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Preface

The topic of this book is multilevel analysis but, although this is a mathemat-
ical topic, it has been written by an epidemiologist. This could, perhaps, be a
disadvantage, because the mathematical background of multilevel analysis
will not be discussed in detail. However, it can also be seen as an advantage,
because it implies that the emphasis of this book lies more on the application
of multilevel analysis. Many books have been written on multilevel analysis,
but most (all) of them have been written by statisticians, and therefore they
mainly focus on the mathematical background of multilevel analysis. The
problem with that approach is that such books are very difficult for non-
mathematical researchers to understand. And yet, these non-mathematical
researchers are expected to use multilevel analysis to analyse their data. In
fact, a researcher is not primarily interested in the basic (difficult) math-
ematical background of the statistical methods, but in finding correct answers
to research questions. Furthermore, researchers want to know how to apply a
statistical technique and how to interpret the results. Due to their different
basic interests and different levels of thinking, communication problems
between statisticians and epidemiologists are quite common, and they often
communicate on different levels. This, in addition to the growing interest in
multilevel analysis, initiated the writing of this book. This book is written for
‘non-statistical’ researchers, and it aims to provide a practical guide as to
when and how to use multilevel analysis. The purpose of this book is to build
a bridge between the different communication levels that exist between stat-
isticians and researchers when addressing the topic of multilevel analysis.

Jos Twisk
Amsterdam, April 2005
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Introduction

1.1 Introduction

The popularity of applying multilevel analysis has increased rapidly over the
past 10 years. A very small non-systematic search in ‘pubmed’ showed that
in 1995, 22 papers were published in which multilevel analysis was applied.
In 2000 this number increased to 86, while in 2004 the number of papers in
which multilevel analysis was applied rose to over 170. Figure 1.1 shows the
development from 1995 to 2004 in the number of published papers in which
multilevel analysis was applied.

The literature on multilevel analysis is somewhat confusing, because 
multilevel analysis or multilevel modelling is also referred to as hierarchical
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Figure 1.1. Development from 1995 to 2004 in the number of published papers in which
multilevel analysis was applied.



modelling, mixed effect analysis/modelling or random effects analysis/
modelling. However, in most situations all these different terms are exactly
the same.

1.2 Background of multilevel analysis

Multilevel analysis was first developed for educational research (Goldstein,
1987; Goldstein and Cuttance, 1988; Nuttall et al., 1989; Woodhouse and
Goldstein, 1989; Plewis, 1991; Goldstein, 1992). Analysing the performance
of students, the researchers realised that the observations of students in the
same class were not independent of each other. Because ‘standard’ statistical
tools assume independent observations, it is not really appropriate to use
these ‘standard’ statistical tools to analyse the performance of students. The
students in the same class can be described as a sort of hierarchy; students
are clustered within classes (see Figure 1.2). This situation is known as a
two-level data structure, the first level being the students and the second
level being the classes. The general idea of multilevel analysis is that this
hierarchy is taken into account in the analysis, or in other words, it takes into
account the dependency of the observations. Within the educational setting,
we can go one step further (or perhaps we should say one step higher),
because not only the students are clustered within classes, but the classes are
also clustered within schools (see Figure 1.3). This situation is referred to
as a three-level data structure, the students being level 1, the classes being

2 Introduction
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Figure 1.2. Illustration of a two-level hierarchical data structure. Observations of students are
clustered within classes.



level 2, and the schools being level 3. Again, the general idea of multilevel
analysis in this situation is that it takes into account the dependency of
observations, not only within classes, but also within schools.

1.3 General approach

Although there is a considerable amount of literature on multilevel analysis,
most of it is characterised by a mathematical approach (Bryk and Raudenbush,
1992; Goldstein, 1995; Hox, 1995; Kreft and De Leeuw, 1998; Snijders and
Boschker, 1999; Little et al., 2000; McCullagh and Searle, 2001; Raudenbush
and Hox, 2002; Bryk, 2002; Goldstein, 2003; Reise and Duan, 2003). This
book will follow a more practical approach, which will make it (hopefully)
easier to read and more understandable for non-mathematical readers. A
review of the literature identified only a few other papers that tried to follow
a more practical approach (see for instance, Korff et al., 1992; Rice and
Leyland, 1996; Greenland, 2000a; Greenland, 2000b; Livert et al., 2001; Diez
Roux, 2002; Leyland and Groenewegen, 2003; Merlo, 2003). Furthermore,
the emphasis of this book will lie on the interpretation of the results of
multilevel analysis, on the research questions that can be answered with

3 General approach
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Figure 1.3. Illustration of a three-level hierarchical data structure. Observations of students
are clustered within classes and the observations of classes are clustered within
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multilevel analysis, and on the differences between multilevel analysis and
the so-called ‘naive’ approaches that do not take into account the depend-
ency of observations. Therefore, in each chapter, the (mathematically 
difficult) statistical analyses will be explained by using relatively simple
examples, accompanied by computer output.

1.4 Prior knowledge

In this book an attempt has been made to keep the complicated statistical
techniques as simple as possible. The basis of the explanations will be the
underlying research question and the interpretation of the results of the stat-
istical analysis. However, it will be assumed that the reader has some prior
knowledge about ‘standard’ statistical regression techniques, such as linear
regression analysis, logistic regression analysis, multinomial logistic regres-
sion analysis, and Poisson regression analysis. This is necessary, because
multilevel analysis can be seen as an extension of the ‘standard’ regression
techniques. So, multilevel analysis with a continuous outcome variable is an
extension of linear regression analysis, multilevel analysis with a dichotomous
outcome variable is an extension of logistic regression analysis, and so on.

1.5 Example datasets

All datasets that will be used in the examples will be available from the inter-
net (http:\www.jostwisk.nl), and can be reanalysed by the reader. This will
certainly improve understanding of the general theories underlying multi-
level analysis.

In general, the research question to be answered in (almost) all examples
is more or less the same: What is the relationship between total cholesterol
and age? This relationship will be analysed in many different ways to
demonstrate the various possibilities of multilevel analysis. The outcome
variable total cholesterol will be divided into two groups to illustrate multi-
level analysis with dichotomous outcome variables (i.e. logistic multilevel
analysis), and total cholesterol will be divided into three groups to illustrate
multilevel analysis with a categorical outcome variable (i.e. multinomial
multilevel analysis).

4 Introduction



1.6 Software

All the analysis in the first part of the book (up to Chapter 9) are performed
with multilevel analysis for Windows (MLwiN) (version 1.1 and version 2.0;
Goldstein et al., 1998; Rasbash et al., 1999; Rashbash et al., 2003). In Chapter
9 a comparison will be made between various software packages that are
(more or less) suitable for multilevel analysis. This comparison includes 
the following software packages: SPSS (version 12; Wolfinger et al., 1994;
Landau and Everitt, 2004), STATA (version 7; Stata Corporation, 1999; Stata
Reference Manual, 2001), SAS (version 8; Littel et al., 1991; Littel et al.,
1996), and R (R Development Core Team, 2004). Both syntax and output
will accompany the overview of the different packages. For detailed infor-
mation about the different software packages, reference is made to the soft-
ware manuals.

5 Software



Basic principles of multilevel analysis

2.1 Introduction

To explain the basic principles of multilevel analysis, the application of multi-
level analysis on a continuous outcome variable will first be discussed (i.e.
linear multilevel analysis). The most important basic principle to be con-
sidered is the fact that linear multilevel analysis can be seen as an extended
linear regression analysis. So, to understand the basic principles of multi-
level analysis, linear regression analysis must be the starting point. Suppose
that we are performing a study to investigate the relationship between total
cholesterol and age. Figure 2.1 shows the results of this linear regression analy-
sis and Equation (2.1) describes the linear regression model.

(2.1)

where total cholesterol � outcome variable; b0 � intercept; b1 � regression
coefficient for age; age � independent variable, and e� error/residual.

Total cholesterol age� � � �b b0 1 e
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Figure 2.1. Illustration of a linear regression analysis of the relationship between total
cholesterol and age.



7 Introduction

The interpretation of the regression coefficients of this linear regression
analysis is very straightforward. The intercept (b0) is the value of the out-
come variable (total cholesterol) when the independent variable (age) is
zero. The regression coefficient for age (b1) reflects the difference in total
cholesterol for subjects who differ 1 year in age. Suppose now that we want
to correct the analysis for gender. Males are different from females, and
therefore we want to correct for gender (Equation (2.2)).

Total cholesterol � �0 � �1 � age � �2 � gender � � (2.2)

where b2 � regression coefficient for gender.
Suppose that males are coded as 0 and females are coded as 1. The inter-

cept b0 reflects the intercept for males, while b0 � b2 reflects the intercept
for females. So a correction for gender actually means that the intercept of
the regression line is assumed to be different for males and females (see
Figure 2.2).

We can go one step further. In the study population there are several
patients who ‘belong’ to the same medical doctor. It is very reasonable to
assume that the characteristics of a population of patients ‘belonging’ to a
particular medical doctor differ from those of the population of patients
‘belonging’ to another medical doctor. These differences can, for instance, be
caused by the area in which the medical doctor is practising, by certain per-
sonality characteristics of the medical doctor, etc. Anyway, because of this,
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Figure 2.2. Illustration of a linear regression analysis of the relationship between total
cholesterol and age, corrected for gender.



8 Basic principles of multilevel analysis

we want to correct for medical doctor in the linear regression analysis.
Again, a correction for medical doctor actually means that different inter-
cepts are estimated for each medical doctor (see Figure 2.3).

However, when a correction is made for medical doctor, a problem arises,
because the medical doctor variable is not a continuous one, and when there
are more than two medical doctors involved in the study the medical doctor
variable is also not a dichotomous one. The medical doctor variable is a cat-
egorical variable (more specifically a nominal variable), and when a correc-
tion is made for a categorical variable, such as medical doctor, it means that
dummy variables have to be created. The number of dummy variables
depends on the number of medical doctors involved in the study (i.e. the
number of medical doctors minus 1), and for all those dummy variables
separate regression coefficients must be estimated (Equation (2.3)).

Total cholesterol � �0 � �1 � age � �2 � dummyMD1

� �3 � dummyMD2 � … � �m

� dummyMDm�1 � � (2.3)

where b2 till bm � regression coefficients for the dummy variables representing
the different medical doctors, and m � number of medical doctors.
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Figure 2.3. Illustration of a linear regression analysis of the relationship between total
cholesterol and age, corrected for medical doctor.



9 Introduction

So, if there are 12 medical doctors involved in the study, 11 additional
regression coefficients must be estimated in the linear regression analysis.
This is a ‘dramatic’ waste of power and efficiency, because the medical doc-
tor variable was only added to the regression analysis to be corrected for, and
there is no real interest in the different cholesterol values for each of the sep-
arate medical doctors. A much more powerful and efficient way to correct
for medical doctor is provided by multilevel analysis. By using multilevel
analysis, not all separate intercepts are estimated, but the variance of the
intercepts is estimated. So, instead of estimating 11 intercepts, only one vari-
ance parameter is estimated. The estimation of the variance of the intercepts
is also referred to as ‘assuming or allowing the intercepts to be random’,
i.e. a random intercept. Therefore, multilevel analysis is also known as 
random coefficient analysis.

In multilevel terminology it is said that the observations that are made of
the patients are ‘clustered within medical doctors’. The observations of patients
within one medical doctor are correlated, and therefore a correction must be
made for medical doctor. Because of this clustering, it is also said that there
is a two-level structure in the data. The observations of the patients are the
lower level, while the medical doctor is the higher level (see Figure 2.4).
Again, due to the fact that lower and higher levels exist in the data, multilevel
analysis or multilevel modelling is also referred to as hierarchical modelling.

So, in general, multilevel analysis is a very efficient way of correcting for a
categorical variable with many categories. Of course, there is some sort of
trade-off. This trade-off is the assumption that the different intercepts for
the different medical doctors are normally distributed. So, when performing

MD 1 MD 2 MD 3 MD …

Patients

Patients Patients

Patients

Figure 2.4. Two-level multilevel structure; patients are clustered within medical doctors.



10 Basic principles of multilevel analysis

a multilevel analysis, it is important to realise that this ‘normality’ assump-
tion underlies the estimation procedure (see Section 2.7).

2.2 Example

The example that will be used to explain the basic principles of multilevel
analysis is a very simple one: a cross-sectional study investigating the rela-
tionship between serum cholesterol and age. In this study, different medical
doctors are involved, or in other words, the observations of the patients are
clustered within medical doctors.

Output 2.1 shows the MLwiN output of the dataset used in this example.

Output 2.1. Descriptive information regarding the example dataset

From Output 2.1 it can be seen that there are 441 patients with an age
range of 44–86 years. Serum cholesterol levels range from 3.90 mmol/l to
8.86 mmol/l. Furthermore, it can be seen that there are 12 medical doctors
involved in the study. In addition to these variables, there is also a variable
named cons, with 441 observations ranging between 1 and 1. This variable is
thus a row of only ones, and it is necessary in MLwiN to estimate an inter-
cept of the regression line. Output 2.2 shows the results of the regression
analysis without correcting for medical doctor. This kind of analysis is also
referred to as ‘naive’ regression analysis, because it ignores the possible clus-
tering of data, i.e. it ignores the fact that the observations of patients within
the same medical doctor are correlated.



11 Example

The first line of Output 2.2 shows that total cholesterol is the outcome
variable and that this outcome variable is assumed to follow a normal dis-
tribution. It can also be seen that there are two levels considered (subscripts
i and j are indicators of the two levels), and although a ‘naive’ analysis is per-
formed, in MLwiN the levels in the dataset should already be defined,
because otherwise no analyses can be performed. The lower level (i) is the
patient and the higher level ( j) is the medical doctor (the observations of
the patients are clustered within the medical doctors). The second line of the
output shows the regression equation. From this regression equation it can
be seen that a difference of 1 year in age is associated with a difference of
0.0513 mmol/l in total cholesterol. The value between brackets (i.e. 0.0043)
is the standard error of the regression coefficient, and can be used to evalu-
ate the significance of the relationship between age and total cholesterol.
This is done with the Wald test, which involves dividing the regression 
coefficient by its standard error. This quantity squared is called the Wald stat-
istic. The Wald statistic follows a Chi-square distribution, with one degree of
freedom. In this example the Wald statistic is (0.0513/0.0043)2 � 142.3,
which is highly significant. It should be noted that the Chi-square distribu-
tion with one degree of freedom is the same as the standard normal distri-
bution squared. This means that the same p-value can be derived by dividing
the regression coefficient by its standard error, which then follows a stand-
ard normal distribution. The standard error can also be used to create a 
95% confidence interval (CI) around the regression coefficient. This can 
be done in the ‘traditional’ way by taking the regression coefficient �1.96
times the standard error. In this example the 95% CI ranges from 0.0429 to
0.0597.

Output 2.2. Results of a ‘naive’ analysis of the relationship between 
total cholesterol and age

total cholesterolij ~ N(XB, �)

total cholesterolij = b0icons + 0,0513(0,0043)ageij
b0i = 2,7987(0,2680) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,6961(0,0469)]

-2*loglikelihood(IGLS) = 1091,7520(441 of 441 cases in use)



The third line of the output shows the value of the intercept. As was
already mentioned earlier, cons is a row of ones, and therefore b0 can be
interpreted as the intercept. It can also be seen that the intercept has only
one subscript i. This means that there is only variation on the individual
level. This variation on the individual level is the overall ‘error’ variance,
‘residual’ variance or ‘unexplained’ variance. The value of the intercept is
2.7987 and, as for ‘standard’ linear regression analysis, this is the estimated
total cholesterol value for the situation in which all determinants in the
regression model have the value of zero. In this simple example, the value of
the intercept can be interpreted as the value of total cholesterol when
age � 0. The standard error for the intercept is also shown, and this can be
used to test whether or not the intercept differs significantly from zero, but
this is usually not of interest. The fourth line of the output shows the mag-
nitude of the ‘error variance’ and its corresponding standard error. Although
the ‘naive’ analysis is basically a ‘standard’ linear regression analysis, the dif-
ference between a ‘standard’ linear regression analysis and the same analysis
performed with MLwiN is that the regression coefficients in the latter are
estimated by maximum likelihood, while the regression coefficients in ‘stan-
dard’ linear regression analysis are estimated with ordinary least squares
(OLS). From the maximum likelihood estimation procedure, a log likeli-
hood can be obtained. The �2 log likelihood is shown in the last line of the
output (i.e. 1091.7520). The absolute value of the �2 log likelihood is hardly
informative, but the value will be used in the likelihood ratio test in order to
evaluate whether or not random regression coefficients must be considered.
This will be explained in the following part of this section.

In the second step of the example analysis, a correction is made for med-
ical doctor. As mentioned before, this is done by estimating the variance of
the intercepts for the different medical doctors. Output 2.3 shows the result
of this analysis.

In the second line of Output 2.3 it can be seen that a subscript j is added
to the intercept, which indicates that a random intercept is allowed. Note
that the subscript j refers to the highest level, i.e. the medical doctor. So, in
other words, the subscript j means that a correction for medical doctor is
added to the model. Compared to Output 2.2, in the third line of Output 2.3
it can be seen that the intercept consist of the actual value of the intercept,
an error variance and a new component which reflects the variance in the

12 Basic principles of multilevel analysis



13 Example

intercepts of the different medical doctors. The magnitude of this variance
(and the corresponding standard error) is shown in the fourth line of the
output. In this particular example the variance is 0.3686. The fifth line of the
output shows the error variance. If this error variance is compared to the
error variance in Output 2.2 (the model without a random intercept, i.e.
without correcting for medical doctor) it can be seen that in the second
analysis the error variance is highly reduced. In fact, most of the error vari-
ance from the ‘naive’ analysis is ‘explained’ by adding the random intercept
to the model, i.e. most of the error variance is ‘explained’ by adding the 
medical doctor variable to the model. The question that then arises is whether
or not it is necessary to correct for medical doctor or not; or, in other words,
whether or not it is necessary to allow the intercepts to differ between the
medical doctors. This question can be answered by performing the likeli-
hood ratio test. The likelihood ratio test compares the �2 log likelihood of
the model with a random intercept and the �2 log likelihood of the model
without a random intercept. The difference between the �2 log likelihoods
of the two models follows a Chi-square distribution. The number of degrees
of freedom for this Chi-square distribution is equal to the difference in the
number of parameters to be estimated in the two models. In the present
example the difference between the two �2 log likelihoods is: 1091.7520 �

809.3788 � 282.3732. This difference follows a Chi-square distribution with
one degree of freedom, because compared to the ‘naive’ analysis, in the sec-
ond analysis only the variance of the intercepts is additionally estimated.
This difference is highly significant. It is argued that when variance parameters

Output 2.3. Results of a linear multilevel analysis of the relationship 
between total cholesterol and age, with a random intercept at the 
medical doctor level

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,0496(0,0031)ageij
b0ij = 2,9058(0,2591) + u0j + e0ij

[u0j] ~ N(0, �u) : �u = [0,3686(0,1542)]

[e0ij] ~ N(0, �e) : �e = [0,3315(0,0226)]

-2*loglikelihood(IGLS) = 809,3788(441 of 441 cases in use)



are added to the model, the difference between the two �2 log likelihoods
should be tested one-sided, because a variance can only be positive, and
therefore the difference between the �2 log likelihoods can only be in one
direction (Goldstein, 1995; Lin, 1997; Goldstein, 2003). It is rather strange
that for the likelihood ratio test in multilevel analysis one-sided p-values are
used, while for likelihood ratio tests in ‘standard’ logistic or Cox-regression
analysis, for instance two-sided p-values are always used. In these ‘standard’
situations basically the same phenomenon occurs, because adding variables
to models can only lead to a �2 log likelihood change in one direction.
Although in practice it is not really a big deal whether one-sided or two-
sided p-values are used, it is important to realise that this contradiction
exists in the literature.

The most interesting information in the output is still the second line,
which shows the regression coefficient for age. Corrected for medical doctor,
the regression coefficient decreased slightly from 0.0513 to 0.0496. So, a dif-
ference of 1 year in age between patients is associated with a difference of
0.0496 mmol/l in total cholesterol. When the Wald test is performed for this
regression coefficient, it is obvious that there is still a highly significant rela-
tionship between age and total cholesterol. The Wald statistic is (0.0496/
0.0031)2 � 256 and according to the Chi-square distribution with one
degree of freedom, this is highly significant. When reporting the result of
this analysis, the regression coefficient and the 95% CI are usually presented.
Again, the 95% CI can be estimated by applying the equation: regression
coefficient �1.96 times the standard error. In the present example the 95%
CI around the regression coefficient of 0.0496 ranges from 0.0435 to 0.0557.

2.3 Intraclass correlation coefficient

Based on the variance of intercepts and the remaining error variance, the 
so-called intraclass correlation coefficient (ICC) can be estimated. This ICC is
an indication of the correlation of the observations of the patients belonging
to the same medical doctor, i.e. it is an indication of the dependency of the
patient observations within the medical doctors. The ICC is defined as 
the variance between medical doctors divided by the total variance, where
the total variance is defined as the summation of the variance between 
medical doctors and the variance within medical doctors. Although some

14 Basic principles of multilevel analysis
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people find it counter-intuitive, the smaller the variance within the medical
doctors, the greater the ICC. Figures 2.5a–d illustrate this phenomenon.
Figure 2.5a shows the distribution of a particular outcome variable, and in
Figures 2.5b–d, the outcome variable is divided into three groups (e.g. the
observations belong to three different medical doctors). In Figure 2.5b, the

Outcome
variable

(a)

Outcome
variable

(b)

1
2

3

Outcome
variable

(c)

1

2

3

Outcome
variable

(d)

1

2

3

Figure 2.5 (a–d). Illustration of the intraclass correlation coefficient (ICC). The higher the
variance within the groups, the lower the ICC.
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ICC is low, because the variance within groups is rather high and the vari-
ance between groups is rather low. In Figure 2.5c the groups are more spread
out, and therefore the between group variance increases and the within group
variance decreases. As a consequence, the ICC is increased. In Figure 2.5d the
difference between the groups is maximal. In other words, the within group
variance is minimised and the between group variance is maximised. There-
fore, in the last situation, the ICC is the greatest.

Going back to the results of the example given in Output 2.3, the ICC can
be calculated by dividing the between medical doctor variance (i.e. 0.3686)
by the total variance, which is calculated by summation of the between med-
ical doctor variance and the within medical doctor variance (i.e. 0.3686 �

0.3315). So, in this example the ICC is: 0.3686/0.7001 � 0.526. It should be
noted that in ‘real life’ cross-sectional studies in general the ICC’s are much
lower than in the present example. In most ‘real life’ cross-sectional studies
the ICC will not be higher than 0.20. The reason for this relatively high ICC
is that the example dataset is slightly manipulated and is purely for educa-
tional purposes.

2.4 Random slopes

Up to now, we have only considered a situation in which the intercept of the
regression model is allowed to differ between groups. Let us go back to the
regression model in which we wanted to analyse the relationship between
total cholesterol and age, corrected for gender (Equation (2.2)).

Suppose now that it is not only assumed that the intercepts are different
for males and females, but that the relationship between total cholesterol
and age is also different for males and females. To allow for that, an inter-
action term between gender and age must be added to the regression model
(Equation (2.4)). By adding an interaction between age and gender to the
regression model, different ‘slopes’ of the regression line are estimated for
males and females (see Figure 2.6).

Total cholesterol � �0 � �1 � age � �2 � gender 

� �3 � (age � gender) � � (2.4)

where b3 � regression coefficient for the interaction between gender and age.
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When the possible effect modifier (i.e. gender) is a dichotomous variable,
just one interaction term has to be added to the regression model. However,
when it is not the interaction with gender that is of interest, but the inter-
action with medical doctor, the same problems that were described before
arise. So, when the observations are clustered within medical doctors, it may
be reasonable to assume that the relationship between age and total choles-
terol is different for different medical doctors. In other words, in this situ-
ation different ‘slopes’ of the regression line have to be estimated for each
medical doctor (see Figure 2.7).

In a ‘standard’ regression analysis this can be done by adding interaction
terms between age and the dummy variables representing the different med-
ical doctors to the regression model (Equation (2.5)).

Total cholesterol � �0 � �1 � age � �2 � dummyMD1

� … � �m � dummyMDm�1 � �m�1

� (dummyMD1 � age) � … � �2m�1

� (dummyMDm�1 � age) � � (2.5)

where bm�1 till b2m�1 � regression coefficients for the interactions between
the dummy variables representing the different medical doctors and age,
and m � number of medical doctors.

In our example with 12 medical doctors, this will mean that 11 interaction
terms have to be added to the regression model. Estimating 11 regression
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Figure 2.6. Illustration of a linear regression analysis of the relationship between total
cholesterol and age, with an interaction between gender and age.
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coefficients that are not of major interest will (again) lead to a(n) (enor-
mous) loss of power and efficiency. Comparable to what has been described
for the different intercepts, we are still only interested in the overall relation-
ship between age and total cholesterol. To cope with this, also for this situ-
ation multilevel analysis provides a very efficient solution. As for the different
intercepts, one variance parameter can also be estimated for the different
slopes of the regression lines (reflecting the relationship between age and
total cholesterol) for the different medical doctors. So, in addition to ‘ran-
dom intercepts’, ‘random slopes’ can also be considered.

2.5 Example

Let us go back to the example dataset that was described in Section 2.2 to
illustrate how random slopes can be added to the regression model. Output 2.4
shows the output of the multilevel analysis on the example dataset in which
not only a random intercept, but also a random slope is considered.

Output 2.4 looks slightly different from the earlier outputs that were shown.
In the second line of Output 2.4 for instance, the regression coefficient for
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Figure 2.7. Illustration of a linear regression analysis of the relationship between total
cholesterol and age, with an interaction between medical doctor and age.
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age is indicated by b1j. The subscript j indicates that the regression coeffi-
cients are allowed to differ between the medical doctors (remember that the
subscript j stands for medical doctor). In the fourth line of the output it can
be seen that this b1j consists of the regression coefficient that we are inter-
ested in, and a parameter (u1j) that reflects the variance of the regression
coefficients for age for the different medical doctors. The magnitude of this
variance (and the corresponding standard error) is shown in the variance
matrix in the fifth and sixth line of the output. The first value of the matrix
(i.e. 1.4426) reflects the variance of the intercepts, while the last value of the
matrix (i.e. 0.0003) reflects the variance of the slopes. There is also another
value shown in the matrix (i.e. �0.0172). This is the covariance between the
random intercept and the random slope, which is also known as the corre-
lation between the random intercept and the random slope or the interac-
tion between the random intercept and the random slope. For the
interpretation of this covariance, the sign is probably the most important. In
the example there is a negative sign, which indicates an inverse relationship
between the random intercept and the random slope. In other words, for
medical doctors with a relatively high intercept, a relatively low slope is
observed (see Figure 2.8). On the other hand, a positive sign of the covari-
ance between a random intercept and a random slope indicates that the
group with a relatively high intercept also has a relatively high slope.

Output 2.4. Results of a linear multilevel analysis of the relationship 
between total cholesterol and age, with both a random intercept and a
random slope for age at the medical doctor level

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + b1jageij
b0ij = 2,8800(0,4009) + u0j + e0ij
b1j = 0,0501(0,0058) + u1j

-2*loglikelihood(IGLS) = 799,9644(441 of 441 cases in use)
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To evaluate the necessity of adding a random slope to the model, again the
likelihood ratio test can be used. To do so, the �2 log likelihood of the model
with only a random intercept (809.3788; from Output 2.3) has to be compared
to the �2 log likelihood of the model with both a random intercept and a
random slope (799.9644; from Output 2.4). The difference between the two
is 9.4144, which follows a Chi-square distribution with two degrees of free-
dom. Two degrees of freedom, because not only the variance of the slopes
has to be estimated, but also the covariance between the random intercept
and the random slope. The latter is not really required and although it can
be constrained to zero, it is more general to estimate this covariance.
Evaluating 9.4144 on a Chi-square distribution with two degrees of freedom
gives a p-value of less than 0.001. So, it is not only necessary to correct for
medical doctor (i.e. to have a random intercept), but it is also necessary to
have an interaction between age and medical doctor in the model (i.e. to
have a random slope). The most important information, however, is shown
in the fourth line of the output. The regression coefficient for age is 0.0501,
with a standard error of 0.0058. The corresponding Wald statistic is
(0.0501/0.0058)2 � 74.6 (which is again highly significant) and the corre-
sponding 95% CI ranges from 0.0387 to 0.0615.

One thing that is rather surprising is the high variance for the intercepts,
compared to the variance resulting from the analysis when only a random
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Figure 2.8. Illustration of a situation with a negative covariance between a random intercept and
a random slope; patients with a relatively high intercept have a relatively low slope.
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intercept was considered (i.e. 1.4426 compared to 0.3686). This high value
has to do with the fact that the intercept in this example does not have a real
interpretation. Total cholesterol values when age is zero are not really rele-
vant when the age range is between 44 and 86 years. In a situation with only
a random intercept this does not influence the variance between the inter-
cepts, because the difference between the regression lines is equal at each age
(see, for instance, Figure 2.3). However, when the slopes of the regression
lines differ, this can have a major influence on the variance of the intercepts
when the value of the intercept is non-informative.

A possible way in which to make the intercept more interpretable is to use
the centred value of the independent variable in the analysis. In our example
this can be done by subtracting the average age from all individual (patient)
observations. The results of this subtraction is that the average age in the
dataset will be zero, and therefore the intercept can be interpreted as the
total cholesterol value for the average age. Output 2.5 shows the results of a
multilevel analysis with both a random intercept and a random slope when
age is centred. The regression coefficient (and random variance) for age is
(of course) exactly the same as before, but the magnitude of the intercept
and the variance of the intercept have changed considerably. It can further
be seen that the variance of the intercept has more or less the same value as
in the analysis with only a random intercept.

Output 2.5. Results of a linear multilevel analysis of the relationship
between total cholesterol and age, with both a random intercept and a
random slope for age at the medical doctor level, when age is centred

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + b1jage centredij
b0ij = 5,9712(0,1756) + u0j + e0ij
b1j = 0,0501(0,0058) + u1j

-2*loglikelihood(IGLS) = 799,9634(441 of 441 cases in use)
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2.6 Multilevel analysis with more than two levels

Up to now, only a relatively simple situation has been considered, in which
the patient observations were clustered within the medical doctors. It is,
however, also possible that the different medical doctors come from the
same hospital or institution, and that the observations within the medical
doctors are therefore clustered within institutions (see Figure 2.9).

It is not surprising that this clustering within a higher level can be treated
in the same way as has been described for the clustering of the patient obser-
vations within the medical doctor. So, also for the different institutions the
variance of the intercepts can be estimated, and the variances of the regres-
sion coefficients reflecting the relationship between total cholesterol and age
(i.e. the slopes) can also be estimated.

2.6.1 Example
Output 2.6 shows the descriptives of the example dataset described in the
earlier sections, but it also includes the institution variable.

From Output 2.6 it can be seen that the 12 medical doctors ‘belong’ to 
6 institutions. All other variables were already explained in Section 2.1.

Output 2.7 shows the results of the multilevel analysis in which a random
intercept is assumed for medical doctor as well as for institution.

Institution 1 Institution …

Patients

MD 1 MD 2

Patients

MD …

Patients

Figure 2.9. Three-level multilevel structure; patients are clustered within medical doctors and
medical doctors are clustered within institutions.
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From the first line of Output 2.7 it can be seen that the outcome variable is
measured on three levels. It was already known that subscript i stands for the
lowest level, i.e. the patient, and that subscript j stands for the second level, i.e.
the medical doctor. Subscript k is added to the outcome variable, which indi-
cates that a third level is present, i.e. the institution. From the second and the
third line of Output 2.7 it can be seen that (indeed) the intercept is considered
to be random on all three levels. First of all, the b0, has three subscripts,
and after the intercept of 2.9162 and the corresponding standard error of
0.3083, three parameters are added: the remaining unexplained variance 
(indicated by e0ijk), the variance of the intercepts on the medical doctor level

Output 2.7. Results of a linear multilevel analysis of the relationship 
between total cholesterol and age with a random intercept at both the
medical doctor level and the institution level

total cholesterolijk ~ N(XB, �)

total cholesterolijk = b0ijkcons + 0,0494(0,0031)ageijk
b0ijk = 2,9162(0,3083) + v0k + u0jk + e0ijk

[v0k] ~ N(0, �v) : �v = [0,3372(0,2067)]

[u0jk] ~ N(0, �u) : �u = [0,0315(0,0234)]

[e0ijk] ~ N(0, �e) : �e = [0,3315(0,0226)]

-2*loglikelihood(IGLS) = 799,8273(441 of 441 cases in use)

Output 2.6. Descriptive information regarding the example dataset
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(indicated by u0jk), and the variance of the intercepts on the institution level
(indicated by v0k). The magnitudes of the three variances are shown in the
next three lines of the output. To evaluate the necessity of allowing a random
intercept on the institution level, the results of this analysis must be compared
to the results of the analysis with only a random intercept on the medical doc-
tor level (see Output 2.3). This evaluation is made with the likelihood ratio
test. The �2 log likelihood of the model with only a random intercept on the
medical doctor level was 809.3788, while the �2 log likelihood of the model
with both a random intercept on the medical doctor level and the institution
level is 799.8273. The difference between the two is 9.5515, which is Chi-
square distributed with one degree of freedom (only the random variance of
the intercepts on the institution level is added to the model), which is highly
significant. What can be seen is that the random variance of the intercepts on
the medical doctor level is almost totally shifted to the random variance of the
intercepts on the institution level. This means that almost all variance in inter-
cepts observed between medical doctors is due to the variance in intercepts
between institutions.

