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Final exam will be given on Tuesday May 4 at 8:00–9:50 AM (40%) in 1-153 Wilson. The remaining 40% is
from HW.

Syllabus

1. Introduction: Univariate versus Multivariate Analysis

2. Multivariate Data & Multivariate Distributions (Ch. 1, 2)

(a) Expectation and Dispersion of Random Matrices

(b) Multivariate Normal: Conditional and Marginal

i. Detecting Departure from MVN

ii. Transformations of Multivariate Data

(c) Correlation, Partial Correlation, and Regression

(d) Wishart and Conditional Wishart Distributions

(e) Maximum Likelihood Estimation from MVN

i. Complete Data

ii. Incomplete Data: the EM Algorithm

(f) Robust Estimation

3. Multivariate Linear Models (Ch. 3, 4, 7)

1
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(a) Hotelling’s T 2 Tests

(b) The General Linear Model

(c) Test Statistics & Simultaneous Inference

(d) Classic Analysis of Repeated Measures & Growth Curves

(e) Generalized Analysis of Repeated Measures & Longitudinal Data

(f) Introduction to Proc Mixed

4. Selected Inferences on Covariance Matrices (Ch. 8)

(a) Tests of Sphericity

(b) Tests of Homogeneity

(c) Tests of Independence

(d) Canonical Correlation

5. Discriminant & Classification Analysis (Ch. 5, 6)

6. Principal Components (Ch. 9)

(a) Common Principal Components

(b) Principal Components of Correlation Matrices

7. Factor Analysis (Ch. 10)

8. Cluster Analysis

9. Classification Trees

1.2 REFERENCE BOOKS

1.2.1 Introductory Books

1. Afifi, A. A., & Clark, V. (1990). Computer-Aided Multivariate Analysis. (Second Edition), New York: Van
Nostrand Reinhold.

2. Dillon, W. R., & Goldstein, M. (1984). Multivariate Analysis—Methods and Applications. New York: Wiley.
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Readings, 4th edition, Englewood Cliffs, NJ: Prentice Hall.

4. Johnson, R. A., & Wichern, D. W. (1988). Applied Multivariate Statistical Analysis. (Fourth Edition),
Englewood Cliffs, NJ: Prentice Hall.

5. Johnson, D. E. (1998). Applied Multivariate Methods for Data Analysts, Pacific Grove, CA: Duxbury Press.

6. Manly, B. F. J. (1994). Multivariate Statistical Methods: A Primer, London: Chapman & Hall.

1.2.2 Intermediate Books

1. Rencher, A. C. (2002). Methods of Multivariate Analysis, Second Edition, New York: Wiley.

2. Harris, R. J. (1985). A Primer of Multivariate Statistics. (Second Edition), Orlando, Florida: Academic
Press.

3. Morrison, D. F. (1990). Multivariate Statistical Methods. (Third Edition), New York: McGraw Hill.

4. Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley

5. Timm, N. H. (1975). Multivariate Analysis with Applications in Education and Psychology. Belmont, CA:
Wadsworth Publishing Company.
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1.2.3 Advanced Books
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7. Press, S. J. (1982). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference.
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Chapter 2

RANDOM VARIABLES, VECTORS, &
MATRICES

2.1 EXPECTATION AND COVARIANCE OPERATORS

2.1.1 Expectation of Random Matrices

Let yij , i = 1, . . . , n, j = 1, . . . , d be a collection of random variables. Then Y = {yij} is a random matrix. Suppose
that E(yij) = µij <∞. Let M = {µij}. Then, the following can be established.

1. E(Y) = {E(yij)} = M.

2. E(AYB+C) = AE(Y)B+C = AMB+C where A : p×n, B : d× r, and C : p× r are matrices of constants.

2.1.2 Variance and Covariance of Random Vectors

Let y be an n× 1 random vector and let x be an r × 1 random vector.

1. Cov(x,y) = E{[x − E(x)][y − E(y)]′} = E(xy′) − E(x)E(y′).

2. Cov(Ax,By) = E{[Ax − AE(x)][By − BE(y)]′}

= E{A[x − E(x)][y − E(y)]
′
B′} = ACov(x,y)B′.

3. Var(y) = Cov(y,y).

4. Using (2) and (3), Var(Ay) = Cov(Ay,Ay) = AVar(y)A′.

2.1.3 Dispersion of Random Matrices

2.1.4 General Setting

Let Y : n× d be a random matrix. Partition Y as Y =
(
y1 y2 · · · yd

)
. Denote Var(yi) by Σii and denote

Cov(yi,yj) by Σij for i = 1, . . . , d, j = 1, . . . , d. Note that each Σij is n× n. Then,

Disp(Y)
def
= Var[Vec(Y)] = {Σij} : nd× nd.

5
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2.1.5 Standard Setting

Let Y be an n× d matrix. Partition Y as

Y =




y′
1

y′
2
...

y′
n


 .

In the standard multivariate setting, the rows of Y represent a random sample from (µ,Σ). It follows that
E(yi) = µ ∀ i, Var(yi) = Σ ∀ i, and Cov(yi,yj) = 0 for i 6= j. The following results are readily established:

1. E(Y) = M = 1nµ
′,

2. Disp(Y) = (Σ ⊗ In), and

3. vec(Y) ∼ [(Id ⊗ 1n)µ, (Σ ⊗ In)].

2.1.6 Expectation of Univariate Quadratic Forms

Theorem 2.1 Let y be an n× 1 random vector with mean µ and variance Σ. Let T : n× n be a matrix of
constants. Then,

E(y′Ty) = tr(TΣ) + µ′Tµ.

Proof: E(y′Ty) = E[tr(y′Ty)] = E[tr(Tyy′)]

= tr[E(Tyy′)] = tr[TE(yy′)] = tr[T(Σ + µµ′)].

2.1.7 Expectation of Multivariate Quadratic Forms

Theorem 2.2 Let Y be an n× d matrix with distribution vec(Y) ∼ [vec(M),Σ]. Partition Y and M as

Y =
(
y1 y2 · · · yd

)
and M =

(
µ1 µ2 · · · µd

)
.

Denote Var(yi) by Σii, and denote Cov(yi,yj) by Σij . Note that Σij is n× n and that Σ′
ij = Σji. Let T : n× n be

a matrix of constants. Then,
E(Y′TY) = M′TM + Td[(Id ⊗ T′)Σ],

where Td( · ) is the generalized trace operator. See the STAT 505 notes for a description of this operator.
Furthermore, if T is symmetric, then

E(Y′TY) = M′TM + Td[(Id ⊗ T)Σ].

Proof: Write Y′TY as
Y′TY = {y′

iTyj},
and use

E(y′
iTyj) = E [tr (Tyjy

′
i)]

= tr [E (Tyjy
′
i)]

= tr
[
T(Σji + µjµ

′
i)
]

= tr (TΣji) + µ′
iTµj

= tr (ΣijT
′) + µ′

iTµj because tr(A) = tr(A′)

= tr (T′Σij) + µ′
iTµj because tr(AB) = tr(BA).
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For the following corollaries, assume that T is symmetric.

Corollary 1: If Σ = (Σd ⊗ Ω), then E(Y′TY) = M′TM + trace(TΩ)Σ.

Corollary 2: If Σ = (Σd ⊗ In), then E(Y′TY) = M′TM + trace(T)Σ.

Corollary 3: If Σ = (Σd ⊗ In) and M = 1nµ
′, then E(Y′TY) = µµ′(1′

nT1n) + trace(T)Σd.

Corollary 4: If Σ = (Σd ⊗ In) and M = XB, then E(Y′TY) = B′X′TXB′ + trace(T)Σd.

2.1.8 Sample Means and Variances

Let Y be an n× d matrix that follows the standard multivariate setting. Let y = n−1Y′1n and
S = (n− 1)

−1
Y′[I − n−11n1′

n]Y. Then

1. E(y) = µ,

2. The BLUE of µ is y,

3. Var(y) = n−1Σ, and

4. E(S) = Σ.

2.1.9 Regression Coefficients and Variances

Extension of Standard Multivariate Setup: Let Y be an n× d matrix with expectation M. Partition Y as

Y =




y′
1

y′
2
...

y′
n


 .

Suppose that Var(yi) = Σ ∀ i, Cov(yi,yj) = 0 for i 6= j, and E(Y) = XB, where X is an n× p matrix of known
constants having rank-p and B is a p× d matrix of regression coefficients. That is, Disp(Y) = (Σ ⊗ In) and

vec(Y) ∼ [(Id ⊗ Xn)β, (Σ ⊗ In)], where β = vec(B). Let B̂ = (X′X)
−1

X′Y and S = (n− p)
−1

Y′[I − H]Y, where

H = ppo(X) = X(X′X)
−1

X′. Then

1. E(B̂) = B,

2. The BLUE of B is B̂,

3. Disp(B̂)) = Σ ⊗ (X′X)
−1

, and

4. E(S) = Σ.

2.2 MULTIVARIATE NORMAL DISTRIBUTION

Suppose y : n× 1 is a random vector with joint probability density function

f(y) =
exp{− 1

2 (y − µ)′Σ−1(y − µ)}
|Σ| 12 (2π)

n
2

for Σ > 0, µ ∈ Rn, and y ∈ Rn. Then, y is said to have a multivariate normal distribution. The notations
y ∼ Nn(µ,Σ) and y ∼ N(µ,Σ) are used to indicate that the elements of the random vector y are jointly
distributed as an n dimensional multivariate normal distribution with mean µ and variance Σ. If Σ = σ2In, then
the pdf simplifies to
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f(y) =
exp{− 1

2σ2 (y − µ)′(y − µ)}
(2πσ2)

n
2

=
exp{− 1

2σ2

∑n
i=1(yi − µi)

2}
(2πσ2)

n
2

Caution: the notation y ∼ (µ,Σ) is used to indicate that the elements of the random vector y are jointly
distributed such that E(y) = µ and var(y) = Σ. Obviously, y ∼ N(µ,Σ) ⇒ y ∼ (µ,Σ) but
y ∼ (µ,Σ) 6⇒ y ∼ N(µ,Σ).

If Σ is not positive definite (i.e., it is positive semi-definite), then y is said to have a singular normal
distribution: y ∼ SN(µ,Σ). In this case, y does not have a density function, but y still has a distribution function.

2.2.1 Multivariate Normal Matrices

Suppose Y : n× d is a random matrix. Let y = vec(Y). If the elements of y have joint density function

f(y) =
exp{− 1

2 (y − µ)′Σ−1(y − µ)}
|Σ| 12 (2π)

nd
2

,

where Σ is an nd× nd positive definite matrix, µ ∈ Rnd, and y ∈ Rnd, then Y is said to have a multivariate
normal distribution. The notations vec(Y) ∼ Nnd(µ,Σ), vec(Y) ∼ N(µ,Σ), and vec(Y) ∼ N[vec(M),Σ], where
µ = vec(M), are used to indicate that the elements of the random matrix Y are jointly distributed as an nd
dimensional multivariate normal distribution with mean µ and variance Σ.

If Σ = Σd ⊗ Ω, then the density function can be written as

f(Y) =
exp

{
− 1

2 trace
[
(Y − M)Σ−1

d (Y − M)
′
Ω−1

]}

|Ω| d
2 |Σd|n

2 (2π)
nd
2

.

In the standard multivariate setup, Σ = Σd ⊗ In and the density simplifies to

f(Y) =
exp

{
− 1

2 trace
[
(Y − M)

′
(Y − M)Σ−1

d

]}

|Σd|n
2 (2π)

nd
2

.

2.2.2 Properties of the MVN Distribution

1.
∫∞

−∞
f(y) dy = 1

2. Moment generating function (MGF): My(t) = E[exp(t′y)] = exp[t′µ+ 1
2 (t′Σt)]. Proof: in class.

3. E(y) = µ. Proof: use MGF.

4. Var(y) = Σ. proof: use MGF.

5. Ay ∼ N(Aµ,AΣA′) for any matrix of constants: A : r × n. Proof: use MGF. Note that if A does not have
full row rank, AΣA′ is singular and Ay ∼ SN(Aµ,AΣA′). If A is a random matrix, then Ay may or may
not have a multivariate normal distribution.

6. If vec(Y) ∼ N[vec(M),Σ ⊗ Ω], then

MY(T) = E [exp[trace(T′Y)]] = exp

[
trace(T′M) +

1

2
trace(T′ΩTΣ)

]
.

7. If vec(Y) ∼ N[vec(M),Σ ⊗ Ω], then vec(AYG) ∼ N[vec(AMG),G′ΣG ⊗ AΩA′] for constant matrices A
and G. If A does not have full row rank or G does not have full column rank, then the distribution is
singular and the density does not exist.

8. In many applications, the vector of means can be written as µ = Xβ, where X is an n× p matrix with rank-r.

9. In many applications, the matrix of means can be written as M = XB, where X is an n× p matrix with
rank-r. Note, µ = vec(M) = (Id ⊗ X)β, where β = vec(B).
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2.3 CONDITIONAL MULTIVARIATE NORMAL DISTRIBUTIONS

Let y be a random vector and denote a realization of the random vector by ÿ. Suppose that y : n× 1 is distributed
as y ∼ N(µ,Σ). Partition y as

y =

(
y1

y2

)

where y1 is p× 1 and y2 is (n− p) × 1. Partition µ and Σ, conformably, as

µ =

(
µ1

µ2

)

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 2.3 (Conditional Multivariate Normal) Conditional on y2 = ÿ2, y1 still has a joint normal
distribution. In particular,

y1|(y2 = ÿ2) ∼ N(µ1·2,Σ11·2),

where µ1·2 = µ1 + Σ12Σ
−1
22 (ÿ2 − µ2) and Σ11·2 = Σ11 − Σ12Σ

−1
22 Σ21. If Σ21 ∈ R(Σ22), then Σ22 need not be

nonsingular. Simply replace Σ−1
22 by Σ−

22.

Proof: In class.

Let Y be a n× d matrix with distribution vec(Y) ∼ N[vec(M),Σ ⊗ Ω]. Partition Y as Y =
(
Y1 Y2

)
, where

Y1 is n× d1, Y2 is n× d2, and d1 + d2 = d. Partition M and Σ conformably as M =
(
M1 M2

)
and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
⊗ Ω.

It follows from the previous result that, conditional on Y2 = Ÿ2, Y1 still has a joint normal distribution. In
particular,

vec(Y1)|(Y2 = Ÿ2) ∼ N[vec(M1·2),Σ11·2],

where
M1·2 = M1 + (Ÿ2 − M2)Σ

−1
22 Σ21

and
Σ11·2 = (Σ11 − Σ12Σ

−1
22 Σ21) ⊗ Ω.

If Σ21 ∈ R(Σ22), then Σ22 need not be nonsingular. Simply replace Σ−1
22 by Σ−

22.

2.3.1 Regression Application

Let y be a random d-vector and let x be a random p-vector. Suppose that

(
y
x

)
∼ N

[(
µy

µx

)
,

(
Σyy Σyx

Σxy Σxx

)]
.

Then, the distribution of y, conditional on x = ẍ, is

y|(x = ẍ) ∼ N(β0 + B′
1ẍ,Σyy·x),

where β0 = µy − B′
1µx; B1 = Σ−1

xx Σxy; and Σyy·x = Σyy − ΣyxΣ
−1
xx Σxy.

If we have a random sample
(
y′

i x′
i

)′
for i = 1, . . . , n, then the distribution of

Y =




y′
1

y′
2
...

y′
n


 conditional on X = Ẍ =




ẍ′
1

ẍ′
2
...

ẍ′
n



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is
vec(Y) ∼ N [vec(X∗B),Σyy·x ⊗ In] ,

where

X∗ =
(
1n Ẍ

)
; B =

(
β′

0

B1

)
=

(
µ′

y − µ′
xΣ

−1
xx Σxy

Σ−1
xx Σxy

)
;

and Σyy·x is defined above. Conditional on X = Ẍ, unbiased estimators of B and Σyy·x are given by

B̂ = (X∗′X∗)
−1

X∗′Y and Σ̂xx·y =
Y′ [In − ppo (X∗)]Y

n− p− 1
.

2.3.2 Some Other Conditional Results

Suppose that X, Y, and Z are random matrices.

1. If the distribution of X|(Y = Ÿ) does not depend on Ÿ, it follows that X and Y are independent. Of course,
it works the other way too: if X and Y are independent, then the distribution of X|(Y = Ÿ) does not depend
on Ÿ.

2. Suppose that X and Z are independent, conditional on Y = Ÿ. That is, X and Z are conditionally
independent: (X Z)|(Y = Ÿ). Suppose, also, that X and Y are independent (unconditionally). Then X
and Z are unconditionally independent.

2.4 DETECTING DEPARTURE FROM NORMALITY

2.4.1 Univariate Procedures

Assume that Y1, Y2, . . . , Yn is a random sample from a distribution with cdf FY (y).

2.4.1.1 QQ Plots

The letters QQ stand for quantile-quantile. The sample or empirical quantiles are equal to the 100 1
n , 100

2
n , . . . , 100

n
n

sample percentiles. The 100 i
n sample percentile, in turn, is equal to Y(i), the ith order statistic. If FY (y) = F (y),

then the 100 i
n theoretical quantile can be defined as F−1

Y (αi), where αi = (i− 3/8)/(n+ 1/4). The reason that αi

is not defined as i/n is that in many distributions the 100th percentile is ∞.
A QQ plot is a plot of the empirical quantiles (Y axis) against the theoretical quantiles (X axis). The table

below displays the pairs to be plotted.

i αi X Axis Y Axis
1 (1 − 3

8 )/(n+ 1
4 ) F−1(α1) Y(1)

2 (2 − 3
8 )/(n+ 1

4 ) F−1(α2) Y(2)

3 (3 − 3
8 )/(n+ 1

4 ) F−1(α3) Y(3)

...
...

...
...

n (n− 3
8 )/(n+ 1

4 ) F−1(αn) Y(n)

The points in the plot should lie in a straight line. If they do not (within sampling error), then there is evidence
that the data do not come from distribution F (y).

To construct a normal QQ plot (usually called a normal plot), first standardize the data to have mean zero
and standard deviation one: Zi = (Yi − Y )/S. Then plot Z(i) against Φ−1(αi), where Φ is the cdf of N(0, 1).
Normal plots can be constructed in SAS using proc capability.

2.4.1.2 Shapiro-Wilk

The Shapiro-Wilk statistic is obtained by regressing the order statistics on the theoretical quantiles from the
normal distribution. Ordinary regression is not appropriate because the order statistics are not independent of one
another. Generalized least squares is used. The Shapiro-Wilk regression coefficient is bounded above by one. The
null hypothesis of normality is rejected if the regression coefficient is small. SAS uses a normalizing transformation
on the Shapiro-Wilk test statistic to obtain a p-value.



2.4. DETECTING DEPARTURE FROM NORMALITY 11

2.4.1.3 Coefficients of Skewness and Kurtosis

The univariate skewness and kurtosis coefficients are

κ3 =
E(Y − µ)3

σ3 and κ4 =
E(Y − µ)4

σ4 − 3,

where µ = E(Y ) and σ2 = var(Y ). Under normality κ3 = 0 and κ4 = 0. Sample estimators of κ3 and κ4 are

κ̂3 =
k3

S3
and κ̂4 =

k4

S4
, where

S2 =

n∑

i=1

(Yi − Y )2

n− 1
,

k3 =

n

n∑

i=1

(Yi − Y )3

(n− 1)(n− 2)
, and

k4 =

n(n+ 1)

n∑

i=1

(Yi − Y )4 − 3(n− 1)

{
n∑

i=1

(Yi − Y )2

}2

(n− 1)(n− 2)(n− 3)
.

The statistics k3 and k4 are unbiased estimators of the 3rd and 4th cumulants:

E(k3) = E(Y − µ)3 and E(k4) = E(Y − µ)4 − 3σ4.

It can be shown (A. Stuart & K. Ord, Kendall’s Advanced Theory of Statistics, Vol 1, 5th ed., Oxford University
Press, 1987) that if the distribution of Y is normal, then κ̂3 and κ̂4 are distributed approximately normal (in large
samples) with means zero and variances

Var(κ̂3) =
6n(n− 1)

(n− 2)(n+ 1)(n+ 3)
and Var(κ̂4) =

24n(n− 1)2

(n− 3)(n− 2)(n+ 3)(n+ 5)
.

Tables A1 and A3 in Rencher (2002) give percentiles of biased estimators of κ3 and κ4.

2.4.1.4 Kolmogorov-Smirnov

Consider a test of H0 : FY (y) = F0(y) against the alternative Ha : FY (y) 6= F0(y). The Kolmogorov-Smirnov test
statistic is

Dn =
√
n sup

y
|Fn(y) − F0(y)| = max(D+

n , D
−
n ), where

D+
n = max

1≤i≤n

[
i

n
− F0(Y(i))

]
and D−

n = max
2≤i≤n

[
F0(Y(i)) −

i− 1

n

]

and Fn(y) is the empirical distribution function. It can be shown that when H0 is true, then the distribution of Dn

does not depend on F0. Tables of percentiles of Dn are available in many textbooks.

2.4.1.5 Cramer-Von Mises

Again, consider a test of H0 : FY (y) = F0(y) against the alternative Ha : FY (y) 6= F0(y). Denote the empirical cdf of

the standardized sample values Zi = (Yi − Y )/S by F̂Z(z). The Cramer-Von Mises test statistic is

C2
n = n

∫ ∞

−∞

[
F̂Z(z) − Φ(z)

]2
φ(z) dz =

n∑

i=1

[
Φ(Z(i)) −

(
2i− 1

2n

)]2
+

1

12n
,

where Φ(z) and φ(z) are the cdf and the pdf of the standard normal distribution. The hypothesis of normality is
rejected for large values of C2

n.
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2.4.1.6 Anderson-Darling

For a third time, consider a test of H0 : FY (y) = F0(y) against the alternative Ha : FY (y) 6= F0(y). Denote the

empirical cdf of the standardized sample values Zi = (Yi − Y )/S by F̂Z(z). The Anderson-Darling test statistic is

A2
n = n

∫ ∞

−∞

[
F̂Z(z) − Φ(z)

]2

Φ(z)[1 − Φ(z)]
φ(z) dz

= −n− 1

n

n∑

i=1

(2i− 1)
{
ln
[
Φ(Z(i))

]
+ ln

[
1 − Φ(Z(n−i+1))

]}
.

The hypothesis of normality is rejected for large values of A2
n. The upper 0.05 and 0.01 critical values are,

approximately,

A2
n,0.05 = 0.7514

(
1 − 0.795

n
− 0.89

n2

)
and A2

n,0.01 = 1.0348

(
1 − 1.013

n
− 0.93

n2

)
.

2.4.2 Multivariate Procedures

Assume that y1,y2, . . . ,yn is a random sample from a d dimensional population with pdf fy(y) and cdf Fy(y).
Denote the sample mean and variance by y and S, respectively.

2.4.2.1 QQ Plot of Squared Mahalanobis Distance

The squared Mahalanobis distance from yi to y is

D2
i = (yi − y)′S−1(yi − y).

It can be shown that if the data have been sampled from a multivariate normal population, then

n

(n− 1)2
D2

i ∼ Beta

(
d

2
,
n− d− 1

2

)
.

One graphical test of multivariate is a QQ plot of the ordered D2
i statistics against the quantiles of the beta

distribution with parameters d/2 and (n− d− 1)/2. This plot can be constructed in SAS. I will give instructions in
class.

2.4.2.2 Multivariate Outliers

One simple test to determine whether there are any outliers is to examine the maximum D2
i value. Let

D2
max = maxD2

i . Using the Bonferroni inequality, the hypothesis that no outliers exist can be rejected if

Fmax =

(
n− d− 1

d

)[
1

1 − nD2
max/(n− 1)2

− 1

]
≥ F

1−α/n
d,n−d−1.

This test suffers from masking and swamping. An outlier is masked if it can not be detected unless certain other
observations are deleted from the data set.

2.4.2.3 Mardia’s Coefficients of Skewness and Kurtosis

Mardia has generalized skewness and kurtosis coefficients to multivariate distributions. The coefficients and their
estimators are described on pages 96–99 in Rencher (2002).

2.4.2.4 Henze-Zirkler Invariant Test

Consider a test of H0 : y ∼ N(µ,Σ) against the alternative Ha : y 6∼ N(µ,Σ). Denote the empirical characteristic
function of the standardized sample values zi = S−1/2(yi − y) by ψn(t). That is,

ψn(t) =
1

n

n∑

j=1

exp{it′zi},
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where i2 = −1. Denote the characteristic function of N(0, Id) as ψ0(t). That is,

ψ0(t) = E (exp{it′u}) = exp{−t′t/2},

where u ∼ N(0, Id). The Henze-Zirkler test statistic is

Dn,β =

∫

IRd

|ψn(t) − ψ0(t)|2 φβ(t) dt,

where φβ(t) is the pdf of N(0, β2
nId). Henze and Zirkler (Communications in Statistics — Theory and Methods,

1990, 19, 3595–3617) give an equation for β and describe how the test statistic can be computed. The distribution
of the test statistic can be approximated by a log normal distribution. The null hypothesis is rejected for small
values of the test statistic. This test can be performed in SAS.

2.4.3 Testing Normality in SAS

1. Histogram and Kernel Smoothed Density Plot

proc univariate data = dataset plots noprint;

var Y1;

title ’Smoothed Histogram of Y1’;

histogram Y1 /kernel(l=1 color = black);

inset mean std skewness kurtosis;

run;

2. Normal Probability Plot, Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling

proc univariate data = dataset normal;

var Y1-Y4;

qqplot Y1-Y4 /normal(mu=est sigma=est) cframe=ligr

pctlaxis(grid lgrid=35 label=’Normal Percentiles’);

inset mean std / cfill=white format=3.0 header=’Normal Parameters’

position=(95,10) refpoint=br;

run;

3. QQ Plot of Scaled D2
i fit to Beta, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling

proc iml;

small=1.e-10;

/*-----------------------------------------*/

/* Module to compute the rank of a matrix */

/*-----------------------------------------*/

start rankM(A) global(small);

m = nrow(A); n = ncol(A);

call svd(U,S,V,A);

if m = 1

then S = S[1];

else if m = 0 then S = {0};

tol = max(S) * small;

r = max(loc(S>tol)); /*rank of A = number of nonzero singular values */

return(r);

finish rankM;

use new;

read all var {y1 y2 y3} into Y;

read all var {x1 x2 x3} into X1;

reset noprint;
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n=nrow(Y); d=ncol(Y);

X=J(n,1) || X1;

r=rankM(X);

H=X*ginv(X‘*X)*X‘;

E=Y-H*Y;

S=(E‘*E)/(n-r);

A=E*inv(S)*E‘;

DD=vecdiag(A);

h1=vecdiag(I(n)-H);

u=(DD#H1##(-1))/(n-r);

*;

* Under multivariate normality, the entries of u are each;

* distributed as a beta random variable with parameters;

* d/2 and (n-r-d)/2, where r = rank(X);

* For this data set d/2=1.5 and (n-r-d)/2 = 24;

*;

Dn=max(DD);

Un=max(u);

F_max=((n-r-d)/d)*Un/(1-Un);

prob_F =n*(1- probf(F_max,d,n-r-d));

print Dn Un F_max prob_F;

create tdata from u [colname = ’u’];

append from u;

close tdata;

data total;

merge res_out tdata;

proc univariate data = total;

var u;

*;

* If d = 3, n = 50, and r=3 then alpha = 1.5 and beta = 22;

*;

qqplot u/beta(alpha=1.5 beta=22 threshold=0 scale=1);

histogram u / beta(alpha=1.5 beta=22);

inset mean (5.3) std = ’Std Dev’ (5.3) Skewness (5.3)

Kurtosis (5.3) /header = ’Summary Statistics’ pos = nw;

title1 ’Plot of Mahalanobis Distances’;

run;

4. Henze-Zirkler Invariant Test and Mardia’s Multivariate Skewness and Kurtosis

proc model;

parms b01 b11 b21 b31 b02 b12 b22 b32 b03 b13 b23 b33;

instrument x1 x2 x3;

Y1 = b01 +b11*x1 + b21*x2 + b31*x3;

Y2 = b02 +b12*x1 + b22*x2 + b32*x3;

Y3 = b03 +b13*x1 + b23*x2 + b33*x3;

fit Y1-Y3 /normal;

run;

2.5 TRANSFORMATIONS TO NORMALITY

Consider the linear model vec(Y) ∼ N [vec(XB),Σ ⊗ In]. This model requires that the rows of Y, say
y1,y2, . . . ,yn be independently distributed as normal random vectors with equal variance and that E(Y) ∈ R(X).



2.5. TRANSFORMATIONS TO NORMALITY 15

It often happens that data do not conform to these assumptions. A typical problem is that the covariance matrix of
the yis is not constant. Sometimes Var(yi) is a function of E(yi). If this is the case, then the investigator could use
weighted regression with weights Wi ∝ [Var(yi)]

−1 or could try to transform the data to better meet the
assumptions. A method for selecting a transformation are described below.

2.5.1 The Box-Cox Family of Transformations: Univariate Approach

One approach to transforming the data is to find a set of d transformations so that if the j th transformation is
applied to the jth column of Y then the result will be a column vector that satisfies the usual assumptions. In
particular, the Box-Cox family of transformations (Box and Cox, 1964) could be applied separately to each column
of Y.

Let uj be the jth column of Y. Then, the transformed variables are

zij =
u

λj

ij − 1

λj
.

The goal is to choose λj so that zj ∼ N(Xβj , σ
2
j I). It can be shown by using L’Hopital’s rule, that

lim
λj→0

zij = ln(uij).

To choose λj , assume that the random vector zj has distribution zj ∼ Nn(Xβj , σ
2
j I). Make the transformation

from zj to uj . The Jacobian of the transformation is
∏n

i=1 u
λj−1
ij . Accordingly, the random vector uj has density

function

f(uj) =
exp

{
− 1

2σ2
j

q(uj)
}

(2πσ2
j )

n
2

(
n∏

i=1

u
λj−1
ij

)
,

where

q(uj) =

n∑

i=1

(
u

λj

ij − 1

λj
− x′

iβj

)2

= (zj − Xβj)
′(zj − Xβj).

The parameter λj can be estimated by maximizing the likelihood function. In practice, it is easier to maximize
the log likelihood. For fixed λj , the MLE’s of σ2

j and βj are known to be

σ̂2
λj

=
z′j(I − H)zj

n
,

and
β̂λj

= (X′X)−X′zj ,

where H = ppo(X). Hence, omitting the constants, the profile log likelihood function (i.e., the likelihood function
maximized over σ2

j and βj) for fixed λj is

L(λj) = −n
2

ln(σ̂2
λj

) + n(λj − 1)w,

where

w = n−1
n∑

i=1

ln(uij).

Note that ew is the geometric mean of response vector. Alternatively, let

ti =
zij

gλj−1
,

where

g =

(
n∏

i=1

uij

) 1
n

= ew

is the geometric mean. Then, L(λj) simplifies to

L(λj) = −n
2

ln(s2λj
),
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where

s2λj
=

t′(I − H)t

n
and t = zj ×

1

gλj−1
.

To maximize the likelihood function, one need only find the value of λj which minimizes s2λj
. Large sample

confidence intervals for λj , in the Box-Cox family can be constructed by inverting the generalized likelihood ratio
test. A value, λ0, is inside the (1 − α)100% confidence interval if

−2 ln

[
eL(λ0)

eL(λ̂j)

]
≤ χ2

1−α,1.

