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Preface

Most traits in nature and of importance to agriculture are quantitatively inherited.
These traits are difficult to study due to the complex nature of their inheritance.
However, recent developments of genomic technologies provide a revolutionary means
for unraveling the secrets of genetic variation in quantitative traits. Genomic tech-
nologies allow the molecular characterization of polymorphic markers throughout the
entire genome that are then used to identify and map the genes or quantitative trait
loci (QTLs) underlying a quantitative trait based on linkage analysis.

Statistical analysis is a crucial tool for analyzing genome data, which are now
becoming increasingly available for a variety of species, and for giving precise expla-
nations regarding genetic variation in quantitative traits occurring among species,
populations, families, and individuals. In 1989, Lander and Botstein published a hall-
mark methodological paper for interval mapping that enables geneticists to detect
and estimate individual QTL that control the phenotype of a trait. Today, interval
mapping is an important statistical tool for studying the genetics of quantitative traits
at the molecular level, and has led to the discovery of thousands of QTLs responsible
for a variety of traits in plants, animals, and humans. In a recent study published
in Science, Li, Zhou, and Sang (2006, 311, 1936–1939) were able to characterize the
molecular basis of the reduction of grain shattering – a fundamental selection process
for rice domestication – at the detected QTL by interval mapping. Among many
other examples of the success of interval mapping are the positional cloning of QTLs
responsible for fruit size and shape in tomato (Frary et al. 2000, Science 289, 85–88)
and for branch, florescence, and grain architecture in maize (Doebley et al. 1997,
Nature 386, 485–488; Gallavotti et al. 2004, Nature 432, 630–635; Wang et al. 2005,
Nature 436, 714–719).

To make it suitable for various practical applications, interval mapping has been
extensively modified and extended during the past 15 years. A host of useful statis-
tical methods for QTL mapping have been produced through the collective efforts of
statistical geneticists. However, these methods generally have various objectives and
utilities and are sporadically distributed in a massive amount of literature. A single
volume synthesizing statistical developments for genetic mapping may be helpful for
many researchers, especially those with a keen interest in building a bridge between
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genetics and statistics, to acquaint themselves with this expanding area as quickly as
possible.

This book intends to provide geneticists with the tools needed to understand and
model the genetic variation for quantitative traits based on genomic data collected
in mapping research and equip statisticians with the uniqueness and ideas in relation
to the exploration of genetic secrets using their computational skills. This book also
intends to attract researchers toward multidisciplinary research and to introduce them
to new paradigms in genomic science. In this book, the statistical and computational
theories applied to genetic mapping are developed hand in hand and a number of
examples displaying the implications of statistical genomics are introduced.

This book contains 14 chapters, broadly divided into three parts. Part 1, including
Chapters 1 and 2, provides introductory genetics and statistics at the level appropriate
for understanding general genetic concepts and statistical models for genetic mapping.
Part 2, composed of Chapters 3–7, attempts to provide a thorough and comprehensive
coverage of linkage analysis with molecular markers. Models and methods for link-
age analysis and map construction are systematically introduced for different designs,
such as the backcross/F2 (Chapter 3), outbred crosses (Chapter 4), recombinant in-
bred lines (Chapter 5) and structured pedigrees (Chapter 7), and for special marker
types including distorted and misclassified markers (Chapter 6) and dominant mark-
ers (Chapters 4 and 7). Part 3, composed of Chapters 8–14, covers statistical models
and algorithms of QTL mapping. The topics include simple marker-phenotype associ-
ation analyses (Chapter 8), the statistical structure of interval mapping (Chapter 9),
regression- (Chapter 10) and maximum likelihood-based analysis of interval mapping
(Chapter 11), threshold and confidence interval determination (Chapter 12), compos-
ite interval mapping using multiple markers as cofactors (Chapter 13), and interval
mapping for outbred mapping populations (Chapter 14). In the Appendices, we pro-
vide general statistical theories directly related to the genetic mapping approaches
introduced and R programs for some of the examples used in the book. A webpage
(http://www.buffalo.edu/∼cxma/book/) was constructed for this book, which in-
cludes a complete list of programs and algorithms written in MatLab or R for all
the examples.

Writing a book in such a rapidly developing and changing field is a pain but, more
precisely speaking, full of excitement. In the summer of 1997, Wu delivered a series
of lectures on statistical methods for QTL mapping to graduate students and faculty
at Nanjing Forestry University, China. In the spring semester of 2002, Wu taught a
statistical genetics course at the master’s level at the University of Florida and then
was joined for coteaching by Casella in the spring of 2003 and Ma in the spring of
2005. This course is now taught by Wu at the University of Florida and by Ma at
the State University of New York at Buffalo on the regular basis. We all gave many
lectures or short courses related to statistical genetics at other places and times. At
each place and time, we were heavily impressed by the enthusiasm of students and
other audiences to learn this fascinating area. All these encouraged us to write a
book that can cover basic methods for statistical genetics research. The concepts,
models and algorithms related to genetic mapping have been published in a variety of
statistics and genetics journals by a large number of authors, but part of the material
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contained in this book comes from our collaborative research program in the past five
years. In particular, we apologize for those authors whose work was not mentioned in
this book because of limited space.

During the writing of this book, many of our colleagues and friends both at the
University of Florida and outside provided valuable help from different perspective.
Wu is warmly grateful to his postdoctoral advisor, Dr. Zhao-Bang Zeng at North
Carolina State University, for tremendous guidance and for leading him to the field of
statistical genetics. Dr. Bruce Walsh at the University of Arizona provided insightful
reviews of the book manuscript in different stages. Several anonymous reviewers
gave constructive comments that significantly improve the presentation of the book.
Students or postdocs who attended our lectures and classes or are working with us
on statistical genetics in different places have provided many insightful suggestions to
improve our presentation of the book. The following students or postdocs in our group,
former or current, deserve special thanks: Yuehua Cui, Wei Hou, Hongying Li, Min
Lin, Tian Liu, Fei Long, Xiang-Yang Lou, Qing Lu, Damaris Santana, Zhaojie Wang,
Zuoheng Wang, Jiasheng Wu, Song Wu, Jie Yang, John Yap, Li Zhang, Wei Zhao, and
Yun Zhu. The data used for examples in the book were kindly supplied by Dr. James
Cheverud at Washington University (mouse), Dr. Junyi Gai at Nanjing Agricul-
tural University (soybean), Rory Todhunter at Cornell University (dog), Drs. Stan
Wullschleger and Tongming Yin at Oak Ridge National Laboratory (poplar), and
Dr. Jun Zhu at Zhejiang University (rice).

We are grateful to the Department of Statistics and the Institute of Food and
Agricultural Sciences at the University of Florida for writing this book and performing
our research program. Finally, we are greatly indebted to our respective families for
their continuous support of our research activities over the years. This work is partially
supported by NSF grant 0540745.

Gainesville, FL Rongling Wu
Buffalo, NY Chang-Xing Ma
December 2006 George Casella
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1

Basic Genetics

1.1 Introduction

There have been enormous advances in the science of genetics. A huge amount of
information regarding the precise molecular mechanisms of genetic transmission from
parent to offspring is becoming increasingly available. In this chapter, we briefly review
basic terminology and principles of genetics from Mendelian, population, quantita-
tive and molecular perspectives at a level appropriate for understanding the research
methods to be described in this book. Much of the description for classic Mendelian
genetics is adapted from Bailey’s (1961) book. To learn more about modern genetics,
please look into the more general genetics textbooks that are listed at the end of this
chapter.

1.2 Genes and Chromosomes

Genes are discrete units in which biological characteristics are inherited from parents
to offspring. Genes are normally transmitted unchanged from generation to genera-
tion, and they usually occur in pairs. If a given pair consists of similar genes, the
individual is said to be homozygous for the gene in question, while if the genes are
dissimilar, the individual is said to be heterozygous. For example, if we have two al-
ternative genes, say A and a, there are two kinds of homozygotes, namely AA and
aa, and one kind of heterozygote, namely Aa. These alternative genes are called alle-
les. With a single pair of alleles, there are three different kinds of possible organisms
represented by the three genotypes AA,Aa, and aa.

Genes are generally very numerous, and situated within the cell nucleus, where
they lie in linear order along microscopic bodies called chromosomes. The chromo-
somes occur in similar, or homologous, pairs, where the number of pairs is constant
for each species. For example, Drosophila has 4 pairs of chromosomes, pine has 12,
the house mouse has 20, humans have 23, etc. The totality of these pairs constitutes
the genome of a particular organism. One of the chromosome pairs in the genome
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are the sex chromosomes (typically denoted by X and Y) that determine genetic sex.
The other pairs are autosomes which guide the expression of most other traits.

Each gene pair has a certain place or locus on a particular chromosome. Since
the chromosomes occur in pairs, the loci and the genes occupying them also occur
in pairs. Therefore, it is the loci that have the fixed linear order, although a given
locus may be occupied by any gene from the series of alleles (more than two alleles or
multialleles) determining a particular trait. The most important purpose of a genome
mapping project is to locate the genes affecting trait expressions on chromosomes.

1.3 Meiosis

When ordinary body cells divide and multiply, the cell nucleus undergoes a process of
division called mitosis, which results in the two daughter cells, each having a full set
of paired chromosomes exactly like the parent cell. But in the production of reproduc-
tive cells or gametes (ova and spermatozoa), we have a different mechanism, called
meiosis. This ensures that only one chromosome from each homologous pair passes
into each gamete. It follows that gametes also possess only one gene from each gene
pair. The number of chromosomes in a gamete is referred to as the haploid number, in
contrast to the full complement possessed by a fertilized egg, or zygote, which is
diploid.

A diagram is drawn to illustrate the biological process of meiosis (Fig. 1.1). The
chromosomes are already duplicated by the time they become visible at the start of
the first meiotic division. Each pair of duplicates is joined at the centromere, a small
particle at which two arms of the chromosome are connected. The duplicated pairs
remain joined throughout the first anaphase. The paternal homolog (a duplicated pair)
moves to one pole; the maternal homolog (another duplicated pair) moves to the other.
The immediate products of the first meiotic division are two cells, each containing
a diploid chromosome set. However, each homologous pair of chromosomes in one
of these cells is a pair of maternally originated chromosomes or a pair of paternally
originated chromosomes. The assortment between the two cells is random, with each
resulting cell normally containing some chromosome pairs of maternal origin and
others of paternal origin. In the second meiotic division, the number of chromosomes
is halved and each of the two products of the first division produces identical daughter
cells with half the usual number of chromosomes.

The significance of reduction division in meiosis is that it can maintain a diploid
(double) chromosome set after fertilization, the fusion of a male gamete (sperm) with
a female gamete (egg). A second essential characteristic of meiosis is that there is an
interchange of genetic material between the two chromosomes of a homologous pair.
Thus, the haploid gamete chromosome set contains a mixture of chromosomes, some
derived from the father and some from the mother.
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Gamete precursor cell at beginning of

meiosis; the DNA has already been dupli-

cated.

First meiotic division: the homolog pair.

First meiotic division: paired duplicated

chromosomes align at equator of spindle;

duplicated chromosome strands stay to-

gether; members of each separate toward

poles.

Formation of two daughter cells: each con-

tains two of the previously duplicated chro-

mosomes (one of each pair).

Second meiotic division: DNA is not du-

plicated, but previously duplicated cen-

tromeres and chromosomes now separate.

Each cell forms two identical daughter

cells, with DNA and chromosomes reduced

by one-half.

Fig. 1.1. Schematic diagram of meiosis in a hypothetical male who has one pair of identical
autosomes (white) and one dissimilar XY pair (shaded). Adapted from Cavalli-Sforza and
Bodmer (1971).

1.4 Mendel’s Laws

1.4.1 Mendel’s First Law

Genes are present in pairs in all cells of an adult organism, except for gametes. The
gametes have only one gene from any given pair. Thus if an adult has genotype AA,
all the gametes produced are of type A. But if the genotype is Aa, two types of
gametes are possible, A and a, and these are normally produced in equal numbers.
When fertilization occurs, a sperm carrying one gene from the male parent is united
with an ovum carrying one gene from the female parent, thus making up a complete
pair. The fertilized egg, or zygote, then develops to produce an organism in each body
cell, of which one gene is derived from one parent and one from the other. The new
individual produces its own reproductive cells, and so the process can continue.
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The considerations above constitute Mendel’s first law, the Law of Segregation.
This states that characteristics are controlled by pairs of genes that segregate or sepa-
rate during the formation of the reproductive cells, thus passing into different gametes.
The pairs are restored when fertilization occurs, and this leads to the production of
different types of offspring in certain definite proportions. In effect, segregation shuf-
fles the genes and redeals them to the next generation. Characters themselves may
also be said to show segregation, but the precise manner in which this happens
depends on the nature of the genes involved and their dominant and recessive
relationships.

Suppose we cross two individuals, represented by AA and aa. All gametes from
the first will be A and all from the second will be a. Thus, all zygotes F1 will be of
the heterozygous type Aa. We now cross two individuals from the F1 to form a new
F2 generation. Each F1 heterozygous Aa produces two kinds of gametes, A and a, in
equal numbers. At fertilization, there are four ways in which a zygote can be formed:
one A gene from each parent; one a from each parent; A from the male and a from
the female; or A from the female and a from the male. We therefore expect the three
types of offspring AA, Aa, and aa in the ratios of 1:2:1 in the F2 generation. But, if
A is dominant, the first two classes will be phenotypically indistinguishable, giving
the characters A and a in a 3:1 ratio.

If one of the heterozygous F1 offspring is mated back to the homozygous parent,
a backcross population is generated. The genotype of an individual in the backcross
depends only on the heterozygous F1 in which two kinds of gametes, A and a, are
formed in equal numbers. Thus, the segregation ratio of the genotypes in the backcross
follows a 1:1 ratio.

1.4.2 Mendel’s Second Law

Mendel’s second law says that when two or more pairs of genes segregate simultane-
ously, they do so independently. This is the Law of Independent Assortment. In some
cases, this law is adequate, but it is subject to certain very important exceptions.
These arise because of the phenomenon of linkage, a main topic of this book.

Suppose we have two pairs of genes represented by A, with two alleles A and a,
and B with two alleles B and b. If we cross two individuals, one homozygous for both
A and B and the other homozygous for both a and b (i.e., the mating AABB×aabb),
it is obvious that all offspring will be AaBb. This is because the first parent must
produce gametes that are all AB, and the second parent must produce gametes which
are all ab. We now consider the intercross AaBb × AaBb. If the segregation is to be
independent then each of these individuals will produce four kinds of gametes, namely
AB,Ab, aB and ab, in equal numbers. Combining the four alternative types of gametes
from one parent with the four alternatives from the other leads to 16 combinations,
which are not, however, all different. The various possibilities are most easily presented
as shown in the diagram of Fig. 1.2. It will be seen from the diagram that there
are in fact nine distinct genotypes, AABB (1), AABb (2), AAbb (1), AaBB (2),
AaBb (4), Aabb (2), aaBB (1), aaBb (2), and aabb (1), where the number given in
parentheses is the forming number of each genotype. But if each gene pair exhibits
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a dominant/recessive relationship, there will be only four separate phenotypic classes,
AB, Ab, aB, and ab occurring in the ratio 9:3:3:1.

(AB)
AaBb

(AB)
AaBb

(AB)
AaBb

(AB)
AaBb

(aB)
aaBb

(aB)
aaBb

(ab)
aabb

(Ab)
Aabb

(aB)
aaBB

(Ab)
Aabb

(Ab)
AAbb

(AB)
AaBB

(AB)
AABb

(AB)
AABB

(AB)
AABb

(AB)
AaBB

Gametes

ab

aB

Ab

AB

AB Ab aB ab

Gametes

Fig. 1.2. Gene segregation of an intercross, AaBb×AaBb, involving two gene pairs. When
each pair exhibits dominance, the resultant phenotypes are given in brackets. The degree of
dominance is roughly described by different darknesses of the cells.

1.5 Linkage and Mapping

Mendel’s second law applies to genes whose loci lie on different chromosomes. Genes
whose loci lie on the same chromosome will tend to remain together. Loci on the same
chromosome are said to be syntenic, and those on different chromosomes are said to
be nonsyntenic. The extent to which syntenic loci remain together depends on their
closeness. We are thus led to consider the phenomenon of linkage.

In order to see what essentially is involved in linkage, let us consider the formation
of gametes by a heterozygote AaBb. If the loci for the gene pairs A, a and B, b lie on
the same kind of chromosome, we can specify more exactly the composition of the
homologous pair of chromosomes. Thus, one chromosome may contain A and B, the
other a and b; i.e.,

B

aA

b ,(1.1)

where the two vertical lines stand for the two homologous chromosomes. Or, alter-
natively, A and b may lie on one chromosome, while the other contains a and B;
i.e.,
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b

aA

B .(1.2)

Definition 1.1. [Some Basic Terms] For alleles A and B, the arrangement displayed
in diagram (1.1) is termed coupling and is written AB/ab; the arrangement in diagram
(1.2) is called repulsion and is indicated by Ab/aB. The relative arrangement of
nonalleles (i.e., A vs. B, A vs. b, a vs. B, or a vs. b) at different loci along a chromosome
is called the linkage phase.

At an early stage of meiosis, the two chromosomes 1 and 2 lie side by side with
corresponding loci aligned. If the parental genotype is AB/ab, we can represent the
alignment as in Fig. 1.3A. Each of the paired chromosomes is then duplicated to
form two sister strands (chromatids) connected to each other at a region called the
centromere. The homologous chromosomes form pairs, so that each resulting complex
consists of four chromatids known as a tetrad (Fig. 1.3B). At this stage, the non-
sister chromatids adhere to each other in a semi-random fashion at regions called
chiasmata. Each chiasma represents a point where crossing over between two non-
sister chromatids can occur (Fig. 1.3C). Chiasmata do not occur entirely at random,
as they are more likely farther away from the centromere, and it is unusual to find
two chiasmata in very close proximity to each other.

A

B

A

B

a

b

A

B

a

B

A

B

A

b

a

B

a

b

a

b

A

B

a

b

A

b

a

b

A (pairing up) B (tetrad) C (crossing over) D (haplotype)

centro-
 mere

chromo-
 some 21 chro-

matid 21 21 chiasma NR R R NR

Fig. 1.3. Diagram for crossing−over between linked loci A and B.

Each gamete receives one chromatid from a tetrad to make up the haploid com-
plement (Fig. 1.3D). Since it is possible that more than one crossover occurs on the
chromosomes, some chromosomes in the haploid complement consist of a number of
segments from the two parental chromosomes. The number of segments is determined
by the number of crossovers that occurred in the formation of the chromatid that
became the chromosome. If no crossovers occur, then the chromosome will be a repli-
cate of an entire parental chromosome. If one crossover occurs between two loci A
and B, then the chromosome will consist of two segments, one from each parental
chromosome. In the former case, the resultant gametes must be AB or ab, just like
the parental chromosomes. In the latter case, where there is one point of exchange,
we have the new combinations Ab and aB, called recombinant types. In general, if
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there are an even number of points of exchange between the two loci, the final result
will be indistinguishable from AB or ab. But if there are an odd number of points of
exchange, the result will be like Ab or aB.

The existence of linkage means that there will be more gametes like AB and
ab, and fewer like Ab and aB. Let us suppose that the proportion of recombinant
gametes is r, which we call the recombination fraction, and that the proportion of
parental type is 1 − r. The recombination fraction can be estimated on the basis of
the expected number of recombinants in a segregating progeny (see Chapter 3). In
general, we should not expect to find recombination fractions greater than one-half,
though in certain unusual circumstances there may be a tendency for chromosomes
inherited from one parent or from particular stocks to associate nonrandomly.

From the definition of the recombination fraction, it follows that the special case
r = 1/2 is equivalent to independent segregation or no linkage. Actually, if two loci on
one chromosome are a long way apart, odd and even numbers of points of exchange
will be about equally frequent (i.e., 50 percent each), so this case will not be imme-
diately distinguishable from the case where the loci are on different chromosomes.
Alternatively, if two loci are close together, the frequency of points of exchange will
be low, and the corresponding recombination fraction will be small. To some extent,
we can use the latter as a measure of the distance between any two loci.

A better scale of measurement is that afforded by the density of points of exchange.

Definition 1.2. [Map Distance] The map distance between any two loci is the aver-
age number of points of exchange occurring in the segment.

The map distance is a quantity that is automatically additive. There is a very
simple relationship between the recombination fraction and the map distance for a
pair of loci in the simplest case of no interference. Such a relationship is called a
map function and will be discussed in Section 3.10. When the recombination frac-
tions between pairs of loci on a single chromosome have been determined from an
appropriate linkage experiment, it is a simple matter to transform them into map dis-
tances and hence construct a chromosome map. Since there is no reason to suppose
that chromosomes are homogeneous along their lengths with regard to the frequency
of crossing−over, we cannot assume that there is necessarily a very close correspon-
dence between genetic map distance and the actual physical distance between the
corresponding genes.

When many genes are considered, an issue arises about their linear arrangement
within each chromosome. The loci of any organism fall into linkage groups, where
any locus in one group is unlinked to any locus in a different group. Within any
group, however, the loci can be arranged in a linear order. For sufficiently close loci,
the recombination fraction between any pair may, in an elementary analysis, be used
as a direct measure of the distance between the loci. To retain additivity at greater
separations, we must work in terms of the average number of crossovers rather than
the recombination fraction (which only measures the frequency of an odd number of
crossovers). We thus need to know how the recombination fractions observed between
many pairs of loci lying on a single chromosome can be fitted into a unifying picture
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based on the notion of a chromosome map. This will critically rely upon the develop-
ment of theoretical models and statistical algorithms for constructing genetic linkage
maps, which is one of the major themes of this book.

1.6 Interference

In the simplest case, we assume that the points of exchange occur at random, so that
the pattern of crossing−over in any segment of a chromosome is independent of the
pattern in any other segment. In practice, however, nonrandomness is common and
was named interference by H. J. Muller (1916). When, as usual, this is positive, the
occurrence of a point of exchange tends to inhibit the formation of other such points
in its neighborhood. Various models are available for describing the phenomenon of
interference, and some of these entail the occurrence of recombination fractions greater
than one-half in sufficiently long chromosomes.

As mentioned earlier, each chromosome splits longitudinally into a pair of identi-
cal daughter−chromosomes (chromatids) during the relevant part of a meiotic divi-
sion. The two chromatids are initially held together by the centromere (Fig. 1.3B).
Crossing−over always occurs between chromatids from different chromosomes of a
homologous pair, as shown in Fig. 1.3C. Thus, the phenomenon of crossing−over
actually involves all four chromatids, or strands, of any pair of homologous chromo-
somes. A pair of homologous chromosomes united by crossing−over is often called
bivalent.

We may envision the occurrence of several points of exchange or chiasma, each of
which now entails the X-like arrangement of chromatids shown in Fig. 1.3C. We can
distinguish between two kinds of interference.

Definition 1.3. [Kinds of Interference] One type of interference is chiasma inter-
ference, in which the occurrence of one chiasma influences the chance of another
occurring in its neighborhood, and another is chromatid interference, which is a non-
random relationship between the pair of strands involved in one chiasma and the pair
involved in the next chiasma.

Chiasma interference is common, and some distributions have been observed in
which the variance of interference was as low as a quarter of its mean. Chromatid
interference, on the other hand, is much more difficult to detect, and evidence for
its existence is more scant. It has been proven that chiasma interference alone is
incapable of causing recombination fractions of more than 50 percent (Mather 1938).

1.7 Quantitative Genetics

1.7.1 Population Properties of Genes

Mendelian segregation leads to simple and predictable segregation ratios in the off-
spring of specific mating types but only applies to a progeny population derived from
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two parents of known genotype. However, different mating types can occur simulta-
neously to generate the offspring in a natural or experimental population in which
the ratios of the different genotypes are weighted averages of the segregation ratios
of all the possible mating types, the weights being the relative frequencies of the
different mating types. The population properties of genes can be described by the
allele frequencies, genotype frequencies, and Hardy-Weinberg law.

Consider a gene with two alleles, A and a, with respective frequencies p1 and p0,
in a population. Let P2, P1, and P0 be the population frequencies of three genotypes,
AA, Aa and aa, respectively. When the mating type frequencies arise from random
mating, the ratios of the different genotypes follow a mathematical model established
independently by the English mathematician Hardy (1908) and the German physician
Weinberg (1908). This well-known model, today called the Hardy-Weinberg Law,
states that, if individuals in the population mated with each other at random, these
frequencies would satisfy the relationship

P 2
1 = 4P2P0,(1.3)

and each of these frequencies is kept unchanged from generation to generation. The
population that follows equation (1.3) is said to be at Hardy-Weinberg equilibrium,
in which the genotype frequencies can be expressed as P2 = p2

1, P1 = 2p1p0, and
P0 = p2

0, respectively. Approaches exist to test whether or not a population is at
Hardy-Weinberg equilibrium (Falconer and Mackay 1996; Lynch and Walsh 1998).

1.7.2 A General Quantitative Genetic Model

A gene that is segregating in a population may affect the phenotype of a trait. For a
complex or quantitatively inherited trait, the genes that determine it may be numer-
ous and their relationships with the environment may be complicated. The study of
the genetic basis of a quantitative trait is the theme of quantitative genetics.

Consider a quantitative trait with phenotypic value P, which is determined by the
genetic (G) and environmental factors (E) and their interaction (G × E), expressed as

P = G + E + G × E.(1.4)

Assuming that all terms in equation (1.4) are independent of one another, we partition
the phenotypic variance of the trait into the corresponding genetic, environmental,
and genotype × environment interaction variance components:

VP = VG + VE + VG×E.(1.5)

In statistics, the variance is generally symbolized by V or σ2. The genetic variance, VG

or σ2
G, is due to the effects of all genes that determine the trait. Consider a gene with

genotypes AA, Aa, and aa whose genotypic values and frequencies in a population at
Hardy-Weinberg equilibrium are expressed as follows:
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Genotype Genotypic Value Frequency

AA µ2 = µ + a P2 = p2
1

Aa µ1 = µ + d P1 = 2p1p0

aa µ0 = µ − a P0 = p2
0

The three different genotypes are symbolized by j (j = 2 for AA, 1 for Aa, and 0
for aa). Genotypic values are composed of the overall mean of the trait (µ), the
additive effect (a) of the gene due to the substitution of alleles from A to a, or
the dominance effect (d) due to the interaction effect of different alleles A and a at
the gene. If there is no dominance, d = 0; if allele A is dominant over a, d is positive;
and if allele a is dominant over A, d is negative. Dominance is complete if d is equal
to +a or −a, and there is overdominance if d is greater than +a or less than −a. The
degree of dominance is described by the ratio d/a.

The population mean of the three genotypes with different frequencies is calcu-
lated as

µ̄ =
2∑

j=0

Pjµj = (p1 − p0)a + 2p1p0d,

and we have the genetic variance for this gene,

σ2
g =

2∑

j=0

Pj (µj − µ̄)2

= 2p1p0[a + (p1 − p0)d]2 + 4p2
1p

2
0d

2

= 2p1p0α
2 + 4p2

1p
2
0d

2

def
= σ2

a + σ2
d,

where α = a + (p1 − p0)d is the average effect due to the substitution of alleles from
A to a (Falconer and Mackay 1996). The first term of the genetic variance, σ2

A, is
the additive genetic variance component, and the second term, σ2

D, is the dominance
genetic variance component. These two expressions can be readily extended to in-
clude the effects of all underlying genes for a trait. If gene interactions are ignored,
the variances contributed by all the genes are expressed as σ2

G =
∑

σ2
g , σ2

A =
∑

σ2
a,

and σ2
D =

∑
σ2

d.

1.7.3 Genetic Models for the Backcross and F2 Design

The partitioning of the genetic variance can be made for different genetic settings.
Consider two parental populations, P1 and P2, fixed with favorable alleles A1, ..., Am

and unfavorable alleles a1, ..., am, respectively, for all m loci. The two parents are
crossed to generate an F1. The F1 is backcrossed to one of the parents to form a
backcross or self-crossed to form an F2.
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Let ak and dk be the additive and dominance effects of gene k, respectively, and
rkl be the recombination fraction between any two genes k and l. Consider a pair of
genes, Ak and Al, whose genotypic values (upper) and frequencies (lower) in the F2

population are expressed as

AlAl Alal alal

AkAk µ + ak + al µ + ak + dl µ + ak − al

1
4 (1 − rkl)2 1

2rkl(1 − rkl) 1
4r2

kl

Akak µ + dk + al µ + d1 + d2 µ + dk − al

1
2rkl(1 − rkl) 1

2 [r2
kl + (1 − rkl)2] 1

2rkl(1 − rkl)2

akak µ − ak + al µ − ak + dl µ − ak − al

1
4r2

kl
1
2rkl(1 − rkl) 1

4 (1 − rkl)2

(1.6)

where the genotypic values are composed of the additive and dominance effects at the
two genes because gene interactions are ignored, and the derivation of the genotype
frequencies in the F2, expressed in terms of the recombination fraction between two
genes, needs knowledge of linkage analysis, described in Section 3.5. From display 1.6,
we can derive the genetic variance of the trait as

σ2
G =

1
2

m∑

k=1

a2
k +

1
4

m∑

k=1

d2
k

+
1
2

m∑

k=1

m∑

l=1,k �=l

(1 − 2rkl)akal +
1
4

m∑

k=1

m∑

l=1,k �=l

(1 − 2rkl)2dkdl.(1.7)

The first term on the right side of equation (1.7) for the F2 is the additive variance
within loci, the second is the dominance variance within loci, the third is the additive
covariance between different loci, and the fourth is the dominance covariance between
different loci.

For the backcross, in which the dominance effect cannot be defined due to in-
adequate degrees of freedom, we can derive a similar but simpler genetic variance,
expressed as

σ2
G =

1
4

m∑

k=1

a2
k +

1
4

m∑

k �=l

(1 − 2rkl)akal.(1.8)

From equation (1.8), the genetic variance in a backcross consists of the additive genetic
variance and additive covariance between different loci.
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1.7.4 Epistatic Model

Genes may affect quantitative traits in an interactive way. The effect due to gene
interaction was coined as epistasis by W. Bateson (1902). From a physiological per-
spective, epistasis describes the dependence of gene effects at one locus upon those
at the other locus. Fisher (1918) first partitioned the genetic variance into additive,
dominance, and epistatic components using the least squares principle. Cockerham
(1954) further partitioned the two-gene epistatic variance into the additive × ad-
ditive, additive × dominance, dominance × additive, and dominance × dominance
interaction components. There are many approaches for specifying epistasis, but we
will model epistasis using Mather and Jinks’ (1982) approach.

Consider two genes, one denoted by A, with three genotypes, AA, Aa, and aa,
and the second denoted by B, with three genotypes, BB, Bb, and bb. These two
genes form nine two-locus genotypes, whose genotypic values, denoted by µj1j2 , can
be partitioned into different components

µj1j2 = µ overall mean
+ (j1 − 1)a1 + (j2 − 1)a2 additive effects

+ j1(2 − j1)d1 + j2(2 − j2)d2 dominance effects
+ (j1 − 1)(j2 − 1)iaa additive × additive effect

+ (j1 − 1)j2(2 − j2)iad additive × dominance effect(1.9)
+ j1(2 − j1)(j2 − 1)ida dominance × additive effect

+ j1(2 − j1)j2(2 − j2)idd dominance × dominance effect,

where

j1, j2 =

⎧
⎪⎨

⎪⎩

2 for AA or BB

1 for Aa or Bb

0 for aa or bb

.

The second line of equation (1.9) is the additive effects of single genes, the third line
is the dominance effects of single genes, and the fourth, fifth, sixth, and seventh lines
are the epistatic effects between the two genes, additive × additive (iaa), additive ×
dominance (iad), dominance × additive (ida), and dominance × dominance (idd),
respectively.

For the two genes that are cosegregating with the recombination fraction of r in
an F2 population, the genotypic values and frequencies are expressed in Table 1.1.
Note that the genotype frequencies are calculated in terms of r. Based on Table 1.1,
the genetic variance of a trait can be derived.

1.7.5 Heritability and Its Estimation

According to equation (1.5), the total phenotypic variance of a quantitative trait is
decomposed into its genetic, environment and genotype × environment interaction
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Table 1.1. Genotypic values (upper) and frequencies (lower) of the nine genotypes at two
genes, A and B.

BB Bb bb

AA µ + a1 + a2 + iaa µ + a1 + d2 + iad µ + a1 − a2 − iaa

1
4
(1 − r)2 1

2
r(1 − r) 1

4
r2

Aa µ + d1 + a2 + ida µ + d1 + d2 + idd µ + d1 − a2 − ida

1
2
r(1 − r) 1

2
[r2 + (1 − r)2] 1

4
r(1 − r)

aa µ − a1 + a2 − iaa µ − a1 + d2 − iad µ − a1 − a2 + iaa

1
4
r2 1

2
r(1 − r) 1

4
(1 − r)2

variance components. The ratio of the genetic variance over the phenotypic variance
is defined as broad-sense heritability, i.e.,

H2 =
VG

VG + VE + VG×E
.(1.10)

As shown above, the genetic effect or variance can be partitioned into additive (A)
and nonadditive (NA) effects or variances. Thus, we have

P = G + E + G × E
= A + NA + E + A × E + NA × E,

and

VP = VG + VE + VG×E

= VA + VNA + VE + VA×E + VNA×E,

if all the effects terms are independent of each other.
The nonadditive effect or variance is the summation of dominance and epistatic

effect or variance. Because the additive effect can be inherited from the parents to off-
spring whereas the nonadditive effect cannot, we use the ratio of the additive variance
over the total phenotypic variance, define as the narrow-sense heritability, i.e.,

h2 =
VA

VA + VNA + VE + VA×E + VNA×E
,(1.11)

to quantify the degree with which the phenotypic value of a quantitative trait is
unchanged from one generation to next. The two heritability parameters (1.10) and
(1.11) are traditionally used to describe the degree of overall genetic control for a trait,
including the contributions of all the underlying genes (Lynch and Walsh 1998). These
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two parameters are now commonly used to describe the contributions of individual
genes if these genes can be detected by an approach like genetic mapping, described
in Chapters 8–14.

In practice, genetic variances can be estimated on the basis of a quantitative
genetic theory founded by Cockerham (1954, 1963). According to this theory, a set of
parents is crossed to generate multiple crosses in a mating design. The progeny from
the mating design is then grown in a particular experimental design, from which the
phenotypic data collected are analyzed by statistical approaches, such as analysis of
variance, to obtain various experimental variances. Based on the resemblance between
relatives, the estimated experimental variances are used to estimate the additive and
dominance genetic variances and, therefore, the broad- and narrow-sense heritabilities.

Comparable to Cockerham’s models, Mather and Jinks (1982) proposed a differ-
ent approach based on generation differences to estimate genetic effect or variance
components. Consider study material composed of three generations, inbred parents
P1 and P2, the non-segregating F1 and the segregating F2, which are grown under
the same condition. The phenotypic variance of a trait for the two pure parent lines
(VP1 and VP2) and F1 progeny (VF1) is purely due to environmental factors, whereas
the phenotypic variance of the same trait in the F2 (VF2) includes a sum of genetic,
environmental and genotype × environmental variance. Thus, the genetic variance of
the trait can be estimated by

VG = VF2 − VF1 ,(1.12)

or

VG = VF2 −
1
4

(VP1 + VP2 + 2VF1) .(1.13)

The estimates of individual genetic variance components can be obtained by the
inclusion of more generations (Mather and Jinks 1982).

1.7.6 Genetic Architecture

Most quantitative traits are determined by a web of many interacting loci and by an
array of environmental factors (Falconer and Mackay 1996). The traditional polygenic
theory of quantitative traits (Mather 1943) envisaged a fairly large number of loci,
each with relatively small and equal effects, acting in a largely additive way. Over the
years it has indeed been observed that a quantitative trait may display complicated
genetic architecture (Mackay 1996, 2001), expressed as

(1) It may be controlled by a fairly large number of loci; for example, of the order of
50, according to the work of Shrimpton and Robertson (1988a,b);

(2) Genes act in ways which may be additive, dominance, epistatic with other genes,
and interactive with environmental factors;

(3) The magnitude of the effect produced by each locus can vary considerably;
(4) The same genes may affect different phenotypic traits through pleiotropic effects;
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(5) The genes affecting the trait may be distributed over the genome at random or in
a certain pattern.

With a deep use of genetic mapping to analyze quantitative traits, increasing
evidence has been observed for the third point, which suggests that typically a small
number of loci account for a very large fraction of the variation in the trait. For this
reason, the traditional polygenic model may be replaced by a new oligogenic model
in which a small number of major genes each with a large effect, combined with many
minor genes each with a small effect, determine the genetic variation of a quantitative
trait (see Mackay 1996 for an excellent review).

1.7.7 The Estimation of Gene Number

The actual number of genes that control a quantitative trait is one of the most impor-
tant elements for the genetic architecture of the trait. Gene number can be estimated
by a biometrical approach, although it depends on some critical assumptions (Lande
1981; Lynch and Walsh 1998). The number of genes estimated by this approach ba-
sically reflects the effective number of genes that contribute a major part of genetic
variation of a trait. The most widely used approach for estimating gene number is
based on the phenotypic means and variances of two parental lines and their hybrids,
i.e., F1, F2 and backcrosses. The biometrical approach for the enumeration of effective
genes was first proposed by Castle (1921).

Suppose there are two contrasting parental lines, one (P1) being homozygous for
all increasing alleles and the second (P2) being homozygous for all decreasing alleles.
These two lines are crossed to generate the F1 and F2. There are a total of unlinked
me effective genes each with the same effect (a) that is purely additive. The mean
phenotype of the P1 and P2 line can be written, respectively, as

µP1 = µ +
me∑

i=1

a = µ + mea,

µP1 = µ −
me∑

i=1

a = µ − mea,

whose difference is

∆ = µP1 − µP2 = 2mea,(1.14)

with the overall mean µ being canceled. Based on equation (1.7), the genetic variance
of the F2 is rewritten as

VG =
1
2

me∑

i=1

a2 =
1
2
mea

2,(1.15)

under the assumptions as mentioned above. Combining equations (1.14) and (1.15),
we obtain the Castle-Wright estimator of gene number as
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m̂e =
∆2

8VG
,(1.16)

where VG is estimated by equation (1.12) or (1.13). The sampling variance of n̂e can
be approximated by

Var(m̂e) = m̂2
e

[
4(VP1 + VP2)

∆2
+

Var(VG)
V2

G

]
,(1.17)

where

Var(VG) =
2V2

F2

nF2 + 2
+

2V2
F1

nF1 + 2

with nF2 and nF1 being the sample sizes, if equation (1.12) is used.
After the Castle-Wright estimator, several studies were pursued to improve the

estimation of gene number. Lande (1981) generalized the Castle-Wright estimator for
use with outcrossing populations. Zeng et al. (1990) and Zeng (1992) relaxed some of
the critical assumptions, including unlinkage and equal additive effect, used for the
Castle-Wright estimator. Epistatic effects between different genes were considered
in Wu (1996) who extended gene enumeration to estimate a more complete picture
of genetic architecture. In particular, Wu’s model allows for the estimation of more
genetic parameters by including multiple generations, P1, P2, F1, F2 and backcrosses,
in the same experiment. Generally speaking, use of biometrical approaches for the
estimation of gene number has been limited in practice, despite their significance in
helping to understand general quantitative genetic theory. A more precise approach
for gene enumeration is based on genetic mapping with molecular markers in which
the association between markers and phenotypic variation is analyzed and tested by
statistical models (Lander and Botstein 1989).

1.8 Molecular Genetics

Molecular genetics applied to linkage analysis is concerned with genetic marker tech-
nologies. Molecular genetic markers are readily assayed phenotypes that have a di-
rect 1:1 correspondence with DNA sequence variation at a specific location in the
genome. In principle, the assay for a genetic marker is not affected by environmental
factors. Genetic markers are DNA sequence polymorphisms that show Mendelian in-
heritance. For genome mapping, the ideal genetic marker is codominant, multiallelic,
and hypervariable (i.e., segregates in almost every family). However, some dominant
markers are also very useful and powerful in particular situations.

Molecular markers have many different types. Restriction fragment length poly-
morphisms (RFLPs) were the first genetic markers that were widely used for genomic
mapping and population studies. RFLP markers are obtained by using restriction
endonucleases to precisely cleave a genomic DNA fragment containing a particular
gene sequence. If two organisms differ in the distance between sites of cleavage of a
particular restriction endonuclease, they will produce different lengths of the frag-
ments when the DNA is digested with a restriction enzyme. The fragments can then
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be separated by gel electrophoresis. The diagram in Fig. 1.4 illustrates the segrega-
tion of an RFLP marker among eight different organisms. Individuals 1 and 5 are the
homozygote AA for the larger RFLP alleles, individuals 4 and 7 are the homozygotes
for the smaller RFLP allele, and the others are heterozygous. The mode of inheritance
of RFLP markers is codominant, allowing for all three genotypes at a single locus to
be scored.

Fig. 1.4. Diagram for the segregating pattern of an RFLP marker detected by gel elec-
trophoresis.

The detection of RFLPs requires the hybridization of a labeled DNA probe to
denatured single-strand DNA fragments. The probe can be cloned DNA with known
or unknown sequences. Most RFLP variation is due to insertion/deletion differences
that are located between restriction enzyme recognition sites, and a small portion
of the variation can be due to sequence variation within restriction sites. RFLPs
require large amounts of genomic DNA and are laborious to carry out compared with
polymerase chain reaction methods.

The polymerase chain reaction (PCR) provides a useful way to obtain genetic
markers based on amplification of specific DNA fragments from small quantities of
genomic DNA templates. PCR-amplified markers can be based on anonymous ge-
nomic DNA fragments that vary in size (codominant inheritance), can be amplified
from some individuals but not others (dominant), or can be cleaved differentially by
restriction enzymes. The PCR can also readily provide many genetic markers based on
amplification from genomic DNA templates using a single short primer (randomly am-
plified polymorphic DNA, or RAPD). These markers are anonymous DNA sequences
flanked by the primer sequence in opposite orientation. The mode of inheritance for
RAPDs is usually dominant; the sequence either amplifies or not, and one copy can-
not be distinguished readily from two copies. Another PCR-based anonymous marker
system is amplified fragment length polymorphisms (AFLPs). AFLPs are produced
by cleaving genomic DNA using a pair of restriction endonucleases and then ligating
adapters to the ends of the DNA fragments. A subset of the fragment is selectively
amplified from these ligated fragments. These DNA fragments can be resolved on
DNA sequencing gels and have a higher multiplex ratio than RAPDs, often 20–40
markers per gel lane. Figure 1.5 is a diagram for the segregation of two dominant
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(RAPD or AFLP) markers, A and B, for eight individuals. At marker A, individuals
1, 2, 3, 5, 6, and 8 show a band, suggesting that they are either the homozygote for
the dominant allele or the heterozygote. For this marker, individuals 4 and 7 with no
band should be homozygous for the recessive allele. A similar inference can be made
about the segregating patterns of markers B and C.

Fig. 1.5. Diagram for the segregating pattern of three dominant markers detected by gel
electrophoresis.

Microsatellite markers, also called simple sequence repeats (SSRs), are based on
the PCR–amplification of a genomic region containing a simple sequence (mono-,
di- or trinucleotide) that is repeated. The repeat number of microsatellites can be
highly variable, so that most individuals are heterozygous and the proportion of
individuals that have the same marker genotype is small. Microsatellites may have
many alleles (up to 70 or 80) at a single SSR locus and are inherited as codominant
markers. In Fig. 1.6, eight hypothesized individuals are segregating for a triallelic
microsatellite marker. Individual 1 is homozygous for the largest allele, individual 2
is heterozygous for the largest and second largest alleles, and others can be observed
accordingly.

In practice, two ways are commonly used to identify microsatellite loci suitable
for use as genetic markers. For some species, such as the human, mouse, Arabidopsis,
and rice, in which a large number of DNA sequences are already available, microsatel-
lites may be identified by searching from the DNA sequence databases for sequences
containing simple repeats. However, for most plant and animal species, a large effort
in hybridization and sequencing is needed to identify microsatellites suitable for use
as genetic markers.

1.9 SNP

A single nucleotide polymorphism (SNP) is a site in the genome where the DNA
sequences of many individuals differ by a single A, T, C, or G. For example, two
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Fig. 1.6. Diagram for the segregating pattern of a multiallelic microsatellite marker detected
by gel electrophoresis.

sequenced DNA fragments from different individuals, AAGCCTA and AAGCTTA,
contain a difference in a single nucleotide. In this case, two nucleotides that make
the two individuals different are C and T, which are called two alleles. SNPs, as
the newest markers, have been the focus of much attention in genetics because they
are extremely abundant and well-suited for automated large-scale genotyping. A dense
set of SNP markers opens up the possibility of studying the genetic basis of complex
diseases by population approaches.

SNPs can be detected in either a sequence-specific or sequence-nonspecific
way. Sequence-nonspecific detection is based on the capture, cleavage, or mobility
change during electrophoresis or liquid chromatography of mismatched heterodu-
plexes formed between allelic DNA molecules or single-stranded DNA molecules
that assume slightly different conformations under nondenaturing conditions. Al-
though sequence nonspecific detection of polymorphisms is the mainstay in polymor-
phism/mutation discovery, it is not an acceptable approach to genotyping because
one is never certain if the inferred genotyping is the true genotype. Sequence-specific
detection relies on four general mechanisms for allelic discrimination: allele-specific
hybridization, allele-specific nucleotide incorporation, allele-specific oligonucleotide
ligation, and allele-specific invasive cleavage.

General Genetics Textbooks for Further Reading

[1] Anthony J. F. Griffiths, William M. Gelbart, Richard C. Lewontin and Jeffrey
H. Miller (2002) Modern Genetic Analysis: Integrating Genes and Genomes. 2nd
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[2] Daniel L. Hartl and Elizabeth W. Jones (2001) Genetics: Analysis of Genes and
Genomes. 6th edition. Jones and Bartlett Publishers, Sudbury, Massachusetts.

[3] Benjamin Lewin (2005) Essential Genes. Prentice-Hall, Engewood Cliff, New
Jersey.
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1.10 Exercises

1.1 Equations (1.7) and (1.8) describe the genetic variance σ2
G due to m genes for the F2

and backcross, respectively. Show how these two equations are derived.

Hint: Consider two linked genes, A and B, with recombination fraction r, in a back-
cross. The additive effects of these two genes are denoted by a1 and a2, respectively.
The genetic values of the four backcross genotypes at the two genes are defined, along
with their frequencies in terms of r, as follows:

Genetic Value Frequency

Genotype Code µj Pj

AaBb 1 µ + a1 + a2
1
2
(1 − r)

Aabb 2 µ + a1
1
2
r

aaBb 3 µ + a2
1
2
r

aabb 4 µ 1
2
(1 − r)

The genetic variance due to these two genes is calculated as

σ2
G =

4∑

j=1

Pjµ
2
j −

(
4∑

j=1

Pjµj

)2

=
1

4
(a2

1 + a2
2) +

1

4
(1 − 2r)a1a2.

This can be extended to include m genes and derived similarly for the F2 progeny.
1.2 Equation (1.16) is the Castle-Wright estimator for gene number. Lists the assumptions

used for its derivation.
1.3 Modify the Castle-Wright estimator to suit the following situations:

(a) Each gene displays both the additive and dominance effects.
(b) Some genes are of increasing effect in the P1, with the rest of decreasing effect, and

vice versa for the P2.
(c) Different genes are linked on the same chromosome.
(d) Different genes interact to display epistatic effects.

You may consider including more generations in your model, which empowers you to
estimate more genetic parameters. Read Zeng et al. (1990), Zeng (1992), and Wu (1996)
for some thorough discussions on each issue above.

1.11 Note

In what follows, we present an approach to model unequal genetic effects across
different loci for a quantitative trait. Genetic effects are found to vary among different
genes in a particular oligogenic pattern, as shown in Fig. 1.11.1, i.e., typically a small
number of loci account for a large proportion of the genetic variation, with many
others contributing a small proportion (Shrimpton and Robertson 1988a,b). This
pattern allows the modeling of genetic effects across loci by a Gamma function or
geometric series.
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1.11.1 Modeling Unequal Genetic Effects by the Gamma Function
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Number of loci ranked by magnitude of effect 

Cumulative proportion of 
additive genetic variance 

Fig. 1.7. Graphical theoretical representation of the relationship between the number of
loci determining a typical character and the cumulative proportion of the additive genetic
variance account for by such loci.

Suppose there are ne genes responsible for a trait whose additive and dominance
genetic effects are different. A three-generation pedigree including the P1, P2, F1, F2,
and backcrosses (B1 and B2) is considered. Assume that the additive effect (a) at
a locus follows a gamma distribution (Kimura 1979; Hill and Rasbash 1986), whose
density function, respectively, as

f(a) =
αβe−αaaβ−1

Γ (β)
, 0 ≤ a < ∞, 0 < α, β < ∞,

where α is the scale parameter of the gamma distribution of the additive effect and
β is the corresponding shape parameter. The moments for this distribution are

E(a) =
β

α
, E(a2) =

β(1 + β)
α2

, V(a) =
β

α2
, for a

where E denotes expectation. The parameter β can be used to measure the equality
of additive and dominance effects at various genes. When β → ∞, the distribution
converges to the case of equal genetic effect. According to the above moments, we
obtain the following expression

∑me

i=1 a2
i

m∗ = a2 = E(a2) =
1 + β

β
[E(a)]2,
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where a and a2 are the average values of additive effects and of squared additive
effects across all relevant genes, respectively. Ignoring the dominance effect, the genetic
variance of the F2 due to m∗ unlinked unequally-sized genes according to 1.7 can be
expressed as

VG =
1
2

m∗∑

i=1

a2
i =

1
2
m∗E(a2) =

1
2
m∗

(
1 + β

β

)
(a)2

The difference between the two parent lines is shown as

∆ = µP1 − µP2 = 2m∗a.

Combining the above two equations leads to the estimate of n∗ as

m̂∗ =
∆2

8VG

(
1 + β

β

)
= m̂e

(
1 + β

β

)
,(1.18)

where m̂e is the estimate of gene number when all the genes are assumed to have an
equal effect (equation (1.16)). Parameter (1+β)/β can be used to describe the pattern
of distribution of genetic effects. If individual effects (ai) are normally distributed,
then we have (1 + β)/β = π/2 = 1.57. However, a highly leptokurtic distribution
can lead to a (1 + β)/β value larger than π/2 (Mackay et al. 1992). Therefore, by
assuming the same genetic effects the gene number is always underestimated when
genetic effects are virtually unequal among genes.

1.11.2 Modeling Unequal Genetic Effects by a Geometric Series

The oligogenic model stating the genetic control of a quantitative trait by a few genes
of large effects and many genes of small effects implies that the distribution of additive
genetic effects (a) may be approximated by a geometric series (Lande and Thompson
1990), i.e.,

a, ar, ar2, ar3, . . . , arm, r �= 1,

where r is the ratio determining the relative magnitude of the additive effect of each of
m genes. In this case, the difference between the two parents and the genetic variance
of the F2 can be written as

∆ = 2a

(
1 − rm

1 − r

)
,

VG =
a2

2

(
1 − r2m

1 − r2

)
,

which lead to

m̂e =
A2

8VG
=

1 − rm

1 + rm

(
1 + r

1 − r

)
.(1.19)

We thus have
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rm =
1 − m̂e

(
1−r
1+r

)

1 + m̂e

(
1−r
1+r

) ,

and

m̂ = logr

[
1 − m̂e

(
1 − r

1 + r

)]
− logr

[
1 + m̂e

(
1 − r

1 + r

)]
.(1.20)

Letting u = 1+rm

1−rm , we derive the expression of r, based on equation (1.19), as

r =
m̂eu − 1
m̂eu + 1

.

For the oligogenic control model for which m is large and r is small, it is not unrea-
sonable to assume u � 1, which leads to

r∗ =
m̂e − 1
m̂e + 1

.

Therefore, the number of genes can be approximately estimated by substituting r∗

into equation (1.20).
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Basic Statistics

2.1 Introduction

Now that we have seen the basics of genetics, we turn to an introduction to the
statistical methodologies that we will use throughout this book. Most of the statistical
inferences that we will make will be based on likelihood analysis, and we will be
concerned not only with constructing the appropriate likelihood function for a given
model but also with methods for computing and optimizing the likelihood. We start
here with some basics and work our way toward likelihood analysis of a genetic linkage
model.

2.1.1 Populations and Models

The goal of a statistical analysis is to draw conclusions about a population, a collection
of objects (typically infinite) not all of which can be measured, based on examination
of a sample, a smaller collection of objects drawn from the population, all of which
can be measured. To connect the sample to the population and have the ability to
make an inference, we use a model.

Example 2.1 (Tomato Plant Heights). Suppose that we have the following data y on
heights (in cm) of 12 tomato plants of a particular species:

y = (y1, y2, . . . , y12) = (79, 82, 85, 87, 100, 101, 102, 103, 124, 125, 126, 127).

We may take the following simple model. The true mean height of the population is
µ, and we observe data Yi according to

(2.1) Yi = µ + εi,

where εi is an error term, typically taken to have a normal distribution with mean
0 and variance σ2.
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For the model (2.1), it is often assumed that the εi follow a normal distribution
N(0, σ2), where the N(µ, σ2) probability density function is given by

φ(y|µ, σ) =
1√

2πσ2
exp

{
− 1

2σ2
(y − µ)2

}
.

Thus, under the normality assumption, we can also write the model (2.1) as Yi ∼
φ(y|µ, σ).

As the process that we are trying to describe gets more complicated, so will the
model. In this book, we will examine a range of models, with forms that are often
dictated by the biology of the problem. Here are some examples of other models:

(a) Linear Regression. To describe a linear relationship between a dependent variable
Y and an independent variable (or covariate) x, we could use the model

Yi = a + bxi + εi.

If we have many different covariates, we could use a multiple regression model
Yi = a +

∑
j bjxij + εi.

(b) To describe a relationship between a covariate and a Bernoulli random variable
(a variable Y that only takes the values 0 and 1, with P (Y = 1) = p), a logistic
regression model is often used. This has the form

logit(p(x)) = a + bx,

where the logit is defined as logit(p) = log
(

p
1−p

)
, and P (Y = 1|x) = p(x).

(c) There are many models used to describe the growth process as a function of time.
One popular model is the logistic growth curve, given by

g(t) =
a

1 + be−rt
,

where t typically is a time measurement. If we observe actual growth, we would
use this model in the form Yi = a

1+be−rti
+ εi.

(d) The last model that we will describe here will find much use in QTL mapping
(see Chapter 9). It is a mixture model, given by

Yi =

{
µ1 + εi with probability p

µ2 + εi with probability 1 − p
,

or, equivalently,

Yi ∼
{

N(µ1, σ
2) with probability p

N(µ2, σ
2) with probability 1 − p

.

We can also write the mixture model as

Yi = µ1I(X = 1) + µ2I(X = 0) + εi, εi ∼ N(0, σ2),

where P (X = 1) = p, and I is the indicator function, which is equal to 1 if the
argument is true and equal to 0 otherwise.
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2.1.2 Samples

To begin an investigation, we would typically draw a random sample from the popula-
tion of interest, a small collection of objects that are representative of the population.
A random sample is, formally, a sample of n objects obtained in such a way that all
sets of n objects have the same chance of being the sample. In practice, however, we
hope to have a sample that is independent and identically distributed, or iid.

To be specific, if we are sampling from a population with probability density
function f(y|θ), where θ contains the unknown parameters, and we draw an iid sample
Y1, Y2, . . . , Yn, we want each variable to satisfy Yi ∼ f(y|θ) (identical) and for the
variable to be independent. If we obtain an iid sample y1, y2, . . . , yn, the density
function of the sample is

f(y1, y2, . . . , yn|θ) =
n∏

i=1

f(yi|θ).

Example 2.2 (Normal Sample Density). Suppose that Y1, Y2, . . . , Yn are an iid sample
from an N(µ, σ2) population. The sample density is

φ(y1, y2, . . . , yn|µ, σ2) =
n∏

i=1

φ(yi|µ, σ2)

=
n∏

i=1

1√
2πσ2

exp
{
− 1

2σ2
(yi − µ)2

}

=
(

1√
2πσ2

)n/2

exp

{
− 1

2σ2

n∑

i=1

(yi − µ)2
}

.(2.2)

The sample density defines the relationship between the sample and the model and
is thus the only means we have of estimating the unknown parameters. Actually, there
are other methods, but they all lack efficiency when compared with estimation based
on the sample density (see Casella and Berger 2001). Moreover, all of the information
that the sample has about the parameters is contained in the sample density function.
A consequence of this is that we should base our parameter estimation method on
the sample density.

2.2 Likelihood Estimation

The most common estimation method, which is typically a very good method, is
based on the sample density. We define the likelihood function as

L(θ|y1, y2, . . . , yn) = f(y1, y2, . . . , yn|θ),

which is merely treating the sample density f as a function of the parameter, holding
the data fixed. The method of maximum likelihood estimation takes as the estimate
of θ the value that maximizes the likelihood.
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Example 2.3. (Finding a Maximum Likelihood Estimator (MLE)). To find the
MLEs in Example 2.2, we need to find the values of µ and σ2 that maximize equation
(2.2). Since likelihood functions from iid samples are products (which are nasty to
maximize), it is often easier to work with the logarithm of the likelihood (known
as the log-likelihood). The maxima are the same as the original function, and the
calculations are quite a bit easier.

From (2.2), the normal log-likelihood is

logL(µ, σ2) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑

i=1

(yi − µ)2.

Differentiating and setting equal to zero

∂

∂µ
=

1
σ2

n∑

i=1

(yi − µ) = 0,

∂

∂σ2
= − n

2σ2
+

1
2(σ2)2

n∑

i=1

(yi − µ)2 = 0,

gives the MLEs µ̂ = ȳ and σ̂2 =
∑n

i=1(yi − ȳ)2/n. For the data of Example 2.1, we
have µ̂ = 103.41 and σ̂2 = 303.24.

The rationale behind maximum likelihood estimation is the following. If the sample
y1, y2, . . . , yn is representative, then the values of yi should come from the regions of f
that have high probability; that is, the sample should “sit” under the mode of f . We do
not know where this mode is because we do not know the value of θ. However, for the
given sample, we can find the value of θ that makes f(y1, y2, . . . , yn|θ), or equivalently
L(θ|y1, y2, . . . , yn), the highest. This puts the sample in the highest probability region,
and the resulting estimator is the maximum likelihood estimator (MLE).

Example 2.4. (Tomato Data Revisited). As a slightly more realistic example, we
return to the tomato heights of Example 2.1, but we now ask if there may be evidence
of genetic control of height. Specifically, if a “height” gene is segregating in an F2

progeny according to Mendel’s first law, then we would expect to see the genotype
AA:Aa:aa segregating in the ratio 1:2:1. We hypothesize that there is a gene associated
with height, and it is segregating in the ratio p:q:1 − p − q for genotypes AA:Aa:aa.
As the values of p and q are unknown, and as we do not know the genotype of the
plant that we observed, the model of Example 2.1 becomes the mixture model

Yi =

⎧
⎪⎨

⎪⎩

µAA + εi with probability p

µAa + εi with probability q

µaa + εi with probability 1 − p − q

,

where εi ∼ N(0, σ2). If we let φAA denote a normal density with mean µAA and
variance σ2, and if we define φAa and φaa similarly, then, writing y = (y1, y2, . . . , yn),
the likelihood and log-likelihood functions are
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L(µAA, µAa, µaa, σ2|y) =
n∏

i=1

[ pφAA(yi) + qφAa(yi) + (1 − p − q)φaa(yi)] ,

log L(µAA, µAa, µaa, σ2|y) =
n∑

i=1

log [ pφAA(yi) + qφAa(yi) + (1 − p − q)φaa(yi)] .

If the gene were segregating in the ratio 1:2:1 then we would have an Mendelian
F2 population.

We can find the MLEs through differentiation. Although we will see that there is
no explicit solution, the equations will lead to a nice iterative solution. This solution
will have more general applicability, so to address that we will solve the likelihood
equations for a general mixture model and then return to the example.

Given iid observations y = (y1, y2, . . . , yn) from the general mixture model

Yi ∼
k∑

j=1

pjf(yi|θj),
∑

j

pj = 1,

the log likelihood is

log L(θ|y) =
n∑

i=1

log

⎛

⎝
k∑

j=1

pjf(yi|θj)

⎞

⎠ ,

where we write θ = (θ1, . . . , θk).
For now, we will assume that p and q are known, but we will return to this case

later. Differentiating with respect to θj′ gives

∂

∂θj′
log L(θ|y) =

n∑

i=1

∑k
j=1 pj

∂
∂θj′

f(yi|θj)
∑k

j=1 pjf(yi|θj)
.

Notice that if θj′ does not contain any of the same components as θj , the derivative
in the numerator will be zero unless j = j′. We will see this in detail in Example 2.5.

For convenience, we now write

∂

∂θj′
f(yi|θj) = f(yi|θj)

∂

∂θj′
log (f(yi|θj))

Pj(yi) =
pjf(yi|θj)∑k

j=1 pjf(yi|θj)
,

and then we have

(2.3)
∂

∂θj′
log L(θ|y) =

n∑

i=1

n∑

j=1

Pj(yi)
∂

∂θj′
log (f(yi|θj)) .

We can solve for the MLEs with the following iterative algorithm. Start with initial
values θ

(0)
j , P

(0)
j (yi) for j = 1, . . . , k. For t = 0, 1, . . .:



30 2 Basic Statistics

1. For j = 1, . . . , k, set P
(t+1)
j (yi) =

pjf(yi|θ(t)
j

)∑k

j=1
pjf(yi|θ(t)

j
)
.

2. For j′ = 1, . . . , k, solve for θ
(t+1)
j′ in

n∑

i=1

k∑

j=1

P
(t+1)
j (yi)

∂

∂θj′
log (f(yi|θj)) = 0.

3. Increment t and return to 1. Repeat until convergence.

Example 2.5. (Normal Mixture). If f(y|θj) is N(µj , σ
2), when differentiating with

respect to µj′ , the numerator in equation (2.3) contains only one term, the one with
j = j′. However, the differentiation with respect to σ2 contains the entire sum, as the
parameter σ2 is common to all densities in the mixture. We have

n∑

i=1

P
(t+1)
j (yi)

∂

∂µj
log

(
f(yi|µj , σ

2)
)

=
n∑

i=1

P
(t+1)
j (yi)

1
2σ2

(yi − µj),

n∑

i=1

k∑

j=1

P
(t+1)
j (yi)

∂

∂σ2
log

(
f(yi|µj , σ

2)
)

=
n∑

i=1

k∑

j=1

P
(t+1)
j (yi)

×
[
− n

2σ2
+

1
2(σ2)2

(yi − µj)2
]

.

In setting these equations equal to zero and solving, we can treat each µj separately
and get

µ
(t+1)
j =

∑n
i=1 yiP

(t+1)
j (yi)

∑n
i=1 P

(t+1)
j (yi)

.

For σ2, after substituting µ
(t+1)
j for µj ,we have

σ2(t+1) =

∑n
i=1

∑k
j=1 P

(t+1)
j (yi)

(
yi − µ

(t+1)
j

)2

n
∑k

j=1 P
(t+1)
j (yi)

.

Example 2.6. (Tomato Data Revisited, Completed). If the gene were segregating
in the ratio 1:2:1 then we would have a Mendelian F2 population. We now estimate
the normal parameters under this scenario.

Using the iterations described above, we estimate

µ̂AA = 125.5, µ̂Aa = 101.5, µ̂aa = 83.25, σ̂2 = 0.324.

The sequence of iterations is shown in Fig. 2.1, where the rapid convergence of the
algorithm can be seen. An R program to reproduce Figure 2.1 is given in Appendix B.2.
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Fig. 2.1. Graphs of the iterations for the MLE of Example 2.6. The plots show the con-
vergence of the estimates of the three means and the variance.

2.3 Hypothesis Testing

A major activity in statistical analysis is the testing of hypotheses. Here we review
a number of approaches, both classical and more recent.

2.3.1 The Pearson Chi-Squared Test

We first look at a situation where there are two classes of genotypes. Suppose that
there are N individuals with probability p of being in the first class. If the individuals
are independent, the probability of observing n1 individuals in the first class (and
n2 = N − n1 in the second class) is given by the binomial distribution

P (n1, n2) =
N !

n1!n2!
pn1(1 − p)n2 .

