
Oracle Database: SQL
Fundamentals II

Volume I • Student Guide

D64260GC10

Edition 1.0

January 2010

D64999

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Disclaimer

This course provides an overview of features and enhancements planned in release
11g. It is intended solely to help you assess the business benefits of upgrading to 11g
and to plan your IT projects.

This course in any form, including its course labs and printed matter, contains
proprietary information that is the exclusive property of Oracle. This course and the
information contained herein may not be disclosed, copied, reproduced, or distributed
to anyone outside Oracle without prior written consent of Oracle. This course and its
contents are not part of your license agreement nor can they be incorporated into any
contractual agreement with Oracle or its subsidiaries or affiliates.

This course is for informational purposes only and is intended solely to assist you in
planning for the implementation and upgrade of the product features described. It is
not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of
any features or functionality described in this document remain at the sole discretion
of Oracle.

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Authors

Chaitanya Koratamaddi

Brian Pottle

Tulika Srivastava

Technical Contributors
and Reviewers

Claire Bennett
Ken Cooper
Yanti Chang
Laszlo Czinkoczki
Burt Demchick
Gerlinde Frenzen
Joel Goodman
Laura Garza
Richard Green
Nancy Greenberg
Akira Kinutani
Wendy Lo
Isabelle Marchand
Timothy Mcglue
Alan Paulson
Manish Pawar
Srinivas Putrevu
Bryan Roberts
Clinton Shaffer
Hilda Simson
Abhishek Singh
Jenny Tsai Smith
James Spiller
Lori Tritz
Lex van der Werff
Marcie Young

Editors
Amitha Narayan
Daniel Milne
Raj Kumar

Graphic Designer

Satish Bettegowda

Publishers

Veena Narasimhan

Pavithran Adka

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 iii

Contents

I Introduction

Lesson Objectives I-2

Lesson Agenda I-3

Course Objectives I-4

Course Prerequisites I-5

Course Agenda I-6

Lesson Agenda I-7

Tables Used in This Course I-8

Appendixes Used in This Course I-9

Development Environments I-10

Lesson Agenda I-11

Review of Restricting Data I-12

Review of Sorting Data I-13

Review of SQL Functions I-14

Review of Single-Row Functions I-15

Review of Types of Group Functions I-16

Review of Using Subqueries I-17

Review of Manipulating Data I-18

Lesson Agenda I-19

Oracle Database SQL Documentation I-20

Additional Resources I-21

Summary I-22

Practice I: Overview I-23

1 Controlling User Access

Objectives 1-2

Lesson Agenda 1-3

Controlling User Access 1-4

Privileges 1-5

System Privileges 1-6

Creating Users 1-7

User System Privileges 1-8

Granting System Privileges 1-9

Lesson Agenda 1-10

What Is a Role? 1-11

Creating and Granting Privileges to a Role 1-12

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 iv

Changing Your Password 1-13

Lesson Agenda 1-14

Object Privileges 1-15

Granting Object Privileges 1-17

Passing On Your Privileges 1-18

Confirming Granted Privileges 1-19

Lesson Agenda 1-20

Revoking Object Privileges 1-21

Quiz 1-23

Summary 1-24

Practice 1: Overview 1-25

2 Managing Schema Objects

Objectives 2-2

Lesson Agenda 2-3

ALTER TABLE Statement 2-4

Adding a Column 2-6

Modifying a Column 2-7

Dropping a Column 2-8

SET UNUSED Option 2-9

Lesson Agenda 2-11

Adding a Constraint Syntax 2-12

Adding a Constraint 2-13

ON DELETE Clause 2-14

Deferring Constraints 2-15

Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE 2-16

Dropping a Constraint 2-18

Disabling Constraints 2-19

Enabling Constraints 2-20

Cascading Constraints 2-22

Renaming Table Columns and Constraints 2-24

Lesson Agenda 2-25

Overview of Indexes 2-26

CREATE INDEX with the CREATE TABLE Statement 2-27

Function-Based Indexes 2-29

Removing an Index 2-30

DROP TABLE … PURGE 2-31

Lesson Agenda 2-32

FLASHBACK TABLE Statement 2-33

Using the FLASHBACK TABLE Statement 2-35

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 v

Lesson Agenda 2-36

Temporary Tables 2-37

Creating a Temporary Table 2-38

Lesson Agenda 2-39

External Tables 2-40

Creating a Directory for the External Table 2-41

Creating an External Table 2-43

Creating an External Table by Using ORACLE_LOADER 2-45

Querying External Tables 2-47

Creating an External Table by Using ORACLE_DATAPUMP: Example 2-48

Quiz 2-49

Summary 2-51

Practice 2: Overview 2-52

3 Managing Objects with Data Dictionary Views

Objectives 3-2

Lesson Agenda 3-3

Data Dictionary 3-4

Data Dictionary Structure 3-5

How to Use the Dictionary Views 3-7

USER_OBJECTS and ALL_OBJECTS Views 3-8

USER_OBJECTS View 3-9

Lesson Agenda 3-10

Table Information 3-11

Column Information 3-12

Constraint Information 3-14

USER_CONSTRAINTS: Example 3-15

Querying USER_CONS_COLUMNS 3-16

Lesson Agenda 3-17

View Information 3-18

Sequence Information 3-19

Confirming Sequences 3-20

Index Information 3-21

USER_INDEXES: Examples 3-22

Querying USER_IND_COLUMNS 3-23

Synonym Information 3-24

Lesson Agenda 3-25

Adding Comments to a Table 3-26

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 vi

Quiz 3-27

Summary 3-28

Practice 3: Overview 3-29

4 Manipulating Large Data Sets

Objectives 4-2

Lesson Agenda 4-3

Using Subqueries to Manipulate Data 4-4

Retrieving Data by Using a Subquery as Source 4-5

Inserting by Using a Subquery as a Target 4-7

Using the WITH CHECK OPTION Keyword on DML Statements 4-9

Lesson Agenda 4-11

Overview of the Explicit Default Feature 4-12

Using Explicit Default Values 4-13

Copying Rows from Another Table 4-14

Lesson Agenda 4-15

Overview of Multitable INSERT Statements 4-16

Types of Multitable INSERT Statements 4-18

Multitable INSERT Statements 4-19

Unconditional INSERT ALL 4-21

Conditional INSERT ALL: Example 4-23

Conditional INSERT ALL 4-24

Conditional INSERT FIRST: Example 4-26

Conditional INSERT FIRST 4-27

Pivoting INSERT 4-29

Lesson Agenda 4-32

MERGE Statement 4-33

MERGE Statement Syntax 4-34

Merging Rows: Example 4-35

Lesson Agenda 4-38

Tracking Changes in Data 4-39

Example of the Flashback Version Query 4-40

VERSIONS BETWEEN Clause 4-42

Quiz 4-43

Summary 4-44

Practice 4: Overview 4-45

5 Managing Data in Different Time Zones

Objectives 5-2

Lesson Agenda 5-3

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 vii

Time Zones 5-4

TIME_ZONE Session Parameter 5-5

CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP 5-6

Comparing Date and Time in a Session’s Time Zone 5-7

DBTIMEZONE and SESSIONTIMEZONE 5-9

TIMESTAMP Data Types 5-10

TIMESTAMP Fields 5-11

Difference Between DATE and TIMESTAMP 5-12

Comparing TIMESTAMP Data Types 5-13

Lesson Agenda 5-14

INTERVAL Data Types 5-15

INTERVAL Fields 5-17

INTERVAL YEAR TO MONTH: Example 5-18

INTERVAL DAY TO SECOND Data Type: Example 5-20

Lesson Agenda 5-21

EXTRACT 5-22

TZ_OFFSET 5-23

FROM_TZ 5-25

TO_TIMESTAMP 5-26

TO_YMINTERVAL 5-27

TO_DSINTERVAL 5-28

Daylight Saving Time 5-29

Quiz 5-31

Summary 5-32

Practice 5: Overview 5-33

6 Retrieving Data by Using Subqueries

Objectives 6-2

Lesson Agenda 6-3

Multiple-Column Subqueries 6-4

Column Comparisons 6-5

Pairwise Comparison Subquery 6-6

Nonpairwise Comparison Subquery 6-8

Lesson Agenda 6-10

Scalar Subquery Expressions 6-11

Scalar Subqueries: Examples 6-12

Lesson Agenda 6-14

Correlated Subqueries 6-15

Using Correlated Subqueries 6-17

Lesson Agenda 6-19

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 viii

Using the EXISTS Operator 6-20

Find All Departments That Do Not Have Any Employees 6-22

Correlated UPDATE 6-23

Using Correlated UPDATE 6-24

Correlated DELETE 6-26

Using Correlated DELETE 6-27

Lesson Agenda 6-28

WITH Clause 6-29

WITH Clause: Example 6-30

Recursive WITH Clause 6-32

Recursive WITH Clause: Example 6-33

Quiz 6-34

Summary 6-35

Practice 6: Overview 6-37

7 Regular Expression Support

Objectives 7-2

Lesson Agenda 7-3

What Are Regular Expressions? 7-4

Benefits of Using Regular Expressions 7-5

Using the Regular Expressions Functions and Conditions in SQL and PL/SQL 7-6

Lesson Agenda 7-7

What Are Metacharacters? 7-8

Using Metacharacters with Regular Expressions 7-9

Lesson Agenda 7-11

Regular Expressions Functions and Conditions: Syntax 7-12

Performing a Basic Search by Using the REGEXP_LIKE Condition 7-13

Replacing Patterns by Using the REGEXP_REPLACE Function 7-14

Finding Patterns by Using the REGEXP_INSTR Function 7-15

Extracting Substrings by Using the REGEXP_SUBSTR Function 7-16

Lesson Agenda 7-17

Subexpressions 7-18

Using Subexpressions with Regular Expression Support 7-19

Why Access the nth Subexpression? 7-20

REGEXP_SUBSTR: Example 7-21

Lesson Agenda 7-22

Using the REGEXP_COUNT Function 7-23

Regular Expressions and Check Constraints: Examples 7-24

Quiz 7-25

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 ix

Summary 7-26

Practice 7: Overview 7-27

Appendix A: Practice Solutions

Appendix B: Table Descriptions

Appendix C: Using SQL Developer

Objectives C-2

What Is Oracle SQL Developer? C-3

Specifications of SQL Developer C-4

SQL Developer 1.5 Interface C-5

Creating a Database Connection C-7

Browsing Database Objects C-10

Displaying the Table Structure C-11

Browsing Files C-12

Creating a Schema Object C-13

Creating a New Table: Example C-14

Using the SQL Worksheet C-15

Executing SQL Statements C-18

Saving SQL Scripts C-19

Executing Saved Script Files: Method 1 C-20

Executing Saved Script Files: Method 2 C-21

Formatting the SQL Code C-22

Using Snippets C-23

Using Snippets: Example C-24

Debugging Procedures and Functions C-25

Database Reporting C-26

Creating a User-Defined Report C-27

Search Engines and External Tools C-28

Setting Preferences C-29

Resetting the SQL Developer Layout C-30

Summary C-31

Appendix D: Using SQL*Plus

Objectives D-2

SQL and SQL*Plus Interaction D-3

SQL Statements Versus SQL*Plus Commands D-4

Overview of SQL*Plus D-5

Logging In to SQL*Plus D-6

Displaying the Table Structure D-7

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 x

SQL*Plus Editing Commands D-9

Using LIST, n, and APPEND D-11

Using the CHANGE Command D-12

SQL*Plus File Commands D-13

Using the SAVE and START Commands D-14

SERVEROUTPUT Command D-15

Using the SQL*Plus SPOOL Command D-16

Using the AUTOTRACE Command D-17

Summary D-18

Appendix E: Using JDeveloper

Objectives E-2

Oracle JDeveloper E-3

Database Navigator E-4

Creating a Connection E-5

Browsing Database Objects E-6

Executing SQL Statements E-7

Creating Program Units E-8

Compiling E-9

Running a Program Unit E-10

Dropping a Program Unit E-11

Structure Window E-12

Editor Window E-13

Application Navigator E-14

Deploying Java Stored Procedures E-15

Publishing Java to PL/SQL E-16

How Can I Learn More About JDeveloper 11g ? E-17
Summary E-18

Appendix F: Generating Reports by Grouping Related Data

Objectives F-2

Review of Group Functions F-3

Review of the GROUP BY Clause F-4

Review of the HAVING Clause F-5

GROUP BY with ROLLUP and CUBE Operators F-6

ROLLUP Operator F-7

ROLLUP Operator: Example F-8

CUBE Operator F-9

CUBE Operator: Example F-10

GROUPING Function F-11

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xi

GROUPING Function: Example F-12

GROUPING SETS F-13

GROUPING SETS: Example F-15

Composite Columns F-17

Composite Columns: Example F-19

Concatenated Groupings F-21

Concatenated Groupings: Example F-22

Summary F-23

Appendix G: Hierarchical Retrieval

Objectives G-2

Sample Data from the EMPLOYEES Table G-3

Natural Tree Structure G-4

Hierarchical Queries G-5

Walking the Tree G-6

Walking the Tree: From the Bottom Up G-8

Walking the Tree: From the Top Down G-9

Ranking Rows with the LEVEL Pseudocolumn G-10

Formatting Hierarchical Reports Using LEVEL and LPAD G-11

Pruning Branches G-13

Summary G-14

Appendix H: Writing Advanced Scripts

Objectives H-2

Using SQL to Generate SQL H-3

Creating a Basic Script H-4

Controlling the Environment H-5

The Complete Picture H-6

Dumping the Contents of a Table to a File H-7

Generating a Dynamic Predicate H-9

Summary H-11

Appendix I: Oracle Database Architectural Components

Objectives I-2

Oracle Database Architecture: Overview I-3

Oracle Database Server Structures I-4

Connecting to the Database I-5

Interacting with an Oracle Database I-6

Oracle Memory Architecture I-8

Process Architecture I-10

Database Writer Process I-12

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xii

Log Writer Process I-13

Checkpoint Process I-14

System Monitor Process I-15

Process Monitor Process I-16

Oracle Database Storage Architecture I-17

Logical and Physical Database Structures I-19

Processing a SQL Statement I-21

Processing a Query I-22

Shared Pool I-23

Database Buffer Cache I-25

Program Global Area (PGA) I-26

Processing a DML Statement I-27

Redo Log Buffer I-29

Rollback Segment I-30

COMMIT Processing I-31

Summary of the Oracle Database Architecture I-33

Additional Practice Solutions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Introduction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 2

Copyright © 2010, Oracle. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do the
following:

• Discuss the goals of the course

• Describe the database schema and tables that are used in
the course

• Identify the available environments that can be used in the
course

• Review some of the basic concepts of SQL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Course objectives and course agenda

• The database schema and appendixes used in the course
and the available development environment in this course

• Review of some basic concepts of SQL

• Oracle Database 11g documentation and additional
resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 4

Copyright © 2010, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do the
following:

• Control database access to specific objects

• Add new users with different levels of access privileges

• Manage schema objects

• Manage objects with data dictionary views

• Manipulate large data sets in the Oracle database by using
subqueries

• Manage data in different time zones

• Write multiple-column subqueries

• Use scalar and correlated subqueries

• Use the regular expression support in SQL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 5

Copyright © 2010, Oracle. All rights reserved.

Course Prerequisites

The Oracle Database: SQL Fundamentals I course is a
prerequisite for this course.

Course Prerequisites

Required preparation for this course is Oracle Database: SQL Fundamentals I.
This course offers you an introduction to Oracle Database technology. In this course, you learn
the basic concepts of relational databases and the powerful SQL programming language. This
course provides the essential SQL skills that enable you to write queries against single and
multiple tables, manipulate data in tables, create database objects, and query metadata.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 6

Copyright © 2010, Oracle. All rights reserved.

Course Agenda

• Day 1:
– Introduction

– Controlling User Access

– Managing Schema Objects

– Managing Objects with Data Dictionary Views

• Day 2:
– Manipulating Large Data Sets

– Managing Data in Different Time Zones

– Retrieving Data by Using Subqueries

– Regular Expression Support

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 7

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Course objectives and course agenda

• The database schema and appendixes used in the course
and the available development environment in this course

• Review of some basic concepts of SQL

• Oracle Database 11g documentation and additional
resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 8

Copyright © 2010, Oracle. All rights reserved.

Tables Used in This Course

JOB_HISTORY
employee_id
start_date
end_date

job_id
department_id

DEPARTMENTS
department_id

department_name
manager_id
location_id

LOCATIONS
location_id

street_address
postal_code

city
state_province

country_id

JOBS
job_id

job_title
min_salary
max_salary

EMPLOYEES
employee_id

first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_nameJOB_GRADES
grade_level
lowest_sal
highest_sal

Table Description

This course uses data from the following tables:

Table Descriptions

• The EMPLOYEES table contains information about all the employees, such as their first and
last names, job IDs, salaries, hire dates, department IDs, and manager IDs. This table is a
child of the DEPARTMENTS table.

• The DEPARTMENTS table contains information such as the department ID, department
name, manager ID, and location ID. This table is the primary key table to the EMPLOYEES
table.

• The LOCATIONS table contains department location information. It contains location ID,
street address, city, state province, postal code, and country ID information. It is the primary
key table to the DEPARTMENTS table and is a child of the COUNTRIES table.

• The COUNTRIES table contains the country names, country IDs, and region IDs. It is a
child of the REGIONS table. This table is the primary key table to the LOCATIONS table.

• The REGIONS table contains region IDs and region names of the various countries. It is a
primary key table to the COUNTRIES table.

• The JOB_GRADES table identifies a salary range per job grade. The salary ranges do not
overlap.

• The JOB_HISTORY table stores job history of the employees.
• The JOBS table contains job titles and salary ranges.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 9

Copyright © 2010, Oracle. All rights reserved.

Appendixes Used in This Course

• Appendix A: Practices and Solutions

• Appendix B: Table Descriptions

• Appendix C: Using SQL Developer

• Appendix D: Using SQL*Plus

• Appendix E: Using JDeveloper

• Appendix F: Generating Reports by Grouping Related
Data

• Appendix G: Hierarchical Retrieval

• Appendix H: Writing Advanced Scripts

• Appendix I: Oracle Database Architectural Components

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 10

Copyright © 2010, Oracle. All rights reserved.

Development Environments

There are two development environments for this course:

• The primary tool is Oracle SQL Developer.

• You can also use SQL*Plus command-line interface.

SQL Developer SQL *Plus

Development Environments

SQL Developer

This course has been developed using Oracle SQL Developer as the tool for running the SQL
statements discussed in the examples in the slide and the practices.

• SQL Developer version 1.5.4 is shipped with Oracle Database 11g Release 2, and is the
default tool for this class.

• In addition, SQL Developer version 1.5.4 is also available on the classroom machine, and
may be installed for use. At the time of publication of this course, version 1.5.3 was the
latest release of SQL Developer.

SQL*Plus

The SQL*Plus environment may also be used to run all SQL commands covered in this course.

Note

• See Appendix C titled “Using SQL Developer” for information about using SQL
Developer, including simple instructions on installing version 1.5.4.

• See Appendix D titled “Using SQL*Plus” for information about using SQL*Plus.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 11

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Course objectives and course agenda

• The database schema and appendixes used in the course
and the available development environment in this course

• Review of some basic concepts of SQL

• Oracle Database 11g documentation and additional
resources

Lesson Agenda

The next few slides provide a brief overview of some of the basic concepts that you learned in
the course titled Oracle Database: SQL Fundamentals I.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 12

Copyright © 2010, Oracle. All rights reserved.

Review of Restricting Data

• Restrict the rows that are returned by using the WHERE
clause.

• Use comparison conditions to compare one expression
with another value or expression.

• Use logical conditions to combine the result of two
component conditions and produce a single result based
on those conditions.

Operator Meaning

BETWEEN
...AND...

Between two values (inclusive)

IN(set) Match any of a list of values

LIKE Match a character pattern

Review of Restricting Data

You can restrict the rows that are returned from the query by using the WHERE clause. A WHERE
clause contains a condition that must be met, and it directly follows the FROM clause.

The WHERE clause can compare values in columns, literal values, arithmetic expression, or
functions. It consists of three elements:

• Column name
• Comparison condition
• Column name, constant, or list of values

You use comparison conditions in the WHERE clause in the following format:
... WHERE expr operator value

Apart from those mentioned in the slide, you use other comparison conditions such as =, <, >,
<>, <=, and >=.

Three logical operators are available in SQL:
• AND
• OR
• NOT

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 13

Copyright © 2010, Oracle. All rights reserved.

Review of Sorting Data

• Sort retrieved rows with the ORDER BY clause:
– ASC: Ascending order, default

– DESC: Descending order

• The ORDER BY clause comes last in the SELECT
statement:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date ;

…

Review of Sorting Data

The order of rows that are returned in a query result is undefined. The ORDER BY clause can be
used to sort the rows. If you use the ORDER BY clause, it must be the last clause of the SQL
statement. You can specify an expression, an alias, or a column position as the sort condition.

Syntax
SELECT expr
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, numeric_position} [ASC|DESC]];

In the syntax:
ORDER BY Specifies the order in which the retrieved rows are displayed
ASC Orders the rows in ascending order (This is the default order.)
DESC Orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may not
fetch rows in the same order for the same query twice. Use the ORDER BY clause to display the
rows in a specific order.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 14

Copyright © 2010, Oracle. All rights reserved.

Review of SQL Functions

Single-row
functions

Multiple-row
functions

Return one result
per row

Return one result
per set of rows

Functions

Review of SQL Functions

There are two types of functions:
• Single-row functions
• Multiple-row functions

Single-Row Functions

These functions operate on single rows only and return one result per row. There are different
types of single-row functions such as character, number, date, conversion, and general functions.

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These functions
are also known as group functions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 15

Copyright © 2010, Oracle. All rights reserved.

Review of Single-Row Functions

Conversion Date

Number
Single-row
functions

General

Character

Review of Single-Row Functions

The following are different types of single-row functions:
• Character functions: Αccept character input and can return both character and number

values
• Number functions: Accept numeric input and return numeric values
• Date functions: Operate on values of the DATE data type (All date functions return a value

of the DATE data type, except the MONTHS_BETWEEN function, which returns a number.)
• Conversion functions: Convert a value from one data type to another
• General functions:

- NVL
- NVL2
- NULLIF
- COALESCE
- CASE
- DECODE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 16

Copyright © 2010, Oracle. All rights reserved.

Review of Types of Group Functions

• AVG

• COUNT

• MAX

• MIN

• STDDEV

• SUM

• VARIANCE

Group
functions

Review of Types of Group Functions

Each of the functions accepts an argument. The following table identifies the options that you
can use in the syntax:

Function Description

AVG([DISTINCT|ALL]n) Average value of n, ignoring null values

COUNT({*|[DISTINCT|ALL]expr}
)

Number of rows, where expr evaluates to
something other than null (count all selected
rows using *, including duplicates and rows
with nulls)

MAX([DISTINCT|ALL]expr) Maximum value of expr, ignoring null values

MIN([DISTINCT|ALL]expr) Minimum value of expr, ignoring null values

STDDEV([DISTINCT|ALL]n) Standard deviation of n, ignoring null values

SUM([DISTINCT|ALL]n) Sum values of n, ignoring null values

VARIANCE([DISTINCT|ALL]n) Variance of n, ignoring null values

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 17

Copyright © 2010, Oracle. All rights reserved.

Review of Using Subqueries

• A subquery is a SELECT statement nested in a clause of
another SELECT statement.

• Syntax:

• Types of subqueries:

Single-row subquery Multiple-row subquery

Returns only one row Returns more than one row

Uses single-row comparison
operators

Uses multiple-row comparison
operators

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Review of Using Subqueries

You can build powerful statements out of simple ones by using subqueries. Subqueries are
useful when a query is based on a search criterion with unknown intermediate values.

You can place the subquery in a number of SQL clauses, including the following:
• WHERE clause
• HAVING clause
• FROM clause

The subquery (inner query) executes once before the main query (outer query). The result of the
subquery is used by the main query.

A single-row subquery uses a single-row operator such as =, >, <, >=, <=, and <>. With a
multiple-row subquery, you use a multiple-row operator such as IN, ANY, and ALL.

Example: Display details of employees whose salary is equal to the minimum salary.
SELECT last_name, salary, job_id
FROM employees
WHERE salary = (SELECT MIN(salary)

FROM employees);
In the example, the MIN group function returns a single value to the outer query.
Note: In this course, you learn how to use multiple-column subqueries. Multiple-column
subqueries return more than one column from the inner SELECT statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 18

Copyright © 2010, Oracle. All rights reserved.

Review of Manipulating Data

A data manipulation language (DML) statement is executed
when you:

• Add new rows to a table

• Modify existing rows in a table

• Remove existing rows from a table\

Function Description

INSERT Adds a new row to the table

UPDATE Modifies existing rows in the table

DELETE Removes existing rows from the table

MERGE Updates, inserts, or deletes a row conditionally

into/from a table

Review of Manipulating Data

When you want to add, update, or delete data in the database, you execute a DML statement. A
collection of DML statements that form a logical unit of work is called a transaction. You can
add new rows to a table by using the INSERT statement. With the following syntax, only one
row is inserted at a time.

INSERT INTO table [(column [, column…])]
VALUES (value[, value...]);

You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In place of the VALUES clause, you use a subquery. The number of columns and
their data types in the column list of the INSERT clause must match the number of values and
their data types in the subquery.
The UPDATE statement modifies specific rows if you specify the WHERE clause.

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

You can remove existing rows by using the DELETE statement. You can delete specific rows by
specifying the WHERE clause in the DELETE statement.

DELETE [FROM] table
[WHERE condition];

You learn about the MERGE statement in the lesson titled “Manipulating Large Data Sets.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 19

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Course objectives and course agenda

• The database schema and appendixes used in the course
and the available development environment in this course

• Review of some basic concepts of SQL

• Oracle Database 11g documentation and additional
resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 20

Copyright © 2010, Oracle. All rights reserved.

Oracle Database SQL Documentation

• Oracle Database New Features Guide
• Oracle Database Reference
• Oracle Database SQL Language Reference
• Oracle Database Concepts
• Oracle Database SQL Developer User’s Guide Release

1.2

Oracle Database SQL Documentation

Navigate to http://www.oracle.com/pls/db102/homepage to access the Oracle Database 10g
documentation library.

Navigate to http://www.oracle.com/pls/db112/homepage to access the Oracle Database 11g
Release 2 documentation library.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 21

Copyright © 2010, Oracle. All rights reserved.

Additional Resources

For additional information about the new Oracle 11g SQL, refer
to the following:

• Oracle Database 11g: New Features eStudies
• Oracle by Example series (OBE): Oracle Database 11g

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 22

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:

• The course objectives

• The sample tables used in the course

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II I - 23

Copyright © 2010, Oracle. All rights reserved.

Practice I: Overview

This practice covers the following topics:

• Running the SQL Developer online tutorial

• Starting SQL Developer and creating a new database
connection and browsing the tables

• Executing SQL statements using the SQL Worksheet

• Reviewing the basic concepts of SQL

Practice I: Overview

In this practice, you use SQL Developer to execute SQL statements.

Note: All written practices use SQL Developer as the development environment. Although it is
recommended that you use SQL Developer, you can also use the SQL*Plus environment that is
available in this course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Controlling User Access

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 2

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Differentiate system privileges from object privileges

• Grant privileges on tables

• Grant roles

• Distinguish between privileges and roles

Objectives

In this lesson, you learn how to control database access to specific objects and add new users
with different levels of access privileges.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• System privileges

• Creating a role

• Object privileges

• Revoking object privileges

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 4

Copyright © 2010, Oracle. All rights reserved.

Controlling User Access

Database
administrator

Users

Username and password
Privileges

Controlling User Access

In a multiple-user environment, you want to maintain security of the database access and use.
With Oracle Server database security, you can do the following:

• Control database access.
• Give access to specific objects in the database.
• Confirm given and received privileges with the Oracle data dictionary.

Database security can be classified into two categories: system security and data security.
System security covers access and use of the database at the system level, such as the username
and password, the disk space allocated to users, and the system operations that users can
perform. Database security covers access and use of the database objects and the actions that
those users can perform on the objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 5

Copyright © 2010, Oracle. All rights reserved.

Privileges

• Database security:
– System security

– Data security

• System privileges: Performing a particular action within the
database

• Object privileges: Manipulating the content of the database
objects

• Schemas: Collection of objects such as tables, views, and
sequences

Privileges

A privilege is the right to execute particular SQL statements. The database administrator (DBA)
is a high-level user with the ability to create users and grant users access to the database and its
objects. Users require system privileges to gain access to the database and object privileges to
manipulate the content of the objects in the database. Users can also be given the privilege to
grant additional privileges to other users or to roles, which are named groups of related
privileges.