Thus, a 100(1 − α)% confidence interval for λj consists of all values, λ0 that satisfy

n ln

[
SSE(λ0)

SSE(λ̂j)

]
≤ χ2

1−α,1,

where SSE(λ0) is the error sum of squares,

SSE(λ0) = t′(I − H)t,

computed using λj = λ0, and SSE(λ̂j) is the error sum of squares computed using λj = λ̂j , the MLE of λj .

2.5.2 The Box-Cox Family of Transformations: Multivariate Approach

In the approach in the previous section, the columns of Y were transformed one at a time. It is well known that
marginal normality does not imply joint normality so a better approach might be to choose the transformation
powers simultaneously.

Let Z be the matrix of transformed responses, where

zij =
y

λj

ij − 1

λj
.

If vec(Z) ∼ N [vec(XB,Σ ⊗ In], then the pdf of Y is

f(Y;Σ,B,λ) =

exp

{
−1

2
tr
[
(Z − XB)′(Z − XB)Σ−1

]}

(2π)nd/2|Σ|n/2

n∏

i=1

d∏

j=1

y
λj−1
ij .

The parameters B, Σ, and λ =
(
λ1 . . . λd

)′
can be estimated by maximizing the likelihood function.

A variant of this approach is to require that all λ values be identical; i.e., λ = 1dλ for some scalar λ. This
constraint is sensible in repeated measures or longitudinal studies where the d measures represent the same variable
observed on d occasions.

2.6 CORRELATION AND REGRESSION

2.6.1 Correlation: Population Parameters

Consider the random d-vector y ∼ (µ,Σ). Denote the jkth element of Σ by σjk. Be careful, var(yj) = σ2
j = σjj ,

not σ2
jj . The correlation between yj and yk is defined as

ρjk =
σjk√
σjjσkk

.

By the Cauchy-Schwartz inequality, ρ2
jk ≤ 1. The quantity ρ2

jk is called the coefficient of determination between
variables j and k.

Define D by D = diag(Σ). Then, the matrix of correlations is

R = D− 1
2 ΣD− 1

2 .

It can be shown that 0 ≤ |R| ≤ 1.
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2.6.2 Correlation: Sample Statistics

Let Y be an n× d matrix for which the rows of Y are a random sample from (µ,Σ). Denote the jth column of Y
by yj , denote the ijth entry of Y by yij and denote the mean of the jth column by ȳ·j . The usual sample estimate
of ρjk is

rjk =

∑n
i=1(yij − ȳ·j)(yik − ȳ·k)√∑n

i=1(yij − ȳ·j)2
∑n

i=1(yik − ȳ·k)2

=
(yj − 1nȳ·j)

′(yk − 1nȳ·k)√
[(yj − 1nȳ·j)′(yj − 1nȳ·j)] [(yk − 1nȳ·k)′(yk − 1nȳ·k)]

=
y′

j(In − H1)yk√[
y′

j(In − H1)yj

]
[y′

k(In − H1)yk]
=

sjk√
sjjskk

,

where H1 = ppo(1n) and sjk is the jkth entry in

S =
Y′(In − H1)Y

(n− 1)
.

Let

uj = yj − 1nȳ·j = (In − H1)yj

for j = 1, . . . , d. Let θjk be the angle between uj and uk. Then

cos(θjk) =
u′

juk√[
u′

juj

]
[u′

kuk]
= rjk.

The matrix of sample correlations, R̂ = {rjk}, can be computed as follows:

R̂ = D̂− 1
2 SD̂− 1

2 ,

where

D̂ = diag(S), and H1 = ppo(1n).

Inferences about ρij can be made using the following distributional results.

Theorem 2.4 If Y is normally distributed and ρij = 0, then

t =
rij

√
n− 2√

1 − r2ij

∼ tn−2.

The null hypothesis H0 : ρij = 0 can be rejected in favor of the alternative Ha : ρij 6= 0 if |t| ≥ t
1−α/2
n−2 .

Proof: The conditional distribution of yi given yj = ÿj is

yi|yj ∼ N(1nβ0 + ÿjβ1, σii·jIn),

where β0 = µi − β1µj; β1 = σij/σjj; and σii·j = σii − σijσ
−1
jj σji = σii(1 − ρ2

ij). The usual t statistic for testing
H0 : β1 = 0 is

t =
β̂1

ŜE(β̂1)
∼ tn−2,λ, where λ =

β2
1(n− 1)sjj

2σ2
ii·j

=
(n− 1)sjjρ

2
ij

2σjj(1 − ρ2
ij)
.

Using the annihilator, it is readily shown that

β̂1 =
[
ÿ′

j(In − H1)ÿj

]−1
ÿ′

j(In − H1)yi = s−1
jj sji = rij

√
sii

sjj
, where H1 = ppo(1n);

Var(β̂1) = σii·j

[
ÿ′

j(In − H1)ÿj

]−1
=

σii·j

(n− 1)sjj
and
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σ̂ii·j =
y′

i(In − H)yi

n− 2
=

y′
i(In − H1 − H2·1)yi

n− 2
=

(
n− 1

n− 2

)
sii(1 − r2ij).

Accordingly,

t =

rij

√
sii

sjj√
sii(1 − r2ij)

(n− 2)sjj

=
rij

√
n− 2√

1 − r2ij

.

If ρij = 0, then β1 = 0 and t has a central t distribution with n− 2 degrees of freedom.

Theorem 2.5 (Fisher’s Z) If Y is normally distributed and n is not small, then

1

2
ln

(
1 + rij
1 − rij

)
∼̇ N

[
ξij , (n− 3)−1

]
,

where

ξij =
1

2
ln

(
1 + ρij

1 − ρij

)
.

The statistic

Zij =
1

2
ln

(
1 + rij
1 − rij

)

is called Fisher’s Z. The endpoints of an approximate 100(1 − α)% confidence interval for ξij are given by

Zij ±
z∗1−α/2√
n− 3

,

where z∗1−α/2 is the 100(1 − α/2) percentile of the standard normal distribution. Back transforming from ξij to ρij

yields an approximate 100(1 − α)% confidence interval for ρij :

exp
{

2
(
Zij − z∗1−α/2/

√
n− 3

)}
− 1

exp
{

2
(
Zij − z∗1−α/2/

√
n− 3

)}
+ 1

≤ ρij ≤
exp

{
2
(
Zij + z∗1−α/2/

√
n− 3

)}
− 1

exp
{

2
(
Zij + z∗1−α/2/

√
n− 3

)}
+ 1

.

2.6.3 Multiple Correlation: Population Parameter

Consider the random d-vector y ∼ (µ,Σ), where Σ > 0. Conformably partition y, µ, and Σ as

y =

(
y1
y2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
σ11 σ′

21

σ21 Σ22

)
,

where y1, µ1, and σ11 = σ2
1 are scalars. The squared multiple correlation between y1 and y2 is defined as the

maximum squared correlation between y1 and a linear combination of y2. That is

ρ2
12 = max

t
[corr(y1, t

′y2)]
2
.

Theorem 2.6 The squared multiple correlation between y1 and y2 is

ρ2
12 = [corr(y1, t

′y2)]
2

=
σ′

21Σ
−1
22 σ21

σ11
,

where t = Σ−1
22 σ21.
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2.6.4 Multiple Correlation: Sample Statistics

Let Y be an n× d matrix for which the rows of Y are a random sample from (µ,Σ). Let

S =
Y′(In − H1)Y

(n− 1)
=

(
s11 s′21
s21 S22

)
where H1 = ppo(1n).

The sample estimator of ρ2
12 is

R2
12 =

s′21S
−1
22 s21

s11
.

Theorem 2.7 If Y has a multivariate normal distribution and ρ2
12 = 0, then

F =

(
n− d

d− 1

)(
R2

12

1 −R2
12

)
∼ Fd−1,n−d.

The null hypothesis H0 : ρ12 = 0 can be rejected in favor of Ha : ρ12 6= 0 if F ≥ F 1−α
d−1,n−d.

Proof: Partition Y as Y =
(
y1 Y2

)
, where Y2 is n× (d− 1). The conditional distribution of yi given Y2 = Ÿ2 is

y1|Y2 ∼ N(1nβ0 + Ÿ2β1, σ11·2In),

or, equivalently,
y1|Y2 ∼ N(Xβ, σ2In),

where

β0 = µ1 − β′
1µ2; β1 = Σ−1

22 σ21;

σ11·2 = σ11 − σ′
21Σ

−1
22 σ21 = σ11(1 − ρ2

12);

β =

(
β0

β1

)
; X =

(
1n Ÿ2

)
; and

σ2 = σ11·2.

The model comparison likelihood ratio test for testing H0 : β1 = 0 is to reject H0 if F ≥ F 1−α
d−1,n−d, where

F =

(
n− d

d− 1

)
y′

1(H − H1)y1

y′
1(In − H)y1

where H = ppo(X)

=

(
n− d

d− 1

)
y′

1H2·1y1

y′
1(In − H1 − H2·1)y1

=

(
n− d

d− 1

)
R2

12

(1 −R2
12)

.

Furthermore, conditional on Y2 = Ÿ2, the distribution of F is F ∼ Fd−1,n−d,λ, where

λ =
σ′

21Σ
−1
22 Y′

2(I − H1)Y2Σ
−1
22 σ21

2σ11(1 − ρ2
12)

= (n− 1)
σ′

21Σ
−1
22 S22Σ

−1
22 σ21

2σ11(1 − ρ2
12)

.

Note that

E(λ) = (n− 1)
ρ2
12

2(1 − ρ2
12)

.

Also, under H0 : ρ12 = 0, the noncentrality parameter goes to zero and the test statistic has a central F distribution.
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2.6.5 More on Conditional Distributions

In this section additional details on the conditional distribution of y1 given Ÿ2 are described. The results in this
section provide an alternative proof of Theorem 2.7.

Let Y be an n× d matrix for which the rows of Y are a random sample from N(µ,Σ). That is,

Y = 1nµ
′ + E, where vec(E) ∼ N(0,Σ ⊗ In).

Equivalently,
vec(Y) ∼ N [(Id ⊗ 1n)µ,Σ ⊗ In] .

Partition Y, µ, and Σ as

Y =
(
y1 Y2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
σ11 σ′

21

σ21 Σ22

)
,

where y1 is n× 1, and µ1 and σ11 are scalars. From previous results, it is known that

y1|(Y2 = Ÿ2) ∼ N
[
1nµ1 + (Ÿ2 − 1nµ

′
2)Σ

−1
22 σ21, σ11·2In

]
,

where
σ11·2 = σ11 − σ′

21Σ
−1
22 σ21.

Rearranging terms yields the regression model
y1 = Xβ + ε,

where

X =
(
1n Ÿ2

)
, β =

(
β1

β2

)
=

(
µ1 − µ′

2Σ
−1
22 σ21

Σ−1
22 σ21

)
, and ε ∼ N(0, σ11·2In).

Using annihilator results, the MLE (OLS) of β2 is

β̂2 =
[
Ÿ′

2(In − H1)Ÿ2

]−1

Ÿ′
2(In − H1)y1 = S−1

22 s21,

where H1 = ppo(1n). The conditional distribution of β̂2 given Y2 = Ÿ2 is

β̂2|(Y2 = Ÿ2) ∼ N

{
β2, σ11·2

[
Ÿ′

2(In − H1)Ÿ2

]−1
}
.

That is,
β̂2|(Y2 = Ÿ2) ∼ N

[
β2, σ

2S−1
22 /(n− 1)

]
,

where σ2 = σ11·2. The usual estimator of σ2 is

σ̂2 =
y′

1(In − H)y1

n− d
,

where H = ppo(X) and rank(X) = 1 + (d− 1) = d. Write X as X =
(
1n Ÿ2

)
. Recall that H can be decomposed

as
H = H1 + H2·1,

where

H1 = ppo(1n) = n−1Jn
n and

H2·1 = ppo
{

[In − ppo(1n)] Ÿ2

}
= (In − H1)Ÿ2

[
Ÿ′

2(In − H1)Ÿ2

]−1

Ÿ′
2(In − H1)

Accordingly, σ̂2 can be written as

σ̂2 =
y′

1(In − H1)y1 − y′
1(In − H1)Ÿ2

[
Ÿ′

2(In − H1)Ÿ2

]−1

Ÿ′
2(In − H1)y1

n− d
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= (n− 1)
s11 − s′21S

−1
22 s21

n− d
=

(n− 1)s11
n− d

(
1 −R2

12

)
.

Conditional on Y2 = Ÿ2, the likelihood ratio test of H0 : β2 = 0 versus Ha : β2 6= 0 is to reject H0 if F ≥ F 1−α
d−1,n−d,

where

F =
β̂
′

2Ÿ
′
2(In − H1)Ÿ2β̂2

(d− 1)σ̂2
=

(
n− d

d− 1

)(
R2

12

1 −R12

)
.

Note that the unconditional distribution of F under H0 is Fd−1,n−d. Also note that

R2
12 =

s′21S
−1
22 s21

s11
=
R(β1,β2) −R(β1)

y′
1y1 −R(β1)

,

which is the usual R2 in regression models.

2.6.6 Partial Correlation

Consider two random vectors, y : p× 1 and x : q × 1 with joint distribution
(
y
x

)
∼ N

[(
µx

µy

)
,

(
Σyy Σyx

Σxy Σxx

)]
.

The covariance matrix for y|(x = ẍ) is called the partial covariance matrix and is given by

Var[y|(x = ẍ)] = Σyy·x = Σyy − Σ′
xyΣ

−1
xx Σxy.

Let Dyy·x = diag(Σyy·x). Then, the partial correlation matrix for y given x is

Ryy·x = D
− 1

2
yy·xΣyy·xD

− 1
2

yy·x.

Note that the partial covariances and partial correlations do not depend on ẍ. If p = 2 and q = 1, then

ρy1,y2|x =
ρy1,y2

− ρy1,xρy2,x√
(1 − ρ2

y1,x)(1 − ρ2
y2,x)

.

2.6.7 Prediction & Regression: Population Parameters

2.6.7.1 Best Predictor (BP)

Consider two random vectors, x and y, with joint density f(x,y). The density need not be normal. Suppose that x
can be observed, but y can not be observed. We wish to predict y based on the observed x. Denote the predicted
value of y by ĝ = ĝ(x) (random variable) or ĝ = ĝ(ẍ) (realization). The best predictor is defined as the function ĝ
which minimizes

MSE(ĝ) = E
[
(y − ĝ)

′
Ω−1(y − ĝ)

]
,

where Ω is a positive definite matrix (e.g., a covariance matrix).

Theorem 2.8 The best predictor is ĝ = E(y|x).

Corollary. The best predictor is unbiased: E [E(y|x)] = E(y).

2.6.7.2 Regression Under Normality

Consider the random (p+ 1)-vector z ∼ N(µ,Σ), where Σ > 0. Conformably partition z, µ, and Σ as

z =

(
y
x

)
, µ =

(
µy

µx

)
, and Σ =

(
σ2

y Σyx

Σxy Σxx

)
,

where y, µy, and σ2
y are scalars. Suppose that we wish to predict y after observing x = ẍ. The best predictor is

E(y|x = ẍ) = µy + ΣyxΣ
−1
xx (ẍ − µx) = β0 + β′

1ẍ,

where
β0 = µy − β′

1µx and β1 = Σ−1
xx Σxy.
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2.6.7.3 Best Linear Prediction (BLP)

Consider two random vectors, x : p× 1 and y : q × 1, with moments

E

(
y
x

)
=

(
µy

µx

)
and Var

(
y
x

)
= Σ =

(
Σyy Σyx

Σxy Σxx

)
.

Suppose that we wish to predict y after observing x = ẍ. The joint density of x and y is not known, so the BP can
not be used. Instead, we will find the BLP. The BLP minimizes

MSE(ĝ) = E
[
(y − ĝ)

′
Ω−1(y − ĝ)

]
,

where Ω > 0 subject to

1. ĝ(x) = β0 + B′
1x, where β0 is a q × 1 vector of constants and B1 is a p× q matrix of constants.

2. E(ĝ) = E(y).

Together, the two constraints imply that β0 = µy − B′
1µx. Thus, the BLP minimizes

MSE(ĝ) = E
{

[(y − µy) − B′
1(x − µx)]

′
Ω−1[(y − µy) − B′

1(x − µx)]
}
.

Theorem 2.9 The BLP is ĝ(x) = β0 + B′
1x, where B1 = Σ−1

xx Σxy and β0 = µy − B′
1µx.

Corollary. For q = 1, the BLP is ĝ(x) = β0 + β′
1x, where β1 = Σ−1

xx Σxy and β0 = µy − β′
1µx.



Chapter 3

ESTIMATION OF B AND Σ FROM
MVN

3.1 COMPLETE DATA

Consider the model Y = XB + U, where vec(U) ∼ N[0, (Σ ⊗ Ω)], X is an n× p known model matrix with rank
r ≤ p, B is an unknown p× d matrix of regression coefficients, Σ > 0, and Ω is a known n× n positive definite
matrix.

3.1.1 Maximum Likelihood Estimator of B

Theorem 3.1 A maximum likelihood estimator of B is any solution to the normal equations:

X′Ω−1XB = X′Ω−1Y.

One solution is

B̃ = (X′Ω−1X)
−
X′Ω−1Y,

where (X′Ω−1X)
−

is any generalized inverse of X′Ω−1X. If X has full column rank, then the estimator is unique

and is given by B̂ = (X′Ω−1X)
−1

X′Ω−1Y. Proof: in class.

Corollary 1 If Ω = In, then B̃ = (X′X)
−
X′Y.

Corollary 2: Partition Y as

Y =




y′
1

y′
2
...

y′
n


 ,

where yi is d× 1. If E(yi) = µ for i = 1, . . . , n and Ω = In, then the model simplifies to yi ∼ iid N(µ,Σ) or

Y = XB + U, where X = 1n, and B = µ′. The maximum likelihood estimator of B is B̂ = n−11′
nY = y′. That is,

µ̂ = y.

Corollary 3 If C′ vec(B) is estimable, then the BLUE is C′ vec(B̃).

Corollary 4: If the linear function C′
1BC2 is estimable, then

Disp(C′
1B̃C2) = C′

2ΣC2 ⊗ C′
1(X

′Ω−1X)
−
C1.

It is readily shown that the linear function C′
1BC2 is estimable iff C1 ∈ R(X′).
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3.1.2 Maximum Likelihood Estimator of Σ

Theorem 3.2 Let A : q × q be a positive definite matrix and let m be a known scalar constant. Then

max
Φ>0

exp
{
− 1

2 tr(Φ−1A)
}

|Φ|m
2

=
exp

{
−mq

2

}
m

mq

2

|A|m
2

,

and the maximizer is
Φ̂ = m−1A.

Proof: The Cholesky factorization of Φ−1 can be written as Φ−1 = ΓΓ′. Consider maximizing

g(Γ) =
|A|m

2 exp
{
− 1

2 tr(Φ−1A)
}

|Φ|m
2

= |Γ′AΓ|
m
2 exp

{
−1

2
tr(Γ′AΓ)

}
.

Note that

ln [g(Γ)] =
m

2

q∑

i=1

ln(λi) −
1

2

q∑

i=1

λi,

where λi for i = 1, . . . , q are the eigenvalues of Γ′AΓ. Maximizing ln [g(Γ)] with respect to the λis reveals that
Γ′AΓ = mI. The result follows.

Theorem 3.3 Consider the model Y = XB + U where vec(U) ∼ Nnd[0, (Σ ⊗ Ω)]. Then, the MLE of Σ (for
known Ω) is

Σ̃ =
Y′Ω−1(In − P)Y

n
,

where
P = X(X′Ω−1X)

−
X′Ω−1.

Note, if Ω = I, then P = ppo(X).

Proof: Write the likelihood function of B and Σ given Y as

L(B,Σ|Y) =
exp

{
− 1

2 tr[Σ−1(Y − XB)′Ω−1(Y − XB)]
}

|Σ|n
2 |Ω| d

2 (2π)
nd
2

.

Maximize, first, with respect to B. Then apply the previous theorem.

Corollary 1: E(Σ̃) = (n− r)Σ/n.

Corollary 2: E(S) = Σ, where

S =
nΣ̃

n− r
=

Y′Ω−1(In − P)Y

n− r
.

3.2 INCOMPLETE DATA: EM ALGORITHM

The EM algorithm is useful for computing MLEs when some data are missing.

3.2.1 References

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data
via the EM algorithm (with discussion), Journal of the Royal Statistical Society, B39, 1–38.

Little, R. J. A., and Rubin, D. B. (1987). Statistical Analysis with Missing Data, New York: John Wiley.

McLachlan, G. J., & Krishnan, T. (1997). The EM Algorithm and Extensions, New York: John Wiley.



Chapter 4

WISHART DISTRIBUTION

The Wishart distribution is a multivariate generalization of the gamma distribution.

Definition: Let Y be an n× d random matrix. Assume that n ≥ d. Denote the ith row of Y by y′
i and suppose that

yi, for i = 1, . . . , n, are independently distributed as yi ∼ N(µi,Σ). That is,

vec(Y) ∼ N [vec(M), (Σ ⊗ In)] ,

where M = E(Y). Then, the d× d matrix A = Y′Y is said to have a d-dimensional Wishart distribution with n
degrees of freedom, covariance matrix Σ, and noncentrality matrix Λ = Σ−1M′M. The distribution of A is
denoted by A ∼ Wd(n,Σ,Λ). If Λ = 0, then A is said to have a central Wishart distribution. A central Wishart
distribution is denoted by Wd(n,Σ,0) or, simply, Wd(n,Σ).

4.1 ANDERSON’S THEOREM

Anderson (1984, p. 245–249) gives a derivation of the central Wishart density. In the process, he proves a very
useful result.

Theorem 4.1 Let Y be an n× d matrix with density fY (Y′Y). That is, the density of Y depends on Y only
through A = Y′Y. Then, the density of A is

fA(A) =
|A|

n−d−1
2 fY (A)π

nd
2

Γd

(
n
2

) ,

where Γd

(
n
2

)
is the multivariate gamma function:

Γd(t) = π
d(d−1)

4

d∏

i=1

Γ

(
t− i− 1

2

)
.

4.2 PROPERTIES OF THE WISHART DISTRIBUTION

Recall that if yi ∼ iid Nd(0,Σ) for i = 1, . . . , n, then

A =

n∑

i=1

yiy
′
i = Y′Y ∼ Wd(n,Σ),

where

Y =




y′
1

y′
2
...

y′
n


 .
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Theorem 4.2 If A ∼ Wd(n,Σ), then the joint density of the distinct elements [that is the d(d+ 1)/2 elements in
the upper or lower triangle] is

f(A) =
|A|

n−d−1
2 exp{− 1

2 tr(Σ−1A)}
2

nd
2 |Σ|n

2 Γd

(
n
2

) ,

for A > 0 and Σ > 0.

Theorem 4.3 Suppose that A ∼ Wd(n,Σ). Let T be a symmetric matrix of constants. Then, the moment
generating function of A is

MA(T) = E[exp{tr(TA)}] = |Id − 2TΣ|−n
2 .

Theorem 4.4 Suppose that Y is an n× d random matrix with distribution vec(Y) ∼ Nnd[vec(M),Ω] where Ω > 0
and E(Y) = M. Let A be an n× n symmetric matrix of constants. Then, Y′AY ∼ Wd(m,Σ,Λ) iff Ω(Σ−1 ⊗ A)
is idempotent. The parameters of the Wishart density are given by m = rank(A),

Σ = [tr(A)]
−1

Td[(Id ⊗ A)Ω(Id ⊗ A)],

and Λ = Σ−1M′AM.

A proof of this remarkable result may be found in Appendix A of

Boik, R.J. (1988). The mixed model for multivariate repeated measures: validity conditions and an approximate
test. Psychometrika, 53, 469–486.

Corollary 1: Suppose that Y is an n× d random matrix with distribution vec(Y) ∼ Nnd[vec(M), (Σ ⊗ In)], where
Σ > 0 and E(Y) = M. Let A be an n× n symmetric matrix of constants. Then, Y′AY ∼ Wd(m,Σ,Λ) iff A is
idempotent. The parameters of the Wishart density are given by m = rank(A) and Λ = Σ−1M′AM.

Corollary 2: Consider the setup in Corollary 1 in which M = 1nµ
′. That is, the rows of Y are iid Nd(µ,Σ). Define

H by H = In − n−11n1′
n. Then, Y′HY ∼ Wd(n− 1,Σ,0).

Corollary 3: Suppose Ai ∼ ind Wd(ni,Σ,Λi) for i = 1, . . . , k. Then,

k∑

i=1

Ai ∼ Wd(n·,Σ,Λ·),

where n· =
∑k

i=1 ni and Λ· =
∑k

i=1 Λi. The proof of the Corollary consists of noting that Ai ∼ Y′
iYi where

vec(Yi) ∼ Nnid[vec(Mi), (Σ ⊗ Ini
)] and Λi = Σ−1M′

iMi. Then,
∑k

i=1 Ai ∼ Y′Y where

Y =




Y1

Y2

...
Yk


 and vec(Y) ∼ N[vec(M), (Σ ⊗ In·

)].

Now use Corollary 1.

Theorem 4.5 Suppose that A ∼ Wd(n, I). Write A in terms of its Cholesky decomposition: A = R′R where R is
an upper triangular matrix having positive diagonal elements. The d(d+ 1)/2 elements in R are distributed,
independently as

rij ∼
{

N(0, 1), if i < j;

+
√
χ2(n− i+ 1) if i = j.
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Corollary 1: Suppose that A ∼ Wd(n, I). Then,

|A| =
d∏

i=1

r2ii ∼
d∏

i=1

χ2(n− i+ 1),

where the χ2’s are mutually independent.

Theorem 4.6 Suppose that A ∼ Wd(n,Σ). Let C be a d× q matrix of constants having rank-q, Then
C′AC ∼ Wq(n,C

′ΣC).

Corollary 1: Suppose A ∼ Wd(n,Σ). Let t be any nonzero d× 1 vector of constants. Then, t′At ∼ σ2χ2(n) where
σ2 = t′Σt.

Corollary 2: Suppose that A ∼ Wd(n,Σ). Then,

|A||Σ|−1 ∼
d∏

i=1

χ2(n− i+ 1),

where the χ2’s are mutually independent.

Theorem 4.7 Suppose that Y is an n× d random matrix with distribution vec(Y) ∼ Nnd[vec(M), (Σ⊗ In)], where
Σ > 0 and E(Y) = M. Let A and B be n× n symmetric matrices of constants. Then, Y′AY and Y′BY are
independent iff AB = 0. Proof: use univariate results.

Theorem 4.8 Suppose that Y is an n× d random matrix with distribution vec(Y) ∼ Nnd[vec(M), (Σ⊗ In)], where
Σ > 0 and E(Y) = M. Let A be an n× n symmetric matrix of constants and let B be a p× n matrix of constants.
Then, Y′AY and BY are independent iff BA = 0. Proof: use univariate results.

Theorem 4.9 Suppose that Y is an n× d random matrix with distribution vec(Y) ∼ Nnd[vec(M), (Σ⊗ In)], where
Σ > 0 and E(Y) = M. Write d as d = p+ q and partition Y as Y =

(
Y1 Y2

)
, where Y1 is n× p and Y2 is

n× q. Partition M conformably and partition Σ as Σ = {Σij} for i, j = 1, 2 where Σ11 is p× p. Then,

vec(Y1)|Y2 ∼ Nnp[vec(M1·2), (Σ11·2 ⊗ In)],

where M1·2 = M1 + (Ÿ2 − M2)Σ
−1
22 Σ21 and Σ11·2 = Σ11 − Σ12Σ

−1
22 Σ21.

Corollary 1: Consider the setup in Theorem 4.9 in which M = 1nµ
′. Partition µ as

µ =

(
µ1

µ2

)
,

where µ1 is p× 1 and µ2 is q × 1. Then,

vec(Y1)|Y2 ∼ Nnp[vec(M1·2), (Σ11·2 ⊗ In)],

where M1·2 = 1nθ
′ + Ÿ2Σ

−1
22 Σ21 and θ = µ1 − Σ12Σ

−1
22 µ2.

Corollary 2: Suppose that A ∼ Wp+q(n,Σ). Partition A and Σ as

A =

(
A11 A12

A21 A22

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where A11 and Σ11 are each p× p. Then, the following hold.

1. A11·2 ∼ Wp(n− q,Σ11·2) where A11·2 = A11 − A12A
−1
22 A21 and Σ11·2 = Σ11 − Σ12Σ

−1
22 Σ21.

2. A22·1 ∼ Wq(n− p,Σ22·1) where A22·1 = A22 − A21A
−1
11 A12 and Σ22·1 = Σ22 − Σ21Σ

−1
11 Σ12.

3. A11·2 is independent of both A22 and A21.

4. A22·1 is independent of both A11 and A12.
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Chapter 5

PRINCIPLES OF TEST
CONSTRUCTION

5.1 LIKELIHOOD RATIO TESTS

Consider a random matrix Y having density f(Y|θ) where θ is a vector of parameters. If some parameters are in
matrix form, then vec or vech them. The likelihood function is obtained by considering f(Y|θ) as a function of the
parameters given the data. The likelihood function for θ given Y is written as L(θ|Y).

Suppose that a test of H0 : θ ∈ Ω0 against Ha : θ ∈ Ωa is desired. It is assumed that Ω0 ∩Ωa = ∅, otherwise the
hypotheses may not be sensible. Define Ω by Ω = Ω0 ∪ Ωa. The likelihood ratio (LR) criterion is defined as

Λ(Y) =
L0

La
,

where
L0 = sup

θ∈Ω0

L(θ|Y) and La = sup
θ∈Ω

L(θ|Y).

The null hypothesis is rejected for small values of the LR criterion. The above test also is the likelihood ratio test
of H0 : θ ∈ Ω0 against Ha : θ ∈ Ω.

Suppose that the dimension of the parameter space Ω0 is r and that the dimension of the parameter space Ω is
s. The dimension of a parameter space is equal to the number of functionally independent parameters which are
free to vary. Then, under some fairly general regularity conditions and a true null hypothesis,

−2 ln(Λ)
dist−→ χ2(s− r)

as n→ ∞. This is the kind of result which is proven in STAT 550.

5.2 UNION INTERSECTION TESTS

The union intersection (UI) procedure was developed by S.N. Roy in 1953. It provides an alternative way of
constructing a multi-parameter test. Consider the same setup as for the LR test. If s− r = 1, then the LR and UI
tests are identical. However, when s− r ≥ 2, the LR and UI tests may differ. In general, for testing
multi-parameter (composite) hypotheses, there is no uniformly most powerful test. Accordingly, it is sensible to
consider the merits of a variety of tests.

To construct a UI test of H0 : θ ∈ Ω0 against Ha : θ ∈ Ωa, the null is rewritten as an intersection of
one-parameter hypotheses and the alternative is rewritten as a union of one-parameter hypotheses. Let gi(θ) for
i = 1, . . . ,K be a set of scalar valued functions of θ. Let Ω0,i be the parameter space induced by the
transformation from θ to gi(θ). That is,

Ω0,i = {τ |τ = gi(θ) for some θ ∈ Ω0}.