The mean of the distribution is Np and the variance is Np(1 − p). In large samples,
it is typical to approximate the binomial distribution by a normal distribution with
the same mean and variance. Thus

(2.4) Z =
n1 − Np

(Np(1 − p))1/2

is approximately a standard normal random variable, and hence Z2 is approximately
a chi-squared random variable with one degree of freedom. It can be shown that
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(2.5) Z2 = χ2
1 =

(n1 − Np)2

Np
+

(n2 − N(1 − p))2

N(1 − p)
,

which is the usual formula for the Pearson chi-squared statistic; that is, the sum of
the squares of the differences between observed (O) and expected counts (E) divided
by expected counts:

(2.6) χ2 =
∑ (O − E)2

E
.

Note that in testing for the segregation ratio 1:1, equation (2.6) can be written (n1 −
n2)2/N . In fact, the segregation test can be based directly on the standard normal
test using equation (2.4), which would produce the same result as the Pearson chi-
squared test of equation (2.5). However, the Pearson chi-squared test has an advantage
in that the test statistic (2.6) can be generalized to situations involving more than two
categories of genotypes. In such cases, the multinomial distribution is used to model
the observations, and the chi-squared approximation is given by equation (2.6).

In general, when there are m observed counts, the Pearson chi-squared statistic
that arises from the calculation of m “expected counts” is asymptotically chi-squared
with m−k degrees of freedom. Here m is one less than the number of observed counts
(cells) and k is the number of parameters to be estimated in the calculation of the
expected counts (see Section 2.3.2).

For the backcross, in which there are two genotype classes, m = 1. This is because
only one class can be filled arbitrarily, as once a number is assigned to the first class
the number in the second class is determined. For the F2, which has a total of three
genotype classes at a codominant marker, m = 2.

If N is not very large, the binomial distribution may not be well-approximated
by a normal. In such cases, it may be best to calculate an exact p-value (see Section
2.3.3). We can also use a continuity corrected χ2 statistic:

χ2 =
∑ (O − E)2 − |O − E| + 1

4

E
,(2.7)

which trades ease of use for some accuracy in the test.

Example 2.7. (F1 Hybrid Population). We use an example from Yin et al. (2001),
who constructed a genetic linkage map using molecular markers in an F1 interspeci-
fic hybrid population between two different poplar species, Chinese quaking poplar
and white poplar. The mapping population was comprised of 103 hybrid trees, each
genotyped with RAPD markers. Some markers are heterozygous in one parent but
null in the other, whereas other markers have an inverse pattern. Since these mark-
ers are segregating in the same pattern as two-way backcross markers do, such an
F1 population is called a two-way pseudo-test backcross (Grattapaglia and Sederoff
1994). In a two-way pseudo-test backcross population, two parent-specific maps can
be constructed. In this example, six markers are chosen that formed linkage group 16
in the white poplar genetic linkage map (Yin et al. 2001).
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Table 2.1. Pearson test statistic for testing Mendelian segregation 1:1 using RAPD markers
in an interspecific poplar hybrid population.

Pearson χ2

Marker n1 n2 χ2 p-value

I18 1090 44 59 2.184 0.139

W2 1050 45 58 1.641 0.200

AK12 2700 51 52 0.010 0.920

N18 1605 49 54 0.243 0.622

AK17 1200 40 63 5.135 0.023

I13 1080 41 62 4.282 0.038

Three different methods were used to test whether these six testcross mark-
ers follow the Mendelian segregation 1:1 in the mapping population. According to
the Pearson chi-squared test (2.6), assuming a large sample size, markers I18 1090,
W2 1050, AK12 2700, and N18 1605 follow the 1:1 ratio (p > .05), but markers
AK17 1200 and I13 1080 do not (Table 2.1). This suggests that the latter two markers
display possible distorted segregation.

The sample size here is actually rather large, and the continuity-corrected statistic
(2.7) gave exactly the same answers. We also note that when doing multiple tests,
there is the danger of rejection by chance alone. Thus, although we found two sig-
nificant markers, it is best to consider this only evidence of significance, and further
investigation should be done.

2.3.2 Likelihood Ratio Tests

The testing of hypotheses can be carried out very efficiently using likelihood method-
ology. We first consider a general setup where we observe iid observations Y =
(Y1, . . . , Yn) from a population with density function f(y|θ), where θ could be a
vector of parameters. For example, θ = (µ, σ2) if we are modeling normals, or
θ = (p1, . . . , pk),

∑
j pj = 1, if we are modeling probabilities.

Given a sample y = (y1, . . . , yn), the likelihood function for these data is L(θ|y) =∏n
i=1 f(yi|θ). To test a hypothesis of the form

H0 : θ = θ0 vs. H1 : θ �= θ0,

we evaluate the ratio of the maxima of the likelihood functions under both hypotheses:

λ(y) =
maxθ:θ=θ0

L(θ|y)

maxθ L(θ|y)
.
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The value of λ is less than 1 by construction since the denominator is calculating the
maximum over a larger set and hence must be a bigger number. Moreover, values of λ
close to 1 provide support for H0, as then the restricted likelihood function is close to
the unrestricted one, which in turn should be close to the truth. On the other hand,
small values of λ lead to rejection of H0.

To actually carry out the test, we could calculate a p-value as

(2.8) P (λ(Y) < λ(y)|H0 is true) = p(y)

and reject H0 for small values of p(y), say p(y) < .01. In general it is not an easy job
to figure out the exact distribution of the probability in equation (2.8), but there is
a famous approximate result that is often helpful (see Appendix A.1).

It is typical to transform λ to −2 log λ, and in this form we would now reject H0

if −2 log λ is large, the usual scenario. However, there is a second, more important
consequence, described in the following result (see Appendix A.1 for technical details).

If Y1, . . . , Yn is a random sample from a density f(x|θ), then an approximate
level α test of the hypothesis

H0 : θ ∈ Θ0 vs. H1 : θ /∈ Θ0

is to reject H0 if
−2 log λ(X) > χ2

ν,α,

where χ2
ν,α is the upper α cutoff from a chi-squared distribution with ν degrees

of freedom, equal to the difference between the number of free parameters speci-
fied by H0 and the number of free parameters specified by H1.

So, for example, if f is N(µ, σ2), the test of H0 : µ = µ0, σ2 = σ2
0 vs. H0 : µ �=

µ0, σ2 �= σ2
0 has two degrees of freedom, while the test of H0 : µ = µ0 vs. H0 : µ �= µ0

since σ2 is free in both hypotheses.

Example 2.8. (First Testing Example). As a first simple example, return to the
situation of Example 2.2, where we have Y1, Y2, . . . , Yn iid from an N(µ, σ2) popula-
tion. To test H0 : µ = µ0 vs. H0 : µ �= µ0 we calculate

λ(y) =
maxµ=µ0 L(µ, σ2|y)
maxµ,σ2 L(µ, σ2|y)

=
maxµ=µ0 L(µ, σ2|y)

L(µ̂, σ̂2|y)
,

where we see that the denominator maximum is attained by substituting the MLEs
for the parameter values (see Example 2.3). In maximizing the numerator, we set
µ = µ0 and maximize in σ2, giving

max
µ=µ0

L(µ, σ2|y) = L(µ0, σ̂
2
0 |y),

where σ̂2
0 = (1/n)

∑n
i=1(yi − µ0)2. This gives the LR statistic
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λ(y) =
L(µ0, σ̂

2
0 |y)

L(µ̂, σ̂2|y)

=

(
1

2πσ̂2
0

)n/2

exp
{

1
2σ̂2

0

∑n
i=1(yi − µ0)2

}

(
1

2πσ̂2

)n/2 exp
{

1
2σ̂2

∑n
i=1(yi − µ̂)2

}

=
(

σ̂2

σ̂2
0

)n/2

,

which is, in fact, equivalent to the usual t–test.

We next look at another model and likelihood ratio test, based on the multinomial
distribution. A classic experiment can be analyzed with this distribution and method.

Example 2.9. (Morgan (1909) Data). In 1909, Morgan experimented on fruit flies,
crossing two inbred lines with the following genotypic traits:

Eye color A:red a:purple

Wing length B:normal b:vestigial

He then obtained 2839 crosses of AABB × aabb and observed the four genotypes
AaBb, Aabb, aaBb, and aabb. (Note that the middle two genotypes are recombinants.)

A model for the Morgan experiment can be based on the multinomial distribution,
a discrete distribution that is used to model frequencies. Suppose that a random
variable Y can take on one of k values, the integers 1, 2, . . . , k, each with probability
p1, p2, . . . , pk. More precisely,

P (Y = j) = pj , j = 1, . . . k.

Note that if k = 2 we have the binomial distribution.
If we now have an iid sample Y1, . . . , Yn, and we let p = (p1, p2, . . . , pk), where∑

j pj = 1, then the sample density (the likelihood function) is

L(p|y) =
n∏

i=1

f(yi|p) = pn1
1 pn2

2 · · · pnk

k ,

where nj = number of y1, . . . , yn equal to j.

Example 2.10. (Morgan (1909) Data Continued). For the Morgan experiment,
we have k = 4 categories, the four genotypes AaBb, Aabb, aaBb, and aabb. There are
n = 2839 observations, which were observed to be

AaBb Aabb aaBb aabb

1339 151 154 1195

so n1 = 1339, etc.
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Typical null hypotheses specify patterns in the cell probabilities pj , with the hy-
pothesis of equal cell probabilities being a popular one. That is, test

H0 : p1 = p2 = · · · = pk versus H1 : H0is not true.

Of course, under this H0, all of the p′js equal 1/k. As a slightly more interesting
example, and one that is applicable to the Morgan experiment, suppose that k = 4
and we want to test

(2.9) H0 : p1 = p4, p2 = p3 vs. H1 : H0 is nottrue.

using a likelihood ratio test. We proceed as before and calculate

(2.10) λ(y) =
maxp1=p4, p2=p3 L(p|y)

maxp L(p|y)
=

maxp1=p4, p2=p3 pn1
1 pn2

2 pn3
3 pn4

4

maxp pn1
1 pn2

2 pn3
3 pn4

4

.

To maximize the numerator, recall that
∑

j pj = 1 implies that pk = 1−
∑k−1

j=1 pj

(so there are really only k − 1 parameters in the general problem). If p1 = p4 = p/2,
then p2 = p3 = (1− p)/2, where p is the only unknown parameter. The numerator of
equation (2.10) becomes

max
p

(p

2

)n1
(

1 − p

2

)n2
(

1 − p

2

)n3 (p

2

)n4

= max
p

(p

2

)n1+n4
(

1 − p

2

)n2+n3

.

This is a binomial likelihood, and taking logs and differentiating will show that the
MLE of p under H0 is p̂0 = (n1 + n4)/(n1 + n2 + n3 + n4) = (n1 + n4)/n. For the
denominator, write p4 = 1 − p1 − p2 − p3 and take logs to get

L(p|y) = n1 log p1 + n2 log p2 + n3 log p3 + n4 log(1 − p1 − p2 − p3),

and differentiating with respect to p1, p2, p3 shows that p̂j = nj/n, j = 1, . . . , 4. The
likelihood test statistic then becomes

λ(y) =
p̂n1+n4
0 (1 − p̂0)n2+n3

p̂n1
1 p̂n2

2 p̂n3
3 p̂n4

4

=

(
n1+n4

2

)n1+n4
(

n2+n3
2

)n2+n3

nn1
1 nn2

2 nn3
3 nn4

4

.

To perform the hypothesis test, we can use the approximation that −2 log λ(y) has a
chi-squared distribution. But first we must get the degrees of freedom correct.

Under H1, there is no restriction on the parameters other than that they must sum
to one, so there are three free parameters. Under H0, we have placed an additional
two restrictions, so there is one free parameter under H0, and the chi square has
3 − 1 = 2 degrees of freedom.

Example 2.11. (Morgan (1909) Data–First Conclusion). The four genotypes
are nonrecombinant (AaBb and aabb) and recombinant (Aabb and aaBb), and the
hypothesis (2.9) specifies that the nonrecombinant genotypes segregate with a com-
mon parameter, and the recombinant genotypes segregate with a common parame-
ter, but these two common parameters need not be equal. The alternative hypothesis
merely says that this is not so.

The observed value of λ(y) is λ(y) = 0.0164 with −2 log λ(y) = 8.217, to be
compared with a chi-squared distribution with two degrees of freedom. The .05 cutoff,
χ2

2,.05 = 5.99, leads us to reject the null hypothesis.
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2.3.3 Simulation-Based Approach

The chi-squared approximation used in Section 2.3.2 relies on an asymptotic approxi-
mation – its validity is dependent on having large cell sizes. Moreover, the discrepancy
in the size of the cells can also have an effect on the adequacy of the approximation.

If there is reason to suspect the adequacy of the approximation, or if the evidence
in the data is difficult to interpret, it may be reasonable to try another approach to
assessing the evidence against H0. (Actually, this is a good idea in most cases.)

We describe in this section a simulation technique that is sometimes known as
the parametric bootstrap (Efron and Tibshirani 1993); it is an all-purpose simulation-
based technique. We first describe it in general, then apply it to the Morgan data.

Simulation-Based Hypothesis Assessment

Given an iid sample Y = (Y1, . . . , Yn) and a density f(x|θ), we assess the hypotheses
H0 : θ ∈ Θ0 vs. H1 : θ /∈ Θ0 as follows.

(1) Estimate θ with the MLE θ̂, and calculate the observed likelihood statistic
−2 log λ(y).

(2) Generate t = 1, . . . , M new iid samples Y∗ = (Y ∗
1 , . . . , Y ∗

n ), where Y ∗
i ∼ f(x|θ̂),

and calculate −2 log λ(y∗
t ).

(3) A p-value for the test can be calculated as

p̂(y) =
1
M

M∑

t=1

I (λ(y∗
t ) > λ(y)) ,

where I(·) is the indicator function, which is equal to 1 if the argument is true
and 0 otherwise. A histogram of the λ(y∗

t ) can also be drawn.

Example 2.12. (Morgan (1909) Data–Second Conclusion). To do a simulation-
based assessment of the hypotheses (2.9) we would simulate random variables Y ∗

1 ,
Y ∗

2 , . . . from a multinomial distribution with n = 2839 and probability vector

p =
(

1339
2839

,
151
2839

,
154
2839

,
1195
2839

)
= (0.471, 0.054, 0.053, 0.421).

Figure 2.2 shows the results of the simulation of 10000 values of −2 log λ(y∗), and
they are quite different from the results of the chi-square test of Example 2.11. The
observed value of −2 log λ(y) = 8.217 is now right in the middle of the distribution,
with an estimated p-value of .5718, meaning that 5718 of the 10000 random variables
simulated were larger than the observed value of the test statistic. This puts the
statistic right in the middle of the distribution and thus leads us to accept the null
hypothesis.

It should be mentioned that the overall conclusion is not crystal clear, but the
evidence is certainly pointing toward the conclusion that H0 is a tenable hypothesis,
and the asymptotic approximation of the chi-square distribution is not the best in
this case.



38 2 Basic Statistics

Simulated Observations

−2(log)(λ)

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

Fig. 2.2. Histogram of 10000 values of the likelihood ratio statistic −2 log λ for the Morgan
data.

2.3.4 Bayesian Estimation

Throughout this chapter, we have been describing the classical approach to statistics,
where we base our evidence on a repeated-trials assessment of error. There is an
alternative approach, the Bayesian approach, which is fundamentally different from
the classical approach. Here the assessment is based on an experimenter’s prior belief
and how that belief is altered by the data.

It is not constructive to view the two approaches in opposition. Rather, it is better
to examine each problem at hand, and choose the approach that will give the most
useful answer.

In the classical approach, the parameter, say θ, is thought to be an unknown, but
fixed, quantity. A random sample X1, . . . , Xn is drawn from a population indexed by
θ and, based on the observed values in the sample, knowledge about the value of θ is
obtained. In the Bayesian approach, θ is considered to be a quantity whose variation
can be described by a probability distribution (called the prior distribution). This
is a subjective distribution, based on the experimenter’s belief, and is formulated
before the data are seen. A sample is then taken from a population indexed by θ, and
the prior distribution is updated with this sample information. The updated prior
distribution is called the posterior distribution.

If we denote the prior distribution by π(θ) and the sampling distribution by f(x|θ),
then the posterior distribution, the conditional distribution of θ given the sample, x,
is calculated using Bayes’ Rule as

(2.11) π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)d θ

=
f(x|θ)π(θ)

m(x)
,
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where m(x) =
∫

f(x|θ)π(θ)dθ is the marginal distribution of X.
Once π(θ|x) is obtained, it contains all of the information about the parameter

θ. We can plot this distribution to see the shape, and perhaps where the modes are,
and whether it is symmetric or not. It is also typical to calculate the posterior mean
and variance to get a point estimator and a measure of spread. These are given by

E(θ|x) =
∫

θπ(θ|x)dθ, Var(θ|x) =
∫

[θ − E(θ|x)]2π(θ|x)dθ.

We illustrate Bayesian estimation with some examples.

Example 2.13. (Bayes Estimation in the Normal Distribution). Let X ∼
n(θ, σ2), and suppose that the prior distribution on θ is n(µ, τ2). (Here we assume
that σ2, µ, and τ2 are all known.) The posterior distribution of θ is

π(θ|x) ∝ 1√
2πσ2

e−
1

2σ2 (x−µ)2 1√
2πτ2

e−
1

2τ2 (θ−µ)2

∝
[√

σ2 + τ2

√
2πσ2τ2

e−
σ2+τ2

2σ2τ2 (θ−E(θ|x))2

][
1√

2π(σ2 + τ2)
e−

1
2σ2τ2 (x−µ)2

]
,

where the distribution in the first square brackets is the posterior and the second dis-
tribution is the marginal. The calculation is somewhat long and tedious, and depends
on completing the square in the exponent.

Upon inspection, we see that the posterior distribution of θ is also normal, with
mean and variance given by

E(θ|x) =
τ2

τ2 + σ2
x +

σ2

σ2 + τ2
µ,

(2.12)

Var (θ|x) =
σ2τ2

σ2 + τ2
.

The Bayes estimator is a linear combination of the prior and sample means. Notice
also that as τ2, the prior variance, is allowed to tend to infinity, the Bayes estimator
tends toward the sample mean. We can interpret this as saying that as the prior
information becomes more vague, the Bayes estimator tends to give more weight to
the sample information. On the other hand, if the prior information is good, so that
σ2 > τ2, then more weight is given to the prior mean.

Example 2.14. (Bayes Estimation in the Binomial). Let X1, . . . , Xn be iid
Bernoulli (p). Then Y =

∑
Xi is binomial(n, p). We take the prior distribution on p

to be

beta(α, β) =
Γ (α + β

Γ (α)Γ (β)
pα−1(1 − p)β−1.

The posterior distribution of p is
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π(p|y) ∝
[(

n

y

)
py(1 − p)n−y

][
Γ (α + β)
Γ (α)Γ (β)

pα−1(1 − p)β−1

]

∝ Γ (α + β)
Γ (α)Γ (β)

py+α−1(1 − p)n−y+β−1,

which is again a beta distribution, now with parameters y + α and n− y + β. We can
estimate p with the mean of the posterior distribution

E(p|y) =
y + α

α + β + n
.

Consider how the Bayes estimate of p is formed. The prior distribution has mean
α/(α + β), which would be our best estimate of p without having seen the data.
Ignoring the prior information, we would probably use the MLE p = y/n as our
estimate of p. The Bayes estimate of p combines all of this information. The manner
in which this information is combined is made clear if we write E(p|y) as

E(p|y) =
(

n

α + β + n

)( y

n

)
+

(
α + β

α + β + n

)(
α

α + β

)
.

Thus pB is a linear combination of the prior mean and the sample mean, with the
weights being determined by α, β, and n.

Example 2.15. (Bayes Estimation in the Binomial). We revisit the data of Ex-
ample 2.7 and now estimate p, the true proportion, using a Bayes estimator. Consider
marker I18 1090 with counts of 44 and 59 in the two genotype classes. The MLE of
the true proportion in the first genotype is 44/(44 + 59)= .427.

Suppose we estimate p using a Bayes estimator. If the experimenter believes that
the genes are segregating independently, then he believes that p = 1/2. We can reflect
this belief with a beta distribution that is symmetric around 1/2. We choose a beta
(2, 2), which does not give much weight to the prior distribution. Under this prior
distribution the Bayes estimator of p is (44 + 2)/(44 + 59 + 2 + 2) = .430, which is
very similar to the MLE. Thus, for this choice of prior distribution, the information
in the data is very strong and the Bayes estimator is virtually the same as the MLE.

If the experimenter is very certain that p is close to 1/2, this can be reflected in
the prior distribution by increasing the parameter values. If we choose α = β = 100,
the prior mean remains 1/2 but the prior variance is decreased. The resulting Bayes
estimator is (44 + 100)/(44 + 59 + 200)= .475, and the posterior distribution is now
quite symmetric. This is illustrated in Fig. 2.3, where we see the symmetry of the prior
distributions, but one is more concentrated. The resulting posterior distributions are
close to the likelihood function and skewed when α = β = 2 and symmetric and far
from the likelihood function when α = β = 100.

2.4 Exercises

2.1 (a) Illustrate the binomial approximation to the normal as described in Section 2.3.1.
For N = 5, 15, 50 and p = .25, .5, draw the binomial histogram and the normal
density. Calculate the .05 and .01 tail area in each case.
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Fig. 2.3. Graphs of prior distributions (left panel) and posterior distributions (right panel)
of Example 2.15. The beta (2, 2) prior is very flat and results in a skewed posterior that is
indistinguishable from the likelihood function. The beta (100, 100) prior is very peaked and
results in a peaked and symmetric posterior distribution.

(b) Show that if p = 1
2
, equation (2.6) can be simplified to (n1 − n2)

2/N .
2.2 For the situation of Example 2.8:

(a) Verify the formula for σ̂2
0 .

(b) Show that

σ̂2

σ̂2
0

=

∑n

i=1
(yi − ȳ)2∑n

i=1
(yi − µ0)2

=
1

1 + (ȳ−µ0)2

σ̂2

.

(For the second equality, use the identity
∑n

i=1
(yi−µ0)

2 =
∑n

i=1
(yi−ȳ)2+n(ȳ−µ0)

2.
(c) Verify that, in this last Form, we will reject H0 if |ȳ − µ + 0|/σ̂ is large, making

this test equivalent to the t–test.
2.3 (a) Verify the MLEs of equation (2.10).
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Linkage Analysis and Map Construction

3.1 Introduction

Linkage is the tendency for genes to be inherited together because they are lo-
cated near one another on the same chromosome. Linkage analysis of markers lays a
foundation for the construction of a genetic linkage map and the subsequent molecular
dissection of quantitative traits using the map. Linkage analysis is based on the coseg-
regation of adjacent markers and their cotransmission to the next progeny generation.
The prerequisite of linkage analysis between any two markers is their known allelic
arrangements (i.e., linkage phases) on the homologous chromosome so that parental
(or nonrecombinant) vs. nonparental (or recombinant) haplotypes can be readily
distinguished. In many domesticated plants and animals, phase-known mapping pedi-
grees can be established using a segregating population, such as the backcross or F2,
derived from two homologous inbred lines. (Recall the definitions in Section 1.5.)
Theories for linkage analysis in such segregating pedigrees have been well-developed.

The linkage of markers can be measured in terms of their recombination fraction
or genetic distance. The function of linkage analysis is to detect the relative locations
of two or more markers on the same chromosome. Linkage analysis can be performed
for a pair of markers (two-point analysis) or three markers simultaneously (three-
point analysis). Two- or three-point analyses provide fundamental information for
the construction of a genetic linkage map that cover partly or entirely the genome.
The map function that converts the recombination fraction to genetic distance can be
derived from three-point analysis. Different forms of the map function are available
that depend on the assumption about the presence or absence of the interference of
crossovers between adjacent marker intervals.

In this chapter, we will describe the basic principle for linkage analysis in a pedi-
gree initiated with two inbred lines. A detailed procedure for the estimation and test
of linkage between different markers will be derived theoretically and demonstrated
through live examples. We will illustrate the step procedure for deriving the map func-
tions. Analyses of human genetic linkage can be found in the textbooks by Ott (1991)
and Lange (1997). Algorithms and software for map construction are introduced at
the end of this chapter.
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3.2 Experimental Design

The tendency of alleles of different genes on the same chromosome to pass into the
same haplotype at meiosis is related to the degree of linkage between these genes.
Thus, the development of linkage analysis critically relies upon a segregating pedigree
in which both recombinant and nonrecombinant gamete types can be counted. A
pedigree comprising a backcross or an F2 population, initiated with two contrasting
inbred lines, has proven a most powerful and efficient tool for linkage analysis.

In practice, two inbred lines that are homologous for two alternative alleles of
each gene are crossed as parents P1 and P2 to generate an F1 progeny. Thus, all
F1 individuals are heterozygous at all genes. These heterozygous F1’s can either be
backcrossed to each of their parents to generate two backcrosses (B1 and B2) or the F1

individuals can be crossed with each other to produce the F2 generation. A diagram
illustrating this crossing procedure is illustrated in Fig. 3.1.
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Fig. 3.1. Experimental design used for linkage analysis of markers.

Consider two markers, A, with alleles A and a, and B, with two alleles B and b.
Two inbred line parents, P1 and P2, are homozygous for the large and small alleles
of these two genes, respectively. Parent P1 generates gamete or haplotype AB during
meiosis, whereas parent P2 generates gamete ab. These two gametes are combined
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to form the heterozygous F1 of genotype AaBb. The F1 will generate four different
gametes, two of which (AB and ab) are of nonrecombinant type and the two other
(Ab and aB) of recombinant type. The recombination fraction between the two genes
is denoted by r. Thus, these two groups of gametes have the frequencies of (1 − r)/2
(nonrecombinant) and r/2 (recombinant). When the F1 is backcrossed to one of the
pure parents, four backcross genotypes will be generated with the same frequencies
as those of the F1 gametes. Intercrossing the F1 generates the F2 in which 16 gamete
combinations are collapsed into nine genotypes with frequencies combined for the
same genotypes.

3.3 Mendelian Segregation

One of the first tasks in a genomic mapping project is to determine whether single
markers follow Mendelian segregation ratios in an experimental pedigree. Only af-
ter the nature of the single marker ratios is determined can the subsequent linkage
analysis be performed using appropriate statistical methods.

Suppose we consider a general case in which a certain mating, initiated with
two contrasting inbred lines, is expected to produce k genotypes at a marker in the
expected ratio of λ1 : . . . : λk. The expected relative frequency of any genotype class
i is calculated by φi = λi/(

∑k
i=1 λi). The numbers actually observed in the m classes

are n1, . . . , nk, respectively, where n = n1 + . . . + nk, and we wish to compare the
observed segregation ratio with the expected value. For a codominant marker, the
expected ratio is 1:1 in the backcross and 1:2:1 in the F2. For a dominant marker,
the ratio is 1:1 in the backcross toward the pure recessive and 3:1 in the F2.

The basic methods for testing marker segregation patterns include the binomial
test, the standard normal test, the Pearson chi-squared test, and the likelihood ratio
chi-squared test. The first two tests are used in situations involving two classes of
genotypes in a pedigree, whereas the latter two can be generalized to situations in
which there are more than two classes. Here, more general Pearson chi-squared and
likelihood ratio chi-squared tests are described.

3.3.1 Testing Marker Segregation Patterns

The hypothesis for marker segregation patterns can be tested by either the Pearson
chi-squared test (2.6) or the likelihood ratio test. In the latter case, the likelihood
function, given that different numbers of individuals are observed out of N offspring,
is derived from the multinomial distribution and given by

L(p1 · · · pk) =
n!

n1! · · ·nk!

k∏

i=1

pni
i .(3.1)

The value of pi that maximizes the log-likelihood function (and therefore the likeli-
hood function) is p̂i = ni/n, that is, the actual proportion observed in the sample.
The values p̂i are the maximum likelihood estimates (MLEs) of pi. To test
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H0 : p1 = p10, . . . , pk = pk0,

where the pi0 are specified, we use the likelihood ratio statistic

−2 log λ = 2(ln L1 − ln L0)

= 2

[
k∑

i=1

ni ln
(ni

n

)
−

k∑

i=1

ni ln(pi0)

]
,(3.2)

where L0 is the likelihood with the hypothesized values substituted for the pi’s and
L1 is the likelihood with the MLEs substituted for the pi’s.

The p-value is then given by the probability that a chi-squared random variable
with k − 1 degrees of freedom will exceed −2 log λ.

Example 3.1. (DH Population). Two inbred lines, semi-dwarf IR64 and tall Azu-
cena, were crossed to generate an F1 progeny population. By doubling haploid chro-
mosomes of the gametes derived from the heterozygous F1, a doubled haploid (DH)
population of 123 lines was founded (Huang et al. 1997). Such a DH population is
equivalent to a backcross population because its marker segregation follows 1:1. With
123 DH lines, Huang et al. genotyped a total of 175 polymorphic markers (including
146 RFLPs, 8 isozymes, 14 RAPDs, and 12 cloned genes) to construct a linkage map
representing a good coverage of 12 rice chromosomes.

Let n1 and n0 be the number of plants for two different genotypes in the DH
population. We now apply the χ2 test of equation (2.6) and likelihood ratio test of
equation (3.2) to test whether the segregation of these testcross markers follows the
Mendelian ratio 1:1. Table 3.1 gives the results for six markers on rice chromosome 1.
The results from the likelihood ratio test are consistent with those from the Pearson
test. Based on the p-values calculated from the χ2 distribution with one degree of
freedom, we detected that markers RG472, RG246, and U10 segregate 1:1 and that
markers K5, RG532, and W1 deviate from the 1:1 ratio.

Example 3.2. (Intercross F2). Cheverud et al. (1996) genotyped 75 microsatellite
markers in a population of 535 F2 progeny derived from two strains, the Large (LG/J)
and Small (SM/J). As an example for segregation tests, we choose nine markers
located on mouse chromosome 2. Let n2, n1, and n0 be the numbers of mice for three
genotypes at each marker in this F2 population. Both the χ2 and likelihood ratio
tests have consistent results, suggesting that nine markers from the second mouse
chromosome segregate in the Mendelian 1:2:1 ratio (Table 3.1) at the .01 significance
level. Note that the test statistics calculated in the F2 are χ2-distributed with two
degrees of freedom because three genotypes present three independent categories.

3.4 Segregation Patterns in a Full-Sib Family

For a marker that is segregating in a full-sib family derived from two outbred parents,
we will have many different types of segregation. Up to four marker alleles, besides a
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Table 3.1. Pearson and likelihood ratio test statistics for testing Mendelian segregation
1:1 for the doubled haploid population in rice and 1:3:1 for the F2 population in mice.

Pearson Likelihood

Marker n2 n1 n0 χ2 p-value −2 log λ p-value

DH population

RG472 52 58 0.327 0.592 0.327 0.592

RG246 62 54 0.552 0.408 0.552 0.407

K5 66 41 5.841 0.009 5.895 0.009

U10 52 38 2.178 0.091 2.187 0.090

RG532 69 44 5.531 0.011 5.577 0.010

W1 83 34 20.521 0.000 21.168 <0.001

F2

D2Mit362 121 236 120 0.057 0.486 0.057 0.486

D2Mit72 121 262 115 1.502 0.236 1.511 0.235

D2Mit205 132 255 125 0.199 0.453 0.198 0.453

D2Mit38 139 232 148 6.141 0.023 6.122 0.023

D2Mit93 133 244 116 1.223 0.271 1.212 0.273

D2Mit389 128 253 136 0.482 0.393 0.477 0.394

D2Mit17 133 226 144 5.652 0.030 5.617 0.030

D2Mit260 143 250 122 2.150 0.171 2.103 0.175

D2Mit25 121 236 155 7.641 0.011 7.327 0.013

null allele, may be segregating at a single locus. Furthermore, the number of alleles
may vary over loci. We assume that each of the marker alleles, symbolized by a, b, c,
and d, is codominant with respect to each other but dominant with respect to the null
allele, symbolized by o. We assume that all markers undergo precise Mendelian seg-
regation. Depending on how different alleles are combined in the two parents used for
the cross, there exists a total of 18 possible cross types for a marker locus (Table 3.2).
Based on both parental and offspring marker band patterns, these cross types can be
classified into seven groups (see also Maliepaard et al. 1997):

A. Loci that are heterozygous in both parents and segregate in a 1:1:1:1 ratio, involv-
ing either four alleles ab × cd, three nonnull alleles ab × ac, three nonnull alleles
and a null allele ab × co, or two null alleles and two nonnull alleles ao × bo;
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B. Loci that are heterozygous in both parents and segregate in a 1:2:1 ratio, which
include three groups:

B1. One parent has two different dominant alleles and the other has one dominant
allele and one null allele, e.g., ab × ao;

B2. The reciprocal of B1;

B3. Both parents have the same genotype of two codominant alleles, ab × ab;
C. Loci that are heterozygous in both parents and segregate in a 3:1 ratio, ao × ao;
D. Loci that are in the testcross configuration between the parents and segregate in

a 1:1 ratio, which include two groups:

D1. Heterozygous in one parent and homozygous in the other, including three
alleles ab× cc, two alleles ab× aa, ab× oo and bo× aa, and one allele (with three
null alleles) ao × oo;

D2. The reciprocals of D1.

Marker cross type A produces all four possible marker genotypes in the progeny
and is regarded as being fully informative. The other marker cross types are all par-
tially informative because the four possible progeny genotypes are collapsed due to
indistinguishable phenotypes. Note that marker cross type D can be viewed as fully
informative if only the heterozygous parent is concerned. Marker types B3 and C
each have the same genotypes in both parents and therefore are called symmetrical
marker cross types. The other marker types have parent-specific marker genotypes
and are called asymmetrical marker cross types. Marker cross types D1 and D2 are
called two-way pseudo-test backcrosses (Grattapaglia and Sederoff 1994). Because
dominant markers are as informative as codominant markers in such designs, pseudo-
test backcrosses are broadly used in full-sib family mapping of outcrossing species, in
which it is difficult or even impossible to generate homozygous inbred lines.

For those partially informative markers whose cross types are asymmetrical be-
tween the two parents, the reciprocals (e.g., B1 vs. B2 and D1 vs. D2) supply different
information for the characterization of linkage phase when these markers are paired
and thus are presented as two distinct groups (see Chapter 4).

For a mapping project, both the parents and progeny are usually genotyped. Based
on the segregation pattern of marker band data, we can determine the cross type to
which a given marker belongs, as given in Table 3.2. For example, if we observe bands
a, b, ac, and bc in the offspring and bands ab and c for the parents, it can be easily
inferred that this marker belongs to cross type 3 (A). For the asymmetrical marker
cross types (A, B1, B2, D1, and D2), the marker information of both the parents and
their offspring is needed to infer marker cross types. However, for the symmetrical
marker cross types (B3 and C), only the pattern of marker segregation in the offspring
is needed for this inference.

Given a marker cross type, one can use the approaches introduced in the previous
section to determine whether the marker follows a particular segregation pattern
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Table 3.2. Possible marker genotype cross combinations and observed marker band patterns
for parents and their offspring.

Parent Offspring

Cross Observed Observed No.

Type Cross Band Remark Bands Segregation Phenotypes

A 1 ab × cd ab × cd asymmetry ac, ad, bc, bd 1:1:1:1 4

2 ab × ac ab × ac asymmetry a, ac, ba, bc 1:1:1:1 4

3 ab × co ab × c asymmetry ac, a, bc, b 1:1:1:1 4

4 ao × bo a × b asymmetry ab, a, b, o 1:1:1:1 4

B B1 5 ab × ao ab × a asymmetry ab, 2a, b 1:2:1 3

B2 6 ao × ab a × ab asymmetry ab, 2a, b 1:2:1 3

B3 7 ab × ab ab × ab symmetry a, 2ab, b 1:2:1 3

C 8 ao × ao a × a symmetry 3a, o 3:1 2

D D1 9 ab × cc ab × c asymmetry ac, bc 1:1 2

10 ab × aa ab × a asymmetry a, ab 1:1 2

11 ab × oo ab × o asymmetry a, b 1:1 2

12 bo × aa b × a asymmetry ab, a 1:1 2

13 ao × oo a × o asymmetry a, o 1:1 2

D2 14 cc × ab c × ab asymmetry ac, bc 1:1 2

15 aa × ab a × ab asymmetry a, ab 1:1 2

16 oo × ab o × ab asymmetry a, b 1:1 2

17 aa × bo a × b asymmetry ab, a 1:1 2

18 oo × ao o × a asymmetry a, o 1:1 2

(Table 3.2). For marker cross type A, for example, there are four possible classes of
markers segregating in the 1:1:1:1 ratio, rather than 2 classes (segregating 1:1) in the
example given in Table 3.1.

3.5 Two-Point Analysis

Two-point analysis is a statistical approach for estimating and testing the recombi-
nation fraction between two different markers. Two-point analysis provides a basis
for the derivation of the map function and the construction of genetic linkage maps.
Here, we will present statistical methods for linkage analysis separately for the back-
cross and F2 populations, because these types of populations need different analytical
strategies.
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3.5.1 Double Backcross

Using the design described in Fig. 3.1, we make two backcrosses by crossing the F1

toward each of the two parents. Let us consider the backcross to parent P2. The
expected frequencies and observed numbers of the four genotypes generated in this
backcross can be tabulated as follows:

Genotype AB/ab ab/ab Ab/ab aB/ab

Frequency 1
2 (1 − r) 1

2 (1 − r) 1
2r 1

2r

Observed number n1 n2 n3 n4

Nonrecombinant Recombinant

Frequency 1 − r r

Observed number nNR = n1 + n2 nR = n3 + n4

Since the F1 has a known linkage phase (that is, allele A is coupled with allele B),
the numbers of backcross genotypes from nonrecombinant or recombinant gametes
can be calculated. These are denoted by nNR and nR, respectively. The sum of nNR

and nR is the total number of genotypes, n. The recombination fraction between the
two genes can be estimated from the observed numbers of the four different backcross
genotypes. The likelihood of r given the marker data n = (nNR, nR) is

L(r|n) =
n!

nNR!nR!
(1 − r)nNRrnR .(3.3)

The maximum likelihood estimate (MLE) of r can be obtained by differentiating the
log-likelihood of equation (3.3) with respect to r, setting the derivative equal to zero
and solving the log-likelihood equation. Doing this, we obtain the MLE of r as

r̂ =
nR

n
=

n3 + n4

n1 + n2 + n3 + n4
.(3.4)

From Theorem A.3, the variance of r̂ can be approximated by (Exercise 3.1)

Var(r̂) = − 1
∂2

∂r2 log L(r|n)
∣∣
r=r̂

=
r̂(1 − r̂)

n
.(3.5)

It is seen that the precision of r̂ depends on the size of the sample used and the size of
the r value. The precision of the estimation of the recombination fraction is affected
by two factors. First, increasing sample sizes always lead to increased estimation
precision of r. Second, the recombination fraction can be better estimated for a pair
of markers displaying a tight linkage (low r value) than for those displaying a loose
linkage (high r value).

Note also that the probability model for the random variable nR is binomial,
with n trials and success probability r, nR ∼ binomial–(n, r). Thus E(nR) = nr and
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Var(nR) = nr(1 − r), which agree with the likelihood answers. An approximate 95
percent confidence interval for r is

r̂ − 2
√

r̂(1 − r̂)/n ≤ r ≤ r̂ + 2
√

r̂(1 − r̂)/n.(3.6)

The MLE of r can also be used to determine the degree of linkage between the
two markers. If there is evidence that the two markers are completely linked (that
is, r̂ = 0), then a doubly heterozygous F1 produces only nonrecombinant gametes.
If there is evidence that linkage is absent (free recombination), so r̂ = 0.5, then the
F1 produces both recombinant and nonrecombinant haplotypes in equal proportions.
Generally, the degree of linkage between two given markers can be statistically tested
by formulating two alternative hypotheses:

(3.7)

{
H0 : r = 0.5

H1 : r < 0.5
,

where H0 corresponds to the reduced model, in which the data are fit with the con-
straint r = 0.5, and H1 corresponds to the full model, in which the data are fit with no
such constraint. The test statistic for testing these two hypotheses is the log-likelihood
ratio (LR):

LR = −2 log
[
L(r = 0.5|n)

L(r̂|n)

]

= 2
[
nR log

(nR

n

)
+ nNR log

(nNR

n

)
− n log

(
1
2

)]
,(3.8)

which is asymptotically χ2-distributed with one degree of freedom.
A similar test statistic used to detect linkage is the LOD score (Ott 1991). The

LOD score is a transformation of the likelihood ratio statistic, given by

LOD = log10

[
L(r̂|n)

L(r = 0.5|n)

]
= 0.217 LR.

The value of LOD = 3 is suggested as the critical threshold to declare the existence
of linkage.

Example 3.3. . Revisit Example 3.1. Consider the first six markers on rice chromo-
some 1 (Huang et al. 1997). As an illustration, we only consider the linkage between
two adjacent markers. For each pair of markers considered, all the 123 DH lines are
sorted into recombinant (nR) and nonrecombinant groups (nNR), tabulated in Ta-
ble 3.3.

Using equations (3.4), (3.5), and (3.6), we estimated the recombination fractions
for each pair of markers, their sampling errors and confidence intervals in the back-
cross. The likelihood ratio tests were performed by calculating the LR and LOD
scores. We also conducted Pearson’s χ2 test based on
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χ2 =
(nR − n/2)2

n/2
+

(nNR − n/2)2

n/2
=

(nR − nNR)2

n
,

which is χ2-distributed with one degree of freedom. Although there are four geno-
types for two markers, only two categories, recombinant and nonrecombinant, are
independent, implying one degree of freedom.

The three tests provide consistent results about the recombination fractions. These
marker pairs are significantly linked, as the hypothesis test indicates that the recom-
bination fractions are significantly less than 0.5.

Table 3.3. Linkage analysis of markers in a DH population of rice

Confidence

Marker Pair nR nNR r̂ SE(r̂) Interval LR LOD χ2 p-Value

RG472–RG246 90 19 0.17 0.04 (0.10, 0.25) 50.2 10.9 46.2 < .001

RG246–K5 90 15 0.14 0.03 (0.07, 0.21) 59.4 12.9 53.6 < .001

K5–U10 76 4 0.05 0.02 (0.00, 0.10) 79.1 17.2 64.8 < .001

U10–RG532 81 5 0.06 0.03 (0.01, 0.11) 81.1 17.6 67.2 < .001

RG532–W1 93 17 0.15 0.03 (0.09, 0.22) 57.8 12.5 52.5 < .001

3.5.2 Double Intercross–F2

When two heterozygous F1s are crossed, a segregating F2 population will be produced,
in which 16 combinations from four female gametes and four male gametes at any two
markers are collapsed into nine distinguishable genotypes. The observed numbers of
these nine genotypes can be arrayed, in matrix notation, as

AA Aa aa

n =
BB
Bb
bb

⎡

⎣
n22 n12 n02

n21 n11 n01

n20 n10 n00

⎤

⎦ ,
(3.9)

where the first and second subscripts of n denote the number of large alleles at markers
A and B, respectively. The resulting double heterozygote AaBb is the mixture of two
possible diplotypes, one, [AB][ab], derived from the combination of gametes AB and
ab, and the other, [Ab][aB], from the combination of gametes Ab and aB.

Except for the double heterozygote, the frequencies of the eight other genotypes
can be calculated as the products of the corresponding gamete frequencies. Note that
the genotype frequencies should be two times these products when two gametes that
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unite to form a genotype are different. The frequency of the double heterozygote is
the summation of the frequencies of two diplotypes, 1

2 (1−r)2 for the diplotype due to
the combination of gametes AB and ab and 1

2r2 for the diplotype due to the combi-
nation of gametes Ab and aB. The genotype frequencies for markers A and B can be
arrayed as

AA Aa aa

F =

BB

Bb

bb

⎡

⎢⎢⎢⎢⎣

1
4 (1 − r)2 1

2r(1 − r) 1
4r2

1
2r(1 − r) 1

2 [(1 − r)2 + r2] 1
2r(1 − r)

1
4r2 1

2r(1 − r) 1
4 (1 − r)2

⎤

⎥⎥⎥⎥⎦
.

(3.10)

For each of these genotypes, we can count the number of recombinants involved.
Genotypes AABB and aabb, each due to the union of the two nonrecombinant ga-
metes, have no recombinant. Genotypes AABb, AaBB, aaBb, and Aabb contain one
recombinant, and genotypes aaBB and AAbb contain two recombinants. For genotype
AaBb, the two different diplotypes contain different numbers of recombinants, 0 for
the diplotype due to the union of gametes AB and ab and 2 for the diplotype due to
the union of gametes Ab and aB. Based on the diplotype frequencies, the expected
number of recombinants for genotype AaBb is calculated as

(3.11) φ =
0 × 1

2 (1 − r)2 + 2 × 1
2r2

1
2 (1 − r)2 + 1

2r2
=

2r2

(1 − r)2 + r2
.

The expected numbers of recombinants in the nine genotypes can be arrayed as

AA Aa aa

R =
BB
Bb
bb

⎡

⎣
0 1 2
1 φ 1
2 1 0

⎤

⎦ .
(3.12)

Using the matrices n and F from matrices (3.9) and (3.10), the likelihood function
of r given the marker data is

L(r|n) =
n!

n22!...n00!

[
1
4
(1 − r)2

]n22+n00
[
1
2
r(1 − r)

]n12+n21+n01+n10

×
[
1
4
r2

]n02+n20
[
1
2
(1 − r)2 +

1
2
r2

]n11

.(3.13)

The MLE of the recombination fraction can be obtained by differentiating log L(r|n)
with respect to r, setting the derivative equal to zero, and solving the resulting cubic
function (Exercise 3.5).

Alternatively, the estimation of r can be obtained by implementing the EM al-
gorithm (Lander and Green 1987). If we split the AaBb cell into two diplotypes,
[AB][ab] and [Ab][aB], we introduce missing data z ∼ binomial (n11, φ/2), resulting
in the complete-data likelihood
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L(r|n, z) =
n!

n22!...n00!

[
1
4
(1 − r)2

]n22+n00
[
1
2
r(1 − r)

]n12+n21+n01+n10

×
[
1
4
r2

]n02+n20
[
1
2
(1 − r)2

]n11−z [1
2
r2

]z

.(3.14)

The EM algorithm proceeds as follows. In the expected log complete-data likeli-
hood, we replace z with n11φ/2. Based on the number of recombinants contained in
each genotype (matrix R) and the observations of different genotypes (matrix n), we
have the EM sequence converging to the MLE of r,

(3.15) r̂ =
1
2n

[n12 + n21 + n01 + n10 + 2(n02 + n20) + φn11].

Equations (3.11) and (3.15) represent two subsequent steps in the EM algorithm.
In the E step, the expected number of recombinants, φ, is calculated using equation
(3.11). In the M step, the estimated φ is used to update the estimate of r using
equation (3.15). This procedure is repeated until the estimate converges at a stable
value.

The variance of r̂ can be approximated directly from the observed data likeli-
hood as

Var(r̂) ≈ − 1
∂2

∂r2 log L(r|n)
∣∣
r=r̂

=
r̂(1 − r̂)(1 − 2r̂ + 2r̂2)

2(1 − 3r̂ + 3r̂2)n
.(3.16)

As in the backcross, the degree of linkage between the two markers under consid-
eration can be tested by formulating two alternative hypotheses. The LR test statistic
or LOD score can be calculated using the likelihoods under the full model L(r|n) of
equation (3.13) and the reduced model L(r = 0.5) expressed as

L(r = 0.5) =
n!

n22!...n00!

[
1
16

]n00+n02+n20+n22

×
[

2
16

]n12+n21+n01+n10
[

4
16

]n11

.(3.17)

The LR value is chi-square distributed with one degree of freedom because there
is only one parameter r that makes the full and reduced models different.

Example 3.4. Revisit Example 3.2. We use the F2 data provided by Cheverud
et al. (1996) to estimate the linkage for seven markers on mouse chromosome 2.
For each pair of markers, all the F2 mice are sorted into nine different genotypes
(see matrix (3.9)). According to matrix (3.12), the nine genotypes are further divided
into four groups that contain two recombinants (n2R = n20 + n02), one recombinant
(n1R = n21 + n12 + n10 + n01), no recombinant (n0R = n22 + n00) and an uncertain
number of recombinants (n11). The observations of each of these four groups are
tabulated in Table 3.4.
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Table 3.4. Linkage analysis of markers in an F2 population of mice.

Marker Pair n2R n1R n0R n11 r̂ SE(r̂) LR LOD χ2 p-value

D2mit362–D2mit72 9 120 151 169 0.17 0.014 252.2 54.8 253.4 < .001

D2mit72–D2mit205 9 97 178 196 0.13 0.012 363.2 78.9 386.8 < .001

D2mit205–D2mit38 0 69 226 202 0.07 0.008 599.0 130.1 656.3 < .001

D2mit38–D2mit93 1 26 239 218 0.03 0.006 786.5 170.8 819.4 < .001

D2mit93–D2mit389 3 88 195 194 0.10 0.010 451.4 98.0 472.7 < .001

D2mit389–D2mit17 1 108 206 173 0.12 0.011 431.7 93.7 480.9 < .001

D2mit17–D2mit260 8 103 200 175 0.13 0.012 389.5 84.6 455.0 < .001

D2mit260–D2mit25 12 151 171 160 0.20 0.015 241.2 52.4 279.4 < .001

Using n2R, n1R, n0R, and n11 and equations (3.15) and (3.16), the MLEs of the
recombination fractions, along with their sampling errors, were estimated with the
EM algorithm. The estimated recombination fractions were tested on the basis of
the likelihood ratio (LR and LOD) and χ2 test approaches. As in the backcross,
only two categories of gametes that form these nine genotypes, recombinant and
nonrecombinant, are independent, although there are nine different genotypes in the
F2, suggesting that there is only one degree of freedom. The three approaches provided
consistent results for linkage tests (Table 3.4).

To demonstrate the calculation procedure by the EM algorithm, we detail the
iterative steps using the first pair of markers in Table 3.4. From equations (3.11) and
(3.15), we have:

Iteration E Step M Step

0 – r(0) = 0.1

1 φ(1) = 0.01220 r(1)=0.158265

2 φ(2) = 0.03415 r(2)=0.166527

3 φ(3) = 0.03839 r(3)=0.168123

3 φ(3) = 0.03924 r(3)=0.168445

4 φ(4) = 0.03942 r(4)=0.168511

5 φ(5) = 0.03945 r(5)=0.168524

6 φ(6) = 0.03946 r(6)=0.168527
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Given an initial value for r = 0.1, calculate the expected number of recombinants for
the double heterozygote, φ(1), as the first step using equation (3.11). The calculated
φ(1) is used to calculate r(1) of the same step with equation (3.15). Such iterations
that contain both the E and M steps are repeated until the difference of the estimated
r values between the two successive iterations is less than a small value, for example
10−5. In this example, r(5) is estimated as 0.168524 in iteration 5, which is just less
than r(6) estimated in iteration 6 by 0.000003 < 10−5. We therefore stop the iteration.
The estimate of r = 0.1685 in iteration 6 is used as the MLE of r.

3.6 Three-Point Analysis

For a linkage analysis between two markers, we only need to estimate one parameter,
the recombination fraction. This reflects the relative frequencies of recombinant and
nonrecombinant gametes with respect to the two markers. However, when three mark-
ers are simultaneously considered in a three-point analysis, we will need to estimate
three recombination fractions for three possible pairs of markers. Compared with a
two-point analysis, a three-point analysis has two advantages: (1) it may increase the
precision of the estimates of the recombination fractions when markers are not fully
informative (Thompson 1984; Wu et al. 2002b); and (2) it provides a way of deter-
mining the optimal order of different markers. In this section, we discuss a general
approach for three-point analysis.

Consider three markers, A, B, and C, without a particular order for a triply
heterozygous F1, from which a triple backcross or F2 is generated. Let us first consider
a backcross ABC/abc × abc/abc. A total of eight groups of marker genotypes in
the backcross progeny can be classified into four groups based on the number of
recombinants between marker pair A and B and between marker pair B and C.
These four groups are genotypes AbC/abc and aBc/abc (one recombinant from each
pair), Abc/abc and aBc/abc (one recombinant only from the first pair), ABc/abc and
abC/abc (one recombinant only from the second pair), and ABC/abc and abc/abc (no
recombinant for each pair). Assume that nij is the number of genotypes containing i
recombinants between markers A and B and j recombinants between markers B and
C and that gij is the corresponding joint recombination fraction. Both nij and gij

can be expressed as

Pair B and C
Pair A and B Recombinant Nonrecombinant Total
Recombinant n11 n10 n1·

Nonrecombinant n01 n00 n0·

Total n·1 n·0 n

Recombinant g11 g10 rAB

Nonrecombinant g01 g00 1 − rAB

Total rBC 1 − rBC
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The recombination fraction between markers A and B, rAB, reflects the frequen-
cies of the recombinant genotypes of these two markers, regardless of whether or
not there is a recombinant between markers B and C. Similarly, the recombination
fraction between markers B and C, rBC, reflects the frequencies of the recombinant
genotypes of these two markers, regardless of the types of genotypes between markers
A and B. However, the recombination fraction between marker A and C, rAC, re-
flects the frequencies of the recombinant genotypes of these two markers, regardless of
such a recombinant event occurring between the first pair of markers or between the
second pair. Based on these relationships, the recombination fractions are expressed
in terms of the marginals of gij .

The likelihood function is

L(n|g11, g10, g01, g00) =
n!

n11!n10!n01!n00!
gn11
11 gn10

10 gn01
01 gn00

00 ,

and it should be clear that the MLEs of the joint recombination probabilities gij

are given by ĝij = nij/n, and the MLEs of rAB, rBC, and rAC can be estimated
simultaneously as

r̂AB = ĝ10 + ĝ11 =
n10 + n11

n
,

r̂BC = ĝ01 + ĝ11 =
n01 + n11

n
,

r̂AC = ĝ01 + ĝ10 =
n01 + n10

n
.

(3.18)

Solving for g11, g10, g01, and g00 results in

g11 = 1
2 (rAB + rBC − rAC),

g10 = 1
2 (rAB − rBC + rAC),

g01 = 1
2 (−rAB + rBC + rAC),

g00 = 1 − g11 − g10 − g01 = 1 − 1
2 (rAB + rBC + rAC),

(3.19)

and to ensure the joint recombination probabilities gij ≥ 0, the following inequality
restrictions should hold:

rAC ≤ rAB + rBC,

rBC ≤ rAB + rAC,

rAB ≤ rBC + rAC.

This means that the recombination fraction between the markers at two endpoints is
equal to or less than the sum of the recombination fractions between any two adjacent
markers.
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Theorem 3.5. For three ordered markers, the recombination fraction between the two
markers, each at an end, is always greater than or equal to that between two adjacent
markers. Thus, for a given marker order A-B-C, rAC ≥ rAB and rAC ≥ rBC.

Proof. Consider the marker order A-B-C. According to the definition of the recom-
bination fraction ≤ 0.5, the number of nonrecombinants between markers A and B is
always greater than or equal to the number of recombinants conditional on the same
event occurring between markers B and C; that is, g01 ≥ g11 and g00 ≥ g10. Adding
g10 to both sides of the first equality yields

g01 + g10 > g11 + g10,

which leads to rAC ≥ rAB based on equation (3.18). Similarly, we can prove rAC

≥ rBC.

A three-point analysis in an F2 population becomes more complicated. The strat-
egy proposed above for the backcross design is actually based on the segregation of
the F1’s gamete genotypes because the recurrent parent makes no contribution to
the segregation of backcross genotypes. However, in the F2 progeny, both parents
contribute to genotype segregation, and thus three-point analysis of the F2 should be
based on the segregation of zygote genotypes. In Chapter 4, we will develop a general
statistical model that covers the F2 case for estimating the recombination fractions
in three-point analyses.

3.7 Multilocus Likelihood and Locus Ordering

For a given data set containing multiple markers, marker order is not known a priori.
An optimal marker order, which is important to linkage analysis, can be determined
by comparing multilocus likelihoods for all possible orders. Again, consider a triple
backcross ABC/abc×abc/abc with no information about marker order. No matter how
these three markers are ordered, this backcross includes eight genotypes, which are
classified into four groups in terms of the number of recombinants between different
marker pairs (Section 3.6). Let rAB, rAC, and rBC be the recombination fractions
between marker pair A and B, marker pair A and C, and marker pair B and C,
respectively. These four groups of backcross genotypes are tabulated in Table 3.5,
along with their observed numbers and expected frequencies, under each of the three
possible orders. Note that the derivation of the expected frequency of a three-marker
gamete is based on the assumption that the recombination events between different
marker intervals are independent. Considering the first group of gametes, for example,
we have, under this assumption,

Prob(no recombination in ABC or abc)
= Prob(no recombination in AB or ab) × Prob(no recombination in BC or bc)
= (1 − rAB)(1 − rBC).
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Table 3.5. The expected frequencies of four groups of gametes in the backcross under three
possible gene orders.

Gamete Obser- Expected Frequency under Order

Type vation A-B-C A-C-B B-A-C

ABC or abc n00 (1 − rAB)(1 − rBC) (1 − rAC)(1 − rBC) (1 − rAB)(1 − rAC)

ABc or abC n01 (1 − rAB)rBC rACrBC (1 − rAB)rAC

Abc or aBC n10 rAB(1 − rBC) rAC(1 − rBC) rABrAC

AbC or aBc n11 rABrBC (1 − rAC)rBC rAB(1 − rAC)

The MLEs of the three recombination fractions for each order can be obtained by
maximizing the likelihood function under that order. Note that, in the backcross de-
sign, the expression of the MLEs does not depend on marker order, which is expressed
as

r̂AB =
n10 + n11

n
= ĝ10 + ĝ11,

r̂BC =
n01 + n11

n
= ĝ01 + ĝ11,

r̂AC =
n01 + n10

n
= ĝ01 + ĝ10.

When we calculate the likelihood value of the observations, it can be seen in
Table 3.5 that it will differ depending on the order of the markers. For example, for
a particular order A-B-C, we have

LABC ∝ (1 − rAB)n00+n10(1 − rBC)n00+n10(rAB)n10+n11(rBC)n01+n11

=
[
(1 − rAB)n00+n10(rAB)n10+n11

] [
(1 − rBC)n00+n10(rBC)n01+n11

]
.(3.20)

The likelihood is actually a product of binomials and can be solved for the MLEs
r̂AB, r̂BC. The sampling variances of the estimates of the recombination fractions
(rAB and rBC) are

Var(r̂AB) ≈ r̂AB(1 − r̂AB)
n

,

Var(r̂BC) ≈ r̂BC(1 − r̂BC)
n

.

(3.21)

Similarly, the likelihood values can be calculated for the two other marker orders (see
Table 3.5), denoted by LACB and LCAB (Exercise 3.6).

The marker order that corresponds to the maximum likelihood value can be re-
garded as the optimal order supported by the data. Thus, by comparing the three
likelihood values, LABC, LACB, and LCAB, we can determine the most likely marker
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order. A similar procedure can be used to determine an optimal marker order for an
F2 progeny, but, unlike the backcross, the MLEs of the recombination fractions will
differ among the orders. We will consider this issue in Chapter 4.

The calculation of the likelihood (3.20) is based on the assumption of indepen-
dent crossovers in different marker intervals. Yet, as shown by Speed et al. (1992),
the ordering of the loci that maximizes the likelihood under the assumption of no
interference is a virtually consistent estimate of the true order even when interference
actually exists. This property expands the utility of the procedure above for gene
ordering if an adequately large sample size is used.

Example 3.6. (Three-point Analysis). Revisit Example 3.1 for a rice mapping pop-
ulation of n = 123 plants. Consider three markers, RG472, RG246, and K5, on rice
chromosome 1. The heterozygous F1 AaBbCc derived from genotypes AABBCC and
aabbcc generates eight different types of haploid gametes. Doubled haploids (DH) were
then observed for each gamete type as follows (n = 100 after deleting the observations
missing in the three markers):

ABC/ ABc/ AbC/ Abc/ aBC/ aBc/ abC/ abc/

DH ABC ABc AbC Abc aBC aBc abC abc

Obs. 38 2 2 5 11 1 10 31

These eight gamete types are sorted into four groups (see Table 3.5) based on
the distribution of recombinants between markers. Observations in each group are
n00 = 38 + 31 = 69, n01 = 2 + 10 = 12, n10 = 5 + 11 = 16, and n11 = 2 + 1 = 3.
Using equation (3.18), the MLEs of three recombination fractions between each pair
of these three markers are estimated as

r̂AB =
16 + 3
100

= 0.19,

r̂AC =
12 + 3
100

= 0.15,

r̂BC =
16 + 12

100
= 0.28,

with the sampling variances, Var(r̂AB), Var(r̂AC), and Var(r̂BC), approximated by
0.19(1 − 0.19)/100 = 0.0015, 0.15(1 − 0.15)/100 = 0.0013, and 0.28(1 − 0.28)/100 =
0.0020, respectively.

Taking the log of the likelihood values under each marker order, calculated with
r̂AB, r̂AC, and r̂BC by equation (3.20), we have
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log LABC

= [(69 + 12) log(1 − 0.19) + (16 + 3) log(0.19)]
+[(69 + 16) log(1 − 0.15) + (12 + 3) log(0.15)] = −90.89,

log LACB

= [(69 + 3) log(1 − 0.28) + (12 + 16) log(0.28)]
+[(69 + 16) log(1 − 0.15) + (12 + 3) log(0.15)] = −101.57,

log LBAC

= [(69 + 12) log(1 − 0.19) + (16 + 3) log(0.19)]
+[(69 + 3) log(1 − 0.28) + (12 + 16) log(0.28)] = −107.92.

Because log LABC is the largest among the three values, we conclude that these
three markers have an order A-B-C. Although an optimal marker order has been
determined, another unsolved important issue is how much more likely these three
markers are to have order A-B-C than the two other orders, A-C-B and B-A-C.
We will address this issue in Section 3.9.

3.8 Estimation with Many Loci

In principle, the problems of locus ordering and interloci distance estimation can be
tackled simultaneously by comparing the likelihoods maximized over interloci dis-
tances for all possible locus orders. However, the number of possible orders, as well as
the computer time and memory required for each multilocus likelihood calculation,
increases rapidly with the number of loci. Even after taking into account the equiv-
alence of two orders that are the reverse of each other, there are still m!/2 possible
orders for m loci. Evaluation of the likelihoods of all possible orders rapidly becomes
impractical as the number of loci increases (2!/2 = 1, . . . , 10!/2 = 1, 814, 400). It is
therefore necessary to generate a small number of approximate orders before proceed-
ing to a formal likelihood analysis of these orders.

There are two main approaches to the generation of approximate orders. One
approach is to start with a small number of markers whose order can be established
by a likelihood analysis and then proceed to place the remaining markers, one at
a time, into one of the intervals between the markers already in the map. At each
stage, the effect on the likelihood of placing the additional marker in each of the
possible intervals is evaluated, and the placement that produces the highest likelihood
is chosen. If one starts with two markers, for example, then the first additional marker
can be placed in one of three intervals, the next into one of four, and so on, so that
the entire procedure will require only 3 + 4 + ... + m = (m − 1)(m + 3)/2 likelihood
evaluations.

The second approach for generating approximate orders is to analyze all pairs of
loci using two-point linkage analysis and then subject the m(m− 1)/2 recombination
fraction estimates (or maximum LOD scores) to some method of seriation. The prob-
lem of converting a square matrix of dissimilarities (or distance) between objects into
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a set of coordinates that specify the relative positions of the objects is well known
in multivariate exploratory analysis. The general class of methods for tackling this
problem is known as multidimensional scaling. Any one of the several methods of mul-
tidimensional scaling can be applied to an m-by-m matrix of recombination fraction
estimates to produce a two-dimensional representation of the m points. Except for a
very short chromosomal segment, the m points will fall on a horseshoe-shaped curve
rather than on a straight line because the recombination fraction between the two
farthest markers is at most 1/2 but the sum of the recombination fractions between
adjacent loci, arranged in any order, is likely to exceed 1/2. Several variations of this
approach have been proposed. Once approximate orders have been generated, these
can be subjected to formal multipoint likelihood analysis.

3.9 Mixture Likelihoods and Order Probabilities

A natural question is that of estimating the gene order probabilities. Here, we derive
the full likelihood, with which we can then jointly estimate the recombination fractions
and order probabilities in a three-point analysis.