Schemas

A schema is a collection of objects such as tables, views, and sequences. The schema is owned
by a database user and has the same name as that user.

A system privilege is the right to perform a particular action, or to perform an action on any
schema objects of a particular type. An object privilege provides the user the ability to perform a
particular action on a specific schema object.

For more information, see the reference manual Oracle Database 2 Day DBA for 10g or 11g
database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 6

Copyright © 2010, Oracle. All rights reserved.

System Privileges

• More than 100 privileges are available.

• The database administrator has high-level system
privileges for tasks such as:
– Creating new users

– Removing users

– Removing tables

– Backing up tables

System Privileges

More than 100 distinct system privileges are available for users and roles. Typically, system
privileges are provided by the database administrator (DBA).

Typical DBA Privileges

System Privilege Operations Authorized

CREATE USER Grantee can create other Oracle users.

DROP USER Grantee can drop another user.

DROP ANY TABLE Grantee can drop a table in any schema.

BACKUP ANY TABLE Grantee can back up any table in any schema with the
export utility.

SELECT ANY TABLE Grantee can query tables, views, or materialized
views in any schema.

CREATE ANY TABLE Grantee can create tables in any schema.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 7

Copyright © 2010, Oracle. All rights reserved.

Creating Users

The DBA creates users with the CREATE USER statement.

CREATE USER demo
IDENTIFIED BY demo;

CREATE USER user
IDENTIFIED BY password;

Creating Users

The DBA creates the user by executing the CREATE USER statement. The user does not have
any privileges at this point. The DBA can then grant privileges to that user. These privileges
determine what the user can do at the database level.

The slide gives the abridged syntax for creating a user.

In the syntax:
user Is the name of the user to be created
Password Specifies that the user must log in with this password

For more information, see the Oracle Database SQL Reference for 10g or 11g database.

Note: Starting with Oracle Database 11g, passwords are case-sensitive.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 8

Copyright © 2010, Oracle. All rights reserved.

User System Privileges

• After a user is created, the DBA can grant specific system
privileges to that user.

• An application developer, for example, may have the
following system privileges:
– CREATE SESSION

– CREATE TABLE

– CREATE SEQUENCE

– CREATE VIEW

– CREATE PROCEDURE

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

Typical User Privileges

After the DBA creates a user, the DBA can assign privileges to that user.

In the syntax:
privilege Is the system privilege to be granted
user |role|PUBLIC Is the name of the user, the name of the role, or PUBLIC

(which designates that every user is granted the privilege)

Note: Current system privileges can be found in the SESSION_PRIVS dictionary view. Data
dictionary is a collection of tables and views created and maintained by the Oracle Server. They
contain information about the database.

System Privilege Operations Authorized

CREATE SESSION Connect to the database.

CREATE TABLE Create tables in the user’s schema.

CREATE SEQUENCE Create a sequence in the user’s schema.

CREATE VIEW Create a view in the user’s schema.

CREATE PROCEDURE Create a stored procedure, function, or package in the user’s
schema.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 9

Copyright © 2010, Oracle. All rights reserved.

Granting System Privileges

The DBA can grant specific system privileges to a user.

GRANT create session, create table,
create sequence, create view

TO demo;

Granting System Privileges

The DBA uses the GRANT statement to allocate system privileges to the user. After the user has
been granted the privileges, the user can immediately use those privileges.

In the example in the slide, the demo user has been assigned the privileges to create sessions,
tables, sequences, and views.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 10

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• System privileges

• Creating a role

• Object privileges

• Revoking object privileges

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 11

Copyright © 2010, Oracle. All rights reserved.

What Is a Role?

Allocating privileges
without a role

Allocating privileges
with a role

Privileges

Users

Manager

What Is a Role?

A role is a named group of related privileges that can be granted to the user. This method makes
it easier to revoke and maintain privileges.

A user can have access to several roles, and several users can be assigned the same role. Roles
are typically created for a database application.

Creating and Assigning a Role

First, the DBA must create the role. Then the DBA can assign privileges to the role and assign
the role to users.

Syntax

CREATE ROLE role;

In the syntax:

role Is the name of the role to be created

After the role is created, the DBA can use the GRANT statement to assign the role to users as
well as assign privileges to the role. A role is not a schema object, therefore any user can add
privileges to a role.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 12

Copyright © 2010, Oracle. All rights reserved.

Creating and Granting Privileges to a Role

• Create a role:

• Grant privileges to a role:

• Grant a role to users:

CREATE ROLE manager;

GRANT create table, create view
TO manager;

GRANT manager TO alice;

Creating a Role

The example in the slide creates a manager role and then enables the manager to create tables
and views. It then grants user alice the role of a manager. Now alice can create tables and
views.

If users have multiple roles granted to them, they receive all the privileges associated with all the
roles.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 13

Copyright © 2010, Oracle. All rights reserved.

Changing Your Password

• The DBA creates your user account and initializes your
password.

• You can change your password by using the ALTER USER
statement.

ALTER USER demo
IDENTIFIED BY employ;

Changing Your Password

The DBA creates an account and initializes a password for every user. You can change your
password by using the ALTER USER statement.

The slide example shows that the demo user changes the password by using the ALTER USER
statement.

Syntax

ALTER USER user IDENTIFIED BY password;

In the syntax:
user Is the name of the user
password Specifies the new password

Although this statement can be used to change your password, there are many other options. You
must have the ALTER USER privilege to change any other option.

For more information, see the Oracle Database SQL Reference for 10g or 11g database.

Note: SQL*Plus has a PASSWORD command (PASSW) that can be used to change the password
of a user when the user is logged in. This command is not available in SQL Developer.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 14

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• System privileges

• Creating a role

• Object privileges

• Revoking object privileges

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 15

Copyright © 2010, Oracle. All rights reserved.

Object
privilege Table View Sequence

Object Privileges

ALTER

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

Object Privileges

An object privilege is a privilege or right to perform a particular action on a specific table, view,
sequence, or procedure. Each object has a particular set of grantable privileges. The table in the
slide lists the privileges for various objects. Note that the only privileges that apply to a
sequence are SELECT and ALTER. UPDATE, REFERENCES, and INSERT can be restricted by
specifying a subset of updatable columns.

A SELECT privilege can be restricted by creating a view with a subset of columns and granting
the SELECT privilege only on the view. A privilege granted on a synonym is converted to a
privilege on the base table referenced by the synonym.

Note: With the REFERENCES privilege, you can ensure that other users can create FOREIGN
KEY constraints that reference your table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 16

Copyright © 2010, Oracle. All rights reserved.

Object Privileges

• Object privileges vary from object to object.

• An owner has all the privileges on the object.

• An owner can give specific privileges on that owner’s
object.

GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

Granting Object Privileges

Different object privileges are available for different types of schema objects. A user
automatically has all object privileges for schema objects contained in the user’s schema. A user
can grant any object privilege on any schema object that the user owns to any other user or role.
If the grant includes WITH GRANT OPTION, the grantee can further grant the object privilege
to other users; otherwise, the grantee can use the privilege but cannot grant it to other users.

In the syntax:
object_priv Is an object privilege to be granted
ALL Specifies all object privileges
columns Specifies the column from a table or view on which

privileges are granted
ON object Is the object on which the privileges are granted
TO Identifies to whom the privilege is granted
PUBLIC Grants object privileges to all users
WITH GRANT OPTION Enables the grantee to grant the object privileges to other

users and roles

Note: In the syntax, schema is the same as the owner’s name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 17

Copyright © 2010, Oracle. All rights reserved.

Granting Object Privileges

• Grant query privileges on the EMPLOYEES table:

• Grant privileges to update specific columns to users and
roles:

GRANT select
ON employees
TO demo;

GRANT update (department_name, location_id)
ON departments
TO demo, manager;

Guidelines

• To grant privileges on an object, the object must be in your own schema, or you must have
been granted the object privileges WITH GRANT OPTION.

• An object owner can grant any object privilege on the object to any other user or role of the
database.

• The owner of an object automatically acquires all object privileges on that object.

The first example in the slide grants the demo user the privilege to query your EMPLOYEES
table. The second example grants UPDATE privileges on specific columns in the
DEPARTMENTS table to demo and to the manager role.

For example, if your schema is oraxx, and the demo user now wants to use a SELECT
statement to obtain data from your EMPLOYEES table, the syntax he or she must use is:

SELECT * FROM oraxx.employees;

Alternatively, the demo user can create a synonym for the table and issue a SELECT statement
from the synonym:

CREATE SYNONYM emp FOR oraxx.employees;
SELECT * FROM emp;

Note: DBAs generally allocate system privileges; any user who owns an object can grant object
privileges.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 18

Copyright © 2010, Oracle. All rights reserved.

Passing On Your Privileges

• Give a user authority to pass along privileges:

• Allow all users on the system to query data from Alice’s
DEPARTMENTS table:

GRANT select, insert
ON departments
TO demo
WITH GRANT OPTION;

GRANT select
ON alice.departments
TO PUBLIC;

Passing On Your Privileges

WITH GRANT OPTION Keyword

A privilege that is granted with the WITH GRANT OPTION clause can be passed on to other
users and roles by the grantee. Object privileges granted with the WITH GRANT OPTION
clause are revoked when the grantor’s privilege is revoked.

The example in the slide gives the demo user access to your DEPARTMENTS table with the
privileges to query the table and add rows to the table. The example also shows that user1 can
give others these privileges.

PUBLIC Keyword

An owner of a table can grant access to all users by using the PUBLIC keyword.

The second example allows all users on the system to query data from Alice’s DEPARTMENTS
table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 19

Copyright © 2010, Oracle. All rights reserved.

Confirming Granted Privileges

Data Dictionary View Description

ROLE_SYS_PRIVS System privileges granted to roles

ROLE_TAB_PRIVS Table privileges granted to roles

USER_ROLE_PRIVS Roles accessible by the user

USER_SYS_PRIVS System privileges granted to the user

USER_TAB_PRIVS_MADE Object privileges granted on the user’s objects

USER_TAB_PRIVS_RECD Object privileges granted to the user

USER_COL_PRIVS_MADE Object privileges granted on the columns of the user’s
objects

USER_COL_PRIVS_RECD Object privileges granted to the user on specific
columns

Confirming Granted Privileges

If you attempt to perform an unauthorized operation, such as deleting a row from a table for
which you do not have the DELETE privilege, the Oracle server does not permit the operation to
take place.

If you receive the Oracle server error message “Table or view does not exist,” you have done
either of the following:

• Named a table or view that does not exist
• Attempted to perform an operation on a table or view for which you do not have the

appropriate privilege

The data dictionary is organized in tables and views and contains information about the
database. You can access the data dictionary to view the privileges that you have. The table in
the slide describes various data dictionary views.

You learn more about data dictionary views in the lesson titled “Managing Objects with Data
Dictionary Views.”

Note: The ALL_TAB_PRIVS_MADE dictionary view describes all the object grants made by
the user or made on the objects owned by the user.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 20

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• System privileges

• Creating a role

• Object privileges

• Revoking object privileges

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 21

Copyright © 2010, Oracle. All rights reserved.

Revoking Object Privileges

• You use the REVOKE statement to revoke privileges
granted to other users.

• Privileges granted to others through the WITH GRANT
OPTION clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object
FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS];

Revoking Object Privileges

You can remove privileges granted to other users by using the REVOKE statement. When you
use the REVOKE statement, the privileges that you specify are revoked from the users you name
and from any other users to whom those privileges were granted by the revoked user.

In the syntax:

CASCADE Is required to remove any referential integrity constraints made to
the CONSTRAINTS object by means of the REFERENCES privilege

For more information, see the Oracle Database SQL Reference for 10g or 11g database.

Note: If a user were to leave the company and you revoke his or her privileges, you must regrant
any privileges that this user may have granted to other users. If you drop the user account
without revoking privileges from it, the system privileges granted by this user to other users are
not affected by this action.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 22

Copyright © 2010, Oracle. All rights reserved.

Revoking Object Privileges

Revoke the SELECT and INSERT privileges given to the demo
user on the DEPARTMENTS table.

REVOKE select, insert
ON departments
FROM demo;

Revoking Object Privileges (continued)

The example in the slide revokes SELECT and INSERT privileges given to the demo user on
the DEPARTMENTS table.

Note: If a user is granted a privilege with the WITH GRANT OPTION clause, that user can also
grant the privilege with the WITH GRANT OPTION clause, so that a long chain of grantees is
possible, but no circular grants (granting to a grant ancestor) are permitted. If the owner revokes
a privilege from a user who granted the privilege to other users, the revoking cascades to all the
privileges granted.

For example, if user A grants a SELECT privilege on a table to user B including the WITH
GRANT OPTION clause, user B can grant to user C the SELECT privilege with the WITH
GRANT OPTION clause as well, and user C can then grant to user D the SELECT privilege. If
user A revokes privileges from user B, the privileges granted to users C and D are also revoked.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 23

Copyright © 2010, Oracle. All rights reserved.

Quiz

Which of the following statements are true?

1. After a user creates an object, the user can pass along any
of the available object privileges to other users by using
the GRANT statement.

2. A user can create roles by using the CREATE ROLE
statement to pass along a collection of system or object
privileges to other users.

3. Users can change their own passwords.

4. Users can view the privileges granted to them and those
that are granted on their objects.

Answers: 1, 3, 4

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 24

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Differentiate system privileges from object privileges

• Grant privileges on tables

• Grant roles

• Distinguish between privileges and roles

Summary

DBAs establish initial database security for users by assigning privileges to the users.
• The DBA creates users who must have a password. The DBA is also responsible for

establishing the initial system privileges for a user.
• After the user has created an object, the user can pass along any of the available object

privileges to other users or to all users by using the GRANT statement.
• A DBA can create roles by using the CREATE ROLE statement to pass along a collection of

system or object privileges to multiple users. Roles make granting and revoking privileges
easier to maintain.

• Users can change their passwords by using the ALTER USER statement.
• You can remove privileges from users by using the REVOKE statement.
• With data dictionary views, users can view the privileges granted to them and those that are

granted on their objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 1 - 25

Copyright © 2010, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:

• Granting other users privileges to your table

• Modifying another user’s table through the privileges
granted to you

Practice 1: Overview

Team up with other students for this exercise about controlling access to database objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Managing Schema Objects

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 2

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Add constraints

• Create indexes
• Create indexes by using the CREATE TABLE statement

• Create function-based indexes
• Drop columns and set columns as UNUSED

• Perform FLASHBACK operations

• Create and use external tables

Objectives

This lesson contains information about creating indexes and constraints and altering existing
objects. You also learn about external tables and the provision to name the index at the time of
creating a PRIMARY KEY constraint.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Using the ALTER TABLE statement to add, modify, and
drop a column

• Managing constraints:
– Adding and dropping a constraint

– Deferring constraints

– Enabling and disabling a constraint

• Creating indexes:
– Using the CREATE TABLE statement

– Creating function-based indexes

– Removing an index

• Performing flashback operations

• Creating and using temporary tables

• Creating and using external tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 4

Copyright © 2010, Oracle. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to:

• Add a new column

• Modify an existing column

• Define a default value for the new column

• Drop a column

ALTER TABLE Statement

After you create a table, you may need to change the table structure because you omitted a
column, your column definition needs to be changed, or you need to remove columns. You can
do this by using the ALTER TABLE statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 5

Copyright © 2010, Oracle. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or drop
columns:

ALTER TABLE table
ADD (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
DROP (column [, column] …);

ALTER TABLE Statement (continued)

You can add columns to a table, modify columns, and drop columns from a table by using the
ALTER TABLE statement.

In the syntax:
table Is the name of the table
ADD|MODIFY|DROP Is the type of modification
column Is the name of the column
datatype Is the data type and length of the column
DEFAULT expr Specifies the default value for a column

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 6

Copyright © 2010, Oracle. All rights reserved.

Adding a Column

• You use the ADD clause to add columns:

• The new column becomes the last column:

ALTER TABLE dept80
ADD (job_id VARCHAR2(9));

Guidelines for Adding a Column

• You can add or modify columns.
• You cannot specify where the column is to appear. The new column becomes the last

column.

The example in the slide adds a column named JOB_ID to the DEPT80 table. The JOB_ID
column becomes the last column in the table.

Note: If a table already contains rows when a column is added, the new column is initially null
or takes the default value for all the rows. You can add a mandatory NOT NULL column to a
table that contains data in the other columns only if you specify a default value. You can add a
NOT NULL column to an empty table without the default value.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 7

Copyright © 2010, Oracle. All rights reserved.

Modifying a Column

• You can change a column’s data type, size, and default
value.

• A change to the default value affects only subsequent
insertions to the table.

ALTER TABLE dept80
MODIFY (last_name VARCHAR2(30));

Modifying a Column

You can modify a column definition by using the ALTER TABLE statement with the MODIFY
clause. Column modification can include changes to a column’s data type, size, and default
value.

Guidelines
• You can increase the width or precision of a numeric column.
• You can increase the width of character columns.
• You can decrease the width of a column if:

- The column contains only null values
- The table has no rows
- The decrease in column width is not less than the existing values in that column

• You can change the data type if the column contains only null values. The exception to this
is CHAR-to-VARCHAR2 conversions, which can be done with data in the columns.

• You can convert a CHAR column to the VARCHAR2 data type or convert a VARCHAR2
column to the CHAR data type only if the column contains null values or if you do not
change the size.

• A change to the default value of a column affects only subsequent insertions to the table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 8

Copyright © 2010, Oracle. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns that you no
longer need from the table:

ALTER TABLE dept80
DROP COLUMN job_id;

Dropping a Column

You can drop a column from a table by using the ALTER TABLE statement with the DROP
COLUMN clause.

Guidelines
• The column may or may not contain data.
• Using the ALTER TABLE DROP COLUMN statement, only one column can be dropped at a

time.
• The table must have at least one column remaining in it after it is altered.
• After a column is dropped, it cannot be recovered.
• A column cannot be dropped if it is part of a constraint or part of an index key unless the

cascade option is added.
• Dropping a column can take a while if the column has a large number of values. In this

case, it may be better to set it to be unused and drop it when there are fewer users on the
system to avoid extended locks.

Note: Certain columns can never be dropped, such as columns that form part of the partitioning
key of a partitioned table or columns that form part of the PRIMARY KEY of an index-
organized table. For more information about index-organized tables and partitioned table, refer
to Oracle Database Concepts and Oracle Database Administrator’s Guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 9

Copyright © 2010, Oracle. All rights reserved.

ALTER TABLE <table_name>
SET UNUSED(<column_name> [, <column_name>]);

ALTER TABLE <table_name>
SET UNUSED COLUMN <column_name> [, <column_name>];

SET UNUSED Option

• You use the SET UNUSED option to mark one or more
columns as unused.

• You use the DROP UNUSED COLUMNS option to remove the
columns that are marked as unused.

OR

ALTER TABLE <table_name>
DROP UNUSED COLUMNS;

SET UNUSED Option

The SET UNUSED option marks one or more columns as unused so that they can be dropped
when the demand on system resources is lower. Specifying this clause does not actually remove
the target columns from each row in the table (that is, it does not restore the disk space used by
these columns). Therefore, the response time is faster than if you executed the DROP clause.
Unused columns are treated as if they were dropped, even though their column data remains in
the table’s rows. After a column has been marked as unused, you have no access to that column.
A SELECT * query will not retrieve data from unused columns. In addition, the names and
types of columns marked unused will not be displayed during a DESCRIBE statement, and you
can add to the table a new column with the same name as an unused column. The SET UNUSED
information is stored in the USER_UNUSED_COL_TABS dictionary view.

Note: The guidelines for setting a column to be UNUSED are similar to those for dropping a
column.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 10

SET UNUSED Option (continued)

DROP UNUSED COLUMNS Option

DROP UNUSED COLUMNS removes from the table all columns currently marked as unused. You
can use this statement when you want to reclaim the extra disk space from unused columns in
the table. If the table contains no unused columns, the statement returns with no errors.

ALTER TABLE dept80
SET UNUSED (last_name);

ALTER TABLE succeeded

ALTER TABLE dept80
DROP UNUSED COLUMNS;

ALTER TABLE succeeded

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 11

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Using the ALTER TABLE statement to add, modify, and
drop a column

• Managing constraints:
– Adding and dropping a constraint

– Deferring constraints

– Enabling and disabling a constraint

• Creating indexes:
– Using the CREATE TABLE statement

– Creating function-based indexes

– Removing an index

• Performing flashback operations

• Creating and using temporary tables

• Creating and using external tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 12

Copyright © 2010, Oracle. All rights reserved.

Adding a Constraint Syntax

Use the ALTER TABLE statement to:

• Add or drop a constraint, but not modify its structure

• Enable or disable constraints
• Add a NOT NULL constraint by using the MODIFY clause

ALTER TABLE <table_name>
ADD [CONSTRAINT <constraint_name>]
type (<column_name>);

Adding a Constraint

You can add a constraint for existing tables by using the ALTER TABLE statement with the ADD
clause.

In the syntax:
table Is the name of the table
constraint Is the name of the constraint
type Is the constraint type
column Is the name of the column affected by the constraint

The constraint name syntax is optional, although recommended. If you do not name your
constraints, the system generates constraint names.

Guidelines
• You can add, drop, enable, or disable a constraint, but you cannot modify its structure.
• You can add a NOT NULL constraint to an existing column by using the MODIFY clause of

the ALTER TABLE statement.

Note: You can define a NOT NULL column only if the table is empty or if the column has a
value for every row.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 13

Copyright © 2010, Oracle. All rights reserved.

ALTER TABLE emp2
MODIFY employee_id PRIMARY KEY;

Adding a Constraint

Add a FOREIGN KEY constraint to the EMP2 table indicating that
a manager must already exist as a valid employee in the EMP2
table.

ALTER TABLE emp2
ADD CONSTRAINT emp_mgr_fk

FOREIGN KEY(manager_id)
REFERENCES emp2(employee_id);

Adding a Constraint (continued)

The first example in the slide modifies the EMP2 table to add a PRIMARY KEY constraint on the
EMPLOYEE_ID column. Note that because no constraint name is provided, the constraint is
automatically named by the Oracle Server. The second example in the slide creates a FOREIGN
KEY constraint on the EMP2 table. The constraint ensures that a manager exists as a valid
employee in the EMP2 table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 14

Copyright © 2010, Oracle. All rights reserved.

ON DELETE Clause

• Use the ON DELETE CASCADE clause to delete child rows
when a parent key is deleted:

ALTER TABLE emp2 ADD CONSTRAINT emp_dt_fk
FOREIGN KEY (Department_id)
REFERENCES departments(department_id) ON DELETE CASCADE;

ALTER TABLE emp2 ADD CONSTRAINT emp_dt_fk
FOREIGN KEY (Department_id)
REFERENCES departments(department_id) ON DELETE SET NULL;

• Use the ON DELETE SET NULL clause to set the child
rows value to null when a parent key is deleted:

ON DELETE

By using the ON DELETE clause you can determine how Oracle Database handles referential
integrity if you remove a referenced primary or unique key value.
ON DELETE CASCADE

The ON DELETE CASCADE action allows parent key data that is referenced from the child
table to be deleted, but not updated. When data in the parent key is deleted, all the rows in
the child table that depend on the deleted parent key values are also deleted. To specify this
referential action, include the ON DELETE CASCADE option in the definition of the
FOREIGN KEY constraint.

ON DELETE SET NULL
When data in the parent key is deleted, the ON DELETE SET NULL action causes all the
rows in the child table that depend on the deleted parent key value to be converted to null.

If you omit this clause, Oracle does not allow you to delete referenced key values in the parent
table that have dependent rows in the child table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 15

Copyright © 2010, Oracle. All rights reserved.

Deferring Constraints

Constraints can have the following attributes:
• DEFERRABLE or NOT DEFERRABLE

• INITIALLY DEFERRED or INITIALLY IMMEDIATE

ALTER TABLE dept2
ADD CONSTRAINT dept2_id_pk
PRIMARY KEY (department_id)
DEFERRABLE INITIALLY DEFERRED

ALTER SESSION
SET CONSTRAINTS= IMMEDIATE

SET CONSTRAINTS dept2_id_pk IMMEDIATE

Deferring constraint on
creation

Changing all constraints for a
session

Changing a specific
constraint attribute

Deferring Constraints

You can defer checking constraints for validity until the end of the transaction. A constraint is
deferred if the system does not check whether the constraint is satisfied, until a COMMIT
statement is submitted. If a deferred constraint is violated, the database returns an error and the
transaction is not committed and it is rolled back. If a constraint is immediate (not deferred), it is
checked at the end of each statement. If it is violated, the statement is rolled back immediately.
If a constraint causes an action (for example, DELETE CASCADE), that action is always taken as
part of the statement that caused it, whether the constraint is deferred or immediate. Use the SET
CONSTRAINTS statement to specify, for a particular transaction, whether a deferrable
constraint is checked following each data manipulation language (DML) statement or when the
transaction is committed. To create deferrable constraints, you must create a nonunique index
for that constraint.

You can define constraints as either deferrable or not deferrable, and either initially deferred or
initially immediate. These attributes can be different for each constraint.

Usage scenario: Company policy dictates that department number 40 should be changed to 45.
Changing the DEPARTMENT_ID column affects employees assigned to this department.
Therefore, you make the PRIMARY KEY and FOREIGN KEYs deferrable and initially deferred.
You update both department and employee information, and at the time of commit, all the rows
are validated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 16

Copyright © 2010, Oracle. All rights reserved.

Difference Between INITIALLY DEFERRED and
INITIALLY IMMEDIATE

INITIALLY DEFERRED Waits to check the constraint until

the transaction ends

INITIALLY IMMEDIATE Checks the constraint at the end of

the statement execution

CREATE TABLE emp_new_sal (salary NUMBER
CONSTRAINT sal_ck
CHECK (salary > 100)
DEFERRABLE INITIALLY IMMEDIATE,
bonus NUMBER
CONSTRAINT bonus_ck
CHECK (bonus > 0)
DEFERRABLE INITIALLY DEFERRED);

Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE

A constraint that is defined as deferrable can be specified as either INITIALLY DEFERRED or
INITIALLY IMMEDIATE. The INITIALLY IMMEDIATE clause is the default.

In the slide example:
• The sal_ck constraint is created as DEFERRABLE INITIALLY IMMEDIATE
• The bonus_ck constraint is created as DEFERRABLE INITIALLY DEFERRED

After creating the emp_new_sal table as shown in the slide, you attempt to insert values into
the table and observe the results. When both the sal_ck and bonus_ck constraints are
satisfied, the rows are inserted without an error.

Example 1: Insert a row that violates sal_ck. In the CREATE TABLE statement, sal_ck is
specified as an initially immediate constraint. This means that the constraint is verified
immediately after the INSERT statement and you observe an error.

INSERT INTO emp_new_sal VALUES(90,5);

Example 2: Insert a row that violates bonus_ck. In the CREATE TABLE statement,
bonus_ck is specified as deferrable and also initially deferred. Therefore, the constraint is not
verified until you COMMIT or set the constraint state back to immediate.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 17

Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE
(continued)

INSERT INTO emp_new_sal VALUES(110, -1);

The row insertion is successful. But, you observe an error when you commit the transaction.
COMMIT;

The commit failed due to constraint violation. Therefore, at this point, the transaction is rolled
back by the database.
Example 3: Set the DEFERRED status to all constraints that can be deferred. Note that you can
also set the DEFERRED status to a single constraint if required.

SET CONSTRAINTS ALL DEFERRED;

Now, if you attempt to insert a row that violates the sal_ck constraint, the statement is
executed successfully.

INSERT INTO emp_new_sal VALUES(90,5);

However, you observe an error when you commit the transaction. The transaction fails and is
rolled back. This is because both the constraints are checked upon COMMIT.

COMMIT;

Example 4: Set the IMMEDIATE status to both the constraints that were set as DEFERRED in
the previous example.

SET CONSTRAINTS ALL IMMEDIATE;

You observe an error if you attempt to insert a row that violates either sal_ck or bonus_ck.
INSERT INTO emp_new_sal VALUES(110, -1);

Note: If you create a table without specifying constraint deferability, the constraint is checked
immediately at the end of each statement. For example, with the CREATE TABLE statement of
the newemp_details table, if you do not specify the newemp_det_pk constraint
deferability, the constraint is checked immediately.

CREATE TABLE newemp_details(emp_id NUMBER, emp_name
VARCHAR2(20),
CONSTRAINT newemp_det_pk PRIMARY KEY(emp_id));

When you attempt to defer the newemp_det_pk constraint that is not deferrable, you observe
the following error:

SET CONSTRAINT newemp_det_pk DEFERRED;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 18

Copyright © 2010, Oracle. All rights reserved.

