صبح پنج شنبه		د مملکت اصلاح می شود.	اگر دانشگا: اصلاح شو
10/11/1+	جمهوری اسلامی ایران رت علوم، تحقیقات و فنّاوری ازمان سنجش آموزش کشور	امامخمینی(ره) وزا	
	رمسون ورودی	Ĩ	
يته داخل	یناسی ارشد ناپیوس	ر مهای کار ش	دور
	1848 71		
	علوم کامپیوتر (کد ۱۲۰۹)		
	شمارەداوطلبى:	انوادگی داوطلب:	انام و نام خ
	مدت پاسخگويم		تعداد سؤال

- 12

10

۲ دروس پایه (ریاضی او۲، آمار و احتمال، ۲۰ ۳۰ ۳۰ مبانی کامپیوتر) ۰ ۱۵ ۱۷ ۵۸ ۳ ریاضیات گسسته ۱۵ ۱۷ ۵۸ ۳ ریاضیات گسسته ۱۵ ۱۷ ۵۸ ۹ ساختمان دادهها و الگوریتمها ۵۱ ۱۵ ۸۸ ۰۰ ۵ ۱۰۰ ۱۵ ۵۱ ۱۰ ۱۰ ۱۰ ۵ ۱۰۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۵ ۱۰۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۹ ساختمان دادهها و الگوریتمها ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۵ ۱۰۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۹ نظریه اتوماتا و زبانها ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۲ آنالیز عددی ۱۳ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۲ آنالیز عددی ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۲ آنالیز عددی ۱۰ ۱۰ ۱۰		۳۰	1	٣.	زبان عمومى و تخصصى	١
۲ ریاضیات گسسته ۸۵ ۷۱ ۵۸ ۶ ساختمان دادهها و الگوریتمها ۵۱ ۸۵ ۹۰۰ ۵ اصول سیستمهای کامپیوتری ۵۱ ۱۰۱ ۱۵ ۱۰۱ ۵ اصول سیستمهای کامپیوتری ۵۱ ۱۰۰ ۱۰۰ ۱۰۰ ۲ نظریه اتوماتا و زبانها ۱۵ ۱۰۰ ۱۰۰ ۱۰۰ ۷ آنالیز عددی ۱۳۱ ۱۵ ۱۳۱ ۱۰۰		Y٥	۳۱	F0		۲
۲ ۲ ۲ ۲ ٩ ١٠٠ ١٥ ٩ ١٠٠ ٩ ٩ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٩ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٩ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٩ ١٢٥ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٩ ١٢٥ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ١٠٠ ٢				·	مبانی کامپیوتر)	-
۵ اصول سیستمهای کامپیوتری ۱۵ ۱۰۱ ۱۱۱ ۶ نظریه اتوماتا و زبانها ۱۳۰ ۱۳۰ ۱۳۰ ۲ آنالیز عددی ۱۳۱ ۱۵ ۱۳۱ اسفند ماه سال ۱۳۵ اسفند ماه سال ۱۳۵		10	٧١	10	رياضيات گسسته	٣
 ۶ نظریه اتوماتا و زبانها ۱۳۰ ۱۵ ۱۳۱ ۱۳۱ ۱۵ ۱۳۵ ۱۳۱ ۱۳۸۵ ۱۳۹ 		100	٨۶	10	ساختمان دادهها و الگوريتمها	۴
۲۰ آنالیز عددی ۱۴۵ ۱۳۱ ۱۵ ۱۳۱ ۱۹۵ ۲۰۱۰ اسفند ماه سال ۱۳۸۵		110	101	10	اصول سیستمهای کامپیوتری	۵
اسفند ماه سال ۱۳۸۵		150	118	10	نظريه اتوماتا و زبانها	۶
	-	180	151	10	آنالیز عددی	۷
استفاده از ماشین حساب مجاز نمی باشد.				18401	اسفند ماه سا	
				ب مجاز نمیباشد.	استفاده از ماشین حسا،	

.

ł

٣

۱ مفحه ۱ مفحه

زبان انگلیسی عمومی

Part A: Vocabulary and Grammar

<u>Directions</u>: Choose the number of the answer (1), (2), (3), or (4) that best completes the sentence. Then mark your choice on your answer sheet.

Governments usually ------ freedom of movement into and out of the country in time of 1war. 3) restrict 4) simulate 2) induce 1) detect You can only come on the school trip if your parents give their written ------. 2-3) criterion 4) inclination 2) consent 1) device The government ------ that the buildings would not be redeveloped in the historical parts of 3the town. 3) committed 4) undertook 2) confronted 1) tackled She intends to ------ a medical career, but her father would like her to study law. 4-4) pursue 3) aspire 2) resolve 1) engage Students can be expelled at the ----- of the head teacher, and they cannot return to school 5within a year after expulsion. 3) alternative 4) discretion 1) foresight 2) judgement The war would have ended if the enemy planes had not ----- the cease-fire agreement. 6-3) exceeded 4) attributed 2) enforced 1) violated Maths is a(n) ----- part of the school curriculum almost anywhere in the world. 7-4) simultaneous 3) concurrent 2) intrinsic 1) eventual He said that if the annual floods got ----- worse they would have to leave the area. 8-

1) any2) more3) very4) enough9-They asked the students not ----- in the building once they had finished the test.
1) stay2) stayed3) to stay4) staying

10-He had two of his teeth ----- at the dentist's round the corner.1) extract2) extracted3) extracting4) were extracted

Part B: Cloze Test

<u>Directions</u>: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each blank. Then mark your choice on your answer sheet.

Two sailors were missing at sea after two Greek-flagged ships (11) ------ off the western coast of Turkey and one of them sank. Ten sailors (12) ------ board the sailing ship were rescued. The *Pel Mariner* sank after it hit the *Pel Ranger* (13) ------ seven miles off Turkey's western coast. Anatolian news agency quoted officials (14) ----- heavy fog could have played a part in the accident (15) ------ the Dardanelles Strait.

11-	1) collided	
12-	1) in	
13-	1) all	
14-	1) say	
15-	1) near	

colliding
 on
 with
 said
 was near

3) that collided
 3) over
 3) some
 3) saying
 3) to be near

4) were collided
 4) above
 4) every
 4) were saying
 4) it was near

PART C: Reading Comprehension

Directions: Read the following two passages and answer the questions 16-20 by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

If two expressions E_1 and E_2 are linked by the symbol of equality, an equation $E_1 = E_2$ arises. Hear E_1 is called the left-hand side, and E2 the right-hand side, of the equation. The domain of definition of an equation is the intersection of the domains of definition of all the expressions with variables occurring in it.

An equation whose expressions do not contain variables is a proposition in the sense of mathematical logic, which can be true or false; for example, 3+2=5 and $3\times(5+2)=20+1$ are true propositions, while $2+3\times4=15$ is a false proposition. But if the expressions contain variables, then the equation is a predicate, for example, the equations 3x = -12, 4a + 3b = 1 or $x^2 = \frac{(6x + 24)}{3}$. Only after numbers from the domain of

definition of the equation are substituted for the variables, the predicate becomes a proposition, which may be true or false.

Every number from the domain of definition of an equation with a single variable which after substitution for the variable makes the equation into a true proposition is called a solution of the equation, and one also says that the number solves or satisfies the equation. If an equation contains two, three, ..., or n variables, then a solution is an ordered pair, triple, ..., or n-tuple of numbers with the following property: if the variables are replaced with due regard to the order by the elements of the ordered pair, triple, ..., or n-tuple then the equation goes over into a true proposition of equality.