The likelihoods for each of the three orders are expressed as

LABC ∝ (1 − rAB)n00+n10(1 − rBC)n00+n10(rAB)n10+n11(rBC)n01+n11 ,

LACB ∝ (1 − rAC)n00+n11(1 − rBC)n00+n10(rAC)n01+n10(rBC)n01+n11 ,

LBAC ∝ (1 − rAB)n00+n10(1 − rAC)n00+n11(rAB)n10+n11(rAC)n01+n10 ;

however, none of these likelihood functions is the likelihood function for the full model
for the data. For that model, we obtain an observation y from one of the three orders
and the order is given to us with a certain probability, the unknown probability that
it is the true order. Thus, if we denote these probabilities by p, with the appropriate
subscript, the likelihood function for the full model is

(3.22) LF = pABCLABC + pACBLACB + pBACLBAC,

a mixture model.
We know that we will get a gene order with a certain probability, and if we knew

that order we would know the correct piece of the likelihood to use. This suggests that
we can introduce missing data z = (z1, z2, z3) to tell us the gene order. For example,
we specify that z can have exactly one 1 and two 0’s, with the 1 denoting the gene
order. The joint complete-data likelihood of (n, z) is

(3.23) LC = [pABCLABC]z1 [pACBLACB]z2 [pBACLBAC]z3 ,

and the resulting missing-data density is

k(z, n) =
[pABCLABC]z1 [pACBLACB]z2 [pBACLBAC]z3

pABCLABC + pACBLACB + pBACLBAC
,
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which we should recognize as a multinomial distribution with one observation to be
put in one of three cells, with cell probabilities given by

(3.24) E(z1) = PABC =
pABCLABC

pABCLABC + pACBLACB + pBACLBAC
,

and we similarly define PACB and PBAC = 1 − PABC − PACB.
Using equations (3.23) and (3.24), we construct an EM algorithm as follows. The

expected complete-data log likelihood is

E(LC) = PABC log(pABCLABC)
+PACB log(pACBLACB) + PBAC log(pBACLBAC).(3.25)

Differentiating E(LC) with respect to the recombination fractions yields the MLEs
of r. With those, we can estimate the PABC using

P̂ABC =
pABCLABC

pABCLABC + pACBLACB + pBACLBAC
,

and similarly for PACB and PBAC = 1−PABC−PACB. (Notice the similarity to the
mixture model of Section 2.2.)

Example 3.7. Revisit Example 3.6 for the three-point analysis of markers RG472,
RG246, and K5 in a rice HD population. Based on the observations of each gamete
type, we have n00 = 69, n01 = 12, n10 = 16, and n11 = 3, which provide the MLEs of
the recombination fractions

r̂AB = 0.19, r̂BC = 0.15, r̂AC = 0.28.

To estimate P , the values of p must be specified. Since we do not have information,
we cannot do much but set pABC = pACB = pBAC = 0.333. Then the estimate of
PABC is

P̂ABC =
1
3LABC

1
3LABC + 1

3LACB + 1
3LBAC

= 0.999977,

with P̂ACB and P̂BAC being near 0. These results suggest that there is a very high
probability (0.999977) for the data to support marker order A-B-C.

3.10 Map Functions

The map function is a mathematical function that converts the recombination fraction
(r) between two loci to the genetic distance separating them (d). The recombination
fraction is not an additive distance measure. Consider three markers A, B, and C.
If the recombination fraction between markers A and B and that between markers
B and C are each assumed to be equal to r = 0.30, then the recombination fraction
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between markers A and C cannot be 2r since that value would exceed 50 percent.
One therefore needs to transform the recombination fraction, r, into the additive map
distance, d.

Definition 3.8. [Map Distance] The map distance between the two loci is defined
as the expected number of crossovers occurring between them on a single chromatid
during meiosis.

The two nonalleles, each from a locus, will be derived from the same parental
chromosomes if no crossover or an even number of crossovers occurs between the two
loci, and from the different parental chromosomes if an odd number of crossovers
occurs between the two loci. Therefore, we can formulate a theoretical model to
express the recombination fraction between two loci in terms of their map distance
or length by using the number of crossover events.

3.10.1 Mather’s Formula

Mather (1938) derived a formula connecting the recombination fraction between two
loci A and B to the random number of chiasmata (that is, crossovers) X occurring
on the interval [A, B] of the chromatid bundle. According to his derivation, the re-
combination fraction between two loci r is half the probability of chiasmata occurring
in all four strands of tetrads between the loci. Mathematically, this can be expressed
as

(3.26) r =
1
2
Prob(X > 0) =

1
2
[1 − Prob(X = 0)],

where Prob(X = 0) is the probability of no chiasma between two loci. The genetic
map distance d separating A and B is defined as 1

2E(X), the expected number of
chiasmata on [A, B] for the tetrad as a whole, because each crossover involves two
chromatids.

Mather’s formula (3.26) can be proven by first noting that a gamete is recombinant
between two loci A and B if and only if an odd number of crossovers occurs on the
gamete between the loci. Denote the probability that the gamete is recombinant after
x chiasmata between A and B by rx. It is clear that r0 = 0. For x > 0, we have the
recurrence

rx =
1
2
rx−1 +

1
2
(1 − rx−1) =

1
2

because a gamete is recombinant after x crossovers if it is recombinant after x − 1
crossovers and does not participate in crossover x or if it is nonrecombinant after
x−1 crossovers and does participate in crossover x, and these probabilities are equally
likely. Thus, it follows that rx = 1

2 for all x > 0. This thus suggests that the probability
of obtaining a recombinant strand is 1/2 as long as there is at least one chiasma
between the two loci. This proves Mather’s formula.
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3.10.2 The Morgan Map Function

The Morgan map function is the simplest map function, which assumes that (1) there
is at most one crossover occurring on the interval of two loci, and (2) the probability
of a crossover on an interval is proportional to the map length of the interval (Morgan
1928). Under these assumptions, the probability of a chiasma occurring in a distance
of d map units is equal to the expected number of crossovers per gamete in this
distance and therefore to 2d (see the definition of d above), which gives

r = 1
2 [1 − Prob(X = 0)] = 1

2 [1 − (1 − 2d)] = d.

This function holds only when 0 ≤ d ≤ 1/2 since for d > 1/2 it results in recombina-
tion fractions of greater than 1/2. It may therefore be used as an approximation for
short distances but is not applicable for long segments of chromosomes.

3.10.3 The Haldane Map Function

The Haldane map function, the second simplest map function, assumes that crossovers
occur at random and independently of each other (Haldane 1919). With this assump-
tion, the occurrence of crossovers between two loci on a chromosome can be viewed
as a Poisson process (i.e., they are equally probable at any point between the loci),
so that the number of crossovers between the loci can be modelled by a Poisson dis-
tribution. Since map distance d is defined as the average number of crossovers per
chromatid in a given interval, the average number of crossovers for the tetrad as a
whole is 2d. The assumption of a Poisson process implies that the probability of no
chiasma in the interval, Prob(X = 0), is e−2d. Using Mather’s formula, this gives the
Haldane map function

r = 1
2 [1 − Prob(X = 0)] = 1

2

(
1 − e−2d

)
,(3.27)

whose inverse is

d = − 1
2 ln(1 − 2r).(3.28)

The Haldane map function can be derived in another way. Because the genetic distance
(d) between two loci is defined as the average number of crossovers, the probability
of the number of crossovers can be expressed using the Poisson distribution in terms
of d as follows:

Crossover 0 1 2 3 · · · x · · ·

Probability e−d d
1!e

−d d2

2! e
−d d3

3! e
−d · · · dx

x! e
−d · · ·

Because the value of the recombination fraction r for a genetic distance of d is the
sum of the probabilities of all odd numbers of crossovers, we have
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r = e−d

(
d

1!
+

d3

3!
+

d5

5!
+ · · ·

)

= 1
2

(
1 − e−2d

)
.

The additivity of the Haldane function can be established by assuming that three
loci are in the order A-B-C. A gamete is a recombinant with respect to A and C
if and only if it is a recombinant with respect to A and B but not B and C or
if it is a recombinant with respect to B and C but not A and B. Therefore, with
the assumption of independence, three possible recombination fractions among these
three loci have the following relationship:

rAC = rAB(1 − rBC) + rBC(1 − rAB) = rAB + rBC − 2rABrBC,(3.29)

or
1 − 2rAC = (1 − 2rAB)(1 − 2rBC).

Given rAB = 1
2 (1 − e−2dAB) and rBC = 1

2 (1 − e−2dBC), where the d’s are the map
distances between the corresponding loci, we have

rAC

= rAB + rBC − 2rABrBC

= 1
2 (1 − e−2dAB) + 1

2 (1 − e−2dBC) − 2 · 1
2 (1 − edAB) 1

2 (1 − edBC)

= 1
2 (1 − e−2dAB + 1 − e−2dBC − 1 + e−2dAB + e−2dBC − e−2dABe−2dBC)

= 1
2 [1 − e−2(dAB+dBC)]

= 1
2 (1 − e−2dAC),

which leads to dAC = dAB + dBC.
In practice, the Haldane map function may not be accurate at small distances.

Empirical observations show that the probability of having two crossovers occur in
close proximity to each other is often less than that predicted by the Haldane map
function. However, in his 1919 paper, Haldane also introduced a differential equation
method that generalized the construction of various map functions. One of the appli-
cations of this generalization was the derivation of Kosambi’s (1944) map function,
which is both simple and justifiable in practice.

3.10.4 The Kosambi Map Function

At very short distances, interference appears to be complete, so that assuming that
locus B is between loci A and C, the recombination between A and B implies non-
recombination between B and C, and vice versa, and thus either rAB or rBC is zero.
Recombination fractions therefore become approximately additive at short distances,
satisfying

rAC = rAB + rBC,(3.30)
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whereas at long distances equation (3.29) is more accurate. When the markers are
located at moderate distances, the relationship between the recombination fractions
is expressed as

rAC = rAB + rBC − rABrBC.(3.31)

In sum, a general model describing the relationship can be written as

rAC = rAB(1 − rBC) + rBC(1 − rAB) = rAB + rBC − 2crABrBC,

where, based on equation (3.19),

c =
1
2 (rAB + rBC − rAC)

rABrBC

=
g11

rABrBC
.(3.32)

Equation (3.32) measures the deviation of observed recombinations in different inter-
vals between markers from the recombinations that are assumed to occur indepen-
dently (Muller 1916). This deviation (c) from independence is defined as the coefficient
of coincidence, while I = 1−c is called interference. The absence of interference (I = 0)
and positive (I > 0) and negative interference (I < 0) correspond to c = 1, c < 1,
and c > 1, respectively (Ott 1991). Coefficients c and I are a property of intervals
[A,B] and [B,C].

Next, we want to find a function r = f(d) that can reflect the relationship of the
recombination fractions, as described by equations (3.29)–(3.31), at different genetic
distances. Assume that f satisfies the relationship

f(d + h) = f(d) + f(h) − 2cf(d)f(h).

Recalling Haldane’s (1919) differential equation, we have

f(d + h) − f(d)
h

=
f(h)

h
− 2cf(d)

f(h)
h

.(3.33)

If we require r = f(d) = d at short distances, then as h tends to 0, f(h)/h tends to
1, and we have the derivative based on equation (3.33),

f ′(d) = 1 − 2c0f(d) = 1 − 2c0r,

where c0 is known as a marginal coincidence, distinguished from c because it is the
limit as one of the two intervals approaches 0. When c0 is a nonzero constant, this
differential equation yields the solution

r =
∫

1
1 − 2c0r

dr = − 1
2c0

ln(1 − 2c0r),

which is the Haldane map function (3.27) when c0 = 1. However, interference suggests
that smaller values of c0 are appropriate for smaller values of r. This would lead to an
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infinite number of map functions, but Kosambi (1944) noted that if c0 were allowed
to be an appropriate function of r, then a single mapping function could be derived.
The simplest function of r that increases in the interval 0 < r < 1 and takes the value
0 at r = 0 and the value 1 when r = 1/2 is co = 2r. Then the differential equation
becomes

f ′(d) = 1 − 2c0r = 1 − 4r4.

Integration then yields the function

d =
1
4

ln
1 + 2r

1 − 2r
(3.34)

with inverse

r =
1
2

e2d − e−2d

e2d + e−2d
.(3.35)

This is known as the Kosambi map function, which has been widely used in linkage
mapping. From equation (3.33), we have Kosambi’s addition formula for the recom-
bination fractions of the loci A-B-C:

rAC =
1
2
tanh 2dAC

=
1
2
tanh (2dAB + 2dBC)

=
1
2 tanh 2dAB + 1

2 tanh 2dBC

1 + tanh 2dAB tanh 2dBC

=
rAB + rBC

1 + 4rABrBC
.(3.36)

This is similar to the velocity addition rule in the special theory of relativity.
Many modifications of these classic map functions have been made for different

situations, mostly by considering interference. Carter and Falconer’s (1951) function
considered relatively strong interference. A variable level of interference was modeled
by Felsenstein (1979). All of these functions can be derived from Haldane’s (1919)
differential equation by assuming different marginal coincidences c (Liberman and
Karlin 1984).

Example 3.8. Revisit Example 3.6 for a three-point analysis in rice. The recombination
fractions for three markers, RG472 (A), RG246 (B), and K5 (C), were estimated in
Example 3.6. The best order of the three markers A-B-C was determined in Example
3.7. Here, we use the Haldane and Kosambi map functions to estimate the genetic
distances for these three markers as follows:
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Marker Haldane Kosambi

Pair r d (cM) r d (cM)

A-B 0.190 23.902 0.190 20.003

B-C 0.150 17.834 0.150 15.476

A-C 0.280 41.049 0.280 31.642

(A-C) (0.283) (41.736) (0.305) (35.479)

The recombination fraction between markers A and C at the two ends can be
estimated directly on the basis of the procedure described in three-point analysis.
This recombination fraction can also be estimated indirectly using equations (3.29)
and (3.36) based on the estimates of the other recombination fractions, rAB and
rBC. We then calculate the genetic distance between markers A and C using these
estimates from the indirect approach (shown in parentheses). The estimates of the
genetic distance between A and C are consistent between the direct and indirect
approaches for the Haldane map function, whereas these are different for the Kosambi
function. This is due to different assumptions used for the derivation of these two map
functions. The Haldane map function assumes no interference between two adjacent
marker intervals, whereas this assumption is not necessary for the Kosambi map
function.

At the end of this section, we summarize the Haldane and Kosambi map functions
as follows:

Function r(d) d(r)

Haldane r = 1
2 (1 − e−2d) d = − 1

2 ln(1 − 2r)

Kosambi r = 1
2

e2d−e−2d

e2d+e−2d d = 1
4 ln 1+2r

1−2r

The comparison between these two functions is made by plotting the genetic dis-
tance against the recombination fraction and vice versa (Fig. 3.2). For two highly
linked markers (corresponding to a small r value), these two functions obtain similar
genetic distances. However, the divergence in the genetic distance estimated by the
two functions increases with increasing r values. When the r is close to 0.5, the two
functions tend to converge.

3.11 Exercises

3.1 Verify that the MLE of r given in equation (3.4) is obtained from differentiation of the
likelihood (3.3).

3.2 Referring to two-point analysis, assume an F2 population in which two markers are
genotyped. The two markers form nine distinguishable genotypes, each with observa-
tions as follows:
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Fig. 3.2. The genetic distance (d) as a function of the recombination fraction (r) and vice
versa estimated by the Haldane and Kosambi functions.

AA Aa aa

n =
BB
Bb
bb

[
107 20 3
24 175 18
5 41 93

]

(a) Using the EM algorithm, estimate the recombination fraction between these two
markers.

(b) Test whether these two markers are significantly linked using χ2 and likelihood ratio
test approaches.
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(c) Estimate the sampling error of the estimated recombination fraction and the confi-
dence interval of the recombination fraction.

3.3 Referring to marker order, three different markers were genotyped for a backcross pop-
ulation toward parent aabbcc. The genotypes at the three markers were observed as
follows:

ABC/ ABc/ AbC/ Abc/ aBC/ aBc/ abC/ abc/

DH abc abc abc abc abc abc abc abc

Obs. 60 1 2 1 14 0 9 15

(a) Estimate the recombination fractions between each pair of markers.
(b) Test the significance of these estimated recombination fractions.
(c) Determine the best order of these three markers.
(d) Calculate the genetic distances between each pair of marker using the Haldane and

Kosambi map functions.
(e) How can you estimate the recombination fraction and genetic distance between mark-

ers at the two ends? Compare the results from different approaches.

3.4 Referring to two-point analysis, in a second F2 population, one observes nine genotypes
for two markers as follows:

AA Aa aa

n =
BB
Bb
bb

[
0 8 113
18 202 27
18 202 27

]

Using the EM algorithm, estimate the recombination fraction. If your estimate is greater
than 0.5, which violates the definition of this parameter, how can you explain it?

3.5 Find the MLE from equation (3.13) by (a) solving the cubic equation and (b) using the
EM algorithm.

3.6 Referring to the likelihood of equation (3.20):
(a) Show that it can be written as a product of binomial likelihoods and find the MLEs

r̂AB and r̂BC. Show that equation (3.21) is an approximation of their variances.
(b) Find the MLEs for the other two orders (see Table 3.5). Which are the overall

MLEs?

3.12 Notes: Algorithms and Software for Map Construction

Genetic linkage maps have been used as a powerful tool to study the structure and
organization of the genome for a species and detect and identify loci that are re-
sponsible for quantitative traits. The construction of linkage maps includes two steps:
(1) grouping markers into linkage groups and (2) ordering the markers within each
linkage group. Markers can be placed into linkage groups based on their linkage re-
lationships. The degree of linkage between any two markers measured in terms of
the recombination value can be estimated and tested by the approaches for two- or
three-point analyses. The markers can be grouped by a cluster analysis on the basis
of a matrix consisting of all possible pairwise marker recombinations. Specific cutoff
criteria are used to determine the number of linkage groups.
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After marker groups are specified, the order of the markers within a group is ob-
tained by minimizing the differences between recombination fractions from the pair-
wise data and calculated fractions in the map. However, when the number of markers
increases, the number of possible marker orders increases rapidly, which presents a
considerable computational challenge. In fact, the ordering of markers can be re-
garded as a special case of the travelling salesman problem (TSP) (Wilson 1988;
Olson and Boehnke 1990; Falk 1992; Liu 1998; Gaspin and Schiex 1997); Mester et al.
2003), a classical nondeterministic polynomial-complete problem in mathematics and
computer science. The problem of marker ordering can be handled by performing ex-
haustive searches. It is extremely time-consuming to exhaustively search all possible
orders when the number of markers is large, say >30. For this reason, an algorithm
attempted to obtain an approximate optimal solution has been a practical approach
for large-scale linkage analysis.

Several approximation algorithms available for map construction have been in-
troduced in Tan and Fu (2006). They include seriation (Buetow and Chakravarti
1987), simulated annealing (Thompson 1984; Weeks and Lange 1987), branch and
bound (Lathrop et al. 1985), the Lander-Green algorithm (Lander and Green 1987,)
and stepwise-likelihood (Lathrop et al. 1984). Software packages that implemented
these algorithms are LINKAGE (Lathrop et al. 1984), MAPMAKER/EXP (Lander
et al. 1987), LINKAGE MAP (Eppig and Eicher 1983), JoinMap (Stam, P. 1993),
LINKAGE-1 (Suiter et al. 1983), and GMendel (Echt et al. 1992). In general, the
performance of all these algorithms and software may be affected by experimental
errors, sample size, and interference of recombination and double crossovers.

It is worthwhile to mention two recent approaches for map construction. The first
is Mester et al.’s (2003) genetic and evolutionary algorithm (GEA) that searches for
an optimal solution adaptively by mimicking the evolutionary process of a population
including mutation, recombination, and selection. The second was proposed by Tan
and Fu (2006), who used the principle of neighbor mapping (Ellis 1997) to construct
a linkage map by starting with a small map and adding markers into it one at a
time. Compared with other algorithms, Tan and Fu’s sequential algorithm displays
important advantages in computational speed and the accuracy of detecting a true
marker order.

There are specific statistical principles behind each of the map construction algo-
rithms and software packages mentioned above. To help the reader understand, we
provide some explanation of the statistical principles underlying Lander and Green’s
algorithm which has been widely used for map construction for experimental or-
ganisms. Readers are also referred to Sham (1998), who reviewed the application of
Lander and Green’s algorithm with a comparison with Elston and Stewart’s (1971)
algorithm.

The Lander-Green algorithm is based on a hidden Markov formulation of the
pattern of inheritance at several ordered markers. The linkage information of a hap-
lotype can be summarized as a string of f alleles derived from the parent’s paternal
haplotype and m alleles derived from the parent’s maternal haplotype. At a single
marker, the linkage information of each nonfounding member can be summarized by
just two binary variables, one for the allele in the paternal haplotype and the other
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for the allele in the maternal haplotype. A pedigree with N nonfounders contains
2N potentially informative gametes, so that the pattern of inheritance at a single
marker can be described by a vector of 2N elements. Each element of this inheritance
vector, v, describes the parental status of the allele at the marker in one gamete: it is
arbitrarily defined as 0 if the allele is paternal and 1 if the allele is maternal. There
are therefore 22N possible inheritance vectors, each describing a different pattern of
allele transmission at the locus. For each possible inheritance vector at the locus, the
probability of the phenotypic data relevant to the locus can be decomposed as a sum
of products of the conditional probabilities of phenotypes (x) given genotype (g) and
the conditional probabilities of genotype (g) given the inheritance vector (v),

P (x|v) =
∑

G

P (x|g)P (g|v),

where the summation is taken over all combinations of possible genotypes (G) at
the locus. This probability is therefore a function of the penetrance and population
parameters of the locus. The 22N such probabilities, one for each possible inheritance
vector, can be arranged as the diagonal elements of a square 22N × 22N matrix,
denoted as Q. Since all 22N possible inheritance vectors are equally likely prior to
the consideration of the phenotypic data, the likelihood of the data at a single locus
is proportional to the sum of these 22N probabilities. This can be written in matrix
form as

P (x) ∝ 1T Q1,

where x represents the phenotypic data at the locus and 1 is a column vector with
all 22N elements equal to 1. When k ordered markers are considered jointly in a
multipoint analysis, the joint likelihood can be factored as

P (x1,x2, ...,xk) = P (x1)P (x1|x2)P (x3|x1,x2)...P (xk|x1,x2, ...,xk−1),

where x1,x2, ...,xk represent phenotypic data at the k ordered markers. The neces-
sity of conditioning on all preceding markers can be avoided by recognizing that,
at each locus, the probability of the phenotypic data is a function of its own in-
heritance vector, which is conditionally independent of the inheritance vectors of all
preceding markers given the inheritance vector of the immediately preceding locus. In
other words, the k inheritance vectors of the k ordered markers constitute a hidden
Markov chain. The conditional probability of an inheritance vector vi+1 at markers
i + 1, given an inheritance vector vi at markers i, is rj

i (1 − ri)2N−j , where ri is the
recombination fraction between markers i and i + 1, and j is the number of changes
in the elements of the inheritance vector from vi to vi+1. There are [22N ]2 possible
combinations of vi and vi+1, each associated with a characteristic conditional prob-
ability, so that there are [22N ]2 conditional probabilities that can be arranged in a
square transition matrix Ti. The joint likelihood of the multilocus phenotype data is
then given by

P (x1,x2, ...,xk) ∝ 1T Q1T1Q2T2...Tk−1Qk1.

This is the basic form of the Lander-Green algorithm, which has various refinements
added to reduce the number of necessary arithmetic operations.
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Fig. 3.3. Genetic linkage maps constructed from 135 RFLP and 40 isozyme and RAPD
markers for 123 DH plants derived from tall Azucena and short IR64 parents.
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Example 3.9. (Genetic Linkage Map). Revisit Example 3.1. One hundred twenty-
three DH plants derived from two inbred lines, semi-dwarf IR64 and tall Azucena,
were genotyped for a total of 175 polymorphic markers (Huang et al. 1997). Two-
point analysis was performed to estimate pairwise recombination fractions for these
175 markers. Based on a cluster analysis of the 175 × 175 matrix for recombination
fractions, these markers are sorted into 12 different groups, each representing a rice
chromosome (Fig. 3.3).

The Lander-Green algorithm was used to determine the best order for markers
clustered in each group (Fig. 3.3). The genetic distances between all adjacent markers
were estimated and the corresponding genetic distances were calculated using a map
function. In this example, the Kosambi map function was used. In Fig. 3.3 are given
the genetic distances and marker names at the left and right sides of chromosomes.



4

A General Model for Linkage Analysis
in Controlled Crosses

4.1 Introduction

Statistical methods for linkage analysis in a backcross or F2 population derived from
two inbred lines were described in the previous chapter. An advantage of linkage
analysis using these inbred line crosses is that the parental linkage phase between
different genetic loci is known and therefore the patterns of marker segregation can
be determined and the linkage measured in terms of the recombination fraction tested.
However, this inbred line-based analysis is not appropriate for outcrossing species in
which it is not possible to generate homozygous lines through successive inbreeding.

Outcrossing populations have two significant characteristics that make their link-
age analyses qualitatively different from those in inbred line crosses. The first char-
acteristic is that the number of alleles and the inheritance mode of markers generally
vary from locus to locus. Some markers may have more alleles than others, some
markers are codominant, whereas others are dominant; and some markers are het-
erozygous in one parent but fixed in the other parent, whereas the opposite can be
true for other markers. The second characteristic is the uncertainty about linkage
phases between different loci. Because the estimation of the linkage between different
markers relies upon information about linkage phases, it is essential to determine a
correct linkage phase prior to the linkage estimation.

A traditional strategy for estimating linkage phases is to account for all the possible
linkage phases for given marker pairs and choose the most likely one based on the
minimum recombination fraction and maximum likelihood value (Ritter et al. 1990;
Ritter and Salamini 1996; Maliepaard et al. 1997; Ridout et al. 1998). However,
this strategy is not always statistically effective because the minimum estimate of
the recombination fraction may be obtained from an incorrect linkage phase. Wu et
al. (2002b) derived a general algorithm for simultaneously estimating linkage and
parental linkage phases over all linked molecular markers of any kind in a full-sib
family derived from two outbred parents. Lu et al. (2004) proposed a unifying model
for characterizing the linkage, parental linkage phase, and gene order for any type of
marker. In this chapter, a general framework for the simultaneous estimation of the
linkage and linkage phases is presented that can be viewed as a generalization of
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linkage analysis in inbred line crosses. Much of our presentation is derived from
Lu et al.’s (2004) paper.

4.2 Fully Informative Markers: A Diplotype Model

In a full-sib family derived from two parents, P and Q, of an outcrossing species,
up to four marker alleles, besides a null allele, may be segregating at a single locus.
Furthermore, the number of alleles may vary over loci. We assume that each of the
marker alleles, symbolized by a, b, c, and d, is codominant with respect to each
other but dominant with respect to the null allele, symbolized by o. We assume that
all markers undergo Mendelian segregation without distortion. Depending on how
different alleles are combined in the two parents used for the cross, there exist a total
of 18 possible cross types for a marker locus (Table 3.2). In Section 3.4, we have
shown how these cross types are classified into seven groups based on both parental
and offspring marker band patterns. Segregation analysis allows us to determine a
likely cross type from raw data.

In this section, we will present a general model for fully informative markers in
which there are four phenotypically distinguishable genotypes in the full-sib family.
The models for linkage analysis based on partially informative markers, in which some
different genotypes are phenotypically identical, will be discussed in the subsequent
sections.

4.2.1 Two-Point Analysis

Recall the definition of linkage phase (Definition 1.1). Linkage phase describes the
configuration of alleles at a pair of heterozygous loci on homologous chromosomes in
a single parent. The linkage phase between any two linked markers can be determined
if we know what alternative allele one of the homologous chromosomes carries for
each marker in a parent. Thus, the question of determining linkage phase becomes
a question of labelling parental chromosomes using the alleles at given markers. The
association of the marker alleles and homologous chromosomes can be anchored by
calculating the probabilities of the genotypes of a marker conditional on the state at
linked markers in the full-sib family.

Consider two fully informative markers, A and B, in a full-sib family. For the first
marker A, the parental chromosomes can be arbitrarily labelled by its alleles. Assume
that the parental chromosomes for marker A are labelled as A1| |A2 (or 1| |2 for
simplicity) for parent P and A3| |A4 (or 3| |4 for simplicity) for parent Q, where
| | stands for two homologous chromosomes on the left and right, respectively. The
cross of parents P and Q leads to four different progeny genotypes at this marker,
A1A3, A1A4, A2A3, and A2A4 or 13, 14, 23, and 24. The linkage phase between the
alleles of markers A and B can be determined by assigning the alternative alleles of
marker B to a different homologous chromosome given the defined label of marker A.
For each parent, there are two possible linkage phases. Thus, when the two parents
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are crossed, four phase combinations are possible, one of which can be schematically
expressed as

P × Q P × Q

Φ =
A 1 2

B 1 2
×

3 4

3 4
or [11][22] × [33][44].(4.1)

For a particular parent, the combination of phased chromosomes is called a parental
diplotype, which is symbolized by [··][··], as shown by display (4.1). Let r be the
recombination fraction between the two markers. Assuming that the diplotypes for
the two parents are known, as shown above, the cosegregation pattern of the two
markers can be expressed in matrix notation as

13 14 23 24

H =

13
14
23
24

⎡

⎢⎢⎢⎣

(1−r)2

4
r(1−r)

4
r(1−r)

4
r2

4
r(1−r)

4
(1−r)2

4
r2

4
r(1−r)

4
r(1−r)

4
r2

4
(1−r)2

4
r(1−r)

4
r2

4
r(1−r)

4
r(1−r)

4
(1−r)2

4

⎤

⎥⎥⎥⎦ ,
(4.2)

where each cell represents a two-marker genotype in the full-sib =progeny. The
columns correspond to marker A, whereas the rows correspond to marker B.

The expected number of recombination events (i.e., the number of r) occurring
between the two markers can also be expressed in matrix notation, as

13 14 23 24

D =

13
14
23
24

⎡

⎢⎢⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤

⎥⎥⎦ .
(4.3)

Let

13 14 23 24

n = (nj1j2)4×4 =

13
14
23
24

⎡

⎢⎢⎣

n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 n33 n34

n41 n42 n43 n44

⎤

⎥⎥⎦
(4.4)

be the matrix for the observations of progeny, where j1, j2 = 1 for 13, 2 for 14, 3 for
23, or 4 for 34 denote the marker phenotypes at A and B, respectively. Note that a
marker has a particular “phenotype” determined by its genotype. With nj1j2 following
a multinomial distribution, the likelihood function of marker genotypes under the
parental diplotype combination shown in display (4.1) is expressed as

L(r|n) ∝ r(2n2+n3+n4)(1 − r)(2n1+n3+n4),(4.5)
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where

n1 = n11 + n22 + n33 + n44,

n2 = n14 + n23 + n32 + n41,

n3 = n12 + n21 + n34 + n43,

n4 = n13 + n31 + n24 + n42.

(4.6)

The MLEs of the recombination fraction r with their large-sample variances are
thus

r̂ =
2n2 + n3 + n4

2n
,

Var (r̂) =
r̂(1 − r̂)

n
.

The hypothesis about the existence of the linkage can be formulated as

H0 : r = 0.5 vs. H1 < 0.5,(4.7)

where H0 corresponds to the r = 0.5; i.e., no significant linkage exists.
The test statistics for testing the hypotheses (4.7) are calculated as the log-

likelihood ratio (LR) of the full model over the reduced model:

LR = −2 log
[

L(r̂|n)
L(r = 0.5|n)

]
.

The test statistic LR can be viewed as being asymptotically χ2-distributed with one
degree of freedom.

Example 4.1. Assume a full-sib family derived from two outbred parents with known
diplotypes [11][22] and [33][44], respectively. Two fully informative markers A and B
are genotyped for each full-sib, with observations of a total of 16 two-marker genotypes
as follows:

13 14 23 24

n =

13
14
23
24

⎡

⎢⎢⎣

n11 = 24 n12 = 8 n13 = 7 n14 = 1
n21 = 11 n22 = 36 n23 = 4 n24 = 8
n31 = 7 n32 = 0 n33 = 35 n34 = 2
n41 = 2 n42 = 6 n43 = 12 n44 = 37

⎤

⎥⎥⎦ .

Based on the expected frequency for each cell in terms of the recombination fraction
r between the two markers, we can formulate a likelihood function as described by
equation (4.5). It is not difficult to derive the maximum likelihood estimator of r as

r̂ =
2n2 + n3 + n4

2n

=
2 × 7 + 33 + 28

200 × 2
= 0.1875,(4.8)

where n2 = 1 + 4 + 0 + 2 = 7, n3 = 8 + 11 + 2 + 12 = 33, and n4 = 7 + 7 + 8 + 6 = 28
are defined by equation (4.6).
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The test statistic

LR = −2[log(L(r̂|n)) − log(L(r = 0.5|n))] = −2(−193.0 + 277.3) = 168.6,

which is greater than χ2
0.05(1) = 3.84. Therefore, the linkage between the two markers

is significant.
It can be seen from the above that the estimate of r for two fully informative

markers can be obtained with only one step and does not need the iterative EM algo-
rithm at all. The implementation of the EM algorithm below, with equations (4.12)
and (4.13), aims to derive a general framework for estimating the linkage between
any types of markers, including partially informative ones.

4.2.2 A More General Formulation

Let Gj1 and Gj2 (j1, j2 = 1, 2, 3, 4) denote the four progeny genotypes in the order
given in the matrices H and D above for markers A and B, respectively. Assuming
that n offspring in the full-sib family are independent, we rewrite the likelihood of
the marker data n, given by equation (4.5), under the parental diplotype combination
(display (4.1)) as

L(r|n) =
n∏

i=1

Li(r|n)

=
n∏

i=1

4∑

j1=1

4∑

j2=1

xij1P (Gj1Gj2)xij2 ,(4.9)

where xijk
is the indicator variable describing the jkth genotype of marker Mk for

offspring i, which is one if the marker genotype observed is compatible with Gjk
and

zero otherwise, and P (Gj1Gj2) is the joint probability of the j1th genotype of marker
A and the j2th genotype of marker B (as in the matrix (4.2)). Equation (4.9) can be
written in matrix form as

L(r|n) =
n∏

i=1

mT
ij1Hmij2 ,(4.10)

where mijk
is the four-dimensional vector of the indicator variable xijk

for marker Mk.
The likelihood function of observable marker phenotypes (n) given by equation

(4.10) is constructed on the basis of the recombination fraction matrix (H) derived
from distinguishable genotypes for fully informative markers. We define an incidence
matrix I that relates the marker genotypes H to marker phenotypes P. Thus, we have

L(r|n) =
n∏

i=1

mT
ij1(I

T
b1HIb2)mij2

=
N∏

i=1

mT
ij1Pmij2 ,(4.11)



82 4 A General Model for Linkage Analysis in Controlled Crosses

where bk is the number of distinguishable genotypes (phenotypes) in the offspring at
marker Mk, which is 4 for fully informative markers, P = IT

b1
HIb2 is a (b1×b2) matrix

of the joint phenotype probability of the two markers, and Ibk
is a (4× bk) incidence

matrix that is designed to specify the segregation pattern of a marker type under a
given parental diplotype combination. For fully informative markers, we have

I4 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

when the parental diplotype combination (4.1) is considered. As seen earlier, similar
incidence matrices can also be designed for other marker cross types (Table 3.2) and
other diplotype combinations.

Wu et al. (2002b) presented a general method for estimating the recombina-
tion fraction between any marker types by maximizing the log-likelihood function
of equation (4.11). This method was implemented with the EM algorithm, with the
procedure given as follows.

E Step: At step τ , using the matrix H based on the current estimate r(τ), calculate
the expected number of recombination events between markers A and B for offspring
i under a parental diplotype combination,

D
(τ+1)
ij1j2

=
mT

ij1
[IT

b1
(H ◦ D)Ib2 ]mij2

mT
ij1

Pmij2

,(4.12)

where ◦ denotes an elementwise product of two matrices.
M Step: Calculate r(τ+1) under the given parental diplotype combination using

the equation

r(τ+1) =
1
2n

n∑

i=1

b1∑

j1=1

b2∑

j2=1

D
(τ+1)
ij1j2

.(4.13)

These iterations are repeated between equations (4.12) and (4.13) until r converges
to a stable value. This stable value represents the MLE of the recombination fraction
between markers A and B under the given parental diplotype combination.

For any marker pair, we will have multiple parental diplotype combinations under
each of which the recombination fraction is estimated and the plug-in likelihood value
calculated. A most likely diplotype combination can be obtained on the basis of the
minimum recombination fraction and maximum likelihood.

4.2.3 Three-Point Analysis

Statistical algorithms for estimating the recombination fraction based on two-point
analysis may not be powerful, especially in the case where partially informative mark-
ers are involved. Ridout et al. (1998) demonstrated an example in which three-point
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analysis can detect more linkage relationships between three loci than two-point ana-
lysis.

Consider three markers in the order A-B-C. Relative to marker A, marker B
has two possibilities to assign its alleles to two homologous chromosomes. Similarly,
there are also two such allelic configurations for marker C when marker B is fixed.
Thus, for one parent, there are 2 × 2 = 4 possible diplotypes. We assume that the
diplotypes of two parents, P and Q, are known, as shown below:

P × Q P × Q

Φ =

A 1 2

B 1 2

C 1 2

×
3 4

3 4

3 4

or [111][222] × [333][444].(4.14)

Let rAB, rBC, and rAC be the recombination fractions between markers A and
B, between markers B and C, and between markers A and C, respectively. These
recombination fractions are associated with the probabilities with which a crossover
occurs between markers A and B and between markers B and C. The event when
a crossover or no crossover occurs in each interval is denoted by G11 and G00, re-
spectively, whereas the event when a crossover occurs only in the first interval or in
the second interval is denoted by G10 and G01, respectively. The probabilities of these
events are denoted by g00, g01, g10, and g11, respectively, whose sum equals 1. Accord-
ing to the definition of the recombination fraction as the probability of a crossover
between a pair of loci, it is clear that

rAB = g10 + g11

rBC = g01 + g11

rAC = g01 + g10

(4.15)

and

g11 = 1
2 (rAB + rBC − rAC),

g10 = 1
2 (rAB + rAC − rBC),

g01 = 1
2 (rBC + rAC − rAB),

g00 = 1 − 1
2 (rAB + rAC + rBC).

(4.16)

The cross between the two parents shown by display 4.14 yield a total of 4×4×4 =
64 genotypes for three fully informative markers. The frequencies of each genotype
can be expressed in terms of g00, g01, g10, and g11 (see Table 4.1) and therefore
rAB, rBC, and rAC as shown by equation 4.16. For each genotype, the number of
crossovers that occur between each pair of adjacent markers is tabulated in Table 4.2,
from which the closed forms for estimating g’s can be derived. In the next example,
we provide a procedure for estimating g’s, and therefore the recombination fractions
with equation 4.15.
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Table 4.1. Joint probability matrix (H) among three markers in terms of the number
of crossovers between A and B as well as between B and C under a particular parental
diplotype combination as shown by display (4.14).

Marker Marker Marker C

A B 13 14 23 24

13 13 g2
00 g00g01 g01g00 g2

01

13 14 g00g11 g00g10 g01g11 g01g10

13 23 g11g00 g11g01 g10g00 g10g01

13 24 g2
11 g11g10 g10g11 g2

10

14 13 g00g10 g00g11 g01g10 g01g11

14 14 g00g01 g2
00 g2

01 g01g00

14 23 g11g10 g2
11 g2

10 g10g11

14 24 g11g01 g11g00 g10g01 g10g00

23 13 g10g00 g10g01 g11g00 g11g01

23 14 g10g11 g2
10 g2

11 g11g10

23 23 g01g00 g2
01 g2

00 g00g01

23 24 g01g11 g01g10 g00g11 g00g10

24 13 g2
10 g10g11 g11g10 g2

11

24 14 g10g01 g10g00 g11g01 g11g00

24 23 g01g10 g01g11 g00g10 g00g11

24 24 g2
01 g01g00 g00g01 g2

00

Example 4.2. Three fully informative markers, A, B, and C are genotyped for a full-
sib family derived from two outbred parents with known diplotypes [111][222] and
[333][444], respectively. Table 4.3 tabulates observations of a total of 64 three-marker
genotypes.

Based on the expected frequency for each cell in terms of the crossover probabilities
(g’s) between the three markers as shown in Table 4.1, we can formulate a likelihood
function to be described by equation (4.21). We can derive the maximum likelihood
estimator of g’s as

ĝ00 =
2(n111 + n222 + n333 + n444) + n1

2n
(4.17)

=
2 × 225 + 147

2 × 400
= 0.7462,

where n1 = n121 +n131 +n211 +n221 +n311 +n331 +n112 +n122 +n212 +n242 +n422 +
n442 +n113 +n133 +n313 +n343 +n433 +n443 +n224 +n244 +n334 +n344 +n424 +n434;



4.2 Fully Informative Markers: A Diplotype Model 85

Table 4.2. Matrices (G00, G01, G10, and G11) for interval-specific crossover events among
three markers A, B, and C under a particular parental diplotype combination as shown by
display (4.14).

Marker C
Marker Marker G00 G01 G10 G11

A B 13 14 23 24 13 14 23 24 13 14 23 24 13 14 23 24

13 13 2 1 1 0 0 1 1 2 0 0 0 0 0 0 0 0
13 14 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0
13 23 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0
13 24 0 0 0 0 0 0 0 0 0 1 1 2 2 1 1 0

14 13 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1
14 14 1 2 0 1 1 0 2 1 0 0 0 0 0 0 0 0
14 23 0 0 0 0 0 0 0 0 1 0 2 1 1 2 0 1
14 24 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0

23 13 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1
23 14 0 0 0 0 0 0 0 0 1 2 0 1 1 0 2 1
23 23 1 0 2 1 1 2 0 1 0 0 0 0 0 0 0 0
23 24 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0

24 13 0 0 0 0 0 0 0 0 2 1 1 0 0 1 1 2
24 14 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 1
24 23 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1
24 24 0 1 1 2 2 1 1 0 0 0 0 0 0 0 0 0

ĝ01 =
2(n441 + n332 + n223 + n114) + n2

2n
(4.18)

=
2 × 5 + 68
2 × 400

= 0.0975,

where n2 = n221 +n241 +n331 +n341 +n421 +n431 +n112 +n132 +n312 +n342 +n432 +
n442 +n113 +n123 +n213 +n243 +n423 +n443 +n124 +n134 +n214 +n224 +n314 +n334;

ĝ10 =
2(n441 + n332 + n223 + n114) + n3

2n
(4.19)

=
2 × 5 + 101

2 × 400
= 0.1388,

where n3 = n211 +n231 +n311 +n321 +n421 +n431 +n122 +n142 +n312 +n342 +n412 +
n422 +n133 +n143 +n213 +n243 +n413 +n433 +n124 +n134 +n234 +n244 +n324 +n344;

ĝ11 =
2(n441 + n332 + n223 + n114) + n4

2n
(4.20)

=
2 + 14
2 × 400

= 0.0175,
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Table 4.3. Observations for three-marker genotypes in a full-sib family derived from display
(4.14).

Marker Marker Marker C

A B 13 14 23 24

13 13 n111 = 49 n112 = 3 n113 = 7 n114 = 1

13 14 n121 = 2 n122 = 6 n123 = 0 n124 = 1

13 23 n131 = 1 n132 = 1 n133 = 15 n134 = 1

13 24 n141 = 0 n142 = 1 n143 = 0 n144 = 3

14 13 n211 = 17 n212 = 2 n213 = 3 n214 = 0

14 14 n221 = 6 n222 = 64 n223 = 4 n224 = 9

14 23 n231 = 0 n232 = 0 n233 = 0 n234 = 0

14 24 n241 = 0 n242 = 0 n243 = 2 n244 = 11

23 13 n311 = 13 n312 = 1 n313 = 0 n314 = 1

23 14 n321 = 1 n322 = 1 n323 = 0 n324 = 0

23 23 n331 = 11 n332 = 0 n333 = 53 n334 = 5

23 24 n341 = 0 n342 = 2 n343 = 1 n344 = 11

24 13 n411 = 1 n412 = 0 n413 = 1 n414 = 0

24 14 n421 = 2 n422 = 4 n423 = 0 n424 = 1

24 23 n431 = 1 n432 = 0 n433 = 8 n434 = 2

24 24 n441 = 0 n442 = 6 n443 = 6 n444 = 59

where n4 = n121 +n131 +n231 +n241 +n321 +n341 +n132 +n142 +n212 +n242 +n412 +
n432 +n123 +n143 +n313 +n343 +n413 +n423 +n214 +n234 +n314 +n324 +n424 +n434.
The recombination fractions are then estimated as

r̂AB = 0.1563, r̂BC = 0.1150, r̂AC = 0.2363.

Since the estimates of g’s for three fully informative markers can be obtained with
only one step, the iterative EM algorithm is not needed. With equations (4.22) and
(4.23) below, we derive a general EM framework for estimating the linkage between
any types of markers, including partially informative ones.

4.2.4 A More General Formulation

As in a two-point analysis, the likelihood of the crossover probability, g = (g00,
g01, g10, g11), given the three-marker data under the parental diplotype combination
of equation (4.14) is expressed as

L(g|(n) =
n∏

i=1

(mT
ij1 ⊗ mT

ij2)(I
T
p1

⊗ IT
p2

)(HIp3)mij3 ,(4.21)



4.2 Fully Informative Markers: A Diplotype Model 87

where j1, j2, j3 = 1 for 13, 2 for 14, 3 for 23, and 4 for 34 stand for genotypes at
markers A, B, and C, respectively, ⊗ denotes the Kronecker product, and the vectors
and matrices are as defined for the two-point analysis. Table 4.1 tabulates the joint
three-marker genotype probability matrix, H = (Hj1j2j3)16×4, while Table 4.2 lists
the matrices for the numbers of crossovers (G00, G01, G10, and G11) on two intervals
A-B and B-C under the parental diplotype combination of display (4.14).

The EM algorithm is used to obtain the MLEs of the crossover probabilities (and
therefore the recombination fractions) between the three markers. The general equa-
tions formulating the iteration of the (τ + 1)th EM step are given as follows

E Step: Calculate the expected number of interval-specific crossovers associ-
ated with G00 = (G00

j1j2j3
)16×4, G01 = (G01

j1j2j3
)16×4, G10 = (G10

j1j2j3
)16×4, and

G11 = (G11
j1j2j3

)16×4, respectively, for offspring i under a given parental diplotype
combination:

G00(τ+1)
ij1j2j3

=
[mT

ij1
⊗ mT

ij2
][IT

b1
⊗ IT

b2
][(G(τ)

00 ◦ H(τ))Ib3 ]mij3

[mT
ij1

⊗ mT
ij2

][IT
b1

⊗ IT
b2

](H(τ)Ib3)mij3

,

G01(τ+1)
ij1j2j3

=
[mT

ij1
⊗ mT

ij2
][IT

b1
⊗ IT

b2
][(G(τ)

01 ◦ H(τ))Ib3 ]mij3

[mT
ij1

⊗ mT
ij2

][IT
b1

⊗ IT
b2

](H(τ)Ib3)mij3

,

G10(τ+1)
ij1j2j3

=
[mT

ij1
⊗ mT

ij2
][IT

b1
⊗ IT

b2
][(G(τ)

10 ◦ H(τ))Ib3 ]mij3

[mT
ij1

⊗ mT
ij2

][IT
b1

⊗ IT
b2

](H(τ)Ib3)mij3

,

G11(τ+1)
ij1j2j3

=
[mT

ij1
⊗ mT

ij2
][IT

b1
⊗ IT

b2
][(G11 ◦ H(τ))Ib3 ]mij3

[mT
ij1

⊗ mT
ij2

][IT
b1

⊗ IT
b2

](H(τ)Ib3)mij3

.(4.22)

M Step: Calculate the probabilities of interval-specific crossovers g00, g01, g10,
and g11 using

g
(τ+1)
00 =

1
2n

n∑

i=1

b1∑

j1=1

b2∑

j2=1

b3∑

j3=1

G00(τ+1)
ij1j2j3

,

g
(τ+1)
01 =

1
2n

n∑

i=1

b1∑

j1=1

b2∑

j2=1

b3∑

j3=1

G01(τ+1)
ij1j2j3

,

g
(τ+1)
10 =

1
2n

n∑

i=1

b1∑

j1=1

b2∑

j2=1

b3∑

j3=1

G10(τ+1)
ij1j2j3

,

g
(τ+1)
11 =

1
2n

n∑

i=1

b1∑

j1=1

b2∑

j2=1

b3∑

j3=1

G11(τ+1)
ij1j2j3

.

(4.23)

The E and M steps are repeated among equations (4.22) and (4.23) until these
probabilities converge to stable values. The MLEs of the g’s can be transformed to
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give the MLEs of recombination fractions rAB, rBC, and rAC because the MLEs
are invariant under parameter transformation. Because all possible recombination
fractions among the three markers are estimated, the three-point analysis provides
important information about marker ordering. For example, if either rAB or rBC es-
timated under assumed marker order A-B-C is greater than rAC, then the assumed
order is likely to be wrong based on Theorem 3.1. When every three adjacent markers
from a linkage group are subject to the three-point analysis and the marker order-
ing has been confirmed, we can obtain two different estimates of the recombination
fraction for the same marker interval (except for the intervals at the two ends of a
linkage group). The best way to combine these estimates is to take a weighted mean,
with the weights being the reciprocals of the variances of the two separate estimates
(Ridout et al. 1998).

The most likely parental diplotype combination is determined among three mark-
ers by choosing the maximum of the likelihood values under all possible diplotype
combinations. Only under the most likelydiplotype combination are the MLEs of the
recombination fractions optimal.

4.3 Fully Informative Markers: A Genotype Model

In Section 4.2, we presented a general procedure for linkage analysis of fully infor-
mative markers in a full-sib family derived from two phased parents. Since the two
crossed parents are assumed to have known diplotypes, the patterns of marker coseg-
regation in their offspring can be predicted. In practice, parental diplotypes cannot be
directly observed. Rather, only genotypes can be observed, so that statistical models
need to be developed for estimating the linkage based on observable genotypes. One
approach for linkage analysis of genotypic data is to calculate the likelihood values
under all possible parental diplotypes and estimate the recombination fractions under
a most likely diplotype combination. In this section, a joint model that incorporates
the probabilities of parental diplotypes is introduced.

4.3.1 Parental Diplotypes

Consider two ordered markers A-B. Each parent, P or Q, has two different diplotypes
between the two markers. Thus, when the two parents are crossed, there are four
diplotype combinations (Φ), expressed as
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P × Q

Φ11 =
A 1 2

B 1 2
×

3 4

3 4

Φ12 =
A 1 2

B 1 2
×

3 4

4 3

Φ21 =
A 1 2

B 2 1
×

3 4

3 4

Φ22 =
A 1 2

B 2 1
×

3 4

4 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,(4.24)

where the first (ξ) and second subscripts (ζ) of Φ denote two possible diplotypes
of parent P and Q, respectively. Each of these diplotype combinations generates a
different pattern of marker co-segregation, expressed in matrix notation with the
recombination fraction r, as

B 13 14 23 24

H11 = A

13

14

23

24

⎡

⎢⎢⎢⎢⎢⎢⎣

(1−r)2

4
r(1−r)

4
r(1−r)

4
r2

4

r(1−r)
4

(1−r)2

4
r2

4
r(1−r)

4

r(1−r)
4

r2

4
(1−r)2

4
r(1−r)

4

r2

4
r(1−r)

4
r(1−r)

4
(1−r)2

4

⎤

⎥⎥⎥⎥⎥⎥⎦
,

H12 = A

13

14

23

24

⎡

⎢⎢⎢⎢⎢⎢⎣

r(1−r)
4

(1−r)2

4
r2

4
r(1−r)

4

(1−r)2

4
r(1−r)

4
r(1−r)

4
r2

4

r2

4
r(1−r)

4
r(1−r)

4
(1−r)2

4

r(1−r)
4

r2

4
(1−r)2

4
r(1−r)

4

⎤

⎥⎥⎥⎥⎥⎥⎦
,

H21 = A

13

14

23

24

⎡

⎢⎢⎢⎢⎢⎣

r(1−r)
4

r2

4
r2

4
r(1−r)

4

r2

4
r(1−r)

4
r(1−r)

4
r2

4

(1−r)2

4
r(1−r)

4
r(1−r)

4
(1−r)2

4

r(1−r)
4

(1−r)2

4
(1−r)2

4
r(1−r)

4

⎤

⎥⎥⎥⎥⎥⎦
,

(4.25)
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B 13 14 23 24

H22 = A

13

14

23

24

⎡

⎢⎢⎢⎢⎢⎢⎣

r2

4
r(1−r)

4
r(1−r)

4
(1−r)2

4

r(1−r)
4

r2

4
(1−r)2

4
r(1−r)

4

r(1−r)
4

(1−r)2

4
r2

4
r(1−r)

4

(1−r)2

4
r(1−r)

4
r(1−r)

4
r2

4

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The expected number of recombination events (i.e., the number of r) occurring
between the two markers under different diplotype combinations can also be expressed
in matrix notation, as

B 13 14 23 24

D11 = A

13
14
23
24

⎡

⎢⎢⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤

⎥⎥⎦ ,

D12 = A

13
14
23
24

⎡

⎢⎢⎣

1 0 2 1
0 1 1 2
2 1 1 0
1 2 0 1

⎤

⎥⎥⎦ ,

D21 = A

13
14
23
24

⎡

⎢⎢⎣

1 2 0 1
2 1 1 0
0 1 1 2
1 0 2 1

⎤

⎥⎥⎦ ,

D22 = A

13
14
23
24

⎡

⎢⎢⎣

2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

⎤

⎥⎥⎦ .

The two markers are genotyped for the full-sib family with observations n =
(nj1j2)4×4 described by matrix (4.4). Thus, the likelihoods for the four diplotype
combinations are expressed as

L11(r|n) ∝ r(2n2+n3+n4)(1 − r)(2n1+n3+n4),

L12(r|n) ∝ r(2n4+n1+n2)(1 − r)(2n3+n1+n2),

L21(r|n) ∝ r(2n3+n1+n2)(1 − r)(2n4+n1+n2),

L22(r|n) ∝ r(2n1+n3+n4)(1 − r)(2n2+n3+n4)

,(4.26)

with n1, n2, n3, and n4 defined by equation (4.5).
It can be seen that the MLE of r under diplotype combination Φ11 is equal to one

minus the MLE of r under Φ22, and the same relation holds between Φ12 and Φ21.
Although there are identical plug-in likelihood values between Φ11 and Φ22 as well
as between Φ12 and Φ21, one can still choose an appropriate MLE of r within each of
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these two pairs because one of a pair of the r MLEs is greater than 0.5. Traditional
approaches for estimating the linkage and parental diplotypes are to estimate the
recombination fractions and likelihood values under each of the four combinations
and choose one legitimate estimate of r with a higher likelihood.

Example 4.3. Assume a full-sib family derived from two outbred parents. The two-
marker genotypes for these two parents are 12/12 and 34/34, but we do not know
about their diplotypes. Two fully informative markers A and B are genotyped for
each full-sib, with observations of a total of 16 two-marker genotypes as follows:

13 14 23 24

n =

13
14
23
24

⎡

⎢⎢⎣

n11 = 3 n12 = 18 n13 = 2 n14 = 4
n21 = 21 n22 = 5 n23 = 4 n24 = 0
n31 = 1 n32 = 2 n33 = 6 n34 = 13
n41 = 4 n42 = 1 n43 = 13 n44 = 3

⎤

⎥⎥⎦ .

We have n1 = n11 + n22 + n33 + n44 = 17, n2 = n14 + n23 + n32 + n41 = 14,
n3 = n12 + n21 + n34 + n43 = 65, and n4 = n13 + n31 + n24 + n42 = 4. For the MLEs
of r, we have

r̂ = 0.4850 under Φ11, L11 = −138.5394,

r̂ = 0.1950 under Φ12, L12 = − 98.6785,

r̂ = 0.8050 under Φ21, L21 = − 98.6785,

r̂ = 0.5150 under Φ22, L22 = −138.5394.

The correct parental diplotypes are Φ12; i.e. [12][12] for parent P and [34][43] for
parent Q.

as in equation (4.11), we write the likelihood in matrix notation with the consideration
of a parental diplotype combination Φξζ ; i.e.,

Lξζ(r|n) =
n∏

i=1

mT
ij1(I

T
p1

HξζIp2)mij2

=
n∏

i=1

mT
ij1Pξζmij2 .(4.27)

The EM algorithm has been developed to estimate the crossover probabilities and
recombination fractions based on equations (4.22) and (4.23).

4.4 Joint modeling of the Linkage, Parental Diplotype,
and Gene Order

For any two fully informative markers, their segregation pattern in a full-sib family
is determined by the diplotypes of the two outbred parents. Thus, the linkage be-
tween these two markers resulting from their cosegregating pattern can be correctly
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estimated when a true parental diplotype combination is determined. The models pre-
sented in Section 4.3 allow for the simultaneous estimation of the linkage and parental
diplotypes. However, when the number of markers studied is three or greater, a joint
model of the linkage and parental diplotype is not sufficient because different gene or-
ders may also blur our inference and estimation of the linkage. In this section, a model
that incorporates the linkage, parental diplotype, and gene order will be introduced.

Consider three markers in a linkage group that have three possible orders A-B-
C, A-C-B, and B-A-C. Let o1, o2, and o3 be the corresponding probabilities of
occurrence of these orders in the parental genome. Without loss of generality, for a
given order, the allelic arrangement of the first marker between the two homologous
chromosomes can be fixed for a parent. Thus, the change of the allelic arrangements
at the two other markers will lead to 2 × 2 = 4 parental diplotypes. The three-
marker genotype (12/12/12) of parent P may have four possible diplotypes, [111][222],
[112][221], [121][212], and [122][211]. Relative to the fixed allelic arrangement [1··][2··]
of the first marker, the probabilities of allelic arrangements [·1·][·2·] and [·2·][·1·] for
the second marker are denoted as p1 and 1 − p1 and those of allelic arrangements
[··1][··2] and [··2][··1] for the third marker are denoted as p2 and 1 − p2, respectively.
Assuming that allelic arrangements are independent between the second and third
markers, the probabilities of these four three-marker diplotypes can be described by
p1p2, p1(1− p2), (1− p1)p2, and (1− p1)(1− p2), respectively. The four diplotypes of
parent Q can also be constructed, whose probabilities are defined as q1q2, q1(1− q2),
(1 − q1)q2, and (1 − q1)(1 − q2), respectively. Thus, there are 4 × 4 = 16 possible
diplotype combinations (whose probabilities are the product of the corresponding
diplotype probabilities) when parents P and Q are crossed.

Let rAB denote the recombination fraction between markers A and B, with rBC

and rAC defined similarly. Let G00, G01, G10, and G11 denote no crossover between
markers A and B and between markers B and C, only one crossover in the second
interval, only one crossover in the first interval, and one in each interval, respectively.
As previously shown, the probabilities of these events, denoted by g00, g01, g10, and
g11, respectively, can be used to define the three recombination fractions.

Table 4.1 describes a (16×4)–matrix for three-marker genotype frequencies under
a particular parental diplotype combination [111][222] × [333][444] and gene order
A-B-C. For any order (Ok), there are 16 diplotype combinations and therefore 16
such matrices, denoted by Hxk

1xk
2yk

1 yk
2
, where xk

1 = 1 for [11·][22·] or 2 for [12·][21·]
denotes the two alternative allelic arrangements of marker B in parent P, xk

2 = 1 for
[1·1][2·2] or 2 for [1·2][2·1] denotes the two alternative allelic arrangements of marker
C in parent P, and yk

1 , yk
2 = 1 or 2 have similar means for parent Q. According to

Ridout et al. (1998) and Wu et al. (2002b), elements in Hxk
1xk

2yk
1 yk

2
are expressed in

terms of g00, g01, g10, and g11 (Table 4.1). Similarly, there are 16 (16×4)–matrices for
the expected number of crossovers that have occurred for G00, G01, G10, and G11 for
a given marker order, denoted by G00

xk
1xk

2yk
1 yk

2
, G01

xk
1xk

2yk
1 yk

2
, G10

xk
1xk

2yk
1 yk

2
, and G11

xk
1xk

2yk
1 yk

2
,

respectively (see Table 4.2).
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The joint genotype frequencies of the three markers can be viewed as a mixture
of 16 diplotype combinations and three orders, weighted by their probabilities of
occurring, and expressed as

H =
3∑

k=1

ok

2∑

xk
1=1

2∑

xk
2=1

2∑

yk
1=1

2∑

yk
2=1

p
2−xk

1
1 (1 − p1)xk

1−1p
2−xk

2
2 (1 − p2)xk

2−1

q
2−yk

1
1 (1 − q1)yk

1−1q
2−yk

2
2 (1 − q2)yk

2−1Hxk
1xk

2yk
1 yk

2
.(4.28)

Similarly, the expected number of recombination events contained within a
progeny genotype is the mixture of the different diplotype and order combinations,
expressed as

G00 =
3∑

k=1

ok

2∑

xk
1=1

2∑

xk
2=1

2∑

yk
1=1

2∑

yk
2=1

p
2−xk

1
1 (1 − p1)xk

1−1p
2−xk

2
2 (1 − p2)xk

2−1

q
2−yk

1
1 (1 − q1)yk

1−1q
2−yk

2
2 (1 − q2)yk

2−1G00
xk
1xk

2yk
1 yk

2
,

G01 =
3∑

k=1

ok

2∑

xk
1=1

2∑

xk
2=1

2∑

yk
1=1

2∑

yk
2=1

p
2−xk

1
1 (1 − p1)xk

1−1p
2−xk

2
2 (1 − p2)xk

2−1

q
2−yk

1
1 (1 − q1)yk

1−1q
2−yk

2
2 (1 − q2)yk

2−1G01
xk
1xk

2yk
1 yk

2
,

G10 =
3∑

k=1

ok

2∑

xk
1=1

2∑

xk
2=1

2∑

yk
1=1

2∑

yk
2=1

p
2−xk

1
1 (1 − p1)xk

1−1p
2−xk

2
2 (1 − p2)xk

2−1

q
2−yk

1
1 (1 − q1)yk

1−1q
2−yk

2
2 (1 − q2)yk

2−1G10
xk
1xk

2yk
1 yk

2
,

G11 =
3∑

k=1

ok

2∑

xk
1=1

2∑

xk
2=1

2∑

yk
1=1

2∑

yk
2=1

p
2−xk

1
1 (1 − p1)xk

1−1p
2−xk

2
2 (1 − p2)xk

2−1

q
2−yk

1
1 (1 − q1)yk

1−1q
2−yk

2
2 (1 − q2)yk

2−1G11
xk
1xk

2yk
1 yk

2
.

(4.29)

Also define the matrices

P1 =
∑3

k=1 ok

∑2
xk
2=1

∑2
yk
1=1

∑2
yk
2=1 p1p

2−xk
2

2 (1 − p2)xk
2−1

q
2−yk

1
1 (1 − q1)yk

1−1q
2−yk

2
2 (1 − q2)yk

2−1Hxk
1xk

2yk
1 yk

2
,

P2 =
∑3

k=1 ok

∑2
xk
1=1

∑2
yk
1=1

∑2
yk
2=1 p

2−xk
2

1 (1 − p1)xk
2−1p2

q
2−yk

1
1 (1 − q1)yk

1−1q
2−yk

2
2 (1 − q2)yk

2−1Hxk
1xk

2yk
1 yk

2

(4.30)
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Q1 =
∑3

k=1 ok

∑2
xk
1=1

∑2
xk
2=1

∑2
yk
2=1 p

2−xk
1

1 (1 − p1)xk
1−1p

2−xk
2

2 (1 − p2)xk
2−1

q1q
2−yk

2
2 (1 − q2)yk

2−1Hxk
1xk

2yk
1 yk

2
,

Q2 =
∑3

k=1 ok

∑2
xk
1=1

∑2
xk
2=1

∑2
yk
1=1 p

2−xk
1

1 (1 − p1)xk
1−1p

2−xk
2

2 (1 − p2)xk
2−1

q
2−yk

1
1 (1 − q1)yk

1−1q2Hxk
1xk

2yk
1 yk

2
.