Dropping a Constraint

• Remove the manager constraint from the EMP2 table:

• Remove the PRIMARY KEY constraint on the DEPT2 table
and drop the associated FOREIGN KEY constraint on the
EMP2.DEPARTMENT_ID column:

ALTER TABLE emp2
DROP CONSTRAINT emp_mgr_fk;

ALTER TABLE dept2
DROP PRIMARY KEY CASCADE;

Dropping a Constraint

To drop a constraint, you can identify the constraint name from the USER_CONSTRAINTS and
USER_CONS_COLUMNS data dictionary views. Then use the ALTER TABLE statement with the
DROP clause. The CASCADE option of the DROP clause causes any dependent constraints also to
be dropped.

Syntax

ALTER TABLE table
DROP PRIMARY KEY | UNIQUE (column) |

CONSTRAINT constraint [CASCADE];

In the syntax:
table Is the name of the table
column Is the name of the column affected by the constraint
constraint Is the name of the constraint

When you drop an integrity constraint, that constraint is no longer enforced by the Oracle Server
and is no longer available in the data dictionary.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 19

Copyright © 2010, Oracle. All rights reserved.

Disabling Constraints

• Execute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.

• Apply the CASCADE option to disable dependent integrity
constraints.

ALTER TABLE emp2
DISABLE CONSTRAINT emp_dt_fk;

Disabling a Constraint

You can disable a constraint without dropping it or re-creating it by using the ALTER TABLE
statement with the DISABLE clause.

Syntax

ALTER TABLE table
DISABLE CONSTRAINT constraint [CASCADE];

In the syntax:
table Is the name of the table
constraint Is the name of the constraint

Guidelines

• You can use the DISABLE clause in both the CREATE TABLE statement and the ALTER
TABLE statement.

• The CASCADE clause disables dependent integrity constraints.
• Disabling a UNIQUE or PRIMARY KEY constraint removes the unique index.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 20

Copyright © 2010, Oracle. All rights reserved.

Enabling Constraints

• Activate an integrity constraint currently disabled in the
table definition by using the ENABLE clause.

• A UNIQUE index is automatically created if you enable a
UNIQUE key or a PRIMARY KEY constraint.

ALTER TABLE emp2
ENABLE CONSTRAINT emp_dt_fk;

Enabling a Constraint

You can enable a constraint without dropping it or re-creating it by using the ALTER TABLE
statement with the ENABLE clause.

Syntax
ALTER TABLE table
ENABLE CONSTRAINT constraint;

In the syntax:
table Is the name of the table
constraint Is the name of the constraint

Guidelines

• If you enable a constraint, that constraint applies to all the data in the table. All the data in
the table must comply with the constraint.

• If you enable a UNIQUE key or a PRIMARY KEY constraint, a UNIQUE or PRIMARY KEY
index is created automatically. If an index already exists, it can be used by these keys.

• You can use the ENABLE clause in both the CREATE TABLE statement and the ALTER
TABLE statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 21

Enabling a Constraint (continued)

• Enabling a PRIMARY KEY constraint that was disabled with the CASCADE option does not
enable any FOREIGN KEYs that are dependent on the PRIMARY KEY.

• To enable a UNIQUE or PRIMARY KEY constraint, you must have the privileges necessary
to create an index on the table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 22

Copyright © 2010, Oracle. All rights reserved.

Cascading Constraints

• The CASCADE CONSTRAINTS clause is used along with
the DROP COLUMN clause.

•• TThe CASCADE CONSTRAINTS clause drops all referential
integrity constraints that refer to the PRIMARY and UNIQUE
keys defined on the dropped columns.

• The CASCADE CONSTRAINTS clause also drops all
multicolumn constraints defined on the dropped columns.

Cascading Constraints

This statement illustrates the usage of the CASCADE CONSTRAINTS clause. Assume that the
TEST1 table is created as follows:

CREATE TABLE test1 (
col1_pk NUMBER PRIMARY KEY,
col2_fk NUMBER,
col1 NUMBER,
col2 NUMBER,
CONSTRAINT fk_constraint FOREIGN KEY (col2_fk) REFERENCES

test1,
CONSTRAINT ck1 CHECK (col1_pk > 0 and col1 > 0),
CONSTRAINT ck2 CHECK (col2_fk > 0));

An error is returned for the following statements:
ALTER TABLE test1 DROP (col1_pk); —col1_pk is a parent key.
ALTER TABLE test1 DROP (col1); —col1 is referenced by the multicolumn

constraint, ck1.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 23

Copyright © 2010, Oracle. All rights reserved.

Cascading Constraints

Example:

ALTER TABLE emp2
DROP COLUMN employee_id CASCADE CONSTRAINTS;

ALTER TABLE test1
DROP (col1_pk, col2_fk, col1) CASCADE CONSTRAINTS;

Cascading Constraints (continued)

Submitting the following statement drops the EMPLOYEE_ID column, the PRIMARY KEY
constraint, and any FOREIGN KEY constraints referencing the PRIMARY KEY constraint for the
EMP2 table:

ALTER TABLE emp2 DROP COLUMN employee_id CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are also dropped,
CASCADE CONSTRAINTS is not required. For example, assuming that no other referential
constraints from other tables refer to the COL1_PK column, it is valid to submit the following
statement without the CASCADE CONSTRAINTS clause for the TEST1 table created on the
previous page:

ALTER TABLE test1 DROP (col1_pk, col2_fk, col1);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 24

Copyright © 2010, Oracle. All rights reserved.

Renaming Table Columns and Constraints

Use the RENAME COLUMN clause of the ALTER TABLE
statement to rename table columns.

Use the RENAME CONSTRAINT clause of the ALTER TABLE
statement to rename any existing constraint for a table.

ALTER TABLE marketing RENAME COLUMN team_id
TO id;

ALTER TABLE marketing RENAME CONSTRAINT mktg_pk
TO new_mktg_pk;

a

b

Renaming Table Columns and Constraints

When you rename a table column, the new name must not conflict with the name of any existing
column in the table. You cannot use any other clauses in conjunction with the RENAME COLUMN
clause.

The slide examples use the marketing table with the PRIMARY KEY mktg_pk defined on
the id column.

CREATE TABLE marketing (team_id NUMBER(10),
target VARCHAR2(50),

CONSTRAINT mktg_pk PRIMARY KEY(team_id));

Example a shows that the id column of the marketing table is renamed mktg_id. Example b
shows that mktg_pk is renamed new_mktg_pk.

When you rename any existing constraint for a table, the new name must not conflict with any of
your existing constraint names. You can use the RENAME CONSTRAINT clause to rename
system-generated constraint names.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 25

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Using the ALTER TABLE statement to add, modify, and
drop a column

• Managing constraints:
– Adding and dropping a constraint

– Deferring constraints

– Enabling and disabling a constraint

• Creating indexes:
– Using the CREATE TABLE statement

– Creating function-based indexes

– Removing an index

• Performing flashback operations

• Creating and using temporary tables

• Creating and using external tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 26

Copyright © 2010, Oracle. All rights reserved.

Overview of Indexes

Indexes are created:

• Automatically
– PRIMARY KEY creation

– UNIQUE KEY creation

• Manually
– The CREATE INDEX statement

– The CREATE TABLE statement

Overview of Indexes

Two types of indexes can be created. One type is a unique index. The Oracle Server
automatically creates a unique index when you define a column or group of columns in a table to
have a PRIMARY KEY or a UNIQUE key constraint. The name of the index is the name given to
the constraint.

The other type of index is a nonunique index, which a user can create. For example, you can
create an index for a FOREIGN KEY column to be used in joins to improve retrieval speed.

You can create an index on one or more columns by issuing the CREATE INDEX statement.

For more information, see Oracle Database SQL Reference for 10g or 11g database.

Note: You can manually create a unique index, but it is recommended that you create a
UNIQUE constraint, which implicitly creates a unique index.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 27

Copyright © 2010, Oracle. All rights reserved.

CREATE INDEX with the CREATE TABLE Statement

CREATE TABLE NEW_EMP
(employee_id NUMBER(6)

PRIMARY KEY USING INDEX
(CREATE INDEX emp_id_idx ON
NEW_EMP(employee_id)),

first_name VARCHAR2(20),
last_name VARCHAR2(25));

SELECT INDEX_NAME, TABLE_NAME
FROM USER_INDEXES
WHERE TABLE_NAME = 'NEW_EMP';

CREATE INDEX with the CREATE TABLE Statement

In the example in the slide, the CREATE INDEX clause is used with the CREATE TABLE
statement to create a PRIMARY KEY index explicitly. You can name your indexes at the time of
PRIMARY KEY creation to be different from the name of the PRIMARY KEY constraint.

You can query the USER_INDEXES data dictionary view for information about your indexes.

Note: You learn more about USER_INDEXES in the lesson titled “Managing Objects with Data
Dictionary Views.”

The following example illustrates the database behavior if the index is not explicitly named:
CREATE TABLE EMP_UNNAMED_INDEX

(employee_id NUMBER(6) PRIMARY KEY ,
first_name VARCHAR2(20),
last_name VARCHAR2(25));

SELECT INDEX_NAME, TABLE_NAME
FROM USER_INDEXES
WHERE TABLE_NAME = 'EMP_UNNAMED_INDEX';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 28

CREATE INDEX with the CREATE TABLE Statement (continued)

Observe that the Oracle Server gives a generic name to the index that is created for the
PRIMARY KEY column.

You can also use an existing index for your PRIMARY KEY column—for example, when you are
expecting a large data load and want to speed up the operation. You may want to disable the
constraints while performing the load and then enable them, in which case having a unique index
on the PRIMARY KEY will still cause the data to be verified during the load. Therefore, you can
first create a nonunique index on the column designated as PRIMARY KEY, and then create the
PRIMARY KEY column and specify that it should use the existing index. The following
examples illustrate this process:

Step 1: Create the table:

CREATE TABLE NEW_EMP2
(employee_id NUMBER(6),

first_name VARCHAR2(20),

last_name VARCHAR2(25)

);

Step 2: Create the index:
CREATE INDEX emp_id_idx2 ON

new_emp2(employee_id);

Step 3: Create the PRIMARY KEY:
ALTER TABLE new_emp2 ADD PRIMARY KEY (employee_id) USING INDEX
emp_id_idx2;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 29

Copyright © 2010, Oracle. All rights reserved.

CREATE INDEX upper_dept_name_idx
ON dept2(UPPER(department_name));

Function-Based Indexes

• A function-based index is based on expressions.

• The index expression is built from table columns,
constants, SQL functions, and user-defined functions.

SELECT *
FROM dept2
WHERE UPPER(department_name) = 'SALES';

Function-Based Indexes

Function-based indexes defined with the UPPER(column_name)or
LOWER(column_name) keywords allow non-case-sensitive searches. For example, consider
the following index:

CREATE INDEX upper_last_name_idx ON emp2 (UPPER(last_name));

This facilitates processing queries such as:

SELECT * FROM emp2 WHERE UPPER(last_name) = 'KING';

The Oracle Server uses the index only when that particular function is used in a query. For
example, the following statement may use the index, but without the WHERE clause, the Oracle
Server may perform a full table scan:
SELECT *
FROM employees
WHERE UPPER (last_name) IS NOT NULL
ORDER BY UPPER (last_name);

Note: The QUERY_REWRITE_ENABLED initialization parameter must be set to TRUE for a
function-based index to be used.

The Oracle Server treats indexes with columns marked DESC as function-based indexes. The
columns marked DESC are sorted in descending order.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 30

Copyright © 2010, Oracle. All rights reserved.

Removing an Index

• Remove an index from the data dictionary by using the
DROP INDEX command:

• Remove the UPPER_DEPT_NAME_IDX index from the data
dictionary:

• To drop an index, you must be the owner of the index or
have the DROP ANY INDEX privilege.

DROP INDEX upper_dept_name_idx;

DROP INDEX index;

Removing an Index

You cannot modify indexes. To change an index, you must drop it and then re-create it. Remove
an index definition from the data dictionary by issuing the DROP INDEX statement. To drop an
index, you must be the owner of the index or have the DROP ANY INDEX privilege.

In the syntax:

index Is the name of the index

Note: If you drop a table, then indexes, constraints, and triggers are automatically dropped, but
views and sequences remain.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 31

Copyright © 2010, Oracle. All rights reserved.

DROP TABLE … PURGE

DROP TABLE dept80 PURGE;

DROP TABLE … PURGE

Oracle Database provides a feature for dropping tables. When you drop a table, the database
does not immediately release the space associated with the table. Rather, the database renames
the table and places it in a recycle bin, where it can later be recovered with the FLASHBACK
TABLE statement if you find that you dropped the table in error. If you want to immediately
release the space associated with the table at the time you issue the DROP TABLE statement,
include the PURGE clause as shown in the statement in the slide.

Specify PURGE only if you want to drop the table and release the space associated with it in a
single step. If you specify PURGE, the database does not place the table and its dependent
objects into the recycle bin.

Using this clause is equivalent to first dropping the table and then purging it from the recycle
bin. This clause saves you one step in the process. It also provides enhanced security if you want
to prevent sensitive material from appearing in the recycle bin.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 32

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Using the ALTER TABLE statement to add, modify, and
drop a column

• Managing constraints:
– Adding and dropping a constraint

– Deferring constraints

– Enabling and disabling a constraint

• Creating indexes:
– Using the CREATE TABLE statement

– Creating function-based indexes

– Removing an index

• Performing flashback operations

• Creating and using temporary tables

• Creating and using external tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 33

Copyright © 2010, Oracle. All rights reserved.

FLASHBACK TABLE Statement

• Enables you to recover tables to a specified point in time
with a single statement

• Restores table data along with associated indexes and
constraints

• Enables you to revert the table and its contents to a certain
point in time or system change number (SCN)

SCN

FLASHBACK TABLE Statement

Oracle Flashback Table enables you to recover tables to a specified point in time with a single
statement. You can restore table data along with associated indexes and constraints while the
database is online, undoing changes to only the specified tables.

The Flashback Table feature is similar to a self-service repair tool. For example, if a user
accidentally deletes important rows from a table and then wants to recover the deleted rows, you
can use the FLASHBACK TABLE statement to restore the table to the time before the deletion
and see the missing rows in the table.

When using the FLASHBACK TABLE statement, you can revert the table and its contents to a
certain time or to an SCN.

Note: The SCN is an integer value associated with each change to the database. It is a unique
incremental number in the database. Every time you commit a transaction, a new SCN is
recorded.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 34

Copyright © 2010, Oracle. All rights reserved.

FLASHBACK TABLE Statement

• Repair tool for accidental table modifications
– Restores a table to an earlier point in time

– Benefits: Ease of use, availability, and fast execution

– Is performed in place

• Syntax:

FLASHBACK TABLE[schema.]table[,
[schema.]table]...
TO { TIMESTAMP | SCN } expr
[{ ENABLE | DISABLE } TRIGGERS];

FLASHBACK TABLE Statement (continued)

Self-Service Repair Facility

Oracle Database provides a SQL data definition language (DDL) command, FLASHBACK
TABLE, to restore the state of a table to an earlier point in time in case it is inadvertently deleted
or modified. The FLASHBACK TABLE command is a self-service repair tool to restore data in a
table along with associated attributes such as indexes or views. This is done, while the database
is online, by rolling back only the subsequent changes to the given table. Compared to
traditional recovery mechanisms, this feature offers significant benefits such as ease of use,
availability, and faster restoration. It also takes the burden off the DBA to find and restore
application-specific properties. The flashback table feature does not address physical corruption
caused because of a bad disk.

Syntax

You can invoke a FLASHBACK TABLE operation on one or more tables, even on tables in
different schemas. You specify the point in time to which you want to revert by providing a
valid time stamp. By default, database triggers are disabled during the flashback operation for all
tables involved. You can override this default behavior by specifying the ENABLE TRIGGERS
clause.

Note: For more information about recycle bin and flashback semantics, refer to Oracle
Database Administrator’s Guide for 10g or 11g database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 35

Copyright © 2010, Oracle. All rights reserved.

Using the FLASHBACK TABLE Statement

DROP TABLE emp2;

FLASHBACK TABLE emp2 TO BEFORE DROP;

…

SELECT original_name, operation, droptime FROM
recyclebin;

Using the FLASHBACK TABLE Statement

Syntax and Examples

The example restores the EMP2 table to a state before a DROP statement.

The recycle bin is actually a data dictionary table containing information about dropped objects.
Dropped tables and any associated objects—such as, indexes, constraints, nested tables, and so
on—are not removed and still occupy space. They continue to count against user space quotas
until specifically purged from the recycle bin, or until they must be purged by the database
because of tablespace space constraints.

Each user can be thought of as an owner of a recycle bin because, unless a user has the SYSDBA
privilege, the only objects that the user has access to in the recycle bin are those that the user
owns. A user can view his or her objects in the recycle bin by using the following statement:

SELECT * FROM RECYCLEBIN;

When you drop a user, any objects belonging to that user are not placed in the recycle bin and
any objects in the recycle bin are purged.

You can purge the recycle bin with the following statement:
PURGE RECYCLEBIN;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 36

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Using the ALTER TABLE statement to add, modify, and
drop a column

• Managing constraints:
– Adding and dropping a constraint

– Deferring constraints

– Enabling and disabling a constraint

• Creating indexes:
– Using the CREATE TABLE statement

– Creating function-based indexes

– Removing an index

• Performing flashback operations

• Creating and using temporary tables

• Creating and using external tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 37

Copyright © 2010, Oracle. All rights reserved.

Temporary Tables

When
session/transaction

completes

Temporary Tables

A temporary table is a table that holds data that exists only for the duration of a transaction or
session. Data in a temporary table is private to the session, which means that each session can
only see and modify its own data.

Temporary tables are useful in applications where a result set must be buffered. For example a
shopping cart in an online application can be a temporary table. Each item is represented by a
row in the temporary table. While you are shopping in an online store, you can keep on adding
or removing items from your cart. During the session, this cart data is private. After you finalize
your shopping and make the payments, the application moves the row for the chosen cart to a
permanent table. At the end of the session, the data in the temporary data is automatically
dropped.

Because temporary tables are statically defined, you can create indexes for them. Indexes
created on temporary tables are also temporary. The data in the index has the same session or
transaction scope as the data in the temporary table. You can also create a view or trigger on a
temporary table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 38

Copyright © 2010, Oracle. All rights reserved.

Creating a Temporary Table

CREATE GLOBAL TEMPORARY TABLE cart
ON COMMIT DELETE ROWS;

CREATE GLOBAL TEMPORARY TABLE today_sales
ON COMMIT PRESERVE ROWS AS

SELECT * FROM orders
WHERE order_date = SYSDATE;

1

2

Creating a Temporary Table
To create a temporary table you can use the following command:

CREATE GLOBAL TEMPORARY TABLE tablename
ON COMMIT [PRESERVE | DELETE] ROWS

By associating one of the following settings with the ON COMMIT clause, you can decide
whether the data in the temporary table is transaction-specific (default) or session specific.
1. DELETE ROWS: As shown in example 1 in the slide, the DELETE ROWS setting creates a

temporary table that is transaction specific. A session becomes bound to the temporary
table with a transaction’s first insert into the table. The binding goes away at the end of the
transaction. The database truncates the table (delete all rows) after each commit.

2. PRESERVE ROWS: As shown in example 2 in the slide, the PRESERVE ROWS setting
creates a temporary table that is session specific. Each sales representative session can
store its own sales data for the day in the table. When a salesperson performs first insert on
the today_sales table, his or her session gets bound to the today_sales table. This
binding goes away at the end of the session or by issuing a TRUNCATE of the table in the
session. The database truncates the table when you terminate the session.

When you create a temporary table in an Oracle database, you create a static table definition.
Like permanent tables, temporary tables are defined in the data dictionary. However, temporary
tables and their indexes do not automatically allocate a segment when created. Instead,
temporary segments are allocated when data is first inserted. Until data is loaded in a session the
table appears empty.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 39

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Using the ALTER TABLE statement to add, modify, and
drop a column

• Managing constraints:
– Adding and dropping a constraint

– Deferring constraints

– Enabling and disabling a constraint

• Creating indexes:
– Using the CREATE TABLE statement

– Creating function-based indexes

– Removing an index

• Performing flashback operations

• Creating and using temporary tables

• Creating and using external tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 40

Copyright © 2010, Oracle. All rights reserved.

External Tables

External Tables

An external table is a read-only table whose metadata is stored in the database but whose data is
stored outside the database. This external table definition can be thought of as a view that is used
for running any SQL query against external data without requiring that the external data first be
loaded into the database. The external table data can be queried and joined directly and in
parallel without requiring that the external data first be loaded in the database. You can use SQL,
PL/SQL, and Java to query the data in an external table.

The main difference between external tables and regular tables is that externally organized tables
are read-only. No data manipulation language (DML) operations are possible, and no indexes
can be created on them. However, you can create an external table, and thus unload data, by
using the CREATE TABLE AS SELECT command.

The Oracle Server provides two major access drivers for external tables. One, the loader access
driver (or ORACLE_LOADER) is used for reading data from external files whose format can be
interpreted by the SQL*Loader utility. Note that not all SQL*Loader functionality is supported
with external tables. The ORACLE_DATAPUMP access driver can be used to both import and
export data using a platform-independent format. The ORACLE_DATAPUMP access driver
writes rows from a SELECT statement to be loaded into an external table as part of a CREATE
TABLE ...ORGANIZATION EXTERNAL...AS SELECT statement. You can then use
SELECT to read data out of that data file. You can also create an external table definition on
another system and use that data file. This allows data to be moved between Oracle databases.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 41

Copyright © 2010, Oracle. All rights reserved.

Creating a Directory for the External Table

Create a DIRECTORY object that corresponds to the directory
on the file system where the external data source resides.

CREATE OR REPLACE DIRECTORY emp_dir
AS '/…/emp_dir';

GRANT READ ON DIRECTORY emp_dir TO ora_21;

Example of Creating an External Table

Use the CREATE DIRECTORY statement to create a directory object. A directory object
specifies an alias for a directory on the server’s file system where an external data source
resides. You can use directory names when referring to an external data source, rather than hard
code the operating system path name, for greater file management flexibility.

You must have CREATE ANY DIRECTORY system privileges to create directories. When you
create a directory, you are automatically granted the READ and WRITE object privileges and can
grant READ and WRITE privileges to other users and roles. The DBA can also grant these
privileges to other users and roles.

A user needs READ privileges for all directories used in external tables to be accessed and
WRITE privileges for the log, bad, and discard file locations being used.

In addition, a WRITE privilege is necessary when the external table framework is being used to
unload data.

Oracle also provides the ORACLE_DATAPUMP type, with which you can unload data (that is,
read data from a table in the database and insert it into an external table) and then reload it into
an Oracle database. This is a one-time operation that can be done when the table is created. After
the creation and initial population is done, you cannot update, insert, or delete any rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 42

Example of Creating an External Table (continued)

Syntax

CREATE [OR REPLACE] DIRECTORY AS 'path_name';

In the syntax:

OR REPLACE Specify OR REPLACE to re-create the directory database
object if it already exists. You can use this clause to change
the definition of an existing directory without dropping, re-creating,
and regranting database object privileges previously granted
on the directory. Users who were previously granted privileges
on a redefined directory can continue to access the directory
without requiring that the privileges be regranted.

directory Specify the name of the directory object to be created. The
maximum length of the directory name is 30 bytes. You
cannot qualify a directory object with a schema name.

'path_name' Specify the full path name of the operating system directory
to be accessed. The path name is case-sensitive.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 43

Copyright © 2010, Oracle. All rights reserved.

Creating an External Table

CREATE TABLE <table_name>
(<col_name> <datatype>, …)

ORGANIZATION EXTERNAL
(TYPE <access_driver_type>
DEFAULT DIRECTORY <directory_name>
ACCESS PARAMETERS
(…))
LOCATION ('<location_specifier>')

REJECT LIMIT [0 | <number> | UNLIMITED];

Creating an External Table

You create external tables by using the ORGANIZATION EXTERNAL clause of the CREATE
TABLE statement. You are not, in fact, creating a table. Rather, you are creating metadata in the
data dictionary that you can use to access external data. You use the ORGANIZATION clause to
specify the order in which the data rows of the table are stored. By specifying EXTERNAL in the
ORGANIZATION clause, you indicate that the table is a read-only table located outside the
database. Note that the external files must already exist outside the database.

TYPE <access_driver_type> indicates the access driver of the external table. The
access driver is the application programming interface (API) that interprets the external data for
the database. If you do not specify TYPE, Oracle uses the default access driver,
ORACLE_LOADER. The other option is ORACLE_DATAPUMP.

You use the DEFAULT DIRECTORY clause to specify one or more Oracle database directory
objects that correspond to directories on the file system where the external data sources may
reside.

The optional ACCESS PARAMETERS clause enables you to assign values to the parameters of
the specific access driver for this external table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 44

Creating an External Table (continued)

Use the LOCATION clause to specify one external locator for each external data source. Usually,
<location_specifier> is a file, but it need not be.

The REJECT LIMIT clause enables you to specify how many conversion errors can occur
during a query of the external data before an Oracle error is returned and the query is aborted.
The default value is 0.

The syntax for using the ORACLE_DATAPUMP access driver is as follows:

CREATE TABLE extract_emps

ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP
DEFAULT DIRECTORY …
ACCESS PARAMETERS (…)
LOCATION (…)

PARALLEL 4

REJECT LIMIT UNLIMITED
AS

SELECT * FROM …;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 45

Copyright © 2010, Oracle. All rights reserved.

Creating an External Table by Using
ORACLE_LOADER

CREATE TABLE oldemp (
fname char(25), lname CHAR(25))
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER
DEFAULT DIRECTORY emp_dir
ACCESS PARAMETERS
(RECORDS DELIMITED BY NEWLINE
NOBADFILE
NOLOGFILE
FIELDS TERMINATED BY ','
(fname POSITION (1:20) CHAR,
lname POSITION (22:41) CHAR))
LOCATION ('emp.dat'))
PARALLEL 5
REJECT LIMIT 200;

Example of Creating an External Table by Using the ORACLE_LOADER Access Driver

Assume that there is a flat file that has records in the following format:
10,jones,11-Dec-1934
20,smith,12-Jun-1972

Records are delimited by new lines, and the fields are all terminated by a comma (,). The name
of the file is /emp_dir/emp.dat.

To convert this file as the data source for an external table, whose metadata will reside in the
database, you must perform the following steps:

1. Create a directory object, emp_dir, as follows:
CREATE DIRECTORY emp_dir AS '/emp_dir' ;

2. Run the CREATE TABLE command shown in the slide.

The example in the slide illustrates the table specification to create an external table for the file:
/emp_dir/emp.dat

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 46

Example of Creating an External Table by Using the ORACLE_LOADER Access Driver
(continued)

In the example, the TYPE specification is given only to illustrate its use. ORACLE_LOADER is
the default access driver if not specified. The ACCESS PARAMETERS option provides values to
parameters of the specific access driver, which are interpreted by the access driver, not by the
Oracle Server.

The PARALLEL clause enables five parallel execution servers to simultaneously scan the
external data sources (files) when executing the INSERT INTO TABLE statement. For example,
if PARALLEL=5 were specified, more than one parallel execution server can be working on a
data source. Because external tables can be very large, for performance reasons, it is advisable to
specify the PARALLEL clause, or a parallel hint for the query.

The REJECT LIMIT clause specifies that if more than 200 conversion errors occur during a
query of the external data, the query be aborted and an error be returned. These conversion
errors can arise when the access driver tries to transform the data in the data file to match the
external table definition.

After the CREATE TABLE command executes successfully, the OLDEMP external table can be
described and queried in the same way as a relational table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 47

Copyright © 2010, Oracle. All rights reserved.

Querying External Tables

SELECT *
FROM oldemp

emp.dat
OLDEMP

Querying External Tables

An external table does not describe any data that is stored in the database. It does not describe
how data is stored in the external source. Instead, it describes how the external table layer must
present the data to the server. It is the responsibility of the access driver and the external table
layer to do the necessary transformations required on the data in the data file so that it matches
the external table definition.

When the database server accesses data in an external source, it calls the appropriate access
driver to get the data from an external source in a form that the database server expects.

It is important to remember that the description of the data in the data source is separate from the
definition of the external table. The source file can contain more or fewer fields than there are
columns in the table. Also, the data types for fields in the data source can be different from the
columns in the table. The access driver takes care of ensuring that the data from the data source
is processed so that it matches the definition of the external table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 48

Copyright © 2010, Oracle. All rights reserved.