The next step in the analysis is to add random coefficients for the rela-
tionship with age to the regression model. At first, only a random slope for
medical doctor is considered (Output 2.8).

Output 2.8. Results of a linear multilevel analysis of the relationship 
between total cholesterol and age with a random intercept at both the 
medical doctor level and the institution level and a random slope for age 
at the medical doctor level

total cholesterolijk ~ N(XB, �)

total cholesterolijk = b0ijkcons + b1jageijk
b0ijk = 2,8500(0,4132) + v0k + u0jk + e0ijk
b1j = 0,0505(0,0057) + u1jk

[v0k] ~ N(0, �v) : �v = [0,3437(0,2077)]

[e0ijk] ~ N(0, �e) : �e = [0,3139(0,0217)]

-2*loglikelihood(IGLS) = 789,6476(441 of 441 cases in use)
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The fact that a random slope for medical doctor is considered can be seen
from the regression coefficient for age, which has the subscript j. After the
actual value of the regression coefficient for age (i.e. 0.0505) and correspond-
ing standard error (i.e. 0.0057), an additional variance parameter (u1jk) is
added. That variance parameter stands for a random variance in the relation-
ship between total cholesterol and age on the medical doctor level. The neces-
sity of this variance can again be evaluated by comparing the �2 log likelihood
of the model with this additional variance (789.6476) with the �2 log likeli-
hood of the model without the additional variance (799.8273). The difference
between the two (10.1797) follows a Chi-square distribution with two degrees
of freedom (the variance of the slopes on the medical doctor level and the
covariance between the intercepts and slopes on the medical doctor level),
which is highly significant.

The last possibility for a random coefficient in the present model is allow-
ing the regression coefficient with age to be random for each institution.
Output 2.9 shows the results of the analysis in which the intercepts as well as
the slopes were assumed to be random on both the medical doctor level and
the institution level.

Output 2.9. Results of a linear multilevel analysis of the relationship
between total cholesterol and age with a random intercept at both the
medical doctor level and the institution level and a random slope for
age at both the medical doctor level and the institution level

total cholesterolijk ~ N(XB, �)

total cholesterolijk = b0ijkcons + b1jkageijk
b0ijk = 2,8799(0,4009) + v0k + u0jk + e0ijk
b1jk = 0,0501(0,0058) + v1k + u1jk

[e0ijk] ~ N(0, �e) : �e = [0,3137(0,0217)]

-2*loglikelihood(IGLS) = 799,9617(441 of 441 cases in use)
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A random slope on both the medical doctor and the institution level is
indicated by the fact that the regression coefficient for age b1 has the sub-
scripts j and k, and that after the regression coefficient in the fourth line of
Output 2.9, two additional parameters are shown: one for the variance of
the regression coefficient for age on the medical doctor level, and one for the
variance of the regression coefficient for age on the institution level. When
the magnitude of the variances is considered, it can be seen that all variances
on the institution level are zero, and although that is quite strange, this is
often the case in models with a lot of random coefficients. The conclusion
from all these zeros is that the last random coefficient (i.e. a random slope
on the institution level) cannot be estimated accurately and therefore it can
be considered as unimportant. So, the conclusion that can be drawn from all
the analyses is that the most efficient way to estimate the relationship
between total cholesterol and age is a model with random intercepts on both
the medical doctor level and the institution level and a random slope on the
medical doctor level. Therefore, the most appropriate estimate of the rela-
tionship between total cholesterol and age can be found in Output 2.8. The
point estimate is 0.0505 and the corresponding standard error can be used
to estimate the 95% CI around the point estimate. This 95% CI ranges from
0.0393 to 0.0617. The p-value of the (linear) relationship between total cho-
lesterol and age can be derived from the Wald statistic, which is (0.0505/
0.0057)2 � 78.5. On a Chi-square distribution with one degree of freedom
the corresponding p-value is �0.001.

2.7 Assumptions in multilevel analysis1

Because linear multilevel analysis is an extension of ‘standard’ linear regres-
sion analysis, all assumptions for ‘standard’ linear regression analysis also
hold for multilevel analysis. So, the continuous outcome variable should be
normally distributed; i.e. the residuals should be normally distributed. As in
‘standard’ linear regression analysis, this can be investigated by producing
normal plots (see for details: Goldstein and Healy, 1995; Goldstein and

1For the way in which to check the assumptions in MLwiN, reference is made to the software
manual (Rasbash et al., 2003) Chapters 3 and 15.
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Spiegelhalter, 1996). Moreover, the residuals should be uncorrelated. In most
multilevel studies this should not be a big problem, because the reason for
performing a multilevel analysis in the first place, is that there are correlated
observations (i.e. correlated residuals) in the data to be analysed. So, basically,
by using multilevel analysis the problem of these correlated residuals is more
or less solved. However, there are research situations in which the use of multi-
level analysis only partly solves the problem of the correlated residuals. This
is, for instance, often the case in longitudinal studies (see Section 6.6.1).

An additional assumption that is typical for multilevel analysis was already
mentioned in the earlier sections, i.e. the random intercepts and the random
slopes must be normally distributed. Whether or not this is a reasonable
assumption can, for instance, be investigated by analysing the different groups
(i.e. medical doctors) separately. It should be realised that this is not always
possible (especially when many groups are involved).

In addition to checking the assumptions of the linear multilevel analysis, it
can also be important to investigate whether the model coefficients are influ-
enced by certain data-points or whether outliers are present in the analysed
dataset. Because of the multilevel structure of the data, outliers (or influen-
cing data points) can occur at different levels. Observations of patients can
influence the overall relationship that is analysed, or can be outliers at patient
level. On the other hand, a single patient observation can also be an outlier
for the particular medical doctor to whom that patient ‘belongs’; in other
words, the patient observation can be an outlier at the medical doctor level.
For detailed information regarding outliers and influencing data points in
multilevel studies, reference is made to Atkinson (1986), Barnett and Lewis
(1994), Lawrence (1995), or Langford and Lewis (1998).

2.8 Comments

2.8.1 Which regression coefficients can be assumed to be random?
From the analyses discussed in this chapter it can be seen that on the lowest
level (i.e. the patient observations) only the intercept is considered to be ran-
dom. This random intercept at patient level was the overall error variance of
the regression analysis. Some people wonder why the other regression coeffi-
cients are not considered to be random at patient level. This is, however, not
possible. In the example, the relationship between total cholesterol and age
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was considered. For each patient this relationship is based on only one obser-
vation, and each patient has one age and one total cholesterol value. So, on at
patient level there are no slopes! Considering a random slope on at patient
level therefore makes no sense2. A general rule concerning random regression
coefficients is that they can only be considered to be random at a level above
that on which they are measured. In the situation in the present example this
means that because age is measured at patient level, it can only be assumed 
to be random on the levels above the patient level (i.e. at the medical doctor
level and at the institution level). In line with this, if a variable was measured
at the medical doctor level (for instance gender or age of the medical doctor)
this variable can only be assumed to be random at the institution level.

2.8.2 Random regression coefficients versus fixed regression coefficients
Within multilevel analysis, a distinction must be made between fixed and
random regression coefficients. It should be realised that this distinction dif-
fers from the distinction between random and fixed factors in the trad-
itional analysis of variance. In analysis of variance, a random factor is defined
as ‘a categorical variable in which the groups are a random sample of all pos-
sible groups about which conclusions are desired’ (e.g. medical doctor or
institution), while a fixed factor is defined as ‘a categorical variable about
which conclusions are desired for every group’ (e.g. gender). In multilevel
analysis, however, a fixed regression coefficient is just the regression coeffi-
cient itself. In principle, all regression coefficients of a multilevel analysis are
fixed, because in general one is interested in the magnitude of the regression
coefficients. In addition to the fixed part of the regression coefficient, each
regression coefficient can also be considered to be random (depending on
the level on which the variable is measured (see Section 2.8.1)). This ran-
dom part of the regression coefficient is the variation of the regression coef-
ficient between the groups considered (e.g. medical doctors, school classes,
etc.). The term random is probably not the most appropriate in this respect,
because the regression coefficients are not really ‘random’; they are assumed
to be different for different groups.

2 It should be realised that in the MLwiN software it is possible to add a random slope at the
lowest level, although it makes no sense.
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2.8.3 Maximum likelihood versus restricted maximum likelihood
In all the outputs presented so far, IGLS was printed between brackets after
the �2 log likelihoods of the model. IGLS stands for Iterative Generalised
Least Squares (in fact it is rather strange that the estimation procedure is
called IGLS, because the regression coefficients and variances are estimated
by maximum likelihood (ML)). There is also another procedure that can be
used to estimate the regression coefficients and variances, i.e. Restricted
Maximum Likelihood (REML). In the MLwiN software this technique is
known as Restricted Iterative Generalised Least Squares (RIGLS). It should
be noted that in some software packages, such as SAS and SPSS, the REML
estimation procedure is the default (see also Chapter 9). There is no real
consensus concerning the ‘best’ estimation procedure. It is often argued that
REML is ‘better’ for the estimation of random variances, while ML is ‘better’
for the estimation of the (fixed) regression coefficients. In general, the
(fixed) regression coefficients are of major interest, so, therefore, in the
examples presented in this book ML estimation procedure will be used. To
illustrate the differences between the ML and the REML estimation proced-
ures, the relationship between age (centred) and total cholesterol with both
a random intercept and a random slope on the medical doctor level (results
shown in Output 2.5) was also estimated with REML. The results of both
analyses are shown in Table 2.1.

From Table 2.1 it can be seen that the differences between the two estima-
tion procedures are only marginal. Not surprisingly, the only (small) differ-
ences were observed for the variance of the random intercepts.

Table 2.1. Relationship between age (centred) and total cholesterol, estimated
with ML estimation procedure and with a REML procedure

ML estimate REML estimate

Intercept 5.97 (0.18) 5.97 (0.18)

Age 0.050 (0.006) 0.050 (0.006)

Random intercept at the medical doctor level 0.36 (0.15) 0.39 (0.16)

Random slope for age at the medical doctor level 0.0003 (0.0002) 0.0003 (0.0002)



What do we gain by applying multilevel
analysis?

3.1 Introduction

Before multilevel analysis was developed, the problem of correlated observa-
tions within, for instance, medical doctors was tackled in two ways: either
ignoring the fact that the observations are correlated or combining the cor-
related observations into one value. In fact, both methods are still frequently
used. Ignoring the fact that the observations are correlated assumes that all
observations are independent. In Chapter 2, this method was called ‘naive’
analysis, the advantage of which is that ‘standard’ regression analysis can be
used. This way of analysing clustered data is also referred to as the ‘disaggre-
gation’ method. The other possibility is not to ignore the dependency of
the observations, but to analyse the group observations (i.e. made by each
medical doctor) instead of the individual observations. Therefore, some sort
of average value of the observations for each group must first be calculated
and then these averages can be used as outcome in a ‘standard’ regression
analysis. This method is referred to as the ‘aggregation’ method. To answer
the question: ‘What do we gain by using multilevel analysis?’, it is interesting
to compare the results obtained from these three types of analysis: the ‘naive/
disaggregation’ method, the ‘aggregation’ method, and the (more sophisti-
cated) multilevel analysis.

3.2 Example with a balanced dataset

In this example we use a dataset from a randomised controlled trial. The
outcome variable in this experimental study is a certain continuous health
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outcome. The total study population consists of 200 patients, randomly
divided into an intervention group and a control group. The intervention
was performed by 20 medical doctors, and in this balanced dataset each
medical doctor had 10 patients. The randomisation was performed on the
patients, which means that for each medical doctor half of the patients were
allocated to the intervention group, and the other half to the control group.
Output 3.1 shows the dataset that is used in this example.

Output 3.1. Descriptive information regarding the balanced dataset used in
the example

The first analysis that was performed was a ‘naive/disaggregated’ analysis,
or, in other words, all patients are considered to be independent. Output 3.2
shows the output of this analysis in MLwiN. The results are (of course) exactly
the same as the results obtained from a ‘standard’ linear regression analysis.
To illustrate this, Output 3.3 shows the output of this ‘naive/disaggregated’
analysis performed in SPSS. The only difference is that in ‘standard’ linear
regression analysis a t-statistic and a t-distribution are used to evaluate
whether or not the effect of the intervention is significant. With multilevel
analysis (in MLwiN), on the other hand, this is done with the Wald statistic
and the Chi-square distribution (see Section 2.2). The magnitude of the
regression coefficient and the standard error will (of course) be the same for
both methods, and when there is a large study population the corresponding
p-values will also be the same.
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From Outputs 3.2 and 3.3 it can be seen that the intervention effect was
0.289, with a standard error of 0.121. Based on the multilevel analysis, the
95% confidence interval (CI) of this intervention effect is 0.289 �

1.96 � 0.121 � [0.052–0.526]. Output 3.4 shows the results of the multi-
level analysis, not ignoring the dependency of the observations. In the multi-
level analysis, both a random intercept and a random regression coefficient
for the intervention variable (a random slope) were fitted.

When a multilevel analysis is performed with random regression coeffi-
cients, the intervention effect remains exactly the same (i.e. 0.289), but the
standard error increases from 0.121 to 0.175 (see Outputs 3.2 and 3.4). The
95% CI around this intervention effect is therefore 0.289 � 1.96 � 0.175 �

Output 3.3. Results of a ‘naive/disaggregated’ analysis performed in SPSS on
a balanced dataset to determine the effects of the intervention on a certain
health outcome

Coefficientsa

Unstandardized

Coefficients

Model B Std. Error t Sig.

1 (Constant) 6,501 ,086 75,888 ,000

intervention ,289 ,121 2,387 ,018

aDependent variable: health outcome.

Output 3.2. Results of a ‘naive/disaggregated’ analysis performed in 
MLwiN on a balanced dataset to determine the effects of the 
intervention on a certain health outcome

health outcomeij ~ N(XB, �)

heath outcomeij = b0icons + 0,289(0,121)interventionij
b0i = 6,501(0,085) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,727(0,073)]

-2*loglikelihood(IGLS) = 503,699(200 of 200 cases in use)
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[�0.054–0.632], which is no longer significant. The fact that the standard
error obtained from the multilevel analysis is higher than the standard error
obtained from the ‘naive/disaggregated’ analysis is not surprising. In the
analysis that ignores the dependency of the observations, each observation
is considered to provide 100% new information. In a multilevel analysis, a
correction is made for medical doctor, which means that the information
provided by a patient ‘belonging’ to the same medical doctor does not give
100% new information, but less. The magnitude of the new information
provided by each individual patient depends on the magnitude of the intra-
class correlation coefficient (ICC). The higher the ICC, the less new infor-
mation provided by a patient ‘belonging’ to the same medical doctor, and
the higher the standard error of the multilevel analysis, compared to the
‘naive/disaggregated’ analysis.

When the analysis is performed on the average health outcomes of
the patients of the 20 medical doctors, it can be seen that the regression 
coefficient of this ‘aggregated’ analysis is exactly the same as for the other
two analyses. However, because only 40 observations are analysed (i.e. the
average values of the 20 medical doctors for the intervention and control
group), the standard error of the regression coefficient is much higher than
in the other two analyses (see Output 3.5).

Output 3.4. Results of a multilevel analysis on a balanced dataset to
determine the effects of the intervention on a certain health outcome. 
Both a random intercept and a random slope for the intervention variable 
are assumed

health outcomeij ~ N(XB, �)

health outcomeij = b0ijcons + b1jinterventionij
b0ij = 6,501(0,110) + u0j + e0ij
b1j = 0,289(0,175) + u1j

-2*loglikelihood(IGLS) = 448,579(200 of 200 cases in use)
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3.3 Example with an unbalanced dataset

The differences between a ‘naive/disaggregated’ analysis, a multilevel analy-
sis, and an ‘aggregated’ analysis are different when the dataset is unbalanced.
In the following example, the dataset used in the example in Section 3.2 is
changed in such a way that for half of the medical doctors, only six patients
(equally divided into intervention and control groups) are included in the
study. So, instead of 200 patients in the earlier example, this dataset includes
160 patients. Output 3.6 shows the results of the analysis ignoring the
dependency of the observations within the medical doctors (i.e. the results
of the ‘naive/disaggregated’ analysis).

Output 3.5. Results of an ‘aggregated’ analysis on a balanced dataset
performed in SPSS to determine the effects of the intervention on a certain
health outcome

Coefficientsa

Unstandardized

Coefficients

Model B Std. Error t Sig.

1 (Constant) 6,501 ,145 44,966 ,000

intervention ,289 ,204 1,414 ,165

aDependent variable: average health outcome.

Output 3.6. Results of a ‘naive/disaggregated’ analysis performed in MLwiN
on an unbalanced dataset to determine the effects of the intervention on a
certain health outcome

health outcomeij ~ N(XB, �)

heath outcomeij = �0icons + 0,271(0,136)interventionij
�0i = 6,582(0,096) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,740(0,083)]

-2*loglikelihood(IGLS) = 405,792(160 of 160 cases in use)



35 Cluster randomisation

From Output 3.6 it can be seen that the intervention effect is 0.271, with
a standard error of 0.136. This results in a 95% CI, ranging from 0.004 to
0.540. The corresponding p-value, which can be derived from the Wald test
[(0.271/0.136)2 � 3.97], is 0.046. When a multilevel analysis is performed
(again with both a random intercept and a random slope for the interven-
tion variable), not only the standard error of the intervention effect changes,
but also the intervention effect itself (see Output 3.7). The intervention
effect is now 0.187, with a 95% CI ranging from �0.23 to 0.61, and the 
p-value for this intervention effect is no longer significant, i.e. 0.383; derived
from the Wald statistic ([0.187/0.215]2 � 0.76).

Output 3.7. Results of a multilevel analysis on an unbalanced dataset to
determine the effects of the intervention on a certain health outcome. 
Both a random intercept and a random slope for the intervention variable 
are assumed

health outcomeij ~ N(XB, �)

health outcomeij = b0ijcons + b1jinterventionij
b0ij = 6,559(0,116) + u0j + e0ij
b1j = 0,187(0,215) + u1j

-2*loglikelihood(IGLS) = 363,628(160 of 160 cases in use)
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When an ‘aggregated’ analysis is applied to this unbalanced dataset, both
the intervention effect and the corresponding standard error are different
from the results of the previous analyses (see Output 3.8).

3.4 Cluster randomisation

The examples described in Sections 3.2 and 3.3 are related to a randomisa-
tion at patient level. This means that in the multilevel analysis the interven-
tion effect can also be considered random among medical doctors, i.e. it was
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possible to assume a random slope for the intervention variable. When a
cluster randomisation design is used, i.e. when the randomisation is not car-
ried out at patient level, but at the medical doctor level, the intervention
effect can not be considered to be random among the medical doctors
(remember the rule that random regression coefficients can only be con-
sidered at a level above the level on which the specific variable is measured).

Output 3.8. Results of an ‘aggregated’ analysis on an unbalanced dataset
performed in SPSS to determine the effects of the intervention on a certain
health outcome

Coefficientsa

Unstandardized

coefficients

Model B Std. Error t Sig.

1 (Constant) 6,546 ,160 40,894 ,000

intervention ,181 ,226 ,799 ,429

aDependent variable: average health outcome.

Table 3.1. Results of a ‘naive/disaggregated’ analysis, a multilevel analysis, and an
‘aggregated’ analysis on a dataset in which a cluster randomisation is performed,
i.e. the randomisation is carried out at the medical doctor level

Intervention effect Standard error p-value

Balanced dataset1

‘Naive/disaggregation’ 0.259 0.121 0.032

Multilevel analysis 0.259 0.213 0.224

‘Aggregation’ 0.259 0.225 0.265

Unbalanced dataset2

‘Naive/disaggregation’ 0.176 0.137 0.199

Multilevel analysis 0.126 0.218 0.563

‘Aggregation’ 0.087 0.228 0.707

1In the balanced dataset 200 patients were included, equally divided among the 

20 medical doctors.
2In the unbalanced dataset, for half of the medical doctors only six patients were

included, resulting in a total of 160 patients.



However, the differences and equalities between a ‘naive/disaggregated’
analysis, a multilevel analysis, and an ‘aggregated’ analysis are comparable to
the differences described for a dataset in which the randomisation is carried
out at patient level. Table 3.1 summarises the results of the three different
types of analyses on the dataset with a cluster randomisation.

3.5 Conclusion

Irrespective of the way in which randomisation is performed (i.e. either at
patient level or on the medical doctor level), the differences between a
‘naive/disaggregated’ analysis, a multilevel analysis and an ‘aggregated’
analysis depend on whether or not the dataset is balanced. If the dataset is
balanced, the only difference between the methods is observed in the stand-
ard error of the regression coefficients. However, when the dataset is unbal-
anced, there is a difference between the regression coefficients and the
corresponding standard errors in the three methods.

For more detailed (mathematical) information related to the topic
addressed in this chapter, reference is made, for instance, to Neuhaus and
Kalbfleisch, 1998; Opdenakker and van Damme, 2000; Wampold and Serlin,
2000; Hutchinson and Healy, 2001; Tranmer and Steel, 2001; Moerbeek 
et al., 2003a or Moerbeek, 2004.
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Multilevel analysis with different 
outcome variables

4.1 Introduction

In the foregoing chapters, multilevel analysis was explained with examples
from studies with continuous outcome variables (i.e. linear multilevel analy-
sis). One of the biggest advantages of multilevel analysis is that it can be used
for the analysis of other kinds of outcome variables as well. Logistic multi-
level analysis can be used for dichotomous outcome variables, multinomial
logistic multilevel analysis can be used for categorical outcome variables, and
Poisson multilevel analysis can be used for so-called ‘count’ outcome vari-
ables. Furthermore, it is possible to perform a multilevel survival analysis,
although the necessary software has not yet been fully developed for this type
of analysis.

4.2 Logistic multilevel analysis

The general principles behind logistic multilevel analysis (i.e. multilevel
analysis with a dichotomous outcome variable) are the same as those
described in Chapter 2 for linear multilevel analysis. So, in general, multi-
level analysis with a dichotomous outcome variable is a logistic regression
analysis in which an additional correction can be made for categorical vari-
ables, such as medical doctor or school. It should be realised that the esti-
mation of the random variances, in particular, is mathematically quite
difficult, and that different software packages use different estimation pro-
cedures. Unfortunately, however, these different procedures often lead to
different results (see Chapter 9 for further information about the use of the
various software packages).
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The use of logistic multilevel analysis can best be illustrated by analysing
an example dataset. As in the earlier chapters, the dataset will be analysed in
MLwiN, and it is the same dataset that was used in the example with continu-
ous outcome variables; the only difference is that now total cholesterol is not
related to age, but the outcome is hypercholesterolemia (yes versus no).
Output 4.1 shows descriptive information regarding the dataset used in the
example.

Output 4.1. Descriptive information regarding the dataset used in the
example to explain logistic multilevel analysis

As can be seen from Output 4.1, again there are 441 observations, 12
medical doctors, and a patient age-range between 44 and 86 years. It cannot
be seen from Output 4.1, but the prevalence of hypercholesterolemia in the
example dataset is 39%. The column cons was already seen in the chapters
dealing with continuous outcome variables, and was necessary to estimate
the intercept of the multilevel regression model (see Section 2.2). To per-
form a logistic multilevel analysis in MLwiN software, in addition to the col-
umn cons, two additional columns of ones are needed. The column bcons is
needed to define the error variance of the logistic regression model, but this
will be explained later. The column denom is a feature of the MLwiN soft-
ware that is comparable, for instance, to the weight cases option in SPSS.
This feature makes it possible to use a so-called ‘grouped’ data structure,
which can be, especially suitable when the dataset consists only of dichotom-
ous variables. In the dataset in Table 4.1, for instance, there are only eight
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combinations possible, and therefore there are only eight rows in the
dataset. These eight rows represent 150 patients, 20 of whom, for instance,
have 0 for the outcome variable and also 0 for the two determinants, while
10 of whom have 0 for the outcome variable and the first determinant, but 1
for the second determinant, etc. In most situations, however, each patient is
presented in the dataset by a separate row, and then the variable denom is a
row of ones.

Output 4.2 shows the results of a ‘naive’ logistic regression analysis of the
relationship between hypercholesterolemia and age. In this first analysis all
observations are assumed to be independent, i.e. no correction is made for
medical doctor.

Table 4.1. Illustration of a ‘grouped’ data structure with one dichotomous
outcome and two dichotomous determinants

Outcome Determinant 1 Determinant 2 Denom

0 0 0 20

0 0 1 10

0 1 0 5

0 1 1 10

1 0 0 20

1 0 1 25

1 1 0 40

1 1 1 20

Output 4.2. Results of a ‘naive’ logistic multilevel analysis of
the relationship between hypercholesterolemia and age

logit(pij) = -6,825(0,819)cons + 0,102(0,013)ageij

bcons* = bcons[pij(1 - pij)/denomij]
0.5

[e0ij] ~ (0, �e) : �e = [1,000(0,000)]

hypercholesterolemia Binomial(denom ,ij ij ij~ p ))
hypercholesterolemia bcons*ij ij ije= +p 0

⎫
⎬
⎪⎪
⎭⎭⎪⎪
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The first line of Output 4.2 shows that we are dealing with a dichotomous
outcome variable (i.e. a binomial distribution). In the second line of the output
it can be seen that the dichotomous outcome variable hypercholesterolemia is
modelled by the probability (�) and a certain ‘error’. This looks a bit strange, but
it is typical for logistic regression analysis. The ‘error’ (or ‘residual’) is already
reflected in the probability, and therefore the bcons parameter (a row of ones)
is needed. Again, it is a bit strange that this must explicitly be included in the
model, because it is directly related to the fact that a logistic regression analysis
is performed (therefore, in any other software package the addition of bcons is
not necessary, because it is added automatically)1. The third line of the output
shows the logistic regression model. The outcome variable is the ‘logit of the
probability’ or, in other words, the natural log of the odds of having hypercho-
lesterolemia. Again, this is exactly the same as in a ‘standard’ logistic regression
analysis. From the output it can be seen that the regression coefficient for
age � 0.102. This regression coefficient can be transformed into an odds ratio
by taking EXP[regression coefficient]. In the example the odds ratio for age is
therefore EXP[0.102] � 1.11. This means that for a difference of 1 year in age,
the odds for hypercholesterolemia for the older patient is 1.11 times higher
compared to the odds for hypercholesterolemia for the younger patient. In the
same way the 95% confidence interval (CI) can be estimated: EXP[regression
coefficient � 1.96 times the standard error]. In the present example the 95%
CI around the odds ratio of 1.11 ranges between 1.08 and 1.14. This is a rela-
tively small odds ratio, with a narrow interval, which is due to the fact that it
reflects the odds ratio related to only 1 year difference in age. From the 95% CI
around the odds ratio, it can be seen that the corresponding odds ratio differs
significantly from 1 (i.e. the value of 1, which reflects no relationship, does not
lie within the interval). Comparable to the linear multilevel analysis (see
Chapter 2), the actual p-value of the regression coefficient (i.e. the actual 
p-value of the odds ratio) can be derived from the Wald test. Again, the Wald
statistic is defined by the regression coefficient divided by its standard error,
and this magnitude squared follows a Chi-square distribution with one degree

1 To perform a logistic multilevel analysis in MLwiN software, the variable bcons must be only random at
the lowest level (not fixed), while the variable cons must not be random at the lowest level (fixed, and if
necessary random on the levels other than the lowest level). However, in the ‘new’ version of MLwiN
(i.e. Version 2.0) this is done automatically, and bcons is not needed anymore.
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of freedom. In the example the Wald statistic is: (0.102/0.013)2 � 61.6; which
is highly significant (p � 0.001).

The last two lines of the output are related to the fact that a logistic regres-
sion analysis is performed, and will not be discussed in detail. What is
important, however, is the fact that no �2 log likelihood is shown. This is
because the parameters of the logistic multilevel analysis are estimated with
quasi-likelihood instead of maximum likelihood (or restricted maximum
likelihood), and therefore the �2 log likelihood can not be estimated.

Output 4.3 shows the result of a logistic multilevel analysis, in which a cor-
rection is made for medical doctor, or, in other words, a logistic regression
analysis in which the intercept is allowed to vary among medical doctors.

Output 4.3. Results of a logistic multilevel analysis with a random 
intercept to determine the relationship between hypercholesterolemia 
and age

logit(pij) = b1jcons + 0,180(0,023)ageij
b1j = -12,051(1,680) + u1j

[u1j] ~ N(0, �u):�u = [5,590(2,448)]

bcons* = bcons[pij(1 - pij)/denomij]
0.5

[e0ij] ~ (0, �e):�e = [1,000(0,000)]

hypercholesterolemia Binomial(denom ,ij ij ij~ p ))
hypercholesterolemia bcons*ij ij ije= +p 0

⎫
⎬
⎪⎪
⎭⎭⎪⎪

The fact that a correction is made for medical doctor can be seen in the
fourth line of Output 4.3. This line shows the intercept of the regression
model, and the variance of that intercept (reflected by u1j). The magnitude
(i.e. 5.590) and the standard error (i.e. 2.448) of this variance are shown in
the next line of the output. The question then arises is whether or not it is
necessary to allow the intercepts to be different for the medical doctors; or,
in other words; whether or not it is necessary to correct for medical doctor
in this analysis. As there is no �2 log likelihood available, the likelihood
ratio test can not be performed in this situation, so we need something else.
One of the possibilities (and maybe the only one) is to use the magnitude of



the variance in combination with the standard error of the variance. It is
theoretically not correct to perform the Wald test on variance parameters,
but it gives an indication of whether or not the variance of the intercepts is
‘important’. In the present example the magnitude of the variance is 2.28
times higher than the corresponding standard error. It is difficult to provide
cut-off values for this ‘incorrect’ test, but when the variance is more than 2
times higher than its own standard error, the variance ‘must’ be considered
as important, and therefore the corresponding regression coefficient ‘must’
be allowed to be random. In this example, the variance of the intercept was
2.28 times higher than the standard error, so a random variance of the inter-
cept ‘must’ be added to the logistic regression model.

Looking at the relationship between age and hypercholesterolemia, it can
be seen that both the regression coefficient and the standard error have
increased, compared to the results of the ‘naive’ analysis which were
reported in Output 4.2. The fact that the standard error increases when a
correction is made for medical doctor was already seen in the examples in
the earlier chapters. This has to do with the fact that an individual patient
‘belonging’ to the same medical doctor does not provide 100% new infor-
mation, while in the ‘naive’ analysis it is assumed that the observations of
each patient are independent, and therefore all observations provide 100%
new information. In fact, the differences between a ‘naive’ analysis, a multi-
level analysis, and an ‘aggregated’ analysis for dichotomous outcomes are the
same as those described in Chapter 3 for continuous outcomes. The odds
ratio (and 95% CI) for age in the analysis correcting for medical doctor is
1.20 [1.14–1.25]. The Wald test again reveals a highly significant p-value
(p � 0.001).

The next question that can be asked is whether or not it is necessary to
allow the relationship between age and hypercholesterolemia to be different
for the medical doctors. Or, in other words, is it necessary to allow a random
slope for age? Output 4.4 shows the results of the analysis in which, in add-
ition to a random intercept, a random slope with age is also considered.