The parameter space Ωa,i is defined similarly:

Ωa,i = {τ |τ = gi(θ) for some θ ∈ Ωa}.
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The composite null and alternative hypotheses can be written as

K⋂

i=1

H0,i : gi(θ) ∈ Ω0,i and

K⋃

i=1

Ha,i : gi(θ) ∈ Ωa,i.

That is, for H0 to be true, gi(θ) ∈ Ω0,i must be satisfied for all i and for Ha to be true, gi(θ) ∈ Ωa,i must be
satisfied for some i. In practice, K may be infinite.

For example, suppose that we wish to test H0 : µ = 0 where µ is a d-vector of population means. A finite
union intersection set of hypotheses is obtained by defining gi as gi(µ) = µi. In this case, the UI hypotheses are

d⋂

i=1

H0,i : µi = 0 versus
d⋃

i=1

Ha,i : µi 6= 0.

An infinite union intersection set of hypotheses is obtained by defining gi as gi(µ) = t′iµ, where ti is a d-vector of
coefficients. In this case, the UI hypotheses are

t′µ = 0 ∀ t versus t′µ 6= 0 for some t.

Let Si be a test statistic for testing

H0,i : gi(θ) ∈ Ω0,i versus Ha,i : gi(θ) ∈ Ωa,i.

In practice, Si is typically the LR statistic for testing H0,i against Ha,i. Assume that the null is rejected if Si is
large. Then the UI test rejects the composite null if S is large, where

S = sup
i
Si.

To perform a size α test, the null distribution of S is needed. In practice, it is usually easier to derive the UI test
than it is to derive the null distribution of the UI test statistic. A more complete description of the UI principle can
be found in Srivastava & Khatri An Introduction to Multivariate Statistics, 1979, p. 104–110.



Chapter 6

MULTIVARIATE TEST STATISTICS

In univariate linear models, the usual test statistics are functions of two independent sums of squares, SSE and
SSH. Typically, SSE and SSH are independently distributed as

SSH

σ2
∼ χ2(ν1, λ) and

SSE

σ2
∼ χ2(ν2, 0).

A size α test of H0 : λ = 0 is given by the following: reject H0 if F ≥ F 1−α
ν1,ν2

where

F =

(
SSH

SSE

)(
ν2
ν1

)
,

and F 1−α
ν1,ν2

is the 100(1 − α) percentile of the central F distribution with ν1 and ν2 degrees of freedom. An identical
test is given by the following decision rule: reject H0 if B1 ≥ B(1 − α, ν1

2 ,
ν2

2 ) where

B1 =
SSH

SSH + SSE
,

and B(1 − α, ν1

2 ,
ν2

2 ) is the 100(1 − α) percentile of the central Beta distribution with parameters ν1

2 and ν2

2 . A
third, identical, test is the following: reject H0 if B2 ≤ B(α, ν2

2 ,
ν1

2 ) where

B2 =
SSE

SSH + SSE
,

and B(α, ν2

2 ,
ν1

2 ) is the 100α percentile of the central Beta distribution with parameters ν2

2 and ν1

2 .
Many of the multivariate test statistics can be expressed as functions of two independent Wishart matrices, E

and H. Typically, H and E are independently distributed as

H ∼ Wd(mH ,Σ,Λ) and E ∼ Wd(mE ,Σ,0).

In some applications, mH may be less than d, in which case, H will have a singular Wishart distribution. We
assume that mE ≥ d so that E has a nonsingular Wishart distribution.

We wish to test H0 : Λ = 0. Denote the ordered nonzero characteristic roots of (E + H)−1H by
θ1 ≥ θ2 ≥ · · · ≥ θs ≥ 0, where s = rank(H) = min(mH , d). The usual multivariate test statistics are functions of the
θi’s. In the univariate case, s = 1, B1 = θ1, B2 = 1 − θ1, and

F =
mEθ1

mH(1 − θ1)
.

6.1 WILKS’S LAMBDA

A size α test is given by the following: reject H0 if U < U(α, d,mH ,mE) where

U =
|E|

|E + H| ,
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and U(α, d,mH ,mE) is the 100α null percentile of the U distribution. The U statistic is a multivariate
generalization of the beta random variable, B2. Note that

U =

s∏

i=1

(1 − θi),

where s = min(mH , d).

Lemma Suppose that T and Z are scalar random variables having finite ranges. If E(T i) = E(Zi) for
i = 0, 1, . . . ,∞, then T and Z have identical distributions.

Theorem 6.1 The null distribution of U is

U ∼
d∏

i=1

Bi, where Bi
ind∼ B

(
mE − i+ 1

2
,
mH

2

)
.

Proof: Recall that if T ∼ B(α, β), then

E(T h) =
Γ(α+ β) Γ(α+ h)

Γ(α) Γ(α+ β + h)
.

The proof consists of showing that

E(Uh) =

d∏

i=1

Γ
(

mE+2h+1−i
2

)
Γ
(

mE+mH+1−i
2

)

Γ
(

mE+1−i
2

)
Γ
(

mE+mH+2h+1−i
2

) ,

and then using the lemma. Details are an exercise.

Theorem 6.2 Suppose that U1 ∼ U(d,mH ,mE) and U2 ∼ U(mh, d,mE +mH − d). Then, U1 ∼ U2. The proof
consists of showing that E(Uh

1 ) = E(Uh
2 ) for all h ≥ 0.

The most widely used approximation to the distribution of U is due to Rao (1951). Rao showed that, under H0,

(ft− g)(1 − U
1
t )

mH dU
1
t

∼̇ Fd mH ,ft−g,

where

f = mE − d−mH + 1

2
, g =

dmH − 2

2
,

and

t =

(
d2m2

H − 4

d2 +m2
H − 5

) 1
2

.

If dmH = 2, then t is set to 1. Rao’s approximation is exact if min(d,mH) ≤ 2.
An alternative expansion of the characteristic function yields a χ2 approximation to the distribution of U . The

χ2 expansion is due to Box (1954). Using only the first term in the expansion:

f ln(U) ∼̇ χ2(dmH),

where

f = mE − d−mH + 1

2
.

Table D13 in Seber (1984) gives percentiles of the U distribution in terms of the chi squared approximation.
Table D13 gives correction factors, Cα, such that

Pr
[
−f ln(U) ≥ Cαχ

2(1 − α, dmH)
]

= α.

To use D13, define M as M = mE − d+ 1 and define f as above. Note, from the table, that for Cα → 1 as
M → ∞. Table A.9 in Rencher (2002) gives lower percentiles of U .
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6.2 PILLAI’S TRACE

Pillai’s trace statistic is defined as
V (s) = tr

[
H(E + H)

−1
]
,

which also can be written as

V (s) =
s∑

i=1

θi.

An accurate approximation to the null distribution of V (s) is
(

2ν2 + s+ 1

2ν1 + s+ 1

)(
V (s)

s− V (s)

)
∼̇ F [s(2ν1 + s+ 1), s(2ν2 + s+ 1)] ,

where

s = min)d,mH), ν1 =
|d−mH | − 1

2
and ν2 =

mE − d− 1

2
.

Exact critical values are tabled in D16 in Seber (1984) and in Table A.11 in Rencher (2002).

6.3 LAWLEY-HOTELLING TRACE

The Lawley-Hotelling trace is defined as
T 2

g = mE tr(E−1H),

which can be written as

T 2
g = mE

s∑

i=1

(
θi

1 − θi

)
.

The statistic also is called Hotelling’s generalized T 2. An accurate approximation to the null distribution of T 2
g , due

to McKeon (1974), is

tr(E−1H)

(
b(mE − d− 1)

dmH(b− 2)

)
∼̇ Fd mH ,b,

where

b = 4 +
dmH + 2

B − 1
and B =

(mE +mH − d− 1)(mE − 1)

(mE − d− 3)(mE − d)
.

An alternative approximation (apparently less accurate but used by SAS) is

tr(E−1H)

(
2(sν2 + 1)

s2(2ν1 + s+ 1)

)
∼̇ F [s(2ν1 + s+ 1), 2(sν2 + 1)],

where s = min(mH , d), ν1 = (|d−mH | − 1) /2, and ν2 = (mE − d− 1) /2. Exact null percentage points for
(mE/mH) tr(E−1H) are given in Table D15 of Seber (1984) and in Table A.12 in Rencher (2002).

Alternative approximations to the null and non-null distribution of T 2
g can be found in

van der Merwe & Crowther (1984), “An approximation to the distribution of Hotelling’s generalized T 2
0 -statistic,”

South African Statistical Journal, 18, 68–90.

6.4 ROY’S MAXIMUM ROOT

Roy’s test statistic is θ1, the maximum root of (H + E)
−1

H. An equivalent test statistic is

ϕ1 =
θ1

1 − θ1

which is the maximum root of E−1H. Table D14 in Seber (1984) and Table A.10 in Rencher (2002) give exact
percentiles for θ1. In Table D14 of Seber (1984), the definitions s = min(d,mH), ν1 = 1

2 (|d−mH | − 1), and
ν2 = 1

2 (mE − d− 1) are used. In Table A.10 in Rencher (2002), the definitions s = min(d,mH),
m = 1

2 (|d−mH |− 1), and N = 1
2 (mE −d− 1) are used. Chart 9 and Tables 6–14 in Morrison (1990) give percentiles

for θ1. In Morrison, the definitions s = min(d,mH), m = 1
2 (|d−mH | − 1), and n = 1

2 (mE − d− 1) are used.
SAS approximates the distribution of ϕ1(mE − r − 1)/r where r = max(mH , d) by an F random variable. The

p-value provided by SAS is a lower bound on the true p-value, so use caution!
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Chapter 7

HOTELLING’S T
2

7.1 ONE SAMPLE SETTING

7.1.1 The Test Statistic and its Distribution

Consider the model
Y = 1nµ

′ + U,

where Y is n× d and vec(U) ∼ N[0, (Σ ⊗ I)]. A test of H0 : µ = µ0 is desired.

Theorem 7.1 The LR test of H0 : µ = µ0 versus Ha : µ 6= µ0 is to reject H0 for large values of T 2, where

T 2 = n(y − µ0)
′
S−1(y − µ0);

y = n−1Y′1n; S = (n− 1)
−1

A; A = Y′[In − Xx]Y;

and Hx = ppo(1n).

Proof: in class

Note that S is an unbiased estimator of Σ.

Theorem 7.2 The test that rejects H0 : µ = µ0 in favor of Ha : µ 6= µ0 for large values of T 2 also is a union
intersection test.

Proof: Note that H0 says that c′µ = c′µ0 for all d× 1 vectors c. Also Ha says that c′µ 6= c′µ0 for some d× 1
vector c. Note that for fixed c, the distribution of c′y is c′y ∼ N(c′µ, n−1c′Σc). Consider the usual t test for
testing H0 : c′µ = c′µ0 against Ha : c′µ 6= c′µ0. This test rejects H0 : c′µ = c′µ0 for large values of |tc|, where

tc =
√
n
c′(y − µ0)√

c′Sc
.

Now maximize t2c over c.

To examine the large sample null distribution of T 2 under non-normality, a multivariate version of the central
limit theorem is needed.

Theorem 7.3 (Multivariate CLT) Let Y : n× d be a random matrix having iid rows each with expectation µ
and variance Σ. Thus, E(Y) = 1nµ

′ and disp(Y) = Σ ⊗ In. Let y = n−1Y′1n. Then, as n→ ∞,

√
n(y − µ)

dist−→ N(0,Σ).

Proof: Extra Credit.

35
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To obtain the limiting distribution of T 2, two additional results are useful. It can be shown that

S = Σ +Op(n
− 1

2 ) and S−1 = Σ−1 +Op(n
− 1

2 ),

where Op means “order in probability” (see Bishop, Fienberg and Holland, 1975), This means that
√
n‖S−Σ‖ and√

n‖S−1 −Σ−1‖ each are bounded in probability. It also implies that S converges in probability to Σ and that S−1

converges in probability to Σ−1. It follows that

T 2 = n(y − µ0)
′Σ−1(y − µ0) +Op(n

− 1
2 ).

The second term on the right-hand-side converges in probability to zero. Using the multivariate CLT, the first term
converges in distribution to a χ2 random variable having d degrees of freedom. Thus,

T 2 dist−→ χ2
d

even if multivariate normality is not satisfied.
To obtain the small sample distribution of T 2 under normality, we will use the following theorem.

Theorem 7.4 Suppose that A and u are independently distributed as

A ∼ Wd(m,Σ) and u ∼ N(µ,Σ).

Then,

u′A−1u ∼
χ2

d,λ

χ2
m−d+1

,

where

λ =
µ′Σ−1µ

2
,

and the two chi squared random variables are independently distributed.

Proof: Let z = Σ− 1
2 u and let V = Σ− 1

2 AΣ− 1
2 . Then,

u′A−1u = z′V−1z.

Also z and V are independently distributed as

z ∼ N
(
Σ− 1

2µ, Id

)
and V ∼ Wd(m, Id).

Let Q be a d× d orthogonal matrix whose first column is z(z′z)−
1
2 . Conditional on z, the matrix

H = Q′VQ ∼ Wd(m, Id). This distribution does not depend on z. Accordingly, it can be concluded that
H ∼ Wd(m, Id), unconditionally and that H z. Note that

z′V−1z = z′Q (Q′VQ)
−1

Q′z =
√

z′z e′1H
−1e1

√
z′z =

z′z

h11·2
,

where e1 is the first column of Id and h11·2 ∼ W1(m− d+ 1, 1). That is h11·2 ∼ χ2
m−d+1. Also, z′z ∼ χ2

d,λ, where

λ = µ′Σ−1µ/2.

Theorem 7.5 Under multivariate normality,
(

n− d

d(n− 1)

)
T 2 ∼ Fd,n−d,λ,

where

λ = n
(µ− µ0)

′Σ−1(µ− µ0)

2
.

Proof: Let m = n− 1, A = (n− 1)S, and u =
√
n(y − µ0). Now use Theorem 7.4. Note that under H0 : µ = µ0,

the test statistic T 2 × (n− d)/[d(n− 1)] has a central F distribution.
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7.1.2 Simultaneous Confidence Intervals

In this section, we will construct simultaneous confidence intervals for linear functions of µ. The pivotal quantity
method will be used. A pivotal quantity is a function of the data and the unknown parameters. Most importantly,
the distribution of the pivotal quantity does not depend on unknown parameters. If a pivotal quantity can be
identified, then a confidence interval can sometimes be obtained directly from probability statements made about
the pivotal quantity.

Consider the function

Q = n(y − µ)′S−1(y − µ).

Technically, Q is not a statistic because it depends on the unknown parameter vector, µ. From prior work, it is
known that [

n− d

d(n− 1)

]
×Q ∼ Fd,n−d,0.

The distribution of Q does not depend on µ, so Q is a pivotal quantity.
Clearly, the following probability statement is true:

Pr

[
Q ≤ d(n− 1)

n− d
F 1−α

d,n−d

]
= 1 − α.

Let c be a d× 1 vector. Consider the following function of y, µ, and c:

G(c) =
n[c′(y − µ)]

2

c′Sc
.

It can be shown that

max
c
G(c) = Q.

Therefore,

Pr

[
max

c
G(c) ≤ d(n− 1)

n− d
F 1−α

d,n−d

]
= 1 − α,

which implies that

Pr

[
G(c) ≤ d(n− 1)

n− d
F 1−α

d,n−d ∀ c

]
= 1 − α

and that

Pr

[
−
√
d(n− 1)

n− d
F 1−α

d,n−d ≤
√
nc′(y − µ)

c′Sc
≤
√
d(n− 1)

n− d
F 1−α

d,n−d ∀ c

]
= 1 − α.

The above probability statement also can be written as

Pr
[
c′y −

√
c′Sc × F ∗ ≤ c′µ ≤ c′y +

√
c′Sc × F ∗ ∀ c

]
= 1 − α,

where

F ∗ =

[
d(n− 1)

n(n− d)

]
× F 1−α

d,n−d.

The above results are summarized in the following theorem.

Theorem 7.6 Consider the model Y ∼ N[vec(1nµ
′),Σ ⊗ In]. The BLUE of µ is y which has distribution

y ∼ N(µ, n−1Σ). Simultaneous confidence intervals for all linear functions, c′µ, are given by

c′y ±
√

c′Sc

[
d(n− 1)

n(n− d)

]
F 1−α

d,n−d.

With probability 1 − α, all of the above intervals capture the appropriate linear function of µ.
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7.2 VARIATIONS IN THE ONE SAMPLE SETTING

7.2.1 Testing that H0 : M′µ = θ0

Let M′µ = θ where M is an a priori d× q matrix having rank-q. Suppose that a test of H0 : θ = θ0 is desired. To
construct a test, postmultiply the model by M to obtain

YM = 1nµ
′M + UM = 1nθ

′ + U∗.

Note that vec(U∗) ∼ N[0, (M′ΣM⊗ In)]. The test is constructed by substituting M′y for y, θ0 for µ0, and M′SM
for S in T 2. The resulting test statistic is

T 2 = n (M′y − θ0)
′(M′SM)

−1
(M′y − θ0),

and is distributed as (
(n− q)

q(n− 1)

)
T 2 ∼ Fq,n−q,λ,

where

λ =
n (θ − θ0)

′
(M′ΣM)

−1
(θ − θ0)

2
.

7.2.2 Testing H0 : µ = X∗β.

Let X∗ be an a priori d× k matrix with rank-k and let β be an unknown k × 1 parameter vector. Define q by
q = dim [N (X∗′)] It follows that q = d− k. Let M be a d× q matrix whose columns form a basis set for N (X∗′).
Thus, R(M) = N (X∗′) and, by the fundamental theorem of linear algebra, N (M′) = R(X∗). It follows that

µ = X∗β ⇐⇒ M′µ = 0.

Accordingly, the null H0 : µ = X∗β can be tested by testing H0 : M′µ = 0. Using Section 7.2.1, the test statistic is

T 2 = ny′M(M′SM)
−1

M′y,

and (
n− q

q(n− 1)

)
T 2 ∼ Fq,n−q,λ,

where

λ =
nµ′M(M′ΣM)

−1
M′µ

2
.

7.2.3 Alternative Method for Deriving the Test of H0 : µ = X∗β.

Theorem 7.7 The statistic for testing H0 : µ = X∗β can be obtained by minimizing n (y − X∗β)
′
S−1(y − X∗β)

with respect to β. That is,

min
β
n (y − X∗β)

′
S−1(y − X∗β) = ny′M(M′SM)

−1
M′y.

Proof: Using standard linear models results, it is readily shown that

min
β
n (y − X∗β)

′
S−1(y − X∗β) = ny′[S−1 − S−1X∗(X∗′S−1X∗)

−
X∗′S−1]y.

To complete the proof, it must be shown that

S−1 − S−1X∗(X∗′S−1X∗)
−
X∗′S−1 = M(M′SM)

−1
M′,

where the columns of M : d× q form a basis set for N (X∗′). To verify the above equality, let S− 1
2 be the symmetric

square root of S. Show that R(S
1
2 M) = N (X∗′S− 1

2 ). It then follows that ppo(S
1
2 M) = I − ppo(S− 1

2 X∗). Can you
fill in the details concerning this line of reasoning? For help, see Khatri’s Lemma in the 505 notes.
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7.2.4 Roy’s Step Down Tests

This section is optional. It explains the theory underlying the tests for additional information described in Rencher
(2002), Section 5.8.

Suppose, as above, we wish to test H0 : µ = δ. The change in notation from µ0 to δ is for convenience; i.e., it is
easier to write δi than to write µ0,i. Suppose that we wish to place more emphasis on the first p elements of µ. We
may, for example, believe that if µ differs from δ, it will be the first p components which contribute most to the
difference. Partition µ as

µ =

(
µ1

µ2

)
,

where µ1 is p× 1, µ2 is q × 1, and p+ q = d. Partition Y and δ conformably:

Y =

(
Y1

Y2

)
,

and

δ =

(
δ1

δ2

)
.

As before, assume that vec(Y) ∼ N[vec(1nµ
′), (Σ ⊗ In)]. Note that

µ = δ ⇔
{

H1 : µ1 = δ1 and

H2 : µ2 − Σ21Σ
−1
11 µ1 = δ2 − Σ21Σ

−1
11 δ1

are both true. Therefore, a test of H0 can be constructed by testing H1 and H2. It is sometimes more convenient to
write H2 as

H2 : µ2·1 = δ2·1,

where δ2·1 = δ2 − Σ21Σ
−1
11 δ1 and µ2·1 = µ2 − Σ21Σ

−1
11 µ1.

Hotelling’s T 2 statistic for testing H1 is

T 2
1 = n (y1 − δ1)

′
S−1

11 (y1 − δ1),

and is distributed as (
n− p

p(n− 1)

)
T 2

1 ∼ Fp,n−p,λ,

where

λ =
n (µ1 − δ1)

′
Σ−1

11 (µ1 − δ1)

2
.

By analogy, we might expect to test H2 by using the statistic

T 2
2 = n (y2·1 − δ̂2·1)

′
S−1

22·1(y2·1 − δ̂2·1),

where
y2·1 = y2 − S21S

−1
11 y1,

δ̂2·1 = δ2 − S21S
−1
11 δ1,

and
S22·1 = S22 − S21S

−1
11 S12.

Note, δ2·1 depends on Σ so it must be estimated.

Theorem 7.8 Conditional on Y1, the distribution of T 2
2 is proportional to an F . In particular,

(
n− d

(n− 1)q

)
T 2

2

1 + (n− 1)
−1
T 2

1

∣∣∣∣Y1 ∼ Fq,n−d,λ,

where

λ =
(µ2·1 − δ2·1)

′
Σ−1

22·1(µ2·1 − δ2·1)

2[1 + (n− 1)−1T 2
1 ]

.
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Outline of proof: First establish that

vec(Y2)|Y1 ∼ N
{
vec
[
1nµ

′
2 + (Y1 − 1nµ

′
1)Σ

−1
11 Σ12

]
,Σ22·1 ⊗ In

}
,

and

y2·1 − δ̂2·1 = Y′
2

[
1nn

−1 − (In − Hx)Y1A
−1
11 (y1 − δ1)

]
− δ2,

where Hx = ppo(1n). Use the above two results to establish

√
n(y2·1 − δ̂2·1)√

1 + (n− 1)
−1
T 2

1

∣∣∣∣Y1 ∼ N




√
n(µ2·1 − δ2·1)√

1 + (n− 1)
−1
T 2

1

,Σ22·1


 .

Use the above, along with the result A22·1 ∼ Wq(n− 1 − p,Σ22·1) to finish the proof.

Corollary 1: If H2 is true then

(
n− d

(n− 1)q

)(
T 2

2

1 + (n− 1)
−1
T 2

1

)
∼ Fq,n−d,

unconditionally and

(
n− d

(n− 1)q

)(
T 2

2

1 + (n− 1)
−1
T 2

1

)
T 2

1 .

Corollary 2: Suppose that a size α1 test of H1 is conducted and that a size α2 test of H2 is conducted. Then
the test size for the two tests simultaneously (i.e., the test of H0) is 1 − (1 − α1)(1 − α2).

Note 1: T 2
2 = T 2 − T 2

1 where T 2 = n (y − δ)′S−1(y − δ). This result can be established by expressing S as a
partitioned matrix and using the expression for the inverse of a partitioned matrix.

Note 2: Roy’s step-down tests can be generalized from 2 steps to d steps.

7.2.5 One Sample Profile Analysis

Consider the usual one sample multivariate model:

vec(Y) ∼ N[vec(1nµ
′), (Σ ⊗ In)].

Denote the ith row of Y by y′
i. In this section, the d responses in yi are assumed to represent repeated measures on

the same dependent variable. The line graph of the mean response as a function of time (measurement period) is
called a profile. The analysis of a single profile usually focuses on answering two questions:

1. Location: What is the overall level of the profile? The profile location is given by µ· = d−11′
dµ. A confidence

interval for µ· and/or a hypothesis test of H0 : µ· = µ·0 may be desired.

2. Shape: How does the profile vary as a function of time? A confidence interval for a contrast among the
elements of µ (i.e., `′µ, where `′1d = 0) or a test of H0 : M′µ = 0 may be desired, where M is d× (d− 1),
satisfies M′1d = 0 and has rank d− 1.

Each of these questions can be answered using one sample techniques that are related to Hotelling’s T 2. The
vector of profile means is µ and is estimated by y:

y = Y′1nn
−1,

which has distribution

y ∼ N(µ, n−1Σ).

The profile location (average level) is µ· = µ′1dd
−1. The corresponding MLE is y· = y′1dd

−1, which is distributed

as y· ∼ N[µ·, (nd
2)

−1
1′

dΣ1d].
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Theorem 7.9 (Location) Confidence intervals and hypothesis tests concerning the profile location can be based
on the following pivotal quantity:

d
√
n(y· − µ·)√
1′

dS1d

∼ tn−1,0,

where S = (n− 1)
−1

Y′(I − Hx)Y, and Hx = ppo(1n). In particular, H0 : µ· = µ·0 is rejected in favor of
Ha : µ· 6= µ·0 if ∣∣∣∣∣

d
√
n(y· − µ·0)√

1′
dS1d

∣∣∣∣∣ ≥ t
1−α/2
n−1 .

Also, a 100(1 − α)% confidence interval for µ· can be constructed as

y· ± t
1−α/2
n−1 d−1

√
n−11′

dS1d.

Proof: Let A = Y′(I − Hx)Y; let SSE = 1′
dA1d/d

2 and let σ2 = 1′
dΣ1d/d

2. Then, from Corollary 1 of Theorem
4.6, SSE /σ2 ∼ χ2

n−1. Also,
√
n(y· − µ·) ∼ N(0, σ2) and y· is independent of SSE. Accordingly

√
n
y· − µ·

σ√
SSE

(n− 1)σ2

∼ tn−1,0.

Questions concerning changes in the expected response over time (profile shape) can be answered by examining
contrasts among the d time periods. Let M be a d× (d− 1) matrix of contrast coefficients with rank d− 1. For M
to consist of contrast coefficients, M′1d = 0 must be satisfied. The vector of profile contrasts is M′µ and is
estimated by M′y which has distribution

M′y ∼ N(M′µ, n−1M′ΣM).

Theorem 7.10 (Shape) Confidence intervals and hypothesis tests concerning profile shape can be based on the
following pivotal quantity:

(
n− d+ 1

(n− 1)(d− 1)

)
(y − µ)

′
M(M′SM)

−1
M′(y − µ) ∼ Fd−1,n−d+1,0.

In particular, to test H0 : M′µ = δ, use

(
n− d+ 1

(n− 1)(d− 1)

)
T 2 ∼ Fd−1,n−d+1,λ,

where

T 2 = n(M′y − δ)′(M′SM)
−1

(M′y − δ) and λ =
n (M′µ− δ)′(M′ΣM)

−1
(M′µ− δ)

2
.

To obtain simultaneous confidence intervals on linear functions `′µ, where `′1d = 0, use

`′y ±
√
`′S`

[
(d− 1)(n− 1)

n(n− d+ 1)

]
F 1−α

d−1,n−d+1.

With probability 1 − α, all of the above intervals capture the appropriate linear function of µ. Proof: Use Theorems

7.4 and 7.6.
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7.3 TWO SAMPLE SETTING

7.3.1 The Linear Model

The cell means model for the multivariate one-way classification with two groups is

vec(Y) ∼ N[vec(XB), (Σ ⊗ IN )],

where

Y =

(
Y1

Y2

)
,

Y1 is n1 × d, Y2 is n2 × d, n1 + n2 = N ,

X =

2⊕

i=1

1ni
=

(
1n1

0
0 1n2

)
, and B =

(
µ′

1

µ′
2

)
.

The model also can be written as
vec(Yi) ∼ ind N[vec(1ni

µ′
i),Σ ⊗ Ini

],

for i = 1, 2.

7.3.2 Two Sample Hotelling’s T
2

Suppose that a test of H0 : µ1 = µ2 against Ha : µ1 6= µ2 is desired. The hypotheses also can be written as
H0 : E(Y) = X0B0 versus Ha : E(Y) = XB, where X0 = 1N , B0 = µ′, and the remaining terms are defined above.

Theorem 7.11 (Two-Sample T 2) : The LR and UI tests of H0 : µ1 = µ2 versus Ha : µ1 6= µ2 are identical. The
test is to reject H0 for large values of

T 2 =
(n1n2

N

)
(y1 − y2)

′
S−1(y1 − y2),

where

S =
Y′(IN − Hx)Y

N − r
=

Y′(IN − Hx)Y

N − 2
,

where Hx = ppo(X), and r = rank(X) = 2.

Sketch of LR proof: Let H0x = ppo(X0) = ppo(1N ). Then, under H0, the MLE of Σ is

Σ̂0 =
Y′(I − Hx0)Y

N
=

Y′(I − Hx)Y + Y′(Hx − Hx0)Y

N
.

Note

Hx − Hx0 = ppo [(I − Xx0)X] = ppo

(
n2

N 1n1
−n2

N 1n1

−n1

N 1n2

n1

N 1n2

)

= ppo

(
n21n1

−n11n2

)
=

1

N

(n2

n1
1n1

1′
n1

−1n1
1′

n2

−1n2
1′

n1

n1

n2
1n2

1′
n2

)
.

Using the above expression, it is readily shown that

Y′(Hx − Hx0)Y =
(n1n2

N

)
(y1 − y2)(y1 − y2)

′
.

The remainder of the proof follows the proof for Hotelling’s one sample test.

Theorem 7.12 (Distribution of Two Sample T 2) : The distribution of T 2 in Theorem 7.11 is the following:
(
N − d− 1

d(N − 2)

)
T 2 ∼ Fd,N−d−1,λ,

where

λ =
(n1n2

N

) (µ1 − µ2)
′
Σ−1(µ1 − µ2)

2
.

Proof: Use Theorem 7.4.
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7.3.3 Two Sample Profile Analysis

Consider the same setup as the one sample profile analysis problem except that data from two independent samples
have been obtained. Each of the corresponding two populations can be characterized by a profile of means: µi for
i = 1, 2. A typical two sample profile analysis consists of answering three questions:

1. Location: Do the two profiles have the same average level? The null hypothesis is H0 : µ1· = µ2·, where
µi· = µ′

i1dd
−1. The null hypothesis states that the two profiles have the same location (average level).

2. Parallel: Are the two profiles parallel; i.e., do the profiles have the same shape? This question also can be
asked as — is there an interaction between groups and time. The null hypothesis is H0 : M′(µ1 − µ2) = 0
where M is d× (d− 1), has rank d− 1, and satisfies M′1d = 0. The null hypothesis states that the two
profiles consist of parallel line segments.

3. Shape of Average Profile: Does the average profile (averaged over the two groups) vary as a function of time?
This question is concerned with the shape of the average profile. The null hypothesis is H0 : M′µ· = 0 where
M is described in (b) and µ· is a weighted average of µ1 and µ2). The null hypothesis states that the average
profile is a line with slope equal to zero.

Theorem 7.13 [Difference in Location] Confidence intervals and hypothesis tests concerning differences in the
location of the two profiles can be based on the following pivotal quantity:

d

√
n1n2

N

(y1· − y2·) − (µ1· − µ2·)√
1′

dS1d

∼ tN−2,0,

where S = (N − 2)
−1

Y′(I − Hx)Y, Hx = ppo(X), and X = 1n1
⊕ 1n2

. In particular, H0 : µ1· = µ2· is rejected for
large |t|, where

t = d

√
n1n2

N

y1· − y2·√
1′

dS1d

.

