

Network Security

Ali Shakiba Vali-e-Asr University of Rafsanjan ali.shakiba@vru.ac.ir www.1ali.ir

Content of this Chapter

- Introduction to DES
- Overview of the DES Algorithm
- Internal Structure of DES
- Decryption
- Security of DES

Classification of DES in the Field of Cryptology

Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

DES Facts

- Data Encryption Standard (DES) encrypts blocks of size 64 bit.
- Developed by **IBM** based on the cipher *Lucifer* under influence of the *National Security Agency* (NSA), the design criteria for DES have not been published
- Standardized 1977 by the National Bureau of Standards (NBS) today called *National Institute of Standards and Technology* (NIST)
- Most popular **block cipher** for most of the last 30 years.
- By far best studied symmetric algorithm.
- Nowadays considered insecure due to the small key length of 56 bit.
- But: 3DES yields very secure cipher, still widely used today.
- Replaced by the Advanced Encryption Standard (AES) in 2000
- For a more detailed history see Chapter 3.1 in Understanding Cryptography

Block Cipher Primitives: Confusion and Diffusion

- Claude Shannon: There are two primitive operations with which strong encryption algorithms can be built:
 - Confusion: An encryption operation where the relationship between key and ciphertext is obscured.

Today, a common element for achieving confusion is **substitution**, which is found in both AES and DES.

2. Diffusion: An encryption operation where the influence of one plaintext symbol is spread over many ciphertext symbols with the goal of hiding statistical properties of the plaintext.

A simple diffusion element is the **bit permutation**, which is frequently used within DES.

• Both operations by themselves cannot provide security. The idea is to concatenate confusion and diffusion elements to build so called *product ciphers*.

Product Ciphers

- Most of today's block ciphers are *product ciphers* as they consist of rounds which are applied repeatedly to the data.
- Can reach excellent diffusion: **changing of one bit of plaintext results** *on average* in the **change of half the output bits**.

Example:

Content of this Chapter

- Introduction to DES
- Overview of the DES Algorithm
- Internal Structure of DES
- Decryption
- Security of DES

• Different subkey in each round derived from main key

• Bitwise initial permutation, then 16 rounds

1. Plaintext is split into 32-bit halves L_i and R_i

2. R_i is fed into the function f, the output of which is then XORed with L_i

3. Left and right half are swapped

Rounds can be expressed as:

$$\mathcal{L}_i = \mathcal{R}_{i-1},$$

$$R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$$

Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

The DES Feistel Network (2)

• L and R swapped again at the end of the cipher, i.e., after round 16 followed by a final permutation

Content of this Chapter

- Introduction to DES
- Overview of the DES Algorithm
- Internal Structure of DES
- Decryption
- Security of DES

Initial and Final Permutation

- Bitwise Permutations.
- Inverse operations.
- Described by tables *IP* and *IP*⁻¹.

Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

The f-Function

The Expansion Function E

- **1.** Expansion E
- main purpose: increases diffusion

71/29

Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

Add Round Key

- Bitwise XOR of the round key and the output of the expansion function *E*
- Round keys are derived from the main key in the DES keyschedule (in a few slides)

The DES S-Boxes

- **3.** S-Box substitution
- Eight substitution tables.
- 6 bits of input, 4 bits of output.
- Non-linear and resistant to differential cryptanalysis.
- Crucial element for DES security!
- Find all S-Box tables and S-Box design criteria in *Understanding Cryptography* Chapter 3.

0010 third column

fourth row

S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

73/29

The Permutation P

4. Permutation P

- Bitwise permutation.
- Introduces diffusion.
- Output bits of one S-Box effect several S-Boxes in next round
- Diffusion by E, S-Boxes and P guarantees that after Round 5 every bit is a function of each key bit and each plaintext bit.

Р												
16	7	20	21	29	12	28	17					
1	15	23	26	5	18	31	10					
2	8	24	14	32	27	3	9					
19	13	30	6	22	11	4	25					

16

 S_8