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Chapter 1

REFERENCE SOURCES

1.1 COURSE SYLLABUS

e Required Texts
— Rencher, A. C. (1998). Multivariate Statistical Inference and Applications. New York: Wiley.
e Instructor

— Robert J. Boik, 2-260 Wilson, 994-5339, Rjboik@math.montana.edu.
— Office Hours: Monday 11:00-11:50; Tuesday 2:10-3:00; Wednesday 11:00-11:50; Thursday 2:10-3:00.

e Course Home Page: <http://www.math.montana.edu/~rjboik/classes/537/stat.537.html>

e Holidays & Other “No Class” Days: Monday Jan 19 (Martin Luther King), Monday January 26: U. Co. talk,
Monday Feb 16 (Presidents Day), Wednesday March 3 (Exam Exchange Day), Monday—Friday Mar 15-19
(Spring Break), Friday April 9 (University Day).

e HW: Discussion about HW problems with colleagues is allowed, but written work must be done
independently. Late HW will not be accepted without prior arrangements.

e Grading: A Midterm exam will be given on Wednesday March 3 at 6:00-8:00 PM (20%) in 1-153 Wilson. A
Final exam will be given on Tuesday May 4 at 8:00-9:50 AM (40%) in 1-153 Wilson. The remaining 40% is
from HW.

Syllabus

1. Introduction: Univariate versus Multivariate Analysis
2. Multivariate Data & Multivariate Distributions (Ch. 1, 2)

(a) Expectation and Dispersion of Random Matrices
(b) Multivariate Normal: Conditional and Marginal

i. Detecting Departure from MVN
ii. Transformations of Multivariate Data

(c) Correlation, Partial Correlation, and Regression
(d) Wishart and Conditional Wishart Distributions
(e) Maximum Likelihood Estimation from MVN

i. Complete Data
ii. Incomplete Data: the EM Algorithm

(f) Robust Estimation

3. Multivariate Linear Models (Ch. 3, 4, 7)
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Tests of Sphericity
Tests of Homogeneity

Tests of Independence
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Canonical Correlation
Discriminant & Classification Analysis (Ch. 5, 6)
Principal Components (Ch. 9)
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(b) Principal Components of Correlation Matrices
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Cluster Analysis

Classification Trees

1.2 REFERENCE BOOKS

1.2.1 Introductory Books
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REFERENCE SOURCES
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Dillon, W. R., & Goldstein, M. (1984). Multivariate Analysis—Methods and Applications. New York: Wiley.
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Readings, 4" edition, Englewood Cliffs, NJ: Prentice Hall.

Englewood Cliffs, NJ: Prentice Hall.

. Johnson, R. A., & Wichern, D. W. (1988). Applied Multivariate Statistical Analysis. (Fourth Edition),

Johnson, D. E. (1998). Applied Multivariate Methods for Data Analysts, Pacific Grove, CA: Duxbury Press.

Manly, B. F. J. (1994). Multivariate Statistical Methods: A Primer, London: Chapman & Hall.

1.2.2 Intermediate Books
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REFERENCE BOOKS

1.2.3 Advanced Books
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. Flury, B. (1988). Common Principal Components & Related Multivariate Models. New York: Wiley.
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Chapter 2

RANDOM VARIABLES, VECTORS, &
MATRICES

2.1 EXPECTATION AND COVARIANCE OPERATORS

2.1.1 Expectation of Random Matrices

Let y;;, ¢ =1,...,n,j=1,...,d be a collection of random variables. Then Y = {y,;} is a random matrix. Suppose
that E(y;j) = pij < co. Let M = {p;;}. Then, the following can be established.

1. E(Y) = {E(y,))} = M.

2. E(LAYB+C) = AE(Y)B+C = AMB + C where A: pxn, B: d xr, and C: p X r are matrices of constants.

2.1.2 Variance and Covariance of Random Vectors

Let y be an n x 1 random vector and let x be an r x 1 random vector.
1. Cov(x,y) = E{[x — E(x)]ly - E(y)]'} = E(xy’) - E(x)E(y").
2. Cov(Ax,By) = E{[Ax — AE(x)][By — BE(y)]'}

— B{A[x — Ex)]ly — E(y)B'} = A Cov(x,y)B"

3. Var(y) = Cov(y,y).

4. Using (2) and (3), Var(Ay) = Cov(Ay,Ay) = A Var(y)A'.

2.1.3 Dispersion of Random Matrices

2.1.4 General Setting

Let Y: n x d be a random matrix. Partition Y as Y = (y1 y2 oce- yd). Denote Var(y;) by X;; and denote
Cov(yi,y;) by Xy fori =1,...,d, j =1,...,d. Note that each X;; is n x n. Then,

Disp(Y) ef Var[Vec(Y)] = {X;;}: nd x nd.
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2.1.5 Standard Setting

Let Y be an n x d matrix. Partition Y as

In the standard multivariate setting, the rows of Y represent a random sample from (u, X). It follows that
E(y;) =p Vi, Var(y;) = X V4, and Cov(y;,y;) = 0 for ¢ # j. The following results are readily established:

1. E(Y)=M=1,4/,
2. Disp(Y) = (¥ ®1,), and
3. vee(Y) ~ [(Ta® 1), (2@ 1))

2.1.6 Expectation of Univariate Quadratic Forms

Theorem 2.1 Lety be an n X 1 random vector with mean p and variance 3. Let T: n x n be a matriz of
constants. Then,
E(y'Ty) = tr(TX) + p'Tp.

Proof: E(y'Ty) = E[tr(y'Ty)] = E[tr(Tyy’)]

= tr[E(Tyy')] = tr[TE(yy’)] = tz[T (2 + pp')].

2.1.7 Expectation of Multivariate Quadratic Forms
Theorem 2.2 Let Y be an n x d matriz with distribution vec(Y) ~ [vec(M), X]. Partition Y and M as
Y=(y1 y2 -+ ya) and M= (py pro -+ pg).

Denote Var(y;) by X;;, and denote Cov(y;,y;) by X;;. Note that 3;; is n x n and that 2§j =3j;. Let T: nxn be
a matrixz of constants. Then,
E(Y'TY) = M'TM + Ty[(I; ® T')3),

where Ty( - ) is the generalized trace operator. See the STAT 505 notes for a description of this operator.
Furthermore, if T is symmetric, then

E(Y'TY) = M'TM + T,[(I; ® T)X].

Proof: Write Y'TY as
Y'TY = {y;Ty,},

and use
E(y;Ty;) = Eltr(Ty;y;)]
= tr[E(Ty;y;)]
=t [T(Zji + pyp)]
= tr(TX;i) + p; Ty,
= tr(2yT) + p;Tp; because tr(A) = tr(A')

= tr(T'Si;) + u; T, because tr(AB) = tr(BA).
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For the following corollaries, assume that T is symmetric.
Corollary 1: If ¥ = (X; ® ), then E(Y'TY) = M'TM + trace(TQ) X.
Corollary 2: If ¥ = (X; ® I,,), then E(Y'TY) = M'TM + trace(T) X.
Corollary 3: If ¥ = (X;®1I,) and M = 1,/, then E(Y'TY) = pp/(1,T1,) + trace(T) Xy.
Corollary 4: If ¥ = (£;®1,) and M = XB, then E(Y'TY) = B'X'TXB’ + trace(T) 2.

2.1.8 Sample Means and Variances

Let Y be an n x d matrix that follows the standard multivariate setting. Let y = n=1Y’1,, and
S=(n-1)""Y'[I-n"'1,1,]Y. Then

L. E(y) = p,
2. The BLUE of u is y,
3. Var(y) =n~'%, and
4. E(S) ==

2.1.9 Regression Coefficients and Variances

Extension of Standard Multivariate Setup: Let Y be an n X d matrix with expectation M. Partition Y as

¥i

!/

Yo
Y=|"

Yo

Suppose that Var(y;) = X V i, Cov(y;,y;) = 0 for i # j, and E(Y) = XB, where X is an n X p matrix of known
constants having rank-p and B is a p x d matrix of regression coefficients. That is, Disp(Y) = (X ® I,) and
vee(Y) ~ [(I; ® X,,)83, (X ® L,)], where 8 = vec(B). Let B = (X’X) 'X'Y and S = (n — p)”"Y'[I — H]Y, where
H = ppo(X) = X(X’X)"'X’. Then

1. E(B) =B,

2. The BLUE of B is B,

3. Disp(B)) = £ ® (X’X) ', and
4. B(S) = =.

2.2 MULTIVARIATE NORMAL DISTRIBUTION

Suppose y: n x 1 is a random vector with joint probability density function

exp{—3(y — )T (y — p)}

= RHESE

for ¥ >0, p € R", and y € R". Then, y is said to have a multivariate normal distribution. The notations

y ~ Nn(u,X) and y ~ N(p, X) are used to indicate that the elements of the random vector y are jointly
distributed as an n dimensional multivariate normal distribution with mean g and variance ¥. If ¥ = ¢2I,,, then
the pdf simplifies to
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_exp{ogm(y — ) (y — )} exp{—gm S (vi — i)?}

(27702)% (2%02)%
Caution: the notation y ~ (u,3) is used to indicate that the elements of the random vector y are jointly
distributed such that E(y) = p and var(y) = 3. Obviously, y ~ N(i,X) =y ~ (u, ) but

y~ (1,3) #y ~N(p,X).
If 3 is not positive definite (i.e., it is positive semi-definite), then y is said to have a singular normal
distribution: y ~ SN(u, X). In this case, y does not have a density function, but y still has a distribution function.

f(y)

2.2.1 Multivariate Normal Matrices

Suppose Y: n X d is a random matrix. Let y = vec(Y). If the elements of y have joint density function

exp{—3(y — )T (y — p)}

|57 (2r)

fly) =

where ¥ is an nd x nd positive definite matrix, p € R™, and y € R™?, then Y is said to have a multivariate
normal distribution. The notations vec(Y) ~ N,q(p, X), vec(Y) ~ N(p, ), and vec(Y) ~ N[vec(M), X], where
p = vec(M), are used to indicate that the elements of the random matrix Y are jointly distributed as an nd
dimensional multivariate normal distribution with mean p and variance X.

If ¥ =3, ®, then the density function can be written as

exp {—3 trace [(Y - M), (Y - M)’ Q1] }
0% [2a% (2m) ¥

fY) =

In the standard multivariate setup, X = 34 ® I,, and the density simplifies to

exp {—3 trace [(Y — M) (Y - M)Z; ']} '

fFY) = PN
Xl (2m) >

9

2.2.2 Properties of the MVN Distribution

L7 f(y)dy =1

2. Moment generating function (MGF): My (t) = Elexp(t'y)] = exp[t'p + 1 (t/3t)]. Proof: in class.
E(y) = p. Proof: use MGF.

- @

Var(y) = ¥. proof: use MGF.

5. Ay ~ N(Ap, AXA’) for any matrix of constants: A: r x n. Proof: use MGF. Note that if A does not have
full row rank, AXA’ is singular and Ay ~ SN(Apu, AXA’). If A is a random matrix, then Ay may or may
not have a multivariate normal distribution.

6. If vec(Y) ~ N[vec(M), X ® €], then

1
M~y (T) = E [exp[trace(T'Y)]] = exp |trace(T'M) + 3 trace(T'QTX) | .

7. If vec(Y) ~ N[vec(M), X ® €], then vec(AYG) ~ Nlvec(AMG), G'3XG @ AQA’] for constant matrices A
and G. If A does not have full row rank or G does not have full column rank, then the distribution is
singular and the density does not exist.

8. In many applications, the vector of means can be written as p = X3, where X is an n X p matrix with rank-r.

9. In many applications, the matrix of means can be written as M = XB, where X is an n X p matrix with
rank-r. Note, u = vec(M) = (I; ® X)3, where 3 = vec(B).
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2.3 CONDITIONAL MULTIVARIATE NORMAL DISTRIBUTIONS

Let y be a random vector and denote a realization of the random vector by ¥. Suppose that y: n x 1 is distributed
as 'y ~ N(u, X). Partition y as
_ (N
Y (w)

where y; is p X 1 and ys is (n — p) x 1. Partition g and 3, conformably, as
_ (1
# (“2>
Y X
Y= .
<221 Y92

Theorem 2.3 (Conditional Multivariate Normal) Conditional on ys = ¥2, y1 still has a joint normal
distribution. In particular,

and

vil(y2 = ¥2) ~ N(f1.9, Z11.2),

where .9 = by + 21222_21(5?2 — W) and Xq1.0 = X1 — 21222_21221. If 391 € R(X22), then Xos need not be
nonsingular. Simply replace 2521 by X5,.

Proof: In class.

O
Let Y be a n x d matrix with distribution vec(Y) ~ N[vec(M), X ® Q). Partition Y as Y = (Y1 Y3), where
Y isn xdy, Yo is n X do, and dy + dy = d. Partition M and ¥ conformably as M = (M1 Mg) and

Y i
Y= ® Q.
<221 222)

It follows from the previous result that, conditional on Yy = Yg, Y, still has a joint normal distribution. In
particular, )
vec(Y1)|(Y2 = Yg) ~ 1\I[V€C(].\/_[1.2)7 211‘2],

where

M1.2 = M1 + (Y2 - M2)22_21221

and
Y10 = (211 — E1222_21221) ® Q.

If 391 € R(XEa2), then X9 need not be nonsingular. Simply replace 22_21 by 25,.

2.3.1 Regression Application

Let y be a random d-vector and let x be a random p-vector. Suppose that
X M, ’ Ezy hY
Then, the distribution of y, conditional on x = X, is

yl(x=%) ~N(B, + B/lj'c, Zyyw)v

where By = p, — Bip,; B =2 %,,; and B, = %, — %, 3%,

If we have a random sample (y; x;)’ for i =1,...,n, then the distribution of
Y1 X
Ya X5

Y = . conditional on X = X =
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is
vec(Y) ~ N[vec(X*B), X, @ I,,],

. AN _ 56 _ N;j _leza?zlzxy .

where

and X,., is defined above. Conditional on X = X, unbiased estimators of B and Xyy.o are given by

Y'[L, — ppo (X*)] Y
n—p—1 '

B = (X¥X*)"' X*Y and E,,., =

2.3.2 Some Other Conditional Results

Suppose that X, Y, and Z are random matrices.

1. If the distribution of X|(Y = Y) does not depend on Y, it follows that X and Y are independent. Of course,
it works the other way too: if X and Y are independent, then the distribution of X[(Y = Y) does not depend
onY.

2. Suppose that X and Z are independent, conditional on Y = Y. That is, X and Z are conditionally

independent: (X 1L Z)|(Y = Y). Suppose, also, that X and Y are independent (unconditionally). Then X
and Z are unconditionally independent.

2.4 DETECTING DEPARTURE FROM NORMALITY

2.4.1 Univariate Procedures

Assume that Y7,Y5,...,Y, is a random sample from a distribution with cdf Fy (y).

2.4.1.1 QQ Plots

The letters QQ stand for quantile-quantile. The sample or empirical quantiles are equal to the 1007—1“ 100%, ..., 1007
sample percentiles. The 100% sample percentile, in turn, is equal to Y{;), the ith order statistic. If Fy (y) = F(y),
then the 100< theoretical quantile can be defined as Fy ' (c;), where o;; = (i —3/8)/(n + 1/4). The reason that a;
is not defined as i/n is that in many distributions the 100" percentile is oco.

A QQ plot is a plot of the empirical quantiles (Y axis) against the theoretical quantiles (X axis). The table
below displays the pairs to be plotted.

7 o; X Axis Y Axis
1 (1- é)/(TH-%) F~Ya1) Yy
2 (2- g)/(n+%) F ) Yy
3 (3-3)/(n+3) Faz) Y(3)

n_ (n—gF)/n+3) Fl'on) Y
The points in the plot should lie in a straight line. If they do not (within sampling error), then there is evidence
that the data do not come from distribution F(y).

To construct a normal QQ plot (usually called a normal plot), first standardize the data to have mean zero

and standard deviation one: Z; = (Y; —Y)/S. Then plot Z;) against ®~'(c;), where ® is the cdf of N(0, 1).
Normal plots can be constructed in SAS using proc capability.

2.4.1.2  Shapiro- Wilk

The Shapiro-Wilk statistic is obtained by regressing the order statistics on the theoretical quantiles from the
normal distribution. Ordinary regression is not appropriate because the order statistics are not independent of one
another. Generalized least squares is used. The Shapiro-Wilk regression coefficient is bounded above by one. The
null hypothesis of normality is rejected if the regression coefficient is small. SAS uses a normalizing transformation
on the Shapiro-Wilk test statistic to obtain a p-value.
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2.4.1.3 Coefficients of Skewness and Kurtosis
The univariate skewness and kurtosis coefficients are

E(Y - p)*

E(Y —p)?
B 1) ey = B0y
(o2 g

K3 =

where = E(Y) and 02 = var(Y). Under normality k3 = 0 and x4 = 0. Sample estimators of 3 and 4 are

k
Ky = S_?;” and K4 = S—i, where
Y (Yi-Y)
2 =l
5= n—1 ’
ny (Y;-Y)?
ks = —=L _ _ and

(n=1)(n—-2)’

=1 =1
ky = .

n n 2
n(n+1)2(}/i*?)4*3(n71) { (YiY)Q}
(= D(n—2)(n—3)
The statistics k3 and k4 are unbiased estimators of the 3'4 and 4** cumulants:
E(ks3) = E(Y — p)% and E(ks) = E(Y — p)* — 30™.

It can be shown (A. Stuart & K. Ord, Kendall’s Advanced Theory of Statistics, Vol 1, 5** ed., Oxford University
Press, 1987) that if the distribution of Y is normal, then K3 and %4 are distributed approximately normal (in large
samples) with means zero and variances

6n(n —1) 24n(n — 1)2
(n—2)(n+1)(n+3) (n—3)(n—2)(n+3)(n+5)

Tables A1 and A3 in Rencher (2002) give percentiles of biased estimators of k3 and r4.

Var(ks) =

and Var(k4) =

2.4.1.4 Kolmogorov-Smirnov

Consider a test of Hy: Fy (y) = Fo(y) against the alternative H,: Fy (y) # Fo(y). The Kolmogorov-Smirnov test
statistic is

D, = «nsup|F,(y) — Fo(y)| = max(D}, D,;), where

)
D} = max i—F(Y<) and D, = max F(Y-)—i_l
n 1<i<n | n 06 n T aZicn |T OV ) n

and F,(y) is the empirical distribution function. It can be shown that when Hy is true, then the distribution of D,
does not depend on Fj. Tables of percentiles of D,, are available in many textbooks.

2.4.1.5 Cramer-Von Mises

Again, consider a test of Hy: Fy (y) = Fo(y) against the alternative H,: Fy (y) # Fy(y). Denote the empirical cdf of
the standardized sample values Z; = (Y; — Y)/S by Fz(z). The Cramer-Von Mises test statistic is

n

c? :n/oo [ﬁz(z) fq)(z)rgb(z) dz=3" {@(zm) - <2i2;1>}2 + ﬁ

o0 i=1

where ®(z) and ¢(z) are the cdf and the pdf of the standard normal distribution. The hypothesis of normality is
rejected for large values of C2.
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2.4.1.6 Anderson-Darling

For a third time, consider a test of Hy: Fy (y) = Fo(y) against the alternative H,: Fy (y) # Fy(y). Denote the
empirical cdf of the standardized sample values Z; = (Y; — Y)/S by Fz(z). The Anderson-Darling test statistic is

~ 2
, o | Fz(2) = 2(2)
o= mWW

n

S 1) {0 [2(Z0)] +In[1 - @(Zi)]}-

i=1

The hypothesis of normality is rejected for large values of A2. The upper 0.05 and 0.01 critical values are,
approximately,

0.795  0.89 1.013  0.93
A2 .05 = 0.7514 <1 - n2) and A2, = 1.0348 (1 - n2> .

2.4.2 Multivariate Procedures
Assume that y1,y2,...,¥» is a random sample from a d dimensional population with pdf fy(y) and cdf Fy (y).
Denote the sample mean and variance by y and S, respectively.
2.4.2.1 QQ Plot of Squared Mahalanobis Distance
The squared Mahalanobis distance from y; to ¥ is
D} =(yi—y)S '(yi—¥)
It can be shown that if the data have been sampled from a multivariate normal population, then

c_l n—d—1
2’ 2 '

n

— " D? ~ Bet
(n—1)2"" (

One graphical test of multivariate is a QQ plot of the ordered D? statistics against the quantiles of the beta
distribution with parameters d/2 and (n —d — 1)/2. This plot can be constructed in SAS. T will give instructions in
class.

2.4.2.2  Multivariate Outliers

One simple test to determine whether there are any outliers is to examine the maximum D? value. Let

D2 . = max D?. Using the Bonferroni inequality, the hypothesis that no outliers exist can be rejected if
n—d—1 1 1—a/n
Finax = -1 > F .
( d )[1nDiuﬂn1V et

This test suffers from masking and swamping. An outlier is masked if it can not be detected unless certain other
observations are deleted from the data set.

2.4.2.3 Mardia’s Coefficients of Skewness and Kurtosis

Mardia has generalized skewness and kurtosis coefficients to multivariate distributions. The coefficients and their
estimators are described on pages 96-99 in Rencher (2002).

2.4.2.4 Henze-Zirkler Invariant Test

Consider a test of Hy: y ~ N(u, ¥) against the alternative H, : y ¢ N(u, ). Denote the empirical characteristic
function of the standardized sample values z; = S™'/2(y; —¥) by 1, (t). That is,

Yn(t) = % > exp{it'z;},
j=1
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where i> = —1. Denote the characteristic function of N(0,1,) as to(t). That is,

Go(t) = B (exp{it'u}) = exp{—t't/2},

where u ~ N(0,I;). The Henze-Zirkler test statistic is

Doy = [ n(®) = wo(®) 9a(t) .

where ¢5(t) is the pdf of N(0, 321,). Henze and Zirkler (Communications in Statistics — Theory and Methods,
1990, 19, 3595-3617) give an equation for 8 and describe how the test statistic can be computed. The distribution
of the test statistic can be approximated by a log normal distribution. The null hypothesis is rejected for small
values of the test statistic. This test can be performed in SAS.

2.4.3 Testing Normality in SAS
1. Histogram and Kernel Smoothed Density Plot

proc univariate data = dataset plots noprint;
var Y1;
title ’Smoothed Histogram of Y1°’;
histogram Y1 /kernel(1l=1 color = black);
inset mean std skewness kurtosis;

run;

2. Normal Probability Plot, Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling

proc univariate data = dataset normal;
var Y1-Y4;
qgplot Y1-Y4 /normal (mu=est sigma=est) cframe=ligr
pctlaxis(grid lgrid=35 label=’Normal Percentiles’);
inset mean std / cfill=white format=3.0 header=’Normal Parameters’
position=(95,10) refpoint=br;
run;

3. QQ Plot of Scaled D? fit to Beta, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling

proc iml;
small=1.e-10;

[k *x/
/* Module to compute the rank of a matrix */
K */

start rankM(A) global(small);
m = nrow(A); n = ncol(A);
call svd(U,S,V,A);
ifm=1
then S = S[1];
else if m = 0 then S = {0};
tol = max(S) * small;
r = max(loc(S>tol)); /*rank of A = number of nonzero singular values */
return(r);
finish rankM;

use new;

read all var {yl y2 y3} into Y;
read all var {x1 x2 x3} into X1;
reset noprint;
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n=nrow(Y); d=ncol(Y);
X=J(n,1) || X1;
r=rankM(X) ;
H=X*ginv (X ‘*X)*X*;
E=Y-Hx*Y;
S=(E‘*E)/(n-1);
A=Exinv(S)*E‘;
DD=vecdiag(A);
hi=vecdiag(I(n)-H);
u=(DD#H1##(-1))/(n-1);

*’

* Under multivariate normality, the entries of u are each;
* distributed as a beta random variable with parameters;

* d/2 and (n-r-d)/2, where r = rank(X);

*  For this data set d/2=1.5 and (n-r-d)/2 = 24;

x5

Dn=max (DD) ;

Un=max (u) ;

F_max=((n-r-d)/d)*Un/(1-Un) ;

prob_F =n*(1- probf (F_max,d,n-r-d));
print Dn Un F_max prob_F;

create tdata from u [colname = ’u’];
append from u;

close tdata;

data total;
merge res_out tdata;

proc univariate data = total;
var u;
H

If d = 3, n = 50, and r=3 then alpha = 1.5 and beta = 22;

qgplot u/beta(alpha=1.5 beta=22 threshold=0 scale=1);

histogram u / beta(alpha=1.5 beta=22);
inset mean (5.3) std = ’Std Dev’ (5.3) Skewness (5.3)
Kurtosis (5.3) /header = ’Summary Statistics’ pos = nw;
titlel ’Plot of Mahalanobis Distances’;

run;

. Henze-Zirkler Invariant Test and Mardia’s Multivariate Skewness and Kurtosis

proc model;
parms b0l bll b21 b31 b02 bl2 b22 b32 b03 b1l3 b23 b33;
instrument x1 x2 x3;
Y1 = b0l +bllx*xxl + b21*x2 + b31*x3;
Y2 b02 +b12*x1 + b22*x2 + b32*x3;
Y3 b03 +b13*x1 + b23*x2 + b33*x3;
fit Y1-Y3 /normal;
run;

2.5 TRANSFORMATIONS TO NORMALITY

Consider the linear model vec(Y) ~ N [vec(XB), ¥ ® I,,]. This model requires that the rows of Y, say

Y1,¥2,-.-,yYn be independently distributed as normal random vectors with equal variance and that E(Y) € R(X).
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It often happens that data do not conform to these assumptions. A typical problem is that the covariance matrix of
the y;s is not constant. Sometimes Var(y;) is a function of E(y;). If this is the case, then the investigator could use
weighted regression with weights W, oc [Var(y;)]~! or could try to transform the data to better meet the
assumptions. A method for selecting a transformation are described below.

2.5.1 The Box-Cox Family of Transformations: Univariate Approach

One approach to transforming the data is to find a set of d transformations so that if the j*" transformation is
applied to the j*" column of Y then the result will be a column vector that satisfies the usual assumptions. In
particular, the Box-Cox family of transformations (Box and Cox, 1964) could be applied separately to each column
of Y.