Creating an External Table by Using
ORACLE_DATAPUMP: Example

CREATE TABLE emp_ext
(employee_id, first_name, last_name)
ORGANIZATION EXTERNAL
(
TYPE ORACLE_DATAPUMP
DEFAULT DIRECTORY emp_dir
LOCATION
('emp1.exp','emp2.exp')

)
PARALLEL

AS
SELECT employee_id, first_name, last_name
FROM employees;

Creating an External Table by Using ORACLE_DATAPUMP: Example

You can perform the unload and reload operations with external tables by using the
ORACLE_DATAPUMP access driver.

Note: In the context of external tables, loading data refers to the act of data being read from an
external table and loaded into a table in the database. Unloading data refers to the act of reading
data from a table and inserting it into an external table.

The example in the slide illustrates the table specification to create an external table by using the
ORACLE_DATAPUMP access driver. Data is then populated into the two files: emp1.exp and
emp2.exp.

To populate data read from the EMPLOYEES table into an external table, you must perform the
following steps:

1. Create a directory object, emp_dir, as follows:
CREATE DIRECTORY emp_dir AS '/emp_dir' ;

2. Run the CREATE TABLE command shown in the slide.

Note: The emp_dir directory is the same as created in the previous example of using
ORACLE_LOADER.

You can query the external table by executing the following code:
SELECT * FROM emp_ext;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 49

Copyright © 2010, Oracle. All rights reserved.

Quiz

A FOREIGN KEY constraint enforces the following action:
When the data in the parent key is deleted, all the rows in the
child table that depend on the deleted parent key values are
also deleted.

1. True

2. False

Answer: 2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 50

Copyright © 2010, Oracle. All rights reserved.

Quiz

In all the cases, when you execute a DROP TABLE command,
the database renames the table and places it in a recycle bin,
from where it can later be recovered by using the FLASHBACK
TABLE statement.

1. True

2. False

Answer: 2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 51

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Add constraints

• Create indexes
• Create indexes by using the CREATE TABLE statement

• Create function-based indexes
• Drop columns and set columns as UNUSED

• Perform FLASHBACK operations

• Create and use external tables

Summary

In this lesson, you learned how to perform the following tasks for schema object management:
• Alter tables to add or modify columns or constraints.
• Create indexes and function-based indexes by using the CREATE INDEX statement.
• Drop unused columns.
• Use FLASHBACK mechanics to restore tables.
• Use the ORGANIZATION EXTERNAL clause of the CREATE TABLE statement to create

an external table. An external table is a read-only table whose metadata is stored in the
database but whose data is stored outside the database.

• Use external tables to query data without first loading it into the database.
• Name your PRIMARY KEY column indexes when you create the table with the CREATE
TABLE statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 2 - 52

Copyright © 2010, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:

• Altering tables

• Adding columns

• Dropping columns

• Creating indexes

• Creating external tables

Practice 2: Overview

In this practice, you use the ALTER TABLE command to modify columns and add constraints.
You use the CREATE INDEX command to create indexes when creating a table, along with the
CREATE TABLE command. You create external tables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Managing Objects
with Data Dictionary Views

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 2

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Use the data dictionary views to research data on your
objects

• Query various data dictionary views

Objectives

In this lesson, you are introduced to the data dictionary views. You learn that the dictionary
views can be used to retrieve metadata and create reports about your schema objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to data dictionary

• Querying the dictionary views for the following:
– Table information

– Column information

– Constraint information

• Querying the dictionary views for the following:
– View information

– Sequence information

– Synonym information

– Index information

• Adding a comment to a table and querying the dictionary
views for comment information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 4

Copyright © 2010, Oracle. All rights reserved.

Data Dictionary

Oracle Server

Tables containing
business data:
EMPLOYEES
DEPARTMENTS
LOCATIONS
JOB_HISTORY
...

Data dictionary
views:
DICTIONARY
USER_OBJECTS
USER_TABLES
USER_TAB_COLUMNS
...

Data Dictionary

User tables are tables created by the user and contain business data, such as EMPLOYEES. There
is another collection of tables and views in the Oracle database known as the data dictionary.
This collection is created and maintained by the Oracle Server and contains information about
the database. The data dictionary is structured in tables and views, just like other database data.
Not only is the data dictionary central to every Oracle database, but it is also an important tool
for all users, from end users to application designers and database administrators.

You use SQL statements to access the data dictionary. Because the data dictionary is read-only,
you can issue only queries against its tables and views.

You can query the dictionary views that are based on the dictionary tables to find information
such as:

• Definitions of all schema objects in the database (tables, views, indexes, synonyms,
sequences, procedures, functions, packages, triggers, and so on)

• Default values for columns
• Integrity constraint information
• Names of Oracle users
• Privileges and roles that each user has been granted
• Other general database information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 5

Copyright © 2010, Oracle. All rights reserved.

Data Dictionary Structure

Oracle Server

Consists of:

– Base tables

– User-accessible views

Data Dictionary Structure

Underlying base tables store information about the associated database. Only the Oracle Server
should write to and read from these tables. You rarely access them directly.

There are several views that summarize and display the information stored in the base tables of
the data dictionary. These views decode the base table data into useful information (such as user
or table names) using joins and WHERE clauses to simplify the information. Most users are given
access to the views rather than the base tables.

The Oracle user SYS owns all base tables and user-accessible views of the data dictionary. No
Oracle user should ever alter (UPDATE, DELETE, or INSERT) any rows or schema objects
contained in the SYS schema because such activity can compromise data integrity.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 6

Copyright © 2010, Oracle. All rights reserved.

Data Dictionary Structure

View naming convention:

View Prefix Purpose

USER User’s view (what is in your schema; what you
own)

ALL Expanded user’s view (what you can access)

DBA Database administrator’s view (what is in
everyone’s schemas)

V$ Performance-related data

Data Dictionary Structure (continued)

The data dictionary consists of sets of views. In many cases, a set consists of three views
containing similar information and distinguished from each other by their prefixes. For example,
there is a view named USER_OBJECTS, another named ALL_OBJECTS, and a third named
DBA_OBJECTS.

These three views contain similar information about objects in the database, except that the
scope is different. USER_OBJECTS contains information about objects that you own or created.
ALL_OBJECTS contains information about all objects to which you have access.
DBA_OBJECTS contains information about all objects that are owned by all users. For views
that are prefixed with ALL or DBA, there is usually an additional column in the view named
OWNER to identify who owns the object.

There is also a set of views that is prefixed with v$. These views are dynamic in nature and hold
information about performance. Dynamic performance tables are not true tables, and they should
not be accessed by most users. However, database administrators can query and create views on
the tables and grant access to those views to other users. This course does not go into details
about these views.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 7

Copyright © 2010, Oracle. All rights reserved.

How to Use the Dictionary Views

Start with DICTIONARY. It contains the names and descriptions
of the dictionary tables and views.

DESCRIBE DICTIONARY

SELECT *
FROM dictionary
WHERE table_name = 'USER_OBJECTS';

How to Use the Dictionary Views

To familiarize yourself with the dictionary views, you can use the dictionary view named
DICTIONARY. It contains the name and short description of each dictionary view to which you
have access.

You can write queries to search for information about a particular view name, or you can search
the COMMENTS column for a word or phrase. In the example shown, the DICTIONARY view is
described. It has two columns. The SELECT statement retrieves information about the dictionary
view named USER_OBJECTS. The USER_OBJECTS view contains information about all the
objects that you own.

You can write queries to search the COMMENTS column for a word or phrase. For example, the
following query returns the names of all views that you are permitted to access in which the
COMMENTS column contains the word columns:

SELECT table_name
FROM dictionary
WHERE LOWER(comments) LIKE '%columns%';

Note: The names in the data dictionary are in uppercase.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 8

Copyright © 2010, Oracle. All rights reserved.

USER_OBJECTS and ALL_OBJECTS Views

USER_OBJECTS:

• Query USER_OBJECTS to see all the objects that you own.

• Using USER_OBJECTS, you can obtain a listing of all object
names and types in your schema, plus the following
information:
– Date created

– Date of last modification

– Status (valid or invalid)

ALL_OBJECTS:

• Query ALL_OBJECTS to see all the objects to which you
have access.

USER_OBJECTS and ALL_OBJECTS Views

You can query the USER_OBJECTS view to see the names and types of all the objects in your
schema. There are several columns in this view:
• OBJECT_NAME: Name of the object
• OBJECT_ID: Dictionary object number of the object
• OBJECT_TYPE: Type of object (such as TABLE, VIEW, INDEX, SEQUENCE)
• CREATED: Time stamp for the creation of the object
• LAST_DDL_TIME: Time stamp for the last modification of the object resulting from a data

definition language (DDL) command
• STATUS: Status of the object (VALID, INVALID, or N/A)
• GENERATED: Was the name of this object system generated? (Y|N)

Note: This is not a complete listing of the columns. For a complete listing, see
“USER_OBJECTS” in the Oracle Database Reference.

You can also query the ALL_OBJECTS view to see a listing of all objects to which you have
access.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 9

Copyright © 2010, Oracle. All rights reserved.

USER_OBJECTS View

SELECT object_name, object_type, created, status
FROM user_objects
ORDER BY object_type;

…

…

USER_OBJECTS View

The example shows the names, types, dates of creation, and status of all objects that are owned
by this user.

The OBJECT_TYPE column holds the values of either TABLE, VIEW, SEQUENCE, INDEX,
PROCEDURE, FUNCTION, PACKAGE, or TRIGGER.

The STATUS column holds a value of VALID, INVALID, or N/A. Although tables are always
valid, the views, procedures, functions, packages, and triggers may be invalid.

The CAT View

For a simplified query and output, you can query the CAT view. This view contains only two
columns: TABLE_NAME and TABLE_TYPE. It provides the names of all your INDEX, TABLE,
CLUSTER, VIEW, SYNONYM, SEQUENCE, or UNDEFINED objects.

Note: CAT is a synonym for USER_CATALOG—a view that lists tables, views, synonyms and
sequences owned by the user.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 10

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to data dictionary

• Querying the dictionary views for the following:
– Table information

– Column information

– Constraint information

• Querying the dictionary views for the following:
– View information

– Sequence information

– Synonym information

– Index information

• Adding a comment to a table and querying the dictionary
views for comment information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 11

Copyright © 2010, Oracle. All rights reserved.

Table Information

USER_TABLES:

DESCRIBE user_tables

SELECT table_name
FROM user_tables;

…

…

Table Information

You can use the USER_TABLES view to obtain the names of all your tables. The
USER_TABLES view contains information about your tables. In addition to providing the table
name, it contains detailed information about the storage.

The TABS view is a synonym of the USER_TABLES view. You can query it to see a listing of
tables that you own:

SELECT table_name
FROM tabs;

Note: For a complete listing of the columns in the USER_TABLES view, see “USER_TABLES”
in the Oracle Database Reference.

You can also query the ALL_TABLES view to see a listing of all tables to which you have
access.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 12

Copyright © 2010, Oracle. All rights reserved.

Column Information

USER_TAB_COLUMNS:

DESCRIBE user_tab_columns

…

Column Information

You can query the USER_TAB_COLUMNS view to find detailed information about the columns
in your tables. Although the USER_TABLES view provides information about your table names
and storage, detailed column information is found in the USER_TAB_COLUMNS view.

This view contains information such as:
• Column names
• Column data types
• Length of data types
• Precision and scale for NUMBER columns
• Whether nulls are allowed (Is there a NOT NULL constraint on the column?)
• Default value

Note: For a complete listing and description of the columns in the USER_TAB_COLUMNS view,
see “USER_TAB_COLUMNS” in the Oracle Database Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 13

Copyright © 2010, Oracle. All rights reserved.

Column Information

SELECT column_name, data_type, data_length,
data_precision, data_scale, nullable

FROM user_tab_columns
WHERE table_name = 'EMPLOYEES';

Column Information (continued)

By querying the USER_TAB_COLUMNS table, you can find details about your columns such as
the names, data types, data type lengths, null constraints, and default value for a column.

The example shown displays the columns, data types, data lengths, and null constraints for the
EMPLOYEES table. Note that this information is similar to the output from the DESCRIBE
command.

To view information about columns set as unused, you use the USER_UNUSED_COL_TABS
dictionary view.

Note: Names of the objects in Data Dictionary are in uppercase.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 B
re

za
 S

of
tw

ar
e

En
gi

ne
er

in
g

d.
o.

o
us

e
on

ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 14

Copyright © 2010, Oracle. All rights reserved.

Constraint Information

• USER_CONSTRAINTS describes the constraint definitions
on your tables.

• USER_CONS_COLUMNS describes columns that are owned
by you and that are specified in constraints.

DESCRIBE user_constraints

…

Constraint Information

You can find out the names of your constraints, the type of constraint, the table name to which
the constraint applies, the condition for check constraints, foreign key constraint information,
deletion rule for foreign key constraints, the status, and many other types of information about
your constraints.

Note: For a complete listing and description of the columns in the USER_CONSTRAINTS view,
see “USER_CONSTRAINTS” in the Oracle Database Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 15

Copyright © 2010, Oracle. All rights reserved.

USER_CONSTRAINTS: Example

SELECT constraint_name, constraint_type,
search_condition, r_constraint_name,
delete_rule, status

FROM user_constraints
WHERE table_name = 'EMPLOYEES';

USER_CONSTRAINTS: Example

In the example shown, the USER_CONSTRAINTS view is queried to find the names, types,
check conditions, name of the unique constraint that the foreign key references, deletion rule for
a foreign key, and status for constraints on the EMPLOYEES table.

The CONSTRAINT_TYPE can be:
• C (check constraint on a table , or NOT NULL)
• P (primary key)
• U (unique key)
• R (referential integrity)
• V (with check option, on a view)
• O (with read-only, on a view)

The DELETE_RULE can be:
• CASCADE: If the parent record is deleted, the child records are deleted too.
• SET NULL: If the parent record is deleted, change the respective child record to null.
• NO ACTION: A parent record can be deleted only if no child records exist.

The STATUS can be:
• ENABLED: Constraint is active.
• DISABLED: Constraint is made not active.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 16

Copyright © 2010, Oracle. All rights reserved.

Querying USER_CONS_COLUMNS

DESCRIBE user_cons_columns

SELECT constraint_name, column_name
FROM user_cons_columns
WHERE table_name = 'EMPLOYEES';

…

Querying USER_CONS_COLUMNS

To find the names of the columns to which a constraint applies, query the
USER_CONS_COLUMNS dictionary view. This view tells you the name of the owner of a
constraint, the name of the constraint, the table that the constraint is on, the names of the
columns with the constraint, and the original position of column or attribute in the definition of
the object.

Note: A constraint may apply to more than one column.

You can also write a join between USER_CONSTRAINTS and USER_CONS_COLUMNS to
create customized output from both tables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 17

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to data dictionary

• Querying the dictionary views for the following:
– Table information

– Column information

– Constraint information

• Querying the dictionary views for the following:
– View information

– Sequence information

– Synonym information

– Index information

• Adding a comment to a table and querying the dictionary
views for comment information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 18

Copyright © 2010, Oracle. All rights reserved.

View Information

DESCRIBE user_views

SELECT view_name FROM user_views;

SELECT text FROM user_views
WHERE view_name = 'EMP_DETAILS_VIEW';

1

2

3

…

View Information
After your view is created, you can query the data dictionary view called USER_VIEWS to see
the name of the view and the view definition. The text of the SELECT statement that constitutes
your view is stored in a LONG column. The LENGTH column is the number of characters in the
SELECT statement. By default, when you select from a LONG column, only the first 80
characters of the column’s value are displayed. To see more than 80 characters in SQL*Plus, use
the SET LONG command:

SET LONG 1000

In the examples in the slide:
1. The USER_VIEWS columns are displayed. Note that this is a partial listing.
2. The names of your views are retrieved
3. The SELECT statement for the EMP_DETAILS_VIEW is displayed from the dictionary

Data Access Using Views

When you access data by using a view, the Oracle Server performs the following operations:
• It retrieves the view definition from the data dictionary table USER_VIEWS.
• It checks access privileges for the view base table.
• It converts the view query into an equivalent operation on the underlying base table or

tables. That is, data is retrieved from, or an update is made to, the base tables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 19

Copyright © 2010, Oracle. All rights reserved.

Sequence Information

DESCRIBE user_sequences

Sequence Information

The USER_SEQUENCES view describes all sequences that you own. When you create the
sequence, you specify criteria that are stored in the USER_SEQUENCES view. The columns in
this view are:
• SEQUENCE_NAME: Name of the sequence
• MIN_VALUE: Minimum value of the sequence
• MAX_VALUE: Maximum value of the sequence
• INCREMENT_BY: Value by which the sequence is incremented
• CYCLE_FLAG: Does sequence wrap around on reaching the limit?
• ORDER_FLAG: Are sequence numbers generated in order?
• CACHE_SIZE: Number of sequence numbers to cache
• LAST_NUMBER: Last sequence number written to disk. If a sequence uses caching, the

number written to disk is the last number placed in the sequence cache. This number is
likely to be greater than the last sequence number that was used.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 20

Copyright © 2010, Oracle. All rights reserved.

Confirming Sequences

• Verify your sequence values in the USER_SEQUENCES
data dictionary table.

• The LAST_NUMBER column displays the next available
sequence number if NOCACHE is specified.

SELECT sequence_name, min_value, max_value,
increment_by, last_number

FROM user_sequences;

Confirming Sequences

After creating your sequence, it is documented in the data dictionary. Because a sequence is a
database object, you can identify it in the USER_OBJECTS data dictionary table.

You can also confirm the settings of the sequence by selecting from the USER_SEQUENCES
data dictionary view.

Viewing the Next Available Sequence Value Without Incrementing It

If the sequence was created with NOCACHE, it is possible to view the next available sequence
value without incrementing it by querying the USER_SEQUENCES table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 21

Copyright © 2010, Oracle. All rights reserved.

Index Information

• USER_INDEXES provides information about your indexes.

• USER_IND_COLUMNS describes columns comprising your
indexes and columns of indexes on your tables.

DESCRIBE user_indexes

…

Index Information

You query the USER_INDEXES view to find out the names of your indexes, the table name on
which the index is created, and whether the index is unique.

Note: For a complete listing and description of the columns in the USER_INDEXES view, see
“USER_INDEXES” in the Oracle Database Reference for 10g or 11g database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 22

Copyright © 2010, Oracle. All rights reserved.

USER_INDEXES: Examples

SELECT index_name, table_name,uniqueness
FROM user_indexes
WHERE table_name = 'EMPLOYEES';

SELECT index_name, table_name
FROM user_indexes
WHERE table_name = 'emp_lib';

a

b

USER_INDEXES: Example

In the slide example a, the USER_INDEXES view is queried to find the name of the index,
name of the table on which the index is created, and whether the index is unique.

In the slide example b, observe that the Oracle Server gives a generic name to the index that is
created for the PRIMARY KEY column. The EMP_LIB table is created by using the following
code:

CREATE TABLE EMP_LIB
(book_id NUMBER(6)PRIMARY KEY ,
title VARCHAR2(25),
category VARCHAR2(20));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 23

Copyright © 2010, Oracle. All rights reserved.

Querying USER_IND_COLUMNS

DESCRIBE user_ind_columns

SELECT index_name, column_name,table_name
FROM user_ind_columns
WHERE index_name = 'lname_idx';

Querying USER_IND_COLUMNS

The USER_IND_COLUMNS dictionary view provides information such as the name of the
index, name of the indexed table, name of a column within the index, and the column’s position
within the index.

For the slide example, the emp_test table and LNAME_IDX index are created by using the
following code:

CREATE TABLE emp_test AS SELECT * FROM employees;
CREATE INDEX LNAME_IDX ON emp_test(Last_Name); O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 B
re

za
 S

of
tw

ar
e

En
gi

ne
er

in
g

d.
o.

o
us

e
on

ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 24

Copyright © 2010, Oracle. All rights reserved.

Synonym Information

DESCRIBE user_synonyms

SELECT *
FROM user_synonyms;

Synonym Information

The USER_SYNONYMS dictionary view describes private synonyms (synonyms that you own).

You can query this view to find your synonyms. You can query ALL_SYNONYMS to find out the
name of all the synonyms that are available to you and the objects on which these synonyms
apply.

The columns in this view are:
• SYNONYM_NAME: Name of the synonym
• TABLE_OWNER: Owner of the object that is referenced by the synonym
• TABLE_NAME: Name of the table or view that is referenced by the synonym
• DB_LINK: Name of the database link reference (if any)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 25

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to data dictionary

• Querying the dictionary views for the following:
– Table information

– Column information

– Constraint information

• Querying the dictionary views for the following:
– View information

– Sequence information

– Synonym information

– Index information

• Adding a comment to a table and querying the dictionary
views for comment information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 26

Copyright © 2010, Oracle. All rights reserved.

Adding Comments to a Table

• You can add comments to a table or column by using the
COMMENT statement:

• Comments can be viewed through the data dictionary
views:
– ALL_COL_COMMENTS

– USER_COL_COMMENTS

– ALL_TAB_COMMENTS

– USER_TAB_COMMENTS

COMMENT ON TABLE employees
IS 'Employee Information';

COMMENT ON COLUMN employees.first_name
IS 'First name of the employee';

Adding Comments to a Table

You can add a comment of up to 4,000 bytes about a column, table, view, or snapshot by using
the COMMENT statement. The comment is stored in the data dictionary and can be viewed in one
of the following data dictionary views in the COMMENTS column:
• ALL_COL_COMMENTS
• USER_COL_COMMENTS
• ALL_TAB_COMMENTS
• USER_TAB_COMMENTS

Syntax

COMMENT ON {TABLE table | COLUMN table.column}
IS 'text';

In the syntax:
table Is the name of the table
column Is the name of the column in a table
text Is the text of the comment

You can drop a comment from the database by setting it to empty string (''):

COMMENT ON TABLE employees IS '';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 27

Copyright © 2010, Oracle. All rights reserved.

Quiz

The dictionary views that are based on the dictionary tables
contain information such as:

1. Definitions of all the schema objects in the database

2. Default values for the columns

3. Integrity constraint information

4. Privileges and roles that each user has been granted

5. All of the above

Answer: 5

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 28

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to find information
about your objects through the following dictionary views:
• DICTIONARY

• USER_OBJECTS

• USER_TABLES

• USER_TAB_COLUMNS

• USER_CONSTRAINTS

• USER_CONS_COLUMNS

• USER_VIEWS

• USER_SEQUENCES

• USER_INDEXES

• USER_SYNONYMS

Summary

In this lesson, you learned about some of the dictionary views that are available to you. You can
use these dictionary views to find information about your tables, constraints, views, sequences,
and synonyms.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 3 - 29

Copyright © 2010, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:

• Querying the dictionary views for table and column
information

• Querying the dictionary views for constraint information

• Querying the dictionary views for view information

• Querying the dictionary views for sequence information

• Querying the dictionary views for synonym information

• Querying the dictionary views for index information

• Adding a comment to a table and querying the dictionary
views for comment information

Practice 3: Overview

In this practice, you query the dictionary views to find information about objects in your
schema.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Manipulating Large Data Sets

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 2

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Manipulate data by using subqueries
• Specify explicit default values in the INSERT and UPDATE

statements
• Describe the features of multitable INSERTs
• Use the following types of multitable INSERTs:

– Unconditional INSERT
– Pivoting INSERT
– Conditional INSERT ALL
– Conditional INSERT FIRST

• Merge rows in a table
• Track the changes to data over a period of time

Objectives

In this lesson, you learn how to manipulate data in the Oracle database by using subqueries. You
learn how to use the DEFAULT keyword in INSERT and UPDATE statements to identify a
default column value. You also learn about multitable INSERT statements, the MERGE
statement, and tracking changes in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Manipulating data by using subqueries
• Specifying explicit default values in the INSERT and

UPDATE statements
• Using the following types of multitable INSERTs:

– Unconditional INSERT
– Pivoting INSERT
– Conditional INSERT ALL
– Conditional INSERT FIRST

• Merging rows in a table
• Tracking the changes to data over a period of time

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 4

Copyright © 2010, Oracle. All rights reserved.

Using Subqueries to Manipulate Data

You can use subqueries in data manipulation language (DML)
statements to:

• Retrieve data by using an inline view

• Copy data from one table to another

• Update data in one table based on the values of another
table

• Delete rows from one table based on rows in another table

Using Subqueries to Manipulate Data

Subqueries can be used to retrieve data from a table that you can use as input to an INSERT into
a different table. In this way, you can easily copy large volumes of data from one table to
another with one single SELECT statement. Similarly, you can use subqueries to do mass
updates and deletes by using them in the WHERE clause of the UPDATE and DELETE
statements. You can also use subqueries in the FROM clause of a SELECT statement. This is
called an inline view.

Note: You learned how to update and delete rows based on another table in the course titled
Oracle Database: SQL Fundamentals I.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 5

Copyright © 2010, Oracle. All rights reserved.

SELECT department_name, city
FROM departments
NATURAL JOIN (SELECT l.location_id, l.city, l.country_id

FROM loc l
JOIN countries c
ON(l.country_id = c.country_id)
JOIN regions USING(region_id)
WHERE region_name = 'Europe');

Retrieving Data by Using a Subquery as Source

Retrieving Data by Using a Subquery as Source

You can use a subquery in the FROM clause of a SELECT statement, which is very similar to
how views are used. A subquery in the FROM clause of a SELECT statement is also called an
inline view. A subquery in the FROM clause of a SELECT statement defines a data source for
that particular SELECT statement, and only that SELECT statement. As with a database view,
the SELECT statement in the subquery can be as simple or as complex as you like.

When a database view is created, the associated SELECT statement is stored in the data
dictionary. In situations where you do not have the necessary privileges to create database views,
or when you would like to test the suitability of a SELECT statement to become a view, you can
use an inline view.

With inline views, you can have all the code needed to support the query in one place. This
means that you can avoid the complexity of creating a separate database view. The example in
the slide shows how to use an inline view to display the department name and the city in Europe.
The subquery in the FROM clause fetches the location ID, city name, and the country by joining
three different tables. The output of the inner query is considered as a table for the outer query.
The inner query is similar to that of a database view but does not have any physical name.

For the example in the slide, the loc table is created by running the following statement:
CREATE TABLE loc AS SELECT * FROM locations;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 6

Retrieving Data by Using a Subquery as Source (continued)

You can display the same output as in the example in the slide by performing the following two
steps:

1. Create a database view:
CREATE OR REPLACE VIEW european_cities
AS
SELECT l.location_id, l.city, l.country_id
FROM loc l
JOIN countries c
ON(l.country_id = c.country_id)
JOIN regions USING(region_id)
WHERE region_name = 'Europe';

2. Join the EUROPEAN_CITIES view with the DEPARTMENTS table:
SELECT department_name, city
FROM departments
NATURAL JOIN european_cities;

Note: You learned how to create database views in the course titled Oracle Database: SQL
Fundamentals I.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 7

Copyright © 2010, Oracle. All rights reserved.

Inserting by Using a Subquery as a Target

INSERT INTO (SELECT l.location_id, l.city, l.country_id
FROM locations l
JOIN countries c
ON(l.country_id = c.country_id)
JOIN regions USING(region_id)
WHERE region_name = 'Europe')

VALUES (3300, 'Cardiff', 'UK');

Inserting by Using a Subquery as a Target

You can use a subquery in place of the table name in the INTO clause of the INSERT statement.
The SELECT list of this subquery must have the same number of columns as the column list of
the VALUES clause. Any rules on the columns of the base table must be followed in order for the
INSERT statement to work successfully. For example, you cannot put in a duplicate location ID
or leave out a value for a mandatory NOT NULL column.

This use of subqueries helps you avoid having to create a view just for performing an INSERT.

The example in the slide uses a subquery in the place of LOC to create a record for a new
European city.

Note: You can also perform the INSERT operation on the EUROPEAN_CITIES view by using
the following code:

INSERT INTO european_cities
VALUES (3300,'Cardiff','UK');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 8

Copyright © 2010, Oracle. All rights reserved.

Inserting by Using a Subquery as a Target

Verify the results.

SELECT location_id, city, country_id
FROM loc

Inserting by Using a Subquery as a Target (continued)

The example in the slide shows that the insert via the inline view created a new record in the
base table LOC.

The following example shows the results of the subquery that was used to identify the table for
the INSERT statement.

SELECT l.location_id, l.city, l.country_id
FROM loc l
JOIN countries c
ON(l.country_id = c.country_id)
JOIN regions USING(region_id)
WHERE region_name = 'Europe'

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 9

Copyright © 2010, Oracle. All rights reserved.

Using the WITH CHECK OPTION Keyword
on DML Statements

The WITH CHECK OPTION keyword prohibits you from changing
rows that are not in the subquery.