The predicate will ------, after the numbers are substituted for the variables. 16-

1) be nullified

2) turn into an equation

4) have the value true or false

3) not be a proposition any more

An equation is one that always contains -----17-

1) a symbol with two sides for propositions

2) at least two sides linked by a symbol

3) at least two expressions along with a symbol

4) two expressions appearing in the two sides of a symbol

Proposition means an equation having ------. 18-

1) numbers and variables, the values of which can be determined

- 2) no variable at all
- 3) a logic and a reasonable value
- 4) variables only
- If an equation contains a number of variables, then a solution for the equation ------. 19-
 - 1) turns the equation into a true proposition
 - 2) is obtained by substitution for any one of the variables
 - 3) is obtained by substitution for all the variables
 - 4) turns the equation into a predicate
- A proposition ------. 20-
 - 1) is a predicate having no variable
 - 3) has always a false value

- 2) has always a true value
- 4) is proposed for the stations of an equation

Read the following and answer questions 21-25:

Khawarizmi was a mathematician, astronomer and geographer. He was perhaps one of the greatest mathematicians who ever lived, as, in fact he was the founder of several branches and basic concepts of mathematics. He influenced mathematical thought to a greater extent than any other mediaeval writer. His work on algebra was outstanding, as he not only initiated the subject in a systematic form but he also developed it to the extent of giving analytical solutions of linear and quadratic equations, which established him as the founder of Algebra. The very name Algebra has been derived from his famous book Al-Jabr waal-Mugabilah. His arithmetic synthesized Greek and Hindu knowledge also contained his own contribution of fundamental importance to mathematics and science. Thus, he explained the use of zero, a numeral of fundamental importance developed by the Arabs. Similarly, he developed the decimal system so that the overall system of numerals, 'algorithm' or 'algorizm' is named after him.

In addition to introducing the Indian system of numerals (now generally known as Arabic numerals), he developed at length several arithmetical procedures, including operations on fractions. It was through his work that the system of numerals was first introduced to Arabs and later to Europe, through its translations in European languages. He developed in detail trigonometric tables containing the sine functions, which were probably extrapolated to tangent functions by Maslama. He also perfected the geometric representation of conic sections and developed the calculus of two errors, which practically led him to the concept of differentiation. He is also reported to have collaborated in the degree measurements ordered by Mamun al-Rashid which were aimed at measuring the volume and circumference of the earth.

The influence of Khawarizmi on the growth of science, in general, and mathematics, astronomy and geography in particular, is well established in history. Several of his books were readily translated into a number of other languages, and, in fact, constituted the university text-books till the 16th century. His approach was systematic and logical, and not only did he bring together the then prevailing knowledge on various branches of science, particularly mathematics, but also enriched it through his original contribution.

Khawarizmi -----. 21-

1) explained that the number zero can be used to describe algorithms

2) proved that the number zero has a fundamental importance

3) invented the number zero

4) described the role of zero and its usage in mathematics

The derivation ----- due to Khawarizmi. 22-

1) of the term algorithm but not algebra is

- 2) of the term algebra but not algorithm is
- 3) of the terms algebra and algorithm are both
- 4) of neither the term algebra nor the term algorithm is

In history, Khawarizmi is known to have -----. 23-

1) established general science

2) contributed to the growth of science, mathematics, astronomy and geography

- 3) established mathematics, astronomy and geography
- 4) influenced the growth of general knowledge
- Differentiation is a concept which was practically discovered by -----24-
 - 3) Khawarizmi 4) Europeans 2) Arabs 1) Hindus
- Khawarizmi is known ------. 25-
 - 1) mostly for his pioneer work on knowledge development, in general
 - 2) mostly for his development of numerals and trigonometry
 - 3) for his systematic and logical approach to various fields of science, and his contribution for their enrichment
 - 4) for his criticism of mediaeval scholars

Read the following and answer questions 26-30:

Applications of Data Networks

With the proliferation of computes referred to above, it is not difficult to imagine a growing need for data communication. A brief description of several applications requiring communication will help in understanding the basic problems that arise with data networks.

First, there are many applications centered on remote accessing of central storage facilities and of data bases. One common example is that of a local area network in which a number of workstations without disk storage use one or more common file servers to access files. Other examples are the information services and financial services available to personal computer users. More sophisticated examples, requiring many interactions between the remote site and the data base and its associated programs, include remote computerized medical diagnoses and remote computer-aided education. In some of these examples, there is a cost trade-off between maintaining the data base wherever it might be required and the communication cost of remotely accessing it as required. In other examples, in which the data base is rapidly changing, there is no alternative to communication between the remote sites and the central data base.

Next, there are many applications involving the remote updating of data bases, perhaps in addition to accessing the data. Airline reservation systems, automatic teller machines, inventory control systems, automated order entry systems, and word processing with a set of geographically distributed authors provide a number of examples. Weather tracking systems and military early warning systems are large-scale examples. In general, for applications of this type, there are many geographically separated points at which data enter the system and often many geographically separated points at which outputs are required. Whether the inputs are processed and stored at one point or processed and stored at many points, there is a need for a network to collect the inputs and disseminate the outputs. In any data base with multiple users there is a problem maintaining consistency (e.g., two users of an airline reservation system might sell the same seat on some flight). In geographically distributed systems these problems are particularly acute because of the networking delays.

Networking is needed -----. 26-

1) when the data processing and storage is needed at one point or many points

- 2) for collection of inputs only
- 3) for distribution of outputs only
- 4) when the inputs are processed and stored at one point only

Many applications are centered on remote accessing of data bases ------. 27-

1) and remote accessing of central storage facilities, but not so much on uploading of data bases remotely

- 2) but not on remote accessing of central storage facilities
- 3) but not so much on its updating
- 4) and its remote updating
- Remote updating of data bases are needed ------. 28-
 - 1) mainly in small-scale cases
 - 2) both in small-scale and in large-scale cases
 - 3) mostly in large-scale cases
 - 4) neither in small-scale nor in large-scale cases
- 29- For data bases which are accessed by many users remotely, maintaining consistency ------.
 - 1) is not a problem when networking delays are not present
 - 2) is a problem and is sever when networking delays are present
 - 3) is not a major issue for geographically distributed systems
 - 4) is a minute problem when the systems are distributed diversely because of the networking delays
- When a data base is changed frequently, a reasonable approach is to ------. 30-
 - 1) have multiple sites for the data base
 - 2) store the data base at every remote site for its access
 - 3) communicate between the remote sites and a central data base
 - 4) have alternative communication links to the remote sites

053

1 (4

 $\frac{\pi}{1\Delta}$

دروس پایه (ریاضی ۱ و ۲ _ آمار و احتمال _ مبانی کامپیوتر)

۱) -۴۰ انتگرالهای $I_{\gamma} = \int_{0}^{\infty} \frac{x dx}{\sqrt{x^{F} + x^{T} + 1}} = I_{1} = \int_{0}^{\infty} \frac{x^{T} dx}{Fx^{F} + T\Delta}$ از نظر همگرایی کدامند؟ I) I همگرا و I۲ واگرا است. I₁ (۲ واگرا و I_۲ همگراست. ۳) هر دو همگر! هستند. ۴) هر دو واگرا هستند. ۲۰ کدام یک از گزینه های زیر در مورد سری $\frac{(-1)^{n+1}e^{-\frac{1}{n}}}{n^{r}}$ صحیح است? ۱) سری مطلقاً همگرا است. ۲) سری همگرای مشروط است. ۳) سری واگراست. ۴) نوع سری مشخص نیست. √s sin rt () asin Tt (T <u>۵</u> (۳ × (۴ -۴۳ اگر R(t) یک تابع برداری مشتق پذیر باشد به قسمی که R(t) = k (k ثابت)، آنگاه: R(t) بردار سرعت عمود بر (۱) R(t) بردار شتاب عمود بر (۲ ٣) بردار سرعت ثابت ۴) بردار شتاب ثابت ودر رابطه $f(\frac{\pi}{x})$ کدام است (f(x)) $f(x) = \int_{0}^{x} \frac{(\cos t)f(t)}{1+\sin^{7} t} dt$ کدام است? -۴۴ $\frac{1}{r}$ () $\frac{1}{7}$ (7 $\frac{\pi}{2}$ (r π (۴ ۴۵- مقدار انتگرال x+y]dxdy[[] ([] جزء صحيح است) با شرط 1≥x≥ • و 1≥y≥ • كدام است؟ ۱) صفر 1 (7 1/ (T 1 (4 جاصل sin x^rdxdy جاصل $\int_{r_v}^{\sqrt{\pi}} \int_{r_v}^{\sqrt{\pi}} r$

صفحه ۷

$$\frac{\frac{1}{r}}{r} (r)$$

$$\frac{\frac{1}{r}}{r} (r)$$

$$\frac{\frac{1}{r}}{r} (r)$$

$$\frac{1}{r} (r)$$

دروس پایه (ریاضی ۱ و ۲ ـ آمار و احتمال ـ مبانی کامپیوتر)

الروية بيشى (
$$\mathbf{x}^{\mathsf{T}} + \mathbf{y}^{\mathsf{T}}$$
) مالى المنتاج و \mathbf{x} و \mathbf{A} عنصر مساحت باشد. \mathbf{A}