Let u; be the 4t column of Y. Then, the transformed variables are

The goal is to choose \; so that z; ~ N(X3 o21). Tt can be shown by using L’Hopital’s rule, that

Jr"g
lim z;; = In(u;;).
Ao T4 (uij)

o2I). Make the transformation

To choose )\;, assume that the random vector z; has distribution z; ~ Nn(X,Bj, ;

from z; to u;. The Jacobian of the transformation is []_, u;\jrl. Accordingly, the random vector u; has density
function
exp{~sbza(u)} (o
fu) = ——— ([[wy )
( 7“7]’)2 i=1
where

n Aj 2
uy? —1
Q(uj) = Z < ])\j - Xé@) = (Zj - Xﬁj)/(zj - X/@j)-
i=1
The parameter A\; can be estimated by maximizing the likelihood function. In practice, it is easier to maximize
the log likelihood. For fixed A;, the MLE’s of 0’? and 8, are known to be

z.(I-H)z,;
b\_g\ _ g( ) ]7
7 n
and R
B/\j = (X’X)‘X’zj7

where H = ppo(X). Hence, omitting the constants, the profile log likelihood function (i.e., the likelihood function
maximized over sz and 3;) for fixed A; is

L(\) = =5 In(33,) +n(; - 1),
where

n
w = 71_1 Z 1n(ul])
i=1

Note that ¢” is the geometric mean of response vector. Alternatively, let

Zij
t= —2—

n % -
g= (H uij) =e"
i=1

is the geometric mean. Then, L(A;) simplifies to

where

L()\]) -5 1H(S>\j),
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where T
t'(I— t
Si :Q andt:Zj X ~._1
J n g J
To maximize the likelihood function, one need only find the value of A; which minimizes s?\j. Large sample
confidence intervals for A;, in the Box-Cox family can be constructed by inverting the generalized likelihood ratio

test. A value, g, is inside the (1 — «)100% confidence interval if

eL (o) )
—2In |:8L(5\j):| < Xl—a,l'

Thus, a 100(1 — )% confidence interval for \; consists of all values, Ao that satisfy

nln SSL(/)\\()) S X%—a‘h
Aj ’

SSE(X,)

where SSE(Xo) is the error sum of squares,
SSE(X\o) = t'(I— H)t,

computed using A; = Ag, and SSE(XJ-) is the error sum of squares computed using A; = Xj, the MLE of A;.

2.5.2 The Box-Cox Family of Transformations: Multivariate Approach

In the approach in the previous section, the columns of Y were transformed one at a time. It is well known that
marginal normality does not imply joint normality so a better approach might be to choose the transformation
powers simultaneously.

Let Z be the matrix of transformed responses, where

Zij =
If vec(Z) ~ N [vec(XB, ¥ ® I,,], then the pdf of Y is

exp{%tr [(ZXB)’(ZXB)EI}} n d

Aj—1
Y;¥ B\ = I
f( ) (271_)nd/2|2|n/2 ggyj
The parameters B, X, and A = ()\1 . /\d)/ can be estimated by maximizing the likelihood function.

A variant of this approach is to require that all A values be identical; i.e., A = 14\ for some scalar . This
constraint is sensible in repeated measures or longitudinal studies where the d measures represent the same variable
observed on d occasions.

2.6 CORRELATION AND REGRESSION

2.6.1 Correlation: Population Parameters

Consider the random d-vector y ~ (u,X). Denote the jk' element of ¥ by . Be careful, var(y;) = 032- =0j;,
not 0']2-]». The correlation between y; and yy, is defined as

Ok
_ J
ik = ————.

V035jOkk

By the Cauchy-Schwartz inequality, p?k < 1. The quantity p?k is called the coefficient of determination between
variables j and k.
Define D by D = diag(3X). Then, the matrix of correlations is

R=D:SD 2.

It can be shown that 0 < |R| < 1.
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2.6.2 Correlation: Sample Statistics

Let Y be an n x d matrix for which the rows of Y are a random sample from (u, X). Denote the " column of Y
by y;, denote the ij*" entry of Y by yi; and denote the mean of the 4 column by .5 The usual sample estimate
of Pik is
_ > oic1 (Yis = 9.5) Wik — Y1)

Vi Wis — 5.2 20 ik — )2

(yj - ]-n?]j)/(}’k - 1ng-k)
VI = 1075) (v — 108l (Ve — 1n8) (Ve — Lnok)]
ys‘ (L. —Hi)ys Sjk

i \/M(In ~H))y; i (L - H)ye Vo5

T‘jk

where H; = ppo(1,,) and s, is the jk'" entry in

Y'(I, - H)Y

A Py

Let
u; =y; — 1,95 = (I —Hi)y;
for j =1,...,d. Let 6;; be the angle between u; and u;. Then
ujuy
cos(bji) = —————= =Tk

[wfu; ] [u)uy]

The matrix of sample correlations, R = {rjx}, can be computed as follows:

o~

R=D"

N

SD~

=

)

where ~
D = diag(S), and H; = ppo(1,).

Inferences about p;; can be made using the following distributional results.

Theorem 2.4 IfY is normally distributed and p;; = 0, then

[\V]

Tig VT —
NA

The null hypothesis Ho: p;j =0 can be rejected in favor of the alternative Hy: p;; # 0 if |t| >t

Proof: The conditional distribution of y; giveny; =y; is

t= ~tn—2.

1-a/2
n—2 -

Yily; ~ N(1nfo + ¥ 51, 0ii-i1n),
where By = p; — Bipy; Pr = 045/045; and 045 = 04 — O’ijO'j_le'ji =o0;(1— pfj). The usual t statistic for testing
H(]I 51 =0 1s
~ 5 2
= 7A51A ~tn_2x, where A = Biln 5 )8is = ( ) ”g”.
SE(B1) 20,5 2055(1 = pi;)

Using the annihilator, it is readily shown that

= . L1 _ 54
B = [0 -H)y;] ¥ - H)y: = sj; s = 1 ﬁ, where Hy = ppo(1,);
Ji

Oii-j

—_— and
(n—1)sj;

Var(B1) = iy [§5(L0 — H)y,] ' =
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Goio yi(I, — H)y; _ yi(In — Hy — Ha)y; _ (n -1
(2] - -

(1 —r2).
n—2 n—2 n—2> sill=13)

Accordingly,
Sii

Tij —
Sjj . rij\/n—Q

\/sii(l—r?j) \/1—7%
(n —2)sj;

If pi; =0, then B1 =0 and t has a central t distribution with n — 2 degrees of freedom.

t=

Theorem 2.5 (Fisher’s Z) IfY is normally distributed and n is not small, then

1 147\ . _
§ln<1—rz>NN[§“’(n_3) ',

1. (14 py
§ij—21n<1p])-
— Pij

1 1 i
v]

is called Fisher’s Z. The endpoints of an approzimate 100(1 — )% confidence interval for &;; are given by

where

The statistic

*
S —

Vn—=3

where Zikfa/2 is the 100(1 — «/2) percentile of the standard normal distribution. Back transforming from &;; to p;;

Zii £

yields an approzimate 100(1 — a)% confidence interval for p;;:

exp{2 (Ziv —zi‘_a/Q/\/m>} -1 oo exp{2 (Zij +zi‘_a/2/m>} -1
exp{2 (Zi' —zi‘_a/2/\/m>}+1 = Pij = exp{2 (Zij"_zif—a/z/m)}—l—l.

2.6.3 Multiple Correlation: Population Parameter

Consider the random d-vector y ~ (u, X), where ¥ > 0. Conformably partition y, g, and 3 as

Y1 H1 o 0
= , = , and ¥ = ,
Y <Y2> # <N2> <021 Ezz)

where y1, p1, and 011 = 07 are scalars. The squared multiple correlation between y; and ys is defined as the
maximum squared correlation between y; and a linear combination of y. That is

2
Pla = max [corr(ys, t'y2)]".
Theorem 2.6 The squared multiple correlation between y1 and ys is

/ 271
,022 = [Corr(yl,tlyz)]2 = M’
o11

where t = X35 001
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2.6.4 Multiple Correlation: Sample Statistics
Let Y be an n x d matrix for which the rows of Y are a random sample from (p, X). Let

S — Y/(In - Hl)Y _ (511 5/21

=1 ) where H; = ppo(1,,).

S21 So

The sample estimator of p?, is

Theorem 2.7 If'Y has a multivariate normal distribution and p35 = 0, then

n—d R?
d—1)\1- Rz,

The null hypothesis Hy: p12 = 0 can be rejected in favor of Hy: p1o # 0 if F > Fdl:la’nid.
Proof: Partition Y asY = (y1 Yg), where Yo is n x (d —1). The conditional distribution of y; given Yo = Yg 18

y1| Yo ~ N(1,80 + Y28, 011.21,),

or, equivalently,
Y1 ‘YQ ~ N(Xﬂ7 UQITL)?

where
Bo = p—Bipy By =3y 0o0u;

! -1 2 .
J11.2 = 011 — 0'21222 021 = 011(1 - plQ)v

B = (ﬁ()); X = (1, Yg);and
B

2
o = 011.2-

The model comparison likelihood ratio test for testing Ho: B; = 0 is to reject Hy if ' > F;__{"n_d, where

(n - d) yi(H —Hi)y

F =
d—1) yi(I, —H)y,

where H = ppo(X)

_ (nd) y’1H2,1y1
d—1 yll(In -H; - H2~1)Y1

- (n—d) R%,
- \d-1) (1-R%)

Furthermore, conditional on Yo = Yg, the distribution of F' is F' ~ Fyq_1 yn_q,x, where

05125 Y5 (I —Hy)Y 55, 001
2011(1 = pip)

/ —1 —1
091255 S2235, 021

)\ =
2011(1 — py)

=(n-1)

Note that

E(A):(n—l)ﬁ.

Also, under Hy: p12 = 0, the noncentrality parameter goes to zero and the test statistic has a central F distribution.

a
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2.6.5 More on Conditional Distributions

In this section additional details on the conditional distribution of y; given Yg are described. The results in this
section provide an alternative proof of Theorem 2.7.
Let Y be an n x d matrix for which the rows of Y are a random sample from N(u,3). That is,

Y = 1,4’ + E, where vec(E) ~N(0,X ®1,).
Equivalently,
vec(Y) ~N[Ig®1,)p, E@1L,].

Partition Y, u, and X as

M1 011 0/21
Y = Y,), = , and X = ,
(v 2), » (Hz) (0'21 222)

where y; is n x 1, and g1 and 017 are scalars. From previous results, it is known that
vil(Y2=Y3) ~N {1n,u1 + (Y2 — 1nﬂ;)2521021»011-21n:| ;
where
0112 =011 — 0'/2122_210'21.

Rearranging terms yields the regression model
Y1 = XIB + £,

where

: — Yo
T

Using annihilator results, the MLE (OLS) of 3, is

X~ . .. 1.
By = [, —H)Ya| V(L —Hi)y: = S3sa,

where H; = ppo(1,). The conditional distribution of Z‘]Q given Yy = Y, is

Bol(Yo =Yy) ~ N {52,011.2 [Yé(ln - H1)Y2} _1} .

That is, R )
B2l(Yz2 = Yo) ~ N [B,,0°S5, /(n — )],

where 02 = 011.9. The usual estimator of o2 is

o Yilln —H)y
o = ———7F"
n—d

where H = ppo(X) and rank(X) = 1+ (d — 1) = d. Write X as X = (1, Y3). Recall that H can be decomposed
as
H=H, +Hy,,

where

H;, = ppo(l,)= nilJz and

Hyi = ppo{[L —ppo(1,)] ¥2} = (I — BV, [V4(T, — Hy)¥,] ¥4, - H))

Accordingly, 62 can be written as

¥i(L, — Hy)ys -y (L — H)Y [V, - H)Ys| - Y30, - Hy)y,

n—d
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(- 1)S s5155p 821 _ (n—1)sn (1-R2).

n—d n—d
Conditional on Yy = Y27 the likelihood ratio test of Hy: B, = 0 versus H,: 85 # 0 is to reject Hy if F' > Fdljﬁnfd,

where . L
BoYo(In —H1)Y2B, (n—d R,
(d—1)562 d—1 1-Ryy)"
Note that the unconditional distribution of F' under Hg is Fg—1,,—q. Also note that
s51S3821 _ R(B1,B,) — R(B)

R?, = = ,
12 s11 yiy1 — R(61)

F =

which is the usual R? in regression models.

2.6.6 Partial Correlation

Consider two random vectors, y: p X 1 and x: ¢ x 1 with joint distribution

YY onN | [P Yy Sy
x By ) \Bey )|’
The covariance matrix for y|(x = %) is called the partial covariance matrix and is given by
Varly|(x = %)] = By = By, — 2}, 55,5,

Let Dy,., = diag(X,,.5). Then, the partial correlation matrix for y given x is

1

_1 1
Ryye = DyyadyyoDyy'a
Note that the partial covariances and partial correlations do not depend on X. If p = 2 and ¢ = 1, then

Py1,y2 — Py1,2Py2,

JO=2 0=,

pyl,yzlr -

2.6.7 Prediction & Regression: Population Parameters

2.6.7.1 Best Predictor (BP)

Consider two random vectors, x and y, with joint density f(x,y). The density need not be normal. Suppose that x
can be observed, but y can not be observed. We wish to predict y based on the observed x. Denote the predicted
value of y by g = g(x) (random variable) or g = g(%) (realization). The best predictor is defined as the function g
which minimizes

MSE(g) =E[(y —8)Q '(y - 8)].
where Q is a positive definite matrix (e.g., a covariance matrix).

Theorem 2.8 The best predictor is g = E(y|x).
Corollary. The best predictor is unbiased: E [E(y|x)] = E(y).

2.6.7.2  Regression Under Normality

Consider the random (p 4 1)-vector z ~ N(u, 3), where X > 0. Conformably partition z, p, and X as

2
_ (Y _ My _ (o5 Ly
o= (1) (o) mem (g 3).

where ¥, 1y, and 05 are scalars. Suppose that we wish to predict y after observing x = %. The best predictor is

B(ylx = %) = piy + o 50 (X — p,) = fo + B1%,
where
ﬁO = My — /6/1“’:1: and 161 = E;zlz:vy
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2.6.7.3 Best Linear Prediction (BLP)
Consider two random vectors, x: p X 1 and y: ¢ x 1, with moments
YY) (Hy Y _w (o e
E <X> = (I‘l‘w) and Var (x) =3 = <2my 2m> .

Suppose that we wish to predict y after observing x = %. The joint density of x and y is not known, so the BP can
not be used. Instead, we will find the BLP. The BLP minimizes

MSE(g) =E[(y -8)Q '(y - &)],
where € > 0 subject to

1. g(x) = By + Bx, where 8 is a ¢ x 1 vector of constants and B; is a p X ¢ matrix of constants.

2. E(g) = E(y)-

Together, the two constraints imply that 3, = p, — Bjp,. Thus, the BLP minimizes

MSE(g) = E{[(y - p,) ~ Bi(x — )/ 2 [(y — ,) — Bi(x — )]}

Theorem 2.9 The BLP is g(x) = B, + Bix, where By = 2,3, and By = p, — Bip,.

Corollary. For ¢ = 1, the BLP is g(x) = 8y + 81, where 8, = £.13,, and By = p, — 811,
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ESTIMATION OF B AND 3 FROM
MVN

3.1 COMPLETE DATA

Consider the model Y = XB + U, where vec(U) ~ N[0, (X ® 2)], X is an n x p known model matrix with rank
r < p, B is an unknown p x d matrix of regression coefficients, 3 > 0, and €2 is a known n X n positive definite
matrix.

3.1.1 Maximum Likelihood Estimator of B
Theorem 3.1 A mazximum likelihood estimator of B is any solution to the normal equations:
X'Q'XB=X'Q'Y.

One solution is
B=(XQ'X) XQ'Y,

where (X'Q71X) " is any generalized inverse of X'Q~1X. If X has full column rank, then the estimator is unique
and is given by B = (X’Q_1X)71X’Q_1Y. Proof: in class.

Corollary 1 If  =1,,, then B = (X'X)"X'Y.

Corollary 2: Partition Y as

where y; isd x 1. If E(y;) = p for i = 1,...,n and £ = I,,, then the model simplifies to y; ~ iid N(u, X) or
Y = XB + U, where X = 1,,, and B = g’. The maximum likelihood estimator of B is B =n"'1,Y = y'. That is,
B=y.

Corollary 3 If C’ vec(B) is estimable, then the BLUE is C’ vec(B).

Corollary 4: If the linear function C{BCj is estimable, then
Disp(C,BC,) = C4XC, @ C}(X'Q'X) C,.

It is readily shown that the linear function C{BCs; is estimable iff C; € R(X').

23
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3.1.2 Maximum Likelihood Estimator of X

Theorem 3.2 Let A: q X q be a positive definite matriz and let m be a known scalar constant. Then

_1 -1 __mgq mq
maxeXp{ 2tr€:I> A)} :exp{ 2m}m 2 ,

®>0 |®| = |A|Z

and the maximizer 1is

~

®=m'A.
Proof: The Cholesky factorization of ® ' can be written as ® 1 = I'T’. Consider marimizing

_ |A| 7 exp {—1tr(®1A)}

g(T) o
||

= \I"AI‘|%exp {—% tr(l’”AI‘)} .
Note that .
m 1
In [g(T)] = 5 > In(\) - 3 >

where \; for i =1,...,q are the eigenvalues of T'AT. Mazimizing In [g(T')] with respect to the \;s reveals that
VAT = mI. The result follows.

O
Theorem 3.3 Consider the model Y = XB + U where vec(U) ~ N,4[0, (X ® 2)]. Then, the MLE of X (for
known ) is
-~ YQYI,-P)Y
5 Y0 '0,-PY
n
where
P=XXQ'X) X'Q "
Note, if @ =1, then P = ppo(X).
Proof: Write the likelihood function of B and ¥ given Y as
exp {—% tr[2H(Y - XB)'Q (Y — XB)]}
L(B,X|Y) = ] o .
|Z[=[Q[* (27)
Mazximize, first, with respect to B. Then apply the previous theorem.
O

Corollary 1: E(X) = (n —r)X/n.

Corollary 2: E(S) = X, where
nY  Y'Q I, -P)Y

n—r n—r

3.2 INCOMPLETE DATA: EM ALGORITHM

The EM algorithm is useful for computing MLEs when some data are missing.

S —

3.2.1 References

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data
via the EM algorithm (with discussion), Journal of the Royal Statistical Society, B39, 1-38.

Little, R. J. A., and Rubin, D. B. (1987). Statistical Analysis with Missing Data, New York: John Wiley.
McLachlan, G. J., & Krishnan, T. (1997). The EM Algorithm and Eztensions, New York: John Wiley.



Chapter 4

WISHART DISTRIBUTION

The Wishart distribution is a multivariate generalization of the gamma distribution.

Definition: Let Y be an n x d random matrix. Assume that n > d. Denote the i row of Y by y’ and suppose that
yi, for i = 1,...,n, are independently distributed as y; ~ N(u,;, X). That is,

vec(Y) ~ N[vec(M), (Z®1,)],

where M = E(Y). Then, the d x d matrix A = Y'Y is said to have a d-dimensional Wishart distribution with n
degrees of freedom, covariance matrix X, and noncentrality matrix A = X~'M’'M. The distribution of A is
denoted by A ~ Wy(n, X, A). If A =0, then A is said to have a central Wishart distribution. A central Wishart
distribution is denoted by W 4(n, 3, 0) or, simply, W,4(n, X).

4.1 ANDERSON’S THEOREM

Anderson (1984, p. 245-249) gives a derivation of the central Wishart density. In the process, he proves a very
useful result.

Theorem 4.1 Let Y be an n x d matriz with density fy (Y'Y). That is, the density of Y depends on'Y only
through A = Y'Y . Then, the density of A is

-
o

fa(A) = 4] °

where I‘d(%) s the multivariate gamma function:

d .
d(d—1) 1 —1
Ty(t)=m 1 HF(t—T)

4.2 PROPERTIES OF THE WISHART DISTRIBUTION

Recall that if y; ~ iid Ng(0,¥) for ¢ = 1,...,n, then
A= "yiyi =YY ~Wqy(nX),
i=1

where
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Theorem 4.2 If A ~ Wy(n,X), then the joint density of the distinct elements [that is the d(d + 1)/2 elements in

the upper or lower triangle/ is
n—d—1
2

|A| exp{—3 tr(X7'A)}
2% |E\%Fd(%)

f(A) =

)

for A >0 and ¥ > 0.

Theorem 4.3 Suppose that A ~ Wy(n,X). Let T be a symmetric matriz of constants. Then, the moment
generating function of A s
Ma (T) = Efexp{tr(TA)}] = [I; — 2TX|" 2.

O

Theorem 4.4 Suppose that Y is an n x d random matriz with distribution vec(Y) ~ Npq[vec(M), Q] where £ > 0
and E(Y) = M. Let A be an n x n symmetric matriz of constants. Then, Y'AY ~ Wy(m,Z,A) iff QX1 @ A)
is idempotent. The parameters of the Wishart density are given by m = rank(A),

3 = [tr(A)] ' Ty[(Iy @ A)Q(I; @ A)],

and A = X~'M’'AM.

A proof of this remarkable result may be found in Appendix A of

Boik, R.J. (1988). The mixed model for multivariate repeated measures: validity conditions and an approximate
test. Psychometrika, 53, 469-486.

Corollary 1: Suppose that Y is an n x d random matrix with distribution vec(Y) ~ N, 4[vec(M), (£ ® L,)], where
¥ >0 and E(Y) = M. Let A be an n X n symmetric matrix of constants. Then, Y/AY ~ Wy(m, X, A) iff A is
idempotent. The parameters of the Wishart density are given by m = rank(A) and A = X~'M'AM.

Corollary 2: Consider the setup in Corollary 1 in which M = 1,,u’. That is, the rows of Y are iid Ny(u, X). Define
HbyH=1, -n"11,1,. Then, YHY ~ Wy(n —1,%,0).

Corollary 3: Suppose A; ~ ind Wy(n;, X, A;) for i = 1,..., k. Then,

k
> A~ Wy(n, A,

i=1

where n. = Zle n; and A. = Zle A;. The proof of the Corollary consists of noting that A; ~ Y}Y; where
vec(Y;) ~ Ny, a[vec(M;), (X ®1,,)] and A; = X~'M,M,. Then, Zle A; ~ Y'Y where

Y,
Y,
Y=| . and  vec(Y) ~ N[vec(M), (Z ®1I,.)].
Y
Now use Corollary 1.

Theorem 4.5 Suppose that A ~ W4(n,I). Write A in terms of its Cholesky decomposition: A = R'R where R is
an upper triangular matriz having positive diagonal elements. The d(d+ 1)/2 elements in R are distributed,
independently as

N(0,1), if i < Jj;
Tii ~
T\t ) ifi=j.
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O
Corollary 1: Suppose that A ~ Wy(n,I). Then,
d d
Al =TT ~TI i+,
i=1 i=1
where the x?’s are mutually independent.
Theorem 4.6 Suppose that A ~ Wy(n,X). Let C be a d X ¢ matriz of constants having rank-q, Then
C'AC ~ W, (n,C'EC).
O

Corollary 1: Suppose A ~ Wy(n,X). Let t be any nonzero d x 1 vector of constants. Then, t' At ~ o%x?(n) where
2 /
o° =t'3t.

Corollary 2: Suppose that A ~ Wy(n,3). Then,

d

A= ~ [P =i+ 1),
i=1

where the x?’s are mutually independent.

Theorem 4.7 Suppose that Y is an n x d random matriz with distribution vec(Y) ~ Npq4[vec(M), (X ®1,)], where
¥ >0 and E(Y) =M. Let A and B be n x n symmetric matrices of constants. Then, Y'AY and Y'BY are
independent iff AB = 0. Proof: use univariate results.

O

Theorem 4.8 Suppose that Y is an n x d random matriz with distribution vec(Y) ~ Npq4[vec(M), (X ®1,,)], where
3 >0 and E(Y) =M. Let A be an n x n symmetric matriz of constants and let B be a p X n matriz of constants.
Then, Y'AY and BY are independent iff BA = 0. Proof: use univariate results.

O

Theorem 4.9 Suppose that Y is an n x d random matriz with distribution vec(Y) ~ Npq4[vec(M), (2 ®1,,)], where
¥ >0 and E(Y) =M. Writed as d = p+ q and partition Y as'Y = (Y1 Yg), where Y1 isn X p and Yo is
n x q. Partition M conformably and partition X as X = {X;;} fori,j = 1,2 where 311 is p X p. Then,

VGC(Y1)|Y2 ~ an[vec(Ml.g), (211.2 X In)],
where M1.2 = M1 + (Y2 — M2)22_21221 and 211.2 = 211 — 21222_21221.

Corollary 1: Consider the setup in Theorem 4.9 in which M = 1,,u’. Partition p as

_ (1
n=(t),
where p; is p x 1 and p4 is ¢ x 1. Then,
VeC(Y1)|Y2 ~ an[VeC(Ml‘Q), (211.2 X In)]7

where M. = 1n0, + Y22521221 and 0 = ny— 2122521N2~
Corollary 2: Suppose that A ~ W ,(n,X). Partition A and X as

A (R Rn) e (35
where A1; and 317 are each p X p. Then, the following hold.
L Ajpo~Wy(n—q,Z11.2) where Aq1.0 = Ajp — A1aAy Aoy and Byp0 = X1 — E12 85, By
2. Agoi ~ Wy(n —p, Eao.1) where Aogq = Agy — Agj AT As and Eooq = Zog — 201 B S p0.
3. Aj1.0 is independent of both Ass and As;.

4. Asgs.q is independent of both A1, and Aqs.
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Chapter 5

PRINCIPLES OF TEST
CONSTRUCTION

5.1 LIKELIHOOD RATIO TESTS

Consider a random matrix Y having density f(Y|0) where 6 is a vector of parameters. If some parameters are in
matrix form, then vec or vech them. The likelihood function is obtained by considering f(Y|@) as a function of the
parameters given the data. The likelihood function for 8 given Y is written as L(0]Y).

Suppose that a test of Hy: 8 € Qg against H,: 6 € Q, is desired. It is assumed that Q¢ N Q, = 0, otherwise the
hypotheses may not be sensible. Define Q by Q = Qg U ,. The likelihood ratio (LR) criterion is defined as

where
Ly=sup L(O]Y) and L, =supL(0]Y).
0 e
The null hypothesis is rejected for small values of the LR criterion. The above test also is the likelihood ratio test
of Hy: 8 € Qg against H,: 8 € Q.
Suppose that the dimension of the parameter space €)g is r and that the dimension of the parameter space € is
s. The dimension of a parameter space is equal to the number of functionally independent parameters which are
free to vary. Then, under some fairly general regularity conditions and a true null hypothesis,

-2 In(A) dist (s —r)

as n — o0o. This is the kind of result which is proven in STAT 550.

5.2 UNION INTERSECTION TESTS

The union intersection (UI) procedure was developed by S.N. Roy in 1953. It provides an alternative way of
constructing a multi-parameter test. Consider the same setup as for the LR test. If s — r = 1, then the LR and Ul
tests are identical. However, when s — r > 2, the LR and UI tests may differ. In general, for testing
multi-parameter (composite) hypotheses, there is no uniformly most powerful test. Accordingly, it is sensible to
consider the merits of a variety of tests.

To construct a Ul test of Hy: 8 € g against H,: @ € Q,, the null is rewritten as an intersection of
one-parameter hypotheses and the alternative is rewritten as a union of one-parameter hypotheses. Let ¢;(6) for
t=1,..., K be a set of scalar valued functions of 8. Let €y ; be the parameter space induced by the
transformation from 6 to g;(8). That is,

Qo = {7|7 = g:(0) for some 0 € Qy}.
The parameter space €1, ; is defined similarly:

Qo = {7|7 = g:(0) for some 0 € Q,}.