INSERT INTO (SELECT location_id, city, country_id
FROM loc
WHERE country_id IN
(SELECT country_id
FROM countries
NATURAL JOIN regions
WHERE region_name = 'Europe')
WITH CHECK OPTION)

VALUES (3600, 'Washington', 'US');

Using the WITH CHECK OPTION Keyword on DML Statements

Specify the WITH CHECK OPTION keyword to indicate that if the subquery is used in place of a
table in an INSERT, UPDATE, or DELETE statement, no changes that produce rows that are not
included in the subquery are permitted to that table.

The example in the slide shows how to use an inline view with WITH CHECK OPTION. The
INSERT statement prevents the creation of records in the LOC table for a city that is not in
Europe.

The following example executes successfully because of the changes in the VALUES list.
INSERT INTO (SELECT location_id, city, country_id

FROM loc
WHERE country_id IN
(SELECT country_id
FROM countries
NATURAL JOIN regions
WHERE region_name = 'Europe')
WITH CHECK OPTION)

VALUES (3500, 'Berlin', 'DE');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 10

Using the WITH CHECK OPTION Keyword on DML Statements (continued)

The use of an inline view with the WITH CHECK OPTION provides an easy method to prevent
changes to the table.

To prevent the creation of a non-European city, you can also use a database view by performing
the following steps:

1. Create a database view:
CREATE OR REPLACE VIEW european_cities
AS
SELECT location_id, city, country_id
FROM locations
WHERE country_id in

(SELECT country_id
FROM countries
NATURAL JOIN regions
WHERE region_name = 'Europe')

WITH CHECK OPTION;

2. Verify the results by inserting data:
INSERT INTO european_cities
VALUES (3400,'New York','US');

The second step produces the same error as shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 11

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Manipulating data by using subqueries
• Specifying explicit default values in the INSERT and

UPDATE statements
• Using the following types of multitable INSERTs:

– Unconditional INSERT
– Pivoting INSERT
– Conditional INSERT ALL
– Conditional INSERT FIRST

• Merging rows in a table
• Tracking the changes to data over a period of time

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 12

Copyright © 2010, Oracle. All rights reserved.

Overview of the Explicit Default Feature

• Use the DEFAULT keyword as a column value where the
default column value is desired.

• This allows the user to control where and when the default
value should be applied to data.

• Explicit defaults can be used in INSERT and UPDATE
statements.

Explicit Defaults

The DEFAULT keyword can be used in INSERT and UPDATE statements to identify a default
column value. If no default value exists, a null value is used.

The DEFAULT option saves you from having to hard code the default value in your programs or
querying the dictionary to find it, as was done before this feature was introduced. Hard coding
the default is a problem if the default changes, because the code consequently needs changing.
Accessing the dictionary is not usually done in an application; therefore, this is a very important
feature. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 B
re

za
 S

of
tw

ar
e

En
gi

ne
er

in
g

d.
o.

o
us

e
on

ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 13

Copyright © 2010, Oracle. All rights reserved.

Using Explicit Default Values

• DEFAULT with INSERT:

• DEFAULT with UPDATE:

INSERT INTO deptm3
(department_id, department_name, manager_id)

VALUES (300, 'Engineering', DEFAULT);

UPDATE deptm3
SET manager_id = DEFAULT
WHERE department_id = 10;

Using Explicit Default Values

Specify DEFAULT to set the column to the value previously specified as the default value for the
column. If no default value for the corresponding column has been specified, the Oracle server
sets the column to null.

In the first example in the slide, the INSERT statement uses a default value for the
MANAGER_ID column. If there is no default value defined for the column, a null value is
inserted instead.

The second example uses the UPDATE statement to set the MANAGER_ID column to a default
value for department 10. If no default value is defined for the column, it changes the value to
null.

Note: When creating a table, you can specify a default value for a column. This is discussed in
SQL Fundamentals I.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 14

Copyright © 2010, Oracle. All rights reserved.

Copying Rows from Another Table

• Write your INSERT statement with a subquery.

• Do not use the VALUES clause.

• Match the number of columns in the INSERT clause with
that in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

Copying Rows from Another Table

You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In place of the VALUES clause, you use a subquery.

Syntax
INSERT INTO table [column (, column)] subquery;

In the syntax:
table Is the table name
column Is the name of the column in the table to populate
subquery Is the subquery that returns rows into the table

The number of columns and their data types in the column list of the INSERT clause must
match the number of values and their data types in the subquery. To create a copy of the rows of
a table, use SELECT * in the subquery.

INSERT INTO EMPL3
SELECT *
FROM employees;

Note: You use the LOG ERRORS clause in your DML statement to enable the DML operation to
complete regardless of errors. Oracle writes the details of the error message to an error-logging
table that you have created. For more information, see the Oracle Database SQL Reference for
10g or 11g database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 15

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Manipulating data by using subqueries
• Specifying explicit default values in the INSERT and

UPDATE statements
• Using the following types of multitable INSERTs:

– Unconditional INSERT
– Pivoting INSERT
– Conditional INSERT ALL
– Conditional INSERT FIRST

• Merging rows in a table
• Tracking the changes to data over a period of time

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 16

Copyright © 2010, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

INSERT ALL
INTO target_a VALUES(…,…,…)
INTO target_b VALUES(…,…,…)
INTO target_c VALUES(…,…,…)
SELECT …
FROM sourcetab
WHERE …;

Target_a

Target_b

Target_c

Sourcetab

Subquery

Overview of Multitable INSERT Statements

In a multitable INSERT statement, you insert computed rows derived from the rows returned
from the evaluation of a subquery into one or more tables.

Multitable INSERT statements are useful in a data warehouse scenario. You need to load your
data warehouse regularly so that it can serve its purpose of facilitating business analysis. To do
this, data from one or more operational systems must be extracted and copied into the
warehouse. The process of extracting data from the source system and bringing it into the data
warehouse is commonly called ETL, which stands for extraction, transformation, and loading.

During extraction, the desired data must be identified and extracted from many different sources,
such as database systems and applications. After extraction, the data must be physically
transported to the target system or an intermediate system for further processing. Depending on
the chosen means of transportation, some transformations can be done during this process. For
example, a SQL statement that directly accesses a remote target through a gateway can
concatenate two columns as part of the SELECT statement.

After data is loaded into the Oracle database, data transformations can be executed using SQL
operations. A multitable INSERT statement is one of the techniques for implementing SQL data
transformations.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 17

Copyright © 2010, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

• Use the INSERT…SELECT statement to insert rows into
multiple tables as part of a single DML statement.

• Multitable INSERT statements are used in data
warehousing systems to transfer data from one or more
operational sources to a set of target tables.

• They provide significant performance improvement over:
– Single DML versus multiple INSERT…SELECT statements

– Single DML versus a procedure to perform multiple inserts
by using the IF...THEN syntax

Overview of Multitable INSERT Statements (continued)

Multitable INSERT statements offer the benefits of the INSERT ... SELECT statement when
multiple tables are involved as targets. Without multitable INSERT, you had to deal with n
independent INSERT ... SELECT statements, thus processing the same source data n times
and increasing the transformation workload n times.

As with the existing INSERT ... SELECT statement, the new statement can be parallelized
and used with the direct-load mechanism for faster performance.

Each record from any input stream, such as a nonrelational database table, can now be converted
into multiple records for a more relational database table environment. To alternatively
implement this functionality, you were required to write multiple INSERT statements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 18

Copyright © 2010, Oracle. All rights reserved.

Types of Multitable INSERT Statements

The different types of multitable INSERT statements are:

• Unconditional INSERT

• Conditional INSERT ALL

• Pivoting INSERT

• Conditional INSERT FIRST

Types of Multitable INSERT Statements

You use different clauses to indicate the type of INSERT to be executed. The types of multitable
INSERT statements are:

• Unconditional INSERT: For each row returned by the subquery, a row is inserted into each
of the target tables.

• Conditional INSERT ALL: For each row returned by the subquery, a row is inserted into
each target table if the specified condition is met.

• Pivoting INSERT: This is a special case of the unconditional INSERT ALL.
• Conditional INSERT FIRST: For each row returned by the subquery, a row is inserted

into the very first target table in which the condition is met.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 19

Copyright © 2010, Oracle. All rights reserved.

Multitable INSERT Statements

• Syntax for multitable INSERT:

• conditional_insert_clause:

INSERT [conditional_insert_clause]
[insert_into_clause values_clause] (subquery)

[ALL|FIRST]
[WHEN condition THEN] [insert_into_clause values_clause]
[ELSE] [insert_into_clause values_clause]

Multitable INSERT Statements

The slide displays the generic format for multitable INSERT statements.

Unconditional INSERT: ALL into_clause

Specify ALL followed by multiple insert_into_clauses to perform an unconditional
multitable INSERT. The Oracle server executes each insert_into_clause once for each
row returned by the subquery.

Conditional INSERT: conditional_insert_clause

Specify the conditional_insert_clause to perform a conditional multitable INSERT.
The Oracle server filters each insert_into_clause through the corresponding WHEN
condition, which determines whether that insert_into_clause is executed. A single
multitable INSERT statement can contain up to 127 WHEN clauses.

Conditional INSERT: ALL

If you specify ALL, the Oracle server evaluates each WHEN clause regardless of the results of the
evaluation of any other WHEN clause. For each WHEN clause whose condition evaluates to true,
the Oracle server executes the corresponding INTO clause list.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 20

Multitable INSERT Statements (continued)

Conditional INSERT: FIRST

If you specify FIRST, the Oracle server evaluates each WHEN clause in the order in which it
appears in the statement. If the first WHEN clause evaluates to true, the Oracle server executes
the corresponding INTO clause and skips subsequent WHEN clauses for the given row.

Conditional INSERT: ELSE Clause

For a given row, if no WHEN clause evaluates to true:
• If you have specified an ELSE clause, the Oracle server executes the INTO clause list

associated with the ELSE clause
• If you did not specify an ELSE clause, the Oracle server takes no action for that row

Restrictions on Multitable INSERT Statements
• You can perform multitable INSERT statements only on tables, and not on views or

materialized views.
• You cannot perform a multitable INSERT on a remote table.
• You cannot specify a table collection expression when performing a multitable INSERT.
• In a multitable INSERT, all insert_into_clauses cannot combine to specify more

than 999 target columns.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 21

Copyright © 2010, Oracle. All rights reserved.

Unconditional INSERT ALL

• Select the EMPLOYEE_ID, HIRE_DATE, SALARY, and
MANAGER_ID values from the EMPLOYEES table for those
employees whose EMPLOYEE_ID is greater than 200.

• Insert these values into the SAL_HISTORY and
MGR_HISTORY tables by using a multitable INSERT.

INSERT ALL
INTO sal_history VALUES(EMPID,HIREDATE,SAL)
INTO mgr_history VALUES(EMPID,MGR,SAL)
SELECT employee_id EMPID, hire_date HIREDATE,

salary SAL, manager_id MGR
FROM employees
WHERE employee_id > 200;

Unconditional INSERT ALL

The example in the slide inserts rows into both the SAL_HISTORY and the MGR_HISTORY
tables.

The SELECT statement retrieves the details of employee ID, hire date, salary, and manager ID
of those employees whose employee ID is greater than 200 from the EMPLOYEES table. The
details of the employee ID, hire date, and salary are inserted into the SAL_HISTORY table. The
details of employee ID, manager ID, and salary are inserted into the MGR_HISTORY table.

This INSERT statement is referred to as an unconditional INSERT because no further
restriction is applied to the rows that are retrieved by the SELECT statement. All the rows
retrieved by the SELECT statement are inserted into the two tables: SAL_HISTORY and
MGR_HISTORY. The VALUES clause in the INSERT statements specifies the columns from the
SELECT statement that must be inserted into each of the tables. Each row returned by the
SELECT statement results in two insertions: one for the SAL_HISTORY table and one for the
MGR_HISTORY table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 22

Unconditional INSERT ALL (continued)

A total of 12 rows were selected:
SELECT COUNT(*) total_in_sal FROM sal_history;

SELECT COUNT(*) total_in_mgr FROM mgr_history;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 23

Copyright © 2010, Oracle. All rights reserved.

Conditional INSERT ALL: Example

EMP_HISTORY

EMP_SALES

Employees

Hired before
1995

With sales
commission

Conditional INSERT ALL: Example

For all employees in the employees tables, if the employee was hired before 1995, insert that
employee record into the employee history. If the employee earns a sales commission, insert the
record information into the EMP_SALES table. The SQL statement is shown on the next page.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 24

Copyright © 2010, Oracle. All rights reserved.

Conditional INSERT ALL

INSERT ALL

WHEN HIREDATE < '01-JAN-95' THEN

INTO emp_history VALUES(EMPID,HIREDATE,SAL)

WHEN COMM IS NOT NULL THEN

INTO emp_sales VALUES(EMPID,COMM,SAL)

SELECT employee_id EMPID, hire_date HIREDATE,

salary SAL, commission_pct COMM

FROM employees

Conditional INSERT ALL

The example in the slide is similar to the example in the previous slide because it inserts rows
into both the EMP_HISTORY and the EMP_SALES tables. The SELECT statement retrieves
details such as employee ID, hire date, salary, and commission percentage for all employees
from the EMPLOYEES table. Details such as employee ID, hire date, and salary are inserted into
the EMP_HISTORY table. Details such as employee ID, commission percentage, and salary are
inserted into the EMP_SALES table.

This INSERT statement is referred to as a conditional INSERT ALL because a further
restriction is applied to the rows that are retrieved by the SELECT statement. From the rows that
are retrieved by the SELECT statement, only those rows in which the hire date was prior to 1995
are inserted in the EMP_HISTORY table. Similarly, only those rows where the value of
commission percentage is not null are inserted in the EMP_SALES table.

SELECT count(*) FROM emp_history;

SELECT count(*) FROM emp_sales;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 25

Conditional INSERT ALL (continued)

You can also optionally use the ELSE clause with the INSERT ALL statement.

Example:

INSERT ALL
WHEN job_id IN
(select job_id FROM jobs WHERE job_title LIKE '%Manager%')
THEN
INTO managers2(last_name,job_id,SALARY)
VALUES (last_name,job_id,SALARY)
WHEN SALARY>10000 THEN
INTO richpeople(last_name,job_id,SALARY)
VALUES (last_name,job_id,SALARY)
ELSE
INTO poorpeople VALUES (last_name,job_id,SALARY)
SELECT * FROM employees;

Result:
116 rows inserted

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 26

Copyright © 2010, Oracle. All rights reserved.

Conditional INSERT FIRST: Example

SAL_LOW

SAL_MID

EMPLOYEES

Salary < 5,000

5000 <= Salary
<= 10,000

SAL_HIGH

Otherwise

Scenario: If an employee
salary is 2,000, the

record is inserted into the
SAL_LOW table only.

Conditional INSERT FIRST: Example

For all employees in the EMPLOYEES table, insert the employee information into the first target
table that meets the condition. In the example, if an employee has a salary of 2,000, the record is
inserted into the SAL_LOW table only. The SQL statement is shown on the next page.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 27

Copyright © 2010, Oracle. All rights reserved.

Conditional INSERT FIRST

INSERT FIRST

WHEN salary < 5000 THEN

INTO sal_low VALUES (employee_id, last_name, salary)

WHEN salary between 5000 and 10000 THEN

INTO sal_mid VALUES (employee_id, last_name, salary)

ELSE

INTO sal_high VALUES (employee_id, last_name, salary)

SELECT employee_id, last_name, salary

FROM employees

Conditional INSERT FIRST

The SELECT statement retrieves details such as employee ID, last name, and salary for every
employee in the EMPLOYEES table. For each employee record, it is inserted into the very first
target table that meets the condition.

This INSERT statement is referred to as a conditional INSERT FIRST. The WHEN salary
< 5000 condition is evaluated first. If this first WHEN clause evaluates to true, the Oracle server
executes the corresponding INTO clause and inserts the record into the SAL_LOW table. It skips
subsequent WHEN clauses for this row.

If the row does not satisfy the first WHEN condition (WHEN salary < 5000), the next
condition (WHEN salary between 5000 and 10000) is evaluated. If this condition
evaluates to true, the record is inserted into the SAL_MID table, and the last condition is
skipped.

If neither the first condition (WHEN salary < 5000) nor the second condition (WHEN
salary between 5000 and 10000) is evaluated to true, the Oracle server executes the
corresponding INTO clause for the ELSE clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 28

Conditional INSERT FIRST (continued)

A total of 20 rows were inserted:
SELECT count(*) low FROM sal_low;

SELECT count(*) mid FROM sal_mid;

SELECT count(*) high FROM sal_high;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 29

Copyright © 2010, Oracle. All rights reserved.

Pivoting INSERT

Convert the set of sales records from the nonrelational
database table to relational format.

600050004000300020006176

FRITHURWEDTUESMONWeek_IDEmp_ID

60006176

50006176

40006176

30006176

20006176

SALESWEEKEmployee_ID

Pivoting INSERT

Pivoting is an operation in which you must build a transformation such that each record from
any input stream, such as a nonrelational database table, must be converted into multiple records
for a more relational database table environment.

Suppose you receive a set of sales records from a nonrelational database table:
SALES_SOURCE_DATA, in the following format:

EMPLOYEE_ID, WEEK_ID, SALES_MON, SALES_TUE, SALES_WED,
SALES_THUR, SALES_FRI

You want to store these records in the SALES_INFO table in a more typical relational format:
EMPLOYEE_ID, WEEK, SALES

To solve this problem, you must build a transformation such that each record from the original
nonrelational database table, SALES_SOURCE_DATA, is converted into five records for the
data warehouse’s SALES_INFO table. This operation is commonly referred to as pivoting.

The solution to this problem is shown on the next page.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 30

Copyright © 2010, Oracle. All rights reserved.

Pivoting INSERT

INSERT ALL

INTO sales_info VALUES (employee_id,week_id,sales_MON)

INTO sales_info VALUES (employee_id,week_id,sales_TUE)

INTO sales_info VALUES (employee_id,week_id,sales_WED)

INTO sales_info VALUES (employee_id,week_id,sales_THUR)

INTO sales_info VALUES (employee_id,week_id, sales_FRI)

SELECT EMPLOYEE_ID, week_id, sales_MON, sales_TUE,

sales_WED, sales_THUR,sales_FRI

FROM sales_source_data;

Pivoting INSERT (continued)

In the example in the slide, the sales data is received from the nonrelational database table
SALES_SOURCE_DATA, which is the details of the sales performed by a sales representative on
each day of a week, for a week with a particular week ID.

DESC SALES_SOURCE_DATA

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 31

Pivoting INSERT (continued)

SELECT * FROM SALES_SOURCE_DATA;

DESC SALES_INFO

SELECT * FROM sales_info;

Observe in the preceding example that by using a pivoting INSERT, one row from the
SALES_SOURCE_DATA table is converted into five records for the relational table,
SALES_INFO.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 32

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Manipulating data by using subqueries
• Specifying explicit default values in the INSERT and

UPDATE statements
• Using the following types of multitable INSERTs:

– Unconditional INSERT
– Pivoting INSERT
– Conditional INSERT ALL
– Conditional INSERT FIRST

• Merging rows in a table
• Tracking the changes to data over a period of time

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 33

Copyright © 2010, Oracle. All rights reserved.

MERGE Statement

• Provides the ability to conditionally update, insert, or delete
data into a database table

• Performs an UPDATE if the row exists, and an INSERT if it
is a new row:
– Avoids separate updates

– Increases performance and ease of use

– Is useful in data warehousing applications

MERGE Statement

The Oracle server supports the MERGE statement for INSERT, UPDATE, and DELETE
operations. Using this statement, you can update, insert, or delete a row conditionally into a
table, thus avoiding multiple DML statements. The decision whether to update, insert, or delete
into the target table is based on a condition in the ON clause.

You must have the INSERT and UPDATE object privileges on the target table and the SELECT
object privilege on the source table. To specify the DELETE clause of
merge_update_clause, you must also have the DELETE object privilege on the target
table.

The MERGE statement is deterministic. You cannot update the same row of the target table
multiple times in the same MERGE statement.

An alternative approach is to use PL/SQL loops and multiple DML statements. The MERGE
statement, however, is easy to use and more simply expressed as a single SQL statement.

The MERGE statement is suitable in a number of data warehousing applications. For example, in
a data warehousing application, you may need to work with data coming from multiple sources,
some of which may be duplicates. With the MERGE statement, you can conditionally add or
modify rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 34

Copyright © 2010, Oracle. All rights reserved.

MERGE Statement Syntax

You can conditionally insert, update, or delete rows in a table
by using the MERGE statement.

MERGE INTO table_name table_alias
USING (table|view|sub_query) alias
ON (join condition)
WHEN MATCHED THEN
UPDATE SET
col1 = col1_val,
col2 = col2_val

WHEN NOT MATCHED THEN
INSERT (column_list)
VALUES (column_values);

Merging Rows

You can update existing rows, and insert new rows conditionally by using the MERGE statement.
Using the MERGE statement, you can delete obsolete rows at the same time as you update rows
in a table. To do this, you include a DELETE clause with its own WHERE clause in the syntax of
the MERGE statement.

In the syntax:
INTO clause Specifies the target table you are updating or inserting into
USING clause Identifies the source of the data to be updated or inserted; can be

a table, view, or subquery
ON clause The condition on which the MERGE operation either updates or

inserts
WHEN MATCHED | Instructs the server how to respond to the results of the join

condition
WHEN NOT MATCHED

Note: For more information, see Oracle Database SQL Reference for 10g or 11g database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 35

Copyright © 2010, Oracle. All rights reserved.

MERGE INTO copy_emp3 c
USING (SELECT * FROM EMPLOYEES) e
ON (c.employee_id = e.employee_id)
WHEN MATCHED THEN
UPDATE SET
c.first_name = e.first_name,
c.last_name = e.last_name,
...
DELETE WHERE (E.COMMISSION_PCT IS NOT NULL)
WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,
e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

Merging Rows: Example

Insert or update rows in the COPY_EMP3 table to match the
EMPLOYEES table.

Merging Rows: Example
MERGE INTO copy_emp3 c
USING (SELECT * FROM EMPLOYEES) e
ON (c.employee_id = e.employee_id)
WHEN MATCHED THEN
UPDATE SET
c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
c.phone_number = e.phone_number,
c.hire_date = e.hire_date,
c.job_id = e.job_id,
c.salary = e.salary*2,
c.commission_pct = e.commission_pct,
c.manager_id = e.manager_id,
c.department_id = e.department_id
DELETE WHERE (E.COMMISSION_PCT IS NOT NULL)
WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,
e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 36

Merging Rows: Example (continued)

The COPY_EMP3 table is created by using the following code:
CREATE TABLE COPY_EMP3 AS SELECT * FROM EMPLOYEES
WHERE SALARY<10000;

Then query the COPY_EMP3 table.
SELECT employee_id, salary, commission_pct FROM COPY_EMP3;

Observe that there are some employees with SALARY < 10000 and there are two employees
with COMMISSION_PCT.

The example in the slide matches the EMPLOYEE_ID in the COPY_EMP3 table to the
EMPLOYEE_ID in the EMPLOYEES table. If a match is found, the row in the COPY_EMP3
table is updated to match the row in the EMPLOYEES table and the salary of the employee is
doubled. The records of the two employees with values in the COMMISSION_PCT column are
deleted. If the match is not found, rows are inserted into the COPY_EMP3 table.

...

...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 37

Copyright © 2010, Oracle. All rights reserved.

Merging Rows: Example

MERGE INTO copy_emp3 c
USING (SELECT * FROM EMPLOYEES) e
ON (c.employee_id = e.employee_id)
WHEN MATCHED THEN
UPDATE SET
c.first_name = e.first_name,
c.last_name = e.last_name,
...
DELETE WHERE (E.COMMISSION_PCT IS NOT NULL)
WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, ...

TRUNCATE TABLE copy_emp3;
SELECT * FROM copy_emp3;
0 rows selected

SELECT * FROM copy_emp3;
107 rows selected.

Merging Rows: Example (continued)

The examples in the slide show that the COPY_EMP3 table is empty. The c.employee_id =
e.employee_id condition is evaluated. The condition returns false—there are no matches.
The logic falls into the WHEN NOT MATCHED clause, and the MERGE command inserts the rows
of the EMPLOYEES table into the COPY_EMP3 table. This means that the COPY_EMP3 table
now has exactly the same data as in the EMPLOYEES table.

SELECT employee_id, salary, commission_pct from copy_emp3;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 38

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Manipulating data by using subqueries
• Specifying explicit default values in the INSERT and

UPDATE statements
• Using the following types of multitable INSERTs:

– Unconditional INSERT
– Pivoting INSERT
– Conditional INSERT ALL
– Conditional INSERT FIRST

• Merging rows in a table
• Tracking the changes to data over a period of time

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 39

Copyright © 2010, Oracle. All rights reserved.

Tracking Changes in Data

Versions of retrieved rows

SELECT
…

Version
query

Tracking Changes in Data
You may discover that somehow data in a table has been inappropriately changed. To research
this, you can use multiple flashback queries to view row data at specific points in time. More
efficiently, you can use the Flashback Version Query feature to view all changes to a row over a
period of time. This feature enables you to append a VERSIONS clause to a SELECT statement
that specifies a system change number (SCN) or the time stamp range within which you want to
view changes to row values. The query also can return associated metadata, such as the
transaction responsible for the change.
Further, after you identify an erroneous transaction, you can use the Flashback Transaction
Query feature to identify other changes that were done by the transaction. You then have the
option of using the Flashback Table feature to restore the table to a state before the changes were
made.
You can use a query on a table with a VERSIONS clause to produce all the versions of all the
rows that exist or ever existed between the time the query was issued and the
undo_retention seconds before the current time. undo_retention is an initialization
parameter, which is an autotuned parameter. A query that includes a VERSIONS clause is
referred to as a version query. The results of a version query behaves as though the WHERE
clause were applied to the versions of the rows. The version query returns versions of the rows
only across transactions.
System change number (SCN): The Oracle server assigns an SCN to identify the redo records
for each committed transaction.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 40

Copyright © 2010, Oracle. All rights reserved.

Example of the Flashback Version Query

SELECT salary FROM employees3
WHERE employee_id = 107;

UPDATE employees3 SET salary = salary * 1.30
WHERE employee_id = 107;

COMMIT;

SELECT salary FROM employees3
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE

WHERE employee_id = 107;

1

2

3

1 3

Example of the Flashback Version Query

In the example in the slide, the salary for employee 107 is retrieved (1). The salary for employee
107 is increased by 30 percent and this change is committed (2). The different versions of salary
are displayed (3).

The VERSIONS clause does not change the plan of the query. For example, if you run a query
on a table that uses the index access method, the same query on the same table with a
VERSIONS clause continues to use the index access method. The versions of the rows returned
by the version query are versions of the rows across transactions. The VERSIONS clause has no
effect on the transactional behavior of a query. This means that a query on a table with a
VERSIONS clause still inherits the query environment of the ongoing transaction.

The default VERSIONS clause can be specified as VERSIONS BETWEEN
{SCN|TIMESTAMP} MINVALUE AND MAXVALUE.

The VERSIONS clause is a SQL extension only for queries. You can have DML and DDL
operations that use a VERSIONS clause within subqueries. The row version query retrieves all
the committed versions of the selected rows. Changes made by the current active transaction are
not returned. The version query retrieves all incarnations of the rows. This essentially means that
versions returned include deleted and subsequent reinserted versions of the rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 41

Example of the Flashback Version Query (continued)

The row access for a version query can be defined in one of the following two categories:
• ROWID-based row access: In case of ROWID-based access, all versions of the specified
ROWID are returned irrespective of the row content. This essentially means that all versions
of the slot in the block indicated by the ROWID are returned.

• All other row access: For all other row access, all versions of the rows are returned.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 42

Copyright © 2010, Oracle. All rights reserved.

VERSIONS BETWEEN Clause

SELECT versions_starttime "START_DATE",
versions_endtime "END_DATE",
salary

FROM employees
VERSIONS BETWEEN SCN MINVALUE
AND MAXVALUE

WHERE last_name = 'Lorentz';

VERSIONS BETWEEN Clause

You can use the VERSIONS BETWEEN clause to retrieve all the versions of the rows that exist
or have ever existed between the time the query was issued and a point back in time.

If the undo retention time is less than the lower bound time or the SCN of the BETWEEN clause,
the query retrieves versions up to the undo retention time only. The time interval of the
BETWEEN clause can be specified as an SCN interval or a wall-clock interval. This time interval
is closed at both the lower and the upper bounds.

In the example, Lorentz’s salary changes are retrieved. The NULL value for END_DATE for the
first version indicates that this was the existing version at the time of the query. The NULL value
for START_DATE for the last version indicates that this version was created at a time before the
undo retention time.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 43

Copyright © 2010, Oracle. All rights reserved.