(4.31)

The probabilities of occurrence of the three marker orders are the mixture of all
diplotype combinations, expressed in matrix notation as

O1 = o1

2∑

x1
1=1

2∑

x1
2=1

2∑

y1
1=1

2∑

y1
2=1

p
2−x1

1
1 (1 − p1)x1

1−1p
2−x1

2
2 (1 − p2)x1

2−1

q
2−y1

1
1 (1 − q1)y1

1−1q
2−y1

2
2 (1 − q2)y1

2−1Hx1
1x1

2y1
1y1

2
,

O2 = o2

2∑

x2
1=1

2∑

x2
2=1

2∑

y2
1=1

2∑

y2
2=1

p
2−x2

1
1 (1 − p1)x2

1−1p
2−x2

2
2 (1 − p2)x2

2−1

q
2−y2

1
1 (1 − q1)y2

1−1q
2−y2

2
2 (1 − q2)y2

2−1Hx2
1x2

2y2
1y2

2
,

O3 = o3

2∑

x3
1=1

2∑

x3
2=1

2∑

y3
1=1

2∑

y3
2=1

p
2−x3

1
1 (1 − p1)x3

1−1p
2−x3

2
2 (1 − p2)x3

2−1

q
2−y3

1
1 (1 − q1)y3

1−1q
2−y3

2
2 (1 − q2)y3

2−1Hx3
1x3

2y3
1y3

2
.

(4.32)

We implement the EM algorithm to estimate the MLEs of the recombination
fractions among the three markers. The general equations formulating the iteration
of the (τ + 1)th EM step are given as follows:

E Step: As step τ , calculate the expected number of recombination events
for individual i associated with G00 = (G00

j1j2j3
)16×4, G01 = (G01

j1j2j3
)16×4, G10 =

(G10
j1j2j3

)16×4, and G11 = (G11
j1j2j3

)16×4 for the (j1j2j3)th progeny genotype (where
j1, j2, and j3 denote the progeny genotypes of the three individual markers, respec-
tively) using formulas that have the same forms as equations (4.22), whose H and
G’s are now defined by equations (4.28) and (4.29), respectively. Note that matrices
H and G’s of equations (4.28) and (4.29) are also determined by p1, p2, q1, q2, and k
(k = 1, 2, 3).

M Step: Calculate g
(τ+1)
00 , g

(τ+1)
01 , g

(τ+1)
10 , and g

(τ+1)
11 using the equations that have

the same forms as equations (4.23). But here we also need to update p
(τ+1)
1 , p

(τ+1)
2 ,

q
(τ+1)
1 , q

(τ+1)
2 , and o

(τ+1)
k using

p
(τ+1)
1 =

1
n

4∑

j1=1

4∑

j2=1

4∑

j3=1

p
(τ)
1j1j2j3

h
(τ)
j1j2j3

nj1j2j3 ,
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p
(τ+1)
2 =

1
n

4∑

j1=1

4∑

j2=1

4∑

j3=1

p
(τ)
2j1j2j3

h
(τ)
j1j2j3

nj1j2j3 ,

q
(τ+1)
1 =

1
n

4∑

j1=1

4∑

j2=1

4∑

j3=1

q
(τ)
1j1j2j3

h
(τ)
j1j2j3

nj1j2j3 ,

q
(τ+1)
2 =

1
n

4∑

j1=1

4∑

j2=1

4∑

j3=1

q
(τ)
2j1j2j3

h
(τ)
j1j2j3

nj1j2j3 ,

o
(τ+1)
k =

1
n

4∑

j1=1

4∑

j2=1

4∑

j3=1

o
(τ)
kj1j2j3

h
(τ)
j1j2j3

nj1j2j3 ,

where nj1j2j3 denotes the number of progeny with a particular three-marker genotype,
hj1j2j3 , p1j1j2j3 , p2j1j2j3 , q1j1j2j3 , and q2j1j2j3 are the (j1j2j3)th element of matrices
H, P1, P2, Q1, and Q2, respectively.

The E and M steps are repeated until g00, g01, g10, and g11 converge to values
with satisfactory precision. From the MLEs of the g’s, the MLEs of recombination
fractions rAB, rAC, and rBC can be obtained according to the invariance property of
the MLEs.

Example 4.4. (Jointly modeling the Linkage, Parental Diplotype and Gene
Order). Yin et al. (2004) reported a high-density linkage map constructed with mi-
crosatellite and AFLP markers for a backcross, (T × D) × D, between two poplar
species, Populus trichocarpa (T) and P. deltoides (D). Unlike general inbred lines, the
poplar parents used for the crosses are heterozygous. Thus, this backcross is analogous
to a full-sib family with one parent being the F1 parent and the other being the D
parent. We choose three testcross markers, CA/CGA-580RD (A), AM11-1060 (B),
and A7-690 (C), that are heterozygous (12) in the F1 but homozygous (22) in the D
parent. We do not know exactly the diplotype at these three markers for the F1 parent
and their order. The model described in Section 4.4 will be used to simultaneously
estimate the linkage, parental diplotype, and gene order. The observations of these
three markers are given below:

Marker C

Marker A Marker B 12 22

12 12 33 1

12 22 4 7

22 12 3 4

22 22 0 21

Let p1, 1 − p1, and p2 and 1 − p2 be the probabilities of four possible diplotypes of
parent D, [111][222], [121][212], and [111][222] and [112][221], respectively, and o1,
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o2, and o3 be the probabilities of three possible gene orders for these three markers,
A, B, and C, respectively. Using g00, g01, g10, and g11 to denote the probabilities of
the number of interval-specific crossovers, we derive one (4 × 2)–H matrix based on
equation (4.28), two (4 × 2)–P matrices based on equations (4.30), and three (4 ×
2)–O matrices based on equation (4.32). Meanwhile, four (4 × 2)–G matrices based
on equation (4.29) are derived.

With the EM algorithm described above, the MLEs of the unknown parameters
are obtained as ĝ00 = 0.5621, ĝ01 = 0.1924, ĝ10 = 0.0925, ĝ11 = 0.1507 and p̂1 = 0.9,
p̂2 = 0.8, ô1 = 0, ô2 = 0.9989, and ô3 = 0.0011. The diplotype of parent D for the
three markers in order A-C-B is constructed by

CA/CGA-580RD (A) 1 2

A7-690 (C) 1 2

AM11-1060 (B) 2 1

The estimated g values are further used to estimate the MLEs of recombination
fractions; i.e., r̂AB = 0.35, r̂BC = 0.28, and r̂AC = 0.24.

4.5 Partially Informative Markers

In Section 4.2.1, we defined a (4×4)–H matrix for joint genotype frequencies between
two fully informative markers. For a fully informative marker, there is 1:1 correspon-
dence between the genotype and phenotype. Many practically useful markers are
partially informative, as shown in Table 3.1, for which there is no such 1:1 correspon-
dence. The general models described above can be modified to estimate the linkage
and parental diplotypes for partially informative markers.

4.5.1 Joint modeling of the Linkage and Parental Diplotype

Unlike in a fully informative marker, four possible modes of genotype formation for
marker cross type 12 × 12 will yield three “phenotypes” because genotype formations
12 and 21 are phenotypically identical. For this reason, the (4 × 4)–H matrix for
the frequencies of genotype formation at two markers will be collapsed into one with
lower dimensions for the frequencies of marker phenotypes. Wu et al. (2002b) designed
specific incidence matrices (I) relating the genotype frequencies to the phenotype
frequencies for different types of markers. (The incidence matrix (I) here is defined
as the matrix that relates the marker genotype to marker phenotype for a type of
partially informative marker.) Here, we use the notation H′ = IT

b1
HIb2 for a (b1 ×

b2) matrix of the phenotype frequencies between two partially informative markers,
where b1 and b2 are the number of distinguishable phenotypes for markers A and B,
respectively. Correspondingly, we have
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(DH)′ = IT
b1(D ◦ H)Ib2 ,

P′ = IT
b1PIb2 ,

Q′ = IT
b1QIb2 ,

where we recall that the notation ◦ means componentwise products between the two
matrices.

The EM algorithm can then be developed to estimate the recombination fraction
between any two partial informative markers.

E Step: At step τ , based on the matrix (DH)′ derived from the current estimate
r(τ), calculate the expected number of recombination events between the two markers
for a given progeny genotype,

D
(τ+1)
j1j2

=
(dh)′(τ)

j1j2

h
′(τ)
j1j2

nj1j2 ,(4.33)

where (dh)′j1j2
and h′

j1j2
are the (j1j2)th element of matrices (DH)′ and H′, respec-

tively.
M Step: Calculate r(τ+1), p(τ+1), and q(τ+1) using

r(τ+1) =
1
2n

b1∑

j1=1

b2∑

j2=1

D
(τ+1)
j1j2

,

p(τ+1) =
1
n

b1∑

j1=1

b2∑

j2=1

p
′(τ)
j1j2

h
′(τ)
j1j2

nj1j2 ,(4.34)

q(τ+1) =
1
n

b1∑

j1=1

b2∑

j2=1

q
′(τ)
j1j2

h
′(τ)
j1j2

nj1j2 ,

where p′j1j2
and q′j1j2

are the (j1j2)th element of matrices P′ and Q′, respectively.
In each step, matrices (DH)′ and H′ are updated by newly estimated r, p, and

q. The E and M steps between equations (4.33) and (4.34) are repeated until the
estimate converges to a stable value.

Example 4.5. (Jointly modeling the Linkage and Parental Diplotype). We
use an example for three dominant markers to demonstrate our unifying model for
simultaneous estimation of the linkage and parental diplotype. A cross was made
between two triple heterozygotes with genotype ao/bo/co for markers A, B, and C.
Because these three markers are dominant, the cross generates 8 (rather than 27)
distinguishable genotypes, with observations
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Marker C

Marker A Marker B c oo

a b 28 4

a oo 12 3

oo b 1 8

oo oo 2 2

We first use two-point analysis to estimate the recombination fractions and
parental diplotypes between all possible pairs of the three markers. For a dominant
marker cross type a|o| × a|o| and a|o| × o|a|, the incidence matrix is defined as

I2 =
[

1 1 1 0
0 0 0 1

]
or

[
1 1 0 1
0 0 1 0

]
,

respectively. With the corresponding incidence matrices implemented to collapse the
H matrix, we use the EM algorithm to estimate the recombination fraction between
markers A and B as rAB = 0.376, whose estimated parental diplotypes are [ao][ob]×
[ab][oo] or [ab][oo]× [ao][ob]. Similarly, the two other recombination fractions and the
corresponding parental diplotypes are estimated as rBC = 0.386, [bo][oc] × [bc][oo] or
[bc][oo]× [bo][oc] and rAC = 0.184, [ac][oo]× [ac][oo]. From the two-point analysis, one
of the two parents have dominant alleles from markers A and B, that are repulsed
with the dominant alleles from marker C.

4.5.2 Joint modeling of the Linkage, Parental Diplotype,
and Gene Order

Consider three partially informative markers with the number of distinguishable phe-
notypes denoted by b1, b2, and b3, respectively. Define H′ = (IT

b1
⊗ IT

b2
)HIb3 as a

(b1b2×b3) matrix of genotype frequencies for three partially informative markers. Sim-
ilarly, we define (HD00)′ = (IT

b1
⊗IT

b2
)(D00 ◦H)Ib3 , (HD01)′ = (IT

b1
⊗IT

b2
)(D01 ◦H)Ib3 ,

(HD10)′ = (IT
b1

⊗ IT
b2

)(D10 ◦ H)Ib3 , (HD11)′ = (IT
b1

⊗ IT
b2

)(D11 ◦ H)Ib3 , P′
1 =

(IT
b1
⊗IT

b2
)P1Ib3 , P′

2 = (IT
b1
⊗IT

b2
)P2Ib3 , Q′

1 = (IT
b1
⊗IT

b2
)Q1Ib3 , Q′

2 = (IT
b1
⊗IT

b2
)Q2Ib3 ,

O′
1 = (IT

b1
⊗ IT

b2
)O1Ib3 , O′

2 = (IT
b1

⊗ IT
b2

)O2Ib3 , and O′
3 = (IT

b1
⊗ IT

b2
)O3Ib3 .

Using the procedure described in Section 4.3, we implement the EM algorithm to
estimate the MLEs of the recombination fractions among the three partially informa-
tive markers as well as their parental diplotype combinations and gene orders.
Example 4.6. Revisit Example 4.5. We use a three-point analysis that combines
parental diplotypes and gene orders to estimate the linkage between these three domi-
nant markers. The estimated gene order is B-A-C. The estimated parental diplotypes
are
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B b o

A a o

C c o

×
b o

o a

o c

and

B b o

A o a

C o c

×
b o

a o

c o

.

The MLEs of the recombination fractions are r̂BA = 0.309, r̂AC = 0.184, and r̂BC =
0.379.

4.6 Exercises

4.1 Fully informative markers
Suppose there is a full-sib family derived from two outbred parents with diplotypes
[11][22] and [33][44], respectively, for two fully informative markers A and B. The ob-
servations for each of 16 two-marker genotypes are given as

13 14 23 24

13 n11 = 70 n12 = 13 n13 = 9 n14 = 2

14 n21 = 9 n22 = 82 n23 = 2 n24 = 13

23 n31 = 14 n32 = 4 n33 = 75 n34 = 15

24 n41 = 4 n42 = 13 n43 = 9 n44 = 66

with nj1j2 denoting the number of progeny in a cell.

(a) Write down the H matrix for the genotype frequencies in terms of the recombination
fraction r between two markers.

(b) Derive and estimate the MLE of r.
(b) Test whether the linkage is significant.

4.2 One F2 codominant marker
One of the two markers (say B) is summed to the same allele system between the two
parents above. Such markers are called F2 codominant markers. The diplotypes of two
parents are [11][22] and [31][42]. In this cross, the genotype formations with the same
phenotype will be pooled together, with observations as follows:

11 12 22

13 n11 = 70 n12 + n13 = 22 n14 = 2

14 n21 = 9 n22 + n23 = 84 n24 = 13

23 n31 = 14 n32 + n33 = 79 n34 = 15

24 n41 = 4 n42 + n43 = 22 n44 = 66

(a) Write down the H matrix for the genotype frequencies in terms of the recombination
fraction r between two markers.

(b) Show how the EM algorithm can be used to estimate r.
(c) Estimate r using the program for the EM algorithm.
(d) Test if these two markers are linked.



100 4 A General Model for Linkage Analysis in Controlled Crosses

Hints: In this situation, the H and D matrices, respectively, are collapsed as

11 12 22

H11 =

13
14
23
24

⎡

⎢⎢⎢⎣

(1−r)2

4
r(1−r)

4
+ r(1−r)

4
r2

4
r(1−r)

4
(1−r)2

4
+ r2

4
r(1−r)

4
r(1−r)

4
r2

4
+ (1−r)2

4
r(1−r)

4
r2

4
r(1−r)

4
+ r(1−r)

4
(1−r)2

4

⎤

⎥⎥⎥⎦
,

11 12 22

D =

13
14
23
24

⎡

⎢⎣

0 1 2
1 2φ 1
1 2φ 1
2 1 0

⎤

⎥⎦ ,

where φ = r2

(1−r)2+r2 . From here, you should figure out the MLE of r and indicate the

step for the EM algorithm.
4.3 Two F2 codominant markers

Do the same things as Problem 4.2 if both markers are F2 codominant markers.

4.6.1 One dominant marker

If one of the two markers above (say B) is dominant, the observations will be further
collapsed as follows:

10 00

13 n11 + n12 + n13 = 92 n14 = 2

14 n21 + n22 + n23 = 93 n24 = 13

23 n31 + n32 + n33 = 93 n34 = 15

24 n41 + n42 + n43 = 26 n44 = 66

Do the same problems as Exercise 4.2.

4.6.2 One dominant marker and one F2 codominant marker

If one of the above two markers (B) is dominant and the other (A) is F2–codominant,
the observations will be further collapsed as follows:

10 00

11 n11 + n12 + n13 = 92 n14 = 2

12 n21 + n22 + n23 + n31 + n32 + n33 = 186 n24 + n34 = 28

22 n41 + n42 + n43 = 26 n44 = 66
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Do the same problems as Exercise 4.2.
4.4 Two dominant markers

If both markers are dominant, we have

10 00

10 n11 + n12 + n13 + n21 + n22 n14 + n24 + n34 = 30

+n23 + n31 + n32 + n33 = 278

00 n41 + n42 + n43 = 26 n44 = 66

Do the same as Exercise 4.2.

4.7 Notes

We have introduced a general framework for linkage analysis of any type of markers.
For outcrossing species, the diplotypes among different markers are unknown for the
parents used for the cross. We have also described joint models that incorporate the
linkage, parental diplotype, and gene order. Lu et al. (2004) performed extensive
simulation studies to demonstrate the advantages of joint modeling. In this section,
we attempt to summarize the main results from Lu et al.’s (2004) studies.

4.7.1 Linkage Analysis

Suppose there are five markers of a known order, M1–M2–M3–M4–M5, on a chro-
mosome. These five markers are segregating differently in order, 1:1:1:1, 1:2:1, 3:1,
1:1, and 1:1:1:1. Two parents, with diplotypes for the five markers given in Table 4.4,
are crossed to generate a segregating full-sib family. This full-sib family is simulated
with different degrees of linkage (r = 0.05 vs. 0.20).

As expected, more informative markers or more tightly linked markers display a
greater estimation precision of linkage than less informative markers or less tightly
linked markers (Table 4.4). Joint models for two-point analysis can provide an excel-
lent estimation of the parental diplotype. For example, the MLE of the probability
(p or q) of the parental diplotype is close to 1 or 0 (Table 4.4), suggesting that we
can always accurately estimate parental diplotypes. But for two symmetrical markers
(e.g., markers M2 and M3 in this example), two sets of MLEs, p̂ = 1, q̂ = 0 and p̂ = 0,
q̂ = 1, give an identical likelihood ratio test statistic. Thus, two-point analysis cannot
specify parental diplotypes for symmetrical markers even when the two parents have
different diplotypes.

The estimation precision of linkage can be increased when a three-point analysis
is performed (Table 4.5), but this depends on different marker types and different
degrees of linkage. The advantage of three-point analysis over two-point analysis is
more pronounced for partially informative markers than for fully informative ones,
and for less tightly linked markers than for more tightly linked ones. For example, the
sampling error of the MLE of the recombination fraction (assuming r = 0.20) between
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Table 4.4. Estimation from two-point analysis of the recombination fraction (r̂ ± SD) and
the parental diplotype probability of parents P (p̂) and Q (q̂) for five markers in a full-sib
family of n = 100.

Parental

Diplotype r = 0.05 r = 0.20

Marker Pa × Qa r̂ p̂ q̂ r̂ p̂ q̂

| | | |
M1 1 2 3 4

| | | | 0.0530±0.0183 0.2097±0.0328

M2 1 2 1 2 0.9960 0.9972 0.9882 0.9878

| | | | 0.0464±0.0303 0.2103±0.0848

M3 1 0 × 0 1 1(0b) 0(1b) 1(0b) 0(1b)

| | | | 0.0463±0.0371 0.1952±0.0777

M4 1 2 2 2 1 1/0c 1 1/0c

| | | | 0.0503±0.0231 0.2002±0.0414

M5 1 2 3 4 1 1/0c 1 1/0c

| | | |

The MLE of r is given between two markers under comparison, whereas the MLEs of p and q are given

at the second marker. aShown is the parental diplotype of each parent for the five markers hypothesized,

where the vertical lines denote the two homologous chromosomes. bThe values in the parentheses present

a second possible solution. For any two symmetrical markers (M2 and M3), p̂ = 1, q̂ = 0 and p̂ = 0, q̂ = 1

give an identical likelihood ratio test statistic. Thus, when the two parents have different diplotypes for

symmetrical markers, their parental diplotypes cannot be correctly determined from two-point analysis.
cThe parental diplotype of parent Q cannot be estimated in these two cases because marker 4 is homozygous

in this parent.

markers M2 and M3 from a two-point analysis is 0.0848, whereas this value from a
three-point analysis decreases to 0.0758 when combining fully informative marker M1

but increases to 0.0939 when combining partially informative marker M4. The three-
point analysis can clearly determine the diplotypes of different parents as long as
one of the three markers is asymmetrical. In our example, using either asymmetrical
marker M1 or M4, the diplotypes of the two parents for two symmetrical markers
(M2 and M3) can be determined. The model for three-point analysis can determine
a most likely gene order. In the three-point analyses combining markers M1 and M3,
markers M2 and M4, and markers M3 and M5, the MLEs of the probabilities of gene
order are all almost equal to 1, suggesting that the estimated gene order is consistent
with the order hypothesized.

4.7.2 The Diplotype Probability

Two linked dominant markers are simulated to show the advantage of joint modeling
of the linkage and parental diplotype. In the two-point analysis, two different parental
diplotype combinations are assumed:
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Table 4.5. Estimation from three-point analysis of the recombination fraction (r̂±SD) and
the parental diplotype probabilities of parents P (p̂) and Q (q̂) for five markers in a full-sib
family of n = 100.

Parental

Diplotype r̂ r̂

Marker P × Q Case 1 Case 2 p̂ q̂ Case 1 Case 2 p̂ q̂

Recombination fraction = 0.05

| | | |
M1 1 2 3 4

| | | | 0.0511±0.0175

M2 1 2 1 2 0.1008±0.0298 0.9978 0.9986

| | | | 0.0578±0.0269 0.0557±0.0312

M3 1 0 × 0 1 0.9977 0 0.0988±0.0277 1 0

| | | | 0.0512±0.0307 0.0476±0.0280

M4 1 2 2 2 0.0932±0.0301 1 1/0 1 1/0

| | | | 0.0514±0.0229

M5 1 2 3 4 1 1

| | | |
Recombination fraction = 0.20

| | | |
M1 1 2 3 4

| | | | 0.2026±0.0348

M2 1 2 1 2 0.3282±0.0482 0.9918 0.9916

| | | | 0.2240±0.0758 0.2408±0.0939

M3 1 0 × 0 1 0.9944 0 0.3241±0.0488 1 0

| | | | 0.1927±0.0613 0.1824±0.0614

M4 1 2 2 2 0.3161±0.0502 1 1/0 1 1/0

| | | | 0.2017±0.0393

M5 1 2 3 4 1 1

| | | |

Case 1 denotes the recombination fraction between two adjacent markers, whereas case 2 denotes the

recombination fraction between the two markers separated by a third marker. See Table 4.4 for other

explanations.

(1) [aa][oo] × [aa][oo] (cis × cis),
(2) [ao][oa] × [ao][oa] (trans × trans).

The MLE of the linkage under combination (2), in which two dominant alleles
are in a repulsion phase, is not as precise as that under combination (1), in which
two dominant nonalleles are in a coupling phase. For a given data set with unknown
linkage phase, the traditional procedure for estimating the recombination fraction is
to calculate the likelihood values under all possible linkage phase combinations (i.e.,
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cis × cis, cis × trans, trans × cis, and trans × trans). The combinations cis × cis, and
trans × trans have the same likelihood value, with the MLE of one combination being
equal to 1–the MLE of the second combination (Table 4.6). The same relationship
is true for cis × trans and trans × cis. A most likely phase combination is chosen
that corresponds to the largest likelihood and a legitimate MLE of the recombination
fraction (r ≤ 0.5).

Table 4.6. Comparison of the estimation of the linkage and parental diplotype between two
dominant markers in a full-sib family of n = 100 from the traditional and unifying model.

Traditional Model

cis × cis cis × trans trans × cis trans × trans Unifying Model

Data simulated from cis × cis

Correct diplotype combination Correct Incorrect Incorrect Incorrect

Log-likelihooda –46.2 –92.3 –92.3 –46.2

r̂ under each diplotype combination 0.1981±0.0446 0.5000±0.0000 0.5000±0.0000 0.8018±0.0446

Estimated diplotype combination Selected

r̂ under correct diplotype combination 0.1981±0.0446 0.1982±0.0446

Diplotype probability for parent P (p̂) 1.0000±0.0000

Diplotype probability for parent Q (q̂) 1.0000±0.0000

Data simulated from trans × trans

Correct diplotype combination Incorrect Incorrect Incorrect Correct

Log-likelihooda –89.6 –89.6 –89.6 –89.6

r̂ under each diplotype combination 0.8573±0.1253 0.0393±0.0419 0.0393±0.0419 0.1426±0.1253

Estimated diplotype combination Selected Selected

r̂ under correct diplotype combination 0.1426±0.1253 0.1428±0.1253

Diplotype probability for parent P (p̂) 0.0000±0.0000

Diplotype probability for parent Q (q̂) 0.0000±0.0000

aThe log-likelihood values given here are those from one random simulation for each diplotype combination

by the traditional model.

For the data set simulated from [aa][oo] × [aa][oo], one can easily select cis ×
cis as the best estimation of the phase combination because it corresponds to a
larger likelihood and a smaller r̂. The linkage model incorporating the parental diplo-
types can provide a comparable estimation precision of the linkage for the data from
[aa][oo] × [aa][oo] and precisely determine the parental diplotypes (see the MLEs of
p and q; Table 4.6). The unifying model has a great advantage over the traditional
model for the data derived from [ao][oa] × [ao][oa]. For this data set, the same likeli-
hood was obtained under all possible four–diplotype combinations (Table 4.6). In this
case, one would select cis × trans or trans × cis because these two phase combinations
are associated with a lower estimate of r. But this estimate of r (0.0393) is biased
since it is far less than the value of 0.20 hypothesized. The unifying model gives the
same estimation precision of the linkage for the data derived from [ao][oa]× [ao][oa] as
obtained when the analysis is based on a correct diplotype combination (Table 4.6).
Also, the unifying model can precisely determine the parental diplotypes (p̂ = q̂ = 0).
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Table 4.7. Comparison of the estimation of the linkage and gene order among three dom-
inant markers in a full-sib family of n = 100 from the traditional and unifying model.

M1–M2–M3 M1–M3–M2 M2–M1–M3 Unifying Model

Data simulated from [aaa][ooo] × [aaa][ooo]

Correct gene order Correct Incorrect Incorrect

Estimated best gene order (%a) 100 0 0

r̂12 0.2047±0.0422 0.2048±0.0422

r̂23 0.1980±0.0436 0.1985±0.0434

r̂13 0.3245±0.0619 0.3235±0.0618

Prob(M1–M2–M3) (ô1) 0.9860±0.0105

Prob(M1–M3–M2) (ô2) 0.0060±0.0071

Prob(M2–M1–M3) (ô3) 0.0080±0.0079

Data simulated from [aao][ooa] × [aao][ooa]

Correct gene order Correct Incorrect Incorrect

Estimated best gene order (%a) 80 11 9

r̂12 0.1991±0.0456 0.8165±0.1003 0.9284±0.0724 0.2104±0.0447

r̂23 0.1697±0.0907 0.8220±0.0338 0.1636±0.0608 0.2073±0.0754

r̂13 0.3218±0.0755 0.2703±0.0586 0.7821±0.0459 0.2944±0.0929

Prob(M1–M2–M3) (ô1) 0.9952±0.0058

Prob(M1–M3–M2) (ô2) 0.0045±0.0058

Prob(M2 − M1 − M3) (ô3) 0.0003±0.0015

aThe percentages of a total of 200 simulations that have the largest likelihoods for a given gene order

estimated from the traditional approach. In this example used to examine the advantage of implementing

gene orders, known linkage phases are assumed.

4.7.3 Gene Order

In three-point analysis, we examine the advantage of implementing linkage analysis
with gene orders. Three dominant markers are assumed to have two different parental
diplotype combinations:

(1) [aaa][ooo] × [aaa][ooo],
(2) [aao][ooa] × [aao][ooa].

The traditional approach is to calculate the likelihood values under three possible
gene orders and choose one of a maximum likelihood to estimate the linkage. Under
combination (1), a most likely gene order can be well determined and therefore the
recombination fractions between the three markers well estimated, because the =like-
lihood value of the correct order is always larger than those of incorrect orders (Table
4.7). However, under combination (2), the estimates of linkage are not always precise
because with a frequency of 20 percent gene orders are incorrectly determined. The
estimates of r will largely deviate from their actual values based on a wrong gene
order (Table 4.7). The unifying model incorporating gene order can provide a better
estimation of linkage than the traditional approach, especially between those markers
with dominant alleles in a repulsion phase. Furthermore, a most likely gene order can
be determined from our model at the same time that the linkage is estimated.
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4.7.4 M-Point Analysis

Three-point analysis considering the dependence of recombination events among dif-
ferent marker intervals can be extended to perform the linkage analysis of an arbi-
trary number of markers. Suppose there are m ordered markers on a linkage group.
The joint genotype probabilities of the m markers form a (4m−1 × 4)-dimensional
matrix. There are 2m−1 × 2m−1 such probability matrices given a particular parental
diplotype combination. The reasonable estimates of the recombination fractions rely
upon the characterization of a most likely phase combination based on the likelihood
values calculated.

The m-marker joint genotype probabilities can be expressed as a function of the
probability of whether or not there is a crossover occurring between two adjacent
markers, gl1l2...lm−1 , where l1, l2, ..., lm−1 are the indicator variables denoting the
crossover event between markers M1 and M2, markers M2 and M3, ..., and markers
Mm−1 and Mm, respectively. An indicator is defined as 1 if there is a crossover and
0 otherwise. Because each indicator can be taken as one or zero, there are a total of
2m−1 g’s.

The probability that an interval-specific crossover gl1l2...lm−1 will occur can be
estimated using the EM algorithm. In the E step, the expected number of interval-
specific crossovers is calculated (see equation (4.22) for three-point analysis). In the M
step, an explicit equation is used to estimate the probability gl1l2...lm−1 . The MLEs of
gl1l2...lm−1 are further used to estimate m(m−1)/2 recombination fractions between all
possible marker pairs. By comparing the magnitudes of these recombination fractions,
we can obtain essential information about marker ordering.
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Linkage Analysis with Recombinant Inbred Lines

5.1 Introduction

Recombinant inbred lines (RILs) have proven powerful for QTL mapping. They can be
derived either by repeated selfing or by repeated sibling (brother-sister) mating from
the offspring of an F1 cross between two inbred lines. Because of continuous inbreeding
for a sufficiently number of generations (e.g., 7–10), RILs tend to be homozygous for
all genes. With such fixed genotypes (ignoring mutations), RILs can be propagated
eternally, allowing the replication of identical genotypes on the scale of time and space
aimed to address many fundamental biological and genetic issues. Furthermore, RILs
accumulate crossovers that occur at each meiosis with every generation, and thus the
proportion of recombinant zygotes in RILs (i.e., the probability that two linked loci
have different parental alleles) is higher than what it would be in the F2. As a result,
RILs that have been increasingly available due to community efforts by geneticists and
breeders (Threadgill et al. 2002; Complex Trait Consortium 2004) provide powerful
material for high-resolution mapping of QTLs.

Interest in genetic analysis with RILs can be traced back to the work of Jennings
(1917) and Robbins (1918). It was Haldane and Waddington (1931) who laid a de-
tailed foundation for linkage analysis in RILs generated by selfing or sibling mating.
Today, the analysis of RIL data has been experiencing a renewal of interest for more
theoretical and practical explorations (Broman 2005; Teuscher et al. 2005; Martin and
Hospital 2006). In this chapter, we will describe some basic theory for linkage analysis
in RILs generated by selfing and sibling mating. Statistical methods and algorithms
for RIL analysis will also be explored.

5.2 RILs by Selfing

5.2.1 Two-Point Analysis

Consider a pair of markers A (with two alleles A and a) and B (with two alleles
B and b) with the recombination fraction of r. Cross two inbred lines AABB and



108 5 Linkage Analysis with Recombinant Inbred Lines

aabb to generate a heterozygous F1. The F1 is selfed to generate the segregating F2,
and each of the F2 genotypes is selfed again to generate the F3. This selfing process
is repeated for many generations. In generation t, the proportions of a total of ten
zygotic types (diplotypes; that is, phase-known genotypes) in terms of five states are
expressed as

State Diplotype Proportion

1 AABB, aabb Ct

2 AAbb, aaBB Dt

3 AABb,AaBB,Aabb, aaBb Et

4 [AB][ab] Ft

5 [Ab][aB] Gt

where we use double brackets to denote two different diplotypes for the double zygote
AaBb. The genotypes above are selfed to form generation t+1, and have new diplotype
proportions:

Ct+1 = Ct + 1
2Et + 1

4 (1 − r)2Ft + 1
4r2Gt,

Dt+1 = Dt + 1
2Et + 1

4r2Ft + 1
4 (1 − r)2Gt,

Et+1 = 1
4r(1 − r)(Ft + Gt),

Ft+1 = 1
2 (1 − r)2Ft + 1

2r2Gt,

Gt+1 = 1
2r2Ft + 1

2 (1 − r)2Gt.

(5.1)

Because each genotype is composed of two gametes or haplotypes, we define Ct+1 +
Dt+1 + Et+1 + Ft+1 + Gt+1 = 2, so that C1 = D1 = E1 = G1 = 0 and F1 = 2.
The derivations of the equations (5.1) can be explained as follows. When selfed,
the homozygotes reproduce themselves only, so that Ct and Dt contribute only to
Ct+1 and Dt+1. But selfing the heterozygotes will generate segregation. For example,
AABb is selfed to give 1

4AABB : 1
2AABb : 1

4AAbb. Therefore, the contribution of Et

to Et+1 is 1
2Et. But its contribution to Ct+1 or Dt+1 is doubled since there are twice

as many classes in the proportions Et as in Ct+1 or Dt+1. The double heterozygote
produces four haplotypes, AB, ab, aB, and ab with frequencies 1

2 (1− r), 1
2r, 1

2r, and
1
2 (1−r) for diplotype [AB][ab] or 1

2r, 1
2 (1−r), 1

2 (1−r), and 1
2r for diplotype [Ab][aB].

Thus, the coefficients of the contribution of Ft or Gt to Ct+1 and Dt+1 must be the
multiplication of the corresponding haplotype frequencies.

When t tends to be infinite, we will have E∞ = F∞ = G∞ = 0, and D∞ is the
final proportion of crossover zygotes. Now let Ct − Dt = ct and Ft − Gt = dt. Thus,
by subtracting the equations for Ct+1 and Dt+1 as well as Ft+1 and Gt+1, we have

ct+1 = ct + 1
4 (1 − 2r)dt,

dt+1 = 1
2 (1 − 2r)dt.

(5.2)
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Let us introduce a parameter λ, which makes ct+1 + λdt+1 ≡ ct + λdt for all values
of t. From equation (5.2), we have

ct + λdt = ct +
1
4
(1 − 2r)dt +

1
2
λ(1 − 2r)dt,

which leads to
λ =

1 − 2r

2(1 + 2r)
.

Based on the nature of RILs and the definition, we have C∞+D∞ = 1 and C∞−D∞ =
c∞, which suggests D∞ = 1

2 (1 − c∞). Note that

c∞ = c∞ + λd∞ = c1 + λd1 =
1 − 2r

1 + 2r

since d∞ = 0 and c1 = 0, d1 = 2. Thus, it is easy to see that

D∞ =
1
2

(
1 − 1 − 2r

1 + 2r

)
=

2r

1 + 2r
.(5.3)

The proportion D∞ is just the frequency of recombinant zygotes for two markers A
and B in RILs denoted by R. Based on the relationship between two parameters R
and r in equation (5.3), we solve the recombination fraction from the proportion of
recombinant homozygotes as

r =
R

2(1 − R)
.(5.4)

Thus, by estimating R from a practical data set, equation (5.4) allows for the esti-
mation of r.

Example 5.1. Zhang et al. (2004) reported a molecular linkage map for soybeans with
184 RILs derived from seven generations’ selfing of the F1 between varieties Kefeng
No. 1 and Nannong 1138-2. The map covered 3596 cM of the soybean genome with
452 markers onto 21 linkage groups. We selected two pairs of markers, sat 300 (A) vs.
sat 384 (B) and sat 384 (C) vs. sat 265 (D), for linkage analysis with observations
given in Table 5.1.

Consider the pairs of markers above. The likelihood of marker observations for the
proportion of recombinant homozygotes (R) can be constructed as

L(R) =
n!

n22!n20!n02!n00!
Rn20+n02(1 − R)n22+n00 .

The maximization of the log-likelihood leads to the MLE of R as

R̂ =
n20 + n02

n
.(5.5)

Equation (5.5) is used to estimate the proportion of crossover zygotes as R̂ = 7+7
175 =

0.080 for the first (left panel) pair and R̂ = 0+6
175 = 0.034 for the second (right panel)
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Table 5.1. Observations of nonrecombinant and recombinant homozygotes at two pairs of
markers in soybean RILs by selfing.

Marker Marker sat 384

sat 300 BB bb

AA n22 = 87 n20 = 7

aa n02 = 7 n00 = 74

Marker Marker sat 265

sat 384 DD dd

CC n22 = 99 n20 = 0

cc n02 = 6 n00 = 70

Note: Total observations n = n22 + n20 + n02 + n00.

pair. Equation (5.3) is further used to estimate the recombination fractions as r̂ =
0.080

2(1−0.080) = 0.043 for the first marker pair and r̂ = 0.034
2(1−0.034) = 0.018 for the second

marker pair.
Robbins (1918) derived the proportions of different zygote types in each generation

from equation (5.1), which are expressed as

Cn =
1 − ( 1

2 − r)t

1 + 2r
+ 1

2 ( 1
2 − r + r2)t−1 − ( 1

2 )t−1,

Dn =
2r + (1

2 − r)t

1 + 2r
+ 1

2 ( 1
2 − r + r2)t−1 − ( 1

2 )t−1.

Using these two equations and estimated recombination fractions, we further estimate
the proportions of nonrecombinant and recombinant homozygotes from generations
2 to 10 (Table 5.2). The dynamic patterns of these proportions will be useful for the
prediction of genetic compositions over generations.

Table 5.2. Proportions of nonrecombinant and recombinant homozygotes in different gen-
erations for RILs derived from selfing.

Generation

Proportion 2 3 4 5 6 7 8 9 10

sat 300-sat 384

Ct 0.457 0.677 0.778 0.824 0.845 0.854 0.859 0.861 0.862

Dt 0.001 0.012 0.018 0.020 0.021 0.022 0.022 0.022 0.022

sat 384-sat 265

Ct 0.482 0.719 0.834 0.889 0.916 0.928 0.935 0.938 0.939

Dt 0.000 0.005 0.007 0.008 0.009 0.009 0.009 0.009 0.009



5.2 RILs by Selfing 111

The proportion of double homozygotes increases dramatically in early generations.
The degree and period of this increase depend on the magnitude of the recombination
fraction. Compared to a loose linkage, a tight linkage is associated with a higher
degree of increase and a smaller number of generations within which the homozygous
proportions achieve a stable value.

5.2.2 Three-Point Analysis

Proportion of Recombinant Homozygotes

We turn to consider three markers in order A-B-C. In an RIL population, there
are eight haplotypes, ABC, abc, ABc, abC, aBC, Abc, AbC, aBc, or genotypes,
AABBCC, aabbcc, AABBcc, aabbCC, aaBBCC, AAbbcc, AAbbCC, aaBBcc. The
frequencies of haplotypes are classified into four groups, P (ABC) = P (abc),
P (ABc) = P (abC), P (aBC) = P (Abc), P (AbC) = P (aBc), which reflect the event
that a haplotype has 0 crossover over marker intervals A-B and B-C, only one
crossover in the second interval, only one crossover in the first interval, and two
crossovers each in a different interval, respectively. Let g(j1j2) (

∑
j1,j2

g(j1j2) = 1) be
the probability that a haplotype has j1 (0 or 1) crossovers in the first marker interval
and j2 (0 or 1) in the second marker interval. We use n(j1j2) (

∑
j1,j2

n(j1j2) = n) to
denote the corresponding genotype observations.

A likelihood function of marker genotype groups can be formulated as

L(n(j1j2)) =
n!

n(00)!n(01)!n(10)!n(11)!
g

n(00)

(00) g
n(01)

(01) g
n(10)

(10) g
n(11)

(11) ,(5.6)

with the MLE of g(j1j2) obtained as

ĝ(j1j2) =
n(j1j2)

n
,(5.7)

where
n(00) = nABC + nabc,
n(01) = nABc + nabC ,
n(10) = nAbc + naBC ,
n(11) = nAbC + naBc.

(5.8)

We use allele-specific notation to denote marker observations. Table 5.3 presents the
data structure of genotype observations for three linked markers A, B, and C.

More specifically, the probabilities of crossover occurrence can be expressed in
terms of the proportion of offspring zygotes; that is,

ĝ(00) =
nABC + nabc

n
= P̂ (ABC) + P̂ (abc)

ĝ(01) =
nABc + nabC

n
= P̂ (ABc) + P̂ (abC)

ĝ(10) =
nAbc + naBC

n
= P̂ (Abc) + P̂ (aBC)

ĝ(11) =
nAbC + naBc

n
= P̂ (AbC) + P̂ (aBc).
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Table 5.3. Observations of nonrecombinant and recombinant homozygotes for three order-
unknown markers A, B, and C in RILs by selfing.

Marker Marker Marker C

A B CC cc

AA BB nABC nABc

AA bb nAbC nAbc

aa BB naBC naBc

aa bb nabC nabc

Let RAB, RBC and RAC be the proportions of recombinant homozygotes between
markers A and B, between B and C, and between A and C, respectively. Based on
the definition of the recombination fraction, we have

RAB = g(10) + g(11),
RBC = g(01) + g(11),
RAC = g(01) + g(10).

.(5.9)

It is thus straightforward to derive the following equations:

g(00) = 2P (ABC) = 2P (abc) = 1
2 (2 − RAB − RBC − RAC),

g(01) = 2P (ABc) = 2P (abC) = 1
2 (−RAB + RBC + RAC),

g(10) = 2P (Abc) = 2P (aBC) = 1
2 (RAB − RBC + RAC),

g(11) = 2P (AbC) = 2P (aBc) = 1
2 (RAB + RBC − RAC),

(5.10)

and

RAB = P (AbC) + P (Abc) + P (aBC) + P (aBc) = 2P (AbC) + 2P (Abc),
RBC = P (AbC) + P (abC) + P (ABc) + P (aBc) = 2P (AbC) + 2P (ABc),
RAC = P (ABc) + P (Abc) + P (aBC) + P (abC) = 2P (ABc) + 2P (Abc).

Thus, the proportion of recombinant homozygotes can be estimated from haplotype
frequencies.

Gene Order Test in RILs

Three-point analysis can be used to find the most likely order of markers based on
their proportions of recombinant homozygotes. Consider three unordered markers A,
B, and C, whose observations are listed in Table 5.3. As shown above, the eight
three-point genotypes are sorted into four groups, and the sample size for each group
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Table 5.4. The expected frequencies of gametes under three different possible marker orders
expressed in terms of the proportion of recombinant zygotes.

Gamete Obser- Expected Frequency under Order

type vation A-B-C A-C-B B-A-C

ABC or abc n(00) (1 − RAB)(1 − RBC) (1 − RAC)(1 − RBC) (1 − RAB)(1 − RAC)

ABc or abC n(01) (1 − RAB)RBC RACRBC (1 − RAB)RAC

Abc or aBC n(10) RAB(1 − RBC) RAC(1 − RBC) RABRAC

AbC or aBc n(11) RABRBC (1 − RAC)RBC RAB(1 − RAC)

is denoted by nj1j2 . By assuming three different possible marker orders, the expected
frequencies of gametes under each order are given in Table 5.4.

Based on Table 5.4), we construct three order-specific likelihoods as

LABC ∝ Rn10+n11
AB Rn01+n11

BC (1 − RAB)n00+n01(1 − RBC)n00+n10 ,

LACB ∝ Rn01+n10
AC Rn01+n11

BC (1 − RAC)n00+n11(1 − RBC)n01+n11 ,

LBAC ∝ Rn10+n11
AB Rn01+n10

AC (1 − RAB)n00+n01(1 − RAC)n00+n11 .

(5.11)

Each individual likelihood yields the MLE of the proportion of recombinant homozy-
gotes for each order, expressed as

R̂AB =
n(10) + n(11)

n
,

R̂BC =
n(01) + n(11)

n
,

R̂AC =
n(01) + n(10)

n
.

(5.12)

These estimates are plugged in the likelihood (5.11), and we calculate the likelihood
values for different orders. The largest likelihood value corresponds to the most marker
order.

Genetic Distances and Mapping Function

Let rAB, rBC, and rAC be the recombination fractions between markers A and B,
between B and C, and between A and C, respectively. Under the assumption that
there is no interference in crossover events during meiosis, the relationship among the
three recombination fractions is determined by

rAC = rAB + rBC − 2rABrBC(5.13)

or
(1 − 2rAC) = (1 − 2rAB)(1 − 2rBC).
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Based on equation (5.4), we have as the relationship among the three R’s
(

1 − 2RAC

1 − RAC

)
=

(
1 − 2RAB

1 − RAB

)(
1 − 2RBC

1 − RBC

)
,(5.14)

which can be changed for

(1 − 2RAC) =
(1 − 2RAB)(1 − 2RBC)

1 − 2RABRBC
(5.15)

or

(1 − RAC) =
(1 − RAB)(1 − RBC)

1 − 2RABRBC
.

Further, we have

RAC =
RAB + RBC − 3RABRBC

1 − 2RABRBC
.(5.16)

In case of no interference in each meiosis, the genetic distance (d) can be ex-
pressed in terms of the recombination fraction (r) by the Haldane map function
d = − 1

2 ln(1 − 2r). Based on this, the genetic distance is calculated from the propor-
tion of recombinant homozygotes as

d = − 1
2 ln

[
1 − 2R

1 − R

]
.(5.17)

Nonindependence of Recombinations

When there is no interference between different marker intervals, the recombination
fractions follow the relation of equation (5.13). It is obvious that this relation does
not hold for the proportion of recombinant homozygotes; that is,

RAC �= RAB + RBC − 2RABRBC.

This means that even if there is no interference at each meiosis, recombination in
different intervals is still not independent in RILs. The degree of nonindependence in
RIL data, in which there is no interference in each meiosis, is quantified by

ρ =
RAB + RBC − RAC

2RABRBC

=
2g(11)

2RABRBC
.

Together, we use the four ratios to quantify the degree of nonindependence for double
recombinant zygotes (ρ(00)), double nonrecombinant zygotes (ρ(11)), and two single
recombinant zygotes (ρ(01) and ρ(10)), respectively:
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ρ(11) =
g(11)

RABRBC
≥ 1,

ρ(10) =
g(10)

RAB(1 − RBC)
≤ 1.

ρ(01) =
g(01)

(1 − RAB)RBC
≤ 1,

ρ(00) =
g(00)

(1 − RAB)(1 − RBC)
≥ 1.

(5.18)

Test of Meiosis Interference

In the derivations above, we assume no interference at each meiosis, but this may
not be true for a real RIL data set. Martin and Hospital (2006) generalized Muller’s
(1916) coefficient of coincidence in individual meioses to examine true interference at
each meiosis for RIL data using

I = 1 −
ĝ(11)

ğ(11)

= 1 − (1 − 2RABRBC)(RAB + RBC − RAC)
3 − 2RAB − 2RBC

,(5.19)

where ĝ(11) is the observed frequency of double recombinant zygotes and ğ(11) is
the frequency of double recombinant zygotes if there is no interference. With no
interference, we have shown the RAC of double recombinant zygotes by equation
(5.16), which is ğ(11). If I = 0, this indicates that interference is absent.

Example 5.2. Zhang et al. (2004) reported a molecular linkage map for soybeans with
184 RILs derived from seven generations’ selfing of the F1 between varieties Kefeng
No. 1 and Nannong 1138-2. The map covered 3596 cM of the soybean genome with
452 markers onto 21 linkage groups. A set of three markers, sat 300 (A), sat 384 (B),
and sat 265 (C), with observations given in Table 5.5, are chosen for linkage analysis.

Based on the genotype observations, we calculate n(00) = nABC + nabc = 148,
n(01) = nABc + nabC = 6, n(10) = nAbc + naBC = 14, and n(11) = nAbC + naBc = 0
with equation (5.8), which are used to calculate three proportions of recombinant
homozygotes as R̂AB = 0.0833, R̂BC = 0.0357, and R̂AC = 0.1190 with equation
(5.12). Plugging in the likelihood (5.11) results in the likelihood values for three
possible marker orders:
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Table 5.5. Observations of nonrecombinant and recombinant homozygotes for three order-
unknown markers A, B, and C in RILs by selfing in soybeans.

Marker Marker Marker C

A B CC cc

AA BB nABC = 87 nABc = 0

AA bb nAbC = 0 nAbc = 7

aa BB naBC = 7 naBc = 0

aa bb nabC = 6 nabc = 61

L1 ∝ (148 + 6)log(1 − 0.08) + (148 + 14) log(1 − 0.04) + (14 + 0) log(0.08)

+ (6 + 0) log(0.04) =−74.07, for order A-B-C,

L2 ∝ (148 + 0)log(1 − 0.12) + (148 + 14) log(1 − 0.04) + (6 + 14) log(0.12)

+ (6 + 0) log(0.04) = −87.21, for order A-C-B,

L3 ∝ (148 + 6)log(1 − 0.08) + (148 + 0) log(1 − 0.12) + (14 + 0) log(0.08)

+ (6 + 14) log(0.12) = −109.51, for order B-A-C.

According to the likelihood values above, we determine A-B-C as an optimal
order for these three markers.

Using ĝ(j1j2) calculated from equation (5.7) under order A-B-C, we calculate
the proportions of recombinant homozygotes with equation (5.9) and recombination
fractions and map distances by equations (5.4) and (5.17) as

A-B B-C A-C

RAB 0.0833 0.0357 0.1190

0.1108∗

rAB 0.0454 0.0185 0.0676

0.0623∗

dAB 4.76 1.89 7.26

6.65∗
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where the values indicated by asterisks were calculated from the relations of the three
R’s with equation (5.16). Based on the estimated R’ values, we further perform the
test of recombination nonindependence by equation (5.18) and meiotic interference
by equation (5.19) as follows:

Value

ρ(11) 0

ρ(10) 1.0370

ρ(01) 1.0909

ρ(00) 0.9267

I 1.0000

It can be seen that the adjacent marker intervals display some degree of non-
independence and interference among markers sat 300, sat 384, and sat 265 in soy-
bean RILs.

5.3 RILs by Sibling Mating

5.3.1 Two-point Analysis

There are many species, such as the mouse, for which selfing is not possible. For
these species, RILs can be produced by repeated sibling mating of the progeny ini-
tiated from the F1 between two inbred lines AABB · · · and aabb · · · . Analogous to
selfing RILs, Haldane and Waddington (1931) also derived the relationships between
the recombination fraction and the proportion of recombinant homozygotes in RILs
by sibling mating. Considering two markers on autosomes, the brother–sister mating
of the F1 leads to ten different diplotypes in the F2, for which there are a total of
1
2 (10 × 11) = 55 sibling mating types to generate the F3. Haldane and Waddington
(1931) showed that when sibling mating was performed for a large number of gener-
ations, the relationship between the proportion of recombinant homozygotes (R) and
recombination fraction (r) obeys the following forms:

R =
4r

1 + 6r
,(5.20)

r =
R

2(2 − 3R)
(5.21)

In the case of sibling mating, sex-linked genes on chromosome X will inherit differently
from autosomal genes. The original mating for sex-linked genes is AABB · · · × ab · · · .
Haldane and Waddington (1931) also derived similar relationships for two sex-linked
genes, expressed as
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R =
8r

3(1 + 4r)
,(5.22)

r =
3R

4(2 − 3R)
.(5.23)

5.3.2 Three-point Analysis

The procedure for three-point analysis in selfing RILs can be modified for RILs by
sibling mating. Consider three markers A-B-C. Assuming no interference at meiosis,
three proportions of recombinant homozygotes for markers A, B, and C in the case
of sibling mating follow

(
2 − 4RAC

2 − 3RAC

)
=

(
2 − 4RAB

2 − 3RAB

)(
2 − 4RBC

2 − 3RBC

)
,(5.24)

(1 − 2RAC) =
(1 − 2RAB)(1 − 2RBC)

1 − 3RABRBC
,(5.25)

or

RAC =
2RAB + 2RBC − 7RABRBC

2(1 − 3RABRBC)
.(5.26)

The genetic distance is calculated from the proportion of recombinant homozygotes
by the Haldane map function as

d = −1
2

ln
[
2 − 4R

2 − 3R

]
.(5.27)

5.4 Bias Reduction

5.4.1 RILs by Selfing

Martin and Hospital (2006) recognized that the estimate of the recombination fraction
(r) from the estimated proportion of recombinant homozygotes (R) using equation
(5.4), written as

r̃ =
R̂

2(1 − R̂)
,(5.28)

is biased because these two parameters are not linearly related. The unbiased estimate
R̂ by equation (5.5) can be obtained. As a result, R̂ can be viewed as the sum of the
true value and a random noise of zero mean (that is, R̂ = R+e(0, σ2)), where e(0, σ2)
denotes a random variable with mean 0 and variance σ2.

Rewriting the estimator of r by equation (5.28) and then performing the Taylor
series expansion in εR ≡ (R̂ − R)/(1 − R), we have
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r̃ =
R̂

2(1 − R̂)

= −1
2

+
1

2(1 − R̂)

=
R + εR + ε2R + ε3R + . . .

2(1 − R)
.

Since R̂ is unbiased, the expected value of r̃ can be taken as

E[r̃] = r +
E[(R̂ − R)2]
2(1 − R)3

+ . . . ,

where the higher-order terms are associated with high-order moments of (R̂ − R).
Because the expectation E[(R̂−R)2] is estimated by R̂(1− R̂)/n, the estimator of r,
for which most of the bias has been removed, can be approximated by

r̂ =
R̂

2(1 − R̂)
− R̂(1 − R̂)

2n(1 − R̂)3

= r̃

[
1 − 1

n − m

]

=
m(n − m − 1)

2(n − m)2
,(5.29)

where m is the number of recombinant zygotes in RILs. The estimator r is still biased
(although the remaining bias is now only of order 1/n2) unless all order corrections
are considered.

Example 5.3. Revisit Example 5.1. The recombination fractions for two pairs of mark-
ers were estimated for the nonadjusted (r̃) and adjusted values (r̂) using equations
(5.28) and (5.29), respectively, and are given below as

Marker Pair r̃ r̂

sat 300–sat 384 0.0435 0.0432

sat 384–sat 265 0.0178 0.0176

The nonadjusted equation slightly overestimates the recombination fraction for the
two pairs of markers in this example. In practice, therefore, the adjusted equation is
recommended, especially for a small sample size and a loose linkage.

5.4.2 RILs by Sibling Mating

Martin and Hospital (2006) also derived a procedure for reducing the bias of the
estimator of r from R in RILs derived from sibling mating. The adjusted equation for
removing a major bias for the estimate of the recombination fraction is given as
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r̂ =
R̂

4 − 6R̂
− 24R̂(1 − R̂)

N(4 − 6R̂)3

= r̃

[
1 − 6(n − m)

(2n − m)2

]

=
m

4n − m

[
1 − 6(n − m)

(2n − 3m)2

]
.(5.30)

Equations (5.29) and (5.30) are derived for bias reduction when the recombination
fraction is estimated from the proportion of recombinant homozygotes. In Note 5.7,
we provide a general procedure for bias reduction with which interesting readers can
derive any adjusted formula of interest.

5.5 Multiway RILs

Recombinant inbred strains are derived from repeated inbreeding of the progeny initi-
ated with the F1 between two inbred lines 1 and 2. The RILs derived from two inbred
lines are called “two-way RILs” (1×2). Given the complexity of the genome, RILs have
been produced from multiple crosses between many inbred lines. Currently, four-way
RILs, (1×2)× (3×4), and eight-way RILs, [(1×2)× (3×4)]× [(5×6)× (7×8)], have
been produced in model species, such as the mouse (Threadgill et al. 2002; Complex
Trait Consortium 2004). Figure 5.1 describes the procedure for generating eight-way
RILs in which the progeny initiated with eight parental inbred lines are repeatedly
selfed or sibling-mated. This procedure will generate new inbred lines whose genome
is a mosaic of the eight parental strains. Thus, higher-way RILs can be much more
powerful to study the pattern of genetic variation in natural populations than current
mapping resources and could be used to dissect virtually any complex human disease
using mouse models.

Based on Haldane and Waddington’s (1931) work, Broman (2005) proposed a gen-
eral procedure for deriving the formulas for expressing the proportions of recombinant
zygotes in terms of the recombination fraction. This procedure can be used for various
types of RILs and also for linked genes on the X chromosome (Table 5.6).

5.6 Exercises

5.1 As two different mapping designs, discuss the similarities and differences between the
RIL and backcross designs. What advantages do the RIL design have compared with
the backcross design?

5.2 Show that the genetic distance calculated from R (that is, d∗ = − 1
2

ln(1 − 2R)), is not
additive; that is, for three markers A-B-C, we have d∗

AC �= d∗
AB + d∗

BC.
5.3 For a backcross design, the estimates of the recombination fractions from two- and three-

point analyses should be identical if there are no missing data. Show how different the
estimates of the recombination fractions are from two- and three-point analyses for the
RIL design.
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

12 34 56 78 12 34 56 78

1234 5678 1234 5678

Fig. 5.1. A procedure for generating eight-way RILs by selfing (A) or sibling mating (B).
Adapted from Broman (2005).

Table 5.6. Summary for the relationships between the recombination fraction and the
proportion of recombinant homozygotes in different types of RILs.

Sibling Mating

Selfing Autosome X Chromosome

2-way
2r

1 + 2r

4r

1 + 6r

8r

3(1 + 4r)

4-way
3r

1 + 2r

6r

1 + 6r

4r

1 + 4r

8-way
r(4 − r)

1 + 2r

7r

1 + 6r

14r

3(1 + 4r)

16-way
r(5 − 3r + r2)

1 + 2r

r(8 − r)

1 + 6r

r(16 − r)

3(1 + 4r)

2t-way 1 − (1 − r)t−1

1 + 2r
1 − (1 − r)t−2

1 + 6r
–
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5.4 If the same estimate for the proportion of recombinant homozygotes between two given
markers is obtained between the RILs by selfing and RILs by sibling mating, show how
different the respective recombination fractions are for these two different types of RILs.

5.7 Note

We provide a general procedure for deriving the equation for bias reduction. Consider
an arbitrary relation between R and r, represented as r = f(R). The estimator of the
recombination fraction r̃ = f(R̂) is biased because f is nonlinear. The bias can be
computed from the Taylor series expansion:

E[f(R̂)] = f(R) + f ′(R)E[R̂ − R] +
1
2
f ′′(R)E[(R̂ − R)2] + . . . .

Since R̂ is unbiased, the expectation E[R̂ − R] vanishes and the leading bias in the
estimator for r comes from the variance of R̂, which is approximated by R̂(1− R̂)/n.
Replacing f(R) by f(R̂), the correct estimator is

r̂ = f(R̂) − f ′′(R̂)R̂(1 − R̂)
2n

,

where f ′′(R̂) is the second derivative of f evaluated at the point R̂. Note that we have
ignored the higher-order terms. Although this is usually not a problem, formally this
needs to be justified.



6

Linkage Analysis for Distorted and Misclassified
Markers

6.1 Introduction

We have described statistical methods for linkage analysis of different markers in a
controlled cross. But these methods can only be appropriate for the markers whose
segregation follows the Mendelian ratio (1:1 for the backcross or 1:2:1 for the F2). In a
practical molecular experiment, many markers may deviate from Mendelian segrega-
tion ratios due to some genetic or biological reason (e.g., differential viability, where
viability is defined as an individual’s ability to survive). If marker segregation is
disturbed by viability effects, we can incorporate such effects into linkage analysis us-
ing modified methods. Bailey (1961) discussed several models for analyzing distorted
markers in great detail. In this chapter we will describe the methods for estimating
the recombination fraction between markers subject to differential viability.

The differential viability type of disturbance may arise in various ways. First,
gametes bearing different genes may have unequal survival rates, so that fertilization
is more likely to be brought about by one type than by another. Thus, an individual
of genotype Aa produces two kinds of gametes, namely A and a, but these may
not be equally available. Second, there may be differential survival of different types
of zygotes. In a backcross, Aa × aa, equal numbers of Aa and aa individuals can
be expected, but they may survive unequally. For the backcross, gametic and zygotic
differential viabilities have the same effect on linkage analysis. But, for the F2, different
models are needed to detect the influences of gametic and zygotic differential viability
on linkage analysis.

6.2 Gametic Differential Viability

6.2.1 One-Gene Model

Suppose one of the two markers A and B subject to linkage analysis is affected by
differential viability. Let r be the recombination fraction between the two markers
and u be the viability of allele A relative to its alternative a for marker A.
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Backcross AaBb × aabb

For a double backcross AaBb × aabb, we have observed numbers of individuals, n =
(n1, n2, n3, n4), and expected frequencies for each of the four genotypes as follows:

Gamete Expected Observed

AB u
1+u (1 − r) n1

Ab u
1+ur n2

aB 1
1+ur n3

ab 1
1+u (1 − r) n4

Total 1 n

The log-likelihood of the data is

log L(u, r|n)

= log
[

n!
n1!n2!n3!n4!

(
u

1 + u
(1 − r)

)n1
(

u

1 + u
r

)n2
(

1
1 + u

r

)n3
(

1
1 + u

(1 − r)
)n4

]

= (n1 + n2) log u + (n2 + n3) log r + (n1 + n4) log (1 − r)

−n log (1 + u) + log
[

n!
n1!n2!n3!n4!

]
,

whose scores are
⎧
⎪⎪⎨

⎪⎪⎩

Sr =
∂

∂r
log L(u, r|n) =

n2 + n3

r
− n1 + n4

1 − r

Su =
∂

∂u
log L(u, r|n) =

n1 + n2

u
− n

1 − u

with information matrix

I = −E

[
∂2

∂r2 log L(u, r|n) ∂2

∂r∂u log L(u, r|n)

∂2

∂u∂r log L(u, r|n) ∂2

∂u2 log L(u, r|n)

]

=

[ n
r(1−r) 0

0 n
u(1+u)2

]
.

The MLEs of the recombination fraction and viability coefficient with their large-
sample variances are thus

r̂ =
n2 + n3

n
,

û =
n1 + n2

n3 + n4
,
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and

var(r̂) =
r(1 − r)

n
,

var(û) =
u(1 + u)2

n
.

It can be seen that the MLE of the recombination fraction for a backcross design
is unchanged, regardless of the existence of viability disturbance for one of the two
markers. The test of the linkage between markers A and B can be made using equation
(3.8). The difference between the numbers n1+n2 and n3+n4 measures the departure
from unity of the segregation ratio for A:a. The hypothesis about the existence of
viability disturbance can be formulated as

H0 : u = 1 vs. H1 �= 1,(6.1)

where H0 corresponds to the reduced model (i.e., nonexistence of viability distur-
bance).

The test statistics for testing the hypotheses (6.1) are calculated as the log-
likelihood ratio (LR) of the hypothesis under the full model over the reduced model:

LR = −2 log
[
L(u = 1, r̂)

L(û, r̂)

]
.

The test statistic LR can be viewed as being asymptotically χ2-distributed with one
degree of freedom.

Example 6.1. Differential viability of the genotypes is shown below in a double-
backcross sample.

Gamete AB Ab aB ab

Observed n1 = 50 n2 = 2 n3 = 1 n4 = 32

The MLEs of the recombination fraction and viability coefficient with their large-
sample variances are thus

r̂ =
2 + 1
85

= 0.0353,

û =
50 + 2
1 + 32

= 1.576,

and

var(r̂) =
0.0353(1 − 0.0353)

85
= 0.00040,

var(û) =
1.576(1 + 1.576)2

85
= 0.1230.

The log-likelihood for no viability disturbance is



126 6 Linkage Analysis for Distorted and Misclassified Markers

LL0 = 50 log
[
1 − 0.0353

2

]
+ 2 log

[
0.0353

2

]

+1 log
[
0.0353

2

]
+ 32 log

[
1 − 0.0353

2

]
= −71.8961.

Similarly, the log-likelihood for viability disturbance on the A locus is

LL1 = 50 log
[

1.576
1 + 1.576

× (1 − 0.0353)
]

+ 2 log
[

1.576
1 + 1.576

× 0.0353
]

+1 log
[

1
1 + 1.576

× 0.0353
]

+ 32 log
[

1
1 + 1.576

× (1 − 0.0353)
]

= −69.755.

The LR statistic for viability disturbance on the A locus versus no disturbance is

LR = −2 log
[
L(u = 1, r̂)

L(û, r̂)

]
= −2[−71.8961 − (−69.7545)] = 4.283.

Compared with χ2
0.05(1) = 3.841, the viability disturbance on the A locus is signifi-

cant.