29
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The composite null and alternative hypotheses can be written as

K K
m HOJ'Z gl(0) S QO,i and U Ha,i: gl(0) c Qa,i~
=1

i=1

That is, for Hy to be true, ¢;(8) € Qo ; must be satisfied for all ¢ and for H, to be true, ¢;(8) € §,,; must be
satisfied for some i. In practice, K may be infinite.

For example, suppose that we wish to test Ho: g = 0 where p is a d-vector of population means. A finite
union intersection set of hypotheses is obtained by defining ¢; as g;(¢) = p;. In this case, the UI hypotheses are

d d
m H071‘2 Hi = 0 versus U Ha,i: 2z 7é 0.

=1 i=1

An infinite union intersection set of hypotheses is obtained by defining g; as g;(p) = t}p, where t; is a d-vector of
coefficients. In this case, the UI hypotheses are

t'u=0V+t versus t'p # 0 for some t.
Let .S; be a test statistic for testing
Ho’il gz(e) € QO,i versus Ha,i: 91(9) S Qaﬂ;.

In practice, S; is typically the LR statistic for testing Ho ; against H, ;. Assume that the null is rejected if S; is
large. Then the UI test rejects the composite null if S is large, where

S =supS;.
i

To perform a size « test, the null distribution of S is needed. In practice, it is usually easier to derive the UI test
than it is to derive the null distribution of the UI test statistic. A more complete description of the Ul principle can
be found in Srivastava & Khatri An Introduction to Multivariate Statistics, 1979, p. 104-110.
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MULTIVARIATE TEST STATISTICS

In univariate linear models, the usual test statistics are functions of two independent sums of squares, SSE and
SSH. Typically, SSE and SSH are independently distributed as

SSH SSE
3 ~x*(v1,))  and 7NX2(V270)-

(2

A size a test of Hy: A = 0 is given by the following: reject Hy if F > F!1~% where

- SSH Vo
r=(5sz) ()

and Fl}l_,jé is the 100(1 — «) percentile of the central F' distribution with vq and vo degrees of freedom. An identical

test is given by the following decision rule: reject Hg if By > B(1 — o, %4, %) where
SSH
B = o Tcar
SSH + SSE
and B(1 — a, %, %) is the 100(1 — ) percentile of the central Beta distribution with parameters %- and 2. A
third, identical, test is the following: reject Ho if By < B(a, %, %) where
SSE

B2 = S5H 1 55E

and B(a, %, %) is the 100 percentile of the central Beta distribution with parameters % and %-.
Many of the multivariate test statistics can be expressed as functions of two independent Wishart matrices, E

and H. Typically, H and E are independently distributed as
H~ Wd(mH, 2, A) and E ~ Wd(mE, 2, 0).

In some applications, my may be less than d, in which case, H will have a singular Wishart distribution. We
assume that mg > d so that E has a nonsingular Wishart distribution.

We wish to test Hy: A = 0. Denote the ordered nonzero characteristic roots of (E + H)™1H by
01 >0 >--->0, >0, where s = rank(H) = min(mpg, d). The usual multivariate test statistics are functions of the
0;’s. In the univariate case, s =1, By =01, Bo =1 — 6, and

mpb

F=—"—
mH(l —91)

6.1 WILKS’S LAMBDA
A size « test is given by the following: reject Hg if U < U(a,d, mpy, mpg) where

E|

U= —"_—,
|E + H]

31
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and U(a,d, mg, mg) is the 100« null percentile of the U distribution. The U statistic is a multivariate
generalization of the beta random variable, Bs. Note that

U= ﬁ(l - 91)7

where s = min(my, d).

Lemma Suppose that T and Z are scalar random variables having finite ranges. If E(T"%) = E(Z?) for
1=20,1,...,00, then T and Z have identical distributions.

Theorem 6.1 The null distribution of U is

d
U~]]B:, where B;** B<

i=1

meg —1+1 @

2 T2 ’
Proof: Recall that if T ~ B(a, 8), then
Na+6)Ta+h)

BT = Ny Hat 51 h)

The proof consists of showing that

d mE+2h+1 1)1-\(7nE+7n2H+1—i)

Zl;[ll—\ mEJrl 7,) (mE+mH2+2h+17i)’

and then using the lemma. Details are an exercise.

Theorem 6.2 Suppose that Uy ~ U(d,mpg,mg) and Uy ~ U(mp,d,mg +myg —d). Then, Uy ~ Us. The proof
consists of showing that E(U) = E(UY) for all h > 0.

O
The most widely used approximation to the distribution of U is due to Rao (1951). Rao showed that, under Hy,

(ft—g)(1-U?)

~ Fimy ft—g

deU%
where
f d—mg+1 dmg — 2
=m _——_— — [ —
E 2 ) g 9 )
and

1
. ( d*m?% — 4 )2.
d?>+m? —5
If dmpy = 2, then ¢ is set to 1. Rao’s approximation is exact if min(d, mgy) < 2.

An alternative expansion of the characteristic function yields a x2? approximation to the distribution of U. The
x? expansion is due to Box (1954). Using only the first term in the expansion:

fIn(U) <~ x*(dmpg),
where
d—mpg+1
—

Table D13 in Seber (1984) gives percentiles of the U distribution in terms of the chi squared approximation.
Table D13 gives correction factors, C,, such that

f=mg—

Pr[—fIn(U) > CoX*(1 — a,dmpy)] = a.

To use D13, define M as M = mpg — d + 1 and define f as above. Note, from the table, that for C, — 1 as
M — oco. Table A.9 in Rencher (2002) gives lower percentiles of U.
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6.2 PILLAT'S TRACE

Pillai’s trace statistic is defined as
V) = tr [H(E n H)_l} :

which also can be written as .
Ve =30,
i=1
An accurate approximation to the null distribution of V(%) is

(V2+S+ )( 4 ) ~ Fls(2u1 +s+1),8(2ve +s+1)],

2v1 +s+1 s—V()
where
|dme\71 mEfdfl
=————— and rp=—"——.
2 2
Exact critical values are tabled in D16 in Seber (1984) and in Table A.11 in Rencher (2002).

s =min)d,mpy), 11

6.3 LAWLEY-HOTELLING TRACE

The Lawley-Hotelling trace is defined as

which can be written as

The statistic also is called Hotelling’s generalized T2. An accurate approximation to the null distribution of ng, due
to McKeon (1974), is

_ b(mE—d—l) .
ETH) (2= — ) LF
tr )< dmg(b—2) dma b
where dmy +2 d-1 1
b:4+ﬂ and B:(mE+mH_ —(mg — )

B-1 (mE7d73)(mE7d)
An alternative approximation (apparently less accurate but used by SAS) is
2 1
tr(E-H) (22t
$2(2v1 +s+1)

where s = min(mg,d), v1 = (Jd —mpg| —1) /2, and vo = (mg —d — 1) /2. Exact null percentage points for
(mp/my)tr(E"'H) are given in Table D15 of Seber (1984) and in Table A.12 in Rencher (2002).
Alternative approximations to the null and non-null distribution of ng can be found in

) ~ Fls(2v1 + s+ 1),2(svp + 1)),

van der Merwe & Crowther (1984), “An approximation to the distribution of Hotelling’s generalized T¢-statistic,”
South African Statistical Journal, 18, 68-90.

6.4 ROY’S MAXIMUM ROOT

Roy’s test statistic is 67, the maximum root of (H + E)_1H. An equivalent test statistic is

L )

which is the maximum root of E-'H. Table D14 in Seber (1984) and Table A.10 in Rencher (2002) give exact
percentiles for 6. In Table D14 of Seber (1984), the definitions s = min(d, mp), v1 = 1(|d — my| — 1), and
vy = 2(mp —d — 1) are used. In Table A.10 in Rencher (2002), the definitions s = min(d, mg),
m = 3(lJd—mp|—1), and N = 2(mp —d—1) are used. Chart 9 and Tables 6-14 in Morrison (1990) give percentiles
for 61. In Morrison, the definitions s = min(d, my), m = 3(|d — mpg| — 1), and n = 1 (mp — d — 1) are used.

SAS approximates the distribution of ¢1(mg —r —1)/r where r = max(my, d) by an F' random variable. The
p-value provided by SAS is a lower bound on the true p-value, so use caution!
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Chapter 7

HOTELLING’S 77

7.1 ONE SAMPLE SETTING

7.1.1 The Test Statistic and its Distribution

Consider the model
Y =1, +1,

where Y is n x d and vec(U) ~ N[0, (X ® I)]. A test of Hy: p = p is desired.
Theorem 7.1 The LR test of Hy: p = py versus Hy: p # py is to reject Hy for large values of T?, where
T? = (¥ — 1o)'S™H(F — ko)
y=n"'Y'1,; S=n-1""A; A=Y, -X,]Y;

and H,, = ppo(1,,).

Proof: in class

O
Note that S is an unbiased estimator of X.
Theorem 7.2 The test that rejects Ho: p = g in favor of Hy: p # pg for large values of T? also is a union
intersection test.
Proof: Note that Hy says that ¢'p = c’'py for all d x 1 vectors c. Also Hy, says that ¢’y # ¢’ pg for some d x 1
vector c. Note that for fized c, the distribution of c'y is ¢'y ~ N(c'u,n"1c'Sc). Consider the usual t test for
testing Ho: ¢'p = ¢’y against Hy: ¢’ # ¢’y This test rejects Hy: ¢’ = ¢ g for large values of |tc|, where
(¥ — )
te = Vn—"——"".
¢ Vc’Sc
Now mazimize t2 over c.
O

To examine the large sample null distribution of 72 under non-normality, a multivariate version of the central
limit theorem is needed.

Theorem 7.3 (Multivariate CLT) Let Y: n X d be a random matriz having iid rows each with expectation p
and variance . Thus, E(Y) = 1,4’ and disp(Y) =X ®1,. Lety =n"1Y'l,. Then, as n — oo,

Vi(y - p) SEN(O, ).
Proof: Extra Credit.

35
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O
To obtain the limiting distribution of T2, two additional results are useful. It can be shown that

S=X+0,(n ?)and ST =2 +0,(n"?),

where O,, means “order in probability” (see Bishop, Fienberg and Holland, 1975), This means that /n||S — || and
Vn||S7! — X7 each are bounded in probability. It also implies that S converges in probability to ¥ and that S—*
converges in probability to 3 71. It follows that

T2 = (¥ — po)' S~ UF — po) + Op(n™ 7).

The second term on the right-hand-side converges in probability to zero. Using the multivariate CLT, the first term
converges in distribution to a x? random variable having d degrees of freedom. Thus,

dist
77 4

even if multivariate normality is not satisfied.
To obtain the small sample distribution of 72 under normality, we will use the following theorem.

Theorem 7.4 Suppose that A and u are independently distributed as
A ~Wy(m,¥) and u~N(u,X).

Then,
WA tu~ 7X3”\ ,
Xm—d+1
where
N H/22_1N7

and the two chi squared random variables are independently distributed.
Proof: Let z = S tuandlet V=X"3A%"3, Then,

VA lu=72Vlz
Also z and 'V are independently distributed as

z~N (E_%u, Id) and V. ~ Wy(m,1y).
Let Q be a d x d orthogonal matriz whose first column is z(z’z)_%, Conditional on z, the matriz
H=Q'VQ ~ Wy(m,1;). This distribution does not depend on z. Accordingly, it can be concluded that
H ~ Wg(m, 1), unconditionally and that H 1L z. Note that

z'z
b
hi1.2

2V iz =272'Q (Q'VQY1 Q'z=Vzze,\H 'e;Vz'z =

where ey is the first column of 1, and hi1.0 ~ Wi(m —d+ 1,1). That is hi1.0 ~ X%7d+1. Also, 'z ~ X?M’ where
A=pu'S /2.

Theorem 7.5 Under multivariate normality,

n—d
—  \T? ~Fy,_
<d(n— 1)> dn—d\

A= n(“ — o) E " (p — .“0)'
2
Proof: Let m=n—1, A= (n—1)S, and u = /n(y — pg). Now use Theorem 7.4. Note that under Ho: pp = pug,
the test statistic T? x (n — d)/[d(n —1)] has a central F distribution.

where
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7.1.2 Simultaneous Confidence Intervals

In this section, we will construct simultaneous confidence intervals for linear functions of p. The pivotal quantity
method will be used. A pivotal quantity is a function of the data and the unknown parameters. Most importantly,
the distribution of the pivotal quantity does not depend on unknown parameters. If a pivotal quantity can be
identified, then a confidence interval can sometimes be obtained directly from probability statements made about
the pivotal quantity.
Consider the function
Q=n(y—p)STHF — .
Technically, @ is not a statistic because it depends on the unknown parameter vector, p. From prior work, it is
known that
n—d
— | xXQ~Fyn_qo-
|:d(n — 1):| Q d,n—d,0
The distribution of @) does not depend on u, so @) is a pivotal quantity.
Clearly, the following probability statement is true:

dn—-1) 4_,
Pr I:Q S ﬂF;nd] =1-aqa.

Let ¢ be a d x 1 vector. Consider the following function of ¥, u, and c:

nle'(y — p)]?
Gle)= ——~2 .
(c) c/Sc
It can be shown that

max G(c) = Q.

c

Therefore,
din—1)

<
Pr |:méiXG(C) <4

E dl ngd:| =1l-aq,
which implies that

d(n—1)
n—d

d(n 1) -« \/ﬁcl(§ H’) d(’ﬂ 1) 11—«
P ]/ ——LF < < F \V =1—q.
' l V n—q ~dn-d c¢/’Sc V n—d ~dnd ¢ 1

The above probability statement also can be written as

Pr{c’yf Ve'Se x F* <c'p < c'y+ vc/Sc x F* Vc} =1—-oq,

Pr {G(c)g Fd{;ach} =1—-«

and that

where ( )
din—1

F* — N ) Fl—Oé .

s8]

The above results are summarized in the following theorem.

Theorem 7.6 Consider the model Y ~ Nvec(1,p'), X ®1,]. The BLUE of u is'y which has distribution
¥ ~ N(u,n"'X). Simultaneous confidence intervals for all linear functions, c’u, are given by

_ din—1) _
/ / -«
cy+ \/c Sc [ﬁ(nd)} Fiola

With probability 1 — «, all of the above intervals capture the appropriate linear function of w.
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7.2 VARIATIONS IN THE ONE SAMPLE SETTING

7.2.1 Testing that Hy: M'u = 0,

Let M’y = 0 where M is an a priori d X ¢ matrix having rank-q. Suppose that a test of Hy: 8 = 8 is desired. To
construct a test, postmultiply the model by M to obtain

YM =1,4/'M + UM = 1,6 + U*.

Note that vec(U*) ~ N[0, ( M'EXM ®I,,)]. The test is constructed by substituting M'y for y, 8¢ for p,, and M'SM
for S in T2. The resulting test statistic is

T? = n (M'y — 6,)' (M/SM) ™' (M'y — 6y),

(%) T% ~ Fyn—q

and is distributed as

where
\_ (- 00)' (M'SM) 1 (6 — 6,)
— . .

7.2.2 Testing Hy: p = X*03.

Let X* be an a priori d X k matrix with rank-k and let 3 be an unknown k x 1 parameter vector. Define ¢ by
g = dim [N(X*')] It follows that ¢ = d — k. Let M be a d X ¢ matrix whose columns form a basis set for A/(X*).
Thus, R(M) = M (X*) and, by the fundamental theorem of linear algebra, A'(M') = R(X*). It follows that

nw=X*B <+ Mu=0.
Accordingly, the null Hq: g = X*3 can be tested by testing Ho: M’ = 0. Using Section 7.2.1, the test statistic is

T? = ny M(M/SM)'M'y,

n—q )
——— ) T% ~ Fyngs
<q(n1)) q, q

np/ M(M'SM) ™ 'M' .
5 :

and

where

A:

7.2.3 Alternative Method for Deriving the Test of Hy: p = X*3.

Theorem 7.7 The statistic for testing Hy: p = X*B can be obtained by minimizing n (¥ — X*B)'S~1(y — X*3)
with respect to 3. That is,

minn (y - X*B)S~ !y — X*B) = ny M(M/SM)'M'y.
Proof: Using standard linear models results, it is readily shown that
mﬁinn ¥ -X*B)S Iy - X*B) =ny[S7! - STIX*(X¥S™!X*) X¥S !]y.

To complete the proof, it must be shown that

S - STIX*(X¥STIX*) X¥STl = M(M'SM) M/,
where the columns of M: d x q form a basis set for N(X*'). To verify the above equality, let S=2 be the symmetric
square oot of S. Show that R(S2M) = N (X*'S™2). It then follows that ppo(STM) = I — ppo(S™2X*). Can you

fill in the details concerning this line of reasoning? For help, see Khatri’s Lemma in the 505 notes.

a
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7.2.4 Roy’s Step Down Tests

This section is optional. It explains the theory underlying the tests for additional information described in Rencher
(2002), Section 5.8.

Suppose, as above, we wish to test Hy: g = §. The change in notation from g to § is for convenience; i.e., it is
easier to write d; than to write p ;. Suppose that we wish to place more emphasis on the first p elements of p. We
may, for example, believe that if p differs from 6, it will be the first p components which contribute most to the

difference. Partition p as
_ (M
(1),

where p; is p x 1, o is ¢ x 1, and p + ¢ = d. Partition Y and d conformably:

_ (Y
= (%)

and

As before, assume that vec(Y) ~ N[vec(1,u'), (X ®I,)]. Note that

Hi:py =6 and
n=46< 1. ' B . -1, _ s -1
Ho: pry — 301377 g = 02 — 3013776y

are both true. Therefore, a test of Hy can be constructed by testing H; and Hs. It is sometimes more convenient to
write Ho as
HQI Ho.1 = 52.1,

where (52.1 = 62 — 2212;1161 and Ho.q1 = Ho — 221Ef11u1.
Hotelling’s T2 statistic for testing H; is

TE =n (¥, — 01)'Si{ (¥1 — 61),

and is distributed as

n—p 2
———— | I7 ~ Fpn—pn,
<p(n_1)> 1 p,n—p

n(py — 51)/21_11(H1 —01)
5 .
By analogy, we might expect to test Hy by using the statistic

where

A=

—~ 2 - —~
T3 =n(Foq — 62.1) Sgo1 (Fo.1 — 02.1),

where
Yo1 =2 — Sa1811'V,
021 = 0o — 52181_1151,

and
Sa2.1 = S22 — S21877 S1a.

Note, d2.1 depends on X so it must be estimated.

Theorem 7.8 Conditional on Y1, the distribution of Tg is proportional to an F. In particular,

_ 2
< n—d > T2 1 Y, ~ Fq.nfd,)\a
(n=1)q/) 14 (n—-1)""T¢ |

where .
(Ko — 82.1) Bgp 1 (Mo — 52.1).

A= 2+ (n—1)~172]
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Outline of proof: First establish that
V€C(Y2)|Y1 ~ N {vec [ln/JJ/Q + (Yl — 1nu/1)2;11212] ,222.1 X In} s

and
Vo1 — 021 =Y5 [1,n ' — (I, — H,) Y1 A (7, — 61)] — 62,

where H, = ppo(1,). Use the above two results to establish

V(Yo — 32‘1)
1+ (n—1)""T2

— 0.
Y, ~N V(e 2.1) S
1+ (n—1)""'T2

Use the above, along with the result Aga.q ~ Wy(n —1 — p,X9q.1) to finish the proof.

Corollary 1: If Hy is true then

<(:—1CEQ) (1 +(n :ffl)_le) ~ Fyn—d;

((:—SQ> <1+ (n Tgl)—le> LTY.

Corollary 2: Suppose that a size oy test of H; is conducted and that a size as test of Hs is conducted. Then
the test size for the two tests simultaneously (i.e., the test of Hp) is 1 — (1 — ) (1 — aw).

Note 1: T3 = T? — T where T? = n (§ — 8)'S~™ (¥ — ). This result can be established by expressing S as a
partitioned matrix and using the expression for the inverse of a partitioned matrix.

Note 2: Roy’s step-down tests can be generalized from 2 steps to d steps.

unconditionally and

7.2.5 One Sample Profile Analysis

Consider the usual one sample multivariate model:
vec(Y) ~ N[vec(1,u'), (X ®L,)].

Denote the i*" row of Y by y’. In this section, the d responses in y; are assumed to represent repeated measures on
the same dependent variable. The line graph of the mean response as a function of time (measurement period) is
called a profile. The analysis of a single profile usually focuses on answering two questions:

1. Location: What is the overall level of the profile? The profile location is given by . = d~*1/u. A confidence
interval for p. and/or a hypothesis test of Hy: . = p.o may be desired.

2. Shape: How does the profile vary as a function of time? A confidence interval for a contrast among the
elements of p (i.e., £'p, where £'1; = 0) or a test of Hy: M’ = 0 may be desired, where M is d x (d — 1),
satisfies M'1; = 0 and has rank d — 1.

Each of these questions can be answered using one sample techniques that are related to Hotelling’s 72. The
vector of profile means is p and is estimated by y:

vy=Y'1,n"",

which has distribution
y~ N(uv nilz)'
The profile location (average level) is p. = pu'14d~t. The corresponding MLE is §. = ¥'14d !, which is distributed
_ oN—1q/
as §. ~ Nu., (nd?) "1,314].
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Theorem 7.9 (Location) Confidence intervals and hypothesis tests concerning the profile location can be based
on the following pivotal quantity:

dyv/n(y. — p.)

——————— ~1lp_1,0,

J181,

where S = (n — 1)71Y’(I —H,)Y, and H, = ppo(1,). In particular, Hy: p. = p.g is rejected in favor of

Ho: p # po of

dy/n(y. — p10)
/1,81,

Also, a 100(1 — «)% confidence interval for . can be constructed as

g+t 7% fn11,81,

Proof: Let A =Y'(I1-H,)Y; let SSE = 1/,A1,4/d* and let 0* = 1/, X1,/d?. Then, from Corollary 1 of Theorem
4.6, SSE /o ~ X2 _,. Also, \/n(y. — p.) ~ N(0,0?) and y. is independent of SSE. Accordingly

> tlfa/Z

= "n—-1

\/ﬁy‘ - K.

o
SSE

(n—1)02

~ tnfl,()'

O
Questions concerning changes in the expected response over time (profile shape) can be answered by examining
contrasts among the d time periods. Let M be a d x (d — 1) matrix of contrast coefficients with rank d — 1. For M
to consist of contrast coefficients, M'14 = 0 must be satisfied. The vector of profile contrasts is M'p and is
estimated by M’y which has distribution

M'y ~ N(M'p,n *M'EM).

Theorem 7.10 (Shape) Confidence intervals and hypothesis tests concerning profile shape can be based on the
following pivotal quantity:

n—d+1 - , , I
((n—l)(d—l)) (Y —p)MM'SM) M'(y —u) ~ Fy_1n—d+1,0-

In particular, to test Hy: M’ = 8, use

n—d+1 9
— ) "~ Facin- ;
((nl)(dl)) d—1,n—d+1,)

where
0 (M'p — 8)'(M'EM)™ (M — 5)

T? = n(M'y — 8) (M/SM) " (M'y — §) and \ = :

To obtain simultaneous confidence intervals on linear functions £'p, where £ 14 = 0, use

_ d—1)(n—-1) _

Ly +[€Se (7 Fl-e .

y \/ [ nn—d+1) d—1,n—d+1

With probability 1 — «, all of the above intervals capture the appropriate linear function of . Proof: Use Theorems
7.4 and 7.6.
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7.3 TWO SAMPLE SETTING

7.3.1 The Linear Model

The cell means model for the multivariate one-way classification with two groups is

vec(Y) ~ N[vec(XB), (X @ Iy)],

_ (Y1
- (1)
Y, isny xd, Yyisng xd, ny +no =N,

2
X =@t = (" °) amdB= H
i—1 i 0 17L2 ’ Hl2 '

The model also can be written as

where

vec(Y;) ~ ind N[vec(1,,u;), X ®1,.],
fori=1,2.

7.3.2 Two Sample Hotelling’s T

Suppose that a test of Ho: py = po against Hy: py # py is desired. The hypotheses also can be written as
Hy: E(Y) = X(By versus H,: E(Y) = XB, where Xy = 15, Bg = ¢/, and the remaining terms are defined above.

Theorem 7.11 (Two-Sample T?) : The LR and UI tests of Ho: p; = py versus Hy: py # py are identical. The
test is to reject Hy for large values of

nin _ _ 1, _
T? = ( }Vz) (¥, —¥2)'S7 (¥ — ¥a),

where
Y'(Iy —H,)Y B Y'(Iy —H,Y

S= N—r N—2

where H, = ppo(X), and r = rank(X) = 2.

Sketch of LR proof: Let Hy, = ppo(Xo) = ppo(1n). Then, under Hy, the MLE of 3 is
- YI-H,)Y Y(I-H,)Y+YH,—-H,)Y
o= ~ = I .

Note

@171 —52 ]-n
.~ Hao = ppol(1- XX =ppo (B )
N —n2 N —n2

nal 1 /221, 1/ —1,,1
14no nz-nq ng ~ N2 Ny
Using the above expression, it is readily shown that
nin2y _ /

Y/(H, - Ho)Y = (22 (5, - 72) (5 — )

The remainder of the proof follows the proof for Hotelling’s one sample test.

O

Theorem 7.12 (Distribution of Two Sample T?) : The distribution of T? in Theorem 7.11 is the following:

(N—d—l

— )\ T?~Fyn_g
d(N2)> d,N—d—1,\>

where

_(manay (g — 1) 27 (g — o)
/\_( N ) 2

Proof: Use Theorem 7.4.
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7.3.3 Two Sample Profile Analysis

Consider the same setup as the one sample profile analysis problem except that data from two independent samples
have been obtained. Each of the corresponding two populations can be characterized by a profile of means: p; for
i =1,2. A typical two sample profile analysis consists of answering three questions:

1. Location: Do the two profiles have the same average level? The null hypothesis is Hg: p1. = pa., where
pi. = pilgd=t. The null hypothesis states that the two profiles have the same location (average level).

2. Parallel: Are the two profiles parallel; i.e., do the profiles have the same shape? This question also can be
asked as — is there an interaction between groups and time. The null hypothesis is Hy: M'(py — p5) =0
where M is d x (d — 1), has rank d — 1, and satisfies M'1; = 0. The null hypothesis states that the two
profiles consist of parallel line segments.

3. Shape of Average Profile: Does the average profile (averaged over the two groups) vary as a function of time?
This question is concerned with the shape of the average profile. The null hypothesis is Hy: M’p. = 0 where
M is described in (b) and p. is a weighted average of pq and p,). The null hypothesis states that the average
profile is a line with slope equal to zero.

Theorem 7.13 [Difference in Location] Confidence intervals and hypothesis tests concerning differences in the
location of the two profiles can be based on the following pivotal quantity:

d\/m @1.—?2~)_(“1‘_M2‘)~t1\f 2,0
N V1,514 o

where S = (N — 2)_1Y’(I —H,)Y, H, =ppo(X), and X = 1,, ® 1,,. In particular, Hy: p1. = pe. is rejected for
large |t|, where

ning Yi. — Yo

N | /1,S1;

ning M1 — K2.
N V2131,

A 100(1 — a)% Also, a confidence interval for py. — po. can be constructed as

t=d

The distribution of t is

t~tn_2), where \=d

Theorem 7.14 (Interaction — Shape Differences) Confidence intervals and hypothesis tests concerning
interaction between groups and time can be based on the following pivotal quantity:

(N =900 ) (61~ 92) — (s~ i) MOTSM) M1~ 5) — s — )

~Fq_1,N-d,0,

where S is given in Theorem 7.18. In particular, Ho: M'(p; — p5) = 0 is rejected for large T?, where

nin _ _ — — —
T8 = (U52) (7, - 72) MOM'SM) "' M'(7, - 7).