Quiz

When you use the INSERT or UPDATE command, the DEFAULT
keyword saves you from hard-coding the default value in your
programs or querying the dictionary to find it.

1. True

2. False

Answer: 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 44

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Use DML statements and control transactions
• Describe the features of multitable INSERTs

• Use the following types of multitable INSERTs:
– Unconditional INSERT

– Pivoting INSERT

– Conditional INSERT ALL

– Conditional INSERT FIRST

• Merge rows in a table

• Manipulate data by using subqueries

• Track the changes to data over a period of time

Summary

In this lesson, you should have learned how to manipulate data in the Oracle database by using
subqueries. You also should have learned about multitable INSERT statements, the MERGE
statement, and tracking changes in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 4 - 45

Copyright © 2010, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
• Performing multitable INSERTs

• Performing MERGE operations

• Tracking row versions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Managing Data in Different Time Zones

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 2

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Use data types similar to DATE that store fractional

seconds and track time zones

• Use data types that store the difference between two
datetime values

• Use the following datetime functions:
– CURRENT_DATE

– CURRENT_TIMESTAMP

– LOCALTIMESTAMP

– DBTIMEZONE

– SESSIONTIMEZONE

– EXTRACT

– TZ_OFFSET

– FROM_TZ

– TO_TIMESTAMP

– TO_YMINTERVAL

– TO_DSINTERVAL

Objectives

In this lesson, you learn how to use data types similar to DATE that store fractional seconds and
track time zones. This lesson addresses some of the datetime functions available in the Oracle
database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP

• INTERVAL data types

• Using the following functions:
– EXTRACT

– TZ_OFFSET

– FROM_TZ

– TO_TIMESTAMP

– TO_YMINTERVAL

– TO_DSINTERVAL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 4

Copyright © 2010, Oracle. All rights reserved.

Time Zones

-08:00

The image represents the time for
each time zone when Greenwich
time is 12:00.

-05:00

+02:00 +10:00

+07:00

Time Zones

The hours of the day are measured by the turning of the earth. The time of day at any particular
moment depends on where you are. When it is noon in Greenwich, England, it is midnight along
the International Date Line. The earth is divided into 24 time zones, one for each hour of the
day. The time along the prime meridian in Greenwich, England, is known as Greenwich Mean
Time (GMT). GMT is now known as Coordinated Universal Time (UTC). UTC is the time
standard against which all other time zones in the world are referenced. It is the same all year
round and is not affected by summer time or daylight saving time. The meridian line is an
imaginary line that runs from the North Pole to the South Pole. It is known as zero longitude and
it is the line from which all other lines of longitude are measured. All time is measured relative
to UTC and all places have a latitude (their distance north or south of the equator) and a
longitude (their distance east or west of the Greenwich meridian).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 5

Copyright © 2010, Oracle. All rights reserved.

TIME_ZONE Session Parameter

TIME_ZONE may be set to:

• An absolute offset

• Database time zone

• OS local time zone

• A named region

ALTER SESSION SET TIME_ZONE = '-05:00';
ALTER SESSION SET TIME_ZONE = dbtimezone;
ALTER SESSION SET TIME_ZONE = local;
ALTER SESSION SET TIME_ZONE = 'America/New_York';

TIME_ZONE Session Parameter

The Oracle database supports storing the time zone in your date and time data, as well as
fractional seconds. The ALTER SESSION command can be used to change time zone values in
a user’s session. The time zone values can be set to an absolute offset, a named time zone, a
database time zone, or the local time zone.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 6

Copyright © 2010, Oracle. All rights reserved.

CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP

• CURRENT_DATE:

– Returns the current date from the user session
– Has a data type of DATE

• CURRENT_TIMESTAMP:

– Returns the current date and time from the user session
– Has a data type of TIMESTAMP WITH TIME ZONE

• LOCALTIMESTAMP:

– Returns the current date and time from the user session
– Has a data type of TIMESTAMP

CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP

The CURRENT_DATE and CURRENT_TIMESTAMP functions return the current date and
current time stamp, respectively. The data type of CURRENT_DATE is DATE. The data type of
CURRENT_TIMESTAMP is TIMESTAMP WITH TIME ZONE. The values returned display the
time zone displacement of the SQL session executing the functions. The time zone displacement
is the difference (in hours and minutes) between local time and UTC. The TIMESTAMP WITH
TIME ZONE data type has the format:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 through 9. The
default is 6.
The LOCALTIMESTAMP function returns the current date and time in the session time zone.
The difference between LOCALTIMESTAMP and CURRENT_TIMESTAMP is that
LOCALTIMESTAMP returns a TIMESTAMP value, whereas CURRENT_TIMESTAMP returns a
TIMESTAMP WITH TIME ZONE value.

These functions are national language support (NLS)–sensitive—that is, the results will be in the
current NLS calendar and datetime formats.
Note: The SYSDATE function returns the current date and time as a DATE data type. You
learned how to use the SYSDATE function in the course titled Oracle Database: SQL
Fundamentals I.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 7

Copyright © 2010, Oracle. All rights reserved.

Comparing Date and Time in a Session’s
Time Zone

The TIME_ZONE parameter is set to –5:00 and then SELECT
statements for each date and time are executed to compare
differences.

ALTER SESSION
SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
ALTER SESSION SET TIME_ZONE = '-5:00';

SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SELECT SESSIONTIMEZONE, LOCALTIMESTAMP FROM DUAL;

1

2

3

Comparing Date and Time in a Session’s Time Zone

The ALTER SESSION command sets the date format of the session to
'DD-MON-YYYY HH24:MI:SS'—that is, day of month (1–31)-abbreviated name of month-
4-digit year hour of day (0–23):minute (0–59):second (0–59).

The example in the slide illustrates that the session is altered to set the TIME_ZONE parameter
to –5:00. Then the SELECT statement for CURRENT_DATE, CURRENT_TIMESTAMP, and
LOCALTIMESTAMP is executed to observe the differences in format.

Note: The TIME_ZONE parameter specifies the default local time zone displacement for the
current SQL session. TIME_ZONE is a session parameter only, not an initialization parameter.
The TIME_ZONE parameter is set as follows:

TIME_ZONE = '[+ | -] hh:mm'

The format mask ([+ | -] hh:mm) indicates the hours and minutes before or after UTC.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 8

Copyright © 2010, Oracle. All rights reserved.

Comparing Date and Time in a Session’s
Time Zone

Results of queries:

1

2

3

Comparing Date and Time in a Session’s Time Zone (continued)

In this case, the CURRENT_DATE function returns the current date in the session’s time zone,
the CURRENT_TIMESTAMP function returns the current date and time in the session’s time
zone as a value of the data type TIMESTAMP WITH TIME ZONE, and the
LOCALTIMESTAMP function returns the current date and time in the session’s time zone.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 9

Copyright © 2010, Oracle. All rights reserved.

DBTIMEZONE and SESSIONTIMEZONE

• Display the value of the database time zone:

• Display the value of the session’s time zone:

SELECT DBTIMEZONE FROM DUAL;

SELECT SESSIONTIMEZONE FROM DUAL;

DBTIMEZONE and SESSIONTIMEZONE

The DBA sets the database’s default time zone by specifying the SET TIME_ZONE clause of
the CREATE DATABASE statement. If omitted, the default database time zone is the operating
system time zone. The database time zone cannot be changed for a session with an ALTER
SESSION statement.

The DBTIMEZONE function returns the value of the database time zone. The return type is a
time zone offset (a character type in the format: '[+|-]TZH:TZM') or a time zone region
name, depending on how the user specified the database time zone value in the most recent
CREATE DATABASE or ALTER DATABASE statement. The example in the slide shows that the
database time zone is set to “–05:00,” as the TIME_ZONE parameter is in the format:

TIME_ZONE = '[+ | -] hh:mm'

The SESSIONTIMEZONE function returns the value of the current session’s time zone. The
return type is a time zone offset (a character type in the format '[+|-]TZH:TZM') or a time
zone region name, depending on how the user specified the session time zone value in the most
recent ALTER SESSION statement. The example in the slide shows that the session time zone is
offset to UTC by –8 hours. Observe that the database time zone is different from the current
session’s time zone.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 10

Copyright © 2010, Oracle. All rights reserved.

TIMESTAMP Data Types

Same as the TIMESTAMP data type; also
includes a time zone offset in its value

TIMESTAMP WITH LOCAL
TIME ZONE

Same as the TIMESTAMP data type; also
includes:

TIMEZONE_HOUR, and
TIMEZONE_MINUTE or
TIMEZONE_REGION

TIMESTAMP WITH TIME ZONE

Year, Month, Day, Hour, Minute, Second
with fractional seconds

TIMESTAMP

FieldsData Type

TIMESTAMP Data Types

The TIMESTAMP data type is an extension of the DATE data type.
TIMESTAMP (fractional_seconds_ precision)

This data type contains the year, month, and day values of date, as well as hour, minute, and
second values of time, where significant fractional seconds precision is the number of digits in
the fractional part of the SECOND datetime field. The accepted values of significant
fractional_seconds_precision are 0 through 9. The default is 6.

TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE

This data type contains all values of TIMESTAMP as well as time zone displacement value.
TIMESTAMP (fractional_seconds_precision) WITH LOCAL TIME ZONE

This data type contains all values of TIMESTAMP, with the following exceptions:
• Data is normalized to the database time zone when it is stored in the database.
• When the data is retrieved, users see the data in the session time zone.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 11

Copyright © 2010, Oracle. All rights reserved.

TIMESTAMP Fields

TIMEZONE_MINUTE

–12 to 14TIMEZONE_HOUR

00 to 59.9(N) where 9(N) is precisionSECOND

00 to 59MINUTE

00 to 23HOUR

01 to 31DAY

01 to 12MONTH

–4712 to 9999 (excluding year 0)YEAR

Valid ValuesDatetime Field

00 to 59

TIMESTAMP Fields

Each datetime data type is composed of several of these fields. Datetimes are mutually
comparable and assignable only if they have the same datetime fields.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 12

Copyright © 2010, Oracle. All rights reserved.

Difference Between DATE and TIMESTAMP

-- when hire_date is
of type DATE

SELECT hire_date
FROM employees;

ALTER TABLE employees
MODIFY hire_date TIMESTAMP;

SELECT hire_date
FROM employees;

BA

…

TIMESTAMP Data Type: Example

In the slide, example A shows the data from the hire_date column of the EMPLOYEES table
when the data type of the column is DATE. In example B, the table is altered and the data type of
the hire_date column is made into TIMESTAMP. The output shows the differences in
display. You can convert from DATE to TIMESTAMP when the column has data, but you cannot
convert from DATE or TIMESTAMP to TIMESTAMP WITH TIME ZONE unless the column is
empty.

You can specify the fractional seconds precision for time stamp. If none is specified, as in this
example, it defaults to 6.

For example, the following statement sets the fractional seconds precision as 7:
ALTER TABLE employees
MODIFY hire_date TIMESTAMP(7);

Note: The Oracle date data type by default appears as shown in this example. However, the date
data type also contains additional information such as hours, minutes, seconds, AM, and PM. To
obtain the date in this format, you can apply a format mask or a function to the date value.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 13

Copyright © 2010, Oracle. All rights reserved.

Comparing TIMESTAMP Data Types

CREATE TABLE web_orders
(order_date TIMESTAMP WITH TIME ZONE,
delivery_time TIMESTAMP WITH LOCAL TIME ZONE);

INSERT INTO web_orders values
(current_date, current_timestamp + 2);

SELECT * FROM web_orders;

Comparing TIMESTAMP Data Types

In the example in the slide, a new table web_orders is created with a column of data type
TIMESTAMP WITH TIME ZONE and a column of data type TIMESTAMP WITH LOCAL
TIME ZONE. This table is populated whenever a web_order is placed. The time stamp and
time zone for the user placing the order is inserted based on the CURRENT_DATE value. The
local time stamp and time zone is populated by inserting two days from the
CURRENT_TIMESTAMP value into it every time an order is placed. When a Web-based
company guarantees shipping, they can estimate their delivery time based on the time zone of
the person placing the order.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 14

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP

• INTERVAL data types

• Using the following functions:
– EXTRACT

– TZ_OFFSET

– FROM_TZ

– TO_TIMESTAMP

– TO_YMINTERVAL

– TO_DSINTERVAL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 15

Copyright © 2010, Oracle. All rights reserved.

INTERVAL Data Types

• INTERVAL data types are used to store the difference
between two datetime values.

• There are two classes of intervals:
– Year-month
– Day-time

• The precision of the interval is:
– The actual subset of fields that constitutes an interval
– Specified in the interval qualifier

Days, Hour, Minute, Second with
fractional seconds

INTERVAL DAY TO SECOND

Year, MonthINTERVAL YEAR TO MONTH

FieldsData Type

INTERVAL Data Types

INTERVAL data types are used to store the difference between two datetime values. There are
two classes of intervals: year-month intervals and day-time intervals. A year-month interval is
made up of a contiguous subset of fields of YEAR and MONTH, whereas a day-time interval is
made up of a contiguous subset of fields consisting of DAY, HOUR, MINUTE, and SECOND. The
actual subset of fields that constitute an interval is called the precision of the interval and is
specified in the interval qualifier. Because the number of days in a year is calendar dependent,
the year-month interval is NLS dependent, whereas day-time interval is NLS independent.

The interval qualifier may also specify the leading field precision, which is the number of digits
in the leading or only field, and in case the trailing field is SECOND, it may also specify the
fractional seconds precision, which is the number of digits in the fractional part of the SECOND
value. If not specified, the default value for leading field precision is 2 digits, and the default
value for fractional seconds precision is 6 digits.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 16

INTERVAL Data Types (continued)

INTERVAL YEAR (year_precision) TO MONTH

This data type stores a period of time in years and months, where year_precision is the
number of digits in the YEAR datetime field. The accepted values are 0 through 9. The default
is 6.

INTERVAL DAY (day_precision) TO SECOND
(fractional_seconds_precision)

This data type stores a period of time in days, hours, minutes, and seconds, where
day_precision is the maximum number of digits in the DAY datetime field (accepted values
are 0 through 9; the default is 2), and fractional_seconds_precision is the number of
digits in the fractional part of the SECOND field. The accepted values are 0 through 9. The
default is 6.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 17

Copyright © 2010, Oracle. All rights reserved.

INTERVAL Fields

00 to 59.9(N) where 9(N) is precisionSECOND

00 to 59MINUTE

HOUR

DAY

MONTH

YEAR

INTERVAL Field

00 to 23

Any positive or negative integer

00 to 11

Any positive or negative integer

Valid Values for Interval

INTERVAL Fields

INTERVAL YEAR TO MONTH can have fields of YEAR and MONTH.

INTERVAL DAY TO SECOND can have fields of DAY, HOUR, MINUTE, and SECOND.

The actual subset of fields that constitute an item of either type of interval is defined by an
interval qualifier, and this subset is known as the precision of the item.

Year-month intervals are mutually comparable and assignable only with other year-month
intervals, and day-time intervals are mutually comparable and assignable only with other day-
time intervals.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 18

Copyright © 2010, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH: Example

CREATE TABLE warranty
(prod_id number, warranty_time INTERVAL YEAR(3) TO
MONTH);

INSERT INTO warranty VALUES (123, INTERVAL '8' MONTH);

INSERT INTO warranty VALUES (155, INTERVAL '200'
YEAR(3));

INSERT INTO warranty VALUES (678, '200-11');

SELECT * FROM warranty;

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime
fields. Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The default value
of year_precision is 2.

Restriction: The leading field must be more significant than the trailing field. For example,
INTERVAL '0-1' MONTH TO YEAR is not valid.

Examples
• INTERVAL '123-2' YEAR(3) TO MONTH

Indicates an interval of 123 years, 2 months
• INTERVAL '123' YEAR(3)

Indicates an interval of 123 years, 0 months
• INTERVAL '300' MONTH(3)

Indicates an interval of 300 months
• INTERVAL '123' YEAR

Returns an error because the default precision is 2, and 123 has three digits

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 19

INTERVAL YEAR TO MONTH Data Type (continued)

The Oracle database supports two interval data types: INTERVAL YEAR TO MONTH and
INTERVAL DAY TO SECOND; the column type, PL/SQL argument, variable, and return type
must be one of the two. However, for interval literals, the system recognizes other American
National Standards Institute (ANSI) interval types such as INTERVAL '2' YEAR or
INTERVAL '10' HOUR. In these cases, each interval is converted to one of the two supported
types.

In the example in the slide, a WARRANTY table is created, which contains a warranty_time
column that takes the INTERVAL YEAR(3) TO MONTH data type. Different values are inserted
into it to indicate years and months for various products. When these rows are retrieved from the
table, you see a year value separated from the month value by a (-).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 20

Copyright © 2010, Oracle. All rights reserved.

INTERVAL DAY TO SECOND
Data Type: Example

CREATE TABLE lab
(exp_id number, test_time INTERVAL DAY(2) TO SECOND);

INSERT INTO lab VALUES (100012, '90 00:00:00');

INSERT INTO lab VALUES (56098,

INTERVAL '6 03:30:16' DAY TO SECOND);

SELECT * FROM lab;

INTERVAL DAY TO SECOND Data Type: Example

In the example in the slide, you create the lab table with a test_time column of the
INTERVAL DAY TO SECOND data type. You then insert into it the value ‘90 00:00:00’ to
indicate 90 days and 0 hours, 0 minutes, and 0 seconds, and INTERVAL '6 03:30:16'
DAY TO SECOND to indicate 6 days, 3 hours, 30 minutes, and 16 seconds. The SELECT
statement shows how this data is displayed in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 21

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP

• INTERVAL data types

• Using the following functions:
– EXTRACT

– TZ_OFFSET

– FROM_TZ

– TO_TIMESTAMP

– TO_YMINTERVAL

– TO_DSINTERVAL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 22

Copyright © 2010, Oracle. All rights reserved.

EXTRACT

• Display the YEAR component from the SYSDATE.

• Display the MONTH component from the HIRE_DATE for
those employees whose MANAGER_ID is 100.

SELECT EXTRACT (YEAR FROM SYSDATE) FROM DUAL;

SELECT last_name, hire_date,
EXTRACT (MONTH FROM HIRE_DATE)

FROM employees
WHERE manager_id = 100;

EXTRACT

The EXTRACT expression extracts and returns the value of a specified datetime field from a
datetime or interval value expression. You can extract any of the components mentioned in the
following syntax using the EXTRACT function. The syntax of the EXTRACT function is:

SELECT EXTRACT ([YEAR] [MONTH][DAY] [HOUR] [MINUTE][SECOND]
[TIMEZONE_HOUR] [TIMEZONE_MINUTE]
[TIMEZONE_REGION] [TIMEZONE_ABBR]

FROM [datetime_value_expression] [interval_value_expression]);

When you extract a TIMEZONE_REGION or TIMEZONE_ABBR (abbreviation), the value
returned is a string containing the appropriate time zone name or abbreviation. When you extract
any of the other values, the value returned is a date in the Gregorian calendar. When extracting
from a datetime with a time zone value, the value returned is in UTC.

In the first example in the slide, the EXTRACT function is used to extract the YEAR from
SYSDATE. In the second example in the slide, the EXTRACT function is used to extract the
MONTH from the HIRE_DATE column of the EMPLOYEES table for those employees who
report to the manager whose EMPLOYEE_ID is 100.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 23

Copyright © 2010, Oracle. All rights reserved.

TZ_OFFSET

Display the time zone offset for the 'US/Eastern',
'Canada/Yukon' and 'Europe/London' time zones:

SELECT TZ_OFFSET('US/Eastern'),
TZ_OFFSET('Canada/Yukon'),
TZ_OFFSET('Europe/London')

FROM DUAL;

TZ_OFFSET

The TZ_OFFSET function returns the time zone offset corresponding to the value entered. The
return value is dependent on the date when the statement is executed. For example, if the
TZ_OFFSET function returns a value –08:00, this value indicates that the time zone where the
command was executed is eight hours behind UTC. You can enter a valid time zone name, a
time zone offset from UTC (which simply returns itself), or the keyword SESSIONTIMEZONE
or DBTIMEZONE. The syntax of the TZ_OFFSET function is:

TZ_OFFSET (['time_zone_name'] '[+ | -] hh:mm']
[SESSIONTIMEZONE] [DBTIMEZONE]

The Fold Motor Company has its headquarters in Michigan, USA, which is in the US/Eastern
time zone. The company president, Mr. Fold, wants to conduct a conference call with the vice
president of the Canadian operations and the vice president of European operations, who are in
the Canada/Yukon and Europe/London time zones, respectively. Mr. Fold wants to find out the
time in each of these places to make sure that his senior management will be available to attend
the meeting. His secretary, Mr. Scott, helps by issuing the queries shown in the example and gets
the following results:

• The 'US/Eastern' time zone is four hours behind UTC.
• The 'Canada/Yukon' time zone is seven hours behind UTC.
• The 'Europe/London' time zone is one hour ahead of UTC.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 24

TZ_OFFSET (continued)

For a listing of valid time zone name values, you can query the V$TIMEZONE_NAMES dynamic
performance view.

SELECT * FROM V$TIMEZONE_NAMES;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 25

Copyright © 2010, Oracle. All rights reserved.

FROM_TZ

Display the TIMESTAMP value '2000-03-28 08:00:00' as a
TIMESTAMP WITH TIME ZONE value for the
'Australia/North' time zone region.

SELECT FROM_TZ(TIMESTAMP
'2000-07-12 08:00:00', 'Australia/North')

FROM DUAL;

FROM_TZ

The FROM_TZ function converts a TIMESTAMP value to a TIMESTAMP WITH TIME ZONE
value.

The syntax of the FROM_TZ function is as follows:

FROM_TZ(TIMESTAMP timestamp_value, time_zone_value)

where time_zone_value is a character string in the format 'TZH:TZM' or a character
expression that returns a string in TZR (time zone region) with an optional TZD format. TZD is
an abbreviated time zone string with daylight saving information. TZR represents the time zone
region in datetime input strings. Examples are 'Australia/North', 'PST' for US/Pacific
standard time, 'PDT' for US/Pacific daylight time, and so on.

The example in the slide converts a TIMESTAMP value to TIMESTAMP WITH TIME ZONE.

Note: To see a listing of valid values for the TZR and TZD format elements, query the
V$TIMEZONE_NAMES dynamic performance view.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 26

Copyright © 2010, Oracle. All rights reserved.

TO_TIMESTAMP

Display the character string '2007-03-06 11:00:00'
as a TIMESTAMP value:

SELECT TO_TIMESTAMP ('2007-03-06 11:00:00',
'YYYY-MM-DD HH:MI:SS')

FROM DUAL;

TO_TIMESTAMP

The TO_TIMESTAMP function converts a string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a value of the TIMESTAMP data type. The syntax of the
TO_TIMESTAMP function is:

TO_TIMESTAMP (char,[fmt],['nlsparam'])

The optional fmt specifies the format of char. If you omit fmt, the string must be in the
default format of the TIMESTAMP data type. The optional nlsparam specifies the language in
which month and day names, and abbreviations are returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

If you omit nlsparams, this function uses the default date language for your session.

The example in the slide converts a character string to a value of TIMESTAMP.

Note: You use the TO_TIMESTAMP_TZ function to convert a string of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 data type to a value of the TIMESTAMP WITH TIME ZONE data type.
For more information about this function, see Oracle Database SQL Language Reference for
10g or 11g database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 27

Copyright © 2010, Oracle. All rights reserved.

TO_YMINTERVAL

Display a date that is one year and two months after the hire
date for the employees working in the department with the
DEPARTMENT_ID 20.

SELECT hire_date,
hire_date + TO_YMINTERVAL('01-02') AS
HIRE_DATE_YMININTERVAL

FROM employees
WHERE department_id = 20;

TO_YMINTERVAL

The TO_YMINTERVAL function converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to an INTERVAL YEAR TO MONTH data type. The INTERVAL YEAR
TO MONTH data type stores a period of time using the YEAR and MONTH datetime fields. The
format of INTERVAL YEAR TO MONTH is as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The default value
of year_precision is 2.
The syntax of the TO_YMINTERVAL function is:

TO_YMINTERVAL (char)

where char is the character string to be converted.
The example in the slide calculates a date that is one year and two months after the hire date for
the employees working in the department 20 of the EMPLOYEES table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 28

Copyright © 2010, Oracle. All rights reserved.

TO_DSINTERVAL

Display a date that is 100 days and 10 hours after the hire date
for all the employees.

SELECT last_name,
TO_CHAR(hire_date, 'mm-dd-yy:hh:mi:ss') hire_date,
TO_CHAR(hire_date +
TO_DSINTERVAL('100 10:00:00'),

'mm-dd-yy:hh:mi:ss') hiredate2
FROM employees;

…

TO_DSINTERVAL

TO_DSINTERVAL converts a character string of the CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to an INTERVAL DAY TO SECOND data type.

In the example in the slide, the date 100 days and 10 hours after the hire date is obtained.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 29

Copyright © 2010, Oracle. All rights reserved.

Daylight Saving Time

• First Sunday in April
– Time jumps from 01:59:59 AM to 03:00:00 AM.

– Values from 02:00:00 AM to 02:59:59 AM are not valid.

• Last Sunday in October
– Time jumps from 02:00:00 AM to 01:00:01 AM.

– Values from 01:00:01 AM to 02:00:00 AM are ambiguous
because they are visited twice.

Daylight Saving Time (DST)

Most western nations advance the clock ahead one hour during the summer months. This period
is called daylight saving time. Daylight saving time lasts from the first Sunday in April to the
last Sunday in October in the most of the United States, Mexico, and Canada. The nations of the
European Union observe daylight saving time, but they call it the summer time period. Europe’s
summer time period begins a week earlier than its North American counterpart, but ends at the
same time.

The Oracle database automatically determines, for any given time zone region, whether daylight
saving time is in effect and returns local time values accordingly. The datetime value is
sufficient for the Oracle database to determine whether daylight saving time is in effect for a
given region in all cases except boundary cases. A boundary case occurs during the period when
daylight saving time goes into or out of effect. For example, in the US/Eastern region, when
daylight saving time goes into effect, the time changes from 01:59:59 AM to 03:00:00 AM. The
one-hour interval between 02:00:00 AM and 02:59:59 AM. does not exist. When daylight saving
time goes out of effect, the time changes from 02:00:00 AM back to 01:00:01 AM, and the one-
hour interval between 01:00:01 AM and 02:00:00 AM is repeated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 30

Daylight Saving Time (DST) (continued)

ERROR_ON_OVERLAP_TIME

The ERROR_ON_OVERLAP_TIME is a session parameter to notify the system to issue an error
when it encounters a datetime that occurs in the overlapped period and no time zone
abbreviation was specified to distinguish the period.

For example, daylight saving time ends on October 31, at 02:00:01 AM. The overlapped periods
are:

• 10/31/2004 01:00:01 AM to 10/31/2004 02:00:00 AM (EDT)
• 10/31/2004 01:00:01 AM to 10/31/2004 02:00:00 AM (EST)

If you input a datetime string that occurs in one of these two periods, you need to specify the
time zone abbreviation (for example, EDT or EST) in the input string for the system to
determine the period. Without this time zone abbreviation, the system does the following:

If the ERROR_ON_OVERLAP_TIME parameter is FALSE, it assumes that the input time is
standard time (for example, EST). Otherwise, an error is raised.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 31

Copyright © 2010, Oracle. All rights reserved.

Quiz

The TIME_ZONE session parameter may be set to:

1. A relative offset

2. Database time zone

3. OS local time zone

4. A named region

Answers: 2, 3, 4

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 32

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the
following functions:
• CURRENT_DATE

• CURRENT_TIMESTAMP

• LOCALTIMESTAMP

• DBTIMEZONE

• SESSIONTIMEZONE

• EXTRACT

• TZ_OFFSET

• FROM_TZ

• TO_TIMESTAMP

• TO_YMINTERVAL

• TO_DSINTERVAL

Summary

This lesson addressed some of the datetime functions available in the Oracle database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 5 - 33

Copyright © 2010, Oracle. All rights reserved.

Practice 5: Overview

This practice covers using the datetime functions.

Practice 5: Overview

In this practice, you display time zone offsets, CURRENT_DATE, CURRENT_TIMESTAMP, and
LOCALTIMESTAMP. You also set time zones and use the EXTRACT function.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Retrieving Data by Using Subqueries

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 2

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Write a multiple-column subquery

• Use scalar subqueries in SQL

• Solve problems with correlated subqueries

• Update and delete rows by using correlated subqueries
• Use the EXISTS and NOT EXISTS operators

• Use the WITH clause

Objectives

In this lesson, you learn how to write multiple-column subqueries and subqueries in the FROM
clause of a SELECT statement. You also learn how to solve problems by using scalar, correlated
subqueries and the WITH clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Writing a multiple-column subquery

• Using scalar subqueries in SQL

• Solving problems with correlated subqueries
• Using the EXISTS and NOT EXISTS operators

• Using the WITH clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 4

Copyright © 2010, Oracle. All rights reserved.