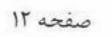
صفحا	
	X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	0.0 5000 5398 5398 5398 5398 5398 5398 5398 5398
	.01 .01 .5040 .5438 .5832 .5832 .5832 .5832 .52177 .52177 .52177 .52177 .521777 .521777 .5217777777777777777
	.02 .02 .02 .02 .02 .5080 .5478 .5871 .6255 .6628 .6985 .7324 .7642 .7939 .8212 .8461 .8686 .93577 .935777 .93577 .93577 .93577 .935777 .935777 .935777 .93577777775
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	33333333333333333333333333333333333333
	J. Chu J. Chu <th< td=""></th<>
	44 5 5 5 5 5 5 5 5 5 5 5 5 5
	Jaun automotion and a second and a
	.09 .09 .09 .09 .09 .09 .09 .09 .09 .09
	22222222222222222222222222222222222222
	.10 1.3078 1.307
	1.225 1.225 1.225 1.225 1.225 1.225 1.225 1.225 1.225 1.225 1.225 1.225 1.225 1.255 1.
	.025 .025 .025 .025 .025 .025 .025 .025
	.01 31.82 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.599 2.
	.005 .005 .005 .005 .005 .005 .005 .005
	82878888888888888888888888888888888888
	.995 4E-5 0.010 0.071 0.206 0.411 0.206 0.411 0.206 0.411 0.206 0.411 0.206 0.411 0.206 0.411 0.206 0.411 0.206 0.989 1.344 1.734 4.603 5.142 5.697 5.142 5.697 5.142 5.697 5.142 5.697 5.142 5.697 5.142 5.697 11.16 11.16 11.180 12.46
	.990 0.0001 0.0001 0.1148 0.2971 0.2972 0.2972 0.2972 0.2973 0.2972 0.2973 0.2953 0.2973 0.29553 0.2953 0.2953 0.29555555 0.29555555555555555555555555555555555555
	6
	79 4 9 3 3 4 5 9 5 6 9 4 5 2 8 8 9 5 5 6 6 9 8 3 1 7 4 8 8 9 5 7 5 C
	CLUST 0.0039 0.1025 0.3518 0.7107 1.1454 1.6153 2.1673 2.1673 2.1673 2.1673 2.1673 2.1673 2.1673 2.1673 2.1673 2.1673 2.1673 2.1673 1.4548 5.3260 5.3918 6.5706 7.2609 7.3616 8.6717 10.850 11.591 11.5379 16.151 16.927 17.708
	Y Y Y
	.025 .025 .025 .025 .025 .025 .025 .025
	.005 .005 10.596 12.838 14.860 16.749 18.547 22.5.188 26.756 21.954 23.299 31.319 32.801 34.267 35.718 35.718 35.718 44.181 42.795 44.181 45.558 46.927 48.289 53.671

 \sim

8

صفحه ۱۰	پيوتر)	دروس پایه (ریاضی ۱ و ۲ ـ آمار و احتمال ـ مبانی کام
		عدد ۵۵۱۲۵ چند مقسوم علیه دارد؟
	10 (7	Y (1
	26 (2	١٢ (٣
	دارد از توزیع پواسن با میانگین ۱ عیب پیرو،	تعداد عیبهایی که در فرآیند تولید یک تلویزیون وجود د
		تولیدی اولین تلویزیون معیوب باشد چقدر است؟
	$(1-e^{-r})^{\Delta}(r)$	$e^{-1T}(1-e^{-T})$ (1)
	e-10 (F	e-17 (r
ف انتخاب و آن را ۶ بار پر تاب می کنیم.	بر با آن 📅 است. یکی از دو سکه را به تصاد	. سکهای سالم و سکهای ناسالم داریم که احتمال آمدن شی
	م الم الم الم الم الم الم	. سکهای سالم و سکهای ناسالم داریم که اختصال است
	یه باسیم، طریب عام است. ۲) ۴۴/۰	۴ بار شیر بیاید، احتمال اینکه سکهٔ سالم را در دست داش
		۰/۴۸ (۱
	0/77 (4	0/85 (8
	زیر باشد:	· فرض کنید X یک متغیر تصادفی با تابع چگالی احتمال
	$f(x) = \begin{cases} ax^{\gamma} & \circ < \\ \circ & & \text{(s)} \end{cases}$: x < 1
	اها م	ساير ج
		میانه X کدام است؟
	Vr (r	
	V) (I	$\frac{r}{\sqrt{\frac{1}{r}}}$ (1)
	$\sqrt[r]{\frac{r}{r}a}$ (f	- Tr
9)	Vrad	$\sqrt[r]{\frac{r}{r}a}$ (r
		- اگر ((,0,1 × N (است؟ E (e ^{-X}) مقدار (E (e ^{-X}) کدام است؟
	1-	- اگر ((, ۰) N ~ ۸ ، معدار (۲ ۵) ۲ منام است.
	$\frac{\sqrt{r}}{r}$ (r	VT (1
	Í.	_
	$\sqrt{\frac{r}{r}}$ (f	$\sqrt{\frac{r}{r}}$ (r

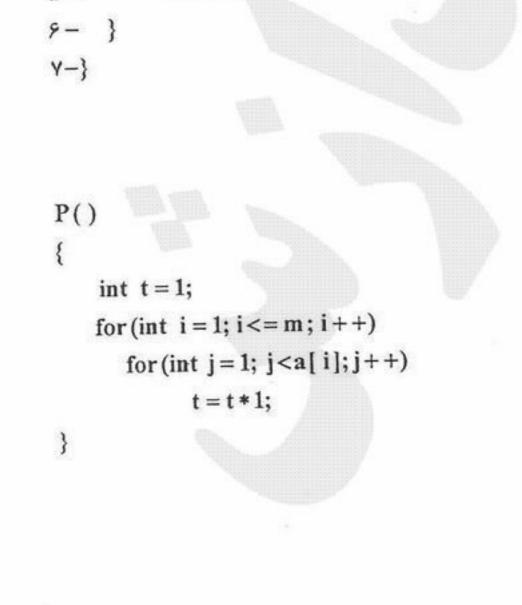
*


4 1

۵۶- اگر متغیر تصادفی X دارای توزیع دو جملهای با پارامترهای $\left(\frac{1}{7}, \circ \circ 1\right)$ باشد، مقدار تقریبی P(۴۵ < X < ۵۵) Y کدام است؟ ۱) ۱/۶۱۳۸ (۱ ۱) ۱/۶۱۳۸ (۲ ۱) ۱/۶۸۲۶ (۳

۵۷- فرض کنید که [x] جزء صحیح عدد حقیقی x باشد. اگر X دارای توزیع یکنواخت بر بازهٔ [۰, ۱] باشد، امید ریاضی [x ۱۰۰] کدام است؟ ۱) ۲۵ ۳) ۵۰/۵ (۳

- $\begin{aligned} & -\Delta \Lambda \\ & -\delta \Lambda \\ & \delta \\$
- $-\Delta q = \begin{cases} (\theta + 1)x^{\theta} &, 0 < x < 1 \\ 0 &, 0 \\$
- -9 فرض کنید X_1, \dots, X_{10} نمونهٔ تصادفی از جامعهٔ برنولی با پارامتر θ باشد و علاقمند به آزمون $\frac{1}{\gamma} = \theta$: X_1, \dots, X_{10} در برابر $\frac{1}{\gamma} = \theta$: H_1 باشیم. $\mathbb{R}_1 \land X_1 \ge \mathbb{H}_2$ ناحیه بحرانی آزمون باشد، احتمال خطای نوع اول تقریباً کدام است؟ $(1) 0 \circ 0$
 - 0/10 (4