The distribution of T? is

N-—d ,
<(N ~ = 1)> T ~ Fg_1,N—dxs

where

A= (M) (11 = p12) M(M/SM) "M (1 — )
N 2 '
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Stmultaneous confidence intervals can be obtained from
Prll/(F, = ¥2) =k < €(py — o) SE(F1 = Fo) +hVLERM)| =1~ a,
where k = VO SEF*, and

_(NA-DN=2)\ 14
F :< ninz(N — d) )Fdl,Nd'

Proof: Use Theorem 7.4.

O
There are two approaches to making inferences about the average profile. In approach 1, it is assumed that the
profiles are parallel. That is g, = py + 14k, where k is a scalar constant. An average profile can be obtained as a
weighted average of p; and p,. Let w be a number in [0,1]. Then

po=wpy + (1 —w)py = py + (1 —w)l4k.

The choice of w influences the overall level, but not the shape of the average profile. The sample estimator is

y. =wy; + (1 —w)y,.

To choose a value for w, it is sensible to use the value that minimizes Var(y.). It is readily shown that the
minimizer of Var(y.) with respect to w is w = ny1 /N, where N = ny + na. Accordingly, w. is defined as

1
K= N(”llh + napy).

The corresponding estimator and its variance are

y y 1
y. = My, T2y, ]—’\_]n2y2 and Var(y.) = NZ}.
In approach 2, it is not assumed that the profiles are parallel. An average profile can still be obtained as a
weighted average of p; and p,. In this case, however, the choice of w does influence the shape of the average
profile. For example, by giving more weight to p,, the shape of the average profile will look more like the shape of

pq and less like the shape of p,. It is conventional, in this case, to define the average profile as follows:

1
po= 5k + o).

The corresponding estimator and its variance are

_ 1 N

y. = §(y1 +¥,) and Var(y.) = Tnins

Theorem 7.15 (Approach 1 to Shape of Average Profile) Confidence intervals and hypothesis tests
concerning the shape of the average profile can be based on the following pivotal quantity:

N(N —d)
((N —2)(d-1)

1o oy
M'(y. — ) ~ Fa_1,N—a,0,

)&~ wy oSy
where ¥. = (n1¥q + n2¥y)/N, p = (nipq + napes) /N, and S is given in Theorem 7.13. In particular, Hy: M'p. = 8
is rejected for large T?, where

T? = N(M'y. — &) (M'SM) " (M'y — §).
The distribution of T? is
(<'p— 8 (M'SM) ™ (M — §)

~ (N=d) N\ B
<(N—2)(d—1) T? ~ Fy-1,N-dx, where A\ =N 5 ,

Simultaneous confidence intervals on linear functions £ . can be obtained from

Prll'y —k<lp <Ly +kVLeRM)|=1-q,

* (d B 1)(N B 2) j e
(S ) P

where k = V€' SLF*, and

Proof: Use Theorem 7.4.
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Theorem 7.16 (Approach 2 to Shape of Average Profile) Confidence intervals and hypothesis tests
concerning the shape of the average profile can be based on the following pivotal quantity:

4711'/L2(N —d)
(N(N —-2)(d-1)

) &~ W MOM'SM) MU~ )~ Fi

where . = 3(¥1 +5)), = 5(1ty + py), and S is given in Theorem 7.13. In particular, Ho: M'p. = & is rejected
for large T?, where

T2 = (4”;V”2> (M'y. — 8) M(M/SM) ™" (M'y. — 8.

The distribution of T? is

4n1n2) (M. — 8 M(M'EM) ' (M. — 8)

N —d
" T2~ F 4N =
((N ) d—1,N—d,x, Where A ( N 5

—2)(d-1)
Simultaneous confidence intervals on linear functions £ . can be obtained from
Pril'y —k<lp <Ly +kvVLeRM)]=1-aq,

where k = \/m, and

e (NE=DWN=2)\ 1 a
= ( 477,11’L2(N— d) )Fdl’Nd.

7.4 SUMMARY OF HOTELLING’S 72 AND SAS CODE

The model underlying one and two-sample Hotelling 72 tests, can be written as
Y =XB+ U,

where vec(U) ~N(0,X®1,); Y is n x d; X is n x p with rank-r; and B is p x d. In all cases, the hypotheses can
be written as Ho: LBM = A against H,: LBM # A, where LB is an estimable function; Ag is a known matrix
(usually equal to zero); L is f x p with rank f; and M is d x ¢ with rank ¢. Note that M could be equal to I,.

In general, the H and E matrices are

H= (LBM - A,)' [L(X'X)"L'] " (LBM — Ag) and E = M'Y (I, — H,)YM,
where B = (X'X)~X'Y and H, = ppo(X). The matrices H and E are independently distributed as
H~W,(fM'EM,A) and E ~ W,(n —r, M'SM), where

A= (MEM) (LBM — Ay) [L(X'X) L] (LBM — A).

In the special case of one and two-sample Hotelling’s T2, the matrix L is 1 x p so HE~! has only one non-zero
eigenvalue. In this case,

n—r—q+1

2 = (n—r)trace 1 an
T = | )t (HE ) d( =)

2
)T ~ LPgn—r—q+1,X\s where

(LBM — A) (M'EM) ! (LBM — A,)’

A= L(X'X)"L’

Tables for the usual multivariate test statistics are entered with three parameters: s, m, and n. Caution, n is
not sample size; it is defined below. If E and H have independent Wishart distributions, E ~ W (vg,X) and
H ~ W, (vg,3), then the tables are entered with

1
s =min(vy,q), m==(lvg —q| —1), andn:i(yE—q_l).

1
2
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7.4.1 One Sample Hotelling’s 77

1. Model:
vec(Y) ~ N [vec(1,u), (Z ®@1,)], where Y is n x d.

2. Conventional Hypotheses

(a) Test that mean vector is equal to an a priori specified vector: Hy: po = py versus Hy: o # .

(b) In repeated measures, test hypotheses about the shape of the the profile of means (i.e., changes over
time): Ho: M'pu = 0 versus H,: M’y # 0, where M is d X ¢ with rank ¢ and M'1; = 0.

(c) In repeated measures, test hypotheses about the location (i.e., mean) of the profile: Ho: (1/d)1,pu = 6,
versus Hy: (1/d)1),p # 6o,

3. Minimal SAS Commands for Omnibus Test
(a) For Hyp: p = 0.

data;
infile datafile;
input y1 y2 ... yd;
proc glm;
model y1 y2 ... yd = /nouni;

manova H=intercept/summary;

Compare T? to d(n — l)Fc};ﬁd/(n —d).

(b) Arbitrary Linear Functions: If a test of Hyg: M/ = 0, where M is p x ¢ with rank ¢, then the M matrix
must be specified. Note g < d — 1 is allowed and M’'1, need not equal 0.

data;
infile datafile;
input y1 y2 ... yd;
proc glm;
model y1 y2 ... yd = /nouni;
manova H=intercept M = (m11 m21 m31 ... mdl,
mi2 m22 m32 ... md2,
mlq m2q m3q ... mdq)/summary;
Compare T? to ‘N:—;IUF;;fq. Note: it actually is M’ rather than M that is specified in the manova
statement.
(c) Profile (repeated measures): for Hy: M'pu = 0, where M is d x (d — 1) with rank d — 1 and M satisfies
M'1; =0.
data;
infile datafile;
input y1 y2 ... yd;
proc glm;
model y1 y2 ... yd = /nouni;

repeated Time d/printm summary;

(@=1)(n—1) pri—a

2
Compare T to == F; 7", 411

4. Minimal SAS Commands for Follow-up Tests
(a) Follow-up to Hyp: u = 0. For example, test Ho: p3 — pe = 0 and Ho: py + po — pus = 0 after rejecting
Hoi = 0.

data;
infile datafile;
input y1 y2 ... yd;
proc glm;
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model y1 y2 ... yd = ;
manova H=intercept m= yl-y2 /summary;
manova H=intercept m= yl+y2-y3 /summary;
Compare T2 to ﬂffglfi;fd.
data;
infile datafile;
input y1 y2 ... yd;
psil = yl-y2;
psi2 = yl+y2-y3;
proc glm;
model psil psi2 = ;

estimate ’namel’ intercept 1;
Compute CI as @Z:I: se(@) %F;;fd.

Arbitrary Linear Functions: follow-up to Ho: M’ = 0, where M is d x ¢ with rank ¢ and need not
satisfy M’'14 = 0. For example, test Ho: g1 — o = 0 and Hy: pg + po — p3 — pa = 0 after rejecting
Ho: M’ = 0.

data;
infile datafile;
input y1 y2 ... yd;
proc glm;
model y1 y2 ... yd = /nouni;
manova H=intercept M = yl-y2/summary;
manova H=intercept M = yl+y2-y3-y4/summary;

The coefficient vectors in the “M =" portion of the manova statement must be in the column space of
M. Compare T? u)ﬂ%gglﬁggiq.
data;
infile datafile;
input y1 y2 ... yd;
psil=yl-y2;
psi2=yl+y2-y3-y4;
proc glm;
model psil psi2 = ;
estimate ’namel’ intercept 1;

The coefficient vector for each 1); must be in the column space of M. Compute CI as
O se(d)y/ P Fy

n—q q,n—q-
Profile (repeated measures): follow-up to Hp: M'pu = 0, where M is d x (d — 1) with rank p — 1 and
satisfies M'1; = 0. For example, test Ho: 17 — o = 0 and Ho: g + po — p3 — pg = 0 after rejecting
Hoi M/u =0.

data;
infile datafile;
input y1 y2 ... yd;
proc glm;
model y1 y2 ... yd = /nouni;

manova H=intercept M = yl-y2/summary;
manova H=intercept M = yl+y2-y3-y4/summary;

The coeflicient vectors in the “M =” portion of the manova statement must be contrast coefficient

(d—1)(n—1) pl-o

2
vectors. Compare 1< to —del d—1,n—d+1"

47
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data;
infile datafile;
input y1 y2 ... yd;
psil=yl-y2;
psi2=yl+y2-y3-y4;
proc glm;
model psil psi2 = ;
estimate ’namel’ intercept 1;

The coefficient vector for each 1; must be a contrast coefficient vector. Compute CI as
(d=—1)(n—1) 11
wise \/ Pt A lan d+1

7.4.2 Univariate Profile Analyses

1. Randomized Block (one sample analysis)

(a)

Model:
vec(Y) ~ N[vec(1,u'), (X ® L,)],

where Y is n x d and X satisfies M'SM = 02I;_; and M is a d x (d — 1) orthonormal matrix of
contrast coefficients. One mixed model that satisfies the sphericity condition is the following:

Y =1, +71,+ U,
where 7 ~ N(0,021,,) and vec(U) ~ N(0,0%I,,4). The scalar form of the mixed model is
Yij = P+ T + 0 + €45

For this model, ¥ = 021, + 02141/,. This structure (equal variances and equal covariances) is known as
compound symmetry. The randomized block analysis is valid if and only if ¥ satisfies M/EM = ¢2I4_1,
where M is an d x (d — 1) semi-orthogonal matrix of contrast coefficients. That is, M'M =1;_; and
M'1, = 0.

ANOVA Table:

Source df

Intercept 1

Factor A (repeated measure) d—1
Subjects n—1
Residual (d—1)(n-1)
Total nd

Minimal SAS Commands.

data;
infile datafile;
input subj Fac_A y;
proc GLM;
class subj Fac_A;
model y = subj Fac_A;
random subj / test;

2. Split-Plot Factorial (multi-sample analysis)

(a)

Model:
vec(Y) ~ Nlvec(XB), (X ® L,)],
where Y is N x d, ¥ satisfies M'SM = 0%I;_;, M is a d x (d — 1) orthonormal matrix of contrast
coefficients,
Ky
K2

X:é1nj, B=| |,
j=1 :

Ko
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and N = 22:1 n;. One mixed model that satisfies the sphericity condition is the following:
Y = XB + 71, + U,
where 7 ~ N(0,021Iy) and vec(U) ~ N(0,0%Ix4). The scalar form of the mixed model is
Yijk = B+ T + a5 + T + Yk + €ijk,

where «; for j =1,...,a are the effects of the between-subjects factor and 7, for K =1,...,d are the
effects of the within-subjects factor. For this model, ¥ = 0?1, + 021,1/,. This structure (equal variances
and equal covariances) is known as compound symmetry. The split-plot analysis is valid if and only if X
satisfies M/SM = 0%I;_1, where M is a d x (d — 1) semi-orthogonal matrix of contrast coefficients.
That is, M'M =I;_; and M'1; = 0.

(b) ANOVA Table:

Source df
Intercept 1
Between Subjects N -1
Factor A a—1
Subjects within A N—a
Within Subjects N(d-1)
Factor B (repeated measure) d—1
AB Interaction (a—1)(d-1)
Residual (d—1)(N —a)
Total Nd

(¢) Minimal SAS Commands.

data;
infile datafile;
input subj Fac_A Fac_B y;
proc GLM;
class subj Fac_A Fac_B;
model y = subj(Fac_A) Fac_A|Fac_B;
random subj(Fac_A) / test;

7.4.3 Two Sample Hotelling’s T2

1. Model:
vec(Y) ~ N[vec(XB), (X ®1,)], where Y is n x d,
2 g
X = (lN D, 1nj) , and B= | 7
o

Note: p; =By + 1i for i =1,2.
2. Hypotheses: Hy: LBM = A against H,: LBM # A
(a) To average over groups, use L = (1 %) To compare groups, use L = (O 1 —1).

1
2
(b) To average over repeated measures (i.e., time), use M = (1/d)14. To examine differences among
repeated measures, use

11 1 1
-1 0 0 0
0 -1 0 0
M=1] 0 o0 -1 0
0 0 0 - -1

(¢) Test equality of mean vectors: Ho: p; = py versus Hy: g # py or, equivalently, Ho: 71 = 72 versus
Hy: 71 #72. Use L = (0 1 —1) and M =1I,.



50 CHAPTER 7. HOTELLING’S T*?

(d) Profile Hypotheses:

i. Test equal Locations of Profiles (main effect of treatment): Ho: 1/,(pq — pty) = 0 versus

Hy: 1(py — po) #0. Use L= (0 1 —1) and M = 1,.

ii. Test that average Profile (over two groups) is flat (zero changes over time). This is the main effect
for time. Hypotheses are Ho: M/ (pq + p5)/2 = 0 versus Hy,: M/(py + p5)/2 # 0, where
L=(1 3 1),Misdx (d—1) with rank d — 1, and M satisfies M'1; = 0.

iii. Test that the two profiles are parallel (treatment x time interaction). Hypotheses are
Ho: M/(py — py) = 0 versus Hq: M/(py — py) # 0, where L= (0 1 —1), Mis d x (d — 1) with
rank d — 1, and M satisfies M'14; = 0.

3. Minimal SAS Commands for Omnibus Test

(a) For Hy: pq = o

data;
infile datafile;
input treat yl y2 ... yd;
proc glm;
class treat;
model y1 y2 ... yd = treat/nouni;
manova H=treat/summary;

Compare T? to d(N — 2)Fc}j\,‘ﬂd71/(N —d—1).
(b) Profile Analysis (all three tests: equal location, average profile is flat, & parallel profiles)

data;
infile datafile;
input treat yl1 y2 ... yd;
proc glm;
class treat;
model y1 y2 ... yd = treat /nouni;
repeated Time d /summary;

Compare T} (for equal levels) to Fll_j\,"LQ. Compare T3 (zero slope for average profile) to
(d—1)(N - 2)Fdl:1“}N7d/(N —d). Compare T3 (parallel profiles) to (d — 1)(N — 2)F5:ﬁN7d/(N —d).

4. Minimal SAS Commands for Follow-up Tests

(a) Follow-up to Hy: pq = po.

data;
infile datafile;
input treat yl y2 ... yd;
proc glm;
class treat;
model y1 y2 ... yd = treat/nouni;
manova H=treat m=(ml m2 ... md)/summary;

Compare T2 to d(N — 2)Fc}jvo‘_d_1 (N—-d-1).

data;
infile datafile;
input treat yl y2 ... yd;

psil = yl-y2;
psi2 = y1 + y2 -y3;
proc glm;
class treat;
model psil psi2 = treat;
estimate ’name’ treat 1 -1;
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Compute CI as 3 + se(@)\/d(N — 2)Fd1,7\,°‘_d_1/(N —d-1).

Profile (for zero slope of average profile and parallel profiles):

data;
infile datafile;
input treat yl1 y2 ... yd;
proc glm;
class treat;
model y1 y2 ... yd = treat /intercept nouni;
manova H= _all_ M = yl-y2/summary;
manova H= _all_ M = yl+y2-y3-y4/summary;

51

The coeflicient vector m in the M = component of the manova statement must be a contrast coefficient
vector. Compare Ty (zero slopes for average profile) to (d — 1)(N — 2)F;~*, /(N —d). Compare T3

(parallel profiles) to (d — 1)(N — 2)F(}:ﬁN7d/(N —d).

data;
infile datafile;
input treat yl y2 ... yd;
psiO = (y1 + y2 + y3 + ... + yd)/d;
psil = y1-y2;
psi2 = yl+y2-y3-y4;
proc glm;

class treat;

model psiO psil psi2 = treat /nouni;
estimate ’namel’ intercept 1;
estimate ’name2’ treat 1 -1;

Compute CI as 9 + se({p\)\/(d —1)(N — 2)FC}:1“,N7d/(N —d).



52

CHAPTER 7. HOTELLING’S T*?



Chapter 8

MULTIVARIATE LINEAR MODELS

8.1 MODEL DESCRIPTION

Consider the standard multivariate linear model

Y =XB+ U,
where Y is n x d:
v
N
Y = s,
y}

X is a known n X p matrix with rank r, B is an unknown p X d matrix of parameters, and U is an n X d random
matrix with distribution vec(U) ~ [0, (2 ® I,)]. It can be deduced that the rows of Y are uncorrelated with one
another and y; ~ (B’x;, ), where x; is the i*® row of X. The vector equivalent of the model is

vee(Y)=y=I3®X)8+e¢,

where 8 = vec(B) and & = vec(U).

8.2 ESTIMABILITY & BLUES

From prior work, we know that the GLSE (MLE under normality) of B is

B=(XX) XY
and that
Y'(I, —H,)Y
n—r
is unbiased for 3 where H, = ppo(X). In fact, under normality, S is the UMVUE of 3.

To estimate a linear function of B, say L'BM, we would like to be able to use the natural estimator, L’ BM.
It turns out that this is a sensible thing to do, provided that L'BM is estimable. The function ¥ = L'BM is
estimable if there exists a linear unbiased estimator of ¥: ¥ = FYG + K, and E(¥) = ¥ for all B.

S —

Theorem 8.1 Estimability: The function ¥ = L'BM is estimable if and only if L € R(X'). That is, if the
columns of L are ly,... 15, then W is estimable if and only if 1; € R(X') for all i.
Proof HW or in class.

53
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8.2.1 BLUE

Definition: Best Linear Unbiased Estimator (BLUE)—Scalar. Consider the univariate linear model y = X3 + ¢,
where X is n X p with rank-r and € ~ (0, Q). Suppose that 1’3 is an estimable function. That is 1 is a p x 1 vector
and 1 € R(X’). Let ¢ be a linear unbiased estimator of I’3. That is,

1. 121 =a'y + k for some a: n x 1 and some scalar k, and

2. E(th) =18,

A linear unbiased estimator is said to be the best linear unbiased estimator (BLUE) if it has the minimum variance
over all linear unbiased estimators.

Definition: Best Linear Unbiased Estimator (BLUE)—Vector. Consider the univariate linear model y = X3 + ¢,
where X is n x p with rank-r and € ~ (0,). Suppose that L’3 is a vector of estimable functions. That is L is a
p x g matrix and L € R(X’). Let vy, be a linear unbiased estimator of L’3. That is,

1. ﬂlL =L’y + k for some L: n x ¢ and some vector k: g x 1, and

2. B(yy) = LB,

A vector of linear unbiased estimators is said to be BLUE if each entry in the vector is BLUE. Denote the ¢ x ¢
covariance matrix of @pr, by V. Let 1, be another linear unbiased estimator of L’3. Denote the ¢ x ¢ covariance
matrix of @, by V*. Then, v, is BLUE iff tr(V) < tr(V*) for all V*.

Theorem 8.2 Gauss-Markov Consider the univariate linear model y = X3 + €, where X is n X p with rank-r,
€~ (0,028), and Q@ > 0. Let L: p x q be a matriz of constants satisfying L € R(X'). Then LB is the Best Linear

Unbiased Estimator (BLUE) of L'8 where 8 = (X'Q1X)"X'Q~y. Note: this result does not depend on
normality.

Proof: Stat 505-506 Homework

1. Corollary 1: Var(L',[Na) =o’L'(X'Q71X) L.
2. Corollary 2: If = I,,, then the BLUE of L'8 is L'3, 8 = (X'X) X'y, and Var(L'8) = ¢2L/(X'X) L.
3. Corollary 3: Consider the usual multivariate setup: Y = XB + U, where vec(U) ~ [0, (2 ®1,,)]. If

L € R(X'), then the BLUE of L'BM is L'BM, B = (X'X)"X'Y, and

disp(L'BM) = [M'SM @ L/(X’X) L]

4. Corollary 4: Consider the setup in Corollary 2.3. If X = 1,, and B = g/, then the BLUE of pis ¥ = n~'Y’1,,
and var(y) = n"1X.

We now turn to the development of inference procedures on linear functions of B. We will consider hypotheses
of the form Hy: L’'BM = A. Often A will be 0 and M will be I. It will be assumed that the rows of Y
independently follow a multivariate normal distribution.

8.3 ESTIMATING B AND ¥ UNDER CONSTRAINTS

To construct the likelihood ratio test of Ho: L'BM = A, it will be necessary to maximize the likelihood function
subject to the constraint L'BM = A.
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8.3.1 Case I: C'BM = A, where M is Non-Singular

Theorem 8.3 Let C be a p X q matriz with rank q and suppose that C'B is estimable. Let M be a known d X d
matriz with rank d. The generalized least squares estimator of B subject to the restriction that C'BM = A is given

by
Bo = B, - (X'X) C[C'(X'X)"C] (C'BM - A)M!,
where B, = (X'X)"X'Y is the ordinary unrestricted estimator of B (under Hy ).

Outline of Proof: To compute the mazimizer with respect to B, solve

00 _ 0Q _
0 vec(B) =0 and oA =0

where
Q=tr[(Y -XB)(Y-XB)= '] -2\ [(M' ® C")B - 4],

B =vec(B); A =vec(A); and § = vec(A).

O
Note 1: If the rank of X is p, then (X'X)” can be replaced by (X'X)™" and By will be the BLUE of B.
Note 2: Under normality and a true Hy, By is the MLE of B.
Theorem 8.4 Assuming normality of Y and non-singularity of M, the MLE of X under Hy: C’BM = A is
S =3, + M HCBM - A)[C/(X'X)"C] (C'BM — A)M~/n,
where f]a =Y'(I,—H,)Y/n.
Proof: When B is estimated under the constraint C'BM = A, the residual sum of squares and cross products
matriz s _ _
T = (Y — XBp)'(Y — XBy)
~ — ~ /
= |[(Y - XB,) + X(X'X) C[C'(X'X) ] H(C'B,M — AM
(Y -xB,) + X(X'X)” C[C'(X'X)"C] (C'B.M — AM|
— Y/(I, - H,)Y + M Y(C'B.M - A)[C/(X'X) C] (C'BM - A)M ™},
where H, = ppo(X). From prior results, the MLE of 3 is 3g = T/n.
O

Note that
E(T) = (n—r+q%+M (C'BM-A)[C(X'X) C] (C'BM - A)M!
= (n—r+¢XTif C'BM=A.

Accordingly, if C’'BM = A is true, then A/(n —r + ¢) is an unbiased estimator of 3. This result does not require
normality.

8.3.2 Case II: C'BM = A, where M is not Square

Theorem 8.5 Let C be a p X q matriz with rank q and suppose that C'B is estimable. Let M be a known d x k
matriz with rank k. Further, suppose that 3 is known. Then, the generalized least squares estimator of B (MLE
under normality), subject to the restriction C'BM = A, is given by

By =B, — (X'X) C[C/(X'X)"C] ' (A - A)M'EM) 'M'S,

where A = C'B,M and B, = (X’X)"X'Y.
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Outline of Proof: To compute the constrained GLS estimator, solve

0Q 0Q _
0 vec(B) =0 ‘mda_)\_o

where
Q=tr[(Y -XB)(Y-XB)= '] -2\ [(M' ® C")B - 4],

B = vec(B); A = vec(A); and § = vec(A).
O

Theorem 8.6 (Constrained MLEs) Let C be a p X ¢ matriz with rank q and suppose that C'B is estimable. Let
M be a known d x k matriz with rank k. Then, MLEs of B and X, subject to the restriction C'BM = A, are given
by

B, = B,—(X'X) C[C'(XX)"C] ' (A-A)ME,M)'M'S,, and

g = 3,
+ T IS,MM'E,M)HA - AY [C/(X'X)"C] (A - A)(M'S,M) I M'S,.
where A = C'B,M, B, = (X’X)"X'Y; 8, =n~'Y'(I, - H,)Y; and H, = ppo(X).
Outline of proof: Let G = (M R), where R is a d x (d — k) matriz chosen to satisfy
M'S,R = 0 and rank(G) = d.

The matriz R can be generated by R = i;%null(M’ié), where null(W) generates a basis set of vectors for the
null space of W (see the MATLAB null command). Note that

(M'S,M)"'M'S,

G l= ~ =
(R'E,R)"'R'E,

Write the log likelihood function as

(B, [Y) —%tr (Y - XB)(Y - XB)Z '] - gln|2|

plus terms that do not depend on B and X

= —% tr [G’flG’(Y - XB) (Y — XB)GG“E*l] — gln |G'EG|
+nln |G|

= _% tr[(Z-X®©)(Z-X0)'] - gln Q]+ nln |G|

= ((0,0|Z2),
where

Z = YG=(Z Z)=(YM YR)
©® = BG=(BM BR)= (0, ©,) and

s (Qu Q) [M'EM M'ER
@ = GEG_(Qm 922>—[R/2M R'SR|’
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The MLEs of B and ¥ will be obtained by first maximizing E(@ Q|Z) with respect to ® and £ subject to
C’'©G'M = A. Denote the mazimizers of £(©,Q|Z) by © and Q. Denote the mazimizers of (B, %[Y) by B
and 3. By the invariance property of MLEs

B=0G ! and X =G 1QG .

