) 9)

where f,, (-, ) is a joint probability distribution on the unobservablesu and §.

Expressions (8) and (9) completely specify the model, with (8) giving a fixed
effects model for p and u, and (9) giving the hierarchical component. The
variance components are parameters (unobservable) of the distributions of e,
$ and u. As such, they are modeled at a lower level of the hierarchy than § and
u. As we will see in Section 9.2, this leads to some rather straightforward
estimation schemes for these variance components.

Building on our Bayesian estimation principles, we can state a broad
estimation principle for unobservables (an estimation principle for observables
is not needed!). An unobservable is estimated using the distribution obtained
by conditioning on all observables and integrating over all other unobservables.
This principle is a logical generalization of calculating conditional expectations,
and is applicable in models of any complexity. The practice of integrating out
the unobservables that are not of interest will always yield estimates that are
functions only of the data (observables).

d. The normal hierarchy

In this subsection we illustrate a most popular and useful hierarchical model,
the normal hierarchy, which we will use extensively throughout this chapter.
Here we will only establish some notation, and discuss some general principles.
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Details of estimation are left to Sections 9.2 and 9.3. For a comprehensive
treatment of hierarchical linear models the reader is referred to Lindley and
Smith (1972).

We now specify that fg, f, and f,, described in (8) and (9), be normal
distributions. Thus

B~'M(B0aB)a u~m(0aD)a e~m(0aR)a (10)

with B, u and e being independent, where the zero means for u and e are taken
without loss of generality. [ This is illustrated following (15) of Chapter 1.]
Also, although we are using the same symbol D = var(u) as in (67) of Chapter 4,
the matrix D is not restricted to be diagonal here.

To illustrate some conditional and unconditional moments of y, we get

conditional on §:
E(y|B)=Xp and var(y|B)=ZDZ +R=V; (11)
unconditional on f:
E(y)=Xp, and var(y)=XBX'+ZDZ' +R=XBX'+V; (12)

where the results in (11) are reminiscent of (59) and (69) of Chapter 4. These
equations show that we can place the usual treatment of the mixed model within
the framework of a hierarchical model.

The variance components in B, D and R can formally be modeled by adding
another layer to the hierarchy. This can be done by expanding the hierarchy
of (8) and (9) to

1. Givenu,B,R,
y~ A (XB + Zu,R);
2. Givenf,,B,D, (13)
B~ A (Bo,B), u~A(0,D)
3. (B,D,R)~Mgpg(,,).

However, this level of modeling is usually not done, and the hierarchy of (8)
and (9) is used instead.

e. Point estimator of variance or variance of point estimator?

For the most part, we are concerned with point estimation of variances, a
strategy that is different from (and perhaps easier than) estimating the variance
of a point estimator. To illustrate these differences, consider estimation, in the
mixed model, of B, V and the variance of our estimate of B.

If the matrix V were known, we could estimate B by Bv, the BLUE, and
also calculate its variance var(Bv) by

By =(X'V'X)"!'X'V~'y and var(By) = (X'V"'X)"!, respectively . (14)
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With V unknown, a common practice is to replace V by an estimate V¥ in both
expressions in (14). Even though ¥ may be a good point estimator of V (a
good point estimator of a variance), and the estimate fig can sometimes be
reasonable for the estimate of B, it turns out that (X'V~1X)"!isnot a reasonable
estimate of var(fy).

The variance estimate (X'V ~!X) ™! implicitly treates V as known, and does
not take into account the variation in V as an estimate of V. For this reason
(X'V-1X)"! will be an underestimate of the true variance of the estimate
fo=(X'V71X)"'X'V 'y, This problem, of treating V as fixed, is also a
shortcoming of the estimate of p. However, Kackar and Harville (1981) show
that, under mild conditions on ¥V,

EB¢)=E(fy)=8. (15)

Thus, replacing V by V in Py of (14) leads to an estimator of B that is
consistent but has larger variance than fy. Although (X' ¥~ X)~ ! is a consistent
estimator of var(fy) = var[(X'V~'X) " !X'V~'y], it is an underestimate of
var(Pg) = var[(X’¥~'X)~!X'V~!y]. This also can be seen by applying the
variance identity in Appendix M. We have

var(Be) = var[(X'? 71 X)X’V 1y]
= E[var(By|V =V)] + var[E(Bv|V=V)]. (16)

If (15) holds then the second term above is var[E(fy |V = V)] = var(p) = 0,
and so

var(By) = E[var(fv|V = ¥]
=E[X'V X)XV tvar(y|V=V) 9 IX(X'9P1X)"].

If var(y |V =V) =~ ¥ then var(Pe) ~ E(X'V!X)"!, and thus (X'V!1X)"!
would be a reasonable estimate of var(f). However, assuming var(y [V = V)~ ¢
is not always justified.

Thus, we see that the point estimator V is a reasonable estimator of V, that
we can replace V by ¥ and obtain what we have called fig, which is a reasonable
estimator of B, but it is more difficult to obtain a good estimator of var(Be).
Since we are mainly concerned with point estimation of variance components
like V, these problems do not affect us greatly here. However, they do appear
when we deal with estimation of fixed and random effects, and must always be
accounted for.

Later in this chapter we deal with this “variance underestimation” problem
using a Bayesian approach in the hierarchical model. There are also a number
of classical methods available to correct this variance underestimation problem,
but unfortunately they can be difficult to implement, One that immediately
comes to mind is to expand the estimate V in a Taylor series around V, and
use the expansion to correct the underestimation problem. Another technique
is to calculate a bootstrap estimate of variance [ see, e.g., Efron (1982), and Laird
and Louis (1987)]. Both of these methods may lead to implementation



[9.2] VARIANCE ESTIMATION IN THE NORMAL HIERARCHY 321

difficulties: the Taylor series may be an extremely involved calculation, while
the bootstrap may require enormous computing power.

9.2. VARIANCE ESTIMATION IN THE NORMAL HIERARCHY

a. Formal hierarchical estimation

To estimate a variance component, we can proceed formally as outlined in
(1)—(3), and derive a posterior distribution and calculate a posterior mean. For
a specific example consider estimation of D in the hierarchy (13).

To proceed, we first obtain the posterior distribution of D given y. Formally,
using (13) and keeping track of parameters, we use the laws of probability to write

f+-§f(y1B,u,Bo, B,D,R)n(B | Bo, B)7(u| D)n(B,)n(B, D, R) dp du dp, dB dR
§-§/(y1B,u,8o,B,D,R)(B|Bo, B)7(u]| D)n(Bo)n(B, D, R)dp du dB, dB dR dD’

(17)

where n(P,) is a prior distribution for By, and =n(B, D, R) represents the prior
distribution of the variance components.

Although (17) reflects a straightforward derivation of a density, this calculation
can be extremely difficult to carry out. In particular, a numerical evaluation
would involve high-dimension integrations, which can be quite tricky and
demanding of computer time. Moreover, the choice of the prior density for the
variances is non-trivial, as naive choices (e.g., independent conjugate priors)
can lead to difficult calculations. Such difficulties arise even in the 1-way model,
as noted first by Hill (1965) and Tiao and Tan (1965, 1966). [A particularly
readable account of estimation methods can be found in Gianola and Fernando
(1986).] However, recent advances in hierarchical computing methods, particularly
the use of Gibbs sampling techniques (Gelfand and Smith, 1990; Gelfand
et al., 1990) show great promise for alleviating the computational burden.

Here we will concentrate on variance component estimation strategies that
are both conceptually easier to understand and computationally simpler. These
techniques can be thought of as approximations to the results of the calculations
in (17), where simplified forms of prior densities are employed. As we will see,
these resulting strategies are closely related to likelihood-based methods.

b. Likelihood methods

Both maximum likelihood (ML) and restricted maximum likelihood (REML)
estimates, as discussed in Chapter 6, can be obtained through a hierarchical
model. In this section we describe the relationship between ML, REML and
Bayes estimation in hierarchical models. In particular, REML is a special case
of marginal likelihood, and is equivalent to Bayes estimation with a non-
informative prior.

Before we describe the connection to likelihood methods, the relationship
between the likelihood function and the densities specified in a hierarchy must
be clarified. Thus far, a likelihood function has been defined only for a given

a(D]y) =
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normal distribution, as in (103) of Chapter 3, (85) of Chapter 4 and (12) of
Chapter 6. Moreover, although it will turn out to be straightforward, it is not
immediately clear how a likelihood function is to be defined with a specification
like

YIBa“,R~-/V(xB+Z“,R)a
B~ 'M(BOa B)a u~ ./V(O, D)a (18)
B, uindependent .

In a hierarchy like (18) the sampling density of y (the density that describes
the variation in repeated sampling) is the marginal density of y. Thus, the
likelihood function associated with (18) is the one that is derived from the
marginal distribution of y. To be specific, we state the following definition.

Definition. For the hierarchical model
y~ f(yl|B,uR),
B~fa(p|BOaB)a “~fu(“|D)a

where f(y|B, u, R) is the sample density and fg(B|Bo, B) and f,(u]D) are the
densities of the parameters (unobservable quantities), the likelihood function for
the hierarchical model (sometimes called the full likelihood) is given by

(19)

L(Bo,B,D,R|y) = fJ‘f(y | B, R)fp(p | BOaB)fu(“ | D)dp du . (20)

Variations in either the hierarchical specification or in the densities in the
hierarchy lead to different likelihoods. For example, for the normal mixed model
(7), the likelihood function [as in (12) of Chapter 6], is

LB, V|y) = exp[ —3(y — XB)V~'(y — XPB)], (2D

1
(2m)tN| V[

where V = ZDZ’' + R. To obtain this likelihood from (20), we use a hierarchical
specification with a point-mass prior density for p. (A point-mass prior is a
density that concentrates all mass on one point.) This is equivalent to leaving
the specification of fg(B) out of the hierarchy, and writing

yIBu~ #(Xp + Zu,R),
u|D ~ #(0,D),

which leads to the marginal density (or likelihood function)

(22)

L(B,D,R|y) = jL(B,u,D,Rly)du

1
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which is the likelihood function in (21). Thus, ordinary maximum likelihood
estimation is estimation that is conditional on the value of B, and has the value
of u integrated out, according to the hierarchy in (22).

Therefore ordinary maximum likelihood estimation (ML) can be derived
from a hierarchy where the value of B is taken to be a fixed, unknown constant.
In contrast, restricted maximum likelihood estimation (REML) can be derived
from a hierarchy where B is integrated out using a non-informative, or flat,
prior. Start from a hierarchical specification

y||3,u~./V(XB+Zu,R),
B ~ uniform(— o0, ), u|D ~ 4°(0,D),

where uniform(— oo, o) is interpreted as the “density” fg(B) = 1, and B and u
are independent. Then integrate out p and u to obtain

(24)

L(D,R|y) = JIL(B,u, D,R|y)dudp

1
(2n N IIK' VK
where r is the rank of X and K is any N x (N — r) matrix of rank N — r that
satisfies K'X = 0.

As we will see, the integration in (25) is an equivalent way of deriving the
REML likelihood given in Section 6.7. The appearance of the matrix K results
from the fact that the REML likelihood is based on data of smaller dimension
than the full likelihood, and is related to a projection matrix for this new space
through the identity K(K'VK) 'K’ =V~! -V IX(X'V!X)"X'V~! (see
Appendix M.4f). The likelihood in (25) is the REML likelihood, and thus
restricted maximum likelihood estimation is estimation that has the values of
both B and u integrated out. A non-informative prior is used for B, and the
usual normal prior for u.

The ordinary maximum likelihood function is equal to (20) if either f is a
fixed, unknown constant, or if the density of B is a point-mass density. This
type of likelihood is also sometimes called a conditional likelihood. The
restricted maximum likelihood function is equal to (20) if the density of B is
uniform( — 00, o0), or if the density of B is omitted from the hierarchy. This type
of likelihood is also sometimes called a marginal likelihood.

Since REML plays such an important role in variance component estimation,
derivation of the likelihood (25) will now be given. Although the derivation is
somewhat involved, and the appearance of K may seem mysterious, it is really
quite straightforward. Starting from the hierarchy (24), the likelihood function is

exp[ — 2y'K(K'VK) " 'K'y], (25)

1 s —
L(ﬂv“,D,Rl)’)=mexP{ —4[y — (XB + Zu)IR ™[y — (XB + Zu)]}

exp(—iw'D 'u),

1
* 2n¥ D}
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where g = q., the order of D. By expanding the exponent we get

1 1
(2m)V|R) (2n)7D |}

x exp{ ~4(y — XBYR '(y — Xp) —$u'[D"' + ZR"'Z]u
+uZ'R™Y(y — Xp)} .

L(p,u.D,R|y) =

LetA = D! + Z'R™ ! Z,and complete the square in the exponent (inu) to get
1 1
(2" R|} 20 D!
x exp{ —(y — XpyR"'(y - XP)
—u—-ATTZR Yy - XB)JA[u-AT'Z'R™(y — XP)]
—4(y—XBYR™'ZAT'Z'R™!(y — XB)} .

L(B.u.D,R|y) =

Combining terms, we see that in the quadratic form in y — XP the matrix is
R '-R7'ZAT'ZR™'=(ZDZ' + R)"! = V™! (see E 9.12). Thus

1 1
(2n}VR)F 22D}
x exp{ —4(y — XB) V™ !(y — XB)
~4[u—AT'ZR Yy - XB)IA[u— AT'Z'R ' (y — XB)]} .

L(Bs u,D,R | y) =

We are now ready to carry out the first integration in (25). Using the properties
of the multivariate normal, we have

fexp{ —4[u—AT'ZR™(y — XP)I'A[u—A"'Z'R™!(y — XB)]} du = (2r)}|A| 74,

and thus

1

= GOPRFDFAR LI~ XPVTIG - XB)]

JL(B,u,D,Rly)du
1
= G Pl 4 = XV 1y~ XB))
= L(st I y)s as in (21);

where we used the identity |R||D||A| = |V| (see E 9.12). Next, we factor the
exponent in L(B,V |y) as

(y—XBYV {{y—=XB)=y[V ' =V !'X(X'V'X)"!X'V~ 1]y
+(B-BYXVIX(-P)
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where = (X'V~'X)"'X'V ~!y. Using this factorization, we integrate over B
to obtain

2 |X'VIX|
L. vina- S EL T

r)¥ v
X exp{ -%y'[V‘l - V“X(X’V"X)"X’V"]y},

which isequal to (25),as |V| = |K'VK||X'V " !X|(E9.12) and K(K'VK) 'K’ =
V7o vIIX(X'VTIX)T!X'V 7! as in Appendix M.4f.

c¢. Empirical Bayes estimation

The term “empirical Bayes™ is non-precise, and thus has many different
interpretations. Here, we will be quite specific about our definition. Empirical
Bayes estimation will refer to using a marginal distribution to estimate
parameters in a hierarchical model, and substituting these estimates for their
corresponding parameters in a formal Bayes estimator.

-i. General strategies. We outline an empirical Bayes estimation principle
which, when used in conjunction with a hierarchical model, will lead to empirical
Bayes estimates of any desired parameter. To obtain the empirical Bayes estimate
of a particular parameter t:

(i)  Specify, for t, a distribution n(t|n), where 1 represents the parameters
of the distribution of t, sometimes known as hyperparameters.
(ii) Calculate the formal Bayes posterior of t,

f(yle.n)n(z(n)
ffylem)n(tin)dd’
and use it to estimate t, for example by using t = E(t|y,n).

(iii) Calculate estimates fi of any unknown (hyper)parameters from the
marginal distribution

(26)

n(tly,n) =

m(y|n) = ff(y [T, n)n(t|n)dr, (27)

for example, by using ML on (27). Finally, produce the empirical Bayes estimate
of t by substituting #} for n in E(t|y,n) to give t = E(t|y, f}).

-ii. Estimation. We outline an empirical Bayes estimation strategy, using
(26), for obtaining estimates of the variances D and R in the hierarchy of (22).
Then the connection to both ML and REML estimates of D and R will be

made clear.
Empirical Bayes estimation of D and R in the hierarchy (22)
Step 1 [equivalent to (i) and (ii)above]. Calculate the posterior distribution

f(y|D,R)z(D,R |7q)
{{f(y|D,R)n(D,R|n)dDdR’

n(D,R|y,n) = (28)
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where f(y|D,R) is the distribution of y and =(D, R |q) is a prior distribution
on D and R, with i being a hyperparameter (possibly vector-valued).

Step 2 [equivalent to (iii) above]. Estimate n with ), obtained from the
marginal distribution of y, the denominator of (28), using maximum likelihood
on

m(y|n) = J. f(y|D,R)z(D,R|n)dDdR, (29)

the marginal distribution of y.

Step 3. Obtain empirical Bayes estimates of D and R by substituting f} for
n in the Bayes estimators obtained from the posterior (28) in Step 1.

Summary. Empirical Bayes estimation of D and R is accomplished by
performing maximum likelihood on n(D,R|y,n), considering n fixed and
known, then estimating n using maximum likelihood on m(y |n).

-iii. Connections with likelihood. To see the connection between ML,
REML and empirical Bayes, first notice that from the hierarchy (22) the marginal
distribution of y is exactly equal to the full likelihood function as given after
the Definition, in equation (21). Now assume that the distribution of p does
not depend on any unknown hyperparameters B, and B. Upon performing the
integration of u in (20), we have

f(y|D,R) = L(D,R|y) = IL(B, D,R|y)/p(B)dp (30)

= likelihood for ML, using the hierarchy in (22)
= likelihood for REML, using the hierarchy in (24).

Now, to complete the likelihood —-empirical Bayes connection, we must identify
n(D,R|y,B) of (28) with f(y|D,R) of (30). However, this is easy, for we see
that (28) is the same as (30) only if n(D, R [ q) = 1, that is, both ML and REML
exactly correspond to empirical Bayes estimation using a flat (non-informative)
prior distribution for D and R. Thus, from (28),

S(y|D,R)a(D,R|y)
{f f(y| D,R)n(D,R|y)dD dR

_ J(y|D,R) .
" [{f(y] D,R)dDdR [#(D,R{n)=1] (31

_ {L(B, D,R|y) [likelihood for ML, using a hierarchy such as(22)]
L(D,R|y) [likelihood for REML, using a hierarchy such as(24)]

where we have implicitly assumed that ff f(y | D, R)dD dR = 1, which is needed
for the equalitiesin (31). In fact, we only need assume that [{ f(y | D,R)dD dR < oo,

n(D,R[y,n) =
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and replace the “ =" in (31) with “oc” (proportional to), and all likelihood
estimates will remain the same. If [ f(y | D, R)dD dR = oo, which is a distinct
possibility once we leave the normal case, then this argument will not establish
a likelihood—empirical Bayes connection.

This implementation of the empirical Bayes strategy yields point estimators
for D and R, that is, point estimators of the variance components, not estimates
of the variance of other estimators. Thus, the D and R resulting from (28) and
(29), or its likelihood variations, are point estimates of D and R, and should
not be used in estimates of var(y) or var(i).

When #(D,R|n) = 1, or in general when n(D, R) does not depend on any
unknown hyperparameters, then part (iii) of the empirical Bayes estimation
strategy is unnecessary as there are no more parameters to estimate. There are
few easy-to-use alternative prior densities that would keep computations from
getting out of hand. One alternative that is feasible is the Wishart distribution,
the multivariate analog of a chi-squared distribution. [Anderson (1984) has a
full treatment of the Wishart distribution.] The density is given by

TPV exp[ —} tr(E~'T)]

S(TInX)= >
2= D|E i [T TA[n+ 1 —1i])
i=1

, (32)

where T is a p x p matrix, n and L are parameters, and both T and X are
positive definite. Use of the Wishart distribution to implement empirical Bayes
estimation in a hierarchy such as (22) or (24) will not yield closed form solutions,
but is computationally feasible. If we take separate independent priors on D
and R, such that D ~! ~ Wishart and R ™! ~ Wishart, this is as close as we can
come to a joint conjugate prior (in the sense that a Wishart is conjugate for
estimating a single variance matrix ). Note that such a set-up is a direct multivariate
analog of the univariate variance estimation described in Sections 3.9 and 9.1b.

9.3. ESTIMATION OF EFFECTS

a. Hierarchical estimation
In the mixed model

Y=XB+ Zu+e (33)

we have, thus far in this chapter, concentrated on estimating the variance
components B, D and R. However, there are many situations in which estimation
of the effects B and u is also of interest. (Notice that, since a hierarchical model
does not distinguish between fixed and random effects, neither do we. It will
be seen that hierarchical strategies for estimation of p are the same as those for
estimation of u.)

In hierarchical modeling the effects p and u are treated similarly, in that both
parameters have their prior distributions, and no distinction is made between
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fixed and random effects. It is in the estimation of the effects p and u where the
power of the hierarchical model is really seen. For example, the hierarchical
model (22), which is equivalent to the classical mixed models, leads to a
likelihood function that does not contain u. Hence, straightforward likelihood
estimation of u cannot be done. Using hierarchical models, however, we will
see that such estimation is straightforward.

The estimation is straightforward in that we will only employ the principle
outlined in Section 9.1a. That is, any parameter (unobservable) will be estimated
using its posterior distribution. In particular, we will calculate its posterior
expectation, as in (3). Thus, in the next two subsections we are concerned with
calculating the posterior distributions of p and u.

It is interesting to note that using the hierarchy to obtain estimates of p and
u can be viewed as a generalization of the BLUP methodology. Indeed, our
estimates of f and u will reduce to the BLUE and BLUP in special cases. The
original derivations done by C.R. Henderson to obtain BLUP estimates were,
in effect, derivations based on a hierarchical model.

Although the derivations we will be doing are straightforward in that the
steps to be taken are clearly laid out, these steps may often require a large
computational or analytical effort. To simplify matters somewhat, when
calculating posterior distributions of p and u, we make the (very common)
assumption that the variance components are known. In the final steps, when
estimators are derived, we indicate how to use estimates of the variance
components to substitute for the assumed known quantities. As discussed in
Section 9.1e, this strategy is acceptable for point estimation, but not for
estimation of the variance of point estimators. This point is further dealt with
in Section 9.3dii.

-i. Estimation of B. For estimation of p we use the distribution
f(B|y, B, D, R). Formally, suppressing the dependence on the dispersion matrices,
and using results (1) and (2) of Appendix S.6 (see E 9.7),

_ LS 1B u) f5(B) fuu) du
b1y §§£(y 1B, w) f3(B) fu(u) du dp’

(34)

where
YIp,“,R"'»/V(Xﬂ-{' Z“,R),
p~A(Po,B), and u~ A4(0,D).

Although simplification of f3(B|y) of (34) is involved, it is straightforward. The
integrand of (34) is given by

(35)

Sy B fy(B) fulw) = exp{ —4[y — (XB + Zu)I'R™'[y — (XB + Zn)]}

!
(2n)*"|R)*

1 2 Ral |
XWCXP{—i(ﬁ—ﬁo)B (B—Bo)} (36)

x mexp(—%u’D”‘u),
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where N, p and g are the dimensions of y, p and u, respectively. This joint
density is a product of normal densities, and is now factored to yield the desired
conditional density. That is, we now factor the joint density in the order

S(y.Bu)=f(y|Bu)fo(B)fu(u) = fu(u|By) fo(Bly)S(y), (37)
because fg(Bly) is the density of interest. To obtain this decomposition
requires some algebraic work, in particular repeated use of the operation of
“completing the square.” [A useful identity is x'Gx — 2x'Hy + yYH'G " 'Hy =
(x — G"'Hy)Y G(x — G~ 'Hy).] After these manipulations, we obtain

£, B.u) = £(y | B u) fy(B)falw) = fulu ] B, V) S3(B1 V) (¥)
_exp{—$[u— E(u|B,y)TA~*[u— E(u|B,y)]}
(2n)l(A )
exp{ — }[B — E(B|y)T'C[B — E(B|y)]}
* QuPIc 1 (38)

exp{ —3[y — E(y)J'(L — LXC™'X'L)[y - E(y)]}
n)N|L — LXC'X'L}}

where
A=D"!'+Z'R!'Z,
L=R !'-R7!'ZA“'ZR '=(ZDZ +R) ! =V~
C=XV!X+B} (39)
E(u|,y)=A"'Z'R™!(y — Xp),
E(Bly)=C 1 X'V 'y + B! i),
E(y)=(L—-LXC !X'L)"'L'XC~'B"!8,.

A number of matrix identities can be applied to the expressions in (39) to
derive alternate, perhaps more familiar forms for these estimators. In particular,
using the identities of E 9.12, we have from (39)

E(u|f,y)=DZ'V~'(y — Xp),
EBly)=(XV'X+B7 )" (X'V 'y + B™'B,), (40)
E(y) = XB, .

The factorization in (37) gives the conditional distribution that we are
interested in. Formally, we can complete the required integrations of (34) or,
informally, read the answers from (38) knowing that, in this case, all distributions
are normal (Appendix S). We have

Bly~ALEBIy)C™'], (41)

where E(B|y) and C are given in (39) and (40).
Using (41), we can obtain estimates of f. For example, a possible point
estimate of p is E(p|y), given in (39), and an estimate of dispersion might be
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takenas var(p|y) = C ~'. Note, however, that C ™! is not the variance of E(B | y).

This variance is the same when using either a Bayesian or frequentist approach,
and is commonly given as

C Y(X'V"!X)C™! (Bayesian),

var[E(Bly)] = {

C '—C ™ 'B 'C™! (frequentist).

We note that expression (43) could form a basis for variance estimation with
unknown variance components. Exercise E 9.9 explores the relationship between
E(B|y) and the best linear unbiased estimator of .

These hierarchical estimates, based on the posterior distribution, require
specification of B, and B, quantities that an experimenter may be reluctant to
specify [although Angers (1987) details some robust versions of these estimates ].
Sometimes an experimenter will choose values for B, and B that (seemingly)
impart no prior information, using a so-called non-informative prior. In this
situation a non-informative prior would specify B~! = 0. Substituting this value
into (39) and (41), noting that B, vanishes, we obtain

B=EPly)=(XV'X)'X'Vly, var(Bly)=(X'V7'X)"!, (43)

the generalized least squares estimate of P and its variance, Note also that Xf
is the BLUE (best linear unbiased estimator) of Xp (Appendix S.2).

The assumption that the prior variance matrix B satisfies B~! = 0 is often
equated with B satisfying B = o, although this equivalence can be slippery (see
E 9.8). If we assume that this equivalence holds then the generalized least squares
estimate of (43) can be viewed as a posterior estimate obtained from prior
information with infinite variance, and in that sense the prior is non-informative.
This can also be interpreted in the reverse way. If there is any reasonable prior
knowledge (where “reasonable” means that our prior variance is smaller than
infinity) then we should be using an estimate other than a generalized least
squares estimate.

(42)

-ii. Estimation of u. For estimation and inference about u we similarly
use fy(u|y). We cannot use the decomposition in (37) for inference about u
because this would give us fy(u|p, y). This is unsatisfactory since it requires
knowing B. Hence, we decompose the density in an alternate way, writing

Sy1B.wfp(B) fulu) = fo(Bly. w)fu(uly)f(y). (44)
To derive f,(u]y), operate as in (36)—(39), with the end result being
Sy 1B, ) fp(B)fu(u) = fa(B|y, w)fu(uly)S(y)

_exp{—4[B—EBlu,y)) o '[p—E(Blu.y)]}
(2m)t?| o |

. &xp{~4[u — E(u|y)]€[u - E(u|y)]}
(2m)t| €|~

. &Pl —4ly - E(y))(L — LXC'X'L)[y — E(y)]}
(2n)¥|L - LXC~'X'L| ¢

(45)

’
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where we define, analogous to (39),
o =B"1+X'R X,
Z=R'-R7!Xo 'X'R”'=(XBX' +R)"},
€=Z<2Z+D! (46)
EBluy) =of "'[X'R™!(y — Zu) + B"'§,],
E(uly)=€"'Z'2(y — Xp,).

Of course, the marginal distribution of y remains the same as in (38). An
exact correspondence between E(p|u,y) and E(u|y) of (46), and E(u|,y) and
E(B|y) of (40) exists, but is not immediately apparent. This is because we have
assumed the prior mean of u to be 0, while the prior mean of B, B, is not
necessarily 0. The case with u having a non-zero prior mean is treated in the
next subsection. The distribution of interest, f,(u]y), is given by

ujy~ A [E(uly), € '], (47)

and we again could use the posterior expectation E(u|y), as a point estimate
of u, with var(u|y)=€"'. Again considering the special case of B~! =0
(interpreted as B = o0), which led to the generalized least squares estimate of
(43), we obtain,

E(u|y) = DZ'V~!(y — Xp), (48)

where f = (X'V™!'X)"!X'V~'y and V = ZDZ' + R. This is the BLUP (best
linear unbiased predictor) of u, discussed in Section 3.4 and in Chapter 7. The
details of this derivation are in the next subsection.

b. An alternative derivation

The derivation of fg(B|y) of (34) and (41) and f,(u]|y) of (47) was done in
a general fashion, without exploiting some of the particular properties of the
normal distribution. If we take advantage of those properties, especially facts
about conditional distributions derived from multivariate normal distributions
(Appendix S.2), we can simplify some derivations in the normal hierarchical
mixed model. Of course, by taking advantage of the normal distribution, our
results will not generalize to other distributions as easily.

-<i. Exploiting the multivariate normal structure. Withy = Xf + Zu + e of
(33), it follows from the normal distributions of (10) that cov(y, ') = XB and
cov(y,n’) = ZD. Hence, using (33) and (10), the joint distribution of B, u and
y is given by

] Bo B 0 BX'
uj~AN& u, ] D DZ’ . (49)
y Xpo+Zu, | { XB ZD XBX' +ZDZ' +R
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Previously we specified uy = 0, as in (10), but here retaining it as (potentially
non-zero) u, is subsequently helpful. Note also that (49) is a direct consequence
of a hierarchical model such as (18).

From (49) we can read off the joint distribution of [p’ y']’, and obtain the
conditional distribution of B |y. Using the conditional distribution from (iv) of
Appendix S.3, which is

Xy 1% ~ A [py + vlzvz_zl(xz —-n), Vi — VIZV{ZIV“], (50)
applied to the joint distribution of [p° y']’, we obtain
Bly~ALEPBly), var(Bly)] (51)

with (as established in E 9.11)
E(Bly) = Bo + BX'(XBX' + V) }(y — XBo — Zuy)
and (52)
var(B|y) = B — BX'(XBX' + V)" !'XB.

The apparent difference between the expressions in (52) and those in (39)
and (40) can be explained using the identities of E 9.12. The resulting alternative
expressions are

E(Bly)=C7'[X'L(y — Zug) + B™'Bo] and var(Bly)=C™', (53)
Now, if we substitute u, = 0, we obtain, analogous to (41),
Bly~A[CH(X'Ly +B™'fy),C™']. (54)
Using similar methods, including (27) of Appendix M.5, we can also derive
(see E 9.10)

E(u|By)=uo+ A 'Z’'R™}(y — Xp — Zu,) and var(u|B,y)=A"!

(55)
and, substituting uy = 0,

ulpy~ATAT'ZR '} (y —Xp),A™']. (56)
To derive the analogous expressions for u, that is, E(u|y) and var(u|y), we
can use a simple set of notation interchanges, exploiting the symmetry of the
model specification. Then, with these interchanges, we can immediately write
down the parameters of the normal distributions of u|y and P|w,y. This is
done by interchanging p and u, B, and u,, B and D, and X and Z. (This is the

reason for carrying out these calculations with u, # 0.) To do this, recall from
(46) that

=B '+ XR'X, "'=R+XBX, €=D"'+Z2Z. (57)
and hence, analogous to (54),
uly~ A (€7'[Z Z(y - XBo) + D 'u,], €7Y),
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which, with u, = 0, is

uly~A[€'Z%(y—Xpy), €°']. (58)
Likewise making the interchanges in (55) gives
E(Blu,y)=Po+ o 'X'R™'(y — Zu — XB,) (59)

=o' [XR Y (y—Zu)+B~'B,]
and
Bluy~ [ ' [XR™I(y—Zu)+B~'B,], & ']. (60)

-ii. Relationshipto BLUP. As noted before, if B = oo then E(u | y) becomes
the BLUP of u, as given in (48). That expression can also be derived by starting
with (52) for E(p|y) and by making the notation interchanges noted just prior
to (57), to get

E(u|y) = uo + DZ'(XBX' + ZDZ' + R)"!(y — XBo — Zu,).  (61)

Thus, for uy = 0 and recalling that V = ZDZ' + R, it follows from E 9.13 that
as B — oo we obtain

E(ufy) = DZ'(V + XBX')"}(y — XB,)
=DZ'V [y — X(X'V"1X) ' X'V 1y] .
Therefore, on defining Xp = X(X'V~'X)~'X'V !y, we again have
E(u]y)=DZ'V~'(y - Xp), (62)

the BLUP of u. [See (33) in Section 7.4a.] This connection of Bayes estimation
to BLUP has also been demonstrated by Dempfle (1977).

¢. The 1-way classification, random model

To illustrate both the formal method and the difficulties that might be
encountered in implementation, we give some details for the 1-way classification
model, having the familiar model equation

Vij=h+to+e; fori=1,..,aandj=1,..,n
or, in matrix form,
y=01,81L)u+(1,®1,)x +e (63)

as in equation (23) of Chapter 3. Although we assume balanced data here,
similar (but more involved) derivations can be carried out for unbalanced data.
To identify the general matrices of this chapter with the more specific forms

here, write
X= la ® ln, B= Var(ﬂ) = 6‘2‘9
Z=1,®1, D =var(e)=o0?l, (64)

R = var(e) = 0'31,,,, = 0'3(1,, ® L),
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and

V=var(y)=2ZDZ' + R=1,®(c2J, + 0L) =1, ®V,,
where Vo = a2J, + a2I,. Then

VIi=(LLO®Vy) '=L®Vs!,
with (65)

1 a?
Vil=— 1,———“—.1,).
° af( ol + nol

The prior distributions taken for the parameters are
p~N(po,al), a~AH(0,a20), (66)

which for a is the same distribution assumed in the classical treatment of the
random model (e.g., in Chapter 3).
If these assumptions are written in the hierarchical form of (35), we have

ylua, 6: ~ A pp+(1,®1,)a, aezlan]9
H ~ ‘/V[”m 63]9 (67)
a ~ A0, o21,],

and p and a are independent.
-i. Estimation of u. Applying the arguments leading to (41), we find that

the distribution of the fixed effects conditional on the data, that is, f(u|y), is
given by

uly ~ A LC ULy + po/af), €711, (63)
where
C=1LI1+ /a2, from (39)and (64),
=1'V7'1+1/a, using L = V™! of(39),
=1'(L,®VyY )1+ 1/a2,  from(65), (69)

=al'V3'l + 1/g?

2,2
a n 1
= ‘5(" - 2—6“—2) +—;, from(65),
o, g, + na; a,

an 1
- 70
ol + ne? o} (70)
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Hence from (68)

E(uly)=c-‘(l'Ly+1‘—‘;)
al‘

( ) (1, @ 1)1, ®V01)Y+ ]
Oy
__( l ) _ll ® l (ll nauz l/) + #0] (71)
2 g2+ne?) L a2\ 63+naf"y o}l
! ne? uo]
Lm0 i,y + 20
( ) ( a3+na3> Yo

_(l+ an )( an y‘+”°)
ol o2+ nol 62+ ne¥ " o)’

Notice that the expression for E(u|y) is a weighted mean of j., (the average
of all observations) and pu,, the prior mean of u. From (68) we also get a
posterior variance of u,

(72)

1 an )“ _ ai(a} +na})

var(ply)=C“=(—+ .
a? ano? + (a2 + nol)

2 2
u O¢ +no;

Setting 62 = oo, which is a special case of setting B = co as in (43), is often
interpreted as complete uncertainty about u. Then (71) and (72) reduce to

62 a?
E(uly)=y. and var(uly)= a_:; + 7’ = var(y.), (73)

which has been derived previously in Section 3.3 where 2 = y.. This also
illustrates that the Bayesian quantity var(u|y) can agree with the classical
quantity var(y..) when an improper prior is used.

-ii. Estimationofa. Turning now to the prediction of «, the random effects,
analogous to (47), the posterior distribution of |y is also normal:

aly~ #[E(a]y)€']. (74)

Substituting into (58), we have

0’2

- —_“_3Jan>(y - ﬂolan)’ (75)
u

6l + anc

1
E(aly)=¢"'(L® l,.)’-a—z(lan
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where, from (46) and (64),

€= gl +noy n*al
- a a
olgl 02(c? + ancl)
and so (76)

S P L |
62 +no2| *  o2(0? +no? +ansl)’
Substituting these values into (75), after some algebra we have

2 2

anaﬂy-- l 62#0 l

2 2 tan T TS 3 tan
g, +ana" g, +ana"

1
E(aly) = ?"(Ia®1n)';,_z<y -

2 2
noz _ ano _
=— — pol,) — £ W H), s (77
o7 7 na [(y Hol,) oIt nal 4 anaﬁ(y Ho) ] )
where j.. = L, ;y,;/an. Note also that (I, ® 1,)'y = n§, wherey =[§,. ... Ja.J

and j;. = X,;y;;/n. From (74) we also see that var(a|y) = €', and hence for
the individual effects

2.2 2,22
_ alg? n*g2q?
var(a1y) = o+ naz[l ¥ o2(o? + na? + anaz)]
e a e e a #
and %)
n*clol

cov(ay;, o;|y)=

(02 + na2)(e? + no? + anc?)