The distribution of t is

t ∼ tN−2,λ, where λ = d

√
n1n2

N

µ1· − µ2·√
2
√

1′
dΣ1d

.

A 100(1 − α)% Also, a confidence interval for µ1· − µ2· can be constructed as

y1· − y2· ± t
1−α/2
N−2

√
N1′

dS1d

d2n1n2
.

Theorem 7.14 (Interaction — Shape Differences) Confidence intervals and hypothesis tests concerning
interaction between groups and time can be based on the following pivotal quantity:

(
(N − d)n1n2

N(N − 2)(d− 1)

)
[(y1 − y2) − (µ1 − µ2)]

′
M(M′SM)

−1
M′[(y1 − y2) − (µ1 − µ2)]

∼ Fd−1,N−d,0,

where S is given in Theorem 7.13. In particular, H0 : M′(µ1 − µ2) = 0 is rejected for large T 2, where

T 2 =
(n1n2

N

)
(y1 − y2)

′
M(M′SM)

−1
M′(y1 − y2).

The distribution of T 2 is (
N − d

(N − 2)(d− 1)

)
T 2 ∼ Fd−1,N−d,λ,

where

λ =
(n1n2

N

) (µ1 − µ2)
′
M(M′ΣM)

−1
M′(µ1 − µ2)

2
.
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Simultaneous confidence intervals can be obtained from

Pr[`′(y1 − y2) − k ≤ `′(µ1 − µ2) ≤ `′(y1 − y2) + k ∀ ` ∈ R(M)] = 1 − α,

where k =
√
`′S`F ∗, and

F ∗ =

(
N(d− 1)(N − 2)

n1n2(N − d)

)
F 1−α

d−1,N−d.

Proof: Use Theorem 7.4.

There are two approaches to making inferences about the average profile. In approach 1, it is assumed that the
profiles are parallel. That is µ1 = µ2 + 1dk, where k is a scalar constant. An average profile can be obtained as a
weighted average of µ1 and µ2. Let w be a number in [0, 1]. Then

µ· = wµ1 + (1 − w)µ2 = µ1 + (1 − w)1dk.

The choice of w influences the overall level, but not the shape of the average profile. The sample estimator is

y· = wy1 + (1 − w)y2.

To choose a value for w, it is sensible to use the value that minimizes Var(y·). It is readily shown that the
minimizer of Var(y·) with respect to w is w = n1/N , where N = n1 + n2. Accordingly, µ· is defined as

µ· =
1

N
(n1µ1 + n2µ2).

The corresponding estimator and its variance are

y· =
n1y1 + n2y2

N
and Var(y·) =

1

N
Σ.

In approach 2, it is not assumed that the profiles are parallel. An average profile can still be obtained as a
weighted average of µ1 and µ2. In this case, however, the choice of w does influence the shape of the average
profile. For example, by giving more weight to µ1, the shape of the average profile will look more like the shape of
µ1 and less like the shape of µ2. It is conventional, in this case, to define the average profile as follows:

µ· =
1

2
(µ1 + µ2).

The corresponding estimator and its variance are

y· =
1

2
(y1 + y2) and Var(y·) =

N

4n1n2
Σ.

Theorem 7.15 (Approach 1 to Shape of Average Profile) Confidence intervals and hypothesis tests
concerning the shape of the average profile can be based on the following pivotal quantity:

(
N(N − d)

(N − 2)(d− 1)

)
(y· − µ)

′
M(M′SM)

−1
M′(y· − µ) ∼ Fd−1,N−d,0,

where y· = (n1y1 + n2y2)/N , µ = (n1µ1 + n2µ2)/N , and S is given in Theorem 7.13. In particular, H0 : M′µ· = δ

is rejected for large T 2, where

T 2 = N(M′y· − δ)
′
(M′SM)

−1
(M′y − δ).

The distribution of T 2 is
(

(N − d)

(N − 2)(d− 1)

)
T 2 ∼ Fd−1,N−d,λ, where λ = N

(<′µ− δ)′(M′ΣM)
−1

(M′µ− δ)
2

.

Simultaneous confidence intervals on linear functions `′µ· can be obtained from

Pr[`′y· − k ≤ `′µ· ≤ `′y· + k ∀ ` ∈ R(M)] = 1 − α,

where k =
√
`′S`F ∗, and

F ∗ =

(
(d− 1)(N − 2)

N(N − d)

)
F 1−α

d−1,N−d.

Proof: Use Theorem 7.4.
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Theorem 7.16 (Approach 2 to Shape of Average Profile) Confidence intervals and hypothesis tests
concerning the shape of the average profile can be based on the following pivotal quantity:

(
4n1n2(N − d)

N(N − 2)(d− 1)

)
(y· − µ)

′
M(M′SM)

−1
M′(y· − µ) ∼ Fd−1,N−d,0,

where y· = 1
2 (y1 + y2)), µ = 1

2 (µ1 + µ2), and S is given in Theorem 7.13. In particular, H0 : M′µ· = δ is rejected
for large T 2, where

T 2 =

(
4n1n2

N

)
(M′y· − δ)

′
M(M′SM)

−1
(M′y· − δ).

The distribution of T 2 is

(
N − d

(N − 2)(d− 1)

)
T 2 ∼ Fd−1,N−d,λ, where λ =

(
4n1n2

N

)
(M′µ· − δ)′M(M′ΣM)

−1
(M′µ· − δ)

2
.

Simultaneous confidence intervals on linear functions `′µ· can be obtained from

Pr[`′y· − k ≤ `′µ· ≤ `′y· + k ∀ ` ∈ R(M)] = 1 − α,

where k =
√
`′S`F ∗, and

F ∗ =

(
N(d− 1)(N − 2)

4n1n2(N − d)

)
F 1−α

d−1,N−d.

7.4 SUMMARY OF HOTELLING’S T
2 AND SAS CODE

The model underlying one and two-sample Hotelling T 2 tests, can be written as

Y = XB + U,

where vec(U) ∼ N(0,Σ ⊗ In); Y is n× d; X is n× p with rank-r; and B is p× d. In all cases, the hypotheses can
be written as H0 : LBM = ∆0 against Ha : LBM 6= ∆0, where LB is an estimable function; ∆0 is a known matrix
(usually equal to zero); L is f × p with rank f ; and M is d× q with rank q. Note that M could be equal to Id.

In general, the H and E matrices are

H = (LB̃M − ∆0)
′
[
L(X′X)−L′

]−1
(LB̃M − ∆0) and E = M′Y(In − Hx)YM,

where B̃ = (X′X)−X′Y and Hx = ppo(X). The matrices H and E are independently distributed as

H ∼ Wq(f,M
′ΣM,Λ) and E ∼ Wq(n− r,M′ΣM), where

Λ = (M′ΣM)
−1

(LBM − ∆0)
′
[
L(X′X)−L′

]−1
(LBM − ∆0).

In the special case of one and two-sample Hotelling’s T 2, the matrix L is 1 × p so HE−1 has only one non-zero
eigenvalue. In this case,

T 2 = (n− r) trace
(
HE−1

)
and

(
n− r − q + 1

(n− r)q

)
T 2 ∼ Fq,n−r−q+1,λ, where

λ =
(LBM − ∆0) (M′ΣM)

−1
(LBM − ∆0)

′

L(X′X)−L′
.

Tables for the usual multivariate test statistics are entered with three parameters: s, m, and n. Caution, n is
not sample size; it is defined below. If E and H have independent Wishart distributions, E ∼ Wq(νE ,Σ) and
H ∼ Wq(νH ,Σ), then the tables are entered with

s = min(νH , q), m =
1

2
(|νH − q| − 1), and n =

1

2
(νE − q − 1).
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7.4.1 One Sample Hotelling’s T
2

1. Model:
vec(Y) ∼ N [vec(1nµ

′), (Σ ⊗ In)] , where Y is n× d.

2. Conventional Hypotheses

(a) Test that mean vector is equal to an a priori specified vector: H0 : µ = µ0 versus Ha : µ 6= µ0.

(b) In repeated measures, test hypotheses about the shape of the the profile of means (i.e., changes over
time): H0 : M′µ = 0 versus Ha : M′µ 6= 0, where M is d× q with rank q and M′1d = 0.

(c) In repeated measures, test hypotheses about the location (i.e., mean) of the profile: H0 : (1/d)1′
dµ = θ0

versus Ha : (1/d)1′
dµ 6= θ0,

3. Minimal SAS Commands for Omnibus Test

(a) For H0 : µ = 0.

data;

infile datafile;

input y1 y2 ... yd;

proc glm;

model y1 y2 ... yd = /nouni;

manova H=intercept/summary;

Compare T 2 to d(n− 1)F 1−α
d,n−d/(n− d).

(b) Arbitrary Linear Functions: If a test of H0 : M′µ = 0, where M is p× q with rank q, then the M matrix
must be specified. Note q < d− 1 is allowed and M′1d need not equal 0.

data;

infile datafile;

input y1 y2 ... yd;

proc glm;

model y1 y2 ... yd = /nouni;

manova H=intercept M = (m11 m21 m31 ... md1,

m12 m22 m32 ... md2,

..................,

m1q m2q m3q ... mdq)/summary;

Compare T 2 to q(n−1)
n−q F 1−α

q,n−q. Note: it actually is M′ rather than M that is specified in the manova
statement.

(c) Profile (repeated measures): for H0 : M′µ = 0, where M is d× (d− 1) with rank d− 1 and M satisfies
M′1d = 0.

data;

infile datafile;

input y1 y2 ... yd;

proc glm;

model y1 y2 ... yd = /nouni;

repeated Time d/printm summary;

Compare T 2 to (d−1)(n−1)
n−d+1 F 1−α

d−1,n−d+1.

4. Minimal SAS Commands for Follow-up Tests

(a) Follow-up to H0 : µ = 0. For example, test H0 : µ1 − µ2 = 0 and H0 : µ1 + µ2 − µ3 = 0 after rejecting
H0 : µ = 0.

data;

infile datafile;

input y1 y2 ... yd;

proc glm;
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model y1 y2 ... yd = ;

manova H=intercept m= y1-y2 /summary;

manova H=intercept m= y1+y2-y3 /summary;

Compare T 2 to d(n−1)
n−d F 1−α

d,n−d.

data;

infile datafile;

input y1 y2 ... yd;

psi1 = y1-y2;

psi2 = y1+y2-y3;

proc glm;

model psi1 psi2 = ;

estimate ’name1’ intercept 1;

Compute CI as ψ̂ ± se(ψ̂)
√

d(n−1)
n−d F 1−α

d,n−d.

(b) Arbitrary Linear Functions: follow-up to H0 : M′µ = 0, where M is d× q with rank q and need not
satisfy M′1d = 0. For example, test H0 : µ1 − µ2 = 0 and H0 : µ1 + µ2 − µ3 − µ4 = 0 after rejecting
H0 : M′µ = 0.

data;

infile datafile;

input y1 y2 ... yd;

proc glm;

model y1 y2 ... yd = /nouni;

manova H=intercept M = y1-y2/summary;

manova H=intercept M = y1+y2-y3-y4/summary;

The coefficient vectors in the “M =” portion of the manova statement must be in the column space of

M. Compare T 2 to q(n−1)
n−q F 1−α

q,n−q.

data;

infile datafile;

input y1 y2 ... yd;

psi1=y1-y2;

psi2=y1+y2-y3-y4;

proc glm;

model psi1 psi2 = ;

estimate ’name1’ intercept 1;

The coefficient vector for each ψj must be in the column space of M. Compute CI as

ψ̂ ± se(ψ̂)
√

q(n−1)
n−q F 1−α

q,n−q.

(c) Profile (repeated measures): follow-up to H0 : M′µ = 0, where M is d× (d− 1) with rank p− 1 and
satisfies M′1d = 0. For example, test H0 : µ1 − µ2 = 0 and H0 : µ1 + µ2 − µ3 − µ4 = 0 after rejecting
H0 : M′µ = 0.

data;

infile datafile;

input y1 y2 ... yd;

proc glm;

model y1 y2 ... yd = /nouni;

manova H=intercept M = y1-y2/summary;

manova H=intercept M = y1+y2-y3-y4/summary;

The coefficient vectors in the “M =” portion of the manova statement must be contrast coefficient

vectors. Compare T 2 to (d−1)(n−1)
n−d+1 F 1−α

d−1,n−d+1.
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data;

infile datafile;

input y1 y2 ... yd;

psi1=y1-y2;

psi2=y1+y2-y3-y4;

proc glm;

model psi1 psi2 = ;

estimate ’name1’ intercept 1;

The coefficient vector for each ψj must be a contrast coefficient vector. Compute CI as

ψ̂ ± se(ψ̂)
√

(d−1)(n−1)
n−d+1 F 1−α

d−1,n−d+1.

7.4.2 Univariate Profile Analyses

1. Randomized Block (one sample analysis)

(a) Model:
vec(Y) ∼ N[vec(1nµ

′), (Σ ⊗ In)],

where Y is n× d and Σ satisfies M′ΣM = σ2Id−1 and M is a d× (d− 1) orthonormal matrix of
contrast coefficients. One mixed model that satisfies the sphericity condition is the following:

Y = 1nµ
′ + π1′

d + U,

where π ∼ N(0, σ2
πIn) and vec(U) ∼ N(0, σ2Ind). The scalar form of the mixed model is

yij = µ+ πi + αj + εij .

For this model, Σ = σ2Ip + σ2
π1d1

′
d. This structure (equal variances and equal covariances) is known as

compound symmetry. The randomized block analysis is valid if and only if Σ satisfies M′ΣM = σ2Id−1,
where M is an d× (d− 1) semi-orthogonal matrix of contrast coefficients. That is, M′M = Id−1 and
M′1d = 0.

(b) ANOVA Table:

Source df
Intercept 1
Factor A (repeated measure) d− 1
Subjects n− 1
Residual (d− 1)(n− 1)
Total nd

(c) Minimal SAS Commands.

data;

infile datafile;

input subj Fac_A y;

proc GLM;

class subj Fac_A;

model y = subj Fac_A;

random subj / test;

2. Split-Plot Factorial (multi-sample analysis)

(a) Model:
vec(Y) ∼ N[vec(XB), (Σ ⊗ In)],

where Y is N × d, Σ satisfies M′ΣM = σ2Id−1, M is a d× (d− 1) orthonormal matrix of contrast
coefficients,

X =

a⊕

j=1

1nj
, B =




µ1

µ2
...
µa


 ,
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and N =
∑a

j=1 nj . One mixed model that satisfies the sphericity condition is the following:

Y = XB + π1′
d + U,

where π ∼ N(0, σ2
πIN ) and vec(U) ∼ N(0, σ2INd). The scalar form of the mixed model is

yijk = µ+ πi + αj + τk + γjk + εijk,

where αj for j = 1, . . . , a are the effects of the between-subjects factor and τk for k = 1, . . . , d are the
effects of the within-subjects factor. For this model, Σ = σ2Id + σ2

π1d1
′
d. This structure (equal variances

and equal covariances) is known as compound symmetry. The split-plot analysis is valid if and only if Σ
satisfies M′ΣM = σ2Id−1, where M is a d× (d− 1) semi-orthogonal matrix of contrast coefficients.
That is, M′M = Id−1 and M′1d = 0.

(b) ANOVA Table:

Source df
Intercept 1
Between Subjects N − 1

Factor A a− 1
Subjects within A N − a

Within Subjects N(d− 1)
Factor B (repeated measure) d− 1
AB Interaction (a− 1)(d− 1)
Residual (d− 1)(N − a)

Total Nd

(c) Minimal SAS Commands.

data;

infile datafile;

input subj Fac_A Fac_B y;

proc GLM;

class subj Fac_A Fac_B;

model y = subj(Fac_A) Fac_A|Fac_B;

random subj(Fac_A) / test;

7.4.3 Two Sample Hotelling’s T
2

1. Model:
vec(Y) ∼ N [vec(XB), (Σ ⊗ In)] , where Y is n× d,

X =
(
1N

⊕2
j=1 1nj

)
, and B =



β′

0

τ ′
1

τ ′
2


 .

Note: µi = β0 + τ i for i = 1, 2.

2. Hypotheses: H0 : LBM = ∆0 against Ha : LBM 6= ∆0

(a) To average over groups, use L =
(
1 1

2
1
2

)
. To compare groups, use L =

(
0 1 −1

)
.

(b) To average over repeated measures (i.e., time), use M = (1/d)1d. To examine differences among
repeated measures, use

M =




1 1 1 · · · 1
−1 0 0 · · · 0

0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1



.

(c) Test equality of mean vectors: H0 : µ1 = µ2 versus Ha : µ1 6= µ2 or, equivalently, H0 : τ 1 = τ 2 versus
Ha : τ 1 6= τ 2. Use L =

(
0 1 −1

)
and M = Ip.
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(d) Profile Hypotheses:

i. Test equal Locations of Profiles (main effect of treatment): H0 : 1′
d(µ1 − µ2) = 0 versus

Ha : 1′
d(µ1 − µ2) 6= 0. Use L =

(
0 1 −1

)
and M = 1d.

ii. Test that average Profile (over two groups) is flat (zero changes over time). This is the main effect
for time. Hypotheses are H0 : M′(µ1 + µ2)/2 = 0 versus Ha : M′(µ1 + µ2)/2 6= 0, where
L =

(
1 1

2
1
2

)
, M is d× (d− 1) with rank d− 1, and M satisfies M′1d = 0.

iii. Test that the two profiles are parallel (treatment × time interaction). Hypotheses are
H0 : M′(µ1 − µ2) = 0 versus Ha : M′(µ1 − µ2) 6= 0, where L =

(
0 1 −1

)
, M is d× (d− 1) with

rank d− 1, and M satisfies M′1d = 0.

3. Minimal SAS Commands for Omnibus Test

(a) For H0 : µ1 = µ2.

data;

infile datafile;

input treat y1 y2 ... yd;

proc glm;

class treat;

model y1 y2 ... yd = treat/nouni;

manova H=treat/summary;

Compare T 2 to d(N − 2)F 1−α
d,N−d−1/(N − d− 1).

(b) Profile Analysis (all three tests: equal location, average profile is flat, & parallel profiles)

data;

infile datafile;

input treat y1 y2 ... yd;

proc glm;

class treat;

model y1 y2 ... yd = treat /nouni;

repeated Time d /summary;

Compare T 2
1 (for equal levels) to F 1−α

1,N−2. Compare T 2
2 (zero slope for average profile) to

(d− 1)(N − 2)F 1−α
d−1,N−d/(N − d). Compare T 2

3 (parallel profiles) to (d− 1)(N − 2)F 1−α
d−1,N−d/(N − d).

4. Minimal SAS Commands for Follow-up Tests

(a) Follow-up to H0 : µ1 = µ2.

data;

infile datafile;

input treat y1 y2 ... yd;

proc glm;

class treat;

model y1 y2 ... yd = treat/nouni;

manova H=treat m=(m1 m2 ... md)/summary;

Compare T 2 to d(N − 2)F 1−α
d,N−d−1/(N − d− 1).

data;

infile datafile;

input treat y1 y2 ... yd;

psi1 = y1-y2;

psi2 = y1 + y2 -y3;

proc glm;

class treat;

model psi1 psi2 = treat;

estimate ’name’ treat 1 -1;
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Compute CI as ψ̂ ± se(ψ̂)
√
d(N − 2)F 1−α

d,N−d−1/(N − d− 1).

(b) Profile (for zero slope of average profile and parallel profiles):

data;

infile datafile;

input treat y1 y2 ... yd;

proc glm;

class treat;

model y1 y2 ... yd = treat /intercept nouni;

manova H= _all_ M = y1-y2/summary;

manova H= _all_ M = y1+y2-y3-y4/summary;

The coefficient vector m in the M = component of the manova statement must be a contrast coefficient
vector. Compare T 2

2 (zero slopes for average profile) to (d− 1)(N − 2)F 1−α
d−1,N−d/(N − d). Compare T 2

3

(parallel profiles) to (d− 1)(N − 2)F 1−α
d−1,N−d/(N − d).

data;

infile datafile;

input treat y1 y2 ... yd;

psi0 = (y1 + y2 + y3 + ... + yd)/d;

psi1 = y1-y2;

psi2 = y1+y2-y3-y4;

proc glm;

class treat;

model psi0 psi1 psi2 = treat /nouni;

estimate ’name1’ intercept 1;

estimate ’name2’ treat 1 -1;

Compute CI as ψ̂ ± se(ψ̂)
√

(d− 1)(N − 2)F 1−α
d−1,N−d/(N − d).
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Chapter 8

MULTIVARIATE LINEAR MODELS

8.1 MODEL DESCRIPTION

Consider the standard multivariate linear model

Y = XB + U,

where Y is n× d:

Y =




y′
1

y′
2
...

y′
n


 ,

X is a known n× p matrix with rank r, B is an unknown p× d matrix of parameters, and U is an n× d random
matrix with distribution vec(U) ∼ [0, (Σ ⊗ In)]. It can be deduced that the rows of Y are uncorrelated with one
another and yi ∼ (B′xi,Σ), where xi is the ith row of X. The vector equivalent of the model is

vec(Y) = y = (Id ⊗ X)β + ε,

where β = vec(B) and ε = vec(U).

8.2 ESTIMABILITY & BLUES

From prior work, we know that the GLSE (MLE under normality) of B is

B̃ = (X′X)
−
X′Y

and that

S =
Y′(In − Hx)Y

n− r

is unbiased for Σ where Hx = ppo(X). In fact, under normality, S is the UMVUE of Σ.

To estimate a linear function of B, say L′BM, we would like to be able to use the natural estimator, L′B̃M.
It turns out that this is a sensible thing to do, provided that L′BM is estimable. The function Ψ = L′BM is
estimable if there exists a linear unbiased estimator of Ψ: Ψ̂ = FYG + K, and E(Ψ̂) = Ψ for all B.

Theorem 8.1 Estimability: The function Ψ = L′BM is estimable if and only if L ∈ R(X′). That is, if the
columns of L are l1, . . . , ls, then Ψ is estimable if and only if li ∈ R(X′) for all i.

Proof HW or in class.

53
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8.2.1 BLUE

Definition: Best Linear Unbiased Estimator (BLUE)—Scalar. Consider the univariate linear model y = Xβ + ε,
where X is n× p with rank-r and ε ∼ (0,Ω). Suppose that l′β is an estimable function. That is l is a p× 1 vector

and l ∈ R(X′). Let ψ̂l be a linear unbiased estimator of l′β. That is,

1. ψ̂l = a′y + k for some a : n× 1 and some scalar k, and

2. E(ψ̂l) = l′β.

A linear unbiased estimator is said to be the best linear unbiased estimator (BLUE) if it has the minimum variance
over all linear unbiased estimators.

Definition: Best Linear Unbiased Estimator (BLUE)—Vector. Consider the univariate linear model y = Xβ + ε,
where X is n× p with rank-r and ε ∼ (0,Ω). Suppose that L′β is a vector of estimable functions. That is L is a

p× q matrix and L ∈ R(X′). Let ψ̂L be a linear unbiased estimator of L′β. That is,

1. ψ̂L = L′y + k for some L : n× q and some vector k : q × 1, and

2. E(ψ̂L) = L′β.

A vector of linear unbiased estimators is said to be BLUE if each entry in the vector is BLUE. Denote the q × q

covariance matrix of ψ̂L by V. Let ψ̂
∗

L be another linear unbiased estimator of L′β. Denote the q × q covariance

matrix of ψ̂
∗

L by V∗. Then, ψ̂L is BLUE iff tr(V) ≤ tr(V∗) for all V∗.

Theorem 8.2 Gauss-Markov Consider the univariate linear model y = Xβ + ε, where X is n× p with rank-r,
ε ∼ (0, σ2Ω), and Ω > 0. Let L : p× q be a matrix of constants satisfying L ∈ R(X′). Then L′β̃ is the Best Linear

Unbiased Estimator (BLUE) of L′β where β̃ = (X′Ω−1X)
−
X′Ω−1y. Note: this result does not depend on

normality.

Proof: Stat 505-506 Homework

1. Corollary 1: Var(L′β̃) = σ2L′(X′Ω−1X)
−
L.

2. Corollary 2: If Ω = In, then the BLUE of L′β is L′β̃, β̃ = (X′X)
−
X′y, and Var(L′β̃) = σ2L′(X′X)

−
L.

3. Corollary 3: Consider the usual multivariate setup: Y = XB + U, where vec(U) ∼ [0, (Σ ⊗ In)]. If

L ∈ R(X′), then the BLUE of L′BM is L′B̃M, B̃ = (X′X)
−
X′Y, and

disp(L′B̃M) = [M′ΣM ⊗ L′(X′X)
−
L].

4. Corollary 4: Consider the setup in Corollary 2.3. If X = 1n and B = µ′, then the BLUE of µ is y = n−1Y′1n

and var(y) = n−1Σ.

We now turn to the development of inference procedures on linear functions of B. We will consider hypotheses
of the form H0 : L′BM = ∆. Often ∆ will be 0 and M will be I. It will be assumed that the rows of Y
independently follow a multivariate normal distribution.

8.3 ESTIMATING B AND Σ UNDER CONSTRAINTS

To construct the likelihood ratio test of H0 : L′BM = ∆, it will be necessary to maximize the likelihood function
subject to the constraint L′BM = ∆.
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8.3.1 Case I: C′BM = ∆, where M is Non-Singular

Theorem 8.3 Let C be a p× q matrix with rank q and suppose that C′B is estimable. Let M be a known d× d
matrix with rank d. The generalized least squares estimator of B subject to the restriction that C′BM = ∆ is given
by

B̃0 = B̃a − (X′X)
−
C[C′(X′X)

−
C]

−1
(C′B̃M − ∆)M−1,

where B̃a = (X′X)
−
X′Y is the ordinary unrestricted estimator of B (under Ha).

Outline of Proof: To compute the maximizer with respect to B, solve

∂ Q

∂ vec(B)
= 0 and

∂ Q

∂ λ
= 0

where
Q = tr

[
(Y − XB)′(Y − XB)Σ−1

]
− 2λ′ [(M′ ⊗ C′)β − δ] ,

β = vec(B); λ = vec(Λ); and δ = vec(∆).

Note 1: If the rank of X is p, then (X′X)
−

can be replaced by (X′X)
−1

and B̃0 will be the BLUE of B.

Note 2: Under normality and a true H0, B̃0 is the MLE of B.

Theorem 8.4 Assuming normality of Y and non-singularity of M, the MLE of Σ under H0 : C′BM = ∆ is

Σ̃0 = Σ̃a + M′−1
(C′B̃M − ∆)

′
[C′(X′X)

−
C]

−1
(C′B̃M − ∆)M−1/n,

where Σ̂a = Y′(In − Hx)Y/n.

Proof: When B is estimated under the constraint C′BM = ∆, the residual sum of squares and cross products
matrix is

T = (Y − XB̃0)
′(Y − XB̃0)

=
[
(Y − XB̃a) + X(X′X)

−
C[C′(X′X)

−
C]

−1
(C′B̃aM − ∆)M−1

]′

[
(Y − XB̃a) + X(X′X)

−
C[C′(X′X)

−
C]

−1
(C′B̃aM − ∆)M−1

]

= Y′(In − Hx)Y + M′−1
(C′B̃aM − ∆)

′
[C′(X′X)

−
C]

−1
(C′B̃aM − ∆)M−1,

where Hx = ppo(X). From prior results, the MLE of Σ is Σ0 = T/n.

Note that

E(T) = (n− r + q)Σ + M′−1
(C′BM − ∆)

′
[C′(X′X)

−
C]

−1
(C′BM − ∆)M−1

= (n− r + q)Σ if C′BM = ∆.

Accordingly, if C′BM = ∆ is true, then A/(n− r + q) is an unbiased estimator of Σ. This result does not require
normality.

8.3.2 Case II: C′BM = ∆, where M is not Square

Theorem 8.5 Let C be a p× q matrix with rank q and suppose that C′B is estimable. Let M be a known d× k
matrix with rank k. Further, suppose that Σ is known. Then, the generalized least squares estimator of B (MLE
under normality), subject to the restriction C′BM = ∆, is given by

B̃0 = B̃a − (X′X)−C
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′ΣM)−1M′Σ,

where ∆̂ = C′B̃aM and B̃a = (X′X)−X′Y.
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Outline of Proof: To compute the constrained GLS estimator, solve

∂ Q

∂ vec(B)
= 0 and

∂ Q

∂ λ
= 0

where
Q = tr

[
(Y − XB)′(Y − XB)Σ−1

]
− 2λ′ [(M′ ⊗ C′)β − δ] ,

β = vec(B); λ = vec(Λ); and δ = vec(∆).

Theorem 8.6 (Constrained MLEs) Let C be a p× q matrix with rank q and suppose that C′B is estimable. Let
M be a known d× k matrix with rank k. Then, MLEs of B and Σ, subject to the restriction C′BM = ∆, are given
by

B̃0 = B̃a − (X′X)−C
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a, and

Σ̃0 = Σ̃a

+ n−1Σ̃aM(M′Σ̃aM)−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a.

where ∆̂ = C′B̃aM, B̃a = (X′X)−X′Y; Σ̃a = n−1Y′(In − Hx)Y; and Hx = ppo(X).

Outline of proof: Let G =
(
M R

)
, where R is a d× (d− k) matrix chosen to satisfy

M′Σ̃aR = 0 and rank(G) = d.

The matrix R can be generated by R = Σ̃
− 1

2
a null(M′Σ̃

1
2
a ), where null(W) generates a basis set of vectors for the

null space of W (see the MATLAB null command). Note that

G−1 =

[
(M′Σ̃aM)−1M′Σ̃a

(R′Σ̃aR)−1R′Σ̃a

]
.

Write the log likelihood function as

`(B,Σ|Y) = −1

2
tr
[
(Y − XB)′(Y − XB)Σ−1

]
− n

2
ln |Σ|

plus terms that do not depend on B and Σ

= −1

2
tr
[
G′−1G′(Y − XB)′(Y − XB)GG−1Σ−1

]
− n

2
ln |G′ΣG|

+n ln |G|

= −1

2
tr
[
(Z − XΘ)′(Z − XΘ)Ω−1

]
− n

2
ln |Ω| + n ln |G|

= `(Θ,Ω|Z),

where

Z = YG =
(
Z1 Z2

)
=
(
YM YR

)

Θ = BG =
(
BM BR

)
=
(
Θ1 Θ2

)
and

Ω = G′ΣG =

(
Ω11 Ω12

Ω21 Ω22

)
=

[
M′ΣM M′ΣR
R′ΣM R′ΣR

]
,
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The MLEs of B and Σ will be obtained by first maximizing `(Θ,Ω|Z) with respect to Θ and Ω subject to

C′ΘG−1M = ∆. Denote the maximizers of `(Θ,Ω|Z) by Θ̃ and Ω̃. Denote the maximizers of `(B,Σ|Y) by B̃

and Σ̃. By the invariance property of MLEs

B̃ = Θ̃G−1 and Σ̃ = G′−1Ω̃G−1.

Recall, if
vec(Z) ∼ N [vec(XΘ),Ω ⊗ In]

then

vec(Z1) ∼ N [vec(XΘ1),Ω11 ⊗ In] and

vec(Z2)|Z1 ∼ N [vec(XΘ2·1 + Z1Γ),Ω22·1 ⊗ In] , where

Θ2·1 = Θ2 − Θ1Γ;

Γ = Ω−1
11 Ω12; and

Ω22·1 = Ω22 − Ω21Ω
−1
11 Ω12.