Recall, if
vec(Z) ~ N[vec(X0), Q2 R 1,
then
vec(Zl) N [VGC(X@l), Qll X In] and
VGC(ZQ)|Zl N [VeC(X®2.1 + er), 922.1 X In] y where
O3 0, - 6T
I = Q'Q; and
Qo1 = Qoo — Q2191_11912-

The relationship between (B,X) and (©,T, Q) is
B = 0G'=(0; 0,)G!
= (@1 @2.1 + ®1F) G71 and

Qll Qllr

— /—1 1 /—1 —1
¥ o= GG =G (F'Qu ﬂ22~1-i-I”Q11I‘>G )

Using the above factorization of the density, the log likelihood can be written as

E(@, Q‘Z) = El(@l, 911|Zl) + 62.1(62.1, F, 922,1|ZQ, Zl),
where
1 _ n
61((‘)17 911|Z1) = —5 tr [(Zl — X@]_)/(Zl — X@l)ﬂlll] — 5 h’l |Qll| (md
1
€2.1(®2.1,I‘, 922.1|Z2, Zl) = *5 tr [(ZQ — X®2.1 — le_‘) (Z2 — X@Q 1 — Z ]__‘)922 1]
n
—5 ln\922.1|.

To mazimize the log likelihood function, the two components can be maximized separately. First maximize €1 with
respect to @1 and Q11 subject to the constraint C'®1 = A. Second, mazximize €51 with respect to @o.1, T, and
095.1, subject to no constraints. The results are as follows:

®, = B,M-(X'X) C[C'(X'X)"C] ' (A-A),
Qy = M'S,M+n ' (A-A)[C(X'X)"C] ' (A-A),
r = M's,M)"'M'S,R=0,
®,; = B,R-B,MTI =B,R, and
Qoo = n 241, —H,. )2 =n'Z)(1, —H, — H,, ,)Z,
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= R'3,R-REMMZM) 'M'E,R=R3,R,

where H,, ., = ppo [(X Zl)} , and H,, .. = ppo [(I, — H,)Z;]. The proof is completed by using the invariance of

MLFEs and piecing together B and ) from the components é, f‘, and Q. The result is

B, = ©G'=B, {M(M’EQM)’IM’EG + R(R’f]aR)*lR’fla}

1, ~ ~

~(X'X)"C[C(X'X)"C] (A -A)(MEM)'M'E,
= B,- (X'X)"C[C'(X'X)"C]”
2 = GG

_ g (MEM nTHA-A)[C'(X'X)"C] ' (A-A) 0
0 R'S,R

- 3, [M(M’EGM)‘lM’ia n R(R’iaR)—lR’ia}

-1

IS MM'E,M) LA - A) [C/(X'X)"C] (A - A)MEM)IME,

= Ea
IS, MM'E,M) A - A) [C/(X'X)"C] T (A - A)(M'S,M)'M'S,,

where M(M’iaM)_lM'ia + R(R’iaR)_lR’ia =1, has been used. This is a projection operator with full rank
and, therefore, must be the identity.

8.4 LIKELIHOOD RATIO TEST OF Hy,: L'BM = A

8.4.1 Casel: M is d x d with rank d

All the work for constructing the LR test has been done. All that remains is to plug the estimators under Hy and
H, into the likelihood function. The result is the following.

Theorem 8.7 Assuming normality, the LR test of Hy: C'BM = A against H,: C'BM # A is to reject Hy for
small values of
_E
|E +H|’

where
E=MY'(I, - H,)YM,

and
H = (C'B,M - A)[C/(X'X)"C] (C'B,M — A).

Proof: Substitute (]§, f)a) and (]~30, f]o) into the likelihood function and use properties of determinants.

To obtain critical values of the above LR statistic, the following result can be used.
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Theorem 8.8 The matrices E and H are independently distributed as
E ~ Wy(n —r,M'EM,0)

and
H~ Wd(qa MlEM? A)7

where
-1

A=M3IM) ' (CBM-A)[C/(X'X) C] (CBM-A)/2.

Proof: Independence is established by showing that ]§0 is independent of E. The proof for the distribution of E is
1

straightforward. To obtain the distribution of H, consider the distribution of [C’(X’X)_C] N (C’'BM — A). It is
straightforward to show that

1
2

vec <[C’(X’X)C} (C'BM — A)> ~

N {Vec <[C’(X’X)C} “OBM - A)) ,(M'SM © Iq)] .

1
2

Thus, the rows of [C’(X’X)fc] (C’]~3M — A) are independently and normally distributed with common

covariance. The distribution of H follows from a prior theorem.

Corollary 8.8.1: U ~ U(d,q,n — r, A).

8.4.2 Case Il: M is d x k with rank &

There are several ways to obtain the the LR test of Hy: C'BM = A for the case of non-square full column rank M.
The easiest way to think about this problem is to transform it into a simpler problem. First, post-multiply the
model Y = XB 4 U by M to obtain the reduced model:

YM = XBM + UM,

or, equivalently,
Z, =X0O; +Vy,

where Z; = YM, ©®; = BM, and V; = UM. The distribution of vec(Z1) is
vec(Zy) ~ [vec(XO1), (11 @ 1,)],

where ;1 = M’XM. Now use the reduced model and derive the LR test of Hy: C'©®; = A.

Theorem 8.9 The LR test of Hy: C'BM = A wersus H,: C’BM # A in the reduced model is to reject Hy for
small values of

_|g|
|E + H|’

where
E=MY'(I, - H,)YM,

and
H = (C'B,M - A)[C/(X'X) C] (C'B,M — A).

Proof: Use the previous section to obtain the LR test of Hy: C'@1M* = A, where M* = 1. Then simplify.
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a

There is a question that one must ask before using Theorem 8.9. Information is being discarded when one
reduced the dimension of the model from d to k. The question is whether or not the discarded information is
relevant to the problem. To be specific, let P s be a projection operator that projects onto R(M). The projection
operator can be orthogonal or non-orthogonal. The linear function Y (I; — Pjs) is ignored in Theorem 8.9. Is there
information in Y (I — P ) that could be used to improve the test of Ho? The next two theorems show that it is OK
to ignore this information. The linear function Y (I; — P /) gives no information about whether Hy is true or false.

Theorem 8.10 derives the LRT of Hy by using the MLEs of B and ¥ that were derived in Theorem 8.6.
Theorem 8.11 starts from scratch and maximizes the likelihood function under Hy and H,. They give the same
result, so you can pick the one that you like best.

Theorem 8.10 The LR test of Hy: C'BM = A wversus Hy: C’BM # A in the full model is identical to the LR
test of Hy: C'BM = A wversus Hy: C’BM # A in the reduced model. Thus, using the test given in Theorem 8.9
does not entail a loss of efficiency.

Outline of Proof: The matrix of error sum of squares under Hy is
(Y — XB,) (Y — XBy) = Y/'(I, - H,)Y
+n IS, MM'E,M) A - A) [C/(X'X)"C] T (A - A)(M'S,M)'M'S,
= nio,
where ]§0 and io are giwen in Theorem 8.6. Accordingly, the LR test statistic is

2
T%%XCXP {¢(B,2[Y)} ‘§a|

maxexp (B, SY)} |~ |5,

|2
5, + 0 EMME,M) HA - A [C'(X'X)"C] (A - A)YME,M)'M'S,|

1
L +n "MM'E,M) (A - A) [C'(X'X)"C] (A - A)ME,M)'M'E,|

1

_ IM'S, M|

IM'S,M+n" (A - A) [C'(X'X)"C] " (A—A)
B InM’'2, M|

InM'E,M + (A — A) [C/(X'X)"C] ' (A - A)
__|E]

|E+H|’

where E and H are given in Theorem 8.9.

Theorem 8.11 The LR test of Hy: C’'BM = A wversus H,: C’BM # A in the full model is identical to the LR
test of Hy: C'BM = A wversus H,: C’'BM # A in the reduced model. Thus, using the test given in Theorem 8.9
does not entail a loss of efficiency.
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Outline of Proof: Transform from'Y toZ =Y (M R), where R is d x (d — k) with rank d — k and satisfies
M'R = 0. That is, the columns of R form a basis set for N((M'). Let

Z = (Z1 Zg) , where Zy = YM and Zo = YR.
Factor the joint pdf of Z as
f2(Z1,Z) = fz7,(Z1) X fz,2,(Z2|Zy).

Let
B(M R)=(©; ©), where ®; = BM, and ©, = BR.

The marginal model for Z is
vec(Zl) ~ N [VGC(X@l), Qll X In] y

where Q11 = M'EXM. The conditional model for Zs given Z, is
Vec(Z2)|Z1 ~ N [VeC(X(_)Q.l + er), 922.1 X In} y
where

o_ (M'EM MR
~\R'EM R'ZR

) , ©91 =0y —0OT, and T = Q' Q.

The key to obtaining the LR test is to notice that under Hy: C'BM = A, the MLE’s of ®1 and Q11 are restricted,
but the MLE’s of ©4.1, T', and Q29.1 are not restricted. Thus, the latter parameters have the same MLE’s under Hy
and Hy. Accordingly, the maximized conditional pdf [Fz,)z, | is identical in the numerator and denominator of the
LR test statistic. After cancellation, the LR test statistic simplifies to the ratio of the maximized marginal pdfs.
This is the test described in Theorem 8.9.

O
Note that the form of the test statistic is identical regardless of whether M is square and non-singular or
non-square. To obtain critical values of the above LR statistic, the following result can be used.
Theorem 8.12 The matrices E and H are independently distributed as
E ~ W(n —r,M'EM,0)
and
H~ Wk(qv M/EMa A)v
where .
A= (M’EM)_1 (C'BM — A)/[C'(X'X)_C] (C'BM — A)/2.

Proof: Use prior results.

O

Corollary 8.12.1: U ~ U(k,q,n — 1, A).

8.5 ALTERNATIVE TEST CRITERIA

The other common multivariate criteria are obtained by considering alternative functions of the characteristic roots
of ET'H:

1. Roy’s Max root: @max = r1(E7TH) or 0.y = 71 [H(E + H) 1.
2. Lawley-Hotelling trace: Ty = (n — r) tr(E~"H).

3. Pillai trace: V = tr[H(E + H)~!].
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8.6 SIMULTANEOUS INFERENCE BASED ON THE UI
PRINCIPLE

The goal in this Section is to construct simultaneous confidence intervals on linear functions of L'’BM.

8.6.1 The Union Intersection Test

Consider testing H: f’L'BMt = f’ At for some specified f: ¢ x 1 and t: k x 1. Note that

Hy: L'BM = A «— ﬂH: f'L'BMt = f'At
£t
and
H,: 'BM # A < | JH: fL'BMt # f'At.
f.g

To obtain a UI test of Hy, consider the univariate test of H for fixed f and t.
To construct a test of H: f’'L’BMt = f' At, note that

f(L'B,M — A)t ~ N [f'(L’BM — A)t, t M'SMt x f'L/(X'X) Lf| .

Thus, for fixed f and t,
~ 2
[f'(L'B,M — A)t]

Q(fv t) = —
t'M/'SMt x 'L/ (X’X) Lf

~ L1n—rX

where
[f(L'BM — A)t]?
2t M/ Mt x f’L’(X’X)fo.
If the coefficient vectors Mt and Lf are chosen a a priori, then the LR test of Hy: f'L’'BMt = 0 against
H,: f'L'BMt # 0 is to reject Hy if Q(f,t) > F} @

1,n—r-

S=(n—-r)"Y'(I,-H,)Y and A =

Theorem 8.13 Roy’s mazximum root criterion is a union intersection test statistic for Hy. In particular, the UI
statistic for testing Ho: L'BM = A is the mazimum of Q(f,t) over all f and t. That is,

Q =supQ(f,t) = (n —r)evaly (E_lH) ,
£,

where

E=MY(I-H,)YM; H=(LBM - A)/[L’(X’X)fL]_l(L'BaM —A),
and evaly (W) is the mazimum eigenvalue of W.
Proof HW or in class.

8.6.2 Simultaneous Confidence Intervals

Denote the linear function f’L’'BM¢t by v and its estimator £'L/B,Mt by ¥. We wish to construct simultaneous
(1 — @)100% confidence intervals for the set of all 1. That is, we want to construct a set of confidence intervals for
all possible ¥ such that with probability 1 — «, all of the intervals capture the unknown function. We will use the
pivotal quantity method. Let

~ 2 . 2
Oty FUBM-LBMY (4~ )
T yMUSME x FL/(X'X) L ¢M/SMt x f/L/(X/X) Lf’
The quantity Q* is a pivotal quantity because it depends on the unknown parameter ¢ and its distribution is free

of :
Q*(fat) ~ Fl,n—r,O~



8.6. SIMULTANEOUS INFERENCE BASED ON THE UI PRINCIPLE 63
From the foregoing results, it can be shown that

sup Q*(f,t) = (n —r)eval; (E"'H"),

f.t
where
E = MY'(I-H,)YM; and
H* — (L'B.M-LBM)[L/(X'X) L] (L'B.M - L'BM).

Note that H* is independent of E and has distribution
H* ~ Wy (q, M'SM, 0).

Let 7 © . denote the (1 — a)100 percentile of the null distribution of

k.mg,m
eval; [H(E + H)_l] ,

where E and H are independently distributed as H ~ Wy (mpg,I) and E ~ Wi (mpg,L;). Percentiles, T,lc;rf‘H,mE are
tabled in Rencher (2002, Table A.10). Percentiles also can be obtained from the charts of Heck (Annals of
Mathematical Statistics, 1960, 31, 625-642). For the special case of mpyg = 1, the percentile simplifies to

-«
11—« _ ka?,mE—k-'rl
Tkimeg — T—a :
mg—k+1+ lek,mgkarl

The (1 — @)100 percentile of mpeval; (E7'H) is £, where

kmpg,mg

e’
Elfa _ METL my,mg
kmpg,mg — 1— ,r,l—oz

k,mp,mg

If my, = 1, then,

l—o
glfa _ mEkaymE*k+1
k,1mp mep—k+1

Accordingly, simultaneous confidence intervals are obtained from

Pr {(n —r)evaly (E_lH*) < pioe } =1-a

k,qn—r

= Pr {sup Q*(f,t) < fi_qanir} =1—a
et 45

~ 2
— Pr W—v) < Vit =1-a
t'M/SMt x F/L/(X'X) Lf ~ ©

—pr[d-g<v<PHgVEt =1-q,

where

9=/t M/SMt x f'L/(X'X) L x £}

k,q,n—r

and S=Y'I-H,Y/(n—r).
A simultaneous critical value for the “F” statistic corresponding to Hy: I'Bm = 0 is é,lc:;‘nfr, where 1 = Lf for
some f and m = Mt for some t. '
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8.7 ANALYSIS OF REPEATED MEASURES

8.7.1 Univariate Versus Multivariate Analyses

8.7.2 k Group Profile Analysis
8.8 ANALYSIS OF GROWTH CURVES

8.8.1 Introduction

Growth curve models constitute an important general class of repeated measures models. The usual repeated
measures model is a special case of the growth curve model. The model can be written as follows:

Y = XBG + W, (8.1)

where Y is a n x d random matrix whose entries are d repeated measures on each of n cases; X is an n X p known

design matrix with rank r; B is a p X b matrix of location parameter; G is a b X d known design matrix with rank

g < d; and vec(W) ~ N(0,X ®1,). The matrix X is called a between-subjects design matrix whereas the matrix G
is called a within-subjects design matrix.

The model in (8.1) is called a generalized MANOVA or GMANOVA model. It was proposed by Potthoff and
Roy (1964). Comprehensive reviews of the GMANOVA model were given by D. von Rosen (1991, The Growth
Curve Model: A Review, Communications in Statistics — Theory and Methods, 20, 2791-2822) and
A. M. Kshirsagar and W. B. Smith (1995, Growth Curves, New York: Marcel Dekker). This section describes the
conditional approach to analyzing growth curves which was pioneered by C. R. Rao (1966, Covariance Adjustment
and Related Problems in Multivariate Analysis, in P. R. Krishnaiah, ed., Multivariate Analysis, pp. 87-103, New
York: Academic Press) and C. G. Khatri (1966, A Note on a MANOVA Model Applied to Problems in Growth
Curve, Annals of the Institute of Statistical Mathematics, 18, 75-86).

Typically, the rows of G consist of polynomial functions of time. For example, suppose that observations are
taken at six occasions on two groups of subjects. The observations are taken at 1,2,5,7,9, and 12 time units after
the start of the study. Further, suppose that it is believed that all changes over time can be summarized in term of
linear, quadratic, and cubic functions. There are several possible parameterizations for this growth model. One
possibility is to write the d x 1 vector of expected responses in the j* group as

E(yj) =ajolg + Oéj,l(t — ].di_f) + aj’g(t — 1d¥)(2) + Oéj,3(t — ].df)(‘?),

wheret=(1 2 5 7 9 12)’; t=d "1t = 6; and (t — 147)() is the d x 1 vector obtained by raising each
entry of t — 147 to the h** power. For this example

1 1 1 1 1 1

-5 —4 -1 1 3 6

G= 25 16 1 1 9 36
—125 —64 -1 1 27 216

Continuing with the example, suppose that the coefficients are

A= Q1o Q1,1 Q12 013\ 10.0 0.9 0.6 0.3
T \ago 21 ags ags)  \200 1.2 08 0.0

and that the between subjects design matrix is

2
X = (1n o 1) .
j=1

One of the infinite possible values for B that will generate the matrix A = {a;} is

4.0 4.0 0.0 4.0
B= 6.0 3.1 0.6 —3.7
16.0 —-28 0.8 —4.0
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The first column of B contains intercept parameters, the second column contains linear slope parameters, etc. The
mean response profiles for this example are

E(Y) = —17.0 -3.2 9.4 11.8 26.2 101.8
o 34.0 28.0 19.6 22.0 30.8 56.0)

A profile plot of the expected means appears below.

Profile Plot: Cubic Growth Curve

100

80

60

Group 2

20F

A second possible parameterization is to use orthogonal polynomials. In this example, the matrix, G,
containing the coefficients of orthogonal polynomials is

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

G- —5.0000 —4.0000 —1.0000 1.0000 3.0000 6.0000
13.4015 3.7879 —13.0530 —14.2803 —7.5076 17.6515
—29.7999  22.8847  39.2613 —7.8853 —45.4835  21.0227

The first row of G represents the intercept, the second row consists of linear coefficients, etc. The matrix G can be
computed by using the following MATLAB program:

b=4;

t=[1 257 9 12]7;
d=length(t);

G=ones(1,d);

for i=1:b-1
ti=(eye(d)-ppo(G’))*t. i;
G=[G; ti’];

end;

For this example, one of the infinite possible values for B that will generate the matrix A = {5} is

17.7444 3.55645 0.6473 0.1000
B= 3.7556 5.4182 0.4946 0.2000
13.9889  —1.8636 0.1527  —0.1000

The expected responses are the same as those given earlier.

8.8.2 Parameter Estimation

8.8.2.1 FEstimability

Consider the growth curve model in (8.1). Suppose that an unbiased estimator of C'BM is desired, where C is a
known p x ¢ matrix and M is a known b x k matrix. The first question that must be answered is — under what
conditions is C'BM estimable?
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Lemma 8.1 Let A, B, C, and D be any matrices such that A and C have the same dimensions; B and D have
the same dimensions; and each matrix contains at least one non-zero entry. Then

A®B=C@®D <<= A =0aC and B=a"'D,

where a is a non-zero scalar.

Outline of proof: use the definition of Kronecker multiplication.

Theorem 8.14 (Estimability in Growth Curve Models) If each of C and M have at least one non-zero
entry, then C'BM is estimable if and only if C € R(X') and M € R(G).

Outline of proof: Let v = vec(C'BM) and let 12 =L’y +h, wherey = vec(Y) and h is a vector of constants. First,
verify that estimability requires that h = 0 and that (M ® C) € R(G ® X'). Second, use PPOs and the above
Lemma to verify that C € R(X’) and M € R(G) are necessary conditions for estimability. To verify that they are
sufficient conditions, assume that C € R(X') and M € R(G) are both satisfied and examine the expectation of
C/(X'X)"X'YG/'(GG')~M.

a

Theorem 8.15 (BLUE When X is Known) If X is known and ¥ = C'BM is estimable, then the BLUE of ¥
18
U = C'BM, where B = (X'X)"X'YE"!G(GEZ'G/)".

Proof: HW.

Theorem 8.16 (MLE When X is Not Known) If ¥ is unknown then the MLEs of B and % are
Be =B 'G/(GE7'G)” and g == +n (B - BgG)X'X(B — B5G)
where _ _
B=(XX)"XY; ¥=n"'Y'(I-H,)Y; and H, = ppo(X).
Outline of Proof: Write G in terms of its singular values and vectors: G = UDV'. Let R = (R1 Rg), where
R, =T 'V(VT'V)"'D};, AR, =1,-V(V'T 'V)'v'T

T is an arbitrary positive definite matriz of dimension d X d; and each of the matrices in the factorization ARY has

full column rank. The dimensions of Ry and Ry are d x g and d x (d — g) respectively. Equivalent representations
for Ry and Ry are
R, =Pg VD! and AR, =1, — Pg' 1

where
Pg =G/ (GT'G')"GT "
Note that GR; = U and GRy = 0.
Write the log likelihood as

1
(B,Z)Y) = —;u[(Y-XBG)(Y-XBG)=E ] - g In|3|

1
= —;u[(Z-XBGRY(Z - XBGR)Q'] - gln Q|

plus constants, where
Z=YR= (YR1 YRQ)

Q Q
Q—R'SR — 11 12) '
<Q21 Qa2

and
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Factor the log likelihood as
((B,X[Y) = la(Qa2]Zs) + £1.0(B, T, Q11.0Z1)

where 1
_ n
62(922|Z2) = —5 tr [Z/2Z29221] — 5 ln|922|;

l12(B, T, Q112|Z;) =
1
75 tr [(Zl — XBU — ZQI‘)/(Zl — XBU — ZQF)Ql_112] — gln |911.2|;

and T = 9521921. To complete the proof, mazximize the two components of the log likelihood separately, let T = >

and compute X as ~ ~ ~
Yo =n"1(Y - XBsG) (Y - XBgG).

8.8.3 Hypothesis tests and Confidence Intervals

One question of interest is whether the growth curve model is adequate. That is, does G contain the correct
polynomial functions. This question may be answered by testing Ho: E(Y) = XBG against H,: E(Y) = XB.
Note that B is a p x b matrix under Hy and a p x d matrix under H,. This test is equivalent to testing

Hp: C'BM = 0 in the usual repeated measures model, where C is a p x r matrix that satisfies R(C) = R(X’) and
M is a d x (d — g) matrix with rank d — g that satisfies GM = 0.

Theorem 8.17 (Test of Lack of Fit of GMANOVA Model) Let C be a p x r matriz whose columns span
R(X') and let M be a d x (d — g) matriz whose columns span N'(G). Then the LRT test of Hy: E(Y) = XBG
against Hy: E(Y) = XB is to reject Hy for small values of U = |E|/|E + H|, where

H = (CU'BM) [C/(X'X) C] ™' (C'BM) and E = M'Y'(I,, — H,) YM.
These matrices are distributed independently as
H~Wg_,(r, MEM,A) and E ~ Wy_,(n —r,M'SM),

where
A= (M'EM)"{(C'BM) [C'(X'X)"C] ' (C'BM)/2.

Proof: Use Theorems 8.9 and 8.10.
O

Theorem 8.18 The non-zero eigenvalues of E~'H are identical to the non-zero eigenvalues of E7YH,, where E
and H are defined in Theorem (8.17);

E,=Y'(I, - H,)Y; and H, = (B - B¢G)'X'X(B — B¢G).
Outline of Proof: Let M = Ry, where AR5 =14 — P, 5 and use properties of projection matrices to verify that
R,>R, = (A’S1A)"L.

O
The following procedures can be used to construct confidence intervals and hypothesis tests about C’'BM in
the GMANOVA model.

Theorem 8.19 Suppose that ¥ = C'BM is estimable in the GMANOVA model. Then the MLE of ¥ 1is
¥ = C'BcM
and the distribution of vec(¥), conditional on Zs is

vec(W)|Zy ~ N [vec(¥), O],
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where
0 = M'UQ;,UM® [C’(X’X)—C +n OB - BeG)EL(B - EGG)'C} :

where ¥ = n~YY'(I - H,)Y and H, = ppo(X). Furthermore, the MLE of © s

Disp(¥) = © =
M/ (GE"'G)) "M [C’(X’X)*C +n7lC'(B-BeG)E(B - EGG)’C} ,

and an unbiased estimator of O is
6- " &
n—r—d+g
Outline of Proof: First, verify that the mazimizer of £1.0(B, Q11.2,T|Z1) with respect to B is
B¢ = (X'X)"X'Z, U’ — (X'X)"X'Z,[Z,(1,, — H,)Z5] ' Z,(1, — H,)Z, U".

Second, compute the dispersion of C'EgM conditional on Zy. Note, C'BcM is a linear function of Zy when
conditioning on Zy. Finally, let T =3 and simplify.

a

Theorem 8.20 (LRT in GMANOVA Model) Suppose that ¥ = C'BM is estimable in the GMANOVA model,
where C is ¢ X p with rank q and M is db x k with rank k. Then, the likelihood ratio test of C'BM = A in the
GMANOVA model is to reject Hy for small values of U = |E|/|E + H|, where

E=nM(GEZ'G')"M and
H = (C'BcM — A)'x
C'(X'X)~C +n~'C'(B - BeG)E' (B - BoG)'C|  (CBoM — A).
Furthermore, conditional on Zs, E and H are independently distributed as
E ~ Win—r—d+g,MUQ.,UM) and
H ~ Wg(¢, M'UQ;; UM, A),

where _
A= (MUQ;; ,UM) H(C'BeM — A)' x

~ ~ ~ ~ ~ —1 ~
C'(X'X)"C+n"'C'(B-BsG)E (B - BGG)’C] (C'BcM — A)/2.

Outline of Proof: First verify that the LRT does not depend on the marginal distribution of Zo. That is, the test

depends only on the distribution of Z1 conditional on Zy. Second, write M as M = UF for some F. Recall that
M € R(G) = R(U). The conditional model can be written as

BU
7= (X Z) < T ) + Wi,

where disp(W75) = Q11.2 ® I,. Finally, use Theorems 8.9 and 8.10 to construct the LRT of

Ho: (C' 0) (BFU) F=A s H: (C' 0) (BFU>F7AA.

8.9 GENERALIZED ANALYSES OF LONGITUDINAL DATA

8.9.1 Introduction to Proc Mixed



Chapter 9

SELECTED INFERENCE ON
COVARIANCE MATRICES

9.1 LR TESTS FOR SELECTED COVARIANCE STRUCTURES

Tests for the following hypotheses will be derived in class.
1. Tests for a specified structure: X = 3.
2. Tests for sphericity: ¥ = %I, or C'SC = 02I,_;.
3. Tests for intraclass structure: ¥ = o?[(1 — p)I + pJ]. Hints:

Y = o*(1-pI,+0*p) =

1
I P

=Ty =T ) e gy

1 0, — 6
= glp - (;HT;)J where 0; = o[l + (p — 1)p] and 0 = ¢*(1 — p)
B = o1+ (p—1)pll(1— po? = 205"
4. Testing equality of covariance matrices: X1 = g -+ = 3.