From Output 4.4 it can be seen that both regression coefficients in the
model (i.e. the intercept and the regression coefficient for age) are con-
sidered to be random. Both have a variance parameter (indicated by u1j and u2j,
respectively) added to the actual regression coefficient. The fifth and sixth
lines of the output show the magnitude of the different variances, as well as

43 Logistic multilevel analysis
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the value of the covariance (correlation or interaction) between the random
intercept and the random slope for age. It can be seen that both the slope
variance and the covariance are zero, which implies that in this particular
situation a random slope for age can not be properly estimated and is, there-
fore, not necessary. So, in conclusion, the most appropriate way (i.e. model)
to estimate the relationship between age and hypercholesterolemia is shown
in Output 4.3, i.e. only allowing a random intercept.

It was already mentioned that it is rather difficult to estimate (in particular)
the random variances in a logistic multilevel analysis. Therefore, many differ-
ent estimation procedures exist (see Chapter 9 for details). Within the quasi-
likelihood estimations in MLwiN, different estimation procedures are also
available. In the examples, a so-called second order penalised quasi-likelihood
(second order PQL) estimation procedure is used. Although there are still
some ongoing discussions, a second order PQL estimation procedure is
thought to be the most appropriate method (Nelder and Lee, 1992;
Rodriguez and Goldman, 1995; Goldstein and Rasbash, 1996; Neuhaus and
Lesparance, 1996; Greenland, 1997; Engel, 1998; Rodriguez and Goldman,
2001; Moerbeek et al., 2003b). The default estimation procedure is, however,
a first order maximised quasi-likelihood (first order MQL) estimation proce-
dure. To illustrate the difference between the estimation procedures, Outputs

Output 4.4. Results of a logistic multilevel analysis with a 
random intercept and a random slope for age to determine the 
relationship between hypercholesterolemia and age

logit(pij) = b1jcons + b2jageij

b1j = -12,063(1,685) + u1j

b2j = 0,180(0,024) + u2j

bcons* = bcons[pij(1 - pij)/denomij]
0.5

[e0ij] ~ (0, �e): �e = [1,000(0,000)]
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4.5 (a logistic multilevel analysis with only a random intercept) and 4.6 
(a logistic multilevel analysis with both a random intercept and a random
slope for age) show the results of logistic multilevel analysis performed with
a first order MQL estimation procedure.

Output 4.5. Results of a logistic multilevel analysis with a 
random intercept to determine the relationship between
hypercholesterolemia and age estimated with a first 
order MQL estimation procedure

logit(pij) = b1jcons + 0,102(0,013)ageij

b1j = -6,861(0,930) + u1j

[u1j] ~ N(0, �u): �u = [1,770(0,779)]

bcons* = bcons[pij(1 - pij)/denomij]
0.5

[e0ij] ~ (0, �e): �e = [1,000(0,000)]

hypercholesterolemia Binomial(denom ,ij ij ij~ p ))
hypercholesterolemia bcons*ij ij ije= +p 0

⎫
⎬
⎪⎪
⎭⎭⎪⎪

Output 4.6. Results of a logistic multilevel analysis with a 
random intercept and a random slope for age to determine
the relationship between hypercholesterolemia and age
estimated with a first order MQL estimation procedure

logit(pij) = b1jcons + b2jageij

b1j = -6,740(1,539) + u1j

b2j = 0,100(0,022) + u2j

bcons* = bcons[pij(1 - pij)/denomij]
0.5

[e0ij] ~ (0, �e): �e = [1,000(0,000)]
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Surprisingly (or maybe not) the results are totally different. In the model
with only a random intercept (Output 4.5), the regression coefficient for age
is exactly the same as in the ‘naive’ analysis (Output 4.2). This also applies to
the magnitude of the standard error. When a random slope for age is added
to the model, and the parameters are estimated with a first order MQL 
estimation procedure, a random slope for age seems to be quite reasonable
(Output 4.6). Furthermore, the regression coefficient for age is much lower
than when a second order PQL estimation procedure is applied (compare
Output 4.4 with Output 4.6).

It should be noted that the differences between a first order MQL estima-
tion procedure and a second order PQL estimation procedure are not always
the same as those found in the present example. In fact, the differences
between these two procedures are rather unpredictable.

4.2.1 Intraclass correlation coefficient in logistic multilevel analysis
For continuous outcome variables it was mentioned that the dependency of
the observations on a certain level could be estimated by the intraclass cor-
relation coefficient (ICC) (see Section 2.3). The ICC was estimated as the
ratio of the between group variance and the total variance. Due to the total
variance is not directly available in a logistic model, an alternative way of
estimating the ICC is provided by Equation (4.1):

(4.1)

where �2
between � between group variance.

We can use Output 4.3 to estimate the ICC in the present example:

Although it is possible to estimate the ICC in a logistic multilevel analysis, it is
questionable whether this should be done, mainly because a correlation coef-
ficient for a dichotomous variable is very difficult to interpret. It is, therefore
also suggested that a so-called ‘median odds ratio’ can be used as an alternative
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ICC (Larsen et al., 2000; Larsen and Merlo, 2005). The theory behind the
‘median odds ratio’ sounds reasonable, but in practice it is not widely used.

For a more detailed mathematical explanation of logistic multilevel
analysis, reference is made, for instance, to Mealli and Rampichini (1999),
Omar and Thompson (2000), Carlin et al. (2001), Turner et al. (2001), and
Goldstein (2003).

4.3 Multinomial logistic multilevel analysis

When the outcome variable is categorical, multinomial logistic multilevel
analysis can be applied. As for all other multilevel analysis, multinomial
logistic multilevel analysis is an extension of ‘standard’ multinomial logistic
regression analysis. For those who are not familiar with multinomial logistic
regression analysis, it is basically an extension of the ‘normal’ logistic regres-
sion analysis. In fact, a multinomial logistic regression analysis is a sort of
mixture of several logistic regression analyses, in which the different cat-
egories are compared to a ‘reference’ category. Therefore, as a result of multi-
nomial logistic regression analysis, different odds ratios are obtained. When
a multilevel data structure exists, also for multinomial logistic regression
analysis, a multilevel extension can be applied. Suppose that, instead of the
dichotomous outcome variable hypercholesterolemia, three groups are con-
sidered, i.e. a group of patients with relatively ‘low’ cholesterol values, a
group of patients with relatively ‘moderate’ cholesterol values, and a group
of patients with relatively ‘high’ cholesterol values. Again, the research ques-
tion of interest is the relationship between total cholesterol and age. Output
4.7 shows the dataset used in this example.

From Output 4.7, it can be seen that the outcome variable is now called
‘total cholesterol group’; and that the possible values range between 0 and 2.
All other variables in the example dataset are already known from earlier
examples. Output 4.8 shows the results of a ‘naive’ multinomial logistic
multilevel analysis, in which the dependency of the observations within the
medical doctors is ignored.

Output 4.8 looks a bit different from the earlier outputs. This is basically
due to fact that the multinomial logistic multilevel analysis is only available
in the latest version of MLwiN (Version 2.0). In the first line of Output 4.8
the outcome variable is called ‘resp’, which stands for response variable. It is
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surprising that the response variable has three subscripts, while there are
only two levels (i.e. the patient and the medical doctor). This has to do with
the way MLwiN performs a multinomial logistic multilevel analysis, which
is not important for the interpretation of the results, and will therefore not
be discussed further. From the first line of the output it can also be seen that
a multinomial logistic regression is performed, which means that the
response variable must be categorical (note that the cons statement has
exactly the same meaning as the denom statement in the multilevel logistic
regression analysis and note that bcons does not have to be added). The fol-
lowing lines of the output show the result of the multinomial logistic multi-
level analysis. The regression coefficients for age can be transformed to odds

Output 4.7. Descriptive information regarding the dataset used in the
example to explain multinomial logistic multilevel analysis

Output 4.8. Results of a ‘naive’ multinomial logistic multilevel analysis
of the relationship between total cholesterol (divided into three groups)
and age

respijk ~ Multinomial(consjk, pijk)

log(p1jk/p0jk) = -5,629(0,698)cons.moderate cholesterolijk +

0,096(0,011)age.moderate cholesterolijk
log(p2jk/p0jk) = -9,575(0,761)cons.high cholesterolijk +

0,157(0,012)age.high cholesterolijk

cov(ysjk, yrjk) = psjk prjk/consjk:s � r; psjk(1 - prjk)/

consjk:s = r;



49 Multinomial logistic multilevel analysis

ratios by taking EXP[regression coefficient]. So, for the ‘moderate choles-
terol’ group, the odds ratio for age is EXP[0.096] � 1.10, which means that
for a difference of 1 year in age, the odds of being in the ‘moderate’ choles-
terol group is 1.10 times higher than the odds of being in the ‘low’ choles-
terol group. Analogue, the odds of being in the ‘high’ cholesterol group is
EXP[0.157] � 1.17 times higher than the odds of being in the ‘low’ choles-
terol group. The lowest line of the output contains some information
regarding the multinomial logistic regression analysis, but does not provide
any information that is important for the interpretation of the results, so it
can therefore be ignored. The next step in the analysis is to allow a random
intercept, or, in other words, the next step is to correct for the dependency of
the observations within the medical doctor. In this situation, in which a cat-
egorical variable with three groups is considered as outcome variable, it
indicates that two random intercepts are added to the model. Output 4.9
shows the results of a multinomial logistic multilevel analysis in which a
correction is made for medical doctor, or, in other words a multinomial
logistic regression analysis in which the intercept is allowed to vary among
medical doctors.

Output 4.9. Results of a multinomial logistic multilevel analysis
with a random intercept to determine the relationship between total
cholesterol (divided into three groups) and age

respijk ~ Multinomial(consjk, pijk)

log(p1jk/p0jk) = b0kcons.moderate cholesterolijk +

0,103(0,011)age.moderate cholesterolijk

b0k = -6,068(0,733) + v0k

log(p2jk/p0jk) = b1kcons.high cholesterolijk + 

0,172(0,012)age.high cholesterolijk

b1k = -10,492(0,872) + v1k

cov(ysjk, yrjk)= psjkprjk/consjk : s � r; psjk(1 - prjk)/

consjk : s = r;
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From Output 4.9 it can be seen that the regression coefficients (and there-
fore the corresponding odds ratios) are remarkably different from the ones
estimated in the ‘naive’ analysis and shown in Output 4.8. Both regression
coefficients are higher, while the standard errors remain more or less the
same. So probably, the correction for medical doctor was important. This can
also be seen from the variances of the two intercepts. These are shown in the
variance/covariance matrix, which is shown beyond the two regression equa-
tions. The variance of the first intercept (i.e. comparing the ‘low’ cholesterol
group with the ‘moderate’ cholesterol group) is 0.262, while the intercept of
the second intercept (i.e. comparing the ‘low’ cholesterol group with the
‘high’ cholesterol group) is 1.392. Note that in this matrix also the covariance
between the two intercepts is provided and that v0k and v1k, instead of u0k and
u1k are indications of the variances of the intercepts. Again, this has to do
with the way MLwiN performs a multinomial logistic multilevel analysis.

As in the case of logistic multilevel analysis, the necessity for allowing the
intercepts to be random cannot be evaluated by the likelihood ratio test,
because the regression coefficients are estimated with a quasi-likelihood
procedure instead of a maximum likelihood procedure. So, the magnitude
of the variances compared to their standard errors must be used to evaluate
this necessity. Based on the magnitude of the variances and the standard
errors, it seems to be quite reasonable to allow the intercepts to be random.
Note, however, that this decision is arbitrary, because the Wald test cannot
be used for variances and there is no real cut-off for the ratio between the
magnitude of the variance and the standard error. The odds ratios for age,
estimated from the results of the analysis that was last performed, are
respectively EXP[0.103] � 1.11, with a 95% CI ranging from 1.08 to 1.13,
and EXP[0.172] � 1.19, with a 95% CI ranging from 1.16 to 1.22.

A next possible step in the analysis is to allow the regression coefficients
for age to be random. However, the coefficients of that model could not be
estimated with the MLwiN software. So the most appropriate ‘model’ to esti-
mate the relationship between age and total cholesterol (divided into three
groups) was shown in Output 4.9. It should be noted that the regression
coefficients presented in Outputs 4.8 and 4.9 were estimated with a first
order MQL estimation procedure. As in the logistic multilevel analysis, a
second order PQL estimation procedure seems to lead to ‘better’ results than
a first order MQL procedure. However, a second order PQL estimation was
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not possible in the situation with a random intercept. Table 4.2 summarises
the results of the different analyses, in combination with the results of a
‘naive’ multinomial logistic multilevel analysis estimated with maximum
likelihood, which can be performed with all standard software packages.
Although all observed relationships are highly statistically significant, the
difference in results between the different analyses also indicates the com-
plexity of estimating the regression coefficients in these multinomial multi-
level situations.

In the analyses described in this Section, ‘regular’ multinomial logistic
multilevel analysis was performed. However, it is also possible to perform a
so-called ‘ordered’ multinomial logistic multilevel analysis (also known as a
‘proportional odds analysis’). This analysis takes into account the ordering of
the categorical outcome variable. The biggest difference, compared to ‘regu-
lar’ multinomial logistic multilevel analysis, is that the regression coeffi-
cients must be interpreted differently. In ‘regular’ multinomial logistic
multilevel analysis, both the ‘moderate’ cholesterol group and the ‘high’ chol-
esterol group were compared to the ‘low’ cholesterol group separately. In an
‘ordered’ multinomial logistic multilevel analysis, the combined ‘moderate’
and ‘high’ cholesterol groups are compared to the ‘low’ cholesterol group,
and the ‘high’ cholesterol group is compared to the ‘low’ cholesterol group.

Table 4.2. Results of multinomial logistic regression analyses with different
estimation procedures, with and without a random intercept

Regression coefficient Standard error

‘Naive’ analysis (maximum likelihood)

Moderate versus low 0.104 0.017

High versus low 0.162 0.018

‘Naive’ analysis (quasi-likelihood)

Moderate versus low 0.096 0.011

High versus low 0.157 0.012

Multilevel analysis (quasi-likelihood)1

Moderate versus low 0.103 0.011

High versus low 0.172 0.012

1A ‘corrected’ analysis (i.e. allowing random intercepts) cannot be performed with

maximum likelihood.



Basically, instead of modelling the response probabilities of the separate cat-
egories, the cumulative response probabilities are modelled. The ordered
multinomial logistic regression analysis has some slight advantages when
the categories of the outcome variable are ordered (as in the present example).
For instance, it can be slightly more efficient, because when the odds are
proportional, only one regression coefficient (i.e. odds ratio) has to be esti-
mated. However, the interpretation of the ‘regular’ multinomial logistic
multilevel analysis is somewhat easier, especially for non-experienced users,
and when there are not so many categories in the outcome variable. For a
more detailed mathematical explanation of multinomial logistic multilevel
analysis, reference is made to Daniels and Gatsonics (1997), Yang (1997),
Fielding (1999), Agresti et al. (2000), Fielding (2001), Rabe-Hesketh and
Skrondal (2001a), Grilli and Rampichini (2003), Skrondal and Rabe-
Hesketh (2003a), and Fielding et al. (2003).

4.4 Poisson multilevel analysis

In Section 4.3, multinomial logistic multilevel analysis (i.e. multilevel analy-
sis with a categorical outcome variable) was discussed. It should be noted
that the software that is needed to perform this kind of analysis is still being
developed, so the results obtained from this type of analysis must be inter-
preted with caution. This is different for a specific kind of categorical vari-
able, i.e. a so-called ‘count’ variable (e.g. the number of physical complaints,
the number of epileptic seizures, the number of asthma attacks, etc.). In fact
for performing multilevel analysis on ‘count’ outcome variables, many dif-
ferent software packages are available (see also Chapter 9).

Multilevel analysis with a ‘count’ outcome variable is a Poisson regression
analysis, in which an additional correction can be made for categorical vari-
ables (with many categories). The use of Poisson multilevel analysis, and the
interpretation of the results, will be explained with an example in which the
outcome variable is the number of risk factors observed in a certain patient.
The number of risk factors can range from 0 to 5, and the distribution of
this variable in the example population is shown in Figure 4.1.

Output 4.10 gives the descriptive information regarding this example
with a ‘count’ outcome variable. In the first line of Output 4.10 it can be seen

52 Multilevel analysis with different outcome variables



53 Poisson multilevel analysis

that the number of risk factors can vary between 0 and 5. There are again 12
medical doctors and the age of the patients still ranges between 44 and 86
years. Note that, as in logistic multilevel analysis, in Poisson multilevel
analysis a bcons column is also needed. The reason for this is the same as for
dichotomous outcome variables.

Output 4.11 shows the results of a ‘naive’ Poisson multilevel analysis, i.e.
ignoring the dependency of the observations within medical doctors.

Output 4.10. Descriptive information regarding the dataset used in the
example to explain Poisson multilevel analysis
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Figure 4.1. The distribution of the number of risk factor: the outcome variable used to explain
Poisson multilevel analysis.
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Output 4.11 looks similar to the outputs described earlier for linear and logis-
tic multilevel analysis. The first line of the output shows that the outcome vari-
able (i.e. number of risk factors) is a Poisson outcome variable, and in the
second line the ‘error variance’ is defined (see for the explanation of this ‘error
variance’ Section 4.2, in which the ‘error variance’ was explained for logistic
multilevel analysis). The third line of the output shows the actual Poisson
regression model. First of all, it can be seen that the logarithm of the outcome
variable is used (that is also the reason why Poisson regression analysis is some-
times called log linear regression analysis). Furthermore, it can be seen that the
regression coefficient for age is 0.023, with a standard error of 0.005. This regres-
sion coefficient can be transformed into a ‘rate ratio’ by taking EXP[regression
coefficient]. In the present example this ‘rate ratio’ equals 1.02, with a 95% CI
ranging from 1.01 to 1.03. The ‘rate ratio’ of 1.02 can be interpreted in such a
way that a difference of 1 year in age is associated with 1.02 times more risk fac-
tors. As for the odds ratio calculated from a logistic multilevel analysis, the ‘rate
ratio’ is also small with a narrow 95% CI. This is again due to the scale in which
the independent age variable is measured. However, this result also implies that
a difference of 10 years of age is associated with EXP[10 � 0.023] � 1.22 (or
(1.02)10 � 1.22) times more risk factors, or a 22% increase in the number of risk
factors. The last two lines of the output are related to the fact that a Poisson
regression analysis is performed, and since this information is not really import-
ant for the interpretation of the results it will not be discussed.

Output 4.12 shows the output of a Poisson regression analysis in which a
correction is made for medical doctor. Or, in other words, a Poisson regression
analysis in which the intercept is allowed to vary between medical doctors.

Output 4.11. Results of a ‘naive’ Poisson multilevel analysis of 
the relationship between the number of risk factors and age

log(pij) = -1,566(0,336)cons + 0,023(0,005)ageij

bcons* = bcons p0.5ij

[e0ij] ~ (0, �e) : �e = [1,000(0,000)]

number of risk factors Poisson( )
number

ij ij~ p

of risk factors bcons*ij ij ije= +p 0

⎫
⎬
⎪⎪
⎭⎪⎪
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The fact that a random intercept is added to the analysis can be seen in the
fourth line of Output 4.12, which shows the value of the intercept and the
(random) variance of this intercept (again indicated by u1j). The value of
this variance (i.e. 0.145) and the corresponding standard error (i.e. 0.071)
are shown in the next line of the output. As for the logistic multilevel analy-
sis, the parameters from the Poisson multilevel analysis are estimated with
quasi-likelihood, and therefore, the �2 log likelihood can not be estimated.
So, the likelihood ratio test cannot be used to evaluate the necessity of
assuming a random intercept. Therefore, also for Poisson multilevel analy-
sis, the necessity of allowing random regression coefficients (i.e. a random
intercept) can be evaluated from the magnitude of the variance and the cor-
responding standard error. In the example, the ratio of the variance and the
standard error is 2.04, suggesting that a random intercept is probably neces-
sary. Again, it is statistically not correct to do so, but in practice it is prob-
ably one of the only possibilities to get some idea of the necessity of allowing
random regression coefficients. Again, there is no real cut-off value that can
be used, so the decision with regard to whether or not to allow a random
regression coefficient is always arbitrary.

The second step in the analysis can be to also allow the regression coeffi-
cient for age to vary among medical doctors (i.e. allowing a random slope
for age). Output 4.13 shows the result of this analysis.

Output 4.12. Results of a Poisson multilevel analysis with a
random intercept to determine the relationship between
the number of risk factors and age

log(pij)= b1jcons + 0,024(0,005)ageij

b1j = -1,599(0,362) + u1j

[u1j] ~ N(0, �u) : �u = [0,145(0,071)]

bcons* = bcons p0.5ij

[e0ij] ~ (0, �e) : �e = [1,000(0,000)]

number of risk factors Poisson( )
number

ij ij~ p

of risk factors bcons*ij ij ije= +p 0

⎫
⎬
⎪⎪
⎭⎪⎪



56 Multilevel analysis with different outcome variables

From Output 4.13 it can be seen that a variance is added to the regression
coefficient for age (i.e. u2j is added to the model). The magnitude of the vari-
ance of the regression coefficient for age is 0.00099, with a standard error of
0.00057. The ratio between the two is therefore 1.74, and although this value
is less than 2, the random variance of the regression coefficient for age may
be considered to be important. Another (alternative) way in which to evalu-
ate whether or not a random regression coefficient ‘must’ be allowed is to
compare the regression coefficients in a model with and a model without
the random regression coefficient. If the regression coefficient for age is
compared in the analysis with and the analysis without the random slope for
age, it can be seen that both the regression coefficient and the standard error
are remarkably different. This difference can be used as an argument that a
random slope should probably be considered. However, it should be realised
that all arguments for or against adding a random regression coefficient to a
Poisson multilevel regression model are rather arbitrary. From Output 4.13
it can also be seen that the covariance between the random intercept and the
random slope for age has a negative sign, which implies that when a high
intercept is observed for a particular medical doctor, the relationship
between the number of risk factors and age is less strong.

Output 4.13. Results of a Poisson multilevel analysis with a random 
intercept and a random slope for age to determine the relationship 
between the number of risk factors and age

log(pij) = b1jcons + b2jageij
b1j = -1,37408(0,66047) + u1j
b2j = 0,02052(0,01087) + u2j

bcons* = bcons p0.5ij

[e0ij] ~ (0, �e) : �e = [1,00000(0,00000)]

u
u

j

j
u u

1

2

352220209805⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

~ =N(0, ) :� �
, (, )

--005810003422 000099000057, (, ) , (, )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

number of risk factors Poisson( )
number

ij ij~ p

of risk factors bcons*ij ij ije= +p 0

⎫
⎬
⎪⎪
⎭⎪⎪



As in the case of logistic multilevel analysis various estimation procedures
are also available for Poisson multilevel analysis. In the examples presented
in this section, a first order MQL estimation procedure was used. Although
the analysis was not very complicated, it was not possible to use a second
order PQL estimation procedure (i.e. the model did not converge, or, in
other words, did not lead to a valid result).

A more mathematical discussion of Poisson multilevel analysis can be
found, for instance, in Christiansen and Morris (1997), Albert and Follman
(2000).

4.5 Multilevel survival analysis

In Section 4.2 a logistic multilevel analysis was discussed. Logistic multilevel
analysis can be used to analyse a dichotomous outcome variable, and in the
example the dichotomous outcome variable hypercholesterolemia was the
‘event’ of interest. When the data in a study provide not only information
about whether the ‘event’ of interest occurs in a patient, but also at what point
in time it occurs, this additional information can be included in the analysis
by applying survival analysis, i.e. Cox (proportional hazards) regression
analysis. In Cox-regression analysis both the occurrence of the event and the
time when the patient was at risk for the occurrence of that event are used as
outcome variable. Due to the hazard function over time is modelled in Cox-
regression analysis, the result of such an analysis is a hazard ratio. At present,
the only software in which multilevel Cox-regression analysis can be per-
formed is implemented in the General Linear Latent and Mixed Models
(gllamm) procedure in STATA (see Chapter 9). However, this procedure is far
from straightforward, and it goes beyond the scope of this book to explain it
in detail (see for details Rabe-Hesketh et al., 2004; Chapter 7). One of the rea-
sons for this complexity is probably the fact that there is no ‘real’ intercept in
a Cox-regression model. There is an intercept, but because it can be seen as
the ‘baseline hazard function’ it changes over time.

In MLwiN there are also some possibilities to perform a type of survival
analysis. However, this is only possible with syntax macros, and the analyses
that can be performed do not answer the questions that can be answered with
‘standard’ Cox-regression analyses (see for details Goldstein, 1995; Yang et al.,
1999; Leyland et al., 2000; Goldstein, 2003). For more mathematical details,
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reference is made, for instance, to Ten Have (1996), Hogan and Laird (1997).
Sastry (1997), Schieke and Jensen (1997), Barthelemy (2001), Merlo et al.
(2001), Vaida and Xu (2001), Yau (2001), and Xu and Zeger (2001). So, what
can be done when not only survival data is available in a study, but when that
data is also clustered, for instance, within medical doctors? In several software
packages (e.g. STATA and SPSS) there is an additional option for the Cox-
regression analysis that allows the baseline hazard functions to differ between
strata. This analysis can therefore be seen as a ‘primitive’ multilevel survival
analysis, in which a random intercept is considered. Let us go back to the
example discussed in Section 4.1. In this example the relationship between the
dichotomous outcome variable hypercholesterolemia and age was analysed.
Suppose that the study population consisted of a certain cohort of individ-
uals, free from hypercholesterolemia at baseline, and suppose also that there
was a maximum follow-up of 5 years, and that both the occurrence of hyper-
cholesterolemia and the time when it occurred were registered. The research
question is still the same: what is the relationship between the occurrence of
hypercholesterolemia and age (which is now the age at baseline in the study).
Table 4.3 shows descriptive information regarding this example dataset.

Compared to the descriptive information regarding the example used in
Section 4.1 (see Output 4.1) the follow-up period is added to the dataset. It
can be seen that the follow-up period ranges between 3 and 60 months. The
latter is the maximum number of months, because the total follow-up
period of the study was 5 years. Ignoring the fact that the observations are
clustered within the medical doctor, a ‘naive’ Cox-regression analysis can be
performed, with age as the only independent variable. Output 4.14 shows
the results of this ‘naive’ Cox-regression analysis performed in STATA.

Table 4.3. Descriptive information regarding the dataset used for the ‘multilevel’
Cox-regression analysis

Number Minimum Maximum

Hypercholesterolemia 441 0 1

Medical doctor 441 1 12

Age 441 44 86

follow-up period (months) 441 3 60
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The first part of Output 4.14 provides some general information about the
analysis. It can be seen that there are 441 observations, there are 171 subjects
with hypercholesterolemia (i.e. the prevalence of hypercholesterolemia was
39%), and the total follow-up period for the entire study population is 17,610
months. Furthermore, the log likelihood of this model is shown
(�903.15952), and the significance of the ‘total’ model (i.e. in this situation
the model with one independent variable age), compared to a model without
independent variables. The model with age is significantly better than the
model without age, so age is significantly related to the occurrence of hypercho-
lesterolemia and/or the time of that occurrence. The magnitude of the rela-
tionship can be seen in the last part of the output, which shows a hazard ratio
of 1.049109. This means that for a difference of 1 year in age, the hazard of
developing hypercholesterolemia increases with 1.049109. Although the
absolute value of the hazard ratio is quite low, it is highly significant (z � 6.20
and the corresponding p-value is �0.001). Again, the reason for the relatively
low magnitude of the hazard ratio is that age is given in years, and that a dif-
ference of 1 year is a very small difference. It is more appropriate to show the
hazard ratio for a bigger difference in age. So, for instance, the hazard ratio for
a difference of 10 years in age is (1.049109)10 � 1.62. To obtain a 95% CI
around this hazard ratio, the same procedure must be followed with the
shown CI for a difference of 1 year in age. It should again be noted that
because the intercept (i.e. the baseline hazard function) changes over time, no
intercept is shown in the output.

Output 4.14. Results of a ‘naive’ Cox-regression analysis of the relationship
between time to hypercholesterolemia and age performed in STATA

No. of subjects = 441 Number of obs = 441

No. of failures = 171

Time at risk = 17610

LR chi2(1) = 37.35

Log likelihood = -903.15952 Prob > chi2 = 0.0000

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
+

age | 1.049109 .0081099 6.20 0.000 1.033334 1.065125
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To correct for the dependency of the observations within medical doctors
a so-called stratified Cox-regression analysis can be performed. Output 4.15
shows the results of such an analysis.

Output 4.15. Results of a stratified Cox-regression analysis of the relationship
between time to hypercholesterolemia and age performed in STATA

No. of subjects = 441 Number of obs = 441

No. of failures = 171

Time at risk = 17610

LR chi2(1) = 24.67

Log likelihood = -485.28636 Prob > chi2 = 0.0000

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

+

age | 1.045717 .0096389 4.85 0.000 1.026995 1.064781

Stratified by medical doctor

The last line of Output 4.15 shows that the analysis is stratified by medical
doctor. This means that the baseline hazard functions are allowed to differ
between medical doctors, or, in other words, the ‘intercept’ is allowed to dif-
fer between medical doctors. To evaluate whether this ‘random intercept’ is
necessary, the likelihood ratio test can be applied. With this test the �2 log
likelihood of the two models (i.e. with and without a random ‘intercept’)
must be compared. The difference between the �2 log likelihood of the two
models is huge (2 � (903.15952 � 485.28636) � 835.7). This difference,
however, does not follow a Chi-square distribution with one degree of free-
dom, which is due to the fact that the stratified Cox-regression analysis is
not a ‘real’ multilevel analysis. In the stratified Cox-regression analysis, it is
not the variance of the different baseline hazard functions that is estimated,
but all baseline hazard functions for the different medical doctors are esti-
mated. So, instead of one baseline hazard function in the ‘naive’ Cox-regression
analysis, 12 baseline hazard functions are estimated in the stratified Cox-
regression analysis. In other words, the difference in �2 log likelihood of the
two models must be evaluated on a Chi-square distribution with 11 degrees
of freedom (which is nevertheless highly significant). The influence of



allowing different baseline hazard functions for the medical doctors is that
the hazard ratio for age is slightly lower, while the standard error (and there-
fore the width of the 95% CI) is slightly higher.

The results presented in Output 4.15 provide the final result of this analy-
sis, because with a stratified Cox-regression analysis it is not possible to
allow the regression coefficients for age to differ between medical doctors. In
other words, the hazard ratio for age is 1.046, with a 95% CI ranging from
1.027 to 1.065.

It should be noted that exactly the same results could be obtained from a
stratified Cox-regression analysis performed in SPSS.

61 Multilevel survival analysis



Multilevel modelling

5.1 Introduction

Up to now, the explanation of the principles of multilevel analysis has been
limited to simple analysis. In this chapter, the models to be analysed will be
extended with some covariates. Let us go back to the result of one of the analy-
ses performed in Chapter 2 (see Output 2.5). In this analysis a two-level struc-
ture was considered, in such a way that patients were clustered within medical
doctors (see Figure 2.4), and the relationship between age and total cholesterol
was investigated. The independent age variable was centred in order to facili-
tate the interpretation of the (variance of the random) intercept when a ran-
dom slope for age was allowed. The example with age centred is chosen as a
starting point because the magnitude of the variance of the random intercept
is going to be used in the next part of this section. The conclusion of the analy-
sis performed in Chapter 2 was that there was a highly significant positive rela-
tionship between age and total cholesterol. It was further shown that in the
two-level data structure in which the patients were only clustered within the
medical doctors, the ‘best’ way to analyse this relationship was a model with a
random intercept as well as a random slope for age at the medical doctor level.
Output 5.1 shows (again) the results of this analysis, which is used as starting
point for the explanation of multilevel modelling.

5.2 Multivariable multilevel analysis

Suppose that it is believed that body mass index (BMI) plays a role in this
relationship, and therefore a correction is made for BMI. Output 5.2 shows
the dataset, in which BMI is added, and for a better interpretation of the
magnitude of the intercept, BMI is also centred.
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Output 5.2. Descriptive information regarding the example dataset including BMI

From the descriptive information it can be seen that the BMI of the
patients range between 20.20 and 44.05. All other variables are the same as
in the earlier examples. Output 5.3 shows the results of the linear multilevel
analysis of the relationship between age and total cholesterol corrected for
BMI (i.e. the centred value of BMI).