0-

```
تابع زیر به منظور کپی کردن رشته ها در یکدیگر نوشته شده است. فرض کنید strlen تابعی مفروض است که طول یک رشته را باز می گرداند.
                                                                                                                    -9
                                                                                         خروجی برنامه زیر کدام است؟
Void strcopy (char *dest, char *src){
                                                                                                           BC (1
                                                                                                         BCC (r
   int i = strlen(src);
                                                                                                         CCC (r
   while (i \ge 0)
                                                                                                    ۴) رشتهٔ تهی (*
      dest[i]=src[i];
      --i;
   }
main(){
   char A[]="ABC";
   strcopy(A,A+1);
   cout << A;
 }
                                                                                         ۶۲ خروجی تکه برنامه زیر چیست؟
                                                                                                            1* ()
 int a = 0;
                                                                                                          2*1* (1
 while (a \le 3)
                                                                                                      2*1*2* ("
      {Print f ("%5", (a = 2)? "1*":"2*");
                                                                                             ۴) برنامه اعلام خطا می کند.
        a + = 2;
       }
 در قطعه برنامه زیر میخواهیم قطر اصلی ماتریس A<sup>2</sup> محاسبه و بر روی قطر اصلی ماتریس A نوشته شود. چه عبارتی باید در خط (5) نوشته
                                                                                                                      -98
                                                                                                              شود؟
                                                                                                   A[i][i]+=t; ()
 1-for (i = :; i < N; ++i)
                                                                                                  A[j][j]+=t; (٢
  Y - A[i][i] *= A[i][i];
                                                                                                   A[i][j]+=t; (٣
  v - \text{for}(j = \cdot; j < N; ++j)
                                                                    A[i][i]+=t; , A[j][j]+=t; المر دو دستور باهم (۴)
              t = A[i][j] * A[j][i];
  4-
```

۶۴ در پایان الگوریتم زیر مقدار t چقدر است؟

 $\sum_{i=1}^{m} a[i] (r)$ a[m]! (r) $\sum_{i=1}^{m} a[i]! (r)$

دروس پایه (ریاضی ۱ و ۲ ـ آمار و احتمال ـ مبانی کامپیوتر)

51

• *

cout << e;

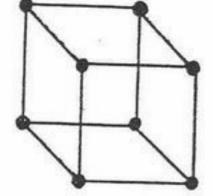
}

.

۱) خطای Number overflow به دلیل محاسبهٔ (!n) برای اعداد بزرگ ۲) خطای round-off به دلیل محاسبهٔ 1<u>n</u> برای اعداد بزرگ

۳) اشتباه برنامه در آن است که حاصل تقسیم بر اعداد صحیح، عدد صحیح است و n باید از نوع double باشد. ۴) برنامه صحیح است و در اجرای آن نیز هیچگونه خطایی بروز نمی کند.

صفحه ۱۵	دروس پایه (ریاضی ۱ و ۲ ـ آمار و احتمال ـ مبانی کامپیوتر)	
	در کدام خط برنامه زیر خطا وجود دارد؟ چرا؟	-5
1-class A{	۱) در خط (5) چون تابع private به اعضاء دادمای کلاس دسترسی ندارد.	
2- public :	۲) در خط (7) چون چنین نحوهٔ تعریفی برای کلاس ها در زبان + + C وجود ندارد.	
3 – int x;	۳) در خط (10) چون کلاس B به تابع f دسترسی ندارد.	
4- private:	۴) در خط (11) چون کلاس B به داده x دسترسی ندارد.	
5 - void $f(int w){x = w;}$		
6-};		
7-class B : private A{		
8- public:		
$9 - \inf_{x \in g()} \{$		
10 - f(5);		
11– return x;		
12- }		
13-};		


-۷۰ در یک الگوریتم، چند مرحله اول از پیچیدگی (O(n)، چند مرحله بعدی از پیچیدگی (O(n⁴) و چند مرحله آخر از پیچیدگی (O(n²) و چند مرحله آخر از پیچیدگی (O(n²) و چند مرحله آخر از پیچیدگی (O(n²) است. پیچیدگی کل الگوریتم چقدر است؟

 $O(n^7)$ (* $O(n^4)$ (* $O(n^3)$ (* O(n) (*

			2	
گسسته	0	in		2
	-		•	0

- Y	$r \rightarrow s \lor t . p \rightarrow r \land q . p \land q$ از راست بودن گزارههای $p \land q \land p \land q$	s ~ کدام گزاره نتیجه میدهد؟ ح
	TO	F (7
	q^t (r	q~~t (f
-Y'	فرض كنيم:	
1	P(x) ≡ عدد اوّل است. ≡ x	
	$Q(x) \equiv x = x = x = x = x = x$ عدد اوّل هستند.»	
	لع	
	x + ۲ . x » « x + ۲ . x	
	O(x) با به این شکل بیان می کنند که x متعلق به یک	فت دوقلوی اوّل است. گزاره « هیچ عدد اوّل بزرگتر از ^{۵۶} ۰۰ ، عضو یک ج
	(x)))، را بنا این سان بیان می دوقلوی اوّل نیست» به کدام شکل قابل نمایش است؟ (توجه: (ر یعنی نقیض گزاره Q)
	$\forall x (P(x) \land x > 10^{\circ} \rightarrow \gamma Q(x)) (1)$	$\exists x (P(x) \rightarrow x < 10^{\circ} \land Q(x)) (7)$
		$\forall x((P(x) \land Q(x)) \rightarrow x > 10^{90}) (f)$
	$\exists x (x > 1 \circ^{\varphi \circ} \lor \neg Q(x)) \rightarrow P(x) (r)$	
	durant days and the end of the second	
- 41	تعداد زیردرختهای فراگیر گراف روبهرو برابر است با:	
	T1 (1	
	۲۳ (۲	
	TO (T	
	۳۵ (۴	
		R R
-76	تعداد تطابقهای کامل در مکعب سه بعدی برابر است با:	
	۶ (۱	
	7) 9	
	1 10 100	
	17 (r 7f (f	

۷۵ – تاسی را ۱۳ بار میریزیم تعداد حالتهایی که مجموع شمارههای ظاهر شده برابر ۴۰ باشد برابر با ضریب ۲^۷ X کدام تابع زیر است؟

 $(1-x^{s})^{1r}(1-x)^{-1r}$ (r (1-x)-17 (1

$$\left(\sum_{n=0}^{\Delta} \frac{(x)^n}{(n+1)!}\right)^{(r)} (r)$$

۷۶ – ۱۰ کارت و جعبه با شماره ۰ تا ۹ موجود است. به چند طریق می توان کارت ها را در جعبه ها قرار داد به طوری که در هر جعبه دقیقاً یک کارت و هیچ کارت با شماره زوج در جعبه با شماره یکسان با خودش قرار نگیرد؟

$$\sum_{i=\circ}^{\Delta} (-1)^{i} {\binom{1\circ}{i}} (\Delta - i)! (1)$$
$$\sum_{i=\circ}^{1\circ} (-1)^{i} {\binom{1\circ}{i}} (1 \circ - i)! (7)$$

$$\Delta! \sum_{i=\circ}^{\Delta} (-i)^{i} {\Delta \choose i} (\Delta - i)! \quad (7)$$

$$\sum_{i=\circ}^{\Delta} (-i)^{i} {\Delta \choose i} (1 \circ - i)! \quad (7)$$

-44	از مجموعه {۱,۲,۳,,۲۹} به چند طریق می توان سه :	دد انتخاب نمود که مجموعشان بر ۳ تقسیم پذیر باشد؟
	1771 (1	1777 (7
	ודדד (ד	1777 (4
	a_{n-1}^{γ}	
- 4 V	$a_{\circ} = 1$ رابطه بازگشتی $a_{n} = \frac{a_{n-1}^{\gamma}}{a_{n-\gamma}}$ را با شرایط اولیه	a ₁ = ۲ در نظر بگیرید، a ₁₀ کدام است؟
	r'1 ()	T10 (T
	۳) ۲ ^۴ ۱۵ (که F _n دنباله فیتوناتچی میباشد.)	
	۲) ۲ (که ۲ _n کباله فیتونانچی میباشد.)	7 ⁷⁰ (f
-79		
press of		چگاه رقم ۵ در سمت راست ۴ قرار نگیرد را a _n مینامیم در این صورت:
	$a_n = \Delta a_{n-1} + a_{n-7} $	$a_{n} = \Delta a_{n-1} - a_{n-7}$ (7)
	$a_n = fa_{n-1} + f^{n-1}$ (r	$a_n = fa_{n-1} + fa_{n-r} (f$
-4	مجموعه رئوس کراف کا تمام زیرمجموعههای مجموعهٔ سه	منصری {a,b,c} است که رأس A به B وصل است. اگر و فقط اگر اندازه تفاه
	متقارن AAB برابر یک باشد (I= AAB) کدام گزار	نادرست است؟
	G (۱) اویلری نیست.	G (۲ سه منتظم است.
	G (۳ سطح نیست.	G (۴ هامیلتونی است.
-1	کراف کی روی مجموعه رئوس {۱,۲,۳,۴,۵,۶,۷ به ای	، صورت ساخته شده است که {X,Y} يال G است، اگر و تنها اگر x-y
	پیمانه ۷ یکی از اعضای ۲٫۳٫۴٫۵ ۲٫۳ باشد. کدام گزاره نادر	يت است؟
	G (۱) گراف دو بخشی است.	G (۲ گرافی ۴ - منتظم است.
	G (۳ گرافی ساده است.	G (۴ گرافی همبند است.
12	122 E.S. 142	