9.2 CANONICAL CORRELATION AND BLOCKWISE
INDEPENDENCE

9.2.1 Review of Bivariate Correlation

Suppose that
vec(Y) ~ N[vec(XB), X ®1,],

where Y is n x 2, X is n X p with rank r,, and X is 2 x 2. We are interested in testing the hypothesis that the two
columns of Y are independent. Under normality, the columns are independent iff 3 is a diagonal matrix. Write X
as X = {o;;}. We want to test Hy: 012 = 0.
Theorem 9.1 The LR test of Hy: 012 = 0 is the following: reject Hy for small

A=(1- 7'2)%7

69
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where r is the sample correlation coefficient:
512

—,

(511522)2

and S = {s;;} is the usual unbiased estimator of . An equivalent test is to reject Hy for large
P (n—ry—1)r?

B 1—r2

a

The statistic r is called the sample Pearson product moment correlation coefficient. The population coefficient

is usually denoted by p:
012
p=—"""1-
(011022)2

Using the Cauchy-Schwartz inequality, it is easy to show that p € [—1,1].

9.2.2 Review of Multiple Correlation

Suppose that
vec(Y) ~ N[vec(XB),X ®1,],

where Y is n x d, X is n X p with rank r,, and ¥ is d x d. We are interested in testing the hypothesis that the first
column of Y is independent of the remaining columns. Partition X as

o 3
o= (5 )
where o1 is a scalar. Partition Y and B accordingly: Y = (y1 Yg), where y; is an n x 1 vector and
B= (ﬁl Bg), where 3, is a p-vector. Under normality, the columns are independent iff 3,5 = 0.
Theorem 9.2 The LR test of Hy: 312 = 0 is the following: reject Hy for small
A=(1-R*E,

where R? is the sample squared multiple correlation coefficient:

B2 _ S1285 Sa1
S11 ’
S _ S11 812 _ Y/(I — H)Y
So1 Sa n—ry

and H = ppo(X). An equivalent test is to reject Hy for large

(n—ry,—d+1)R?

F="a-na-m

Theorem 9.3 The statistic R? is the mazimum squared sample Pearson product moment correlation coefficient
between the first column of Y and an arbitrary linear combination of the remaining columns. Let r2(t) be the
squared sample correlation between y1 and Yat, where t is a (d — 1) x 1 vector. Then,

R? = maxr(t).
t£0

The squared population coefficient is usually denoted by p?:

PRI

011
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Theorem 9.4 Conditional on Yo, F in Theorem 9.2 is distributed as
F|Ys ~ Fi_1n—dnx,
where

_ B2, VI, - H)Y,35 By
2011(1 — p?) ’

A

and H = ppo(X).

Sketch of Proof: Let H* = ppo(X*) where X* = (X Yg). It can be shown that H* = H + Hy.q, where
Hs.1 = ppo[(I, — H)Y3]. The test statistic can be written as

(n—71, —d+1)yiHoay:

F=
(d— Dy (I, — H*)y:

It can be shown that the conditional distribution of y1 given Yg is
yl‘YZ ~ N(X*ﬁ*7021n)7
where
B = <ﬁ1 - 3212221221>
Yoo X ’

and 02 = 011 — 2122521 Yo1. It is readily established that the numerator and denominator of F' are conditionally
independent and distributed as chi squared random variables.

Corollary 1: The expectation of the conditional noncentrality parameter is

E()\) _ (TL — Tﬁ?)pz

S 2(1—p?)

Corollary 2: If Hy is true, then F' ~ Fy_q 5,—y, —d+1,0, unconditionally.

9.2.3 Blockwise Independence: Two Blocks
The above procedure can be generalized as follows. Consider the model
Y =XB+ U,
where Y is n X p + ¢, X is n x h with rank-r, and vec(U) ~ N[0, (2 ® I,,)]. Partition Y and L as Y = (Y1 Y3)
and
Y X
Y= ,
(221 Y92
where Y1 isn x p, Yg is n X g, 311 is p X p, and Yo is ¢ X q. We wish to test the hypothesis that Y is
independent of Ys. Under normality, the null hypothesis can be written as Hy: 315 = 0.

Theorem 9.5 The LR test of Hy: 312 = 0 is the following: reject Hy for small

_ 1A
|A11][Aga|’

where
A=Y'(I,-H,)Y,

H, = ppo(X), and A is partitioned identically to X.
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Theorem 9.6 Under Hy, U is distributed as
o Bl
|E + H|’
where B~ Wy(n —r—p,1;), H~Wy(p,1;), and E 1L H. It follows that U ~ U(q,p,n — 1 — p).
Proof: First, note that

AL x [Aga|  |Agaa]| |Ago.q|

U— - = .
|Aq1| X [Ags] | Aoz |Ago1 + Ag1 AT Ads

Now use Corollary 2 to Theorem 4.9 to show that

1. A22.1 ~ Wq(nf r—p, 222.1) and

2. Mooy 1L Aot AT A .
Note that I — H,. can be factored as
I-H, =VV' where V:n x (n—r) satisfies V'V =1,_,.
Accordingly, A can be written as
A=Y (I1-H,Y =2Z'Z, whereZ=V'Y and vec(Z) ~N(0,X®1,_,).
Partition Z as Z = (Z1 Zs), where Zy is (n —r) X p and Zy is (n — 1) X q. The distribution of Zy conditional on

Z1 18

vee(Zo)|Zy = Zy ~ N [vec (212;11212)  Boo1 @ I,H} :
It follows that
Ao AT Ay = 2, ppo(Z1)Zsy and
AN A AR|Zy =7y ~ W, (p, 201, A), where
A=3 3 A LS50

If Hy is true, then 315 = 0 and

A21A1_11A12 ~ Wq (pa Z322.1)

unconditionally.

Example
Below is a data set concerning various physiological and fitness measures. The data were obtained by

A.C. Linnerud on 20 middle aged men, all belonging to a fitness club.
Linnerud (1985) Data
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Weight Waist Pulse | Chinups Situps Jumps
191 36 50 5 162 60
189 37 52 2 110 60
193 38 58 12 101 101
162 35 62 12 105 37
189 35 46 13 155 58
182 36 56 4 101 42
211 38 56 8 101 38
167 34 60 6 125 40
176 31 74 15 200 40
154 33 56 17 251 250
169 34 50 17 120 38
166 33 52 13 210 115
154 34 64 14 215 105
247 46 50 1 50 50
193 36 46 6 70 31
202 37 62 12 210 120
176 37 54 4 60 25
157 32 52 11 230 80
156 33 54 15 225 73
138 33 68 2 110 43

We are interested in determining the relationships between the three physiological variables and the three
performance variables. The model is
Y =1, +U.

The error matrix A =Y'(I-H)Y is

1.1583 0.1307 —0.1237 —-0.0966 —1.4473 —0.5444
0.1307  0.0195 —0.0155 —0.0178 —0.2457 —0.0597
—0.1237 —0.0155 0.0988 0.0109 0.1929 0.0245
—0.0966 —0.0178 0.0109 0.0531 0.4372 0.2553
—1.4473 —0.2457  0.1929 0.4372 7.4377 4.0793
—0.5444 —0.0597  0.0245 0.25563  4.0793  4.9958.

A =10* x

Using Matlab |A| = 9.1452 x 10'? |A 11| = 4.6585 x 108, and |Aga| = 5.6027 x 10*!. Thus U = 0.350391.

Under Hy: X2 =0, U is distributed as U ~ U(3,3,16). The parameters of Rao’s F' approximation (see
Rencher, 2002, equation 6.15) are ¢ = 2.4337, w = 15.5, df; = 9, and dfy = 34.2229. Thus, the observed F statistic
is F' = 2.0482. This statistic can be compared to the F' distribution with 9 and 34.2229 degrees of freedom. The
p-value is, approximately, .06324. Hence, at o = .05, the null cannot be rejected.

9.2.4 Blockwise Independence: k£ Blocks

Generalization from 2 to k blocks is straightforward. The above procedure can be generalized as follows. Consider
the model
Y =XB+ U,

where Y is n x d; X is n x p with rank-r, and vec(U) ~ N[0, (¥ ® I,,)]. Partition Y and ¥ as
Y = (Y1 Y2 tee Yk) and

Yu Y2 - X

o1 oo - X
Y= . . ) ) ,

Yp1 g2 - Xk

where Y is n x d;, 3;; is d; x d;, and 25:1 d; = d. We wish to test the hypothesis that Y; is independent of Y ;
for all ¢ # j. Under normality, the null hypothesis can be written as

k
H02 Y= @Ejj'
7=1
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Theorem 9.7 The LR test of Hy is the following: reject Hy for small

_ A
U=+5——
11145l
L

J

where
A=Y'(I,-H,)Y,

H, = ppo(X), and A is partitioned identically to X.
Proof: HW.

Multiplying the numerator and denominator of U by the same constants reveals that U also can be written as

S R
g ISl _ IR

Tk Tk R )
1151 ] Rl
j=1 j=1

where S is the sample covariance matrix, S = A/(n — ), and R is the sample correlation matrix.
The Bartlett-corrected test is to reject Hg if

k
1
—(n—=r)ecln(U) > X?—a,f? where f = 5 d* — Zd? ,
j=1

1

k

Jj=1

c=1

9.2.5 Canonical Correlation

Again consider the model
Y =XB+ U,

where Y is n X p + ¢, X is n x h with rank-r, and vec(U) ~ N[0, (2 ® I,,)]. Partition Y and L as Y = (Y1 Y3)
and
Y X
Y= ,
(221 Y92
where Y1 is n x p, Yo is n X ¢, 311 is p X p, and oo is g X q. The LR test for blockwise independence is one way
to test the hypothesis that Y is independent of Ys.
An alternative way of testing that Y is independent of Y5 is through canonical correlations. Consider a linear

combination of the responses in Y1, say z; = Y1£; where £ is p x 1. Consider a linear combination of the
responses in Yg, say zo = Yo€y where €5 is ¢ x 1. Let Z = (z1 ZQ). Let

4 0
L:£1@£2:<01 £2>.

disp(Z) = (L' ® I,)disp(Y)(L®IL,) = (L'SL®IL,) = (Q®1,),

Then, Z = YL and

where

Q = {w;} = L'SL = (Ellzﬂfl ”1212”2) .

£’2221£1 »6/2222»62

If Y is independent of Yo, then wis = 0 regardless of how we choose £; and £5. If Y, and Y5 are not
independent, then wis # 0 for some choice of £; and £5. Thus, the null and alternative hypotheses can be written as

Hoi 3i12=0 <:>£11212£2 =0 Vﬁl,ﬁg
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and
H,: D 7é 0 <= 6/121262 7é 0 for some zl,fg.

These hypotheses are in the union intersection form:

Ho: () €1Z12€2 = 0 versus Ho: | £1 1282 #0.
‘e17‘82 ‘e17‘62

Accordingly, a union-intersection test can be constructed as follows:

1. Construct a test of Hy: £ 31285 = 0 versus H,: £;X12€5 # 0 for an a priori pair £, £5. Denote the test
statistic by Vg, ¢, where Hy is rejected for large V.

2. The UI test is to reject Hy: 315 = 0 for large

V =max Vp, g,.
1,%2

3. Find a convenient way to compute V and find the null distribution of V.

For an a priori £; and £, the problem reduces to testing independence between two columns. From prior work,
we know that the likelihood ratio test is to reject Hg: w12 = 0 for large Vi, o, = rfl ¢, Where 7¢, ¢, is the sample
correlation between Y1£; and Yafs:

(£,812)”
£7S1141)(€5S525)’

_ .2 _
wl,lz =T 0, = (

where S is the sample covariance matrix. Thus, the Ul test statistic is

V =ma (£1S12£2)2

= = ch;(S5582187,'S
el,z}; (5'151131)(6’252232) ch1 (S5, S21S77 S12),

where chy(+) is the maximum characteristic root function. The statistic V' is called the first squared sample
canonical correlation. It is the maximum squared correlation between a linear combination of the columns of Y
and a linear combination of the columns of Y. If either p =1 or ¢ = 1, then V reduces to a squared multiple
correlation. If p =1 and g = 1, then V reduces to a squared simple correlation.

Theorem 9.8 Conditional on Y1, V' has the same distribution as the mazimum root of (E + H) 'H where E and
H are independently distributed as

E~W,(n—r—p,Xg01) and H[A; ~ Wy(p, Ba2.1, 22_21.1A)a

where A = 22121_11A1121_11212.

Corollary: Under Hg, V has the same distribution as the maximum root of (E + H)le where E and H are
independently distributed as
E~W,(n—r—pI and H~ W,(pI).

Population canonical correlations are obtained by substituting 3 for S. Let

w12
Pey L, = 1-
(w11wa2)?

That is, pg, ¢, is the correlation between the two columns of Z. One way to summarize the relationship between Y
and Y5 is to find the linear combinations, z; = Y1£; and zo = Y2#5, which have the largest correlation. The linear
combinations, z; and z, are called the first canonical variates and their correlation is called the first canonical
correlation. It may be that the relationship between Y; and Yo is not adequately summarized by a single
correlation. In which case, we can construct additional canonical variates and correlations.
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Denote the rank of 15 by s and denote the ordered characteristic roots and vectors of 21_1121222_21 301 by
A =diag(Aq,..., ;) and Ly = (En Klm), where A\ > Ay --- > A;. That is,

SIS Y T Ly = LA,
In a similar manner, denote the characteristic vectors of 22_21221 21_11212 by Lo = (621 e Kgm):
3 Y X' EoLs = LoA.

Note that the characteristic roots corresponding to L; are identical to those corresponding to Ly. The following
results can be established:

1. If the eigenvalues in A are distinct, then L{3;L; and L5X¥9sL4y are each diagonal. If the eigenvalues are not
distinct, then the eigenvectors Ly and Ly can be chosen such that L} 311L; and L;X55Lo are each diagonal.

To verify this claim, define E as E = 2_1 22122_1/ Then,

SIS0 T L = LA
— »,*EE's’L, = LA
— EE'S|/’L; = 2°LA

= the columns of 21{ L, are eigenvectors of EE'.

Note that EE’ is symmetric. Accordingly, if the eigenvalues \; for i = 1,..., s are distinct, then columns of

21{ L; are orthogonal. Otherwise, the columns of 33; / L1 can be chosen to be orthogonal. Therefore,
L{3:L; is a diagonal matrix.

2. One way to compute the eigenvectors L, and Ls is as follows. Write the full-rank SVD of = as
E=3,"2,%,,"" = W,0W),
where W1 is p x s, Wy is ¢ x s, and W{W; = W,W, =1,. Then

ZE'S’L, = S1°LA
— W,0°W/S1/°L, = 51/°L,A
= the columns of 2}{2L1 are the eigenvectors of W;®?*W/ and A = ©?

= the columns of 3 / L; can be chosen to be proportional to the columns of Wj.

It follows that L; can be chosen to satisfy
°LiD; = W,

for some s x s diagonal matrix, D; Accordingly,
L =3, WD

for i = 1,2, where D; is an arbitrary matrix.

3. Partition the matrix of regression coefficients as B = (B Bs), where By is h x p and By is h x ¢. Define Z by
2 v-xe) (g 2)=(vi-xB) (va-x) (5 0)

= (Y1 =XB)L; (Yy—XBy)Lo) = (Z1 Z).
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The n x s matrix Z contains the centered canonical variates. Note that

. LS LSl
Disp(Z) = (L’221L1 LyS,L, ) ©1

B (D 'w, 211 211211 wW,D;! D;'W/ 211 212222 W,D; ) o1
D; 1W2222 221211 w,D; ! D12W2222 222222 wW,D; !

D;? D;'eD;’
<D2 ‘ep;! D, ) ® L.
If D, is chosen to be I, then
Disp(Z) = G_; E) ® L,.
4. Choosing D; to be an identity is equivalent to solving the eigen-equations
S S8 Ly = LiA and 255527 2oL = LA

and then replacing L; by

-

L = Ly(L;%,Ly) "2

and replacing Lo by

1

L = Ly(LyX¥g0Lo) 2.
Note that

SIS0 T Ly = LA

-
-

= 231055, 2 Ly (LE L) 2 = LA (LiE L) 2

1

_ 1
— Y230 0 Ly (L2 Ly) % =Ly (Lf2, L) 2 A

= 3'T12%,5, 3o L = LiA
because diagonal matrices commute. Also, L', L} = L339, Lj = I,. For convenience, L} and L} will be
denoted simply as Li; and Ls.
5. Li¥13Ls = O = Az, Thus, ); is the squared correlation between Y1£1; and Yofs;, and Y1£1; 1L Yows; for
i#£d.
6. L1 31535, By Ly = L3030 2151, = A.
7. Ly = 35,80, L4A "2 and Ly = 'S LoA 2.

8. Denote the n x (i — 1) matrix consisting of the first ¢ — 1 columns of Ly by Lj;. Similarly, denote the
n X (i — 1) matrix consisting of the first ¢ — 1 columns of Lo by Lo;. If ¢ = 1, then Ly; = Loy = 0. Let
‘/11‘ = ./\/(L’IZEH) and let ‘/Qi = N(lezgg) Then,

(€1 12£2)"
max 7 7
L€V, L€ Vo (El 21151)(6222262)

= (£/1i212£2i)2 =\

The i*® set of canonical variates is z1; = Y1£1; and zo; = Ya€s;. The squared correlation between z1; and zg;
is called the *" squared canonical correlation and is equal to \;.

9. The nonzero characteristic roots of 21_1121222_21221 are identical to the nonzero characteristic roots of
R;'Ri2R;, Ray, where R is the population correlation matrix. The corresponding scaled eigenvectors are
called the standardized canonical coefficients.
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Example The sample covariance matrix corresponding to the data on page 72 of the notes is

0.6096 0.0688 —0.0651 —0.0509 —0.7617 —0.2865
0.0688 0.0103 —0.0081 —0.0093 -—0.1293 —-0.0314
S —10° x —0.0651 —0.0081 0.0520 0.0057  0.1015 0.0129
—0.0509 —0.0093 0.0057  0.0279 0.2301 0.1344
—-0.7617 —0.1293 0.1015 0.2301 3.9146 2.1470
—0.2865 —0.0314 0.0129 0.1344 2.1470 2.6294
Using MATLAB,
> S11=8(1:3,1:3);
> 522=5(4:6,4:6);
> §12=8(1:3,4:6);
> §21=S12";
> Ql=inv(S11)*S12*inv(522)*S21;
> [W1,Lam]=eig(Q1)
0.0635 —0.2020 —0.0360
W1=1-0.9978 0.9757 0.7347
0.0166 —0.0848 0.6775
0.6330 0 0
Lam = 0 0.0402 0
0 0 0.0053
4.0926 0 0
LiS;1L; = 0 7.0024 0
0 0 21.6112
0.0314 —-0.0763 —0.0077
L (LS L)% = [ —0.4932  0.3687  0.1580
0.0082 —0.0321 0.1457
0.6330 0 0
L)S12(S22) 'SoaiLi = 0 00402 0
0 0 0.0053
0.0661 —0.0710 —0.2453
Ly = (So2) 'SoiLiA=5 = | 0.0168  0.0020  0.0198
—0.0140 0.0207 —0.0082
0.7956 0 0
L)SioLs = 0 0.2006 0
0 0 0.0726

From Table A.10, the 95" percentile of the greatest characteristic root distribution with s =3, m = —%, and
N =6 is difficult to determine. Charts (from Morrison, 1990) will be distributed in class. From chart 11, the
critical value is approximately .575. Thus, the first canonical correlation is significant at o = .05.
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DISCRIMINANT & CLASSIFICATION
ANALYSIS

Consider k populations P, ..., Py. Let y be a d-vector, randomly drawn from the i*" population. Assume that the
density function for y, is f;(y). The density functions need not be multivariate normal. The densities could be
continuous, discrete, or a mixture of continuous and discrete. Suppose that a vector y is observed, but it is not
known from which population the vector was selected. The goal of discriminant analysis is to classify (assign) the
vector to the correct population. The following notes are based on Anderson (1958, 1984).

10.1 GENERAL TWO-POPULATION CLASSIFICATION
ANALYSIS

10.1.1 Decision Rule, Costs & Risk

Denote the support set for y by ). It is assumed that y has the same support set in both populations. Note that
Y € RY. Partition ) into mutually exclusive and exhaustive subspaces J; and 5. The decision rule that we adopt
is to classify the observation into P; if y € ));. The problem to be solved is how to partition ). To partition the
support set we will use Bayesian methods.

Denote by C(i|j), the cost of classifying an observation into population ¢ when it actually comes from
population j. Assume C(i|j) > 0 for all 4,7 and C(i]¢) = 0. The costs can be summarized in a 2 x 2 table:

Statisticians Decision
P P
True Py 0 C(2]1)
Population | P» || C(1]2) 0

Denote by Pr(i|j, Y1,Y>), the probability of classifying an observation into population i given that the
observation comes from population j using partition ) = Y1 |V, where, Y1 (Yo = 0. These probabilities are
called misclassification probabilities. For example, Pr(1]1, Y1, Ys) is the probability of correctly classifying an
observation from population 1 into population 1 and Pr(2|1, )1, Ys) is the probability of incorrectly classifying an
observation from population 1 into population 2.

Let m; be the probability that a randomly selected observation belongs to population ¢. The values 7; for
1 = 1,2 are called prior probabilities and represent the relative sizes of the two populations. Naturally, 71 + 7o = 1
must be satisfied.

The expected cost or loss resulting from a classification decision is called risk. The expected loss (risk)
conditional on the observation coming from population ¢ is denoted by (Y1, V|i). Specifically,

rVnYall) = C(U1) x Pr(1[1,¥1,¥s) + C(2[1) x Pr(2(1, 1, Vo)
= C(2]1) x Pr(2[1,Y4,Y2),

79
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and

C(1]2) x Pr(1)2, Y1, Y2) + C(2]2) x Pr(2[2, Y1, Y2)

T(yl, y2 ‘2)
= C(1|2) XPT(1|2,y1,y2).
The unconditional expected loss (risk) is denoted by ()1, )5) and is given by

r(V1,Y2) = 1(V1, Y2ll) X 1 +7(V1, V2[|2) X 7.

10.1.2 Bayes Procedure

A decision rule is Bayes if its risk is a minimum. To obtain the Bayes rule, write out the risk function and minimize
with respect to the partition ) = ()1, Ys). The result is the following.

Theorem 10.1 (Two Population Decision Rule) The Bayes rule is to classify into Py if y € Y1 and to
classify into Py if y € Vo where

Vi={y; fily) x C(2|1) x m1 > fa(y) x C(1]2) x ma},

and
Vo ={y; fily) x C(2[1) x 11 < fa(y) x C(1]2) x ma}.

If fa(y) # 0, then the regions are
= (L) 5 GO x ),

faly) = CQ21) xm

and

<

_J, 1iy) _ C(2) xm
V2= {y’ faly) — CQI1) xm }

Proof in class.

10.1.3 Admissibility of the Bayes Rule (Optional Section)

In most cases the above Bayes rule is admissible. A rule is admissible if there is no rule that is better. The rule
(V7,3 is better than (Yq,)») if

1. r(yiy;‘z) S T(y13y2|i) v ia and

2. strict inequality holds for some 3.

Note, admissibility is concerned with conditional rather than unconditional risk and, thus, is not dependent on a
particular prior. The Bayes rule, by definition, has minimum unconditional risk. However, in some unusual
circumstances, it may not have the smallest conditional risk for each 1.

If attention is restricted to cases in which 0 < 7y < 1V 4, then the Bayes rule is admissible. Also, if

Pr(fi(y) = 0lj] =0Vi#j

then the Bayes rule is admissible and the class of Bayes rules (indexed by the prior) is minimal complete.

As a counter example, suppose C'(1|2) = 10, C(2|1) =0, m; = 1, and w3 = 0. For any pair of density functions,
the Bayes rule is Y1 = ) and ) = (). That is, the Bayes rule always classifies into P;. The conditional risks are
r(Y1,Y2|1) =0 and (Y1, Y5|2) = 10. The unconditional risk is 0 + 10 x 0 = 0. Consider Y; = 0 and Y5 = ). The
associated conditional risks are (Y7, V5|1) = r(Y7,V5]2) = 0. Thus, (Y7, Vs) is better than (V1,)s).
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10.2 TWO NORMAL POPULATIONS

Suppose that
Na(pq,%) if Pp; and
y ~ .
Nd(p,z,E) if P2.

Theorem 10.2 (Two Population Linear Discriminant Function) The Bayes rule is to classify into Py if

L(y) > c,
where
2 X C(1]2)
c=1 ,
m x C(2|1)
and

otherwise, classify into Ps.

O
Note that the discriminant function is linear in y. It is sometimes called Fisher’s linear discriminant function.
The function also is called D(y) where the D stands for discriminant.
As an example, suppose that there are only d = 2 response measures. The response vector is distributed

N(p;X) in population 4, where
8 3 5 -3
M1 = (8> ’ Ho = (21> ’ and ¥ = <_3 6) .

For simplicity, assume that C(2[1) = C(1]2) and that 7 = 72 = . Thus, ¢ = 0. A display of the linear
discriminant function appears below. The constant density ellipses include 95% of the underlying populations.

Linear Discriminant Function
30 T T T

Variable 2
-
[6)])
T
Il

101 h

0 L L L L L
-10 -5 0 5 10 15 20

Variable 1

If the population covariances are not identical, then the discriminant function is quadratic in y.
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Theorem 10.3 (Two Population Quadratic Discrimination) Suppose that

{Nd(ul,El) if Py; and
y ~ .

Na(pg, X2) if Po.
Then, the Bayes rule is to classify into Py if

Qly) = ¢,
where .
- ('Elf X Ty X 0(1|2)> |
|X2]2 x m x C(2]1)
and

Y(E -2y S e — b3y
2 2 ’

Qly) = (27— pp2y Ny —

otherwise, classify into Ps.

As an example, suppose that there are only d = 2 response measures. The response vector is distributed
N(p;X;) in population ¢, where

8 3 10 3 5 —3
u1=(8); u2=(21); 212(3 5>;and22=(3 6)'

For simplicity, assume that C(2[1) = C(1|2) and that 71 = 7 = %. Thus, ¢ = 0. A display of the quadratic
discriminant function appears below. The constant density ellipses include 95% of the underlying populations.

Quadratic Discriminant Function
40 T T T

30 h

20 h

Variable 2
o

_10 - m

_20 - u

_30 - m

_40 L L L L L L L
-20 -10 0 10 20 30 40 50 60

Variable 1

10.2.1 Probability of Misclassification

Suppose that
Na(pq,%) if Py; and
y ~ .
Na(po, %) if Ps.
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From the above results,
N (%,5) if y is from P;, and
(y) ~

N (fg, 5) if y is from P,, where
6= (my — Hz)lzil(ﬂl — M)

The parameter 6 is called the squared Mahalanobis distance between p; and p,.
The misclassification probabilities are

c—3
Pr(2|1):<1)[ v ]

and
c+%

Pr(12)=1— & 7

)

where ®(-) is the CDF of the standard normal distribution.
As an example, suppose that there are only d = 2 response measures. The response vector is distributed

N(p,;X) in population ¢, where
8 3 5 -3
P = (8) ’ Ho = (21) ’ and ¥ = (_3 6) .