Double Intercross AaBb × AaBb

For a double intercross AaBb×AaBb, the frequencies of nine F2 genotypes for markers
A and B can be expressed in matrix notation as

BB Bb bb

AA
Aa
aa

⎡

⎢⎣

u2

(1+u)2 (1 − r)2 2u2

(1+u)2 r(1 − r) u2

(1+u)2 r2

2u
(1+u)2 r(1 − r) 2u

(1+u)2 [(1 − r)2 + r2] 2u
(1+u)2 r(1 − r)

1
(1+u)2 r2 2

(1+u)2 r(1 − r) 1
(1+u)2 (1 − r)2

⎤

⎥⎦ ,
(6.2)

denoted by P = {pij , i = 2, 1, 0; j = 2, 1, 0}.
The data matrix is given by

BB Bb bb

n =
AA
Aa
aa

⎡

⎣
n22 n21 n20

n12 n11 n10

n02 n01 n00

⎤

⎦ .

The likelihood function of the data is

L(u, r|n) =
n!

n22!n21! · · ·n00!

2∏

i=0

2∏

j=0

p
nij

ij .

Based on matrix (6.2), it is not difficult to derive the MLE of the viability coeffi-
cient as
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û =
2(n22 + n21 + n20) + n12 + n11 + n10

2(n − n22 − n21 − n20) − (n12 + n11 + n10)
.

The MLE of the recombination fraction in the F2 can also be obtained from
matrix (6.2). But the EM algorithm is necessary because no closed form for r̂ can be
derived. By looking closely at matrix (6.2), we found that the expected numbers of
recombinants within the corresponding cells are actually unchanged when one marker
displays viability disturbance. This is because the coefficients within each cell contain
no information about the recombination fraction. Thus, we can estimate r̂ directly
using formulas in the M step,

r̂ =
1
2n

[n12 + n21 + n10 + n01 + 2(n02 + n20) + φn11],

where

φ =
2r2

(1 − r)2 + r2
,

in the E step, is used to calculate the expected number of recombinants for the double
heterozygote (see Chapter 3). In closing, linkage analysis in the F2 is also not affected
by viability effects of one marker, as in the backcross.

The sampling variances of the MLEs of the recombination fraction and viability
coefficient in the F2 can be derived as

var(r̂) =
r(1 − r)(1 − 2r + 2r2)2(1 + u)2

2n((2r2 − 2r + 1)u2 + (8r2 − 8r + 2)u + 2r2 − 2r + 1)
,

var(û) =
u(1 + u)2

2n
.

Similarly, we can test the hypothesis about the existence of viability disturbance.

6.2.2 Two-Gene Model

We now turn to the more general case in which both genes are disturbed by viability
effects. Suppose that, in addition to the parameter u defined above for the relative
excess of A over a, we also have v for the viability of B relative to b. We also assume
that the two viability effects operate independently of one another.

Backcross AaBb × aabb

The observations and expectations for a double backcross are now as shown below:

Gamete Expected Observed

AB uv
d (1 − r) n1

Ab u
d r n2

aB v
dr n3

ab 1
d (1 − r) n4

Total 1 n
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where
d = uv(1 − r) + ur + vr + (1 − r).

The likelihood of the data is

L(u, r|n) =
n!

n1!n2!n3!n4!

[uv

d
(1 − r)

]n1
[u

d
r
]n2

[v

d
r
]n3

[
1
d
(1 − r)

]n4

.

The MLEs of the three parameters can be obtained in the usual way:

r̂ =
√

n2n3√
n1n4 +

√
n2n3

,

û =
√

n1n2

n3n4
,

v̂ =
√

n1n3

n2n4
.

We further obtain the sampling variances

var(r̂) =
r2(1 − r)2

h
,

var(û) =
u2

h
,

var(v̂) =
v2

h
,

where
h =

4n1n2n3n4

n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4
.

We can formulate log-likelihood ratio test statistics to test for the existence of
linkage and viability effects for two markers. From the analysis above, the test and
detection of linkage between two distorted markers cannot be conducted using the
formula derived for the two markers neither or only one of which has the deviation
from the Mendelian segregation ratio.

Example 6.2. Consider the differential viability of both markers in the data in Exam-
ple 6.1.

The MLEs of the recombination fraction and viability coefficient with their large-
sample variances are thus

r̂ =
√

2 × 1√
50 × 32 +

√
2 × 1

= 0.0341,

û =

√
50 × 2
1 × 32

= 1.7678,

v̂ =

√
50 × 1
2 × 32

= 0.8839,



6.2 Gametic Differential Viability 129

and

h =
4n1n2n3n4

n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4
= 2.5786,

var(r̂) =
0.03412(1 − 0.0341)2

2.5786
= 0.000422,

var(û) =
1.76782

2.5786
= 1.2119,

var(v̂) =
0.88392

2.5786
= 0.3030.

The log-likelihood for viability disturbance on both the A and B loci is

LL2 = 50 log
[
(1 − 0.0341)1.7678 × 0.8839

2.5655

]
+ 2 log

[
0.0341 × 1.7678

2.5655

]

+1 log
[
0.0341 × 0.8839

2.5655

]
+ 32 log

[
1 − 0.0341

2.5655

]
= −69.734,

where d̂ = ûv̂(1 − r̂) + ûr̂ + v̂r̂ + (1 − r̂) = 2.5655.
The LR statistic for viability disturbance on the A and B loci versus no distur-

bance is

LR = −2 log
[
L(u = 1, v = 1, r̂)

L(û, v̂, r̂)

]
= −2[−71.8961 − (−69.7344)] = 4.3234.

Compared with χ2
0.05(2) = 5.991, the viability disturbance is not significant.

Double Intercross AaBb × AaBb F2

When both markers are distorted, we have the frequencies of the nine genotypes in
the F2 population as

BB Bb bb

F =
AA
Aa
aa

⎡

⎢⎣

u2v2

d2 (1 − r)2 2u2v
d2 r(1 − r) u2

d2 r2

2uv2

d2 r(1 − r) 2uv
d2 [(1 − r)2 + r2] 2u

d2 r(1 − r)
v2

d2 r2 2v
d2 r(1 − r) 1

d2 (1 − r)2

⎤

⎥⎦ ,
(6.3)

=

⎡

⎣
(1 − r)2 2r(1 − r) r2

2r(1 − r) 2[(1 − r)2 + r2] 2r(1 − r)
r2 2r(1 − r) (1 − r)2

⎤

⎦ ◦

⎡

⎢⎣

u2v2

d2
u2v
d2

u2

d2

uv2

d2
uv
d2

u
d2

v2

d2
v
d2

1
d2

⎤

⎥⎦(6.4)

= Fr ◦ Fuvr,

where ◦ stands for the elementwise product between the two matrices, the first (Fr)
only associated with r and the second (Fuvr) with u, v, and r.

The EM algorithm can be used to provide the MLE of r based on matrix (6.3), but
this will be difficult to derive because the coefficients within each cell of this matrix
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contain r. By dividing the matrix (6.3) into two component matrices in matrix (6.4),
however, we can simplify this derivation process. The MLE of r based on the first
component matrix, Fr, has been given, as can be seen in Section 3.5.2, which includes
the E step to calculate the expected number of recombination events for the double
F2 heterozygote AaBb using φ = 2r2

(1−r)2+r2 . The MLE of r based on the second
component matrix, Fuvr, can be obtained by maximizing the likelihood constructed
by matrix (6.3) and the observation matrix n. The likelihood is given by

log L = 1T (n ◦ log F)1
= 1T [n ◦ log(F ◦ Fuvr)]1
= 1T (n ◦ log F)1 + 1T (n ◦ Fuvr)1,

where 1 = (1, 1, 1).
Combining these two processes leads to the M step, as given below, to estimate

r by

r̂ =
1
2n

[n12 + n21 + n10 + n01 + 2(n02 + n20) + φn11]

+
(u − 1)(v − 1)(1 − r)r

d
,(6.5)

where the estimates of the viability coefficients are obtained by

û =
[2(n22 + n21 + n20) + n12 + n11 + n10][vr + (1 − r)]

[2(n − n22 − n21 − n20) − (n12 + n11 + n10)][v(1 − r) + r]
,

v̂ =
[2(n22 + n12 + n02) + n21 + n11 + n01][ur + (1 − r)]

[2(n − n22 − n12 − n02) − (n21 + n11 + n01)][u(1 − r) + r]
.

In the F2, the estimation of the linkage will be affected when both markers are
distorted. The existence of the linkage and viability effects can be tested using the
likelihood ratio test.

The Fisher information matrix for r, u, and v can be derived as

2n

⎡

⎢⎢⎢⎣

u(1−2r+2r2)(uv+(v+1)2)−2uv+v+2rv(r−1)
r(2r2−2r+1)(1−r)d2

v2−1
d2

u2−1
d2

v2−1
d2

(vr+1−r)(rv−v−r)
ud2

2r−1
d2

u2−1
d2

2r−1
d2

(ur+1−r)(ur−u−r)
vd2

⎤

⎥⎥⎥⎦ .

The sampling variances of the MLEs of the recombination fraction and viability co-
efficients in the F2 can be derived from the inverse of the Fisher information matrix.

6.2.3 Simulation

We have described the equations for estimating the recombination fraction between
distorted markers. But it is unclear how gametic viability influences the estimate of
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the recombination fraction. This can be examined by simulation studies. A marker
genotype data set was simulated for a backcross of different sample sizes (n = 80 or
200) for two viability markers displaying tight (r = 0.05) or loose linkages (r = 0.35).
The simulated data were analyzed with the viability model (1) proposed in Section
6.2.2 as well as the linkage model (2) used for normal markers.

Table 6.1. The MLEs of the recombination fraction between two distorted markers with
different degrees of gametic viability disturbance in the backcross progeny. The sampling
errors (SE) of the estimates are given from 100 simulation replicates.

Model 1 Model 2

(u, v, r) r̂ ± SE û ± SE v̂ ± SE r̂0 ± SE

n = 80

(1.0, 1.0, 0.05) 0.053 ± 0.021 1.099 ± 0.438 1.067 ± 0.409 0.056 ± 0.022

(1.0, 1.0, 0.35) 0.359 ± 0.054 1.064 ± 0.226 1.014 ± 0.237 0.359 ± 0.052

(1.0, 1.0, 0.05) 0.053 ± 0.021 1.099 ± 0.438 1.067 ± 0.409 0.056 ± 0.022

(1.0, 1.0, 0.35) 0.359 ± 0.054 1.064 ± 0.226 1.014 ± 0.237 0.359 ± 0.052

(2.0, 2.0, 0.05) 0.062 ± 0.023 2.410 ± 1.112 2.119 ± 0.989 0.053 ± 0.020

(2.0, 2.0, 0.35) 0.362 ± 0.056 2.156 ± 0.596 2.045 ± 0.544 0.313 ± 0.047

n = 200

(1.0, 1.0, 0.05) 0.047 ± 0.017 1.123 ± 0.453 1.054 ± 0.435 0.050 ± 0.016

(1.0, 1.0, 0.35) 0.354 ± 0.033 0.996 ± 0.144 1.017 ± 0.163 0.355 ± 0.033

(1.0, 1.0, 0.05) 0.053 ± 0.021 1.099 ± 0.438 1.067 ± 0.409 0.056 ± 0.022

(1.0, 1.0, 0.35) 0.359 ± 0.054 1.064 ± 0.226 1.014 ± 0.237 0.359 ± 0.052

(2.0, 2.0, 0.05) 0.049 ± 0.018 2.115 ± 0.857 2.230 ± 0.945 0.042 ± 0.014

(2.0, 2.0, 0.35) 0.349 ± 0.042 2.043 ± 0.365 1.989 ± 0.329 0.302 ± 0.034

As expected, the recombination fraction can be reasonably estimated by the two
models when at least one marker is not distorted (u = 1 and/or v = 1) (Table
6.1). But when both markers are distorted by gametic viability, the estimate of the
second model will be largely biased, especially when two markers are tightly linked,
whereas the first model can always provide a reasonable estimate of r. The estimate
of the second model is more precise (with smaller sampling errors), especially for a
small sample size, than that of the first model, mainly because the former has fewer
parameters being estimated (1) than the latter (3). But this advantage in precision
comes with a large bias.
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The coefficients of gametic viability (u and v) can be poorly estimated with a
small sample size, although this does not affect the estimate of the recombination
fraction (Table 6.1). To increase the estimation accuracy and precision of u and v,
a large sample size is required. Similar findings have been obtained for simulation
studies of the F2 population.

6.3 Zygotic Differential Viability

6.3.1 One-Gene Model

The influence of zygotic differential viability can also occur at the genotype level. For
the backcross, the models derived to study the effect of gametic viability disturbance
can be used directly to examine zygotic viability disturbance. Here, we will focus our
discussion on the modelling of zygotic differential viability in the F2 progeny.

Consider an F2 design in which there are three genotypes at each marker. If only
one marker (say A) displays zygotic viability effects, we can assume that the viability
of AA relative to Aa is u1 and the viability of Aa relative to aa is u2. Thus, the overall
proportions of the three genotypes should be u1u2/U for AA, 2u2/U for Aa, and 1/U
for aa, where U = u1u2 + 2u2 + 1. The expected frequencies of nine F2 genotypes are
a function of the viability coefficients and the recombination fraction, arrayed by

BB Bb bb
AA
Aa
aa

⎡

⎣
u1u2

U (1 − r)2 2u1u2
U r(1 − r) u1u2

U r2

2u2
U r(1 − r) 2u2

U [(1 − r)2 + r2] 2u2
U r(1 − r)

1
U r2 2

U r(1 − r) 1
U (1 − r)2

⎤

⎦ .
(6.6)

The MLE of r is obtained by the EM algorithm for a normal F2 because the
coefficients within each cell in matrix (6.6) are not dependent on the recombination
fraction. It can be seen that the estimate of r is not affected by the zygotic differential
viability of one marker. Parameters u1 and u2 are obtained by

û1 =
2(n22 + n21 + n20)
n12 + n11 + n10

,

û2 =
n12 + n11 + n10

2(n02 + n01 + n00)
.

The Fisher information matrix is

I = n

⎡

⎢⎢⎢⎣

2(2r2−2r+1)(u1u2+1)+4u2(1−2r)2

Ur(1−r)(2r2−2r+1) 0 0

0 u2(2u2+1)
u1U2 − 1

U2

0 − 1
U2

u1+2
u2U2

⎤

⎥⎥⎥⎦ .

The sampling variances of the MLEs of the recombination fraction and zygotic
viability coefficients in the F2 can then be derived as
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var(r̂) =
Ur(1 − r)(2r2 − 2r + 1)

2n[(2r2 − 2r + 1)(u1u2 + 1) + 2u2(1 − 2r)2]
,

var(û1) =
U(u1 + 2)u1

2nu2
,

var(û2) =
U(2u2 + 1)u2

2n
.

6.3.2 Two-Gene Model

Let us consider the situation in which both markers have viability effects. The viability
effects of the second marker B can be similarly denoted using v1 and v2. If the two
genes are subject to viability disturbances, the elements in matrix (6.6) should be
changed to consider the influences of the second marker,

BB Bb bb

F =
AA
Aa
aa

⎡

⎣
u1u2v1v2

d (1 − r)2 2u1u2v2
d r(1 − r) u1u2

d r2

2u2v1v2
d r(1 − r) 2u2v2

d [(1 − r)2 + r2] 2u2
d r(1 − r)

v1v2
d r2 2v2

d r(1 − r) 1
d (1 − r)2

⎤

⎦ ,

=

⎡

⎣
(1 − r)2 2r(1 − r) r2

2r(1 − r) 2[(1 − r)2 + r2] 2r(1 − r)
r2 2r(1 − r) (1 − r)2

⎤

⎦◦

⎡

⎣
u1u2v1v2

d
u1u2v2

d
u1u2

d
u2v1v2

d
u2v2

d
u2
d

v1v2
d

v2
d

1
d

⎤

⎦

= Fr ◦ Fu1u2v1v2r,(6.7)

where

d = u1u2v1v2(1 − r)2 + 2u2v1v2r(1 − r) + v1v2r
2 + 2u1u2v2r(1 − r)

+2u2v2[(1 − r)2 + r2] + 2v2r(1 − r) + u1u2r
2 + 2u2r(1 − r) + (1 − r)2.

Two component matrices in (6.7) each contain the recombination fraction. The
EM algorithm can be formulated to estimate r for the first component matrix, Fr.
In conjunction with the effect of the second component matrix, Fu1u2v1v2r, on the
estimate of r, we have the overall MLE of r expressed as

r̂ =
1
2n

(n12 + n21 + n10 + n01 + 2(n02 + n20) + φn11) −
r(1 − r)

2d

∂d

∂r
,(6.8)

where

∂d

∂r
= 2[u1u2v1v2(r − 1) + u2v1v2(1 − 2r) + v1v2r + u1u2v2(1 − 2r)

+u2v2(4r − 2) + v2(1 − 2r) + u1u2r + u2(1 − 2r) − 1 + r].

The four viability coefficients u1, u2, v1, and v2 can be estimated simultaneously:
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û1 =
(n22 + n21 + n20)d

n[u2v1v2(1 − r)2 + u2r2 + 2u2v2r(1 − r)]
,

û2 =
(n22 + n21 + n20 + n12 + n11 + n10)d

n[(u1v1v2 + 2v2)(1 − r)2 + (u1 + 2v2)r2 + 2(v1v2 + u1v2 + 1)r(1 − r)]
,

v̂1 =
(n22 + n12 + n02)d

n[u1u2v2(1 − r)2 + v2r2 + 2u2v2r(1 − r)]
,

v̂2 =
(n22 + n12 + n02 + n21 + n11 + n01)d

n[(u1u2v1 + 2u2)(1 − r)2 + (v1 + 2u2)r2 + 2(u1u2 + u2v1 + 1)r(1 − r)]
.

6.3.3 Simulation

The influence of zygotic viability on the estimate of the recombination fraction is
examined through simulation studies. We simulated two markers that display different
degrees of zygotic viability for the F2 of sample sizes n = 80 and 200. These two
markers can be tightly (r = 0.05) or loosely linked (r = 0.35). The simulated data
were analyzed with the viability model (1) proposed in Section 6.3 as well as the
linkage model (2) used for normal markers.

When only one marker is distorted, the estimation accuracy is not affected by
viability disturbance (Table 6.2). However, if both markers are distorted, model 1
performs better than model 2 in terms of estimation accuracy. This is especially true
for two loosely linked markers in which the estimate of r may be very downward
biased. More importantly, the estimate by model 2 can be little improved if the
sample size is more than doubled (from 80 to 200). It should be noted that model 1
may have low estimation accuracy and precision for a small sample size, but this can
be improved dramatically when the sample size is increased (Table 6.2).

The model described in Section 6.3 also allows estimates of the coefficients of
gametic viability disturbance (u1, u2 and v1, v2) for the two markers. The estimates
of these two coefficients are affected by sample sizes and the degree of linkage. As
expected, more sample sizes provide better estimates. But these two coefficients can
be better estimated when the two markers are tightly linked rather than loosely.

6.4 Misclassification

6.4.1 One-gene Model

In practice, it is possible to misclassify one genotype as the other due to human
errors. For example, in a double backcross AaBb × aabb, there may be a proportion
of λ of allele A that is misclassified as a (irrespective of whether these two alleles are
associated with B or b). The appropriate expected frequencies and observed number
of genotypes or gametes in a backcross population are shown below:
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Gamete Expected Observed

AB 1
2 (1 − r)(1 − λ) n1

Ab 1
2r(1 − λ) n2

aB 1
2 [r + λ(1 − r)] n3

ab 1
2 [(1 − r) + λr] n4

Total 1 n

The expectations are derived because a proportion λ of each of the first two gamete
classes involving A has been transferred to the corresponding one involving a but with
the same B or b classification.

The maximum likelihood estimation of the two parameters r and λ is straightfor-
ward. We have

r̂ =
n2(n1 + n3)

n2(n1 + n3) + n1(n2 + n4)
,

λ̂ =
n3n4 − n1n2

(n1 + n3)(n2 + n4)
.

The sampling variances of these estimators are

var(r̂) =
2r(1 − r)

n

[
1

1 − λ
− 2r(1 − r)

]
,

var(λ̂) =
2(1 − λ)2

n

[
λ

1 − λ
+ 2r(1 − r)

]
.

Although A is misclassified as a, it is possible to have the reverse misclassification;
i.e., a → A. The formulas for this alternative pattern can be derived by suitably
changing the observational symbols n1, n2, n3, and n4.

When misclassification occurs in the formation of genotypes in the F2, similar
formulas can be derived to explore its influences on the estimates of the recombination
fraction. In so doing, we assume that such misclassification arises from the ambiguity
of individual alleles. Thus, the formulation for the backcross above can be extended
to model misclassification in the F2. The expected frequencies of the F2 genotypes
after gene A is misclassified are expressed as

BB Bb bb

AA
Aa
aa

[ 1
4 (1 − λ)2(1 − r)2 1

2 (1 − λ)2r(1 − r) 1
4 (1 − λ)2r2

1
2 (1 − λ)(1 − r)(r + λ(1 − r)) 1

2 (1 − λ)[r2 + (1 − r)2 + 2λr(1 − r)] 1
2 (1 − λ)r(1 − r + λr)

1
4 [r + λ(1 − r)]2 1

2 [λr2 + λ(1 − r)2 + (1 + λ2)r(1 − r)] 1
4 [(1 − r) + λr]2

]
.

(6.9)

We derive the EM algorithm to estimate the recombination fraction r. It is not
difficult to find the expected number of recombinants within each cell in the matrix
(6.9), expressed as
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BB Bb bb
AA
Aa
aa

⎡

⎣
0 1 2
φ1 2φ2 φ3

2φ4 φ5 φ6

⎤

⎦ ,

where

φ1 =
r(1 − r)

r(1 − r) + λ(1 − r)2
,

φ2 =
r2 + λr(1 − r)

r2 + (1 − r)2 + 2λr(1 − r)
,

φ3 = 1 +
λr2

r(1 − r) + λr2
,

φ4 =
r

r + λ(1 − r)
,

φ5 =
2λr2 + (1 + λ2)r(1 − r)

λr2 + λ(1 − r)2 + (1 + λ2)r(1 − r)
,

φ6 =
2λr

(1 − r) + λr
.

(6.10)

The recombination fraction can be estimated using equation

(6.11) r̂ =
1
2n

(n21 + 2n20 + φ1n12 + 2φ2n11 + φ3n10 + 2φ4n02 + φ5n01 + φ6n00).

In the E step, the expected number of recombinants for each genotype is calculated
using equation (6.10). These expected numbers are used to update the estimate of r
with equation (6.11) in the M step. These two steps are iterated until r converges to
a stable value.

It can be seen that the estimate of r is affected by the degree of misclassification
λ but not affected by the estimate of λ. The MLE of λ in the F2 is given by solving
the third-order polynomial equation

n1

1 − λ
=

n2

λ + r
1−r

+
n3

λ + 1−r
r

+
n11

λ + r2+(1−r)2

2r(1−r)

,

where

n1 = 2(n22 + n21 + n20) + n12 + n11 + n10,

n2 = n12 + 2n02 + n01,

n3 = n10 + 2n00 + n01.
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The sampling variances of r̂ and λ̂ can be obtained by

var(r̂) =
{r2[12(1 − λ̂)2r̂(r̂ − 2) + 13λ̂2 − 34λ̂ + 21] − (λ̂2 − 10λ̂ + 9)r + 2}r̂(1 − r̂)

n(1 − λ̂)[2 − λ̂ − 6(1 − λ̂)r̂(1 − r̂)]
,

var(λ̂) =
λ̂(1 − λ̂) + 2(1 − λ̂)2r̂(1 − r̂)

n
.

6.4.2 Two-Gene Model

When two genes are both misclassified, we should introduce an additional proportion
for allele B misclassified as b. Let the misclassified proportions be λ1 and λ2 for
markers A and B, respectively. Assuming that these two proportions are independent,
we have the expected numbers of each of the four backcross genotypes, along with
their observations, as follows

Gamete Expected Observed

AB 1
2 (1 − λ1)(1 − λ2)(1 − r) n1

Ab 1
2 (1 − λ1)[r + λ2(1 − r)] n2

aB 1
2 (1 − λ2)[r + λ1(1 − r)] n3

ab 1
2 [r(λ1 + λ2) + (1 − r)(1 + λ1λ2)] n4

Total 1 n

The MLE of the recombination fraction and the proportion of misclassifications
can be derived as

r̂ = 1 − n1n

2(n1 + n2)(n1 + n3)
,

λ̂1 =
(n3 + n4) − (n1 + n2)

n
,

λ̂2 =
(n2 + n4) − (n1 + n3)

n
.

The sampling variances of the MLEs of r, λ1, and λ2 are

var(r̂) =
nn1[n(n2

1 + n2n3) − n1(n1 + n2)(n1 + n3)]
4(n1 + n2)3(n1 + n3)3

,

var(λ̂1) =
1 − λ2

1

n
,

var(λ̂2) =
1 − λ2

2

n
.

It is difficult to estimate the recombination fraction when both markers are mis-
classified in the F2. With the assumption that misclassification arises from the am-
biguity of individual alleles, we derive the expected frequencies of the F2 genotypes
after both genes A and B are misclassified, expressed as
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Genes Expected Frequencies Obs.

AA BB (1 − λ1)2(1 − λ2)2(1 − r)2/4 n22

AA Bb (1 − λ1)2(1 − λ2)(1 − r)(r + λ2(1 − r))/2 n21

AA bb (1 − λ1)2(r + λ2(1 − r))2/4 n20

Aa BB (1 − λ1)(1 − λ2)2(1 − r)(r + λ1(1 − r))/2 n12

Aa Bb (1 − λ1)(1 − λ2)[2r(1 − r)(λ1 + λ2) + r2 + (1 − r)2(2λ1λ2 + 1)] n11

Aa bb (1 − λ1)(r + λ2(1 − r))((1 − r)(1 + λ1λ2) + (λ1 + λ2)r)/2 n10

aa BB (1 − λ2)2(r + λ1(1 − r))2/4 n02

aa Bb ((1 − r)(1 + λ1λ2) + (λ1 + λ2)r)(r + λ1(1 − r))(1 − λ2)/2 n01

aa bb ((1 − r)(1 + λ1λ2) + (λ1 + λ2)r)2/4 n00

The expected numbers of recombinants within each cell in the table above are
expressed as

BB Bb bb
AA
Aa
aa

⎡

⎣
0 φ1 2φ2

φ3 2φ4 φ5

2φ6 φ7 φ8

⎤

⎦ ,

where

φ1 =
r(1 − r)

r(1 − r) + λ2(1 − r)2
,

φ2 =
r

r + λ2(1 − r)
,

φ3 =
r(1 − r)

r(1 − r) + λ1(1 − r)2
,

φ4 =
r(1 − r)(λ1 + λ2) + r2

2r(1 − r)(λ1 + λ2) + r2 + (1 − r)2(2λ1λ2 + 1)
,

φ5 =
2r2(λ1 + λ2) + (λ2

2 + 2λ1λ2 + 1)r(1 − r)
[(1 − r)(1 + λ1λ2) + (λ1 + λ2)r](r + λ2(1 − r))

,

φ6 =
r

r + λ1(1 − r)
,

φ7 =
2r2(λ1 + λ2) + (λ2

1 + 2λ1λ2 + 1)r(1 − r)
[(1 − r)(1 + λ1λ2) + (λ1 + λ2)r](r + λ1(1 − r))

,

φ8 =
2(λ1 + λ2)r

(1 − r)(1 + λ1λ2) + (λ1 + λ2)r
.

(6.12)

The recombination fraction can be estimated using equation
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r̂ =
1
2n

(φ1n21 + 2φ2n20 + φ3n12 + 2φ4n11

+φ5n10 + 2φ6n02 + φ7n01 + φ8n00).(6.13)

The EM algorithm is formulated to estimate r. In the E step, the expected number of
recombinants for each genotype is calculated using equations (6.12). These expected
numbers are used to update the estimate of r with equation (6.13) in the M step.
These two steps are iterated until r converges to a stable value.

Again, for two misclassified markers, the estimate of r is not affected by the
estimate of λ, although the former is affected by the degree of misclassification λ.
The MLEs of λ1 and λ2 in the F2 are given by solving the third-order polynomial
equations

n1

1 − λ1
=

n2

λ1 + r
1−r

+
n3

λ1 + 1−r+λ2r
(1−r)λ2+r

+
n11

λ1 + r2+(1−r)2+2λ2r(1−r)
2r(1−r)+2λ2(1−r)2

,

m1

1 − λ2
=

m2

λ2 + r
1−r

+
n3

λ2 + 1−r+λ1r
(1−r)λ1+r

+
n11

λ2 + r2+(1−r)2+2λ1r(1−r)
2r(1−r)+2λ1(1−r)2

,

where

n1 = 2(n22 + n21 + n20) + n12 + n11 + n10,

n2 = n12 + 2n02 + n01,

n3 = n10 + 2n00 + n01,

m1 = 2(n22 + n12 + n02) + n21 + n11 + n01,

m2 = n21 + 2n20 + n10.

The sampling variances of the MLEs of r, λ1, and λ2 are

var(r̂) =
{
(1 − r)[24(1 + λ2

1λ
2
2 + λ2

2 − 2λ2
2λ1 − 2λ1 − 2λ2 + λ2

1 + 4λ1λ2 − 2λ2
1λ2)r4

+(100λ2 − 56λ2
2 + 100λ1 − 56λ2

1 − 240λ1λ2 − 44 − 84λ2
1λ

2
2 + 140λ2

1λ2 + 140λ2
2λ1)r3

+(−144λ2
2λ1 + 42λ2

1 + 42λ2
2 + 110λ2

1λ
2
2 − 144λ2

1λ2 + 34 − 76λ2 + 212λ1λ2 − 76λ1)r2

+(59λ2
2λ1 − 12 + 59λ2

1λ2 − 64λ2
1λ

2
2 + 27λ1 − 11λ2

1 − 82λ1λ2 − 11λ2
2 + 27λ2)r

+(2 + λ2
2 − 7λ2

2λ1 − 7λ2
1λ2 − 3λ1 + 14λ2

1λ
2
2 − 3λ2 + 14λ1λ2 + λ2

1)]
}

/
{
2n(1 − λ2)(1 − λ1)[6(λ1λ2 + 1 − λ1 − λ2)r2 + 2(3λ1 − 5λ1λ2 − 3 + 3λ2)r

+ 4λ1λ2 − λ1 − λ2 + 2]
}

,

var(λ̂1) =
1 − λ2

1

2n
,

var(λ̂2) =
1 − λ2

2

2n
.
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6.5 Simulation

The influence of marker misclassification on the estimate of the recombination frac-
tion is investigated through simulation studies. Two markers are simulated for both
the backcross and F2 with different degrees of marker misclassification (λ1, λ2). The
sample sizes considered are 80 and 200, and there are degrees of linkage (r = 0.05
and 0.35). The simulated data are analyzed by both the model (1) that incorporates
marker misclassification and the model (2) that does not.

Table 6.3. The MLEs of the recombination fraction between two misclassified markers in the
backcross progeny. The sampling errors (SE) of the estimates are given from 100 simulation
replicates.

Model 1 Model 2

(λ1, λ2, r) r̂ ± SE λ̂1 ± SE λ̂2 ± SE r̂0 ± SE

n = 80

(0.0, 0.0, 0.05) 0.060 ± 0.107 −0.020 ± 0.119 −0.019 ± 0.116 0.054 ± 0.026

(0.0, 0.0, 0.35) 0.349 ± 0.060 0.014 ± 0.098 0.003 ± 0.121 0.354 ± 0.052

(0.0, 0.1, 0.05) 0.040 ± 0.095 0.004 ± 0.109 0.109 ± 0.106 0.099 ± 0.032

(0.0, 0.1, 0.35) 0.351 ± 0.059 −0.015 ± 0.102 0.107 ± 0.108 0.366 ± 0.051

(0.2, 0.3, 0.05) 0.033 ± 0.124 0.198 ± 0.107 0.304 ± 0.096 0.215 ± 0.047

(0.2, 0.3, 0.35) 0.339 ± 0.090 0.208 ± 0.106 0.311 ± 0.103 0.382 ± 0.048

n = 200

(0.0, 0.0, 0.05) 0.043 ± 0.069 0.002 ± 0.077 0.002 ± 0.075 0.050 ± 0.015

(0.0, 0.0, 0.35) 0.353 ± 0.040 0.001 ± 0.070 0.001 ± 0.071 0.354 ± 0.034

(0.0, 0.1, 0.05) 0.041 ± 0.069 0.005 ± 0.073 0.098 ± 0.072 0.093 ± 0.021

(0.0, 0.1, 0.35) 0.350 ± 0.040 −0.006 ± 0.062 0.090 ± 0.067 0.363 ± 0.034

(0.2, 0.3, 0.05) 0.043 ± 0.073 0.206 ± 0.064 0.310 ± 0.068 0.220 ± 0.028

(0.2, 0.3, 0.35) 0.347 ± 0.062 0.201 ± 0.069 0.302 ± 0.069 0.385 ± 0.035

When λ1 = λ2 = 0 (i.e., there is no marker misclassification), models 1 and
2 provide similarly good results (Tables 6.3 and 6.4). When one of the markers is
misclassified to some extent, model 1 quickly ill-behaves, and its estimate is very
biased, especially for a tight linkage. For example, when λ2 = 0.1, model 1 estimates
the true r = 0.05 as over 0.09. This is not improved when the size of the sample
is increased. Model 1 can generally provide good estimates of r even when both
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Table 6.4. The MLEs of the recombination fraction between two misclassified markers in
the F2 progeny. The sampling errors (SE) of the estimates are given from 100 simulation
replicates.

Model 1 Model 2

(λ1, λ2, r) r̂ ± SE λ̂1 ± SE λ̂2 ± SE r̂0 ± SE

n = 80

(0.0, 0.0, 0.05) 0.050 ± 0.049 −0.045 ± 0.183 −0.033 ± 0.169 0.048 ± 0.018

(0.0, 0.0, 0.35) 0.352 ± 0.049 −0.000 ± 0.082 −0.005 ± 0.073 0.354 ± 0.044

(0.0, 0.1, 0.05) 0.053 ± 0.052 −0.005 ± 0.064 0.100 ± 0.065 0.098 ± 0.024

(0.0, 0.1, 0.35) 0.369 ± 0.060 −0.014 ± 0.077 0.111 ± 0.078 0.385 ± 0.053

(0.2, 0.3, 0.05) 0.073 ± 0.063 0.196 ± 0.079 0.296 ± 0.071 0.225 ± 0.034

(0.2, 0.3, 0.35) 0.341 ± 0.085 0.193 ± 0.075 0.296 ± 0.084 0.372 ± 0.047

n = 200

(0.0, 0.0, 0.05) 0.050 ± 0.040 −0.002 ± 0.045 −0.003 ± 0.046 0.049 ± 0.012

(0.0, 0.0, 0.35) 0.350 ± 0.030 −0.005 ± 0.048 −0.005 ± 0.046 0.349 ± 0.028

(0.0, 0.1, 0.05) 0.049 ± 0.036 0.001 ± 0.042 0.102 ± 0.041 0.097 ± 0.015

(0.0, 0.1, 0.35) 0.356 ± 0.034 0.001 ± 0.051 0.096 ± 0.045 0.371 ± 0.030

(0.2, 0.3, 0.05) 0.053 ± 0.045 0.201 ± 0.045 0.292 ± 0.048 0.215 ± 0.021

(0.2, 0.3, 0.35) 0.350 ± 0.056 0.200 ± 0.051 0.293 ± 0.045 0.373 ± 0.030

markers are misclassified. The estimation accuracy of r by model 1 can be dramatically
increased with increasing sample size. Because model 2 has fewer parameters to be
estimated than model 1, the former displays superior estimation precision over the
latter. But this advantage of model 1 is not useful given its large biased estimate. The
estimation precision of model 1 is increased with increasing sample size.

The backcross and F2 display similar trends for parameter estimation. But it is
observed that the F2 (Table 6.4) is better in terms of estimation accuracy and precision
than the backcross (Table 6.3). This may be because the F2 contains a larger amount
of information than the backcross.

6.6 Exercises

6.1 One-gene model in the F2

In a mapping experiment, one wishes to estimate the linkage between two markers, A and
B, in the F2. One of the markers (A) is distorted due to gametic viability disturbance,
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but the other marker (B) is normal. The nine genotypes in this F2 progeny are observed
as follows:

BB Bb bb
AA
Aa
aa

[
n22 = 111 n21 = 32 n20 = 1
n12 = 56 n11 = 123 n10 = 13
n02 = 7 n01 = 32 n00 = 25

]
.

Derive the EM algorithm to calculate the recombination fraction, r, between the two
markers based on the matrix above in the following cases.
(a) Markers A and B are both codominant. Show why the estimation of r is not depen-

dent on the viability disturbance of marker A.
(b) The distorted marker A is dominant.
(c) The normal marker B is dominant.
(d) Both markers A and B are dominant.
(e) Show why the estimation of r is affected by the viability disturbance of a marker

when at least one of the markers is dominant.
6.2 Two-gene model in the F2

For two markers A and B distorted due to gametic viability, the observations of the
nine genotypes are obtained for the F2 as follows:

BB Bb bb
AA
Aa
aa

[
n22 = 265 n21 = 33 n20 = 3
n12 = 48 n11 = 39 n10 = 2
n02 = 2 n01 = 6 n00 = 2

]
.

Derive the EM algorithm to calculate the recombination fraction, r, between the two
markers based on matrix (6.2) in the following cases.
(a) Markers A and B are both codominant.
(b) The distorted marker A is dominant.
(c) The normal marker B is dominant.
(d) Both markers A and B are dominant.
(e) Show why the estimation of r is affected by the viability disturbance of a marker

when at least one of the markers is dominant.
6.3 Do the same things as required in Exercises 6.1 and 6.2 if one or two markers are

distorted due to zygotic viability, respectively.
6.4 If the matrices in Exercises 6.1 and 6.2 contain the results for the misclassification of

one marker (e.g., marker A), perform the following.
(a) Calculate the coefficient of marker misclassification and test its significance.
(b) Estimate the recombination fraction and test its significance.
(c) Based on the conclusions of simulation studies, analyze the possible accuracy and

precision of your estimate of r.
6.5 Do the same thing as Exercise 6.3 if both markers are misclassified.
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Special Considerations in Linkage Analysis

7.1 Introduction

In the preceding chapters, we discussed linkage analysis for a single controlled cross
derived from inbred lines or outbred lines. We described a general framework for
performing linkage analysis with any type of marker, fully or partially informative,
that is qualitatively scored on the presence or absence of a DNA band for an allele.
For an outbred cross, the procedure was given to simultaneously estimate the linkage,
parental diplotype, and gene order. However, there are many situations in practice in
which the strategies for linkage analysis described thus far cannot be appropriately
used. In this chapter, we will consider two important issues that have been common
or are becoming increasingly common in linkage analysis. The first concerns linkage
analysis in a complicated nuclear pedigree, whereas the second deals with linkage
analysis based on quantitative marker information.

7.2 Linkage Analysis with a Complicated Pedigree

The prerequisite for the use of a single cross in linkage analysis is the availability of a
sufficiently large sample size. Although this can be easily met in plants, the generation
of too many offspring from a single cross is difficult or even impossible for most an-
imals and humans. For these organisms, the method for performing linkage analysis
is to combine all possible individuals (including parents) derived from multiple re-
lated or unrelated families. In this section, we will introduce an approach for linkage
analysis in a structured multigeneration pedigree initiated with multiple parents (or
founders). Because the diplotypes of each founder are unknown, this approach should
be implemented with the estimation of parental diplotype probabilities.

7.2.1 A Nuclear Family

To understand the principle of linkage analysis for a complicated pedigree, we start
with a simple nuclear family. Assume that two parents generate three offspring. All



146 7 Special Considerations in Linkage Analysis

these individuals, designated by 1–5, are genotyped for two markers A and B
(Fig. 7.1). Marker A has two different alleles, whereas marker B has four alleles.
Note that, although the genotypes of each individual can be known from a gel analy-
sis, the linkage phase between the two markers cannot be measured. In this example,
the linkage phases of both parents and offspring 5 are unknown, but they should be
correctly estimated because different linkage phases for these individuals affect the
inference and estimation of the recombination fraction (r) between the two markers.

Marker x
Marker

1 2
1 2
1

1 2
3 4
2

1 2
1 3
5

1 1
1 3
4

1 1
1 3
3

A
B

Fig. 7.1. A nuclear family with three offspring

Each of the three phase-unknown individuals has two possible phases; that is,

Λ1 =
1 2

1 2
or Λ̄1 =

1 2

2 1
for parent 1,

Λ2 =
1 2

3 4
or Λ̄2 =

1 2

4 3
for parent 2,

Λ5 =
1 2

1 3
or Λ̄5 =

1 2

3 1
for offspring 5,

which form eight possible diplotype combinations. Traditional linkage analysis as-
sumes equal probability, i.e., 1/8, for these combinations. Table 7.1 tabulates possible
numbers of recominants (R) and nonrecombinants (NR) for each of the three offspring
and the resulting likelihood under different diplotype combination.

Based on the likelihood for each diplotype combination, we construct an overall
likelihood for this family as
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Table 7.1. Number of recombinants (R) and nonrecombinants (NR) for three offspring
derived from a family shown in Fig. 7.1 under different diplotype combinations for parents
1 and 2 and offspring 5. The likelihoods for each diplotype combination are also given.

Diplotype Combination Offspring

Proba- Parent Parent Offsping

bility 1 2 5 3 4 5 Likelihood

p1 = 1
8

Λ1 Λ2 Λ5 NR,NR NR,NR NR,R L1 = r(1 − r)5

p2 = 1
8

Λ1 Λ2 Λ̄5 NR,NR NR,NR NR,R L2 = r(1 − r)5

p3 = 1
8

Λ1 Λ̄2 Λ5 NR,NR NR,R NR,R L3 = r2(1 − r)4

p4 = 1
8

Λ1 Λ̄2 Λ̄5 NR,R NR,R R,R L4 = r4(1 − r)2

p5 = 1
8

Λ̄1 Λ2 Λ5 R,NR R,NR R,R L5 = r4(1 − r)2

p6 = 1
8

Λ̄1 Λ2 Λ̄5 R,NR R,NR NR,NR L6 = r2(1 − r)4

p7 = 1
8

Λ̄1 Λ̄2 Λ5 R,R R,R R,NR L7 = r5(1 − r)

p8 = 1
8

Λ̄1 Λ̄2 Λ̄5 R,R R,R NR,R L8 = r5(1 − r)

L(r) =
1
8
(L1 + . . . + L8)

=
1
8
[
2r(1 − r)5 + r2(1 − r)4 + r4(1 − r)2 + r5(1 − r)

]

=
1
4
r(1 − r)[1 − 3r(1 − r)](7.1)

By maximizing the likelihood (7.1), the MLE of the recombination fraction, r, is
obtained as r̂ = 0.21. An approximate approach for estimating r with a complicated
likelihood (7.1) is to calculate the likelihood for a grid of fixed r values, such as r =
(0.00, 0.01, 0.05, 0.10, 0.15, ...). The r value that leads to a maximal likelihood value is
considered as the MLE of the recombination fraction (Fig. 7.2). Asymptotically, the
likelihood curve approaches a Gaussian shape (Ott 1991).

The procedure for a linkage analysis described above assumes an equal probability
for all eight possible diplotype combination. But this may not be true. The most likely
diplotype combination can be determined from the data by calculating the MLE of r
with the likelihood listed in Table 7.2. The results for each diplotype probability are
presented below.

It can be seen that the optimal diplotype combination with the largest likelihood
is Λ1-Λ2-Λ5 or Λ1-Λ2-Λ̄5, whose probability is estimated as

p̂1 or p̂2 =
L̂1 or L̂2

L̂1 + . . . + L̂8

= 0.2787.
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Fig. 7.2. The profile of the likelihood calculated for a nuclear family in Fig. 7.3

Table 7.2. The MLE of the recombination fraction and the plugged in likelihood values
under different diplotype combinations.

Diplotype Combination

Probability Parent 1 Parent 2 Offspring 5 r̂ Log-Likelihood

p̂1 = 0.2787 Λ1 Λ2 Λ5 1/6 log L̂1 = −2.7034

p̂2 = 0.2787 Λ1 Λ2 Λ̄5 1/6 log L̂2 = −2.7034

p̂3 = 0.0913 Λ1 Λ̄2 Λ5 1/3 log L̂3 = −3.8191

p̂4 = 0.0650 Λ1 Λ̄2 Λ̄5 1/2 log L̂4 = −4.1589

p̂5 = 0.0650 Λ̄1 Λ2 Λ5 1/2 log L̂5 = −4.1589

p̂6 = 0.0913 Λ̄1 Λ2 Λ̄5 1/3 log L̂6 = −3.8191

p̂7 = 0.0650 Λ̄1 Λ̄2 Λ5 1/2 log L̂7 = −4.1589

p̂8 = 0.0650 Λ̄1 Λ̄2 Λ̄5 1/2 log L̂8 = −4.1589
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An alternative to determining the optimal diplotype combination is to construct a
mixture likelihood of all diplotype combination weighted by the assumed probability.
An algorithm can be derived to provide simultaneous estimation of r and p’s. But this
approach needs a larger sample size than currently used because more parameters are
estimated.

7.2.2 Multipoint Estimation of Identical-By-Descent Sharing

Two alleles at a single locus are identical by descent (IBD) if they are identical
copies of the same allele on the maternal and paternal chromosome, both copies that
arose by DNA replication from the same ancestral sequence without any intervening
mutation. The concept of IBD is of great use to understand population genetics and
also shows a great utility for linkage analysis and genetic mapping. The estimation of
IBD probabilities can be obtained from linkage analysis when genotypes at multiple
linked markers are available. For a family as illustrated in Fig. 7.3, the mean IBD
sharing for the siblings would be 0.25 at marker A and 0 at marker B if the two
markers are unlinked.

Marker x
Marker

1 2
2 4
4

1 2
3 4
2

1 1
1 2
1

1 1
1 3
3

A
B

Fig. 7.3. Genotypes at two adjacent markers in a nuclear family

The IBD estimation for the less informative marker (A) can be obtained through
the joint likelihood of the two markers if they are linked. Let r be the recombination
fraction between the two markers. For marker A, it is not possible to determine the
parent of origin of two identical alleles, 1, carried by parent 1. Thus, the linkage
phase of parent 1 cannot be determined. We arbitrarily assume one allele derived
from the paternal parent (denoted as 1p) and the other from the maternal parent
(denoted as 1m). Two possible phases of parent 1 are expressed as

Λ1 =
1p 1m

1 2
or Λ̄1 =

1p 1m

2 1
.
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Similarly, parent 2 has two possible phases as follows:

Λ2 =
1 2

3 4
or Λ̄2 =

1 2

4 3
.

Offspring 3 has two identical alleles for marker A, but one and only one of them,
either 1m or 1p, comes from parent 1. Thus, its possible linkage phase should be

Λp
3 =

1p 1

1 3
or Λm

3 =
1m 1

1 3
.

It is not possible for offspring 3 to have

1p 1

3 1
or

1m 1

3 1
,

because the gametes that form these genotype configurations do not exist. For the
same reason, offspring 4 has only two possible phases as follows:

Λp
4 =

1p 2

2 4
or Λm

4 =
1m 2

2 4
.

Combining all the four individuals, we will have 16 diplotype combinations with
likelihoods and IBD probabilities for each marker are given in Table 7.3. By assuming
the same probability of the 16 diplotype combinations, we construct a joint likelihood
to obtain the MLE of r. With r̂, the IBD sharing for each marker can be calculated,
which is

0.5[4r(1 − r)3 + 4r3(1 − r)]
2(1 − r)4 + 4r(1 − r)3 + 4r2(1 − r)2 + 4r3(1 − r) + 2r4

=
r(1 − r)3 + r3(1 − r)

1 − 2r(1 − r)
,

for marker A and 0 for marker B.
When many markers are included for IBD analysis, the likelihood can be factored

out in terms of a Markov model incorporating the IBD at a marker, along with the
transition probabilities from marker to marker.

7.2.3 A Complex Pedigree

Because members from different families can be related by their common ancestors,
the pedigree we are considering forms a complicated network. Figure 7.4 is a diagram
illustrating such a complicated pedigree that can be used in many different species.
Suppose there are a total of ten individuals that are genotyped at two multiallelic
markers A and B and one biallelic marker C. Alleles at each of these markers are
symbolized by Arabic numerals. Individuals 1, 2, and 3 are the founders whose parents
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Table 7.3. Likelihoods and IBD probabilities for each marker under 16 possible diplotype
combinations for the pedigree shown in Fig. 7.3.

Phase Combination Offspring

Probability 1 2 3 4 3 4 Likelihood∝ IBD(A) IBD(B)

p1 = 1
16

Λ1 Λ2 Λp
3 Λp

4 NR,NR R,NR r(1 − r)3 0.5 0.0

p2 = 1
16

Λ1 Λ2 Λp
3 Λm

4 NR,NR NR,NR (1 − r)4 0.0 0.0

p3 = 1
16

Λ1 Λ2 Λm
3 Λp

4 R,NR R,NR r2(1 − r)2 0.0 0.0

p4 = 1
16

Λ1 Λ2 Λm
3 Λm

4 R,NR NR,NR r(1 − r)3 0.5 0.0

p5 = 1
16

Λ1 Λ̄2 Λp
3 Λp

4 NR,R R,R r3(1 − r) 0.5 0.0

p6 = 1
16

Λ1 Λ̄2 Λp
3 Λm

4 NR,R NR,R r2(1 − r)2 0.0 0.0

p7 = 1
16

Λ1 Λ̄2 Λm
3 Λp

4 R,R R,R r4 0.0 0.0

p8 = 1
16

Λ1 Λ̄2 Λm
3 Λm

4 R,R NR,R r3(1 − r) 0.5 0.0

p9 = 1
16

Λ̄1 Λ2 Λp
3 Λp

4 R,NR NR,NR r(1 − r)3 0.5 0.0

p10 = 1
16

Λ̄1 Λ2 Λp
3 Λm

4 R,NR R,NR r2(1 − r)2 0.0 0.0

p11 = 1
16

Λ̄1 Λ2 Λm
3 Λp

4 NR,NR NR,NR (1 − r)4 0.0 0.0

p12 = 1
16

Λ̄1 Λ2 Λm
3 Λm

4 NR,NR R,NR r(1 − r)3 0.5 0.0

p13 = 1
16

Λ̄1 Λ̄2 Λp
3 Λp

4 R,R NR,R r3(1 − r) 0.5 0.0

p14 = 1
16

Λ̄1 Λ̄2 Λp
3 Λm

4 R,R R,R r4 0.0 0.0

p15 = 1
16

Λ̄1 Λ̄2 Λm
3 Λp

4 NR,R NR,R r2(1 − r)2 0.0 0.0

p16 = 1
16

Λ̄1 Λ̄2 Λm
3 Λm

4 NR,R R,R r3(1 − r) 0.5 0.0

cannot be identified, whereas individuals 5–10 are the non-founders that are derived
from parent-known individuals. The cross of individuals 1 and 2 leads to 4, which is
crossed with 3 to produce 5. Individual 1 is crossed to 5 to produce 6, which is self-
crossed to produce 7. Individual 8 is generated by crossing 7 and 3. The cross of 8 and
5 produces 9, which is crossed to 2 to produce 10. These pedigree relationships are
further described in Table 7.4. Column 1 contains the identifications of all individuals
studied, columns 2 and 3 are their parental origins (note that the parental information
of the founders is missing), and columns 4–6 display genotypes of three markers A,
B and C, respectively, for each individual. In this example, the linkage phase of each
individual across these markers is unknown.

Likelihood Formulation

A prerequisite for linkage analysis is a known linkage phase between two markers
considered for the founders that produce segregating progeny. In the example shown
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1
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2

9

3

10

Fig. 7.4. A hypothesized pedigree structure.

in Table 7.4, which is likely to be an actual case in practice, marker data for non-
inbred founders only present genotypes (designated as G) but provide no information
about linkage phase configuration or diplotype. However, one can always assume a
possible diplotype for a founder. For the first two markers, each of the three founders
has two alternative diplotypes (designated as Λ or Λ̄), which forms eight different
combinations, shown in Table 7.5.

Let us consider the first diplotype combination. Founders 1 and 2 are crossed
to generate individual 4, which has genotype 13 at marker A and genotype 12 at
marker B based on gel observations. The alleles of the two markers may be arranged
in individual 4 in two linkage phases:

Λ4 =
1 3

2 1
or Λ̄4 =

1 3

1 2
.(7.2)

Yet, based on the assumed linkage phases of founders 1 and 2, the second arrange-
ment does not exist because neither of the founders provides gamete 32. The only
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Table 7.4. Observed genotypes for three hypothesized markers in a structured pedigree
shown in Fig. 7.4.

Individual Parent Parent Marker genotype

ID 1 2 A B C

1 – – 12 12 12

2 – – 34 13 12

3 – – 13 12 12

4 1 2 13 12 12

5 3 4 11 22 12

6 1 5 12 12 12

7 6 6 12 12 12

8 3 7 13 12 22

9 5 8 13 12 12

10 2 9 14 23 11

possible arrangement is the first one, whose formation is due to the combination of
recombinant gamete 12 from founder 1 and recombinant gamete 31 from founder 2.
Let r be the recombination fraction between these two markers, P (Λ(t)|Λ(t − 1)) be
the conditional probability of the diplotype of an individual (generation t) given its
parents’ diplotypes (generation t − 1), and P (Λ(t − 1)|G(t − 1)) be the conditional
probability of the diplotype of a parent (generation t−1) given its observed genotype.
Thus, the possibility of generating the observed genotype of individual 4 should be

P (G4|Λ1,Λ2) = P (Λ4|Λ1,Λ2) + P (Λ̄4|Λ1,Λ2)
= P (12|Λ1)P (31|Λ2)
= 1

4r2,(7.3)

where P (Λ̄4|Λ1,Λ2) = 0. For individual 5 derived from founder 3 and hybrid 4, its
only possible diplotype is

Λ5 =
1 1

2 2
.

Thus, the genotype probability of individual 5 is expressed as

P (G5|Λ3,G4) = P (G5|Λ3,Λ4)P (Λ4|G4)
= P (Λ5|Λ3,Λ4)P (Λ4|G4) + P (Λ̄5|Λ3,Λ4)P (Λ̄4|G4)
= 1

2r(1 − r),(7.4)
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Table 7.5. Eight diplotype combinations for the founders.

Diplotype Founder Founder Founder

Combination 1 2 3 Probability

1 = Λ1Λ2Λ3

1 2

1 2

3 4

3 1

1 3

1 2
p1p2p3

2 = Λ1Λ2Λ̄3

1 2

1 2

3 4

3 1

1 3

2 1
p1p2(1 − p3)

3 = Λ1Λ̄2Λ3

1 2

1 2

3 4

1 3

1 3

1 2
p1(1 − p2)p3

4 = Λ1Λ̄2Λ̄3

1 2

1 2

3 4

1 3

1 3

2 1
p1(1 − p2)(1 − p3)

5 = Λ̄1Λ2Λ3

1 2

2 1

3 4

3 1

1 3

1 2
(1 − p1)p2p3

6 = Λ̄1Λ2Λ̄3

1 2

2 1

3 4

3 1

1 3

2 1
(1 − p1)p2(1 − p3)

7 = Λ̄1Λ̄2Λ3

1 2

2 1

3 4

1 3

1 3

1 2
(1 − p1)(1 − p2)p3

8 = Λ̄1Λ̄2Λ̄3

1 2

2 1

3 4

1 3

1 3

2 1
(1 − p1)(1 − p2)(1 − p3)

Note: Two possible linkage phases for each founder are designated by Λ or Λ̄, whose subscripts
stand for different individuals.

where P (Λ4|G4) = 1 and P (Λ̄5|Λ3,Λ4) = 0. For individual 6 derived from individuals
1 and 5, we observe alleles 1 and 2 at marker A and alleles 1 and 2 at marker B.
Although this individual may have allelic arrangements

Λ6 =
2 1

2 1
or Λ̄6 =

2 1

1 2
,

only the latter is possible given individual 5’s genotype. Thus, the genotype proba-
bility of individual 6 is

P (G6|Λ1,G5) = P (Λ̄6|Λ1,Λ5) = 1
2r.(7.5)
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The selfing of individual 6 produces double heterozygous individual 7 with two
possible diplotypes,

Λ7 =
1 2

1 2
or Λ̄7 =

1 2

2 1
,

whose overall genotype probability should be

P (G7|G6) = P (Λ7|G6) + P (Λ̄7|G6)
= P (Λ7|Λ6)P (Λ6|G6) + P (Λ7|Λ̄6)P (Λ̄6|G6)

+P (Λ̄7|Λ6)P (Λ6|G6) + P (Λ̄7|Λ̄6)P (Λ̄6|G6)
= P (Λ7|Λ̄6)P (Λ̄6|G6) + P (Λ̄7|Λ̄6)P (Λ̄6|G6)
= 1

2r2 + 1
2 (1 − r)2,(7.6)

where P (Λ6|G6) = 0 and P (Λ̄6|G6) = 1. Individual 7 is crossed with founder 3 to
produce individual 8 with observed alleles 1 and 3 at marker A and alleles 1 and 2
at marker B. It is possible that individual 8 has one of the two diplotypes

Λ8 =
1 3

2 1
or Λ8 =

1 3

1 2
.

The overall genotype probability of individual 8 given its parents’ genotype is ex-
pressed as

P (G8|Λ3,G7) = P (Λ8|Λ3,G7) + P (Λ̄8|Λ3,G7)
= P (Λ8|Λ3,Λ7)P (Λ7|G7) + P (Λ8|Λ3, Λ̄7)P (Λ̄7|G7)

+P (Λ̄8|Λ3,Λ7)P (Λ7|G7) + P (Λ̄8|Λ3, Λ̄7)P (Λ̄7|G7)

=
r[r3 + (1 − r)3 + (1 − r)2]

4[r2 + (1 − r)2]
,(7.7)

where
P (Λ8|Λ3,Λ7) = 1

4r2,

with haplotypes 12 and 31 of Λ8 derived from Λ7 and Λ3, respectively, each with
a probability of 1

2r (note that Λ7 is only derived from Λ̄6 so that the haplotype
frequency of 12 is 1

2r):
P (Λ8|Λ3, Λ̄7) = 1

4r(1 − r),

P (Λ̄8|Λ3,Λ7) = 1
4 (1 − r)2,

P (Λ̄8|Λ3, Λ̄7) = 1
4r(1 − r),

P (Λ7|G7) =
r2

(1 − r)2 + r2
,
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P (Λ̄7|G7) =
(1 − r)2

(1 − r)2 + r2
.

Given its own genotype as well as the diplotypes of individuals 8 and 5, individual
9 should have only a possible diplotype like

Λ9 =
1 3

2 1
,

with a probability of

P (G9|G5,G8) = P (Λ9|G5,G8)
= P (Λ9|Λ5,Λ8)P (Λ5,Λ8|G5,G8) + P (Λ9|Λ̄5,Λ8)P (Λ̄5,Λ8|G5,G8)

+P (Λ9|Λ5, Λ̄8)P (Λ5, Λ̄8|G5,G8) + P (Λ9|Λ̄5, Λ̄8)P (Λ̄5, Λ̄8|G5,G8)
= P (Λ9|Λ5,Λ8)P (Λ5|G5)P (Λ8|G8) + P (Λ9|Λ̄5,Λ8)P (Λ̄5|G5)P (Λ8|G8)

+P (Λ9|Λ5, Λ̄8)P (Λ5|G5)P (Λ̄8|G8) + P (Λ9|Λ̄5, Λ̄8)P (Λ̄5|G5)P (Λ̄8|G8)
= P (Λ9|Λ5,Λ8)P (Λ5|G5)P (Λ8|G8) + P (Λ9|Λ5, Λ̄8)P (Λ5|G5)P (Λ̄8|G8)

=
r3(1 − r) + r(1 − r)3 + (1 − r)4

2[r3 + (1 − r)3 + (1 − r)2]
,(7.8)

where

P (Λ5|G5) = 1,
P (Λ̄5|G5) = 0,

P (Λ9|Λ5,Λ8) =
1
2
(1 − r),

P (Λ9|Λ5, Λ̄8) =
1
2
r,

P (Λ̄8|G8) =
P (Λ8|Λ3,G7)
P (G8|Λ3,G7)

=
P (Λ8|Λ3,Λ7)P (Λ7|G7) + P (Λ8|Λ3, Λ̄7)P (Λ̄7|G7)

P (G8|Λ3,G7)

=
r3 + (1 − r)3

r3 + (1 − r)3 + (1 − r)2
,

P (Λ8|G8) = 1 − P (Λ̄8|G8).

For the last individual, we have only one possible phase,

Λ10 =
4 1

3 2
,

and its genotype probability is



7.2 Linkage Analysis with a Complicated Pedigree 157

(7.9) P (G10|Λ2,G9) = P (G10|Λ2,Λ9) = 1
4r(1 − r).

With the forming probability of each of the seven nonfounders under diplotype
combination Λ1Λ2Λ3, we can formulate the likelihood of the unknown recombination
fraction given the markers (M) by

LΛ1Λ2Λ3(r|M) = P (G4|Λ1,Λ2)P (G5|Λ3,G4)P (G6|Λ1,G5)P (G7|G6)
P (G8|Λ3,G7)P (G9|G5,G8)P (G10|Λ2,G9)

=
1

210
r6(1 − r)2[r3(1 − r) + r(1 − r)3 + (1 − r)4].(7.10)

A grid approach over a range of r can be used to obtain the MLE of the recombination
fraction. Based on equation (7.10), we attempt to draw a profile of likelihood from
r = 0 to 0.5 (Fig. 7.5). But it turns out that the optimal estimate of r under the
first diplotype combination among the three founders (Table 7.5) is 0.715. Obviously,
this estimate is not the best given the data in Table 7.4 because it is beyond the
limit of the recombination fraction. This also indicates that we need to search for the
estimate of r under the seven other diplotype combinations. It should be noted that
because only the first two markers were considered for this analysis, the conclusions
will be completely identical for a pair of diplotype combinations 1 and 2, 3 and 4, 5
and 6, and 7 and 8. Each pair is different because of different diplotypes of the third
marker, which was not considered. A final MLE of r was estimated as 0.285 under
diplotype combination 3 or 4, which corresponds to the largest likelihood.

EM Algorithm

Based on the likelihood (7.10), we can derive a closed form for the EM algorithm
to estimate the recombination fraction. In this likelihood, the last term contains a
mixture of recombinants and nonrecombinants, in which the expected number of
recombinants should be the sum of two probabilities,

φ1 =
r3(1 − r)

r3(1 − r) + r(1 − r)3 + (1 − r)4
,(7.11)

and

φ2 =
r(1 − r)2

r3(1 − r) + r(1 − r)3 + (1 − r)4
.(7.12)

The EM algorithm is implemented to obtain the MLE of r. In the E step, the
expected number of recombination events is calculated by equations (7.11) and (7.12).
In the M step, r is estimated using

r̂ = 1
12 (6 + 3φ1 + φ2).(7.13)

Iterations among equations (7.11)–(7.13) are continued until a stable estimate of r is
obtained. Initiated with r = 0.5, r converges to 0.715 after ten iterations, which is
consistent with the estimate from the grid approach. The optimal MLE of r is found
to be 0.285 under diplotype combination 3 or in Table 7.5.
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Fig. 7.5. The profile of the likelihood calculated for a complex family in Fig. 7.4.

Simultaneous Analysis of the Recombination Fraction and Diplotype
Probability

A joint likelihood can be formulated to simultaneously estimate the recombination
fraction and diplotype for each founder. Consider the marker data described in Table
7.4. Although the diplotypes of founders 1–3 are unknown, we can assume a proba-
bility for each of them to bear a particular diplotype. Let p1 be the probability for
founder 1 to have diplotype Λ1, and thus the probability with diplotype Λ2 is 1− p1.
Similarly, p2 and p3 are defined as the diplotype probabilities for founders 2 and 3,
respectively. Thus, diplotype combination Λ1Λ2Λ3 has a probability of p1p2p3. The
diplotype probabilities of the other combinations can also be defined (Table 7.5).