۸۲- در گرافی ۳ – منتظم n رأسی و m یالی داریم ۹۰ = ۲m + ۶n در این صورت تعداد رئوس برابر است با: ۲) ۶ ۱۰ (۳

۸۳- اگر G گرافی ۱۳۸۶ رأسی باشد و دو رأس u و v موجود باشند که فاصله شان ۱۳۸۵ باشد در این صورت تعداد یال های G برابر است با:

بربر است د.	0.0-0-	3-01			
			1848 (2	1110 (1	
			١٣٨٨ (۴	١٣٨٢ (٣	

- $-\Lambda F$ اگر G گرافی ساده ۱۳۸۵ رأسی باشد و ۱۳۸۲ = $\Delta(\overline{G})$ کدام گزاره صحیح است؟ (توجه، \overline{G} مکمل گراف G است. Δ بزرگترین درجه رأس گراف میباشد.) (۱) G ناهمبند است. (۳) G همیلتنی نمیباشد. (۳) G همیلتنی نمیباشد.
 - ۸۵- تعداد روابط هم ارزی روی مجموعهٔ {۱٫۲٫۳٫۴} که حداقل ۲ کلاس هم ارزی دارند برابر است با: ۲) ۶ ۳) ۹ (۳

while $(i \neq \cdot)$ {

}

ساختمان دادهها و الگوريتمها

۸۶- فرض کنید P ≠ NP است. کدامیک از مسائل زیر در زمان چند جملهای حل می شود؟ A- یافتن طولانی ترین مسیر ساده در یک گراف غیر جهت دار B- یافتن کوتاهترین مسیر ساده در یک گراف غیر جهتدار C- یافتن تمام درختان فراگیر (spanning) در یک گراف غیر جهتدار C , B , A (F C , B (٣ B, A (r B (1 ۸۷- با توجه به قطعه برنامه زیر کدام گزینه صحیح است؟ y = m; i = n; x = 1; $x = m^n$ () if $\left|\frac{i}{y}\right| \neq i$ then x = x * y; $y = m^n$ (r $m = y^n (r)$ y = y * y; $m = x^n$ (* $i = \left| \frac{i}{r} \right|;$ ۸۸- برای سه ماتریس با ابعداد زیر سطر ستون N₁ m n N_2 n p N₃ p q اگر بخواهیم تعداد ضربهای $(N_1 imes N_7) imes N_7$ با $N_7 imes N_7 imes N_7)$ یکسان باشد باید: $\frac{1}{m} - \frac{1}{n} = \frac{1}{q} - \frac{1}{p} (f) \qquad \frac{1}{m} + \frac{1}{n} = \frac{1}{q} + \frac{1}{p} (f)$

() فقط
$$m = n = p = q$$
 باشد. ۲) $p = q$ یا $m = n = p = q$

دام است!
$$\sqrt{n}$$
 محاسبهٔ مجموع \sqrt{n} کوچکترین عناصر در یک آرایه نامرتب به طول n دارای پیچید کی کدام است! \sqrt{n} O(n lgn) (۴ O(n \sqrt{n}) (۳ O(n lgn) (۴ O(\sqrt{n}) (۱) (۱) O(\sqrt{n}) (۱) (۱) O(\sqrt{n}) (۱) (۱) O(\sqrt{n}) (1) O($\sqrt{$

void RCO(ptr p){

}

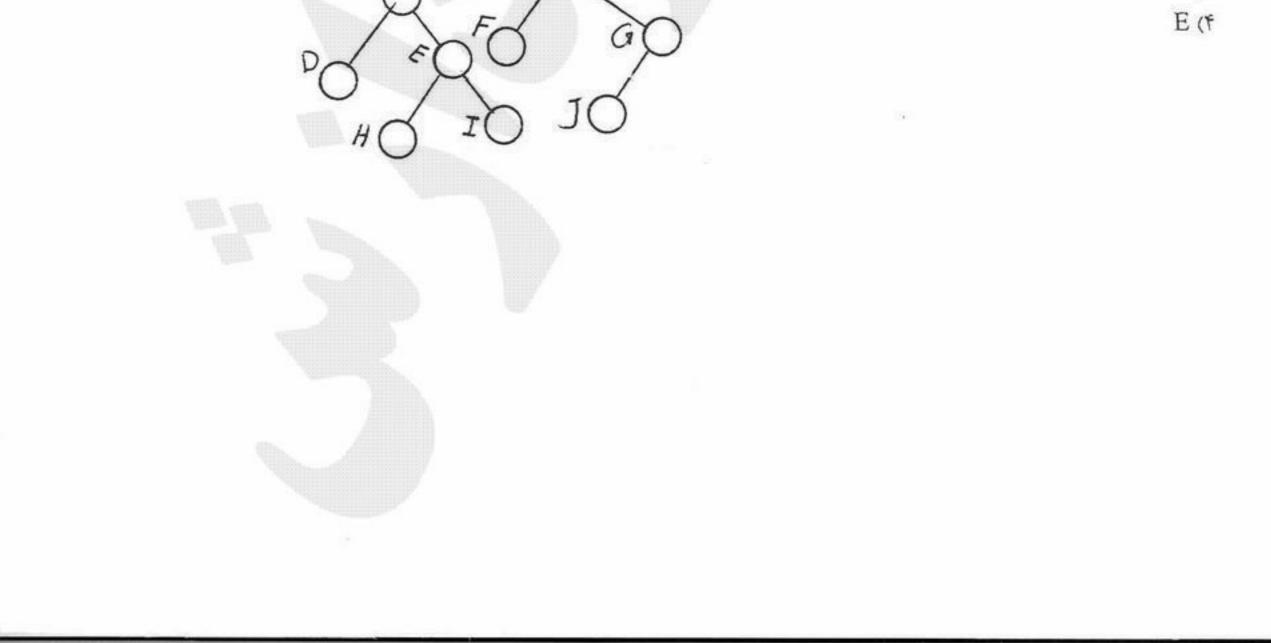
if(p!= Null)

print $(p \rightarrow Data);$

```
RCO(p \rightarrow right);
```

 $RCO(p \rightarrow left);$

- معادل کدام یک از پیمایش های زیر می باشد؟ ۴) معادل هیچ پیمایشی نمیباشد. reverse postorder (* reverse preorder (r Inorder ()
 - را در کدام حالت میباشد؟ $T(n) = 2T(\frac{n}{2}) + n 1$ -۹۱ را در کدام حالت میباشد؟
- ۴) بهترین و میانگین ۳) در همه حالت ۲) بهترين حالت ۱) بدترین حالت
- ۹۲- درگراف G = (V,E) اگر وزن بعضی از یالها منفی باشد برای پیدا کردن کوتاه ترین مسیر بین دو رأس s و t به تمام وزن یالها مقدار ثابت c اضافه کنیم به طوری که وزن تمام یال های منفی مثبت شود در آن صورت الگوریتم Dijkstra ۱) کوتاهترین مسیر بین t,s را محاسبه میکند. ۲) کوتاهترین مسیر بین t,s را محاسبه نمیکند.


۳) کوتاهترین مسیر بین t,s را محاسبه میکند فقط در صورتی که گراف مذکور G دارای دور منفی باشد. ۴) فقط در صورتی که گراف مذکور G دور منفی نداشته باشد کوتاه ترین مسیر بین t,s حاصل می شود.