For simplicity, assume that C(2|1) = C(1|2) and 71 = m2 = 1. Thus, ¢ = 0. In this case, § = 28.8095,
§/2 = 14.4048, and Pr(2|1) = Pr(1]2) = 0.0036.

10.2.2 Minimax Rules

If the 7; are not known, then we cannot obtain the Bayes rule. However, we may still be able to find a minimax
rule. A minimax rule is one which minimizes the maximum conditional risk. Finding minimax rules is sometimes
simplified by using the following result:

Theorem 10.4 (Minimax) If (J1,Y2) is a Bayes rule for some prior, and (Y1,Ya) has constant risk, then
(V1,Y9) is minimaz.

Proof: Suppose (Y1,)Y2) is the Bayes rule corresponding to the prior (w1, m2) and the risk is constant:
r(V1,Va2|1) =7r(V1,V2]2). Let (V7,Y5) be any other rule. Then

r(V1,Y2) = m X 7(V1, Va|l) + 72 x 7(V1, Va2 [2)
=7(V1,V2[1) = 7r(V1,V[2) = max (Y1, Vali),
because risk is constant. Also, (Y1,Y2) is Bayes, so that r(Y1,Y2) < r(YVi,V35) must be satisfied. Note that
F(V1.92) < PV D3) = m x (D V3[1) + ma x (V7 312) < max r(D], Vi)
Thus,
max r(V1,ali) < max 1(V7. V310

and (Y1,Y2) is minimaz.

To find the minimax rule, find the prior such that the Bayes rule
Vi ={y; fi(y) x C(2[1) x m1 > fa(y) x C(1]2) X 72}
results in
C(2]1) x Pr(2)]1) = C(1]2) x Pr(1]2).
In the normal theory, k = 2, case with equal variances, the Bayes rule is to classify into P; if L(y) > ¢. To obtain
constant risk, choose ¢ to satisfy
c— c+ g

V6 Ve )

The minimax rule is to classify y into P; if L(y) > ¢ where c satisfies the above. In nonnormal problems, finding
the minimax rule can be more difficult.

[
2

C(2)1) x @ l

= C(1]2) x (1 !
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10.3 k-POPULATION CLASSIFICATION ANALYSIS

The optimal k-population classification rule can be obtained using the same approach as for 2 populations.

10.3.1 Optimal Classification Rule

Employing the same notation as for k = 2, the risk, using the classification rule (Yy,..., V), is

k k
T(ylu"wyk)zzﬂ-lz PI']|1 y17"'7yk)]
i=1 j=1

[mc(ﬂi) /y i) dy}

Ma

k k k
=D > [mCG) Pl e Vi) =

j=11i=1 j=11i=1
k k
= ZZ/ [m:C(jli) fi(y)] dy Z/ h;j(y)dy, where
j=14i=1"Y; =17Y;

k
hi(y) = > [mCGl) fi(y)] -

i=1
The risk also can be written as

1 ifye)y;
(y17"'7yk /Z dyWhered() { ’

0 otherwise.

To minimize the risk, consider minimizing

k
= Z [0;(¥)h;(¥)]

Jj=1

for each y € ), subject to the restriction that ¢;(y) must equal 1 for exactly one value of j. That is, an observation
must be classified into one and only one population. Suppose that the values of h;(y) for i =1,...,k are distinct.
In this case, the quantity Q(y) can be minimized by assigning the values
1 if hj(y) = minh,(y), and
4;(y) = ‘

0 otherwise.

If there are ties for min; h;(y), then the the observation can be assigned to any population for which k;(y) is a
minimum. The result is summarized in the following theorem.

Theorem 10.5 (k Population Rule) The k population Bayes classification rule is to assign'y to Py, if
hi(y) < hj(y) for all j # m, where

Z C(jli) fiy ]

i=1

The rule k population rule simplifies when all costs are equal:
L koifi# g
C(ily) = L
0 ifi=j.

Let
k

) = [mfily))-

i=1
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Note that f(y) is a density function. It integrates to 1 and is nonnegative. In particular, it is the density function
of a random vector randomly selected from population i with probability 7r;. This type of density is often called a
mixture. Note that, when all costs are equal, h;(y) = f(y) — 7, f;j(y). Hence, the decision rule simplifies to the
following. Classify y to Py, if T, fm(y) > 7; f;(y) for all j # m. This rule is equivalent to assigning y to the
population having the highest posterior probability.

Prior to observing y, the probability that an observation belongs to the i*" population is m;. It is instructive to
examine how that probability is modified after observing the data. That is, if Pr(P;) = m;, then what is Pr(P;|y)?

Theorem 10.6 (Posterior Probability) The posterior probability that y was sampled from P; is

mifily)  _ mifi(y)
fy) -

Pr(Pily) = —
; i fi(y)

Proof:
Pr(P,y) _ Pr(y|P)Pr(P) _ mifi(y)
f(y) f(y) fly)

Pr(Ply) =

10.3.2 k Normal Populations

For k normally distributed populations having equal covariance matrices, the Bayes decision rule is to classify into
P, if hy(y) < h;(y) for all j, where

k -1
) = mC i) p{ (y - Nz Ed (y_liz')}'
V)= 2wl =/ 2m)3

For simplicity, assume equal costs of misclassification:

L kit # j;
C(ZU){O if i =j

Then, the Bayes rule is to classify y into P; if m; f;(y) > 7; f;(y) for all j. That is, classify y into P; if

_ (s — 1) 57 (e + 1) 7
(p; = Nj)/z ly - E 22 _In | -

for all j. As shown above, this rule is equivalent to classifying the observation into the population having the
largest posterior probability. In the normal case, the posterior probability is

—-3D7(y)
Pr(Pily) = k—7
S e 2 DI

=1
where
Di(y) = (y — )" (y — p;) — 2In(m;).

Note, the population with the highest posterior probability is the one with the smallest value of D?(y). Excluding
the —21n(m;) term, DZ(y) is called the squared Mahalanobis distance between y and p,.
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10.4 SELECTION OF VARIABLES (2 GROUPS)

Suppose a random sample of size n; is available from Ny(p,, 2) and a random sample of size ns is available from
Na(pty, X). The corresponding linear model is

Y =XB + U,

!
B = (“}) ,
125]

Y is N x d and N = n; +ny. We are interested in knowing whether a subset of the d variables (say the first r) can
discriminate as well as the entire set. The coefficients of the linear discriminant function are

where

T=3""(u —py) =276,
where 6 = p; — p,. Partition Y, 3, 0 and 7 so that Y isn xr, 313 is r x r, and 0; and 7; are each r x 1. Then,
the last d — r variables add nothing to the discriminant function if 79 = 0. Thus, we wish to test Hy: 70 = 0. Use
partitioned matrix results to show that

T=3"10= 19 =3, ,(0; — £ .'01).

Note that
To=0+= 0,35, %'0; = 0.

Thus, we are interested in testing Hy: 85 — 3o 2;1101 =0.

Theorem 10.7 Let

17— (M2 g's 9,

where S =Y (I-M)Y /(N —2), M = ppo(X), and 6 =3, —5,. Also, let

where 0 isr x 1 (i.e., the first partition of é) and S11 is the upper left hand v x r block of S. Then an « size test
of Hy is to reject Hy if Fy > F;__:fN_d_l, where

oo T? —T? < N-d-1 )
Tl 2 \(d-n(N-2))°
Conditional on Y1, F5 is distributed as

FolYi ~ Far N—d—1,x,

where

A= (”1”2) (02 — 21 211'601) 555, (02 — £01 311'61)
N 21+ (N —2)7'72

Proof: See the description of Roy’s step-down tests in these notes.

O

Remark — If 79 = 0, then F, has an unconditional central F' distribution. The above testing procedure is the
basis of stepwise tests in discriminant function analysis. The procedure can be extended to more than two groups
(see Seber, page 341). However, the test is not recommended.



10.4. SELECTION OF VARIABLES (2 GROUPS)

10.4.1 Alternative Approach to Variable Selection

As in the previous section, a test of 85 — 2oy Eff@l = 0 is desired. Write the two sample model as
Y =XB+ U,

where

_ (1w O _ (™
X = ( 0 lnz), B= <N/2 , and vec(U) ~N(0,X®1,).

Consider the distribution of Y5, conditional on Y;:
VGC(Y2)|Y1 ~ Nd—r [vec (XB2.1 + er) y (222.1 X In)] s

where

7% 7% 1 1
By = < /12> - ( /11) Z31_1 Y, I'= E1_1 Y12,
Moo K2y

and where p; and p, have been partitioned conformably to 8 as
M1 Fr2y
= and py, = .
H (Hm) He (Hm)

W= (X Y;) andlet G = (BIZ'1> .

Let

Then, the conditional model can be written as
Yy, =WG+ Uy,

where
VeC(UQ.l) ~ N(O, 22241 ® In)

Let ¢ be an (r +2) x 1 vector defined as

Note that
C/G = (1 —1) B2.1 - [02 - Ezlellal]l .

The likelihood ratio test of Hy: ¢’G = 0 in the conditional model is to reject Hy for small

|E22.1]

Uyp1=—""——,
> |Eas.1 + Hagq|

where
Esq =Y5(I, -H,)Y,, H, =ppo(W),

Hyyy = G'c[¢/(W'W) le] ' ¢'G, and G = (W'W) 'W'Y,.

It can be shown that this test is identical to the test based on differences between T2 statistics. Extra credit for
proof of the equivalence.
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10.5 KERNEL-BASED CLASSIFICATION

Generally the densities f;(y), for i = 1,..., k are unknown and must be estimated. If the parametric family is
known, then maximum likelihood can be used to estimate the unknown parameters. If the parametric family is
unknown, then other procedures can be used. One such procedure yields kernel density estimators.

Let G; be the training sample from population 7. That is,

G; ={y;;y; € sample from population i}.

A kernel density estimator for f;(z) can be written as

fite) = == 3 Kia—y.1),

' yeG;

where K;(u) is a pdf and r is a smoothing parameter. For example, the kernel for a p-variate normal density is

Ki(u,r;) =

ry (2m)r 2|5 |/

and the kernel for the p-dimensional uniform density is

r¢+1
(5 T )p if WS, 'u <r? and
Ki(u,r;) = § rP|Z;|27%
0 otherwise.

The quantity 77/ 2I'(p/2 + 1) is the volume of a p-dimensional unit radius sphere. The quantity
D(p/2 + 1)/(r?|=;]"/?7P/2) is the volume of a p-dimensional ellipsoid bounded by {u|u’S; 'u} = r? Many other
kernels could be used as well.

The matrices ¥; for ¢ = 1,...,k can be estimated in many ways, depending on which assumptions are
reasonable. For example, if it can be assumed that population covariance matrices are homogeneous, then 3; can
be estimated by Y'(I — H, )Y /(n — k) for each i, where X is the design matrix for a one-way classification with k
treatments and Y is the total training sample. If covariance matrices are heterogeneous, then 3; can be estimated
by Y.(I-H;)Y;/(n; — 1), where H; = ppo(1,,) and Y; is the training sample from population .

Reasonable values for r; are

4 p+4
r; = ((2+—1)) if a normal kernel is employed, and
P U

_ (2P +2)T (8
e n;p

p+4
) > if a uniform kernel is employed.

10.6 NEAREST NEIGHBOR CLASSIFICATION

Nearest neighbor classification consists of using the Bayes rule but substituting nearest neighbor density estimators
for the unknown densities. To construct a nearest neighbor density estimator for f;(z), first choose an integer
number of neighbors to be examined, g. Several values of g can be tried and values near /n/k are sensible starting
points. For a fixed z, find the g nearest neighbors in the training set. The squared distance from z to y is measured
as

D(y,z) = (z—y)'S" ! (z—y),

where S is the pooled sample covariance matrix. Let y, be the g'"" nearest neighbor to z and define r(z) as

=

r(z) = [(z —yy)S™ (2~ yy)]

The volume of the p-dimensional ellipsoid

Alz) = {€(€ —2)'ST' (€ — 2) < 7(2)*}
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is

V(z) =
p
r(5+1)
5 +
The nearest neighbor density estimator is
ﬁ (z) = Lv

where g; is the number of the g nearest neighbors that belong to population 3.
Note that if Z is a random p vector from population i, z is a fixed p-vector, and A(z) is an ellipsoid centered at
z, then

V(o) = V) and
w PEEAGH _ VG
v(lgllo V(z) B V(IZ)—‘O V(z) @)

provided that the density is sufficiently smooth. Accordingly, the kernel density estimator is consistent.
If misclassification costs are equal, then the Bayes rule is to classify z to the population with the largest
posterior probability. The posterior probability is

fi(z)m'

and is estimated by

P(Pi|z) = — ' =

o
S 2

j=1

Furthermore, if priors are proportional to sample size (m; = n;/n), then

5 gi
P(P;|z) = =.
(Pilz) P

10.7 LOGISTIC DISCRIMINATION

In this section, we assume equal costs of misclassification:

L 1oifd#j;
C(Zm:{o if i =j

Accordingly, the Bayes rule is to classify y into the population having the largest posterior probability:
7 s
Pr(Ply) = — ifily)
> mifi(y)

j=1
Suppose, as is usual, that f;(y) must be estimated from a training sample. In the k population Gaussian case with
equal variances, d(d + 2k 4+ 1)/2 parameters must be estimated.

The logistic approach focuses on estimating the posterior probability directly, rather than estimating the
densities. A particular form is not assumed for the density functions. Rather, the linear logistic approach assumes

that )
Jily o /
In <fk(}’)> = + By,
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fori=1,...,k — 1. Accordingly, the posterior probabilities can be written as
(Wifi(Y)) (ﬂ'ifi(Y)>
T fe (y) _ e fie (¥)

k
7 1i(¥) 7 £ (y)
S S ()

Pr(Pily) =

exp [ln(:—k) ai+/3/.y]
1+j§1 exp [ln(%)Jra] +,6 y]

if i # k; and

L if i = k.
1+ Z exp [ln( )+a]+,6 y]

j=1

The approach is called linear logistic because, for k = 2, the logit (log odds) is linear in y:

In the k population case, (d + 1)(k — 1) parameters must be estimated. Denote the vector containing the entire

set of parameters by ©. Assuming that an independent sample of size n; has been obtained from the i*" population
for i = 1,...,k. The likelihood function for the entire sample is
®‘Y H H PI‘ P |Y1J
1=17=1

where the posterior probabilities are given above. The log likelihood function can be maximized by Newton
methods.

Parameter estimation in linear logistic discrimination analysis with k = 2 is identical to parameter estimation
in logistic regression. This is a Stat 539 topic.
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PRINCIPAL COMPONENTS

11.1 POPULATION PRINCIPAL COMPONENTS

Principal components can be motivated in a variety of ways. We will examine two motivations. The most
straightforward motivation considers the variance maximizing properties of principal components. The second
motivation considers the dimension reduction properties of principal components.

11.1.1 Maximizing the Variance of Linear Combinations

Let y be a random d-vector with distribution y ~ (u, X). Suppose that the experimenter does not wish to use the
original d variables because it is believed that a smaller set of linear combinations of the d variables will capture
most of the information. A linear combination is said to have no information if all members of the population have
exactly the same score on the combination. That is, the linear combination is not informative if, with probability 1,
h'y = c. In this case, var(h’y) = 0. On the other hand, a linear combination is said to have much information if
the members of the population vary greatly on their scores. In this case, var(h’y) is large. A sensible goal is to
keep linear combinations which have large variance and discard linear combinations which have small variance.

The first (most important) linear combination is called the first principal component and is z; = h'(y — p)
where h is chosen such that

h'(y — u))

vh'h
is maximized. The second principal component is zo = h'(y — ) where h is chosen to maximize Q(h), subject to

cov(zg,21) = 0. In general, the k" principal component is z; = h’(y — p) where h is chosen to maximize Q(h),
subject to cov(zg,z;) =0fori=1,...,k— 1.

0 o

Theorem 11.1 Write X in diagonal form: X = TAT' where T = (t1 ty - td), A = diag(\;), and
AL > Xy > - > Ag > 0. Thei'® principal component is z; = ti(y — p) and var(z;) = \;, fori=1,...,d.

11.1.2 Dimension Reduction Properties (Optional)

This section is from Seber (1984, p. 176-181). Consider the following problem. We wish to find a random vector
z: k x 1 and a matrix of constants A: d x k for k < d such that the vector Az is “close” to y — u. To measure
closeness, let u = (y — u) — Az. Denote var(u) by X,. Then, we will say that Az is close to (y — p) if X, is small.
The magnitude of X, will be indexed by f(X,) for some function f defined on the space of all d x d positive
semidefinite matrices.

What f should be used? Let S and V be psd matrices of the same order. We wish to determine the relative
magnitudes of S and V. A “reasonable” function, f, ought to satisfy the following two properties:

(i) £S#V,and S—V >0, then f(S) > f(V).

(ii) If Q is an orthogonal matrix, then f(S) = f(QSQ’).

91
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Point (ii) above stems from the following considerations. Premultiplication of u by an orthogonal matrix Q
performs a perpendicular rotation of the d axes. The relative magnitudes of u have not been changed so it is
sensible to expect that f(X,) = f(QXZ.Q').

The above two conditions ought to help us narrow down the sort of function, f, to employ. In fact, the two
conditions are quite helpful in restricting f. Before proceeding, we will pick up a couple of useful results.

Theorem 11.2 (Courant Fischer Min-Max Theorem) Let L: d x k be a rank-k matriz, and let W be a d x d
psd matriz with characteristic roots 01 > 0 > ... > 04. Then

) c'Wc
inf sup —— =0k41.
L c;c’L=0 c'c

Proof: See page 525 in Seber.

a

Corollary to Theorem 11.2 Let S and V be d x d psd matrices. Denote the ordered ch. roots of S by r;(S) for

i=1,...,d; and denote the ordered ch. roots of V by r;(V) for i =1,...,d. Then, S —V > 0= r;(S) > r;(V) for
i=1,....,d.

Theorem 11.3 The necessary and sufficient conditions for f(-) to satisfy (i) and (ii) are that f(A) is a function
of the roots of A and is strictly increasing in each argument.

Proof: See page 177 in Seber. We will discuss the proof if time permits. The proof uses the Corollary to the
Courant Fischer Theorem.

a

Theorem 11.4 The matriz A and the random vector z which minimize f(3,) are given by z = T}y and A =T,
where X = TAT/, T = (T1 Tg), T, isd X k, and the columns of T1 are the characteristic vectors corresponding
to the k largest roots of 3.

Proof: In class if there is time.

11.2 INFERENCE ON PRINCIPAL COMPONENTS UNDER
NORMALITY

Let Y be an N x d random matrix with distribution
vec(Y) ~ N[vec(XB), X ®1,],
where X is a known N X p matrix of constants having rank r. Then
nS ~ Wy(n,X), where S =n"'Y'(I, - H,)Y, n=N—r;

and H, = ppo(X). Denote the sorted eigenvalues of 3 by A\; > Ag > -+ > Ay (assume that all eigenvalues are
distinct). Denote the sorted eigenvalues of S by ¢1 > ¢o > --- > £4. Denote the corresponding normalized
eigenvectors by v; and g; for j =1,...,d. That is,

Sg; = g;l; and X, = v;A;.

Below are some distributional results for the sample eigenvalues and eigenvectors. These results depend
heavily on the multivariate normality assumption.

Theorem 11.5 (LR test that the Variables are Uncorrelated) Sometimes a test of Ho: R =1 against
H,: R #1 is desired, where R is the population correlation matriz. Under Hy, the statistic

d
2d +5
w=— [n— T] In|S| — ;m(sjj)

is asymptotically distributed as a x* random variable with d(d — 1)/2 degrees of freedom, where n = N —r and sj;
is the j*" diagonal entry of S. O
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Theorem 11.6 (Asymptotic Distribution of Eigenvalues and Eigenvectors) Asymptotically, ¢1,...,¢; and
G are independently distributed as follows:

dist

Vil — X)) =S N(0,207) fori=1,....d;

and \/nvec(G —T) is asymptotically normal, where n = N —r. The specific distribution for G is

AiAY Y5

Prob . >‘1>‘J717;
(X = Aj)?

and n Cov(g;, g;) — (N —Aj)2

Vg —v,) TN 0,3

J#i

Also, the natural log of £; is approximately normal:

In(f;) ~ N {m(Aj), ﬂ .

A large sample 95% confidence interval for A; is given by
<£j€71.96./2/n7 5]61.96 2/n) '

Proof: See Anderson (1984) or Flury (Common Principal Components, 1988, John Wiley).

The results in Theorem 11.6 can be written several ways. The following corollary gives a matrix expression
which is useful when making inferences on the vector A or on the matrix T'.

Corollary to Theorem 11.6 The results in Theorem 11.6 can be summarized as follows: /n(€ — A) and
v/nvec(G —T') are asymptotically independent with distributions

dist dist

V(€ —X) =5 N (0,2A%) and v/nvec(G —T') == N(0,©), where

©=1LeD)VIL;eT); V={Vy}; V, hasdimension d x d;

. ap - . 0 if’iZj'
d i1y Ti fi=j; ’
Vij:{ iag (71 Ta) ifi=j; - AiA

/ s . ;
—T;j€;j€; otherwise; o2 otherwise;
( T J

and e; is the i*" column of I.

Theorem 11.7 (Distribution of Variance Accounted for by the Smallest Eigenvalues) Denote the
proportion of the variance that the smallest ¢ components account for by d, and denote the corresponding sample

quantity by gq. That is

d d

> A > b

0g = Ldzﬁl and gq = Ld;(ﬁl .
i=1 i=1

If 64 is small, then little information is lost by ignoring the corresponding principal components. For large samples,
04 is approximately normally distributed:

d—q d
200) A H+201-6)7 > N
i=1 i=d—q+1

bq ~ N |4,

(%)
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where n =N —r. A one-sided large sample 95% confidence for 64 is (0,U), where

2

d—q d
2023 4215, Y &
~ i=1 i=d—q+1
U =04+ 1.645 y
Y,

i=1
Proof: Use the delta method along with the asymptotic results in Theorem 11.6. O
The sample eigenvalues {1, ..., ¢, give information about the dimension of the data. If the last few eigenvalues

are very small, then little information is lost by ignoring the corresponding principal components. One model for
which the smallest ¢ eigenvalues are equal in magnitude and for which the last ¢ components can be ignored is the
following. Let I" be an orthogonal matrix and partition I as T = (1"1 I‘g), where I'; has dimension d x (d — q)
and I's has dimension d x ¢. Also, let A; = Diag(A1, ..., Ag—q), Where Ay > Ao > -+ > A\y_, > 0. Suppose that y is
a d-vector that can be written as

y=pn + F1Z =+ g,

where z is a (d — ¢) x 1 random vector with distribution N(0,A;), € is a random d-vector with distribution
N(0,6%1;), and z 1L €. Then,

y ~ N(u,X), where
2
S =TiAT) + 6% = 1A T, + 6T =T (Al +g o 9201 ) I
q

Note that the eigenvalues of X are A; + 0% \o +60%,..., A\g—y + 62,0%,...,6%. The smallest ¢ eigenvalues of X are
equal with common value #2. If such a model is suspected to be true, then the investigators might wish to test the

hypothesis Ho: Ag—g+1 = Ad—g+2 = - -+ = Ag. That is, a test that the smallest g eigenvalues are equal.
Theorem 11.8 (Test of Partial Sphericity) The LR test rejects Ho: Ag_g41 = Ag—gt2 = - -+ = Aq for large Q,
where
d ‘. 1 d
— ZJ / — _ .
Q——n. > ln(gq), and 0, = . >
Jj=d—q+1 Jj=d—q+1
The asymptotic null distribution of Q is x?, where f = %(q —1)(g +2). The x? approzimation is can be improved
by using
d—q = 2 d
2¢° +q+2 Ip 4
= n—d— ——+ i In = ’
@ 6q Z: b — L ; Z ty
Jj=1 j=d—q+1
where n = N — r rather than Q as the test statistic. O

The multiplier on @* in Theorem 11.8 incorporates a Bartlett correction. The Bartlett correction was proposed
by D. N. Lawley (Tests of significance of the latent roots of covariance and correlation matrices, Biometrika, 1956,
43, 128-136) and confirmed by A. T. James [Tests of equality of the latent roots of the covariance matrix, In
P. R. Krishnaiah (Ed.) Multivariate Analysis, Vol II, pp. 205-218, New York: Academic Press]. MATLAB has an
m file (barttest) which performs the test. The MATLAB program does not use the Bartlett correction.

11.3 INFERENCE ON PRINCIPAL COMPONENTS UNDER
NON-NORMALITY

11.3.1 References

Boik, R. J. (1998). A local parameterization of orthogonal and semi-orthogonal matrices with applications.
Journal of Multivariate Analysis, 67, 244-276.

Boik, R. J. (2003). Principal component models for correlation matrices. Biometrika, 90, 679-701.
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11.3.2 Asymptotic Distributions
Consider the conventional linear model for the N x d matrix Y:

Y = XB + U, where E(U) =0 and Disp(U) =X ®Ix.

It is assumed in this section that the rows of U are independently and identically distributed. That is, u; S (0,%)

for i =1,..., N, where u; has dimension d x 1 and u/, is the i*® row of U.
Let S be the usual unbiased estimator of 3. That is,
S =n"'Y'AY, where A =Iy —H,, H, =ppo(X), n=N—r,
and r = rank(X). Denote vec(S) by s and denote vec(X) by o. Under mild regularity conditions, it follows from

the central limit theorem that the asymptotic distribution of y/n(s — o) is multivariate normal. This result is
summarized in Theorem 11.9.

Theorem 11.9 (Asymptotic Distribution of S) If the required moments exist, then
V(s — o) £ N(0, Qu), where Qo = Jim 2, and €, = Var [Vn(s —a)].
Furthermore, if Y has a multivariate normal distribution, then

(Id2 + I(d,d)) .

|~

Q, =0 =2Ny; (X ®X), where Ng =

More generally, Boik (1998) showed that

Q,=2N;(Z@X)+c1 [E—00’ —2Ny (X ® )], where

1
E=E(wu,®@uu)), c=—tr(A®?),

n
and ® s the element-wise operator. That is,

2 2 2
a%l a%2 DR a%d

a a PRI a
AO2 _ 21 Q22 2d

2 2 2
a1 Qg2 " Qgq

Boik (1998) also obtained an unbiased estimator of Q,,. The estimator is

Q, = LlQNd (S®S)+ a1E — as [ss' + 2Ny (S® S)], where
n_

N N
=~ 1 JURY 1
E=— E (W0, ® W) = —(YA®Y'A) l E (e;€; ® eel)| (AY ® AY),
n n
i—1 i=1
a; = SR — as = n [202 - 3)6%] Ccy = ll’ A%
T 42 -3 T m—D[n+2e—-332 P VN N

! is the i™ row of the residual matriz U = (Iy — H,)Y = AY. That is, u; = Y'Ae;.
If X = 1y, then a1 and as simplify to

e; is the it" column of Iy, W,

n? n(n? —2)

D)2 " W D)2

a; = ,wheren =N — 1.
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Suppose that the eigenvalues of ¥ are sorted in decreasing order from largest to smallest. Furthermore,
suppose that the number of distinct eigenvalues is only k rather than d. Denote the i largest distinct eigenvalue
by ¢;, denote the multiplicity of ¢; by m;, and let m be the k-vector of multiplicities. Then,

$1
k P2
A =T, whereT:@lmj and o = | .
j=1 :
Pk
Furthermore, vec(A) can be written as
d
vec(A) = Ly Ty, where Ly = Z(ei ® e;)el,
i=1

and e; is the i*® column of I.
Let @ be the estimator of ¢ given by
= (T'T)" T,
where £ is the vector of sample eigenvalues. It can be shown that, under normality, @ is the MLE of ¢. The

asymptotic distribution of @ under general conditions was obtained by Boik (1998). The result is summarized in
Theorem 11.10.