Output 5.1. Results of a linear multilevel analysis of the relationship
between total cholesterol and age with both a random intercept and a
random slope for age at the medical doctor level, when age is centred

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + b1jage_centredij
b0ij = 5,97120(0,17562) + u0j + e0ij
b1j = 0,05006(0,00576) + u1j

-2*loglikelihood(IGLS) = 799,96340(441 of 441 cases in use)
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From Output 5.3 it can be seen that BMI is highly significant related to
total cholesterol. The Wald statistic is (0.03370/0.00591)2 � 32.52, which is
Chi-square distributed with one degree of freedom; i.e. the p-value � 0.001.
However, the relationship between age and total cholesterol did not change
a lot by adding BMI to the model. The regression coefficient for age changed
from 0.050 to 0.048. In other words, the relationship between age and total
cholesterol is not (or hardly) influenced by BMI. On the other hand, it can
also be seen that the magnitude of the variances of the random intercept and
the random slope decreased remarkably when BMI was added to the model.
The variance of the random intercept decreased from 0.36113 to 0.26657
and the variance of the random slope decreased from 0.00027 to 0.00019.
So, presumably part of the differences between medical doctors can be
explained by the BMI of the patient. So, in general it is possible to ‘explain’
the random variance in either the intercept or the slopes by certain 
covariates.

BMI is a variable that is measured at patient level, but it can also be inter-
esting to analyse the additional value of variables that are measured at the
medical doctor level. Suppose we have some additional information of the
medical doctors, e.g. the age of the medical doctor (see Output 5.4).

Output 5.3. Results of a linear multilevel analysis of the relationship
between total cholesterol and age, with both a random intercept and a
random slope for age at the medical doctor level, when age is centred,
corrected for BMI (centred)

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + b1jage_centredij +

0,03370(0,00591)bmi_centredij
b0ij = 5,97126(0,15138) + u0j + e0ij
b1j = 0,04807(0,00506) + u1j

-2*loglikelihood(IGLS) = 769,29660(441 of 441 cases in use)
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From Output 5.4 it can be seen that the age range of the medical doctors
is between 40 and 55 years. Output 5.5 shows the results of an analysis in
which the age of the medical doctor (also centred) is added to the regression
model that was shown in Output 5.1.

Output 5.4. Descriptive information regarding the example dataset
including BMI and the age of the medical doctor

Output 5.5. Results of a linear multilevel analysis of the relationship
between total cholesterol and age, with both a random intercept and a
random slope for age at the medical doctor level, when age is centred,
corrected for the age of the medical doctor (centred)

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + b1jage_centredij +

0,12811(0,02318)age md_centredj
b0ij = 5,96804(0,09451) + u0j + e0ij
b1j = 0,05016(0,00577) + u1j

-2*loglikelihood(IGLS) = 784,86120(441 of 441 cases in use)

u
u

j

j
u u

0

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
~ N(0, ) : =

0,09821(0,04377)
� �

0000077000190 000027000016, (, ) , (, )

[

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

e00 031357002171ij e e] [, (, )]~ N(0, ) : =� �
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From Output 5.5 it can be seen that the age of the medical doctor is highly
related to total cholesterol values of the patient. The Wald statistic is
(0.12811/0.02318)2 � 30.54, which corresponds with a p-value � 0.001.
However, adding age of the medical doctor to the model does not influence
the relationship between age (of the patient) and total cholesterol. On the
other hand, the addition of the age of the medical doctor to the model has
resulted in a huge reduction in the variance of the random intercept on the
medical doctor level (the variance decreased from 0.36113 to 0.09821). From
this huge reduction in the variance, it can be concluded that a great amount
of the differences between medical doctors is caused by the different ages of
the medical doctors. The variance of the slopes (i.e. the difference in the rela-
tionship between age and total cholesterol between medical doctors) on the
other hand is not influenced by the age of the medical doctor.

So, the addition of covariates to the multilevel model give: (1) Information
whether or not a certain covariate is a confounder in the relationship of
interest. This is exactly the same as in ‘standard’ (linear) regression analysis,
and can be evaluated by the difference in the regression coefficient of interest
between a model with and a model without the covariate. (2) Information
whether certain variables explain the difference observed in higher level
groups (e.g. medical doctors). The latter is (of course) a special feature of
using multilevel analysis.

In the same way as described above also interaction terms can be added to
the multilevel models. An interaction term (i.e. a multiplication of the vari-
able of interest (i.e. age of the patient) and the potential effect modifier) is
added to analyse whether the observed relationship between age and total
cholesterol is different for different groups of the potential effect modifier.
The way this is done in multilevel analysis is exactly the same as this is done
in ‘standard’ (linear) regression analysis. A special feature of multilevel
analysis is that so-called ‘cross-level’ interactions can be analysed. A cross-
level interaction indicates that an interaction between a variable measured
on the lower level and a variable measured on a higher level is added to the
regression model. The way this is done in multilevel analysis is exactly the
same as for ‘normal’ interaction terms. In the example we can, for instance,
be interested in the cross-level interaction between age of the patient and the
age of the medical doctor. Output 5.6 shows the results of the analysis that
includes this cross-level interaction.
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Output 5.6. Results of a linear multilevel analysis of the relationship
between total cholesterol and age, with both a random intercept and a
random slope for age at the medical doctor level, when age is centred,
corrected for the age of the medical doctor (centred) and including the
interaction between age (of the patient) and the age of the medical doctor

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + b1jage_centredij + 

0,12706(0,02333)age md_centredj + 

-0,00049(0,00139)interaction_age_ageMDij
b0ij = 5,96824(0,09435) + u0j + e0ij
b1j = 0,05017(0,00574) + u1j

-2*loglikelihood(IGLS) = 784,73950(441 of 441 cases in use)
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From Output 5.6 it can be seen that the interaction between age (of the
patient) and age of the medical doctor is not statistically significant. The
Wald statistic for the interaction is (�0.00048/0.00139)2 � 0.12, which
gives a p-value of 0.729. When a cross-level interaction is added to the analy-
sis, it is also interesting to look at the change in the variance of the random
slope. It is possible that part of the differences in the regression coefficient
for age (of the patient) between medical doctors is caused by the difference
in the ages of the medical doctors. In this example, there is, however, no
influence on the random slope, because the variance of the slope derived
from a model without the interaction is exactly the same as the variance of
the slope derived from a model with the interaction.

5.3 Prediction models and association models

5.3.1 Introduction
When performing a multivariable analysis, it is extremely important to
realise what kind of question should be answered with the multivariable
analysis. This not only applies to multivariable multilevel analysis, but basi-
cally to all multivariable analyses. Within multivariable analysis, a distinction
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should be made between ‘prediction’ or ‘prognostic’ models and ‘association’
models. With association models (see Section 5.3.2) the research question of
interest concerns the association between one main or central independent
variable (or a small set of central independent variables) and a certain out-
come. The general idea behind association models is to estimate this rela-
tionship or association as ‘accurately’ as possible. This means that correction
for confounding and/or possible effect modification must be taken into
account. For prediction or prognostic models (Section 5.3.3) the research
question (and therefore the modelling strategy) is different. Constructing a
prediction model concerns searching for the best, most simple combination
of independent variables to predict a certain outcome. It should be realised
that each of the modelling strategies applied in the following sections of this
chapter are examples of possible strategies. There are many more roads that
lead to Rome!

5.3.2 Association models
The example used throughout this book, and the modelling described in
Section 5.2, is basically constructing an association model. The main or cen-
tral determinant in the analysis was age, and the relationship between age and
total cholesterol was controlled for BMI and, in a separate analysis for the age
of the medical doctor. In fact, the way association models are constructed
within multilevel analysis is more or less the same as the way in which associ-
ation models are constructed in ‘standard’ regression analysis. Probably the
most common example of constructing an association model is when the
effect of a certain intervention is evaluated. The main or central determinant is
the intervention, and the effect of this central determinant has to be estimated
as ‘accurate’ as possible. This means that, when necessary, the effect of the
intervention has to be corrected for potential confounders, and that possible
effect modification has to be taken into account. Therefore, in this section a
randomised controlled trial (RCT) will be used as an example for the con-
struction of association models. The intervention is applied with the intention
of lowering total cholesterol values. The intervention is applied at the patient
level, and the patients are randomly allocated into the intervention group and
a control group; 131 patients were allocated to the intervention group and 145
to the control group. The patients were measured at baseline (before the start
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From Output 5.7 it can be seen that there are 10 medical doctors involved
in the study. In addition to the outcome variable of total cholesterol (meas-
ured directly after the intervention period), there is also information avail-
able with regard to the baseline value of total cholesterol (total cholesterol
base), and (baseline values of) age, BMI, smoking behaviour, and gender.

The first step in the construction of an association model is to perform a
‘crude’ analysis. In a ‘crude’ analysis, only the main/central determinant (i.e.
the intervention variable) is present in the model. However, in the analysis
of the effect of a certain intervention (evaluated in an RCT) it is important
to correct for possible differences in the outcome variable at baseline (Twisk
and Proper, 2004). This analysis, which is known as ‘analysis of covariance’
is necessary to correct for the phenomenon of ‘regression to the mean’,
which can occur when the intervention group and the control group differ
from each other with respect to the outcome variable measured at baseline.
Output 5.8 shows the result of the ‘naive’ analysis, i.e. the analysis in which
the dependency of observations within the medical doctors is ignored.

Output 5.7. Descriptive information regarding the example dataset used to
illustrate the construction of an association model

of the intervention) and directly after the intervention ended. Output 5.7
shows the descriptive information regarding the dataset used in this example.



70 Multilevel modelling

Output 5.8. Results of a ‘naive’ multilevel analysis to estimate the effect of the
cholesterol-lowering intervention, corrected for the baseline cholesterol level

total cholesterolij ~ N(XB, �)

total cholesterolij = b0icons + 0,661(0,045)total cholesterol baseij + 

-0,191(0,084)interventionij

b0i = 1,863(0,288) + e0ij
[e0ij] ~ N(0, �e) : �e = [0,484(0,041)]

-2*loglikelihood(IGLS) = 583,015(276 of 276 cases in use)

From Output 5.8 it can be seen that the intervention effect is �0.191. So,
given a certain baseline value, the cholesterol values of the intervention group
are (on average) 0.191 mmol lower than those of the control group at the
follow-up measurement after the intervention. The 95% confidence interval
(CI) around this effect can be calculated in the usual way, i.e. the regression
coefficient �1.96 times the standard error. In this example the 95% CI ranges
from �0.36 to �0.03. Because this interval does not include zero, the inter-
vention effect is statistically significant. The actual p-value of the interven-
tion effect can be derived from the Wald statistic, i.e. (�0.191/0.084)2 � 5.17,
which corresponds with a p-value of 0.023.

Because this significant intervention effect is derived from a ‘naive’ analy-
sis, the next step in the analysis is to investigate whether or not random
regression coefficients must be considered. Output 5.9 shows the results of a
‘crude’ multilevel analysis in which a random intercept is added to the model.

Based on the likelihood ratio test it can be seen that it is important to ‘cor-
rect’ for medical doctor in this analysis, i.e. it is important to add a random

Output 5.9. Results of a multilevel analysis to estimate the effect of the cholesterol-lowering
intervention with a random intercept, corrected for the baseline cholesterol level

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,473(0,052)total cholesterol baseij + 

-0,045(0,084)interventionij
b0ij = 3,006(0,344) + u0j + e0ij

[u0j] ~ N(0, �u) : �u = [0,094(0,049)]

[e0ij] ~ N(0, �e) : �e = [0,426(0,037)]

-2*loglikelihood(IGLS) = 567,480(276 of 276 cases in use)
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intercept to the model. The difference between the two �2 log likelihoods is
15.534, which is highly significant. More important, however, is the huge
reduction in the regression coefficient for the intervention variable. This
coefficient decreased from �0.191 to �0.045. In fact, the intervention effect
is no longer significant. The Wald statistic is (�0.045/0.084)2 � 0.287, which
corresponds with a p-value of 0.592.

The next step in the analysis is to add a random slope for the intervention
variable to the model. Because the intervention is performed at patient level, a
random slope for the intervention variable is possible. It should be realised,
however, that in a study in which the randomisation is performed at the med-
ical doctor level, a random slope for the intervention variable would not have
been possible (see Section 2.8.1). Output 5.10 shows the results of this analysis.

Output 5.10. Results of a multilevel analysis to estimate the effect of the 
cholesterol-lowering intervention, with a random intercept and a random slope 
for the intervention variable, corrected for the baseline cholesterol level

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,306(0,053)total cholesterol baseij +

b2jinterventionij
b0ij = 4,047(0,385) + u0j + e0ij
b2j = -0,075(0,211) + u2j

-2*loglikelihood(IGLS) = 528,239(276 of 276 cases in use)
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Based on the likelihood ratio test it can be concluded that a random slope for
the intervention variable is also important. The difference between the �2 log
likelihoods is 39.241, which is (evaluated on a Chi-square distribution with 2
degrees of freedom) highly significant. The intervention effect in the last analy-
sis increased slightly, to �0.075, but because the standard error also increased,
the estimated intervention effect is far from significant. The Wald statistic is
(�0.075/0.211)2 � 0.13, which corresponds with a p-value of 0.718. A possible
next step in the analysis is to add a random slope for the baseline value of total
cholesterol to the model. However, the analysis did not lead to a valid result, so
the final ‘crude’ intervention effect can be derived from Output 5.10.
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The second step in the construction procedure is to correct for (all) poten-
tial confounders. However, it should be borne in mind that in a situation in
which there are many potential confounders, in comparison to the number
of patients in the study, an analysis with all potential confounders is impos-
sible. In this type of situation only important confounders can be added. The
importance of a potential confounder is often evaluated on the basis of the
change in the magnitude of the regression coefficient of the main or central
determinant. The greater the change, the more important that potential con-
founder is. It is sometimes argued that only potential confounders that are
associated with a change of 10% or more in the magnitude of the regression
coefficient should be added to the final ‘corrected’ model. However, this cut-
off value is highly arbitrary. The difference between multilevel analysis and
‘standard’ regression analysis in this second step of the construction proced-
ure is the fact that in multilevel analysis the necessity of random regression
coefficients can also be evaluated for the potential confounders. Output 5.11
shows the results of the analysis correcting for all potential confounders 
present in the example dataset (age, BMI, smoking and gender) without allow-
ing the regression coefficients of the potential confounders to be random.

From Output 5.11 it can be seen that the correction for all potential
covariates has some influence on the magnitude of the intervention effect.
The effect changes from �0.075 to �0.119, and although the magnitude of

Output 5.11. Results of a multilevel analysis to estimate the effect of the 
cholesterol-lowering intervention, with a random intercept and a random slope 
for the intervention variable, corrected for the baseline cholesterol level, age, BMI,
smoking, and gender

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,215(0,050)total cholesterol baseij +

b2jinterventionij + 0,044(0,008)ageij +

0,043(0,011)bmiij + 0,276(0,113)smokingij + 

-0,066(0,114)genderij
b0ij = 1,454(0,513) + u0j + e0ij
b2j = -0,119(0,116) + u2j

-2*loglikelihood(IGLS) = 467,216(276 of 276 cases in use)
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the standard error decreases from 0.211 to 0.116, the effect is still not signifi-
cant (the p-value � 0.306). It has been mentioned before that one of the fea-
tures of multilevel analysis is that the regression coefficients of the potential
confounders can also be considered random. However, this does not often
happen in practice.

When reporting the results of an intervention study or in general an asso-
ciation model, it is strongly recommended that the results of both the ‘crude’
and the ‘adjusted’ analysis are reported. Table 5.1 shows the results of the
analyses performed on the example dataset.

From Table 5.1 it can be seen that no information is provided about the
random variance of the intercept and the random variance of the slope of
the intervention variable. This is not strange, because we are only interested
in the effect of the intervention. The reason for using multilevel analysis is
that we wanted to take into account the correlated observations within the
medical doctor in the most efficient way. It should be noted that the recom-
mendation to report both the ‘crude’ and the ‘adjusted’ results does not only
apply to multilevel analysis, but also for all other statistical techniques.

Another important aspect in the construction of association models is the
evaluation of potential effect modification. It can, for instance, be important
to determine whether the intervention effect is different for males and
females. Potential effect modification can be investigated by adding inter-
action terms to the statistical model. An interaction term consists of a multi-
plication of the main/central determinant and the potential effect modifier.
To investigate potential effect modification in the example dataset, we go
back to the results of the ‘crude’ analysis that were presented in Output 5.10.
In general, the way to investigate potential effect modification is to add each
interaction term separately to the statistical model. When an interaction

Table 5.1. Results of a multilevel analysis of the effect of the intervention on 
total cholesterol

Regression coefficient1 95% CI p-value

‘Crude’ �0.075 �0.489 to 0.339 0.72

‘Adjusted’2 �0.119 �0.346 to 0.108 0.30

1Regression coefficient indicates the difference between the intervention and the control

group at the end of the intervention period, corrected for baseline cholesterol values.
2Adjusted for BMI, smoking, gender, and age.
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term is statistically significant, it indicates that the effect of the intervention
is different for the different values of the effect modifier. Because the inter-
action terms have less power, the ‘significance’ levels of interaction terms are
usually set slightly higher than 0.05 (e.g. p-values � 0.10). Outputs 5.12(a–e)

Output 5.12a. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including the baseline cholesterol level and the interaction between the
baseline cholesterol level and the intervention variable

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,356(0,073)total cholesterol baseij +

b2jinterventionij + -0,104(0,106)intervention*tc

baseij
b0ij = 3,737(0,488) + u0j + e0ij
b2j = 0,589(0,698) + u2j

-2*loglikelihood(IGLS) = 527,417(276 of 276 cases in use)

u
u

j

j
u u

0

2

03310159
03

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
~ N(0, ) : = –� �

, (, )
, 1160159 03340174

0

(, ) , (, )

[ ]

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

e ij ~ N(0, �ee e) : =� [, (, )]03490031

Output 5.12b. Results of a multilevel analysis to estimate the effect of the 
cholesterol-lowering intervention, with a random intercept and a random slope 
for the intervention variable, including age and the interaction between age and the
intervention variable

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,186(0,053)total cholesterol baseij + 

b2jinterventionij + 0,054(0,009)ageij + 

-0,017(0,014)intervention*ageij
b0ij = 2,783(0,416) + u0j + e0ij
b2j = 0,532(0,576) + u2j

-2*loglikelihood(IGLS) = 488,641(276 of 276 cases in use)
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Output 5.12c. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including BMI and the interaction between BMI and the intervention variable

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,310(0,050)total cholesterol baseij + 

b2jinterventionij + 0,043(0,009)bmiij + 

-0,015(0,014)intervention*bmiij
b0ij = 2,643(0,455) + u0j + e0ij
b2j = 0,423(0,482) + u2j

-2*loglikelihood(IGLS) = 501,269(276 of 276 cases in use)
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Output 5.12d. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including smoking and the interaction between smoking and the intervention
variable

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,302(0,052)total cholesterol baseij + 

b2jinterventionij + –0,354(0,113)smokingij + 

0,423(0,169)intervention*smokingij
b0ij = 4,283(0,382) + u0j + e0ij
b2j = -0,329(0,218) + u2j

-2*loglikelihood(IGLS) = 518,557(276 of 276 cases in use)
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show the results of the multilevel analysis with the separate interaction
terms, and Table 5.2 summarises the results of these analyses.

From the p-values of the interaction terms reported in Table 5.2 it can be
seen that there is only a ‘significant’ interaction between the intervention
variable and smoking. So, the effect of the intervention is significantly differ-
ent for smokers and non-smokers. The implication of this significant inter-
action is that the effects of the intervention should be reported separately for
smokers and non-smokers. It has been mentioned before in the discussion
about confounding that it is recommended to report the results of both a
‘crude’ analysis and a ‘corrected’ analysis. So, in this situation, with a signifi-
cant interaction between the intervention and smoking, a ‘crude’ result and
an ‘adjusted’ result should be reported for smokers and for non-smokers.
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Table 5.2. p-values belonging to different interaction
terms to evaluate potential effect modification

p-value

Intervention * baseline total cholesterol 0.592

Intervention * age 0.226

Intervention * BMI 0.285

Intervention * smoking 0.012

Intervention * gender 0.308

Output 5.12e. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including gender and the interaction between gender and the intervention
variable

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,318(0,054)total cholesterol baseij + 

b2jinterventionij + –0,155(0,118)genderij + 

0,175(0,172)intervention*genderij
b0ij = 4,022(0,385) + u0j + e0ij
b2j = -0,137(0,225) + u2j

-2*loglikelihood(IGLS) = 526,492(276 of 276 cases in use)
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Both can be obtained by performing stratified analyses for smokers and non-
smokers, but it is more elegant to use the analysis with the interaction term.
Because non-smokers are coded as zero, the intervention effect, the 95% CI
and the p-value for non-smokers can be obtained from the first analysis (the
results of the ‘crude’ analysis were reported in Output 5.12d). The interven-
tion effect (and 95% CI and p-value) for smokers can be obtained by first
recoding the smoking variable (coding the smokers as zero). Then a ‘new’
interaction term has to be calculated (with the recoded smoking variable)
and the data must be reanalysed. Outputs 5.13(a–d) show the results of
these analyses, and Table 5.3 summarises the results.

From the results that are summarised in Table 5.3 it can be seen that there
is a highly significant intervention effect for non-smokers, and that this effect
is only significant when a correction has been made for age, BMI, and gender.
Apparently, for smokers the intervention does not work. In fact, the positive
regression coefficient observed for smokers indicates that, given a certain
baseline value of total cholesterol, the intervention group has higher choles-
terol values at follow-up, compared to the control group. It should be noted
that in the present analysis a significant interaction was found for a dichoto-
mous variable (i.e. smoking). For the different groups of the dichotomous
variable (i.e. smokers and non-smokers), separate results can be reported.
When a significant interaction is found with a continuous variable (e.g. age or

Output 5.13a. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including smoking and the interaction between smoking and the intervention
variable

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,302(0,052)total cholesterol baseij + 

b2jinterventionij + -0,354(0,113)smokingij + 

0,423(0,169)intervention*smokingij
b0ij = 4,283(0,382) + u0j + e0ij
b2j = -0,329(0,218) + u2j

-2*loglikelihood(IGLS) = 518,557(276 of 276 cases in use)
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Output 5.13b. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including smoking and the interaction between smoking and the intervention
variable, corrected for age, BMI, and gender

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,224(0,050)total cholesterol baseij + 

b2jinterventionij + 0,070(0,126)smokingij +

0,507(0,148)intervention*smokingij +

0,047(0,007)ageij + 0,041(0,011)bmiij + 

-0,126(0,114)genderij
b0ij = 1,496(0,492) + u0j + e0ij
b2j = -0,433(0,126) + u2j

-2*loglikelihood(IGLS) = 457,408(276 of 276 cases in use)
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Output 5.13c. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including smoking (recoded) and the interaction between smoking (recoded)
and the intervention variable

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,302(0,052)total cholesterol baseij +

b2jinterventionij + 0,354(0,113)smoking_recodeij + 

-0,424(0,169)intervention*smoking_recodeij
b0ij = 3,933(0,372) + u0j + e0ij
b2j = 0,095(0,197) + u2j

-2*loglikelihood(IGLS) = 518,555(276 of 276 cases in use)
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BMI), the situation is slightly more complicated. There are basically two pos-
sibilities that are often used in this situation. The first possibility is to create
two or more groups for the continuous variable and to estimate separate
intervention effects for the different groups. However, the disadvantage of this
method is that grouping a continuous variable not only leads to a loss of infor-
mation, but it basically leads to a different variable. Another possibility is to
report the ‘average’ intervention effect that can be obtained from an analysis

79 Prediction models and association models

Output 5.13d. Results of a multilevel analysis to estimate the effect of the cholesterol-
lowering intervention, with a random intercept and a random slope for the intervention
variable, including smoking (recoded) and the interaction between smoking (recoded)
and the intervention variable, corrected for age, BMI, and gender

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,224(0,050)total cholesterol baseij + 

b2jinterventionij + -0,070(0,126)smoking_recodeij + 

-0,507(0,148)intervention*smoking_recodeij +

0,047(0,007)ageij + 0,041(0,011)bmiij + 

-0,126(0,114)genderij
b0ij = 1,566(0,428) + u0j + e0ij
b2j = 0,074(0,103) + u2j

-2*loglikelihood(IGLS) = 457,407(276 of 276 cases in use)
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Table 5.3. Regression coefficients, 95% CI and p-values for the effect of a cholesterol-
lowering intervention for smokers and non-smokers. Both ‘crude’ and ‘adjusted’1

results are presented

Regression coefficient 95% CI p-value

Non-smokers

‘Crude’ �0.329 �0.76 to 0.10 0.131

‘Adjusted’1 �0.433 �0.68 to �0.19 �0.01

Smokers

‘Crude’ 0.095 �0.29 to 0.48 0.631

‘Adjusted’1 0.074 �0.13 to 0.28 0.472

1Adjusted for age, BMI, and gender.
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without the interaction term, and report that a significant interaction was
found with a particular continuous variable. Furthermore, it should be men-
tioned that this interaction has to be interpreted in such a way that the inter-
vention effect is stronger or weaker when the value of the continuous effect
modifier is higher. Whether the effect is stronger or weaker depends on the
sign of the regression coefficient for the intervention variable and the sign of
the regression coefficient of the interaction term.

5.3.3 Prediction or prognostic models
The general idea underlying the construction of a prediction or prognostic
model is that, given a certain set of independent variables, the best and most
simple model (i.e. combination of independent variables) is constructed to
predict the outcome variable of interest. In ‘standard’ regression analysis, pre-
diction or prognostic models can be constructed manually, or automatically
in the computer software. The two strategies mostly used are a forward selec-
tion procedure or a backward selection procedure. With a forward selection
procedure, the construction procedure starts by adding the independent
variable that is most strongly associated with the outcome variable. This
‘model’ is then extended with the second best ‘predictor’, with the third best
‘predictor’, and so on, until a predefined end-point is reached. This endpoint
can be that all variables included in the model must have a significant associ-
ation with the outcome, but sometimes the cut-off value is somewhat higher
(e.g. all variables with p-values � 0.10 are allowed in the model). With a
backward selection procedure, the starting point is a model with all possible
predictor variables. The modelling procedure starts by removing the inde-
pendent variable that is least strongly associated with the outcome variable,
and carries on removing these variables until it ends when a certain prede-
fined end-point is reached. The automatic forward and backward selection
procedures are not available in the MLwiN software, so all modelling must be
done by hand. However, not only the significance of the independent vari-
ables is important, but also the random part of that relationship can be of
importance. There are a few ways in which to construct a prediction or prog-
nostic model, and unfortunately different modelling strategies do not always
produce the same results. In the literature it is sometimes argued that in mul-
tilevel analysis, a backward strategy is preferred, and that one should start the
modelling procedure with a ‘full’ model. A ‘full’ model is then defined as a
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model with not only all independent variables, but also all possible random
variance components. This is theoretically probably the best approach that
can be followed, but in practice it is not possible unless there is a very large
study population. In most situations the coefficients of such a ‘full’ model can
not be estimated, and therefore an alternative approach must be followed. In
the next part of this chapter, an example will be given of an alternative strat-
egy that can be followed to construct a prediction or prognostic model. It
should be realised that this is just one of the possibilities; there are, of course,
many more strategies available. In the example, total cholesterol is the out-
come variable of interest, and the independent variables are age, gender, BMI,
smoking, alcohol consumption and physical activity. Smoking is a dichoto-
mous variable, while alcohol consumption and physical activity are cate-
gorised into three groups. For alcohol consumption, the first group consists
of the non-drinkers and the second and third groups are divided by the
median of the amount of alcohol consumed. Physical activity was divided
into tertiles. Output 5.14 shows the descriptive information regarding the
dataset used in this example.

Output 5.14. Descriptive information regarding the example dataset used to
illustrate the construction of a prediction or prognostic model



82 Multilevel modelling

From Output 5.14 it can be seen that alcohol consumption and physical
activity are represented by dummy variables. For both variables the lowest
category is used as a reference category.

One of the possible modelling strategies starts with adding all potential
predictor variables to the model. The next step is to evaluate whether or not
a random intercept must be allowed. If a random intercept is necessary, the
full model with a random intercept is the ‘new’ starting point. In this full
model, for each of the predictor variables the importance must be evaluated
for the situation with and the situation without a random slope for that 
particular variable. When this has been done for all predictor variables in the
model, the variable with the lowest p-value can be deleted. Step by step this
procedure must be repeated until a certain predefined end-point is reached.
Again, this end-point is usually reached when all independent variables in
the model are significant, but sometimes a somewhat less restrictive end-
point is used. When the procedure described above has been followed in the
example dataset, the model as shown in Output 5.15 is found to be the best
and most simple model to predict total cholesterol.

From Output 5.15 it can be seen that the best and most simple model to
predict total cholesterol consists of age, BMI, and smoking. It can further 
be seen that for both age and smoking a random slope is considered. It is

Output 5.15. Results of a multilevel model to predict total cholesterol values, allowing
both a random intercept and random slopes

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + b1jageij + 0,069144(0,008983)bmiij + 

b3jsmokingij
b0ij = 0,733683(0,485653) + u0j + e0ij
b1j = 0,044302(0,005119) + u1j
b3j = 0,486475(0,126070) + u3j

-2*loglikelihood(IGLS) = 744,807100(441 of 441 cases in use)
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Output 5.17. Results of a multilevel model to predict total cholesterol values, allowing
only a random intercept

total cholesterolij ~ N(XB, �)

total cholesterolij = b0ijcons + 0,050660(0,003408)ageij + 

0,053807(0,010585)bmiij + 0,487466(0,161520)smokingij +

-0,010429(0,064071)activity dummy 1ij + 

-0,261227(0,083753)activity dummy 2ij + 

0,255799(0,143794)alcohol dummy 1ij + 

0,165505(0,084851)alcohol dummy 2ij
b0ij = 0,739135(0,435395) + u0j + e0ij

[u0j] ~ N(0, �u) : �u = [0,299533(0,125407)]

[e0ij] ~ N(0, �e) : �e = [0,284631(0,019435)]

-2*loglikelihood(IGLS) = 741,522300(441 of 441 cases in use)

Output 5.16. Results of a ‘naive’ model to predict total cholesterol values

total cholesterolij ~ N(XB, �)

total cholesterolij = b0icons + 0,044850(0,003744)ageij +

0,098977(0,010651)bmiij +

0,351121(0,124843)smokingij
b0i = -0,126048(0,431681) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,515193(0,034695)]

-2*loglikelihood(IGLS) = 959,026700(441 of 441 cases in use)

interesting to compare the results of this modelling procedure with the
results of other strategies. When the multilevel structure is ignored, and
therefore a ‘naive’ prediction model is constructed, the results are remark-
ably different (see Output 5.16), not with regard to the variables that are
present in the model, but in terms of the magnitudes of the regression coef-
ficients and corresponding standard errors.

A slightly less ‘naive’ approach is a modelling strategy in which a random
intercept is allowed, but random slopes are not allowed. Output 5.17 shows
the results of the final model derived from this modelling strategy.
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From Output 5.17 it can be seen that a totally different model has been
constructed with this strategy. In addition to age, BMI, and smoking, physi-
cal activity and alcohol consumption are also present in the final model. The
last strategy (i.e. with only a random intercept) looks a bit artificial, but it is
not. In some software packages, only a random intercept can be allowed, and
therefore the final model that has been shown in Output 5.17 will be 
the final prediction or prognostic model. To summarise the results of the
different modelling procedures that are described in this section, Table 5.4
shows the regression coefficients and standard errors of the variables
included in the ‘final’ models. It should (again) be realised that the three
modelling strategies described in this section are examples of possible mod-
elling strategies, and that there are other (maybe even better) modelling
strategies available. Important, however, is the fact that the result of a final
prediction or prognostic model (highly) depends on the modelling strategy
that is chosen.

In the three strategies to construct a prediction or prognostic model, we
did not include any interaction terms. Although theoretically interaction
terms can be part of the final prediction or prognostic model, in practice

Table 5.4. Regression coefficients and standard errors (between brackets) derived from
different models in order to predict total cholesterol values

‘Naive’ Only random intercept Random intercept and random slopes

Age 0.045 (0.004) 0.051 (0.003) 0.044 (0.005)

BMI 0.099 (0.011) 0.054 (0.011) 0.069 (0.009)

Smoking 0.351 (0.124) 0.487 (0.162) 0.486 (0.126)

Gender

Activity1

Moderate �0.010 (0.064)

High �0.261 (0.084)

Alcohol2

Moderate 0.256 (0.144)

Heavy 0.166 (0.085)

1Physical activity was divided into tertiles and the lowest tertile was used as reference category.
2No alcohol consumption was used as reference category; moderate and heavy alcohol consumers

are divided by the median of the amount of alcohol consumed.
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this is hardly ever done. In most practical situations, it is decided a priori
(e.g. based on biological plausibility) that stratified prediction or prognostic
models are going to be constructed. For instance, it can be decided (a priori)
that separate prediction or prognostic models are going to be constructed
for males and females.