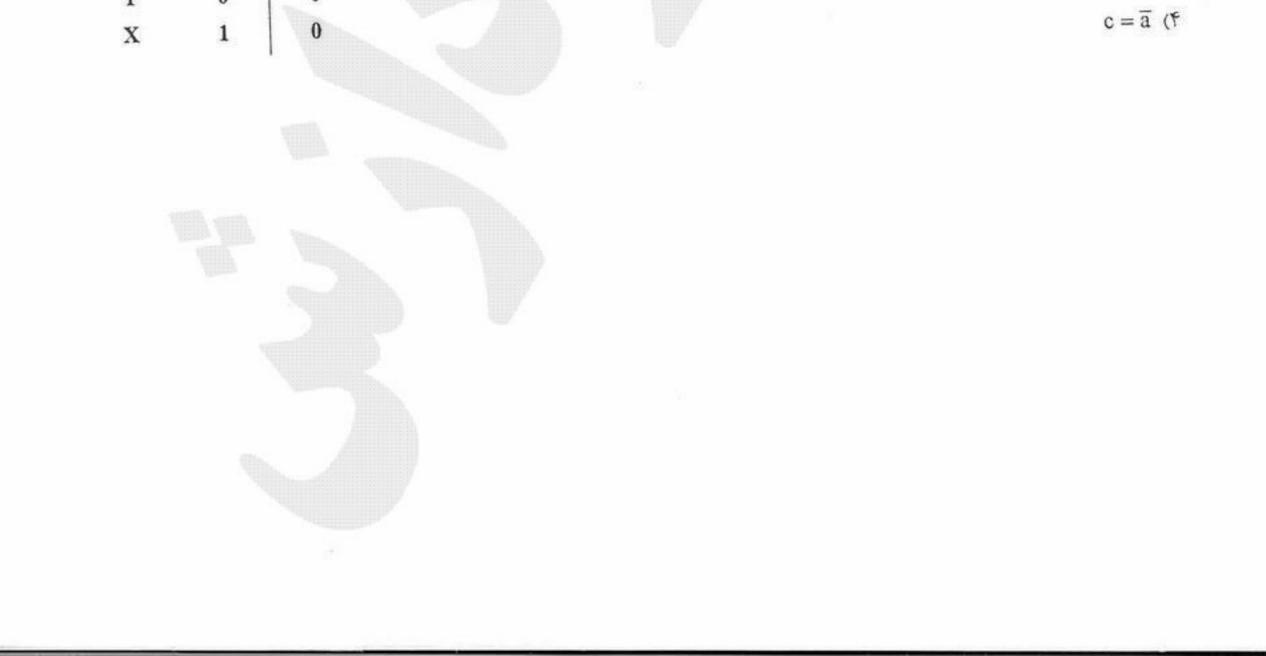
ها	ىتم	الگور	9	دادەھا	i	ختما	سا
					_		

				×	
	4	A	2	ô.,	0
- 0.8		~	~	~	~

گراف $\sum_{e\in T}^{-} w_e$ را مینیمم میکند در آن	، اگر درخت فراگیر مینیمم این)= G که w _e وزن یال e میباشد	- در گراف وزن دار (V,E	-97
	ه بالا صحيح است يا نادرست؟	نیز مینیمم می گردد وبلعکس گزار	$\sum_{e \in T} w_e^r$ سورت الزاما	
	۲) بله		١) خير	
: w _e به ازای هر یال باشد صحیح است.	۴) فقط در صورتی که ٥<	ون دور صحيح است.	۳) فقط برای گرافهای بد	
		ط عبارتمقابل برابر است با: e	تعداد حالات پرانتزگذاری	-98
42 (*	14 (r	5 (٢	3 (1	
			کدام گزاره نادرست است؟	-90
		ت استفاده میکند.	 ۱) الگوريتم DFS از استكا 	
	نفاده میشود.	دا کردن Topological sort است	۲) الگوریتم DFS برای پی	
		م DFS در یک گراف سریعتر از FS		
		گراف اگر Backedge وجود نداشت		
یدگی زمانی زیر چاپ کرد.	med را به صورت مرتب در پیچ	ه باشیم می توان k عنصر بعد از ian	اگر n عنصر نا مر تب داشت	-98
O(n+klgn) (f	o(n+klgk) (r	O(klgn) (7	O(kn) (1	
min-hea شود؟	اشد تا این آرایه تبدیل به یک p	منصر چند مقایسه حداکثر نیاز می ا	در یک آرایه دلخواه با ۱۲ :	-94
18 (۴	12 (*	10 (۲	6 (1	
		دام است؟	جواب تابع بازگشتی زیر کد	۹۸-
		T(n)	$= 100T(\frac{n}{99}) + lg(n!)$	
$T(n) = \theta(n \lg^2 n) (f$	$T(n) = \theta(n \lg n)$ (7	$T(n) = \theta(n^{\log_{99}^{100}})$ (r	$T(n) = \theta(n^2)$ ()	
sp دیگر با r _B عنصر غیر صفر باشد در آن	erse نيز يک ماتريس B _{n×m}	Spars با r _A عنصر غير صفر باشد،	se اگر $\mathrm{A}_{n imes m}$ یک ماتریس	-99
0, .,	بچیدگی زیر میباشد؟	و ماتریس در بهترین حالت دارای پ	صورت الگوريتم جمع اين د	
$O(nm+r_Ar_B)$ (*	$O(n+m+r_A+r_B)$ (r	O(n+m) (۲	O(n m) (1	
شده است چهارمین کوچکترین عنصر آن	گره آن یک عدد صحیح ذخیره	اینری به صورت زیر باشد که در هر	اگر T یک درخت جستجو ب	-1
	4		در گذام کره قرار دارد؟	
A	2		D (1	
B	à		I (7	
G	X		Н (т	

.

اصول سیستمهای کامپیوتری


 $\mathcal{L}_{\mathbf{q}}$

-1+1	کدام عبارت غلط است؟ ۱) سرعت حافظههای SRAM (Static Random Access Memory) از حافظههای DRAM				
	۱) سرعت حافظههای SKAW (۲۶) Random Access Memory)	Dynamic Ra) بيشتر است.			
	1.11				
	A STATE OF A	Shi hata Data Data	ی (Fetch) کد یک دستور، اپرند (CDLL می ا	دستور دیگر می تواند و کسی سر ۲- ده شود و هنچوقت CPU از روی آن	
	۴) گذرگاه آدرس (Address Bus	A() یک گذرگاه یک طرفه است و	لقط داده از ۲۰ ۲۰ بر روی آن کو	شته میشود و هیچوقت CPU از روی آن	
	داده تر خواند				
	یک پردازندهٔ 64 بیتی پردازندهای ا			۴) واحد کنترل (control unit)	
	۱) استک ۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱	۱) خانصه ۱، 01111 د. نظر بگتریز	عددی که می توان با این عدد جم	یع کرد به طوری که overflow رخ ندهد،	
-1•٣					
	چیست؟ 2 ⁵ (ا	$2^{5} - 1$ (r	$2^{15} - 1$ (r	215 (*	
1.5	۲) ۲۵ خاصیتی در ارجاعات به حافظه که ا	که اجازه میدهد سلسله مراتب حاذ	ظه مؤثر باشد چیست؟		
-1.1) حجم بالای حافظه		۱) سرعت بادی خالطه	S	
	Concurrent fet 1		and tempral locality (*	Spatia	
-1.0	۳) Concurrent letch (۳ در نمایش اعداد ممیز شناور اگر تع	تعداد بیتهای در نظر گرفته شده	رای بخش توان، 5 بیت باشد، بایام	ن چه مقداری دارد: ع، 22	
		16 /2	51 (1	- CHOICE 11 (1997)	
-1.8	در یک سیستم نمایش اعداد ممیز	میز شناور، 1 بیت برای علامت، 8	بیت برای توان و 23 بیت برای مار	نتیس در نظر گرفته شده است. نمایش ممیز ۵۰۰	
	در یک سیستم هایس اعداد سیر شناور عدد زیر در این سیستم چی	چيست؟ 10 ⁽¹¹⁰⁾ 2×1111111	000000000000000000000000000000000000000	-0.0	
	$000000000 \times 2^{(-131)_{10}}$ (1)	-0.111111100000000	00000000×2(~120)10 (T	-0.0001111111000000	
	1.111111×2 ⁽⁻¹³²⁾ 10 (r		1111111×2 ⁽⁻¹³¹⁾ 10 (f	-0.	
-1-V	ایراد سیستمهایی که در آنها دست	ستورالعملها طول متغير دارند چيه	ت؟		
-1-1	، یران کلید می می این این این مستقیم ب ۱) امکان آدرس دهی غیر مستقیم ب	م به حافظه در آنها وجود ندارد.			
	۲ امکار pipeline دستورات در	در آنها وجود ندارد.			
	۳) هم زمان با کدگشانی (ecode	dec) یک دستور، دستورالعمل بعد:	ی نمی تواند واکشی (fetch) شود.		
	۴) محاسبه أدرس دستورالعمل بعد	بعدى هم زمان با واكشى (fetch)	دستور جاری امکان پدیر نمی باشد.		
-1+8	خطای page fault زمانی رخ می	میدهد که صفحه مورد نظر در ۵۰ امانه ماره ا	نباشد. س اندار ار	۴) آدرس محاسبه شده	
	cache ()	look aside buffer (r	۳) حافظه اصلی		