Multiple-Column Subqueries

Main query
WHERE (MANAGER_ID, DEPARTMENT_ID) IN

Subquery

100 90

102 60

124 50

Each row of the main query is compared to values
from a multiple-row and multiple-column subquery.

Multiple-Column Subqueries

So far, you have written single-row subqueries and multiple-row subqueries where only one
column is returned by the inner SELECT statement and this is used to evaluate the expression in
the parent SELECT statement. If you want to compare two or more columns, you must write a
compound WHERE clause using logical operators. Using multiple-column subqueries, you can
combine duplicate WHERE conditions into a single WHERE clause.

Syntax
SELECT column, column, ...
FROM table
WHERE(column, column, ...) IN

(SELECT column, column, ...
FROM table
WHERE condition);

The graphic in the slide illustrates that the values of MANAGER_ID and DEPARTMENT_ID
from the main query are being compared with the MANAGER_ID and DEPARTMENT_ID values
retrieved by the subquery. Because the number of columns that are being compared is more than
one, the example qualifies as a multiple-column subquery.

Note: Before you run the examples in the next few slides, you need to create the empl_demo
table and populate data into it by using the lab_06_insert_empdata.sql file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 5

Copyright © 2010, Oracle. All rights reserved.

Column Comparisons

Multiple-column comparisons involving subqueries can be:

• Nonpairwise comparisons

• Pairwise comparisons

Pairwise Versus Nonpairwise Comparisons

Multiple-column comparisons involving subqueries can be nonpairwise comparisons or pairwise
comparisons. If you consider the example “Display the details of the employees who work in the
same department, and have the same manager, as ‘Daniel’? ,” you get the correct result with the
following statement:

SELECT first_name, last_name, manager_id, department_id
FROM empl_demo
WHERE manager_id IN (SELECT manager_id

FROM empl_demo
WHERE first_name = 'Daniel')

AND department_id IN (SELECT department_id
FROM empl_demo
WHERE first_name = 'Daniel');

There is only one “Daniel” in the EMPL_DEMO table (Daniel Faviet, who is managed by
employee 108 and works in department 100). However, if the subqueries return more than one
row, the result might not be correct. For example, if you run the same query but substitute
“John” for “Daniel,” you get an incorrect result. This is because the combination of
department_id and manager_id is important. To get the correct result for this query, you
need a pairwise comparison.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 6

Copyright © 2010, Oracle. All rights reserved.

Pairwise Comparison Subquery

Display the details of the employees who are managed by the
same manager and work in the same department as
employees with the first name of “John.”

SELECT employee_id, manager_id, department_id
FROM empl_demo
WHERE (manager_id, department_id) IN

(SELECT manager_id, department_id
FROM empl_demo
WHERE first_name = 'John')

AND first_name <> 'John';

Pairwise Comparison Subquery

The example in the slide compares the combination of values in the MANAGER_ID column and
the DEPARTMENT_ID column of each row in the EMPL_DEMO table with the values in the
MANAGER_ID column and the DEPARTMENT_ID column for the employees with the
FIRST_NAME of “John.” First, the subquery to retrieve the MANAGER_ID and
DEPARTMENT_ID values for the employees with the FIRST_NAME of “John” is executed.
This subquery returns the following:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 7

Pairwise Comparison Subquery (continued)

These values are compared with the MANAGER_ID column and the DEPARTMENT_ID column
of each row in the EMPL_DEMO table. If the combination matches, the row is displayed. In the
output, the records of the employees with the FIRST_NAME of “John” will not be displayed.
The following is the output of the query in the slide:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 8

Copyright © 2010, Oracle. All rights reserved.

Nonpairwise Comparison Subquery

Display the details of the employees who are managed by the
same manager as the employees with the first name of “John”
and work in the same department as the employees with the
first name of “John.”

SELECT employee_id, manager_id, department_id
FROM empl_demo
WHERE manager_id IN

(SELECT manager_id
FROM empl_demo
WHERE first_name = 'John')

AND department_id IN
(SELECT department_id
FROM empl_demo
WHERE first_name = 'John')

AND first_name <> 'John';

Nonpairwise Comparison Subquery

The example shows a nonpairwise comparison of the columns. First, the subquery to retrieve the
MANAGER_ID values for the employees with the FIRST_NAME of “John” is executed.
Similarly, the second subquery to retrieve the DEPARTMENT_ID values for the employees with
the FIRST_NAME of “John” is executed. The retrieved values of the MANAGER_ID and
DEPARTMENT_ID columns are compared with the MANAGER_ID and DEPARTMENT_ID
columns for each row in the EMPL_DEMO table. If the MANAGER_ID column of the row in the
EMPL_DEMO table matches with any of the values of MANAGER_ID retrieved by the inner
subquery and if the DEPARTMENT_ID column of the row in the EMPL_DEMO table matches
with any of the values of DEPARTMENT_ID retrieved by the second subquery, the record is
displayed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 9

Nonpairwise Comparison Subquery (continued)

The following is the output of the query in the previous slide:

This query retrieves additional rows than the pairwise comparison (those with the combination
of manager_id=100 and department_id=50 or 80, although no employee named “John”
has such a combination).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 10

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Writing a multiple-column subquery

• Using scalar subqueries in SQL

• Solving problems with correlated subqueries
• Using the EXISTS and NOT EXISTS operators

• Using the WITH clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 11

Copyright © 2010, Oracle. All rights reserved.

Scalar Subquery Expressions

• A scalar subquery expression is a subquery that
returns exactly one column value from one row.

• Scalar subqueries can be used in:
– The condition and expression part of DECODE and CASE

– All clauses of SELECT except GROUP BY

– The SET clause and WHERE clause of an UPDATE statement

Scalar Subqueries in SQL

A subquery that returns exactly one column value from one row is also referred to as a scalar
subquery. Multiple-column subqueries that are written to compare two or more columns, using a
compound WHERE clause and logical operators, do not qualify as scalar subqueries.

The value of the scalar subquery expression is the value of the select list item of the subquery. If
the subquery returns 0 rows, the value of the scalar subquery expression is NULL. If the
subquery returns more than one row, the Oracle server returns an error. The Oracle server has
always supported the usage of a scalar subquery in a SELECT statement. You can use scalar
subqueries in:

• The condition and expression part of DECODE and CASE
• All clauses of SELECT except GROUP BY
• The SET clause and WHERE clause of an UPDATE statement

However, scalar subqueries are not valid expressions in the following places:
• As default values for columns and hash expressions for clusters
• In the RETURNING clause of data manipulation language (DML) statements
• As the basis of a function-based index
• In GROUP BY clauses, CHECK constraints, and WHEN conditions
• In CONNECT BY clauses
• In statements that are unrelated to queries, such as CREATE PROFILE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 12

Copyright © 2010, Oracle. All rights reserved.

Scalar Subqueries: Examples

• Scalar subqueries in CASE expressions:

• Scalar subqueries in the ORDER BY clause:

SELECT employee_id, last_name,

(CASE

WHEN department_id =

(SELECT department_id

FROM departments

WHERE location_id = 1800)

THEN 'Canada' ELSE 'USA' END) location

FROM employees;

SELECT employee_id, last_name

FROM employees e

ORDER BY (SELECT department_name

FROM departments d

WHERE e.department_id = d.department_id);

20

Scalar Subqueries: Examples

The first example in the slide demonstrates that scalar subqueries can be used in CASE
expressions. The inner query returns the value 20, which is the department ID of the department
whose location ID is 1800. The CASE expression in the outer query uses the result of the inner
query to display the employee ID, last names, and a value of Canada or USA, depending on
whether the department ID of the record retrieved by the outer query is 20 or not.

The following is the result of the first example in the slide:
… O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 B
re

za
 S

of
tw

ar
e

En
gi

ne
er

in
g

d.
o.

o
us

e
on

ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 13

Scalar Subqueries: Examples (continued)

The second example in the slide demonstrates that scalar subqueries can be used in the ORDER
BY clause. The example orders the output based on the DEPARTMENT_NAME by matching the
DEPARTMENT_ID from the EMPLOYEES table with the DEPARTMENT_ID from the
DEPARTMENTS table. This comparison is done in a scalar subquery in the ORDER BY clause.
The following is the result of the second example:

The second example uses a correlated subquery. In a correlated subquery, the subquery
references a column from a table referred to in the parent statement. Correlated subqueries are
explained later in this lesson.

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 14

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Writing a multiple-column subquery

• Using scalar subqueries in SQL

• Solving problems with correlated subqueries
• Using the EXISTS and NOT EXISTS operators

• Using the WITH clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 15

Copyright © 2010, Oracle. All rights reserved.

Correlated Subqueries

Correlated subqueries are used for row-by-row processing.
Each subquery is executed once for every row of the outer
query.

GET
candidate row from outer query

EXECUTE
inner query using candidate row value

USE
values from inner query to qualify or

disqualify candidate row

Correlated Subqueries

The Oracle server performs a correlated subquery when the subquery references a column from
a table referred to in the parent statement. A correlated subquery is evaluated once for each row
processed by the parent statement. The parent statement can be a SELECT, UPDATE, or
DELETE statement.

Nested Subqueries Versus Correlated Subqueries

With a normal nested subquery, the inner SELECT query runs first and executes once, returning
values to be used by the main query. A correlated subquery, however, executes once for each
candidate row considered by the outer query. That is, the inner query is driven by the outer
query.

Nested Subquery Execution
• The inner query executes first and finds a value.
• The outer query executes once, using the value from the inner query.

Correlated Subquery Execution
• Get a candidate row (fetched by the outer query).
• Execute the inner query using the value of the candidate row.
• Use the values resulting from the inner query to qualify or disqualify the candidate.
• Repeat until no candidate row remains.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 16

Copyright © 2010, Oracle. All rights reserved.

Correlated Subqueries

The subquery references a column from a table in the parent
query.

SELECT column1, column2, ...
FROM table1
WHERE column1 operator

(SELECT column1, column2
FROM table2
WHERE expr1 =

.expr2);

Outer_table

Outer_table

Correlated Subqueries (continued)

A correlated subquery is one way of reading every row in a table and comparing values in each
row against related data. It is used whenever a subquery must return a different result or set of
results for each candidate row considered by the main query. That is, you use a correlated
subquery to answer a multipart question whose answer depends on the value in each row
processed by the parent statement.

The Oracle server performs a correlated subquery when the subquery references a column from
a table in the parent query.

Note: You can use the ANY and ALL operators in a correlated subquery.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 B
re

za
 S

of
tw

ar
e

En
gi

ne
er

in
g

d.
o.

o
us

e
on

ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 17

Copyright © 2010, Oracle. All rights reserved.

SELECT last_name, salary, department_id
FROM employees outer_table
WHERE salary >

(SELECT AVG(salary)
FROM employees inner_table
WHERE inner_table.department_id =
outer_table.department_id);

Using Correlated Subqueries

Find all employees who earn more than the average salary in
their department.

Each time a row from
the outer query
is processed, the
inner query is
evaluated.

Using Correlated Subqueries

The example in the slide determines which employees earn more than the average salary of their
department. In this case, the correlated subquery specifically computes the average salary for
each department.

Because both the outer query and inner query use the EMPLOYEES table in the FROM clause, an
alias is given to EMPLOYEES in the outer SELECT statement for clarity. The alias makes the
entire SELECT statement more readable. Without the alias, the query would not work properly
because the inner statement would not be able to distinguish the inner table column from the
outer table column.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 18

Copyright © 2010, Oracle. All rights reserved.

Using Correlated Subqueries

Display details of those employees who have changed
jobs at least twice.

SELECT e.employee_id, last_name,e.job_id

FROM employees e

WHERE 2 <= (SELECT COUNT(*)

FROM job_history

WHERE employee_id = e.employee_id);

Using Correlated Subqueries (continued)

The example in the slide displays the details of those employees who have changed jobs at least
twice. The Oracle server evaluates a correlated subquery as follows:

1. Select a row from the table specified in the outer query. This will be the current candidate
row.

2. Store the value of the column referenced in the subquery from this candidate row. (In the
example in the slide, the column referenced in the subquery is E.EMPLOYEE_ID.)

3. Perform the subquery with its condition referencing the value from the outer query’s
candidate row. (In the example in the slide, the COUNT(*) group function is evaluated
based on the value of the E.EMPLOYEE_ID column obtained in step 2.)

4. Evaluate the WHERE clause of the outer query on the basis of results of the subquery
performed in step 3. This determines whether the candidate row is selected for output. (In
the example, the number of times an employee has changed jobs, evaluated by the
subquery, is compared with 2 in the WHERE clause of the outer query. If the condition is
satisfied, that employee record is displayed.)

5. Repeat the procedure for the next candidate row of the table, and so on, until all the rows in
the table have been processed.

The correlation is established by using an element from the outer query in the subquery. In this
example, you compare EMPLOYEE_ID from the table in the subquery with EMPLOYEE_ID
from the table in the outer query.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 19

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Writing a multiple-column subquery

• Using scalar subqueries in SQL

• Solving problems with correlated subqueries
• Using the EXISTS and NOT EXISTS operators

• Using the WITH clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 20

Copyright © 2010, Oracle. All rights reserved.

Using the EXISTS Operator

• The EXISTS operator tests for existence of rows in the
results set of the subquery.

• If a subquery row value is found:
– The search does not continue in the inner query
– The condition is flagged TRUE

• If a subquery row value is not found:
– The condition is flagged FALSE

– The search continues in the inner query

EXISTS Operator

With nesting SELECT statements, all logical operators are valid. In addition, you can use the
EXISTS operator. This operator is frequently used with correlated subqueries to test whether a
value retrieved by the outer query exists in the results set of the values retrieved by the inner
query. If the subquery returns at least one row, the operator returns TRUE. If the value does not
exist, it returns FALSE. Accordingly, NOT EXISTS tests whether a value retrieved by the outer
query is not a part of the results set of the values retrieved by the inner query.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 21

Copyright © 2010, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, department_id
FROM employees outer
WHERE EXISTS (SELECT 'X'

FROM employees
WHERE manager_id =

outer.employee_id);

Using the EXISTS Operator

Using the EXISTS Operator

The EXISTS operator ensures that the search in the inner query does not continue when at least
one match is found for the manager and employee number by the condition:

WHERE manager_id = outer.employee_id.

Note that the inner SELECT query does not need to return a specific value, so a constant can be
selected.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 22

Copyright © 2010, Oracle. All rights reserved.

SELECT department_id, department_name
FROM departments d
WHERE NOT EXISTS (SELECT 'X'

FROM employees
WHERE department_id = d.department_id);

Find All Departments That Do Not Have Any
Employees

…

Using the NOT EXISTS Operator

Alternative Solution

A NOT IN construct can be used as an alternative for a NOT EXISTS operator, as shown in the
following example:

SELECT department_id, department_name
FROM departments
WHERE department_id NOT IN (SELECT department_id

FROM employees);

However, NOT IN evaluates to FALSE if any member of the set is a NULL value. Therefore,
your query will not return any rows even if there are rows in the departments table that
satisfy the WHERE condition.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 23

Copyright © 2010, Oracle. All rights reserved.

Correlated UPDATE

Use a correlated subquery to update rows in one table based
on rows from another table.

UPDATE table1 alias1
SET column = (SELECT expression

FROM table2 alias2
WHERE alias1.column =

alias2.column);

Correlated UPDATE

In the case of the UPDATE statement, you can use a correlated subquery to update rows in one
table based on rows from another table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 24

Copyright © 2010, Oracle. All rights reserved.

Using Correlated UPDATE

• Denormalize the EMPL6 table by adding a column to store
the department name.

• Populate the table by using a correlated update.

ALTER TABLE empl6
ADD(department_name VARCHAR2(25));

UPDATE empl6 e
SET department_name =

(SELECT department_name
FROM departments d
WHERE e.department_id = d.department_id);

Correlated UPDATE (continued)

The example in the slide denormalizes the EMPL6 table by adding a column to store the
department name and then populates the table by using a correlated update.

Following is another example for a correlated update.

Problem Statement

The REWARDS table has a list of employees who have exceeded expectations in their
performance. Use a correlated subquery to update rows in the EMPL6 table based on rows from
the REWARDS table:

UPDATE empl6
SET salary = (SELECT empl6.salary + rewards.pay_raise

FROM rewards
WHERE employee_id =

empl6.employee_id
AND payraise_date =

(SELECT MAX(payraise_date)
FROM rewards
WHERE employee_id = empl6.employee_id))

WHERE empl6.employee_id
IN (SELECT employee_id FROM rewards);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 25

Correlated UPDATE (continued)

This example uses the REWARDS table. The REWARDS table has the following columns:
EMPLOYEE_ID, PAY_RAISE, and PAYRAISE_DATE. Every time an employee gets a pay
raise, a record with details such as the employee ID, the amount of the pay raise, and the date of
receipt of the pay raise is inserted into the REWARDS table. The REWARDS table can contain
more than one record for an employee. The PAYRAISE _DATE column is used to identify the
most recent pay raise received by an employee.

In the example, the SALARY column in the EMPL6 table is updated to reflect the latest pay raise
received by the employee. This is done by adding the current salary of the employee with the
corresponding pay raise from the REWARDS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 26

Copyright © 2010, Oracle. All rights reserved.

DELETE FROM table1 alias1
WHERE column operator

(SELECT expression
FROM table2 alias2
WHERE alias1.column = alias2.column);

Correlated DELETE

Use a correlated subquery to delete rows in one table based on
rows from another table.

Correlated DELETE

In the case of a DELETE statement, you can use a correlated subquery to delete only those rows
that also exist in another table. If you decide that you will maintain only the last four job history
records in the JOB_HISTORY table, when an employee transfers to a fifth job, you delete the
oldest JOB_HISTORY row by looking up the JOB_HISTORY table for the
MIN(START_DATE)for the employee. The following code illustrates how the preceding
operation can be performed using a correlated DELETE:

DELETE FROM emp_history JH
WHERE employee_id =

(SELECT employee_id
FROM employees E
WHERE JH.employee_id = E.employee_id
AND START_DATE =

(SELECT MIN(start_date)
FROM job_history JH
WHERE JH.employee_id = E.employee_id)
AND 5 > (SELECT COUNT(*)

FROM job_history JH
WHERE JH.employee_id = E.employee_id
GROUP BY EMPLOYEE_ID
HAVING COUNT(*) >= 4));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 27

Copyright © 2010, Oracle. All rights reserved.

DELETE FROM empl6 E
WHERE employee_id =

(SELECT employee_id
FROM emp_history
WHERE employee_id = E.employee_id);

Using Correlated DELETE

Use a correlated subquery to delete only those rows from the
EMPL6 table that also exist in the EMP_HISTORY table.

Correlated DELETE (continued)

Example

Two tables are used in this example. They are:
• The EMPL6 table, which provides details of all the current employees
• The EMP_HISTORY table, which provides details of previous employees

EMP_HISTORY contains data regarding previous employees, so it would be erroneous if the
same employee’s record existed in both the EMPL6 and EMP_HISTORY tables. You can delete
such erroneous records by using the correlated subquery shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 28

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Writing a multiple-column subquery

• Using scalar subqueries in SQL

• Solving problems with correlated subqueries
• Using the EXISTS and NOT EXISTS operators

• Using the WITH clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 29

Copyright © 2010, Oracle. All rights reserved.

WITH Clause

• Using the WITH clause, you can use the same query block
in a SELECT statement when it occurs more than once
within a complex query.

• The WITH clause retrieves the results of a query block and
stores it in the user’s temporary tablespace.

• The WITH clause may improve performance.

WITH Clause

Using the WITH clause, you can define a query block before using it in a query. The WITH
clause (formally known as subquery_factoring_clause) enables you to reuse the same
query block in a SELECT statement when it occurs more than once within a complex query.
This is particularly useful when a query has many references to the same query block and there
are joins and aggregations.

Using the WITH clause, you can reuse the same query when it is costly to evaluate the query
block and it occurs more than once within a complex query. Using the WITH clause, the Oracle
server retrieves the results of a query block and stores it in the user’s temporary tablespace. This
can improve performance.

WITH Clause Benefits
• Makes the query easy to read
• Evaluates a clause only once, even if it appears multiple times in the query
• In most cases, may improve performance for large queries

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 30

Copyright © 2010, Oracle. All rights reserved.

WITH Clause: Example

Using the WITH clause, write a query to display the department
name and total salaries for those departments whose total
salary is greater than the average salary across departments.

WITH Clause: Example

The problem in the slide would require the following intermediate calculations:
1. Calculate the total salary for every department, and store the result using a WITH clause.
2. Calculate the average salary across departments, and store the result using a WITH clause.
3. Compare the total salary calculated in the first step with the average salary calculated in the

second step. If the total salary for a particular department is greater than the average salary
across departments, display the department name and the total salary for that department.

The solution for this problem is provided on the next page. O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 31

Copyright © 2010, Oracle. All rights reserved.

WITH Clause: Example

WITH
dept_costs AS (

SELECT d.department_name, SUM(e.salary) AS dept_total
FROM employees e JOIN departments d
ON e.department_id = d.department_id
GROUP BY d.department_name),

avg_cost AS (
SELECT SUM(dept_total)/COUNT(*) AS dept_avg
FROM dept_costs)

SELECT *
FROM dept_costs
WHERE dept_total >

(SELECT dept_avg
FROM avg_cost)

ORDER BY department_name;

WITH Clause: Example (continued)

The SQL code in the slide is an example of a situation in which you can improve performance
and write SQL more simply by using the WITH clause. The query creates the query names
DEPT_COSTS and AVG_COST and then uses them in the body of the main query. Internally,
the WITH clause is resolved either as an inline view or a temporary table. The optimizer chooses
the appropriate resolution depending on the cost or benefit of temporarily storing the results of
the WITH clause.

The output generated by the SQL code in the slide is as follows:

WITH Clause Usage Notes
• It is used only with SELECT statements.
• A query name is visible to all WITH element query blocks (including their subquery blocks)

defined after it and the main query block itself (including its subquery blocks).
• When the query name is the same as an existing table name, the parser searches from the

inside out, and the query block name takes precedence over the table name.
• The WITH clause can hold more than one query. Each query is then separated by a comma.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 32

Copyright © 2010, Oracle. All rights reserved.

Recursive WITH Clause

The Recursive WITH clause

• Enables formulation of recursive queries.
• Creates query with a name, called the Recursive WITH

element name

• Contains two types of query blocks member: anchor and a
recursive

• Is ANSI-compatible

Recursive WITH Clause

In Oracle Database 11g Release 2, the WITH clause has been extended to enable formulation of
recursive queries.

Recursive WITH defines a recursive query with a name, the Recursive WITH element name. The
Recursive WITH element definition must contain at least two query blocks: an anchor member
and a recursive member. There can be multiple anchor members but there can be only a single
recursive member.

The recursive WITH clause, Oracle Database 11g Release 2 partially complies with the
American National Standards Institute (ANSI). Recursive WITH can be used to query
hierarchical data such as organization charts.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 33

Copyright © 2010, Oracle. All rights reserved.

Recursive WITH Clause: Example

WITH Reachable_From (Source, Destin, TotalFlightTime) AS
(

SELECT Source, Destin, Flight_time
FROM Flights

UNION ALL
SELECT incoming.Source, outgoing.Destin,

incoming.TotalFlightTime+outgoing.Flight_time
FROM Reachable_From incoming, Flights outgoing
WHERE incoming.Destin = outgoing.Source

)
SELECT Source, Destin, TotalFlightTime
FROM Reachable_From;

FLIGHTS Table 1

2

3

Recursive WITH Clause: Example

The example 1 in the slide displays records from a FLIGHTS table describing flights between
two cities. This example is specific to 11g R2 version of Oracle Database.

Using the query in example 2, you query the FLIGHTS table to display the total flight time
between any source and destination. The WITH clause in the query, which is named
Reachable From, has a UNION ALL query with two branches. The first branch is the anchor
branch, which selects all the rows from the Flights table. The second branch is the recursive
branch. It joins the contents of Reachable From to the Flights table to find other cities
that can be reached, and adds these to the content of Reachable From. The operation will
finish when no more rows are found by the recursive branch.

Example 3 displays the result of the query that selects everything from the WITH clause element
Reachable From.

For details, see:
• Oracle Database SQL Language Reference 11g Release 2.0
• Oracle Database Data Warehousing Guide 11g Release 2.0

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 34

Copyright © 2010, Oracle. All rights reserved.

Quiz

With a correlated subquery, the inner SELECT statement drives
the outer SELECT statement.

1. True

2. False

Answer: 2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 35

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:

• A multiple-column subquery returns more than one column

• Multiple-column comparisons can be pairwise or
nonpairwise

• A multiple-column subquery can also be used in the FROM
clause of a SELECT statement

Summary

You can use multiple-column subqueries to combine multiple WHERE conditions in a single
WHERE clause. Column comparisons in a multiple-column subquery can be pairwise
comparisons or nonpairwise comparisons.

You can use a subquery to define a table to be operated on by a containing query.

Scalar subqueries can be used in:
• The condition and expression part of DECODE and CASE
• All clauses of SELECT except GROUP BY
• A SET clause and WHERE clause of the UPDATE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 36

Copyright © 2010, Oracle. All rights reserved.

Summary

• Correlated subqueries are useful whenever a subquery
must return a different result for each candidate row

• The EXISTS operator is a Boolean operator that tests the
presence of a value

• Correlated subqueries can be used with SELECT, UPDATE,
and DELETE statements

• You can use the WITH clause to use the same query block
in a SELECT statement when it occurs more than once

Summary (continued)

The Oracle server performs a correlated subquery when the subquery references a column from
a table referred to in the parent statement. A correlated subquery is evaluated once for each row
processed by the parent statement. The parent statement can be a SELECT, UPDATE, or
DELETE statement. Using the WITH clause, you can reuse the same query when it is costly to
reevaluate the query block and it occurs more than once within a complex query.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 6 - 37

Copyright © 2010, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:

• Creating multiple-column subqueries

• Writing correlated subqueries
• Using the EXISTS operator

• Using scalar subqueries
• Using the WITH clause

Practice 6: Overview

In this practice, you write multiple-column subqueries, and correlated and scalar subqueries.
You also solve problems by writing the WITH clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2010, Oracle. All rights reserved.

Regular Expression Support

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 2

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• List the benefits of using regular expressions

• Use regular expressions to search for, match, and replace
strings

Objectives

In this lesson, you learn to use the regular expression support feature. Regular expression
support is available in both SQL and PL/SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 3

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to regular expressions

• Using metacharacters with regular expressions

• Using the regular expressions functions:
– REGEXP_LIKE

– REGEXP_REPLACE

– REGEXP_INSTR

– REGEXP_SUBSTR

• Accessing subexpressions
• Using the REGEXP_COUNT function

• Regular expressions and check constraints

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 4

Copyright © 2010, Oracle. All rights reserved.

What Are Regular Expressions?

• You use regular expressions to search for (and
manipulate) simple and complex patterns in string data by
using standard syntax conventions.

• You use a set of SQL functions and conditions to search
for and manipulate strings in SQL and PL/SQL.

• You specify a regular expression by using:
– Metacharacters, which are operators that specify the search

algorithms

– Literals, which are the characters for which you are
searching

What Are Regular Expressions?

Oracle Database provides support for regular expressions. The implementation complies with
the Portable Operating System for UNIX (POSIX) standard, controlled by the Institute of
Electrical and Electronics Engineers (IEEE), for ASCII data-matching semantics and syntax.
Oracle’s multilingual capabilities extend the matching capabilities of the operators beyond the
POSIX standard. Regular expressions are a method of describing both simple and complex
patterns for searching and manipulating.

String manipulation and searching contribute to a large percentage of the logic within a
Web-based application. Usage ranges from the simple, such as finding the word “San Francisco”
in a specified text, to the complex task of extracting all URLs from the text and the more
complex task of finding all words whose every second character is a vowel.

When coupled with native SQL, the use of regular expressions allows for very powerful search
and manipulation operations on any data stored in an Oracle database. You can use this feature
to easily solve problems that would otherwise involve complex programming.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 5

Copyright © 2010, Oracle. All rights reserved.

Benefits of Using Regular Expressions

Regular expressions enable you to implement complex match
logic in the database with the following benefits:

• By centralizing match logic in Oracle Database, you avoid
intensive string processing of SQL results sets by middle-
tier applications.

• Using server-side regular expressions to enforce
constraints, you eliminate the need to code data validation
logic on the client.