The relationship between (B,Σ) and (Θ,Γ,Ω) is

B = ΘG−1 =
(
Θ1 Θ2

)
G−1

=
(
Θ1 Θ2·1 + Θ1Γ

)
G−1 and

Σ = G′−1ΩG−1 = G′−1

(
Ω11 Ω11Γ

Γ′Ω11 Ω22·1 + Γ′Ω11Γ

)
G−1.

Using the above factorization of the density, the log likelihood can be written as

`(Θ,Ω|Z) = `1(Θ1,Ω11|Z1) + `2·1(Θ2·1,Γ,Ω22·1|Z2,Z1),

where

`1(Θ1,Ω11|Z1) = −1

2
tr
[
(Z1 − XΘ1)

′(Z1 − XΘ1)Ω
−1
11

]
− n

2
ln |Ω11| and

`2·1(Θ2·1,Γ,Ω22·1|Z2,Z1) = −1

2
tr
[
(Z2 − XΘ2·1 − Z1Γ)′(Z2 − XΘ2·1 − Z1Γ)Ω−1

22·1

]

−n
2

ln |Ω22·1|.

To maximize the log likelihood function, the two components can be maximized separately. First maximize `1 with
respect to Θ1 and Ω11 subject to the constraint C′Θ1 = ∆. Second, maximize `2·1 with respect to Θ2·1, Γ, and
Ω22·1, subject to no constraints. The results are as follows:

Θ̃1 = B̃aM − (X′X)−C
[
C′(X′X)−C

]−1
(∆̂ − ∆),

Ω̃11 = M′Σ̃aM + n−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆),

Γ̃ = (M′Σ̃aM)−1M′Σ̃aR = 0,

Θ̃2·1 = B̃aR − B̃aMΓ̃ = B̃aR, and

Ω̃22·1 = n−1Z′
2(In − Hx,z1

)Z2 = n−1Z′
2(In − Hx − Hz1·x)Z2
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= R′Σ̃aR − R′Σ̃aM(M′Σ̃aM)−1M′Σ̃aR = R′Σ̃aR,

where Hx,z1
= ppo

[(
X Z1

)]
, and Hz1·x = ppo [(In − Hx)Z1]. The proof is completed by using the invariance of

MLEs and piecing together B̃ and Σ̃ from the components Θ̃, Γ̃, and Ω̃. The result is

B̃0 = Θ̃G−1 = B̃a

[
M(M′Σ̃aM)−1M′Σ̃a + R(R′Σ̃aR)−1R′Σ̃a

]

−(X′X)−C
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a

= B̃a − (X′X)−C
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a, and

Σ̃0 = G′−1Ω̃G−1

= G′−1

(
M′Σ̃aM + n−1(∆̂ − ∆)′ [C′(X′X)−C]

−1
(∆̂ − ∆) 0

0 R′Σ̃aR

)

= Σ̃a

[
M(M′Σ̃aM)−1M′Σ̃a + R(R′Σ̃aR)−1R′Σ̃a

]

+n−1Σ̃aM(M′Σ̃aM)−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a

= Σ̃a

+n−1Σ̃aM(M′Σ̃aM)−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a,

where M(M′Σ̃aM)−1M′Σ̃a + R(R′Σ̃aR)−1R′Σ̃a = Id has been used. This is a projection operator with full rank
and, therefore, must be the identity.

8.4 LIKELIHOOD RATIO TEST OF H0 : L′BM = ∆

8.4.1 Case I: M is d × d with rank d

All the work for constructing the LR test has been done. All that remains is to plug the estimators under H0 and
Ha into the likelihood function. The result is the following.

Theorem 8.7 Assuming normality, the LR test of H0 : C′BM = ∆ against Ha : C′BM 6= ∆ is to reject H0 for
small values of

U =
|E|

|E + H| ,

where

E = M′Y′(In − Hx)YM,

and

H = (C′B̃aM − ∆)
′
[C′(X′X)

−
C]

−1
(C′B̃aM − ∆).

Proof: Substitute (B̃, Σ̂a) and (B̃0, Σ̂0) into the likelihood function and use properties of determinants.

To obtain critical values of the above LR statistic, the following result can be used.
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Theorem 8.8 The matrices E and H are independently distributed as

E ∼ Wd(n− r,M′ΣM,0)

and

H ∼ Wd(q,M
′ΣM,Λ),

where

Λ = (M′ΣM)
−1

(C′BM − ∆)
′
[C′(X′X)

−
C]

−1
(C′BM − ∆)/2.

Proof: Independence is established by showing that B̃0 is independent of E. The proof for the distribution of E is

straightforward. To obtain the distribution of H, consider the distribution of
[
C′(X′X)

−
C
]− 1

2

(C′B̃M − ∆). It is

straightforward to show that

vec

([
C′(X′X)

−
C
]− 1

2

(C′B̃M − ∆)

)
∼

N

[
vec

([
C′(X′X)

−
C
]− 1

2

(C′BM − ∆)

)
, (M′ΣM ⊗ Iq)

]
.

Thus, the rows of
[
C′(X′X)

−
C
]− 1

2

(C′B̃M − ∆) are independently and normally distributed with common

covariance. The distribution of H follows from a prior theorem.

Corollary 8.8.1: U ∼ U(d, q, n− r,Λ).

8.4.2 Case II: M is d × k with rank k

There are several ways to obtain the the LR test of H0 : C′BM = ∆ for the case of non-square full column rank M.
The easiest way to think about this problem is to transform it into a simpler problem. First, post-multiply the
model Y = XB + U by M to obtain the reduced model:

YM = XBM + UM,

or, equivalently,

Z1 = XΘ1 + V1,

where Z1 = YM, Θ1 = BM, and V1 = UM. The distribution of vec(Z1) is

vec(Z1) ∼ [vec(XΘ1), (Ω11 ⊗ In)],

where Ω11 = M′ΣM. Now use the reduced model and derive the LR test of H0 : C′Θ1 = ∆.

Theorem 8.9 The LR test of H0 : C′BM = ∆ versus Ha : C′BM 6= ∆ in the reduced model is to reject H0 for
small values of

U =
|E|

|E + H| ,

where

E = M′Y′(In − Hx)YM,

and

H = (C′B̃aM − ∆)
′
[C′(X′X)

−
C]

−1
(C′B̃aM − ∆).

Proof: Use the previous section to obtain the LR test of H0 : C′Θ1M
∗ = ∆, where M∗ = Ik. Then simplify.
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There is a question that one must ask before using Theorem 8.9. Information is being discarded when one
reduced the dimension of the model from d to k. The question is whether or not the discarded information is
relevant to the problem. To be specific, let PM be a projection operator that projects onto R(M). The projection
operator can be orthogonal or non-orthogonal. The linear function Y(Id −PM ) is ignored in Theorem 8.9. Is there
information in Y(Id −PM ) that could be used to improve the test of H0? The next two theorems show that it is OK
to ignore this information. The linear function Y(Id − PM ) gives no information about whether H0 is true or false.

Theorem 8.10 derives the LRT of H0 by using the MLEs of B and Σ that were derived in Theorem 8.6.
Theorem 8.11 starts from scratch and maximizes the likelihood function under H0 and Ha. They give the same
result, so you can pick the one that you like best.

Theorem 8.10 The LR test of H0 : C′BM = ∆ versus Ha : C′BM 6= ∆ in the full model is identical to the LR
test of H0 : C′BM = ∆ versus Ha : C′BM 6= ∆ in the reduced model. Thus, using the test given in Theorem 8.9
does not entail a loss of efficiency.

Outline of Proof: The matrix of error sum of squares under H0 is

(Y − XB̃0)
′(Y − XB̃0) = Y′(In − Hx)Y

+n−1Σ̃aM(M′Σ̃aM)−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a

= nΣ̃0,

where B̃0 and Σ̃0 are given in Theorem 8.6. Accordingly, the LR test statistic is

U =




max
H0

exp {`(B,Σ|Y)}
max
Ha

exp {`(B,Σ|Y)}




2
n

=
|Σ̃a|
|Σ̃0|

=
|Σ̃a|

|Σ̃a + n−1Σ̃aM(M′Σ̃aM)−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a|

=
1

|Id + n−1M(M′Σ̃aM)−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)(M′Σ̃aM)−1M′Σ̃a|

=
1

|Is + n−1(M′Σ̃aM)−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)|

=
|M′Σ̃aM|

|M′Σ̃aM + n−1(∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)|

=
|nM′Σ̃aM|

|nM′Σ̃aM + (∆̂ − ∆)′
[
C′(X′X)−C

]−1
(∆̂ − ∆)|

=
|E|

|E + H| ,

where E and H are given in Theorem 8.9.

Theorem 8.11 The LR test of H0 : C′BM = ∆ versus Ha : C′BM 6= ∆ in the full model is identical to the LR
test of H0 : C′BM = ∆ versus Ha : C′BM 6= ∆ in the reduced model. Thus, using the test given in Theorem 8.9
does not entail a loss of efficiency.
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Outline of Proof: Transform from Y to Z = Y
(
M R

)
, where R is d× (d− k) with rank d− k and satisfies

M′R = 0. That is, the columns of R form a basis set for N (M′). Let

Z =
(
Z1 Z2

)
, where Z1 = YM and Z2 = YR.

Factor the joint pdf of Z as

fZ(Z1,Z2) = fZ1
(Z1) × fZ2|Z1

(Z2|Z1).

Let

B
(
M R

)
=
(
Θ1 Θ2

)
, where Θ1 = BM, and Θ2 = BR.

The marginal model for Z1 is

vec(Z1) ∼ N [vec(XΘ1),Ω11 ⊗ In] ,

where Ω11 = M′ΣM. The conditional model for Z2 given Z1 is

vec(Z2)|Z1 ∼ N [vec(XΘ2·1 + Z1Γ),Ω22·1 ⊗ In] ,

where

Ω =

(
M′ΣM M′ΣR
R′ΣM R′ΣR

)
, Θ2·1 = Θ2 − Θ1Γ, and Γ = Ω−1

11 Ω12.

The key to obtaining the LR test is to notice that under H0 : C′BM = ∆, the MLE’s of Θ1 and Ω11 are restricted,
but the MLE’s of Θ2·1, Γ, and Ω22·1 are not restricted. Thus, the latter parameters have the same MLE’s under H0

and Ha. Accordingly, the maximized conditional pdf [FZ2|Z1
] is identical in the numerator and denominator of the

LR test statistic. After cancellation, the LR test statistic simplifies to the ratio of the maximized marginal pdfs.
This is the test described in Theorem 8.9.

Note that the form of the test statistic is identical regardless of whether M is square and non-singular or
non-square. To obtain critical values of the above LR statistic, the following result can be used.

Theorem 8.12 The matrices E and H are independently distributed as

E ∼ Wk(n− r,M′ΣM,0)

and

H ∼ Wk(q,M′ΣM,Λ),

where

Λ = (M′ΣM)
−1

(C′BM − ∆)
′
[C′(X′X)

−
C]

−1
(C′BM − ∆)/2.

Proof: Use prior results.

Corollary 8.12.1: U ∼ U(k, q, n− r,Λ).

8.5 ALTERNATIVE TEST CRITERIA

The other common multivariate criteria are obtained by considering alternative functions of the characteristic roots
of E−1H:

1. Roy’s Max root: ϕmax = r1(E
−1H) or θmax = r1[H(E + H)−1].

2. Lawley-Hotelling trace: T 2
g = (n− r) tr(E−1H).

3. Pillai trace: V = tr[H(E + H)−1].
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8.6 SIMULTANEOUS INFERENCE BASED ON THE UI
PRINCIPLE

The goal in this Section is to construct simultaneous confidence intervals on linear functions of L′BM.

8.6.1 The Union Intersection Test

Consider testing H: f ′L′BMt = f ′∆t for some specified f : q × 1 and t : k × 1. Note that

H0 : L′BM = ∆ ⇐⇒
⋂

f ,t

H: f ′L′BMt = f ′∆t

and
Ha : L′BM 6= ∆ ⇐⇒

⋃

f ,g

H: f ′L′BMt 6= f ′∆t.

To obtain a UI test of H0, consider the univariate test of H for fixed f and t.
To construct a test of H: f ′L′BMt = f ′∆t, note that

f ′(L′B̃aM − ∆)t ∼ N
[
f ′(L′BM − ∆)t, t′M′ΣMt × f ′L′(X′X)

−
Lf
]
.

Thus, for fixed f and t,

Q(f , t) =
[f ′(L′B̃aM − ∆)t]

2

t′M′SMt × f ′L′(X′X)
−
Lf

∼ F1,n−r,λ,

where

S = (n− r)−1Y′(In − Hx)Y and λ =
[f ′(L′BM − ∆)t]

2

2t′M′ΣMt × f ′L′(X′X)
−
Lf
.

If the coefficient vectors Mt and Lf are chosen a a priori, then the LR test of H0 : f ′L′BMt = 0 against
Ha : f ′L′BMt 6= 0 is to reject H0 if Q(f , t) > F 1−α

1,n−r.

Theorem 8.13 Roy’s maximum root criterion is a union intersection test statistic for H0. In particular, the UI
statistic for testing H0 : L′BM = ∆ is the maximum of Q(f , t) over all f and t. That is,

Q = sup
f ,t

Q(f , t) = (n− r) eval1
(
E−1H

)
,

where
E = M′Y′(I − Hx)YM; H = (L′B̃aM − ∆)

′
[L′(X′X)

−
L]

−1
(L′B̃aM − ∆),

and eval1(W) is the maximum eigenvalue of W.

Proof HW or in class.

8.6.2 Simultaneous Confidence Intervals

Denote the linear function f ′L′BMt by ψ and its estimator f ′L′B̃aMt by ψ̂. We wish to construct simultaneous
(1 − α)100% confidence intervals for the set of all ψ. That is, we want to construct a set of confidence intervals for
all possible ψ such that with probability 1 − α, all of the intervals capture the unknown function. We will use the
pivotal quantity method. Let

Q∗(f , t) =
[f ′(L′B̃aM − L′BM)t]

2

t′M′SMt × f ′L′(X′X)
−
Lf

=
(ψ̂ − ψ)

2

t′M′SMt × f ′L′(X′X)
−
Lf
.

The quantity Q∗ is a pivotal quantity because it depends on the unknown parameter ψ and its distribution is free
of ψ:

Q∗(f , t) ∼ F1,n−r,0.
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From the foregoing results, it can be shown that

sup
f ,t

Q∗(f , t) = (n− r) eval1
(
E−1H∗

)
,

where

E = M′Y′(I − Hx)YM; and

H∗ = (L′B̃aM − L′BM)
′
[L′(X′X)

−
L]

−1
(L′B̃aM − L′B̃M).

Note that H∗ is independent of E and has distribution

H∗ ∼ Wk(q,M′ΣM,0).

Let r1−α
k,mH ,mE

denote the (1 − α)100 percentile of the null distribution of

eval1
[
H(E + H)−1

]
,

where E and H are independently distributed as H ∼ Wk(mH , Is) and E ∼ Wk(mE , Is). Percentiles, r1−α
k,mH ,mE

are
tabled in Rencher (2002, Table A.10). Percentiles also can be obtained from the charts of Heck (Annals of
Mathematical Statistics, 1960, 31, 625–642). For the special case of mH = 1, the percentile simplifies to

r1−α
k,1,mE

=
kF 1−α

k,mE−k+1

mE − k + 1 + kF 1−α
k,mE−k+1

.

The (1 − α)100 percentile of mE eval1
(
E−1H

)
is `1−α

k,mH ,mE
where

`1−α
k,mH ,mE

=
mEr

1−α
k,mH ,mE

1 − r1−α
k,mH ,mE

.

If mh = 1, then,

`1−α
k,1,mE

=
mEkF

1−α
k,mE−k+1

mE − k + 1
.

Accordingly, simultaneous confidence intervals are obtained from

Pr
{

(n− r) eval1
(
E−1H∗

)
≤ `1−α

k,q,n−r

}
= 1 − α

=⇒ Pr
[
sup
f ,t

Q∗(f , t) ≤ `1−α
k,q,n−r

]
= 1 − α

=⇒ Pr

[
(ψ̂ − ψ)

2

t′M′SMt × f ′L′(X′X)
−
Lf

≤ `1−α
k,q,n−r ∀ f , t

]
= 1 − α

=⇒ pr
[
ψ̂ − g ≤ ψ ≤ ψ̂ + g ∀ f , t

]
= 1 − α,

where

g =
√

t′M′SMt × f ′L′(X′X)
−
Lf × `1−α

k,q,n−r

and S = Y′(I − HxY/(n− r).

A simultaneous critical value for the “F” statistic corresponding to H0 : l′Bm = δ is `1−α
k,q,n−r, where l = Lf for

some f and m = Mt for some t.
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8.7 ANALYSIS OF REPEATED MEASURES

8.7.1 Univariate Versus Multivariate Analyses

8.7.2 k Group Profile Analysis

8.8 ANALYSIS OF GROWTH CURVES

8.8.1 Introduction

Growth curve models constitute an important general class of repeated measures models. The usual repeated
measures model is a special case of the growth curve model. The model can be written as follows:

Y = XBG + W, (8.1)

where Y is a n× d random matrix whose entries are d repeated measures on each of n cases; X is an n× p known
design matrix with rank r; B is a p× b matrix of location parameter; G is a b× d known design matrix with rank
g < d; and vec(W) ∼ N(0,Σ⊗ In). The matrix X is called a between-subjects design matrix whereas the matrix G
is called a within-subjects design matrix.

The model in (8.1) is called a generalized MANOVA or GMANOVA model. It was proposed by Potthoff and
Roy (1964). Comprehensive reviews of the GMANOVA model were given by D. von Rosen (1991, The Growth
Curve Model: A Review, Communications in Statistics — Theory and Methods, 20, 2791–2822) and
A. M. Kshirsagar and W. B. Smith (1995, Growth Curves, New York: Marcel Dekker). This section describes the
conditional approach to analyzing growth curves which was pioneered by C. R. Rao (1966, Covariance Adjustment
and Related Problems in Multivariate Analysis, in P. R. Krishnaiah, ed., Multivariate Analysis, pp. 87–103, New
York: Academic Press) and C. G. Khatri (1966, A Note on a MANOVA Model Applied to Problems in Growth
Curve, Annals of the Institute of Statistical Mathematics, 18, 75–86).

Typically, the rows of G consist of polynomial functions of time. For example, suppose that observations are
taken at six occasions on two groups of subjects. The observations are taken at 1, 2, 5, 7, 9, and 12 time units after
the start of the study. Further, suppose that it is believed that all changes over time can be summarized in term of
linear, quadratic, and cubic functions. There are several possible parameterizations for this growth model. One
possibility is to write the d× 1 vector of expected responses in the jth group as

E(yj) = αj,01d + αj,1(t − 1dt) + αj,2(t − 1dt)
(2) + αj,3(t − 1dt)

(3),

where t =
(
1 2 5 7 9 12

)′
; t = d−11′

dt = 6; and (t − 1dt)
(h) is the d× 1 vector obtained by raising each

entry of t − 1dt to the hth power. For this example

G =




1 1 1 1 1 1
−5 −4 −1 1 3 6
25 16 1 1 9 36

−125 −64 −1 1 27 216


 .

Continuing with the example, suppose that the coefficients are

A =

(
α1,0 α1,1 α1,2 α1,3

α2,0 α2,1 α2,2 α2,3

)
=

(
10.0 0.9 0.6 0.3
20.0 1.2 0.8 0.0

)

and that the between subjects design matrix is

X =

(
1n

2⊕
j=1

1nj

)
.

One of the infinite possible values for B that will generate the matrix A = {αj,h} is

B =




4.0 4.0 0.0 4.0
6.0 −3.1 0.6 −3.7

16.0 −2.8 0.8 −4.0


 .
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The first column of B contains intercept parameters, the second column contains linear slope parameters, etc. The
mean response profiles for this example are

E(Y) =

(
−17.0 −3.2 9.4 11.8 26.2 101.8

34.0 28.0 19.6 22.0 30.8 56.0

)
.

A profile plot of the expected means appears below.
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A second possible parameterization is to use orthogonal polynomials. In this example, the matrix, G,
containing the coefficients of orthogonal polynomials is

G =




1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
−5.0000 −4.0000 −1.0000 1.0000 3.0000 6.0000
13.4015 3.7879 −13.0530 −14.2803 −7.5076 17.6515

−29.7999 22.8847 39.2613 −7.8853 −45.4835 21.0227


 .

The first row of G represents the intercept, the second row consists of linear coefficients, etc. The matrix G can be
computed by using the following MATLAB program:

b=4;

t=[1 2 5 7 9 12]’;

d=length(t);

G=ones(1,d);

for i=1:b-1

ti=(eye(d)-ppo(G’))*t.^i;

G=[G; ti’];

end;

For this example, one of the infinite possible values for B that will generate the matrix A = {αj,h} is

B =




17.7444 3.5545 0.6473 0.1000
3.7556 5.4182 0.4946 0.2000

13.9889 −1.8636 0.1527 −0.1000


 .

The expected responses are the same as those given earlier.

8.8.2 Parameter Estimation

8.8.2.1 Estimability

Consider the growth curve model in (8.1). Suppose that an unbiased estimator of C′BM is desired, where C is a
known p× q matrix and M is a known b× k matrix. The first question that must be answered is — under what
conditions is C′BM estimable?
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Lemma 8.1 Let A, B, C, and D be any matrices such that A and C have the same dimensions; B and D have
the same dimensions; and each matrix contains at least one non-zero entry. Then

A ⊗ B = C ⊗ D ⇐⇒ A = αC and B = α−1D,

where α is a non-zero scalar.

Outline of proof: use the definition of Kronecker multiplication.

Theorem 8.14 (Estimability in Growth Curve Models) If each of C and M have at least one non-zero
entry, then C′BM is estimable if and only if C ∈ R(X′) and M ∈ R(G).

Outline of proof: Let ψ = vec(C′BM) and let ψ̂ = L′y + h, where y = vec(Y) and h is a vector of constants. First,
verify that estimability requires that h = 0 and that (M ⊗ C) ∈ R(G ⊗ X′). Second, use PPOs and the above
Lemma to verify that C ∈ R(X′) and M ∈ R(G) are necessary conditions for estimability. To verify that they are
sufficient conditions, assume that C ∈ R(X′) and M ∈ R(G) are both satisfied and examine the expectation of
C′(X′X)−X′YG′(GG′)−M.

Theorem 8.15 (BLUE When Σ is Known) If Σ is known and Ψ = C′BM is estimable, then the BLUE of Ψ
is

Ψ̂ = C′B̃M, where B̃ = (X′X)−X′YΣ−1G′(GΣ−1G′)−.

Proof: HW.

Theorem 8.16 (MLE When Σ is Not Known) If Σ is unknown then the MLEs of B and Σ are

B̃G = B̃Σ̃−1G′(GΣ̃−1G′)− and Σ̃G = Σ̃ + n−1(B̃ − B̃GG)′X′X(B̃ − B̃GG)

where
B̃ = (X′X)−X′Y; Σ̃ = n−1Y′(I − Hx)Y; and Hx = ppo(X).

Outline of Proof: Write G in terms of its singular values and vectors: G = UDV′. Let R =
(
R1 R2

)
, where

R1 = T−1V(V′T−1V)−1D−1; AR′
2 = Id − V(V′T−1V)−1V′T−1;

T is an arbitrary positive definite matrix of dimension d× d; and each of the matrices in the factorization AR′
2 has

full column rank. The dimensions of R1 and R2 are d× g and d× (d− g) respectively. Equivalent representations
for R1 and R2 are

R1 = P′
G′,TVD−1 and AR′

2 = Id − PG′,T

where
PG′,T = G′(GT−1G′)−GT−1.

Note that GR1 = U and GR2 = 0.
Write the log likelihood as

`(B,Σ|Y) = −1

2
tr
[
(Y − XBG)′(Y − XBG)Σ−1

]
− n

2
ln |Σ|

= −1

2
tr
[
(Z − XBGR)′(Z − XBGR)Ω−1

]
− n

2
ln |Ω|

plus constants, where
Z = YR =

(
YR1 YR2

)

and

Ω = R′ΣR =

(
Ω11 Ω12

Ω21 Ω22

)
.
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Factor the log likelihood as
`(B,Σ|Y) = `2(Ω22|Z2) + `1·2(B,Γ,Ω11·2|Z1)

where

`2(Ω22|Z2) = −1

2
tr
[
Z′

2Z2Ω
−1
22

]
− n

2
ln |Ω22|;

`1·2(B,Γ,Ω11·2|Z1) =

−1

2
tr
[
(Z1 − XBU − Z2Γ)′(Z1 − XBU − Z2Γ)Ω−1

11·2

]
− n

2
ln |Ω11·2|;

and Γ = Ω−1
22 Ω21. To complete the proof, maximize the two components of the log likelihood separately, let T = Σ̃

and compute Σ̃G as
Σ̃G = n−1(Y − XB̃GG)′(Y − XB̃GG).

8.8.3 Hypothesis tests and Confidence Intervals

One question of interest is whether the growth curve model is adequate. That is, does G contain the correct
polynomial functions. This question may be answered by testing H0 : E(Y) = XBG against Ha : E(Y) = XB.
Note that B is a p× b matrix under H0 and a p× d matrix under Ha. This test is equivalent to testing
H0 : C′BM = 0 in the usual repeated measures model, where C is a p× r matrix that satisfies R(C) = R(X′) and
M is a d× (d− g) matrix with rank d− g that satisfies GM = 0.

Theorem 8.17 (Test of Lack of Fit of GMANOVA Model) Let C be a p× r matrix whose columns span

R(X′) and let M be a d× (d− g) matrix whose columns span N (G). Then the LRT test of H0 : E(Y) = XBG
against Ha : E(Y) = XB is to reject H0 for small values of U = |E|/|E + H|, where

H = (C′B̃M)′
[
C′(X′X)−C

]−1
(C′B̃M) and E = M′Y′(In − Hx)YM.

These matrices are distributed independently as

H ∼ Wd−g(r,M
′ΣM,Λ) and E ∼ Wd−g(n− r,M′ΣM),

where
Λ = (M′ΣM)−1(C′BM)′

[
C′(X′X)−C

]−1
(C′BM)/2.

Proof: Use Theorems 8.9 and 8.10.

Theorem 8.18 The non-zero eigenvalues of E−1H are identical to the non-zero eigenvalues of E−1
∗ H∗, where E

and H are defined in Theorem (8.17);

E∗ = Y′(In − Hx)Y; and H∗ = (B̃ − B̃GG)′X′X(B̃ − B̃GG).

Outline of Proof: Let M = R2, where AR′
2 = Id − P

G′,eΣ and use properties of projection matrices to verify that

R′
2Σ̃R2 = (A′Σ̃−1A)−1.

The following procedures can be used to construct confidence intervals and hypothesis tests about C′BM in
the GMANOVA model.

Theorem 8.19 Suppose that Ψ = C′BM is estimable in the GMANOVA model. Then the MLE of Ψ is

Ψ̂ = C′B̃GM

and the distribution of vec(Ψ̂), conditional on Z2 is

vec(Ψ̂)|Z2 ∼ N [vec(Ψ),Θ] ,
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where
Θ = M′UΩ11·2U

′M ⊗
[
C′(X′X)−C + n−1C′(B̃ − B̃GG)Σ̃−1(B̃ − B̃GG)′C

]
,

where Σ̃ = n−1Y′(I − Hx)Y and Hx = ppo(X). Furthermore, the MLE of Θ is

D̃isp(Ψ̂) = Θ̃ =

M′(GΣ̃−1G′)−M ⊗
[
C′(X′X)−C + n−1C′(B̃ − B̃GG)Σ̃−1(B̃ − B̃GG)′C

]
,

and an unbiased estimator of Θ is

Θ̂ =
n

n− r − d+ g
Θ̃.

Outline of Proof: First, verify that the maximizer of `1·2(B,Ω11·2,Γ|Z1) with respect to B is

B̃G = (X′X)−X′Z1U
′ − (X′X)−X′Z2[Z

′
2(In − Hx)Z2]

−1Z′
2(In − Hx)Z1U

′.

Second, compute the dispersion of C′B̃GM conditional on Z2. Note, C′B̃GM is a linear function of Z1 when
conditioning on Z2. Finally, let T = Σ̃ and simplify.

Theorem 8.20 (LRT in GMANOVA Model) Suppose that Ψ = C′BM is estimable in the GMANOVA model,
where C is q × p with rank q and M is db× k with rank k. Then, the likelihood ratio test of C′BM = ∆ in the
GMANOVA model is to reject H0 for small values of U = |E|/|E + H|, where

E = nM′(GΣ̃−1G′)−M and

H = (C′B̃GM − ∆)′×
[
C′(X′X)−C + n−1C′(B̃ − B̃GG)Σ̃−1(B̃ − B̃GG)′C

]−1

(C′B̃GM − ∆).

Furthermore, conditional on Z2, E and H are independently distributed as

E ∼ Wk(n− r − d+ g,M′UΩ11·2U
′M) and

H ∼ Wk(q,M′UΩ11·2U
′M,Λ),

where
Λ = (M′UΩ11·2U

′M)−1(C′B̃GM − ∆)′×
[
C′(X′X)−C + n−1C′(B̃ − B̃GG)Σ̃−1(B̃ − B̃GG)′C

]−1

(C′B̃GM − ∆)/2.

Outline of Proof: First verify that the LRT does not depend on the marginal distribution of Z2. That is, the test

depends only on the distribution of Z1 conditional on Z2. Second, write M as M = UF for some F. Recall that
M ∈ R(G) = R(U). The conditional model can be written as

Z1 =
(
X Z2

)(BU
Γ

)
+ W∗

1·2,

where disp(W∗
1·2) = Ω11·2 ⊗ In. Finally, use Theorems 8.9 and 8.10 to construct the LRT of

H0 :
(
C′ 0

)(BU
Γ

)
F = ∆ vs. Ha :

(
C′ 0

)(BU
Γ

)
F 6= ∆.

8.9 GENERALIZED ANALYSES OF LONGITUDINAL DATA

8.9.1 Introduction to Proc Mixed



Chapter 9

SELECTED INFERENCE ON
COVARIANCE MATRICES

9.1 LR TESTS FOR SELECTED COVARIANCE STRUCTURES

Tests for the following hypotheses will be derived in class.

1. Tests for a specified structure: Σ = Σ0.

2. Tests for sphericity: Σ = σ2Ip or C′ΣC = σ2Ip−1.

3. Tests for intraclass structure: Σ = σ2[(1 − ρ)I + ρJ]. Hints:

Σ = σ2(1 − ρ)Ip + σ2ρJ ⇐⇒

Σ−1 =
1

σ2(1 − ρ)
Ip − ρ

σ2(1 − ρ)[1 + (p− 1)ρ]
J

=
1

θ2
Ip − (θ1 − θ2)

pθ1θ2
J where θ1 = σ2[1 + (p− 1)ρ] and θ2 = σ2(1 − ρ)

|Σ| = σ2[1 + (p− 1)ρ][(1 − ρ)σ2]p−1 = θ1θ
p−1
2 .