۱۰۹ اگر سیستم نمایش اعداد ممیز شناور پایه 4 باشد آنگاه نمی توانیم داشته باشیم. hidden bit (* ۳) بایاس ۲) اعداد منفی اعداد نرمالايز در یک سیستم %82 زمان اجرا صرف محاسبات و %18 صرف عملیات I/O می شود. Clock Per Instruction) CPI) برای دستورات -11+ صحيح و مميز شناور و بقيه دستورات به ترتيب 1 ، 5 و 2 مىباشد و %40 دستورات صحيح، %30 دستورات مميز شناور و %30 بقيه دستورات است. حال اگر CPI ممیز شناور از 5 به 3 تغییر داده شود، speed up چقدر است؟ 2 (4 1.6 (1.316 (7 1.245 () در یک سیستم با یک cache با سایز 2k-byte که سایز هر بلوک آن 8 byte است، دو آرایه A با سایز 128 کلمه 2 بایتی و B با سایز 256 -111 کلمه 2 بایتی در cache قرار دارند و برنامه زیر اجرا می شود: for (i = 0; i < 128; i + +)A[i] = A[i] + B[2*i]در زمان اجرا چند بایت در حافظه اصلی نوشته می شود، اگر cache به صورت write-back کار کند؟ ٢) 512 بايت ٣) 256 بايت ٢) 128 بايت ۱) صفر بایت

اصول سیستمهای کامپیوتری

5 ، pipeline مرحله ای است و clock cycle آن 10 نانو ثانیه است و	۱۱۲- دو پردازنده P_1 و P_2 با دستورات مشابه وجود دارند. P_1 دارای یک P_1
وثانیه است. کدام یک از جملات زیر درست است؟	دارای یک pipeline مرحله ای است و clock cycle آن 7.5 ناز P2
	الف – P_2 ماکزیمم through put بہتری دارد.
	ب – برنامه ها روی P_2 همیشه سریع تر از P_1 است.
*	ج – اجرای یک دستور در P_2 سریع تر از P_1 است.
	۱) الف، ب و ج
	۲) الف و ب
	٣) الف و ج
	۴) الف
، دو دستور زیر چند دستور NOP یک آنها باید اضافه شود که درگ	۱۱۳- دریک سیستم pipline با 4 مرحله EX. ID. IF و WB. در اجرای
	CPU احتیاجی به ایجاد تأخیر در هنگام اجرا نداشته باشد؟
N	lov R1,10
Ν	lov R2,R1
1 05	2 (* 4 ()
های زیر که با زبان C نوشته شده سریع تر اجرا می شود؟	۱۱۴- در یک سیستم که از یک cache محدود استفاده می کند کدام یک از حلقه
Loop a:	Loop b:
int $x[n][m];$	int $x[n][m];$
for $(i = 0; i < n; i + +)$	for (j = 0; j < m; j++) for (i = 0; i < n; i++)
for $(j = 0; j < m; j + +)$	x[i][j] = x[i][j]+1;
x[i][j] = x[i][j] + 1;	x[1][1] = x[1][1] + 1,
Looi	Loop b ()
توان راجع به آن نظر داد.	· · · · · · · · · · · · · · · · · · ·
الران راجع به ان نظر داد. است.)	lon't care عبارت بولین معادل جدول صحت زیر چیست؟ (X نشان دهندهٔ Ion't care
	$c = \overline{a} \cdot b$ ()
a b c	٢) این جدول صحت غلط است.
0 X 1	$c = \overline{b}$ ("
1 0 0	

L (۱) منظم است.

۳) L مستقل از متن است.

۱۲۲- کدام گزاره در مورد گرامر زیر درست است؟

 $G: S \rightarrow SS | (S) | \lambda$

G (۱) G با گرامر [λ|(S)S→S(S)] معادل است. ۳) زبان G مستقل از متن نیست.

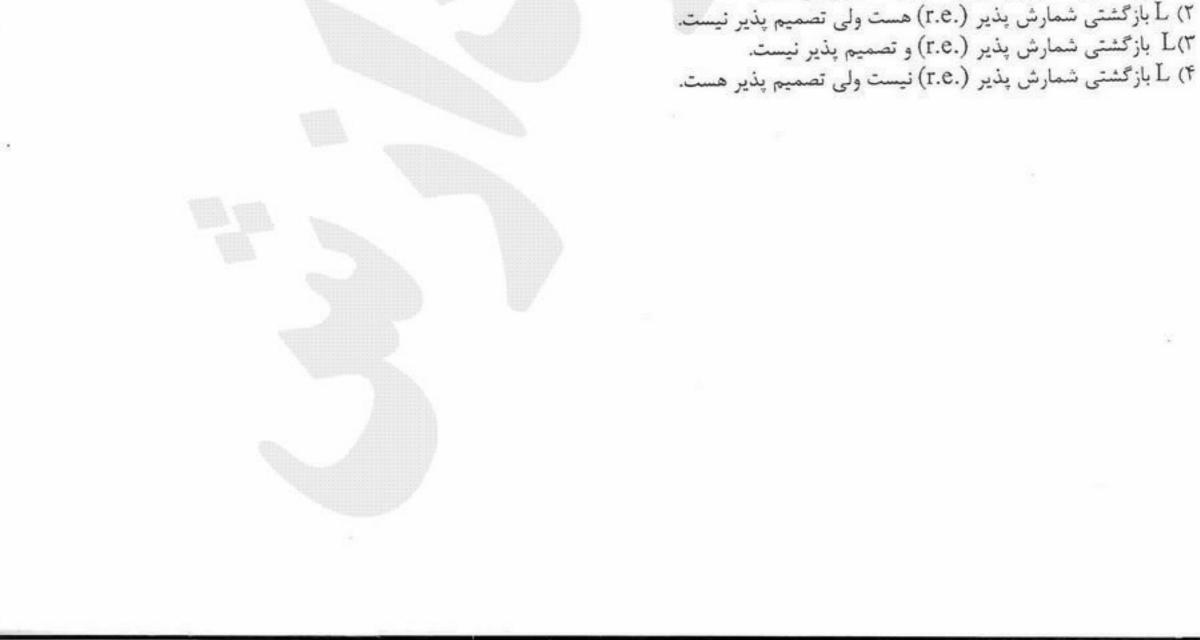
۲) G با گرامر [λ|(G:S)S→S(SS) معادل است. ۴) زبان G منظم است.

۱۲۳- کدام گزاره نادرست است؟

 ۱۲۳- کدام گزاره نادرست است؟
 ۱) برای یک گرامر مستقل از متن داده شده تشخیص اینکه زبان این گرامر تهی است یا نه یک مسئله تصمیم پذیر است.
 ۲) هر زبان مستقل از متن دارای یک گرامر به فرم زبان چامسکی است.
 ۳) مر زبان مستقل از متن دارای یک گرامر به فرم زبان جامسکی است.
 ۳) مر زبان مستقل از متن دارای یک گرامر به فرم زبان منابع مسکی است.
 ۳) مر زبان مستقل از متن دارای یک گرامر به فرم زبان جامسکی است.
 ۳) مر زبانی می مسئله تصمیم پذیر است.
 ۳) مر زبانی مستقل از متن دارای یک گرامر به فرم زبان جامسکی است.
 ۳) مر زبانی مستقل از متن دارای یک گرامر به فرم زبان منابع در محاسبه ۳ لزوماً متوقف نمی شود.
 ۴) هر زبانی که توسط یک گرامر تولید شود حتماً زبان متناظر با یک ماشین تورینگ است.

اگر $L = \left\{ \circ^{n} 1^{n} \circ^{n} / n \in \mathbb{N} \right\}$ آنگاه: (۱) L مستقل از متن است. L (۳) L مستقل از متن است.

۲) L^c منظم است. ۲) L^c و L مستقل از متن هستند.