If we again take o2 = oo then from (77) and (78)

no? 62  agl?+ no?
E(a =—2 (y:. — ¥.), var(e = 2 ud 2
(oY) 63+M:(yi y.) (o ]y) p p,
and (79)

nol

cov{ay, a;y) a(0? + no?) .

If, instead of a 1-way random model, a 1-way fixed model were hypothesized,
this can also be handled within the hierarchical framework. Recall that classical
fixed effects are modelled as having infinite variances. We can handle the fixed
effects case by first deriving all necessary quantities using g2 < oo, and then
letting it tend to infinity. Letting 62 — oo in (79) gives

E(%y) = yi. = j.. (80)

Thus, the usual fixed effects ANOVA can also be fitted into the hierarchical
model. [ Note that the assumption E(a) = 0, implicit in (67), alleviates any
overparameterization problem.]
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Finally, it is interesting to note what happens if we use the distribution of
@ | u, y to make inferences about a, in particular calculating E(a|u,y) for a
point estimate of a. [ Admittedly, this would be mostly of theoretical concern
since E(a | u, y) would depend on g, thus making it useless for inference unless
u is known.] Using (39) and (64), we derive
2
ne
E(alp,y) = ———(§ — ul,),
(«]py) p +M:(y ul,)
which has already been derived in a classical manner [Chapter 3, equation
(40)]. See E 9.14.

d. Empirical Bayes estimation

The empirical Bayes strategy outlined in Section 9.2c can be applied directly
to the estimation of the effects p and u. In fact, the application here is quite
straightforward.

As illustration of the empirical Bayes principle, consider the estimation of
u in the mixed model. The posterior distribution is given in (47), and keeping
track of all parameters we would write, using (46),

E(uly,B,D,R,B,) =€ 'Z'L(y — XB,) . (81)

where € and & are given in (46). To estimate the unknown parameters implicit
in (81), namely the variance matrices B, D, R and the prior mean §,, we obtain
the marginal distribution for part (iii) of the empirical Bayes strategy of Section
9.2c—i (keeping track of the unknown parameters). Starting from the hierarchy
in (35), the marginal distribution is given by

m(y|B,D, R,Bo)=f[ff(YIB,“,R)fp(BIBo,B)fu(“ID)dﬁ] du. (82)

Notice that the integration over B is necessary to carry out part (iii); that is,
the resulting marginal distribution must only depend on the unknown parameters
of interest, and thus any other unknown parameter must be integrated out (a
process known as marginalization). Although the parameter B is often of interest,
in the estimation of u we treat it as a nuisance parameter and integrate it out.

Because of the factorization already performed in (45), the integration in
(82) is easy to perform. In fact, m(y | B, D, R, B,) is itself a likelihood function,
a marginal likelihood, and we write

m(y|B,D,R,B,) = L(B,D,R, B, |y) . (83)

Maximum likelihood can now be done on (83), and estimates for B, D, R and
Bo can be found. These marginal maximum likelihood estimates B, D, R and
B, can be substituted into (81) to obtain an empirical Bayes estimate of u.
Furthermore, the estimates B, D and R can be used as point estimates of B, D
and R. (Exercise E 9.3 shows how to obtain an empirical Bayes estimate of B.)

<i. The I-way classification. A special case of the above estimation is the
1-way random model, as detailed in Section 9.3c. From (77) and (78) formal
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Bayes estimators of a; and var(a;) are

2 22
ne an‘c _
Ea‘ [} ’62’62’62 =—¢— _-_ - £ ( _”)]
( lly Ho e " a) o_ez+n0_a2 Vi Ho o_:+n0_a2+an0_z y 0
(84)
and
22 2.2 .2
2 2 2y 6.6} n‘ec, o} ]
var(a; |y, 4o,0.,65,63) = 1+ . (85
(&Y. o, 0. 04, 02) o§+no§|: ol(6? + ne? + ans?) (83)

To estimate the unknown parameters o2, 62, 62 and p, using the empirical

Bayes strategy, we must obtain the marginal distribution of part (iii) of Section
9.3¢c-1i, as parts (i) and (ii) are already implicit in (85). From (67) the likelihood is

L(“v I‘o’ 03’ 0:,03‘)’)
=flyluo,o2)f(ulpno,02)f(2|03)

1 ex an
" (2nel)tm P 20}

{y=[lap+ (L ®L)al}{y - [lau+(I,® l..)a]}) (86)

l,)
a'al,

1 1 R 1 (
—_ _ X ————€X -
x 2ol exp[ 20‘,‘(44 Ho) ] (Zno?) p 27

and the appropriate marginal likelihood for part (iii) of Section 9.2c-i
[equation (27)] is

L(po, 02,05, 021y) = m(y|po, 02, 03,07) = HL(u,uo,of,oﬁ,oﬁly)du da..

(87)
From this marginal likelihood we can obtain estimates jf,, 62, 62, 42
and produce empirical Bayes point estimates E(a|y, fo,d2,62,62) and

var(a; |y, g, 62, 82,62). Realize, once again, that var(, |y, fio, 62,62,62) is a

point estimate of var(e; |y, uo,62,02,62) and not an estimate of the variance
of E(a; |y, flg, 62,62,62), nor of a.

The likelihood in (87) is actually a straightforward calculation, and follows
directly from applying the general decomposition (45) to the 1-way classification.

See E 9.20.

-fi. Cautions. As in the classical approach, unknown variances pose no
problem for point estimation in the hierarchical model using conditional
expectations. For example, analogous to the above classical situation, from (39),
if matrices V, C and B all contain unknown variance components then the
point estimator of B,

EBly)=C X'V 'y + B~'f,), (88)
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can be modified by replacing the variance components with estimates to obtain
EBly)=C'(X'V 'y + B!, (89)

as an estimate of E(f|y).

The variance of the estimate in (89), var[E(B |¥)], is not straightforward to
derive, since it involves estimates of C, V and B. Instead, we use the easy-to-obtain
posterior variance of B to approximate it. The exact conditions under which
this is justified are not known; however, the approximation tends to work well
in practice. See Steffey and Kass (1991) for a discussion. From (39) and (41)
we have an expression for var(B|y), and a convenient approximation to

var[E(B|y)] is

var[E(Bly)] =~ (X'V™ !X + B~1)71, (90)
and a natural analog to (89) would be (also see E 9.21)
var(Bly) = (X'9I1X + B~1)"1, (91)

This straightforward substitution for V and B, however, is reasonable only as
an estimate of var[E(B|y)], and not as an estimate of var[E(B|y)].
Unfortunately, this latter quantity is usually the one of interest, and using (91)
as its estimate may result in underestimation, which would lead to overly short
confidence intervals. This is the same problem as before, that (91) does
not take into account the variance of the estimates ¥ and B that we substituted
into (90) in place of V and B, and rather treats them as constants.

In the hierarchical model we can see this more clearly, as long as we are
careful to keep track of conditioning variables. The variance in (90) is, formally,

var(f|y,R,B,D) = (X'V™'X + B~!)7}, (92)

since it is derived conditional on the knowledge of R, B and D. The matrices
R and D are used to obtain L. Continuing in this way, we write (91) as

var(Bly, R=R,B=B,D=D)=(X'V !X + B~ 1), (93)

which only can be used as a point estimate of the variance in (92). However,
since the variances R, B and D are unknown, the variance estimate of (91), to
be useful, must be unconditional on R, B and D. A standard derivation (see
Appendix S.1) gives the identity

var(p|y) = E[var(p|y,R,B,D)] + var[E(B|y,R,B,D)], (94)

which involves integrating over the joint distribution of R, B and D. Now we
see that (93) gives an estimate only of the first piece in (94), and the second
piece is not dealt with. This is why using (93) as a variance estimate results in
underestimation. Note also that this discussion applies equally to estimation of
var(u|y), or the variance of any estimator.

The shortcoming of the “substitution principle” for estimating the variance
of an estimator can also be seen by investigating the equivalence of (94) to the
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substitution in (92) and (93). More formally, we ask “When does var(B|y) =
var[B|y, R, B,D)?”—a question that can be answered by derivations similar
to those in Section 9.1e. Formally, we have

var(B|y) = E[var(B|y,R, B,D)] + var[E(B|y,R, B, D)] (95)
~ E[Var(ply’ R’ B’ D)]
~ var(p|y,R,B,D)

only if var[E(B|y,R,B,D)}] = 0.

When this type of substitution is used, as in (92) and (93), we are using it
with the values R = R, B =B, D = D. Thus, we are implicitly assuming that
the variances of R, B and D are negligible, which is, of course, false. It is this
assumption that makes estimates such as (93) an underestimate of variance.
Notice that the actual size of var[ E(B|y, R, B, D)] gives an indication of how
much we are underestimating the variance using a direct substitution, If this
term really is close to zero, then we will not be doing too badly.

Kackar and Harville (1981) address this problem. Working in the classical
mixed model [equivalent to the hierarchy (22)], they show that if the variance
component estimates are even, translation-invariant functions of y then the
expected value of point estimators remain unchanged when variance estimates
are substituted for known variances. In the model addressed here this implies
that the estimators (88) and (89) have the same expected value, that is

E[E(B|y)] = ELEBIy)], (96)

where the outer expectation is over the sampling distribution of y. Such a
property gives us some hope that var[ E(B |y, R, B, D)] = 0, but of course, this
is not a proven fact. Kackar and Harville (1984) go on to investigate various
approximations to the variance. In general, it is probably wise not to assume
var[E(B|y,R,B,D)] ~ 0, and use a more sophisticated variance approximation.

In the progression from (88) to (89), where we are dealing with an expected
value, not a variance, this problem does not occur. Again, if we keep track of
the conditioning variables, we have

E@B|y,R,B,D)=C ' (X'V™'y + B™'B,) (97)
and
EBly,R=RB=BD=D)=C/(XV 'y+8B-1p,). (98)
Applying E 9.15,
E(Bly)=E[E(B|y,R,B,D)], (99)

so we can use (98) as an estimate of the entire quantity in (99), and the problems
of (92)-(94) do not arise.

The substitution illustrated in (90), (91) and (97), (98) will work for deriving
a point estimator of the variance of §, that is, a point estimator of the quantity
in (92). Thus, the moral of the story is that substitution of estimates for
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parameters can be reasonable if we are estimating means (even means of
quantities that are variances), but is unreasonable if we are dealing with
variances. This is because the calculation of the variance must take two pieces
into account, and substitution will usually neglect one of these pieces.

-ifi. Variance approximations. There has been much research aimed at
obtaining approximations of the variance pieces in (94). Some examples, of
different approaches, are Morris (1983), who gave one of the first approximations,
and Kackar and Harville (1984). Here, we will outline a more recent strategy
given by Kass and Steffey (1989). Recall from Section 9.3d—ii that when
calculating a variance it should be obtained unconditional on all parameters
other than the one of interest.

Although the Kass—Steffey strategy is in its infancy, and its worth can only
be judged against time, it provides an easy-to-calculate approximation based
on reasonable statistical assumptions. We illustrate the Kass—Steffey approximation
first for a general hierarchy (as in E 9.15), and then give some details for the
normal mixed model. For the hierarchical specification

X10,A ~ f(x]6,0),
0|k ~ ng(0]1), (100)

A ~m(d)

the variance of any function g(8) is given by
var[g(0)|x] = E{var[g(8)|x,A]} + var{E[g(8)|x,A]}, (101)
where the right-hand side calculations of expectation and variance are done

using the density
§§/(x16,1)mg(8|A)my(1) dO

[§ £(x10,0)me(B|X)my (R) dO AL

In an empirical Bayes analysis, however, we would not specify n, (A) but instead
estimate A from the marginal likelihood

n(hx) = (102)

L(llx)=ff(x[ﬂ,l)ne(ﬂll)dﬂ. (103)

Substitution of X, the MLE of A from (103), into (101) may cause underestimation,
but Kass and Steffey have first-order approximations

E[9(6)|x]1 = E[g(6,)1x,X],
var[g(6,)1x] = var[g(6,) | X,X] + £;,6,5,3),

where 6, is the (j,h) element of the inverse negative Hessian of /(A |x) =

log L(A | x)
-1
} (105)
A=A

(104)

2

0
z={a,h}={—mlmx)
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and

= 0

9; ale[g(Gi)Ix, A] s
The results of Kass and Steffey are actually more general than reported here.
It is possible to use the more general (A | x) in (105) instead of L(A | x). Notice
that L(A|x) is equal to m(A|x) when a uniform prior is put on A [assuming
the integral in (102) remains finite]. Thus, in (105) we have calculations made
from the marginal likelihood, where we could otherwise have done them from a
general marginal distribution.

For a mixed model-type hierarchy (but with general distributions),

yIB,u,R “’f(ym’“,R),
B'BO’B~fB(B|BO’B)’ u|D~fu(u|D)’

the variance of u (for example) could be derived as

(106)

var(uly) = f[ll — E(u|y)]*/u(u]y) du, where E(u|y)= IUIu(UIY)du,

(107)
and, keeping track of all parameters,

Saluly) = J[f(u |y Bo. R, B,D)]n(fo, R, B, D) dp, dR dBdD . (108)

The density in square brackets is the posterior distribution of u from the
hierarchy (106), and n(B,, R, B, D) is a prior distribution on the other parameters.
It is this distribution that gives the second piece in an expression such as (101),
and is an aim of these approximations. Asin (101), the variance of u can be written

Val’(“|y) = E[var(u | y’ BO’R’ B’D)] + var[E(u | y’ BO’R’ B’D)] .

For notational convenience write 1 for the vector of elements of B, R, B and
D. Then we can write for element u; of u

var(y; |y) = E[var(u;|y,n)] + var[E(u{y,n)], (109)
with approximations
Elvar(u;|y,n)] = var(u;|y, #i)
var[E(u;| %, )] = £;,646,,01,
o2 b 0
onon’ n=# T on,

Jj n=H

(110)

and
L(nly)=J-f(y,B,uln)dbdu=f S(y|B,u,R) f3(B|Po,B)fu(u|D)dB du.

Specializing even further, consider the normal hierarchy

yIpu R~ A4 (XP + Zu,R),

BB~ A4(0,B), u/|D~A(0,D). ()
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An empirical Bayes estimate of u, along with an approximate estimate of
variance, can be obtained in the following way. Using the notation n for the
vector of elements of R, B and D, from (38) and (39),

E(u|By,n)=A"'ZR Y (y—XB), var(ulB,y,n)=A""' (112)
where A = D~! + Z’R™!Z. An empirical Bayes point estimate of u is
E(u|B,y.ii)=A'Z’R"(y - XP), (113)

where the estimates are MLEs from the likelihood

L(p,B,D,R}y) = jf(y | B, u, R) /(B | B)fu(u]| D) du, (114)

which is equal to the joint distribution of B and y, and is given by the last two
terms in (38). The variance is then estimated [ detailed calculations are in Kass
and Steffey (1986), and are similar to calculations given in Harville (1977)] with

var(u| B,y,n) ~ var(u|B,y, /) + var[E(u|B,y,n)] = A~! + §'ES

where (115)
2

O'jh= -

(ly)| . and &=""E@ipyn)
0n;0ny, n=# on;

Note that here we started with the distribution of u|§,y, which gave us the
expressions in (112) for the posterior expectation and variance. We could also
have started with the distribution of u|y, with B integrated out. This would
have led to different estimates. At present, there are no definite criteria for
preferring one strategy over another. The different strategies, perhaps, lie at the
heart of a Bayes/empirical Bayes choice. Exercises E 9.16—E 9.19 contain some
complementary situations, and E 9.20 specializes to the 1-way classification.

n=1

9.4. OTHER TYPES OF HIERARCHIES

In this section we apply some of our hierarchical modeling and estimation
strategy to hierarchies that fall outside of the linear model/normal case,
illustrated with two hierarchies that are also treated in Chapter 10. The general
techniques illustrated here are applicable to other nonlinear hierarchies, and
are all examples of a generalized linear model; see McCullagh and Nelder (1983).

We will examine some empirical Bayes estimation strategies which have
been used, for example, by Leonard (1975) and Laird (1978). These are only
some of the strategies that are being used in the generalized linear model.
Moreover, empirical Bayes estimation strategies can be adapted to even more
complicated models than here, as is done in DuCrocq et al., (1988a,b). There,
mixed model ideas are applied to proportional hazards models, and empirical
Bayes techniques are used to estimate parameters.
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The generalized linear model, with a general link function (see Section 10.4),
can also be analyzed in some detail using hierarchical models. Albert (1988)
does this using a formal hierarchical Bayes analysis, and Piegorsch and Casella
(1990) do it with empirical Bayes methodology.

8. A beta—binomial hierarchy

As an example, consider the “beta—binomial” hierarchy, which is described
in some detail in Chapter 10. Although this model has some shortcomings, it
represents a reasonable place to start, as it allows some explicit calculations
(which does not often occur outside of the normal case). A version of the
beta—binomial hierarchy can be described by writing

Yiix | piy ~ Bernoulli(p;;), independent,

X (116)
p; ~ beta(a;, B;), independent,

fori=1,...,a,j=1,...,b,k=1,...,n;

Here there are a groups, and subject j in group i has success probability
p;;- Estimation centers on p;; and var(p;;). Such a model might arise in an animal
breeding experiment in the following way. Suppose that in herd i there are b,
cows to be artificially inseminated. For cow j in herd i the artificial insemination
process might be thought of as a Bernoulli trial, with success probability p,;.
If ny; trials are to be carried out on cow j then p;; represents the success rate
of calving of that cow (and may be confounded with other factors, e.g., the
technicians). The second stage of the hierarchy models variation over animals
within herds. Estimation of both p;; and var(p;)) is of interest. (See E 9.24 for
a similar model.)

One shortcoming of the beta—binomial model is the problem that, unlike the
linear/normal hierarchy, there is no unambiguously defined variance component.
This problem is discussed in some detail in Section 10.3. As it turns out,
estimation of var(p,;) is a good compromise.

To estimate p;; and var(p;), we first their obtain posterior expectations.
Based on (116), we can derive E(p;|y,a;, ;) and var(p;|y,a, B;), where
¥ = {yin}. From first principles

n;
n(py| Yy, o, B) = n(pylt, o, By), [USing sufficiency and ¢t = Yij. = 2 yijk]

k=1
r )
(ntu>P'(1 - P)""”'——(a‘ + ) pY_y(1 — p)p—!

M(a,)T
= (2T (5, [equation (2)]
J‘("U>pf(l — pyu—t C(a; + B) pa,_l(l _ p)p,_l dp
t F(e)T(B)
(117)
Completing the integration in (117), we obtain the posterior distribution
F(n+oa+p)

n(p|tapB)= previ (1l —pyttEt L (118)

Ma+I'(n—t+ p)
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which is a beta distribution with parameters ¢t + « and n — t + f. Using the
formulae for the mean and variance of a beta distribution [ Appendix S, (9)
and (10)], or calculating directly from (118), we obtain

t+ o (t+a)(n—1t+p)

E s &y =-— s Py = L4
(plt, f) n+a+f and var(plt o f) (n+a+f+1)(n+a+p)?

(119)

the posterior mean and variance of p. Note that the posterior mean is a weighted
average of the prior mean, a/(a + f), and the sample mean, t/n, (as in the
normal case), namely,

E(plt.00 ) = n t ( a+f ) o
(pit e f) (n+a+ﬂ>n+ n+a+p/a+p’ (120)

The weights are functions of the prior parameters and n, the sample size, with
estimates from larger samples getting more weight.

To estimate E(p|t,a, f), we can use E(p|t, &, f), which we know to be a
reasonable estimator. To estimate o and f§, the prior parameters, we use the
marginal distribution given by

m(t|a,f) = 'ff(t |p)n(pla, B)dp

n T+ p) ., -
= M — pptme T pam(f — p)ft g 121
J(t)p( p) r(a)r(ﬂ)p (1 —p) p (121)

3 (n) Ma+B) TMa+)F(n—t+f)
“\t/T@I(B) T+ f+1)

a beta-binomial distribution. The density m(t|a, #) forms a basis for estimating
a and f; however, the constructive use of (121) requires multiple values
(observations) on t. Otherwise, estimation of « and § will not gain anything—the
estimates will be confounded with those of p. For example, using (121), the
marginal mean of t is

o
E(t|la,f)=n , 122
(t]ap) P (122)
while the fact that ¢ ~ binomial(n, p) yields
E(t|p)=np. (123)

With only one observation ¢ it would be impossible to estimate p separately
from a/(a + B). This is because our estimate of p is a “within” group estimate,
while that of a/(a + f) is a “between” group estimate. We can only estimate
both quantities distinctly if we have multiple groups, which we have in a model
such as (116).
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Recall thatt = y;;. and, from (116) and (121), the marginal distribution of ;. is

(" F(a+ B) Tla + y,)T(ny — yy. + B)
1 F) (y.,.) FI(B)  T(a+f+yy)

the beta—binomial distribution. Marginally, for each i, the y,;s are identically
distributed with parameters o; and B, and these parameters can then be
estimated. Thus, even though the sampling distributions of the y;;.s depend on
the p, s, so that the y;;s do not have identical sampling distributions, when the
py;s are integrated out to obtain the marginal distribution for fixed i, the y;;s
become identically distributed.

From (124) we can obtain the marginal likelihood of the data. However,
this likelihood factors so that we can look at the ith piece separately. Thus, the
likelihood for o; and B, is

»  (124)

LGty Bl Yigore s i) = ﬁ ("u> T{o, + B) Tloy, + y )T (ngy — yyy. + ﬁ:)’
j=1\yy./ T(a)T(B) [ + B, + yi;.)
(125)
fori=1,...,a.
Estimation of each «; and f; can now proceed using (125). Two simple
estimation methods come to mind: maximum likellhood and method of
moments. Although maximum likelihood is preferred, there are (as usual) no

closed-form expressions for the estimators. However, if we define

I R 1 & -
Ji=— 2 yy and s} =-—— 3 (yy. — y) (126)
b.‘j=l b, -1 j=1
then the method of moments estimators of «; and f; are given by
.o =) —sf i1 = y) —sf
ALt [Tl N I (g ) il ek )

lsiz - my (1l —3) st —nmydl — Pt)’

for the case n; = n;. Details are left to E 9.22.
Maximizing the likelihood for each i yields the marginal likelihood estimates
of a; and f;, @ and f;. Substituting in (119) gives an estimate of p;;,

Yij. + 8
n;+a; + B

=< ny; )Xy__’_( &+ B ) & .
n;+a + B/ ny n;+a, + B/ + B

y. + &) (ny; — yy. + Bl)
(ny+a+ B+ 1)(n; +a + B.)?

E(Pu | Yijos &y Bi) =

and for the variance,

var(py | yij., %, ﬁ.) = (128)

an underestimate of the true variance of our estimate of p;. Equation (128)
estimates only the part of the variance given by the first piece in (101), and
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ignores the second term. One way to estimate the second term is by specifying
adistribution for a; and §,, n(«;, B;). Given such a distribution, we could write

var[E(py | yyy., o, Bi)]
- J{E(Pub’u.,anﬂ.’) — ELE(py| yiy., a1, 81} m( 2, By) doy; dB, (129)

which would depend only on y;;. and n;;, and could be used in the variance
estimate. This represents the type of formal hierarchical estimation discussed
in Section 9.2a, where the hyperparameters are integrated out, leaving us with
the marginal (unconditional) variance.

Another way to estimate the second variance piece in (101), in fact to estimate
the entire variance, is to again apply the approximations of Kass and Steffey
(1989). Using the approximation, calculate

Var(py;| yij. ny;) = var(py| yiy., &, B;) + var[E(p) | vy nyds (130)

where the first part of the right-hand side is given in (128), and the second part
is an approximation of (129) given by

VATLE(py) [ Yigos y] = Zop6.p6,05 . (131)
On suppressing the subscript i,

-9 —d%1_,
oa?  dadp
£={6, = , 132
(0} L L] (132)
daop Op?

where [ is the logarithm of the likelihood in (125), and

_mt Bi — .
al"_'&i’ﬁ!'_‘ﬁl (nU + ai + ﬂi)z

3]
51 = a—a"E(Pu | Yijos % Bi)

: e (133)
85 = —E(py | yijo t0s B) = T
g 0B, i w=ap=g (M + &+ B)?

Defining 5= [5, 35]’, using (131)—(133) we can write
var[E(p,)1 ., n,;] = ' E8, (134)

and combining (128)—(134) our empirical Bayes variance estimate is

. (yy. + a)(n; — yy. + B) 44
VAr(pi; | yij.o ) = . U 4888, (135
Vi) (n; + &+ B+ 1)n; + &, + B)? (133)

b. A generalized linear model

Analogous to, but more flexible than, the beta—binomial hierarchy is a special
case of the generalized linear model, the logit—normal hierarchy. Although this
hierarchy uses normal distributions, it is decidedly nonlinear, having a logit
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link function (see Section 10.4). The hierarchy is given by
yil p; ~ Bernoulli(p,), i=1,...,n,
pi= E(y;| B,u),

logit(p,) = log(l—p‘—-) = x;p + zju, (136)
— Vi
B ~ ‘A/(BO; B)y u-~ */V(oa D)y
B, u independent

where x; and z; are the ith rows of X and Z, respectively.
To illustrate estimation in this hierarchy, first obtain the sample density
using the logit relationship between p,, p and u given in (136). We have

718w = [T 70l B = [T pr1 = )t~

-1 [ exp(xi + zju) ][1 __exp(xif + zju) ]'-”
iy 1 + exp(x;P + zju) 1 + exp(x;p + z/u)

=1

_ 17 expLyi(xip + zu)]
i=1 1 +exp(x{B + zju)

(137)
Now we can write the full likelihood for the hierarchy of (136) as

L(Bo,B.D|y) = f J(y|B,u)fp(B|Bo, B)fu(u|D)dp du

- % expLyi(xiB + zju)]
B ”{g I + exp(x;B + z;u)}fﬁmﬂo’ B) fu(u| D) dp du,
(138)

where the densities of B and u are the normal densities given in (136).

To obtain estimates of B,, B and D, the likelihood in (138) is now maximized.
This cannot be accomplished in closed form, but a numerical solution may be
obtainable. Maximization of the likelihood in (138) will yield a solution using
normal prior densities on both B and u, which, as we saw previously, does not
correspond to the usual notion of REML or ML (but may be desirable in its
own right). Connections with REML and ML are straightforward, as discussed
in Section 9.2c-iii, and are obtained by specifying different forms of prior
distribution of p.

If B is given a flat (non-informative) prior, a uniform( — oo, oo), then we
obtain the analog of a REML likelihood,

_ oexpLyi(xip + zju)]
L(D|y) = J.J.{igl T+ exp(x/p z;“)}fu(“ln)dp du, (139)
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which, when maximized, gives a REML estimate of D. The ordinary ML
estimates would come from using a point-mass prior density on B, producing
a likelihood

_ 1 explydxiB + zw) ]
L. Dly) = j{ﬂx I+ exp(xp + z;“)}f..(uID)du, (140)

which can be maximized to produce estimates of p and D. [ See Stiratelli, Laird,
and Ware (1984) for more details.]

When point estimates of the variances are obtained, from any of (138)—(140),
u and P can also be estimated. For example, using (139) to estimate D, we
would (if we could) calculate

_Ju(ylu)fu(uiD)du
ff(ylu)fu(ulD)du

» exp[y(x;B + zu)
J "{j A oxpxiB + 2w d"}f“(" D) du

= oexpyi(xiB + zju)]
.[{f;ljl 1+ exp(x;B + Zju) dB}ﬁ.(u | D) du

where f,(u| D) is the A7(0, D) density of (136). As can be seen, this is a difficult
calculation, and could be quite time-consuming. What is often done, however,
is to estimate E(u| D, y) with the posterior mode of the distribution of u|D, y,
with D estimated by D. To do this, we only need to work with the numerator
of (141), and maximize

2oexplyi(xi + zu)] b
{J A e xp + zw) ‘"’}f“("' )

[ exply(xi + zju)] ] e
) {.[ =3 T+ exp(xiB + Zju) d"}(zn)ﬁml* (142)

as a function of u. A similar strategy, based on (140), can be used to estimate
B (see E 9.27). Similar models are treated by Foulley et al. in Gianola and
Hammond (1990).

E(u|D,y)

,  (141)

9.5. PRACTICAL CONSIDERATIONS IN HIERARCHICAL MODELING

a. Computational problems

Much of the estimation methodology outlined in this chapter requires either
the evaluation or approximation of integrals. Furthermore, in many practical
problems these integrals can be of very high dimension. This evaluation can be
a problem, since high-dimensional integration can be a computational problem.
(For example, in Section 9.4b a posterior mode is suggested as an alternative
to a posterior mean. This substitutes a maximization for an integration. Smith
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(1983) discusses when these might be equivalent, an equivalence that will occur
when empirical and formal hierarchical Bayes estimation yield the same
answers. ]

If integration is to be avoided, there are numerous alternative methods
available for doing computations, many of which have seen great improvements
in recent years. Approximations to integrals, in particular those arising from
Bayesian hierarchical modeling, are treated in detail by Tierney and Kadane
(1986) and Tierney, Kass and Kadane (1989). Methods for obtaining quantities
derived from marginal distributions abound, starting with the EM algorithm
(Dempster, Laird and Rubin, 1977) and an accelerated strategy (Laird and
Louis, 1987). Recent techniques include interesting work on applications of
Gibbs sampling (e.g., Gelfand and Smith, 1990; Gelfand et al., 1990), which can
sometimes provide methods of obtaining estimates without doing the integrations
that the formal derivations dictate.

The problem of efficient computation is being addressed by many researchers,
and the solution to any particular problem is probably contained in some
available strategy. Knowing where to look, however, may be a problem. The
references in the previous paragraph should provide some guidelines. A good
general introduction to statistical computing is Thisted (1988).

b. Hierarchical EM

The EM algorithm, in a particular form, can be readily applied to a hierarchy
to yield a computational scheme that is conceptually straightforward. Recall a
general hierarchy like (100),

X|0,A ~ f(x]6,1),
0| M ~ me(0]2), (143)
A~ (M)

With the goal being estimation of 8 and A, we can apply the EM algorithm
with the following definitions:

incompletedata: x;
completedata: x,A .
The actual data are always the incomplete data, and the actual data and the

parameter in the lowest level of the hierarchy is the complete data. The two
steps of the EM algorithm are then given by

E-step: calculate 4 = E(A | x,0);

o . . (144)
M-step: maximize L(0|x, 1) to obtain 0.
To implement (144), two distributions are required. The first is
Y
f(llx,0)= f(XIl,e)ne(OI )n).(l) (145)

JF(x[X,8)me(8] M)my (A} b
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which is used in the calculation of the conditional expected value. That is, in (144)
E(M|x,0)= Ilf(llx,é)dl. (146)

The second distribution required is

f(x ' 1'9 0)”0(0 ' l)n;_(l)
([ £(x]2,0)m(0 | A)my (A) dx db.

which yields the likelihood function L(0|x,}), used in (144). [ Formally, the
M-step of (144) yields a posterior mode. It will give the ML estimate when
7, (M) = 1.] Of course, this application of the EM algorithm is reasonable only
if either (145) or (147) is easy to derive. In particular, it should be expressible
in closed form. Otherwise, it would probably be just as good to maximize the
likelihood L(0,%1|x) = f(x|0,1) in O and A simultaneously.

For the mixed linear model, parallels between this construction and the EM
construction given in Section 8.3b are straightforward. There, the complete data
is (y,u), and the incomplete data is y, which comes from the ML hierarchy [as
in (22)]

(147)

S(x,1]0) =

yI B u R~ A(XB + Zu,R),
u/lD ~A4(0,D).
(Recall that when a parameter, or unobservable, doesn’t have a distribution
specified in the hierarchy, we take it to have a point-mass distribution.) The

hierarchy (148) is actually simpler than (143), since there are only two levels.
We thus have

E-step: calculated = E(u|y, f, R, D);
M-step: maximize L(B, R, D |y, éi)toobtainp, R, D .

(148)

(149)

As explained in Section 8.3, in the E-step we only need calculate the conditional
expected value of the sufficient statistics, which often will provide a simplification.
As another example, consider the REML hierarchy of (24),

yiBu R~ 4 (XB + Zu R)

. (150)
B ~ uniform(—o0, ©), u~ A7(0,D),

which can also be written without B as

ylu,R~‘[f(yIB,u,R)dﬂ,
fulu) ~A4(0,D).

(151)

We now have
incomplete data: y;

completedata: y,u.
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Thus, the EM steps are
E-step: calculated = E(u|y,R,D);

(152)
M-step: maximize L(R, D |y, ii)over R and D to obtain RandD;
where, from (48),
E(u|y,R,D)=DZ'0"'(y — Xp), (153)
where ¥ =ZDZ' + Rand p=(X'9~'X)"'X'9 'y, and
L(R,D|y,u) = [jf(YIﬂ, “,R)dﬂ]fu(“), (154)

an easier expression than (25), the usual REML likelihood. The closed form
(153) allows easy calculation of the E-step, making the EM algorithm reasonable
in this situation. Thus, we have exchanged a single, difficult, likelihood problem
[as in (24) and (25)] for an iterative sequence of easier problems.

9.6. PHILOSOPHICAL CONSIDERATIONS IN HIERARCHICAL MODELING

Specification of a hierarchical model results in conceptually straightforward
estimation methods. All calculations result from applying the laws of probability
to obtain some particular density (or likelihood). Once the density or likelihood
is obtained, application of standard techniques yields estimates for all quantities
of interest. A goal of this chapter is to illustrate many of these techniques, so
once the hierarchy is specified (any hierarchy!) reasonable estimates can be
obtained.

Of course, in order to gain all of these wonderful estimation principles, we
had to specify the hierarchy. Furthermore, all our estimates are good only if
the hierarchical specification is reasonable. Thus, we have gained so much only
because we have assumed so much. If there is reason to believe that the hierarchy
is wrong then it might be prudent to investigate other hierarchies. The subject
of robust Bayes analysis (Berger, 1985) is concerned with such questions. In
particular, a set of estimates would be regarded as robust if different hierarchies
yielded similar values. [ Angers (1987) investigates hierarchies that have some
built-in robustness properties.]

The hierarchical model, along with some Bayesian interpretations, also brings
along some ease of inference. (Although we say “Bayesian interpretations”, this
is really more than is needed. In fact, most of the inferences considered in this
chapter do not need any Bayesian interpretation. A more precise description
would be “conditional interpetation”.) The key feature of a conditional inference
is that it is made conditional on the observed value of the data. That is, the
data are considered fixed, and the inference about the parameter is made in the
face of uncertainty about the parameter, not uncertainty about the data. This
is in direct contrast to classical statistics, where the inference is made in the
face of uncertainty about the data, that is, over repeated trials of the experiment.
It is possible to evaluate hierarchical estimates according to these criteria (for
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example, MLEs are hierarchical estimators, and they are often evaluated using
classical criteria), but we have not done so.

Another advantage of the hierarchy is the ease of estimating both means
and variances. Using the general structure of (143), we can estimate any quantity
from the appropriate posterior distribution. For example, any inference about
0 would come from the formal posterior distribution

S(x]6,))ng(8] )7, (1)
[f(x]0,1)nq(0]L)my(R) dO’

or its empirical Bayes counterpart n(0]x,1), where A is estimated from the
marginal distribution (likelihood)

n(0x,A) = (155)

m(x|A) = L(k|x) = ff(x 19, 2)7g(8 | A)m, (1) d6.

The hierarchy also cautions us about underestimation of variance, as long as
we keep our notation straight. If we infer using n(8]x, 1) then our inference is
conditional on A = A, indicating the assumption we are making.

The ease of inference of the hierarchical model is also evident in its
straightforward interpretations of its entities. For example, for inference from
the hierarchical form of the classic mixed model

y=Xp+Zu+e

we do not have to worry about what quantities are fixed or random, or whether
we are trying to estimate or predict. We only have to worry about whether the
quantity is observable (data) or unobservable (parameter), and worry about
calculating the distribution of the unobservable given (conditional on) the
observable. The strategies mentioned throughout the chapter having to do with
variance estimation (in particular the caution about forgetting the “missing
piece”) are not formally a concern of hierarchical models, but rather a concern
of statistical estimation in general. Perhaps it is an illustration of the strength
of hierarchical models that this concern is brought to the forefront, and can be
dealt with in a reasonably straightforward way.

