Local Search-Single State method
Hill-Climbing

Lecturett2

Esmaeil Nourani

Local Serach

you need to be able to do four things when you want to
optimize an ill-structure problem:

e Provide one or more initial candidate solutions. This is
known as the initialization procedure.

e Assess the Quality of a candidate solution. This is known as
the assessment procedure.

e Make a Copy of a candidate solution.

e Tweak a candidate solution, which produces a randomly
slightly different candidate solution.

This, plus the Copy operation are collectively known as the
modification procedure.




Hill Climbing

This technique is related to gradient ascent,
but it doesn’t require you to know the
strength of the gradient or even its direction:
you just iteratively test new candidate
solutions in the region of your current
candidate, and adopt the new ones if they’re
better. This enables you to climb up the hill
until you reach local optima.

Gradient Ascent

Algorithm Gradient Ascent

1: x € random initial vector

2: repeat

3: x €x+a* gradient(f (x))

A:until X is the ideal solution or we have run out of time

5: return x




Hill-Climbing

Algorithm Hill-Climbing
1: S & some initial candidate solution initialization Procedure

2: repeat
3: R & Tweak(Copy(S)) Modification Procedure
4: if Quality(R) > Quality(S) then
Assessment and Selection Procedures
5: S<R

6: until S is the ideal solution or we have run out of time
/:return S

Candidate Solution Representation

The initialization, Copy, Tweak, and fitness
assessment functions collectively define the
representation of your candidate solution.
Together they show how your candidate
solution is made up and how it operates.

If you can create the four functions above in a reasonable
fashion, you’re in business.




Candidate Solution

What might a candidate solution look like?

It could be:

a vector; or

an arbitrary-length list of objects; or

an unordered set or

collection of objects; or

a tree; or a graph. Or

any combination of these.

Whatever seems to be appropriate to your problem.

Candidate Solution

* One simple and common representation for
candidate solutions is the same as the one
used in the gradient methods:

a fixed-length vector of real-valued numbers.

Creating a random such vector is easy: just
pick random numbers within your chosen
bounds. If the bounds are min and max
inclusive, and the vector length is I.




Random Real-Value Generator

Algorithm Generate a Random Real-Valued Vector

1: min € minimum desired vector element value
2: max € maximum desired vector element value
3:v € anew vector (v1,v2,...vl)

4: forifrom 1toldo

5: VI € random number chosen uniformly between min and max inclusive

6: return v

What is Tweak

To Tweak a vector we might (as one of many
possibilities) add a small amount of random
noise to each number: in keeping with our
present definition of Twealk, let’s assume for
now that this noise is no larger than a small
value 1.

10




To Tweak a vector

1: v € vector (v1, v2, ...vl) to be modified

2: p € probability of adding noise to an element in the vector " Often p = 1
3: r € half-range of uniform noise

4: min € minimum desired vector element value

5: max € maximum desired vector element value

6: forifrom 1toldo

7: if p2random number chosen uniformly from 0.0 to 1.0 then

8: repeat

9: n €random number chosen uniformly from -r to r inclusive
10: until min £ vi+n < max

11: vi €vi+n

12: returnv

The size of the bound of Tweak is r

Stochastic Procedure

* Notice the strong resemblance between Hill-
Climbing and Gradient Ascent. The only real
difference is that Hill-Climbing’s more general
Tweak operation must instead rely on a
stochastic (partially random) approach to
hunting around for better candidate solutions.
Sometimes it finds worse ones nearby,
sometimes it finds better ones.




Steepest Ascent Hill-Climbing

We can make this algorithm a little more
aggressive: create n “tweaks” to a candidate
solution all at one time, and then adopt the
best one. This modified algorithm is called
Steepest Ascent Hill-Climbing,

Steepest Ascent Hill-Climbing

Algorithm Steepest Ascent Hill-Climbing

1: n € number of tweaks desired to sample the gradient
2: S € some initial candidate solution

3: repeat

4: R € Tweak(Copy(S))

5 forn -1 times do

6: W & Tweak(Copy(S))

7 if Quality(W) > Quality(R) then
8: R €W

9: if Quality(R) > Quality(S) then

10: S €R

11: until S is the ideal solution or we have run out of time
12: return S




The Size of the bound of Tweak

 We know that ris the size of the bound on Tweak.
If the size is very small =

then Hill-Climbing will march right up a local hill and be
unable to make the jump to the next hill because the
bound is too small for it to jump that far. Once it’s on the
top of a hill, everywhere it jumps will be worse than where
it is presently, so it stays put.

if the size is large =

then Hill-Climbing will reject around a lot. Importantly,
when it is near the top of a hill, it will have a difficult time
converging to the peak, as most of its moves will be so large
as to overshoot the peak.