4. Testing equality of covariance matrices: Σ1 = Σ2 · · · = Σk.

9.2 CANONICAL CORRELATION AND BLOCKWISE
INDEPENDENCE

9.2.1 Review of Bivariate Correlation

Suppose that

vec(Y) ∼ N [vec(XB),Σ ⊗ In] ,

where Y is n× 2, X is n× p with rank rx, and Σ is 2 × 2. We are interested in testing the hypothesis that the two
columns of Y are independent. Under normality, the columns are independent iff Σ is a diagonal matrix. Write Σ
as Σ = {σij}. We want to test H0 : σ12 = 0.

Theorem 9.1 The LR test of H0 : σ12 = 0 is the following: reject H0 for small

Λ = (1 − r2)
n
2 ,

69
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where r is the sample correlation coefficient:

r =
s12

(s11s22)
1
2

,

and S = {sij} is the usual unbiased estimator of Σ. An equivalent test is to reject H0 for large

F =
(n− rx − 1)r2

1 − r2
.

The statistic r is called the sample Pearson product moment correlation coefficient. The population coefficient
is usually denoted by ρ:

ρ =
σ12

(σ11σ22)
1
2

.

Using the Cauchy-Schwartz inequality, it is easy to show that ρ ∈ [−1, 1].

9.2.2 Review of Multiple Correlation

Suppose that
vec(Y) ∼ N [vec(XB),Σ ⊗ In] ,

where Y is n× d, X is n× p with rank rx, and Σ is d× d. We are interested in testing the hypothesis that the first
column of Y is independent of the remaining columns. Partition Σ as

Σ =

(
σ11 Σ12

Σ21 Σ22

)
,

where σ11 is a scalar. Partition Y and B accordingly: Y =
(
y1 Y2

)
, where y1 is an n× 1 vector and

B =
(
β1 B2

)
, where β1 is a p-vector. Under normality, the columns are independent iff Σ12 = 0.

Theorem 9.2 The LR test of H0 : Σ12 = 0 is the following: reject H0 for small

Λ = (1 −R2)
n
2 ,

where R2 is the sample squared multiple correlation coefficient:

R2 =
S12S

−1
22 S21

s11
,

S =

(
s11 S12

S21 S22

)
=

Y′(I − H)Y

n− rx
,

and H = ppo(X). An equivalent test is to reject H0 for large

F =
(n− rx − d+ 1)R2

(d− 1)(1 −R2)
.

Theorem 9.3 The statistic R2 is the maximum squared sample Pearson product moment correlation coefficient
between the first column of Y and an arbitrary linear combination of the remaining columns. Let r2(t) be the
squared sample correlation between y1 and Y2t, where t is a (d− 1) × 1 vector. Then,

R2 = max
t6=0

r2(t).

The squared population coefficient is usually denoted by ρ2:

ρ2 =
Σ12Σ

−1
22 Σ12

σ11
.



9.2. CANONICAL CORRELATION AND BLOCKWISE INDEPENDENCE 71

Theorem 9.4 Conditional on Y2, F in Theorem 9.2 is distributed as

F |Y2 ∼ Fd−1,n−d,λ,

where

λ =
Σ12Σ

−1
22 Y′

2(In − H)Y2Σ
−1
22 Σ12

2σ11(1 − ρ2)
,

and H = ppo(X).

Sketch of Proof: Let H∗ = ppo(X∗) where X∗ =
(
X Y2

)
. It can be shown that H∗ = H + H2·1, where

H2·1 = ppo [(In − H)Y2]. The test statistic can be written as

F =
(n− rx − d+ 1)y′

1H2·1y1

(d− 1)y′
1(In − H∗)y1

.

It can be shown that the conditional distribution of y1 given Y2 is

y1|Y2 ∼ N(X∗β∗, σ2In),

where

β∗ =

(
β1 − B2Σ

−1
22 Σ21

Σ−1
22 Σ21

)
,

and σ2 = σ11 − Σ12Σ
−1
22 Σ21. It is readily established that the numerator and denominator of F are conditionally

independent and distributed as chi squared random variables.

Corollary 1: The expectation of the conditional noncentrality parameter is

E(λ) =
(n− rx)ρ2

2(1 − ρ2)
.

Corollary 2: If H0 is true, then F ∼ Fd−1,n−rx−d+1,0, unconditionally.

9.2.3 Blockwise Independence: Two Blocks

The above procedure can be generalized as follows. Consider the model

Y = XB + U,

where Y is n× p+ q, X is n× h with rank-r, and vec(U) ∼ N [0, (Σ ⊗ In)]. Partition Y and Σ as Y =
(
Y1 Y2

)

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Y1 is n× p, Y2 is n× q, Σ11 is p× p, and Σ22 is q × q. We wish to test the hypothesis that Y1 is
independent of Y2. Under normality, the null hypothesis can be written as H0 : Σ12 = 0.

Theorem 9.5 The LR test of H0 : Σ12 = 0 is the following: reject H0 for small

U =
|A|

|A11| |A22|
,

where

A = Y′(In − Hx)Y,

Hx = ppo(X), and A is partitioned identically to Σ.
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Theorem 9.6 Under H0, U is distributed as

U ∼ |E|
|E + H| ,

where E ∼ Wq(n− r − p, Iq), H ∼ Wq(p, Iq), and E H. It follows that U ∼ U(q, p, n− r − p).

Proof: First, note that

U =
|A11| × |A22·1|
|A11| × |A22|

=
|A22·1|
|A22|

=
|A22·1|

|A22·1 + A21A
−1
11 A12|

.

Now use Corollary 2 to Theorem 4.9 to show that

1. A22·1 ∼ Wq(n− r − p,Σ22·1) and

2. A22·1 A21A
−1
11 A12.

Note that I − Hx can be factored as

I − Hx = VV′, where V : n× (n− r) satisfies V′V = In−r.

Accordingly, A can be written as

A = Y′(I − Hx)Y = Z′Z, where Z = V′Y and vec(Z) ∼ N(0,Σ ⊗ In−r).

Partition Z as Z =
(
Z1 Z2

)
, where Z1 is (n− r) × p and Z2 is (n− r) × q. The distribution of Z2 conditional on

Z1 is

vec(Z2)|Z1 = Z̈1 ∼ N
[
vec
(
Z̈1Σ

−1
11 Σ12

)
,Σ22·1 ⊗ In−r

]
.

It follows that

A21A
−1
11 A12 = Z′

2 ppo(Z1)Z2 and

A21A
−1
11 A12|Z1 = Z̈1 ∼ Wq(p,Σ22·1,Λ), where

Λ = Σ21Σ
−1
11 Ä11Σ

−1
11 Σ12Σ

−1
22·1.

If H0 is true, then Σ12 = 0 and

A21A
−1
11 A12 ∼ Wq(p,Σ22·1)

unconditionally.

Example

Below is a data set concerning various physiological and fitness measures. The data were obtained by
A.C. Linnerud on 20 middle aged men, all belonging to a fitness club.

Linnerud (1985) Data
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Weight Waist Pulse Chinups Situps Jumps
191 36 50 5 162 60
189 37 52 2 110 60
193 38 58 12 101 101
162 35 62 12 105 37
189 35 46 13 155 58
182 36 56 4 101 42
211 38 56 8 101 38
167 34 60 6 125 40
176 31 74 15 200 40
154 33 56 17 251 250
169 34 50 17 120 38
166 33 52 13 210 115
154 34 64 14 215 105
247 46 50 1 50 50
193 36 46 6 70 31
202 37 62 12 210 120
176 37 54 4 60 25
157 32 52 11 230 80
156 33 54 15 225 73
138 33 68 2 110 43

We are interested in determining the relationships between the three physiological variables and the three
performance variables. The model is

Y = 1nµ
′ + U.

The error matrix A = Y′(I − H)Y is

A = 104 ×




1.1583 0.1307 −0.1237 −0.0966 −1.4473 −0.5444
0.1307 0.0195 −0.0155 −0.0178 −0.2457 −0.0597

−0.1237 −0.0155 0.0988 0.0109 0.1929 0.0245
−0.0966 −0.0178 0.0109 0.0531 0.4372 0.2553
−1.4473 −0.2457 0.1929 0.4372 7.4377 4.0793
−0.5444 −0.0597 0.0245 0.2553 4.0793 4.9958.




Using Matlab |A| = 9.1452 × 1019, |A11| = 4.6585 × 108, and |A22| = 5.6027 × 1011. Thus U = 0.350391.
Under H0 : Σ12 = 0, U is distributed as U ∼ U(3, 3, 16). The parameters of Rao’s F approximation (see

Rencher, 2002, equation 6.15) are t = 2.4337, w = 15.5, df1 = 9, and df2 = 34.2229. Thus, the observed F statistic
is F = 2.0482. This statistic can be compared to the F distribution with 9 and 34.2229 degrees of freedom. The
p-value is, approximately, .06324. Hence, at α = .05, the null cannot be rejected.

9.2.4 Blockwise Independence: k Blocks

Generalization from 2 to k blocks is straightforward. The above procedure can be generalized as follows. Consider
the model

Y = XB + U,

where Y is n× d, X is n× p with rank-r, and vec(U) ∼ N [0, (Σ ⊗ In)]. Partition Y and Σ as
Y =

(
Y1 Y2 · · · Yk

)
and

Σ =




Σ11 Σ12 · · · Σ1k

Σ21 Σ22 · · · Σ2k

...
...

. . .
...

Σk1 Σk2 · · · Σkk


 ,

where Yj is n× dj , Σij is di × dj , and
∑k

j=1 dj = d. We wish to test the hypothesis that Yi is independent of Yj

for all i 6= j. Under normality, the null hypothesis can be written as

H0 : Σ =

k⊕

j=1

Σjj .
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Theorem 9.7 The LR test of H0 is the following: reject H0 for small

U =
|A|

k∏

j=1

|Ajj |
,

where
A = Y′(In − Hx)Y,

Hx = ppo(X), and A is partitioned identically to Σ.

Proof: HW.

Multiplying the numerator and denominator of U by the same constants reveals that U also can be written as

U =
|S|

k∏

j=1

|Sjj |
=

|R̂|
k∏

j=1

|R̂jj |
,

where S is the sample covariance matrix, S = A/(n− r), and R̂ is the sample correlation matrix.
The Bartlett-corrected test is to reject H0 if

−(n− r)c ln(U) > χ2
1−α,f , where f =

1

2


d2 −

k∑

j=1

d2
j


 ,

c = 1 − 1

12f(n− r)
(4f + 3g), and g = d3 −

k∑

j=1

d3
j .

9.2.5 Canonical Correlation

Again consider the model
Y = XB + U,

where Y is n× p+ q, X is n× h with rank-r, and vec(U) ∼ N [0, (Σ ⊗ In)]. Partition Y and Σ as Y =
(
Y1 Y2

)

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Y1 is n× p, Y2 is n× q, Σ11 is p× p, and Σ22 is q × q. The LR test for blockwise independence is one way
to test the hypothesis that Y1 is independent of Y2.

An alternative way of testing that Y1 is independent of Y2 is through canonical correlations. Consider a linear
combination of the responses in Y1, say z1 = Y1`1 where `1 is p× 1. Consider a linear combination of the
responses in Y2, say z2 = Y2`2 where `2 is q × 1. Let Z =

(
z1 z2

)
. Let

L = `1 ⊕ `2 =

(
`1 0
0 `2

)
.

Then, Z = YL and
disp(Z) = (L′ ⊗ In) disp(Y)(L ⊗ In) = (L′ΣL ⊗ In) = (Ω ⊗ In),

where

Ω = {ωij} = L′ΣL =

(
`′1Σ11`1 `′1Σ12`2
`′2Σ21`1 `′2Σ22`2

)
.

If Y1 is independent of Y2, then ω12 = 0 regardless of how we choose `1 and `2. If Y1 and Y2 are not
independent, then ω12 6= 0 for some choice of `1 and `2. Thus, the null and alternative hypotheses can be written as

H0 : Σ12 = 0 ⇐⇒ `′1Σ12`2 = 0 ∀ `1, `2
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and

Ha : Σ12 6= 0 ⇐⇒ `′1Σ12`2 6= 0 for some `1, `2.

These hypotheses are in the union intersection form:

H0 :
⋂

`1,`2

`′1Σ12`2 = 0 versus Ha :
⋃

`1,`2

`′1Σ12`2 6= 0.

Accordingly, a union-intersection test can be constructed as follows:

1. Construct a test of H0 : `′1Σ12`2 = 0 versus Ha : `′1Σ12`2 6= 0 for an a priori pair `1, `2. Denote the test
statistic by V`1,`2

where H0 is rejected for large V .

2. The UI test is to reject H0 : Σ12 = 0 for large

V = max
`1,`2

V`1,`2
.

3. Find a convenient way to compute V and find the null distribution of V .

For an a priori `1 and `2, the problem reduces to testing independence between two columns. From prior work,
we know that the likelihood ratio test is to reject H0 : ω12 = 0 for large V`1,`2

= r2`1,`2
where r`1,`2

is the sample
correlation between Y1`1 and Y2`2:

V`1,`2
= r2`1,`2

=

(
`′1S12`2

)2

(`′1S11`1)(`
′
2S22`2)

,

where S is the sample covariance matrix. Thus, the UI test statistic is

V = max
`1,`2

(
`′1S12`2

)2

(`′1S11`1)(`
′
2S22`2)

= ch1(S
−1
22 S21S

−1
11 S12),

where ch1(·) is the maximum characteristic root function. The statistic V is called the first squared sample
canonical correlation. It is the maximum squared correlation between a linear combination of the columns of Y1

and a linear combination of the columns of Y2. If either p = 1 or q = 1, then V reduces to a squared multiple
correlation. If p = 1 and q = 1, then V reduces to a squared simple correlation.

Theorem 9.8 Conditional on Y1, V has the same distribution as the maximum root of (E + H)
−1

H where E and
H are independently distributed as

E ∼ Wq(n− r − p,Σ22·1) and H|A11 ∼ Wq(p,Σ22·1,Σ
−1
22·1Λ),

where Λ = Σ21Σ
−1
11 A11Σ

−1
11 Σ12.

Corollary: Under H0, V has the same distribution as the maximum root of (E + H)
−1

H where E and H are
independently distributed as

E ∼ Wq(n− r − p, I) and H ∼ Wq(p, I).

Population canonical correlations are obtained by substituting Σ for S. Let

ρ`1,`2
=

ω12

(ω11ω22)
1
2

.

That is, ρ`1,`2
is the correlation between the two columns of Z. One way to summarize the relationship between Y1

and Y2 is to find the linear combinations, z1 = Y1`1 and z2 = Y2`2, which have the largest correlation. The linear
combinations, z1 and z2 are called the first canonical variates and their correlation is called the first canonical
correlation. It may be that the relationship between Y1 and Y2 is not adequately summarized by a single
correlation. In which case, we can construct additional canonical variates and correlations.
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Denote the rank of Σ12 by s and denote the ordered characteristic roots and vectors of Σ−1
11 Σ12Σ

−1
22 Σ21 by

Λ = diag(λ1, . . . , λs) and L1 =
(
`11 · · · `1m

)
, where λ1 ≥ λ2 · · · ≥ λs. That is,

Σ−1
11 Σ12Σ

−1
22 Σ21L1 = L1Λ.

In a similar manner, denote the characteristic vectors of Σ−1
22 Σ21Σ

−1
11 Σ12 by L2 =

(
`21 · · · `2m

)
:

Σ−1
22 Σ21Σ

−1
11 Σ12L2 = L2Λ.

Note that the characteristic roots corresponding to L1 are identical to those corresponding to L2. The following
results can be established:

1. If the eigenvalues in Λ are distinct, then L′
1Σ11L1 and L′

2Σ22L2 are each diagonal. If the eigenvalues are not
distinct, then the eigenvectors L1 and L2 can be chosen such that L′

1Σ11L1 and L′
2Σ22L2 are each diagonal.

To verify this claim, define Ξ as Ξ = Σ
−1/2
11 Σ12Σ

−1/2
22 . Then,

Σ−1
11 Σ12Σ

−1
22 Σ21L1 = L1Λ

=⇒ Σ
−1/2
11 ΞΞ′Σ

1/2
11 L1 = L1Λ

=⇒ ΞΞ′Σ
1/2
11 L1 = Σ

1/2
11 L1Λ

=⇒ the columns of Σ
1/2
11 L1 are eigenvectors of ΞΞ′.

Note that ΞΞ′ is symmetric. Accordingly, if the eigenvalues λi for i = 1, . . . , s are distinct, then columns of

Σ
1/2
11 L1 are orthogonal. Otherwise, the columns of Σ

1/2
11 L1 can be chosen to be orthogonal. Therefore,

L′
1Σ11L1 is a diagonal matrix.

2. One way to compute the eigenvectors L1 and L2 is as follows. Write the full-rank SVD of Ξ as

Ξ = Σ
−1/2
11 Σ12Σ

−1/2
22 = W1ΘW′

2,

where W1 is p× s, W2 is q × s, and W′
1W1 = W′

2W2 = Is. Then

ΞΞ′Σ
1/2
11 L1 = Σ

1/2
11 L1Λ

=⇒ W1Θ
2W′

1Σ
1/2
11 L1 = Σ

1/2
11 L1Λ

=⇒ the columns of Σ
1/2
11 L1 are the eigenvectors of W1Θ

2W′
1 and Λ = Θ2

=⇒ the columns of Σ
1/2
11 L1 can be chosen to be proportional to the columns of W1.

It follows that L1 can be chosen to satisfy

Σ
1/2
11 L1D1 = W1

for some s× s diagonal matrix, D1 Accordingly,

Li = Σ
− 1

2
ii WiD

−1
i

for i = 1, 2, where Di is an arbitrary matrix.

3. Partition the matrix of regression coefficients as B = (B1 B2), where B1 is h× p and B2 is h× q. Define Z by

Z
def
= (Y − XB)

(
L1 0
0 L2

)
=
(
(Y1 − XB1) (Y2 − XB2)

)(L1 0
0 L2

)

=
(
(Y1 − XB1)L1 (Y2 − XB2)L2

)
=
(
Z1 Z2

)
.
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The n× s matrix Z contains the centered canonical variates. Note that

Disp(Z) =

(
L′

1Σ11L1 L′
1Σ12L2

L′
2Σ21L1 L′

2Σ22L2

)
⊗ In

=

(
D−1

1 W′
1Σ

− 1
1

11 Σ11Σ
− 1

2
11 W1D

−1
1 D−1

1 W′
1Σ

− 1
2

11 Σ12Σ
− 1

2
22 W2D

−1
2

D−1
2 W′

2Σ
− 1

2
22 Σ21Σ

− 1
2

11 W1D
−1
1 D−2

1 W′
2Σ

− 1
2

22 Σ22Σ
− 1

2
22 W2D

−1
2

)
⊗ In

=

(
D−2

1 D−1
1 ΘD−1

2

D−1
2 ΘD−1

1 D−2
2

)
⊗ In.

If Di is chosen to be Is, then

Disp(Z) =

(
Is Θ
Θ Is

)
⊗ In.

4. Choosing Di to be an identity is equivalent to solving the eigen-equations

Σ−1
11 Σ12Σ

−1
22 Σ21L1 = L1Λ and Σ−1

22 Σ21Σ
−1
11 Σ12L2 = L2Λ

and then replacing L1 by

L∗
1 = L1(L

′
1Σ11L1)

− 1
2

and replacing L2 by

L∗
2 = L2(L

′
2Σ22L2)

− 1
2 .

Note that

Σ−1
11 Σ12Σ

−1
22 Σ21L1 = L1Λ

=⇒ Σ−1
11 Σ12Σ

−1
22 Σ21L1 (L′

1Σ11L1)
− 1

2 = L1Λ (L′
1Σ11L1)

− 1
2

=⇒ Σ−1
11 Σ12Σ

−1
22 Σ21L1 (L′

1Σ11L1)
− 1

2 = L1 (L′
1Σ11L1)

− 1
2 Λ

=⇒ Σ−1
11 Σ12Σ

−1
22 Σ21L

∗
1 = L∗

1Λ

because diagonal matrices commute. Also, L∗′
1 Σ11L

∗
1 = L∗′

2 Σ22L
∗
2 = Is. For convenience, L∗

1 and L∗
2 will be

denoted simply as L1 and L2.

5. L′
1Σ12L2 = Θ = Λ

1
2 . Thus, λi is the squared correlation between Y1`1i and Y2`2i, and Y1`1i Y2w2i′ for

i 6= i′.

6. L′
1Σ12Σ

−1
22 Σ21L1 = L′

2Σ21Σ
−1
11 Σ12L2 = Λ.

7. L2 = Σ−1
22 Σ21L1Λ

− 1
2 and L1 = Σ−1

11 Σ12L2Λ
− 1

2 .

8. Denote the n× (i− 1) matrix consisting of the first i− 1 columns of L1 by L1i. Similarly, denote the
n× (i− 1) matrix consisting of the first i− 1 columns of L2 by L2i. If i = 1, then L11 = L21 = 0. Let
V1i = N (L′

1iΣ11) and let V2i = N (L′
2iΣ22). Then,

max
`1∈V1i,`2∈V2i

(`′1Σ12`2)
2

(`′1Σ11`1)(`
′
2Σ22`2)

= (`′1iΣ12`2i)
2

= λi.

The ith set of canonical variates is z1i = Y1`1i and z2i = Y2`2i. The squared correlation between z1i and z2i

is called the ith squared canonical correlation and is equal to λi.

9. The nonzero characteristic roots of Σ−1
11 Σ12Σ

−1
22 Σ21 are identical to the nonzero characteristic roots of

R−1
11 R12R

−1
22 R21, where R is the population correlation matrix. The corresponding scaled eigenvectors are

called the standardized canonical coefficients.
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Example The sample covariance matrix corresponding to the data on page 72 of the notes is

S = 103 ×




0.6096 0.0688 −0.0651 −0.0509 −0.7617 −0.2865
0.0688 0.0103 −0.0081 −0.0093 −0.1293 −0.0314

−0.0651 −0.0081 0.0520 0.0057 0.1015 0.0129
−0.0509 −0.0093 0.0057 0.0279 0.2301 0.1344
−0.7617 −0.1293 0.1015 0.2301 3.9146 2.1470
−0.2865 −0.0314 0.0129 0.1344 2.1470 2.6294



.

Using MATLAB,
. S11=S(1:3,1:3);
. S22=S(4:6,4:6);
. S12=S(1:3,4:6);
. S21=S12’;
. Q1=inv(S11)*S12*inv(S22)*S21;
. [W1,Lam]=eig(Q1)

W1 =




0.0635 −0.2020 −0.0360
−0.9978 0.9757 0.7347

0.0166 −0.0848 0.6775




Lam =




0.6330 0 0
0 0.0402 0
0 0 0.0053




L′
1S11L1 =




4.0926 0 0
0 7.0024 0
0 0 21.6112




L1(L
′
1S11L1)

−.5 =




0.0314 −0.0763 −0.0077
−0.4932 0.3687 0.1580

0.0082 −0.0321 0.1457




L′
1S12(S22)

−1
S21L1 =




0.6330 0 0
0 0.0402 0
0 0 0.0053




L2 = (S22)
−1

S21L1Λ
−.5 =




0.0661 −0.0710 −0.2453
0.0168 0.0020 0.0198

−0.0140 0.0207 −0.0082




L′
1S12L2 =




0.7956 0 0
0 0.2006 0
0 0 0.0726




From Table A.10, the 95th percentile of the greatest characteristic root distribution with s = 3, m = − 1
2 , and

N = 6 is difficult to determine. Charts (from Morrison, 1990) will be distributed in class. From chart 11, the
critical value is approximately .575. Thus, the first canonical correlation is significant at α = .05.



Chapter 10

DISCRIMINANT & CLASSIFICATION
ANALYSIS

Consider k populations P1, . . . , Pk. Let y be a d-vector, randomly drawn from the ith population. Assume that the
density function for y, is fi(y). The density functions need not be multivariate normal. The densities could be
continuous, discrete, or a mixture of continuous and discrete. Suppose that a vector y is observed, but it is not
known from which population the vector was selected. The goal of discriminant analysis is to classify (assign) the
vector to the correct population. The following notes are based on Anderson (1958, 1984).

10.1 GENERAL TWO-POPULATION CLASSIFICATION
ANALYSIS

10.1.1 Decision Rule, Costs & Risk

Denote the support set for y by Y. It is assumed that y has the same support set in both populations. Note that
Y ∈ IRd. Partition Y into mutually exclusive and exhaustive subspaces Y1 and Y2. The decision rule that we adopt
is to classify the observation into Pi if y ∈ Yi. The problem to be solved is how to partition Y. To partition the
support set we will use Bayesian methods.

Denote by C(i|j), the cost of classifying an observation into population i when it actually comes from
population j. Assume C(i|j) ≥ 0 for all i, j and C(i|i) = 0. The costs can be summarized in a 2 × 2 table:

Statisticians Decision
P1 P2

True P1 0 C(2|1)
Population P2 C(1|2) 0

Denote by Pr(i|j,Y1,Y2), the probability of classifying an observation into population i given that the
observation comes from population j using partition Y = Y1

⋃
Y2 where, Y1

⋂
Y2 = ∅. These probabilities are

called misclassification probabilities. For example, Pr(1|1,Y1,Y2) is the probability of correctly classifying an
observation from population 1 into population 1 and Pr(2|1,Y1,Y2) is the probability of incorrectly classifying an
observation from population 1 into population 2.

Let πi be the probability that a randomly selected observation belongs to population i. The values πi for
i = 1, 2 are called prior probabilities and represent the relative sizes of the two populations. Naturally, π1 + π2 = 1
must be satisfied.

The expected cost or loss resulting from a classification decision is called risk. The expected loss (risk)
conditional on the observation coming from population i is denoted by r(Y1,Y2|i). Specifically,

r(Y1,Y2|1) = C(1|1) × Pr(1|1,Y1,Y2) + C(2|1) × Pr(2|1,Y1,Y2)

= C(2|1) × Pr(2|1,Y1,Y2),

79
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and

r(Y1,Y2|2) = C(1|2) × Pr(1|2,Y1,Y2) + C(2|2) × Pr(2|2,Y1,Y2)

= C(1|2) × Pr(1|2,Y1,Y2).

The unconditional expected loss (risk) is denoted by r(Y1,Y2) and is given by

r(Y1,Y2) = r(Y1,Y2|1) × π1 + r(Y1,Y2|2) × π2.

10.1.2 Bayes Procedure

A decision rule is Bayes if its risk is a minimum. To obtain the Bayes rule, write out the risk function and minimize
with respect to the partition Y = (Y1,Y2). The result is the following.

Theorem 10.1 (Two Population Decision Rule) The Bayes rule is to classify into P1 if y ∈ Y1 and to
classify into P2 if y ∈ Y2 where

Y1 = {y; f1(y) × C(2|1) × π1 ≥ f2(y) × C(1|2) × π2},

and

Y2 = {y; f1(y) × C(2|1) × π1 < f2(y) × C(1|2) × π2}.
If f2(y) 6= 0, then the regions are

Y1 =

{
y;
f1(y)

f2(y)
≥ C(1|2) × π2

C(2|1) × π1

}
,

and

Y2 =

{
y;
f1(y)

f2(y)
<
C(1|2) × π2

C(2|1) × π1

}
.

Proof in class.

10.1.3 Admissibility of the Bayes Rule (Optional Section)

In most cases the above Bayes rule is admissible. A rule is admissible if there is no rule that is better. The rule
(Y∗

1,Y∗
2) is better than (Y1,Y2) if

1. r(Y∗
1,Y∗

2|i) ≤ r(Y1,Y2|i) ∀ i, and

2. strict inequality holds for some i.

Note, admissibility is concerned with conditional rather than unconditional risk and, thus, is not dependent on a
particular prior. The Bayes rule, by definition, has minimum unconditional risk. However, in some unusual
circumstances, it may not have the smallest conditional risk for each i.

If attention is restricted to cases in which 0 < π1 < 1 ∀ i, then the Bayes rule is admissible. Also, if

Pr[fi(y) = 0|j] = 0 ∀ i 6= j

then the Bayes rule is admissible and the class of Bayes rules (indexed by the prior) is minimal complete.
As a counter example, suppose C(1|2) = 10, C(2|1) = 0, π1 = 1, and π2 = 0. For any pair of density functions,

the Bayes rule is Y1 = Y and Y2 = ∅. That is, the Bayes rule always classifies into P1. The conditional risks are
r(Y1,Y2|1) = 0 and r(Y1,Y2|2) = 10. The unconditional risk is 0 + 10 × 0 = 0. Consider Y∗

1 = ∅ and Y∗
2 = Y. The

associated conditional risks are r(Y∗
1,Y∗

2|1) = r(Y∗
1,Y∗

2|2) = 0. Thus, (Y∗
1,Y∗

2) is better than (Y1,Y2).
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10.2 TWO NORMAL POPULATIONS

Suppose that

y ∼
{

Nd(µ1,Σ) if P1; and

Nd(µ2,Σ) if P2.

Theorem 10.2 (Two Population Linear Discriminant Function) The Bayes rule is to classify into P1 if

L(y) ≥ c,

where

c = ln

(
π2 × C(1|2)
π1 × C(2|1)

)
,

and

L(y) = (µ1 − µ2)
′
Σ−1y − (µ1 + µ2)

′
Σ−1(µ1 − µ2)

2
,

otherwise, classify into P2.

Note that the discriminant function is linear in y. It is sometimes called Fisher’s linear discriminant function.
The function also is called D(y) where the D stands for discriminant.

As an example, suppose that there are only d = 2 response measures. The response vector is distributed
N(µiΣ) in population i, where

µ1 =

(
8
8

)
; µ2 =

(
3
21

)
; and Σ =

(
5 −3

−3 6

)
.

For simplicity, assume that C(2|1) = C(1|2) and that π1 = π2 = 1
2 . Thus, c = 0. A display of the linear

discriminant function appears below. The constant density ellipses include 95% of the underlying populations.
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If the population covariances are not identical, then the discriminant function is quadratic in y.
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Theorem 10.3 (Two Population Quadratic Discrimination) Suppose that

y ∼
{

Nd(µ1,Σ1) if P1; and

Nd(µ2,Σ2) if P2.

Then, the Bayes rule is to classify into P1 if
Q(y) ≥ c,

where

c = ln

(
|Σ1|

1
2 × π2 × C(1|2)

|Σ2|
1
2 × π1 × C(2|1)

)
,

and

Q(y) = (µ′
1Σ

−1
1 − µ′

2Σ
−1
2 )y − y′(Σ−1

1 − Σ−1
2 )y

2
− µ′

1Σ
−1
1 µ1 − µ′

2Σ
−1
2 µ2

2
,

otherwise, classify into P2.

As an example, suppose that there are only d = 2 response measures. The response vector is distributed
N(µiΣi) in population i, where

µ1 =

(
8
8

)
; µ2 =

(
3
21

)
; Σ1 =

(
10 3
3 5

)
; and Σ2 =

(
5 −3

−3 6

)
.

For simplicity, assume that C(2|1) = C(1|2) and that π1 = π2 = 1
2 . Thus, c = 0. A display of the quadratic

discriminant function appears below. The constant density ellipses include 95% of the underlying populations.
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10.2.1 Probability of Misclassification

Suppose that

y ∼
{

Nd(µ1,Σ) if P1; and

Nd(µ2,Σ) if P2.
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From the above results,

L(y) ∼
{

N
(

δ
2 , δ
)

if y is from P1, and

N
(
− δ

2 , δ
)

if y is from P2, where

δ = (µ1 − µ2)
′
Σ−1(µ1 − µ2).