• The built-in SQL and PL/SQL regular expression functions
and conditions make string manipulations more powerful
and easier than in previous releases of Oracle Database
11g.

Benefits of Using Regular Expressions

Regular expressions are a powerful text-processing component of programming languages such
as PERL and Java. For example, a PERL script can process each HTML file in a directory, read
its contents into a scalar variable as a single string, and then use regular expressions to search for
URLs in the string. One reason for many developers writing in PERL is that it has a robust
pattern-matching functionality. Oracle’s support of regular expressions enables developers to
implement complex match logic in the database. Regular expressions were introduced in Oracle
Database 10g. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 B
re

za
 S

of
tw

ar
e

En
gi

ne
er

in
g

d.
o.

o
us

e
on

ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 6

Copyright © 2010, Oracle. All rights reserved.

Using the Regular Expressions Functions
and Conditions in SQL and PL/SQL

Returns the number of times a pattern match is found
in an input sting

REGEXP_COUNT

Is similar to the LIKE operator, but performs regular
expression matching instead of simple pattern
matching (condition)

REGEXP_LIKE

REGEXP_SUBSTR

REGEXP_INSTR

REGEXP_REPLACE

Function or Condition
Name

Searches for a regular expression pattern and
replaces it with a replacement string

Searches for a regular expression pattern within a
given string and extracts the matched substring

Searches a string for a regular expression pattern and
returns the position where the match is found

Description

Using the Regular Expressions Functions and Conditions in SQL and PL/SQL

Oracle Database provides a set of SQL functions that you use to search and manipulate strings
by using regular expressions. You use these functions on a text literal, bind variable, or any
column that holds character data such as CHAR, NCHAR, CLOB, NCLOB, NVARCHAR2, and
VARCHAR2 (but not LONG). A regular expression must be enclosed within single quotation
marks. This ensures that the entire expression is interpreted by the SQL function and can
improve the readability of your code.

• REGEXP_LIKE: This condition searches a character column for a pattern. Use this
condition in the WHERE clause of a query to return rows matching the regular expression
that you specify.

• REGEXP_REPLACE: This function searches for a pattern in a character column and
replaces each occurrence of that pattern with the pattern that you specify.

• REGEXP_INSTR: This function searches a string for a given occurrence of a regular
expression pattern. You specify which occurrence you want to find and the start position to
search from. This function returns an integer indicating the position in the string where the
match is found.

• REGEXP_SUBSTR: This function returns the actual substring matching the regular
expression pattern that you specify.

• REGEXP_COUNT: This function, introduced with 11g Release 2, returns the number of
times a pattern match is found in the input string.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 7

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to regular expressions

• Using metacharacters with regular expressions

• Using the regular expressions functions:
– REGEXP_LIKE

– REGEXP_REPLACE

– REGEXP_INSTR

– REGEXP_SUBSTR

• Accessing subexpressions
• Using the REGEXP_COUNT function

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 8

Copyright © 2010, Oracle. All rights reserved.

What Are Metacharacters?

• Metacharacters are special characters that have a special
meaning such as a wildcard, a repeating character, a
nonmatching character, or a range of characters.

• You can use several predefined metacharacter symbols in
the pattern matching.

• For example, the ^(f|ht)tps?:$ regular expression
searches for the following from the beginning of the string:
– The literals f or ht

– The t literal

– The p literal, optionally followed by the s literal

– The colon “:” literal at the end of the string

What Are Metacharacters?

The regular expression in the slide matches the http:, https:, ftp:, and ftps: strings.

Note: For a complete list of the regular expressions’ metacharacters, see the Oracle Database
Advanced Application Developer’s Guide for 10g or 11g .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 9

Copyright © 2010, Oracle. All rights reserved.

Using Metacharacters with Regular Expressions

Treats the enclosed expression within the parentheses as a unit. The
subexpression can be a string of literals or a complex expression containing
operators.

(...)

Matches one of the alternatives|

Matches at least m occurrences of the preceding subexpression{m, }

Matches any single character in the list within the brackets[…]

Matches at least m, but not more than n, occurrences of the preceding
subexpression

{m,n}

Matches exactly m occurrences of the preceding expression{m}

Matches zero or more occurrences of the preceding subexpression*

?

+

.

Syntax

Matches any character in the supported character set, except NULL

Matches zero or one occurrence

Matches one or more occurrences

Description

Using Metacharacters in Regular Expressions Functions

Any character, “ . ” : a.b matches the strings abb, acb, and adb, but not acc.

One or more, “ + ” : a+ matches the strings a, aa, and aaa, but does not match bbb.

Zero or one, “ ? ”: ab?c matches the strings abc and ac, but does not match abbc.

Zero or more, “ * ”: ab*c matches the strings ac, abc, and abbc, but does not match abb.

Exact count, “ {m} ”: a{3} matches the strings aaa, but does not match aa.

At least count, “ {m,} ”: a{3,} matches the strings aaa and aaaa, but not aa.

Between count, “ {m,n} ”: a{3,5} matches the strings aaa, aaaa, and aaaaa, but not aa.

Matching character list, “ […] ”: [abc] matches the first character in the strings all, bill,
and cold, but does not match any characters in doll.

Or, “ | ”: a|b matches character a or character b.

Subexpression, “ (…) ”:(abc)?def matches the optional string abc, followed by def. The
expression matches abcdefghi and def, but does not match ghi. The subexpression can be a
string of literals or a complex expression containing operators.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 10

Copyright © 2010, Oracle. All rights reserved.

Using Metacharacters with Regular Expressions

A digit character\d

Matches the nth (1–9) preceding subexpression of whatever is grouped
within parentheses. The parentheses cause an expression to be
remembered; a backreference refers to it.

\n

Treats the subsequent metacharacter in the expression as a literal\

Matches the end of a string$

Matches the beginning of a string^

Matches any single character not in the list within the brackets[^:class:]

Matches any character belonging to the specified POSIX character class[:class:]

Syntax Description

Using Metacharacters in Regular Expressions Functions (continued)

Beginning/end of line anchor, “ ^ ” and “$”: ^def matches def in the string defghi but
does not match def in abcdef. def$ matches def in the string abcdef but does not match
def in the string defghi.

Escape character “ \ ”: \+ searches for a +. It matches the plus character in the string
abc+def, but does not match Abcdef.

Backreference, “ \n ”:(abc|def)xy\1 matches the strings abcxyabc and defxydef,
but does not match abcxydef or abcxy. A backreference enables you to search for a repeated
string without knowing the actual string ahead of time. For example, the expression ^(.*)\1$
matches a line consisting of two adjacent instances of the same string.

Digit character, “\d”: The expression ^\[\d{3}\] \d{3}-\d{4}$ matches [650] 555-1212 but does
not match 650-555-1212.

Character class, “ [:class:] ” : [[:upper:]]+ searches for one or more consecutive
uppercase characters. This matches DEF in the string abcDEFghi but does not match the string
abcdefghi.

Nonmatching character list (or class), “ [^...] ” : [^abc] matches the character d in the
string abcdef, but not a, b, or c.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 11

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to regular expressions

• Using metacharacters with regular expressions

• Using the regular expressions functions:
– REGEXP_LIKE

– REGEXP_REPLACE

– REGEXP_INSTR

– REGEXP_SUBSTR

• Accessing subexpressions
• Using the REGEXP_COUNT function

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 12

Copyright © 2010, Oracle. All rights reserved.

Regular Expressions Functions
and Conditions: Syntax

REGEXP_LIKE (source_char, pattern [,match_option]

REGEXP_INSTR (source_char, pattern [, position
[, occurrence [, return_option
[, match_option [, subexpr]]]]])

REGEXP_SUBSTR (source_char, pattern [, position
[, occurrence [, match_option
[, subexpr]]]])

REGEXP_REPLACE(source_char, pattern [,replacestr
[, position [, occurrence
[, match_option]]]])

REGEXP_COUNT (source_char, pattern [, position

[, occurrence [, match_option]]])

Regular Expressions Functions and Conditions: Syntax

The syntax for the regular expressions functions and conditions is as follows:
• source_char: A character expression that serves as the search value
• pattern: A regular expression, a text literal
• occurrence: A positive integer indicating which occurrence of pattern in
source_char Oracle Server should search for. The default is 1.

• position: A positive integer indicating the character of source_char where Oracle
Server should begin the search. The default is 1.

• return_option:
- 0: Returns the position of the first character of the occurrence (default)
- 1: Returns the position of the character following the occurrence

• Replacestr: Character string replacing pattern

• match_parameter:
- “ c ”: Uses case-sensitive matching (default)
- “ i ”: Uses non-case-sensitive matching
- “ n ”: Allows match-any-character operator
- “ m ”: Treats source string as multiple lines

• subexpr: Fragment of pattern enclosed in parentheses. You learn more about
subexpressions later in this lesson.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 13

Copyright © 2010, Oracle. All rights reserved.

Performing a Basic Search by
Using the REGEXP_LIKE Condition

REGEXP_LIKE(source_char, pattern [, match_parameter])

SELECT first_name, last_name
FROM employees
WHERE REGEXP_LIKE (first_name, '^Ste(v|ph)en$');

Performing a Basic Search by Using the REGEXP_LIKE Condition

REGEXP_LIKE is similar to the LIKE condition, except that REGEXP_LIKE performs regular-
expression matching instead of the simple pattern matching performed by LIKE. This condition
evaluates strings by using characters as defined by the input character set.

Example of REGEXP_LIKE

In this query, against the EMPLOYEES table, all employees with first names containing either
Steven or Stephen are displayed. In the expression used '^Ste(v|ph)en$ ':

• ^ indicates the beginning of the expression
• $ indicates the end of the expression
• | indicates either/or

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 14

Copyright © 2010, Oracle. All rights reserved.

Replacing Patterns by
Using the REGEXP_REPLACE Function

SELECT REGEXP_REPLACE(phone_number, '\.','-') AS phone
FROM employees;

REGEXP_REPLACE(source_char, pattern [,replacestr
[, position [, occurrence [, match_option]]]])

Original Partial results

Replacing Patterns by Using the REGEXP_REPLACE Function

Using the REGEXP_REPLACE function, you reformat the phone number to replace the period
(.) delimiter with a dash (-) delimiter. Here is an explanation of each of the elements used in the
regular expression example:
• phone_number is the source column.
• '\.' is the search pattern.

- Use single quotation marks (‘ ’) to search for the literal character period (.).
- Use a backslash (\) to search for a character that is normally treated as a metacharacter.

• '-' is the replace string.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 B
re

za
 S

of
tw

ar
e

En
gi

ne
er

in
g

d.
o.

o
us

e
on

ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 15

Copyright © 2010, Oracle. All rights reserved.

Finding Patterns by
Using the REGEXP_INSTR Function

SELECT street_address,
REGEXP_INSTR(street_address,'[[:alpha:]]') AS

First_Alpha_Position
FROM locations;

REGEXP_INSTR (source_char, pattern [, position [,
occurrence [, return_option [, match_option]]]])

Finding Patterns by Using the REGEXP_INSTR Function

In this example, the REGEXP_INSTR function is used to search the street address to find the
location of the first alphabetic character, regardless of whether it is in uppercase or lowercase.
Note that [:<class>:] implies a character class and matches any character from within that
class; [:alpha:] matches with any alphabetic character. The partial results are displayed.

In the expression used in the query '[[:alpha:]]':
• [starts the expression
• [:alpha:] indicates alphabetic character class
•] ends the expression

Note: The POSIX character class operator enables you to search for an expression within a
character list that is a member of a specific POSIX character class. You can use this operator to
search for specific formatting, such as uppercase characters, or you can search for special
characters such as digits or punctuation characters. The full set of POSIX character classes is
supported. Use the syntax [:class:], where class is the name of the POSIX character class
to search for. The following regular expression searches for one or more consecutive uppercase
characters : [[:upper:]]+ .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 16

Copyright © 2010, Oracle. All rights reserved.

Extracting Substrings by
Using the REGEXP_SUBSTR Function

SELECT REGEXP_SUBSTR(street_address , ' [^]+ ') AS Road

FROM locations;

REGEXP_SUBSTR (source_char, pattern [, position

[, occurrence [, match_option]]])

Extracting Substrings by Using the REGEXP_SUBSTR Function

In this example, the road names are extracted from the LOCATIONS table. To do this, the
contents in the STREET_ADDRESS column that are after the first space are returned by using
the REGEXP_SUBSTR function. In the expression used in the query ' [^]+ ':

• [starts the expression
• ^ indicates NOT
• indicates space
•] ends the expression
• + indicates 1 or more
• indicates space

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 17

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to regular expressions

• Using metacharacters with regular expressions

• Using the regular expressions functions:
– REGEXP_LIKE

– REGEXP_REPLACE

– REGEXP_INSTR

– REGEXP_SUBSTR

• Accessing subexpressions
• Using the REGEXP_COUNT function

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 18

Copyright © 2010, Oracle. All rights reserved.

Subexpressions

Examine this expression:

The subexpressions are:

(1 2 3)(4(5 6)(7 8))

(1 2 3)(4(5 6)(7 8))

1
3

2

4

Subexpressions

Oracle Database 11g provides regular expression support parameter to access a subexpression.
In the slide example, a string of digits is shown. The parentheses identify the subexpressions
within the string of digits. Reading from left to right, and from outer parentheses to the inner
parentheses, the subexpressions in the string of digits are:

1. 123
2. 45678
3. 56
4. 78

You can search for any of those subexpressions with the REGEXP_INSTR and
REGEXP_SUBSTR functions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 19

Copyright © 2010, Oracle. All rights reserved.

Using Subexpressions with Regular
Expression Support

SELECT
REGEXP_INSTR
('0123456789', -- source char or search value
'(123)(4(56)(78))', -- regular expression patterns
1, -- position to start searching
1, -- occurrence
0, -- return option
'i', -- match option (case insensitive)
1) -- sub-expression on which to search
"Position"

FROM dual;

1

2

3
4

5
6

7

Using Subexpressions with Regular Expression Support

REGEXP_INSTR and REGEXP_SUBSTR have an optional SUBEXPR parameter that lets you
target a particular substring of the regular expression being evaluated.

In the example shown in the slide, you may want to search for the first subexpression pattern in
your list of subexpressions. The example shown identifies several parameters for the
REGEXP_INSTR function. This example is specific to 11g R2 version of Oracle Database.

1. The string you are searching is identified.
2. The subexpressions are identified. The first subexpression is 123. The second

subexpression is 45678, the third is 56, and the fourth is 78.
3. The third parameter identifies from which position to start searching.
4. The fourth parameter identifies the occurrence of the pattern you want to find. 1 means find

the first occurrence.
5. The fifth parameter is the return option. This is the position of the first character of the

occurrence. (If you specify 1, the position of the character following the occurrence is
returned.)

6. The sixth parameter identifies whether your search should be case-sensitive or not.
7. The last parameter is the parameter added in Oracle Database 11g. This parameter specifies

which subexpression you want to find. In the example shown, you are searching for the first
subexpression, which is 123.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 20

Copyright © 2010, Oracle. All rights reserved.

Why Access the nth Subexpression?

• A more realistic use: DNA sequencing

• You may need to find a specific subpattern that identifies a
protein needed for immunity in mouse DNA.

SELECT
REGEXP_INSTR('ccacctttccctccactcctcacgttctcacctgtaaagcgtccctc
cctcatccccatgcccccttaccctgcagggtagagtaggctagaaaccagagagctccaagc
tccatctgtggagaggtgccatccttgggctgcagagagaggagaatttgccccaaagctgcc
tgcagagcttcaccacccttagtctcacaaagccttgagttcatagcatttcttgagttttca
ccctgcccagcaggacactgcagcacccaaagggcttcccaggagtagggttgccctcaagag
gctcttgggtctgatggccacatcctggaattgttttcaagttgatggtcacagccctgaggc
atgtaggggcgtggggatgcgctctgctctgctctcctctcctgaacccctgaaccctctggc

taccccagagcacttagagccag',
'(gtc(tcac)(aaag))',
1, 1, 0, 'i',
1) "Position"

FROM dual;

Why Access the nth Subexpression?

In life sciences, you may need to extract the offsets of subexpression matches from a DNA
sequence for further processing. For example, you may need to find a specific protein sequence,
such as the begin offset for the DNA sequence preceded by gtc and followed by tcac
followed by aaag. To accomplish this goal, you can use the REGEXP_INSTR function, which
returns the position where a match is found.

In the slide example, the position of the first subexpression (gtc)is returned. gtc appears
starting in position 195 of the DNA string. This example is specific to 11g R2 version of Oracle
Database.

If you modify the slide example to search for the second subexpression (tcac), the query
results in the following output. tcac appears starting in position 198 of the DNA string.

If you modify the slide example to search for the third subexpression (aaag), the query results
in the following output. aaag appears starting in position 202 of the DNA string.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 21

Copyright © 2010, Oracle. All rights reserved.

REGEXP_SUBSTR: Example

SELECT
REGEXP_SUBSTR
('acgctgcactgca', -- source char or search value
'acg(.*)gca', -- regular expression pattern
1, -- position to start searching
1, -- occurrence
'i', -- match option (case insensitive)
1) -- sub-expression

"Value"
FROM dual;

1

2

3

4

5

6

REGEXP_SUBSTR: Example

In the example shown in the slide:
1. acgctgcactgca is the source to be searched
2. acg(.*)gca is the pattern to be searched. Find acg followed by gca with potential

characters between the acg and the gca.
3. Start searching at the first character of the source
4. Search for the first occurrence of the pattern
5. Use non-case-sensitive matching on the source
6. Use a nonnegative integer value that identifies the nth subexpression to be targeted. This is

the subexpression parameter. In this example, 1 indicates the first subexpression. You can
use a value from 0–9. A zero means that no subexpression is targeted. The default value for
this parameter is 0.

This example is specific to 11g R2 version of Oracle Database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 22

Copyright © 2010, Oracle. All rights reserved.

Lesson Agenda

• Introduction to regular expressions

• Using metacharacters with regular expressions

• Using the regular expressions functions:
– REGEXP_LIKE

– REGEXP_REPLACE

– REGEXP_INSTR

– REGEXP_SUBSTR

• Accessing subexpressions
• Using the REGEXP_COUNT function

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 23

Copyright © 2010, Oracle. All rights reserved.

Using the REGEXP_COUNT Function

REGEXP_COUNT (source_char, pattern [, position

[, occurrence [, match_option]]])

SELECT REGEXP_COUNT(
'ccacctttccctccactcctcacgttctcacctgtaaagcgtccctccctcatccccatgcccccttaccctgcag
ggtagagtaggctagaaaccagagagctccaagctccatctgtggagaggtgccatccttgggctgcagagagaggag
aatttgccccaaagctgcctgcagagcttcaccacccttagtctcacaaagccttgagttcatagcatttcttgagtt
ttcaccctgcccagcaggacactgcagcacccaaagggcttcccaggagtagggttgccctcaagaggctcttgggtc
tgatggccacatcctggaattgttttcaagttgatggtcacagccctgaggcatgtaggggcgtggggatgcgctctg

ctctgctctcctctcctgaacccctgaaccctctggctaccccagagcacttagagccag',
'gtc') AS Count

FROM dual;

Using the REGEXP_COUNT Function

The REGEXP_COUNT function evaluates strings by using characters as defined by the input
character set. It returns an integer indicating the number of occurrences of pattern. If no match is
found, the function returns 0.

In the slide example, the number of occurrences for a DNA substring is determined by using the
REGEXP_COUNT function. This example is specific to 11g R2 version of Oracle Database.

The following example shows that the number of times the pattern 123 occurs in the string
123123123123 is three times. The search starts from the second position of the string.

SELECT REGEXP_COUNT
('123123123123', -- source char or search value
'123', -- regular expression pattern
2, -- position where the search should start

'i') -- match option (case insensitive)
As Count

FROM dual;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 24

Copyright © 2010, Oracle. All rights reserved.

Regular Expressions and
Check Constraints: Examples

ALTER TABLE emp8
ADD CONSTRAINT email_addr
CHECK(REGEXP_LIKE(email,'@')) NOVALIDATE;

INSERT INTO emp8 VALUES
(500,'Christian','Patel','ChrisP2creme.com',
1234567890,'12-Jan-2004','HR_REP',2000,null,102,40);

Regular Expressions and Check Constraints: Examples

Regular expressions can also be used in CHECK constraints. In this example, a CHECK constraint
is added on the EMAIL column of the EMPLOYEES table. This ensures that only strings
containing an “@” symbol are accepted. The constraint is tested. The CHECK constraint is
violated because the email address does not contain the required symbol. The NOVALIDATE
clause ensures that existing data is not checked.

For the slide example, the emp8 table is created by using the following code:
CREATE TABLE emp8 AS SELECT * FROM employees;

Note: The example in the slide is executed by using the “Execute Statement” option in SQL
Developer. The output format differs if you use the “Run Script” option.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 25

Copyright © 2010, Oracle. All rights reserved.

Quiz

With the use of regular expressions in SQL and PL/SQL, you
can:

1. Avoid intensive string processing of SQL result sets by
middle-tier applications

2. Avoid data validation logic on the client

3. Enforce constraints on the server

Answers: 1, 2, 3

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 26

Copyright © 2010, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use regular
expressions to search for, match, and replace strings.

Summary

In this lesson, you have learned to use the regular expression support features. Regular
expression support is available in both SQL and PL/SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database: SQL Fundamentals II 7 - 27

Copyright © 2010, Oracle. All rights reserved.

Practice 7: Overview

This practice covers using regular expressions functions to do
the following:

• Searching for, replacing, and manipulating data
• Creating a new CONTACTS table and adding a CHECK

constraint to the p_number column to ensure that phone
numbers are entered into the database in a specific
standard format

• Testing the adding of some phone numbers into the
p_number column by using various formats

Practice 7: Overview

In this practice, you use regular expressions functions to search for, replace, and manipulate
data. You also create a new CONTACTS table and add a CHECK constraint to the p_number
column to ensure that phone numbers are entered into the database in a specific standard format.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 B

re
za

 S
of

tw
ar

e
En

gi
ne

er
in

g
d.

o.
o

us
e

on
ly

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

	Cover Page

	Table of Contents

	Lesson I: Introduction
	Lesson Objectives
	Lesson Agenda
	Course Objectives
	Course Prerequisites
	Course Agenda
	Lesson Agenda
	Tables Used in This Course
	Appendixes Used in This Course
	Development Environments
	Lesson Agenda
	Review of Restricting Data
	Review of Sorting Data
	Review of SQL Functions
	Review of Single-Row Functions
	Review of Types of Group Functions
	Review of Using Subqueries
	Review of Manipulating Data
	Lesson Agenda
	Oracle Database SQL Documentation
	Additional Resources
	Summary
	Practice I: Overview

	Lesson 1: Controlling User Access
	Objectives
	Lesson Agenda
	Controlling User Access
	Privileges
	System Privileges
	Creating Users
	User System Privileges
	Granting System Privileges
	Lesson Agenda
	What Is a Role?
	Creating and Granting Privileges to a Role
	Changing Your Password
	Lesson Agenda
	Object Privileges
	Granting Object Privileges
	Passing On Your Privileges
	Confirming Granted Privileges
	Lesson Agenda
	Revoking Object Privileges
	Quiz
	Summary
	Practice 1: Overview

	Lesson 2: Managing Schema Objects
	Objectives
	Lesson Agenda
	ALTER TABLE Statement
	ALTER TABLE Statement
	Adding a Column
	Modifying a Column
	Dropping a Column
	SET UNUSED Option
	Lesson Agenda
	Adding a Constraint Syntax
	Adding a Constraint
	ON DELETE Clause
	Deferring Constraints
	Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE
	Dropping a Constraint
	Disabling Constraints
	Enabling Constraints
	Cascading Constraints
	Renaming Table Columns and Constraints
	Lesson Agenda
	Overview of Indexes
	CREATE INDEX with the CREATE TABLE Statement
	Function-Based Indexes
	Removing an Index
	DROP TABLE … PURGE
	Lesson Agenda
	FLASHBACK TABLE Statement
	Using the FLASHBACK TABLE Statement
	Lesson Agenda
	Temporary Tables
	Creating a Temporary Table
	Lesson Agenda
	External Tables
	Creating a Directory for the External Table
	Creating an External Table
	Creating an External Table by Using ORACLE_LOADER
	Querying External Tables
	Creating an External Table by Using ORACLE_DATAPUMP: Example
	Quiz
	Summary
	Practice 2: Overview

	Lesson 3: Managing Objects with Data Dictionary Views
	Objectives
	Lesson Agenda
	Data Dictionary
	Data Dictionary Structure
	How to Use the Dictionary Views
	USER_OBJECTS and ALL_OBJECTS Views
	USER_OBJECTS View
	Lesson Agenda
	Table Information
	Column Information
	Constraint Information
	USER_CONSTRAINTS: Example
	Querying USER_CONS_COLUMNS
	Lesson Agenda
	View Information
	Sequence Information
	Confirming Sequences
	Index Information
	USER_INDEXES: Examples
	Querying USER_IND_COLUMNS
	Synonym Information
	Lesson Agenda
	Adding Comments to a Table
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Manipulating Large Data Sets
	Objectives
	Lesson Agenda
	Using Subqueries to Manipulate Data
	Retrieving Data by Using a Subquery as Source
	Inserting by Using a Subquery as a Target
	Using the WITH CHECK OPTION Keyword on DML Statements
	Lesson Agenda
	Overview of the Explicit Default Feature
	Using Explicit Default Values
	Copying Rows from Another Table
	Lesson Agenda
	Overview of Multitable INSERT Statements
	Types of Multitable INSERT Statements
	Multitable INSERT Statements
	Unconditional INSERT ALL
	Conditional INSERT ALL: Example
	Conditional INSERT ALL
	Conditional INSERT FIRST: Example
	Conditional INSERT FIRST
	Pivoting INSERT
	Lesson Agenda
	MERGE Statement
	MERGE Statement Syntax
	Merging Rows: Example
	Lesson Agenda
	Tracking Changes in Data
	Example of the Flashback Version Query
	VERSIONS BETWEEN Clause
	Quiz
	Summary
	Practice 4: Overview

	Lesson 5: Managing Data in Different Time Zones
	Objectives
	Lesson Agenda
	Time Zones
	TIME_ZONE Session Parameter
	CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP
	Comparing Date and Time in a Session’s Time Zone
	DBTIMEZONE and SESSIONTIMEZONE
	TIMESTAMP Data Types
	TIMESTAMP Fields
	Difference Between DATE and TIMESTAMP
	Comparing TIMESTAMP Data Types
	Lesson Agenda
	INTERVAL Data Types
	INTERVAL Fields
	INTERVAL YEAR TO MONTH: Example
	INTERVAL DAY TO SECOND Data Type: Example
	Lesson Agenda
	EXTRACT
	TZ_OFFSET
	FROM_TZ
	TO_TIMESTAMP
	TO_YMINTERVAL
	TO_DSINTERVAL
	Daylight Saving Time
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Retrieving Data by Using Subqueries
	Objectives
	Lesson Agenda
	Multiple-Column Subqueries
	Column Comparisons
	Pairwise Comparison Subquery
	Nonpairwise Comparison Subquery
	Lesson Agenda
	Scalar Subquery Expressions
	Scalar Subqueries: Examples
	Lesson Agenda
	Correlated Subqueries
	Using Correlated Subqueries
	Lesson Agenda
	Using the EXISTS Operator
	Find All Departments That Do Not Have Any Employees
	Correlated UPDATE
	Using Correlated UPDATE
	Correlated DELETE
	Using Correlated DELETE
	Lesson Agenda
	WITH Clause
	WITH Clause: Example
	Recursive WITH Clause
	Recursive WITH Clause: Example
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Regular Expression Support
	Objectives
	Lesson Agenda
	What Are Regular Expressions?
	Benefits of Using Regular Expressions
	Using the Regular Expressions Functionsand Conditions in SQL and PL/SQL
	Lesson Agenda
	What Are Metacharacters?
	Using Metacharacters with Regular Expressions
	Using Metacharacters with Regular Expressions
	Lesson Agenda
	Regular Expressions Functions and Conditions: Syntax
	Performing a Basic Search by Using the REGEXP_LIKE Condition
	Replacing Patterns by Using the REGEXP_REPLACE Function
	Finding Patterns by Using the REGEXP_INSTR Function
	Extracting Substrings by Using the REGEXP_SUBSTR Function
	Lesson Agenda
	Subexpressions
	Using Subexpressions with Regular Expression Support
	Why Access the nth Subexpression?
	REGEXP_SUBSTR: Example
	Lesson Agenda
	Using the REGEXP_COUNT Function
	Regular Expressions and Check Constraints: Examples
	Quiz
	Summary
	Practice 7: Overview