نظريه اتوماتا و زبانها

صفحه ۲۳

۱۳۰- اگر <.> یک کودینگ ماشین های تورینگ باشد، آنگاه در مورد زبان {T یک ماشین تورینگ است و L={<T>/°۱∈L(T) کدام گزاره درست است؟ ۱) L بازگشتی شمارش پذیر (r.e.) و تصمیم پذیر است.

است.

ست.

آناليز عددى

قدمهای زیر را در نظر بگیرید:
$$P = \frac{n!}{k!(n-k)!}$$
 . قدمهای زیر را در نظر بگیرید: -۱۳۱

for i := k + i till n do

P = P * ?

end

P := 1;

i	علامت ? را انتخاب كنيد.	ګزينه درست به جای :
$\frac{1}{(i-k)}$ (r		$\frac{i}{(n-i)}$ ()
i (۴		(n-i)
(1+1)		$\frac{1}{(i-k)}$ (r

۱۳۲- در یک دستگاه ممیز شناور نرمال شده برای نمایش اعداد حقیقی در مبنای ۲ با ۴ رقم مانتیس با روش گرد کردن فاصله بین عدد ۱۶ و نزدیکترین عدد قابل نمایش بزرگتر از ۱۶ چقدر است؟

$$\frac{1}{18} (1)$$

−۱۳۳- مقدار محاسبه شده برای Th D = $\frac{f(a+h) - f(a-h)}{Th}$ در یک ماشین محاسبه با روند عدد یک برابر ^۲–۱۰، به ازای مقادیر |h| کوچکتر از رار صف است.

$$10^{-T}$$
 (T
 10^{-T} |a|+10^{-T} (F
 10^{-T} |a| (T

 $(x_i, f(x_i))$ یک چند جملهای از درجه n ، n زوج، و $p(x) = x^{\left(rac{n}{r}
ight)}$ چند جملهای درونیاب برای نقاط مجزای f(x)، ا است با: f(x) معادل است با: i = 0, 1, ..., n $\underline{p(x)}$ () p(x) (1 p^r(x) (f

Tp(x)("

۱۳۵- فرض کنید دستگاه معادلات خطی Ax = b با روش حذفی گوس و محورگزینی سطری به وسیله یک کامپیوتر که در آن روند عدد یک برابر ۱۰−۱۶ است، حل شود. اگر ۱۰^۱∞ ۱∥ A^{-۱} || A || آنگاه اندازه (نرم) خطای نسبی جواب محاسبه شده نسبت به جواب دقیق مسأله تقریباً

برابر است با

- 10-18 (1 10-18 (1 10-8 (4
 - 10-10 (1

۱۳۶- فرض کنید ستون های ماتریس m × n ، A ، مستقل خطی اند. در این صورت مقدار min || AX – b || ۲ است. ۲) برابر صفر و جواب X یگانه ۱) غیرصفر و تعداد جوابهای X نامتناهی ۴) می تواند غیر صفر باشد ولی جواب X یگانه ۳) برابر صفر و تعداد جوابهای X نامتناهی

آناليز عددى

صفحه ۲۵

۱۳۷- فرض کنید Q یک ماتریس $n \times n$ ، قائم نرمال است، یعنی $Q^TQ = I$ ، $Q^X = \lambda X$ که در آن $n \times n$ ، $n \times n$ و λ اسکالر است. در این صورت $\|Q^TAX\|_{\gamma} \|Q^TAX\|_{\gamma}$ است با: مورت $\|Q^TAX\|_{\gamma} \|X\| \|X\|_{\gamma}$ (۲)

- $\lambda^{\gamma} \| X \|_{\gamma}^{\gamma}$ (* $\frac{1}{|\lambda|} \| X \|_{\gamma}$ (*
- ۱۳۸- فرض کنید A = QR که در آن Q یک ماتریس قائم نرمال (Q^TQ = I) و R یک ماتریس بالا مثلثی وارونپذیر است. حل مسأله ۲ ا AC – f ا nin ا AC – f ا را، که در آن f داده شده است، میتوان با حل یک دستگاه به دست آورد. ۱) بالا مثلثی ۳) قطری (۲) قطری (۲) قطری (۲) مثلثی (۲) تکین (یعنی ماترس ضرایب وارون اپذیر)
- ۱۳۹- ماتریسهای B و B ا $T=S^{-1}BS$ را در نظر بگیرید. فرض کنید X و y به ترتیب مقدار و بردار ویژه مربوط به T باشند. در این صورت مقدار و بردار ویژه مربوط به T باشند. در این صورت مقدار و بردار ویژه مربوط به B به ترتیب عبارتند از:
 - $S^{-1}y_{9}\frac{1}{\lambda}(r) \qquad S^{-1}y_{9}\lambda(r)$ $Sy_{9}\frac{1}{\lambda}(r) \qquad Sy_{9}\lambda(r)$

۱۴۰ در یک روش نصف کردن فاصله برای پیدا کردن ریشه، یک تابع پیوسته f را در فاصله [a,b] در نظر بگیرید. اگر مشتق دوم f در فاصله [a,b]
 [a,b] دارای یک علامت باشد آنگاه روش نصف کردن
 ۱) به یک ریشه همگرا می شود اگر ٥=(x) f برای برخی x در [a,b].
 ۲) به ریشه یگانه همگرا می شود اگر ٥=(x) f برای برخی x در [a,b].
 ۳) به ریشه یگانه همگرا می شود اگر ٥=(x) f برای برخی x در [a,b].
 ۳) به ریشه یگانه همگرا می شود اگر ٥=(x) f برای برخی x در [a,b].
 ۳) به ریشه یگانه همگرا می شود اگر ٥=(x) f برای برخی x در [a,b].
 ۳) به ریشه یگانه همگرا می شود اگر ٥=(x) f برای برخی x در [a,b].
 ۳) به ریشه یگانه همگرا می شود اگر داشته باشیم ٥>(f(b).
 ۳) به ریشه یگانه همگرا می شود اگر داشته باشیم ٥>(f(b).

-۱۴۱ روش نیوتون برای پیدا کردن یک ریشه ۲۰ $f(x) = x^{F} - 1$ به صورت است. اگر روش به ریشه همگرا شود. (۱) $(1 - 1) \left(\frac{1}{F} - 1 \right) \left(\frac{1}{F} - 1$

(۳ با نرخ همگرایی مرتبه دوم ۲) (۲
$$X_{n+1} = \frac{1}{F} \left(\pi X_n - \frac{1}{X_n^r} \right)$$
 (۲) (۳ $X_{n+1} = \frac{1}{F} \left(\pi X_n + \frac{1}{X_n^r} \right)$

ا ۲۲- روش اویلر را برای حل عددی معادله دیفرانسیل با شرط مرزی به صورت $y'(t) = -ty + \frac{r}{vT}$, $y(\circ) = 1$ به کار h = \circ/δ به ناصله $y'(t) = -ty + \frac{r}{vT}$

گیرید. پس از دو تکرار مقدار ۲_۲ به دست آمده به عنوان تخمین (۰/۱) y برابر است با: ۱) ۱/۶۲۵ (۲ ۲) ۲/۶۲۵ (۴

آناليز عددى

. .

$$\begin{aligned} & -187 \\ & -187$$

$$\int_{0}^{1} (f(x) - rf(\frac{\pi}{r}) - f(\pi)) dx = W_{1}f(x) + W_{r}f(\pi)$$

$$-\frac{1}{\pi} [f(x) - rf(\frac{\pi}{r}) - f(\pi)] (r)$$

$$\frac{1}{r\pi} [f(x) - rf(\frac{\pi}{r}) + f(\pi)] (r)$$

$$\frac{1}{\pi} [f(x) - rf(\frac{\pi}{r}) + f(\pi)] (r)$$

 $y'(t) = ty + y^{\gamma}$, $y(\circ) = 1$ روش سری تیلر مرتبه ۲ (تا مشتق دوم y) را برای حل عددی معادله دیفرانسیل با شرط مرزی به صورت $1 = (\circ, y)$, $y(\circ) = 1$ -1۴۵ - 1۴۵ به کار گیرید. مقدار y_1 ، تخمین $(1/\circ) + h = 0$ برابر است با: به کار گیرید. مقدار y_1 ، تخمین $(1/\circ) + h = 0$ برابر است با: (1) ۱/۱۱ (۲) (۲) ۱/۱۲ (۳)