5.4 Comments

In the examples in this chapter, a continuous outcome variable was used.
However, dealing with confounding and effect modification as well as the
construction of association and prediction or prognostic models is exactly
the same for dichotomous, categorical or ‘count’ outcome variables.



Multilevel analysis in longitudinal studies

6.1 Introduction

In the earlier chapters it has been explained that multilevel analysis is suitable
for the analysis of correlated data.We have seen examples in which observations
of patients were correlated because they ‘belong’ to the same medical doctor, i.e.
the observations of patients were clustered within medical doctors. The fact
that observations are correlated is probably most pronounced in longitudinal
studies in which repeated observations are made within one subject or patient.
It is obvious that these observations are (usually) highly correlated. Therefore,
the whole theory of multilevel analysis, as described in the earlier chapters, can
also be applied to longitudinal data. With longitudinal data, the repeated obser-
vations are clustered within the subject or patient (see Figure 6.1).

Figure 6.1 illustrates a two-level structure, i.e. the observations are the lower
level, while the patient is the higher level. This is different from all the examples
that have been described before, in which the patients were the lower level.
It is of course also possible that the patients are clustered within medical
doctors, as was also the situation in the earlier chapters. This is referred to as a
three-level structure, i.e. the observations are clustered within the patients and
the patients are clustered within the medical doctors (see Figure 6.2).

86
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Patient 1 Patient 2 Patient …

Observations

Observations

Observations

Figure 6.1. Two-level longitudinal multilevel structure; observations are clustered 
within patients.
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6.2 Longitudinal studies

Longitudinal studies are characterised by the fact that the outcome variable
is repeatedly measured over time. Table 6.1 shows an example of a typical
longitudinal dataset.

From Table 6.1 it can be seen that all patients are measured four times, and
that the outcome variable is continuous. There are two independent variables,
one time-dependent continuous variable and another time-independent
dichotomous variable. Furthermore, there is a variable called time that consists
of the ‘observation number’ for each patient. It should be noted that this dataset
has a so-called ‘long’ data structure, which means that there is one record for
each observation. In contrast with the ‘long’ data structure, there is also a 
so-called ‘broad’ data structure, in which there is one record for each patient
(the broad data structure is the standard data structure used, for instance, in
SPSS, and repeated observations are usually referred to as y1, y2, y3, etc.).
However, a ‘long’ data structure is necessary for longitudinal data analysis.

Suppose, we are interested in the (longitudinal) relationship between the
outcome variable Y and the time-dependent determinant X1. Ignoring the
fact that the observations are clustered within the patients (i.e. ignoring 
the multilevel structure of the data), ‘standard’ linear regression analysis can
be applied (Equation (6.1)):

(6.1)

where Y � outcome variable; �0 � intercept; �1 � regression coefficient for
X1; X1 � time-dependent independent variable; and � � error/residual.

Y X� � �b b0 1 1 e

Medical
doctor …

Patient 1 Patient 2 Patient …

Observations

Observations

Observations

Medical
doctor 1

Figure 6.2. Three-level longitudinal multilevel structure; observations are clustered 
within patients and patients are clustered with medical doctors.
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There are probably very few researchers who would perform a ‘standard’
linear regression analysis on longitudinal data. Everybody is aware of the
fact that something different should be done because the observations are
clustered within one patient. To cope with this (comparable to the situation
in which observations of patients are clustered within medical doctors), a
correction can be made for ‘patient’ (Equation (6.2)):

(6.2)

where �2 � regression coefficient for the ‘patient’ variable.
However, performing a linear regression analysis according to Equation

(6.2) is impossible, because the ‘patient’ variable is not a continuous or 
dichotomous variable. It is a categorical (i.e. nominal) variable that must be 
represented by dummy variables (Equation (6.3)):

(6.3)

where �2 � regression coefficient for the dummy variable representing the first
patient; pat1 � dummy variable representing the first patient; �3 � regression

Y X n n� � � � � ��b b b b b0 1 1 2 1 3 2 1pat pat pat� e

Y X� � � �b b b0 1 1 2pat e

Table 6.1. Hypothetical example of a typical longitudinal dataset

Outcome Time-dependent Time-independent 

Patient variable (Y) determinant (X1) determinant (X2) Time

1 3.5 2.4 1 1

1 3.7 4.3 1 2

1 4.2 4.5 1 3

1 4.5 5.1 1 4

2 1.4 2.8 0 1

2 1.6 2.9 0 2

2 1.7 3.0 0 3

2 1.8 2.7 0 4

.

.

N 5.6 5.0 0 1

N 5.6 5.1 0 2

N 5.7 7.5 0 3

N 5.8 6.3 0 4
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coefficient for the dummy variable representing the second patient; pat2 �

dummy variable representing the second patient; patn�1 � dummy variable
representing the (n � 1)th patient, etc.; and n � number of patients.

In fact, a correction for ‘patient’ means that different intercepts are esti-
mated for each patient (see Figure 6.3).

As a typical longitudinal study usually consists of a few repeated meas-
urements of many patients, the number of dummy variables will be huge,
compared to the total number of observations, and therefore it would be
impossible to analyse the data in this way. To deal with this, again, multilevel
analysis provides a very elegant solution, i.e. it is not the separate intercepts
for each patient that are estimated, but the variance of those intercepts. So,
instead of many regression coefficients for all dummy variables (representing
each patient), only one variance parameter (i.e. a ‘random intercept’) is esti-
mated. Of course, the assumption of this ‘random intercept’ is that the dif-
ferent intercepts are normally distributed (see also Sections 2.2 and 2.7).

In line with this, it can also be hypothesised that not only the intercepts
differ between the patients, but also the relationship between Y and X1. In
‘standard’ linear regression analysis this can be analysed by adding the inter-
action between X1 and patient to the regression equation (Equation (6.4)):

(6.4)

where �3 � regression coefficient for the interaction between the ‘patient’
variable and the time-dependent determinant X1.

Y X X� � � � � �b b b b0 1 1 2 3 1pat pat e

O
ut
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m

e 
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ria
bl

e

Time-dependent independent variable

Patient 1

Patient 2

Patient 3

Patient n

Figure 6.3. Illustration of a linear regression analysis of a time-dependent independent
variable and a certain outcome variable with a different intercept 
for each patient.
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Just as in the correction for the ‘patient’ variable, the interaction terms
should also be represented by dummy variables (Equation (6.5)):

(6.5)

where �n�1 � regression coefficient for the interaction between the dummy
variable representing the first patient and X1; �n�2 � regression coefficient
for the interaction between the dummy variable representing the second
patient and X1; �2n�1 � regression coefficient for the interaction between
the dummy variable representing the (n � 1)th patient and X1.

Just as in the correction for the ‘patient’ variable, for the interaction
between the ‘patient’ variable and the time-dependent determinant X1, a
large number of regression coefficients must also be estimated. Given the
nature of most longitudinal studies (i.e. a few repeated measurements of
many patients), this would also be impossible. Again, an elegant solution for
this problem is multilevel analysis, in which not all the regression coeffi-
cients for each patient are estimated separately, but in which the variance 
of the regression coefficients is estimated (see Figure 6.4). Just as for the 
random intercepts, a normal distribution is also assumed for the ran-
dom slopes!

Y X n n

n

� � � � � �

�
�

�

b b b b b

b
0 1 1 2 1 3 2 1

1 1

pat pat pat

pat

�
�� � � � � �� � �X Xn n n1 2 2 1 2 1 1b bpat pat� e

O
ut
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e 
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e

Time-dependent independent variable

Patient 1

Patient 2

Patient 3

Patient n

Figure 6.4. Illustration of a linear regression analysis of a time-dependent independent
variable and a certain outcome variable with a different intercept and a 
different slope for each patient.
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6.3 Example

To illustrate the use of multilevel analysis for longitudinal data, an observa-
tional longitudinal study in which four measurements are performed on 147
patients is used as an example. The question to be answered is whether
lifestyle influences health. Output 6.1 shows descriptive information regard-
ing the dataset.

Output 6.1. Descriptive information regarding the example longitudinal
dataset

From Output 6.1 it can be seen that 588 observations are performed (i.e.
four measurements of 147 patients). The second column in the dataset shows
the values for the health indicator (i.e. the outcome variable) and the third col-
umn shows the values for the lifestyle indicator (i.e. the time-dependent inde-
pendent variable). It can be seen that there are no missing data, although this
would not be a problem for the estimation of the regression coefficients (see
Section 6.6.3). The fourth column gives the time variable, which represents the
‘observation number’ for each patient, and ranges from 1 to 4. The last col-
umn of the dataset gives the cons variable, which (again) consists only of ones
and is necessary to estimate an intercept in multilevel regression analysis.

Output 6.2 shows the results of a ‘naive’ analysis in which all observations
are considered to be independent. Again, it is rather strange to analyse 
the data in this way, but it is explained in this section just for educational
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purposes. The results will be compared with the results of a ‘proper’ analysis
in which it is taken into account that the repeated measurements of the same
patient ‘belong’ to each other (i.e. that the repeated observations are clus-
tered within patients).

Output 6.2. Results of a ‘naive’ longitudinal multilevel analysis of the
relationship between health and lifestyle

health indicatorij ~ N(XB, �)

health indicatorij = b0icons + 0,141(0,020)lifestyle indicatorij

b0i = 3,808(0,073) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,439(0,026)]

-2*loglikelihood(IGLS) = 1184,665(588 of 588 cases in use)

From Output 6.2 it can be seen that there is a highly significant associa-
tion between lifestyle and health. The Wald statistic for this association is
(0.141/0.020)2 � 49.7, which follows a Chi-square distribution with one
degree of freedom and is highly significant. It should be noted that the sub-
script i of the variables in the regression equation represents the observa-
tion, while the subscript j represents the patient. This is because the
observations are clustered within the patients and the lowest level is always
noted as i, while the second level is always noted as j.

To perform a ‘real’ longitudinal analysis, a random intercept is added to
the analysis. So, a correction is made for ‘patient’, or, in other words, in this
analysis it is taken into account that repeated observations are made within
the same patient. Output 6.3 shows the results of this analysis.

Two important aspects should be noted in Output 6.3. First of all, it can
be seen that the magnitude of the association between lifestyle and health
has changed dramatically. When a correction is made for ‘patient’ (i.e. when
a random intercept is allowed), the magnitude of the regression coefficient
for lifestyle decreased from 0.141 to 0.070, while the standard error
remained more or less the same. When the Wald test is applied in this situ-
ation (i.e. [0.070/0.023]2 � 9.25), the association is still highly significant.
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The second aspect that should be noted is the amount of variance that is
‘explained’ by correction for the patient. The intraclass correlation coeffi-
cient (ICC), which is an indicator of the dependency of the repeated obser-
vations within the patients can be estimated by dividing the between-patient
variance (i.e. 0.321) by the total variance (i.e. 0.321 � 0.128). The ICC in
this example is 0.71. This relatively high ICC is, however, not uncommon in
longitudinal studies. In general, the ICC observed in longitudinal multilevel
analysis (representing the correlation of repeated observations within
patients) is much higher than the ICC observed in cross-sectional multilevel
analysis.

In order to evaluate whether or not it is necessary to allow a random
intercept, the likelihood ratio test can be applied (which is of course highly
significant), although in longitudinal studies it is a conceptual necessity to
allow the intercepts for each patient to be different; in fact that is basically
the whole idea of a longitudinal study.

The second step in the multilevel modelling process is the addition of a
random slope (i.e. adding the interaction between lifestyle and ‘patient’ to
the model). Output 6.4 shows the result of this analysis.

From the fourth line of Output 6.4 it can be seen that a random slope for
health is added to the analysis. The regression coefficient for the lifestyle
indicator is extended with a variance component. The magnitude of this
variance component (i.e. 0.010) is shown in the variance/covariance matrix
in the fifth and sixth line of the output. From this matrix it can also be 
seen that the covariance between the random intercept and the random

Output 6.3. Results of a linear longitudinal multilevel analysis of the
relationship between health and lifestyle with a random intercept

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + 0,070(0,023)lifestyle indicatorij

b0ij = 4,054(0,094) + u0j + e0ij

[u0j] ~ N(0, �u) : �u = [0,321(0,041)]

[e0ij] ~ N(0, �e) : �e = [0,128(0,009)]

-2*loglikelihood(IGLS) = 812,006(588 of 588 cases in use)
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slope has a negative sign. This indicates that for patients with a relatively
high intercept the association between health and lifestyle is weaker. It has
been mentioned before that allowing a random intercept is a conceptual neces-
sity, but this is not the case for allowing a random slope. Therefore, a likeli-
hood ratio test should be applied to evaluate whether or not a random slope
should be considered. For the likelihood ratio test, the �2 log likelihood of
the model with only a random intercept (see Output 6.3) must be compared
to the �2 log likelihood of the model with both a random intercept and a
random slope (see Output 6.4). This difference is 812.006 � 810.237 � 1.769,
and follows a Chi-square distribution with two degrees of freedom (two
degrees of freedom, because both the random slope and the covariance
between the random intercept and random slope are estimated), which has
a (two-sided) p-value of 0.184, i.e. not significant. Whether a one- or two-
sided p-value should be used in this situation has already been discussed in
Section 2.2, but has no influence on the final conclusion, which is that it is
not necessary to allow the regression coefficients for the lifestyle indicator to
be random. So, the final result of this analysis is that there is a positive asso-
ciation between lifestyle and health, and the magnitude of that association is
0.070, with a 95% confidence interval (CI) ranging from 0.025 to 0.115 and
a p-value � 0.001. The interpretation of the regression coefficient is rather
complicated, and is basically twofold, a between-patient interpretation, and

Output 6.4. Results of a linear longitudinal multilevel analysis 
of the relationship between health and lifestyle with both a random
intercept and a random slope for lifestyle

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + b1jlifestyle indicatorij
b0ij = 4,046(0,102) + u0j + e0ij
b1j = 0,072(0,025) + u1j

[e0ij] ~ N(0, �e) : �e = [0,124(0,009)]

-2*loglikelihood(IGLS) = 810,237(588 of 588 cases in use)
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a within-patient interpretation. The between-patient interpretation is com-
parable with the ‘normal’ interpretation of a regression coefficient. When
two patients differ one unit in the lifestyle indicator, they differ 0.070 units
in the health indicator. The within-patient interpretation is typical for a lon-
gitudinal study. When health increases with one unit over a particular time-
period within a patient, this change is accompanied by an increase of 0.070
units in the health of that patient. Of course, the total regression coefficient
of 0.070 is partly between patients and partly within patients. It is possible
to discriminate between the two interpretations by performing a so-called
autoregressive longitudinal analysis. For a detailed discussion about this
‘pooled’ interpretation and autoregressive longitudinal analysis, reference is
made to Twisk (2003).

In the example the longitudinal relationship with a continuous outcome
variable was analysed. It should be noted that multilevel analysis can also be
used to analyse longitudinal relationships with dichotomous and categorical
outcome variables.

6.4 Growth curves

In epidemiological and medical longitudinal studies, multilevel analysis is
probably most often applied for the construction of growth curves (see, for
instance, Plewis, 1996; Plewis, 2000; Boyle and Willms, 2001; Beunen et al.,
2002; Baxter-Jones et al., 2003; Heo et al., 2003; Hernández-Lloreda et al.,
2003; Thompson et al., 2003). Growth curves are used to describe the devel-
opment over time of a particular outcome variable. This specific topic will
be explained with the same example that was used in Section 6.3. So, the
dataset is the same as in Output 6.1. In the example dataset four measure-
ments are made of each patient, so basically a third-degree polynomial is the
highest order growth curve that can be modelled. Let us first start with a lin-
ear development over time. Output 6.5 shows the result of an analysis with
only time as an independent variable, and with a random intercept. Again, a
random intercept is a conceptual necessity in longitudinal studies, so it is
basically not necessary to evaluate this by performing a likelihood ratio test.
It is, furthermore, important to realise that in growth curve analysis the low-
est level (i.e. observation or time) is also the only (or most important) inde-
pendent variable.

95 Growth curves
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From Output 6.5 it can be seen that health is decreasing over time. The regres-
sion coefficient for time is �0.084, so for each measurement health decreases
with 0.084 points. Whether or not this linear decrease over time is significant,
can be evaluated from the Wald statistic (�0.084/0.013)2 � 41.74, which is Chi-
square distributed with one degree of freedom, i.e. highly significant. When the
result of this analysis is compared to a ‘naive’ analysis in which the dependency
of the observations is ignored (see Output 6.6), it can be seen that the regression
coefficient for time is exactly the same, but that the standard error in the ‘cor-
rected’ analysis is lower than in the ‘naive’ analysis. This is typical for growth
curve analysis, or, in general, this is typical for longitudinal studies when the
independent variable is time dependent. In these situations the standard error of
the regression coefficient decreases, when a random intercept is allowed (Twisk,
2003). This is in contrast with cross-sectional studies (see Chapter 3) and longi-
tudinal studies in which a time-independent independent variable is analysed.

Output 6.5. Results of a linear multilevel ‘growth curve’ analysis for 
health, with a random intercept

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + -0,084(0,013)timeij
b0ij = 4,510(0,060) + u0j + e0ij

[u0j] ~ N(0, �u) : �u = [0,354(0,045)]

[e0ij] ~ N(0, �e) : �e = [0,115(0,008)]

-2*loglikelihood(IGLS) = 777,822(588 of 588 cases in use)

Output 6.6. Results of a ‘naive’ linear multilevel ‘growth curve’ analysis
for health

health indicatorij ~ N(XB, �)

health indicatorij = b0i cons + -0,084(0,025)timeij
b0i = 4,509(0,069) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,469(0,027)]

-2*loglikelihood(IGLS) = 1223,576(588 of 588 cases in use)



97 Growth curves

The next step in the linear growth curve analysis can be the extension of
the model with a random slope for time. Output 6.7 shows the result of this
analysis.

Output 6.7. Results of a linear multilevel ‘growth curve’ analysis for 
health, with both a random intercept and a random slope

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + b1jtimeij
b0ij = 4,510(0,060) + u0j + e0ij
b1j = -0,084(0,015) + u1j

[e0ij] ~ N(0, �e) : �e = [0,089(0,007)]

-2*loglikelihood(IGLS) = 754,374(588 of 588 cases in use)
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The extension of the model with a random slope for time (indicated by
u1j) has resulted in a decrease in the �2 log likelihood. In the model without
a random slope, the �2 log likelihood was 777.822 (see Output 6.5), while
the �2 log likelihood in the model with a random slope with time is
754.374. The likelihood ratio test therefore gives a value of 23.448, which
follows a Chi-square distribution with two degrees of freedom, and is highly
significant. Again, there are two degrees of freedom, because not only the
random slope for time is estimated, but also the covariance between the ran-
dom intercept and the random slope. From the negative sign of this covari-
ance it can be interpreted that for patients with a high intercept the decrease
over time is greater than for patients with a relatively low intercept.

Up to now, a linear development over time has been modelled. However, it
is also possible that the development is better described by a second- or third-
order polynomial with time. So, the next step in the analysis can be to extend
the model with a time2 variable. Output 6.8 shows the result of this analysis.

To evaluate whether or not a second-order polynomial should be used to
describe the longitudinal development over time, the Wald statistic for time2

can be calculated. In the present example this Wald statistic is (0.005/
0.012)2 � 0.17, which follows a Chi-square distribution with one degree of
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freedom, and the corresponding p-value is 0.680. This is not significant, so a
second-order polynomial is not necessary. The same procedure can be fol-
lowed for the evaluation of a possible third-order polynomial. Output 6.9
shows the results of an analysis in which time, time2, and time3 are added as
independent variables.

Output 6.8. Results of a second-order multilevel ‘growth curve’ analysis 
for health, with a random intercept and a random slope for the linear
component of time

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + b1jtimeij + 0,005(0,012)time2ij
b0ij = 4,533(0,086) + u0j + e0ij
b1j = -0,108(0,063) + u1j

[e0ij] ~ N(0, �e) : �e = [0,089(0,007)]

-2*loglikelihood(IGLS) = 754,223(588 of 588 cases in use)
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Output 6.9. Results of a third-order multilevel ‘growth curve’ analysis
for health, with a random intercept and a random slope for the linear
component of time

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + b1jtimeij +

0,117(0,138)time2ij + 

-0,015(0,018)time3ij
b0ij = 4,691(0,210) + u0j + e0ij
b1j = -0,358(0,312) + u1j

[e0ij] ~ N(0, �e) : �e = [0,088(0,007)]

-2*loglikelihood(IGLS) = 753,553(588 of 588 cases in use)
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Just like the Wald statistic for time2, the Wald statistic for time3 is also not
statistically significant (i.e. [�0.015/0.018]2 � 0.69; p-value � 0.406), so
the conclusion of the two analyses is that the development over time for the
health indicator is best described by a linear function, with both a random
intercept and a random slope for time (see Output 6.7). It should be noted
that there are different ways to obtain this conclusion. Some authors suggest
that you should always start with a model that is as big as possible (i.e. with
all possible random variances), and then exclude variances as well as vari-
ables with a backward selection procedure (see also Section 5.3.3). However,
constructing the growth curve in the way that is described in this section
provides more insight into the data and more insight into the steps that are
taken. Especially for researchers with (very) little experience in multilevel
modelling, the procedure described here is (probably) recommendable.

In the example, only possible polynomial functions with time are illus-
trated. However, it also possible to model other functions with time, such as
logistic, logarithmic, or exponential functions.

When discrete time points are used in a longitudinal study (as in the pre-
sent example), time can also be modelled as a categorical variable. In the
example four measurements were made of each patient, so the categorical
time variable must be represented by three dummy variables. The regression
coefficients belonging to each of these dummy variables indicate the differ-
ence between a certain time point and a reference point (which is usually the
first (baseline) measurement). Output 6.10 shows the results of an analysis
in which the development over time for the health indicator is modelled
with three dummy variables for the categorical time variable. The first meas-
urement is used as a reference category, and in the analysis (only) a random
intercept is allowed.

From Output 6.10 it can be seen that there are three dummy variables for
time. The regression coefficient belonging to the first dummy variable 
represents the difference in the health indicator between the first and the
second measurement. This difference is �0.112, with a standard error of
0.040. The corresponding p-value is again based on the Wald statistic (i.e.
[�0.112/0.040]2 � 7.84), which follows a Chi-square distribution with one
degree of freedom (p � 0.001). The regression coefficient for the second
dummy variable represents the difference in the health indicator between
the first and the third measurement. This difference is �0.169, and the 
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corresponding p-value is again based on the Wald statistic (i.e. [�0.169/
0.040]2 � 17.85), and is � 0.001. Finally, the regression coefficient belonging
to the third dummy variable represents the difference between the first meas-
urement and the fourth measurement. In the present example this difference
is �0.261, which is also highly significant (i.e. [�0.261/0.040]2 � 42.58;
p-value � 0.001).

The next step in this analysis is an extension with random slopes for the
three dummy variables. However, this analysis did not lead to a valid result.
After some trial and error, a (final) model was obtained with a random
intercept and only random slopes for the second and the third dummy vari-
ables. Output 6.11 shows the results of this analysis.

To evaluate whether or not the addition of random slopes for the second
and the third dummy variable is necessary, the likelihood ratio test can be
applied. To do so, the �2 log likelihood of the model with only a random
intercept (i.e. 777.191; Output 6.10) must be compared to the �2 log likeli-
hood of the model with the two random slopes (i.e. 753.661; Output 6.11).
The difference between the two is 25.53, which follows a Chi-square distri-
bution with five degrees of freedom (five degrees of freedom, because in
addition to the two variances for the slopes, three covariances are also esti-
mated). The corresponding p-value is � 0.001. So, in conclusion, the model
with the random slopes for the second dummy variable (i.e. representing the

Output 6.10. Results of a multilevel ‘growth curve’ analysis for 
health, with time treated as a categorical variable (i.e. represented 
by dummy variables), with a random intercept

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + -0,112(0,040)time dummy1ij + 

-0,169(0,040)time dummy2ij + 

-0,261(0,040)time dummy3ij
b0ij = 4,435(0,056) + u0j + e0ij

[u0j] ~ N(0, �u) : �u = [0,354(0,045)]

[e0ij] ~ N(0, �e) : �e = [0,115(0,008)]

-2*loglikelihood(IGLS) = 777,191(588 of 588 cases in use)
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difference between the first and third measurement) and for the third
dummy variable (i.e. representing the difference between the first and the
fourth measurement) is ‘better’ than the model without the random slopes.
So, the final growth curve should be based on the model, which is shown in
Output 6.11. Based on these results the differences, 95% CIs and correspond-
ing p-values must be obtained.

It should be noted that the procedure which treats the time variable as
categorical is only possible when discrete time-points are considered. When
the actual time is used for the construction of growth curves, a certain func-
tion over time must be assumed. An example of the construction of a
growth curve using actual time is given in the next section.

6.4.1 An additional example
A nice example of growth curve modelling can be found in a study by Gerards
et al. (2004, 2005). In this study, the longitudinal development of lung volumes
in foetuses is analysed. All 49 foetuses were measured three to four times, but
not at predefined time-points. They were measured at some time during the

Output 6.11. Results of a multilevel ‘growth curve’ analysis for health,
with time treated as a categorical variable (i.e. represented by dummy
variables), with a random intercept and random slopes for the second
and the third dummy variables for time

health indicatorij ~ N(XB, �)

health indicatorij = b0ijcons + -0,112(0,038)time dummy1ij + 

b2jtime dummy2ij + b3jtime dummy3ij
b0ij = 4,435(0,055) + u0j + e0ij
b2j = -0,169(0,041) + u2j
b3j = -0,261(0,042) + u3j

[e0ij] ~ N(0, �e) : �e = [0,109(0,013)]

-2*loglikelihood(IGLS) = 753,661(588 of 588 cases in use)
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gestation period (i.e. somewhere between 17 and 35 weeks), and preferably
there was an interval of 4 weeks between each measurement. So basically, this
study is partly longitudinal (each foetus is measured three or four times), and
partly cross-sectional (the gestation age range for the total population is larger
than the gestation age range for each individual foetus). Table 6.2 shows part of
the dataset and Output 6.12 gives descriptive information about this dataset.

Table 6.2. Part of the dataset used to create
a growth curve for lung volume in foetuses

Patient Lung volume (ml) Weeks

1 9.06 18.0

1 24.33 22.6

1 49.03 26.0

1 64.83 30.0

2 9.03 18.0

2 16.41 22.0

2 14.21 26.0

2 64.37 30.0

� � �

� � �

52 11.36 20.9

52 29.44 25.0

52 41.83 29.0

52 69.34 33.7

Output 6.12. Descriptive information regarding the additional example 
of the ‘growth curve’ analysis for lung volume in foetuses
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From Output 6.12 it can be seen that 173 observations were made, and
although it seems that these 173 observations concerned 52 ‘subjects’, it
must be realised that for three ‘subjects’ no measurements at all were made.
Furthermore, it can be seen that not only the ‘weeks’ variable is present in the
dataset, but also the ‘weeks_centred’ variable. In this situation it is recom-
mendable to use the centred value of the ‘time’ variable, because the value of
zero has no meaning at all. When the centred value is used, the intercept 
of the regression line will have a proper interpretation, i.e. the estimated
lung volume at the average gestation age. The modelling process for this
example will not be described in detail, but the final result is presented in
Output 6.13.

Output 6.13. Results of a second-order multilevel ‘growth 
curve’ analysis for lung volume, with a random intercept and a 
random slope for the linear component of the number of weeks
(centred)

lung_volumeij ~ N(XB, �)

lung_volumeij = b0ijcons + b1jweeks_centredij +

0,202(0,030)weeks_centred2ij
b0ij = 31,638(1,260) + u0j + e0ij
b1j = 4,554(0,176) + u1j

[e0ij] ~ N(0, �e) : �e = [80,403(11,182)]

-2*loglikelihood(IGLS) = 1266,595(173 of 173 cases in use)
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From Output 6.13 it can be seen that a second-order polynomial is the
best way to describe the development of the lung volume over time. In other
words, the Wald statistics for both the linear and the quadratic component
of the ‘time’ variable (i.e. weeks_centred) are significant (a third-order com-
ponent was also added to the model, but that did not resulted in a significant
improvement of the model). It can further be seen that the model contains
a random intercept and a random slope for the linear development over
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time. A model with a random slope for the quadratic component of the time
variable did not lead to a valid solution, so that component could not be
added to the model. Although the regression coefficients can be interpreted
directly, it is often more illustrative to present the results of such a growth
curve analysis in a graph (see Figure 6.5).

For more detailed mathematical issues concerning growth curve model-
ling, reference is made, for instance, to Goldstein (1989a, b), Pan and
Goldstein (1997), Huggins and Loesch (1998), and Stoel (2003).

6.5 Other techniques to analyse longitudinal data

Multilevel analysis is not the only technique that is available for the analysis
of longitudinal data. Generalised estimating equations (GEE) is another
technique that is frequently used (Zeger and Liang, 1986; Lipsitz et al., 1991;
Zeger and Liang, 1992; Liang and Zeger, 1993; Twisk, 2003). The difference
between multilevel analysis and GEE analysis, is that they each correct for
the dependency of the observations in a different way. Multilevel analysis
does so by allowing random regression coefficients, while GEE corrects by

Lu
ng

 v
ol

um
e 

(m
l)

120

100

80

60

40

20

0
15 20 25 30 35

Time (weeks)

Figure 6.5. Graphic representation of the results of the ‘growth curve’ analysis for lung
volume in foetuses.



adding a so-called ‘within-subject correlation structure’ to the regression
model. The advantage of multilevel analysis and GEE analysis is that they are
both suitable for the longitudinal analysis of continuous as well as dichot-
omous and ‘count’ outcome variables. Another technique (which can only be
performed in SAS software with the MIXED procedure), is comparable to
GEE analysis, but different in that it does not add a ‘within-subject correl-
ation structure’ to the regression model, but a ‘within-subject covariance
structure’ (Littel et al., 1996, 2000). However, this technique is only suitable
for the analysis of continuous outcome variables. It goes beyond the scope of
this book to describe the various techniques in detail, but in order to assess
the usefulness of multilevel analysis in longitudinal studies, it is important
to describe briefly the similarities and differences in the results of longitu-
dinal data analysis performed with the different techniques.

In general, when a continuous outcome variable is considered, multilevel
analysis, GEE analysis, and the SAS method correcting for the ‘within-
subject covariance structure’ give more or less the same results, although mul-
tilevel analysis is (probably) the most flexible of the three techniques. For
dichotomous outcome variables, however, the situation is totally different.
The regression coefficients of a logistic longitudinal multilevel analysis (i.e.
a longitudinal multilevel analysis with a dichotomous outcome variable) are
always higher than the regression coefficients obtained from GEE analysis.
This means that the ‘effects’ estimated with multilevel analysis are more pro-
nounced than those estimated with GEE analysis. However, the standard
errors of the regression coefficients are also higher, so the significance 
levels are (theoretically) the same. One of the practical problems of logistic
longitudinal multilevel analysis is that it seems to be very difficult to esti-
mate the (random variances of the) regression coefficients, and therefore
different estimation procedures lead to different results (see also Sections
4.2 and 9.3). The reason for the difference in results between multilevel
analysis and GEE analysis is that multilevel analysis is a ‘subject-specific’
approach and GEE analysis is a ‘population average’ approach. For continu-
ous outcome variables the results do not differ, but for dichotomous out-
come variables multilevel analysis leads to higher regression coefficients. For
a detailed discussion about the differences between multilevel analysis and
GEE analysis, reference is made to Neuhaus et al., 1991; Hu et al., 1998;
Omar et al., 1999; Crouchley and Davis, 2001; Twisk, 2003, 2004.
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6.6 Comments

6.6.1 Extension of multilevel analysis for longitudinal data
The general idea of using multilevel analysis for the analysis of longitudinal data
is to correct for the fact that the observations within individuals or patients are
correlated. These correlated observations lead (in general) to correlated
errors/residuals, which is the real problem in this kind of regression analysis. In
most situations, allowing regression coefficients to differ between patients (i.e.
allowing random regression coefficients) is enough to obtain uncorrelated
errors/residuals. However, allowing random regression coefficients is some-
times not enough to correct for the correlated errors/residuals and an add-
itional correction is needed. Therefore, in some software packages it is possible
to perform an additional correction for either the ‘within-subject correlation
structure’ or the ‘within-subject covariance structure’. So, in fact, this additional
correction combines more or less multilevel analysis with either GEE analysis
(i.e. additional correction for the ‘within-subject correlation structure’) or the
SAS MIXED procedure (i.e. additional correction for the ‘within-subject
covariance structure’). It is beyond the scope of this book to discuss this add-
itional correction in detail. For additional information, reference is made to
Pinheiro and Bates (2000), Rabe-Hesketh et al. (2001b, c), and Twisk (2003).