Throughout this chapter we have continually shown the connection between
hierarchical estimates and their classical counterparts, in particular noting that
in many cases the “usual” estimates can be obtained by allowing a distribution
in the hierarchy to have infinite variance. In particular, recall equation (48)
and the resulting discussion. There it was shown in the normal hierarchy

yipu~ A (Xp + Zu,R),
B~ A(Bo,B), u~A(0,D)
that if we take B = oo then the estimates of u (the random effects) and B (the
fixed effects) are
E(u|y)=DZ'V~'(y - XB) (best linear unbiased predictor)
and (157)
EBly)=Pp=(X'V'X)"!X'V~!y (best linear unbiased estimator) .

(156)
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Thus, the estimator of random effects results from a prior specification with
finite variance, while the estimator of fixed effects results from a prior
specification with infinite variance. This can be interpreted as saying that such
a specification shows that we know more about random effects than fixed effects!
This is because we model more structure in a random effect than a fixed effect.
For a random effect we usually assume knowledge of the probability distribution
of the levels, an assumption not made for fixed effects.

The observations of the previous paragraph are similar to those of Robinson
(1991), who gives a very readable account of BLUP in particular and the
estimation of random effects in general. The ramifications of fixed versus random,
and of finite versus infinite variance, are treated in detail by Robinson, so we
will not repeat those arguments here. We will, however, give an example (adapted
from Robinson’s paper) that shows why estimation of random effects assuming
a distribution with finite variance is a reasonable thing to do.

Example. The following small, fictitious, data set shows coded first lactation
milk yields for 9 dairy cows in 3 herds, each sired by one of four sires.

Herd Sire Yield

1 A 110
i D 100
2 B 110
2 D 100
2 D 100 (158)
3 C 110
3 C 110
3 D 100
3 D 100

We fit the usual mixed model

y=Xp+Zu+e

where e ~ 47(0,1,) and u ~ 4°(0,%1,), and

(100‘ 1 0 0 0
1 00 000 1
010 0100
010 000 1
X=|0 1 0| ad Z=[0 0 0 1],
0 0 1 0010
0 0 1 0010
00 1 000 1
0 0 1 Looou
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with results

A

p=1[106.64 10429 105.46] (BLUE offixed herd effects),

159
i=[40 52 .76 —1.67) (BLUP ofrandomsire effects) . (159)

The rankings in i are very sensible. Examination of the data shows that the
cows sired by D all have the lowest yield, and in i sire D has the lowest value
(— 1.67). The other cows all have the same yield, and so their sires are somewhat
equivalent. However, there are two daughters of C, and only one from each of
A and B. Also, there are two daughters of D in herd 2, which contains the
daughter of B. This gives slightly more information on B than on A. Thus, in
terms of information (variance) we have the most information on C, second
most on B, and least on A. This order is reflected in the ranking by i of
[A B C] according to the values [.40 .52 .76].

In contrast, if we had treated u as a fixed factor, and had performed least
squares on the entire model, we would obtain the (non-full rank) solution

f=[100 100 100) and 4=[10 10 10 OF.

Now the sires A, B and C receive equal ranking, even though there is a differing
amount of information on them. This is because treating an effect as fixed is
similar to assigning it infinite prior variance. The fact that we have slightly
more information on C makes no difference to infinity. Each sire is now treated
the same. Thus, allowing a factor to be random, and hence assigning it finite
variance, allows the resulting estimator to be sensitive to small changes in the
amounts of information in the data. An advantage of a hierarchical model is
that it gives us a framework under which all of these models can be evaluated
and compared.

9.7. SUMMARY

General hierarchy
X|0~ f(x|0) and O~ n(0). (1)

Posterior distribution and mean

f(x|0)=(0) _ 8f(x|0)n(8) 40

O =xioea "= Trxeme e D@

The mixed model hierarchy
l. Givenu=ujandp=p,, y=XPp,+ Zu,+e, e~ f(); (8)
2. (wP)~ fup(:,?) 9

Under normality
yipu~ A (Xp+ Zu,R),

(13)
ﬂ ~ ‘M(bO’B)’ u~ 'M(o’ D)’

with P, u and e being independent.
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Ordinary maximum likelihood (ML) hierarchy
yl|pu~ A (XB + Zu,R),

22
u~ A(0,D). (22)
Restricted maximum likelihood (REML) hierarchy:
ylBu~ A(XB + Zu,R), (24)

B ~ uniform(—o0, ), u|D~ A(0,D).
Empirical Bayes estimation of t

(i) Specify for  a distribution n(t | ), where n parameterizes the distribution.
(i) Use the formal Bayes posterior of 1,

S(yltn)n(t|n)
ffylvn)n(z|n)de’

to estimate 1, for example by calculating E(t|y, n).

(iii) Using ML, calculate estimates 4 of any unknown (hyper)parameters from
the marginal distribution

(26)

n(t|y,n) =

m(y|n) = Jf(y | T, n)m(t|n)dr (27)

(iv) The empirical Bayes estimate of t is E(t|y, §).

Means and variances in the normal mixed model hierarchy

Mean and variance of y

conditionalon : E(y|p)=Xp and var(y|B)=ZDZ +R =V,
unconditional on p: E(y)=XB, and var(y)=XBX' 4 ZDZ' + R

=XBX' + V.
Posterior mean and variance of B

conditional onu:  E(B|u,y)=(X'R™'X+ B~ ") '[X'R™(y — Zu) + B~ '§,],
(46)

var(Blu,y) = (X'R'X+B Y)! (60)
=B - BX'(XBX' + R)"'XB;
unconditional onu:  E(B|y)=(X'V'X+B )" (X'V 'y +B !B, (40)
var(Bly)=(X'V'X + B !)"! (41)
=B — BX'(XBX' + ZDZ’' + R)"'XB.
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Posterior mean and variance of u
conditional on B: E(u|B,y) =DZ'V~'(y — Xp), (40)
var(u|f,y)=(D" '+ Z'R"'Z)"! (55)
=D~ DZ'V~'ZD;
unconditional on B: E(u|y)=DZ'(V + XBX')"!(y — X,),
var(u|y)=[Z'(XBX'+R)"'Z+ D !]"! (47)
=D - DZ'(XBX' + ZDZ' + R)"'ZD .

Note: The two expressions for the variances are obtained from one another
using the identity

P+QS'Q)"'=P '-P'Q(S+ QP 'Q)"!QP"!.
Special case E(u) =0, R=c¢2, B~ ! =0

Posterior mean and variance of §

conditional on u: EBluy)=(X'X)"'X'(y — Zu),
var(Blu,y) = ¢2(X'X)7};
unconditional on u: EBly)=B=(XVIX)"IX'V-ly, (43)
var(Bly) = var(B) = (X'V7IX)' . (43)
Posterior mean and variance of u
conditional on B: E(u|B,y)=(a?2D" '+ Z'Z)"'Z'(y — XB),
var(u|B,y) = (D' + Z'Z/a})"};
unconditional on f: E(u|y) = BLUP(u) = DZ'V ~!(y — X)),

var(u|y)=D-DZ'[V! -V~!X
x (X'V-1X)"'X'V~1]ZD .

Variance approximations (Kass—Stefley)

For the hierarchy
X|8,A~ f(x]6,2),

0|h ~ me(B] 1), (100)
A ~m(h)
the mean and variance of any function g(6;) can be approximated by
E[g(6;)1x]~ E[g(8,)|x,1], (104)

var[g(6,) | x] ~ var[g(6,) | x,A] + Y G850,
Jh
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where &, is the (j, h) element of the inverse negative Hessian of /(A |x) =
log L(A | x)

2 62 -1
= {g =< ~— (A
{ajh} { 61,61,, (A x) x=i}
and (105)
N 0
0;=-——E[g(6)|xA]| .
1T o, h i
where L(A | x) is the marginal likelihood
L().lx)=Jf(xle,).)n,(ell)de. (103)

The hierarchical EM algorithm
Estimation of 0 in the hierarchy
X0, ~ f(x]6,1),
0|h ~ ng(0|1), (143)
A ~m(A),
with
incomplete data: x;
complete data: x,A;
implement
E-step: calcx'lla.te): = E(kJ x,0); . (144)
M-step: maximize L(0|x,1)toget§;

where

_IM(x1%, 0)mp(8] M)m(h) dh
[£(x[ %, 0)ng(8] X)ma(h) )

E(A|x,0) (146)

and

S(x14,0)n9(8 | X)m(3)
§§£(x|2,0)g(8]X)m(A) dx di
Estimation of u using the EM algorithm in the REML hierarchy of (24):

LO|x, %) = (147)

incomplete data: y;
complete data: y,u;
implement

E-step: calculated = E(u|y,R,D)=DZ'V-!(y ~ Xp);

. . (152)
M-step: maximize L(R, D |y, &) over R, D to get Rand D;
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L(R,Dly,u)=[jf(YIB,U,R)dl3]fu(U)- (154)

9.8. EXERCISES

For the hierarchy
X | A ~ binomial(A, p),
A ~ Poisson(4)
(a) verify E(X|A) = pA and var(X |A) = pA;

(b) show that the marginal distribution of X is Poisson with
parameter pi.

In a general hierarchical model

x;~ f(x;18,),
0!’ ~ 7[(0)9

fori =1,...,n,show that the x;s have identical marginal distributions.
(This is a basis of empirical Bayes estimation.)

For the hierarchy of (35), which leads to the classical mixed
model, a formal Bayes estimator of B is given by E(B|y) =
C~!(X'Ly + B~ ',), where C is given in (39).

(a) Argue that the empirical Bayes principle of Section 9.2c dictates
that estimates for C, B and B, in E(p|y) be obtained from

I[ ff(y |B,u,R)f3(B | Bo. B) fu(u| D) dU] dp .

(b) Show that the marginal density in (a) is given by equation (83).

(c) Show that the result of (b) implies that the point estimates B,
D and R of B, D and R are the same whether they are obtained
to estimate E(u|y) or E(B|y). Is this a good thing?

(a) Use the hierarchy of (22) together with Wishart distributions
for D and R to obtain (non-closed form) expressions for
empirical Bayes estimates of D and R. Are there values of the
Wishart hyperparameters for which the estimates obtained
here are the same as ML estimates?

(b) For the hierarchy of (24) repeat (a) after replacing “ML
estimates” by “REML estimates”.

Note. The *“ML-REML prior”, namely n(D, R) = 1, can be thought
of as a prior with infinite variance. Thus we would expect things
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to match if £ = oo in (32). However, remember that we must be
careful about this case, as shown in E9.8.

(a) Apply an empirical Bayes strategy, as outlined in (26) and
(27), to the general hierarchy of (19), and show how to estimate
R alone (the matrix D is to be integrated out).

(b) Apply your strategy to the hierarchy of (22). Is there any
connection between your estimate of R and the ML estimate
of R?

(c) Apply your strategy to the hierarchy of (24). Is there any
connection between your estimate of R and the REML estimate
of R?

Verify that the third exponential in (38), the basis for the marginal
density of y, is a perfect square in that
y'(L — LXC™!X'L)y — 2y'LXC !B~ ' + Bo(B~! — B 'C !B~ "),
= [y - E(y)T(L - LXC™'X'L)[y - E(y)],
where
E(y)=(L - LXC™!'X'L)"'LXC~'B~'B, = XBo,
by establishing
B'C'X'L(L-L'XC'X'L)"'L'XC™'B '=B"'-B~'C™'B'.
(See Appendix M, or E9.12.)

Verify (41). Results (1) and (2) of Appendix S.6 may be helpful.

Illustrate some of the problems alluded to following (43), when
equating the statements “B = o0” and “B~' = 0".
(a) Show that the matrix

n=[r 1]

satisfieslim,_, , B, ! = 0,a matrix of all zeros, but lim,,_, ., B, is
not a matrix with each element equal to infinity.

(b) What mathematical or statistical meaning would you attach
to the statements “B = 00” and “B ™! = 0” in order that they
be equivalent?

Show that the BLUE (best linear unbiased estimator) of B,
B=(X'V 'X)"'X'V 'y, can be derived as a special case of E(B | y)
of (39). That is, specify and interpret the values needed for the prior
parameters in order to have

EBly)=B=(XV'X)'X'Vly.

Comment on the interpretation of these parameter values.



[9.8]

E9.10.

E9.11.

E9.12.

E9.13,

E9.14.

EXERCISES 361

For the hierarchy in (35) establish that
E(u|By)=u,+ A 'Z’'R"}(y — Xp — Zu,) and
var(u|B,y) =A"".
Methods similar to those used to establish (53) will work, along
with (27) of Appendix M.5.
With (49) and V = ZDZ' + R verify
(a) that V,,V3;! of (50)is BX'(XBX' + V)~1;
(b) E(B|y) and var(B|y) of (52).
For the matrices A =D~! + ZR™'Z,L=R~! —R"!ZA'Z'R"},
C=X'LX+B"! and V=2ZDZ' + R establish the following
identities [ they can be used to establish the correspondence between
the expressions in (39) and (40)7:
(a) L=V~4
(b) L—-LXC 'X'L=(XBX'+V) !=(XBX'+ ZDZ' + R)™!;
(c) AT'ZR™'=DZ'V™};
(d) (L-LXC!X'L)"'L'XC'B™! =X;
(e) |V|=|R||D[|A];
() |V|=|K'VK||X'V"'X| for K satisfying K'X=0 and
K(K'VK) 'K'=V~ ! - V7IX(X'VIX)" X'V
For the hierarchy (35), or from (49), use E9.12 to establish for
u, =0and V=ZDZ’ + R that
(a)  E(u|y)=uy + DZ'(XBX’' + ZDZ' + R) " (y — XBo — Zu,)
=DZ'(V + XBX’) " '(y — XB,);
(b) VX —VIIX(X'VIX)TIX'VTIX =0
()  E(uly)=DZ'(V + XBX')"'(y — XB,)
=DZ'V '[y-X(X'VIX)"!'X'V~'y] forB™'=0
=DZ'V-'(y — Xp) for B of (43)
= BLUP of u .
Note that B, is eliminated when B~! = 0.

For the hierarchy (67)

(a) show that

no?
Ed 9 ='—_£'— y — la;
(2]my) 02+M:(y uly)

e

(b) derive var(a|y,y)
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This exercise establishes, in general, the identities used in Section
9.3d. For the hierarchical specification

X~ f(x]86,4),

0 ~ my(0]4),

A ~my(A)
show that for a function g(8)

(a) E[g(8)|x]=E{E[g(0)|x,41};
(b) var[g(6)|x] = E{var[g(6)]x, 41} + var{E[g(6)|x,4]}.

In each case the outer expectation is over the distribution of A. These
results can be established by writing (8| x) = [n(8x, 2)n(A} x) dA
and interchanging the order of integration.

Consider the normal hierarchy of (18), where B, # 0, and assume
that R, B and D are all diagonal matrices; and use n as the vector
of symbols f,, R, B and D.

(a) Derive an empirical Bayes estimate of u, along with an
approximation of its variance, starting from the proper Bayes
estimates E(u|B,y,n) and var(u|f,y,n).

(b) Derive an empirical Bayes estimate of u, along with an
approximation of its variance, starting from the proper Bayes
estimates E(u|y,n) and var(u]y, n). (Note that here we start
with the posterior estimate of u after p has been integrated out.)

Consider the same normal hierarchy as in E 9.16, where fi, # 0, but
no longer assume that R, B and D are diagonal matrices. Repeat
(a) and (b) of E 9.16 in this more general case.

The hierarchical specification that uses a point mass density for
is (22). If B is considered fixed but unknown, this hierarchy leads
to ordinary maximum likelihood estimation.

(a) Derive an empirical Bayes estimate of u, along with an
approximation of its variance, based on the proper Bayes
estimates E(u |y, f,n) and var(u ]y, B, n), where 1 is the vector
of symbols R, D, with R and D being diagonal matrices.

(b) Show how to implement your estimation strategy of (a) in the
more general case of non-diagonal R and D.

(c) Reconcile your answers in (a) and (b) with ordinary maximum
likelihood estimation.

The hierarchical specification (24) leads to REML estimation.

(a) Derive an empirical Bayes estimate of u, along with an
approximation of its variance, based on the proper Bayes



[9.8]

E 9.20.

E9.21.

EXERCISES 363

estimates E(u]y,n) and var(uly,n), where 1 is the vector of
symbols R, D, with R and D being diagonal matrices.

(b) Show how to implement your estimation strategy of (a) in the
more general case of non-diagonal R and D.

(c) Reconcile your answers in (a) and (b) with REML.

In this exercise derivations of empirical Bayes estimates in the 1-way
random model, given in Section 9.3d, are to be completed.

(a) Derive (87); that is, obtain an explicit expression for the
likelihood function L(pg,02,62,062|y). (Note that this is a
special case of derivations given in Section 9.3c.)

(b) Definedy' =[f; 7, fis fia]=1[f, &2 &; 871 Derive

2

a
- L(nly) and —E(o;]y,n)
on; on, n=# on; n=i

forj,k=1,...,4.
(c) For @ of (b), obtain an expression for the empirical Bayes
estimate E(;|y, f}).
(d) Use the Kass-Steffey approximation to show
var(a;|y) ~ var(a; |y, i}) + 6'Zd

for
2

d
6 =—E(a]y,n)
on

and Z=[—

-1

I .
ppw (nly)“=ﬁ]
Here we explore, in a simple case, the relationship between two
variance expressions, using a special case of the beta—binomial
hierarchy (116) with n;; = n, b, = a = 1. A Bayes estimator of p is
E(p|t), where t = Z}., y,, and a variance approximation is often
based on var(p|t), which is not var[ E(p|t)].

(a) Show that

n=i

var(t) = (‘an:_tim (classical),
var[E(p[t)] = ot ﬂ)z(n:ﬁ_ Py (classical),
var(p|t) = (1+a)n—t+f) (Bayesian) .

(n+a+pPn+a+p+1)
(b) As n— o0, show that

var(p|t)
var[E(p|t)]
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showing the asymptotic equivalence of the classical and
Bayesian calculation. [Other examples of comparisons of
classical and Bayesian variances are in (42) and (73).]

For the hierarchy of (116) estimates of a; and f; can be obtained
by the method of moments. [ This estimation method is less preferred
than maximum likelihood, but sometimes has the advantage of
yielding expiicit answers. See Casella and Berger (1990, Chap. 7)
for a complete discussion.] From (124) we can obtain the marginal
mean and variance of y,;., the mean and variance of the beta-
binomial distribution, and equate these to the sample moments to
obtain the method-of-moments estimates of & and .

(a) Using (124), show that for j = 1,..., b;
%
o + By
njouf o+ B+ ny
(a;+ B)* o+ B+ 1
(b) Letn;; = n;. Show that for each i the sample mean and variance
of Yiyus.. s Yin. are given by (126).
(c) Equate these sample moments to the moments in (a) to show

that the method-of-moments estimators of a; and f; are given by
(127).

Hierarchical models and empirical Bayes methods are feasible only
if there is enough replication to be able to estimate all parameters.

(a) For the hierarchy of (116) show that if b; = 1 then the MLEs
for p,and a;/(e; + f3;) are the same; and the method of moments
(as in the previous exercise) fails.

(b) For the general mixed model hierarchy of (8) and (9) formulate
some principles about how much replication (or data) is
necessary to estimate all parameters of interest.

E(yy. |, Bi) = ny and

var(y;. | o, B) =

A useful variation of the beta—binomial hierarchy is the beta-
geometric hierarchy

yi; ~ geometric(py;),
p; ~ beta(a;, f;) fori=1,...,a,j= 1,....,b.

Here there are ab combinations, and the ij combination has success
probability p;; and variance var(p;;). This model also arises in animal
breeding experiments. If for each of ab cows to be artificially
inseminated the process is a Bernoulli trial, with success probability
p;;» and the trials are repeated until a success occurs, then y;; ~
geometric(p;,), where P(y;; = k) = p;,(1 — p), k =0,1,2,.... The
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interpretation of the rest of the model is similar to the beta—-binomial
hierarchy.

(a) Derive expressions for n(p;;| y;;, @, B;), the posterior distribution,
and m(y;;|a;, B;), the marginal distribution.

(b) Derive the posterior mean and variance E(p;|y,,a, ;) and
var(p,-, | YVij» &%i» B.).

(c) Derive an expression for the full likelihood of the hierarchical
model, and show how to obtain MLEs for &, and §,.

(d) Usingeither a prior distribution for o, and §;, or a Kass—Steffey
approximation, obtain an estimate of var(p;| y;;).

A model similar to the logit—-normal hierarchy of (136) is the
probit-normal hierarchy, also discussed in Chapter 10. This hierarchy
uses normal distributions with a probit link function (see Section
10.5). The hierarchy is, for i = 1,...,n,

¥; ~ Bernoulli(p;),
pi = E(y;| B,u) = ®(xip + zju),
B~ A4(Bo,B), u~ A(0,D),
where @ is the standard normal cumulative density function.

(a) Write an expression for L(B,, B, D]y), the full likelihood for
the hierarchy.

(b) Derive an expression for the REML likelihood L(Dy) and
show how to obtain a REML estimate of D.

(c) Derive a strategy for obtaining a point estimate of u.

Another variation of the logit—normal model of (136) is based on
the geometric distribution, similar to the use in E 9.24. The hierarchy
can use either a logit or probit link functionandis,fori = 1,...,n,

y; ~ geometric(p,),
p. = E(y;|B,u),

pi=®(x;p +zju) or logit(p;) = log(l——g'——) = xip + zju,

— Vi
B~ N (Bo.B) and u~ A4(0,D).

Answer (a), (b) and (c) of E9.25 using the logit hierarchy. The
answers for the probit hierarchy are similar.

Based on the hierarchy (136), show how to obtain estimates of B
and B. Use a strategy similar to that used in (140)—(142).

To (V + XBX') ™! apply the identity
(D+CA™'B)'=D"!'-D"'C(A+ BD!C)"'BD™ .
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Then show that

(a) for V, X and B being scalars v, x and b respectively, the limit
as b — oo is zero; but

(b) for V, X and B as matrices the limit of the right-hand side is
V-V IX(X'V X)X’V 1 in contrast to scalar intuition
which suggests that (V + XBX')™! tends to 0 as B — 0.



CHAPTER 10

BINARY AND DISCRETE DATA

10.1. INTRODUCTION

Techniques for the estimation of variance components from binary (0/1) or
discrete (categorical) data are much less widely developed than for continuous
data. The lack of methods for such data is due in large part both to the
difficulty of specifying realistic models and, once specified, to their computational
intractability. In this chapter we explore the problems in identifying tractable
models for binary and categorical data, and review some of the approaches that
have been proposed to deal with them.

To see why models are more difficult for discrete data than for continuous
data, we return to the construction of models for continuous data, and consider
how we defined random effects and error terms. The latter were defined as
y — E(y | u) [see (60) of Section 4.6, for example] and to them we attributed a
distribution, sometimes .#°(0,021) and, in all cases, a distribution having
constant variance, independent of the value of the mean of y. This is not a
reasonable assumption for discrete data. Consider binary data where y, takes
on only the values zero and one. Then y; is distributed as a Bernoulli random
variable with probability of success p, = Pr{y, =1} = E(y;) and variance
var(y,) = pi(1 — p)) = E(y;)[1 — E{y;)]. As the mean of y; approaches one or
zero, the variance approaches zero and this dependence between mean and
variance must be included in any reasonable model. Thus a model with an
additive error component with fixed variance cannot capture the dependence
between mean and variance and therefore is inadequate for categorical data.

Further problems arise when specifying the distribution of random effects.
For simplicity, consider a model for a binary variable y,; with a single fixed
effect fx;; and a single random effect «;. Conditional on the random effects, the
mean of y;; will be taken as

E(y;la)=Bxy+ay. (1)

For the continuous data situation the a, are usually assumed to be i.i.d, with
variance o2 and are often assumed to have a normal distribution. For the binary

367
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data situation, since the mean or conditional mean of y;; cannot be larger than
one or less than zero, the «; cannot have a normal distribution, and as the mean
of y,, approaches zero or one the variance of the a; must approach zero. So the
distribution of the «; also cannot have a fixed variance. The usual way of
accommodating these requirements is to consider nonlinear models which allow
the random effects to enter into the conditional mean in a non-additive fashion.

A common model for binary data where y;; has a Bernoulli distribution with
probability of success of p; is the logistic regression model where logit(p;),
defined as logit(p;;) = log[p;;/(1 — p;)], is assumed to be linear in the fixed
and random effects. Thus a mixed model analogous to (1) could be defined as

yi;| &; ~ independent Bernoulli[ E(y;;| )],
with
loglt[E(yU | a‘)] = ﬂx‘j + a‘ and a‘ ~ ||d. -/V(O, 0'42,) . (2)

Comparing this to the continuous data situation, we see that the distribution
assumed for y,;, conditional on the random effects, is a Bernoulli as opposed
to a normal distribution, and logit[ E(y; | ;)] instead of E(y;;| a;) is modeled
as linear in the fixed and random effects. In nonlinear models such as (2) the
function (logit here) which connects the mean of y and the effects is called the
link function. Otherwise the constructions are the same. The use of the Bernoulli
distribution takes care of the connection between mean and variance. The logit
transformation maps the interval (0, 1) for p;; on to the whole real line, where
problems with the upper and lower limits of the p;; disappear. It is then
reasonable to assume a normal (or other unbounded) distribution for «;.

This approach is not without its problems. As discussed in Section 10.3, the
computations for ML or REML for model (2) are quite intensive; much more
so than for continuous data. This approach also raises a conflict in interpretation
of the parameters. In the continuous data model, (1), f is the amount of change
in the mean of y; associated with a change of one unit in x;;. This is true in
the conditional distribution of y;; given «;, as well as in the marginal distribution,
since

E(y;) = E[E(yylo)] = E(Bx;; + ;) = fx;; .

This identical meaning in the marginal and conditional distributions holds
because of the linear model. For (2) it no longer holds because the model is
nonlinear (E 10.1). § represents the change on the logit scale of the conditional
mean of y;; for a change of one unit in x,;; But the same is not true of the
marginal mean of y,; since, in general,

1
14e P’

(3)

1+ e_‘ﬂxll+1l)

1
E(y,) = E[E(y, ] 2)] = E[ ] .

In fact, no closed form expression exists for E(y;;) under this model.

What does this mean in practical terms? Consider animal breeding data,
where y;; is one if a cow experiences difficulty in calving and zero otherwise.
Further suppose that f represents the effect of birth order and the «; are
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individual animal effects. Then f is interpreted as the effect of increasing birth
order on the logit of the probability of calving difficulty for an individual animal
(because this is conditional on the animal effects). However, because of (3), 8
does not represent the change in the logit of the probability of calving difficulty
in the entire population. This would require averaging the conditional distribution
over all animals to obtain the marginal distribution. Zeger, Liang and Albert
(1988) give formulae for the marginal and conditional means of y, as functions
of fixed eflects, for a number of different models, including the logit—normal
and probit-normal models described below in (9) and (11).

The nonlinear link (3) between the mean of y;; and the fixed and random
effects correctly models the fact that the variance of y;; induced by the random
effects is less as the mean of y; approaches zero or one. Yet this very fact
increases the difficulty of interpretation since the variance in y;; due to the
random eflects is dependent on the mean, i.e., the fixed effects. Thus separate
interpretations of the influence of the fixed and random effects on y;; are no
longer possible.

10.2. ANOVA METHODS

Given these problems, what approaches have been proposed for analyzing
discrete data? If the data consist of binomial proportions, all with a constant
number of trials, n, then the usual recommendations are to analyze the
proportions directly (or their arcsin transformation) using ANOVA methods,
assuming they are approximately normally distributed and homoscedastic.
However, analyzing proportions can only be recommended when the proportions
are in the middle range (e.g., 0.2-0.8) and heteroscedasticity is unlikely to be
a problem. With highly varying proportions the observations will have quite
different variances and should be appropriately weighted in the analysis. Because
of the presence of variance components, the weighting factor is no longer the
binomial variance p(1 — p)/n and the proper weights depend on the relative
size of the variance components and the binomial variance. Furthermore, the
arcsin transformation is not necessarily appropriate when the binomial p is
allowed to vary with the random effects as is the case in (2). See Cochran (1943)
for a clear discussion of these points. Landis and Koch (1977) give the details
of using MANOVA to estimate variance components for a one-way random
effects model with categorical data. When the group sizes are unequal, or the
proportions cover a wide range, then more sophisticated techniques are
necessary.

10.3. BETA-BINOMIAL MODELS

a. Introduction
For a binary variable y a natural approach to capturing the variability in
the mean of y is to model it directly rather than indirectly as in (2). That is,
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assume a parametric distribution for p = E(y). A logical distribution is the beta
distribution, since it is a flexible distribution on the interval (0, 1); it is also the
conjugate prior density for the binomial distribution from Bayesian analysis
and it leads to mathematically tractable results. If y is distributed as a
binomial(n, p) variable, conditional on the value of p, and p has a beta
distribution with parameters « and f, then the marginal distribution is

beta—-binomial, i.e.,
_(n\Bla+yn+p—y)
S0 = <y> B(a, B) ’

where B(a, B) = f§ x*7!(1 — x)’ "' dx is the beta function.

b. Model specification

How do we allow the values of the parameters « and f to vary in order to
form realistic models? Let us consider for continuous data the mixed model
with a single fixed effect and nested random effects:

Yije =1+ 1 + v + e, where the n; are fixed effects,
i~ iid. A#7(0,62)
and (4)
e ~iid. A°(0,67), independently of the y;; .

This model allows the mean of the y;; to vary with i and allows the y;; to be
correlated within levels of i and j, i.e., p(yi, i) = 62/(62 + 02) for k # K.

By following the hierarchical specification (see Chapter 9) of a model for
the binary data, we can induce a correlation among all the ys that have the
same p. Thus, to mimic the correlation structure in model (4), we would use
the following specification:

Yijx | pij ~ independent Bernoulli(p;;)
and (5)
pi; ~ independent beta(a;, B;)
fori=1,2,...,a,j=1,2,...,b;and k = 1,2,...,n;. This induces a correlation
among all the ys within each (i,j) combination, i.e., among those with the same
p;; (E 10.3). Also, since the parameters of the beta distribution depend only on i,
the mean of the conditional distribution of y;; given p;; is allowed to vary with i.
In this general form (5) also allows the variance of the conditional mean of y;,
to vary from one level of i to the next, which (4) does not.

What is the variance component for this model? Since the variance of the
conditional mean is allowed to have different variances depending on i, we need
an estimate of the variance in each of the classes, given by the variances of the
beta distribution,

B
(o + B+ B+ 1)

var(p;;) =
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It does not really make sense to try to reparameterize the model to have a
single variance since, as discussed above, the conditional mean and the variance
must be related. Noting that (see E 10.3)

var(p;;) = (1 — p;)a;, (6)

where u; = E(p;;) = a;/(a; + ;) as in (10) of Appendix S.6d and o, =
1/(e; + B; + 1), Crowder (1978) suggests restricting all the ¢, to have a common
value g. Note that (6) incorporates the need for the variance to decrease to
zero as y; approaches zero or one. Also, g; is the intra-class correlation coefficient
so that y;; and y,;,. are uncorrelated if and only if o, is zero. Thus ¢ is the
analog of 62/(0? + a2), the intra-class correlation coefficient, for normal, linear
models; i.e., equation (4). For some situations ¢ would therefore be a useful
parameter of interest.

¢. Likelihood

The likelihood for model (5) takes a relatively simple form. Denoting the
number of successes within level (i,j) by t;; = y;;. = Z, yin, the log likelihood
can be written as

=1 ny—ty—1 ny—1
[ = ZZ[ Y log(e; +r)+ Y log(Bi+r)— Zo log(a; + B; + r):l )
i J r=0 r=

r=0
(7)

For interpretational and numerical reasons Williams (1975) suggests
reparameterizing / in terms of the mean of the beta distribution, y; = «;/(«; + ),
and the parameter 0, = 1/(a; + B;). In this reparameterization

=1 ny=ty—1 =1
l= ZZ[ Y log(u+r8)+ Y log(l —p+r8)— Y log(l+ rB,)] .
i =

r=0 r=0 r=0
(8)

Closed form maximum likelihood estimators for y; and 6; do not exist for this
model, so (7) or (8) needs to be maximized numerically.

d. Discussion

The beta-binomial approach is somewhat limited in its application to
variance components estimation problems. Since we model the correlation by
having the correlated Bernoulli variables all selected from a distribution with
the same probability of success, we are limited to the type of model (5) where
the random eflects are nested within the fixed effects. This precludes any sort
of regression model which has independent variables specific to each Bernoulli
variable. Also, since we are capturing the variation in the conditional mean
with a single distribution, the beta—binomial approach is not amenable to
multiple random effects. Thus model (5) is about the most general model possible
with this approach.
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10.4. LOGIT-NORMAL MODELS

A more flexible approach to variance components for binary data is the
approach outlined in the introduction. This approach uses a logit function to
link the mean of y to the fixed and random effects and assumes the random
effects are normally distributed. Conditional on the random effects u,

y;|u ~ independent Bernoulli[ E(y,|u)], i=12,...,n,

logit[E(y;|u)] = xiB + zju (9)
and u~ A(0,D),

where, in the model for the vector of logit[ E(y;|u)] fori=1,2,...,n, x; and z;
are the ith rows of X and Z, the model matrices for the fixed and random
effects, respectively. For certain specific situations this approach is developed
in Pierce and Sands (1975), Stiratelli, Laird and Ware (1984), and Wong and
Mason (1985).

A main drawback to this approach is computational. The likelihood based
on (9) is proportional to

jf,.,,(ylp)exp(——Jju’D"u)lDl‘*du, (10)

where
Sty 1) =T exp[y(xiB + zju)] [1 + exp(xB + ziu)] ™" .

This cannot be simplified appreciably and all of the above authors suggest
approximations in order to ease the computational burden of finding ML
estimates. Stiratelli, Laird and Ware (1984) and Wong and Mason (1985)
propose REML estimation for (9) by treating the fixed effects as random effects
whose variances tend to infinity. Both of these papers advocate the use of the
EM algorithm for estimation of the variance components.

Stiratelli et al. (1984) make the simplifying assumption that, for
v =[u, v, ... ul],var(u)={,;D},,. Then, with B representing var(p),
the mth iterate of the EM algorithm for REML takes the form

D™ = i(m)/r (M-step),

i =% E(uu)|y) (E-step) .
i=1 D=D(~li_n—l=0

Iterations cease when the elements of D stabilize. While conceptually straight-
forward, the E-step requires hefty computation of the integral which is implicit
in the expectation.
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10.5. PROBIT-NORMAL MODELS

a. Introduction

Probit-normal models are a class of models very similar to logit-normal
models that arise by replacing the logit function in (9) by the probit function
®~!(-), where ®(-) is the standard normal c.d.f. This gives a model

¥,|u ~ independent Bernoullif E(y;|u)], i=12,...,n,
E(y;lu) = ®(x;B + z;u)
and (11)
u~ A4(0.D).

This model retains the flexibility of the logit—normal models as well as most
of the computational problems. The likelihood for (11) is proportional to

jf,,,(y |p) exp(—4u'D~'u) |D|*du,
where (12)

Sy D) = ‘H O(xiB + Zju)"[1 — (x} + Zu)]' =7 .

This model is used in Harville and Mee (1984), where it is extended for use
with ordered categorical data, and in Gilmour, Anderson and Rae (1985) for
a single random effect. It is also essentially that used in Ochi and Prentice
(1984) for a model similar to (5). To overcome the computational problems,
which were declared “insurmountable” for the general model by Harville and
Mee, they resorted to ad hoc estimation methods, whereas Ochi and Prentice
developed a complicated approximation scheme for finding the maximum
likelihood estimators, and Gilmour et al. used quasi-likelihood methods.
McCulloch (1990) shows how to adapt the EM algorithm to probit—normal
models.

b. An example

We illustrate the use of the probit—normal model on a data set (courtesy of
Professor S. Via at Cornell University) on reproductive success in aphids.
Twenty-eight female aphids were collected in the field in both the early and
late summer. Clonal lines were raised from each female in the laboratory in
two separate chambers (sublines). For each clonal subline 0 to 2 females were
raised on alfalfa and on clover. A total of 412 individuals were tested and each
individual was recorded as surviving to reproduce or not. So there are two
random effects (clone and subline nested within clone) and four fixed effects
(constant term, crop, time and crop by time interaction).
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Let y,jum fepresent the mth response on the ith clone, jth subline, crop k and
time I, where y;ju,, = 1 if the aphid survived to reproduce and 0 otherwise. The
model employed was

O MEWijum W] = s+ oy + By + v + 4y 1y
and
u, ~ A(0,162), u, ~ A(0,10}),

where u, is the vector of clone random effects and w, is the vector of
subline random effects. The log-likelihood was numerically maximized, giving
a maximum value of —181.667 and estimates 42 =.166 and ¢2 = .035.
This would give an estimated within-clone, within-subline correlation of
(.166 + .035)/(1 + .166 + .035) = .17 on the probit scale.