15

Exploration < —> Exploitation

* Notice how similar this is to a(step) used in
Gradient Ascent. This is one way of controlling
the degree of Exploration versus Exploitation in
our Hill-Climber.

e Optimization algorithms which make largely local
improvements are exploiting the local gradient,
and

e Optimization algorithms which mostly wander
about randomly are thought to explore the space.

16




The “uglier” the space, the more you will have

no choice but to use a more explorative
algorithm.

17

Single-State Global Optimization
Algorithms

A global optimization algorithm is one which, if we

run it long enough, will eventually find the global
optimum.

The single-state algorithms we’ve seen so far cannot
guarantee this.

Tweak may not be strong enough to get us out of it.
Thus the algorithms so far have been local
optimization algorithms.

18




Random Search

* Algorithm to find the global optimum = simplest one
- Random Search

e Algorithm Random Search

1: Best € some initial random candidate solution

2: repeat

3: S € a random candidate solution

4: if Quality(S) > Quality(Best) then

5: Best €S

6: until Best is the ideal solution or we have run out of time
/: return Best

19

Random Search is the extreme in exploration
(and global optimization); in contrast, Hill-
Climbing , with Tweak set to just make very
small changes and never make large ones,
may be viewed as the extreme in exploitation
(and local optimization)

20




Local/global

But there are ways to achieve reasonable
exploitation and still have a global algorithm.

Iterative Hill-Climbing

Algorithm Hill-Climbing with Random Restarts

1: T & distribution of possible time intervals

2: S € some initial random candidate solution

3: Best €S

4: repeat

5 time € random time in the near future, chosen from T
6 repeat

7: R €Tweak(Copy(S))
8 if Quality(R) > Quality(S) then

9: S €R

10: until Sis the ideal solution, or time is up, or we have run out of total time
11: if Quality(S) > Quality(Best) then

12: Best €S

13: S € some random candidate solution

14: until S is the ideal solution or we have run out of total time

15: return Best




Numerical Test

Hill-Climbing is close to optimal, and where

Random Search is a very bad pick. Unimiadal

Hill-Climbing is quite bad Random Search is
expected to be very good

23

Smoothness criterion

The difference is that in Unimodal there is a strong
relationship between the distance (along the x
axis) of two candidate solutions and their
relationship in quality: similar solutions are
generally similar in quality.

In the Noisy situation, there’s no relationship like
this: even similar solutions are very dissimilar in
quality. This is often known as the smoothness
criterion for local search to be effective.

24




Numerical Test

. MNaadle in a Haysiack
Random Search is the only real way to go,

and Hill-Climbing is quite poor.
“It is pretty smooth”

Deceotive

Hill-Climbing not only will not easily find the
optimum, but it is actively let away from the
optimum.
2

5

Exploration versus Exploitation

you’d like to use a highly exploitative
algorithm (it’s fastest), but

the “uglier” the space, the more you will have
no choice but to use a more explorative
algorithm.

26




Global Optimization

* Adjust the Modification Procedure

* Exploration vs. Exploitation The more large, random changes, the more
exploration.

e o Adjust the Selection Procedure

* Exploration vs. Exploitation The more often you go down hills, the more
exploration.

* ¢ Jump to Something New

* Exploration vs. Exploitation The more frequently you restart, the more
exploration.

e o Use a Large Sample Try many candidate solutions in parallel.

* Exploration vs. Exploitation More parallel candidate solutions, more
exploration.

27

Adjusting the Modification Procedure

&
T

Frl;\h re 7 Three Mormal or Gaussian distributions

hl u, 0% ) with the mean § = L‘I and the varance

ﬂ" st to o= = 0.005: 7 =002 ———, and
=01----

28




Adjusting the Modification Procedure

Algorithm Gaussian Convolution

: lv € vector (v1, v2, ...vl) to be convolved

: p € probability of adding noise to an element in the vector " Oftenp =1
: o2 €variance of Normal distribution to convolve " Normal = Gaussian
: min € minimum desired vector element value

: max €maximum desired vector element value

ua b WN B

(o))

:forifrom1toldo
if p > random number chosen uniformly
from 0.0 to 1.0 then

8: repeat

9: n € random number chosen from the Normal
distribution N(0, o?)

10: until min < vi+n < max

11: vi €vi+n

12: returnv

N

Ref

» Slides adapted from Advanced Algorithms
course, presented by Dr. kourosh ziarati