6.6.2 Clustering of longitudinal data on a higher level
In the examples discussed in this chapter, a two-level structure was con-
sidered. Repeated observations were clustered within patients. It is, of course,
also possible that a three-level structure exists, e.g. repeated observations are
clustered within patients and patients are clustered within medical doctors
(see Figure 6.2). It should, however, be noted that when a three-level struc-
ture exists in a longitudinal study, GEE analysis and the SAS method correct-
ing for the ‘within-subject covariance structure’ can no longer be used. Those
two techniques are only suitable for a two-level structure. When a three-level
structure exists in a longitudinal study, only multilevel analysis can be used.

6.6.3 Missing data in longitudinal studies
One of the biggest problems in longitudinal studies is missing data. There is
an enormous amount of literature dealing with this problem (Little and

106 Multilevel analysis in longitudinal studies



107 Comments

Rubin, 1987; Little, 1995; Schafer, 1997; Allison, 2001), most of which is
related to the possible imputation of missing data to obtain a ‘complete’
dataset (Rubin, 1987, 1996; Shih and Quan, 1997; Schafer, 1999). However,
when applying multilevel analysis to longitudinal data, there is no need to
have a ‘complete’ dataset, and, furthermore, it has been shown that multilevel
analysis is very flexible in handling missing data. It has even been shown that
applying multilevel analysis to an incomplete dataset is even better than
applying imputation methods (Twisk and de Vente, 2002; Twisk, 2003).



Multivariate multilevel analysis

7.1 Introduction

A special feature of multilevel analysis is that it can be used to perform multi-
variate analysis. Multivariate analysis means that more than one outcome
variable is analysed at one time. In the literature, multivariate analyses are
often confused with multiple or multivariable regression analyses, in which
the relationship between one outcome variable and more than one independ-
ent variable is analysed. That situation was discussed in Chapter 5.
Multivariate analyses are not very common in medical science, but they are
(for instance) widely used in psychology. Probably the most frequently
applied multivariate technique is the multivariate analysis of variance
(MANOVA), in which the average values of more than one continuous out-
come variable are compared between groups. When a significant difference is
found between groups, the next step is to examine which of the outcome vari-
ables differs between the groups, or, in other words, which of the outcome
variables is related to the (group) determinant. When no significance differ-
ence is observed in multivariate analysis, this basically indicates that there is
no significant relationship between the (group) determinant and the separate
outcome variables as well. In this situation, the multivariate analysis can be
seen as an efficient precursor of possible univariate analyses. When no multi-
variate relationship exists, univariate analysis does not necessarily have to be
performed. When multivariate analyses is used in medical science, it is mostly
used to analyse the relationship between one or more independent variables
and a ‘cluster’ of outcome variables. In that respect, it is comparable with the
so-called latent variable analysis, in which the ‘cluster’ of outcome variables
are different aspects of a certain (not observable) latent variable. This kind of
relationship is usually analysed with structural equation modelling (see, for
instance, Jöreskog and Sörbom, 1993, 2001; Skrondal and Rabe-Hesketh,
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2004). One of the problems with software packages for structural equation
modelling, such as LISREL, EQS, or AMOS, is that they are very complicated,
and far from user friendly. As has been mentioned before, multilevel analysis
provides a very elegant alternative to perform a multivariate analysis (Rochon,
1996; Ten Have, 1996; Agresti, 1997; Catalano, 1997; Thum, 1997; Leyland 
et al., 2000; Gueorguieva and Agresti, 2001).

To perform a multivariate multilevel analysis actually means that below
the level of the patient a ‘variable’ level must be created. So, comparable to
the situation described in Chapter 6 for longitudinal data analysis, this will
be a two-level structure with the different outcome variables as the lower
level and the individual or patient as the higher level. Figure 7.1 illustrates
this situation in which the outcome variables are ‘clustered’ within the
patient. When the patients are further clustered (for instance) within med-
ical doctors, this will result in a three-level structure (see Figure 7.2).

In the example in Chapter 2, the relationship between total cholesterol and
age was analysed, and now this example will be extended with another out-
come variable, i.e. systolic blood pressure. The research question of interest is
whether there is a relationship between the ‘cluster’ of total cholesterol and

Patient 1 Patient 2 Patient …

Variables Variables Variables

Figure 7.1. Two-level multivariate multilevel structure; variables are clustered within patients.

Medical
doctor 1

Medical
doctor …

Patient 1 Patient 2 Patient …

VariablesVariables Variables

Figure 7.2. Three-level multivariate multilevel structure; variables are clustered within patients
and patients are clustered within medical doctors.
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systolic blood pressure, on the one hand, and age on the other. In fact, there
are two ways in which this relationship can be analysed. The first way is
incorporated in the MLwiN software, while the second one is a more general
approach, and can be used in every software package that is suitable for per-
forming multilevel analysis (see Section 7.3). Table 7.1 shows the data struc-
ture needed to perform a multivariate multilevel analysis in MLwiN.

7.2 Multivariate multilevel analysis: the MLwiN approach

Output 7.1 shows the descriptive information regarding the dataset used to
illustrate a multivariate multilevel analysis in MLwiN.

Table 7.1. Data structure needed to perform a multivariate 
multilevel analysis in MLwiN

Systolic Medical 

Patient Cholesterol blood pressure doctor Age

1 7.13 128 1 54

2 7.70 129 1 55

3 7.30 130 1 56

.

.

n 4.10 127 12 46

Output 7.1. Descriptive information regarding the dataset used to illustrate
multivariate multilevel modelling; the MLwiN approach



111 Multivariate multilevel analysis: the MLwiN approach

From Output 7.1 it can be seen that in addition to the variables that are
already known (i.e. total cholesterol, medical doctor, age, id, and cons), sys-
tolic blood pressure is now also included in the dataset. Output 7.2 shows
the results of a ‘naive’ multivariate analysis.

Output 7.2. Results of a ‘naive’ multivariate multilevel analysis of the relationship
between total cholesterol and systolic blood pressure and age

resp1jk ~ N(XB, �)

resp2jk ~ N(XB, �)

resp1jk = b0jcons.total cholesterolijk + 

0,051(0,004)age.total cholesterolijk

b0j = 2,797(0,268) + u0jk

resp2jk = b1jcons.systolic blood pressureijk + 

0,822(0,057)age.systolic blood pressureijk
b1j = 75,302(3,580) + u1jk

-2*loglikelihood(IGLS Deviance) = 4078,419(882 of 882 cases in use)
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From Output 7.2 it can be seen that there are two response variables (resp1

and resp2). Both are normally distributed, continuous outcome variables,
and from the regression equations it is clear that the first response variable
is total cholesterol and the second response variable is systolic blood pres-
sure. After the regression equations, from which the relationship with age
can be derived, a variance/covariance matrix is shown. It should be noted
that this variance/covariance matrix does not give variances of the random
regression coefficients (although the notation is u0jk and u1jk), but it only
provides the variance/covariance error matrix. The error or residual vari-
ance is not a single value, but a matrix, because two outcome variables are
analysed at the same time. Note that the error/residual in the output is
represented by u (and not by e). Normally, u is used to indicate the variance
of the random regression coefficients at the second level.
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The last line of the output shows the �2 log likelihood. It can also be seen
that there are 882 cases in use. For each of the 441 subjects two observations
are made; one for systolic blood pressure and one for total cholesterol. It is
important to notice that two separate regression coefficients are estimated
for the two outcome variables. The estimation of separate regression coeffi-
cients is ‘recommended’ in the multilevel user’s guide (Rasbash et al., 2003).
However, when separate regression coefficients are estimated it is not really
clear what the advantage of the multivariate method is, compared to the sep-
arate univariate analyses, because they both give exactly the same results.
Outputs 7.3 and 7.4 illustrate this.

Output 7.3. Results of a ‘naive’ linear multilevel analysis of the relationship 
between total cholesterol and age

total cholesterolij ~ N(XB, �)

total cholesterolij = b0icons + 0,051(0,004)ageij
b0i = 2,799(0,268) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,696(0,047)]

-2*loglikelihood(IGLS Deviance) = 1091,752(441 of 441 cases in use)

Output 7.4. Results of a ‘naive’ linear multilevel analysis of the relationship 
between systolic blood pressure and age

systolic blood pressureij ~ N(XB, �)

systolic blood pressureij = b0icons + 0,821(0,057)ageij
b0i = 75,322(3,581) + e0ij

[e0ij] ~ N(0, �e) : �e = [124,349(8,374)]

-2*loglikelihood(IGLS Deviance) = 3378,486(441 of 441 cases in use)

The regression coefficients estimated from the ‘naive’ multivariate analy-
sis could also be obtained from a ‘standard’ MANOVA (which can be 
performed in any software package). Output 7.5 shows the results of the
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MANOVA with age as a covariate performed with SPSS. From Output 7.5 it
can be seen that the results are exactly the same as the results shown in
Output 7.2.

Output 7.5. Results of a MANOVA (performed in SPSS) to determine the
relationship between total cholesterol and systolic blood pressure and age

Parameter Estimates

95% Confidence Interval

Dependent Std.

variable Parameter B error Lower bound Upper bound

Total Intercept 2,799 ,269 2,271 3,327

cholesterol AGE 5,126E-02 ,004 4,281E-02 5,971E-02

Systolic Intercept 75,322 3,590 68,267 82,377

blood AGE ,821 ,057 ,708 ,934

pressure

It is often argued that the advantage of using multivariate multilevel analysis
is the possibility to estimate the association (or correlation) between outcome
variables on different levels and in combination with independent variables.
For instance, there is a big difference between the sum of the two �2 log like-
lihoods of the separate analysis for total cholesterol and systolic blood pressure
(Outputs 7.3 and 7.4) and the �2 log likelihood of the multivariate analysis, in
which total cholesterol and systolic blood pressure are analysed together. This
difference reveals an association between the two outcome variables that can be
interesting to investigate further. However, with multivariate multilevel analy-
sis it is also possible to estimate one common regression coefficient for the out-
come variables that are analysed together. Such a common regression
coefficient indicates the relationship between the particular independent vari-
able (i.e. age) and the ‘cluster’ of outcome variables. In my opinion, a multivari-
ate multilevel analysis has especially interesting features when a common
regression coefficient is calculated, although the interpretation of this regres-
sion coefficient is rather complicated. Output 7.6 shows the results of a ‘naive’
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multivariate multilevel analysis, in which one common regression coefficient is
estimated for age.

The results shown in Output 7.6 are not very different from the results
shown in Output 7.2. The only difference is the common regression coeffi-
cient in the latter analysis. The magnitude of this common regression coeffi-
cient of 0.00648 cannot be interpreted very easily because it is the relationship
between age and the ‘cluster’ of outcome variables (i.e. systolic blood pressure
and total cholesterol). However, what can be obtained from this output is that
there is a significant relationship between age and this ‘cluster’. As has been
mentioned before, the significance of the regression coefficient can be
obtained from the Wald statistic, i.e. the regression coefficient divided by its
standard error squared. This value ([0.00648/0.00292]2 � 4.92) follows a Chi-
square distribution with one degree of freedom, which corresponds with a
p-value of 0.03. The second step in the analysis is to evaluate whether or not
the intercepts must be considered to be different for the medical doctors,
i.e. whether or not random intercepts must be considered. Output 7.7 shows
the results of that analysis.

From Output 7.7 it can be seen that the intercepts are considered to be ran-
dom on the medical doctor level. In the output both intercepts are extended

Output 7.6. Results of a ‘naive’ multivariate multilevel analysis of the relationship
between total cholesterol and systolic blood pressure and age, with one regression
coefficient for age

resp1jk ~ N(XB, �)

resp2jk ~ N(XB, �)

resp1jk = b0jcons.total cholesterolijk + hjk
b0j = 5,56443(0,18548) + u0jk
resp2jk = b1jcons.systolic blood pressureijk + hjk
b1j = 125,63760(0,66589) + u1jk
hjk = 0,00648(0,00292)age.12jk

-2*loglikelihood(IGLS Deviance) = 4244,95700(882 of 882 cases in use)
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with a variance component (indicated by v0k and v1k). Note again that u0jk and
u1jk reflect the error or residual variance, and not the variance of the random
regression coefficient at the second level. The first variance/covariance
matrix shown in the output is the matrix of the random intercepts. The
importance of allowing random intercepts can be evaluated by performing
the likelihood ratio test. Therefore, the difference between the �2 log likeli-
hood of the model with the random intercepts and the �2 log likelihood of
the model without the random intercepts must be calculated. This difference
(4244.957 � 3995.967 � 248.99) is Chi-square distributed with three
degrees of freedom, i.e. highly significant. Three degrees of freedom, firstly
because of all the variances of the two intercepts are estimated, and secondly
the covariance between the two intercepts is estimated. So, from the likeli-
hood ratio test it can be concluded that it is important to allow the intercepts
to differ between medical doctors. The relationship between age and the
‘cluster’ of systolic blood pressure and total cholesterol is highly significant.
The regression coefficient is 0.01724, and the corresponding 95% CI ranges
from 0.0071 to 0.0273. Again, there is no straightforward interpretation of
the magnitude of this regression coefficient. The next step in the analysis is to

Output 7.7. Results of a multivariate multilevel analysis of the relationship between
total cholesterol and systolic blood pressure and age (one regression coefficient for
age) with random intercepts

resp1jk ~ N(XB, �)

resp2jk ~ N(XB, �)

resp1jk = b0jkcons.total cholesterolijk + hjk
b0jk = 4,90033(0,23912) + v0k + u0jk
resp2jk = b1jkcons.systolic blood pressureijk + hjk
b1jk = 125,02730(2,26380) + v1k + u1jk
h1jk = 0,01729(0,00253)age.12jk

-2*loglikelihood(IGLS Deviance) = 3995,96700(882 of 882 cases in use)
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allow the ‘common’ regression coefficient for age to differ between medical
doctors. Output 7.8 shows the results of this analysis.

From Output 7.8 it can be seen that a random variance is added to the
regression coefficient for age. The magnitude of this variance is given in the
variance/covariance matrix of the random coefficients and is estimated as
0.00024. There are also two covariances between the two random intercepts
and the random relationship with age. Both these covariances are negative,
indicating that when the intercepts are high for a particular medical doctor,
the relationship with age is weaker. The necessity of allowing a random regres-
sion coefficient for age can be evaluated by performing the likelihood ratio
test. Therefore, the difference between the �2 log likelihood of the model with
a random slope and the model without a random slope must be calculated.
This difference (i.e. 3995.967 � 3974.187 � 21.78) follows a Chi-square dis-
tribution with three degrees of freedom, which has a p-value �0.001. The
degrees of freedom is three because not only the random variance of the 

Output 7.8. Results of a multivariate multilevel analysis of the relationship between
total cholesterol and systolic blood pressure and age (one regression coefficient for
age) with both random intercepts and a random slope for age

resp1jk ~ N(XB, �)

resp2jk ~ N(XB, �)

resp1jk = b0jkcons.total cholesterolijk + hjk
b0jk = 4,91041(0,41165) + v0k + u0jk
resp2jk = b1jkcons.systolic blood pressureijk + hjk
b1jk = 125,04310(2,39393) + v1k + u1jk
hjk = b2kage.12jk
b2k = 0,01724(0,00516) + v2k

-2*loglikelihood(IGLS Deviance) = 3974,18700(882 of 882 cases in use)
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relationship with age is estimated, but also the covariance of this random vari-
ance with the two random intercepts. Based on this p-value it can be con-
cluded that a random slope for age must be considered. The difference
between the analysis with and without a random slope for age is, furthermore,
that the standard error for the regression coefficient for age is higher in the
analysis with a random slope (which is not very surprising; see Chapter 3),
while the magnitude of the regression coefficient remains roughly the same.

7.3 Multivariate multilevel analysis: the general approach

It has been mentioned before that there is also an ‘alternative’, more general
way to perform a multivariate multilevel analysis. It must be realised that to
perform this more general multivariate multilevel analysis, the outcome
variables must be scaled in the same way. One of the possibilities is to calcu-
late standardised values (i.e. z-scores) of the (two) continuous outcome
variables under consideration. This means that from each total cholesterol
observation, the average total cholesterol value has to be subtracted, and this
value must be divided by the standard deviation of the total cholesterol val-
ues in the population under study. The same has to be done for the systolic
blood pressure observations, with the average and standard deviation of the
systolic blood pressure values. It should be noted that the data structure that
is needed to perform the more general approach for multivariate multilevel
analyses is different from the one described in Table 7.1 (see Table 7.2).

Table 7.2. Data structure needed to perform an ‘alternative’, 
more general multivariate multilevel analysis

Outcome Medical 

Patient (z-score) doctor Age Variable

1 1.21 1 54 1

1 0.11 1 54 2

2 1.81 1 55 1

2 0.28 1 55 2

.

.

n �1.94 12 46 1

n �0.06 12 46 2
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In the dataset illustrated in Table 7.1 there was one record for each
patient, while in the dataset illustrated in Table 7.2 there are two records for
each patient: one record for the total cholesterol values and one record for
the systolic blood pressure values. Due to this, for the more general multi-
variate multilevel analysis there are 882 observations in the dataset to be
analysed; i.e. two outcome variables for 441 patients. So, in fact, this kind of
analysis is (really) comparable to longitudinal analysis, in which the same
variable is measured over time. In a multivariate analysis, it is not the same
variable that is measured within a patient, but different variables.
Comparable to the situation in a longitudinal data analysis, the outcome
variables measured on the same patients are correlated and that must be
taken into account.

Output 7.9 shows descriptive information regarding the dataset used in
this more general multivariate multilevel analysis.

Output 7.9. Descriptive information regarding the dataset used to illustrate
multivariate multilevel modelling; the general approach

From Output 7.9 it can be seen that there is only one outcome variable
(called z_outcome) and that this outcome is measured 882 times; i.e. two
outcome variables (total cholesterol and systolic blood pressure) for 441
subjects (see Table 7.2). As the outcome variables, total cholesterol and 
systolic blood pressure, are standardised (i.e. transformed into z-scores), the
range of the outcome variable z_outcome is from �2.1 to 3.0. The fourth 
column of the dataset contains a variable named variable, which ranges
between one and two and indicates which outcome variable is considered.
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One stands for total cholesterol and two stands for systolic blood pressure.
When a multivariate multilevel analysis is performed on this dataset, a three-
level structure is considered. The lowest level is variable (subscript i), the
second level is the patient (subscript j), and the highest level is the medical
doctor (subscript k). Output 7.10 shows the results of a ‘naive’analysis, in which
the dependency of the observations within the medical doctor is ignored.

Output 7.10. Results of a ‘naive’ multivariate multilevel analysis 
of the relationship between total cholesterol and systolic blood 
pressure and age

z_outcomeijk ~ N(XB, �)

z_outcomeijk = b0ijcons + 0,057(0,004)agejk
b0ij = -3,523(0,256) + u0jk + e0ijk

[u0jk] ~ N(0, �u) : �u = [0,549(0,043)]

[e0ijk] ~ N(0, �e) : �e = [0,170(0,011)]

-2*loglikelihood(IGLS Deviance) = 1826,110(882 of 882 cases in use)

From Output 7.10 it can be seen that the outcome variable is measured on
three levels (subscripts i, j, and k). Furthermore, it can be seen that in this ‘naive’
analysis not only an error variance is estimated, but also a variance at patient
level. This is because of the multivariate nature of the analysis.
It should be noted that in this analysis not only a ‘common’ regression
coefficient for age is calculated, but also a ‘common’ intercept. This differs from
the method of multivariate multilevel analysis that was described in Section 7.2.

The second step in this analysis is to allow the intercept to differ between
medical doctors, i.e. allowing a random intercept. Output 7.11 shows the
results of this analysis.

From Output 7.11 it can be seen that the intercept is measured with three
parameters: one parameter that indicates the variance at the medical doctor
level (v0k), one parameter that indicates the variance at patient level and the
error or residual variance. The magnitudes of these variance components
are shown in the last part of the output. It can be seen that the variance of
the intercept at patient level that was shown in Output 7.10 is now divided
into two parts: one variance at patient level (i.e. 0.204) and one variance at
the medical doctor level (i.e. 0.349).
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Output 7.12. Results of a multivariate multilevel analysis of the relationship
between total cholesterol and systolic blood pressure and age with a random
intercept at patient level and on the medical doctor level and a random slope
for age on the medical doctor level

z_outcomeijk ~ N(XB, �)

z_outcomeijk ~ b0ijkcons + b1kagejk
b0ijk = -3,52233(0,31387) + v0k + u0jk + e0ijk
b1k = 0,05708(0,00490) + v1k

[u0jk] ~ N(0, �u) : �u = [0,19105(0,01995)]

[e0ijk] ~ N(0, �e) : �e = [0,17004(0,01145)]

-2*loglikelihood(IGLS Deviance) = 1517,63900(882 of 882 cases in use)
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When the �2 log likelihood of this model is compared to the �2 log 
likelihood of the model without the random intercept at the medical doctor
level, it is obvious that it is necessary to allow the intercept to be random
among the medical doctors (i.e. the likelihood ratio test is highly significant).
The last possible step in this analysis is to allow a random slope for the relation-
ship between the ‘cluster’ of total cholesterol and systolic blood pressure and
age on the medical doctor level. Output 7.12 shows the result of this analysis.

Output 7.11. Results of a multivariate multilevel analysis of the relationship between
total cholesterol and systolic blood pressure and age with a random intercept

z_outcomeijk ~ N(XB, �)

z_outcomeijk = b0ijkcons + 0,057(0,003)agejk
b0ijk = -3,522(0,247) + v0k + u0jk + e0ijk

[v0k] ~ N(0, �v) : �u = [0,349(0,146)]

[u0jk] ~ N(0, �u) : �u = [0,204(0,021)]

[e0ijk] ~ N(0, �e) : �e = [0,170(0,011)]

-2*loglikelihood(IGLS Deviance) = 1525,382(882 of 882 cases in use)

From Output 7.12 it can be seen that a random slope on the medical doc-
tor level is added to the model. The regression coefficient for age is extended
with a random variance at the medical doctor level. The magnitude of this
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random variance is given in the first variance/covariance matrix shown in
the output (i.e. 0.00018). The necessity of this random variance can be eval-
uated with the likelihood ratio test, in which the �2 log likelihood of the
model shown in Output 7.11 is compared to the �2 log likelihood of the
model shown in Output 7.12. This difference between the two �2 log likeli-
hoods is 7.743 (1525.382 � 1517.639), which corresponds with a (two-
sided) p-value of 0.02, when evaluated on a Chi-square distribution with
two degrees of freedom. For the discussion of whether a one-sided or two-
sided p-value must be used, see Section 2.2. The degrees of freedom is two
because not only a random slope on the medical doctor level is estimated, but
also the covariance between the random intercept and the random slope.

So, in conclusion, the last model is the best way to estimate the relation-
ship between age and the ‘cluster’ of total cholesterol and systolic blood
pressure. The regression coefficient for age in this model is 0.057, with a
95% CI ranging from 0.047 to 0.067, and a corresponding p-value �0.001.
The magnitude of the regression coefficient can be interpreted in such a way
that a difference of 1 year in age is associated with a difference of 0.057 stand-
ard deviation units in the ‘cluster’ of total cholesterol and systolic blood
pressure. However, this interpretation is not really straightforward.

7.4 Comments

In this chapter, two ways in which to perform a multivariate multilevel
analysis are discussed. In the example, a three-level structure was presented,
but the ‘standard’ multivariate analysis deals with a two-level structure,
i.e. the outcome variables are clustered within the individual or patient.

Although the two methods look different, both lead to comparable
results. To illustrate this, the MLwiN approach is also used to analyse the
relationship between age and the ‘cluster’ of standardised outcome variables.
Output 7.13 shows directly the results of the ‘final’ analysis, in which both
the intercepts and the relationship between the ‘cluster’ of standardised 
outcome variables and age are considered to be random.

The difference between the results reported in Outputs 7.12 and 7.13 is
that in the first analysis two intercepts are estimated, while in the latter only
one ‘common’ intercept is estimated. However, because both the outcome
variables are standardised, the intercepts are almost the same for the two



outcome variables. Therefore, the results reported in Outputs 7.12 and 7.13
are almost the same.

In the example, a multivariate problem was discussed, in which two con-
tinuous outcome variables were analysed together. The same procedures can
be used when two or more dichotomous outcome variables are analysed
together. However, when a combination of continuous and dichotomous
outcome variables is analysed, the general approach in which to perform a
multivariate analysis that was described in Section 7.3 cannot be used. On
the other hand, the MLwiN approach described in Section 7.2 can be used to
analyse combinations of any types of outcome variables.

It should be realised that the use of multilevel analysis for multivariate
problems is not very common, and the advantages from this type of analy-
sis, compared for instance to structural equation modelling, is still under
investigation.
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Output 7.13. Results of a multivariate multilevel analysis of the relationship
between total cholesterol and systolic blood pressure (both standardised)
and age with random intercepts and a random slope for age (the MLwiN
approach)

resp1jk ~ N(XB, �)

resp2jk ~ N(XB, �)

resp1jk = b0jk cons.total cholesterol_zijk + hjk
b0jk = -3,53310(0,31157) + v0k + u0jk
resp2jk = b1jkcons.systolic blood pressure_zijk + hjk
b1jk = -3,53236(0,31129) + v1k + u1jk
hjk = b2kage.12jk
b2k = 0,05724(0,00488) + v2k

-2*loglikelihood(IGLS Deviance) = 1476,28100(882 of 882 cases in use)
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Sample-size calculations in 
multilevel studies

8.1 Introduction

Before performing an observational or experimental study, it is ‘necessary’ to
calculate the number of subjects that are needed to make sure that a prede-
fined effect will be statistically significant. It is ‘necessary’ because sample-size
calculations are a prerequisite for research grants, and ‘must’ be submitted to
(medical) Ethical Committees. Furthermore, for experimental studies,
sample-size calculations are part of the so-called CONSORT statement. This
means that, without a sample-size calculation, a paper reporting on the
results of an experimental study will not be published. The importance of
sample-size calculations is a rather strange phenomenon. Firstly, sample-size
calculations are based on many assumptions, which can easily be changed,
and in which case the number of subjects needed, will be totally different.
Secondly, sample-size calculations are (usually) based on statistical signifi-
cance, which is strange, because in epidemiological and medical research the
importance of significance levels is becoming more and more questionable.
However, many people believe in the importance of sample-size calculations,
and because ‘standard’ sample-size calculations are not appropriate in multi-
level studies, specific sample-size calculations for multilevel studies will be
discussed in this chapter.

There is a considerable amount of literature on sample-size calculations in
multilevel studies (e.g. Snijders and Bosker, 1993; Lee and Durbin, 1994; Liu
and Liang, 1997; Cohen, 1998; Plewis and Hurry, 1998; Hedeker et al., 1999;
Moerbeek et al., 2000, 2003c; Jung et al., 2001). In general, to calculate the
number of subjects or patients needed in a multilevel study, first a standard
sample-size calculation must be performed and then a correction factor must
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be added to it. The problem, however, is that there are two potential correc-
tion factors available, and that each leads to a (totally) different sample size.

8.2 Standard sample-size calculations

Standard sample-size calculations are basically designed for experimental
studies. The expected difference between the intervention and control group
in a certain outcome variable after the intervention is used as the effect size.
Equation (8.1) shows the standard sample-size calculation for a continuous
outcome variable:

(8.1)

where N1 � sample size for the intervention group; � � significance level;
Z(1 � �/2) � (1 � �/2) percentile point of the standard normal distribution;
(1 � �) � power; Z(1 � �) � (1 � �) percentile point of the standard normal
distribution; � � standard deviation of the outcome variable; r � ratio of the
number of subjects in the groups compared, i.e. N0/N1; N0 � sample size for
the control group; and v � difference in mean value of the outcome variable
between the groups.

For dichotomous outcome variables a comparable equation can be used
(Equation (8.2)):

(8.2a)

(8.2b)

where N1 � sample size for the intervention group; � � significance level;
Z(1 � �/2) � (1 � �/2) percentile point of the standard normal distribution;
(1 � �) � power; Z(1 � �) � (1 � �) percentile point of the standard nor-
mal distribution; p– � ‘weighted’ average of p0 and p1; r � ratio of the num-
ber of subjects in the groups compared, i.e. N0/N1; N0 � sample size for the
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control group; p1 � proportion of ‘cases’ in the intervention group; and
p0 � proportion of ‘cases’ in the control group.

8.3 Sample-size calculations for multilevel studies

As has been mentioned before, there are two different correction factors that
can be used to calculate the required sample size in multilevel studies.
Equation (8.3) shows the first correction factor:

(8.3)

where N � number of subjects according to the standard sample-size calcu-
lation; m � number of ‘clusters’ (e.g. number of medical doctors, number of
schools, etc.); n � number of observations for each ‘cluster’; and � � intra-
class correlation coefficient (ICC).

This factor is known as the ‘design effect’ and is mostly used in practice. It
is also possible to calculate the relative ‘effectiveness’ of a certain sample size,
when that sample size is applied in a multilevel study (Equation (8.4)):

(8.4)

where Neffective � ‘effective’ sample size by a given ‘standard’ sample size
(based on m times n observations).

Equation (8.5) shows the second correction factor that can be used to cal-
culate the required sample size for a multilevel study. Equation (8.6) shows
the corresponding equation to calculate the ‘effective’ sample size.

(8.5)

(8.6)

8.4 Example

Suppose that with a standard sample-size calculation it is calculated that 100
patients are needed in a certain experimental study, and that for each medical
doctor 10 patients are included. Furthermore, let us assume that the ICC for
patients within medical doctors is 0.2. When we add those figures to
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Equation (8.3), it can be calculated that 28 medical doctors are needed; so
instead of 100 patients, in a multilevel situation with a relatively small ICC of
0.2, 280 patients are needed. However, if we add those figures to Equation
(8.5), it can be calculated that 12.2 medical doctors are needed, which means
a sample size of 122 patients instead of 100.

If we calculate the ‘effective’ sample size in this situation (i.e. 100 patients,
10 medical doctors, and an ICC of 0.2), the ‘effective’ sample size calculated
with Equation (8.4) is 35.7. According to Equation (8.6), on the other hand,
the ‘effective’ sample size is 82.

8.5 Which sample-size calculation should be used?

The two procedures that can be used to calculate the sample size for a multi-
level study lead to totally different results, and the questions arise that are
which one is better and which one should be used? The first method that can
be used to calculate the required sample size in a multilevel study (Equations
(8.3) and (8.4)) can be characterised as a ‘conservative’ procedure, while the
second method (Equations (8.5) and (8.6)) can be characterised as a more
‘liberal’ procedure. The way in which the two calculation procedures differ
from each other can be best illustrated by a small example. Suppose the ICC
in a certain multilevel study is 0.20. For the ‘conservative’ procedure this
means that the first patient in a certain ‘cluster’ provides 100% new informa-
tion, the second patient in that ‘cluster’ provides 80% new information. The
third patient in that ‘cluster’ also provides 80% new information; however, not
of the original 100%, but of the remaining 80%, which implies that the third
patient only provides 64% new information. In the same way, the fourth
patient in that ‘cluster’ only provides 51% new information (i.e. 80% of 64%),
and so on. This implies that when the number of subjects increases for a cer-
tain medical doctor, almost no new information is obtained. As in the ‘conser-
vative’ procedure, also in the ‘liberal’ sample-size calculation procedure the
first patient provides 100% new information and the second patient provides
80% new information. However, the difference between the two procedures is
that in the ‘liberal’ procedure all other patients in the ‘cluster’ also provide 80%
new information. So, the third patient provides 80% new information, the
fourth patient provides 80% new information, and so on.

To answer the question concerning which of the two methods is better, we
can go back to Chapter 3, in which we discussed what was gained by using
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multilevel analysis. The example used in that chapter showed that in a ‘naive’
analysis with 100 patients an intervention effect of 0.289 was found, with a
corresponding standard error of 0.121 (see Output 3.2). When random coef-
ficients were allowed for both the intercept and the regression coefficient for
the intervention, the magnitude of the intervention effect remained the same
(i.e. 0.289), but the standard error increased to 0.175 (see Output 3.4). The
ICC in this example was approximately 0.43. When the two sample-size cal-
culation procedures are applied to this problem, according to the ‘conserva-
tive’ procedure 272 patients in the intervention group are needed to obtain the
same efficiency/power as the ‘naive’ analysis with 100 patients. With the ‘lib-
eral’ procedure only 155 patients are needed. Looking at the two standard
errors of the ‘naive’ analysis and the multilevel analysis, it can be seen that the
standard error in the ‘corrected’ analysis is 1.45 times higher than the standard
error in the ‘naive’ analysis. If this is related to the increase in sample size, it
means that (1.45)2 � 2.1 times more patients are needed to obtain the same
efficiency/power. In other words, 210 patients are needed in the intervention
group in the ‘corrected’ analysis to obtain the same efficiency/power as in the
‘naive’ analysis. When these 210 patients are compared to the sample sizes esti-
mated by the two equations, it can be seen that the ‘conservative’ method leads
to an over-estimation, while the ‘liberal’ method leads to an under-estimation.