10.6. DISCUSSION

It should be clear from the preceding outline that methods for the analysis
of binary or categorical data are only available for a limited variety of problems.
For situations with binomial or categorical data with proportions in the
mid-range and approximately equal n, ANOVA methods may be adequate.
For simple situations the beta—binomial approach may be adequate or the
logit—normal or probit-normal models may be computationally feasible. For
more complicated situations the beta—binomial approach becomes inadequate
and the logit-normal and probit—normal models become computationally
limiting, Surely, as computers become more and more powerful, such models
will come into greater use.

The logit-normal and probit—normal models are very similar. Zeger, Liang
and Albert (1988) show how to approximate one from the other. However there
are some slight differences. The probit—~normal models reduce to the usual
probit analysis when there is a single random effect and a single observation
per level of the random effect. The logit—-normal models do not reduce to a
standard logistic regression analysis (E 10.5). Thus the logit—normal differs from
the normal, linear model, which, with a single observation per level of the
random effect, reduces to a fixed effects analysis. Also, the marginal mean of y,
in the probit-normal model is slightly simpler than the logit—normal. It can be
shown (E 10.4) that

_ xp
E(r) = d’[u n z;Dzi)*]

so that the marginal mean has a form similar to the conditional mean. On the
other hand, for inferences about the fixed effects the logit—normal model may
be simpler. It allows exact conditional inference for some balanced data
situations (Conaway, 1989).
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10.7. SUMMARY

Binary data variance components models

Beta—binomial
Yix | pij ~ independent Bernoulli(p;;),

p,; ~ independent beta(a;, f;);

;=1 n;— ;=1 ny—1
I= Z;[ Y logloy+r)+ 3 log(Bi+r)— X log(e + fi + r)];
i r=0 r=0

r=0
var(p;;) = : aiﬂi s
& (o + B)* (i + B+ 1)
0 (i#qorj#r)
PYijes Vars) = m (i=qgandj=r k#s5),

| (i=¢q,j=rk=5s).

Logit—normal
y; | u ~ independent Bernoulli[ E(y,|u)],
where
logit[E(y;|u)] = xif + ziu
and
u~ A4(0,D).

The log likelihood is given in (10).

Probit—normal
y; [u ~ independent Bernoulli[ E(y;{u)],
where
E(y,|u) = ®(x; + zu)
and

u~ A(0,D).

The log likelihood is given in (12).
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10.8. EXERCISES
E10.1. Suppose y = 1/(1 + e~*~%), where a ~ (0, a?).

(a) Show thatif u = 0 and the distribution of @ is symmetric about
zero then

Ly

| 4 e ¢ E@ 1 +e®

E(y)=

(b) Argue by Taylor expansion when g2 is small that

E(y) > when u <0

| 4 g~ E@ T +e®

and

E(y) < when u > 0.

[ 4e B0 | e

E 10.2. Ify ~ binomial(n, p) conditional on the value of p, and if p ~ B(«, f),
show that the marginal distribution of y is beta—binomial, namely

(")B(a +y,n+pB—y)

fy)= B B)

E 10.3. For model (5) show that
(a) the log likelihood is given by (7);
(b) the log likelihood can be rewritten as (8);
(c) the correlation of y,; with y,, is

0 (i#qorj#r),

1
V) ={ ———— (i=qandj=rk #q),
PVijes Yars) P (i=gandj q)
1 (i=q,j=rand k =5);

(d) varE(y;lp;)=0 if and only if 8,=1/(a; + ;) =0 for
E(yylpiy)e(0,1).

E104. (a) For the model in equation (11) show that
x;p
E(y)=0| ——— 1.
) [(1 n z:Dzo*]

(b) On the probit scale how do the coefficients of the fixed effects
compare for the conditional and marginal means?
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E 10.5. Consider a simple version of the probit—normal model:
y;|u ~ independent Bernoulli[®(x,8 + u,)],
u~ A(0,Ic%) .

In this model there is one level of the random effect for each
observation. Show that y, follows the usual probit model, i.e.,

y; ~ independent Bernoullif ®(x,5*)]

for a suitable definition of f*. (Hint: See E 10.4.) The equivalent
logit—normal model is

yilu~ Bernoulli[ ! ],
I +exp(—xf+u)

Show that y, does not follow the usual logit model, which is

!
~ independent Bernoullif ——MM— | .
Yo 1neepe ' '[Hexp(—mﬁ*)]



CHAPTER 11

OTHER PROCEDURES

Estimation methods based on ANOVA, ML, REML and Bayes have been
considered at length in preceding chapters. Nevertheless, there are other
estimation topics that merit discussion, and from a wide array that is available
we have chosen just three: (i) defining and estimating covariance components,
which is important in applications as varied as animal breeding and educational
testing; (i) defining variance components in terms of a covariance structure,
which models a variance component as a covariance so that a negative estimate
has meaning as a negative covariance; (iii) criteria-based estimation (such as
minimum norm and minimum variance estimation), which is somewhat more
theoretical than other methods.

11.1. ESTIMATING COMPONENTS OF COVARIANCE

Suppose we measure weight and body length of piglets at two weeks of age.
Let y,;; be the weight of piglet j from sow i, and y,;; its body length. The model
equations for a 1-way classification random model for each of these observations
can be taken as

Vig =M+ o +ey; and  yy; = py + oy + ey (1

fori=1,2,...,a sows and j = 1,2,...,n; piglets from sow i, with a total of
n. = N piglets. 4, and u, represent overall means of weight and body length,
ay; and x,; are the effects of sow i on the two variables, and e,;; and e,;; are
the corresponding random error terms. Treating the a;s and a,s as random
effects with zero means, the usual random model conditions are

var(a,) =01, var(e,)=02ly and cov(a,,e})=0,.n

and (2)
var(a;) = a2 1,, var(e,) =oc2ly and cov(axy,ey) =0, .

378
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The inclusion of components of covariance between sow effects and between
error terms involves having the model also include

cov(a,,a3) =11, and cov(e,,e})=r1.ly. (3)

This is the assumption that cov(a,,, a,;) = 1, for all i, but cov(a,;, &;;) = 0 for
i # i': similarly cov(e,;;, e,;;) = 7, but cov(e,;;,e5;4) = Ounless i = i"and j = j'.
Thus 1, is the covariance between the two sow effects, one on piglet weight and
the other on piglet body length. To the geneticist this is a multiple of the genetic
covariance between the two traits, which, along with the variance components
o3 and o2, leads to genetic correlation, a parameter of great interest.

A second example where this model might be suitable, with components of
covariance being of interest, would be test scores on schoolchildren in different
classes that had each taken an English test and a mathematics test. Another
example would be fleece weight and staple length of the fleece obtained from
shearing a thousand ewes, each of which was the daughter of one of, say,
30 different rams. Then the components of covariance between the sire effect
on fleece weight and the sire effect on staple length could be of interest. These
examples, which are similar and straightforward, represent only one of several
ways that components of covariance between random eflects can be included
as part of a model. Along with considering estimation procedures, we therefore
alsoindicate a variety of ways in which covariance components can be present.

a. Easy ANOVA estimation for certain models

The schoolchildren example just described is the simplest illustration of a
class of components of variance and covariance models for which ANOVA
estimation of the covariance components is based very easily upon whatever
ANOVA estimation is used for the variance components. For that example y, ;
and y,; of (1) will be the English score and the mathematics score, respectively,
of child j in class i.

Under conditions such as this, where every observational unit (a child, in
this case) has observations on the same pair of variables, there is a very easy
ANOVA method for estimating the covariance components of (3) when the
same form of model is used for each variable as, for example, in (1). It is just
a simple extension of whatever ANOVA method is chosen for estimating the
variance components. If, for B being some symmetric matrix, y;By, is the
ANOVA estimator of 2, in the model for y, then, of course, the same ANOVA
estimator of g2, in the model for y, is y; By,. As we now show, the corresponding
ANOVA estimator of the covariance component a,, is yjBy,. But one does
not have to compute y; By, in that form. Because, in terms of our example,
with ¢2 , and o2 , representing the components of variance for the variable
N + Y2,

T, = cov(ay;, 05) = 3(a%,,, — 0'3. - 0':,)
and

yiBy, = 1[(y, + y.)'B(y, +y,) — ¥iBy, — y3By,],
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it follows at once that

t,=4(63,,— 8% — 63) . (4)
The nature of this result is true in general for models of this form, as pointed
out by Searle and Rounsaville (1974). All one has to do to estimate a component
of covariance is to use the ANOVA estimates of components of variance of y,,
of y, and of y; +y,. Thus for (4), using (82) and (83) of Chapter 3, we write

62 = MSE,, 62 =(MSA, — MSE,)/f

632 = MSE,, 622 = (MSA, — MSE,)/f (5)
and
‘93,” = MSE1+29 ‘92,” = (MSA1+2 - MSEH:)/f,

where f = (N — Z;n?/N)/(a — 1), and, for example,

MSE, = Z.Z,(yy;; — 71:.)*/(N — a)
and
MSA, ;= Zm[(Fy. + 721.) = (G + 72012 (@ = 1) .
Then using (5) in (4) and in
t.=4(dl,,— ¢l —82) (6)

€1 +2

provides estimates of the covariance components based on estimated variance
components. In this way, when a computing routine specifically calculates
ANOVA variance components estimates, it can also be used [by means of (4)
and (6), for example] for deriving ANOVA estimates of covariance components.

b. Examples of covariance components models
The model widely used throughout this book for data on a single variable is

y=Xp + Zu +e,

where B and u represent fixed effects and random effects, respectively; and u is
partitioned as v’ =[u} wu), ... wu,] into sub-vectors u; of order g;,, with
E(uw) = 0, var(u;) = a1, cov(u,uj.) = 0, , 4, and cov(u,e’) = 0, . y. Thus

var(u) = D = {, 0?1, },1, (N

is a block diagonal matrix of diagonal matrices o?I,. This is because the
covariance between every possible pair of (different) elements of u has been
taken as zero. Generalizations of this model to allow for covariances between
elements of u merely consist of having 2 form for D different from its block
diagonal form in (7). At least two possibilities are available.
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-i. Covariances between effects of the same random factor. Let u, be an
element of w; fort = 1,..., ;. Suppose covariances between all pairs of elements
of u; are to be non-zero but covariances between elements of different us are
to be zero; then

.cov(u,»,,u,,.) =d;, for t#¢t and cov(uyu;,)=0 fori#i. (8)
Hence
var(w) =Dy = {, di }ia%
and (9)
var(u)=D = {; D, },<, .

In this case the second equation of (9) shows the block-diagonal structure of
the dispersion matrix of u, and the first equation in (9) defines the nature of
those blocks. Situations in which d, ,, is different for every ¢, t’ pair seem unlikely,
and certain patterns of values may be suitable on some occasions. For example,
the intra-class correlation pattern of (28) in Chapter 3 might be appropriate:

Dii = oiz[(l - pi)lq, + leq;]v (10)
which has d;,, = 67 and d;,,. = p,6}. Another possibility is
dl.u‘ = oiz(al.l' + pl‘sl.lt —t’|)v

where J, - is the Kronecker delta, , . = 6,., = | for t = t’ and zero otherwise.
This has var(u,) = 6 and cov(uy, u,.) = p,ofor |t — t'| = 1 and zero otherwise,
as illustrated following (28) of Chapter 3.

-ii. Covariances between effects of differemt random factors. The most
general situation would be to have cov(uy, u;) = dy. - so that

cov(u,u;) = Dy = {n dypr o} 24 0%y
and (11)
var(w)=D = {, D, };./= -
Again, it seems unlikely that every d;. . would be different. One possibility is
Dy = a?[(1 — pi)]y, + pudy]
and (12)
Dy = py0,0;dg < q fori#i,
so that.
var(y,) =0} Vt=1,...,q,
cov(uy, ) = pyot Vie#t =1,...,q (13)
and

COV(ui,, ul"l') = p“:O’,.O’,-' fOI‘ t = 1, ' "’ql" t, = l, ""ql' and l# i’ .
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-ifi. Covariances between error terms. The usual variance-covariance
structure taken for error terms is var(e) = o2I,. This assumes that all error
terms have the same variance, g2, and that covariances between all pairs of
(different) error terms are zero. Clearly, though, one could posit any structure
suited to the source of one’s data, the most general being var(e) =R, a
symmetric, positive definite matrix. Structures for var(e) other than oI, can
be modeled in the same manner as for var(u) in (9) and (11), or in any manner
suited to the situation at hand. Block diagonal R, or covariances arising in
multi-trait models in genetics, are two such possibilities.

¢, Combining variables into a single vector
The examples of Section 11.1a deal with two variables for which the model
equations (1) can be written, with Z, = {; 1, },4,, as
Yi=mly+Za, +e
and (14)
Yo=poly +Z,a; +e, .
These can be combined into a single vector
Mk NI MR
Y2 0 1yilu 0 Z Jla, €;
which can be written as

y=Xp+Zu+e

=eb x= )2
Y2 0 1y Ha
V/
Z=[ ! 0], u=|:a'] and e=|:el:,.
0 Zl al eZ
Then for the variances and covariances of {2) and (3)
o2l 1l o2 1 ‘
var(W)=D=| ** 2 |=|"® I
W [1 a;ra] [ . a:z]® :
and (15)

2 2
var(e) =R = l:a“'l" el ] = [a"' t;]@l,, .

2
telN aezIN te €

with
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The advantage of combining data vectors like this is that it puts data into a
standard format to which ML and REML can be applied directly, as indicated
in subsections e and f that follow. Moreover, the combining of just two vectors
into a single vector can be easily extended into combining more than two
vectors: and the standard format still applies.

d. Genetic covariances

In modeling biological data there is often interest in genetic relationships
that arise from the biology of a situation. In the sheep example used earlier,
for instance, we considered data from ewes that were daughters of a small group
of sires. And in modeling the fleece weight data by the first equation in (13),
the elements of &, are the sire effects on fleece weight. A matrix that quantifies
whatever genetic relationships exist among such sires is called the relationship
matrix, and is usually denoted by A. [ It can be calculated for any set of animals
that are descended from some base population; and its inverse, A~ ! (which can
be calculated directly from genetic relationships without having to actually
invert a matrix), is described in Henderson (1976).] Given that matrix A, then,
for the sires having daughters in our study, the variance of a&,, instead of being
ailla, becomes var(a,) = a,’HA. Here then, we are introducing covariances that
arise from the genetics of the situation and which must be taken into account
in estimating the variance component o

The use of A also extends to where there are data y, and y, on two variables
from the same animals, whereupon var(u) of (15) becomes

2 2
vm(u)=n=["°"A ’“A]=[““' ’;]@)A. (16)
A dlA T, 0Oa

And, of course, extension to more than two variables is clear. In this way not
only are the covariances between sire effects for different traits taken into
account, but so also are the genetic covariances due to relationships of the sires
to one another.

e. Maximum likelihood (ML) estimation
-i. Estimation equations. We have seen in the preceding subsections how
a variety of different occurrences of non-zero covariances incorporated in a
model can all be represented very generally in the model
y=Xp+ Zu + e, (17)
with cov(u,e’) = 0 and
V =var(y)=ZDZ' + R. (18)

We now assume normality. Then, as in (13) of Chapter 6, the log likelihood of y
is

I=~4Nlog2n —4}log|V|— 4y — XB)V~'(y — XB). (19)
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Differentiating this with respect to p gives
2 =X'V7 'y - X'V7'X8, (20)

and equating this to 0 gives, with ¥ and f representing the ML estimators of
V and B, respectively,

XV 1Xg=XV-ty, (21)
Hence the ML estimator of the estimable vector Xp is
Xp=X(XV1X)"xXV-ly. (22)

All this is similar to Section 6.2a.

But for estimating the variance and covariance components that make up
the elements of V we must now be more general than in Chapter 6, wherein
we took V =X, Z,Zic? as in equation (10) of that chapter. That meant
differentiating ! of (19) with respect to just the os, which led in turn to equations
(21) and (25) of Chapter 6. Now we need to cover a variety of forms for V.
Yet all of them when u and e are taken as having zero covariance are of the
form V = ZDZ' + R. And from Appendices M.7e and f we have the general
results

ov! ov

— V™! and -a—log|V|=tr V"a—v (23)
a0 a0 a0 a0

where elements of V are considered as functions of 0.

Using those results, we array the variance and covariance components
that occur in V as a vector 8 ={ 6,},2,, where v represents the total
number of different components. For instance, in the sheep example

0 =[02 o t, 62 o2 1.]andv=6 Then

av av
by == —4 u<v-l ﬁ) +Hy-Xpv! T Vo i(y — XB), (24)

h h

and equating this to zero gives
av ~ ov
t V"(—— )]: — X 'v_l(_..
{7 (G0 |- -0 (5

6_V is 6_V written with 0 in place of 0 .
0044 a6,

)V"(y —Xp).,  (25)
0=0

where

With Xp from (22) it is clear on defining

P=V 1V IX(XVX)"X'V}, (26)
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as in preceding chapters, that V- !(y — Xp) = Py, and so we get the ML

estimation equation as
A\
tr[V‘ l(é— )] = y'p(é!
60’. °=é 50,,
To further consider the derivative term, which occurs on both sides of this

equation, let us now distinguish 6, and 6, as elements of @ that occur, respectively,
in var(u) = D and var(e) = R, whatever the forms of D and R may be. Then

)Py, forh=1,...,v. (27)

9=6

ov D A\
N _ 287 ad YR (28)
00, 08, 08, a6,
Hence the ML equations (27) become
D ] 0
tr[Z'V"Z(a— ) = y'Pz(-I—) )Z'Py, (29)
00,094/ 0040 -d
for each parameter 6, of D, and
tr[V"(a—R ) = y'P(a—R )Py, (30)
aer 9=0/ 1 agr 0=0

for each parameter 6, of R.

At this point there appears to be no further tractable, algebraic, simplification
of the general case. One now has to make use of the precise forms that D and
R have for the task at hand, in order to know what the different elements 6,
and 6, are, and where they occur in D and R. Then the derivatives in (29) and
(30) can be specified. For example, with D of (16)

a_D_—__i_[”:' "]@A:[A 0].

6ol G631, ol 0 0

Since there is a multitude of forms that D and R can have, this further
simplification is left to the reader for whatever D and R are being used. Rather
than algebraic simplification it may be possible to use computing packages that

handle elementary differential calculus, in combination with those that carry
out ML calculations.

-ii. Large-sample dispersion matrix. As in Chapter 6, the large sample
dispersion matrix of the ML estimators is the inverse of the information matrix.
Here, as there, in (39) of Chapter 6,

var(B) ~ (X'V~1X)" L.

2 v -1
var(&z)z[——E{ ol } ] .
m 004 00, )y =1

And
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Denote 0V /86, by V, and 9*V/36,00, by V,,. Then from (24)
ol
B —3tr(V7IV,) + 2y - XpyV'V, V" (y — XP)
h
=3t [-V7IV, + V7V, V7i(y — XB)(y — XB)']

and so, on using E[(y — Xp)(y - Xp)'] =V,

o - - -
“E(aehaek)= —%tl‘[v l‘I,“I l‘Ih—‘l IVM

F(=VIVVTIV, VL VoY,V VoYV, VoY)
=Lur(VIV,V-IV,).

v -1
var(&z)z2[{ tr(V"a—VV"ﬂ)} ] . (31
m aeh aek hk=1

Of the v variance and covariance parameters in V, suppose v, of them are in
D and v — v; = v, of them are in R. Order elements of 0 so that ' = [0; 9;],
with the v, parameters pertaining to D being in 8, and the v, of R being in ,.
Let 8,,and 0, be the ith and jth elements of 8, and of 8,, respectively. Then (31)is

rd 6R d Ly -1
{ tr(V"zQZ'v-'za—Dz)} { u(v-'za—QZ'v-’_—»
m 30y 0y =1 m o0, 00,5/ }i=1.4=1

trooud Lr
{ tr(V“a—RV"Z?BZ)} { u<v-l R v-'a—R>}
m 60:; 00y j=tli=1 m 697] 60,], Jy=1

Depending on the form of Z and on whatever structure or pattern there is in
D and R, the trace terms in these matrices may simplify, and the arithmetic
will also be aided by the standard results tr(X'X) = Z,Z;x} = sesq(X) and
tr(X'Y) = Z,Z;x;;y;;. Since specific details do depend so much on the exact
form of Z, D and R, there is little or no merit in attempting any further
simplification of these formulae for the general case.

Hence

var(¢?) =2

f. Restricted maximum likelihood (REML) estimation
-i. Estimation equations. We make the transition from ML to REML by
the same replacements as made in Section 6.7b, namely replace
ybyK'y, ZbyK'Z,
XbyK'X=0 VbyKVK=KZDZK + K'RK

and in doing so recall that P gets replaced by (K'VK)™! but that
P = K(K’'VK)™'K’. Then the ML equations (29) and (30) become

D
tr[Z’K(K’VK)“K’Z(a— )] = y’K(K’VK)"K’Z(a—D
60 0=6 60,

d

)Z’K(K’VK)” 'K'y
0=b
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and

iR iR
Iv -1y’ =v ] -ty
UDK K) K(aimm)x] y'K(K'VK) K(ga

r

.)K(K“VK)"Kju

which reduce, for each parameter 6, in D, to

tr[z'ﬁz(Q )] = y'ﬁz(a_n
00,005 00,

d

)Zl"y
0=9
and for each parameter 6, in R to
(L))ol e
06,le -4 06,14

-ii. Large-sample dispersion matrix. 1In the sampling dispersion matrix for
ML making the same replacements as in subsection i above gives

D D vd e |1
{o(reRerm ) " { (v 2o )]
m aodl aodl' Wr=1 m aodl 60'} i=1,j=1

R__D_ N\l ”
{ tr(P——PZ—Z’)} { tr(PzEP—ai)}
. 20, a0y r=1.de ™ 00, 96,4/ )=

Again, there is no merit in attempting further simplification of formulae such
as these.

var(d?) =2

11.2. MODELING VARIANCE COMPONENTS AS COVARIANCES

The problem of sometimes getting negative values for estimated variance
components has been seen to arise in the ANOVA methods of estimation. And
even with ML and REML solutions this negativity can be a problem when it
occurs in the midst of an iterative procedure, for then the calculated D = {, 671, }
will not be positive definite, and is singular if negative values for any a2s are
replaced by zero. Nevertheless, because a variance component can also be
interpreted as a covariance, negativity in that context is not necessarily out of
place. For example, in the 1-way classification random model with model
equation y;; = u + a; + e;; the covariance between y; and y;; for j # j' is 62:

COV( Yy yiy) = cov(p + oy + ey, + o + ;) = cov(oy, o) = 62 .

Since covariances can be negative, and because there are situations in which a
covariance of the form cov(y;;, y;;) might truly be negative, such a situation
would seem to throw doubt on the utility of a model that leads to a covariance,
which can be negative, being identical to a variance, which cannot be negative.
So maybe developing a model that circumvents this possibility is what is needed.
This is what Green (1988) discusses in the framework of clinical trial data
wherein the covariance between observations on the same person receiving
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different doses of the same drug could be negative if large doses of the drug
were such as to produce adverse effects.

There have therefore been several papers recently (e.g., Smith and Murray,
1984; Green, 1988; Hocking, Green and Bremer, 1989) describing models for
variance components and their estimation in terms of a covariance structure.
The estimation method employed is essentially an ANOVA method and, indeed,
for balanced data it is identical to ANOVA methodology. For balanced
data and for all-cells-filled unbalanced data it provides excellent diagnostic
opportunities for assessing the different covariance contributions to a variance
component estimate, which is especially useful when that estimate is negative.
These diagnostics are demonstrated by Hocking et al. (1989).

a. All-cells-filled data

We briefly illustrate the modeling and estimation method in terms of the
2-way crossed classification, random model, drawing heavily on Hocking (1985),
Green (1988) and Hocking et al. (1989) to do so.

As usual (e.g., Chapters 4 and 5), the traditional random model equation
for y;u, the kth observation in the ith row and jth column, is taken as

Ve =u+ o+ B+ vy + e (32)

wherei = 1,...,a,j=1,...,bandk = 1,...,n;. All effects (except u) are random,
with zero means, zero covariances and variances 62, 63, 62 and a2, respectively.
In contrast, the model used by Hocking et al. has no model equation but “is
given simply by describing the mean and covariance structure implicit in” (32)
in the following manner:

E(Yuk) = U,
var(yie) = ¢o + ¢y + ¢, + &1,
¢, fori=1iandj#j,
COV(Yips Yiyw) =S ¢, fori#i andj=j, (33)
o+, +¢,, fori=ij=jand k #k'.
As is easily seen “the two forms of model are mathematically equivalent”
(Hocking et al. 1989, p. 228) in the sense of there being a one-to-one

correspondence of the variance components of (32) to the covariances in (33),
namely

2
03 =¢,, Op = ®2
0$=¢1z’ 6} = ¢, . (34)
But the two models are not statistically equivalent, because their parameter
spaces are not the same. Variances cannot be negative, whereas covariances

can, although the negativity of the covariances in (33) is restricted by needing
the dispersion matrix of y to be positive definite, e.g., ¢g + ¢, + ¢, + ¢,, > 0.
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Now observe that since

CoV(Yijus Viyw) = &1
for each i, and for every j,j’ pair with j # j', so also does cov(y,,., J;;.) = ¢;.
And an estimate of this for the j, j’ pair is Z{_ | (§i;. — ., )(Jip. — §.;.)/(a = 1),
where

= =Z (35)

1
a
Therefore, on using all $b(b — 1) pairs j, j’ for j < j', the estimate of ¢, is taken as

Yy =Gy~ P )G = Py

_J<F
g Ya—1b(b—1) ' (36)

It is to be emphasized that (36) applies only for all-cells-filled data. It is
identical to é¢2 obtained from Yates’ (1934) unweighted means analysis of (145)
in Chapter 5. And it is unbiased for ¢, = 2 (see E 11.3). Estimation of ¢, is
analogous to (36).

b. Balanced data
For balanced data (35) reduces to j.;.:

~

_ 1 , ,
y.;.=y.;.=;2lzkym forn;=n Viandj. (37)

Thus the mean of the cell means, j.;., of (35) reduces for balanced data to the
regular column mean j ;., as in (37). And then (36) reduces to the familiar
ANOVA estimator

$, = 62 = (MSA — MSAB)/bn (38)
of (26) in Chapter 4, derived from Table 4.5.

¢. Diagnostic opportunities

The really interesting feature of ¢l of (36) is that it demonstrates for
all-cells-filled data that the ANOVA estimator of o2 for balanced data and the
unweighted-means-analysis estimator for unbalanced data can each be expressed
as a simple average of estimated covariances. And from this one can look at
the individual estimated covariances that go into that average, and scrutinize
them for any underlying patterns. Hocking et al. (1989) give an example of
doing this, using (36) and noting that for having four levels of the column factorin
their data, the values of the covariance estimate Z,(y;;. — 7.,.)(Jiy. — 7.5 )/(a — 1)
are as shown in Table 11.1. Although ¢2 = &1 =(34.1 + 353 + 370+ 13.1
+ 13.0 + 13.3)/6 = 24.3, it is clear from Table 11.1 that the estimated covariances
involving column 1 are all considerably larger than those among columns 2, 3
and 4. The diagnostic value of (36) is self-evident.
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TABLE 11.1. VALUESOF THE ESTIMATED COVARIANCE
TPy — 7 )Py = F.p)

j'=2 j'=13 j'=4
ji=1 3.1 35.3 370
j=2 13.1 130
j=3 133

Source: Hocking et al. (1989, Table 3).

This, then, is the underlying idea of what Hocking et al. call their “Ave”
method of estimation. That paper contains much more detail than is given here,
including a weighted version of the Ave estimator, and presentation and
discussion of efficiency values for the case of 115 observations in a 4-by-4 layout
with 11 cells each having 10 observations and the other 5 cells each having one.
This is considered for 14 different combinations of the values 0, 0.1, 0.5, 1 and 2
for o2 and 0. They summarize by saying their “limited numerical evidence ...
suggests that in many cases these estimators are very efficient”. Efficiencies are
compared with those of a Henderson Method III estimator and of estimation
from the weighted squares of means as in (147) of Chapter 5. No comparison
is made with ML or REML estimation.

d. Some-cells-empty data

Green (1988) extends the estimation procedure typified by (36) to the case
of some-cells-empty data. For each pair j,j’ let m;; be the number of rows in
which the cells in columns j and j’ have observations, i.e., in which both n;; > 0
and n;; >0, for i=1,...,a. Thus my, =a— Z{.,d,p,.0 for & being the
Kronecker delta. Then define .#;; as the set of indices i for those m;; rows for
which n;; > 0 and n;; > 0, and also define

Jap-= X Fydmy and Jop.= ¥ Fy/my
ity ledy

Then ¢, is estimated as

Y Uy = Py A0y — $p0]

zz ic.Hy

~ 1
¢,

Example. Consider Table 11.2 as a set of observed cell means, with four
empty cells. For Table 11.2 the values of m,; and J.,,. are as follows:

My =2 g =(12+16)/2 = 14, Foa1y = (14 + 20)/2 = 17,
Mys=3, Fum =(12+21+24)/3=19, .y = (15 + 23 + 25)/3 = 21,
Mys =2, .. =14+ 16)/2 = 15, Foaa.=(15+21)/2=18.
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TABLE 11.2. OBSERVED CELL MEANS

j=1 j=2 j=3
i=1 12 14 15
i=2 — 16 21
i=3 16 20 —
i=4 21 — 23
i= 24 — 25

Using these and the means in the table in the equation for ¢, gives

%3(2)43, =[(12 - 14)(14 — 17) + (16 — 14)(20 — 17)]/(2 - 1)
+[(12—=19)(15 - 21) + (21 — 19)(23 - 21) + (24 — 19)(25 - 21)]/(3 - 1)
+ [(14 — 15)(15 — 18) + (16 — 15)(21 — 18)]/(2 - 1) = 51,

which leads to ¢, = 17.

A weakness of this method of estimation for data having many empty cells
is that, depending on the pattern of empty cells throughout the data layout, it
is possible for much of the data to be unused in the estimation process. For
example, suppose the check marks in Table 11.3 represent cells that contain
data. Then all values of m;; are 0 or 1 and no estimation of ¢, is possible; and
the same is true for m;. and the estimation of ¢,.

TABLE 11.3. CELLS CONTAINING DATA

j=1 j=2 j=3 j=4
i=1 v v
i=2 v v
i=3 v v
i=4 v v

11.3. CRITERIA-BASED PROCEDURES

ANOVA estimation originated from the empiricism of equating mean squares
to their expected values. Although that implicitly yielded unbiasedness, there
was no specification of desired criteria for estimating variance components with
the object of developing estimators that satisfy those criteria. Certainly, minimum
variance properties were established for ANOVA estimators from balanced
data—but only long after such estimators were first suggested. And ML and
REML estimators get their attractive properties such as consistency, efficiency
and asymptotic normality through being the outcome of the maximum
likelihood method, and not by specifying those properties as criteria at the
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outset and then developing estimators to satisfy those criteria. This is the
methodology that is described now. It leads to a variety of procedures with
acronymic names such as MINQUE, MIVQUE, MIMSQUE, MIVQUE(0)
and I-MINQUE, the underlying philosophy being to derive estimators that
have minimum norm (or variance, or mean square) and which are quadratic
functions of the data and are unbiased. We begin with specifying these criteria.

a. Three criteria

A generalization of estimating a single variance component is estimating a
linear combination of components, p'e2, where p’ represents any known vector.
Since a variance is a second moment, it seems natural to estimate it by a
quadratic form (which is a homogeneous second-order function) of data. We
therefore consider estimating p'e? by y’Ay for symmetric A, but with A to be
determined by whatever criteria we wish to impose on y'Ay as an estimator of
p'e2 With the model equation

y=Xp+ Y Zu, and V=var(y)= Y ZZ}, (39)
i=0 i=0

three criteria come to mind.

-i. Unbiasedness. Since E(y'Ay) = tr(AV) + p'X'AXp unbiasedness de-
mands

pe’ =3I tr(AZ,Z)c? + p'X AXP . (40)
Requiring (40) to be true for all 7 and for all B leads to
pi=tr(AZZ;) and X'AX=0. (41)

It is tempting to think that X'AX = 0 of (41) leads to AX = 0, but this is
not necessarily so. It is true that A’ = A implies A = L’L for some L’ of full
column rank and then X'AX = X'L'LX. Therefore X’'AX =0 is X'L'LX = 0.
But X'L’'LX = 0 implies LX = 0 only if L is real; whereupon LX = 0 implies
AX = 0. But L is not always real, It is when A is non-negative definite (n.n.d.),
so that for A n.n.d. and symmetric X'AX = 0 does imply AX = 0.

A being n.n.d. is only a sufficient condition for X’'AX = 0 to imply AX = 0,
As an example, when estimating the class variance component ¢? from balanced
data of a 1-way classification random model, the ANOVA estimator is
¢2 = (MSA — MSE)/n, as in (55) of Chapter 3. In writing this as y'Ay the
matrix A is not n.n.d. Evidence for this is in the negative estimate 62 = —10
of (56) in Chapter 3. Of course, for ANOVA estimators from balanced data
AX = 0 is always true, even though A may not be n.n.d., as just noted.

<ii, Translation invariance. A quadratic form y’Ay is said to be translation-
invariant in the context of the model (39) if its value is unaltered by location
changes in B, ie, if p becomes B+ & then y’Ay is translation-invariant
if YAy =(y — X8)'A(y ~ X8). This reduces to (2y + X5)'AXd =0 or, for
z =2y + X8 to z’AXd = 0. We want this to be true for all z’ and 8. Among
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those values will be the cases when z' and & are, respectively, a row and a
column of an identity matrix. Thus each element of AX must be zero and so
AX = 0. Since AX =0 always implies X'AX =0, we therefore also have
unbiasedness of y'Ay if p, = tr(AZ,Z})V i; but unbiasedness does not always
imply translation invariance except if A is n.n.d.

~ili. Minimum variance. The variance of y'Ay does, in general, involve
third and fourth moments of elements of y. But confining attention to y being
normally distributed gives, from using (38) in Theorem S4 of Appendix S.5,

var(y'Ay) = 2tr[(AV)?] + 4p'X'AVAXP . (42)
And the mean squared error of y'Ay as an estimator of p’a? for given p is
MSE(y'Ay) = var(y'Ay) + [E(y'Ay) - p'¢*]?
=2tr[(AV)?] + 4p'X’'AVAXP + [tr(AV) + p'X'AXp — p'a2]?.
(43)
A criterion for deriving estimators can be to minimize (42) or (43).

b. LaMotte’s minimum mean square procedures

LaMotte (1973b) considered five different classes of estimators, governed by
different combinations of the criteria of the preceding subsection. In each he
determined A, subject to those criteria, by minimizing the mean squared error
given in (43) assuming B and o2 (and hence V) known. His five classes and
their estimation follow. In all cases the estimator involves pre-assigned values
of B and @2, which for that purpose are denoted by B, and ¢3. Replacing § and
o? by B, and 62, we define

Po=Vo!' = Vi'X(X'Vi!'X)"X'Vg !, (44)

By = X(X'V5!X)"X'+8S, forS,=XpV, 'BoX’, (45)
and

By =Vo'—P,— %S—‘c:’:, with ¢q = B X'XB, . (46)

Using these expressions [ for which LaMotte (1973b) has two useful lemmas;
see E 11.4(b,c)], the five classes of estimation procedures given by LaMotte
(1973b) are summarized as follows. In all cases the given form of y'Ay is a best
estimator of p'a” at o, 63; i.e, when assuming p = B, and 6> = 63. The reader
is referred to Appendix AO of that LaMotte paper for his excellent discussion
of describing an estimator as “best at 8,".

-i. Class Cy: unrestricted

p'od ) _ _ o
Ay = 20+ 1)V = VgIX X'Volly.
dd et +(n+2)(2c + 1)y[( ot 1) o 'XBoBoX'Vo 'y

This estimator is neither unbiased nor translation-invariant.
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-ii. Class C;: expectation of y' Ay containing no B. A is confined to satisfying
X'AX = 0. This is not unbiasedness, because tr(AZ;Z}) = p, is not also being
demanded of A.

122 IP
y'Ay = POoY Yoy .

N—-rx+2
The only criterion imposed on this estimator is that its expected value does not
contain B,.

-iii. Class C;: translation-invariant. The estimator in this class is derived
using AX = 0, and it turns out to be the same estimator as in class C;. It is
translation-invariant.

-iv. Class C3: unbiased. Define
M, =P,ZZ;P, + P,Z,ZB; + By Z/ZP,
for P and B~ of (44) and (46). The estimator of p'a? is p'é> for &* satisfying
{mtr(M; 0Z;Z})}, 2082 = {. YM; oY }i Lo .
This is the best (at By, 62) estimator that is unbiased.