Individual 4, offspring of founders 1 and 2, has a two-marker genotype 13/12 for
markers A and B. Individual 4 has two diplotypes, Λ4 and Λ̄4 (7.2), whereas founders
1 and 2 may have the diplotypes defined in Table 7.5. The genotype probability of
individual 4 given its parents, founders 1 and 2, is expressed as
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P (G4|G1,G2)
= P (Λ4|G1,G2) + P (Λ̄4|G1,G2)
= p1p2[P (Λ4|Λ1,Λ2) + P (Λ̄4|Λ1,Λ2)]

+p1(1 − p2)[P (Λ4|Λ1, Λ̄2) + P (Λ̄4|Λ1, Λ̄2)]
+(1 − p1)p2[P (Λ4|Λ̄1,Λ2) + P (Λ̄4|Λ̄1,Λ2)]
+(1 − p1)(1 − p2)[P (Λ4|Λ̄1, Λ̄2) + P (Λ̄4|Λ̄1, Λ̄2)],(7.14)

where the probabilities of the two diplotypes, Λ4 and Λ̄4, of individual 4 derived from
each of four possible diplotype combinations of founders 1 and 2 are tabulated below:

Parental diplotype Offspring 4

1 2 Probability Λ4 Λ̄4

Λ1 Λ2 p1p2 P (Λ4|Λ1,Λ2) = 0 P (Λ̄4|Λ1,Λ2) = 1
4r2

Λ1 Λ̄2 p1(1 − p2) P (Λ4|Λ1, Λ̄2) = 0 P (Λ̄4|Λ1, Λ̄2) = 1
4r(1 − r)

Λ̄1 Λ2 (1 − p1)p2 P (Λ4|Λ̄1,Λ2) = 0 P (Λ̄4|Λ̄1,Λ2) = 1
4r(1 − r)

Λ̄1 Λ̄2 (1 − p1)(1 − p2) P (Λ4|Λ̄1, Λ̄2) = 0 P (Λ̄4|Λ̄1, Λ̄2) = 1
4 (1 − r)2

Unlike in equation (7.3), the genotype probability of individual 4 given its parents’
genotypes, when all possible diplotype combinations are considered, is derived as

P (G4|G1,G2) = 1
4 [p1p2r

2 + (p1 + p2 − 2p1p2)r(1 − r) + (1 − p1)(1 − p2)(1 − r)2].

Using a similar approach, the genotype probabilities of the other offspring are also
derived. Ultimately, we formulate a joint likelihood expressed as

L(r|M) = P (G4|G1,G2)P (G5|G3,G4)P (G6|G1,G5)P (G7|G6)
P (G8|G3,G7)P (G9|G5,G8)P (G10|G2,G9).(7.15)

By maximizing the likelihood (7.15), the recombination fraction r and diplotype prob-
abilities of three founders (p1, p2, and p3) can be estimated.

Three-Point Analysis

The idea of linkage analysis proposed for a complex nuclear family can be extended
to three-point analysis. Recall Table 7.4 in which three markers A, B and C are
genotyped. Let g00, g01, g10, and g11 be the probabilities with which there are no
recombinants over both marker intervals A–B and B–C, only one recombinant over
B–C, only one recombinant over A–C and two recombinants each over a different
interval, respectively. The three-marker genotype of individual 4 is 13/12/12, which
may have four different diplotypes; that is,
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Λ1
4 =

1 3

1 2

1 2

, Λ2
4 =

1 3

1 2

2 1

, Λ3
4 =

1 3

2 1

1 2

, Λ4
4 =

1 3

2 1

2 1 .

Because individual 4 is derived from founders 1 and 2, the diplotypes above must
be determined by the diplotypes of the two founders. Each of the founders has 4
diplotypes, forming a total of 16 diplotype combinations. Assume one of the parental
diplotype combinations is

Λ1 =

1 2

1 2

1 2

(for founder 1), Λ2 =

3 4

1 3

1 2

(for founder 2).

It can be seen that the parental diplotypes above cannot generate diplotypes Λ1
4 and

Λ2
4, but it is possible to generate Λ3

4 and Λ4
4, with a probability of g11g01 and g10g00,

respectively. This can be expressed by a conditional probability

P (G4|Λ1,Λ2) = P (Λ3
4|Λ1,Λ2) + P (Λ4

4|Λ1,Λ2)
= g11g01 + g10g00.

Similar expressions for other offspring from 5 to 10 can be derived. All these are used
to construct a likelihood from which parameters g00, g01, g10, and g11 are estimated.
The recombination fractions, rAB, rBC, and rAC, between the three markers can then
be estimated by

r̂AB = ĝ10 + ĝ11,

r̂BC = ĝ01 + ĝ11,

r̂AC = ĝ01 + ĝ10,

under an assumed founder diplotype combination.
As in two-point analysis, the diplotype probabilities for the three founders can be

incorporated into the likelihood and estimated simultaneously with the recombination
fractions. The advantages of three-point analysis as compared with two-point analysis
lie in the precise estimation of the recombination fractions and more power to detect
significant linkage. Its drawback is that more computing resources are needed.

7.3 Information Analysis of Dominant Markers

7.3.1 Introduction

In many situations, codominant markers are preferable to dominant markers due to
their larger information content. A codominant molecular marker allows the unequiv-
ocal distinction of homozygous and heterozygous genotypes on an electrophoretic gel.
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By contrast, for dominant markers, dominant homozygous and heterozygous individ-
uals cannot be distinguished on the basis of the presence or absence of bands on a
gel. However, dominant markers, like AFLPs, continue to be very useful because of
their low cost and simple molecular characterization. For this reason, the possibility
of extracting codominant information from easily characterized dominant markers
deserves exploration.

7.3.2 Segregation Analysis

Mixture Models

Suppose a PCR-based dominant marker system is used to score a population for
their genotypes at a marker locus. Instead of scoring the presence or absence of a
band, we use fluorescence techniques to quantify the band intensity of the degree of
amplification of a fragment on an electrophoretic gel. Thus, for dominant homozygous
individuals, the intensity is expected to be higher than for heterozygous individuals
since for the latter the amount of PCR products is only that of homozygotes. However,
because the distinction in band intensity among the genotypes is blurred, the band
intensity measured varies among individuals from the same genotypes. This is mainly
due to random variation that occurs during marker assays. A mixture model was
developed to assign each individual to one of the genotype classes and estimate the
segregation patterns of the genotypes in a progeny (Piepho and Koch 2000; Jansen
et al. 2001).

Let us consider a family in which a dominant marker is segregating. The band
intensity (yij) measured for an individual i from a genotype class j (j = 1, ..., k) can
be expressed using a linear model as

yij = µj + eij ,(7.16)

where µj is the expected mean band intensity for genotype j and eij is a residual
error, assumed to be normally distributed with mean 0 and variance σ2.

To further account for the genotype variation, we assume that each observation
yi comes from a mixture model,

yi ∼
k∑

j=1

γjf(yi|µj , σ
2),

where γ1, ..., γk are the unknown (prior) mixing proportions satisfying 0 ≤ γi ≤
1,
∑

γj = 1, and f(·|µj , σ
2) is the normal density with mean µj and variance σ2.

From a sample y = (y1, ..., yn), the likelihood function is given by

L(Ω|yij) =
n∏

i=1

k∑

j=1

γjfj(yi|µj , σ
2),(7.17)

where Ω = (µj , σ
2, γj)T , and the log-likelihood is
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(7.18) log L(Ω) =
n∑

i=1

log

⎡

⎣
k∑

j=1

γjfj(yi|µj , σ
2)

⎤

⎦ .

Differentiating with respect to an unknown of Ω, Ω�, we have

∂

∂Ω�
log L(Ω) =

n∑

i=1

k∑

j=1

γj
∂

∂Ω�
fj(yi|µj , σ

2)
∑k

j=1 γjfj(yi|µj , σ2)

=
n∑

i=1

k∑

j=1

γjfj(yi|µj , σ
2)

∑k
j=1 γjfj(yi|µj , σ2)

∂

∂Ω�
log fj(yi|µj , σ

2)

=
n∑

i=1

k∑

j=1

Γij
∂

∂Ω�
log fj(yi|µj , σ

2),(7.19)

where we define

(7.20) Γij =
γjfj(yi|µj , σ

2)
∑k

j=1 γjfj(yi|µj , σ2)
,

which could be thought of as a posterior probability that progeny i has marker geno-
type j. We then iterate between equations (7.19) and (7.20) with the expanded pa-
rameter set {Ω,Γ}, where Γ = {Γij , j = 1, ..., k; i = 1, ..., n}. Conditional on Γ, we
solve for the zeros of ∂

∂Ω�
log L(Ω) to get our estimates of Ω:

γj =
1
n

n∑

i=1

Γij ,

µj =
∑n

i=1 Γijyj∑n
i=1 Γij

,

σ2 =
1
n

k∑

j=1

n∑

i=1

Γij(yj − µj)2.

The estimates are then used to update Γ, and the process is repeated until conver-
gence. The values at convergence are the MLEs. The posterior probability of the
marker genotype of an individual, given its phenotypic value yi, can be evaluated
by replacing parameters with their MLEs. On the basis of their estimated posterior
probabilities, individuals may be assigned to one of the k genotypes.

For a segregating F2 family, the mixing proportions will be known a priori, i.e.,
γ1 = 1/4 for AA, γ2 = 1/2 for Aa, and γ3 = 1/4 for aa. In this case, the full model for
estimating all six free parameters ΩF = (µj , σ

2, γj)T is changed to a reduced model
in which only four free parameters are estimated, ΩR = (µj , σ

2)T. Thus, to test for
significant departure from the 1:2:1 segregation ratio, we calculate the log-likelihood
ratio test statistic

LR = −2[log L(ΩR) − log L(ΩF )],
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which is asymptotically distributed as χ2 with three degrees of freedom (the difference
in the number of free parameters between ΩR and ΩF ). If the test is not significant,
we conclude that the dominant marker follows 1:2:1. The departure from 1:2:1 in the
F2 initiated with two inbred lines may be due to many factors, such as more than one
marker locus, differential survivals, etc.

The linear relation between the copy number of a dominant allele and the quanti-
tative measurement can also be tested. The reduced model for this test corresponds
to the mean values (µj) of three marker genotypes following 0 (aa) : 1 (Aa) : 2 (AA),
whereas the full model is formulated to estimate these mean values.

Correct Allocation Rate

The use of the estimated posterior probability to determine the genotype class of an
individual is not error-free. In this section, we describe how to compute the correct
allocation rate (CAR), i.e., the probability that a randomly selected individual is
correctly classified (Piepho and Koch 2000). Suppose the classification limits are yL

and yR so that individuals are classified as follows:

Classification Condition for Value y

Genotype = AA y < yL

Genotype = Aa yL ≤ y ≤ yR

Genotype = aa yR < y

The classification limit yL is the point of intersection between γ1f1(yi|µ1, σ)
and γ2f2(yi|µ2, σ) for µ1 < yL < µ2; that is, the point at which γ1f1(yi|µ1, σ) =
γ2f2(yi|µ2, σ) for µ1 < yL < µ2. The classification limit yR is the point of intersection
between γ2f2(yi|µ2, σ2) and γ3f3(yi|µ3, σ) for µ2 < yR < µ3. Because the residual
variance is assumed homogeneous,

yL =
σ2 log(γ1/γ2)

µ2 − µ1
+

µ2 + µ1

2
,

yR =
σ2 log(γ2/γ3)

µ3 − µ2
+

µ3 + µ2

2
.

Let F (·) denote the cumulative distribution function of the standard normal and
CARj denote the correct allocation rate for the jth component. Then, we have

CAR1 = F

(
yL − µ1

σ

)
,

CAR2 = F

(
yR − µ2

σ

)
− F

(
yL − µ2

σ

)
,

CAR3 = 1 − F

(
yR − µ3

σ

)
.
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The overall correct classification rate is

CAR =
k∑

j=1

γjCARj .

We estimate the CAR by plugging in sample estimates for parameters. This ap-
proach provides a rough assessment of the true CAR.

Data Transformation

The mixture model derived above for classifying the marker genotypes of a dominant
marker is based on the assumption of normality of the data. In practice, this assump-
tion may not always be met, and the band intensity data may be brought closer to
normality through transformations.

Typical transformations include the logarithm and the square root, where in most
cases their actions are similar. They work to bring the data closer to symmetry if
skewed and to produce more homogeneous variances. Specifically, the logarithm is
appropriate when the mean is proportional to the standard deviation, and the square
root is appropriate when the mean is proportional to the variance.

Gutierrez et al. (1995) discuss the application to normal mixtures of a more general
family of transformations, the Box and Cox (1964) power transformations. This family
of transformations is very flexible and includes the logarithmic transformation as a
special case. It is given by

f(y, λ) = yλ =

⎧
⎨

⎩

yλ − 1
λ

if λ �= 0

log(y) if λ = 0.

Note that taking λ = 1 is equivalent to not transforming the data. The simplest way
to obtain an MLE of λ is by a grid search (Gutierrez et al. 1995). Other possible
transformation approaches include square-roots, which can lessen the heterogeneity
of residual variance due to scaling (Jansen et al. 2001). Once an appropriate trans-
formation has been found, a normal mixture may be fitted to the transformed data.

Example 7.1. (F2 Progeny in Tomatoes). Jansen et al. (2001) reported an example
of codominant analysis of a dominant AFLP marker in 87 tomato plants from a
segregating F2 progeny. A histogram of band intensities of these progeny is shown in
Fig. 7.6, in which a trimodal distribution can be seen. It appears that band intensity
is linearly related to copy number and that variance increases linearly with the mean.
A square-root transformation is used to remove the heterogeneity of the variance
across different genotypes.

A normal mixture model is used to fit the square-root transformed data. The data
can be well fit by three mixture distributions, as plotted over the histograms (Fig. 7.6).
There is some overlap between the distributions of Aa and AA. The individuals with
band intensities in the overlapping regions are not recommended for classification.
The CAR for correctly classifying a marker genotype is more than 98 percent.
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Fig. 7.6. Mixture distributions of band intensities in 87 F2 tomato plants. The distributions
of the three genotypes aa, Aa and AA are identified, but there is some overlap between the
distributions of aa and Aa (not AA) and between the distributions of Aa and AA (not aa).
Adapted from Jansen et al. (2001).

7.3.3 Linkage Analysis

Dominant markers, such as AFLPs and RAPDs, are usually analyzed based on the
presence or absence of a band on an electrophoretic gel. This type of analysis does
not allow a distinction among dominant homozygotes and heterozygotes. Such a dis-
tinction can be made possible if band intensities are quantitatively measured. In
Section 7.3.2, a statistical mixture model implemented by the EM algorithm (Piepho
and Koch 2000) was described to distinguish between dominant homozygotes and
heterozygotes for single markers based on quantitative intensities. This model can
extract more informative codominant information for linkage analysis from any dom-
inant markers as long as their band intensities are quantified.

In this section, a similar normal mixture model is proposed for simultaneous esti-
mation of quantitative codominance and the linkage between two dominant markers.
Our analysis will be based on Piepho’s (2001) work but extended for a three-point
analysis.

Suppose there are n F2 plants derived from a doubly heterozygous F1 AaBb from
two contrasting inbred lines. Two markers, A and B, generate a total of nine genotypes
in the F2 population, AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and
aabb, with respective frequencies as a function of the recombination fraction r between
the two markers that can be described in matrix form. For dominant markers, AA
and Aa, as well as BB and Bb, cannot be distinguished because they both produce a
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band on the gel. However, if the band intensities of these two markers are measured,
we can expect that AA or BB will have a larger value than Aa or Bb. However, such
a difference may be blurred due to random errors that can be assumed to follow a
normal distribution.

The quantitative value of band intensity at the j1th genotype of marker A for
the ith F2 plant includes two components, mean value µ1j1 and variance σ2

1j1
. The

marginal distribution of yi = (y1i y2i) for the two markers A and B is a mixture of
nine bivariate normal distributions,

f(yi|Ω) =
2∑

j0=1

2∑

j2=0

γj1j2f(y1i|µ1j1 , σ
2
1j1)f(y2i|µ2j2 , σ

2
2j2),(7.21)

where Ω = (γj1j2 , µ1j1 , σ2
1j1

, µ2j2 , σ2
2j2

) are the unknown parameters to be estimated,
j1, j2 = 0 for aa or bb, 1 for Aa or Bb, and 2 for AA or BB, respectively, and γj1j2 is
the genotype frequency of the j1th genotype at marker A and the j2th genotype at
marker B. The model can be simplified by assuming variance homogeneity at different
levels; e.g.,

σ2
1j1 = σ2

1 , σ
2
2j2 = σ2

2 ,(7.22)

or

σ2
1j1 = σ2

2j2 = σ2.(7.23)

Whereas model (7.23) is simpler in computation, model (7.22) may be closer to reality
because the type and quantity of product measured at a band position vary among
markers.

Let zj1j2i be a random variable with zj1j2i = 1 for an observed marker genotype
and zj1j2i = 0 otherwise. We have that zi = (z00i, ..., z22i) follows a multinomial
distribution with a constant 1 and cell probabilities of γj1j2 . While yi is observed,
zi is not observed (missing). Both yi and zi constitute the complete data. Thus, the
EM algorithm can be used to provide the estimation of Ω (McLachlan and Krishnan
1997). The likelihood for the complete data is

log L(Ω) =
n∑

i=1

2∑

j1=0

2∑

j2=0

zj1j2i log
[
γj1j2f(y1i|µ1j1 , σ

2
1j1)f(y2i|µ2j2 , σ

2
2j2)

]
.

The conditional expectation of the complete-data log-likelihood, given the observed
data yi, using the current estimates for the parameter Ω(t), may be expressed as

Q(Ω;Ω(t)) = EΩ(t)

[
log L(Ω(t))|yi

]
.(7.24)

Since Q(Ω;Ω(t)) is linear in zj1j2i, Q(Ω;Ω(t)) is computed by replacing zj1j2i by its
expectation, given yi, in the complete-data log-likelihood evaluated at Q(Ω;Ω(t));
i.e., zj1j2i is replaced by
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Γ
(t)
j1j2i =

γj1j2f
(
y1i|µ(t)

1j1
, σ

2(t)
1j1

)
f
(
y2i|µ(t)

2j2
, σ

2(t)
2j2

)

∑2
j1=0

∑2
j2=0 γj1j2f

(
y1i|µ(t)

1j1
, σ

2(t)
1j1

)
f
(
y2i|µ(t)

2j2
, σ

2(t)
2j2

) .(7.25)

In the E step, Γ
(t)
j1j2i is updated using the current parameter estimates, and, in the

M step, Q(Ω;Ω(t)) is maximized with respect to the parameters. The estimating
equations for the means and variances have explicit solutions, whereas the equation
for r is a third-degree polynomial, which may be solved numerically or by explicit
formulas. The equations for estimating the means and variances in the M step are
given as follows:

µ
(t)
1j1

=

∑n
i=1

∑2
j2=0 Γ(t)

j1j2iy1i
∑n

i=1

∑2
j2=0 Γ(t)

j1j2i

,

µ
(t)
2j2

=

∑n
i=1

∑2
j1=0 Γ(t)

j1j2iy2i
∑n

i=1

∑2
j1=0 Γ(t)

j1j2i

,

σ
2(t)
1 =

1
n

n∑

i=1

2∑

j1=0

2∑

j2=0

Γ(t)
j1j2i

(
y1i − µ

(t)
1j1

)2

,

σ
2(t)
2 =

1
n

n∑

i=1

2∑

j1=0

2∑

j2=0

Γ(t)
j1j2i

(
y2i − µ

(t)
2j2

)2

.

(7.26)

Update r(t) by the noncomplex root of

∂Q(Ω;Ω(t))
∂r

=
n∑

i=1

2∑

j1=0

2∑

j2=0

Γ(t)
j1j2iSj1j2 = 0,

where
Sj1j2 =

1
Γj1j2

∂Γj1j2

∂r
,

that maximizes Q(Ω;Ω(t)). If the solution of this equation is larger than 0.5, set
r(t+1) = 0.5. If the solution is smaller than 0, set r(t+1) = 0.

Piepho (2001) performed a simulation study to compare the estimator of the
recombination fraction by treating dominant markers as quantitative codominant or
band presence/absence. It was found that the quantitative method displayed more
precise estimates of r than the qualitative method consistently for different r values,
different means and variances, and different sample sizes.

The EM method described above can be used to simultaneously estimate marker
codominance and the linkage among three dominant markers, A, B, and C, whose
band intensities are quantified. Simultaneous consideration of three markers may in-
crease the precision of linkage analysis and provide information about marker order.
Assuming that the three markers are ordered as A-B-C, the frequencies of 27 dif-
ferent marker genotypes AABBCC,AABBCc, ..., aabbcc in an F2 population can be
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expressed as a function of the recombination fractions, rAB, rAC, and rBC, between
the three markers; that is,

HABC =

AA Aa aa

BBCC

BBCc

BBcc

BbCC

BbCc

Bbcc

bbCC

bbCc

bbcc

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 (1 − rAB)2(1 − rBC)2 1

2 rAB(1 − rAB)rBC(1 − rBC) 1
4 r2

ABr2
BC

1
2 (1 − rAB)2rBC(1 − rBC) 1

2 rAB(1 − rAB)φBC
1
2 r2

ABrBC(1 − rBC)

1
4 (1 − rAB)2r2

BC
1
2 rAB(1 − rAB)rBC(1 − rBC) 1

4 r2
AB(1 − rBC)2

1
2 rAB(1 − rAB)(1 − rBC)2 1

2 φABrBC(1 − rBC) 1
4 rAB(1 − rAB)r2

BC

rAB(1 − rAB)rBC(1 − rBC) 1
2 φABφBC rAB(1 − rAB)rBC(1 − rBC)

1
2 rAB(1 − rAB)r2

BC
1
2 φABrBC(1 − rBC) 1

2 (rAB)(1 − rAB)(1 − rBC)2

1
4 r2

AB(1 − rBC)2 1
2 rAB(1 − rAB)rBC(1 − rBC) 1

4 (1 − rAB)2r2
BC

1
2 r2

ABrBC(1 − rBC) 1
2 rAB(1 − rAB)φBC

1
2 (1 − rAB)2rBC(1 − rBC)

1
4 r2

ABr2
BC

1
2 rAB(1 − rAB)rBC(1 − rBC) 1

4 (1 − rAB)2(1 − rBC)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7.27)

where φAB = 1 − 2rAB + 2r2
AB and φBC = 1 − 2rBC + 2r2

BC. Two similar matrices
of the genotype frequencies HACB (in terms of rAC and rBC) and HBAC (in terms
of rAB and rAC) can also be derived for marker orders A-C-B and B-A-C.

Since a correct marker order is not known, an algorithm should be formulated
to estimate the most likely marker order for linkage analysis. Let q1 and q2 be the
probabilities of order A-B-C and A-C-B. Thus, the probability of order B-A-C is
(1− q1 − q2). In the 27-normal mixture model, the frequency of each component is a
weighted mean of the frequency of a genotype under three different orders. In other
words, the matrix for the frequencies of 27 genotypes at the three markers can be
written as

H = q1HABC + q2HACB + (1 − q1 − q2)HBAC.

The elements in this matrix represent the a priori genotype frequencies πj1j2j3 , where
j1, j2, j3 are the genotypes of each of the three markers.

Using a similar principle for two-point analysis, we can formulate the marginal
distribution of yi = (y1i, y2i, y3i) in terms of a mixture of 27 trivariate normal dis-
tributions. The EM algorithm is developed to estimate the recombination fractions,
rAB, rAC, and rBC, the probabilities of marker order, q1 and q2, and the three means
and residual variance at each marker. The estimates corresponding to the highest
probabilities of marker orders are regarded as the optimal estimates.

7.4 Exercises

7.1 Based on the genotypic information provided by Table 7.4, prove equation (7.5); that
is, P (G6|Λ1,G5) = P (Λ̄6|Λ1, Λ5) = 1

2
r.

7.2 Recall Table 7.4. We describe the procedure for linkage analysis between markers A
and B. Show a similar procedure with which linkage analysis can be performed between
markers B and C.
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(a) Write the likelihood and estimate the recombination fraction, rAC, under an optimal
founder diplotype combination.

(b) Write a joint likelihood that incorporates the founder diplotype probability and the
recombination fractions.

7.3 Morton (1956) reported a complicated pedigree for linkage analysis of familial elliptocy-
tosis (Fig. 7.7). This is extremely rare, with the population frequency of the disease allele
being very low. Investigations of this pedigree and others show that the inheritance of
this disease is consistent with fully penetrant autosomal dominance inheritance. The low
disease-allele frequency and its dominant inheritance allow scoring each affected person
as Dd and each unaffected person as dd and taking each D allele as being identical by
descent (IBD). Show that the likelihood function of this family can be expressed as

L ∝ 810r(1 − r)19 + 324r(1 − r)18 + 180r(1 − r)17 + 72r(1 − r)16 + 90r3(1 − r)17

+ 72r3(1 − r)16 + 40r3(1 − r)15 + 24r3(1 − r)14 + 90r4(1 − r)15 + 20r4(1 − r)13

+ 90r5(1 − r)15 + 432r5(1 − r)14 + 20r5(1 − r)13 + 104r5(1 − r)12

+ 1800r6(1 − r)14 + 558r6(1 − r)13 + 440r6(1 − r)12 + 176r6(1 − r)11

+ 90r7(1 − r)13 + 324r7(1 − r)12 + 120r7(1 − r)10 + 360r8(1 − r)12

+ 378r8(1 − r)11 + 80r8(1 − r)10 + 76r8(1 − r)9 + 4r8(1 − r)4 + 180r9(1 − r)11

+ 522r9(1 − r)10 + 80r9(1 − r)9 + 100r9(1 − r)8 + 10r9(1 − r)3 + 180r10(1 − r)10

+ 846r10(1 − r)9 + 40r10(1 − r)8 + 216r10(1 − r)7 + 18r10(1 − r)4 + 4r10(1 − r)2

+ 1170r11(1 − r)9 + 378r11(1 − r)8 + 260r11(1 − r)7 + 72r11(1 − r)6

+ 45r11(1 − r)3 + 180r12(1 − r)8 + 396r12(1 − r)7 + 40r12(1 − r)5 + 18r12(1 − r)2

+ 270r13(1 − r)7 + 234r13(1 − r)6 + 40r13(1 − r)5 + 52r13(1 − r)4 + 180r14(1 − r)6

+ 108r14(1 − r)5 + 80r14(1 − r)4 + 16r14(1 − r)3 + 90r15(1 − r)5 + 162r15(1 − r)4

+ 20r15(1 − r)3 + 180r16(1 − r)4 + 72r16(1 − r)3 + 90r17(1 − r)3.

The peak of the likelihood profile over a range of r values is found as 3.31 at the
recombination fraction of 0.05.

7.4 We have introduced two approaches for linkage analysis of dominant markers. The first
is based on the “qualitative” observations of band presence or absence, whereas the
second makes use of the “quantitative” measurement of bands based on fluorescence
techniques. It is important to compare how these two different approaches work in a
real example, which can be investigated through simulation studies as follows.

We simulate normally distributed “quantitative” values of band intensity by assuming
that two linked markers are each segregating 1:2:1 in an F2 population. The statistical
method described in this chapter is used to estimate the recombination fraction between
two hypothesized markers. The simulated “quantitative” markers are then treated as
(1/0)-dominant markers. The EM algorithm introduced in Chapter 4 is employed to
estimate the recombination fraction of dominant markers. Compare the results of the
estimates from these “quantitative” and “qualitative” treatments.
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Fig. 7.7. A complicated pedigree in humans. Adapted from Morton (1956).



8

Marker Analysis of Phenotypes

8.1 Introduction

In the preceding chapters, we described numerous statistical issues related to linkage
analysis of molecular markers and the construction of genetic linkage maps. One of
the most important aims of these marker analyses is to provide ordered hallmarks
on chromosomes with which one can map functional quantitative trait loci (QTLs)
determining complex phenotypic variation to particular genomic regions. The genome-
wide identification of QTLs, their locations and effects, is of fundamental importance
for agricultural, evolutionary, and biomedical genetics.

A variety of methods have been developed for QTL mapping (Hoeschele et al.
1997; Lynch and Walsh 1998). These methods can be classified as t–tests and analy-
sis of variance, least–squares analysis (LS), maximum–likelihood analysis (ML), and
Bayesian analysis. These methods differ in computational requirements, efficiency
in terms of extracting information, flexibility with regard to handling different data
structures, and ability to map multiple QTLs. The simple LS method is efficient in
terms of computational speed but cannot extract all information from the data and
is restricted to specific mating designs. The technique of ML interval mapping (Lan-
der and Botstein 1989) is one of the most widely used methods for QTL analysis in
controlled crosses or structured pedigrees. The interval mapping method has been
extended to composite interval mapping (Zeng 1994) and multiple interval mapping
(Kao et al. 1999).

In this chapter, we will discuss t–test, analysis of variance, and regression analysis
of multiple markers and perform statistical tests based solely on single DNA marker
information. For single-marker analysis, no genetic map is required and the calcu-
lations are based on phenotypic means and variances within each of the genotypic
classes. Marker analysis can be extended to include all markers of the genome (Xu
2003). Although single marker analyses, as shown later in this chapter, confound the
QTL effect and the QTL location, they provide preliminary results that facilitate the
use of more advanced interval mapping to detect QTLs within a genomic interval
bracketed by two linked markers (Routman and Cheverud 1997). ML interval map-
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ping and its extension, composite interval mapping, will be presented in Chapters 11
and 13.

8.2 QTL Regression Model

Prior to the introduction of an advanced statistical method for QTL mapping, we first
consider a hypothetical example of a backcross design for mice shown in Table 8.1.
This example contains ten mice phenotyped for body weight, y, and a QTL with two
known genotypes, Qq (indicated by 1) and qq (indicated by 0). It appears that the
mice that carry QTL genotype Qq tend to be heavier than those that carry genotype
qq, although the mice that carry the same genotype do not have exactly the same
body weight. To test whether this is actually the case and estimate the effect of a
QTL on body weight, we formulate a simple regression model as

yi = µ + zia + ei,(8.1)

where yi is the phenotypic value for mouse i, µ is the overall mean, zi is the indicator
variable that specifies the QTL genotype of mouse i and is defined as

zi =

{
1 if QTL genotype is Qq
0 if QTL genotype is qq,

a is the additive effect of the QTL, and ei is the random error, typically assumed to
be normally distributed as N(0, σ2).

The linear model (8.1) can be extended to estimate and test the genetic effects
of a QTL in an F2 population with three QTL genotypes, QQ (indicated by 2), Qq
(indicated by 1), and qq (indicated by 0). The model for the F2 is written as

yi = µ + z1ia + z2id + ei,(8.2)

with an additional parameter, d, that is the dominance effect of the QTL, and indi-
cator variables z1i and z2i expressed as

z1i =

{
1 if QTL genotype is QQ

−1 if QTL genotype is qq

and

z2i =

{
0 if QTL genotype is QQ or qq
1 if QTL genotype is Qq.

Standard least squares (LS) approaches can be used to estimate the unknown
model intercept, µ, and regression coefficients, a and/or d. Thus, by directly testing
the significance of a and/or d, one can determine whether this QTL triggers an effect
on body weight.
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Example 8.1. Assume a small population of ten backcross mice. Each mouse was geno-
typed for two markers and measured for body weight as well. The marker and phe-
notypic data are given in Table 8.1. With this table, we provide a procedure for the
estimation and test of the genetic effect, a, of the QTL on mouse body weight. Let

y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

30
32
28
29
29
22
20
21
20
21

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1
1 1
1 1
1 0
1 0
1 0
1 0
1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, e =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and b = (µ, a)T. We then have y = Xb + e. The LS estimates of the parameters are

b̂ = (XTX)−1(XTy) = (20.8, 8.8)T

and
σ̂2 =

1
n

(y − Xb)T(y − Xb) = 1.2.

Table 8.1. Data structure for two genotyped markers and mouse body weight in a backcross
design.

Marker Body

Sample A B Weight

1 1 1 30

2 1 1 32

3 1 1 28

4 1 1 29

5 1 0 29

6 0 1 22

7 0 0 20

8 0 0 21

9 0 0 20

10 0 0 21
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With these estimates, we calculate the total sum of squares (SST),

10∑

i=1

(yi − µ)2 = 205.6,

and the residual sum of squares (SSE),

10∑

i=1

(yi − µ − zia)2 = 12.0.

The significance of the QTL genetic effect (a) is then tested by calculating the F -value,

F =
(SST − SSE)/(2 − 1)

SSE/(10 − 2)
= 129.07.

Compared with the critical value F0.05,(2,8) = 4.46, we conclude that this QTL exerts
a significant effect on body weight in the backcross population of mice.

8.3 Analysis at the Marker

A QTL statistical model assumes that the QTL genotypes can be observed in a
mapping population. This is not possible in practice. What we can do is to use
observable markers to predict such unobservable QTLs through the linkage between
markers and QTLs. Thus, by performing the association analysis between the markers
and phenotypes, we can still infer the effect of a putative QTL on phenotypic variation.

The use of a single-marker is limited for QTL identification since it cannot deter-
mine at which side of the marker, left or right, the QTL is located. However, single
marker analyses are useful for a preliminary test of the existence of a QTL, although
they cannot estimate the QTL location. Below, we introduce two testing approaches
for marker analysis based on the t and F test statistics.

8.3.1 Two-Sample t Test

The mouse backcross data in Table 8.1 are genotyped for two linked molecular markers
A and B and are given in Table 8.1. Two genotypes at each marker are denoted by
1 and 0. The linkage between these two markers can be seen from the consistency
of their genotypes among the samples, except for mice 5 and 6. The recombination
fraction between the two markers is r = 2/10 = 0.2. We will analyze these two markers
separately.

Looking at marker A, it seems that the two groups of marker genotypes differ in
body weight. A question arises naturally about whether this difference in body weight
between genotypes 1 and 0 at marker A is statistically significant. This can be tested
by a two-sample t test. Let µ1 and µ0 be the true trait means of two different groups
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of mice with genotypes 1 and 0, respectively, and let m1 and m0 be the corresponding
sample means. The hypotheses for the test can be formulated as

H0 : µ1 = µ0,

H1 : µ1 �= µ0.

The t test statistic used to test for the significance of the difference between the
two means is

t =
m1 − m0√
s2( 1

n1
+ 1

n0
)
,(8.3)

where s2 is the pooled sampling variance given by

s2 =
(n1 − 1)s2

1 + (n0 − 1)s2
0

n1 + n0 − 2
,

with n1, n0 and s2
1, s2

0 being the sample sizes and variances in two different marker
groups, respectively.

The null hypothesis H0 will be rejected if the t test statistic calculated is larger
than or equal to the critical value to be obtained from the t–distribution. If we denote
the upper α critical point by t(α,ν), we reject the hypothesis at α = 0.05 if t > t(0.025,ν),
the two-tailed t value for the 0.05 significance level, with ν = n1 + n0 − 2 degrees of
freedom.

Example 8.2. In the example with n1 = n0 = 5 provided in Table 8.1, we calculate
m1 = 29.6, m0 = 20.8, s1 = 0.8367, s0 = 1.5166, and s = 1.50 for marker A. We
further calculate t = 29.6−20.8√

1.52( 1
5+ 1

5 )
= 11.3608. Compared with the critical value of

t(0.025,5+5−2=8) = 2.3060, we conclude that marker A is significantly associated with
body weight.

In this example, we also find that genotype 1 for each of the two markers tends to
be heavier than genotype 2. Since the conclusion from the t–test is only that there is
a difference, we cannot make a formal statement about the direction of the difference
(we could have if a one-tailed test were done, but typically a two-tailed test is carried
out). However, most would be comfortable with the informal conclusion that genotype
1 at each marker tends to be heavier than genotype 2.

Example 8.3. (Tomato Plant Heights). We again look at the data of Example 2.1,
but now introduce marker data. Suppose that we have the following data y on heights
(in cm) of 12 tomato plants of a particular species grouped into two marker classes

M1M1 : y = (79, 82, 100, 102, 124)
M1M2 : y = (85, 87, 101, 103, 125, 126, 127).

The observed means and variances of the marker classes are

ȳM1M1 = 97.4 ȳM1M2 = 101.71
sM1M1 = 18.10 sM1M2 = 18.33
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To test H0, is would seem natural to use a two-sample t-test, and this has been
one of the first approaches. The t-statistic to test H0 is

t =
yM1M1 − yM1M2√

s2
(

1
n1

+ 1
n2

) ,

where s2 is the pooled variance of the two groups and n1 and n2 are the sample sizes
in each group.

A problem with using this statistic to test H0 is that, due to the underlying mixture
distribution, this statistic does not have the usual Student-t null distribution. Hence,
calibrating this statistic, that is, computing a p-value, will not give a valid inference.
One way around this is to use a permutation test, and to get the null distribution of
the test statistic based on permutations.

In this situation, the permutation test is quite simple. The data are assigned
at random into one of the two groups, and the resulting t-statistic is calculated.
The premise is that under H0 there is no difference in the two marker groups, and
hence the observation could have just as likely been from either group. This random
assignment is repeated many times, and the resulting t-statistics and made into a
histogram which serves as the null distribution.

Example 8.4. (Tomato Plant Heights-Continued). For the data of Example 8.3,
the t statistic of the observed data is -.965, and a histogram of 5000 permuted
t-statistics is given in Figure 8.1 with the program that generated the histogram
given in Appendix B.2. The upper and lower 5 percent cutoff points from the permu-
tation distribution are 1.97 and −2.11, respectively. Based on this null distribution,
we make the conclusion that there is no QTL near this marker.

8.3.2 Analysis of Variance

For an F2 population, there are three different groups of marker genotypes, which
can be denoted by 2, 1, and 0, respectively, at each marker (see Table 8.2). To test
the overall difference among the three genotypes, a traditional analysis of variance
(ANOVA) can be used. The mean square due to the difference among the three marker
genotypes reflects the degree to which the marker is associated with a putative QTL
for a particular trait, while the mean square due to the difference within the genotypes
reflects the residual variance. The ratio of these two mean squares, the F -value, is a
test statistic used to test for the significance of the difference among the three marker
genotypes.

The calculated F -value is compared with the critical value obtained from the F
distribution, F0.05,(2,n−3). The genetic variance due to a significant marker can be
estimated by equating the expected mean squares (Table 8.3) to the mean squares
(MS) and solving the resulting equation:

σ2
g =

MS1 − MS2

k
.(8.4)
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Fig. 8.1. Null distribution of the t-statistic of Example 8.4 based on permutations.

Table 8.2. Data structure for two genotyped markers and mouse body weight in an F2

design.

Marker Body

Sample A B Weight

1 2 2 30

2 2 1 32

3 2 0 28

4 1 2 29

5 1 1 29

6 1 0 22

7 1 0 20

8 0 2 21

9 0 1 20

10 0 0 21
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The proportion of the phenotypic variance in a quantitative trait explained by the
marker, the broad-sense heritability, is estimated by

R2 =
σ2

g

σ2
g + σ2

e

.(8.5)

This proportion is widely used as a parameter to assess the contribution of the A
marker to the phenotypic variation.

Table 8.3. Summary of ANOVA for the difference among three genotype groups in an F2

population.

Mean Expected

Source of Variation df Square F -value Mean Square

Among marker genotypes 2 MS1 MS1/MS2 σ2
e + kσ2

q

Within marker genotypes n − 3 MS2 σ2
e

Note: k = 3/( 1
n2

+ 1
n1

+ 1
n0

) is a harmonic mean, with n2, n1 and n0 standing for sample
sizes of the three different marker genotypes in an F2 population.

The overall difference among the three marker genotypes in the F2 population
may be due to either the additive or dominance effect, or both. The significance of
these two effects can also be tested by using the t test. To test the marker’s additive
effect, we have the test statistic

t1 =
m2 − m0√
s2( 1

n2
+ 1

n0
)
,(8.6)

with

s2 =
(n2 − 1)s2

2 + (n0 − 1)s2
0

n2 + n0 − 2
,

and to test the marker’s dominance effect, we have the test statistic

t2 =
m1 − 1

2 (m2 + m0)√
s2( 1

4n2
+ 1

n1
+ 1

4n0
)
,(8.7)

with

s2 =
(n2 − 1)s2

2 + (n1 − 1)s2
1 + (n0 − 1)s2

0

n2 + n1 + n0 − 3
,

where s2
1, s2

1, and s2
0 are the sample variances in three different marker groups of the

F2, respectively.
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Example 8.5. Table 8.2 provides an example for the F2 population with ten mice,
each measured for body weight and genotyped for two codominant markers A and
B. We compute the mean squares for among- and within-genotype differences MS1 =
65.47 and MS2 = 10.67 for marker A, from which the F -value is calculated as 6.14.
Compared with the critical F0.05,(2,10−3 = 7) = 4.7374 value, this marker is thought to
be significantly associated with body weight. The genetic variance due to this marker
is calculated as σ2

g = 5.0233 with equation (8.4), and the heritability is then estimated
as 0.3202.

For marker A, three genotype groups contain n2 = 3, n1 = 4, and n0 = 3, and
the three sampling means are calculated as m2 = 30, m1 = 25, and m0 = 20.67
and three sampling variances calculated as s2

2 = 4, s2
1 = 22, and s2

0 = 0.3333, re-
spectively. We calculate the t test statistics for the additive and dominant effects,
respectively, with equations (8.6) and (8.7), as t1 = 7.7658 and t2 = −0.1220. Com-
pared with the critical values t(0.025,ν = 3+3−2 = 4) = 2.1318 for the additive test and
t(0.025,ν = 3+4+3−3 = 7) = 1.8946 for the dominance effect, we conclude that marker
A displays a significant additive effect, but an insignificant dominance effect on body
weight.

A similar computing procedure is taken for marker B. This marker has the F -
value 0.85, suggesting it has no significant association with body weight in mice. The
t–values for testing additive and dominance effects are calculated as t1 = 1.2264 and
t2 = 0.5635, respectively. It can be seen that both the additive effect and dominance
effects are nonsignificant.

8.3.3 Genetic Analysis

Why can we infer the existence of an underlying QTL for a quantitative trait via
a simple t test or ANOVA on marker means? Consider a putative QTL linked to a
marker with a recombination fraction of r. The conditional expected genotypic values
associated with each marker genotype are calculated from the conditional probabilities
of the QTL genotypes given a marker genotype and from the genotypic values of
different QTL genotypes. Given known marker genotypes, Aa (1) and aa (0), we can
derive the conditional probabilities of two QTL genotypes, Qq (1) and qq (0), for the
backcross as

Marker QTL Genotypic Value

Genotypic Value µ1 µ0

m1 1 − r r

m0 r 1 − r

The genetic values of these two backcross QTL genotypes can be denoted by

µ1 = µ + 1
2a and µ0 = µ − 1

2a,

respectively. For each marker genotype, two different QTL genotypes are mixed,
weighted by the conditional probabilities. Thus, the conditional expected genotypic
values associated with different marker genotypes can be calculated as
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m1 = (1 − r)µ1 + rµ0 = (1 − r)
(
µ + 1

2a
)

+ r
(
µ − 1

2a
)

= µ + 1
2 (1 − 2r)a,

m0 = rµ1 + (1 − r)µ0 = r
(
µ + 1

2a
)

+ (1 − r)
(
µ − 1

2a
)

= µ − 1
2 (1 − 2r)a.

Thus, the difference of the two marker means is

µ1 − µ0 = (1 − 2r)a.(8.8)

If a is not significantly different from zero, the t test statistic based on equation (8.3)
will be smaller than the critical value. In this sense, the t test can provide information
about the significance of the QTL effect. But a nonsignificant t value may also be due
to nonlinkage between the marker and QTL (r = 0.5) according to equation (8.8).
Therefore, the t test only gives a composite test for the QTL effect and QTL–marker
linkage.

For an F2 population, three marker means can be similarly derived by conditional
probabilities expressed as

Marker QTL Genotypic Value

Genotypic Value µ2 µ1 µ0

m2 (1 − r)2 2r(1 − r) r2

m1 r(1 − r) (1 − r)2 + r2 r(1 − r)

m0 r2 2r(1 − r) (1 − r)2

and the assigned QTL genotype values. These marker means are written as

m2 = (1 − r)2µ2 + 2r(1 − r)µ1 + r2µ0

= µ + (1 − 2r)a + 2r(1 − r)d,

m1 = r(1 − r)µ2 + [(1 − r)2 + r2]µ1 + r(1 − r)µ0

= µ + (1 − 2r + 2r2)d,

m0 = r2µ2 + 2r(1 − r)µ1 + (1 − r)2µ0

= µ − (1 − 2r)a + 2r(1 − r)d.

The tests for the additive effect (a) from equation (8.6) and dominance effect (d) from
equation (8.7) are equivalent to testing whether composite parameters

1
2 (m2 − m0) = (1 − 2r)a = a − 2ra

and
m1 − 1

2 (m2 + m0) = (1 − 2r)2d = d − 4r(1 − r)d

are equal to zero, respectively.
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From the analysis above, although the t test and ANOVA can be used to test
the significance of marker differences, they cannot separate QTL genotypic means
and the recombination fraction between a single marker and a QTL. If the marker
difference is significant, as shown for the two markers in mouse body weight, we still
do not know whether this difference is due to a tight linkage (small r) between the
marker and a QTL of small effect or a loose linkage (large r) between the marker
and a QTL of large effect. In fact, the additive and dominance effects of QTLs are
underestimated by 2r and 4r(1−r), respectively, from a simple comparison of marker
means. Also, the t test and ANOVA cannot separate the effects of individual QTLs
on the phenotype if there are two or more QTL on the same chromosome. The two
confounded parameters, QTL genetic means and the recombination fraction, can be
separated using the approaches explained below.

8.4 Moving Away from the Marker

We now illustrate a single-marker analysis where we do not assume that the QTL
is at the marker. Following Doerge et al. (1997), we illustrate the technique with a
backcross design in which there are two genotypes at each marker or QTL.

8.4.1 Likelihood

Realize that the observed genotype will either be M1M1 or M1M2, but given this
observed genotype, the QTL genotype will either be Q1Q1 or Q1Q2 with probabilities
given below

M1M1 M1M2

Q1Q1
1−r
2

r
2

Q1Q2
r
2

1−r
2

,

where r is the recombination fraction between the marker and QTL. Assume that a
phenotypic trait (y) follows a normal distribution. Relating the phenotypes of the trait
to the respective phenotypic means for the marker genotypes, we have the following
mixture model:

observe M1M1 → y ∼ (1 − r)N(µ1, σ
2) + rN(µ2, σ

2),

observe M1M2 → y ∼ rN(µ1, σ
2) + (1 − r)N(µ2, σ

2),
(8.9)

where µ1 and µ2 are the phenotypic means (or genotypic values) of the trait for QTL
genotypes Q1Q1 and Q1Q2, respectively.

Under model (8.9), the mean and variance of the distributions are (Exercise 8.3)

µM1M1 = (1 − r)µ1 + rµ2

µM1M2 = rµ1 + (1 − r)µ2(8.10)
σ2

M1M1
= σ2

M1M2
= σ2 + r(1 − r)(µ1 − µ2)2
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Note that is there is no linkage between the markers and the QTL, that is, if r = 1
2 ,

then µM1M1 and µM1M2 are equal. Thus, the hypothesis of no linkage is

H0 : r =
1
2

or H0 : µM1M1 − µM1M2 = (1 − 2r)(µ1 − µ2) = 0,

and it is important to note that under H0, we cannot tell whether r = 1
2 or µ1 = µ2.

In either case, however, there is no practical phenotypic variation detectable.
If we assume that y1, . . . , yn1 are from marker group M1M1 and that yn1+1, . . . , yn

are from marker group M1M2, then the likelihood function based on model (8.9) is

L(µ1, µ2, σ
2, r|y) =

n1∏

i=1

(1 − r)f(yi|µ1, σ
2) + rf(yi|µ2, σ

2)

×
n∏

i=n1+1

rf(yi|µ1, σ
2) + (1 − r)f(yi|µ2, σ

2).(8.11)

To test the null hypothesis of no linkage, H0 : no QTL, we could use the likelihood
ratio statistic

(8.12) λ =
maxµ1=µ12,σ2,r L(µ1, µ2, σ

2, r|y)
maxµ1,µ2,σ2,r L(µ1, µ12, σ2, r|y)

.

The test statistic λ would reject H0 if it is too small; alternatively we could trans-
form to −2 log λ, which would reject if it is big and often has an approximate χ2

distribution. However, the mixture model invalidates the χ2 assumption, and what is
typically done is a permutation test on −2 log λ or its variant, the LOD score.

Likelihood Ratio Test

To calculate the test statistic λ, we have to maximize both the numerator and denom-
inator of (8.12). The numerator is easy since under the null hypothesis µ1 = µ12 = µ,
the likelihood (8.11) becomes

L(µ1, µ12, σ
2, r|y) = L(µ, σ2, r|y) =

n∏

i=1

f(yi|µ, σ2),(8.13)

with MLEs µ̂ = ȳ and σ̂2 = (1/n)
∑

i(yi − ȳ)2 (Exercise 8.5).
To maximize the denominator of equation (8.12), we need to maximize the likeli-

hood (8.11). To do this, we differentiate the log, set it equal to zero, and solve. We
show some of the details here and leave the rest to Exercise 8.6. Differentiating with
respect to µ1 gives
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∂

∂µ1
log L(µ1, µ2, σ

2, r|y) =
∂

∂µ1

n1∑

i=1

log
(
(1 − r)f(yi|µ1, σ

2) + rf(yi|µ2, σ
2)
)

+
∂

∂µ1

n∑

i=n1+1

log
(
rf(yi|µ1, σ

2) + (1 − r)f(yi|µ2, σ
2)
)

=
n1∑

i=1

(1 − r) ∂
∂µ1

f(yi|µ1, σ
2)

(1 − r)f(yi|µ1, σ2) + rf(yi|µ2, σ2)
(8.14)

+
n∑

i=n1+1

r ∂
∂µ1

f(yi|µ1, σ
2)

rf(yi|µ1, σ2) + (1 − r)f(yi|µ2, σ2)
.

Now take the derivative using Exercise 8.4 and define

P1(yi) =
(1 − r)f(yi|µ1, σ

2)
(1 − r)f(yi|µ1, σ2) + rf(yi|µ2, σ2)

,

P2(yi) =
rf(yi|µ1, σ

2)
rf(yi|µ1, σ2) + (1 − r)f(yi|µ2, σ2)

,(8.15)

to get

(8.16)
∂

∂µ1
log L(µ1, µ2, σ

2, r|y) =
n1∑

i=1

P1(yi)(yi − µ1) +
n∑

i=n1+1

P2(yi)(yi − µ1).

Setting this equal to 0 and solving for µ1 yields

(8.17) µ̂1 =

∑n1
i=1 P1(yi)yi +

∑n
i=n1+1 P2(yi)yi∑n1

i=1 P1(yi) +
∑n

i=n1+1 P2(yi)
.

We can similarly solve for µ2 and σ2 to get

µ̂2 =

∑n1
i=1[1 − P1(yi)]yi +

∑n
i=n1+1[1 − P2(yi)]yi∑n1

i=1[1 − P1(yi)] +
∑n

i=n1+1[1 − P2(yi)]

σ̂2 =
1
n

(
n1∑

i=1

[P1(yi)(yi − µ̂1)2 + (1 − P1(yi))(yi − µ̂2)2](8.18)

+
n∑

i=n1+1

[P2(yi)(yi − µ̂1)2 + (1 − P2(yi))(yi − µ̂2)2]

)
.

Of course, equations (8.17) and (8.18) do not solve the likelihood for all its parameters
because P1(yi) and P2(yi) depend on the parameters and also depend on r. We have
part of an iteration scheme to find the parameters. After estimating µ1, µ2, and σ2 we
use the current values to update r and then P1 and P2. We iterate until convergence.
Specifically:

(1) Fix r.
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(2) Use equations (8.17) and (8.18) to estimate µ1, µ2 and σ2.
(3) Using the current estimates µ̂1, µ̂2, and σ̂2, maximize

log L(µ1, µ2, σ
2, r|y) =

n1∑

i=1

log
(
(1 − r)f(yi|µ̂1, σ̂

2) + rf(yi|µ̂2, σ̂
2)
)

+
n∑

i=n1+1

log
(
rf(yi|µ1, σ

2) + (1 − r)f(yi|µ2, σ
2)
)

(4) Iterate between (2) and (3) until convergence.

For the maximization of (3) see Exercise 8.7. We illustrate it in the following example.

Example 8.6. (MLEs for Tomato Plant Heights). Suppose that we have the fol-
lowing data y on heights (in cm) of 12 tomato plants of a particular species grouped
into two marker classes

M1M1 : y = (79, 82, 100, 102, 124)

M1M2 : y = (85, 87, 101, 103, 125, 126, 127).

The observed means and variances of the marker classes are ȳM1M1 = 97.4, ȳM1M2 =
101.71, sM1M1 = 18.10, and sM1M2 = 18.33. We further calculate the MLEs of
µ1, µ2, σ

2, and r:

µ̂1 = 92.169, µ̂2 = 124.561, σ̂ = 8.08, r̂ = .409.

See Fig. 8.2 for the convergence of the estimates, and see Appendix B.2 for the R
program. The test statistics is calculated as −2 log λ = 3.539.

To assess the significance of the hypothesis test, we do a permutation test. We ran
5000 permuted samples and calculated −2 log λ for each. The distribution is shown
in Fig. 8.3. From the 5000 permutations, the .95 cutoff is 5.645, so the statistic is not
significant and we do not have linkage.

8.5 Power Calculation

It is practically important to calculate the minimum sample size required to achieve
a predetermined significance level. The calculation of the power to detect significant
QTLs depends on the type of mapping population. For example, the backcross can
only estimate the additive effect of a QTL, whereas the F2 can estimate both the
additive and dominant effects. Thus, different approaches should be used for power
calculation for these two designs. In this section, we will introduce a general procedure
for calculating the power for QTL analysis in the F2. From this, interested readers
can consider more complicated designs.

Assume that there is an F2 population in which individual markers are genotyped
to detect their associations with the underlying QTL for a quantitative trait. Three
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Fig. 8.2. MLEs for the tomato data of Example 8.6.
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on 5000 permutations from Example 8.6.
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genotypes at a marker are segregating in the 1(AA) : 2(Aa) : aa ratio, which implies
that a sample size of n is allocated into n/4, n/2, and n/4 for these three genotypes.
Based on analyses in Section 8.3.3, the difference between the two homozygous marker
genotypes can reflect the additive effect of a putative QTL, although the QTL is
confounded with the QTL location. We rewrite equation (8.6) to test the QTL additive
effect as

t1 =
m2 − m0√
s2( 4

n + 4
n )

=
(1 − 2r)2a√

8s2/n
.

When n is large, the calculated test statistic, t̂1, follows an approximately normal
distribution, t̂1 ∼ N(t1, 1). Thus, the power to detect the difference (m2 − m0) for a
two-tailed test is expressed as

1 − β = Prob(t̂1 > zα/2)
= 1 − Φ(zα − t),(8.19)

where zα is the critical value of the test with (1 − α) confidence under the null
hypothesis t1 = 0, and Φ(zα − t) is the standard normal cumulative distribution
function.

For a given type I error (α) and type II error (β) in the t test, the sample size n
required for detecting the additive effect of a QTL is determined by

n = 8
[

zα/2 + zβ

(1 − 2r)2a/s

]2

.(8.20)

If the QTL search is performed over the entire genome, then the type I error α for
each test should be substantially lower to account for the increased false-positive
probability for the genome-wide test.

Similarly, based on equation (8.7), we rewrite the test statistic for the dominant
effect as

t2 =
m1 − (m2 + m0)/2√

s2( 2
n + 1

n + 1
n )

=
(1 − 2r)2d√

4s2/n
.

From this, the sample size required for detecting the dominance effect is determined by

n = 4
[

zα/2 + zβ

(1 − 2r)2d/s

]2

.(8.21)
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It can be seen from equations (8.20) and (8.21) that the sample size for detecting
a QTL depends on many factors, which are (1) the magnitude of the (additive or
dominance) effect of a QTL (the larger the magnitude, the smaller the sample size
required), (2) the degree of linkage between the marker considered and a putative
QTL (the stronger the linkage, the smaller the sample size required), and (3) the
residual variance within a QTL genotype class (the smaller the residual variance, the
smaller the sample size required).

Example 8.7. A mouse geneticist plans to launch a molecular mapping study for the
identification of QTLs that affect mouse body weight. Although the exact effect of a
QTL is unknown, φa = a/s or φd = d/s is used to define the genetic effects relative
to the residual standard deviation. Assume that the significance level for detecting a
QTL is α = .01. The power of (1− β) = .90 is hoped for the QTL experiment. Using
equations (8.20) and (8.21), the sample sizes required are calculated for a range of
recombination fractions under different levels of the additive and dominance effects
of the QTL, respectively (Figs. 8.4A and 8.4B).
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Fig. 8.4. Sample sizes required under different recombination fractions.

Only a small sample size is needed for a large QTL with (φa, φd = 2) if the QTL
is located exactly at the marker. The required sample size increases exponentially
with the recombination fraction between the marker and QTL, with the extent of
the increase being markedly greater for a small QTL (φa, φd = 0.5) than for a large
QTL (φa, φd = 2). The sample size required to detect the dominance effect is larger
than that to detect the additive effect of the same size if there is the same level of
QTL-marker linkage.
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8.6 Marker Interaction Analysis

8.6.1 ANOVA

Genetic interactions between different QTLs play an important role in trait control
and expression. A two-way ANOVA based on different markers can be performed to
estimate and test the main effect of the markers and their interaction effects (Routman
and Cheverud 1997). Consider a mapping population in which there are l genotypes
at each marker. A standard two-way ANOVA approach is used to analyze the two
markers simultaneously, with the results summarized in Table 8.4.

Based on the structure of the expected mean squares due to the main and
interaction effects (assuming that they are all random), we can calculate the F
test statistics for each effect compared with the critical values F0.05,(l−1,(l−1)2) and
F0.05,((l−1)2,n−l2−1), respectively. The genetic variances for the main effect of markers
A and B and their interaction effect are calculated as

σ2
A =

MS1 − MS3

k1
,

σ2
B =

MS2 − MS3

k2
,

σ2
AB =

MS3 − MS4

k3
,

with harmonic means calculated differently for the backcross and the F2.

Table 8.4. Summary of two-way ANOVA aimed at detecting the main effects and interac-
tion effect between different markers in a mapping population.

Mean Expected

Source of Variation df Square F-value Mean Square

Main effect due to marker A l − 1 MS1 MS1/MS3 σ2
e + k3σ

2
AB + k1σ

2
A

Main effect due to marker B l − 1 MS2 MS2/MS3 σ2
e + k3σ

2
AB + k2σ

2
B

Interaction effect (l − 1)2 MS3 MS3/MS4 σ2
e + k3σ

2
AB

Residual error n − l2 − 1 MS4 σ2
e

Note: l = 2 for the backcross and 3 for the F2.

For the backcross, we have

k1 =
2

1
n1

+ 1
n0

,

where n1 and n0 are the observations of the two genotypes at marker A;
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k2 =
2

1
n′

1
+ 1

n′
0

,

where n′
1 and n′

0 are the observations of the two genotypes at marker B; and

k3 =
4

1
n11

+ 1
n10

+ 1
n01

+ 1
n00

,

where n11, n10, n01, and n00 are the observations of the four genotypes at markers A
and B. For the F2, we have

k1 =
3

1
n2

+ 1
n1

+ 1
n0

,

where n2, n1, and n0 are the observations of the three genotypes at marker A;

k2 =
3

1
n′

2
+ 1

n′
1

+ 1
n′

0

,

where n′
2, n′

1, and n′
0 are the observations of the three genotypes at marker B; and

k3 =
9

1
n22

+ 1
n21

+ 1
n20

+ 1
n12

+ 1
n11

+ 1
n10

+ 1
n02

+ 1
n01

+ 1
n00

,

where n22, . . . , n00 are the observations of the nine genotypes at markers A and B.
The proportions of each of these genetic variances over the total phenotypic vari-

ance, the marker-specific heritability, can be calculated by

R2
A =

σ2
A

σ2
A + σ2

B + σ2
AB + σ2

e

,

R2
B =

σ2
B

σ2
A + σ2

B + σ2
AB + σ2

e

,

R2
AB =

σ2
AB

σ2
A + σ2

B + σ2
AB + σ2

e

.

(8.22)

For the F2, the main effect for each marker, A and B, can be partitioned into
the additive (a) and dominance (d) effect components, whereas the interaction effect
between different markers in the F2 can be partitioned into the additive × additive
(Iaa), additive × dominance (Iad), dominance × additive (Ida) and dominance ×
dominance (Idd) components. All these component effects can be tested by a t test
statistic, which, along with the corresponding critical value, is expressed sequentially
as

tAa =
(m22 + m20) − (m02 + m00)√

s2( 1
n22

+ 1
n20

+ 1
n02

+ 1
n00

)
, t(0.025,ν=n22+n20+n02+n00−4),(8.23)

with
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s2 =
(n22 − 1)s2

22 + (n20 − 1)s2
20 + (n02 − 1)s2

02 + (n00 − 1)s2
00

n22 + n20 + n02 + n00 − 4
;

tAd =
(m12 + m10) − 1

2 (m22 + m20 + m02 + m00)√
s2( 1

4n22
+ 1

4n20
+ 1

n12
+ 1

n10
+ 1

4n02
+ 1

4n00
)
,(8.24)

t(0.025,ν=n22+n20+n12+n10+n02+n00−6),

with

s2 =
(n22 − 1)s2

22 + (n20 − 1)s2
20 + (n12 − 1)s2

12

n22 + n20 + n12 + n10 + n02 + n00 − 6

+
(n10 − 1)s2

10 + (n02 − 1)s2
02 + (n00 − 1)s2

00

n22 + n20 + n12 + n10 + n02 + n00 − 6
;

tBa =
(m22 + m02) − (m20 + m00)√

s2( 1
n22

+ 1
n20

+ 1
n02

+ 1
n00

)
, t(0.025,ν=n22+n20+n02+n00−4),(8.25)

with

s2 =
(n22 − 1)s2

22 + (n20 − 1)s2
20 + (n02 − 1)s2

02 + (n00 − 1)s2
00

n22 + n20 + n02 + n00 − 4
;

tBd =
(m21 + m01) − 1

2 (m22 + m20 + m02 + m00)√
s2( 1

4n22
+ 1

n21
+ 1

4n20
+ 1

4n02
+ 1

n01
+ 1

4n00
)
,(8.26)

t(0.025,ν=n22+n21+n20+n02+n01+n00−6),

with

s2 =
(n22 − 1)s2

22 + (n21 − 1)s2
21 + (n20 − 1)s2

20

n22 + n21 + n20 + n02 + n01 + n00 − 6

+
(n02 − 1)s2

02 + (n01 − 1)s2
01 + (n00 − 1)s2

00

n22 + n21 + n20 + n02 + n01 + n00 − 6
;

taa =
(m22 + m00) − (m20 + m02)√

s2( 1
n22

+ 1
n20

+ 1
n02

+ 1
n00

)
, t(0.025,ν=n22+n20+n02+n00−4),(8.27)

with

s2 =
(n22 − 1)s2

22 + (n20 − 1)s2
20 + (n02 − 1)s2

02 + (n00 − 1)s2
00

n22 + n20 + n02 + n00 − 4
;

tad =
[m21 − 1

2 (m22 + m20)] − [m01 − 1
2 (m02 + m00)]√

s2( 1
4n22

+ 1
n21

+ 1
4n20

+ 1
4n02

+ 1
n01

+ 1
4n00

)
,(8.28)
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t(0.025,ν=n22+n21+n20+n02+n01+n00−6),

with

s2 =
(n22 − 1)s2

22 + (n21 − 1)s2
21 + (n20 − 1)s2

20

n22 + n21 + n20 + n02 + n01 + n00 − 6

+
(n02 − 1)s2

02 + (n01 − 1)s2
01 + (n00 − 1)s2

00

n22 + n21 + n20 + n02 + n01 + n00 − 6
;

tda =
[m12 − 1

2 (m22 + m02)] − [m10 − 1
2 (m20 + m00)]√

s2( 1
4n22

+ 1
4n20

+ 1
n12

+ 1
n10

+ 1
4n02

+ 1
4n00

)
,(8.29)

t(0.025,ν=n22+n20+n12+n10+n02+n00−6),

with

s2 =
(n22 − 1)s2

22 + (n20 − 1)s2
20 + (n12 − 1)s2

12

n22 + n20 + n12 + n10 + n02 + n00 − 6

+
(n10 − 1)s2

10 + (n02 − 1)s2
02 + (n00 − 1)s2

00

n22 + n20 + n12 + n10 + n02 + n00 − 6
;

tdd =
[m11 − 1

2 (m21 + m01)] − 1
2{[m12 − 1

2 (m22 + m02)] + [m10 − 1
2 (m20 + m00)]}√

s2( 1
4n22

+ 1
n12

+ 1
4n02

+ 1
4n21

+ 1
n11

+ 1
4n01

+ 1
4n20

+ 1
n10

+ 1
4n00

)
,

t(0.025,ν=n22+n12+n02+n21+n11+n01+n20+n10+n00−9),(8.30)

with

s2 =
(n22 − 1)s2

22 + (n12 − 1)s2
12 + (n02 − 1)s2

02 + (n21 − 1)s2
21 + (n11 − 1)s2

11

n22 + n12 + n02 + n21 + n11 + n01 + n20 + n10 + n00 − 9

+
(n01 − 1)s2

01 + (n20 − 1)s2
20 + (n10 − 1)s2

10 + (n00 − 1)s2
00

n22 + n12 + n02 + n21 + n11 + n01 + n20 + n10 + n00 − 9
,

where s2
22, . . . , s

2
00 are the sample variances for nine genotypes at markers A and B.