In the above example the randomisation was performed at patient level,
but when the randomisation is performed at the medical doctor level (i.e. a
‘cluster’ randomisation), the situation is totally different. Let us go back to the
example in Chapter 3, in which a ‘cluster’ randomisation was used, the results
of which were summarised in Table 3.1. Outputs 8.1 and 8.2 show the results

Output 8.1. Results of a ‘naive’ analysis performed in MLwiN on a
balanced dataset regarding the relationship between the intervention
and health, when the randomisation was performed at the 
medical doctor level

health outcomeij ~ N(XB, �)

health outcomeij = b0icons + 0,259(0,121)interventionj
b0i = 6,517(0,085) + e0ij

[e0ij] ~ N(0, �e) : �e = [0,731(0,073)]

-2*loglikelihood(IGLS) = 504,849(200 of 200 cases in use)
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of these analyses in greater detail. Output 8.1 shows the results of a ‘naive’
analysis to estimate the intervention effect in this situation, while Output 8.2
shows the results of the corresponding multilevel analysis. Note that, because
the randomisation was performed on the medical doctor level only a ran-
dom intercept could be allowed in this multilevel analysis.

From Output 8.2 it can be calculated that the ICC is approximately 0.23.
When this ICC is added to the sample-size equations, with the ‘conservative’
procedure 307 patients are needed in the intervention group, while with the
‘liberal’ procedure only 126 patients are needed. From both outputs it can
further be seen that the intervention effect is equal (i.e. 0.259), but com-
pared to the ‘naive’ analysis, the standard error of the intervention effect
increased in the multilevel analysis from 0.121 to 0.213, which is 1.76 times
higher. If this increase in the standard error is related to the increase in sam-
ple size, it means that (1.76)2 � 3.1 times more patients are needed to
obtain the same efficiency/power in the multilevel analysis as in the ‘naive’
analysis. In other words, when the randomisation is performed on the med-
ical doctor level, 310 patients are needed in the ‘corrected’ analysis to obtain
the same efficiency/power as in the ‘naive’ analysis. So, in this situation the
‘conservative’ procedure is almost perfect, while the ‘liberal’ procedure leads
to a huge under-estimation of the required sample size.

In practice, the ‘conservative’ sample-size calculation procedure is mostly
used. However, most researchers do not realise that this procedure leads to

Output 8.2. Results of a multilevel analysis on a balanced 
dataset regarding the relationship between the intervention 
and health, with a random intercept, when the randomisation 
was performed at the medical doctor level

health outcomeij ~ N(XB, �)

health outcomeij = b0ijcons + 0,259(0,213)interventionj
b0ij = 6,517(0,151) + u0j + e0ij

[u0j] ~ N(0, �u) : �u = [0,171(0,072)]

[e0ij] ~ N(0, �e) : �e = [0,560(0,059)]

-2*loglikelihood(IGLS) = 479,544(200 of 200 cases in use)
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an overestimation of the required sample size when the randomisation is
performed on the patient level.

8.6 Comments

It should be noted that with the sample-size calculations the number of clus-
ters (i.e. noted as m) can be estimated. In most studies, however, the number
of clusters (e.g. the number of medical doctors) that can be included in a
study is not very flexible, and the question that must be answered is: how
many patients should be included for each medical doctor? When using the
‘conservative’ procedure, there is a problem, because the sampling of more
patients within a medical doctor is of little use. At a certain point (depending
on the magnitude of the ICC) a new patient provides very little information.
With the ‘liberal’ equation, sampling more patients for each medical doctor
seems to be a potential way of increasing the efficiency/power of a multilevel
study.

In fact, when designing a multilevel study, the most appropriate combin-
ation of the number of medical doctors and the number of patients within
medical doctors must be calculated. In general, the more the medical doc-
tors that are included in a study, the better. When the number of medical
doctors is high in relation to the number of patients within medical doctors,
there is less influence of the correlation between the observations within one
medical doctor. However, it has already been mentioned that, theoretically,
the most appropriate combination can be calculated, but in most practical
situations this will be very difficult to achieve.

Finally, it should be realised that all sample-size equations presented in
this section can be used to calculate the number of patients needed for an
experimental study or to calculate the ‘power’ of that particular study. Again,
it should be noted that for the sample-size calculations certain assumptions
are necessary, i.e. with regard to the expected difference between the groups,
the standard deviation of the outcome variable of interest, and the ICC.
Furthermore, sample-size calculations are closely related to statistical signifi-
cance. Due to these issues, the importance of sample-size calculations is
rather limited, and therefore I believe that sample-size calculations should
be used with great caution.



Software for multilevel analysis

9.1 Introduction

In the foregoing chapters, all examples of multilevel analysis were analysed in
MLwiN. Although this software package is specially developed for performing
multilevel analysis, there are also other software packages that can be used for
multilevel analysis. In this chapter the example dataset(s) will be reanalysed
with other software packages, and any differences in the results will be com-
pared and discussed. For continuous outcome variables the research question
concerned the relationship between total cholesterol and age (see Sections 2.2,
2.5 and 2.6.1), for dichotomous outcome variables it was the relationship
between hypercholesterolemia and age (see Section 4.2), and for ‘count’ out-
come variables the relationship between ‘the number of risk factors’ and age
(see Section 4.4). For multinomial logistic multilevel analysis the population
was divided into three groups, i.e. a group with relatively ‘low’ cholesterol 
values, a group with relatively ‘moderate’ cholesterol values, and a group with
relatively ‘high’ cholesterol values (see Section 4.3). For linear multilevel analysis
(i.e. multilevel analysis with a continuous outcome variable) both a two-level
structure (i.e. patients clustered within medical doctors) and a three-level
structure (patients clustered within medical doctors and medical doctors are
clustered within institutions) will be used in the comparison. Only a two-level
structure will be used for logistic multilevel analysis (i.e. multilevel analysis
with a dichotomous outcome variable), for Poisson multilevel analysis 
(i.e. multilevel analysis with a ‘count’ outcome variable), and for multinomial
logistic multilevel analysis (i.e. multilevel analysis with a categorical outcome
variable). This chapter is limited in such a way that only the most commonly
used software packages (i.e. SPSS, STATA, SAS, and R) will be described and
compared to each other. There are other packages that can be used to perform
multilevel analysis, such as MIXOR (Hedeker and Gibbons, 1996a), MIXREG
(Hedeker and Gibbons, 1996b), HLM (Bryk et al., 1999; Raudenbush et al.,
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2001), SYSTAT (Hedeker et al., 2000), or EGRET (Cytel Software Corporation,
2000), but these will not be discussed in detailed here. For more information,
and a comparison of software packages that can be used to perform multilevel
analysis, reference is made to Goldstein (2004) and the corresponding web site.

9.2 Linear multilevel analysis

9.2.1 SPSS
Starting with version 11, SPSS provides the possibility to perform a linear
multilevel analysis (i.e. a multilevel analysis with a continuous outcome vari-
able). It should, however, be noted that SPSS version 11 is rather unreliable
with respect to linear multilevel analysis. It is therefore recommended that at
least SPSS version 12 is used for these analyses (Wolfinger et al., 1994; Landau
and Everitt, 2004, O’Connor, 2004). Although SPSS is totally window driven,
it is possible to run SPSS procedures by syntax. Multilevel analysis in SPSS is
available under mixed models, and a linear multilevel analysis on the example
dataset, with a continuous outcome variable with only a random intercept,
can be obtained by running the SPSS syntax that is shown in Syntax 9.1.

Syntax 9.1. Syntax needed to perform a linear multilevel analysis, 
with only a random intercept, with the MIXED procedure in SPSS

MIXED

tc WITH age

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)

SINGULAR(0.000000000001)

HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE)

PCONVERGE(0.0001, ABSOLUTE)

/FIXED = age | SSTYPE(3)

/METHOD = ML

/PRINT = SOLUTION

/RANDOM INTERCEPT | SUBJECT(md).

The three most important lines in the SPSS syntax are the definition of the
regression model (tc WITH age), the fact that a maximum likelihood estima-
tion procedure is performed (METHOD � ML), and that only a random
intercept is assumed on the medical doctor level (RANDOM INTERCEPT |
SUBJECT(md)). All other information provided in the syntax is important
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for a proper analysis in SPSS, but is not really important enough to be
explained in this book. It should be noted that in SPSS, restricted maximum
likelihood is the default estimation procedure. Since a maximum likelihood
estimation procedure was applied in the earlier examples, this was also done
in the SPSS example. See Section 2.8.3 for the discussion regarding maximum
likelihood and restricted maximum likelihood.

Output 9.1 shows (a selected part of) the results of a multilevel analysis,
with only a random intercept, performed with the MIXED procedure in SPSS.

Output 9.1. Output of a linear multilevel analysis, with only a random intercept,
performed with the MIXED procedure in SPSS

Mixed Model Analysis
Information Criteriaa

-2 Log Likelihood 809,379

Akaike’s Information Criterion (AIC) 817,379

Hurvich and Tsai’s Criterion (AICC) 817,471

Bozdogan’s Criterion (CAIC) 837,735

Schwarz’s Bayesian Criterion (BIC) 833,735

The information criteria are displayed in smaller-is-better forms.
aDependent Variable: total cholesterol.

Fixed Effects
Estimates of Fixed Effectsa

95% Confidence Interval

Lower Upper

Parameter Estimate Std. Error df t Sig. Bound Bound

Intercept 2,9058120 ,2591340 52,539 11,214 ,000 2,3859486 3,4256754

age ,0495866 ,0030590 430,382 16,210 ,000 ,0435742 ,0555991

aDependent Variable: total cholesterol.

Covariance Parameters
Estimates of Covariance Parametersa

Parameter Estimate Std. Error

Residual ,3314923 ,0226341

Intercept [subject = md] Variance ,3685782 ,1541986

aDependent Variable: total cholesterol.
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The first part of Output 9.1 gives the �2 log likelihood. It has been men-
tioned before that this value can be used for the likelihood ratio test in order to
evaluate whether or not random regression coefficients must be considered.
Furthermore, the output shows some additional fit measures. All the addi-
tional fit measures can be seen as ‘adjusted’ values of the �2 log likelihood,
i.e. adjusted for the number of parameters estimated by the specific analysis.
Akaike’s Information Criterion (AIC) (Akaike, 1974) and Schwarz’s Bayesian
Information Criterion (BIC) (Schwarz, 1978) are the most frequently used fit
measures. However, the way in which these measures are calculated is beyond
the scope of this book.

The second part of Output 9.1 shows the regression coefficients, the 95%
confidence intervals (CI), and the corresponding p-values. It can be seen
from Output 9.1 that the p-value belonging to the (fixed) regression coeffi-
cients is derived from a t-test (rather than from a Wald test). Note that the
number of degrees of freedom for this t-test is rather strange. However, because
it is not really of great importance, the way in which the number of degrees
of freedom is calculated will not be discussed any further. The last part of
Output 9.1 shows the variance of the random intercept (i.e. 0.3685782) and
the ‘error’ variance (i.e. 0.3314923).

To perform a random coefficient analysis, with both a random intercept
and a random slope, Syntax 9.2 can be used.

Syntax 9.2 only differs from Syntax 9.1 in the last line, in which it is indi-
cated that there is not only a random intercept, but also a random regression

Syntax 9.2. Syntax needed to perform a linear multilevel analysis, with a
random intercept and a random slope for age, with the MIXED procedure in
SPSS

MIXED

tc WITH age

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)

SINGULAR(0.000000000001) 

HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE)

PCONVERGE(0.0001, ABSOLUTE)

/FIXED = age | SSTYPE(3)

/METHOD = ML

/PRINT = SOLUTION

/RANDOM INTERCEPT age | SUBJECT(md) COVTYPE(UN).



134 Software for multilevel analysis

coefficient for age. COVTYPE(UN) indicates that, in addition to a random
intercept and a random slope, the covariance between the random intercept
and random slope will also be estimated (i.e. to perform exactly the same
analysis as has been performed with MLwiN in Section 2.5). Output 9.2
shows the results of this analysis.

Output 9.2. Output of a linear multilevel analysis, with a random intercept and a random
slope for age, performed with the MIXED procedure in SPSS

Mixed Model Analysis
Information Criteriaa

-2 Log Likelihood 799,963

Akaike’s Information Criterion (AIC) 811,963

Hurvich and Tsai’s Criterion (AICC) 812,157

Bozdogan’s Criterion (CAIC) 842,498

Schwarz’s Bayesian Criterion (BIC) 836,498

The information criteria are displayed in smaller-is-better forms.
aDependent Variable: total cholesterol.

Fixed Effects
Estimates of Fixed Effectsa

95% Confidence Interval

Lower Upper

Parameter Estimate Std. Error df t Sig. Bound Bound

Intercept 2,8799320 ,4010578 12,948 7,181 ,000 2,0131464 3,7467177

age ,0500569 ,0057599 10,765 8,691 ,000 ,0373456 ,0627682

aDependent Variable: total cholesterol.

Covariance Parameters
Estimates of Covariance Parametersa

Parameter Estimate Std. Error

Residual ,3136641 ,0217537

Intercept + UN (1,1) 1,4444621 ,8473657

age [subject = md] UN (2,1) -,0171817 ,0116309

UN (2,2) ,0002724 ,0001736

aDependent Variable: total cholesterol.
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From Output 9.2 it can be seen that four variance parameters are esti-
mated (i.e. the random intercept (UN (1,1))), the random regression coeffi-
cient for age (UN (2,2)), the covariance between the random intercept and
the random slope (UN (2,1)), and the ‘error’ variance (Residual).

When a three-level structure is considered (i.e. patients clustered within
medical doctors and medical doctors clustered within institutions), the 
syntax changes slightly (Syntax 9.3).

Syntax 9.3. Syntax needed to perform a linear multilevel analysis, with a
random intercept on the medical doctor level and a random intercept on the
institution level, with the MIXED procedure in SPSS

MIXED

tc WITH age

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)

SINGULAR(0.000000000001)

HCONVERGE(0,ABSOLUTE) LCONVERGE (0,ABSOLUTE)

PCONVERGE(0.0001, ABSOLUTE)

/FIXED = age | SSTYPE(3)

/METHOD = ML

/PRINT = SOLUTION

/RANDOM INTERCEPT | SUBJECT(md)

/RANDOM INTERCEPT | SUBJECT(ins).

In the last two lines of Syntax 9.3 it is indicated that for both the medical
doctor level and the institution level, a random intercept will be considered.
Output 9.3 shows the result of this analysis.

Output 9.3. Output of a linear multilevel analysis, with a random intercept at the medical
doctor level and a random intercept at the institution level, performed with the MIXED
procedure in SPSS

Mixed Model Analysis
Information Criteriaa

–2 Log Likelihood 799,827

Akaike’s Information Criterion (AIC) 809,827

Hurvich and Tsai’s Criterion (AICC) 809,965

Bozdogan’s Criterion (CAIC) 835,272

Schwarz’s Bayesian Criterion (BIC) 830,272

The information criteria are displayed in smaller-is-better forms.
aDependent Variable: total cholesterol.
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From the random variances shown in the last part of Output 9.3 it can be
seen that at both the medical doctor level and the institution level a random
intercept is considered.

9.2.2 STATA
Within STATA, the procedure General Linear Latent and Mixed Models
(gllamm) can be used to perform multilevel analysis (Rabe-Hesketh and
Pickles, 1999; Rabe-Hesketh et al., 2000, 2001b, c; Skrondal and Rabe-
Hesketh, 2003b, 2004; Rabe-Hesketh and Everitt, 2004; Rabe-Hesketh et al.,
2004). The procedure is very flexible (i.e. many different analyses can be per-
formed), but it is also very time-consuming, and users need to be quite
experienced. Furthermore, it is not available in the standard software pack-
age; it must be linked to the STATA software through a download from the
Internet. The syntax needed to perform a linear multilevel analysis on the
example dataset with only a random intercept is shown in Syntax 9.4.

Output 9.3. Contd.

Fixed Effects
Estimates of Fixed Effectsa

95% Confidence Interval

Lower Upper 

Parameter Estimate Std. Error df t Sig. Bound Bound

Intercept 2,9161660 ,3082930 15,184 9,459 ,000 2,2597489 3,5725831

age ,0494219 ,0030501 433,943 16,204 ,000 ,0434272 ,0554166

aDependent Variable: total cholesterol.

Covariance Parameters
Estimates of Covariance Parametersa

Parameter Estimate Std. Error

Residual ,3314968 ,0226347

Intercept [subject = md] Variance ,0315255 ,0234595

Intercept [subject = ins] Variance ,3371688 ,2067390

aDependent Variable: total cholesterol.
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The syntax to perform a multilevel analysis with the gllamm procedure is
quite simple. First the procedure is called (gllamm), and secondly, the out-
come variable (total_cholesterol) and the dependent variables are defined. In
this example there is only one dependent variable: age. After the comma, the
higher-level variable must be defined (i.e. medical_doctor). The last two
parts of the syntax contain information regarding the estimation procedure
used by gllamm. The command nip stands for the number of integration
points and adapt stands for adaptive quadrature. There is no real rule for the
number of integration points to be used in the analysis, but it is recom-
mended that adaptive quadrature is always used (Rabe-Hesketh et al., 2002,
2004; Skrondal and Rabe-Hesketh, 2003b, 2004). It should be noted, how-
ever, that the result of the analysis highly depends on the number of integra-
tion points used, and on whether or not adaptive quadrature is used 
(Liu and Pierce, 1994; Lesaffre and Spiessens, 2001; Twisk, 2003).

Syntax 9.4. Syntax needed to perform a linear multilevel analysis, with only a
random intercept, with the gllamm procedure in STATA

gllamm total_cholesterol age, i(medical_doctor) nip(12) adapt

Output 9.4. Output of a linear multilevel analysis, with only a random
intercept, performed with the gllamm procedure in STATA

number of level 1 units = 441

number of level 2 units = 12

Condition Number = 123.75645

gllamm model

log likelihood = –404.6894

total_chol~l Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0495891 .0030593 16.21 0.000 .043593 .0555852

_cons 2.905732 .2591829 11.21 0.000 2.397743 3.413721

Variance at level 1

.3315378 (.02263874)

Variances and covariances of random effects

***level 2 (medical_doctor)

var(1): .36880556 (.15436145)
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Output 9.4 shows the results of a linear multilevel analysis performed
with the gllamm procedure in STATA.

In the first two lines of Output 9.4 it can be seen that there are 441 level 1
units (i.e. patients) and that there are 12 level 2 units (i.e. medical doctors). In
the next line the Condition Number is shown. This number is defined as: ‘the
square root of the ratio of the largest to smallest eigenvalues of the Hessian
matrix’, and the explanation of this is far beyond the scope of this book
(Rabe-Hesketh et al., 2001b, c, 2004). In fact, for non-experienced users this
number is non-informative. Much more informative is the log likelihood
that can be used for the likelihood ratio test. Again, it should be noted that
the absolute value of the log likelihood is not informative, but only in com-
parison to the log likelihood of other (comparable) models. The next part of
Output 9.4 contains information about the regression coefficients, and
shows the magnitude of the regression coefficient, the standard error, the 
z-value (defined as the regression coefficient divided by its standard error),
the corresponding p-value, and the 95% CI around the regression coefficient
are shown. Note that in the gllamm procedure, the z-value is used to obtain
the p-value of a certain regression coefficient. The z-value is comparable to
the Wald statistic, because when x follows a standard normal distribution x2

follows a Chi-squared distribution with one degree of freedom.
The last part of the output shows the variance at level 1 (i.e. the ‘error’

variance) and the variance at level 2 (i.e. the variance of the intercepts for the
different medical doctors), with their corresponding standard errors.

When a random slope is also considered for the relationship between
total cholesterol and age, Syntax 9.5 can be used.

The first two lines of Syntax 9.5 are needed to define the random coefficients.
First a random intercept is defined (eq int: con, where con stands for a variable
with only ones; equal to the variable cons which is used in the MLwiN software),
and secondly the random slope for age is defined (eq slope: age). The actual

Syntax 9.5. Syntax needed to perform a linear multilevel analysis, 
with a random intercept and a random slope for age, with the 
gllamm procedure in STATA

eq int:con

eq slope: age

gllamm total_cholesterol age, i(medical_doctor) nrf(2) 

eqs(int slope) nip(24) adapt
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command to run the gllamm procedure is extended with nrf(2), which indicates
that the number of random coefficients is two. With eqs(int slope) the two ran-
dom regression coefficients are defined. Furthermore, the number of integra-
tion points in this example is 24, which is due to the fact that with 12 integration
points the model did not converge, and therefore no solution was obtained.

Output 9.5 shows the result of a linear multilevel analysis, with a random
intercept and a random slope for age, performed with the gllamm procedure
in STATA.

Output 9.5. Output of a linear multilevel analysis, with a random intercept
and a random slope for age, performed with the gllamm procedure in STATA

number of level 1 units = 441

number of level 2 units = 12

Condition Number = 212.35431

gllamm model

log likelihood = –399.9826

total_chol~l Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0500538 .0057937 8.64 0.000 .0386985 .0614092

_cons 2.880157 .4042767 7.12 0.000 2.087789 3.672525

Variance at level 1

.31368441 (.02175443)

Variances and covariances of random effects

***level 2 (medical_doctor)

var(1): 1.4709009 (.8663636)

cov(2,1): –.01746172 (.01184719) cor(2,1): –.86687859

var(2): .00027585 (.00017602)

Most of Output 9.5 looks similar to what has been discussed for Output
9.4. The difference is in the last part of the output, where the random vari-
ances are shown. In the part Variances and covariances of the random effects,
not only the variance of the random intercept (i.e. 1.4709009) is shown, but
also the variance of the random slope for age (i.e. 0.00027585) and the covari-
ance between these two (i.e. �0.01746172). In addition to the covariance, the
corresponding correlation between the random intercept and the random
slope is also shown (i.e. �0.86687859).
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Syntax 9.6 shows the syntax that should be used to perform a three-level
linear multilevel analysis with a random intercept at the medical doctor level
as well as at the institution level.

Syntax 9.6. Syntax needed to perform a linear multilevel analysis, with a
random intercept on the medical doctor level and a random intercept 
on the institution level, with the gllamm procedure in STATA

gllamm total_cholesterol age, i(medical_doctor institution) 

nip(12) adapt

The only difference between Syntax 9.4 and Syntax 9.6 is that the level
identification is extended with a third level, institution: i (medical_doctor
institution). Output 9.6 shows the results of the linear multilevel analysis with
a random intercept at both the medical doctor level and the institution level.

Output 9.6. Output of a linear multilevel analysis, with a random intercept 
at the medical doctor level and a random intercept at the institution level,
performed with the gllamm procedure in STATA

number of level 1 units = 441

number of level 2 units = 12

number of level 3 units = 6

Condition Number = 127.70098

gllamm model

log likelihood = –399.91377

total_chol~l Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0494123 .0030514 16.19 0.000 .0434316 .055393

_cons 2.916848 .308367 9.46 0.000 2.31246 3.521236

Variance at level 1

.33148089 (.02263268)

Variances and covariances of random effects

***level 2 (medical_doctor)

var(1): .03191509 (.02383943)

***level 3 (institution)

var(1): .33705164 (.20682552)
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The first part of Output 9.6 shows the three levels. The number of level 1
units � 441 (the number of patients), the number of level 2 units � 12 (the
number of medical doctors), and the number of level 3 units � 6 (the num-
ber of institutions). The middle part of the output is comparable with what
has been discussed before, and in the Variances and covariances of the 
random effects both variances of the random intercepts are shown, i.e. the
variance of the intercepts at the medical doctor level (i.e. 0.03191509) and
the variance of the intercepts at the institution level (i.e. 0.33705164).

It should again be noted that the results of all gllamm analyses highly
depend on the number of integration points used, and on whether or not
adaptive quadrature is used (Liu and Pierce, 1994; Lesaffre and Spiessens,
2001; Rabe-Hesketh et al., 2002; Twisk, 2003).

9.2.3 SAS
Within SAS, linear multilevel analysis can be performed with the MIXED
procedure (Littel et al., 1991, 1996; SAS Institute Inc., 1997). Syntax 9.7 can
be used to perform a linear multilevel analysis with only a random intercept
with the MIXED procedure in SAS.

Syntax 9.7. Syntax needed to perform a linear multilevel analysis, 
with only a random intercept, with the MIXED procedure in SAS

PROC MIXED data = cont method=ml;

class md;

model tc = age/s;

random int /subject=md type=un;

RUN;

The syntax starts with the definition of the procedure for data analysis (i.e.
PROC MIXED), and then mentions the dataset that must be used. Further-
more, the estimation method is set at maximum likelihood (method � ml). As
with SPSS, the restricted maximum likelihood estimation procedure is the
default, but for this example the maximum likelihood solutions from the dif-
ferent software packages are compared to each other. The second line of the
syntax indicates that the medical doctor variable is a categorical variable, and
the third line describes the model with only age as a determinant of total 
cholesterol. The /s behind the model declaration is needed to print the solution.
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The fourth line of Syntax 9.7 indicates that a random intercept must be con-
sidered (random int), and that the medical doctor variable indicates the sec-
ond level (/subject � md). With type, different structures of the variance/
covariance matrix of the random regression coefficients can be chosen. Note
that this is not really necessary in a situation when only a random intercept 
is assumed. The last line of the syntax is necessary to run the analysis. Output
9.7 shows the results of this analysis.

Output 9.7. Output of a linear multilevel analysis, with only a random
intercept, performed with the MIXED procedure in SAS

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) MD 0.3686

Residual 0.3315

Fit Statistics

Log Likelihood -404.7

Akaike’s Information Criterion -406.7

Schwarz’s Bayesian Criterion -407.2

-2 Log Likelihood 809.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 282.37 <.0001

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 2.9058 0.2591 11 11.21 <.0001

AGE 0.04959 0.003059 428 16.21 <.0001

The first part of Output 9.7 contains information regarding the random
variance of the intercepts at the medical doctor level (UN (1,1)) and the
residual variance. The second part of the output shows the �2 log likeli-
hood of the model, and also a few fit measures that were also shown in the
SPSS output (see Output 9.1). Again, both fit measures (AIC and BIC) are
indicators of the likelihood that are adjusted for the number of parameters
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estimated by the model (Akaike, 1974; Schwarz, 1978). The last part of the
output shows the regression coefficient for age (i.e. 0.04959) with the stand-
ard error, the t-value and the corresponding p-value. So, like SPSS, SAS also
uses the t-test rather than the Wald test to evaluate the significance level of a
particular variable. However, the number of degrees of freedom for the 
t-test differs in the two software packages. For the intercept, the number of
degrees of freedom is 11 (i.e. the number of medical doctors minus 1), while
for age the number of degrees of freedom is 428 (i.e. the number of patients
minus the number of medical doctors minus 1). Since the number of degrees
of freedom for the regression coefficient for age is relatively high, the t-test
and the Wald test lead to a similar result. It should be noted that Output 9.7
only shows a small part of the output generated by the MIXED procedure.
Most of the output, however, is not really interesting.

Syntax 9.8 shows the syntax that is needed to perform a multilevel analy-
sis, with both a random intercept and a random slope for age, with the MIXED
procedure in SAS.

The difference between Syntaxes 9.7 and 9.8 can be seen in the fourth line
where it is indicated that both the intercept and the age variable must be con-
sidered random at the medical doctor level (random int age/subject � md).
The definition of the covariance structure is relevant in this situation,
because two random variances and a corresponding covariance are estimated
(see the software manual for a detailed description of the enormous amount
of possibilities; Littel et al., 1991, 1996; SAS Institute Inc., 1997). An unstruc-
tured covariance matrix is chosen to obtain the same output as has been 
provided by MLwiN in Chapter 2. Output 9.8 shows (part of) the results 
of a linear multilevel analysis, with both a random intercept and a random
slope for age, performed with the MIXED procedure in SAS.

Syntax 9.8. Syntax needed to perform a linear multilevel 
analysis, with a random intercept and a random slope 
for age, with the procedure MIXED in SAS

PROC MIXED data = cont method=ml;

class md;

model tc = age/s;

random int age /subject=md type=un;

RUN;
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The difference between Outputs 9.7 and 9.8 can be found in the first part.
In Output 9.8, not only the variance of the random intercepts (UN (1,1),
i.e. 1.4445) is shown, but also the variance of the random slope for age 
(UN (2,2), i.e. 0.000272), and the corresponding covariance (UN (2,1),
i.e. �0.01718).

It should be noted that the number of degrees of freedom for the t-test 
to obtain the p-value for age is reduced to 11 (i.e. the number of medical
doctors minus 1) when a random coefficient for age is considered. A reduc-
tion in degrees of freedom was also seen in the linear multilevel analysis 
performed with SPSS (see Outputs 9.1 and 9.2).

Syntax 9.9 shows the syntax that is needed to perform a three-level linear
multilevel analysis, with random intercepts at both the medical doctor level
and the institution level, with the MIXED procedure in SAS.

From Syntax 9.9 it can be seen that within the MIXED procedure in SAS,
two lines are needed to define the random coefficients. In the first line the

Output 9.8. Output of a linear multilevel analysis, with a random intercept and 
a random slope for age performed, performed with the MIXED procedure in SAS

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) MD 1.4445

UN(2,1) MD –0.01718

UN(2,2) MD 0.000272

Residual 0.3137

Fit Statistics

Log Likelihood –400.0

Akaike’s Information Criterion –404.0

Schwarz’s Bayesian Criterion –405.0

–2 Log Likelihood 800.0

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 2.8799 0.4011 11 7.18 <.0001

AGE 0.05006 0.005760 11 8.69 <.0001
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random intercept at the medical doctor level is defined (random int 
/subject � md), while in the second line the random intercept at the institu-
tion level is defined (random int /subject � ins). Output 9.9 shows (part of)
the results of this linear multilevel analysis.

Syntax 9.9. Syntax needed to perform a linear multilevel analysis, with 
a random intercept at the medical doctor level and a random intercept at 
the institution level, with the MIXED procedure in SAS

PROC MIXED data = cont method=ml;

class md ins;

model tc = age/s;

random int /subject=md type=un;

random int /subject=ins type=un;

RUN;

Output 9.9. Output of a linear multilevel analysis, with a random intercept 
at the medical doctor level and a random intercept at the institution level,
performed with the MIXED procedure in SAS

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) MD 0.03153

UN(1,1) INS 0.3372

Residual 0.3315

Fit Statistics

Log Likelihood -399.9

Akaike’s Information Criterion -402.9

Schwarz’s Bayesian Criterion -399.9

–2 Log Likelihood 799.8

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 2.9162 0.3083 0 9.46 .

AGE 0.04942 0.003050 428 16.20 <.0001

It is not surprising that the difference between the three SAS PROC
MIXED outputs can be found in the first part, in which the random variances
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are shown. From Output 9.9 it can be seen that there is a random variance of
the intercepts at the medical doctor level (UN (1,1) MD, i.e. 0.03153) and 
a random variance of the intercepts at the institution level (UN (1,1) INS,
i.e. 0.3372).

Although we are not really interested in the magnitude of the intercept,
note that in the output table with the regression coefficients surprisingly no
p-value of the intercept is shown (due to the fact that the number of degrees
of freedom for the intercept is set at zero). However, the magnitude and the
standard error of the intercept are comparable to what has been shown in all
other packages.

9.2.4 R
R is a software package that has become increasingly popular in recent years.
This is partly due to the fact that the software is free of charge and can be
downloaded from the Internet (R Development Core Team, 2004). It is
highly comparable to the S-plus software, and it basically uses the same pro-
gramming environment (Venables and Ripley, 2000, 2002; Dalgaard, 2002;
Fox, 2002; Maindonald and Braun, 2003). The difference between S-plus
and R is that in R only syntax can be used, while in S-plus windows 
commands can be used for most procedures.