-v. Class C,: translation-invariant and unbiased. The estimator of 62 is
given by
{m tf(PoZiZ;PoZJZ})}i.ﬁo&z = {YPoZZPoy}i o . (47)
This estimator is unbiased, translation-invariant and best at B, 63.

LaMotte (1973b) gives extensive details for the derivation of these results,
and also for mean squared errors and attainable lower bounds thereof.

Notice that the estimation equations (47) of Class C, are the same as those
for REML in (104) of Chapter 6 except that P there represents P with the
solution 62 to those equations replacing a2, whereas in (47) P, is P with the
pre-assigned 62 replacing a2 Thus the REML equations have to be solved
iteratively, but equations (47) are just a simple set of linear equations in the
elements of &2, because P, is a matrix with numerical elements. No iteration
is required as with REML. Since, for unbiased estimators, mean squared error
equals variance, equations (47) also represent minimum variance unbiased
estimators, on assuming P is actually P,. We proceed to derive (47) ab initio.

¢. Minimum variance estimation (MINVAR)
As an estimator of p'a? for known p’, we seek symmetric A such that y’Ay
has the following properties:

(i) translation invariance, which requires AX = 0;
(ii) unbiasedness, which additionally demands tr(AZ,Z}) = p;;
(ili) minimum variance, which means (under normality) that
var(y'Ay) = 2tr(AV)? + 4f’X'AVAXp = 2 tr(AV)?

(using AX = 0) is to be a minimum.
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Thus the problem is to choose A so that tr(AV)? is minimized, for V p.d.,
subject to A = A’, AX =0 and tr(AZ,Z;) = p, for i=0,1,...,r. Since it is
tr(AV)? that is to be minimized with respect to elements of A, it is clear that
the resulting A will have elements that are functions of elements of V. But those
elements of V are functions (usually various sums) of the variance components
that we seek to estimate in the form y’Ay. Thus our anticipated estimators are
to be functions of the parameters they are estimating. This is not acceptable.
We circumvent this situation as follows.

Suppose the variance components were to be considered known, represented
by o2. Then ask the question *What value would &2 have to be in order for
the preceding minimization problem to be satisfied?” In other words, what
equations would 62 have to satisfy so that for any known p’ we would have
p'c? = y'Ay such that tr(AV)? is a minimum subject to A = A’, AX = 0 and
tr(AZ,Z;)=p, for i=0,1,...,r? Solving this problem can be achieved in a
variety of ways. We begin by redefining the problem to put it in a form for
which the answer is well known.

Since V is p.d., non-singular V? exists such that V = V{V!, (See E 11.5.) Using
Vi define

Z,=V1Z, and A = ViAV} (48)
and
X=V-iX and M=1-XXX)"X' =M =M?, (49)
noting that
MX=0 and V"MV i=P. (50)

Also observe that
A=A'=AM=MA =MAM ifandonlyif AX=0and A =A".
(51)
The two trace terms of the minimization problem can now be written as
tr(AV)? = tr(AVAV) = tr(VIAVAVY) = tr(A2) = (vec A) vec A,
and
tr(AZ,Z}) = (vec A) vec(MZ,Z;M) .

Then, because from (51), using A and M implicitly includes AX = 0 and A = A’,
we can rewrite the minimization problem as: find A to minimize

(vec A) vec A subject to (vecA)'{ vec(MZ,Z;M)} = p’. (52)

We solve this minimization problem with the following well-known lemma.

Lemma. ('t is minimized, subject to t'W = A, by t = W8 for AL = W'W8,
for some vector 0.
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Proof. For 20 being a vector of Lagrange multipliers, minimizing
t't — 20'(L — W't) with respect to elements of t and of @ leads, respectively, to
t = W0 and A = W't, for which the latter is then A = W'W0.

Comment. The lemma as stated is a simple result in mathematics. It does,
of course, have an important application in statistics, in least squares estimation
where for z ~ (W, 1) we seek t'’z as an unbiased estimator of A'p that has

minimum variance.
We use the lemma to solve the minimization problem of (52) by writing

t=vecA, W={vec(MZZM)} and rA=p.
Then (52) is solved in the form
vec A = {, vec(MZ,Z;M)} 0 (53)
and
p = {. [vec(MZ,Z;M)]'}{, vec(MZ,Z;M)} 0 . (54)
These equations simplify. First, (53) is vec A = X,0, vec(MZ,Z;M), and because
A and M have the same order, this is
A=Z0MZZM .
Then, in substituting for A, M and Z from (48) and (49) and using (50), this
reduces to
A=X,0PZZP. (55)
Similarly, using (vec K)' vec L = tr(KL) for any K and L of appropriate orders,
(54) reduces to
p={ntr(PZ,Z,PZ,Z))}; -0 . (56)
Therefore, since we want 62 to satisfy p'6? = y’Ay, we have on using (55)and (56)

0 {, tr(PZ,Z,PZ,Z})}0* = y'(E,6PZZP)y =0'{ yPZZPy}. (57)

Throughout this development p of p’6? has been assumed known; and 8 depends
on p through (54). Therefore, in wanting the development to apply to all p, we
also want it to apply for all 8. Hence in (57) we let 8’ be successive rows of I
(of order r + 1) and so get the equations

{wtr(PZ,ZPZ,Z})} 0 = {, yPLZ/Py} . (58)

These equations have to be solved for ¢2. Since P involves 62, through V!,
a solution for 62 has to be obtained by numerical techniques. Clearly not all
of its elements will necessarily be non-negative.

The solution to (58) has been called the minimum variance, location-invariant,
unbiased estimator of 6. But, because of the iterative procedure involved, it
will not be an unbiased estimator of 62. Nor, even under normality, will it have
minimum variance. It might better be called PSEUDO-MINVAR.
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Notice that the form of (58) is exactly the same as the REML equations in
(104) of Chapter 6. Thus REML solutions and solutions to (58) are identical.
And, of course the form of (58) is also similar to (47) for LaMotte’s Class C,:
reptacing P in (58) with P, gives (47), whereupon it is a minimum variance
(under normality), location-invariant, unbiased estimator at 63. But, of course,
(58) has to be solved iteratively whereas (47) has just a single solution, one
that depends on o2.

d. Minimum norm estimation (MINQUE)

In a series of four papers, Rao (1970, 1971a,b, 1972) suggested a method of
estimation that does not require the normality assumption that is the foundation
of ML, REML and MINVAR (minimum variance). It has the same basis as
LaMotte’s approach, of estimating p’6? by y’Ay with A = A’, AX =0 and
p, = tr(AZ,Z;), but instead of deriving A by minimizing an unknown variance
(or mean square), it minimizes a known norm, a Euclidean norm, which is akin
to a generalized variance. The derivation is as follows.

In the model y = XB + Z{_, Z,u, the random vectors u; are unknown. They
have mean zero. Therefore if u, = {_u;}, were known, a “natural” estimator
(Rao’s own word—1972, p. 113) of 6? would be u/u,/q;, where g, is the order
of u;. Thus a “natural” estimator of p'6? would be

pé2=23,p o u’{ P Iq,}u =uwAu forA= { P lq‘} .

]| d 4 d
In contrast we are going to use as an estimator p'é% = y’'Ay = u'Z’AZu, Hence
the difference between the two estimators is p'é? — p'd2 = w'(Z'AZ — A)u.

Rao chose to minimize a weighted Euclidean norm based on this difference,
using o3 ; as pre-assigned values of ¢7 in the form D = {,03,1,}. Thus D is
simply var(u) with 63, in place of ¢?. Then the norm that gets minimized is
tr(FF') for F = DYZ’'AZ — A)D!. Modest algebra, including the use of
p; = tr(AZ,Z}), reduces this (see E 11.7) to
2.4
tr(FF) = tr[(AVo)*1 - T, ”‘;’“-’,

i

where V, is V with 62 in place of ¢2. It is tr(FF’) that is to be minimized with
respect to elements of A. But since those elements do not occur in p, 62, or q;,
we have only to minimize tr[(AV,)?]. Thus the minimization problem is to
minimize tr[(AV,)?] subject to A = A’, AX =0 and p, = tr(AZ,Z;). This is
exactly the same minimization problem as in the preceding subsection, only
with V, replacing V. Accordingly its solution is (58) with that same replacement,
leading to the estimation equation

{m tr(PoZ,ZPoZ,Z))}62 = {, yP,Z,Z;P,y} . (59)

Equations (59) yield what are known as MINQUE estimators: minimum
norm, quadratic unbiased estimators. They are exactly the same as (47) for
LaMotte’s Class C,. Moreover, they have the same form as the MINVAR
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equations of (58)—and the REML equations of (104) in Chapter 6. But there
is that big difference: MINVAR and REML equations (they are the same) have
to be solved by iteration: the LaMotte Class C, and the MINQUE equations
(which are the same), do not. The reason for this is that in (59) the unknown
variances occur only in 2. This is because P, in (59) has elements that are all
known numbers: it is P with 62 replaced by 62, where 62 has been decided on
as part of the estimation process. Thus (59) is simply a set of r + 1 equations
that are linear in the r + 1 unknown variance components. They get solved,
and the solutions are the MINQUE estimates; but they do, of course, depend
on what has been used as 62. And if n people had the same data and used the
same model, but used n different vectors a2, then (59) would yield n different
MINQUE estimates. This is a distinctive feature of the MINQUE procedure.
It is something we do not favor. Nevertheless, the estimators are locally minimum
norm (minimum variance, under normality) in the neighborhood of 62, and
are locally unbiased.

e. REML, MINQUE and I-MINQUE
The REML equations are

(wtr(PZ,2;PZ,2)}8% = {_ y'BPZ,Z Py}, (60)
whereas the MINQUE equations are
(m tH(PZZiPZ,Z))} 6% = { Y P ZZ{Poy) . (61)

Equations (61) get solved directly for 2. Equations (60) have to be solved
iteratively. To start the iteration, an initial value has to be used for ¢2; call it
62. Then equations (60) yield the first iterate, . But (60) using o2 for ¢ in
P is identical to (61). Therefore { will be exactly the same as the solution of
the MINQUE equations (61). Thus we have the relationship

a MINQUE = a first iterate solution of REML . (62)

And notice that it is “a MINQUE”, not “the MINQUE”. For a given set of
unbalanced data different values of 62 used in P, of (61) will not necessarily
yield the same MINQUE &2 Indeed, one can expect the &2-values to be different
for each 6. A genetic application of the connection between REML and
MINQUE is discussed by Henderson (1985), and Rao (1979) also considers
the connection more generally.

Consider the MINQUE equations (61) again. They yield an estimator, 2,
say. Bearing in mind that ¢2 is a pre-assigned value of 62, it would not be
unnatural, having obtained &%, based on ¢2 from (61), to contemplate using
&, in place of ¢ in (61) and solve, yielding what we may call 2%,; and this
process could be continued. It is called iterative MINQUE, or I-MINQUE.
Clearly, if one uses I-MINQUE to convergence then, providing the starting
values for iterating I-MINQUE are the same as for iterating REML,

I-MINQUE estimates = REML (based on normality) solutions . (63)
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True it is that neither MINQUE nor I-MINQUE require normality
assumptions, but so far as estimates are concerned (63) is valid. Moreover,
Brown (1976) has shown that I-MINQUE estimators, the basis of which require
no normality assumptions, are asymptotically normally distributed; and Rich
and Brown (1979) consider the effect of imposing non-negativity constraints
on I-MINQUE estimators.

Equations (62) and (63) are both clearly statements about solutions of
equations, so far as REML goes; i.e., non-negativity requirements of REML
estimators have not been brought into play. This highlights the as-yet-
unmentioned fact that MINQUE as a method contains no provision for
precluding negative estimates. Choosing 63 and solving (61) is no guarantee
against getting one or more negative estimates.

f. REML for balanced data

The REML and MINVAR procedures are, under normality, the same—as
discussed following (60). But we also know [e.g., Graybill (1956) and colleagues;
see Section4.4] for balanced data the ANOVA estimators are MINVAR. Hence

REML (based on normality) solutions = ANOVA for balanced data .
(64)

g. MINQUEO

A particular easy form of MINQUE is when a2 is taken as a null vector
exceptforad o = 1. Then the MINQUE equations (61) reduceforM = I — XX *
to

{m tr(MZ,ZMZ,Z))}6* = {, yMZ,Z;My} . (65)

The resulting estimators were suggested by Rao (1970) in the first of his four
papers on MINQUE.

With minimum variance estimators being called MIVQUE, estimators
obtained from (65) have been called MIVQUEO by Goodnight (1978)—but
MINQUEO seems more general. Without using any name, Seely [1971,
equation (6)] has MINQUEO as a method of estimation, Corbeil and Searle
(1976a) have it as the starting point of the (iterative) REML procedure,
and Hartley et al. [1978, equation (10)] espouse its use on grounds of
relatively easy computability, a feature that is promoted by Goodnight (1978).
Reconciliation with (62) of the Corbeil and Searle (1976a) description and of
the Hartley et al. (1978) description are the topics of E 11.8 and E 11.9.

h. MINQUE for the 1-way classification

By way of example we outline derivation of the MINQUE equations (61)
for the 1-way classification with unbalanced data. The full details are extensive
and are left for the solutions manual that will be available from the authors;
and the results are as in Swallow and Searle (1978). The task is to simplify (61)
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[Soo sonj":azjl - l:“ojl, (66)
sio Sy dLod uy
where sq0 = 5€5q(ZoPoZ,), Soy = 510 = 5esq(ZoPoZ,), sy, = sesq(Z\PyZ,),

Uy = sesq(ZoPoy) and u, = sesq(Z}Pyy). In making these simplifications we
use the model equation

to be in the form

y=uly+Za+e withX=1yZ,=IyandZ, ={,1,}.
This leads to

_ 1 6o r .
Vo!l= { — L, - 5=, with 4, = 624 + n02,,
d0c0 eO'll =1

where 2 and o2, are the pre-assigned values of ¢? and ¢? that are to be the
basis of the MINQUE procedure. Then

J . r ny
P,=Vg! - k{ DXxm for k=1 — .
o= To { A, } ° / 5

After tedious algebra we find, for k, = m,/A,, that

ki

2
SOO = + Z + kz(zl ";—) - 2kzi 2,
i

2 k}
_y K 2k ki k2Y K2y ZE
So1 Zi n, Zz n, + Zz 'Zi n,
Sy = Zk2 — 2kZ k? + k2(ZikE)?,
E
— + Z — kZk,§.)%,

u = ziki . — kzikiyi-)z . (67)

Various adaptations to the MINQUE equations are suggested by Chaubey
(1984) for eliminating the possibility of MINQUE estimators being negative.

11.4. SUMMARY

Components of covariance: Section 11.1

Model: (1),(2),(3)
ba, = 3(6%,,,— 63, — 62). (4),(6)

Different forms for D = var(u):
D = {, Dy} = {4 0f[(1 — p)I,, + pd, 1} (9).(10)

D= {m Dn’}’
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with (11),(12)
D; = of[(1 — pu)lg, + pudy), and Dy = py0i0,dg xq forisi'.

Also var(e) = R; left to the reader.
Genetic covariances: relationship matrix . (16)

Maximum likelihood:

V=12DZ +R; (18)
ML equations; (28),(29)
var(6?) . (31)

Restricted maximum likelihood: Section 11.1f

Modeling variance components as covariances: Section 11.2

Model: (32)
Estimation: (36)
Balanced data simplification: (38)

Diagnostics: Section 11.2c.

Some-cells empty data: Section 11.2d.

Criteria-based procedures: Section 11.3

Estimate p's? by y'Ay.

Unbiasedness:
pi = tr(AZZ}) . (41)
Translation invariance:
AX=0.
Minimum variance:
var(y'Ay); (42)
MSE(y'Ay) . (43)

LaMotte’s procedures: Section 11.3b,
Minimum variance estimation (MINVAR):
{mtr(PZ,Z;PZ;Z))}6* = {. y'PZ,ZPy} . (58)



402

OTHER PROCEDURES [11.5]

Minimum norm estimation (MINQUE):

{m tr(PoZ,Z;P,Z,Z))} 6% = {  y'P,Z,Z;Poy} . (59)
a-MINQUE = a first iterate of REML . (62)
[I-MINQUE estimates = REML solutions (63)
REML solutions = ANOVA for balanced data (64)

Special case (MINQUEO):
{ntr(MZ,ZMZ,Z))}6* = { yMZ,Z My} . (65)
MINQUE for the 1-way classification: (66),(67)

11.5. EXERCISES

E11.1. Apply the estimation method described in Section 1l.l1a to
estimating components of covariance in the 2-way crossed classi-
fication, no interaction, random model, with one observation per

cell.

E11.2.  Apply (29), (30) and (31) to the following variations of the 1-way
classification.

(a)
(b)
(c)
(d)
(e)
(f)

(g)
(h)
(i)

Model (1), just the y;;; data.

Model (1) and (2), without (3); ie, t,=1,=0.

Model (1), (2) and (3).

Model (1), (2) and (10) with6? =g and p,=p Vi

The preceding case with p = 0.

Model (1), (2) and (11) with 62 =62, p,=p, Vi and
Piw=py Vi#i

The preceding case, with p; = 0.

Model (1) with D of (15), but R = 621

Model (1) with D of (16).

Try each of the preceding cases (i) with balanced data and (ii) with
unbalanced data. You may find some cases more difficult than
others.

E11.3. (a)
(b)
(c)
(d)

Show that ¢, of (36) is unbiased for a2.

For balanced data reduce (36) to (38).

Show that ¢, of (36) is 62 of (145) in Chapter 5.

Why are the data of Table 11.3 very unsatisfactory for
estimating ¢, in a manner analogous to (36)?
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Matrices P, B, S and B~ and scalar c are defined in Section 11.3b.

(a) Show that PX =0, PS=0, SV !S=cS, PYP=P and
BB B=B.

(b) For symmetric A show that X'AX = 0 if and only if there
exists a symmetric C suchthat A = PCP +~ PCB~ + B~ CP.

(c) For symmetric A show that AX = 0if and only if there exists
a symmetric C such that A = PCP.

For results in Section 11.3:

(a) The canonical form under orthogonal similarity of V is
U’'VU = {4 4;} for orthogonal U and the 4; being eignroots
of V (e.g., Searle, 1987, p. 283). Show that this leads to the
existence of nonsingular V! such that V = Vivi,

(b) Verify (51).
(c) Show that tr(AZ,Z}) = (vec A) vec(MZ,Z'M).
(d) Confirm (55) and (56).

Verify the comment that follows the lemma in Section 11.3c.
For F and D, defined in Section 11.3d show that

2.4
Pi0Co,

i

tr(FF') = tr(AVy)*> - Y
[Corbeil and Searle (1976a).] Using a matrix T of full row rank
N —rx and such that T'(TT’)"!T =M and E(Ty) =0, these
authors define
L=T/(THT) 'T
for H = V/a? as in (28) of Chapter 6. Then their REML equations
are
(N —r)é3 =yLy (68)
and
ocitr(Z,ZL)=yLZZLy fori=1,...,r. (69)

(a) Prove that LHL = L.

(b) Prove that LH is idempotent, of rank N — ry.

(¢) By multiplying the ith equation of (69) by o and summing
over i = 1,...,r, incorporate (68) into (69) to yield the
equations

(wtH(ZZILZZLY, [ 08" = (YLZZILy}:Zo.  (70)

(d) Show thate3 =[6 01,] used in place of a2 reduces (67) to
the MINQUEO equations (65).

(e) Explain why L = Po?.
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[Hartley, Rao and LaMotte (1978).] These authors use a matrix
that we call W, which they describe as X orthogonalized “By
a Gram-Schmidt orthogonalization process...”, omitting any
linearly dependent columns. Then for

V,=(1-WW)Z, (71)
their equations are
{m tr(vlv;viv}}i.]‘iocz = {c ylviv;y}l:O . (72)
Show that these are the MINQUE equations (65).
Derive (67) from (66), using (60).
(a) Write 2 = (MSA — MSE)/n of Section 3.5 as y'Ay and

derive A as a linear combination of the three matrices I, ® J,,
J,and I,

(b) Show that AX = Al =0.

(c) UseAderivedin(a)toconfirmé2 = — 10 of(56) of Chapter 3.

(d) For data consisting of two observations in each of two classes,
namely 4, 14 and 6, 16, calculate ¢2 = (MSA — MSE)/n.

(e} For the data of (d) calculate the numerical value of A of (a)
and use it to confirm 42 of (d); and show that AX = 0.



CHAPTER 12

THE DISPERSION-MEAN MODEL

This chapter deals with the general mixed model restructured so as to be a
linear model that has 62 as the vector of parameters; i.., for  and ¥ (which
shall be defined), E(¥) = Z'o>. It is called the dispersion-mean model and was
first proposed by Pukelsheim (1974). It can also be viewed as an outcome of
the seminal work of Seely (1971). A variation of it is used by Malley (1986).

12.1. THE MODEL

As in Chapter 11, we confine attention to estimating a linear function of
variance components by a translation-invariant quadratic form y’Ay with A
symmetric. Hence we deal here only with y’Ay where

y=Xp+Zu+e
and
A=A" and AX=0 (1)
as in Section 11.3a-ii. We also use M of (18) and (19) in Appendix M.4b, i.e.,
M=I-X(XX)X=I-XX*"=M=M? withMX=0. (2)
Then, along with the symmetry of both A and M, it follows that

AM=A=A'"=MA; andso MAM=AM=A. (3)
Now consider y’Ay:
y'Ay = yMAMy [A = MAM]
= vec(y' MAMy) [y Ay is scalar]
=[(My) ® yYM]vecA [vec(ABC)=(C'® A)vec B]
= (vec A)'(My ® My) [transposing a scalar] . (4)

405
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Therefore E(y’Ay) for any A = MAM depends, apart from A, only on

E(My ® My) = E[M(y — XB) ® M(y — Xfi)] [MX =0]
=(M®M)E[(y - Xp)®(y — Xp)] [AB@®RS=(A®R)}BQ®S)]
=(M® M)E{vec[(y — XB)(y — XB)']} [t®t=vec(tt))]
=(M® M)vecV

=(M® M)vec< ‘2 Z,Z;of)

i=0
= (M@M)L, vee(Z,Z})o}
=(MQ@M){, vec(Z,Z})}i Zo{c 67 }i L0
= {, vec(MZ,ZM)}; %o {. 62 }: 0 [vec(ABC) = (C'® A) vec B] .

(5)

Now define
% =My®My and & = {, vec(MZ,ZM)}. (6)

Then (5) is
E(¥) = %d’, )]

which is a linear model for 62, where, by virtue of (6) and the definition of M in (2),
the elements of ¥ are squares and products of the residuals after fitting the
fixed effects model y = XB + e using ordinary least squares. Thus it is that, for
estimating any linear function of the variance components by the translation-
invariant quadratic form y’Ay, the model (7) is the underlying model for the
variance components: and that quadratic form can always be expressed, using
(6)and (7),as alinear function of elements of #;i.e.,y' Ay = (vec Ay ¥ because

y' Ay = yYMAMy = vec(y MAMy) = (yM ® y'M) vec A
=(vec AY(My ® My) = (vec AY ¥ .
Hence the choice of any symmetric A (satisfying AX = 0) to be used in y'Ay
is equivalent to the choice of the linear combination (vec A)Y# of elements of

y. Therefore we can confine attention to (7). This is the key to much of the
subsequent development of this chapter.

12.2. ORDINARY LEAST SQUARES (OLS) YIELDS MINQUEO

We show that the ordinary least squares (OLS) equations for estimating o
from (7), namely &'®e? = X'y, are in fact the MINQUEO equations of
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Chapter 11. This is so because
T ={ [vec(MZ,Z;M)]'}{, vec(MZ,Z;M)}
= {n [vec(MZ,Z;M)]’ vec(MZ,;Z;M)}
= {, tr(MZ,Z;MMZ,Z'M)} [(vec A') vec B = tr(AB)]
= {ntr(Z,Z;MZ,Z M)} [(M=M?].
Similar algebra reduces &'y, so that &'®'e* = X'y becomes (see E 12.1)
{mtr(Z,ZMZ,Z)M)}6* = {. y'MZ,Z; My},
which is the same as the MINQUEO equation in (59) of Chapter 11.

12.3. FOURTH MOMENTS IN THE MIXED MODEL

Having used OLS in the dispersion-mean model, we proceed to consider
generalized least squares (GLS). This demands knowing var(®). With
¥=MyR@My=(MQ®M)(y®Yy) from (6), it is clear that elements of ¥
involve squares of elements, and products of different elements of y. Therefore
var(®) involves fourth moments of elements of y. To derive var(#), we begin
with var(u ® u) for u in the general mixed model

y=Xp+Zu=Xp+ ¥ Zu, withvar(y)=V=2DZ' = Y Z,Zo?, (8)
i=0 i=0

having, as usual
var(u) = E(u') =D = {;6{L,},Zo and g¢=¢q.= } g¢;. (9)
i=0

a. Dispersion matrix of u®@ u
Noting that u @ u = vec(uu’) gives

varf(u@u)=E (u@u)(u@u) — [E(u@u)J[E(u®u)]’
= E(uu’ @ uu’) — [E vec(uu’)][E vec(uu’)]
= E(uv’ @ uu’) — (vec D)(vec D) . (10)
-i. A normalizing transformation. To simplify E(uu’ ® uu’), define
w=D"tu={w},4,, with E(w)=0and var(u) = E(ww') = L
and, for y¥ and y, being kurtosis parameters given by
E(w))=3+y; and E(uf)=0c}(3 +7)=E(ul) v J,

we have
{d 7:}&21 = {d 'Yilq.}lzro . (11)

This simply means that n; of the y¥s have the value y,; ie, y¥ =7, for
k=m_, +1,...,m;, where m; = £!_ n,. Then

E(uv’ @ w’) = (D! @ DH)E(ww ® ww')(D! @ DY) . (12)
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The middle term in (12) is
E(ww'®@ww) = E{ w,{, www'},2, },1,

for which a typical term is E(w,w,w,w,); and this, because the w,s have zero
mean and zero covariance, has only two non-zero values

E(w})=3+9yF and E(wiwl)=1, (13)

ie., whenever k =1l =m=n, E(w,ww,w,) =3+ y¥, and if k, |, m and n are
equal only in pairs E(w,w,w,w,) = 1. Otherwise, the value is zero. Using these
values, we now illustrate E(ww’ ® ww') for a small example, and argue from
that to the general case.

-ii. Example. Consider the model equation y,; = u + a; + ¢, for a 1-way
classification with just one class, i = 1, having only two observations, n, = 2.
This means g =gy + ¢, =2+ 1 =3, and

W’=[e“/ﬂe e12/ae al/aa]‘ (14)

Then ww’ ® ww’ has order 9, and the 9 pairs of subscripts on the w, w; products
in vec(ww’) are

(11 21 31 12 22 32 13 23 33].

The quartets of subscripts in ww’ ® ww’, which is vec(ww')[ vec(ww’)]’, are
therefore as shown in Table 12.1.

Each element in the matrix of Table 12.2 is the number of subscripts that
are the same in the corresponding element of Table 12.1; e.g., in Table 12.2 the
leading element is 4, corresponding to the element 1111 in Table 12.1. Thus the
first five elements in the first row of Table 12.2 are 4, 3, 3, 3 and ¢p, the ¢p
corresponding to the 1212 in Table 12.1, in which there are two pairs of equal
subscripts. Then E(ww’ ® ww’) is a 9 x 9 nuil matrix except that, in accord
with (13), it has 3 + y¥ and unity corresponding to each element 4 and ¢p,
respectively, in Table 12.2. Thus, on using (11) and (14) to get y* =% =y,
and y$ =7y,

—3+'}’0 .. . 1 . .o 1 7
1 - 1
1 . 1
1 - 1
E(ww @ ww') = 1 . C 34y, .o i (15)
1 |
1 . 1
1 1
. 1 3+,
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TasLe 12.1. QUARTETS OF SUBSCRIPTS IN ww’ @ ww’ = vec(ww’)[ vec(ww')]’ for w’ =
[wi wy wsy]
1111 1112 1113 1211 1212 1213 1311 1312 1313
1121 1122 1123 1221 1222 1223 1321 1322 1323
1131 1132 1133 1231 1232 1233 1331 1332 1333
2111 2112 213 2211 2212 2213 2311 2312 2313
2121 2122 2123 2221 2222 2223 2321 2322 2323
2131 2132 2133 2231 2232 2233 2331 2332 2333
3t 3112 3113 3211 3212 3213 3311 3312 3313
3121 3122 3123 3221 3222 3223 3321 3322 3323
3131 3132 3133 3231 3232 3233 3331 3332 3333
TabLe 12.2. NUMBER OF EQUAL SUBSCRIPTS IN ELEMENTS OF
TaBLE 12.1. USING tp TO REPRESENT TWO PAIRS OF EQUALITIES
[ 4 3 3 3 p 2 3 2 g
3 tp 2 tp 3 2 22 2
3 2 2 2 2 tp 2 3
3 1p 2 tp 3 2 2 2 2
3 2 3 4 3 2 3 ¢
2 2 2 2 3 1p 2 tp 3
3 2 1t 2 2 2 tp 2 3
2 2 2 2 3 #p 2 tp 3
tp 2 3 2 tp 3 3 3 4
Scrutiny of (15) shows that
Eww'@ww)=T,+T,+T; +T,, (16)
where
T, = Iy, (17)
- 1 .
1
1
1
T, = =133 =8; [Section M9], (18)
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o EETEETN EETEE D PR B
T3 =1 - - N <+ 1 = (vec 13)(VCC 13)' (19)
1 1 1
and
[ 7o ]
"[‘4 = . . . . yo . . . . = {d '))0 0’3 ')’0 0’3 ')’1 }a (20)
N . . . . . . B . yl_‘

where 0, is a row of g zeros. For the diagonal eiements 3 + y, in (15) note that
the 3 is accounted for in (16) because each of T, T, and T, has | in the same
element, and the y, comes from T,. And for T, of order g% x g2 rather than
32 x 32 of (20),

Ts = {a% 0; Yo 0; 0; Yo 0; Y1 0;, N 0;
0, 5, 0, - 0, ) (21)

q

with, from (11), y; occurring g; times, for i = 0,..., r. Inspection of (21) reveals
that it is, using (11),

T, = {4 vec{y ')’ilq,}1='o} . (22)

-iii. The general form of E(ww’ ® ww'). The general form of (15) is now
clear: using q2-order forms of (17)-(19), together with (22), in (15) gives

E(ww @ww')=1+S, + (vecl )(vecL) + T, . (23)
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Therefore substituting (23) into (12) and then that into (10) gives
var(u® u) + (vec D)(vec D)

=(D}QDH[I +S, + (vecI,)(vecL,) + T,](D!@DY).  (24)

In multiplying out (24), the second term simplifies by using (58) of Appendix M.9,
and the third term becomes (vec D)(vec D) based on (53) of Appendix M.9.
Thus (24) becomes

var(u®u) = (D@ D)(1 + S,) + (D! ® DY) T, (D!® DY) . (25)
b. Fourth central moments of y
-i. General case. The fourth central moments of y are given by
F=var[(y — XB)® (y — Xp)]
= var(Zu ® Zu) (26)
=(Z@Z)var(u@u)(Z'® Z’)

=(Z®Z)[(D®D)1+8,)+ (D!@DHYT,(D!®DH)Z' ®Z),
using (25)

=(V® V)(I + Sy) + (ZD!® ZD}){y vec{, 11, },20}(DIZ' ® DZ"),
(27)
using (8) and (22).

-ii. Under normality. Normality assumptions include y; = 0, which reduces
(27) to

Fi =(VOV)I+Sy). (28)
c. Dispersion matrix of &
-i. General case
var(%) = var(My ® My)

= var[M(y — Xp)® M(y — Xp)] [MX =0]

=(M@®M)F(M®M)

= (MVM ® MVYM)(I + Sy) (29)

+ (MZD! ® MZD?){, vec{, 1, }; 20 H(DIZ'M ® DIZ'M),

after using (58) of Section M.9. To facilitate subsequent discussion, especially
when considering the case of zero kurtosis (e.g., normality), we label the two
parts of the sum in (29) separately, and write

var(¥)=v% + %, (30)
on writing S for Sy and defining ¥~ and ¥; as
¥ =(MVM ® MYM)(I + 8S) (31)
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and
¥, = (M®M)(ZD! ® ZD}){, vec{y 7], }i 1o }(DIZ' @ DIZ)M M) .
(32)
-ii. Under normality. When y is normally distributed, i.e.,
y ~ A(XB,V), (33)
then y, =0 V i in (32) reduces (30) to ¥ of (31) so that
¥~ (Xel, V). (34)

d. Variance of a translation-invariant quadratic form
The quadratic form y’Ay is translation-invariant when A is symmetric and
AX = 0, whereupon its variance is

var(y'Ay) = var[(Xp + Zu)A(XP + Zu)]

= var(u'Z'AZu) [AX = 0]

= var[vec(u’'Z'AZu)] [u'Z’'AZu is scalar]
=var[(WZ' ®uZ')vecA]

= var[(vec A)' (Zu @ Zu)]

= (vec A)F(vec A), using (26) . (35)

Using (27) gives (35) as
var(y' Ay) = v, + v,

for
v, = (vecAY(V® V)(1+S)vec A
=2(vec AY(V® V)vec A [(57) of Section M.9]
= 2(vec A) vec(VAY) [(53) of Section M.9]
= 2tr[(AV)?] [(54) of Section M.9] (36)
and for

v, = (vec AY (ZD} @ ZDY){  vec {71, }, 10 }(DIZ' @ DIZ')vec A . (37)
Also, on using
Hqu = D!Z'AZD! = {hsl}s.rq=l and quq = {d yilq,}iéo = {lsl}s.l&l’
(38)
(37) can, again, with the help of (53) of Section M.9, be written as
q q
v, =(vecH)Y{yvecL)vecH= Y Y hil,. (39)

s=11=1
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But, from (38), L is diagonal, with I, = 0 except when s = ¢, for which [, is a
y;- Therefore (39) is

= Y y,0}(sum of squares of diagonal elements of Z]AZ,) . (40)
i=0

Therefore from (36) and (40)

var(y’Ay) = 2tr(AV)2 + Y y,0#(sum of squares of diagonal elements of Z;AZ,) .
i=0
(41)

This is the variance, under non-normality, of a translation-invariant quadratic
form y’Ay. Under normality, y, =0 V i and (41) reduces to the familiar form
var(y’Ay) = 2 tr(AV)2. Equation (41) is, of course, equivalent to the result given
by Rao (1971b). See E 12.6.

12.4. GENERALIZED LEAST SQUARES (GLS)

a. GLS yields REML equations under normality
With normality, every y, is zero and so ¥; of (32) is null. Then (30) gives
var(®) = ¥ for ¥ of (31). For convenience we write

B =MVM (42)
and then from (31)
¥ =var(¥)=(B®B)(1 + S)=(I + S)(B® B), (43a)
with
¥ =4{I+S)(B"®B"). (43b)

These two expressions for ¥” and ¥~ are based on (56) and (58) of Appendix
M.9. GLSE on E(%) = Zo? then yields

TV X =2'v Y. (44)

At first glance these equations seem innocent enough for calculating 62 as
an estimator of ¢2. But through ¥ of (43) and B of (42) the ¥~ in (44) involves
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o2, which is unknown. Therefore (44) cannot be solved for @2. Nevertheless,
by replacing 62 in (44) with 62, we can think of the resulting equations, namely

TV Xo*=2'V ¥ (45)

as being quasi-GLSE equations in 62, Clearly their solution for ¢* will have
to be obtained by numerical methods.

We proceed to reduce (45) to be in terms of y, X and Z and functions thereof.
First, from (6) and (43b)

'y~ =[(MOM){, vec(Z,Z))}14(1+S)B"®B") (46)

= §[{; vec(MZ,Z,M)} (I + S)(B" ® B),
using (53) of Section M.8,

=B @B~ )I+ S){, vec(MZ,Z;M)},,T [transpose]
1
2

[(B_ ®B_){r vec(MZlZ;M)}I;O],
[(57) of Section M.9 with 6 = 4]

=4[{, vec(B"MZ,ZMB™7)}, %07, using (53) of Section M.8
(47)
=4{ . [vec(B"MZ,Z,MB7)]'}, L, .
Therefore
TV & =4{, [vec(B-MZ,Z;MB")]'}{, vec(MZ,Z;M)}

e
Hatr[(B"MZ,Z;MB " )MZ;Z;M]} [(54) of Section M.8]
Ha tr(Z,ZPZ,ZP)}, s [Section M.4f]
Similarly, from (47) and (6)

X'y ¥ =4[{[vec(B"MZ,ZMB"]'},1,](My ® My),
and this is a column of scalars. Therefore it is

XYy ¥ =4{(yM®yM)vec(B"MZ,Z,MB" )}, ,

2

=3{. yYM(MVM)"MZ,ZM(MVYM)” My}, L,,
using (53) of Section M.8,

=4{YPZ,ZPy},L,. [Section M.4f]
Therefore the GLS equation '¥ ~Xe? = I'¥ "y of (44) is
{mtr(Z,Z;PZ,Z;P)}a* = {,y'PZ,Z/Py}, (48)

which is the same as the REML estimation equation in (90) of Chapter 6.
What we have dealt with here is the case of normality—of assuming
y ~ A/ (XB, V). That leads to var(#) = ¥ as in (34), which, via (45), produced
(48). But nothing prevents us conceptually from considering exactly the same
approach with non-normal data. The sole change in (45) will be that ¥~ will
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be replaced by ¥ + ¥, of (30)-(32). This offers an extension of the ideas of
REML to situations other than normality, and is an alternative to the marginal
likelihood interpretation discussed in Section 9.2.