Theorem 11.10 (Distribution of Sample Eigenvalues) . Write the covariance in diagonal form as
Y. = T'AIY, where the diagonal entries in A are sorted from largest to smallest. Then, under mild reqularity
conditions, the asymptotic distribution of @ is

V(@ =) TEN(0, g ), where B0 = lim S,

Yo, =D 'T'L)(I"®T)Q, (Il ® T)LyTD,,', and D,, = Diag(my,ma,...,my) = T'T.

m

Quantities such as d4, the ratio of the sum of the smallest ¢ eigenvalues to the sum of all eigenvalues can be
expressed as
cp
6c,h = h/(p’
where ¢ and h are /k;-vectors of constants. For example, if d = 6, kK = 4, and the vector of multiplicities is
m = (1 11 3) , then the ratio of the sum of the smallest 4 eigenvalues to the sum of all eigenvalues is d. p,

where ¢ = (0 0 1 3)/ and h = (1 1 1 3),. The sample estimator of §. j, is

~ )
Oeh = —=.
g

The asymptotic distribution is given in Theorem 11.11.

Theorem 11.11 . Under mild regularity conditions,

\/ﬁ(gc,h - 5c,h) m N [07 (hlgo)_zcl(]:k - Ph)lztp,oo(lk - Ph)c] ’ where
P, =h(h'p) 'y
Note that Py, is the projection operator that projects onto R(h) along N (¢').

Large sample confidence intervals for d. s, can be obtained by substituting @ for ¢ in the variance term in Theorem
11.11, and then inverting the usual pivotal quantity based on

~ . C/(Ik — Ph)’E ,n(Ik — Ph)C
Oep ~ N (507;“0?) , where 0? = n(h’q:a)Z ,

C/(Ik — ﬁh)/§¢7n(1k — ]./Sh)c
n(W'p)? '

and o} is estimated by 73 =
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11.4 PRINCIPAL COMPONENT SCORES

Consider the model
Y =XB+ U,

where Y is an N x d random matrix with dispersion (¥ ® Iy); X is a known N x p design matrix with rank r; and
B is a p X d matrix of unknown regression coefficients. The usual unbiased estimator of 3 is

1
S=-Y'(Iy —-H,)Y,
n

where H, = ppo(X) and n = N — r. Tt is of interest to compute an N x d matrix, Z, of PC scores (i.e., principal
components)

11.4.1 Raw PC Scores

Let
> =TAIY

be the diagonal form of 3, where the diagonal entries in A are ordered from largest to smallest;
A1 > Ay > -+ > Ag. The usual estimator of these quantities is obtained by computing the diagonal form of S:

S = GLG/,

where L is the diagonal matrix containing the ordered sample eigenvalues of S and G is the corresponding matrix
of sample eigenvectors of S.
There are several sets of PC scores that one could compute. Here are two possibilities:

Z, = (Y—XB)I and
Z, = (Y—XB)J['A 3.

The moments of these principal components are the following:

E(Z;) = 0; Disp(Z;) =(A®Iy); Covlvec(Y),vec(Z1)] = (TA®Iy)

E(Z2) = 0; Disp(Zs) =1Ing; and Cov[vec(Y),vec(Z2)] = (I‘A% ®@In).

The second set of scores, Zs, contains the same information as the first set, Z1. The scaling of Z5 is performed so
that scores are equally variable.
The usual predictors of these scores are obtained by substituting estimators for the unknown quantities:

N
[

(I-H,)YG and

Z, = (I-H,)YGL :.

11.4.2 Standardized PC Scores

Often, PCA is performed on the correlation matrix rather than on the covariance matrix. The population
correlation matrix is

R=D 3D,
where D = Diag(X); i.e., a diagonal matrix containing the variances of the d variables on the diagonal. The usual
estimator of R is

N

SDz,

N

R=D"
where D = Diag(S).



98 CHAPTER 11. PRINCIPAL COMPONENTS

Let
R =TAIY

be the diagonal form of R, where the diagonal entries in A are ordered from largest to smallest; A\ > Ao > -+ > Ay4.
The usual estimator of these quantities is given by the diagonal form of the sample correlation matrix:

R = GLG'.
Two sets of PC scores, analogous to Z; and Zs, can be computed:

Zs = FT and

Z, = FTA 2,

where F = (Y — XB)D~ 2. Note that Disp(F) = (R ® I,,). The moments of these principal components are the
following:

E(Z3) 0; Disp(Zs3) = (A®1Iy); Covlvec(F),vec(Zs)] = (TA®Iy)

E(Zy) = 0; Disp(Zy)=Ing; and Covlvec(F),vec(Zy)] = (TAZ @ Iy).

Caution, I and A refer to eigenvectors and -values of the correlation matrix. These are not the same quantities
that appear in the moments of Z; and Z,. Also, note that Corr[vec(F), vec(Z,)] = (A2 @ Iy). The matrix TA 2
represents the correlations between the standardized data (rows of F) and the PC scores. It is sometimes called the
Factor Loading Matrix. Rencher (2002) cautions against interpreting PCs by using the Factor Loading matrix. The
second set of scores, Z,4, contains the same information as the first set, Zs.

The usual predictors of these scores are obtained by substituting estimators for the unknown quantities:

Z; = (I-H,) YD 3G and

Z, = (I-H,) YD :GL =.

11.5 COMMON PRINCIPAL COMPONENTS AND
GENERALIZATIONS

11.5.1 References
Boik, R. J. (2002). Spectral models for covariance matrices. Biometrika, 89, 159-182.
Flury, B. (1988). Common Principal Components and Related Multivariate Models. New York: John Wiley &

Sons.

11.5.2 The CPC Model

Suppose that a sample of size N; is obtained from each of k£ populations. On each case, a d dimensional random
vector is observed. One model for this data is

Y,
Y =XB + U, where Y = :2 ,  Disp(Y;) = %; ® Iy,
Y.
and Y; is the N; x d matrix of observations from the i*" population. Flury’s common principal components (CPC)
model for the heterogeneous covariance matrices is

EZ:I‘AJ‘/ fOfi:17...,k.
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By modeling the covariance matrices, the number of parameters has been reduced from kd(d + 1)/2 to
d(d —1)/2 4+ dk. The model is called common principal components because the coefficients for the principal
components (i.e., the columns of T') are common across populations.

As an example, consider the following parameters from three populations:

p_ (05115 08593
~\ 08593 05115)°

~(1.7409 N, = 03503\ _ , _ ( 01676 —0.1087
Pi=1\12074)> ™~ \0.1029 1= 101087  0.2855)°

~[—0.0658 \, — (00378) _ s _ ( 00366 —0.0007
P2=\ 07613) 27 \0.0362 27 \=0.0007 0.0373)°

_ (—0.5418 and e — 1.0068 s = 0.2660 —0.4409
Hs =\ ~0.0965) - 37 10.0036 87\ ~0.4409  0.7443 )"
The covariance matrices are plotted below.

Common PC: 10%, 50%, and 90% Contours
3 T T T

[y
T
L

Variable 2
o
T

-3 I I I I I

Variable 1

Note that the three ellipses are aligned. This occurs because the three covariance matrices share the same
eigenvectors. It is the eigenvectors that determine the orientation of the plots. The magnitude of the major and
minor axes differ among the three ellipses. This occurs because the eigenvalues differ among the three covariance
matrices. The eigenvalues determine the shape of the ellipses.

Flury derived an algorithm for computing MLEs of the parameters under normality. Also, he derived the
asymptotic distribution of the MLEs and a likelihood ratio test of Hy : 3; = T'A; T against H,: X; > 0.

In partial common principal components, only ¢ of the d components are common. The remainder are
population-specific. In the common space model, all components are population-specific, but ¢ of the d components
in each population share the same eigenspace.

11.5.3 Extensions of the CPC Model
Boik (2002) extended Flury’s model in the following manner:
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1. The eigenvalues of the k covariance matrices are modeled to allow for arbitrary multiplicities and to allow
relationships among eigenvalues from the k£ populations.

2. The eigenvectors from any set of the k populations are allowed to (a) be distinct and functionally
independent, (b) share the same eigenspace, or (¢) be identical. The eigenvalues that correspond to these sets
can be ordered or unordered.

3. Second-order asymptotic distributions were derived for all parameter estimators under normality and
first-order distributions were derived under nonnormality.

4. Bartlett corrections were derived for performing model comparison tests using the likelihood ratio test
statistic.

5. The asymptotic null distribution of the likelihood ratio test statistic was obtained without assuming
normality.

11.6 HOTELLING’S POWER ALGORITHM

Suppose we desire the maximum root and associated vector of a psd matrix A. Write A in diagonal form as
A =UAU'.

Theorem 11.12 Randomly choose a d X 1 vector and denote the vector by tog. Define t;11
b = %
i i
Then as i — 00, t;+1 converges to uy provided that Ay > Ag.
Proof: HW.

To obtain the j*" largest component, the above iterative method is used but A is replaced by

Jj—1
Aj,1 = A — E )\l—uiug.
i=1

11.7 SINGULAR VALUE DECOMPOSITION

Let Y be any real a X b matrix of rank r < min(a,b). Eckart and Young (1936, Psychometrika, 1, 211-218) showed
that Y can be written as Y = UAV’ where Uisaxr, UU=1,, Visbxr, V'V =1, Aisanr x r diagonal
matrix having positive entries on the diagonal, and Ay > Ay > ... > A,.. If the \;’s are distinct, the decomposition
can be made to be unique by imposing identifiability restriction on U or V. For example, one suitable set of
restrictions requires that the first non-zero entry in each column of U be positive. The expression Y = UAV' is
called the singular value decomposition (SVD) of Y. The );’s are called the singular values.

The SVD of Y can be obtained as follows. The columns of U are the ch. vectors of YY’. The columns of V
are the ch. vectors of Y’Y. The nonzero roots of YY' and Y'Y are the squares of the \;’s. That is

YY' =UA’U’ and Y'Y =VA?V'
The rank-m matrix, for m < r, which minimizes ||'Y — M||2 is given by

m

/

M = E /\iuivi.
i=1

The Moore-Penrose inverse of Y, say YT is YT = VA~1U’.
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11.8 BIPLOTS

If Y can be approximated fairly well by a rank two matrix, then the matrix can be plotted in two-dimensional
space. Suppose Y ~ RC’ for R: a x 2 and C : b x 2. Then the rows of R and C can be plotted in 2-space. Gabriel

has suggestions on how to choose R and C and how to interpret them.
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Chapter 12

FACTOR ANALYSIS

12.1 THE FACTOR ANALYSIS MODEL

The basic FA model can be written as follows:
y=p+TIf+e

where y is a d x 1 random vector; I' is an unknown d x m matrix of constants; f is an m x 1 unobserved random
vector having mean 0 and dispersion X ¢; € is a d x 1 unobserved random “error” vector having mean 0 and
diagonal dispersion ¥; and cov(f, &) = 0. The problem is to estimate ¥, I' and sometimes to predict f. Without
loss of generality it can be assumed that 3¢ = I,,,. In this case,

y ~ (u,TT + ).

The parameter estimation problem is to use the sample covariance matrix, S, to estimate I and W.
The matrix I' is called the factor loading matrix. For X, = L, it is easy to show that

cov(y,f) =T.

12.2 THE PROBLEM OF NON-UNIQUENESS

12.2.1 Maximum Number of Unique Factors

The covariance matrix X has d(d + 1)/2 parameters. The factor model I'T’ + ¥ has md — m(m — 1)/2+d
parameters. The quantity m(m — 1)/2 represents the number of entries of T' that can be annihilated by
postmultiplying by an orthogonal matrix. That is I'T' = TQQ'T’, where Q is any orthogonal matrix. The
orthogonal matrix that annihilates entries in I can be computed using the QR decomposition:

I' = QR,

where Q is orthogonal and R is upper triangular. Thus I'Q = R’ is lower triangular; the m(m — 1)/2 entries in the
upper right-hand corner of I have been annihilated. Thus, a necessary condition for uniqueness is that
d(d+1)/2 > md—m(m —1)/2 + d or, equivalently,

< 2d+1—-+8d—-1
— 2 .

The degrees of freedom remaining after fitting an m factor model are

df:d(d—i-l) _md+m(m—1) 4= (d—m)2—(d+m).

2 2 2

Below is a table of maximum values of m for selected values of d.

103
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d maxm
1 0
2 0
3 1
4 1
5 2
6 3
7 3
8 4
9 5
10 6

12.2.2 Rotation Indeterminacy
Let T be any orthogonal matrix of order m. Let I'* = I'T and f* = T'f. Then

y=p+If+e<—y=pu+IT"f" +e¢,

var(f*) =1, and var(y) =TT + & =TT + ¥.

The problem of arbitrary orthogonal rotation is dealt with in two ways. During the estimation phase (when
ML estimation is used), it is required that I'T T be a diagonal matrix. This is equivalent to choosing T to be
the matrix of ch. vectors of I'¥ 1T and replacing T by I'T.

After the estimation phase, an alternative T can be used. Let T'* = I'T for some T. One strategy is to choose
T so that the factor loading matrix I'* has a simple structure. One such structure is when each column of I'* has
entries which are either near zero or large in absolute value. In this case, the interpretation of the factor is
simplified. To find the T which yields this “simple structure”, the varimax criterion often is used. Write I'* as
I = {7y} Let gij = ’yj‘jQ and define G: d x m as G = {g;;}. Let V: m x m be the “covariance” matrix for the
columns of G. That is
G'(I; -H,)G

V:
d—1 ’

where H; = ppo(1,4). The varimax criterion chooses T such that tr(V) is maximized.
An alternative criteria is quartimax in which the variance within the rows of G is maximized. That is, the
orthogonal matrix T is chosen to maximize tr(V*), where

_ /
V* — G(Im Hl)G ,
m—1

where Hy; = ppo(1,,). It can be shown that G1,, does not depend on T so T can be chosen to maximize tr(GG’).

12.3 PRINCIPAL COMPONENTS VERSUS FACTOR ANALYSIS

The two procedures, PCA and FA, are often confused. To see how they differ, write 3 in diagonal form as
> = T'AIY where A has the ordered roots on the diagonal. Partition I' as I'' = (I‘1 I‘g), where I'y has dimension
d x m. Let A;: m x m be the upper left-hand corner matrix of A and let Ay be the lower right-hand corner matrix
of \.
Using principal components, the best m-dimensional approximation to y is

y=p+Aly —p),
where A = I';T]. The associated model is

y=pn+TIz +e,

1 _1

where z; = T/ (y — p). An equivalent model can be obtained by letting I'f = T'; A7 and f = A; 22z; so that

y=p+Iif+e
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This looks much like the FA model. As in the FA model, the factors have an identity covariance matrix and
are uncorrelated with the residuals:

var(f) = Var[A;%I"l (y — )] =1,

and . .
cov(f,e) = cov[A; *T(y — p), Lol%(y — p)] = A; *T1ETT) = 0.

Note, however, that the covariance matrix for the errors is not diagonal:
var(s) = FQAQI‘/Q

Thus, the “factors” obtained from principal components do not explain the entire covariance structure.

12.4 MAXIMUM LIKELTHOOD ESTIMATION

Suppose that Y is a random N X d matrix that follows the linear model
Y = XB + U, where vec(U) ~ N(0,2X ®Iy),

X is an N x p matrix of constants, and rank(X) = r. Denote the usual estimator of X by S. That is,

1
S = EY/(IN —H,)Y, where n = N —r and H, = ppo(X).

If the factor model holds, then
nS ~ Wy(n, ), where ¥ =TT’ + ¥,
The MLE’s of I" and ¥ are those that maximize

L(T,®|S) = —g In|TT + | — gtr[S(I‘I" +o) 7).
Setting the derivatives to zero yields the equations
S&IT = FEF 1P+ 1)
and N R
¥ = diag(S — I'T).
To obtain a unique solution, the restriction that 'O IT is diagonal is imposed.

One appealing property of the MLE approach is that the solution is equivariant with respect to the scale
employed. Equivariant estimators satisfy the following property — if I' and ¥ are mles based on the sample
covariance matrix and if V is a diagonal matrix, then the mles based on VSV are I'* = VI' and ¥* = VW¥V. In
particular, the MLEs based on a covariance and the MLEs based on a correlation matrix are simple functions of

one another. That the MLEs are equivariant with respect to scale can be seen by examining the LR criterion.
Suppose that T' and ¥ maximize L(T, ¥|S) and I'¥ T is diagonal. Let R = DSD where D is a positive definite

diagonal matrix. If D is defined by D = [diag(S)]™ 1, then R is the sample correlation matrix.
Substituting R for S in the likelihood function yields
L(T,, ¥, |R) = —In|T, I + ¥,| — tr[R(T, T + ¥,) "]

~In|D', D'+ D', D — tr[S(D'T,T.D ! + D—lxp,.D—l)*1

—2 In |D|
= —In|D*T* + ¥*| — tr[S(T*T* + ¥*) ] -2 1n|D|,

where I'* = D7IT",. and ¥* = D~!®,D~!. Because In|D]| is constant with respect to I' and ¥, the likelihood
function is maximized by

]

-1

f*—F—F, - DF
and R R R R
=¥ = ¥, =DV¥D.
Note also that I, 'T, = I'® T so the diagonal restriction is satisfied.
To test goodness of fit, one can test Ho: ¥ = I'T’ + ¥ against H,: X > 0. The degrees of freedom for the LR
test are [(d —m)? — (d +m)]/2. Why?
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12.5 PRINCIPAL FACTOR ANALYSIS

The principal factor solution is the minimizer of tr[(S — X)?] subject to ¥ = I'T” + ¥. That is, the model is the
same as before but a different criterion (least squares loss function) is used. In the i*® iteration, the principal factor
routine finds the largest m roots and associated vectors of S — \ill A reasonable initial guess, \/I\lo consists of the
inverse of the diagonal elements of S~*.

12.6 ESTIMATING (PREDICTING) FACTOR SCORES

12.6.1 Prediction Approach
If f were fixed, then the model for (y — ) would be
(y — ) ~ (Tf, ¥).
For known I', ¥, and p the generalized least squares estimator of f would be
F= (e 'n) T (y — p).

In practice, estimates of I', ¥, and p would be used.

Of course, f is not fixed. It is a random vector. Thus, the problem is to predict f from y rather than to
estimate f. To make such predictions, we need a criterion for judging how good a predictor is. Consider a pair of
random vectors U and Y having joint density function f(u,y). Given Y =y, the goal is to predict u. The
predictor U = h(y) is called the best predictor if it minimizes the mean square error of prediction:

MSE(@) = E[(u — 1)/ A(u — )]

~ [ [ta-dra@-a)sy) duay.
where A is a positive definite matrix (e.g., the inverse of a covariance matrix).

Theorem 12.1 (Best Prediction) The best predictor of U given that Y =y has been observed is
u=EU|Y =y).
Outline of Proof: Write f(u,y) as
fu,y) = g(uly) x m(y),
where g(uly) is the conditional density of U given Y =y and m(y) is the marginal density of Y. To minimize
MSE, consider minimizing MSE for each realization of Y. For fired Y =y, note that U is a constant.
O

It is easy to show that E(u1) = E(U) so that the best predictor is unbiased. Note that the joint density f(u,y)
need not be normal.
For the FA problem, suppose that
(y —w)f,T, ¥ ~ N(T'f, ¥),

and
f ~N(0,L,).

Then it can be shown (problem 5.17 in Seber) that
Iy —1 g, —1 Joye—1 —1
fly, [, %, u ~N|(I+ ') T (y —p),(I+T¥T)
The best predictor of f given that we have observed y is
f=1+T'0 ') 'Oy — p).

In practice, estimates of I', ¥, and g would be used.

12.6.2 Regression Approach

Rencher (2002) describes a regression method for “estimating” factor scores. If S is replaced by T + \il, then the
regression approach is identical to the prediction approach.



Chapter 13

CLUSTER ANALYSIS

1. Distances: The distance between two objects, a and b, is denoted by d(a,b). The distance must satisfy the
following four properties

(a) d(a,a) =

(b) d(a,b) >0ifa #b

(c) d(a,b) =d(b,a)

(d) d(a,b) < d(a,c) + d(c,b) (triangle inequality)

2. Distance measures in cluster analysis

(a) Distance between cases

i. Euclidean distance: d(x,,Xs) = \/(X, — Xs)' (X, — X5). This is the default in proc cluster.

ii. Euclidean distance on standardized measures: d(x,,x;) = \/(zr — 24)'(z, — zs), where z, = {z,;}
and z,; = (zr; — Z;)/s;. This is employed in proc cluster if the standard option is used.

iii. Mahalanobis distance: d(x;,xs) = \/(x, — Xs)'S™1(x, — Xs)

1
iv. Minkowski distance: d(x,,xs) = D 5_; |zri — z4]™]™
(b) Distances between variables
i d(z;, :Uj) = /1 —r;;, where r;; is the correlation between variables i and j
i d(zi,z;) =4/1— rfj, where 7;; is the correlation between variables ¢ and j.

3. Hierarchical clustering: divisive techniques

(a) Description of the approach

i. Begin with all n cases (or p variables) belonging to one cluster
ii. Split the cluster into two clusters
iii. Split one of the two clusters into two clusters
iv. Continue splitting until each case (or variable) is its own cluster

(b) Proc cluster does not do divisive clustering
4. Hierarchical clustering: agglomerative techniques

(a) Description of the approach
i. Begin with each case (or variable) being its own cluster
ii. Join the closest two items to form a new cluster. The number of clusters is now n — 1 (or p — 1).
iii. Join the closest two clusters to form a new cluster. The number of clusters is now n — 2 (or p — 2).
iv. Continue joining clusters until one cluster contains all cases (or variables).

(b) Proc cluster will do several variations of agglomerative clustering

i. Method = single. Clusters having nearest neighbors are joined. This method is useful if clusters are
not spherical.
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ii.

iii.

CHAPTER 13. CLUSTER ANALYSIS

Method = complete. Clusters having nearest far neighbors (furthest neighbors) are joined. The far
neighbor distance is the maximum distance between an object in the first cluster and an object in
the second cluster. This method is useful if clusters are spherical.

Method = average. Clusters having the smallest average distance are joined. This is a compromise
between single and complete linkage.

(¢) Non-hierarchical clustering

i.

ii.

K-means clustering. Begin with K seeds (initial cluster centroids). Assign objects to the closest
seed. Iterate until no further reassignments are made. Proc fastclus does K means clustering.
Other methods: There are many additional procedures including maximum likelihood mixture
model clustering.

(d) Determining the number of clusters

i.

ii.

iii.

Examine the tree structure. Look for natural clusters. Look for breaks in the distance. Look for the
point at which the distance is too large.

Cubic clustering criterion. Look for a peak value of CCC that has value 3 or more. (Simulation
based criterion).

Examine pseudo F' and T2 statistics. These are tests statistics for testing the hypothesis that the
cluster means are identical. These tests do not yield valid p-values because the data are used to
form the cluster in the first place. Nonetheless, they do give indices of how far apart the two clusters
are that were just joined (72) and how far apart the g clusters are from each other F'). Small values
of T? indicate that the two clusters that were just joined are close together. Large values of F'
indicate that the cluster means of the g clusters are far apart.
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CLASSIFICATION TREES
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2. Terminology

(a) Node: possible decision point in the tree
(b) Root: top node

(c) Leaf: terminal node

e) Rooted subtree of T: a subtree whose root is the root of T'

Grow: split a leaf

(
(f

)
)
)
(d) Subtree of T a tree whose root is a node of T
)
)
(g) Prune: delete one or more subtrees

3. Measures of Leaf Impurity

(a) Deviance (entropy): Let ¢ be the number of classes and let v be the number of leaves. Condition on the
values of the observed variables and denote the conditional probability that an observation is in class k
given that it is at leaf ¢ as p(k|i) = p;r. Then, the conditional likelihood is

v c
LolY) = [T T v+
i=1k=1
where n;; is the frequency of class k at leaf ¢. Deviance is —2 times the log likelihood:
D= Z D;, where D; = —227%1@ In(pir)
i=1 k=1

and 0 In(0) = 0. S-plus and R use deviance as a measure of leaf impurity.
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(b) Gini index: An alternative measure of leaf impurity is the Gini index:
v c c
G = ZG“ where G; = Zpijpik =1- prk
i=1 j#k k=1
4. Splitting Rules

(a) S-plus and R allow binary splits only. If a split is made on a categorical variable having m levels, then
there are 2™ — 1 possible splits to consider. If a split is made on a numerical variable having m ordered
values, then there are m — 1 possible splits of the form y; < ¢ versus y; > t.

(b) At each step the split that minimizes average impurity (over all leaves) is made. For example, if leaf i is
split into leaf s and leaf ¢, then the deviance after the split is

v
D:ZDj — D; + (D, + Dy).
j=1
The decrease in deviance due to the split is
Improvement = D;— (Ds+ Dy)

C

= -2 Z (i In(pir) — sk I (Psr) — Mg In(per)]
=1

= —ZZ [nsk In (pik) + ng In (M)] .
1 Dsk Dtk

Substituting MLES p;r = ni/n;. yields

C
Tmprovement = _22 [né’k In ( o ) + nyx In (—Zk i )] .
k=1 ;. Nsp MG Nk

Note that —log is a convex function. It is easy to show (using Jensen’s inequality) that the improvement
is non-negative.

(c) Splitting continues until the number of cases reaching each leaf is small (default in S-plus is 10) or if a
leaf is homogeneous (leaf deviance is less than 1% of deviance at root node).
5. Missing Values: Drop a case down the tree as far as possible.

6. Pruning

(a) Strategy: Denote the deviance (or error rate) at leaf i by R; and let R =) ;| R;. The number of leaves
is taken to be the size of the tree. Breiman et al showed that the set of rooted subtrees of T that
minimize a cost/complexity measure

R, =R — o x size

is nested. That is, a nested set of subtrees is obtained by minimizing R, for various values of «.

(b) Choice of «

i. AIC

ii. Cross-validation: S-plus will partition the data into 10 sets. A tree is constructed using nine of the
sets and is evaluated using the hold out set. The process is repeated for each set and the results are
averaged over the ten analyses.