Multilevel analysis in R is provided by the glmmPQL procedure. Glmm
stands for ‘generalised linear and mixed models’ and PQL stands for ‘penalised
quasi-likelihood’, which was already seen in the MLwiN software. It should be
noted that before the glmmPQL procedure can be used the MASS ‘library’
must be loaded (this can be done by typing: require(MASS)).

Syntax 9.10 shows the syntax needed to perform a linear multilevel analy-
sis, with only a random intercept, with the glmmPQL procedure in R.

Syntax 9.10. Syntax needed to perform a linear multilevel analysis, 
with only a random intercept, with the glmmPQL procedure in R

model1 <- glmmPQL(tc ~ age, random = ~ 1|md, family=gaussian, 

data=cont)

R is an ‘object-oriented’ programme, which means that the analysis
should be linked to an object. The object for the first analysis is named
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model1. From Syntax 9.10 it can be seen that model1 is linked to a glmmPQL
analysis with total cholesterol as outcome and age as the only independent
variable (tc � age). In the next part of the syntax the random regression
coefficients are defined. In this example only a random intercept at the med-
ical doctor level is assumed (random � �1 | md). The last part of the syntax
gives the dataset to be used (data � cont) and indicates that a continuous
outcome variable must be analysed ( family � gaussian). Output 9.10 shows
(part of) the results of the glmmPQL analysis with only a random intercept.
It should be noted that the results of the analysis are not directly shown; they
are linked to model1 and can be displayed by typing: summary(model1).

Output 9.10. Output of a linear multilevel analysis, with only a 
random intercept, performed with the glmmPQL procedure in R

Linear mixed-effects model fit by maximum likelihood

Data: cont

AIC BIC logLik

817.3788 833.735 –404.6894

Random effects:

Formula: ~1 | md

(Intercept) Residual

StdDev: 0.6071064 0.5757537

Variance function:

Structure: fixed weights

Formula: ~invwt

Fixed effects: tc - age

Value Std.Error DF t-value p-value

(Intercept) 2.9058120 0.25972358 428 11.18810 0

age 0.0495866 0.00306598 428 16.17319 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

–2.7893195 –0.7020637 –0.1437076 0.6559666 3.0894845

Number of Observations: 441

Number of Groups: 12

The first part of Output 9.10 provides the log likelihood of the model and
two additional fit indicators derived from the likelihood (AIC and BIC). Both
have already been explained in earlier Sections (e.g. Section 9.2.1). The second
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part of the output gives the standard deviation of the random intercept (i.e.
0.6071064). Note that R gives the standard deviation of the random regression
coefficients, while most of the other software packages give the variance.
The next part of the output gives the regression coefficients, the standard
errors, the t-values, and the corresponding p-values. Note that also in R the 
t-distribution is used to obtain the significance level of the regression coeffi-
cient, and that the number of degrees of freedom is different from the number
of degrees of freedom used in SAS (for the intercept) and SPSS (for both the
intercept and the regression coefficient for age). In R the number of degrees 
of freedom is 428 (i.e. the number of patients minus the number of medical
doctors minus 1) for both the intercept and the regression coefficient for age.
The last part of the output shows the Standardized Within-Group Residuals.
These can be used to check whether the residuals are normally distributed (see
Section 2.7). Furthermore, the Number of Observations (i.e. patients) and the
Number of Groups (i.e. medical doctors) are shown.

When the syntax is slightly extended, a multilevel analysis, with a random
intercept as well as a random slope for the relationship between total choles-
terol and age, can be performed (Syntax 9.11).

Syntax 9.11. Syntax needed to perform a linear multilevel analysis, with 
a random intercept and a random slope for age, with the glmmPQL
procedure in R

model2 <- glmmPQL(tc ~ age, random = ~ age|md, family=

gaussian, data=cont)

The difference between Syntaxes 9.10 and 9.11 can be found in the defini-
tion of the random regression coefficients. In Syntax 9.11 both a random
intercept and a random slope for age is assumed (random � �age|md).
Output 9.11 shows (part of) the results of this analysis.

As with the difference between Syntaxes 9.10 and 9.11, the only difference
between Outputs 9.10 and 9.11 is found in the part that shows the standard
deviations of the random regression coefficients. First the standard deviation
of the random intercept is shown (i.e. 1.21050759), and then the standard
deviation of the random slope for age (i.e. 0.01664172) and the covariance
between the random intercept and the random slope (i.e. �0.868). Note again
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the difference in number of degrees of freedom between R, SAS, and SPSS 
for the t-test to obtain the p-value for the regression coefficients.

Syntax 9.12 shows the syntax needed to perform a three-level linear multi-
level analysis with the glmmPQL procedure in R.

Output 9.11. Output of a linear multilevel analysis, with a random intercept
and a random slope for age, performed with the glmmPQL procedure in R

Linear mixed-effects model fit by maximum likelihood

Data: cont

AIC BIC logLik

811.9642 836.4984 -399.9821

Random effects:

Formula: ~age | md

Structure: General positive-definite, Log-Cholesky 

parameterization

StdDev Corr

(Intercept) 1.21050759 (Intr)

age 0.01664172 –0.868

Residual 0.55995052

Variance function:

Structure: fixed weights

Formula: ~invwt

Fixed effects: tc ~ age

Value Std.Error DF t-value p-value

(Intercept) 2.8799294 0.4041667 428 7.125598 0

age 0.0500572 0.0058066 428 8.620751 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

–2.8541969 –0.6699815 –0.1145925 0.6222694 3.0848023

Number of Observations: 441

Number of Groups: 12

Syntax 9.12. Syntax needed to perform a linear multilevel analysis, with a
random intercept at the medical doctor level and a random intercept at the
institution level, with the glmmPQL procedure in R

model3 <- glmmPQL(tc ~ age, random = ~ 1|ins/md, family=

gaussian, data=cont)
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Again, Syntax 9.12 only differs from Syntax 9.10 with regard to the defin-
ition of the random regression coefficients (random � �1|ins/md). Output
9.12 shows part of the results of the analysis, with a random intercept at the
medical doctor level and a random intercept at the institution level, per-
formed with the glmmPQL procedure in R.

Output 9.12. Output of a linear multilevel analysis, with a random intercept at
the medical doctor level and a random intercept at the institution level,
performed with the glmmPQL procedure in R

Linear mixed-effects model fit by maximum likelihood

Data: cont3

AIC BIC logLik

809.8272 830.2725 –399.9136

Random effects:

Formula: ~1 | ins

(Intercept)

StdDev: 0.5806615

Formula: ~1 | md %in% ins

(Intercept) Residual

StdDev: 0.1775394 0.5757582

Variance function:

Structure: fixed weights

Formula: ~invwt

Fixed effects: tc ~ age

Value Std.Error DF t-value p-value

(Intercept) 2.9161672 0.30899350 428 9.437633 0

age 0.0494219 0.00305701 428 16.166736 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

–2.7323478 –0.7368539 –0.1309076 0.6559599 3.1321642

Number of Observations: 441

Number of Groups:

ins md %in% ins

6 12

From Output 9.12 it can be seen that two standard deviations of random
intercepts are estimated. The first one is the standard deviation for the 
random intercept on the institution level (�1|ins, i.e. 0.5806615) and the 
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second one is the random intercept on the medical doctor level (�1|md
%in% ins, i.e. 0.1775394). Furthermore, the output is comparable with what
has been seen before, apart from the last line, which indicates that there were
12 medical doctors clustered within 6 institutions (6 ins and 12 md %in% ins).

9.2.5 Overview
Tables 9.1–9.3 contain overviews of the results of the linear multilevel analy-
ses obtained with the different software packages. Table 9.1 summarises the
results of the linear multilevel analyses with only a random intercept. Table 9.2
summarises the results of the linear multilevel analyses with a random inter-
cept as well as a random slope for the relationship between age and total
cholesterol, and Table 9.3 summarises the results of the linear multilevel
analyses with a three-level structure, i.e. with a random intercept at the
medical doctor level and a random intercept at the institution level. In gen-
eral, there is hardly any difference in the results of the different software
packages; only marginal differences were observed in the random variances.
It should, however, be noted that the three analyses that were performed are
relatively simple, in such a way that only one independent variable was con-
sidered. Secondly, for a better comparison between the different software
packages, the maximum likelihood estimation procedure was used for all
software packages, while in some of the software packages, the restricted
maximum likelihood estimation procedure is the default. Finally, when the
gllamm procedure in STATA is used with a different specification of the
number of integration points and with no specification of the adaptive
quadrature, the results are totally different to those reported in this chapter.

Table 9.1. Overview of the results of a linear multilevel analysis, with
only a random intercept, obtained from different software packages

Age Random variance intercept

MLwiN 0.0496 (0.0031) 0.3686

SPSS 0.0496 (0.0031) 0.3686

STATA 0.0496 (0.0031) 0.3688

R 0.0496 (0.0031) 0.3686

SAS 0.0496 (0.0031) 0.3686
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9.3 Logistic multilevel analysis

9.3.1 Introduction
It has already been mentioned in Chapter 4, in which logistic multilevel 
analysis (i.e. multilevel analysis with a dichotomous outcome variable) was
explained, that it is mathematically rather difficult to perform a logistic multi-
level analysis. However, except for SPSS, all other software packages discussed
here (i.e. STATA, SAS, and R) provide the possibility to perform a logistic 
multilevel analysis.

Table 9.2. Overview of the results of a linear multilevel analysis, 
with a random intercept and a random slope for age, obtained 
from different software packages

Random variance 

Age Intercept Age

MLwiN 0.0501 (0.0058) 1.4426 0.0003

SPSS 0.0501 (0.0058) 1.4445 0.0003

STATA 0.0501 (0.0058) 1.4709 0.0003

R 0.0501 (0.0058) 1.4653 0.0003

SAS 0.0501 (0.0058) 1.4445 0.0003

Table 9.3. Overview of the results of a linear multilevel analysis, with a
random intercept on the medical doctor level as well as on the
institution level, obtained from different software packages

Random variance intercept

Age Medical doctor Institution

MLwiN 0.0494 (0.0031) 0.0315 0.3372

SPSS 0.0494 (0.0031) 0.0315 0.3372

STATA 0.0494 (0.0031) 0.0319 0.3371

R 0.0494 (0.0031) 0.0315 0.3372

SAS 0.0494 (0.0031) 0.0315 0.3372



153 Logistic multilevel analysis

9.3.2 STATA
With the gllamm procedure in STATA, in addition to linear multilevel analy-
sis, logistic multilevel analysis can also be performed. In the syntax needed
to perform such an analysis it should be defined that the outcome variable is
dichotomous (see Syntax 9.13). This is done by specifying the so-called link
function (link(logit)) and specifying the distribution of the outcome vari-
able ( fam(binom)). It should be noted that, again, an adaptive quadrature is
specified. From the literature it is known that this is the estimation proced-
ure that leads to the most valid results (Lessaffre and Spiessens, 2001; Rabe-
Hesketh et al., 2002; Rabe-Hesketh and Everitt, 2004).

Syntax 9.13. Syntax needed to perform a logistic multilevel analysis, with a
random intercept, with the gllamm procedure in STATA

gllamm hypercholesterolemia age, i(medical_doctor) fam(binom)

link(logit) nip(12) adapt

Output 9.13 shows the results of a logistic multilevel analysis with only a
random intercept performed with the gllamm procedure in STATA.

Output 9.13. Output of a logistic multilevel analysis, with a random intercept, performed
with the gllamm procedure in STATA

number of level 1 units = 441

number of level 2 units = 12

Condition Number = 160.24817

gllamm model

log likelihood = –180.74799

hyperchole~a Coef. Std. Err. z P>|z| [95% Conf.Interval]

age .168253 .0210736 7.98 0.000 .1269496 .2095564

_cons -11.29718 1.532116 -7.37 0.000 -14.30007 -8.294289

Variances and covariances of random effects

***level 2 (medical_doctor)

var(1): 5.4880001 (2.7810829)
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Output 9.13 is comparable to Output 9.4, in which the output of a linear
multilevel analysis with a random intercept was shown. First the number of level
1 units is shown (i.e. number of patients) and secondly the number of level 2
units (i.e. number of medical doctors). The condition number and the log likeli-
hood are also shown. Note that with MLwiN, no log likelihood could be esti-
mated for a logistic multilevel analysis. This was due to the fact that in MLwiN
a quasi-likelihood estimation procedure was used instead of a maximum 
(or restricted maximum) likelihood estimation procedure. The advantage of the
gllamm procedure is, therefore, that different models can be compared to each
other by means of the likelihood ratio test, which was not possible with MLwiN.

The last part of Output 9.13 firstly shows the regression coefficient for age
(i.e. 0.168253), the standard error, the z-value, the corresponding p-value
and the 95% CI around the regression coefficient. It then shows the variance
(and standard error) of the random intercept (i.e. 5.488001 (2.7810829)).
Due to the logistic nature of the analysis, the odds ratio for age can be
obtained by calculating EXP[regression coefficient]. It is also possible to
obtain the odds ratio directly by adding eform to Syntax 9.13.

9.3.3 SAS
For a linear multilevel analysis in SAS, the MIXED procedure could be used
(see Section 9.2.3). However, with this procedure it is not possible to perform
a logistic multilevel analysis. For such an analysis the NLMIXED procedure
must be used. Syntax 9.14 shows the syntax needed to perform a logistic multi-
level analysis, with only a random intercept, with the NLMIXED procedure.

Syntax 9.14. Syntax needed to perform a logistic multilevel analysis, with a
random intercept, with the NLMIXED procedure in SAS

PROC NLMIXED data = dich;

parms beta0=–6.8 beta1=0.10 s2b0=1;

c1 = beta0 + b0;

eta = c1 + beta1*age;

expeta = exp (eta);

p = expeta / (1+expeta);

model hypertc ~ binary(p);

random b0 ~ normal ([0], [s2b0]) subject=md;

run;
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Unfortunately, the syntax needed to perform a logistic multilevel analysis in
SAS is rather complicated. As in all SAS procedures, the first line specifies the
procedure and the dataset to be used. In the second line, the parameters to be
estimated and their starting values must be specified. In this example there are
three parameters to be estimated, the intercept (beta0), the regression coeffi-
cient for age (beta1), and the variance of the intercepts for the different medical
doctors (s2b0). It should be noted that the results of the analysis highly depend
on the chosen starting values. One of the possibilities to obtain starting values
for the analysis is to perform a ‘naive’ analysis (i.e. an analysis that ignores the
dependency of the observations within the medical doctors) and to use the
results of that analysis as starting values for the logistic multilevel analysis with
a random intercept. Of course, the starting value of the variance of the inter-
cepts for the medical doctors cannot be obtained from the ‘naive’ analysis.

The next five lines of Syntax 9.14 show a rather complicated specification
of the logistic model, while in the last line of the syntax it is specified that a
random intercept is assumed and that the random intercepts are normally
distributed (random b0 � normal ([0], [s2b0])), and that the random inter-
cept is assumed at the medical doctor level (subject � md).

Output 9.14 shows (part of) the output obtained from a logistic multi-
level analysis performed with the NLMIXED procedure in SAS.

Output 9.14. Output of a logistic multilevel analysis, with a random intercept, performed
with the NLMIXED procedure in SAS

The NLMIXED Procedure

Fit Statistics

Description Value

-2 Log Likelihood 361.5

AIC (smaller is better) 367.5

BIC (smaller is better) 369.0

Log Likelihood -180.8

AIC (larger is better) -183.8

BIC (larger is better) -184.5

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr >|t| Alpha Lower Upper Gradient

beta0 -11.2938 1.5308 11 -7.38 <.0001 0.05 -14.6630 -7.9246 2.958E-6

beta1 0.1682 0.02107 11 7.98 <.0001 0.05 0.1218 0.2146 0.000161

s2b0 5.4538 2.7513 11 1.98 0.0730 0.05 -0.6017 11.5093 7.192E-8
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Compared to the complicated syntax, Output 9.14 looks quite simple,
and is comparable to Output 9.7, in which the output of a linear multilevel
analysis with a random intercept was shown. The first part of the output
contains the Fit Statistics. Note that the NLMIXED procedure also uses a
maximum likelihood estimation procedure, so it also provides a �2 log like-
lihood that can be used to compare different models. The section Parameter
Estimates contains the most important results of the analysis. This part
shows the magnitude of the parameters defined in the second line of the
syntax; beta0 is the intercept, beta1 is the regression coefficient for age, and
s2b0 is the variance of the intercepts for the different medical doctors. In
addition to the magnitude of the parameters, it also shows the standard
errors, the t-value, and the number of degrees of freedom for the t-distribu-
tion to obtain the p-value, the p-value and the 95% CI around the particu-
lar parameter. Note that the number of degrees of freedom is 11 (i.e. the
number of medical doctors minus 1) for all parameters, which is different
from the linear multilevel analysis. Note further that also the variance of the
intercepts for the different medical doctors is evaluated by a t-distribution,
which is rather strange (see Section 4.2). Finally, it should be noted that with
the NLMIXED procedure in SAS, comparable to the gllamm procedure in
STATA, adaptive quadrature is used to estimate the parameters of the model
(Lesaffre and Spiessens, 2001).

9.3.4 R
Comparable to the difference in the syntax for the gllamm procedure in
STATA, also in R only a slight change of the syntax shown in Syntax 9.10 is
needed to obtain a logistic multilevel analysis instead of a linear multilevel
analysis. It is not surprising that instead of family � gaussian, family � bino-
mial must be typed (see Syntax 9.15). Output 9.15 shows the results of this
logistic multilevel analysis with only a random intercept, performed with the
glmmPQL procedure in R.

Output 9.15 looks similar to Output 9.10, in which the results of a linear
multilevel analysis with only a random intercept were shown. First the AIC,
BIC, and the log likelihood are shown. Note again that R, in contrast to MLwiN,
but comparable to STATA and SAS, uses a maximum likelihood estimation
procedure, and therefore provides a log likelihood which can be used to 
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compare different models. The second part of Output 9.15 shows the stand-
ard deviation of the intercepts for the different medical doctors (i.e.
2.220707), and the third part of the output shows the magnitude of the
regression coefficients. Note that the number of degrees of freedom for 
the evaluation of the p-value of the regression coefficient is different to the
number used in the NLMIXED procedure in SAS. Although it is a remarkable
difference, of course it does not have much influence on the magnitude of the
p-value. The last lines of Output 9.15 (i.e. the Standardized Within-Group

Output 9.15. Output of a logistic multilevel analysis, with a random intercept,
performed with the glmmPQL procedure in R

Linear mixed-effects model fit by maximum likelihood

Data: dich

AIC BIC logLik

2382.836 2399.192 –1187.418

Random effects:

Formula: ~1 | md

(Intercept) Residual

StdDev: 2.220707 0.9020777

Variance function:

Structure: fixed weights

Formula: ~invwt

Fixed effects: hyperch ~ age

Value Std.Error DF t-value p-value

(Intercept) -11.022995 1.3503664 428 -8.162966 0

age 0.164433 0.0183055 428 8.982718 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-6.6433638 -0.4749280 -0.1595897 0.3569172 5.8870434

Number of Observations: 441

Number of Groups: 12

Syntax 9.15. Syntax needed to perform a logistic multilevel analysis, 
with a random intercept, with the glmmPQL procedure in R

model4 <- glmmPQL(hyperch ~ age, random = ~1|md, family=

binomial, data=dich)



158 Software for multilevel analysis

Residuals) can (again) be used to evaluate whether or not the residuals are
normally distributed (see Section 2.7).

9.3.5 Overview
Table 9.4 contains an overview of the results of a logistic multilevel analysis
obtained from different software packages. Both the regression coefficients
(including the corresponding standard errors) and the random variances
differ (slightly) between the four software packages. It should be borne in
mind that MLwiN uses a different estimation procedure (i.e. quasi-likelihood)
compared to STATA, SAS, and R (i.e. maximum likelihood). It should fur-
ther be noted that in STATA the results highly depend on the number of
integration points, and whether or not adaptive quadrature was used. In
SAS, the results highly depend on the starting values of the parameters.

9.4 Poisson multilevel analysis

9.4.1 Introduction
Poisson multilevel analysis (i.e. multilevel analysis with a ‘count’ outcome
variable) can be performed with the same software packages that can be
used for logistic multilevel analysis (i.e. STATA, SAS, and R). In fact, in most
of the packages the difference in syntax between a logistic multilevel analy-
sis and a Poisson multilevel analysis is that a different distribution of the
outcome variable has to be specified. The dataset used in Section 4.4 is also
used here to compare the different software packages. In that example dataset
the relationship between ‘the number of risk factors’ (ranging from 0 to 5)
and age was investigated.

Table 9.4. Overview of the results of a logistic multilevel analysis
(i.e. with a dichotomous outcome variable), with only a random
intercept, obtained from different software packages

Age Random variance intercept

MLwiN 0.180 (0.023) 5.590

STATA 0.168 (0.021) 5.488

R 0.164 (0.018) 4.932

SAS 0.168 (0.021) 5.454
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9.4.2 STATA
Within STATA, like all other multilevel analyses, a Poisson multilevel analy-
sis can also be performed with the gllamm procedure. Syntax 9.16 shows the
syntax needed to perform a Poisson multilevel analysis with only a random
intercept. The difference between the syntaxes needed for a linear multilevel
analysis and a logistic multilevel analysis is that a different link function
(link(log)) and a different distribution of the outcome variable must be 
specified ( fam(poisson)).

Syntax 9.16. Syntax needed to perform a Poisson multilevel analysis, with a
random intercept, with the gllamm procedure in STATA

gllamm number_of_riskfactors age, i(medical_doctor) fam

(poisson) link(log) nip(12) adapt

Output 9.16 shows the results of a Poisson multilevel analysis, with only a
random intercept, performed with the gllamm procedure in STATA.

Output 9.16. Output of a Poisson multilevel analysis, with a random
intercept, performed with the gllamm procedure in STATA

number of level 1 units = 441

number of level 2 units = 12

Condition Number = 205.89276

gllamm model

log likelihood = –556.82818

number_of_~s Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0238985 .0052921 4.52 0.000 .0135262 .0342708

_cons –1.662973 .357471 –4.65 0.000 –2.363603 –.9623425

Variances and covariances of random effects

***level 2 (medical_doctor)

var(1): .13201919 (.06694393)

Output 9.16 looks very familiar, because it is comparable to the earlier out-
puts of the gllamm procedure. First the number of level 1 units and the number
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of level 2 units are shown, and secondly the Condition Number and the log like-
lihood that can be used to compare different models. Note that also for the
Poisson multilevel analysis the gllamm procedure uses a maximum likelihood
estimation procedure instead of the quasi-likelihood estimation procedure
that was used in MLwiN. The second and third parts of the output show the
regression coefficients (including the standard error, the z-value, the corres-
ponding p-value, and the 95% CI around the regression coefficient) and the
variance of the intercepts of the different medical doctors.

9.4.3 SAS
Within SAS, the NLMIXED procedure can be used to perform a Poisson
multilevel analysis. The difference in syntax needed to perform this analysis
and the syntax needed to perform a logistic multilevel analysis is that instead
of the logistic model (see Syntax 9.14) a Poisson model is defined (see Syntax
9.17). All the rest is exactly the same. So, also for a Poisson multilevel analy-
sis, starting values must be provided for all parameters that have to be esti-
mated. As with the logistic multilevel analysis, it is recommended that the
results of a ‘naive’ Poisson regression analysis are used as starting values for
the Poisson multilevel analysis.

Syntax 9.17. Syntax needed to perform a Poisson multilevel analysis, 
with a random intercept, with the NLMIXED procedure in SAS

PROC NLMIXED data = pois;

parms beta0=–1.6 beta1=0.02 s2b0=0.1;

c1 = beta0 + b0;

eta = c1 + beta1*age;

expeta = exp (eta);

model riskfact ~ poisson(expeta);

random b0 ~ normal ([0], [s2b0]) subject=md;

run;

Output 9.17 shows the results of a Poisson multilevel analysis performed
with the NLMIXED procedure in SAS.

Output 9.17 is comparable to Output 9.14 which showed the results of a
logistic multilevel analysis performed with the NLMIXED procedure in SAS.
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Again, the output starts with the Fit Statistics (i.e. �2 Log Likelihood, AIC and
BIC), so again a maximum likelihood estimation procedure is used instead of
a quasi-likelihood estimation procedure. The second part of the output con-
tains the Parameter Estimates, and shows the estimates of beta0 (i.e. the inter-
cept), beta1 (i.e. the regression coefficient for age), and s2b0 (i.e. the variance
of the intercepts for the different medical doctors). Note again that the p-values
of all three parameters are estimated with a t-distribution with 11 degrees of
freedom (i.e. the number of medical doctors minus 1).

9.4.4 R
As for all other multilevel analyses, the glmmPQL procedure in R can also 
be used for a Poisson multilevel analysis. The only difference is that a differ-
ent family for the outcome variable must be specified, i.e. family � poisson
(see Syntax 9.18).

Output 9.17. Output of a Poisson multilevel analysis, with a random intercept, performed
with the NLMIXED procedure in SAS

Fit Statistics

Description Value

–2 Log Likelihood 1113.7

AIC (smaller is better) 1119.7

BIC (smaller is better) 1121.1

Log Likelihood –556.8

AIC (larger is better) –559.8

BIC (larger is better) –560.6

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient

beta0 –1.6621 0.3573 11 –4.65 0.0007 0.05 –2.4486 –0.8757 –0.00561

beta1 0.02390 0.005291 11 4.52 0.0009 0.05 0.01226 0.03555 –0.33436

s2b0 0.1312 0.06640 11 1.98 0.0738 0.05 –0.01497 0.2773 –0.00793

Syntax 9.18. Syntax needed to perform a Poisson multilevel analysis, 
with a random intercept, with the glmmPQL procedure in R

model5 <- glmmPQL(numrf ~ age, random = ~1|md, family=

poisson, data=pois)
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Output 9.18 shows the results of a Poisson multilevel analysis performed
with the glmmPQL procedure in R. It is not surprising that the output looks
similar to all other glmmPQL outputs shown before. First the log likelihood
(as well as AIC and BIC) is shown and then the variance of the intercepts of the
different medical doctors (i.e. 0.3540521). The third part of the output contains
the most important part of the results, i.e. it shows the regression coefficients,
the standard errors, the degrees of freedom, the t-value, and the corresponding
p-value. As with the logistic multilevel analysis, the p-value for the regression
coefficients is derived from a t-distribution with 428 (i.e. the number of
patients minus the number of medical doctors minus 1) degrees of freedom.

Output 9.18. Output of a Poisson multilevel analysis, with a random
intercept, performed with the glmmPQL procedure in R

Linear mixed-effects model fit by maximum likelihood

Data: pois

AIC BIC logLik

1408.793 1425.149 –700.3966

Random effects:

Formula: ~1 | md

(Intercept) Residual

StdDev: 0.3540521 1.062121

Variance function:

Structure: fixed weights

Formula: ~invwt

Fixed effects: numrf ~ age

Value Std.Error DF t-value p-value

(Intercept) –1.6441237 0.3771830 428 –4.358954 0

age 0.0238704 0.0056283 428 4.241175 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

–1.2643081 –0.7973350 –0.2148177 0.4748583 4.0556307

Number of Observations: 441

Number of Groups: 12

9.4.5 Overview
Table 9.5 contains an overview of the results of a Poisson multilevel analysis
with only a random intercept obtained from different software packages.
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It can be seen that this kind of analysis is rather robust, in that the results
obtained from different software packages are almost the same. This is differ-
ent from what has been seen for the logistic multilevel analysis (see Table 9.4),
and it is rather remarkable because the different software packages use differ-
ent estimation procedures. Quasi-likelihood is used in MLwiN, while maxi-
mum likelihood is used in STATA, SAS, and R.

9.5 Multinomial logistic multilevel analysis

9.5.1 Introduction
Multinomial logistic multilevel analysis (i.e. multilevel analysis with a cat-
egorical outcome variable) is a fairly new feature in standard software pack-
ages. Section 4.3 described the possibilities for performing such an analysis
in MLwiN. At present, the only other alternative for multinomial logistic
multilevel analysis is the gllamm procedure in STATA (Skrondal and Rabe-
Hesketh, 2003a). In the example dataset, the outcome variable consists of
three groups, i.e. a group of patients with relatively ‘low’ cholesterol values,
a group of patients with relatively ‘moderate’ cholesterol values, and a group
of patients with relatively ‘high’ cholesterol values (see Section 4.3). The
research question of interest is whether the categorical outcome variable
cholesterol_group was related to age?

9.5.2 STATA
Syntax 9.19 shows the syntax needed to perform a multinomial logistic multi-
level regression analysis, with only a random intercept, with the gllamm 

Table 9.5. Overview of the results of a Poisson multilevel analysis
(i.e. with a ‘count’ outcome variable), with only a random
intercept, obtained from different software packages

Age Random variance intercept

MLwiN 0.024 (0.005) 0.131

STATA 0.024 (0.005) 0.132

R 0.024 (0.006) 0.125

SAS 0.024 (0.005) 0.131
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procedure in STATA. From Syntax 9.19 it can be seen that only a 
different link function has to be specified (i.e. link(mlogit)), but the family
that is specified is again binomial (i.e. fam(binom)).

Syntax 9.19. Syntax needed to perform a multinomial logistic multilevel
analysis, with a random intercept, with the gllamm procedure in STATA

gllamm cholesterol_group age, i(medical_doctor) fam(binom)

link(mlogit) nip(12) adapt

Output 9.19. Output of a multinomial logistic multilevel analysis, with a
random intercept, with the gllamm procedure in STATA

number of level 1 units = 441

number of level 2 units = 12

Condition Number = 1417.7473

gllamm model

log likelihood = –383.10378

cholestero~p Coef. Std. Err. z P>|z| [95% Conf. Interval]

c1

age .1341026 .0208802 6.42 0.000 .0931782 .175027

_cons –7.520526 1.346159 –5.59 0.000 –10.15895 –4.882103

c2

age .1918213 .0217325 8.83 0.000 .1492263 .2344163

_cons –11.25066 1.416899 –7.94 0.000 –14.02773 –8.473591

Variances and covariances of random effects

***level 2 (medical_doctor)

var(1): 3.5814884 (1.9793861)

Output 9.19 shows the results of a multinomial logistic multilevel analy-
sis performed with the gllamm procedure in STATA. The output looks dif-
ferent to the earlier outputs of the gllamm procedure, in that the part of the
output that shows the regression coefficients is double. The first part shows
the regression coefficient for age, comparing the ‘low’ cholesterol group with
the ‘moderate’ cholesterol group (i.e. 0.1341026), while the second part
shows the regression coefficient for age, comparing the ‘low’ cholesterol
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group with the ‘high’ cholesterol group (i.e. 0.1918213). As in the logistic
multilevel analysis, both regression coefficients can be transformed into an
odds ratio by calculating EXP[regression coefficient]. The last part of the
output again contains the variance of the intercepts of the different medical
doctors. It can be seen that only one variance is shown (i.e. 3.5814884), while
in this situation MLwiN gives two variances, reflecting the variance of both
intercepts (see Section 4.3, Output 4.9). A log likelihood is also shown for
the multinomial logistic multilevel analysis (i.e. a maximum likelihood esti-
mation procedure is used). Again, this is different from MLwiN, in which a
quasi-likelihood estimation procedure is used.

9.5.3 Overview
Table 9.6 contains an overview of the results of a multinomial logistic multi-
level analysis, with only a random intercept, obtained from STATA and
MLwiN. For comparison, the results of a ‘naive’ multinomial logistic regres-
sion analysis (i.e. ignoring the dependency of the observations within the
medical doctors) are also shown.

When the results of the two multinomial logistic multilevel analyses are
compared, and also compared to the results of the ‘naive’ analysis, it is clear
that there is a remarkable difference in estimated group ‘effects’. Furthermore,

Table 9.6. Overview of the results of a multinomial logistic multilevel
analysis (i.e. with a categorical outcome variable), with only a random
intercept, obtained from different software packages

Age Random variance intercept

MLwiN

Group 1 0.103 (0.011) 0.262

Group 2 0.172 (0.012) 1.392

STATA

Group 1 0.134 (0.021)

Group 2 0.192 (0.022) 3.581

SPSS (naive)

Group 1 0.104 (0.017)

Group 2 0.162 (0.018) No random variance



it is surprising that with MLwiN the standard errors of the regression coeffi-
cients for age are lower than those obtained from a ‘naive’ analysis, while with
STATA the standard errors of the regression coefficients are higher than those
obtained from a ‘naive’ analysis. Although the latter seems to be more realistic,
the difference between the results of a relatively simple analysis indicates that
(at this point in time) one has to be very careful in interpreting the results of
multinomial logistic multilevel analysis.
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