Example 8.8. Revisit Example 3.2. An F2 intercross population derived from the
Large (LG/J) and Small (SM/J) inbred strains of mice is used to describe marker
interaction effects on adult body weight (Cheverud et al. 1996). A total of 535 F2 mice
were weighed weekly from 1 to 10 weeks of age. The 10-week weight, referred to as
adult weight, will be analyzed. Seventy-six microsatellite polymorphisms were scored
throughout the 19 mouse autosomes. As an example, our analysis will focus on one
marker (D1Mit7) on chromosome 1 and the second marker (D2Mit17) on chromosome
2. Table 8.5 tabulates the estimates of the mean squares, F -values, genetic variance
components, and the proportions of each effect contributing to the total phenotypic
variance.
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Table 8.5. ANOVA results of a two-marker analysis in the F2 population of mice.

Mean Pro-

Source of Variation df Square F -value Pr > F portion

Main effect due to marker D1Mit7 2 115.20 7.61 < 0.0001 0.026

Main effect due to marker D2Mit17 2 87.40 5.77 0.0065 0.019

Interaction effect 4 12.25 0.81 0.5195

Residual error 838 15.14

Both markers, D1Mit7 and D2Mit17, are significant for their main effects on the
adult body weight of mice, which explain 2.6 percent and 1.9 percent of the pheno-
typic variance, respectively. The interaction effect between the two markers is found
to be nonsignificant. Based on equations (8.23) and (8.24), we calculate the t statis-
tics for the additive and dominance effects associated with marker D1Mit7, which
are tAa = −1.7866 (p = 0.0756) and tAd = 1.7232 (p = 0.0857), respectively.
These two effects are not significant compared with the corresponding critical val-
ues t(0.025,ν=186) = 1.9728 and t(0.025,ν = 378) = 1.9663. The t statistics for the
additive and dominance effects at marker D2Mit17 are calculated as tBa = −3.1693
(p = 0.0018) and tBd = −0.2349 (p = 0.8144) with equations (8.25) and (8.26), sug-
gesting that the additive effect is significant based on t(0.025,ν = 186) = 1.9728 and
that the dominance effect is not significant based on t(0.025,ν = 408) = 1.9658.

8.6.2 Genetic Analysis

The main effect of a marker reflects only the additive effect at the marker level
for the backcross, but both the additive and dominance effects at the marker level
for the F2. The interaction effect between two different markers virtually represents
the additive × additive genetic effect at the marker level for the backcross and can
be partitioned into four components, additive × additive, additive × dominance,
dominance × additive, and dominance × dominance genetic effects, at the marker level
for the F2. In practice, it is of great importance to estimate each of these interaction
components (Cheverud and Routman 1995).

As shown for a single-marker case, marker analysis will confound the QTL location
and effect. This is also true for two-marker analysis, but it is interesting to explore
how the QTL locations and different genetic factors are confounded.

Consider two unlinked markers, A (with alleles A and a) and B (with alleles B and
b). Assume each marker is linked with a different QTL, P (with alleles P and p) or Q
(with alleles Q and q), with the recombination fractions of r1 and r2, respectively. Let
ωj1j2|k1k2 be the conditional probability of two-QTL genotype j1j2, conditional upon
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two-marker genotype k1k2. If these two markers are located on different chromosomes,
conditional probabilities ωj1j2|k1k2 can be expressed as follows:

Marker QTL P

M Pp(0) pp(0)

Aa(1) 1 − r1 r1

aa(0) r1 1 − r1

⊗

Marker QTL Q

genotype Qq(1) qq(0)

Bb(1) 1 − r2 r2

bb(0) r2 1 − r2

for the backcross and

Marker QTL P

M PP (2) Pp(1) pp(0)

AA(2) (1 − r1)
2 2r1(1 − r1) r2

1

Aa(1) r1(1 − r1) (1 − r1)
2 + r2

1 r1(1 − r1)

aa(0) r2
1 2r1(1 − r1) (1 − r1)

2

⊗

Marker QTL Q

genotype QQ(2) Qq(1) qq(0)

BB(2) (1 − r2)
2 2r2(1 − r2) r2

2

Bb(1) r2(1 − r2) (1 − r2)
2 + r2

2 r2(1 − r2)

bb(0) r2
2 2r2(1 − r2) (1 − r2)

2

Let µj1j2 (j1, j2 = 1, 0 for the backcross and 2, 1, 0 for the F2) and mk1k2 (k1, k2 =
1, 0 for the backcross and 2, 1, 0 for the F2) be the genotypic values at two QTLs
and at two markers, respectively. The QTL genotypic values can be partitioned into
different components: i.e., the overall mean (µ), the additive effects at QTLs P (a1)
and Q (a2) and the additive × additive effect (iaa) for the backcross, or the overall
mean (µ), the additive (a1) and dominance effects (d1) at QTL P, the additive (a2)
and dominance effects (d2) at QTL Q, as well as the additive × additive (iaa), additive
× dominance (iad), dominance × additive (ida) and dominance × dominance (idd),
for the F2 (see equation (1.9) and matrix (9.9)).

We use a general formula to express the marker genotypic values in terms of the
QTL genotypic values:

mk1k2 =
2∑

j1=0

2∑

j2=0

ωj1j2|k1k2µj1j2 .(8.31)

More specifically, based on equation (8.31), we derive the marker genotypic values in
terms of individual QTL effects for the backcross as

m11 = µ + (1 − r1)a1 + (1 − r2)a2 + (1 − r1)(1 − r2)iaa,

m10 = µ + (1 − r1)a1 + r2a2 + (1 − r1)r2iaa,

m01 = µ + r1a1 + (1 − r2)a2 + r1(1 − r2)iaa,

m00 = µ + r1a1 + r2a2 + r1r2iaa.

The main effects of markers A and B, respectively, are expressed as

MA = 1
2 (m11 + m10) − 1

2 (m01 + m00) = (1 − 2r1)a1 + 1
2 (1 − 2r1)iaa,(8.32)

MB = 1
2 (m11 + m01) − 1

2 (m10 + m00) = (1 − 2r2)a2 + 1
2 (1 − 2r2)iaa,(8.33)
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whereas the interaction effect between the two markers is expressed as

IAB = (m11 + m00) − (m10 + m01)
= (1 − 2r1)(1 − 2r2)iaa.(8.34)

It is interesting to find that for the two-marker analysis the estimate of a marker main
effect is not only confounded by the position of a QTL that is linked with the marker
but also contaminated by the epistatic effect between this QTL and any other QTL
located at a different position. The estimate of the interaction effect based on marker
information is confounded by the additive × additive epistatic effect between the two
putative QTLs and their respective recombination fractions with markers.

The main and interaction effects of two different QTLs in the F2 are shown by
equation (1.9) and tabulated in matrix (9.9), which allows for the characterization of
additive, dominance, and all four possible epistatic effects. Using equation (8.31), we
derive the marker genotypic values in terms of QTL effects for the F2 as follows:

m22 = µ + (1 − 2r1)a1 + 2r1(1 − r1)d1 + (1 − 2r2)a2 + 2r2(1 − r2)d2

+(1 − 2r1)(1 − 2r2)iaa + 2r2(1 − r2)(1 − 2r1)iad

+2r1(1 − 2r2)(1 − r1)ida + 4r1(1 − r1)r2(1 − r2)idd,

m21 = µ + (1 − 2r1)a1 + 2r1(1 − r1)d1 + (1 − 2r2 + 2r2
2)d2

+(1 − 2r2 + 2r2
2)(1 − 2r1)iad + 2r1(1 − r1)(1 − 2r2 + 2r2

2)idd,

m20 = µ + (1 − 2r1)a1 + 2r1(1 − r1)d1 − (1 − 2r2)a2 + 2r2(1 − r2)d2

−(1 − 2r1)(1 − 2r2)iaa + 2r2(1 − r2)(1 − 2r1)iad

−2r1(1 − 2r2)(1 − r1)ida + 4r1(1 − r1)r2(1 − r2)idd,

m12 = µ + (1 − 2r1 + 2r2
1)d1 + (1 − 2r2)a2 + 2r2(1 − r2)d2

+(1 − 2r1 + 2r2
1)(1 − 2r2)ida + 2(1 − 2r1 + 2r2

1)r2(1 − r2)idd,

m11 = µ + (1 − 2r1 + 2r2
1)d1 + (1 − 2r2 + 2r2

2)d2

+(1 − 2r1 + 2r2
1)(1 − 2r2 + 2r2

2)idd,

m10 = µ + (1 − 2r1 + 2r2
1)d1 − (1 − 2r2)a2 + 2r2(1 − r2)d2

−(1 − 2r1 + 2r2
1)(1 − 2r2)ida + 2(1 − 2r1 + 2r2

1)r2(1 − r2)idd,

m02 = µ − (1 − 2r1)a1 + 2r1(1 − r1)d1 + (1 − 2r2)a2 + 2r2(1 − r2)d2

−(1 − 2r1)(1 − 2r2)iaa − 2r2(1 − r2)(1 − 2r1)iad

+2r1(1 − 2r2)(1 − r1)ida + 4r1(1 − r1)r2(1 − r2)idd,

m01 = µ − (1 − 2r1)a1 + 2r1(1 − r1)d1 + (1 − 2r2 + 2r2
2)d2

−(1 − 2r2 + 2r2
2)(1 − 2r1)iad + 2r1(1 − r1)(1 − 2r2 + 2r2

2)idd,

m00 = µ − (1 − 2r1)a1 + 2r1(1 − r1)d1 − (1 − 2r2)a2 + 2r2(1 − r2)d2

+(1 − 2r1)(1 − 2r2)iaa − 2r2(1 − r2)(1 − 2r1)iad

−2r1(1 − 2r2)(1 − r1)ida + 4r1(1 − r1)r2(1 − r2)idd.

The marker additive and dominant effects for A and B are derived, respectively,
as
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AA = 1
4 (m22 + m20) − 1

4 (m02 + m00)
= (1 − 2r1)a1 + 2(1 − 2r1)r2(1 − r2)iad,

DA = 1
2 (m12 + m10) − 1

4 (m22 + m20 + m02 + m00)

= (1 − 2r1)2d1 + 2(1 − 2r1)2r2(1 − r2)idd,

AB = 1
4 (m22 + m02) − 1

4 (m20 + m00)
= (1 − 2r2)a2 + 2r1(1 − r1)(1 − 2r2)ida,

DB = 1
2 (m21 + m01) − 1

4 (m22 + m20 + m02 + m00)

= (1 − 2r1)d2 + 2r1(1 − r1)(1 − 2r2)2idd.

The additive × additive (Iaa), additive × dominance (Iad), dominance × additive
(Ida), and dominance × dominance (Idd) epistatic effects at the marker level can be
expressed as

Iaa = 1
4 (m22 + m00) − 1

4 (m20 + m02)
= (1 − 2r2)(1 − 2r1)iaa,

Iad = 1
2 [m21 − 1

2 (m22 + m20)] − 1
2 [m01 − 1

2 (m02 + m00)]

= (1 − 2r2)2(1 − 2r1)iad,

Ida = 1
2 [m12 − 1

2 (m22 + m02)] − 1
2 [m10 − 1

2 (m20 + m00)]

= (1 − 2r1)2(1 − 2r2)ida,

Idd = [m11 − 1
2 (m21 + m01)] − 1

2{[m12 − 1
2 (m22 + m02)] + [m10 − 1

2 (m20 + m00)]}
= [m11 − 1

2 (m12 + m10)] − 1
2{[m21 − 1

2 (m22 + m20)] + [m01 − 1
2 (m02 + m00)]}

= (1 − 2r1)2(1 − 2r2)2iaa.

From the analysis above, we can see how much the estimates of each marker effect
are contaminated by the QTL locations and QTL–QTL interaction effects.

8.7 Whole-Genome Marker Analysis

The purpose of constructing a genetic map is the identification of the QTLs that affect
a quantitative trait, their number, genomic distribution, genetic effects, and sensitiv-
ity to various environmental signals. Separate analyses of individual markers are not
adequate for precisely capturing all the information about QTL because their inter-
acting network cannot be systematically identified. Xu (2003) proposed a method for
simultaneously estimating marker effects of the entire genome. This method assumes
that the marker density is relatively high, and thus marker effects approximately
represent the QTL effects associated with markers.

Consider a backcross in which a quantitative trait is measured for individual i,
denoted as yi. The statistical model for yi at a total of m markers, each with two
genotypes 1 and 0, in the entire genome is written as

yi = b0 +
m∑

k=1

xikbk + ei,(8.35)
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where b0 is the overall mean, xik is a dummy variable indicating the genotype of the
kth marker for individual i, bk is the effect of the kth marker, and ei is the residual
error following N(0, σ2). The dummy variable is defined as xik = 1, 0, depending on
marker genotype. Equation (8.35) is the multiple regression model, with the partial
regression coefficient bk being the effect of marker k associated with the trait.

How to estimate partial regression coefficients in equation (8.35) is statistically a
challenging issue because the number of markers in the linear model may be larger
than the number of individuals and because the effects of many markers actually are
close to zero. Xu (2003) implemented a Bayesian approach for parameter estimation.
Within the Bayesian context, everything, including the parameters, is treated as a
random variable with a particular distribution. For example, each bk is assumed to
be sampled from a normal distribution with mean zero and variance σ2

k. All variables
are sorted into observables and unobservables. The observables are phenotypic values,
y = {yi}, and marker data, whereas the unobservables include b = {bk} and v =
{σ2

e , σ2
k} (k = 1, . . . ,m). The Bayesian framework is composed of three elements, the

prior distribution, likelihood, and posterior distribution. The prior distribution is the
distribution of the unobservables. The likelihood is the distribution of the observables,
expressed as a function of the unobservables. The posterior distribution, which needs
to be inferred from Bayesian analysis, is the conditional distribution of the parameters
given the observed data.

The Markov chain Monte Carlo (MCMC) method makes Bayesian analysis trac-
table. The MCMC-implemented Bayesian analysis does not need an explicit form of
the posterior distribution; rather, it draws a sample of the unobservables from the
joint posterior distribution. From the joint posterior sample, the desired Bayesian
estimates, such as the posterior means and posterior variances, can be obtained. The
subsequent description of Bayesian analysis will be based on the idea of Xu (2003),
who chose the following prior distributions:

P (b0) ∝ 1,

P (σ2
e) ∝ 1/σ2

e ,

P (bk) = N(0, σ2
k),

P (σ2
k) ∝ 1/σ2

k.

The joint prior distribution of the unobservables P (b,v) takes the product of the
priors of individual parameters. The likelihood is

P (y|b,v) =
n∏

i=1

P (yi|b, σ2
e)

∝ [σ2
e ]−n/2 exp

⎡

⎣− 1
2σ2

e

n∑

i=1

(
yi − b0 −

m∑

k=1

xikbk

)2
⎤

⎦ .(8.36)

The joint posterior distribution has a form of
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P (b,v|y) ∝ P (y|b,v)P (b,v).(8.37)

For the MCMC-implemented Bayesian analysis, the unobservables are sampled from
the joint posterior distribution above. The sampling is performed in the following
steps.

(1) Determine initial values for all unobservables denoted as

(b(0)
0 , b

(0)
1 , . . . , b

(0)
k , σ2(0)

e , σ
2(0)
1 , . . . , σ

2(0)
k ).

Parameters b are all initialized with zero value and the scale parameters v initial-
ized with a positive number.

(2) Update the population mean b0. The conditional posterior distribution of b0 is
normal with mean

b̄0 =
1
n

n∑

i=1

(
yi −

m∑

k=1

xikb
(0)
k

)

and variance
s̄2
0 = σ2(0)

e ,

from which we sample a new b0, denoted as b
(1)
0 , which replaces b

(0)
0 in all subse-

quent sampling processes.
(3) Update partial regression coefficients bk for k = 1, . . . , m. The conditional poste-

rior distribution for bk is normal with mean

b̄k =

[
n∑

i=1

x2
ik +

σ
2(0)
e

σ
2(0)
k

]−1 n∑

i=1

xik

⎛

⎝yi − b
(0)
0 −

m∑

l �=k

xilb
(0)
l

⎞

⎠

and variance

s̄2
k =

[
n∑

i=1

x2
ik +

σ
2(0)
e

σ
2(0)
k

]−1

σ2(0)
e ,

which are used to sample bk to generate b
(1)
k which replaces b

(0)
k in all subsequent

sampling processes.
(4) Update the residual variance σ2(0). The residual variance is sampled from a scaled

inverted χ2-square distribution,

σ2(1)
e =

1
χ2

n

n∑

i=1

xik

⎛

⎝yi − b
(0)
0 −

m∑

l �=k

xilb
(0)
l

⎞

⎠ ,

where χ2
n is a random number sampled from a χ2–distribution with n degrees of

freedom. The variance σ
2(0)
e is immediately updated by σ

2(1)
e .

(5) Update the variances of partial regression coefficients σ2
k for k = 1, . . . , m. They

can be sampled from a scaled inverted χ2–distribution,
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σ
2(1)
k =

b
2(0)
k

χ2
1

,

where χ2
1 is a random number sampled from a χ2 distribution with one degree of

freedom.
(6) Repeat steps 2–5. At this point, one sweep of the MCMC is complete, and sampling

for the next round can be continued. The sampled parameters will follow the joint
posterior distribution when the chain converges to the stationary distribution.

Example 8.9. Xu (2003) used the Bayesian approach to detect marker effects through-
out the entire genome in barley (Tinker et al. 1996). The mapping population is
composed of n = 145 DH lines for which the model developed for the backcross can
be used directly. A total of m = 127 molecular markers constructed seven linkage
groups, covering 1500 cM of the barley genome. The study material was planted in
a range of environments. Several agronomic traits were measured for each plant and
analyzed on the basis of across-environment means, but only results for kernel weight
are shown here.

Figure 8.5a illustrates the marker effects across the seven ligated linkage groups.
Four candidate regions were detected to show significant associations between markers
and kernel weight, which were consistent with those by single-marker analysis (Fig.
8.5b). The significant difference between the two approaches is that the marker effects
detected by multimarker analysis are more sharply contrasting than those by single-
marker analysis. This may suggest that multimarker analysis has identified fewer
spurious significant associations, compared with single-marker analysis.

Xu (2003) also did an interesting test for the distribution of marker effects over
the genome. The marker effects detected by multimarker and single-marker analyses
can be fit by the Gamma distribution with the estimated scale (0.0579 vs. 0.1134)
and shape parameters (0.2233 vs. 1.1396) dramatically different between the two ap-
proaches. Thus, multimarker analysis generated an L-shaped distribution (Fig. 8.6a),
whereas single-marker analysis generated a bell-shaped distribution (Fig. 8.6b). Mul-
tiple analyses implemented within the Bayesian context provide a powerful tool for
studying the overall genetic architecture of a quantitative trait.

8.8 Exercises

8.1 Referring to the data in Table 8.1, for marker B test whether the difference in body
weight between genotypes 1 and 0 is statistically significant.

8.2 Referring to Example 8.5, construct the ANOVA table for marker B and perform any
subsequent t–tests. What can you conclude about this marker?

8.3 For the backcross model (8.9), note that if genotype M1M1 is observed, the density of
y is given by

(1 − r)√
2πσ2

exp

{
(y − µ1)

2

2σ2

}
+

r√
2πσ2

exp

{
(y − µ12)

2

2σ2

}
.

Use this fact to verify the means and variances in equation (8.10)



8.8 Exercises 199

Fig. 8.5. Marker effects of kernel weight in barley across different markers on the genome.
(a) Multimarker Bayesian analysis; (b) single-marker regression analysis. The seven linkage
groups are separated by dotted vertical lines. Adapted from Xu (2003).

8.4 If f is the normal density f(y) = (1)√
2πσ2 exp

{
(y−µ)2

2σ2

}
, show that:

(a) ∂
∂µ

f = (y − µ)f .

(b) ∂
∂σ2 f =

(
(y−µ)2−σ2

2σ3/2

)
f.

8.5 . Referring to (8.13), verify the expressions for the likelihood and the MLEs.
8.6 Verify equations (8.17) and (8.18).
8.7 For the log-likelihood in part (3) of the iteration in Section 8.4.1, show that

∂

∂r
log L(µ̂1, µ̂12, σ̂

2, r|y)=

n1∑

i=1

(
1 − P1(yi)

r
− P1(yi)

1 − r

)
+

n∑

i=n1+1

(
P2(yi)

r
− 1 − P2(yi)

1 − r

)
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Fig. 8.6. Gamma approximation of marker effects for kernel weight in barley. (a) Multi-
marker Bayesian analysis; (b) single-marker regression analysis. Adapted from Xu (2003).

and setting this equal to zero yields

r =
1

n

(
n1∑

i=1

1 − P1(yi) +

n∑

i=n1+1

P2(yi)

)
.

8.8 In Section 8.6.2, we assumed that two markers are independent from each other. But if
the markers are linked on the same genomic region, do the following things separately
for the backcross and F2:
(a) Derive the conditional probabilities of QTL genotypes given marker genotypes.
(b) Express the marker genotypic values in terms of the QTL genotypic values.
(c) Show how the interaction effects at the marker level are underestimated when they

are used to represent QTL interaction effects.
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8.9 Doebley et al. (1995) genotyped two markers as the candidate QTL for the average
length of vegetative internodes in the primary lateral branch in an F2 population of
183 corns derived from inbred lines, Teosinte-M1L × Teosinte-M3L. The observations
and trait values for each genotype at these two QTLs are given below (see Kao and
Zeng 2002)

Q

P 2 1 0 Total

Observations

2 8 22 3 33

1 20 42 24 86

0 11 21 10 42

Total 39 85 37 161

Phenotypic values Mean

2 101.60 66.50 61.11 74.52

1 83.62 47.55 40.94 54.09

0 47.80 54.57 17.98 44.08

Total 77.21 54.19 36.37 55.67

(a) Test whether these two candidate QTLs are linked.
(b) Estimate the additive effects of each candidate QTL.
(c) Estimate the dominant effects of each candidate QTL.
(d) Estimate the epistatic genetic effects between the two QTL.
(e) If these two candidate QTLs are viewed as markers, discuss how the estimates of

the marker additive, dominance, and epistatic genetic effects are confounded by the
QTL positions and epistatic effects.

8.10 Missing marker data in whole-genome marker analysis.
It is common for genotypic data to be missing at some markers. Genotypes of missing
markers can be generated randomly on the basis of the probability inferred jointly
from the nearest nonmissing flanking markers and the phenotype (Xu 2003). The
probability from the markers is treated as the prior probability. After incorporation
of the marker effects through the phenotype, the probability becomes the posterior
probability, which is used to generate the missing marker genotype. Show the algorithm
for sampling missing data within the MCMC framework as shown in Section 8.7.
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The Structure of QTL Mapping

9.1 Introduction

In the previous chapter, statistical approaches were described for evaluating associ-
ations between markers and phenotypes. Such an association analysis can provide
evidence for the genetic control of trait variation but is not very precise because the
genetic effects associated with marker genotypes are confounded by the position of a
functional QTL and its actual effect. Of course, if markers are so highly dense that
they are generated at QTL positions, a simple marker-phenotype association analysis
may be useful. The generation of such high-density maps is not possible for a major-
ity of species in practice. Powerful analytical techniques are needed to separate the
effects of a QTL from its location.

Unlike molecular markers, the genomic locations of QTLs are unknown and should
be inferred on the basis of the association analysis of the phenotypes and markers.
The role of statistical methods is in the identification, mapping and estimation of
functional QTLs using location-known, neutral markers. Starting in this chapter, we
will systematically introduce the genetic principles behind QTL mapping strategies
and statistical methods proposed to estimate the locations and effects of QTLs based
on genetic linkage maps. All of these issues form the core of this book.

One of the most important statistical foundations for QTL mapping is laid out in
the mixture model (McLachlan and Peel 2000), in which each observation is assumed
to have arisen from one of g unobservable QTL genotype groups, each group being
suitably modelled by a density from some parametric family. This model provides
a framework by which observations may be clustered together into genotype groups
for discrimination. QTL mapping methods based on the mixture model include three
tasks:

(1) Model the full mixture for possible phenotype-genotype correspondence.
(2) Characterize the types of QTL effects, random or fixed.
(3) Estimate the unknown QTL parameters using statistical methods.

In this chapter, we will introduce several fundamental genetic and statistical issues
related to the characterization of mixture models for QTL mapping. The exploration
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of these issues helps us to better interpret the results and develop novel statistical
models for new problems.

9.2 The Mixture Model

9.2.1 Formulation

The genetic foundation of statistical mapping methods is that a QTL being iden-
tified is segregating to form two or more different genotypes in a mapping progeny
population. Thus, QTL mapping can be performed using any segregating population.
The statistical models for studying QTL effects can be specified most precisely by
assuming that the underlying QTL is known using equation (8.1) for the backcross
or equation (8.2) for the F2. Table 9.1 gives the examples for the data structure of a
backcross design that corresponds to this so-called QTL regression model.

In practice, the QTL genotypes for a trait are unobserved, although they actually
determine the genetic variation of the trait. For a mapping population, the pattern of
QTL segregation can be predicted; for example, a 1:1 ratio for the backcross (BC) and
1:2:1 ratio for the F2. Randomly selecting a mouse, i, from Table 9.1, the probability
that this mouse will carry QTL genotype Qq (1) or qq (0) is 1/2 and 1/2, respectively.
Similarly, we have such probabilities 1/4 for QQ (2), 1/2 for Qq (1), and 1/4 for qq
(0) in the F2 design (Table 9.2). Thus, each mouse can be assumed to arise from one
and only one of these QTL genotypes with a probability specified above for different
designs.

Table 9.1. Mouse body weight (y) and a putative QTL in a backcross design.

Sample QTL genotype Body weight

(z) (y)

1 Qq (1) 30

2 Qq (1) 32

3 Qq (1) 28

4 Qq (1) 29

5 Qq (1) 29

6 qq (0) 22

7 qq (0) 20

8 qq (0) 21

9 qq (0) 20

10 qq (0) 21
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For mouse i, a likelihood function of its phenotype, yi, can be formulated in the
mixture model context, expressed as

yi ∼ p(φj , η|yi) =

{
1
2f1(yi;φ1, η) + 1

2f0(yi;φ0, η) for BC
1
4f2(yi;φ2, η) + 1

2f1(yi;φ1, η) + 1
4f0(yi;φ0, η) for F2,

(9.1)

where fj(yi;φj , η) is a type of probability density function with φj specific to each
component (i.e., genotype) and η common to all components. The mixing proportions
of each component in mixture model (9.1) are the genotype frequencies in the entire
mapping population.

Table 9.2. Mouse body weight affected by a putative QTL segregating with different prior
probabilities in a backcross or F2 design.

Body Backcross F2

Sample Weight Qq (1) qq (0) QQ (2) Qq (1) qq (0)

1 30 1
2

1
2

1
4

1
2

1
4

2 32 1
2

1
2

1
4

1
2

1
4

3 28 1
2

1
2

1
4

1
2

1
4

4 29 1
2

1
2

1
4

1
2

1
4

5 29 1
2

1
2

1
4

1
2

1
4

6 22 1
2

1
2

1
4

1
2

1
4

7 20 1
2

1
2

1
4

1
2

1
4

8 21 1
2

1
2

1
4

1
2

1
4

9 20 1
2

1
2

1
4

1
2

1
4

10 21 1
2

1
2

1
4

1
2

1
4

Model (9.1) can be used to diagnose the existence of a segregating QTL in a
mapping population but is unable to localize the chromosomal location of the QTL.
The QTL location can be estimated by inferring the QTL genotypes from the seg-
regation pattern of markers that are linked with the QTL. The raw data for QTL
mapping consists of the ordered marker information and measured phenotypes of dif-
ferent individuals (Tables 8.1 and 8.2). With additional marker information (M), the
likelihood function of mouse i for the backcross, as described by equation (9.1), can
be rewritten as

yi ∼ p(φj , η|yi,M) = ω1|if1(yi;φ1, η) + ω0|if0(yi;φ0, η),(9.2)
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where ωj|i is the conditional probability of QTL genotype j given marker genotypes
for mouse i.

Similarly, the likelihood of a mouse for the F2 can be written as

yi ∼ p(φj , η|yi,M)
= ω2|if2(yi;φ2, η) + ω1|if1(yi;φ1, η) + ω0|if0(yi;φ0, η).(9.3)

The conditional probability matrices for the backcross and F2 are provided in Chap-
ter 10.

9.2.2 Structure, Setting, and Estimation

Finite mixtures of distributions can be used to model a wide variety of random phe-
nomena (see McLachlan and Peel 2000) and can provide a sound statistical approach
for distinguishing unknown QTL genotypes. With an approach based on a normal
mixture model for separating QTL genotypes for a general mapping population, it
is assumed that each observation, which includes the phenotype (yi) and marker in-
formation (M), is from a mixture of a specified number (J) of probability densities
expressed as

(9.4) p(Ω|yi,M) = ω1|if1(yi;µ1, σ
2) + · · · + ωJ|ifJ(yi;µJ , σ2),

where Ω = (ω1|i, · · · , ωJ|i, µ1, · · · , µJ , σ2) is the vector of unknown parameters, the
ωj|i’s are the mixing proportions, summing to 1, which are the conditional probabili-
ties of the QTL genotypes given the marker genotypes, and fj(yi;µj , σ

2) is generally
assumed to be a normal density for a particular QTL genotype j with mean µj and
variance σ2, expressed as

fj(yi;µj , σ
2) =

1√
2πσ

exp
[
− (yi − µj)2

2σ2

]
.(9.5)

All the component distributions are assumed to be from the same parametric family.
With basic knowledge about a mixture model, the development of a statistical

method for QTL mapping contains three major tasks:

(1) Derive the structures of the mixture model including the mixture proportions (de-
noted as the frequencies of QTL genotypes) and the density functions (expressed
in terms of QTL effects and residual variance).

(2) Optimize the setting of QTL mapping from an experimental design perspective
by specifying QTL effects and other model effects as fixed or random.

(3) Develop a statistical technique for the estimation of the unknown parameters
defined in the mixture model.

The first task needs the formulation of thorough genetic models based on different
mating designs, different marker types, different population structures, and different
genetic effects. The second task is relevant to the modeling and analysis of a mapping
experiment according to particular sampling strategies and the manner in which
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results from QTL mapping are explained and utilized. The third task depends upon
statistical and computational algorithms with the aid of computer techniques. All
three tasks are coupled under the mixture model framework to efficiently solve for
the unknown parameters of interest.

In practice, some statistical mapping methods focus on the structure of the mixture
model by deriving genetic models that better reveal the genetic architecture of a
complex trait in a particular population. Some methods attempt to examine the
setting of the mixture model based on different experimental designs so as to make
better use of mapping results. Others may focus on the estimation of the mixture model
by implementing a more efficient computational algorithm for a complicated pedigree.
We will describe these three aspects of QTL mapping from genetic, experimental, and
statistical perspectives.

9.3 Population Genetic Structure of the Mixture Model

As described above, a given normal mixture model contains two different structures,
mixture proportions ω = (ω1|i, · · · , ωJ|i) and normal distributions determined by
model parameters Ωm = (µ1, · · · , µJ , σ2). The mixture proportions are actually the
frequencies of QTL genotypes at a putative QTL in a population. For an entire map-
ping population initiated with two inbred lines, the frequencies of QTL genotypes can
be predicted on the basis of the first Mendelian law. For example, the frequencies of
QTL genotypes are 1/2 and 1/2 for the backcross or 1/4, 1/2, and 1/4 for the F2.
However, when marker information is associated with a putatively linked QTL, the
frequencies of QTL genotypes given a particular marker genotype (i.e., conditional
probabilities) will not obey the Mendelian law but rather depend on the recombina-
tion fraction or linkage disequilibrium between the marker and QTL. The conditional
probabilities of QTL genotypes upon the marker genotypes are the “bridge” associ-
ating the known marker information with unknown QTL information. Below, we will
give the procedure for deriving these conditional probabilities in different mapping
populations.

9.3.1 Backcross/F2

Two different inbred lines are crossed to generate the heterozygous F1. When the F1

is backcrossed to the original parents, or selfed or sibling-mated, different genes will
be cosegregating, which leads to nonparental, recombinant types whose proportion
depends on the degree of linkage between different genes. By observing the number
of recombinant types, we can then estimate the linkage. However, the recombinants
between a marker and QTL are not observable because the QTL position is unknown,
and we need to derive the conditional probabilities of QTL genotypes given known
marker genotypes in terms of their recombination fractions. The advantage of the
backcross or F2 as a mapping population lies in the clear linkage phase between all
genes, from which the parental origin of alleles can be precisely determined. In Sections
10.3 and 10.4, we provide the procedure for deriving these conditional probabilities
for the backcross (Table 10.3) and F2 populations (Table 10.6).
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9.3.2 Outbred Crosses

Many species, such as forest trees, cannot generate inbred lines because of their com-
plicated biological features, but they can be crossed to generate a segregating progeny
population, called an outbred cross. It is possible to use outcross progeny as an out-
bred population because crossover events occur during meioses. In fact, outbred lines
as parents can be homozygous at some loci but are heterozygous at many loci, and
thus their controlled crosses can be backcross-like for some loci, F2-like for other loci,
or present new cross types. The QTL genotypes in outbred crosses can be inferred
by their conditional probabilities given marker genotypes expressed as a function of
the recombination fraction. A procedure is necessary to determine a correct linkage
phase prior to the estimation of linkage. A detailed description of QTL mapping in
outbred populations is given in the last chapter.

9.3.3 Recombinant Inbred Lines

Recombinant inbred lines (RILs) are powerful material for genetic mapping. They
can be derived either by repeated selfing or by repeated brother–sister mating of the
progeny from an F1 cross between two inbred lines. RILs can serve as a permanent
mapping population for multiple uses because they are fixed and homozygous for two
alternative alleles at all genes. Some lines are the same as parental (nonrecombinant)
types, whereas the others are recombinant types. The conditional probabilities of
QTL genotypes given marker genotypes are derived in terms of the proportion of
recombinant zygotes (see Table 10.7).

9.3.4 Natural Populations

For some species in which crosses are not possible, the cosegregation between the
marker and QTL can be specified by linkage disequilibrium (LD). The LD repre-
sents nonrandom associations between different loci in a population and can be used
to analyze an unstructured population. Linkage analysis has been widely used for
genetic mapping by detecting the degree of LD between the marker and QTL. Un-
like controlled crosses, the conditional probabilities of QTL genotypes given marker
genotypes are expressed in terms of LD values (Lou et al. 2003).

9.4 Quantitative Genetic Structure of the Mixture Model

It is generally assumed that a quantitative trait (y) of interest at a putative QTL is
normally distributed with expected mean µj and variance σ2. The genetic contribu-
tions of the QTL to the trait phenotype are reflected in the mean or variance of the
normal distribution. For a given QTL genotype j, we can partition its expected mean
(µj) into the different components: overall mean (µ), additive effect (a), dominance
effect (d), and additive × additive (iaa), additive × dominance (iad), dominance ×
additive (ida), and dominance × dominance (idd) epistatic effects. If we assume that
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these effects are fixed, they can be directly estimated in the mixture model. As the
variances of the fixed effects are viewed as zero, the variance contains only the residual
variance σ2 within a particular QTL genotype. The major task of a fixed-model–based
mapping approach is to specify the genetic components of µj based on different genetic
problems or mapping purposes.

9.4.1 Additive-Dominance Model

In many cases, it is reasonable to assume that there are no nonallelic interactions
(epistasis) between different QTLs. Consider a QTL of three possible genotypes whose
values and residual variances are defined as

Genotype QQ (2) Qq (1) qq (0)

Overall mean µ µ µ

Effect a d −a

Genotypic value µ2 = µ + a µ1 = µ + d µ0 = µ − a

Residual σ2 σ2 σ2

(9.6)

In most situations, the residual variance is assumed to be identical among the
three groups of QTL genotypes for the sake of computational simplicity. Statisti-
cal techniques are also available when the residual variances are genotype-specific
(heteroscedasticity).

When two or more QTLs are fit, we will have more QTL genotypes included in
the mixture model. For an F2 population, the genotypic values, µj1j2 (j1, j2 = 0, 1, 2),
of nine QTL genotypes for two given QTLs, P and Q, under the additive-dominance
model can be defined as

Q
P 2 1 0

µj1j2 =
2
1
0

⎡

⎣
µ22 = µ + a1 + a2 µ21 = µ + a1 + d2 µ20 = µ + a1 − a2

µ12 = µ + d1 + a2 µ11 = µ + d1 + d2 µ10 = µ + d1 − a2

µ02 = µ − a1 + a2 µ01 = µ − a1 + d2 µ00 = µ − a1 − a2

⎤

⎦ ,

(9.7)

where a1 and a2 are the additive effects and d1 and d2 are the dominance effects of
these two QTLs, respectively.

Example 9.1. In mapping body weight for an F2 progeny of mouse, joint genotypic
values at two QTLs, P and Q, are estimated. Genotypic values at individual QTLs
are then calculated as marginal means. The estimates of joint or marginal genotypic
means are given in Table 9.3. The additive and dominance effects of individual QTL
can be estimated on the basis of marginal means using equation (9.6) or joint geno-
typic values using equation (9.7).
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Table 9.3. Joint genetic values and marginal means at two QTLs for body weight in the
F2 progeny.

Q

P 2 1 0 Marginal

2 µ22 = 30 µ21 = 32 µ20 = 28 µ2· = 30

1 µ12 = 29 µ11 = 29 µ10 = 21 µ1· = 25

0 µ02 = 21 µ01 = 20 µ00 = 21 µ0· = 20.67

Marginal µ·2 = 26.67 µ·1 = 27 µ·0 = 22.75

Let m be the genotypic mean vector, a be the effect vector, and D be the design
matrix that relates m and a. The relationship m = Da leads to

a = D−1m.(9.8)

For the marginal means, we have m = (µ2, µ1, µ0)T, a = (µ, a, d)T, and

D =

⎡

⎣
1 1 0
1 0 1
1 −1 0

⎤

⎦ .

For joint genotypic values, we have m =
(µ22, µ21, µ20, µ12, µ11, µ10, µ02, µ01, µ00)T, a = (µ, a1, d1, a2, d2)T, and

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0
1 1 0 0 1
1 1 0 −1 0
1 0 1 1 0
1 0 1 0 1
1 0 1 −1 0
1 −1 0 1 0
1 −1 0 0 1
1 −1 0 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the data in Table 9.3, the genetic effects are estimated as µ = 25.335 and
24.71, a = 4.665 and 1.96, and d = −0.335 and 2.29 for P and Q, respectively, from
the marginal means, and as µ = 24.56, a1 = 4.67, d1 = 0.357, a2 = 1.99, and d2 = 2.32
from the joint genotypic values.

9.4.2 Additive-Dominance-Epistasis Model

If two or more QTLs interact to affect a quantitative trait, their epistatic effects should
be modeled in the QTL genotypic values within the mixture model. We use Mather
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and Jinks’ (1982) notations to describe the epistasis under which the genotypic values
are expressed, such as when two QTLs are assumed,

µj1j2 =

Q
P 2 1 0
2
1
0

⎡

⎣
µ + a1 + a2 + iaa µ + a1 + d2 + iad µ + a1 − a2 − iaa

µ + d1 + a2 + ida µ + d1 + d2 + idd µ + d1 − a2 − ida

µ − a1 + a2 − iaa µ − a1 + d2 − iad µ − a1 − a2 + iaa

⎤

⎦ ,

(9.9)

where iaa, iad, ida, and idd are the additive × additive, additive × dominance, domi-
nance × additive, and dominance × dominance epistatic effects, respectively.

Example 9.2. Revisit Example 9.1. Based on Table 9.3, we can also estimate the four
kinds of epistatic effects. At this time, a = (µ, a1, d1, a2, d2, iaa, iad, ida, add)T and

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 −1 0 −1 0 0 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 −1 0 0 0 −1 0
1 −1 0 1 0 −1 0 0 0
1 −1 0 0 1 0 −1 0 0
1 −1 0 −1 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using equation (9.8), we estimate the genetic effects as µ = 25, a1 = 4, d1 = 0,
a2 = 0.5, d2 = 1, iaa = 0.5, iad = 2, ida = 3.5, and idd = 3.

9.4.3 Multiplicative-Epistatic Model

The physiological basis of epistasis has been studied by modeling the relationship
between genes and their products in many plant and animal experiments. Minvielle
(1987) showed, from a theoretical perspective, that multiplicative interaction between
a pair of loci may be an important form of epistasis for controlling complex traits, as
anticipated by Arunachlum (1977). The multiplicative-epistasis model assumes that
genotypes at a pair of loci have genotypic values equal to the product of genotypic
values at the two different loci (Schnell and Cockerham 1992; Li and Wu 1996; Otto
and Feldman 1997). For example, if genotypic values are µ2 for P genotype 2 and µ′

2

for Q genotype 2, then the value of joint QTL genotype 22 is µ22 = µ2µ
′
2. Under the

multiplicative-epistatic model, the genotypic values of two QTL can be modelled by

Q
P 2 1 0

µj1j2 =
2
1
0

⎡

⎣
µ22 = µ2µ

′
2 µ21 = µ2µ

′
1 µ20 = µ2µ

′
0

µ12 = µ1µ
′
2 µ11 = µ1µ

′
1 µ10 = µ1µ

′
0

µ02 = µ0µ
′
2 µ01 = µ0µ

′
1 µ00 = µ0µ

′
0

⎤

⎦ .
(9.10)
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Although multiplicative interactions between a pair of QTL are considered, two
special cases, completely multiplicative action (both between and within loci) and
pure additive action (without dominance), can also be manipulated by setting re-
strictions.

Example 9.3. Revisit Example 9.1. Here, we attempt to estimate the genetic-effect pa-
rameters using the data in Table 9.3 under the multiplicative-epistasis model. We use
a nonlinear least squares approach to estimate three genotypic values for each QTL
based on matrix (9.10). These estimates are µ2 = 5.6954, µ1 = 5.0308, µ0 = 3.9065,
µ′

2 = 5.4624, µ′
1 = 5.5649, and µ′

0 = 4.755.
Schnell and Cockerham (1992) proposed an analytical model for estimating addi-

tive, dominance, and epistatic effects of various kinds due to the two multiplicative–
interacting QTLs. The estimators of these effects are expressed as

µ = uu′, a1 = αu′, d1 = δu′, a2 = uα′, d2 = uδ′,

iaa = αα′, iad = αδ′, ida = δα′, idd = δδ′,
(9.11)

where u = (1
4µ2+ 1

2µ1+ 1
4µ0), u′ = (1

4µ′
2+ 1

2µ′
1+ 1

4µ′
0), α = 1

2 (µ2−µ1)+ 1
2 (µ1−µ0), α′ =

1
2 (µ′

2 − µ′
1) + 1

2 (µ′
1 − µ′

0), δ = µ2 − 2µ1 + µ0, and δ′ = µ′
2 − 2µ′

1 + µ′
0.

We further estimate the genetic effects as µ = 26.2349, a1 = 4.7736, d1 =
−2.45331, a2 = 1.73856, d2 = −4.48501, iaa = 0.31634, iad = −0.816074, ida =
−0.162578, and idd = 0.419407.

9.4.4 Mechanistic Model

The genotypic values of QTLs contained in the mixture model can also be modeled
on the basis of the mechanistic principles causing them. For example, the genotypic
value of a QTL genotype QQ for a quantitative trait can be expressed as a function
of other independent variables, time, or environmental factor,

y =

⎧
⎪⎨

⎪⎩

f(x) for allometric laws
g(t) for growth models
h(z) for reaction norms

(9.12)

where y is the biological trait of interest, x is the body size, t is the age, and z is an
environmental variable such as temperature, nutrition, or light intensity. The forms
of mathematical functions f(x), g(t), and h(z), which can be linear or nonlinear, are
generally different, depending on specific questions of interest. Generally, the estab-
lishment of appropriate mathematical functions is based on the goodness of fit to
observational data (Niklas 1994). Alternatively, these mathematical functions are de-
rived from an optimality perspective. For example, West et al. (1997, 1999) proposed
a fractal-like network system for the absorption and internal distribution of metabo-
lites to explain quarter-power scaling laws pervasive in the living world. In addition,
West et al. (1997, 1999, 2001) explained why the growth of an organism follows a
sigmoid curve based on fundamental principles for the allocation of metabolic energy
between the maintenance of existing tissue and their production of new biomass.
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So far, we have discussed two key structures in the mixture model: mixing pro-
portions and genetic-effect models. As can be seen, the conditional probabilities are
related to allele frequencies and the linkage or association between the markers and
QTL (the theme of Mendelian or population genetics), whereas the normal distrib-
utions concern the quantitative effects of QTL on traits (the theme of quantitative
genetics). Depending on the nature of the question considered, the complexities of
these two structures will be different. Some methods stress the derivations of the
conditional probabilities, such as linkage disequilibrium-based mapping or polyploid
mapping. Yet, other methods stress genetic-effect models that can be used to approx-
imate a biological phenomenon. These two structures determine the originality of a
new statistical method for QTL mapping.

9.5 Experimental Setting of the Mixture Model

In the mixture model (9.4), we assume that different normal components are charac-
terized by a known or unknown number of QTL genotypes. Genetic effects of putative
QTLs on the phenotype, which are embedded within normal distributions, can be di-
rectly estimated by incorporating the fixed model approach. The fixed model approach
is useful if the underlying genetic effects can be readily specified, as in the case of
controlled crosses derived from homozygous inbred lines (Lander and Botstein 1989;
Haley and Knott 1992; Zeng 1994) or outbred lines (Lin et al. 2003).

The progeny from a controlled cross should be grown in a regular experimental
design for phenotypic data collection for quantitative traits of interest. The mixture
model allows the estimation of the experimental effects due to any covariates such as
sex or discrete environments and the interaction effects between QTL and treatments.
Two experimental designs are used to estimate QTL × environment interactions. In
design 1, the same set of genotypes recorded for markers are grown in different envi-
ronments. Such a design is possible for species that can generate genetically identical
individuals, such as clones and RILs. In design 2, only different sets of individuals
from a mapping population are reared in different environments, but for these sets the
same marker systems are genotyped. This design is used for many species in which
genotypes cannot be duplicated.

The same genotype may perform differently across a range of environments. Ge-
netic variation that underlies such phenotypic plasticity provides the organism with
the capacity to buffer against environmental fluctuations (Schlichting 1986). This role
is thought to be affected by allelic sensitivity and gene regulation (Via et al. 1995).
The concept of allelic sensitivity proposes that plasticity arises from differential effects
of loci directly contributing to variation in plastic traits. The gene regulation hypoth-
esis states that specific loci influence trait changes between environments without
altering the means within a given environment. These hypotheses are not mutually
exclusive, but their difference lies within the effect of the environment on the expres-
sion of the genes underlying the trait: either directly for allelic sensitivity or indirectly
for regulatory loci (Schlichting and Pigliucci 1998).
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These two general hypotheses can be tested within the mixture model context for
QTL mapping (Wu 1998; Leips and Mackay 2000). Allelic sensitivity says that alleles
have varying effects on the phenotype in different environments, which implies that
the QTL affecting the sensitivity of a trait to environmental changes should map to
the same regions as those that explain the genetic variation in the trait within an
environment. Differential expression of alleles in these QTL regions across environ-
ments would explain the covariation between trait performance and the environment.
Gene regulation states that special regulatory genes respond to the environment by
turning on or adjusting the expression of structural genes that directly influence the
trait. Thus, according to this hypothesis, the QTL regions that explain the genetic
variation in phenotypic sensitivity will be distinct from those that contribute to the
variation within a given environment.

9.6 Estimation in the Mixture Model

The mixture model (9.4) lays a statistical foundation for mapping QTLs in a segre-
gating population. The estimation of unknown parameters contained in the mixture
model is an important next step for a mapping project. There are many statistical
methods that can provide estimates of unknown parameters under the mixture-model
framework designed to map QTLs. In this section, we detail the method of maximum
likelihood; a discussion of other methods is given in Section 9.7.

The maximum likelihood approach to parameter estimation in mixture models
obtains point estimates (ω̂1|i, µ̂i, · · · , ω̂J|i, µ̂J , σ̂2) of the parameters

Ω = (ω1|i, µ1, · · · , ωJ|i, µJ , σ2)

by maximizing the likelihood. The unknown parameters Ω contain the mixture pro-
portions ω = (ω1|i, · · · , ωJ|i) specifying the QTL locations and model parameters
Ωm = (µ1, · · · , µJ , σ2) specifying the QTL effects and residual variance.

An observed data set in a mapping project (see, for example, Tables 8.1 and 8.2)
includes the phenotypes of a quantitative trait (y) and marker genotype (M) for all
genotyped individuals. A complete data set is composed of these observations, along
with the QTL genotypes (g) and the locations of the QTL (d), which are missing
data.

The likelihood of the unknown model parameters θ and the unknown mixture
proportions ω (and therefore the unknown QTL locations d) for individual i can be
expressed as

p(d, θ|yi,Mi) =
J∑

j=1

ωj|i(gi|d,Mi)fj(yi|gi, θ),(9.13)

with the sum over all possible QTL genotypes for individual i, and we explicitly show
the dependence of the weights on gi, d, and Mi.
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Suppose there are n independent offspring in a mapping population. The likelihood
function of the mixture model (9.13) for the parameter vector Ω can be formed by
taking the products of the log mixture densities at each yi to give

L(d, θ|y,M) =
n∏

i=1

p(d, θ|yi,Mi).

It is almost always easier to work with the log-likelihood

logL(d, θ|y,M) = log
n∏

i=1

p(d, θ|yi,Mi)

=
n∑

i=1

log p(d, θ|yi,Mi)(9.14)

=
n∑

i=1

log
J∑

j=1

[
ωj|i(gi|d,Mi)fj(yi|gi,Ωm)

]
.

The maximum likelihood estimate of Ω is obtained as an appropriate root of the
log-likelihood equation

(9.15)
∂

∂Ω
logL(d, θ|yi,Mi) =

n∑

i=1

log
∂

∂Ω
p(d, θ|yi,Mi) = 0.

To ease notation, we write ωj|i(gi) = ωj|i(gi|d,Mi) and fj(yi) = fj(yi|gi,Ωm) and
note that

log
∂

∂Ω
p(d, θ|yi,Mi) =

1
p(d, θ|yi,Mi)

∂

∂Ω

J∑

j=1

ωj|i(gi)fj(yi)

=
J∑

j=1

ωj|i(gi)fj(yi)
p(d, θ|yi,Mi)

∂

∂Ω
log[ωj|i(gi)fj(yi)]

=
J∑

j=1

Πj|i
∂

∂ω
log ωj|i(gi) +

J∑

j=1

Πj|i
∂

∂θ
log fj(yi),(9.16)

where we define

(9.17) Πj|i =
ωj|i(gi)fj(yi)
p(d, θ|yi,Mi)

,

which could be thought of as a posterior probability that individual i has a QTL
genotype j. We then implement the EM algorithm with the expanded parameter set
{Ω,Π}, where Π = {Πj|i; j = 1, · · · , J, i = 1, · · · , n}.

To solve equations (9.15), we iterate equations between (9.16) and (9.17). Assum-
ing that we know Πj|i, we solve for the zero of equation (9.16). Using those values of
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ω and θ, we update Πj|i and continue the iterations until convergence. This scheme
can be thought of as an implementation of the EM algorithm (Dempster et al. 1977;
Meng and Rubin 1993; see also Section 9.7.1).

Once the mixture model has been fit, a probabilistic clustering of the data into
g clusters can be obtained in terms of the fitted posterior probabilities of compo-
nent membership for the data, Πj|i(yi|Ω̂), where Ω̂ denotes the maximum likelihood
estimate of Ω. An outright assignment of the data into J clusters is achieved by
assigning each data point to the component to which it has the highest estimated
posterior probability of belonging.

9.7 Computational Algorithms for the Mixture Model

In this section, we review some of the options in solving the likelihood equations of
Section 9.6, and also discuss some other aspects of fitting mixture models.

9.7.1 EM Algorithm

Each iteration consists of two steps. First, in the E step, the complete-data log-
likelihood is averaged over the conditional distribution of the indicator variables
given the observed data using the current estimate of the parameter vector. Since
the complete-data log-likelihood is linear in these indicator variables (a result of the
normality assumption), the E step of the EM algorithm simply involves replacing
them by the current values of their conditional expectations; that is, the posterior
probabilities of component membership expressed in equation (9.17). Next, in the M
step, conditional on Π, we solve for the zeros of equation (9.15) (likelihood equations)
to get our estimates of Ω. The likelihood equation can be split into the two terms of
equation (9.16). The first term refers to the genetic linkage between loci as specified
in a controlled cross or the genetic association as specified in a natural population,
and the second term refers to the phenotype–genotype relationship. The estimates are
then used to update Π in the E step, and the process is repeated until convergence.
The values at convergence are the maximum likelihood estimates.

The EM algorithm has reliable convergence in that, regardless of the starting
point, the likelihood (9.15) is increased after each EM iteration and that convergence
is to a local maximum (or a stationary point).

9.7.2 Monte Carlo EM

In each cycle of the EM algorithm, the likelihood equation can be estimated using a
number (N) of Monte Carlo realizations

∂

∂Ω
log L(d, θ|y,M)=̂

1
N

N∑

k=1

∂

∂Ω

n∑

i=1

log π
(k)
j (gi) +

1
N

N∑

k=1

∂

∂Ω
log

n∑

i=1

f
(k)
j (yi),
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where in the k Monte Carlo samples, QTL genotypes j are generated given y, M,
and the current parameter estimate. For sufficiently large genotype samples, Monte
Carlo EM will inherit the properties of exact EM. The Monte Carlo samples can also
be used for likelihood–ratio estimation in the final EM step.

9.7.3 Stochastic EM

In each cycle of the EM algorithm, the likelihood equation can be estimated by using
a single Monte Carlo realization

∂

∂Ω
log L(d, θ|y,M)=̂

∂

∂Ω
log

n∑

i=1

ω
(k)
j|i (gi) +

∂

∂Ω

n∑

i=1

log f
(k)
j (yi),

where in the kth EM cycle a single QTL genotype j is generated given y and m
and the current parameter estimates by using the distribution Π(k). This expression
can be treated as a standard likelihood equation. The posterior distribution of para-
meter estimates obtained over many EM cycles and after a suitable burn-in period
is approximately centered at the maximum likelihood estimate, and the mean of the
distribution can be used as an ML estimate (Celeux and Diebolt 1985). This posterior
distribution can also be plotted for parameters of interest. Also, a preliminary short
stage of stochastic EM can be run to get starting values for Monte Carlo EM.

9.7.4 An EM Algorithm/Newton-Raphson Hybrid

For some QTL parameters being estimated using the EM algorithm, the maximum
likelihood equations obtained by setting the scores to zero may not be easily solvable
because of complex nonlinear structures. These parameters can be estimated by in-
corporating other numerical methods. The most direct method is simply to evaluate
the likelihood for a range of values of the parameters to be estimated and choose the
value that gives the largest likelihood. This grid search procedure can be made quite
sophisticated–the range of parameter values could be divided into tenths, and then
the tenth that appears to contain the maximum likelihood estimate itself could be
divided into ten parts. As many rounds of the search could be performed as significant
digits are required in the solution. It is helpful to plot the likelihood to show how it
is responding to changes in parameter values and to guard against a local maximum
being confused with a global maximum.

An alternative approach is given by Newton-Raphson iterations, the incorpora-
tion of which into the EM algorithm forms a hybrid method for estimating those
parameters expressed in nonlinear log-likelihood equations. Briefly, some initial value
is chosen for the estimate and then this value is modified by using the score function.
The modified value is modified in turn, and the process continues until successive
iterates differ by less than some specified amount (see Weir 1996 for an excellent
description).

For a parameter ϕ, denote the required MLE as ϕ̂ and the initial value, or guess,
as ϕ′. The score Sϕ, the derivative of the log-likelihood with respect to ϕ, is to be
zero at ϕ̂, and that score can be expanded by Taylor’s theorem as
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Sϕ̂ = 0 = Sϕ′ + (ϕ̂ − ϕ′)
[
∂Sϕ

∂ϕ

]

ϕ=ϕ′
,

where higher-order terms in (ϕ̂−ϕ′) are ignored. Rearranging this expression provides
an approximation value ϕ′′ for ϕ̂,

ϕ′′ = ϕ′ − Sϕ′/

[
∂Sϕ

∂ϕ

]

ϕ=ϕ′
= ϕ′ + Sϕ′/I(ϕ′),

where I(ϕ) =
[

∂Sϕ

∂ϕ

]

ϕ=ϕ′
is the information matrix.

The initial value ϕ′ is modified by adding to it the score divided by the information,
with both evaluated at the initial value. The new value then serves as an initial value
for a further modification,

ϕ′′′ = ϕ′′ + S(ϕ′′)/I(ϕ′′),

and the iteration continues until convergence.
Since the information I(ϕ) is typically a matrix, the iteration procedure requires

matrix inversion:
ϕ′′ = ϕ′ + I−1(ϕ′)S(ϕ′).

Obviously, the method breaks down if the information is zero, or the information
matrix is singular.

9.7.5 Some Cautions

There can sometimes be problems when the maximum likelihood method is used for
QTL mixture models. First, for some choices of parametric families, the likelihood
can be unbounded. Second, in complex situations, the likelihood function can have
many local maxima, each of which may give different (and possibly reasonable) plug-
in estimates for quantities of interest. In these cases, it could be difficult to choose
one of these point estimates of the parameters above the others.

Third and most importantly, when a QTL mapping strategy is incorporated by
population genetic properties of genes, we will encounter an increased dimensional
space for the unknown parameters. Although the mere existence of a high-dimensional
parameter space is not necessarily detrimental, extra care must be taken in searching
for the ML estimator. An extra complication (not only of ML) is that the uncertainty
about the actual number of QTLs for a quantitative trait results in extra difficulty in
model fitting and selection.

9.7.6 Bayesian Methods

The use of a Bayesian approach can avoid some of the problems related to the max-
imum likelihood approach. In maximum likelihood, the unknown parameters are
treated as unknown variables (unobservables) and the likelihood function is maxi-
mized in these variables. In the Bayesian paradigm, each unobservable parameter is
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given a prior distribution, and we then infer the posterior distribution of each un-
observable conditional on the data (the observables). The summary statistics of the
posterior distribution (e.g., the mean, the mode, or the median) can be regarded as
Bayesian estimates of unobservables (Carlin and Louis 1998). An interval estimate
can be obtained by examining the posterior distribution.

Using the same notation as in the maximum likelihood analysis, denote the observ-
ables by y (phenotype data) and M (marker data) and the unobservables by θ (model
parameters), d (QTL locations), g (QTL genotypes) and Ωm = (µ1, · · · , µJ , σ2),
specifying the QTL effects and residual variance. The posterior distribution of the
unobservables is given by

π(d,Ωm, g|y,M) =
π(y,M, d,Ωm, g)

π(y,M)

=
p(y,M|g,Ωm)π(g|d)π(d,Ωm)

π(y)
(9.18)

∝ π(y,M|g,Ωm)π(g|d)π(d,Ωm),

where π(·) is a generic expression for a probability density, p(y,M|g,Ωm) is the data
probability mass given the QTL genotypes, π(g|d) is the probability mass of the
QTL genotypes of all the observations given their locations d, and π(d,Ωm) is the
prior probability distribution of the unobservables. Because the denominator is not a
function of the parameters, it can be ignored.

We assume prior independence of the parameters:

π(d,Ωm) = π(d)π(µ)π(σ2)
ṅ∏

k=1

[π(ak)π(dk)].

Note that k denotes the kth QTL and ṅ denotes the number of QTLs rather than the
number of QTL genotypes. The extent to which the choice of the prior distribution
over the parameter space affects the final inference is a measure of robustness and
requires checking in each application. The prior distribution could be chosen based
on related studies or information from the literature. In general, when no information
regarding the locations is available, a natural choice for the prior of d is the uniform
distribution. Specifying a conjugate prior for µ, ak, dk, and σ2 makes its form simple,
while increasing diffuseness decreases the influence of the prior.

In the Bayesian approach, we infer the genetic parameters based on their mar-
ginal posterior distribution, which can be obtained from the joint posterior (9.18) by
integrating over the other unknowns. We partition the vector Ω = (d, g,Ωm) into
Ω = [Ωl Ω−l], where Ωl is a single element of the unobservables and Ω−l is the rest
of the unobservables that exclude Ωl. The marginal posterior distribution of Ωl is
expressed by

(9.19) Π(Ωl|y) =
∫

π(Ωl,Ω−l|y)dΩ−l ∝
∫

π(y|Ωl,Ω−l)π(Ωl,Ω−l)dΩ−l.

The mean of this marginal posterior distribution is a candidate Bayesian estimator of
Ωl. This marginal distribution rarely has an explicit form, and numerical integration is
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often prohibitive because the dimensionality of Ω−l may be high. But the distribution
(9.19) can be approximated by constructing it using a Markov chain Monte Carlo
algorithm (such as a Gibbs sampler) over the product space of the parameters.

The Markov chain is a random sequence of states

{(d0, g0,Ω0
m), (d1, g1,Ω1

m), . . . , dN , gN ,ΩN
m)}

started at an arbitrary point (d0, g0,Ω0
m) having positive posterior density and pro-

ceeding by simple rules that modify the three unknowns d, g, and Ωm. Each step in
this chain is a cycle of three smaller steps, first updating d, then g, followed by Ωm.
The step updating d is typically a Metropolis-Hastings step (Hastings 1970), while
the steps updating g and Ωm are Gibbs sampler steps (Geman and Geman 1984). See
Robert and Casella (2004) for a full treatment of these Markov chain Monte Carlo
(MCMC) algorithms.

The MCMC algorithm is justified by the fact that if h is any function of the
unknowns that is square-integrable with respect to the equilibrium distribution π,
then

hN =
1
N

N∑

t=1

h(dt, gt,Ωt
m) → Eπ[h(d, g,Ωm)|y],

almost surely as N → ∞,(9.20)

where (dt, gt,Ωt
m) are samples from the Markov chain. The empirical means of the

MCMC samples from equation (9.20) can be used to obtain a Bayes estimator of the
unknown parameters (d, g,Ωm). The marginal posterior densities of the parameters
can also be obtained from the sample values.

9.7.7 Estimating the Number of Components in a Mixture Model

In many practical situations, the number of QTL genotypes (and therefore the num-
ber of QTLs) in a mixture model is unknown. The estimation of the number of QTLs
included in a quantitative trait is an important issue in quantitative genetic research.
Statistically, testing the number of QTLs is equivalent to testing the number of com-
ponents in a mixture distribution. This difficult problem has not been well solved yet
in the statistical literature (see the review by Lo et al. 2001).

From the viewpoint of a likelihood analysis, the determination of the number of
components in a mixture model can be based on a formal test of the null hypoth-
esis that a random sample is from a J0-component mixture versus the alternative
hypothesis that the sample is from a J1-component mixture, where J1 > J0. It is
tempting to use the likelihood ratio test with an asymptotic chi-squared null refer-
ence distribution. However, the classic asymptotic chi-squared theory does not hold
for the likelihood ratio test in the context of mixtures. Lo et al. (2001) suggested the
use of a likelihood ratio test procedure based on the Kullback-Leibler information cri-
terion with a theorem proposed by Vuong (1989). These authors showed that, under
certain regularity conditions, the limiting distribution of the likelihood ratio statistic



9.8 Exercises 221

is a weighted sum of independent χ2
1 random variables when the competing models

are nested or overlapping and a normal distribution when the competing models are
nonnested.

An alternative approach for detecting the number of QTLs is based on Bayesian
model selection criteria. This approach uses the samples from Markov chains to cal-
culate Bayes factor (Jeffreys 1961; Kass and Raftery 1995).