The parameter δ is called the squared Mahalanobis distance between µ1 and µ2.
The misclassification probabilities are

Pr(2|1) = Φ

[
c− δ

2√
δ

]
,

and

Pr(1|2) = 1 − Φ

[
c+ δ

2√
δ

]
,

where Φ(·) is the CDF of the standard normal distribution.
As an example, suppose that there are only d = 2 response measures. The response vector is distributed

N(µiΣ) in population i, where

µ1 =

(
8
8

)
; µ2 =

(
3
21

)
; and Σ =

(
5 −3

−3 6

)
.

For simplicity, assume that C(2|1) = C(1|2) and π1 = π2 = 1
2 . Thus, c = 0. In this case, δ = 28.8095,

δ/2 = 14.4048, and Pr(2|1) = Pr(1|2) = 0.0036.

10.2.2 Minimax Rules

If the πi are not known, then we cannot obtain the Bayes rule. However, we may still be able to find a minimax
rule. A minimax rule is one which minimizes the maximum conditional risk. Finding minimax rules is sometimes
simplified by using the following result:

Theorem 10.4 (Minimax) If (Y1,Y2) is a Bayes rule for some prior, and (Y1,Y2) has constant risk, then
(Y1,Y2) is minimax.

Proof: Suppose (Y1,Y2) is the Bayes rule corresponding to the prior (π1, π2) and the risk is constant:
r(Y1,Y2|1) = r(Y1,Y2|2). Let (Y∗

1,Y∗
2) be any other rule. Then

r(Y1,Y2) = π1 × r(Y1,Y2|1) + π2 × r(Y1,Y2|2)
= r(Y1,Y2|1) = r(Y1,Y2|2) = max

i
r(Y1,Y2|i),

because risk is constant. Also, (Y1,Y2) is Bayes, so that r(Y1,Y2) ≤ r(Y∗
1,Y∗

2) must be satisfied. Note that

r(Y1,Y2) ≤ r(Y∗
1,Y∗

2) = π1 × r(Y∗
1,Y∗

2|1) + π2 × r(Y∗
1,Y∗

2|2) ≤ max
i

r(Y∗
1,Y∗

2|i).

Thus,
max

i
r(Y1,Y2|i) ≤ max

i
r(Y∗

1,Y∗
2|i),

and (Y1,Y2) is minimax.

To find the minimax rule, find the prior such that the Bayes rule

Y1 = {y; f1(y) × C(2|1) × π1 ≥ f2(y) × C(1|2) × π2}
results in

C(2|1) × Pr(2|1) = C(1|2) × Pr(1|2).
In the normal theory, k = 2, case with equal variances, the Bayes rule is to classify into P1 if L(y) ≥ c. To obtain
constant risk, choose c to satisfy

C(2|1) × Φ

[
c− δ

2√
δ

]
= C(1|2) ×

(
1 − Φ

[
c+ δ

2√
δ

])
.

The minimax rule is to classify y into P1 if L(y) > c where c satisfies the above. In nonnormal problems, finding
the minimax rule can be more difficult.
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10.3 k-POPULATION CLASSIFICATION ANALYSIS

The optimal k-population classification rule can be obtained using the same approach as for 2 populations.

10.3.1 Optimal Classification Rule

Employing the same notation as for k = 2, the risk, using the classification rule (Y1, . . . ,Yk), is

r(Y1, . . . ,Yk) =

k∑

i=1

πi

k∑

j=1

[C(j|i) Pr(j|i,Y1, . . . ,Yk)]

=

k∑

j=1

k∑

i=1

[πiC(j|i) Pr(j|i,Y1, . . . ,Yk)] =

k∑

j=1

k∑

i=1

[
πiC(j|i)

∫

Yj

fi(y) dy

]

=

k∑

j=1

k∑

i=1

∫

Yj

[πiC(j|i)fi(y)] dy =

k∑

j=1

∫

Yj

hj(y) dy, where

hj(y) =
k∑

i=1

[πiC(j|i)fi(y)] .

The risk also can be written as

r(Y1, . . . ,Yk) =

∫

Y

k∑

j=1

[δj(y)hj(y)] dy where δj(y) =

{
1 if y ∈ Yj ;

0 otherwise.

To minimize the risk, consider minimizing

Q(y) =

k∑

j=1

[δj(y)hj(y)]

for each y ∈ Y, subject to the restriction that δj(y) must equal 1 for exactly one value of j. That is, an observation
must be classified into one and only one population. Suppose that the values of hj(y) for i = 1, . . . , k are distinct.
In this case, the quantity Q(y) can be minimized by assigning the values

δj(y) =

{
1 if hj(y) = min

i
hi(y), and

0 otherwise.

If there are ties for mini hi(y), then the the observation can be assigned to any population for which hj(y) is a
minimum. The result is summarized in the following theorem.

Theorem 10.5 (k Population Rule) The k population Bayes classification rule is to assign y to Pm if
hm(y) ≤ hj(y) for all j 6= m, where

hj(y) =

k∑

i=1

[πiC(j|i)fi(y)] .

The rule k population rule simplifies when all costs are equal:

C(i|j) =

{
k if i 6= j;

0 if i = j.

Let

f(y) =

k∑

i=1

[πifi(y)].
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Note that f(y) is a density function. It integrates to 1 and is nonnegative. In particular, it is the density function
of a random vector randomly selected from population i with probability πi. This type of density is often called a
mixture. Note that, when all costs are equal, hj(y) = f(y) − πjfj(y). Hence, the decision rule simplifies to the
following. Classify y to Pm if πmfm(y) ≥ πjfj(y) for all j 6= m. This rule is equivalent to assigning y to the
population having the highest posterior probability.

Prior to observing y, the probability that an observation belongs to the ith population is πi. It is instructive to
examine how that probability is modified after observing the data. That is, if Pr(Pi) = πi, then what is Pr(Pi|y)?

Theorem 10.6 (Posterior Probability) The posterior probability that y was sampled from Pi is

Pr(Pi|y) =
πifi(y)

k∑
j=1

πjfj(y)

=
πifi(y)

f(y)
.

Proof:

Pr(Pi|y) =
Pr(Pi,y)

f(y)
=

Pr(y|Pi) Pr(Pi)

f(y)
=
πifi(y)

f(y)
.

10.3.2 k Normal Populations

For k normally distributed populations having equal covariance matrices, the Bayes decision rule is to classify into
Pm if hm(y) ≤ hj(y) for all j, where

hj(y) =

k∑

i=1

πiC(j|i)exp
{
− 1

2 (y − µi)
′Σ−1(y − µi)

}

|Σ| 12 (2π)
d
2

.

For simplicity, assume equal costs of misclassification:

C(i|j) =

{
k if i 6= j;

0 if i = j.

Then, the Bayes rule is to classify y into Pi if πifi(y) ≥ πjfj(y) for all j. That is, classify y into Pi if

(µi − µj)
′
Σ−1y − (µi − µj)

′
Σ−1(µi + µj)

2
− ln

(
πj

πi

)
≥ 0

for all j. As shown above, this rule is equivalent to classifying the observation into the population having the
largest posterior probability. In the normal case, the posterior probability is

Pr(Pi|y) =
e−

1
2 D2

i (y)

k∑
j=1

e−
1
2 D2

j
(y)

,

where

D2
i (y) = (y − µi)

′
Σ−1(y − µi) − 2 ln(πi).

Note, the population with the highest posterior probability is the one with the smallest value of D2
i (y). Excluding

the −2 ln(πi) term, D2
i (y) is called the squared Mahalanobis distance between y and µi.
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10.4 SELECTION OF VARIABLES (2 GROUPS)

Suppose a random sample of size n1 is available from Nd(µ1,Σ) and a random sample of size n2 is available from
Nd(µ2,Σ). The corresponding linear model is

Y = XB + U,

where

B =

(
µ′

1

µ′
2

)
,

Y is N × d and N = n1 + n2. We are interested in knowing whether a subset of the d variables (say the first r) can
discriminate as well as the entire set. The coefficients of the linear discriminant function are

τ = Σ−1(µ1 − µ2) = Σ−1θ,

where θ = µ1 −µ2. Partition Y, Σ, θ and τ so that Y1 is n× r, Σ11 is r× r, and θ1 and τ 1 are each r× 1. Then,
the last d− r variables add nothing to the discriminant function if τ 2 = 0. Thus, we wish to test H0 : τ 2 = 0. Use
partitioned matrix results to show that

τ = Σ−1θ =⇒ τ 2 = Σ−1
22·1(θ2 − Σ21Σ

−1
11 θ1).

Note that

τ 2 = 0 ⇐⇒ θ2 − Σ21Σ
−1
11 θ1 = 0.

Thus, we are interested in testing H0 : θ2 − Σ21Σ
−1
11 θ1 = 0.

Theorem 10.7 Let

T 2 =
(n1n2

N

)
θ̂
′
S−1θ̂,

where S = Y′(I − M)Y/(N − 2), M = ppo(X), and θ̂ = y1 − y2. Also, let

T 2
1 =

(n1n2

N

)
θ̂
′

1S
−1
11 θ̂1,

where θ̂1 is r × 1 (i.e., the first partition of θ̂) and S11 is the upper left hand r × r block of S. Then an α size test
of H0 is to reject H0 if F2 ≥ F 1−α

d−r,N−d−1, where

F2 =
T 2 − T 2

1

1 + (N − 2)
−1
T 2

1

(
N − d− 1

(d− r)(N − 2)

)
.

Conditional on Y1, F2 is distributed as

F2|Y1 ∼ Fd−r,N−d−1,λ,

where

λ =
(n1n2

N

) (θ2 − Σ21Σ
−1
11 θ1)

′
Σ−1

22·1(θ2 − Σ21Σ
−1
11 θ1)

2[1 + (N − 2)
−1
T 2

1 ]
.

Proof: See the description of Roy’s step-down tests in these notes.

Remark — If τ 2 = 0, then F2 has an unconditional central F distribution. The above testing procedure is the
basis of stepwise tests in discriminant function analysis. The procedure can be extended to more than two groups
(see Seber, page 341). However, the test is not recommended.
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10.4.1 Alternative Approach to Variable Selection

As in the previous section, a test of θ2 − Σ21Σ
−1
11 θ1 = 0 is desired. Write the two sample model as

Y = XB + U,

where

X =

(
1n1

0
0 1n2

)
, B =

(
µ′

1

µ′
2

)
, and vec(U) ∼ N(0,Σ ⊗ In).

Consider the distribution of Y2, conditional on Y1:

vec(Y2)|Y1 ∼ Nd−r [vec (XB2·1 + Y1Γ) , (Σ22·1 ⊗ In)] ,

where

B2·1 =

(
µ′

12

µ′
22

)
−
(
µ′

11

µ′
21

)
Σ−1

11 Σ12, Γ = Σ−1
11 Σ12,

and where µ1 and µ2 have been partitioned conformably to θ as

µ1 =

(
µ11

µ12

)
and µ2 =

(
µ21

µ22

)
.

Let

W =
(
X Y1

)
and let G =

(
B2·1

Γ

)
.

Then, the conditional model can be written as

Y2 = WG + U2·1,

where

vec(U2·1) ∼ N(0,Σ22·1 ⊗ In).

Let c be an (r + 2) × 1 vector defined as

c =




1
−1

0
...
0



.

Note that

c′G =
(
1 −1

)
B2·1 =

[
θ2 − Σ21Σ

−1
11 θ1

]′
.

The likelihood ratio test of H0 : c′G = 0 in the conditional model is to reject H0 for small

U2·1 =
|E22·1|

|E22·1 + H22·1|
,

where

E22·1 = Y′
2(In − Hw)Y2, Hw = ppo(W),

H22·1 = Ĝ′c
[
c′(W′W)−1c

]−1
c′Ĝ, and Ĝ = (W′W)−1W′Y2.

It can be shown that this test is identical to the test based on differences between T 2 statistics. Extra credit for
proof of the equivalence.
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10.5 KERNEL-BASED CLASSIFICATION

Generally the densities fi(y), for i = 1, . . . , k are unknown and must be estimated. If the parametric family is
known, then maximum likelihood can be used to estimate the unknown parameters. If the parametric family is
unknown, then other procedures can be used. One such procedure yields kernel density estimators.

Let Gi be the training sample from population i. That is,

Gi = {yj ;yj ∈ sample from population i}.

A kernel density estimator for fi(z) can be written as

f̂i(z) =
1

ni

∑

y∈Gi

Ki(z − y, r),

where Ki(u) is a pdf and r is a smoothing parameter. For example, the kernel for a p-variate normal density is

Ki(u, ri) =

exp

{
− 1

2r2i
u′Σ−1

i u

}

rp
i (2π)p/2|Σi|1/2

and the kernel for the p-dimensional uniform density is

Ki(u, ri) =





Γ
(

p
2 + 1

)

rp
i |Σi| 12π

p

2

if u′Σ−1
i u ≤ r2i and

0 otherwise.

The quantity πp/2Γ(p/2 + 1) is the volume of a p-dimensional unit radius sphere. The quantity
Γ(p/2 + 1)/(rp

i |Σi|1/2πp/2) is the volume of a p-dimensional ellipsoid bounded by {u|u′Σ−1
i u} = r2i Many other

kernels could be used as well.
The matrices Σi for i = 1, . . . , k can be estimated in many ways, depending on which assumptions are

reasonable. For example, if it can be assumed that population covariance matrices are homogeneous, then Σi can
be estimated by Y′(I − Hx)Y/(n− k) for each i, where X is the design matrix for a one-way classification with k
treatments and Y is the total training sample. If covariance matrices are heterogeneous, then Σi can be estimated
by Y′

i(I − Hi)Yi/(ni − 1), where Hi = ppo(1ni
) and Yi is the training sample from population i.

Reasonable values for ri are

ri =

(
4

(2p+ 1)ni

) 1
p+4

if a normal kernel is employed, and

ri =

(
2p+2(p+ 2)Γ

(
p
2

)

nip

) 1
p+4

if a uniform kernel is employed.

10.6 NEAREST NEIGHBOR CLASSIFICATION

Nearest neighbor classification consists of using the Bayes rule but substituting nearest neighbor density estimators
for the unknown densities. To construct a nearest neighbor density estimator for fi(z), first choose an integer
number of neighbors to be examined, g. Several values of g can be tried and values near

√
n/k are sensible starting

points. For a fixed z, find the g nearest neighbors in the training set. The squared distance from z to y is measured
as

D2(y, z) = (z − y)′S−1(z − y),

where S is the pooled sample covariance matrix. Let yg be the gth nearest neighbor to z and define r(z) as

r(z) =
[
(z − yg)

′S−1(z − yg)
] 1

2 .

The volume of the p-dimensional ellipsoid

A(z) = {`|(`− z)′S−1(`− z) ≤ r(z)2}



10.7. LOGISTIC DISCRIMINATION 89

is

V (z) =
r(z)pπ

p

2 |S| 12
Γ
(p

2
+ 1
) .

The nearest neighbor density estimator is

f̂i(z) =
gi

niV (z)
,

where gi is the number of the g nearest neighbors that belong to population i.
Note that if Z is a random p vector from population i, z is a fixed p-vector, and A(z) is an ellipsoid centered at

z, then

P [Z ∈ A(z)|i]
V (z)

=

∫

A(z)

fi(u) du

V (z)
and

lim
V (z)→0

P [Z ∈ A(z)|i]
V (z)

= lim
V (z)→0

V (z)fi(z)

V (z)
= fi(z),

provided that the density is sufficiently smooth. Accordingly, the kernel density estimator is consistent.
If misclassification costs are equal, then the Bayes rule is to classify z to the population with the largest

posterior probability. The posterior probability is

P (Pi|z) =
fi(z)πi

f(z)

and is estimated by

P̂ (Pi|z) =

πi
gi

niV (z)
k∑

j=1

πj
gj

njV (z)

=
πi
gi

ni
k∑

j=1

πj
gj

nj

.

Furthermore, if priors are proportional to sample size (πi = ni/n), then

P̂ (Pi|z) =
gi

g
.

10.7 LOGISTIC DISCRIMINATION

In this section, we assume equal costs of misclassification:

C(i|j) =

{
1 if i 6= j;

0 if i = j.

Accordingly, the Bayes rule is to classify y into the population having the largest posterior probability:

Pr(Pi|y) =
πifi(y)

k∑
j=1

πjfj(y)

.

Suppose, as is usual, that fi(y) must be estimated from a training sample. In the k population Gaussian case with
equal variances, d(d+ 2k + 1)/2 parameters must be estimated.

The logistic approach focuses on estimating the posterior probability directly, rather than estimating the
densities. A particular form is not assumed for the density functions. Rather, the linear logistic approach assumes
that

ln

(
fi(y)

fk(y)

)
= αi + β′

iy,
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for i = 1, . . . , k − 1. Accordingly, the posterior probabilities can be written as

Pr(Pi|y) =

(
πifi(y)
πkfk(y)

)

k∑
j=1

(
πjfj(y)
πkfk(y)

) =

(
πifi(y)
πkfk(y)

)

1 +
k−1∑
j=1

(
πjfj(y)
πkfk(y)

)

=





exp
h
ln
“

πi
πk

”
+αi+β

′

i
y
i

1+
k−1P
j=1

exp
h
ln
“

πj

πk

”
+αj+β

′

j
y
i if i 6= k; and

1

1+
k−1P
j=1

exp
h
ln
“

πj

πk

”
+αj+β

′

j
y
i if i = k.

The approach is called linear logistic because, for k = 2, the logit (log odds) is linear in y:

ln

(
Pr(P1|y)

1 − Pr(P1|y)

)
= ln

(
π1

π2

)
+ α+ β′y.

In the k population case, (d+ 1)(k− 1) parameters must be estimated. Denote the vector containing the entire
set of parameters by Θ. Assuming that an independent sample of size ni has been obtained from the ith population
for i = 1, . . . , k. The likelihood function for the entire sample is

L(Θ|Y) =

k∏

i=1

ni∏

j=1

Pr(Pi|yij),

where the posterior probabilities are given above. The log likelihood function can be maximized by Newton
methods.

Parameter estimation in linear logistic discrimination analysis with k = 2 is identical to parameter estimation
in logistic regression. This is a Stat 539 topic.



Chapter 11

PRINCIPAL COMPONENTS

11.1 POPULATION PRINCIPAL COMPONENTS

Principal components can be motivated in a variety of ways. We will examine two motivations. The most
straightforward motivation considers the variance maximizing properties of principal components. The second
motivation considers the dimension reduction properties of principal components.

11.1.1 Maximizing the Variance of Linear Combinations

Let y be a random d-vector with distribution y ∼ (µ,Σ). Suppose that the experimenter does not wish to use the
original d variables because it is believed that a smaller set of linear combinations of the d variables will capture
most of the information. A linear combination is said to have no information if all members of the population have
exactly the same score on the combination. That is, the linear combination is not informative if, with probability 1,
h′y = c. In this case, var(h′y) = 0. On the other hand, a linear combination is said to have much information if
the members of the population vary greatly on their scores. In this case, var(h′y) is large. A sensible goal is to
keep linear combinations which have large variance and discard linear combinations which have small variance.

The first (most important) linear combination is called the first principal component and is z1 = h′(y − µ)
where h is chosen such that

Q(h) = var

(
h′(y − µ)√

h′h

)

is maximized. The second principal component is z2 = h′(y − µ) where h is chosen to maximize Q(h), subject to
cov(z2, z1) = 0. In general, the kth principal component is zk = h′(y − µ) where h is chosen to maximize Q(h),
subject to cov(zk, zi) = 0 for i = 1, . . . , k − 1.

Theorem 11.1 Write Σ in diagonal form: Σ = TΛT′ where T =
(
t1 t2 · · · td

)
, Λ = diag(λi), and

λ1 ≥ λ2 ≥ · · · ≥ λd > 0. The ith principal component is zi = t′i(y − µ) and var(zi) = λi, for i = 1, . . . , d.

11.1.2 Dimension Reduction Properties (Optional)

This section is from Seber (1984, p. 176–181). Consider the following problem. We wish to find a random vector
z : k × 1 and a matrix of constants A : d× k for k < d such that the vector Az is “close” to y − µ. To measure
closeness, let u = (y−µ)−Az. Denote var(u) by Σu. Then, we will say that Az is close to (y −µ) if Σu is small.
The magnitude of Σu will be indexed by f(Σu) for some function f defined on the space of all d× d positive
semidefinite matrices.

What f should be used? Let S and V be psd matrices of the same order. We wish to determine the relative
magnitudes of S and V. A “reasonable” function, f , ought to satisfy the following two properties:

(i) If S 6= V, and S − V ≥ 0, then f(S) > f(V).

(ii) If Q is an orthogonal matrix, then f(S) = f(QSQ′).

91
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Point (ii) above stems from the following considerations. Premultiplication of u by an orthogonal matrix Q
performs a perpendicular rotation of the d axes. The relative magnitudes of u have not been changed so it is
sensible to expect that f(Σu) = f(QΣuQ

′).
The above two conditions ought to help us narrow down the sort of function, f , to employ. In fact, the two

conditions are quite helpful in restricting f . Before proceeding, we will pick up a couple of useful results.

Theorem 11.2 (Courant Fischer Min-Max Theorem) Let L : d× k be a rank-k matrix, and let W be a d× d
psd matrix with characteristic roots θ1 ≥ θ2 ≥ . . . ≥ θd. Then

inf
L

sup
c;c′L=0

c′Wc

c′c
= θk+1.

Proof: See page 525 in Seber.

Corollary to Theorem 11.2 Let S and V be d× d psd matrices. Denote the ordered ch. roots of S by ri(S) for
i = 1, . . . , d; and denote the ordered ch. roots of V by ri(V) for i = 1, . . . , d. Then, S − V ≥ 0 ⇒ ri(S) ≥ ri(V) for
i = 1, . . . , d.

Theorem 11.3 The necessary and sufficient conditions for f(·) to satisfy (i) and (ii) are that f(A) is a function
of the roots of A and is strictly increasing in each argument.

Proof: See page 177 in Seber. We will discuss the proof if time permits. The proof uses the Corollary to the
Courant Fischer Theorem.

Theorem 11.4 The matrix A and the random vector z which minimize f(Σu) are given by z = T′
1y and A = T1

where Σ = TΛT′, T =
(
T1 T2

)
, T1 is d× k, and the columns of T1 are the characteristic vectors corresponding

to the k largest roots of Σ.

Proof: In class if there is time.

11.2 INFERENCE ON PRINCIPAL COMPONENTS UNDER
NORMALITY

Let Y be an N × d random matrix with distribution

vec(Y) ∼ N [vec(XB),Σ ⊗ In] ,

where X is a known N × p matrix of constants having rank r. Then

nS ∼ Wd(n,Σ), where S = n−1Y′(In − Hx)Y, n = N − r, ;

and Hx = ppo(X). Denote the sorted eigenvalues of Σ by λ1 > λ2 > · · · > λd (assume that all eigenvalues are
distinct). Denote the sorted eigenvalues of S by `1 > `2 > · · · > `d. Denote the corresponding normalized
eigenvectors by γj and gj for j = 1, . . . , d. That is,

Sgj = gj`j and Σγj = γjλj .

Below are some distributional results for the sample eigenvalues and eigenvectors. These results depend
heavily on the multivariate normality assumption.

Theorem 11.5 (LR test that the Variables are Uncorrelated) Sometimes a test of H0 : R = I against
Ha : R 6= I is desired, where R is the population correlation matrix. Under H0, the statistic

w = −
[
n− 2d+ 5

6

]
ln |S| −

d∑

j=1

ln(sjj)




is asymptotically distributed as a χ2 random variable with d(d− 1)/2 degrees of freedom, where n = N − r and sjj

is the jth diagonal entry of S.
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Theorem 11.6 (Asymptotic Distribution of Eigenvalues and Eigenvectors) Asymptotically, `1, . . . , `d and
G are independently distributed as follows:

√
n(`i − λi)

dist−→ N
(
0, 2λ2

i

)
for i = 1, . . . , d;

and
√
n vec(G − Γ) is asymptotically normal, where n = N − r. The specific distribution for G is

√
n(gi − γi)

dist−→ N


0,

∑

j 6=i

λiλjγjγ
′
j

(λi − λj)2


 and nCov(gi,gj)

Prob−→ −
λiλjγiγ

′
j

(λi − λj)2
.

Also, the natural log of `j is approximately normal:

ln(`j) ∼̇ N

[
ln(λj),

2

n

]
.

A large sample 95% confidence interval for λj is given by

(
`je

−1.96
√

2/n, `je
1.96

√
2/n
)
.

Proof: See Anderson (1984) or Flury (Common Principal Components, 1988, John Wiley).

The results in Theorem 11.6 can be written several ways. The following corollary gives a matrix expression
which is useful when making inferences on the vector λ or on the matrix Γ.

Corollary to Theorem 11.6 The results in Theorem 11.6 can be summarized as follows:
√
n(`− λ) and√

n vec(G − Γ) are asymptotically independent with distributions

√
n(`− λ)

dist−→ N
(
0, 2Λ2

)
and

√
n vec(G − Γ)

dist−→ N(0,Θ), where

Θ = (Id ⊗ Γ)V(Id ⊗ Γ)
′
; V = {Vij}; Vij has dimension d× d;

Vij =

{
diag(τi1, . . . , τid) if i = j;

−τijeje
′
i otherwise;

; τij =





0 if i = j;
λiλj

(λi − λj)2
otherwise;

;

and ei is the ith column of Id.

Theorem 11.7 (Distribution of Variance Accounted for by the Smallest Eigenvalues) Denote the
proportion of the variance that the smallest q components account for by δq and denote the corresponding sample

quantity by δ̂q. That is

δq =

d∑

i=d−q+1

λi

d∑

i=1

λi

and δ̂q =

d∑

i=d−q+1

`i

d∑

i=1

`i

.

If δq is small, then little information is lost by ignoring the corresponding principal components. For large samples,

δ̂q is approximately normally distributed:

δ̂q ∼̇ N



δq,


2δ2q

d−q∑

i=1

λ2
i + 2(1 − δq)

2
d∑

i=d−q+1

λ2
i




n

(
d∑

i=1

λi

)2



,
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where n = N − r. A one-sided large sample 95% confidence for δq is (0, U), where

U = δ̂q + 1.645


2δ̂2q

d−q∑

i=1

`2i + 2(1 − δ̂q)
2

d∑

i=d−q+1

`2i




1
2

√
n

d∑

i=1

`i

.

Proof: Use the delta method along with the asymptotic results in Theorem 11.6.

The sample eigenvalues `1, . . . , `d give information about the dimension of the data. If the last few eigenvalues
are very small, then little information is lost by ignoring the corresponding principal components. One model for
which the smallest q eigenvalues are equal in magnitude and for which the last q components can be ignored is the
following. Let Γ be an orthogonal matrix and partition Γ as Γ =

(
Γ1 Γ2

)
, where Γ1 has dimension d× (d− q)

and Γ2 has dimension d× q. Also, let Λ1 = Diag(λ1, . . . , λd−q), where λ1 ≥ λ2 ≥ · · · ≥ λd−q > 0. Suppose that y is
a d-vector that can be written as

y = µ+ Γ1z + ε,

where z is a (d− q) × 1 random vector with distribution N(0,Λ1), ε is a random d-vector with distribution
N(0, θ2Id), and z ε. Then,

y ∼ N(µ,Σ), where

Σ = Γ1Λ1Γ
′
1 + θ2Id = Γ1Λ1Γ

′
1 + θ2ΓΓ′ = Γ

(
Λ1 + θ2Iq−d 0

0 θ2Iq

)
Γ′.

Note that the eigenvalues of Σ are λ1 + θ2, λ2 + θ2, . . . , λd−q + θ2, θ2, . . . , θ2. The smallest q eigenvalues of Σ are
equal with common value θ2. If such a model is suspected to be true, then the investigators might wish to test the
hypothesis H0 : λd−q+1 = λd−q+2 = · · · = λd. That is, a test that the smallest q eigenvalues are equal.

Theorem 11.8 (Test of Partial Sphericity) The LR test rejects H0 : λd−q+1 = λd−q+2 = · · · = λd for large Q,
where

Q = −n
d∑

j=d−q+1

ln

(
`j
¯̀
q

)
, and ¯̀

q =
1

q

d∑

j=d−q+1

`j .

The asymptotic null distribution of Q is χ2
f , where f = 1

2 (q − 1)(q + 2). The χ2 approximation is can be improved
by using

Q∗ = −


n− d− 2q2 + q + 2

6q
+

d−q∑

j=1

( ¯̀
q

`j − ¯̀
q

)2



d∑

j=d−q+1

ln

(
`j
¯̀
q

)
,

where n = N − r rather than Q as the test statistic.

The multiplier on Q∗ in Theorem 11.8 incorporates a Bartlett correction. The Bartlett correction was proposed
by D. N. Lawley (Tests of significance of the latent roots of covariance and correlation matrices, Biometrika, 1956,
43, 128–136) and confirmed by A. T. James [Tests of equality of the latent roots of the covariance matrix, In
P. R. Krishnaiah (Ed.) Multivariate Analysis, Vol II, pp. 205–218, New York: Academic Press]. MATLAB has an
m file (barttest) which performs the test. The MATLAB program does not use the Bartlett correction.

11.3 INFERENCE ON PRINCIPAL COMPONENTS UNDER
NON-NORMALITY

11.3.1 References

Boik, R. J. (1998). A local parameterization of orthogonal and semi-orthogonal matrices with applications.
Journal of Multivariate Analysis, 67, 244–276.

Boik, R. J. (2003). Principal component models for correlation matrices. Biometrika, 90, 679–701.
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11.3.2 Asymptotic Distributions

Consider the conventional linear model for the N × d matrix Y:

Y = XB + U, where E(U) = 0 and Disp(U) = Σ ⊗ IN .

It is assumed in this section that the rows of U are independently and identically distributed. That is, ui
iid∼ (0,Σ)

for i = 1, . . . , N , where ui has dimension d× 1 and u′
i is the ith row of U.

Let S be the usual unbiased estimator of Σ. That is,

S = n−1Y′AY, where A = IN − Hx, Hx = ppo(X), n = N − r,

and r = rank(X). Denote vec(S) by s and denote vec(Σ) by σ. Under mild regularity conditions, it follows from
the central limit theorem that the asymptotic distribution of

√
n(s − σ) is multivariate normal. This result is

summarized in Theorem 11.9.

Theorem 11.9 (Asymptotic Distribution of S) If the required moments exist, then

√
n(s − σ)

dist−→ N(0,Ω∞), where Ω∞ = lim
N→∞

Ωn and Ωn = Var
[√
n(s − σ)

]
.

Furthermore, if Y has a multivariate normal distribution, then

Ωn = Ω∞ = 2Nd (Σ ⊗ Σ) , where Nd =
1

2

(
Id2 + I(d,d)

)
.

More generally, Boik (1998) showed that

Ωn = 2Nd (Σ ⊗ Σ) + c1 [Ξ − σσ′ − 2Nd (Σ ⊗ Σ)] , where

Ξ = E(uiu
′
i ⊗ uiu

′
i) , c1 =

1

n
tr
(
A¯2

)
,

and ¯ is the element-wise operator. That is,

A¯2 =




a2
11 a2

12 · · · a2
1d

a2
21 a2

22 · · · a2
2d

...
...