We next show that REML equations are the same as BLUE equations in
the dispersion-mean model E(¥) = Z'e2. To do so, we need some results from
estimating the fixed effects when V is assumed known.

b. Excursus on estimating fixed effects

In the general linear model E(y) = Xp with var(y) = V and V non-singular
it is well known that the GLS estimator of Xp, denoted GLSE(XB), is the same
as the best linear unbiased estimator BLUE(Xp):

GLSE(XB) = X(X'V~'X)" X'V~ 'y = BLUE(XP) .

When V is singular, it can be shown that using V™~ in place of V™! yields
GLSE(XB) = X(X'V™X)" X'V 7y. For this case we have two important theorems
concerning the equality of GLSE(Xp), OLSE(Xp) and BLUE(X). The first is
from Zyskind and Martin (1969), that

GLSE(Xp) = BLUE(Xp) ifand onlyif VV ' X=X. (49)

The proof of this is omitted, because of its length—primarily because it requires
the derivation of BLUE(X@) for singular V as

BLUE(Xp) = (I — M)[I — VM(MVM)~ M]y
(see Pukelsheim, 1974; Albert, 1976). The second theorem we use is that
BLUE(XB) = OLSE(Xp) iff VX = XQ for some Q. (50)

This comes from Zyskind (1967), wherein VX = XQ is only one form of the
theorem’s necessary and sufficient condition. The theorem applies for both
nonsingular and singular V. The proof for nonsingular V is left to the reader
as E 12.4; that for singular V is lengthy (see Searle and Pukelsheim, 1989).

¢. REML is BLUE

Having shown in (48) that quasi-GLS estimation in the model E(¥) = Z'¢?
leads to REML equations, we now show that REML equations are BLUE
equations in that model by showing under normality that (49) is satisfied; i.e.,
that ¥ ¥ ~ & = &. We see this as follows.

VY X=XV
= (MVM ®@ MVM)(I + S)i[{, vec(MYM)"MZ,Z,M(MVM)" }]
from ¥ of (43) and &'¥ ™ of (47). Hence
¥~ & = (I + S){, vec[MVM(MVM)~ MZ,Z;M(MVM)~ MVM1},
and because V is n.n.d, MVYM(MVM) MZ, = MZ, and so

Y9 & =41 +9)!, vec[MZ,Z,M)} = {, vec(MZ,ZM)} =& . (51)
Q.E.D.
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Therefore, by the Zyskind and Martin (1969) result in (49), the REML equations
are BLUE equations for the estimation of ¢ from the dispersion-mean model.

12.5. MODIFIED GLS YIELDS ML

Suppose we knew B. Then consider

¥,=(y- XB)®(y — Xp) (52)
with
E(¥o) = E{vec[(y — XB)(y — XB)']} = vec V = vec(L,Z,Z;0})
= {, vec(Z,Z})}6* = Ce?, for C = {, vec(Z,Z})} . (53)
Hence, on assuming normality of y and using (26) and (28), we have
¥,~(Ce® ,F,) forF,=(V®V)I1+8). (54)

In comparing ¥ ~ (X6, ¥") with &, ~ (Ca?, F ) we see from (6) and (53)
that

X = {,vec(MZ,ZM)} and C={, vec(Z,Z})},
and from (43a) and (54) that
v =(B®B)(1+8S), withB=MVM, and F, =(V®V)I1+8).

Therefore C is & (and F, is ¥") with M replaced by L. Thus, because
Yvv X =4,asin (51)it is clear that

F FiC=C, (53)

and so GLS applied to &, of (54) yields the BLUE equations for ¢2.

Furthermore, because (48) is the quasi-GLSE equation for ¢ obtained from
¥, replacing M by 1 in (48) gives the quasi-GLSE equation for 6% obtainable
from & ;. One must also replace = My ® My by ¥, = (y-— XB) ® (y — XB),
which (after replacing M by I), is equivalent to replacing y by y — XB; and
note that replacing M by I in P = M(MVM) ™M (see E 12.3) means replacing
P by V! (assuming V to be non-singular). Thus (48) becomes

{mtr(Z,Z)V ' ZZ V™)) Lo0? = { (Y= XBYV ' Z,ZIV " (y — XB)}i Lo,
(56)
as the GLSE equations based on %,. And because of (55) they are the BLUE
equations for estimating ¢ from 9.
An impracticality of (56) is that p is unknown. Replacing Xp by Xp° =
X(X'V~'X)"'X'V~'yleads toreplacing V"' (y — Xp) by V" !(y — Xp°) = Py,
and then the equations are

{mtr(V'ZZIVT' 2,29} %0 = {c YPLZZIPY}, 2o, (57)
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which are the ML equations in Chapter 6. This result was first obtained by
Anderson (1978).

12.6. BALANCED DATA

Estimation of variance components from balanced data involves numerous
relationships emanating from the incidence matrices X and Z being partitionable
into submatrices that are Kronecker products (KPs) of identity matrices and
summing vectors; and with V = £,62Z,Z; having each Z,;Z} as a KP of I- and
J-matrices (details are shown in Section 4.6). These relationships lead to
estimators from balanced data that have several attractive properties.

Seely (1971) has very general results that are salient to establishing some of
these properties. They lead, for example, to the result under normality (i.e.,
when every kurtosis parameter y;, = 0) that

ANOVA = UMVUTIQ, (58)

meaning ANOVA estimators have the property of being uniformly minimum
variance, unbiased, translation-invariant, quadratic. We adopt freely from
Anderson et al. (1984) in discussing this topic further.

a. Estimation under zero kurtosis

-i. History. The variances of the minimum variance estimators of (58) do,
of course, depend on var(y) =V = Z,62V,;, where V, = Z,Z;. More than that,
existence of UMVUTIQ estimators of the 6?s comes from V and the V;s having
a certain structure. To be precise, let

g= {Eit,V,H,ER}, (59)

be the set of all matrices that are linear combinations X;t,V, of the Vs for the
t;s being any real scalars (represented by R). Then % is defined by Seely (1971)
as a quadratic subspace of symmetric matrices when every member B of # has
B? also in 4.

Seely’s (1971, p. 715) results on uniform minimum variance unbiased
estimation are established on the basis of two assumptions:

(a) that # is a quadratic subspace of symmetric matrices; and
(b) that matrices H; exist such that V,X = XH,; for each i.

These assumptions certainly hold in most fixed eflfects model, as in Atiqullah
(1962), wherein V = 63V, and V,, = I,. They also hold for the random effects
model in Theorem 7 of Graybill and Hultquist (1961), since their requirement
that an analysis of variance exists leads to Seely’s assumption (a), while their
assumption (iv) is Seely’s assumption (b). Since Seely (1971, p. 717) shows that
his assumptions (a) and (b) necessitate invariance of the resulting estimator,
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neither Atiqullah (1962) nor Graybill and Hultquist (1961) need a restriction
to invariant quadratic estimators.

In general, however, an ANOVA model with balanced data does not
necessarily satisfy Seely’s assumption (a) for the same kind of reasons that
Seely’s (1971, p. 719) example of the balanced incomplete block design does
not, and as further evidenced in Example 1 of Kleffe and Pincus (1974, p. 53).
Another demonstration that & is not always a quadratic subspace is given by
Searle and Henderson (1979) for the 2-way crossed classification where both
V™! and V?include a term in Jy whereas V itself does not. But the Vs of V,
together with J, do form a quadratic subspace and V is a member of it. Indeed,
there are typically two distinct situations.

(1) For some models (e.g., crossed classification models having no nested
factors) the V;s do not define a quadratic subspace. This is because, by the
crossed nature of the factors, there is a product of two Vs that yields J, and
Jy has to be included in #.

(2) For other models (e.g., completely nested models, and mixed models having
random factors that are, within themselves, effectively nested) the Vs define a
quadratic subspace and no product V,V; yields Jy, and so there is no need to
include Jy.

In contrast to V = var(y), consider the variance of My from which
% = My ® My is formed:

var(My) = MVM = ¥’ ¢2MV,M . (60)

i=0

The analogous form of # for matrices MV;M is then
By = {Z,t MV M| 1,eR} . (61)

Concerning #,,, Theorem 6 of Kleffe and Pincus (1974, p. 52) shows that in
any linear model the quadratic subspace property that is not always evident in
V is needed only of 4. For balanced data this is always the case, ie., By
defines a quadratic subspace, resulting from the fact that M and the Vs are all
linear combinations of KPs of Is and Js. No matrix such as J, ever has to be
included with the the MV ,Ms. This is so because MJy is null. Note, too, that
the analogue of Seely’s assumption (b) is trivially satisfied, since My has
expectation zero.

Theorems 1 and 3 of Seely (1971) assert that for balanced .data with zero
kurtosis there exists an unbiased invariant quadratic estimator of the variance
components that has uniformly minimum variance in its class (UMVUIQ).
Under normality this estimator retains the UMYV property among all unbiased
invariant estimators, whether they are quadratic or not (UMVUI). We now
show that this estimator also coincides with the ANOVA estimator, thus
justifying (60) and (61).
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-fi. The model. Under zero kurtosis (every y, = 0) we have, as in (34),
¥ = (My ® My) ~ (6>, 7)) (62)
for & of (6) and ¥ of (31). We now show two important properties of this model.

Property A of the model: Z,Z;X = XQ, for some Q;. As described in
Chapter 4, when there are m main effect factors in a model, X and Z can each
be partitioned, X into f submatrices (for f fixed effects factors) and Z into
r + 1 submatrices (for r random effects factors plus error). Each submatrix is
a KP of m + 1 matrices, each of which is an I or a 1. Therefore there are 2™*!
possible matrices that can be submatrices of X or Z. Furthermore, each of them
(typified for convenience as Z,, be it a submatrix of X or of Z) is such that
Z,Z, is a KP of m + | matrices that are each I or J. Hence, because I and J
matrices commute in multiplication, so do Z,Z, and Z,Z;. Moreover, since
IP=LIJ=JI=Jand J? =~nJ,

2,2,,Z, = ,Z,2,Z, = $,Z/Z; (63)

for every pair, b,k = 1,2,...,2"*", and for ¢, > 0 being a scalar and ! being
some integer in the range 1,2,...,2™**. Also, (63) means that, for example

for ¢,; being some scalar. Hence
r m
for V=% ¢?Z,Z; wehave V=Y 6,Z,Z;, (65)
i=0 I=1

where 0, may be zero for some values of ! in the range 1,2,...,2™* !,
Now define V;, V;,, X, and X, by the following equations, where V, ., and
X,.m+1 are, respectively, V;, and V,, for t = m + I:

X=[X, ... X, ... X,],
v‘.=ZI.Z;=(V“®"'®vu®'“®vl,m+l)’ (66)
X,=(X,® - ®X,, @ ®X,m+1)- (67)

Then
Z,Z;X = vi{r xp}pil = {r lep}pil .
Hence using (66) and (67) and applying (A ® B)(R® S) = AR ® BS gives

ZZX={VuX, 1 ®VX,;,®--® vi,m+lvp.m+l}p-£l

m+1

= {r ® vitxpt}pil . (68)
t=1
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TasLe 12.3. Propucts Vi X, = X, Gy,
Vi X ViXp = meipt Gipl

I I I=1 I
I 1 1=11 1
J I =1 J
J 1 N,1=1N, N,

Now in (66), each V, is either I or J, and in (67) each X, is either I or 1, all
of order N,, the number of levels of the tth main effect. Therefore the four
possible values of the product V,; X, in (68), together with a matrix G,
defined such that V, V= X,G,, in each case, are as shown in Table 12.3.
Therefore from (68)

m+1 m+1
an:x = {r ® quipl}pil = {rxiGlp}pil for Gip = ®l de (69)
=1 =
Gll
G;
=[X, X; ... xj] .. = XQ, (70)

Gu'

for Q;={4G,},L,. Thus Z,Z|X = XQ,.

Conformability for the product X, G,,, in (69) might seem to be lacking in
some cases because, in Table 12.3, two values of G, , are scalar. However, matrix
products do exist even when a scalar is involved; e.g., for scalar 8, both A8 and
(A ® B)(0® L) = A0 ® BL exist. Therefore (69) does exist.

Property B of the model: ¥ = Q for some Q. Equation (47) shows
Z'v" ". And from(43) and (45) we see that ¥ issimply ¥~ with B ® Breplacing
H(B~ ® B~). Making this replacement in '¥ ~ of (47) with B= MVM of
(42) and transposing therefore immediately gives

29°F = {, vec(MYMZ,Z,MVM)}, ., . (1)

In doing this note that B = MVM and hence BM = B. But with Z,Z;X = XQ,
from (70)

ZZIM=ZZ(1-XX")=Z,Z;—-XQ,X"*.
Therefore with MX =0

MZ,ZM = MZ,Z, - MXQ,X* = MZ,Z, = Z,ZM; (72)
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this last equality coming from the symmetry of MZ,Z;M, Hence in (71)
MVMZ,Z,MVM = MYMZ,Z;VM, using (72),

= MVMZ,0}¢,Z,Z)M, using (64),
= MZ;0}¢,;,VMZ,Z;M
= MZ;6}¢,;,VYZ,Z’M, using (72),
=MZ;0}¢,L,06}¢,Z,Z;M, using (64),
=ZX,(E,0}01¢,;0,)MZ,Z,M
=%,0,MZ,ZM for b, =Z,0}cld,¢, .

Therefore in (72)

Y =2{ vee(L,0,MZ,ZM)}, 1,
=2{, i 6, vee(MZ,Z,M)}, =,

=0
=2{, vec(MZ,ZM)},1,Q = XQ for Q= {, 0i }is=0 - (73)

-iii. Conclusion. With zerokurtosisand ¥ ~ (262, ¥ )wehave ¥ ¥ = ZQ
for some Q. Therefore, by (50), the BLUE of ¢ in this model is the OLSE in
the same model. But OLSE, as we have seen in Section 12.2, has equation

{m tr(MZ,ZMZ,Z})}, )06 = {, yMZ,Z;My} . (74)

Then, since By of (61) is a quadratic subspace of symmetric matrices, the result
of Seely (1971) discussed following (59) shows that the estimators & of (74)
are UMVUQ—and because they are also translation-invariant they are thus
UMVUIQ; and, under normality, they are UMVUIL. Furthermore, because in
ANOVA models with balanced data, ANOVA estimators have these same
properties, as discussed in Section 12.1, the estimators in (74) are the ANOVA
estimators.

We now turn to the case of non-zero kurtosis, which uses ¥~ + ¥, of (30)
in place of ¥". Otherwise we follow the same line of reasoning.

b. Estimation under non-zero kurtosis

-i. The model. As was done by Seely (1970, 1971), Pukelsheim (1976, 1977,
1979), Brown (1976, 1978) and Anderson (1978, 1979a,b), we have, for non-zero
kurtosis, from (7) and (30)

¥ =My@My ~ (Za2, ¥ + 7,), (75)
with &, ¥ and ¥, given by (6), (31) and (32), respectively, the latter being

¥, = (MZQ@MZ)(D! ® DH{, vec({41:11,)}i20)} (D} @ DIZ'M® Z'M)g,
(7
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This can be written as

using

¥, =(MZR®MZ)GAG' (ZMQ®Z'M), (7

G={,e,®e,},;’o (78)

for e, being the tth column of I (for ¢ = £{_,¢,) and for

where fori =0, 1,

A= {d a?)’ilq,}i;l = {d 5z}z=qnv

cen I

i-1 i-1 i
é,=aty fort=<z qs)+ 1,<Z qs)+2,..., Y q,.
s=0 5=0 s=0

Example. Forgy=2,¢9,=1s0g=2+1=3,
(D ® DY){, vec({a vil, })}(D!® D)

0o

g,

®| + o4 - |¢ vec] -
4] 4]

0,1\« o h

g, -0y

=U{zg% 0 0 0 % 0 0 O " }U
for U= {405 0f 0600, 05 03 000, 0¢0, 0o0, ai}s

={d03)’o 0 00 ‘78}’0 0 00 0‘1‘}’1}

1 . - ]

1

L. -

a3%o ) ) 1
63},0. - - - -1 -+« <|=GAG'.

6?'}’1""""1

-ii. ANOVA estimation. For non-zero kurtosis ANOVA models with
balanced data we now verify (58) by exhibiting a matrix H that satisfies
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¥ & = ZH, where & and ¥, are defined in (6) and (32), respectively. Then
since ¥’ & = Q, we will have (¥ + ¥, )T = Q* for Q* = Q + H, and so
the condition for ordinary least squares estimation being the same as best linear
unbiased estimation will be satisfied for the non-zero kurtosis case. Theorem
4.5 of Pukelsheim (1977), Theorem 6 of Kleffe (1977) and Theorem 1.4 of Drygas
(1980) point out the need for a matrix Q; we substantiate this, as in Anderson
et al. (1984), by showing its existence for the non-zero kurtosis case in ANOVA

estimation from balanced data.
With & of (6) and ¥, of (76)

V¥ =¥, {,vec(MZ,ZM)},r, ={, ¥, vec(MZ,Z. M)}, !, .

In order to show that this is Q, for some Q,, we only need show that
Y, X = {, Ih,}, ., for h, being some vector. We therefore use (77) for ¥", and
consider u, defined by ¥ & = {u,}, ,. Then

u, = ¥, vec(MZ,Z, M)
= (MZ ® MZ)GAG'(Z'M ® Z'M) vec(MZ,Z.M)

= (MZ ® MZ)GAG' vec(Z’'MZ,Z.MZ)
[(53) of Section M.8, and M2 = M]

= (MZ ® MZ) vec[ A diag(Z'MZ,Z,MZ)], (79)

on using (55) of Section M.8, and where the notation diag(A) represents a
diagonal matrix of the diagonal elements of A.

Now suppose there are scalars A, fors = 0, 1,..., r such that diag(Z'MZ,Z,;MZ)
in (79) has the form

diag(Z’MZ,ZMZ) = {4 4,1, },lo =T, say. (80)
Then from (79)
u, = (MZ ® MZ) vec(Al',) = vec(MZAT',Z'M)
= vec(M‘i0 oty AL, Z;M)

= Z VCC(MZ,'Z:'M) 0'?)’,'3-(,

i=0

=$h: fOl' h:={c o?yllis}i;O' (81)

Therefore it remains to show that there are scalars 4;, satisfying (81). To this
end, partition Z, into its columns z;; for j = 1,..., q; and define

Aijy = 2, MZ,Z,Mz,; = 2;MZ,Zz,;,, from (72)
=12,Z,Z,7,;,— ,XX*Z,Z\z; [M=1-XX"*]. (82)
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Every Z, is a KP of 1s and Is, so that partitioning the Is into their columns,
denoted by e-vectors, gives each

z; asaKPofesand Is; (83)
and every
Z,Z, isaKPoflsand Js; (84)
and
XX* isasumof KPsofls,Jsand Cs [C=1-17J]. (85)

All these K Ps are conformable, whereupon each of the two terms of (82) is also
a KP. Therefore, on applying (83), (84) and (85) to (82), with each term in (82)
being a scalar, it is clear that that scalar is a KP of scalars (and hence a product
of scalars), with the scalar that is in position ¢t of the KP having, for some
matrix Q,, one of the forms

e;Q,e; = jth diagonal element of Q,
or

¢;Q,1 = jth row sum of Q, (86)
or

1'Q,1 = sum of all elements of Q, .

And, from applying (86) to (82) we see from (84) and (85) that Q, is either the
matrix in position t of Z, Z, (and so is either an I or a J), or else it is a product
of matrices in position ¢t of XX* and Z,Z; (and so is eitheran 1,2 J, a C or
a 0). Hence Q, does not depend on j. Therefore neither do the scalars in (86),
and hence 4;; of (82) does not depend on j. Therefore (81) holds and so

‘Vk.f=x{h,},=’o=$}‘l fOl'H={h,},='0.
-ifli. Conclusion. We now have
YE+¥V T=2Q+ZTH=2(Q + H),

and so in the dispersion mean model again, by (50), the BLUE of o2 is the
same as the OLSE with balanced data. But this OLSE is ANOVA: and since
BLUE in the dispersion mean model is UMVUI, we have ANOVA = UMVUIL.
And since we know this is true under normality, when kurtosis is zero, and we
have now just shown that it is also true for non-zero kurtosis, we can therefore
say it is true always.

12.7. NON-NEGATIVE ESTIMATION

In the general form of both random and mixed models there has been a
long-time interest in the conditions under which non-negative quadratic



[12.8] SUMMARY 425

unbiased estimators of variance components are available. [ See, e.g., Pukelsheim
(1978) and Styan and Pukelsheim (1981).] Almost all reports on this topic and
subsets thereof [e.g., dropping unbiasedness; see Hartung (1981)] involve
balanced data and quadratic subspaces of real symmetric matrices based on X
and Z and their submatrices. An early discussion of these is Seely (1970), and
their use in estimating variance components is to be found in such papers as
Pukelsheim (1981a,b). Mathew (1984), Baksalary and Molinska (1984), Gnot
et al. (1985) and Mathew et al. (1991a,b). In particular, Pukelsheim (1981a)
shows that, in the presence of a quadratic subspace condition, there is the
dichotomy that either the ANOVA estimator (derived without paying attention
to non-negativity) is automatically non-negative, or else the two properties of
unbiasedness and non-negativity cannot be achieved simultaneously. In the
latter case, unbiasedness needs to be replaced by some other meaningful
statistical properties, and a variety of ways of comparing estimators emerges,
as in, for example, Mathew et al. (1991a,b).

12.8. SUMMARY
Maodel
y=Xp+Zu+e=Xp+ Y Zu;

i=0
var(u) =D = {071, }; var(y)=V + ZDZ'.
Dispersion-mean model
M=I-XXX)"X=I-XX*"=M'=M2 withMX=0; (2)
¥ =My®My and & = {, vec(MZ,ZM)}; (6)
E(¥)=%0%. (7)
OLSE —» MINQUEQ: Section 12.2
TE=2'Y - {, tr(Z,ZMZ,Z;M)}6? = {,yMZ,Z;My} .
Fourth moments
we N OI) a= T g
E(w¢)=3+9y¥ and E(uj)=0{(3+7y) with{, = 1{ ?ilq.}i;(ol;l)
Ta = {a vec{a vl }ilo}s (22)
var(u®u) = (D ® D)(I + S,) + (D! ® D) T,(D! ® D¥); (25)
var[(y — XB) ® (y — XB)]
= (V® V)(I + Sy) + (ZD!® ZDYHT,(DIZ' ® DiZ') (27)
=(V® V)(I +8y), under normality; (28)
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var(¥) = (MVYM @ MVM)(I + Sy)
+ (MZD! @ MZD}H)T,(D!Z'M ® DYZ'M) (29)
= (MVYM @ MVM)(I + S,), under normality; (31), (34)
var(y'Ay) = 2 tr(AV)?

+ Y y,0f (sum of squares of diagonal elements of Z;AZ;) (41)
i=0

= 2tr(AV)?], under normality .
Estimating o from the dispersion-mean model, with non-singular V
GLSE(0?) yields REML:
TV A=V "y {,t(Z,Z,PZ,ZP)}o* = {yPZ,Z;Py} . (48)

BLUE(0?) yields REML: (51)
GLSE on ¥ = (y — Xp°) ® (y — XB?) yields ML . (57)

Balanced data
ANOVA estimators are UMVUI . (74)

12.9. EXERCISES

E 12.1. For Section 8.2 reduce &'y to a column of scalars y'MZ,;Z;My.
E 12.2. Verify ¥~ of (45).

E 12.3. By partitioning M of (2) as M = [K KT']’ for K’ of Section M4e,
prove the theorem of Section M.4f through showing that the only
non-null part of (MVM)~ is (K'VK)~ 1.

E 12.4. Prove the theorem at the end of Section 12.4b, assuming that V is
non-singular.

E 12.5. Give direct proofs, without recourse to results in Section 12.4c, of
the following results for #,, C and F of Section 12.5:
(a) F-=4(I+8)(V - ®V");
(b) FFC=C(;
(¢) CF~ =3 [vec(V'Z,ZV I}
(d) the GLS equations (48).
E 12.6. Show that (41)is
var(y'Ay) = 2 tr[(BA,)*] + 2 tr(BA, B),

where B=Z'AZ, A, =D, B is B with all of-diagonal elements
changed tozero,and A, = {, y,6}1, },Z,. Thisis Rao’s (1971b)form.



APPENDIX F

ESTIMATION FORMULAE FOR
UNBALANCED DATA

Catalogued here are detailed formulae for estimating variance components from
unbalanced data for three nested random models and four forms of model for
the 2-way crossed classification. The formulae are given without comment, and
thus are to be viewed simply as a reference source. Most of them are from
Searle (1971, Chap. 11) with some improved layout, although a number given
there have not been reproduced here. Only those considered to be the most
useful are shown. For example, the 23 pages of the 3-way crossed classification
are not included.

Subscript ranges are shown as part of each model, but are not included as
limits in summations, e.g., X{., occurs as X;.

The first three models are nested random models: the 1-, 2- and 3-way cases.
(The 1-way classification is usually not thought of as a nested classification but
it can be: error, nested within classes.) In all nested models the three Henderson
methods are all the same and are usually called the ANOVA method. This is
true not only for nested models that are random models but also those that
are mixed models.

PART 1. THREE NESTED MODELS

F.I. THE 1-WAY CLASSIFICATION

a. Model
Yiy= R+ o+ ey
i=12..,aandj=12,...,n, withn=2Xn,.
427



428 APPENDIX F [F.1]

b. Analysis of variance estimators

Calculate
5 o & Vi y2
To=3 Yy Ta=) = T,=°,
i=1j=1 = N
Sz = 21”12 and S3 = E‘n?
Then
:=(Th—T,)/(N—-a)
and

é:=[TA—Tu"(a— 1)63]/(N—32/N)-

¢. Variances of analysis of variance estimators (under normality)
var(8}) = 20¢/(N — a),

20¢N* (N~ )(a~1)  40l0iN  204(N’S, + 5}~ 2NS,)

2y _
var(é,) = (N—a)N’—§,)?  N*-§, (N? = §,)

cov(82,82)= —N(a — 1)var(82)/(N* - §,)
(Searle, 1956).

d. Maximum likelihood estimation (under normality)
Solve iteratively, as in (133), (134) and (135) of Chapter 3 (and see Chapter 8
also),

=Y, ot /Z .

~ -~ -~ A~ ’
162 + nGkl <162 + ngl

N-—a 1 SSE n(y;. — ji)?
~2 +Z, ~2 ~2 ~4 =Z, ..lz IV
O, O, + nlau O, (0’2 + nlaa)

Z n =Z "12(}71.—!7)2

~2 - ~ -
167 + ng? (62 + n2)

e. Large-sample variances of maximum likelihood estimators (under normality)

w,=n/(1 + nol/ol)
and
D=NIw?—~(Zw) .
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Then

var(62) = 20*(X,wl)/D,

var(G2) = 264(N — a + L,w}/n}?)/D
and

COV(aaz,&ez) = —zat(ziwiz/ni)/D
(Crump, 1951; Searle, 1956).
F.2. THE 2-WAY NESTED CLASSIFICATION

a. Model

Vi =H1+ o + Bij + epp;

i=12..,a j=1,2,...,b; and k= L2,...,n;

with

b.=%b; and N=ZXZZIn,.
b. Analysis of variance estimators
Calculate

ky=Zin}/N, k= zlzjnlzj/N’ ki = zi(zjnlzj/ni-)’
Ty=Xyl/Mm., Typ= zizj}’fj./"u,
To=XZ;Zy% and T,=y2/N.

Then
oez = (To — T4s)/(N — b)),
0; =[Typ—T,—(b.— a)df]/(N —ky2),
03 =[Ty-T, - (k2 — ka)oﬁ —(a— 1)03]/(N —ky)

(Searle, 1961).

¢. Variances of analysis of variance estimators (under normality)
var(43) = 20¢/(N —b.).
Calculate
ke =Z,Zn), ks =Z(Z;n}/n),
ke = ZAZnE)/n., kq=Z(Z;n})*[ni,
ks = Z;n.(E;n}), ko =Zin}
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and
Ay = (N —ky32[ky(N + ky) — 2kg/N1],
Ay = ky[N(ky; — k3)? + k3(N — ky3)?] + (N — k3)?k,
— 2(N — k3)[(ky3 — k3)ks + (N — ky3)ke/N1]
+ 2(N — kyy)(kyz — k3)ka/N,
A3 =[N —k;3)*(N = 1)(a—1) = (N — ky)*(a — 1)(b. — a)
+ (k2 — k3)>(N = 1)(b. — a)]/(N ~ b)),
= (N — ky,)?[k3(N + k,) — 2kg/N1,
=(N—k;3)2(N —k;) and 2Ag=(N — ky,)(N — k3)(ky; — k3) .

Then
var(62) = 2Uh0a + Aa0) + Aa0? + 244000F + 2450002 + 2h0}0¢
’ (N —k)*(N — k;,)? ,
var(é2) = 2(kq + Nky — 2ks)ap + 4(N — ky;)a362 + 2(b, — a)(N — a)ad/(N — b)
[

(N —ky3)?
cov(d2,82) = [(ky2 — k3)(b. — a)/(N — ky3) — (a — 1)] var(8})/(N — k),
cov(83,87) = —(b. — a) var(82)/(N — k,),
cov(82,85) = {2[ks — ks + (ks — kg)/N1o§ + 2(a — 1)(b. — a)a?/(N — b)

~(N —ky3)(ky, — k) Vaf(aﬁ)}/(N — k1 )(N = ky3)
(Searle, 1961).

d. Large-sample variances of maximum likelihood estimators (under normality)

var(62)  cov(62,62) cov(d2,é? e lap o | !

cov(62,63)  var(63) cov(63, ) |=2 g tag lge

cov(62,62) cov(63,62)  var(62) tie g lee

with
my; = n,o; + a2,
Ajpg = Zy(nf;/mf;), for integers p and g,
qi=1+0A;,,
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and

= LA} /q, g = ZiAba/qt, tee = Z,AL,/q2,

tps = Li(Aizy — 207 Ai33/q; + 02 A}, /q?),

tpe = Zi(Aiy — 205 Aizs/qi + 02 A1y 3 Aina/97)
and

tee = Zi(Aio2 — 262 Ai1a/a; + 6tA},/a}) + (N — b)/a?

(Searle, 1970).
F.3. THE 3-WAY NESTED CLASSIFICATION
a. Model
Yijem = B+ &+ By + Vip + Cijims

i=12..,a and j=12,...,b, k=12,...,¢c;
and m=12,..., 0,
with

b, = zib‘, C‘, = szu, C,j = zl'CU and N = Ziz_,zknuk .

b. Analysis of variance estimators

Calculate
k, = Z;n}./N, ky = zizjnizj./Ny
ky=ZZZnk/N, ky=Z,Zinj/n,.,
ks = zizjzknizjk/ni--’ ke = zizjzd"izjk/"u-
and

v, =N—ky, v,=ks—ky, v3=ks—k;, vy=a-1
US=N—k4, 06=k6—k5, v7=b,—a, 08=N_k6’

vg=c.—b, vo=N-—c..

Then with

and

Iy = zizjzkzmyizjkm’ T,= ziyiz---/ni--’
Typ= 2121}’.'21--/".']-, Typc = zizjzkyizjk-/nijk and T, = y2./N,

62 =(Ty — Tusc)/vros 67 =(Tapc— Tup — vgd?)/vs,

63 =(Typ— Ty — 0,62 — 0663)/05

62 = (T, — T, — v,6% — v362 — v,6}3)/v, . (Mahamunulu, 1963).
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¢. Variances of analysis of variance estimators (under normality)
var(é?) = 202 /vy,

cov(é‘i,é‘f) = [02(v705 ~ vgVo) + v5(v309 — U4v5)] var(d2)/v,vsvs,

cov(d},82) = —(vqvg — vevg) var(é¢2)/vsv,
cov(42,82) = —vg var(62)/vg .
Calculate
k,=ZX;n}, kg = Z,Z;nj.,
ko = Z,Z,Z,n}, kyo = Zy(Z;Zen) /0.,

ky, = zizj(zknak)/nu-’ kyy, = zi(zﬂl?j.)/":..,

kys = Z(Zn3.)/n;.., kia = Z(ZZniy ) g,

kys = Z,Z)(Zyn)? /0y, kye = Zi[Z)n,.(Zend)1/n..,

kyq = zi(zjnizj-)(zjzkndzjk)/ni--’ kyg = zi[zj(zknlzjk)znu-]/nim

kig = Zizj(zknlzjk)z/ntzj-, kyo = zi(zjnizj-)(zjzknizjk)/nlz-u
ky = Zf(zjzk"ﬁk)z/"az--» kyy = zi(z}"fzj-)z/"iz--’
ks = Zin.(E;nd), kaa = Ziny. (T, Zunfy),

kys = ZEZm;.(Z,nd)
and
Ay =kyo+ kyy —2kyg, Ay = Nky + kyg — 2k,
Ay=kio—kyg, Ay=kyy — kg and A= (kg —k,s)/N
dy, = v3(Nky + k,, — 2k,,),
dy = viA, + viA; + 2ug05(A; — A,),
dy = (v10g — V0g)% /0y + V703 + vivy,

dy = v3(Nky + kyo — 2k\¢), ds=vs02 and dg = vgvg(ve + vg)
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and

g1 = vsds(Nk, + ki — 2k,/N),
g2 = vsds(ky; + k3 — 2k;3/N) + v3d; — 20,ds[ky; — kyy — (kg — ky3)/N],
g3 = vsds(kyy + k3 — 2k14/N) + v30}A, + (0306 — v3v5)?A,
— 202ds[kyg + kyy — (ks — ki4)1/N)
+ 205(v,06 — v305)[Vs(As — Ag) — v,(Ay — A3)],
ga = vsds(a — 1) + v300] + vg(y06 ~ v305)’
+ [04050g — ;0705 + Dg(va06 — v305)]% /vy

gs = vsds(Nk, + ki k; — 2k,3/N), ge = vsds(Nky + ki k3 — 2k,4/N),

g7 = vvsds,
gs = vsds(kyo + kaky — 2ky/N) + v305(Nky + kyo — 2ky6)
— 2v,d5[ k16 — ka0 — (kzs — ky7)/N]
9o = v2ds(vy + vs) and g0 = vg[vs(v303 + v3v6) + (b0 — v305)*].
Then
var(62) = 2(g,0% + 9,05 + ¢30% + g40t + 295020} + 2ge0lal + 2gq0la?
+ 2gsopal + 2geafal + 2g,002a)/viviv},
var(é}) = 2(d, 0§ + dy0} + dyol + 2d,0}0? + 2ds0}0? + 2dgala?)/vivd,
var(é?) = 2[A,07 + ve(vg + 10)al/v10 + 2080307 ]/v3,
cov(d},82) = [2(A, — A3)a? + 20,0508 /v, — vevg Var(63)]/vsvs,
COV(df’df) = {2[”5(A3 —Ag) —v(A, — A3)]a‘; + 2v9(v4v5 — ”2”7)0:/”10
— vg(vyvs — vyvg) var(62)} /v vsvg
and
D1bglg COV(":#’;) =2[kyy — kyz — (kg — ku)/N]U;
+ 2[kyg — kyy — (kys — k14)/N — ”5(A3 —Ag) —v3(A, — A,)]a{,‘
+ 2[ky6 — ko — (k25 — kn)/N]U;U;? + 2[ 040705 — vg(v406 + 1307)]a2 /g
— v,vs0g VAr(87) + vyvevg var(dl) .

(Mahamunulu, 1963).
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THE 2-WAY CROSSED CLASSIFICATION

F.4. WITH INTERACTION, RANDOM MODEL

Yip =M+ o+ B+ v+ ep;

434
PART II
a. Model
i=12,..
with

na j=12,...,b and

k= l,2,...,n‘j,

ny;>0 for s(ijycells and ZEn;=N.

b. Henderson Method I estimators

Calculate Table F.1 and, for n;; > 0,

= zlzjzkyizjh T, = zlYiz--/"i-’ Tz = zjy?j‘/"-b
T =ZLEpd/ny; and T,=y%/N;

SSA=T,-T,

SSB=T, - T,

SSAB’.l = TAB - TA hat TB + ’I;‘,

SSE= To"‘ TAB .

TABLE F.1.