. . .
...

a2
d1 a2

d2 · · · a2
dd


 .

Boik (1998) also obtained an unbiased estimator of Ωn. The estimator is

Ω̂n =
n

n− 1
2Nd (S ⊗ S) + a1Ξ̂ − a2 [ss′ + 2Nd (S ⊗ S)] , where

Ξ̂ =
1

n

N∑

i=1

(ũiũ
′
i ⊗ ũiũ

′
i) =

1

n
(Y′A ⊗ Y′A)

[
N∑

i=1

(eie
′
i ⊗ eie

′
i)

]
(AY ⊗ AY),

a1 =
nc1

(n+ 2)c2 − 3c21
, a2 =

n
[
2c2 + (n− 3)c21

]

(n− 1) [(n+ 2)c2 − 3c21]
, c2 =

1

n
1′

NA¯41N ,

ei is the ith column of IN , ũ′
i is the ith row of the residual matrix Ũ = (IN − Hx)Y = AY. That is, ui = Y′Aei.

If X = 1N , then a1 and a2 simplify to

a1 =
n2

(n− 1)(n− 2)
and a2 =

n(n2 − 2)

(n+ 1)(n− 1)(n− 2)
,where n = N − 1.
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Suppose that the eigenvalues of Σ are sorted in decreasing order from largest to smallest. Furthermore,
suppose that the number of distinct eigenvalues is only k rather than d. Denote the ith largest distinct eigenvalue
by ϕi, denote the multiplicity of ϕi by mi, and let m be the k-vector of multiplicities. Then,

λ = Tϕ, where T =

k⊕

j=1

1mj
and ϕ =




ϕ1

ϕ2

...
ϕk


 .

Furthermore, vec(Λ) can be written as

vec(Λ) = LdTϕ, where Ld =

d∑

i=1

(ei ⊗ ei)e
′
i,

and ei is the ith column of Id.
Let ϕ̂ be the estimator of ϕ given by

ϕ̂ = (T′T)
−1

T′`,

where ` is the vector of sample eigenvalues. It can be shown that, under normality, ϕ̂ is the MLE of ϕ. The
asymptotic distribution of ϕ̂ under general conditions was obtained by Boik (1998). The result is summarized in
Theorem 11.10.

Theorem 11.10 (Distribution of Sample Eigenvalues) . Write the covariance in diagonal form as
Σ = ΓΛΓ′, where the diagonal entries in Λ are sorted from largest to smallest. Then, under mild regularity
conditions, the asymptotic distribution of ϕ̂ is

√
n(ϕ̂−ϕ)

dist−→ N(0,Σϕ,∞), where Σϕ,∞ = lim
N→∞

Σϕ,n,

Σϕ,n = D−1
m T′L′

d(Γ
′ ⊗ Γ′)Ωn(Γ ⊗ Γ)LdTD−1

m , and Dm = Diag(m1,m2, . . . ,mk) = T′T.

Quantities such as δq, the ratio of the sum of the smallest q eigenvalues to the sum of all eigenvalues can be
expressed as

δc,h =
c′ϕ

h′ϕ
,

where c and h are k-vectors of constants. For example, if d = 6, k = 4, and the vector of multiplicities is
m =

(
1 1 1 3

)′
, then the ratio of the sum of the smallest 4 eigenvalues to the sum of all eigenvalues is δc,h,

where c =
(
0 0 1 3

)′
and h =

(
1 1 1 3

)′
. The sample estimator of δc,h is

δ̂c,h =
c′ϕ̂

h′ϕ̃
.

The asymptotic distribution is given in Theorem 11.11.

Theorem 11.11 . Under mild regularity conditions,

√
n(δ̂c,h − δc,h)

dist−→ N
[
0, (h′ϕ)−2c′(Ik − Ph)′Σϕ,∞(Ik − Ph)c

]
, where

Ph = h(h′ϕ)−1ϕ′.

Note that Ph is the projection operator that projects onto R(h) along N (ϕ′).

Large sample confidence intervals for δc,h can be obtained by substituting ϕ̂ for ϕ in the variance term in Theorem
11.11, and then inverting the usual pivotal quantity based on

δ̂c,h ∼̇ N
(
δc,h, σ

2
δ

)
, where σ2

δ =
c′(Ik − Ph)′Σϕ,n(Ik − Ph)c

n(h′ϕ)2
,

and σ2
δ is estimated by σ̂2

δ =
c′(Ik − P̂h)′Σ̂ϕ,n(Ik − P̂h)c

n(h′ϕ̂)2
.
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11.4 PRINCIPAL COMPONENT SCORES

Consider the model
Y = XB + U,

where Y is an N × d random matrix with dispersion (Σ⊗ IN ); X is a known N × p design matrix with rank r; and
B is a p× d matrix of unknown regression coefficients. The usual unbiased estimator of Σ is

S =
1

n
Y′(IN − Hx)Y,

where Hx = ppo(X) and n = N − r. It is of interest to compute an N × d matrix, Z, of PC scores (i.e., principal
components)

11.4.1 Raw PC Scores

Let
Σ = ΓΛΓ′

be the diagonal form of Σ, where the diagonal entries in Λ are ordered from largest to smallest;
λ1 ≥ λ2 ≥ · · · ≥ λd. The usual estimator of these quantities is obtained by computing the diagonal form of S:

S = GLG′,

where L is the diagonal matrix containing the ordered sample eigenvalues of S and G is the corresponding matrix
of sample eigenvectors of S.

There are several sets of PC scores that one could compute. Here are two possibilities:

Z1 = (Y − XB)Γ and

Z2 = (Y − XB)ΓΛ− 1
2 .

The moments of these principal components are the following:

E(Z1) = 0; Disp(Z1) = (Λ ⊗ IN ); Cov[vec(Y), vec(Z1)] = (ΓΛ ⊗ IN )

E(Z2) = 0; Disp(Z2) = INd; and Cov[vec(Y), vec(Z2)] = (ΓΛ
1
2 ⊗ IN ).

The second set of scores, Z2, contains the same information as the first set, Z1. The scaling of Z2 is performed so
that scores are equally variable.

The usual predictors of these scores are obtained by substituting estimators for the unknown quantities:

Ẑ1 = (I − Hx)YG and

Ẑ2 = (I − Hx)YGL− 1
2 .

11.4.2 Standardized PC Scores

Often, PCA is performed on the correlation matrix rather than on the covariance matrix. The population
correlation matrix is

R = D− 1
2 ΣD− 1

2 ,

where D = Diag(Σ); i.e., a diagonal matrix containing the variances of the d variables on the diagonal. The usual
estimator of R is

R̂ = D̂− 1
2 SD̂− 1

2 ,

where D = Diag(S).
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Let
R = ΓΛΓ′

be the diagonal form of R, where the diagonal entries in Λ are ordered from largest to smallest; λ1 ≥ λ2 ≥ · · · ≥ λd.
The usual estimator of these quantities is given by the diagonal form of the sample correlation matrix:

R̂ = GLG′.

Two sets of PC scores, analogous to Z1 and Z2, can be computed:

Z3 = FΓ and

Z4 = FΓΛ− 1
2 ,

where F = (Y − XB)D− 1
2 . Note that Disp(F) = (R ⊗ In). The moments of these principal components are the

following:

E(Z3) = 0; Disp(Z3) = (Λ ⊗ IN ); Cov[vec(F), vec(Z3)] = (ΓΛ ⊗ IN )

E(Z4) = 0; Disp(Z4) = INd; and Cov[vec(F), vec(Z4)] = (ΓΛ
1
2 ⊗ IN ).

Caution, Γ and Λ refer to eigenvectors and -values of the correlation matrix. These are not the same quantities
that appear in the moments of Z1 and Z2. Also, note that Corr[vec(F), vec(Z4)] = (ΓΛ

1
2 ⊗ IN ). The matrix ΓΛ

1
2

represents the correlations between the standardized data (rows of F) and the PC scores. It is sometimes called the
Factor Loading Matrix. Rencher (2002) cautions against interpreting PCs by using the Factor Loading matrix. The
second set of scores, Z4, contains the same information as the first set, Z3.

The usual predictors of these scores are obtained by substituting estimators for the unknown quantities:

Ẑ3 = (I − Hx)YD̂− 1
2 G and

Ẑ4 = (I − Hx)YD̂− 1
2 GL− 1

2 .

11.5 COMMON PRINCIPAL COMPONENTS AND
GENERALIZATIONS

11.5.1 References

Boik, R. J. (2002). Spectral models for covariance matrices. Biometrika, 89, 159–182.

Flury, B. (1988). Common Principal Components and Related Multivariate Models. New York: John Wiley &
Sons.

11.5.2 The CPC Model

Suppose that a sample of size Ni is obtained from each of k populations. On each case, a d dimensional random
vector is observed. One model for this data is

Y = XB + U, where Y =




Y1

Y2

...
Yk


 , Disp(Yi) = Σi ⊗ IN ,

and Yi is the Ni × d matrix of observations from the ith population. Flury’s common principal components (CPC)
model for the heterogeneous covariance matrices is

Σi = ΓΛiΓ
′ for i = 1, . . . , k.
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By modeling the covariance matrices, the number of parameters has been reduced from kd(d+ 1)/2 to
d(d− 1)/2 + dk. The model is called common principal components because the coefficients for the principal
components (i.e., the columns of Γ) are common across populations.

As an example, consider the following parameters from three populations:

Γ =

(
−0.5115 0.8593

0.8593 0.5115

)
,

µ1 =

(
1.7409
1.2074

)
, λ1 =

(
0.3503
0.1029

)
=⇒ Σ1 =

(
0.1676 −0.1087

−0.1087 0.2855

)
,

µ2 =

(
−0.0658

0.7613

)
, λ2 =

(
0.0378
0.0362

)
=⇒ Σ2 =

(
0.0366 −0.0007

−0.0007 0.0373

)
,

µ3 =

(
−0.5418
−0.0965

)
, and λ3 =

(
1.0068
0.0036

)
=⇒ Σ3 =

(
0.2660 −0.4409

−0.4409 0.7443

)
.

The covariance matrices are plotted below.
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Note that the three ellipses are aligned. This occurs because the three covariance matrices share the same
eigenvectors. It is the eigenvectors that determine the orientation of the plots. The magnitude of the major and
minor axes differ among the three ellipses. This occurs because the eigenvalues differ among the three covariance
matrices. The eigenvalues determine the shape of the ellipses.

Flury derived an algorithm for computing MLEs of the parameters under normality. Also, he derived the
asymptotic distribution of the MLEs and a likelihood ratio test of H1 : Σi = ΓΛiΓ

′ against Ha : Σi > 0.
In partial common principal components, only q of the d components are common. The remainder are

population-specific. In the common space model, all components are population-specific, but q of the d components
in each population share the same eigenspace.

11.5.3 Extensions of the CPC Model

Boik (2002) extended Flury’s model in the following manner:



100 CHAPTER 11. PRINCIPAL COMPONENTS

1. The eigenvalues of the k covariance matrices are modeled to allow for arbitrary multiplicities and to allow
relationships among eigenvalues from the k populations.

2. The eigenvectors from any set of the k populations are allowed to (a) be distinct and functionally
independent, (b) share the same eigenspace, or (c) be identical. The eigenvalues that correspond to these sets
can be ordered or unordered.

3. Second-order asymptotic distributions were derived for all parameter estimators under normality and
first-order distributions were derived under nonnormality.

4. Bartlett corrections were derived for performing model comparison tests using the likelihood ratio test
statistic.

5. The asymptotic null distribution of the likelihood ratio test statistic was obtained without assuming
normality.

11.6 HOTELLING’S POWER ALGORITHM

Suppose we desire the maximum root and associated vector of a psd matrix A. Write A in diagonal form as
A = UΛU′.

Theorem 11.12 Randomly choose a d× 1 vector and denote the vector by t0. Define ti+1

ti+1 =
Ati√
t′iA

2ti

.

Then as i→ ∞, ti+1 converges to u1 provided that λ1 > λ2.

Proof: HW.

To obtain the jth largest component, the above iterative method is used but A is replaced by

Aj−1 = A −
j−1∑

i=1

λiuiu
′
i.

11.7 SINGULAR VALUE DECOMPOSITION

Let Y be any real a× b matrix of rank r ≤ min(a, b). Eckart and Young (1936, Psychometrika, 1, 211–218) showed
that Y can be written as Y = UΛV′ where U is a× r, U′U = Ir, V is b× r, V′V = Ir, Λ is an r × r diagonal
matrix having positive entries on the diagonal, and λ1 ≥ λ2 ≥ . . . ≥ λr. If the λi’s are distinct, the decomposition
can be made to be unique by imposing identifiability restriction on U or V. For example, one suitable set of
restrictions requires that the first non-zero entry in each column of U be positive. The expression Y = UΛV′ is
called the singular value decomposition (SVD) of Y. The λi’s are called the singular values.

The SVD of Y can be obtained as follows. The columns of U are the ch. vectors of YY′. The columns of V
are the ch. vectors of Y′Y. The nonzero roots of YY′ and Y′Y are the squares of the λi’s. That is

YY′ = UΛ2U′ and Y′Y = VΛ2V′.

The rank-m matrix, for m ≤ r, which minimizes ‖Y − M‖2
is given by

M =

m∑

i=1

λiuiv
′
i.

The Moore-Penrose inverse of Y, say Y+ is Y+ = VΛ−1U′.
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11.8 BIPLOTS

If Y can be approximated fairly well by a rank two matrix, then the matrix can be plotted in two-dimensional
space. Suppose Y ≈ RC′ for R : a× 2 and C : b× 2. Then the rows of R and C can be plotted in 2-space. Gabriel
has suggestions on how to choose R and C and how to interpret them.
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Chapter 12

FACTOR ANALYSIS

12.1 THE FACTOR ANALYSIS MODEL

The basic FA model can be written as follows:

y = µ+ Γf + ε,

where y is a d× 1 random vector; Γ is an unknown d×m matrix of constants; f is an m× 1 unobserved random
vector having mean 0 and dispersion Σf ; ε is a d× 1 unobserved random “error” vector having mean 0 and
diagonal dispersion Ψ; and cov(f , ε) = 0. The problem is to estimate Ψ, Γ and sometimes to predict f . Without
loss of generality it can be assumed that Σf = Im. In this case,

y ∼ (µ,ΓΓ′ + Ψ).

The parameter estimation problem is to use the sample covariance matrix, S, to estimate Γ and Ψ.
The matrix Γ is called the factor loading matrix. For Σf = Im, it is easy to show that

cov(y, f) = Γ.

12.2 THE PROBLEM OF NON-UNIQUENESS

12.2.1 Maximum Number of Unique Factors

The covariance matrix Σ has d(d+ 1)/2 parameters. The factor model ΓΓ′ + Ψ has md−m(m− 1)/2 + d
parameters. The quantity m(m− 1)/2 represents the number of entries of Γ that can be annihilated by
postmultiplying by an orthogonal matrix. That is ΓΓ′ = ΓQQ′Γ′, where Q is any orthogonal matrix. The
orthogonal matrix that annihilates entries in Γ can be computed using the QR decomposition:

Γ′ = QR,

where Q is orthogonal and R is upper triangular. Thus ΓQ = R′ is lower triangular; the m(m− 1)/2 entries in the
upper right-hand corner of Γ have been annihilated. Thus, a necessary condition for uniqueness is that
d(d+ 1)/2 ≥ md−m(m− 1)/2 + d or, equivalently,

m ≤ 2d+ 1 −
√

8d− 1

2
.

The degrees of freedom remaining after fitting an m factor model are

df =
d(d+ 1)

2
−md+

m(m− 1)

2
− d =

(d−m)2 − (d+m)

2
.

Below is a table of maximum values of m for selected values of d.
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d maxm
1 0
2 0
3 1
4 1
5 2
6 3
7 3
8 4
9 5
10 6

12.2.2 Rotation Indeterminacy

Let T be any orthogonal matrix of order m. Let Γ∗ = ΓT and f∗ = T′f . Then

y = µ+ Γf + ε⇐⇒ y = µ+ Γ∗f∗ + ε,

var(f∗) = I, and var(y) = Γ∗Γ∗′ + Ψ = ΓΓ′ + Ψ.

The problem of arbitrary orthogonal rotation is dealt with in two ways. During the estimation phase (when

ML estimation is used), it is required that Γ̂′Ψ̂−1Γ̂ be a diagonal matrix. This is equivalent to choosing T to be

the matrix of ch. vectors of Γ̂′Ψ−1Γ̂ and replacing Γ̂ by Γ̂T.
After the estimation phase, an alternative T can be used. Let Γ∗ = ΓT for some T. One strategy is to choose

T so that the factor loading matrix Γ∗ has a simple structure. One such structure is when each column of Γ∗ has
entries which are either near zero or large in absolute value. In this case, the interpretation of the factor is
simplified. To find the T which yields this “simple structure”, the varimax criterion often is used. Write Γ∗ as
Γ∗ = {γ∗ij}. Let gij = γ∗ij

2 and define G : d×m as G = {gij}. Let V : m×m be the “covariance” matrix for the
columns of G. That is

V =
G′(Id − H1)G

d− 1
,

where H1 = ppo(1d). The varimax criterion chooses T such that tr(V) is maximized.
An alternative criteria is quartimax in which the variance within the rows of G is maximized. That is, the

orthogonal matrix T is chosen to maximize tr(V∗), where

V∗ =
G(Im − H1)G

′

m− 1
,

where H1 = ppo(1m). It can be shown that G1m does not depend on T so T can be chosen to maximize tr(GG′).

12.3 PRINCIPAL COMPONENTS VERSUS FACTOR ANALYSIS

The two procedures, PCA and FA, are often confused. To see how they differ, write Σ in diagonal form as
Σ = ΓΛΓ′ where Λ has the ordered roots on the diagonal. Partition Γ as Γ =

(
Γ1 Γ2

)
, where Γ1 has dimension

d×m. Let Λ1 : m×m be the upper left-hand corner matrix of Λ and let Λ2 be the lower right-hand corner matrix
of λ.

Using principal components, the best m-dimensional approximation to y is

ŷ = µ+ A(y − µ),

where A = Γ1Γ
′
1. The associated model is

y = µ+ Γ1z1 + ε,

where z1 = Γ′
1(y − µ). An equivalent model can be obtained by letting Γ∗

1 = Γ1Λ
1
2
1 and f = Λ

− 1
2

1 z1 so that

y = µ+ Γ∗
1f + ε.
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This looks much like the FA model. As in the FA model, the factors have an identity covariance matrix and
are uncorrelated with the residuals:

var(f) = var[Λ
− 1

2
1 Γ′

1(y − µ)] = Im,

and
cov(f , ε) = cov[Λ

− 1
2

1 Γ′
1(y − µ),Γ2Γ

′
2(y − µ)] = Λ

− 1
2

1 Γ′
1ΣΓ2Γ

′
2 = 0.

Note, however, that the covariance matrix for the errors is not diagonal:

var(ε) = Γ2Λ2Γ
′
2.

Thus, the “factors” obtained from principal components do not explain the entire covariance structure.

12.4 MAXIMUM LIKELIHOOD ESTIMATION

Suppose that Y is a random N × d matrix that follows the linear model

Y = XB + U, where vec(U) ∼ N(0,Σ ⊗ IN ),

X is an N × p matrix of constants, and rank(X) = r. Denote the usual estimator of Σ by S. That is,

S =
1

n
Y′(IN − Hx)Y, where n = N − r and Hx = ppo(X).

If the factor model holds, then
nS ∼ Wd(n,Σ), where Σ = ΓΓ′ + Ψ.

The MLE’s of Γ and Ψ are those that maximize

L(Γ,Ψ|S) = −n
2

ln |ΓΓ′ + Ψ| − n

2
tr[S(ΓΓ′ + Ψ)

−1
].

Setting the derivatives to zero yields the equations

SΨ̂−1Γ̂ = Γ̂(Γ̂′Ψ̂−1Γ̂ + I)

and
Ψ̂ = diag(S − Γ̂Γ̂′).

To obtain a unique solution, the restriction that Γ̂′Ψ̂−1Γ̂ is diagonal is imposed.
One appealing property of the MLE approach is that the solution is equivariant with respect to the scale

employed. Equivariant estimators satisfy the following property — if Γ̂ and Ψ̂ are mles based on the sample
covariance matrix and if V is a diagonal matrix, then the mles based on VSV are Γ̂∗ = VΓ̂ and Ψ̂∗ = VΨ̂V. In
particular, the MLEs based on a covariance and the MLEs based on a correlation matrix are simple functions of
one another. That the MLEs are equivariant with respect to scale can be seen by examining the LR criterion.
Suppose that Γ̂ and Ψ̂ maximize L(Γ,Ψ|S) and Γ̂′Ψ̂−1Γ̂ is diagonal. Let R = DSD where D is a positive definite

diagonal matrix. If D is defined by D = [diag(S)]
− 1

2 , then R is the sample correlation matrix.
Substituting R for S in the likelihood function yields

L(Γr,Ψr|R) = − ln |ΓrΓ
′
r + Ψr| − tr[R(ΓrΓ

′
r + Ψr)

−1
]

= − ln |D−1ΓrΓ
′
rD

−1 + D−1ΨrD
−1| − tr[S(D−1ΓrΓ

′
rD

−1 + D−1ΨrD
−1)

−1
]

−2 ln |D|
= − ln |Γ∗Γ∗′ + Ψ∗| − tr[S(Γ∗Γ∗′ + Ψ∗)

−1
] − 2 ln |D|,

where Γ∗ = D−1Γr and Ψ∗ = D−1ΨrD
−1. Because ln |D| is constant with respect to Γ and Ψ, the likelihood

function is maximized by
Γ̂∗ = Γ̂ =⇒ Γ̂r = DΓ̂

and
Ψ̂∗ = Ψ̂ =⇒ Ψ̂r = DΨ̂D.

Note also that Γ̂′
rΨ̂

−1
r Γ̂r = Γ̂′Ψ̂−1Γ̂ so the diagonal restriction is satisfied.

To test goodness of fit, one can test H0 : Σ = ΓΓ′ + Ψ against Ha : Σ > 0. The degrees of freedom for the LR
test are [(d−m)2 − (d+m)]/2. Why?
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12.5 PRINCIPAL FACTOR ANALYSIS

The principal factor solution is the minimizer of tr[(S − Σ)2] subject to Σ = ΓΓ′ + Ψ. That is, the model is the
same as before but a different criterion (least squares loss function) is used. In the ith iteration, the principal factor

routine finds the largest m roots and associated vectors of S − Ψ̂i. A reasonable initial guess, Ψ̂0 consists of the
inverse of the diagonal elements of S−1.

12.6 ESTIMATING (PREDICTING) FACTOR SCORES

12.6.1 Prediction Approach

If f were fixed, then the model for (y − µ) would be

(y − µ) ∼ (Γf ,Ψ).

For known Γ, Ψ, and µ the generalized least squares estimator of f would be

f̂ = (Γ′Ψ−1Γ)
−1

Γ′Ψ−1(y − µ).

In practice, estimates of Γ, Ψ, and µ would be used.
Of course, f is not fixed. It is a random vector. Thus, the problem is to predict f from y rather than to

estimate f . To make such predictions, we need a criterion for judging how good a predictor is. Consider a pair of
random vectors U and Y having joint density function f(u,y). Given Y = y, the goal is to predict u. The
predictor û = h(y) is called the best predictor if it minimizes the mean square error of prediction:

MSE(û) = E[(u − û)′A(u − û)]

=

∫ ∫
(u − û)′A(u − û)f(u,y) du dy,

where A is a positive definite matrix (e.g., the inverse of a covariance matrix).

Theorem 12.1 (Best Prediction) The best predictor of U given that Y = y has been observed is
û = E(U|Y = y).
Outline of Proof: Write f(u,y) as

f(u,y) = g(u|y) ×m(y),

where g(u|y) is the conditional density of U given Y = y and m(y) is the marginal density of Y. To minimize
MSE, consider minimizing MSE for each realization of Y. For fixed Y = y, note that û is a constant.

It is easy to show that E(û) = E(U) so that the best predictor is unbiased. Note that the joint density f(u,y)
need not be normal.

For the FA problem, suppose that
(y − µ)|f ,Γ,Ψ ∼ N(Γf ,Ψ),

and
f ∼ N(0, Im).

Then it can be shown (problem 5.17 in Seber) that

f |y,Γ,Ψ,µ ∼ N
[
(I + Γ′Ψ−1Γ)

−1
Γ′Ψ−1(y − µ), (I + Γ′Ψ−1Γ)

−1
]
.

The best predictor of f given that we have observed y is

f̂ = (I + Γ′Ψ−1Γ)
−1

Γ′Ψ−1(y − µ).

In practice, estimates of Γ, Ψ, and µ would be used.

12.6.2 Regression Approach

Rencher (2002) describes a regression method for “estimating” factor scores. If S is replaced by Γ̂Γ̂′ + Ψ̂, then the
regression approach is identical to the prediction approach.
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CLUSTER ANALYSIS

1. Distances: The distance between two objects, a and b, is denoted by d(a, b). The distance must satisfy the
following four properties

(a) d(a, a) = 0

(b) d(a, b) > 0 if a 6= b

(c) d(a, b) = d(b, a)

(d) d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality)

2. Distance measures in cluster analysis

(a) Distance between cases

i. Euclidean distance: d(xr,xs) =
√

(xr − xs)′(xr − xs). This is the default in proc cluster.

ii. Euclidean distance on standardized measures: d(xr,xs) =
√

(zr − zs)′(zr − zs), where zr = {zri}
and zri = (xri − x̄i)/si. This is employed in proc cluster if the standard option is used.

iii. Mahalanobis distance: d(xr,xs) =
√

(xr − xs)′S−1(xr − xs)

iv. Minkowski distance: d(xr,xs) = [
∑p

i=1 |xri − xsi|m]
1
m

(b) Distances between variables

i. d(xi, xj) =
√

1 − rij , where rij is the correlation between variables i and j

ii. d(xi, xj) =
√

1 − r2ij , where rij is the correlation between variables i and j.

3. Hierarchical clustering: divisive techniques

(a) Description of the approach

i. Begin with all n cases (or p variables) belonging to one cluster

ii. Split the cluster into two clusters

iii. Split one of the two clusters into two clusters

iv. Continue splitting until each case (or variable) is its own cluster

(b) Proc cluster does not do divisive clustering

4. Hierarchical clustering: agglomerative techniques

(a) Description of the approach

i. Begin with each case (or variable) being its own cluster

ii. Join the closest two items to form a new cluster. The number of clusters is now n− 1 (or p− 1).

iii. Join the closest two clusters to form a new cluster. The number of clusters is now n− 2 (or p− 2).

iv. Continue joining clusters until one cluster contains all cases (or variables).

(b) Proc cluster will do several variations of agglomerative clustering

i. Method = single. Clusters having nearest neighbors are joined. This method is useful if clusters are
not spherical.

107



108 CHAPTER 13. CLUSTER ANALYSIS

ii. Method = complete. Clusters having nearest far neighbors (furthest neighbors) are joined. The far
neighbor distance is the maximum distance between an object in the first cluster and an object in
the second cluster. This method is useful if clusters are spherical.

iii. Method = average. Clusters having the smallest average distance are joined. This is a compromise
between single and complete linkage.

(c) Non-hierarchical clustering

i. K-means clustering. Begin with K seeds (initial cluster centroids). Assign objects to the closest
seed. Iterate until no further reassignments are made. Proc fastclus does K means clustering.

ii. Other methods: There are many additional procedures including maximum likelihood mixture
model clustering.

(d) Determining the number of clusters

i. Examine the tree structure. Look for natural clusters. Look for breaks in the distance. Look for the
point at which the distance is too large.

ii. Cubic clustering criterion. Look for a peak value of CCC that has value 3 or more. (Simulation
based criterion).

iii. Examine pseudo F and T 2 statistics. These are tests statistics for testing the hypothesis that the
cluster means are identical. These tests do not yield valid p-values because the data are used to
form the cluster in the first place. Nonetheless, they do give indices of how far apart the two clusters
are that were just joined (T 2) and how far apart the g clusters are from each other F ). Small values
of T 2 indicate that the two clusters that were just joined are close together. Large values of F
indicate that the cluster means of the g clusters are far apart.
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CLASSIFICATION TREES
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2. Terminology

(a) Node: possible decision point in the tree

(b) Root: top node

(c) Leaf: terminal node

(d) Subtree of T : a tree whose root is a node of T

(e) Rooted subtree of T : a subtree whose root is the root of T

(f) Grow: split a leaf

(g) Prune: delete one or more subtrees

3. Measures of Leaf Impurity

(a) Deviance (entropy): Let c be the number of classes and let v be the number of leaves. Condition on the
values of the observed variables and denote the conditional probability that an observation is in class k
given that it is at leaf i as p(k|i) = pik. Then, the conditional likelihood is

L(p|Y) =

v∏

i=1

c∏

k=1

pnik

ik ,

where nik is the frequency of class k at leaf i. Deviance is −2 times the log likelihood:

D =

v∑

i=1

Di, where Di = −2

c∑

k=1

nik ln(pik)

and 0 ln(0) = 0. S-plus and R use deviance as a measure of leaf impurity.
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(b) Gini index: An alternative measure of leaf impurity is the Gini index:

G =

v∑

i=1

Gi, where Gi =

c∑

j 6=k

pijpik = 1 −
c∑

k=1

p2
ik.

4. Splitting Rules

(a) S-plus and R allow binary splits only. If a split is made on a categorical variable having m levels, then
there are 2m − 1 possible splits to consider. If a split is made on a numerical variable having m ordered
values, then there are m− 1 possible splits of the form yi < t versus yi ≥ t.

(b) At each step the split that minimizes average impurity (over all leaves) is made. For example, if leaf i is
split into leaf s and leaf t, then the deviance after the split is

D =

v∑

j=1

Dj −Di + (Ds +Dt).

The decrease in deviance due to the split is

Improvement = Di − (Ds +Dt)

= −2

c∑

k=1

[nik ln(pik) − nsk ln(psk) − ntk ln(ptk)]

= −2

c∑

k=1

[
nsk ln

(
pik

psk

)
+ ntk ln

(
pik

ptk

)]
.

Substituting MLEs p̂ik = nik/ni· yields

Improvement = −2
c∑

k=1

[
nsk ln

(
nikns·

ni·nsk

)
+ ntk ln

(
niknt·

ni·ntk

)]
.

Note that − log is a convex function. It is easy to show (using Jensen’s inequality) that the improvement
is non-negative.

(c) Splitting continues until the number of cases reaching each leaf is small (default in S-plus is 10) or if a
leaf is homogeneous (leaf deviance is less than 1% of deviance at root node).

5. Missing Values: Drop a case down the tree as far as possible.

6. Pruning

(a) Strategy: Denote the deviance (or error rate) at leaf i by Ri and let R =
∑v

i=1Ri. The number of leaves
is taken to be the size of the tree. Breiman et al showed that the set of rooted subtrees of T that
minimize a cost/complexity measure

Rα = R− α× size

is nested. That is, a nested set of subtrees is obtained by minimizing Rα for various values of α.

(b) Choice of α

i. AIC

ii. Cross-validation: S-plus will partition the data into 10 sets. A tree is constructed using nine of the
sets and is evaluated using the hold out set. The process is repeated for each set and the results are
averaged over the ten analyses.