ANALYSIS OF VARIANCE ESTIMATION OF VARIANCE COMPONENTS IN

THE 2-WAY CROSSED CLASSIFICATION, INTERACTION, RANDOM MODEL

Terms needed for calculating estimators and their variances.
For estimators only, calculate k,, k,, k3, k, and k,;.

ky = Zi”lz.
k3 = Z,(Z,n,-z,)/n,.
ks =Zn}

ky = 21(21"121)2/"1-

kg = Zi(zjnizj)z/niz-

ky, = Zt(zj’l?j)/”l-

ki3= Zl(zjnﬁ])(zjnijn-j)/nl-
kys = Z(Z;nyn. ) n,

ki, = Zl(zjnlzjn-j)/ni-

kyg = Z,(Z;n})n;.

kay = ZiZp w (Zjmyny))? fniny.

ky=Z;n}
ky = Z;(Zin})/n.,
kﬁ = Z,n?j

kg = Z](Zinizj)z/n-j

ko= Zj(zinizj)z/n-zj

ki, = Z](Zi"a)/’l.l

kia= Zj(zinlzj)(zt"u”i.)/".j
ke = Zj(zlnijnl-)z/n-j

kyg = Zj(zinlzjnl.)/n.j

ko = Z,(Zind)n.,

kyy = ijj'#j(zt”u"u')z/”-j".r

k23 = Z,Z,nf,
kys = Z,Znnin,
k27 = Z‘Z"n?_’/ni,n,j

ki = Z,Zn},
k26 = Z,-Z,n,z,/ni.n.j
kyg = Z,Znd/n.n,,

k., =k,/N for all r.

[F4]
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Then
4% = SSE/(N — s) = MSE
and with
N-ky ky—k ky — k5
P=|ks—ki N-k ke — k3
ky —ky kiy—ks N —ky—ky+ ki,
62 SSA — (a — I)MSE
é2=|¢; =P SSB — (b — 1)MSE
62 SSAB* —(s—a—b + 1)MSE

as in (32) of Section 5.3b. This is equivalent to calculating
8, =[SSB + SSAB* — (s — a)MSE]/(N — k,)
and
dp = [SSA + SSAB* — (s — b)MSE]/(N — k,)
with which
62 =[(N — k\)dp + (ks — k3)8, — {SSA — (a — 1)MSE}]/(N — k' — k} + kj3),
6j=06,—62 and ¢2=28,— 6.
(Searle, 1958).

¢. Variances of Henderson Method I estimators (under normality)
var(62) = 26 /(N —5) .
For P given above and for H and f being

1 0 0 -1 a—1
H= 0 1 0 -1 and f= b-—1
-1 -1 1 1 s—a—-b+1
var(62) = P~ '[H var(t)H' + var(¢2)ff']P" V',
and
cov(62,6%) = —P~'fvar(é?),
where

var(t) =var[T, Ty T, T,].

Var(t) has 10 different elements; each element is a function of the 10 squares
and products of 62, 6}, 02 and ¢2. The 10 x 10 matrix of these coefficients is
shown in Table F.2. Apart from N, a, b, s and unity, Table F.2 involves only
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28 different terms. These are shown in Table F.1. An example of using
Table F.2 is
var(Typ) = 2[k 0} + k,08 + ky307 + sod
+ 2(ky30205 + kyy0l0l + Nolo? + ky30362 + Nojol + Nolol)].
d. Henderson Method III estimators
Label the factor having the smaller number of levels in the data as the

B-factor, with b levels.
Calculate R(u, o, p) and hg as in Table F.3. Also, using Table F.1, calculate

hy=N—ki, hy=N—kj hy=N—k),,
hy=N—k;=h,
and
hy=N—ky=hg.

TABLE F.3.  COMPUTING FORMULAE FOR THE TERMS NEEDED IN USING HENDERSON'S METHOD 11l FOR
ESTIMATING VARIANCE COMPONENTS ADDITIONAL TO THOSE NEEDED IN HENDERSON'S METHOD I: FOR
THE 2-WAY CLASSIFICATION, MIXED OR RANDOM MODELS

To calculate R(u, &, B) compute To calculate s compute
Forj=1,...,b Fori=1,...,a
- 2 ; & nj
cy=n;— Y nh/n., =Y —.
i=1 j=1n
a
”=—Z n,,n” #j Fori=1,...,aandj,j' =1,...,b
(Check: Zl cip = 0> Jigi = (nd/n) (A + my, = 2ny),
i
a
=y —- Z n,yi. f = ("i}nlj M4 — — iy ) forj#j

i=1

b b
(Check: Y rj=0>. (Check: S for =0>_
= =1

Forj,j'=1,2,....,(b— 1) Fori=1,..,aandj,j'=1,...,(b—1)
C={c;} and r={r}. Fi={fi}-
Then Then
tg=rC 'r=R(B|ua) k*=Y i,+lr<C" Y Fi>
i=1 i=1

and R(p,o,B) =T, + tp. and hy=N—k*.




438 APPENDIX F [F.5]

The available estimation equations, from (142) of Chapter 5, are

63 _ Z,-Z,Zk(y,,k - }_)ij-)z' (1423)
N-—s
1
63 =~ [Ty— Rua,B) = (s—a — b+ 1)¢?] (1420)
6

and any two of

41 = [Tap— Ty — (s — )92 - 63, (1420)
;
1
63 = [Tip =~ Ty~ (s — @)1 - 6 (142d)
4
and
hi62 + hy6% = Tyy— T, — hy62 — (s — 1)62. (142€)

Calculation of hg and R(u, &, ) needed for (124b) is shown in Table F.3.

Because any two of equations (142c, d and e) can be used, there are three
different ways of using these equations, as shown in Table 5.4.

F.5. WITH INTERACTION, MIXED MODEL

a. Model
Vik=pn+o+ B;+y,;+ ey, B taken as fixed effects;
i=12..,a j=4L2,..b and k=12,...,n;,
with
n;>0 fors (i,j)-cells and Z,Zjn;=N.

The model is exactly the same as the random model case of the preceding
section, except that the fis are taken as fixed effects. They are assumed to be
fewer in number than the random effects in the data.

b. Henderson Method III

Method I cannot be used because it is a mixed model; and Method II cannot
be used because the model contains interactions between the fixed and random
main effects. And in Method III, equations (142d and e) come from sums of
squares whose expectations contain f. Therefore, Method III for this model
has the prescription

use (142a, b and ¢) and Table F.3 for g and R(u, &, B) .
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F.6. NO INTERACTION, RANDOM MODEL

a. Model
Vi = B+ o + B + ey
i=12..,a j=12,...,b and k= L2,...,n,
with
n;>0 fors (ij)cells and Z,Zn;=N.
b. Henderson Method I
Calculate
Tb = Z,-ijky,-zjk, T;‘ = y.z../N’
TA = Z,-y,-z,,/n,-, and TB = ij,z],/n,l «
Using Table F.1, calculate
I=(N=K)/(N=k) and 1, =(N—K)/(N—ky).

Then
62 = ATy —T)+ 4(Ty — T) — (T, — T,)
¢ LIN—a)+ A(N=-b)~(N-1)
62=[T — Ty — (N = b)621/(N — k)
and

65 =[To — Ty~ (N~ a)6l1/(N — k).

¢. Variances of Henderson Method I estimators (under normality)
Writing

N -k, ky—kj a—1 62
Q=jk,— ki N-=—Kkj b-1 and &*=|6}|
ki —k, kiy—ky N-a-b+1 62
It can be shown that the estimators are solutions to
T, - T, 0
Qo? = Tz - T, = Ht + 0
- T — T+ T, To— Typ

for Ht of Section F.4c.
When every n;; = 0 or 1, Ty = T, and Q&% = Ht, so that

var(62) = Q 'Hvar(t) H'Q V.

var(t) will be calculated exactly as in Tables F.1 and F.2 except with af = 0.
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When some n;; > 1, T,p exists even though it is not used in the estimation
procedure. Nevertheless,
0
62=Q7'| Ht + 0
To — Tys
Furthermore, T, — T, has variance 26%(N — s) and is independent of every
element in Ht, whether 62 = 0 or not. Therefore
var(62) = Q 'Hvar(t) H'Q ™! + 2q,q503(N — 5)
where q; is column 3 of Q™ '. As with the n;; = 0 or | case, var(t) is calculated
from Tables F.1 and F.2 using 62 = 0.
d. Henderson Method 111
Calculate R(u, a, ) of Table F.3, and from Table F.1 calculate
hy=N-—k\, h,=N -k,
hy=N~ky, h,=N—k,.
The available estimation equations, from (124), are

, To—R(pa,p)

¢l=2 7 (124a)
N—a-b+1
and any two of
1
6f=h—[R(u,a,l3)—Ta—(a—1)6‘51, (124b)
7
1
6§=h—[R(u,a,B)-TA—(b—l)d‘?] (124c)
4
and
hy6% + h,6} = R(u,a,B) — T, — (a + b — 2)é2 . (124d)

Because any two of equations (124b, ¢ and d) can be used, there are three
different ways of using these equations, as shown in Table 5.3.

e. Variances of Henderson Method 111 estimators (under normality)
For estimators obtained using equations (124a, b and c) of the preceding
section, Low (1964) derives the following variances and covariances. Calculate

N=N-a—-b+1
and, with the aid of Table F.1,
fi=ky = 2k, + ZE(Znnp/n,)?
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and
fr=ky =2k + T (Zingny;/n)

Then

var(é2) = 26¢/N’,
cov(d3,62) = —(a— 1)var(62)/h,, cov(63,62)= —(b— 1)var(é2)/h,,

var(62) = 2[6¢(N — b)(a — 1)/N' + 2h,6202 + fi02]/h3,
var(dz) = 2[as(N — a)(b — 1)/N’ + 2h,625} + fr04]/h3

and

cov(d2,63) = 20 kys — 1 + (a — 1)(b — 1)/N']/h.h, .
(Low, 1964).

F.7. NO INTERACTION, MIXED MODEL

a. Model
Yig =4+ 0a; + f; + e, f;s taken as fixed effects;
i=12...,a, j=12,...,b and k= L2,...,n
with
n;>0fors (i,j)cells and Z,Zn;=N.
b. Henderson Method III
Method I cannot be used because this is a mixed model. Method I could
be used because there are no interactions between fixed and random eflects.

But Method III is much easier because it simply involves using just two of the
equations in the preceding model:

use (124a and b); and Table F.3 for R(y, o, B) .



APPENDIX M

SOME RESULTS IN MATRIX ALGEBRA

Readers of this book are assumed to have a working knowledge of matrix
algebra. Nevertheless, a few reminders are provided in this appendix.

M.l. SUMMING VECTORS, AND J-MATRICES

Vectors having every element equal to unity are called summing vectors
and are denoted by 1, using a subscript to represent order when necessary;
eg, 15=[1 1 1] They are called summing vectors because, with x' =
[x, x, x3], for example, 1'x = £}_| x;. In particular, the inner product of
1, with itself is n: 1,1, = n. A product of a summing vector with a matrix yields
a vector of either column totals or row totals, of the matrix involved: for B
having elements b;;, the product 1'B is a row vector of column totals b,;, and

B1 is a column vector of row totals b,, .
Outer products of summing vectors with each other are matrices having
every element unity. They are denoted by J. For example,

1 1 1t 1
1,15 = 1 1t 1]= =J,,3.
e[ = e

J-matrices that are square are the most common form:
1,1,=1J,.
Product of Js with each other and with 1s are, respectively, Js and 1s multiplied
by scalars. For square Js
J:=nJ, and J,1,=nl,; andtr(J,)=n.
Two useful variants of J,, are
J,=4J, and C,=1,—1,,

with

tr(J,)=1 and tr(C,)=n-~—1

442
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and products (omitting the subscript n)
Ji=1 Cl=0, J?=J andC?*=C.

Thus J and C are idempotent. C is called the centering matrix because Cx is
a vector of elements x; — x for x = Z7_, x;/n.

Hlustration. The mean and sum of squares of data x,, x,,..., x, are easily
expressed in terms of the preceding matrices. Thus

Cx x1,

n
, 2= ) (x;,—X))=x'Cx and nx’=xJx.
i=1 N n n i=1

Linear combinations of I (an identity matrix) and J arise in a variety of
circumstances, for which the following results are often found useful.

(i)  (al, + bd )al, + BJ,) = aal, + (aff + ba + bfin)d,.
1

(ii) (al, + bd,)"!? =—<l,,——b—.l,,
a a+ nb

(iii) |al, + bJ,) = a"~'(a + nb).

(iv) Eigenroots of al, + bJ, are a, with multiplicity n — 1, and a + nb.

),fora#Oanda# —nb.

M.2. DIRECT SUMS AND PRODUCTS

B, 0
Bl@Bz=[01 B]
2

is the direct sum of B, and B,, where those matrices can be of any order. This
operation extends immediately to any number of matrices:

The matrix

B, 0 - 0
B,
@Bi=Bn@Bz@Ba@"‘@Bk= 0
i=1 N .
For A of order r x ¢ with elements a;; for i=1,...,r and j=1,..., ¢, the
matrix
ay,B a,B - a.B

a,,B a;;B- - a,B
A®B= 2‘1 22 2

a,B a,B - a,B
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is the direct product of A and B. For A being r x ¢ and B being s x d, the order
of A® B is rs x cd. (Whereas the preceding formulation is in terms of a;;B,
there is also an alternative in terms of b;;A, but it is very rarely used today,
and when it is it is denoted B® A in keeping with the above.) The matrix
A ® B often goes by the name Kronecker product (KP) because of Kronecker’s
association with the determinant of A ® B, although in this regard Henderson
et al. (1983) suggest that “Zehfuss product” would be more appropriate

historically.
The definition of A ® B extends very naturally to more than two matrices;e.g.,

A®BR®C=A®(B®C),

and

k
®Al=Al®A2®A3®®Ak
i=1

One particularly useful application is that I can always be expressed as
Kronecker products of Is of lesser order:

I,,=L®I, and I, =L®L®I,.

Some useful properties of direct products follow.

(i) In transposing products the reversal rule does not apply: i.e.,
(A®By=A"®B'.

(1)  For x and y being vectors: X ® y=yx' = y®x'.
(ii) For A being ascalar: A@ A= A=A ® 4= AA
(iv)  For partitioned matrices, although

[Al Az]®B=[A1®B Az®B],
A®[B, B;]#[A®B, A®B,].

(v)  Provided conformability requirements for regular matrix multiplication
are satisfied, (A @ B(X ® Y) = AX ® BY.

(vi) For A and B square and nonsingular, ( A@B) '=A"'®@B™ L.

(vii) Rank and trace obey product rules. For r, and tr(A) being the rank
and trace, respectively, of A,

ragp =Trarg and tr(A ® B) =tr(A)tr(B).

(viii) Provided A and B are square, |A,,, ® B,..| = |A|"|B|*.
(ix)  Eigenroots of A ® B are all possible products of an eigenroot of A
and an eigenroot of B.
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M.3. A MATRIX NOTATION IN TERMS OF ELEMENTS

Familiar notation for a matrix A or order p x g is
A={a;} fori=1,...,pandj=1,..,q,

where a;; is the element that is in the ith row and jth column of A. We abbreviate
this to

A={, a(j}i:-pl._jgl = {m @i = {m as}>

using m to indicate that the elements inside the braces are being arrayed as a
matrix; and sufficient detail of subscripts follows the braces as is necessary,

depending on context.
This notation is extended to row and column vectors and to diagonal matrices
with the use of r, ¢ and d as follows. First, a column vector is

the ¢ being used to show that it is a column vector. Similarly

wo={ u}d ={

is a row vector, and a diagonal matrix is

a, 0 0 - 0
0 a, 0 .. 0

0 = {4 ai}i:l = {qa;)
0 0 a

where each of the last two symbols are used interchangeably. Extension to
partitioned matrices is straightforward. For example, a direct sum is

A, 0 0
@Ai'—' 0 A, 0 ={dAi}i=31-
e 0 0 A,

This notation has a variety of uses: e.g.,

k
‘@A‘={d A,} and A®B={mauB}‘J.
=1
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It can also be used in a nested manner. For example, with

"

Yi={eVihiZy
y={¥hidi = {cdcvulifhidn
And it is especially helpful in algebraic simplifications when typical elements
of matrices are easily specified, but giving each matrix its own symbol is not
needed. For example,

{d 1n,»}{d l;li} = {d Jn,} . (l)

In this manner, it is an especially economic notation when successively
introducing or developing new matrices in terms of already-defined symbols,
but where one does not wish, or need, to have individual symbols for the
matrices themselves.

An adaptation of the block diagonal notation of (1) is useful for accommodating
a situation that occurs with some-cells-empty data in the 2-way crossed
classification. Consider the following two sets of n;-values for a 2 x 3 layout:

Grid 1 Grid
n; n;;
2 3 7 2 3 7
4 5 6 4 0 6

For grid 1 we have a matrix

Al = {c {d ln,-,}j}l =

where dots represent null matrices (in this case vectors). For grid 2 the
corresponding matrix that we want is
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In trying to use the block diagonal notation of A, for A, we would have 1, in
place of 1,:

Flz

We rewrite this as

{c {d‘ lni,}j}i =1 1| =A,.
14

The d* means that when n;; = 0 the symbol 1, is used but then the row that
it occurs in is deleted. 1, is like having a column vector that has no rows: it
has position but no dimension.

M.4. GENERALIZED INVERSES

a. Definitions

Readers will be familiar with a nonsingular matrix T being a square matrix
that has an inverse T~! such that TT™' = T~ !T = I. More generally, for any
non-null matrix A, be it rectangular, or square and singular, there are always
matrices A~ satisfying

AATA=A. (2)

When A is non-singular, (2) leads to A~ = A~ !, but otherwise there is an
infinite number of matrices A~ that for each A satisfy (2). Each such A~ is
called a generalized inverse of A,

Example. For

T—1t —-2—t t

1 2 32
—34+2t 1+2t -2t
A=]3 7 11 4|, A = (3)
—t —t t
4 9 14 6
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Calculation of AA ~ A yields A no matter what value is used for t, thus illustrating
the existence of infinitely many matrices A ~ satisfying (2).

Two useful matrices involving products of A and A~ are
A~ A, idempotent, of rank r,, (4)
and
A =A AA", forwhich AKA=Aand A AA =4A" . (5)
Any matrix A* satisfying AA*A = A and A*AA* = A* is called a reflexive
generalized inverse of A. A simple exampleis A = A~ AA~ of (5), which provides
a simple way of deriving a generalized inverse of A that is reflexive from one
that is not.

An important special case of both A~ and A" is the unique (for given A)
matrix A%, which satisfies what are known as the four Penrose conditions:

(i) AA*A =A, (i) A*AA* = A",

(ii)) AA* symmetric, (iv) A* Asymmetric .

(6)

Named after its originators, Moore (1920) and Penrose (1955), the matrix A*
is called the Moore-Penrose inverse. Matrices A~ satisfying (2) are matrices
that satisfy just Penrose condition (i), in (6), and reflexive generalized inverses
A of (5) satisfy (i) and (iii). The satisfying of all four conditions in (6) produces
the matrix A* that is not only unique for given A but which also plays a role
for rectangular and for square singular matrices that is similar to that played
by the regular inverse of nonsingular (square) matrices. A convenient derivation
of A" is

A" = A'(AA')"A(A'A) A, (7)
where A’ represents the transpose of A. Notice also that

G=A"AA"+(I-A AT +S(I-AA")

is a generalized inverse of A for any (conformable) matrices T and S.

b. Generalized inverses of X'X

Matrices of the form X’'X play an important role in linear models. Clearly,
X'X is square and symmetric and, for X having elements that are real numbers
(i.., do not involve ./ —1), X'X is positive semi-definite (p.s.d.). Solutions for
p to equations X' Xp = X'y occur frequently in linear model work, and are often
in terms of generalized inverses of X’'X, which we denote as (X’'X)™ and G
interchangeably. Then G is defined by

X'XGX'X=X'X. (8)
Sometimes we also use H defined as

H = GX'X, idempotent, of rank ry . 9)
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Note that although X'X is symmetric, G need not be symmetric. For example,

7322 9 0 0 3
303 - 5 —13%2 —14 -—17

X'X = has G = (10)
2 - 2 - 1 —10 —94 —13
2 - -2 0 -9 -9 —11}

as a generalized inverse, and G is certainly not symmetric. Despite this,
transposing (8) shows that when G is a generalized inverse of X'X, then so also
is G'. As a consequence, as may be easily verified,

(X'X) = GX'XG’ (11)

is a symmetric, reflexive generalized inverse of X’'X as defined in (5).
The following theorem is a cornerstone for many results in linear model
theory.

Theorem M.1. When G is a generalized inverse of X'X:

G’ isalso a generalized inverse of X'X, (12)
XGX'X = X, (13)
XGX' isinvariantto G; ie,XGX'hasthesame valueforevery G, (14)
XGX'’ is symmetric, whether G is or not, (15)
XGX'1 = 1 whenlisacolumnofX, (16)
XGX’' = XX*, whereX*isthe Moore—Penrose inverse of X . (17)

Proof. Condition (12) comes from transposing (8). Result (13) is true
because for real matrices there is atheorem[e.g., Searle (1982), p. 63] indicating
that if PX'X = QX’X then PX = QX; applying this to the transpose of (8)
and then transposing yields (13); and applying it to XGX'X = X = XFX'X for
F being any other generalized inverse of X'X yields (14). Using (X'X) of (11)
in place of G in XGX' demonstrates the symmetry of (15) which, by (14),
therefore holds for any G. Finally, (16) follows from considering an individual
column of X in (13), and (17) is established by using (7) for X *. Q.E.D.

Notice that (12) and (13) spawn three other results similar to (13):
XG'X'X =X, X'XGX'=X"and X'XG’'X’ = X". These and (12)~(17) are used
frequently in some of the chapters. They have the effect of making G behave
very like (but not exactly the same as) a regular inverse.

A particularly useful matrix is M =1 — XGX’. Theorem M.! provides the
means for veritying that M has the following properties: M is symmetric,
indempotent, invariant to G, of rank N —ry when X has N rows, and its
products with X and X’ are null. Thus, with M having three equivalent forms,

M=I-XGX'=I-X(X'X)"X'=I-XX*, (18)
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we have
M=M=M2% ry=N—-ry, MX=0 and XM=0. (19)

c. Partitioning X'X
With X partitioned as X = [X,; X,],

x/x= xlxl xlxl]‘ (20)
X3X, X3X,
Then one form of generalized inverse of X'X is (using Searle, 1982, p. 263)

G [(xa:,r g] . [— (XEX;V x3x2](x;M,x2r[—x;xl(xaxn‘ 1]
(21)

for
M, =1-X,(XX,)X]
being the same function of X, as M of (18) is of X, and hence
M, =M;=M? and M X, =0.

[ Note that it is the symmetry of X'X that contributes to G of (21) being one
form of (X'X)~. Partitioning a nonsymmetric matrix into four submatrices does
not, in general, lead to the resulting form of (21) being valid——see Searle (1982,
Sec. 10.5).]

Another form of (X'X)~ for partitioned X'X, and different from G, is

0 0 |
= f T =-X(X,(X5X5)7 ],
S R T e
@)

where
M, = 1= X,(X5X,)7X; .
Verification that (21) and (22) are each generalized inverses of X'X of (20)
demands using (13); and although we find that
XGX' =X (X,X)" X} + M, X,(X,M,;X,)" X,M, (23)
and

XFX' = X,(X3X3)" X + MpX (XM, X, )7 X M, (24)

which look different, we know from (14) that they are the same. That each is
invariant to the generalized inverses it involves is nevertheless clear. In (23) the
first term is invariant to the choice of (X} X,)” —by (14); and by the symmetry
and idempotency of M, the second term is M, X, [(M, X,)M,; X,] (M, X,),
and so it too, by (14), has the invariance property. Nevertheless, a direct
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development of the equality of (23) to (24) without appealing to (14) seems
difficult.

The preceding results of this section are all in terms of generalized inverses.
When X’X of (20) is non-singular, all of those results still apply, with the
generalized inverses being regular inverses.

d. Rank results

The standard result for the rank of a product matrix is r,g < rg. Thus using
r(X) and ry interchangeably to represent the rank of X, we have r(AA ™) < r,;
and from A = AA~ A we have r, < r(AA 7). Therefore r(AA~) =r,. Also,
because AA~ is idempotent its trace and rank are equal. In particular,
tr(AA*) = r,. Therefore from (17)

tr[A(A’A)"A'] =tr(AA*) =1, . (25)

Applying (25) to each term in (23), using the indempotency and symmetry
of M, in doing so, gives

rx = rxl + rxlelxz,
which, on using r,4 = r, for A being real, leads to

M X, = X, = Tix, X,) T TX (26)
This result is useful in the context of degrees of freedom for sums of squares
based on (23), as in (98) of Chapter 5. A particular case of (26) is when X has
full column rank: then so does M, X,; and, of course, M, X, also.

e. Vectors orthogonal to columns of X

Suppose k’ is such that k’X = 0. Then X'k =0 and, from the theory of
solving linear equations (e.g., Searle, 1982, Sec. 9.4b), k = [I — (X’)” X"]c for
any vector c, of appropriate order. Therefore, since (X ) is a generalized inverse
of X’ we can write k' =¢'(I — XX 7). Moreover, because (X'X)"X’' is a
generalized inverse of X another form for k’ is k' = ¢'[I — X(X'X)"X']; as is
¢’ (I — XX*) since X(X'X)" X’ = XX™*. Thus two forms of k' are

k'=c(I-XX"), or k=c[I-X(XX)"X']=c¢(I-XX").

With M defined in (18),as M =1 — XX* =1 — X(X’'X)~ X', we therefore have
k'=c¢'M.

With X of order N x p of rank r, there are only N — r linearly independent
vectors k' satisfying k’X = 0 (e.g., Searle, 1982, Sec. 9.7a). Using a set of such
N — rlinearly independent vectors k’ as rows of K’, we then have the following
theorem, for K'X = 0 with K’ having maximum row rank N —rand K' = C'M
for some C.

f. A theorem involving K’ of maximum row rank, for K’'X being null
Theorem. If K’'X = 0, where K’ has maximum row rank, and V is positive
definite then

K(K'VK) 'K'=P forP=V~!' - VIX(X'V!X)"X'V~!.
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Khatri's (1966) proof of this is for X having full column rank. For the more
general case considered here, of X not of full column rank, we offer a shorter
proof (due to Pukelsheim, personal communication, 1986) than that given by
Khatri.

Proof. Both KK* = K(K'K) 'K’ and XX* = X(X'X)™ X' are symmetric
and idempotent, and K'X = 0. Therefore KK*X =0 and XX " K = 0. Hence
T=1-XX"*" - KK* is symmetric, and idempotent. Therefore

tr(TT') = tr(T?) = tr(T) = tr(I) — tr(XX*) — tr(KK*)

=N—rx—rK
=N-rx—(N-rx)
=0.

But T is real, so that tr(TT’) = 0 implies T = 0. Therefore I — XX* = KK *.

Because V is positive definite, a symmetric matrix V? always exists such that
V= (V*)Z. Then, since (V*K)’V‘*X = 0, because K'X = 0, the preceding result
applies for K and X replaced by ViK and V~*X, respectively. Making these
replacements after writing I — XX* = KK™* as

I-X(X'X)"X = K(K'K)" 'K’

gives
- VHEX(X'VIX) X'V~ = VIK(K'VK) !K'V};

P=V!'-VIX(XV!X)"X'V™! = K(K'VK) K" . Q.E.D.

An extension of this result is that P = M(MVM)~ M. This is established by
first noting that with M =1 — XX* = KK*, as in the preceding proof,
K'MVYMK[K*(MVM) K*']K'MVMK = KKMYM(MVYM)  MVMK
=K'MYMK .

Therefore

(K'MVMK)™ =K*(MVM)"K*'.
Hence, starting from P = K(K'VK)~ 'K’ and using MK = K gives
P = MK(K'MVMK) 'K'M
= MK[K*(MYM) " K*']K'M
=M(MVM) M.
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M.5. THE SCHUR COMPLEMENT

In the inverse of a nonsingular partitioned matrix

A B]_[A 0] [FA'B]  pcimicir gt
[c D]—[O 0]+[ ' ](D CA~'B)"'[-CA~! I] (27)

the matrix D — CA~'B is known as the Schur complement of A. Marsaglia
and Styan (1974a,b) give numerous results concerning Schur complements, of
which we use primarily two. The first is

(D-CA™'B)"'=D"'+D 'C(A-BD!C)"'BD !, (28a)
as may be verified by multiplying the right-hand side by D — CA ~'B. Similarly
(D+CA™'B)"'=D'-D"'C(A+BD'C)"'BD "/, (28b)
on replacing A by — A in (28a); and a useful special case of (28b) is
D 'uD"!

MD+at)yt=p-t - U2
1/i+tD 't

(29)

The determinant of D — CA ! B is derived as follows. To begin, cbserve that

IR 0
X T

R X

o T/ (30)

=|R||TI=‘

wherein the first equality comes from performing row operations on the rows
through R to triangularize R. The second equality comes simply from transposing
the matrix. Next, it is clear that

¢ o)-[€ o-canls )

Taking determinants and using (30) gives

B
A =|A||ID-CA!B|.
CD
In similar manner
B
A =|D||A —BD!'C|
CD

and so
ID — CA™'B| = (IDI/|A])]A - BD"'C|. (31)
This is particularly useful when A is a scalar:

ID - xy'/al = |D|(a — y'D~'x)/a. (32)
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M.6. THE TRACE OF A MATRIX
The trace of a matrix is the sum of its diagonal elements:
tl‘(A) = Z,-a,-,- B

Thus tr(A) is defined only for A being square. The trace of a product has a

useful property:
tr(AB) = tr(BA)

because
And for computing purposes a useful result for any matrix M is
(33)

tr(MM’) = sesq(M),

where sesq(M) represents the sum of squares of elements of M. We use the
abbreviation sesq rather than ssqe to avoid any possible confusion of the latter

with a sum of squares of data. Verification of (33) is
tr(MM') = Z,[Z,m;;(m");;] = Z,Z;m{; = sesq(M) .

A useful special case is when M is symmetric:
tr(M?) =sesq(M) when M =M.

Another useful result is
tr(JA) = tr(11'A) = tr(I'Al) = I'Al = £,Za;; .

M.7. DIFFERENTIATION OF MATRIX EXPRESSIONS

a. Scalars
Beginning with an example
A=3x, + 5x,,
04/ 0x is defined as
04
o4 | ox, | [3
ox | e | [ 5] '
ox,

In general this extends to
0
—(a’x) =a=—(x'a),
0x

ox
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the second equality arising from a’x = x’a. Also

% ax)=| Lax) | =a =L (x
K(a X)= [6x(a x):l =a = 6x’(x a). (36)

b. Vectors
Beginning generally with y, . ; and x,, ., where elements of y are differentiable

functions of elements of x, we define

’ i P r
@— = { @)1} , a matrix of order p x r. (37)
ox m0X;}i=1,j=1
Similarly, the transpose of this is
ay' Y oy, " ° 0
(_y) = { —&} = —y, a matrix of order r x p . (38)
ox m0Xi)j=yi=1 OX
In particular
ox _ ox’ _
ox’  0x
Therefore, for A and B not functions of x
i, 0x
—(AX)=A—=A 39
ax,( ) e (39)
and
a ’
—x’B=6—x-B=B. (40)
ox 0x

¢. Inner products
Consider w'v, where each element of u’ and v is a function of elements of
x. Then
d(w'v 0 ou i)

( )=—ziuivi=zi—‘vi+z‘u‘—!.

o0x ox ox 0x
Each term in each sum is a column vector. Consideration of conformability
therefore leads to having

ou'v ou oy’
oy _ M V. 41
x  ox o ox. (41)

d. Quadratic forms
Utilizing the preceding results yields
ix’Ax = ai

0x 0x

=Ax + A'x . (42)

(Ax) + —6—(Ax)’x
o0x
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When A is symmetric, which it usually is in this context of a quadratic form,

;—(x’Ax) = 2Ax for symmetric A . (43)
x )

e. Inverses
With scalar t, we define

f’_é_{@_f}
ot |, o)’

With A nonsingular, AA~! =1 gives

-1
Ma-r oAy
ot ot
and so
oA ! 0A
= A1 ZATL, (44)
ot ot

f. Determinants
Suppose A is a square matrix having elements that are not functionally
related. Then denoting the cofactor of a;; in |A| by |A;;l, we have

JA
ALI)W) (45)
oa;;
one particular case of which is
0|A|
_6 =|Ayl . (46)
ai

Whereas (46) applies when A is symmetric, (45) does not, for i # j, because
then elements of A are functionally related; e.g., for some i and j write

a;=a;=0, say.
Then in place of (45) we have
0lA| _ 0|A|da;; 0|A|day
00  Oa; 00  day 08

= Ayl + 1Al
= 2|A;| because A is symmetric . (47)
Hence, in general
A
# =(2—4,)|A,| for symmetric A, (48)
a”

where §;; is the Kronecker delta, §;; = 0 for i # jand é;; = 1 for i = .
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Suppose that elements of A are functions of the scalar ¢. Then

_ 1 0lAl 1 0|A| day;

—log|A] =~ =
ot |A| ot AT day Ot
da
Lyy- Sy)lAyl 7t
IAl i<j
1 6aU IA,I@a
A, = 3.3 1Byl 04y
lAl lJI ljl 1 IAI 6t
=XLZ,a' 198, tr[(A“)’éé]
6: ot
= tr(A“%?) for A™! = {, a"}. (49)

This result is used in deriving maximum likelihood equations for estimating
variance components, in Section 6.2a.
g. Traces

When tr(XP) exists, its value is X, X, x;;p,;. Hence 56_ tr(XP) = p; and so
xU

0 6 0
because tr(XP) = tr(PX). And
6 ' _i - i ' ' —
&tr(PX )= tr(X P) [6X' tr(X P):I =P. (51)

Hence, using tr(TS) = tr(ST) and (50) and (51),
0
—tr(XPX')=XP' + XP. 52
X r( ) (52)

An alternative derivation of (50) based on (37) is as follows. First, when y’
in (37) is a scalar, a’x say, (37) reduces to (35). Second, for the scalar 1 and
with x, being the kth column of X, we define d4/0X as

C AR
X 0%y ) m Oy l.k.

Then, for =} being the jth row of P
6tr(PX)={ 62,n}x,} —{n) =P
X . ox, J, '

the penultimate equality being based on (35).
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M.8. THE OPERATORS vec AND vech

The matrix operation vec X creates a column vector from the columns of X
by locating them one under the other:

1
5
111 21} 11
veéc =
5 15 25 15
21
25
=

Thus for X of order p x ¢
X={x};4, vecX={x;}4,

whereupon vec X is pg x 1.

Similarly vech X for symmetric X creates a column vector from the columns
of X, starting at the diagonal elements.

[ 0]
0o 1 2 !
2
vechj 1 22 47 )=
2 47 50 2
47
30 ]

Searle (1982, Sec. 12.10) indicates some of the many results pertaining to these
operators, with more details being available in Henderson and Searle (1979,
1981).

Three results involving the vec operator that get repeated use in Chapter 12 are
vec(ABC) = (C'® A) vec B, (53)
tr(AB) =(vecA’) vec B and (t®t) = vec(tt'). (54)

Proof of (53) is to be found in Searle (1982, p. 333); and, after a moment’s
reflection, (54) is self-evident.

A final result involving the vec operator and diagonal matrices is as follows.
Define

e, =rthcolumnof I, G={e®e}, % and A={6,}2 .
Then for a square matrix A of order g define

diag(A) = {d au}rgl’
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and we have
GAG'vecA = {,e,®¢}{45,}{.e;®e}vecA

=2X,6,(e,®e)(e;@e)vec A
=X, 6,(e,e;, ®ee;) vec A, by (v) of Section M.2,
= X,0, vec(e,e;Ae,e;), by (53),
= X, 0, vec(e,a,e;) because eAe, = a,,
= vec(X,),e,a,e,)
= vec[ A diag(A)], (55)

because e,a, e, is a null matrix except for a, as its rth diagonal element; and
diag(A) represents a diagonal matrix of the diagonal elements of A.

M.9. vec PERMUTATION MATRICES

A particular form of permutation matrix (I with its rows permuted in any
fashion) is that known as the vec permutation matrix, or commutation matrix,
to be denoted equivalently as S, or I, ,. It can be described in a variety of
ways, one being that it is an identity matrix of order n? with its rows (columns)
permuted in such a way that I, can be partitioned as an n x n matrix of
submatrices of order n x n, the (s, t)th of which is null except that its (¢, s)th
element is unity. Other descriptions and names can be found in MacRae (1974),
Henderson and Searle (1979) and Magnus and Neudecker (1979). An example,
for n =3, is T, in Section 12.3.

A number of useful results are the following:

S, =L,
Sn=s;n Sr“: =In1 (I+Sn)2 =2(I+Sn)’ (56)
for A,,,
vecA' =S vec A;
for symmetric A, ,,
veCcA =vecA' =§,vecA =[01+ (1 — 0)S,] vec A; (57)
for A and B of the same order

Sn(AnXk® ank)sk = ank® Anxka
Sn(Anxk® B..i) = (Brox ® Anxk)sk .

Details of these and other results can be found in the references at the end of
the preceding paragraph.

(58)
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M.10. THE EQUALITY VV~X =X
Theorem. If VV~X = X then for y ~ (XB, V)

(i) VV~X=Xfor V" being any generalized inverse of V;
(ii) VV ™y =y almost everywhere, for E(y) = XB;
(iii) X’V X and X'V "y are invariant to V.

Proof.
(i) X=VV X=(VV V)V ' X=VV(VV X)=VV"X.
(ii) 0=(I-VV ) V(I-VVTY)
=(I-VV7)[E(y — Xp)y - XB) J(I - VV7Y)
=E(zz') forz=(1-VV7)(y — Xp).
But E(zz') = 0 implies z = 0 almost everywhere. Therefore, almost everywhere,
0=z=(I-VV " )(y—Xp)=(I—VV )y when VYV X =X,
Hence VV y =y.

(i) X'V'X=XV(VYV X)=(X'V V)V X =X'V~X, and the same for
X'V "y with the y in place of the final X of X'V~ X. Q.E.D.

As a result of (i), note that YV~ X = X is a condition on V, not on V",



APPENDIX S

SOME RESULTS IN STATISTICS

The assumption is that a reader’s background knowledge includes familiarity
with matrix algebra and basic mathematical statistics. Nevertheless, just as with
Appendix M, so here, a few reminders are provided.

S.1. CONDITIONAL FIRST AND SECOND MOMENTS

The joint density function of two random variables G and Y, say f; y(g, ),
will be abbreviated notationally to f(g,y); and the conditional density
Seiv=5(9, y) will be denoted f(g|y). With E(g) denoting the expected value of
g, and using E, to represent expectation over y, we then have the two well-known
results

E(g)=E,[E(g]y)]
and

var(g) = E,[var(g|y)] + var,[E(g|y)] .

For h being some other random variable, var(g) is the special case of

cov(g,h) = E,[cov(g|y,h|y)] + cov,[E(g|y) E(h|y)]

when g and h are the same.
Verification of the E(g) result is straightforward:

E(g)= H 9f(g.y)dgdy = ﬂ 9f(g|y)f(y)dgdy

= JUgf(gly)dg]f(y)dy = f E(gly)f(y)dy

=EE(gly).
461
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Replacing g by [g — E(g)J[h — E(h)] in this result gives cov(g, h) as

cov(g,h) = E{[g — E(g))[h — E(h)]}

= E,E({[g — E(9)1[h — E(W1}]y)

= E,E({[g~ E(g]y) + E(g|y) — E(g)1[h — E(h|y) + E(h|y) = E(1)1}|y)

= E,E({[g — E(g1)I[h — E(h| )] + [E(g|y) — E(9)I[E(h|y) — E(h)]

+[g— E(gI»)LE(hy) — E(W] + [E(g|y) — E(9)I[h — E(h]y)|y].
The last term in this expression is
E,E({[E(g]y) — E(9)I[h — E(hi»]1}]y)
= E,([E(g]y) — E(@)IE{Lh~ E(hI»)]]y}),

because E(g|y) and E(g) are constant
w.r.t. the E outside the curly braces,

= E,([E(g]y)— E(9)I[E(h|y) — E(h}y)])
=0.
In similar manner the third term of cov(g, h) is zero. Therefore
cov(g,h) = E,E({{g — E(g|y)1Lh — E(h]y)1}]y)
+ E,E({[E(g]y) — E(9)1[E(h|y) — E(h)1}|y)
= E,E{[gly — E(g|»)I[h|y — E(h]y)]
+ E,E{[E(g|y) — E(g)J[E(h|y) — E(h)]}
= E,[cov(g|y,hly)]+ E{[E(g|ly) — E(g)][E(h]y) — E(h)]}
= E,[cov(g|y. h|y)] + cov,[E(g|y), E(h|y)].

And when h = g this covariance becomes the variance result for var(g).

S.2. LEAST SQUARES ESTIMATION

Estimation by the method of least squares is an ancient topic. In exceedingly
brief form, we develop just two aspects of the method here. Both are designed
for estimating B in the linear model having model equation y = Xp + e and
E(y) = XP. The first is the method of ordinary least squares (OLS), which
fleetingly treats S = (y — XB)'(y — XB) as a function of p and takes as the
estimator (call it B) the value of B that minimizes S. This leads to equations
X’ XB X'y, with a solution [i— (X'X)™X'y. Since B is not invariant to the
choice of (X X)~, whereas XB X(X'X)" X'y is [see (14) of Appendix M.4],
attention is confined to XB and linear combinations of its elements. Thus XB
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is the OLS estimator of X§, which is summarized as
OLSE(Xf) = X(X'X) X'y .

On denoting var(y) by V, an adaptation of OLS when V is known and
non-singular is to use (y — XB)'V ~!(y — XB) as S. By exactly the same procedure
as is used in deriving OLSE(X8), this yields what is called the generalized least
squares (GLS) estimator of X§: -

GLSE(XB) = X(X'V™'X)" X'V~ ly .

This is also known as BLUE(XP), the best, linear, unbiased estimator of Xp.
The meaning of this is that it is a linear function of the elements of the data
vector y, it is unbiased for Xp, and that it is best in the sense that of all linear
functions of y that are unbiased for Xp this one has minimum variance.

The numerous details that can attend these estimators are discussed in varying
degrees of generality in a multitude of books, e.g., Rao (1973) and Searle (1987),
and there is a vast array of research papers on these topics. Clearly, for V
nonsingular, GLSE(XB) equals OLSE(Xp) when V = 621. However, when V
is singular (symmetric and positive semi-definite) derivation of GLSE(XP) is
more difficult: under certain conditions it consists of the preceding expression
with V! replaced by V ~; otherwise it has an entirely different form. Puntanen
and Styan (1989) have an excellent review of this topic, and Searle and
Pukelsheim (1989) have many of the details.

These estimators are defined in terms of estimating Xp because only linear
combinations of elements of Xp are estimable; i.e,, for L’ being any vector, L’ Xp
is estimable. Then L’Xp is said to be an estimable function, meaning that there
exists a linear function of the observations that is unbiased for A’Xp. This
implies, for B° being a solution of the normal equations X'Xp® = X'y and for
a given A, that A’Xp° has the same value for every p° and is the OLSE of
A’XB. The same is true for P* being a solution of the GLSE equations
X'V™!Xp* = X'V~ 'y, for given A the expression A'Xp* has the same value for
every p* and is the GLSE of A'Xp.

S.3. NORMAL AND y2-DISTRIBUTIONS

The scalar random variable x is said to be normally distributed with mean u
and variance a2 when it has probability density function
e~ Hx-wiia’

2no?

We often represent this by the notation x ~ A" (g, 62).
The vector of n random variables X’ =[x, x, ... x,]is said to have a
multivariate normal distribution with mean vector p and non-singular dispersion



464 APPENDIX § (S.3]

matrix V when it has probability density function
e«%(x—u)’V"(x—u)
Qv

This is represented as x ~ .#,(p, V), often with the subscript n omitted when
it is evident from the context. Searle (1971, 1987) and many other texts have
numerous details about these distributions. Certain properties useful to the
purposes of this book are as follows.

For x ~ A"(p, V)

(1) E(x)=pand var(x) =V,
(1) Kx ~ A (Kp, KVK').

RHRRIN)
X, B, Vy, Vi,
(ii) the marginal distribution of x, is
Xy~ A (1, Vi)
(iv) the conditional distribution of x, given X, is
Xy Xy ~ A [0y + Vi V3 (X — 1), Wi ]
for W,, =(V,, = V,,V5,'V, )",

On writing

Properties of quadratic forms x'Ax when x ~ 4"(p, V) are given in Appendix S.5.

a. Central y?

The simplest variable having a y?-distribution is the sum of squares of n
independently normally distributed variables having zero mean and unit
variance: when

X~ A(0,1,), u=x'x=Y x?~y2 with E(u)=nand var(u) = 2n.
i=1

This is the central x2-distribution; n is known as the degrees of freedom of the
distribution
A well-known result of special interest is that
X ~ A (ul,021,) implies Y (x;— X)*/o?~ 2., .

i=1

b. Mean squares
Suppose SS is a sum of squares on f degrees of freedom, and MS is the
corresponding mean square. Then MS = SS/f. Therefore for expected values
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E(SS) = f E(MS). There are many situations where

SS
~ X}, whereupon var( S8 ) =2f.

Hence
var(SS) _ 2[E(MS)]?

var(SS) = 2f[E(MS)]?, andso var(MS)= I 7

Furthermore, by the definition of variance,
var(MS) = E[MS — E(MS)]? = E[(MS)?] — [E(MS)]2.

Equating these two expressions for var(MS) gives
E[(MS)*] = [E(Msn’(l ¥ ;)

so that
E[(MS)?] _[E(MS)]?
f+2 — f

Therefore

MS)? . E(MS)]?
( ) is an unbiased estimator of E—(—J— .
f+2 f

This is used in deriving an unbiased estimator of a variance of an estimated
variance (e.g., Sections 4.5f and 5.2e).

c. Non-central y2
More general is the non-central y? distribution, definable through the sum
of squares of independently distributed normal variables having a non-zero

mean:

x ~ A (p,1,) defines u= Y x?~yx¥(n4),

i=1
with, for 4 = ip'p,
E(u)=n+24 and var(u)=2n+ 84.

n is the degrees of freedom and 4 is called the non-centrality parameter. Having
A =0 causes y2'(n, 1) to simplify to x2.
S.4. F-DISTRIBUTIONS

Ratios of two independent x2-variables, each divided by its degrees of freedom,
have F-distributions. They come in three forms, of which we consider but two.



466 APPENDIX § [S.5]

First is the central F-distribution for

u~x2, and, independently, v~ y2

ui/v
="/~ ~Fn
n/im

where n and m are called the numerator and denominator degrees of freedom
of the F-distribution. Similarly, for

w ~ y¥(n,2), and, independently, v~ x2,
)
wlv
F =—/—~.9°"(n,m,).)
nim
characterizes the non-central F-distribution.
Means and variances for the central % -distribution are

2m? -2
and var(F)= m(n + m )

EF =17 n(m — 2)%(m — 4)

and those for the non-central F are

E(F')= — <1 +§>

m—2 n

and

2 2
var(F') = 2m [ (n+22) n+4l] .

n*m—-2)L(m=2)(m—-4) m—4

Having 4 = 0 reduces the non-central # to the central #. This is the basis
of using an F-statistic to test a hypothesis. If F’ that has an % "-distribution
is such that when some hypothesis is true the 4 of that distribution is zero, then
F' has an % -distribution under that hypothesis, and comparing the computed
F’ with tabulated values of the central & -distribution provides a test of the
hypothesis.

S.5. QUADRATIC FORMS

A quadratic form is y'Ay, where A can always be taken as symmetric. It is
useful in statistics because every sum of squares of data represented as y can
be written as y’'Ay for some A; and because there are theorems about quadratic
forms that provide useful statistical properties of sums of squares. We quote
four such theorems, confining ourselves to var(y) =V being nonsingular.
(Singular V can be handled, but it is considerably more complicated.)

Theorem S1.
For y ~ (u, V), meaning that E(y) = p and var(y) =V,
E(y'Ay) = tr(AV) + p’Ap .
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Theorem S2.
Ify ~ A4 (n, V) then y'Ay ~ x¥'(ra, 3p’Ap) if and only if AV is idempotent .

Theorem S3.
If y ~ A'(n, V) then y'Ay and y'By are independent if and only if AVB =0 .

Theorem S4.
Ify ~ A(n, V) then var(y'Ay) = 2tr[(AV)?] + 4p’'AVAp .

Theorem S4 is a special case of the more general result that the kth cumulant
of y'Ay is 27! (k — 1)![tr(AV)* + kp’A(VA) ~'n]. Through consideration of
var[y'(A + B)y], this theorem readily yields the covariance result

cov(y'Ay,y'By) = 2tr(AVBV) .

Details and proofs of these widely known theorems can be found in Searle
(1971, Chap. 2). The sufficient condition in each of Theorems S2 and S3 is easily
proven, whereas the necessity conditions are not so easy to prove. Driscoll and
Gundberg (1986) have an interesting history of these necessity conditions, and
the first straightforward proof of that for Theorem S3 is given by Reid and

Driscoll (1989).
Calculating the trace terms of Theorems S1 and S4 is often simplified by the
results derived in Appendix M.6:

tr(MM') = sesq(M), which is tr(M?) = sesq(M) for M =M’ .

S.6. BAYES ESTIMATION

A brief introduction to the ideas of Bayes estimation is given here, including
an elementary example. We begin with some definitions of density functions.

a. Density functions
The cumulative density function of a random variable X is

Fx(x) = PI'(X < x)9
and the joint cumulative density function of two random variables X and Y is
FX.Y(xsy) = PI'(X < X, Y SY) .

From this comes the joint density function of X and Y:

2

0
Y)=—— Fyy(x,y).
Jxy(xy) 3% 3y x.r(%y)
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The marginal density function of X is the joint density function of X and Y
after integrating out y (or summing over y for discrete densities):

‘Mn=fjhuJM% (1)
R!

where R, represents the range of y-values that Y can take. The conditional
density function of X, given y, is

fX.Y(x’ Y) .
Jr(y)

For notational simplicity the subscripts X and Y can be dropped from the
preceding representations; their presence emphasizes that, for example, fy(x)
is not necessarily the same function of x as f;(y) is of y. However, if in dropping
the X and Y subscripts we adopt a convention that the f of f(-) always represents
a density function then we accept the fact that f(x) and f(y) are not necessarily
the same functions of their respective arguments and we have a less cuambersome
notation:

fx|Y(x|Y) = (2)

ﬂxw_
Sy

This is a particularly simpler notation when, for example, the random variable
X is to be an estimated variance component such as 2.

f(x)= J. f(x,y)dy and f(x|y)= (3)

b. Bayes Theorem
Just as f(x|y) is as defined above, so is

f(x,y)
T 4
S(ylx) 70 @
Therefore
S ) = xS = fY]1x)f(x). )
Hence
f(x| )=f(x,Y)= S(xy) - fix)f(x) ©)
1)

ffHJMX foHUuMX
R, R,

This is Bayes Theorem. It is used in estimation in the context of a density
function f(y) being a function of a parameter 6, so that the density function
can be represented as f(y|@). Bayes estimation is based on assuming that we
can specify a range of values within which 6 lies, and over the range we have
some feeling for the probabilities of ¢ taking those possible values. Thus we
treat 0 as a random variable, with a density to be denoted n(#), which is called
the prior density of 6. Then Bayes estimation is based on y representing data
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and on using Bayes Theorem to derive what is the conditional density n(8]y),
which in this context is called the posterior density of 6: from (6) it is

S(y.0)  f(».0)
S [f(y,0)40
_ Sy10)n(9)
[ f(y16)n(8)do
This can be thought of as n(#) updated by the data through the use of f(y| 6).

n(@|y) =

(7)

¢. Bayes estimation

Once the posterior density n(f|y) has been derived, it can be used for
estimating 6 in any way one wishes; e.g., the mean E(8]|y) = .fR. On(|y)do
will be a function only of y and can be used as an estimator of 8; so can the
median or mode of n(8]y).

d. Example
Our example involves the beta distribution, for which the density function is

xa—l(l _ x)b—l

f(x)=——8(a,b) for0sx<1. (8)
where
Yo - I'(a)T'(b)
= a=1 l —_ b-1 =
B(a, b) L x*7 Y x)’~ldx Catb) (9)

["(a) is the gamma function of a, namely

I'(a) = f x*" e *dx,
0

with I'(a)=(a—1)(a—2)...2(1)=(a—1)! when a is a positive integer

greater than unity. The mean and variance of this density are

ab
(a+b*a+b+1)

Our example of Bayes estimation does not explicitly concern variance
components, but it is related to the variance components model of Section 10.3.
However, the distribution functions involved provide easy illustration of Bayes
methodology. The example is that of estimating p from n independent Bernoulli
trials yielding realized values of the random variables X,, X,,..., X, where
Pr(X,=1)=p and Pr(X;=0)=1—p for i=1,...,n Define the random
variable

(10)

E(x)=L and var(x)=
a

=

Y =

X, . (11)

1
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Then
fhwm=PdY=w=(;ﬁwl—mrw (12)

Maximum likelihood estimation (see Section S.7) would use (12) as the
likelihood, relabeling it L(p | y), and would take as the estimator of p the value
of p that maximizes

n
log L(p|y) = log(y) + ylogp+ (n—y)log(1 —p).
Equating
dlog L(ply) _y _n—vy

dp p 1—p

to zero and denoting the solution for p by j gives the estimator as
p=y/n=x.
To illustrate Bayes estimation, we use for n(p) the beta density (4) witha = 2

and b = 2. Then (9) is B(a,b) = 1/3! =1, and so from (8)

n(p) = 6p(1 —p). (13)
Then from (7)
Syl p)n(p)

= 1
J f(ylp)n(p)dp
0

]

n(ply)

and on using (12) and (13) this is
"1p(1 — p)r6p(1 — p)
y p p p p py+l(l_p)n—y+l

n(ply) =+ . S .
J <y>py(l — p)v6p(1 — p)dp J p”“(l _p)n—y+l dp

0 0

Applying (9) to the denominator gives

prI(1 = py ! T(n +4) et
n(ply) = = pril—p
Bly+2n—y+2) T(y+2)I'(n—y+2)

)n-y+1 .

(14)

This is the posterior density of p. It is, by comparison with (8), a beta density
witha=y+ 2 and b =n — y + 2. Hence from (10) its mean is

y+2 _y+2
y+2+n—-y+2 n+d’

E(ply) = (15)
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This is now available as a possible estimator of p. It is a Bayes estimator:

__y+2

ntd (16)

p

Note in passing that lim,_, , p — y/n = X = p;i.e., as n becomes large, the Bayes
estimator tends to the ML (maximum likelihood) estimator. Note too that

1 4

=——x+ %
p 1+4/n n+4(2)
1 4/n

1+4/n 1+4/n

E(p), (17)

where, from (13) [or from (10), for a = 2 = b] the mean of the prior density
n(p) of p in (13) is E(p) = 1. We see that (17) shows p, the Bayes estimator,
as being a weighted mean of j, the ML estimator, and of E(p), the mean of
the prior density n(p) in (13).

The preceding results are special cases of the more general result when in
place of (13) we take m(p) as the general beta density with parameters a and b,
similar to (8):

PP = p) !

ﬂ(P)=m)—'- (18)

Then n(p| y) becomes the beta density with parameters y + a and n — y + b:

py+a—l(l — p)n—y+b—l

w(ply) =g (19)

Thus on taking p = E(p|y) as the Bayes estimator, it is, from (10)
+ 1 N a+b)/n
R ¢ 19X ppy )
n+a+b 1+ (a+b)n 14+ (a+b)/n

where, from (10) and (18), E(p) = a/(a + b).

e. Empirical Bayes estimation
Suppose in (18) and (19) that a and b are unknown. Then, because

f,p)==nply)f(y)= f(y|p)n(p), (21)
)
( B(a+ y,n—y+b)
) _Jip)n(p) _\y ’ (22)

n(ply) B(a,b)

after sqbstitution from (12), (18) and (19). If (22) is used to provide estimates
d and b of a and b, which are then used in (20) in place of a and b, the resulting
expression p = (y + d)/(n + a + b) is an empirical Bayes estimator of p.
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An analogy of the preceding example with estimating variance components
is as follows. In the example we have

X;|p; ~ Binomial(l,p;) and p, ~ Beta(a, ).

In the 1-way classification, variance components model we have y;; [ (x + %) ~
N(p+ a,02)and p + o, ~ N (y,02).

S.7. MAXIMUM LIKELIHOOD

a. The likelihood function

Suppose a vector of random variables, x, has density function f(x). Let 0
be the vector of parameters involved in f(x). Then f(x) is a function of both
x and 0. As a result, it can be thought of in at least two different contexts. The
first is as above, as a density function, in which case 0 is usually assumed to
be known. With this in mind we use the symbol f(x|0) in place of f(x) to
explicitly emphasize that @ is being taken as known.

A second context is where x represents a known vector of data and where 0
is unknown. Then f(x) will be a function of just 0. It is called the likelihood
function for the data x; and because in this context 0 is unknown and x is
known, we use the symbol L(0| x). Thus although f(x |0) and L(0 | x) represent
the same thing mathematically, i.e.,

f(x10) = L(0]x),
it is convenient to use each in its appropriate context.

b. Maximum likelihood estimation

The likelihood function L(0 | x) is the foundation of the widely used method
of estimation known as maximum likelihood estimation. It yields estimators
that have many good properties. ML is used as abbreviation for maximum
likelihood and MLE for maximum likelihood estimate—with whatever suffix
is appropriate to the context: estimate, estimator (and their plurals) or
estimation.

The essence of the ML method is to view L(0|x) as a function of the
mathematical variable 8 and to derive @ as that value of @ which maximizes
L(0]x). The only proviso is that this maximization must be carried out within
the range of permissible values for 0. For example, if one element of 0 is a
variance then permissible values for that variance are non-negative values. This
aspect of ML estimation is very important in estimating variance components.

Under widely existing regularity conditions on f(x]0), a general method of
establishing equations that yield MLEs is to differentiate L with respect to 8 and
equate the derivative to 0. But maximizing L is equivalent to maximizing the
natural logarithm of L, which we denote by [, and it is often easier to use /
rather than L. Thus for

0
I = log L(0| x) the equations ~I =0
00lo—p
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are known as the ML equations, with 0 their solution being called an ML
solution. When there is only one value of @ satisfying equations (23) then,
provided it is within the permissible range of 8, the ML estimator of 6, to be
denoted 8, is 8; i.c., 8 = 6. When @ is not within the permissible range of ® then
adjustments have to be made to 6 and the nature of these adjustments depends
upon the context and form of f(x]0).

¢. Asymptotic dispersion matrix 3

A useful property of the ML estimator 8 is that its large-sample, or asymptotic
{as N — o0), dispersion matrix is known. For 1(8), known as the information
matrix, and defined as

o=s(22)<6f 271].
20 00’ m 00,00}, ;

J
the asymptotic dispersion matrix is

var(8) ~ [1(8)]*.

Note that this is always available without even needing the ML estimator 0
itself, or its density function. An alternative form of the information matrix that
is valid in many situations is

2 ol
10=~5(s)= 5 { sz
00 00’ m 00,00;); ;

Proof of this is as foliows. The (i,j)th element of 1(8) is
2
E( 9%l >=Ei(6logL>
00, 00 06,\ 00,
—E _5_(1 92)
00, \ L 00;

<—1aLaL 1 62L>

L 30,00, L 6,26,
by the product rule of differentiation,
o’L 1
= — f(x,0)dx,
00,00, L
by the definition of expectation
(1 4L 1oL 02
=—|-———f(x.0)dx + x, 0) dx,
) La6, 30,70 * 35,2, jf( )

by interchanging, in the second term,

the derivative and integral operations,
which is permissible under regularity

conditions.

[ oL AL 1
J 26,06, L

f(x,0)dx+J
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On recognizing that | f(x, 8) dx = 1, this gives
a2l JﬁlogLé‘logL
20,06,

02 l
= — Sf(x,0)dx + (])——Ea ol
Thus the two forms of I{8) are equivalent.

20, 09, 0,00,  6,00;

d. Transforming parameters
Suppose parameters represented by 8 are transformed in a one-to-one manner
to the vector A. Then the matrix

20,
s ={ au)

is the Jacobian matrix of the transformation 68 — A.
Theorem. After the one-to-one transformation 6 — A,

1(A) = (Jo_.a)1(8)Jg_. 4 -

Proof. For notational convenience denote Jg_, » by H. From the preceding

section
3
I(A) = E(gl— i) .
O0A OA’
51_{ 61}_{ ol 66,}_{ 00, 61}_H61
oA |, 04 108, A, < TiaA, 06, a0
Therefore

a0\ 00 09 00’

But

Q.E.D.
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Notes: (1) This index should be used in conjunction with the Table of Contents. which
contains the titles of all sections and sub-sections. For index entries that refer to
chapters. these titles are relevant sub-entries for the index,

(2) For brevity's sake. "1-way classification.” is often abbreviated to "1-way™ and "2-way

crossed classification.” to "2-way.”

1-way classification (see Chapter 3). 44
balanced data. empirical Bayes, 337
hierarchical modeling. 333
ML, 147
ML sampling variances. 158
best linear prediction. 266
best linear unbiased prediction. 270
EM algorithm, 308
formulae, 427
history. 20
method of scoring. 310
MINQUE. 399
sampling variances. 177
synthesis, 187
unbalanced data. 51. 69
maximum likelihood. 307
2-way crossed (see Sections 4.3-4.7). 118
balanced data. ML, 149, 243
ML sampling variances, 154
formulae, 434
Henderson Method 1. 18]
Henderson Method 11, 199
Henderson Method 11 (see Section 5.6).
208
history, 27
log likelihood. 291
unbalanced data. ANOVA estimation, 172
model. 170
2-way nested. balanced data, ML. 148
ML sampling variances, 157
formulae, 429

3-way nested. formulae. 431

A

All-cells-filled data. 6
analysis of means, 219
variances modeled as covariances. 388
ANOVA estimation (see Chapters 4 and 5)
l-way. balanced data. 57
unbalanced data, 69
2-way crossed. 128
balanced data. easy rules for. 113
E(MS) for. 116
binary data. 369
comparison of methods. 221
general description, 35
Henderson Method 1. 18]
Henderson Method I1. 190
Henderson Method I1I. 202
lack of uniqueness, 38
unbalanced data (see Chapter 5), 168

B

Balanced data (see Chapter 4).4. 112
2-way. information matrix, 247
ML. 243
convergence of iterative methods. 304
estimation from. non-zero kurtosis model,
421
mixed model. 417
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Balanced data (Continued)
REML. 253
variances modeled as covariances. 389
Bayes estimation (see Chapter 9). 42, 315. 467
I-way. balanced data. 99
unbalanced data. 97
and BLUP. 276. 333
and REML. 303
empirical, 325. 327
prediction in, 259
simple example. 94
Bayes modeling. 317
Bernoulli random variable. 344, 359, 368
Best linear prediction. BLP (see Section 7.3).
265
Best linear unbiased estimation. BLUE. 415
connection to REML, 415
hierarchical modeling. 330
Best linear unbiased prediction. BLUP (see
Sections 7.4 and 7.5). 13. 56. 269
hierarchical modeling. 328
Best prediction. BP (see Section 7.2). 261
Best unbiasedness. 37
Beta-binomial model. 344, 369
Binary data (see Chapter 10), 344, 367
ANOVA methods. 369
beta-binomial. 344. 369
BLP (see Best Linear Prediction)
BLUE (see Best Linear Unbiased Estimation)
BLUP (see Best Linear Unbiased Prediction)
BP (see Best Prediction)
BP. BLP and BLUP. 260

C

Categorical data (see Chapter 10). 367
Cell. 3
Centering matrix. 443
Components of covariance (see Section
11.1). 378
Computing. evaluation of algorithms, 312
for ML and REML (see Chapter 8). 290
for ML and REML estimates, 242
hierarchical models. 349
packages. 311
Conditional likelihood. 323
Conditional mean. 45, 55. 259. 368
use of. 461
variance of. 339
Confidence intervals. 1-way. balanced data.
65
unbalanced data. 76
balanced data. 135
Conjugate prior. 96
Covariance components (see Section 11.1).
378
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Covariances used in places of variances, 387

D

Diagnostics using variances modeled as
covariances, 389

Direct product. 443

Direct sum. 443

Discrete data (see Chapter 10), 344. 359. 367

Dispersion-mean model (see Chapter 12).
42. 405

Distribution of estimators from balanced
data. 132

E

Effect. 3
first use of. 31
fixed. 3
random. 3
EM algorithm (see Section 8.3). 297
for hierarchical models. 350
Empirical Bayes estimation. 325. 337. 471
and likelihood. 325
fixed effects. 328
Error contrast, 251, 252
Estimating the mean. 52
Estimating variance components. first
attempts. 24
Estimation. ANOVA (see Chapters 4 and 5)
Bayesian (see Chapter 9). 42, 315
best linear unbiased. BLUE, 415. 463
empirical Bayes. 325, 337
generalized least squares. GLSE. 53
iterative minimum norm. I-MINQUE, 398
least squares. 160, 462
generalized, GLSE. 463
ordinary. OLSE. 52. 463
Maximum likelihood. ML (see Chapter 6)
minimum norm, MINQUE (see Section
11.3). 41, 397
with zero weights. MINQUEO. 399
minimum variance. MINVAR. 394
with zero weights. MIVQUEO. 399
non-negative. 424
of a variance or variance of an estimator’.
319
of unobservables. 318
Restricted maximum likelihood. REML
(see Chapter 6)
unweighted means analysis. 219
weighted squares of means analysis, 220
Example. animal breeding. 368
aphids. 373
ball bearings and calipers. 13
clinics. 9
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dairy bulls. 12

dairy cows. 354

1Q. 258

medications. 8

medications and clinics, 14

mice and technicians. {5

soils and fertilizers. 9

tomato varieties. 7

turnip data. 311

varieties and gardens. 14
Expected mean squares. 2-way crossed. |19

balanced data. 116
Expected sums of squares. 57. 69
Expected value, history. 26. 30

F

F-distributions. 465
F-statistics. I-way. balanced data. 65
unbalanced data. 76
Factor. 3
Finite populations. 16, 34
Fixed effect. 3
examples. 7
model. 3
Fixed effects. estimation in mixed models.
159, 225, 254
Fixed or random?. 15. 18
Formulae (see Appendix F). 427
Fourth moments in mixed model. 407

G

Generalized inverse. 447
of X'X. 448
reflexive. 448
Generalized least squares. GLSE. 53. 160.
413
and REML. 415
Genetic covariances. 378. 383
Gradient, 293

H

Henderson methods. general description, 34
Method I (see Section 5.3). 181
Method II (see Section 5.4). 190
Method III (see Section 5.5). 202
Method Ill. non-uniqueness. 210. 215

Hessian, 294

Hierarchical models (see Chapter 9), 315
BLUP, 354
computing. 349
EM algorithm. 350
examples of. 316. 343
philosophy, 352

variance estimation, 339
History (see Chapter 2). 19
Hyperparameter. 325

Intraclass correlation, 26. 29. 31. 62. 371
Inverted gamma distribution. 94
Iterative methods. 290
based on derivatives. 292
EM. 297
Marquardt. 293
Newton-Rhapson, 293
quasi-Newton. 295
scoring. 295
steepest ascent. 293
Iterative MINQUE. I-MINQUE. 398

J
Jacobian. 474

K

Kronecker product. 444
Kurtosis. 417
non-zero. 421

L

Large data sets. pooling estimates. 305
Least squares estimation, 462
Levels of a factor. 3
Levels of a hierarchy. 316
Likelihood. 322
beta-binomial model. 371
conditional. 323
hierarchical model. 322
logit-normal model. 372
marginal. 323
probit-normal model. 373
REML. 323
Link function. 344, 368
Logit. 368
Logit regression model. 368
Logit-normal model. 347. 372
and REML. 348
compared to probit-normal. 374

M

Marginal likelihood, 323

Marquardt iteration method. 293

Matrix differentiation. 454

Matrix results (see Appendix M).
442
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Maximizing a correlation. best prediction,
264
Maximizing a mean. best prediction. 264
Maximum likelihood. ML (see Chapter 6).
232.472
1-way. balanced data. 78. 147
unbalanced data. 86
2-way nested. balanced data. 148, 149
and EM algorithm. 300
and mixed model equations, 278
and prediction, 258
computing (see Chapter 8). 290
covariance components, 383
estimating the mean, 146
explicit solutions, 153
hierarchical models. 321
history. 40
random model, balanced data. 151
sampling variances. 238
unbiasedness. 151
Method of scoring, 295
I-way. 310
Method of steepest ascent. 293
Minimum mean square procedures. 393
Minimum norm quadratic unbiased
estimation, MINQUIE. 41. 397
I-way. 399
with zero weights. MINQUEO. 399
Minimum variance, quadratic form. 393
Minimum variance estimation. MINVAR,
394
with zero weights, MIVQUEO. 399
Missing observations, 6
Mixed model equations. MME (see Section
7.6). 275
Mixed model hierarchy. 317
Mixed model. 2-way. 122
balanced data, 417
description of, 13
estimating fixed effects, 159, 225, 254
fourth moments, 407
Henderson Method 1. 188
Henderson Method II, 199
Henderson Method 111, 204
matrix formulation. 138
prediction (BLUP), 269
MME (see Mixed Model Equations)
Model I, 7
Model I1. 12
Model. 1-way classification. 44
2-way crossed, 118
beta-binomial, 344, 370
dispersion-mean (see Chapter 12). 42, 405
fixed. 3
fixed effects. examples, 7
hierarchical (see Chapter 9). 315
logit regression, 368

logit-normal, 347, 372
matrix formulation, 47, 233
[-way. 47,58, 70
2-way crossed. 140
2-way nested. 142
balanced data (Section 4.6). 138
mixed, examples of. 13
probit-normal, 373
random, 3, 12
examples. 9
Modified GLSE and ML. 416
Multivariate normal. 331

N

Negative estimates. 35, 60, 66. 72. 129, 137,
296
ANOVA cstimation. 184
Nested models. ANOVA estimation. 218
Newton-Raphson iteration method. 293
Non-informative prior. 348
Non-negative estimation. 424
Non-zero kurtosis, 421
Normal distributions. 463
Normal hierarchy. 318
Normality assumptions. 1-way. balanced
data, 62
unbalanced data. 73
Normality assumptions. 2-way. 131
Normality, best prediction. 265
Notation. u and uy. 260
matrices, 445
means. 118
vectors. 49

0

Observable or unobservable?, 318
OLSE and MINQUEDO. 406

Optimal design. history. 29

Ordinary least squares. OLSE. 52, 160

P

Planned unbalancedness. 4
Point mass, 322
Pooling estimators from data subsets. 305
Posterior distribution, 315
Predicting random effects. 54
Prediction (see Chapter 7). 13, 258
Prior distribution, 315
Probit-normal model. 373
compared to logit-normal. 374

Q

Quadratic form. differentiation of, 455
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minimum variance. 393
theorems on. 466
translation invariance. 392
unbiasedness, 392
variance. 412
Quasi-Newton iteration method. 295

Random effect. 3
Random effects model. 3
dispersion matrix. 49
genetics. 50
time series, 50
examples. 9
first use of. 23
mean and variance. 10
moments of, 45
Random model. 3. 12
Ranking. best linear prediction. 268
Rank of matrix, 451
Reduction in sum of squares, R(-|+). 202
Reflexive generalized inverse, 448
Residual. 7, 250
Restricted maximum likelihood, REML
(see Section 6.6). 249. 397, 398
1-way, balanced data. 90
unbalanced data. 93
and EM algorithm, 302
and mixed model equations, 282
balanced data, 159. 253
Bayesian justification. 303
computing (see Chapter 8). 290
connection to BLUE, 415
connection to GLSE. 415
covariance components. 386
hierarchical models. 321
history. 41
likelihood. 323

S

Sampling distribution. 318
Sampling variances. 137
iI-way. balanced data. 63
unbalanced data. 75
Sampling variances. ANOVA estimators.
176. 184
unbiased estimation. 179
Henderson Method I11. 207
ML. 238
REML, 252
Schur complement. 453
Scoring. method of. 295
Some-cells-empty data. 6
variances modeled as covariances. 390
Statistics results (see Appendix S). 461

Steepest ascent. method of. 293
Step direction, 292

Step size. 292

SufTicient statistics, 38
Summing vector. 442
Synthesis. method of, 187

T

Tests of hypotheses. balanced data. 133
Total sum of squares, 20

Trace of a matrix, 454

Translation invariance. quadratic form. 392

u

Unbalanced data. 4. 6
all-cells-filled. 6
variances modeled as covariances, 388
ANOVA estimation (see Chapter 5). 168
history, 31
large sets of. 305
missing observations. 6
planned unbalancedness. 4
some-cells-empty. 6
variances modeled as covariances. 390
Unbiasedness. 36
ANOVA estimators. 175
best, 37
of a predictor. 262
quadratic form. 392
Unweighted means analysis. 219

A%

Variance components, description of. 3. 11,
46
modeled as covariances, 387
Variance. approximations, 341
of a conditional mean. 339
of an estimator or estimator of a variance?,
319
of a quadratic form, 412
underestimate, 320
vec. 458
vec permutation matrices. 459
vech. 458

w

Weighted squares of means analysis. 220
Wishart distribution, 327

x>-distributions. 464
l-way, balanced data. 62
Z-restrictions. 123
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