Let us compare two models, M1 and M2, that are postulated to fit two different
numbers of QTLs within a mixture model context. The posterior odds in favor of M1

over M2 for data y can be expressed, using Bayes’ theorem, as

Pr(M1|y)
Pr(M2|y)

=
Pr(M1)
Pr(M2)

Pr(y|M1)
Pr(y|M2)

,

where the first factor is the prior odds and

B =
Pr(M1|y)
Pr(M2|y)

is the ratio of marginal probabilities of y given the two models and is called the Bayes
factor. Newton and Raftery (1994) and Kass and Raftery (1995) discuss approaches
to estimate the marginal probability of the data under any two given models.

Green (1995) and Richardson and Green (1997) proposed a reversible jump MCMC
method for simulating the posterior distribution of the number of components. This
method has been applied to estimate the number of QTL in a mapping experiment
(Stephens and Fisch 1998). Reversible jump methods allow the construction of an
ergodic Markov chain with the joint posterior distribution of the parameters and
the model as its stationary distribution. Moves between models are achieved by pe-
riodically proposing a move to a different model and rejecting it with appropriate
probability to ensure that the chain possesses the required stationary distribution.
Ideally, these proposed moves are designed to have a high probability of acceptance,
so that the algorithm explores the different models adequately, though this is not
always easy to achieve in practice.

9.8 Exercises

9.1 What are three major tasks for mixture-model–based QTL mapping?
9.2 Referring to Example 9.1, use equation (9.8) and the data in Table 9.3 to verify the

effect estimates given in the example. Use both D matrices, doing the calculations for
both the marginal means and the joint means.

9.3 Similar to Exercise 9.2, verify the values of the effect estimates given in Example 9.2.
9.4 How can you determine the number of QTLs for a complex trait in the mixture model

context?
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Interval Mapping with Regression Analysis

10.1 Introduction

The genetic analysis of quantitative traits includes two major tasks: (1) identifying
the location of QTLs affecting a quantitative trait using a genetic linkage map con-
structed from molecular markers, and (2) estimating the genetic effects of the QTLs
on the phenotype. If the genotypes of a putative QTL were known for all individuals,
its genomic location could be readily determined using a marker linkage analysis. Fur-
thermore, the genetic effects of the QTL could be precisely estimated and tested by
simple t tests or ANOVA. However, it is not possible for the genotypes of QTLs to be
directly observed; instead they should be inferred from observed marker and pheno-
typic information. As was seen in Chapter 8, a marker analysis cannot unambiguously
separate the genetic effects of a QTL from the recombination fraction between the
markers and QTL.

To rule out the genetic effect and position of a QTL, a more advanced statistical
analysis should be adopted. The central idea of individually estimating the QTL effect
and position is to formulate a statistical model for observed marker and phenotypic
data in terms of the underlying QTL that is located between two flanking markers.
This so-called interval mapping approach can overcome the confounding problem of
the marker–QTL recombination fraction and QTL effects through the conditional
probabilities of unknown QTL genotypes given observed marker genotypes. The QTL
and the two markers that bracket it allow the application of three-point analysis to
derive the conditional probabilities for a particular segregating population, such as
the backcross, RIL, or F2.

Models for interval mapping can be formulated within the context of regression
or maximum likelihood (ML) theories. Through analytical and numerical approaches,
Kao (2000) compared the differences between regression- and ML-based interval map-
ping models in terms of the mean squared errors of parameter estimates and the power
of QTL detection. These differences increase when the following are truce: (1) there
is a large proportion of the variance explained by the QTL, (2) the QTL is located in
the middle of the marker interval, (3) the marker interval is wide, (4) there is epistasis
between different QTLs, (5) the QTLs differ in their effects, and (6) different QTLs
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are linked. In practice, the regression method is computationally more efficient than
the ML method, especially when the number of QTLs considered is large.

In this chapter, we will introduce the principles of the regression-based interval
mapping methods, their statistical inferences about parameter estimation and hypoth-
esis testing, and the procedure for their practical application. Examples will be used
to demonstrate the usefulness of QTL mapping by a regression analysis. In Chapter
11, the approaches for QTL interval mapping based on maximum likelihood will be
described.

10.2 Linear Regression Model

A QTL linear model conditional on marker interval genotypes for the backcross can
be expressed as

yi = µ + xj|ia + ei,(10.1)

where a is the true effect of the QTL, and xj|i is the indicator variable that is defined as
the conditional probability of QTL genotype j given the marker genotype of progeny i.
According to equation (10.1), as long as the indicator variable is determined, the QTL
effect (a) can be estimated.

The conditional regression model for the F2 should be formulated as

yi = µ + x1j|ia + x2j|id + ei,(10.2)

where x1j|i and x2j|i are the indicator variables that specify conditional probabilities
of QTL additive and dominance genetic effects given the marker interval genotype of
progeny i.

The regression approach for mapping QTLs is to regress the phenotypic values
of a quantitative trait on the conditional expected genotypic values and estimate
the unknown parameters by using a classic least squares approach. The conditional
expected genotypic values associated with each marker genotype are calculated from
the conditional probabilities of the QTL genotypes given a marker genotype and from
the genotypic values of different QTL genotypes.

10.3 Interval Mapping in the Backcross

10.3.1 Conditional Probabilities

While Table 9.1 is a QTL table and Table 8.1 is a marker table for a backcross
population with ten mice, Table 10.1 integrates information from the two tables.
Suppose there is a putative QTL that is bracketed by two linked markers M and
N. For an observable marker genotype, there are two possibilities to carry a QTL
genotype, Qq (1) or qq (0). Table 10.1 also provides possible marker-QTL-marker
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Table 10.1. QTL genotypes, marker interval genotypes, joint marker-QTL genotypes and
mouse body weight in a backcross design.

QTL Interval M-N M-QTL-N Prob(QTL|interval) Body Weight

Mouse (zi) (x∗
i ) Genotype (xj|i) (yi)

1 1 11 111 ω1|11 30

101

2 1 11 111 ω1|11 32

101

3 1 11 111 ω1|11 28

101

4 1 11 111 ω1|11 29

101

5 1 10 110 ω1|10 29

100

6 0 01 001 22

011 ω0|01

7 0 00 000 20

010 ω0|00

8 0 00 000 21

010 ω0|00

9 0 00 000 20

010 ω0|00

10 0 00 000 21

010 ω0|00

Note: The first column stands for QTL genotypes, the second column stands for interval
genotypes for two markers M and N that bracket the QTL, and the third column stands
for three-point (marker-QTL-marker) genotypes.
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genotypes. Let ω1|i and ω0|i be the conditional probabilities of two QTL genotypes
given a two-marker genotype for mouse i.

The values of ω1|i and ω0|i depend on the recombination fractions between the
two markers (r), between marker M and QTL (r1), and between QTL and marker
N (r2). A triply heterozygous F1 backcrossed to a parent will generate eight three-
point (marker-QTL-marker) genotypes: 111, 101, 110, 100, 011, 001, 010, and 000. As
shown by three-point analysis in Chapter 4, these genotype frequencies are derived
under the assumption of no double crossover and are expressed in Table 10.2. Thus,
the conditional probabilities of the QTL genotypes given the marker genotypes of
the interval in the backcross can be derived according to Bayes’ theorem, and are
expressed in Table 10.3.

If the two markers are highly linked, we make the simplifying assumption that

r1 + r2 ≈ r,(10.3)

which follows from the fact that r = r1 +r2−2r1r2 and the assumption that r1r2 ≈ 0
and Table 10.3 can be approximated by Table 10.4. For three loci in the order M-
QTL-N, we use g11 (see Section 3.6) to denote the frequency of double recombinations
(a recombination in each of the two intervals M-QTL and QTL-N). As shown by
equation (3.19), g11 = 1

2 (r1 + r2 − r). Thus, if there is no double recombination, we
have equation (10.3). In other words, for a highly dense map, we can assume that no
double recombinations occur between the adjacent intervals.

Table 10.2. Joint marker-QTL-marker genotype frequencies in the backcross.

Marker Interval QTL Genotype

Genotype Frequency 1 0

11 1
2
(1 − r) 1

2
(1 − r1)(1 − r2)

1
2
r1r2

10 1
2
r 1

2
(1 − r1)r2

1
2
r1(1 − r2)

01 1
2
r 1

2
r1(1 − r2)

1
2
(1 − r1)r2

00 1
2
(1 − r) 1

2
r1r2

1
2
(1 − r1)(1 − r2)

10.3.2 Conditional Regression Model

By substituting the conditional probabilities of Table 10.3 or Table 10.4 into Table
10.1, we can construct the dependent variable xj|i for conditional regression model
(10.1). In general, for the backcross of size n, we write equation (10.1) in matrix
notation as

y = Xb + e,(10.4)
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Table 10.3. Conditional probabilities of QTL genotypes given the marker interval genotype
in the backcross.

Marker Interval QTL Genotype

Genotype 1 0

11
(1 − r1)(1 − r2)

1 − r

r1r2

1 − r

10
(1 − r1)r2

r

r1(1 − r2)

r

01
r1(1 − r2)

r

(1 − r1)r2

r

00
r1r2

1 − r

(1 − r1)(1 − r2)

1 − r

Table 10.4. Approximate conditional probabilities of QTL genotypes given the marker
interval genotype in the backcross, assuming no double recombination.

Marker Interval QTL Genotype

Genotype 1 0

11 1 0

10 1 − θ θ

01 θ 1 − θ

00 0 1

Note: The ratio θ = r1/r and 1 − θ = r2/r.

where y = (yi)n×1, b = (µ, a)T, e = (ei)n×1, and

X =

⎛

⎜⎜⎝

X1

X2

X3

X4

⎞

⎟⎟⎠

n×2

,

with, when matrix (10.3) is considered,

X1 =
(
1 (1−r1)(1−r2)

1−r

)

n1×1
,

X2 =
(
1 (1−r1)r2

r

)

n2×2
,

X3 =
(
1 r1(1−r2)

r

)

n3×1
,

X4 =
(
1 r1r2

1−r

)

n4×1
,
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where n1, n2, n3, and n4 are the sample sizes for four different marker genotypes, 11,
10, 01, and 00, respectively. In the specific example in Table 10.1, these observations
are 4, 1, 1, and 4, respectively.

10.3.3 Estimation and Test

If r1 or r2 is known, it would be possible to substitute these values into equation
(10.3) and then solve it as a simple linear regression with µ as the y-intercept and a
as the slope. In fact, even if r1 or r2 is unknown, we can compute the design matrix
X by assuming the position of a QTL at several positions (e.g., every 1 or 2 cM)
between the two markers.

Note that when a QTL is scanned at every 1 or 2 cM from marker M to N, we
need to use a map function to convert the map distance to the recombination fraction.
Given a point x, we have

r1(x) =
1
2
(1 − e−2d(x)), r =

1
2
(1 − e−2d),

and

θ =
r1(x)

r
,

where the Haldane map function is assumed and d(x) and d are the map distances
(in Morgans) between the left marker M and QTL and between the two markers,
respectively (Fig. 10.1).

M Nx

r1 = 0.5 (1− e−2(x−M))

r = 0.5 (1− e−2(N−M))

Fig. 10.1. Illustration of QTL interval mapping based on two flanking markers M and N.

Linear regression is then used to fit µ and a for each assumed QTL position. This
provides the least squares estimates of the vector b and the residual variance with

b̂ = (X′X)−1(X′y),(10.5)

σ̂2 =
1
n

(y − Xb)T(y − Xb),(10.6)
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as well as giving regression and residual sums of squares and mean squares to allow
the calculation of the regression variance F ratio and thus a test for a. The position
that gives the best-fitting model (i.e., produces the smallest residual mean square)
gives the most likely position of a QTL and the best estimate of its effect.

More specifically, the hypothesis test for the existence of a QTL at a given position
within a marker interval (i.e., the significance of â) can be formulated by

H0 : a = 0 vs. H1 : a �= 0.

The model under H1 is a full one with a QTL, expressed as

ŷi = µ̂ + xj|iâ,

whereas the model under H0 is a reduced one without a QTL, expressed as

ỹi = µ̃.

The total sum of squares (SST) is the sum of (yi − µ̃)2, whereas the residual sum of
squares (SSE) is the sum of (yi − µ̂− xj|iâ)2. To test H0, we can construct an F test
statistic as

F =
(SST − SSE)/(2 − 1)

SSE/(n − 2)
.(10.7)

By comparing the F value with F0.05,(1,n−2), the existence of a QTL can be tested.

Example 10.1. Revisit Example 3.1. A DH population that is equivalent to a backcross
was founded using two inbred lines, semi-dwarf IR64 and tall Azucena (Huang et al.
1997). This DH population contains 123 lines, each genotyped for 135 RFLP and 40
isozyme and RAPD markers and phenotyped for various phenotypic traits. In this
example, the phenotype chosen for QTL mapping is plant height measured at 10
weeks after rice was transplanted to the field. Arranging the marker and phenotypic
data in the form shown by Table 8.1, we wish to use LS-based least squares regression
approaches to map a QTL for plant height using a genetic linkage map constructed
from these genotyped markers (Fig. 3.3).

Figure 10.2 illustrates the profile of the F -values, calculated by equation (10.7), at
different positions across a linkage group of chromosome 1 constructed by 18 markers.
There is a clear peak at 199 cM in the marker interval [RZ730–RZ801], whose F -value,
88.02, is largely beyond the critical F0.05,(1,85) = 3.95 (87 rice left due to missing data
in these two markers). This suggests the existence of a significant QTL around that
position.

The LS estimates of the model parameters, µ, a, and σ2, are obtained at the
peak of the F -value profile. They are µ̂ = 86.9, â = 42.9, and σ̂2 = 268.6. The
genetic variance of plant height due to this detected QTL is calculated as σ2

g = 271.8
with equation (8.4). This allows the calculation of the proportion of the phenotypic
variance explained by this QTL (R2 = 0.50) with equation (8.5).
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Fig. 10.2. Profile of the F -value across chromosome 1 for the test of QTL that controls
plant height at age 10 weeks in a rice DH population (Huang et al. 1997). The marker names
and distances are given below the profile.

10.4 Interval Mapping in an F2

A similar strategy can also be used to map a QTL segregating in an F2 population
based on equation (10.2). As shown for the backcross, we need to derive the condi-
tional probabilities of QTL genotypes given marker intervals. Table 10.2 gives the
frequency matrix for three-point (marker-QTL-marker) genotypes for the backcross,
which is equivalent to one for three-point gamete genotypes generated by the double
heterozygote F1. Since the F2 is derived from the combination of F1 gametes, the
frequency matrix for three-point genotypes in the F2 is the Krockner product of two
matrices of (10.2), each for a different parent with the same genotypes collapsed to
become a (9 × 3) matrix. The same genotypes may be produced by different gamete
combinations. For example, marker-QTL-marker genotype 12/12/12 in the F2 can be
produced by four different combinations:
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12/12/12 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[111] × [222]
[121] × [212]
[112] × [221]
[211] × [122]

.

The joint probability of this triply heterozygous genotype is thus the sum of the
probabilities of these four combinations. A collapsed (9 × 3) matrix is expressed in
Table 10.5.

Table 10.5. Joint marker-QTL-marker genotype frequencies in the F2.

Marker Interval QTL Genotype

Geno-

type Frequency 2 1 0

22 1
4
(1 − r)2 1

4
(1 − r1)

2(1 − r2)
2 1

2
r1r2(1 − r1)(1 − r2)

1
4
r2
1r2

2

21 1
2
r(1 − r) 1

4
r2(1 − r1)

2(1 − r2)
1
2
r1(1 − r1)(1 − 2r2 + 2r2

2)
1
4
r2
1r2(1 − r2)

20 1
4
r2 1

4
(1 − r1)

2r2
2

1
2
r1r2(1 − r1)(1 − r2)

1
4
r2
1(1 − r2)

2

12 1
2
r(1 − r) 1

4
r1(1 − r1)(1 − r2)

2 1
2
r2(1 − r2)(1 − 2r1 + 2r1)

2 1
4
r1(1 − r1)r

2
2

11 1−2r+2r2

2
1
4
r1r2(1 − r1)(1 − r2)

1
2 (1−2r1+2r2

1)

(1−2r2+2r2
2)

1
4
r1r2(1 − r1)(1 − r2)

10 1
2
r(1 − r) 1

4
r1(1 − r1)r

2
2

1
2
r2(1 − r2)(1 − 2r−2r2

1)
1
4
r1(1 − r1)(1 − r2)

2

02 1
4
r2 1

4
r2
1(1 − r2)

2 1
2
r1r2(1 − r1)(1 − r2)

1
4
(1 − r1)

2r2
2

01 1
2
r(1 − r) 1

4
r2
1r2(1 − r2)

1
2
r1(1 − r1)(1 − 2r2 + 2r2

2)
1
4
r2(1 − r1)

2(1 − r2)

00 1
4
(1 − r)2 1

4
r2
1r2

2
1
2
r1r2(1 − r1)(1 − r2)

1
4
(1 − r1)

2(1 − r2)
2

From Table 10.5, the coefficients associated with the additive effect (a) and domi-
nant effect (d) of the QTL in the F2 (Table 10.6), which are the explanatory variables,
can be derived in terms of the genomic position of a QTL described by the recombina-
tion fraction between the QTL and markers. Because the QTL position is unknown,
a grid search strategy, in which a QTL is assumed at every position between two
markers, is used to regress the trait value on the explanatory variable to calculate
µ, a, and d and the F–statistic for the significance of the regression and identify the
position with the largest F -value for the regression as the most likely position for
a QTL.

Example 10.2. Revisit Example 3.2. Cheverud et al. (1996) constructed a linkage map
using 75 microsatellite markers in a population of 535 F2 progeny derived from two
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Table 10.6. Coefficients for the additive (a) and dominant effects (d) of a QTL for all
possible flanking marker genotypes in the F2.

Marker Coefficients of

Genotype a d

22
(1 − r1)

2(1 − r2)
2 − r2

1r2
2

(1 − r)2
2r1(1 − r1)r2(1 − r2)

(1 − r)2

21
(1 − r1)

2r2(1 − r2) − r2
1r2(1 − r2)

r(1 − r)

r1(1 − r1)(1 − r2)
2 + r1(1 − r1)r

2
2

r(1 − r)

20
(1 − r1)

2r2
2 − r2

1(1 − r2)
2

r2

2r1(1 − r1)r2(1 − r2)

r2

12
r1(1 − r1)(1 − r2)

2 − r1(1 − r1)r
2
2

r(1 − r)

(1 − r1)
2r2(1 − r2) + r2

1r2(1 − r2)

r(1 − r)

11 0
(1 − 2r1 + r2

1)(1 − 2r2 + r2
2)

r2 + (1 − r)2

10
r1(1 − r1)r

2
2 − r1(1 − r1)(1 − r2)

2

r(1 − r)

(1 − r1)
2r2(1 − r2) + r2

1r2(1 − r2)

r(1 − r)

02
r2
1(1 − r2)

2 − (1 − r1)
2r2

2

r2

2r1(1 − r1)r2(1 − r2)

r2

01
r2
1r2(1 − r2) − (1 − r1)

2r2(1 − r2)

r(1 − r)

r1(1 − r1)(1 − r2)
2 + r1(1 − r1)r

2
2

r(1 − r)

00
r2
1r2

2 − (1 − r1)
2(1 − r2)

2

(1 − r)2
2r1(1 − r1)r2(1 − r2)

(1 − r)2

strains, the Large (LG/J) and Small (SM/J). The F2 progeny were measured for body
mass at 10 weekly intervals starting at age 7 days. The raw weights were corrected
for the effects of each covariate due to dam, litter size at birth and parity but not for
the effect due to sex. We use chromosome 1 composed of nine markers to map a QTL
affecting body weight at age 10 weeks with LS-based regression approaches.

Figure 10.3 illustrates the profile of the F -values calculated by equation (10.7) at
different positions across a linkage group of chromosome 1 constructed by 18 markers.
There is a clear peak at 46 cM in the marker interval [D2MIT389–D2MIT17], whose
F -value, 16.434, is largely beyond the critical F0.05,(1,451) = 3.862. This suggests the
existence of a significant QTL around that position.

The LS estimates of the model parameters, µ, a, d, and σ2, are obtained at the
peak of the F -value profile. They are µ̂ = 23.0, â = 1.6, d̂ = 1.4, and σ̂2 = 21.7. The
genetic variance of plant height due to this detected QTL is calculated as σ2

g = 1.5
with equation (8.4). This allows the calculation of the proportion of the phenotypic
variance explained by this QTL (R2 = 0.06) with equation (8.5).

Compared with the backcross, the F2 population is more informative because it
allows the significance test of both the additive and dominance effects of a detected
QTL. The full model with the additive effect is written as



10.5 Remarks 233

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18
F

D
2M

IT
36

2

D
2M

IT
72

D
2M

IT
20

5

D
2M

IT
38

D
2M

IT
93

D
2M

IT
38

9

D
2M

IT
17

D
2M

IT
26

0

D
2M

IT
25

18 8 7 2 4 19 14 16

Fig. 10.3. Profile of the F -value across chromosome 1 for the test of a QTL that controls
body weight at age 10 weeks in a mouse F2 population (Cheverud et al. 1996). The marker
names and distances are given below the profile.

ŷi = µ̂ + x1j|iâ + x2j|id̂,

whereas the reduced model with no additive effect is written as

ỹi = µ̃ + x2j|id̃.

With these two alternative models, we calculate the total sum of squares (SST) and
residual sum of squares (SSE) and ultimately the F–test statistic (see equation (10.7)).
The reduced model with no dominant effect is formulated as

ỹi = µ̃ + x1j|iã,

from which the test statistics can be similarly calculated.

10.5 Remarks

The simple regression method of mapping a QTL has been investigated in comparison
with the mixture-model–based maximum likelihood method to be described in the
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next section. No significant difference between the two methods is detected in terms
of errors of parameter estimation and statistical power. Although the test statistic
profiles show some difference between these two methods, the difference is only de-
tectable at the micro level (Haley and Knott 1992). A main advantage of the regression
method is its tremendous computational simplicity and ease of implementation using
many available computer statistical packages.

Xu (1995) noted that the estimation of residual variance provided by the regression
method is confounded with part of the QTL variance. He later proposed an alternative
method, referred to as iteratively reweighted least squares (IRLS), to correct the
deficiency of parameter confounding in the regression method (Xu 1998). The IRLS
approach retains the properties of simplicity and rapidity of the ordinary regression
method. Like the existing regression method, this method can be useful in QTL
mapping in conjunction with the permutation tests and construction of confidence
intervals by bootstrapping.

10.6 Exercises

10.1 After reading Chapters 8 and 10, compare the advantages of interval mapping over a
single marker analysis. You may use an example for either rice or mouse mapping as
used in the book to demonstrate these advantages.

10.2 Use Bayes’ theorem to derive Table 10.3
10.3 Missing data in QTL mapping

Missing-data problems are common in genetic mapping. A commonly used treatment
for missing data is simply to drop those individuals with either phenotypes or mark-
ers missing. But this should not be the most effective approach. If data are missing
completely at random, one may wish to replace missing data by their expected values
given the available data at other markers or individuals using an algorithm by Lan-
der and Green (1987). Read the relevant statistical and genetic literature for treating
missing-data problems, and figure out how these treatments can be implemented for
QTL mapping.

10.4 Interval mapping with recombinant inbred lines (RILs) RILs can be derived
either by repeated selfing or by repeated brother–sister mating of the progeny from an
F1 cross between two inbred lines. RILs are fixed, with homozygous genotypes 2 and
0, for all genes and can serve a permanent mapping population for multiple uses.

Consider two flanking markers M and N that bracket a putative QTL in an RIL
population. Let R1 and R2 be the proportions of recombinant zygotes between marker
M and QTL and between QTL and marker N, respectively. Martin and Hospital (2006)
derived the conditional probabilities of QTL genotypes given the marker genotypes in
terms of R1 and R2 in the selfing RIL population, which are tabulated in Table 10.7.

Let r1 and r2 be the recombination fractions between marker M and QTL and
between QTL and marker N, respectively. The relationship between R and r for two
loci in a selfing RIL population has been derived by Haldane and Waddington (1931),
expressed as

R1 =
2r1

1 + 2r1
,

R2 =
2r2

1 + 2r2
,

r1 =
R1

2(1 − R1)
,

r2 =
R2

2(1 − R2)
.

(10.8)
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Table 10.7. Conditional probabilities of QTL genotypes given marker genotypes in the
selfing RIL population.

Marker Interval QTL Genotype

Genotype Size 2 0

22 n22 1 − R1R2(3 − 2R1 − 2R2)

2(1 − R1)(1 − R2)

R1R2(3 − 2R1 − 2R2)

2(1 − R1)(1 − R2)

20 n20 1 − 2R1 − R1R2(3 + 2R1 − 2R2)

2R2 + R1(2 − 6R2)

2R1 − R1R2(3 + 2R1 − 2R2)

2R2 + R1(2 − 6R2)

02 n02
2R1 − R1R2(3 + 2R1 − 2R2)

2R2 + R1(2 − 6R2)
1 − 2R1 − R1R2(3 + 2R1 − 2R2)

2R2 + R1(2 − 6R2)

00 n00
R1R2(3 − 2R1 − 2R2)

2(1 − R1)(1 − R2)
1 − R1R2(3 − 2R1 − 2R2)

2(1 − R1)(1 − R2)

(a) Using f2 and f0 to denote the densities of two homozygous QTL genotypes 2 and
0, respectively, write down the mixture-model–based likelihood.

(b) Define the posterior probabilities of QTL genotypes based on the prior conditional
probabilities in Table 10.7.

(c) Based on the procedures described for the backcross and F2, show a detailed compu-
tational EM algorithm for estimating the genotypic values, µ2 and µ0, and residual
variance, σ2.

(d) It is difficult to derive a closed form for estimating the proportions of recombinant
zygotes, R1 and R2. Use a grid approach for estimating these proportions. Note
0 ≤ R1, R2 ≤ 0.5.

(e) After R1 and R2 are estimated, use equation (10.8) to estimate the MLEs of the
recombination fractions and therefore the location of the putative QTL by a map
function.

(f) Test whether the QTL is significant by formulating the null hypothesis

H0 : µ2 = µ0.

The critical threshold for declaring the existence of a QTL can be determined from
permutation tests.
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Interval Mapping by Maximum Likelihood
Approach

11.1 Introduction

As discussed in Chapter 10, interval mapping is powerful for the separation of QTL
effects and QTL-marker linkage. Interval mapping based on a regression approach is
computationally faster than a maximum likelihood (ML) approach, with comparable
results between the two approaches in some particular cases. Kao (2000) discussed
analytically and through simulation studies the conditions under which the regression-
and ML-based approaches generate different results. Further comparisons by Mayer
(2005) between the two approaches were made in terms of power, accuracy of position
and effect estimates, and estimation of the residual variance when multiple linked
QTLs are involved in the genetic control of a quantitative trait.

It is, however, recognized that the ML method has several attractive statistical
properties, such as consistency and asymptotic efficiency, and therefore it has great
potential for the precise estimation of QTL parameters. Furthermore, the ML method
has better interpretability than the regression model in terms of the genetic model,
suggesting its applicability to practical genetic mapping problems.

In situations with multiple QTLs linked on a similar genomic region, ML-based
interval mapping generally outperformed regression interval mapping with regard to
the power of QTL detection and the precision of parameter estimation (Mayer 2005).
This superiority increases with wider marker intervals and larger population sizes.
Also, if linked QTLs are in repulsion, the differences between the two approaches are
substantial. The ML approach is regarded as a powerful way to simultaneously map
multiple QTL as proposed by Kao et al. (1999).

In this chapter, we will describe basic principles of the ML-based interval mapping
method, its statistical inferences about parameter estimation and hypothesis testing,
and the procedure for its practical application. Examples for ML interval mapping
are provided. All of the current literature on interval mapping assumes no double
recombination or no meiotic interference in different intervals between markers and
QTLs. We will describe the QTL interval mapping that relaxes these two assumptions
for both a backcross and F2 design.
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11.2 QTL Interval Mapping in a Backcross

The mixture model is the central theme of maximum-likelihood–based interval map-
ping proposed by Lander and Botstein (1989). In Chapter 9, we described a general
framework for the structure of a mixture mapping model from population and quan-
titative genetic points of view and further reviewed statistical algorithms used to
estimate QTL parameters specified in the mixture model. Under this framework, in-
terval mapping of QTLs in an inbred line cross can be viewed as a special case in
which statistical issues about significance tests and parameter estimation have been
well explored. We will focus our discussion on two simple genetic designs, backcross
and F2 or recombinant inbred lines (RILs), initiated with two contrasting inbred lines.

Consider a possible QTL with left flanking marker M and right flanking marker
N, with recombination fractions r1 between M and QTL, r2 between QTL and N,
and r between M and N. We assume that we are working in a backcross population
and denote the two possible alleles of each marker by 1 and 0. Table 10.2 lists the
possible marker genotypes and their probabilities. Again, we do not observe the QTL
genotype, which has to be inferred from the marker information.

11.2.1 The Likelihood

To construct a likelihood function, we assume that we have densities f1 and f0 cor-
responding to two QTL genotypes, 1 and 0. Then the densities of the observations at
the marker classes are a mixture of the two possible QTL genotypes, given by

Marker class Density

Genotype Observation 1 0

1 11 n1 1f1(y) + 0f0(y)

2 10 n2 (1 − θ)f1(y) + θf0(y)

3 01 n3 θf1(y) + (1 − θ)f0(y)

4 00 n4 0f1(y) + 1f0(y)

Overall n 1
2f1(y) + 1

2f0(y)

where no double recombination is assumed between two marker–QTL intervals. Be-
cause phenotypic data are observed for each marker class, we have a likelihood func-
tion that is dissolved into four classes:

L =
n∏

i=1

[
1
2
f1(yi) +

1
2
f0(yi)

]
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=
n1∏

i=1

f1(yi)

×
n2∏

i=1

[(1 − θ)f1(yi) + θf0(yi)]

×
n3∏

i=1

[θf1(yi) + (1 − θ)f0(yi)]

×
n4∏

i=1

f0(yi)

(11.1)

The null hypothesis of no QTL is

H0 : f1(yi) = f0(yi) = f(yi), i.e., µ1 = µ0 = µ

and to test this at position x, where θ = r1(x)/r, we map the likelihood ratio statistic

(11.2) λ(x) =
maxH0 L(f(yi)

maxH1 L(f1(yi), f0(yi), θ)
,

according to Fig. 10.1. For values of x between markers M and N, typically taken in
2 cM steps, we calculate the value of equation (11.2), or −2 log λ, and hence “map”
the likelihood. We then find the maximum of the test statistic over the M–N interval.

Calculation of the significance level of maxx λ(x) can be a problem. Although
often the likelihood ratio test statistic is approximately χ2-distributed, the maximum
likelihood ratio test statistic is not. There are a number of ways to proceed:

(a) Asymptotics for a dense map: Lander and Botstein (1989) used an elegant
probability argument to show that the LOD score, a transformation of λ given by

LOD(x) = −2 log10 λ(x),

converges to a χ2
2 as the markers get dense (as the distance between the markers

goes to zero). In particular,

P (max
x

LOD(x) > T |H0) → (C + 2Gt)χ2
2(t),

where t = 2 log10 T , C is number of chromosomes, and G is genetic length.
(b) Approximations such as those of Piepho (2001) and Davies (1977, 1987).
(c) Permutation tests: If there are sufficient computational resources, permutation

tests, following the work of Churchill and Doerge (1994) can be used. Here we
generate N permuted samples, and for each we calculate maxx λ(x).

In this section, we illustrate the use of the permutation test, comparing the statistic
for the observed data with this reference distribution. All of these approximations are
discussed further in Chapter 12.
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11.2.2 Maximizing the Likelihood

We now assume that the distribution of the phenotypic traits can be described with
a normal distribution. Specifically,

f1(yi) = f(yi|µ1, σ
2) = N(µ1, σ

2) and f0(yi) = f(yi|µ0, σ
2) = N(µ0, σ

2),

and the likelihood becomes

L(µ1, µ2, σ
2, θ|y) =

n1∏

i=1

f(yi|µ1, σ
2)

×
n2∏

i=1

[(1 − θ)f(yi|µ1, σ
2) + θf(yi|µ0, σ

2)]

×
n3∏

i=1

[θf(yi|µ1, σ
2) + (1 − θ)f(yi|µ0, σ

2)]

×
n4∏

i=1

f(yi|µ0, σ
2)

(11.3)

and now

(11.4) λ(θ) =
maxµ1=µ0=µ,σ2 L(µ, σ2, θ|y)
maxµ1,µ0,σ2 L(µ1, µ0, σ2, θ|y)

.

To maximize the numerator, we note that if µ1 = µ0 = µ, then the likelihood becomes

(11.5) L(µ, σ2, θ|y) = L(µ, σ2|y) =
n∏

i=1

f(yi|µ, σ2),

which does not depend on θ and has MLEs µ̂ = ȳ and σ̂2 = (1/n)
∑n

i (yi − ȳ)2. To
maximize the full likelihood (11.3), we proceed as in Section 2.2 and define

P1|i =
(1 − θ)f(yi|µ1, σ

2)
(1 − θ)f(yi|µ1, σ2) + θf(yi|µ0, σ2)

,

P0|i =
θf(yi|µ0, σ

2)
(1 − θ)f(yi|µ1, σ2) + θf(yi|µ0, σ2)

,
(11.6)

with P1|i + P0|i = 1.
Differentiating log L, letting the derivatives equal zero, and solving the log-

likelihood equations gives

∂

∂µ1
log L = 0 ⇒ µ̂1 =

∑n1
i=1 yi +

∑n2+n3
i=1 P1|iyi

n1 +
∑n2+n3

i=1 P1|i
,

∂

∂µ0
log L = 0 ⇒ µ̂0 =

∑n2+n3
i=1 P0|iyi +

∑n4
i=1 yi∑n2+n3

i=1 P0|i + n4

,

(11.7)
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∂

∂σ2
log L = 0 ⇒ σ̂2 =

1
n

(
n1∑

i=1

(yi − µ̂1)2 +
n2+n3∑

i=1

[
P1|i(yi − µ̂1)2 + P0|i(yi − µ̂0)2

]
+

n4∑

i=1

(yi − µ̂0)2
)

,

∂

∂θ
log L = 0 ⇒ θ̂ =

∑n2
i=1 P0|i +

∑n3
i=1 P1|i

n2 + n3
.

Equation (11.7) is a system of likelihood equations in which the solutions for the
unknown parameters are not in analytical form because each estimate depends on
estimates of other parameters. Unlike in other numerical problems, each estimate
is also a function of the posterior probability for each individual with an expected
QTL genotype. Thus, this iteration is actually a special case of the EM algorithm
proposed by Dempster et al. (1977) and Meng and Rubin (1993), which guarantees
the convergence of the iterations (see Exercise 11.4).

The EM algorithm is derived to estimate the parameters. In the E step, the pos-
terior probabilities for a backcross progeny i to carry a QTL genotype 1 or 0 are
calculated with equation (11.6). In the M step, the calculated posterior probabilities
are used to estimate the parameters with equation (11.7). The iteration between equa-
tions (11.6) and (11.7) is repeated until the estimates are stable. The stable estimates
are regarded as the maximum likelihood estimates (MLEs) that will maximize the
likelihood.

Example 11.1. (Procedures for Interval Mapping). Revisit Table 10.1, a hypothesized
small example, in which ten mice are genotyped for two markers M and N and
phenotyped for body weight. The observed marker and phenotype data, along with
the conditional probabilities of a QTL genotype (1 or 0) given genotypes of the marker
interval, are expressed as

Interval Body Weight QTL Genotype

Mouse M-N (yi) 1 0

1 11 30 1 0

2 11 32 1 0

3 11 28 1 0

4 11 29 1 0

5 10 29 1 − θ θ

6 01 22 θ 1 − θ

7 00 20 0 1

8 00 21 0 1

9 00 20 0 1

10 00 21 0 1
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To use the EM algorithm to estimate the QTL position (θ), QTL genotypic values
(µ1 and µ0), and residual variance (σ2) in interval mapping, we need to provide
the initial values for these parameters. Usually, this can be determined from their
sampling estimates, µ = 25.2 and s2 = 22.84. Because µ1 and µ0 are different, we use
two slightly different values, say µ

(0)
1 = 25.2 and µ

(0)
0 = 23.2, as their initial values.

Meanwhile, we assume σ2(0) = 22.84 and θ(0) = 0.5. The iterative steps of the EM
algorithm are described as follows.
Step 1. Calculate the posterior probabilities (P1|i and P0|i) that individual mice (i)
carry QTL genotype 1 or 0. In this example, these probabilities are calculated only
for mice 5 and 6 using equation (11.6); i.e.,

P
(1)
1|5 =

(1 − θ(0)) exp
[
− (y5−µ

(0)
1 )2

2σ2(0)

]

(1 − θ(0)) exp
[
− (y5−µ

(0)
1 )2

2σ2(0)

]
+ θ(0) exp

[
− (y5−µ

(0)
0 )2

2σ2(0)

]

=
(1 − 0.5) exp

[
− (29−25.2)2

2×22.84

]

(1 − 0.5) exp
[
− (29−25.2)2

2×22.84

]
+ 0.5 exp

[
− (29−23.2)2

2×22.84

]

= 0.6035,

P
(1)
0|5 =

θ(0) exp
[
− (y5−µ

(0)
0 )2

2σ2(0)

]

(1 − θ(0)) exp
[
− (y5−µ

(0)
1 )2

2σ2(0)

]
+ θ(0) exp

[
− (y5−µ

(0)
0 )2

2σ2(0)

]

=
0.5 exp

[
− (29−23.2)2

2×22.84

]

(1 − 0.5) exp
[
− (29−25.2)2

2×22.84

]
+ 0.5 exp

[
− (29−23.2)2

2×22.84

]

= 0.3965,

and

P
(1)
1|6 =

(1 − θ(0)) exp
[
− (y6−µ

(0)
1 )2

2σ2(0)

]

(1 − θ(0)) exp
[
− (y6−µ

(0)
1 )2

2σ2(0)

]
+ θ(0) exp

[
− (y6−µ

(0)
0 )2

2σ2(0)

]

=
(1 − 0.5) exp

[
− (22−25.2)2

2×22.84

]

(1 − 0.5) exp
[
− (22−25.2)2

2×22.84

]
+ 0.5 exp

[
− (22−23.2)2

2×22.84

]

= 0.4520,
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P
(1)
0|6 =

θ(0) exp
[
− (y6−µ

(0)
0 )2

2σ2(0)

]

(1 − θ(0)) exp
[
− (y6−µ

(0)
1 )2

2σ2(0)

]
+ θ(0) exp

[
− (y6−µ

(0)
0 )2

2σ2(0)

]

=
0.5 exp

[
− (22−23.2)2

2×22.84

]

(1 − 0.5) exp
[
− (22−25.2)2

2×22.84

]
+ 0.5 exp

[
− (22−23.2)2

2×22.84

]

= 0.5480.

We then tabulate the posterior probabilities for each mouse as follows:

Interval Body Weight Posterior Probability

Mouse M–N (yi) P
(1)
1|i P

(1)
0|i

1 11 30 1 0

2 11 32 1 0

3 11 28 1 0

4 11 29 1 0

5 10 29 0.6035 0.3965

6 01 22 0.4520 0.5480

7 00 20 0 1

8 00 21 0 1

9 00 20 0 1

10 00 21 0 1

Step 2. Estimate the QTL genotypic values, residual variance, and QTL position
using the log-likelihood equation (11.7); i.e.,

µ̂
(1)
1 =

30 + 32 + 28 + 29 + 29 × 0.6986 + 22 × 0.4049
1 + 1 + 1 + 1 + 0.6986 + 0.4049

= 28.97,

µ̂
(1)
0 =

29 × 0.3014 + 22 × 0.5951 + 20 + 21 + 20 + 21
0.3014 + 0.5951 + 1 + 1 + 1 + 1

= 21.35,
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σ̂2(1) =
1
10

[(30 − 29.03)2 + (32 − 29.02)2 + (28 − 29.03)2 + (29 − 29.03)2

+(29 − 29.03)2 × 0.6986 + (22 − 29.03)2 × 0.4049

+(29 − 21.21)2 × 0.3014 + (22 − 21.21)2 × 0.5951

+(20 − 21.21)2 + (21 − 21.21)2 + (20 − 21.21)2 + (21 − 21.21)2]

= 6.05,

θ̂(1) =
0.3965 + 0.4520

1 + 1
= 0.4242.

Based on equation (11.3), we use the estimated parameters to calculate the log-
likelihood value as

log L(1) = log
(

10√
2π × 2.46

)

+
[
− (30 − 28.97)2

2 × 6.05

]
+

[
− (32 − 28.97)2

2 × 6.05

]
+

[
− (28 − 28.97)2

2 × 6.05

]
+

[
− (29 − 28.97)2

2 × 6.05

]

+ log
{

(1 − 0.4242) exp
[
− (29 − 28.97)2

2 × 6.05

]
+ 0.4242 exp

[
− (29 − 28.97)2

2 × 6.05

]}

+ log
{

0.4242 exp
[
− (22 − 21.35)2

2 × 6.05

]
+ (1 − 0.4242) exp

[
− (22 − 21.35)2

2 × 6.05

]}

+
[
− (20 − 21.35)2

2 × 6.05

]
+

[
− (21 − 21.35)2

2 × 6.05

]
+

[
− (20 − 21.35)2

2 × 6.05

]
+

[
− (21 − 21.35)2

2 × 6.05

]

= −47.74.

Step 3. Repeat steps 1 and 2 until the estimates of all the parameters are stable.
In this example, we find that the parameter estimates converge at step x. The MLEs
of the parameters are obtained as µ̂1 = 29.6, µ̂0 = 20.8, σ̂2 = 1.2, θ̂ ≈ 0, and
log L = −6.53.

Example 11.2. (QTL Mapping in Poplar Trees). To illustrate interval mapping,
we estimate QTL for the poplar data (Yin et al. 2002). Table 11.1 shows a portion of
the data, which gives marker information on four markers: CA/CGA-580RD, A7-690,
AM11-1060, and AT2-850. Cumulative map distances over the markers are 15.6, 30.7,
and 43.9 cM, respectively. The trait measured is the height (m) of each of 57 trees.

Using the iterations above for the MLEs, we implement an R program that is
available on the website for this book. The results are given in Table 11.2. The re-
combination fraction estimate θ̂ locates the possible QTL on the interval. To translate
the recombination fraction into mapping distance, we use the Haldane mapping func-
tion (10.5). Recall that θ = r1(x)/r and hence, for an interval M–N

θ =
r1(x)

r
=

1
2 (1 − e−2d(x))

1
2 (1 − e−2d)

,
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Table 11.1. A portion of the poplar marker data and heights.

Obs CA/CGA-580RD A7-690 AM11-1060 AT2-850 Height(m)

1 2 2 2 2 10.8

2 2 1 1 1 11.5

3 1 1 1 1 13.8

4 1 1 2 2 13.9

...
...

...
...

...
...

54 2 2 2 2 21.0

55 2 2 1 2 22.0

56 2 1 1 1 22.1

57 2 2 2 2 26.0

Table 11.2. Parameter estimates and likelihood ratios for the poplar data.

Interval µ̂1 µ̂0 σ̂ θ̂ −2 log λ

1 18.006 16.356 2.632 0.176 3.257

2 17.826 16.891 2.708 0.101 1.476

3 18.020 16.748 2.673 1.000 3.136

implying that

d(x) = −1
2

log (1 − 2rθ) , r =
1
2
(1 − e−2d).

Applying this to the first interval yields

r =
1
2
(1 − e−2×0.156) = 0.134, dxM = −1

2
log (1 − 2 × 0.134 × 0.176) = 0.024,

and for all intervals Table 11.3 gives the estimated QTL locations.

Table 11.3. Estimated QTL locations for the poplar data.

Interval θ̂ d(x)

(0, 0.156) 0.176 2.4 cM

(0.156, 0.307) 0.101 16.9 cM

(0.307, 0.439) 1.000 43.9 cM
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11.3 Hypothesis Testing

After the parameters are estimated, we must assess the significance of these findings.
In testing the null hypothesis

H0 : There is no QTL in any interval,

we would reject H0 if any of the likelihood ratios were significant. If we designate
LRTi to be the likelihood ratio statistic over interval �, then we would reject H0 if

max
�

LRT� > t,

where t is an appropriately chosen cutoff. The log-likelihood ratio (LR) test statistic
under the H0 (µ1 = µ0 ≡ µ) and H1 (µ1 �= µ0) hypotheses is calculated by

LR = −2 ln
[

L(µ̃, σ̃2)
L(µ̂1, µ̂0, σ̂2)

]
,(11.8)

where µ̂1, µ̂0, and σ̂2 are the MLEs of the corresponding parameters under the H1

that there is a QTL (full model) and µ̃ and σ̃2 are the MLEs under the H0 that there
is no QTL (reduced model).

Lander and Botstein (1989) used the LOD score as a test statistic, expressed as

LOD = − log10

[
L(µ̃, σ̃2)

L(µ̂1, µ̂0, σ̂2)

]
,(11.9)

which is actually equivalent to the LR, with the relationship

LOD =
1
2
(log10 e)LR = 0.217LR.

Under H0, the LOD score or LR statistic is asymptotically distributed as a central
χ2 statistic, with the degrees of freedom being the number of parameters fixed in the
null hypothesis. But these degrees are allowed to “float” in the alternative hypothesis
because the recombination fraction and the estimated QTL effect are correlated. For
example, if the recombination fraction between a marker and QTL is fixed at 0.5,
then the magnitude of the putative QTL effect is immaterial for a single-marker
analysis. Thus, it is not clear how many degrees of freedom should be used for such
a marker-linked QTL analysis. Although this problem is somewhat alleviated with
interval mapping, it is still not clear whether both the QTL position and QTL effect
are fixed in the null hypothesis.

Since the position of the QTL (measured by the ratio θ) is present only under the
alternative hypothesis, it is regarded as a nuisance parameter in significance testing
for the QTL. Under the null hypothesis, the nuisance parameter (QTL position)
is undefined, so that standard techniques are not applicable for deriving the null
distribution of the test statistic unconditionally on the nuisance parameter. For these
reasons, a profile of the test statistic across the permissible interval for the nuisance
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parameter is constructed, and we choose the maximum of that profile to perform
just one test. This so-called grid search assumes that the QTL at any position is
bracketed by two markers, with no need to include the log-likelihood equation for
the QTL position in the iterations but instead allowing θ to vary deterministically
in order. Because the QTL is assumed to be somewhere on the genomic interval
bracketed by two flanking markers, θ will take a value from 0 to 1. At each assumed
position, the LOD score or LR value is calculated, which allows a systematic search
for a significant QTL throughout a given linkage group or even the entire genome.
If the QTL is first assumed at the right marker and then moved at every 1 or 2 cM
from this marker, we can plot the LOD score or LR value against the map position
of the QTL. If the test statistic at a region exceeds a predefined critical threshold, a
significant QTL is indicated at the maximum (peak) of the LOD or LR profile. The
θ value corresponding to the maximum of the likelihood ratio test statistic across a
linkage group is the optimal estimate of the QTL position.

Because it is difficult to analytically obtain the distribution of the test statistics,
the critical threshold can be determined empirically from permutation tests (Churchill
and Doerge 1994). For the poplar data of Example 11.2, we permute the phenotypic
values, breaking all associations and mimicking a null distribution. For every permu-
tation, we calculate max� LRT� and construct a histogram and obtain a cutoff point.
Figure 11.1 is a histogram of 5000 permutations of the data and the resulting max-
imum LR statistic. Using that as a reference, we have an upper 5 percent cutoff of
5.757, showing that we have not found a significant QTL.

LRT

D
en

si
ty

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

Fig. 11.1. Histogram of the null distribution of max−2 log λ for the data of Example 11.2.
The distribution is based on 5000 permutations of the data, with an upper 5 percent cutoff
of 5.757.
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One can also use the permutation distribution to calculate the p-value. Our ob-
served maximum was 3.257, and of the 5000 permutations, 1016 resulted in larger
values of the test statistic, giving a p-value of 1016/5000 = 0.203.

Example 11.3. Revisit Example 3.1. Two inbred lines, semi-dwarf IR64 and tall Azu-
cena, were crossed to generate a heterozygous F1. The haploid chromosomes for pol-
lens (gametes) of the F1 were doubled to produce 123 doubled haploid (DH) plants.
These DH plants, equivalent to a backcross progeny, were genotyped for 135 RFLP
and 40 isozyme and RAPD markers, from which a linkage map covering the entire
genome of 12 chromosomes was constructed (Yan et al. 1998; Fig. 3.3). Each of the
DH lines was measured for plant height at each of ten consecutive weeks.

Maximum likelihood is used to scan the existence of a QTL across the linkage
map. We use chromosome 1 as an example to describe the procedure. Table 11.4
gives the cumulative and pairwise map distances in centiMorgans for 18 markers
on rice chromosome 1, along with the sample sizes, means, and variances of plant
height measured at age 10 weeks for each marker interval. Theoretically, these sample
estimates should be identical among different marker intervals. They are different
because of missing data, which is a common case in QTL mapping.

Using the estimates of these sample parameters as initial values of the unknown
parameters, the information in Table 11.4 is incorporated into a chromosome-wide
scan of a QTL by assuming the QTL location at every 2 cM within each marker in-
terval. Table 11.5 gives the results for QTL scanning at every 4 cM (to save space), and
includes the estimates of two QTL genotype values, residual variance, log-likelihood
values under the null and alternative hypotheses, and LR at assumed QTL positions.
By plotting the LR values against the length of the linkage group, we can see how
the test statistics change over the assumed QTL positions (Fig. 11.2). It is likely
that a peak of the LR profile at 217 cM from the first marker within marker interval
RG810–RG331 corresponds to the MLE of the QTL location.

To test whether the QTL at the LR peak is statistically significant, we can empir-
ically determine the critical threshold based on permutation tests (see Chapter 12 for
details). By reshuffling the phenotypic data, we estimate 1000 maximal LR values,
whose 99th percentile is used as the cutoff point (12.64) for testing the chromosome-
wide existence of a QTL at the α = 0.01 significance level.

A by-product of calculating the test statistic is that the proportion of the pheno-
typic variance explained by a QTL (R2) can be calculated as

R2 =
σ̂2

T − σ̂2
R

σ̂2
R

,(11.10)

where σ̂2
T is the estimate of the total phenotypic variance (i.e., σ̃2 under the null hy-

pothesis) and σ̂2
R is the estimate of the residual variance (i.e., σ̂2 under the alternative

hypothesis).
We estimated the additive effect of the detected QTL on rice chromosome 1 as

â = µ̂1 − µ̂0 = 30.97, which is 134.9 percent relative to the standard deviation of the
plant height in the DH population. Using equation (11.10), we calculate the proportion
of the phenotypic variance explained by the QTL, which is 44.5 percent.
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Table 11.4. Map distances, measured in centiMorgans (cM), for 18 markers located on
chromosome 1 and sample sizes, means, and variances for each of the 17 marker intervals in
a DH population of rice.

Cumulative Pairwise Sample
Marker Distance Distance Size Mean Variance

RG472 0.0
19.2 96 109.63 539.48

RG246 19.2
16.1 100 109.85 524.21

K5 35.3
4.8 96 109.27 509.49

U10 40.1
4.7 78 110.49 506.71

RG532 44.8
15.3 100 109.85 537.80

W1 60.1
15.5 102 109.57 511.86

RG173 75.6
15.0 97 109.68 509.24

RZ276 90.6
3.8 104 110.20 529.99

Amy1B 94.4
3.3 104 109.85 536.55

RG146 97.7
34.3 99 109.44 543.70

RG345 132.0
2.5 105 109.71 528.72

RG381 134.5
23.5 97 109.37 520.59

RZ19 158.0
8.2 91 109.96 510.37

RG690 166.2
13.2 104 109.69 531.14

RZ730 179.4
33.1 89 110.17 538.40

RZ801 212.5
2.6 96 109.90 521.97

RG810 215.1
9.2 105 109.93 532.13

RG331 224.3

Note: Because different markers are missing, the estimates of sample means and variances
are different among marker intervals.
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Table 11.5. Estimation process of interval QTL mapping for chromosome 1 in a rice DH
population.

Interval Position µ1 µ0 σ2 LogL0 LR n

1 1 109.835 109.798 541.929 -433.818 0 95

1 5 109.789 109.850 541.928 -433.818 0 95

1 9 109.736 109.907 541.922 -433.818 0.001 95

1 13 109.685 109.959 541.910 -433.817 0.002 95

1 17 109.646 109.996 541.899 -433.816 0.004 95

2 21 109.761 108.940 497.122 -425.197 0.029 94

2 25 109.665 109.051 497.197 -425.204 0.014 94

2 29 109.506 109.193 497.266 -425.209 0.003 94

2 33 109.324 109.325 497.290 -425.211 0 94

3 37 108.182 110.686 477.832 -324.262 0.219 72

4 41 109.577 110.522 513.786 -345.029 0.030 76

5 45 108.813 109.880 515.150 -445.035 0.051 98

5 49 109.108 109.652 515.355 -445.055 0.011 98

5 53 109.562 109.383 515.418 -445.060 0.001 98

5 57 110.078 109.149 515.237 -445.045 0.031 98

6 61 108.572 109.336 489.133 -424.434 0.019 94

6 65 107.921 109.519 488.784 -424.408 0.073 94

6 69 107.171 109.688 488.169 -424.361 0.166 94

6 73 106.532 109.779 487.584 -424.303 0.281 94

7 77 109.198 109.789 509.190 -439.930 0.007 97

7 81 107.208 110.150 508.087 -439.882 0.102 97

7 85 104.375 110.519 504.806 -439.756 0.355 97

7 89 104.600 110.332 505.947 -439.705 0.458 97

8 93 111.159 109.952 534.307 -469.621 0.031 103

9 97 107.169 109.662 547.736 -448.043 0.116 98

10 101 105.543 109.882 542.842 -447.655 0.319 98

10 105 104.908 110.177 541.152 -447.601 0.427 98

10 109 104.561 110.451 539.543 -447.552 0.524 98

10 113 104.592 110.641 538.702 -447.519 0.590 98

10 117 104.935 110.721 538.838 -447.506 0.617 98

10 121 105.442 110.710 539.635 -447.508 0.613 98

10 125 105.982 110.641 540.656 -447.519 0.590 98

10 129 106.481 110.545 541.620 -447.534 0.561 98

11 133 105.749 110.980 515.684 -436.028 1.094 96

12 137 104.165 111.730 501.760 -394.034 1.939 87

12 141 103.212 112.374 495.530 -393.686 2.634 87

12 145 102.494 112.917 489.624 -393.330 3.347 87

12 149 102.098 113.277 485.604 -393.014 3.979 87

12 153 102.046 113.419 484.362 -392.777 4.453 87

12 157 102.324 113.349 485.997 -392.638 4.731 87

13 161 99.411 116.583 440.496 -407.358 10.928 91

13 165 98.170 117.625 419.984 -404.359 16.926 91

14 169 97.924 118.561 433.685 -393.583 15.806 88
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14 173 96.276 119.960 400.347 -390.697 21.578 88

14 177 96.079 120.437 391.781 -388.902 25.168 88

15 181 94.988 121.898 364.697 -382.823 29.192 87

15 185 91.994 125.186 269.907 -377.980 38.879 87

15 189 91.895 126.999 235.728 -374.168 46.504 87

15 193 92.113 128.047 220.819 -371.591 51.657 87

15 197 92.313 128.583 215.013 -370.005 54.829 87

15 201 92.475 128.694 216.105 -369.339 56.160 87

15 205 92.641 128.359 225.014 -369.701 55.436 87

15 209 92.967 127.307 248.828 -371.535 51.769 87

16 213 94.335 123.975 302.895 -410.949 51.269 96

17 217 93.769 124.741 292.775 -449.026 58.997 105

17 221 93.759 124.256 300.457 -451.654 53.741 105
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Fig. 11.2. Profile of the LR-value across chromosome 1 for the test of QTL that controls
plant height at age 10 weeks in a rice DH population (Huang et al. 1997).
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There are many other programs available to produce QTL maps. For example, there
is a package rQTL available in the statistical package R, which is free and available on
the Web. There is also a program called QTL Cartographer, which is also available
as a free download.

11.3.1 Model for Incorporating Double Recombination

The likelihood (11.1) was constructed by assuming no double recombination; i.e.,
r = r1 + r2. If double recombination occurs but no interference is assumed, we have
r = r1 + r2−2r1r2. In this case, the conditional probabilities of QTL genotypes given
marker genotypes are expressed in Table 10.3. The EM algorithm can be derived to
estimate the r1 or r2, QTL genotypic values, and residual variance. Let ωj|i be the
general conditional (prior) probability for a progeny i to have QTL genotype j (1 or
0). In the E step, we define and calculate the corresponding posterior probability for
progeny i by

Pj|i =
ωj|ifj(yi)

ω1|if1(yi) + ω0|if0(yi)
.(11.11)

In the M step, the parameters are estimated by

µ̂j =
∑n

i=1 Pj|iyi∑n
i=1 Pj|i

,

σ̂2 =
1
n

⎡

⎣
n∑

i=1

1∑

j=0

(yi − µ̂j)2Pj|i

⎤

⎦ ,

r̂1 =
1
n

[
n1+n2∑

i=1

P0|i +
n3+n4∑

i=1

P1|i

]
,

r̂2 =
1
n

[
n1+n3∑

i=1

P0|i +
n2+n4∑

i=1

P1|i

]
.

(11.12)

The E and M steps are iterated until the estimates of the parameters converge. The
estimates at the convergence are the MLEs of the parameters.

11.3.2 Model for Incorporating Interference

Consider the marker-QTL order in M-QTL-N. Let g11, g10, g01, and g00 be the
probabilities of two crossovers each between M and QTL and between QTL and N,
only one crossover between M and QTL, only one crossover between QTL and N,
and no crossover between the three loci, respectively.

Based on the three-point analysis in Table 4.2, we derive joint marker-QTL-marker
genotype frequencies in terms of g11, g10, g01, and g00, which are given in Table 11.9.



11.3 Hypothesis Testing 253

Instead of using Table 11.7, we now use the conditional probabilities, generally ex-
pressed as ωj|i, derived from Table 11.9 to construct the likelihood similar to equa-
tion (11.7). The joint probabilities of marker-QTL-marker genotypes are expressed in
terms of these four g’s (Table 11.6), from which the conditional probabilities of QTL
genotypes given marker interval genotypes (ωj|i) can be derived.

Table 11.6. Joint three-point genotype frequencies in the backcross.

Marker Interval QTL Genotype

Genotype Sample Size 1 0

11 n1 g00 g11

10 n2 g01 g10

01 n3 g10 g01

00 n4 g11 g00

The EM algorithm is derived to estimate the g probabilities, QTL genotypic values
and residual variance. In the E step, define and calculate the posterior probability
with a form similar to equation (11.11). In the M step, estimate QTL genotypic values
and the residual variance by equation (11.12), and the g probabilities by the following
equations:

ĝ00 =
1

n1 + n4

[
n1∑

i=1

P1|i +
n4∑

i=1

P0|i

]
,

ĝ01 =
1

n2 + n3

[
n2∑

i=1

P1|i +
n3∑

i=1

P0|i

]
,

ĝ10 =
1

n2 + n3

[
n3∑

i=1

P1|i +
n2∑

i=1

P0|i

]
,

ĝ11 =
1

n1 + n4

[
n4∑

i=1

P1|i +
n0∑

i=1

P0|i

]
.

After the MLEs of g’s, the recombination fractions are then estimated as

r̂1 = ĝ10 + ĝ11,
r̂2 = ĝ01 + ĝ11,
r̂ = ĝ01 + ĝ10.

(11.13)

The coefficient of meiotic interference measuring the degree with which the recombi-
nations in two adjacent intervals are affected by one another is calculated by
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Î = 1 − ĝ11

r̂1r̂2
.(11.14)

The significance test for the interference can be formulated by calculating the ratio
of the two log-likelihoods under the null (I = 0) and alternative (I �= 0) hypothesis
estimated from Sections 11.3.1 and 11.3.2, respectively. This ratio is asymptotically
χ2-distributed with one degree of freedom.

11.4 QTL Interval Mapping in an F2

As in the backcross, we will consider three different situations for the F2: (1) there is
no double recombination in the marker interval, (2) the recombinations in different
intervals are independent, and (3) meiotic interference occurs between different inter-
vals. In each situation, we will provide the EM algorithm for parameter estimation.

11.4.1 No Double Recombination

In an F2 design, each marker can have three values, and when taken in pairs to form
intervals, this leads to the nine marker classes whose conditional probabilities are
given in Table 10.5. The conditional probability of the QTL genotype given a marker
genotype is calculated as the ratio of the joint marker-QTL genotype frequency over
the marker genotype frequency. The proportions r1, r2, and r are the recombination
fractions between marker M (with two alleles, M and m) and the QTL (with two
alleles, Q and q), between the QTL and marker N (with two alleles, N and n), and
between the two flanking markers, respectively.

Assume that there is no double recombination: we have r = r1 + r2 or r1r2 ≈
0. Then, defining θ = r1/r and η = r2/[(1 − r)2 + r2], we obtain the conditional
probabilities of QTL genotypes given different marker classes (Table 11.7).

Likelihood

Similar to the development in Section 11.2, we assume that we have densities f2, f1,
and f0 corresponding to the QTL genotypes, and based on Table 11.7 we have the
likelihood function

L =
n22∏

i=1

[1f2(yi) + 0f1(yi) + 0f0(yi)]

×
n21∏

i=1

[(1 − θ)f2(yi) + θf1(yi) + 0f0(yi)]

×
n20∏

i=1

[(1 − θ)2f2(yi) + 2θ(1 − θ)f1(yi) + θ2f0(yi)]

×
n12∏

i=1

[θf2(yi) + (1 − θ)f1(yi) + 0f0(yi)]
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Table 11.7. Conditional probabilities of QTL genotypes given marker genotypes in the F2.

Marker Interval QTL Genotype

Genotype Sample Size QQ(2) Qq (1) qq (0)

MMNN (22) n22 1 0 0

MMNn (21) n21 1 − θ θ 0

MMnn (20) n20 (1 − θ)2 2θ(1 − θ) θ2

MnNN (12) n12 θ 1 − θ 0

MmMn (11) n11 ηθ(1 − θ) 1 − 2ηθ(1 − θ) ηθ(1 − θ)

Mmnn (10) n10 0 1 − θ θ

mmNN (02) n02 θ2 2θ(1 − θ) (1 − θ)2

mmNn (01) n01 0 θ 1 − θ

mmnn (00) n00 0 0 1

Overall n 1
4

1
2

1
4

Note: θ = r1/r, η = r2/[(1 − r)2 + r2].

×
n11∏

i=1

[ηθ(1 − θ)f2(yi) + (1 − 2ηθ(1 − θ))f1(yi) + ηθ(1 − θ)f0(yi)](11.15)

×
n10∏

i=1

[0f2(yi) + (1 − θ)f1(yi) + θf0(yi)]

×
n02∏

i=1

[θ2f2(yi) + 2θ(1 − θ)f1(yi) + (1 − θ)2f0(yi)]

×
n01∏

i=1

[0f2(yi) + θf1(yi) + (1 − θ)f0(yi)]

×
n00∏

i=1

[0f2(yi) + 0f1(yi) + 1f0(yi)].

To test the QTL significance, the null hypothesis of no QTL in the marker is
formulated as

H0 : f2(yi) = f1(yi) = f0(yi) ≡ f(yi),

and to test this at position x, where θ = r1(x)/r, we map the likelihood ratio statistic

(11.16) λ(x) =
maxH0 L(f(yi))

maxH1 L(f2(yi), f1(yi), f0(yi), θ)
,

similar to what was done in Section 11.2.



256 11 Interval Mapping by Maximum Likelihood Approach

Maximizing the Likelihood

We now turn to the maximization of the likelihood (11.15) but first make two as-
sumptions:

1. We assume that the densities fj(yi) (j = 2, 1, 0) are normal densities,

fj(yi) =
1√
2πσ

exp
[
− (yi − µj)2

2σ2

]
,

having means µ2 = µ + a, µ1 = µ + d, and µ0 = µ − a and variance σ2.
2. We introduce the notation ωj|i to denote the QTL genotype weights assigned to

individual i. For example, if individual i has marker genotype 12, then

ω2|i = θ, ω1|i = 1 − θ, ω0|i = 0.

Using this notation, we can write the log-likelihood (11.15) given observations y and
marker interval M–N as

log L(Ω|y,M-N) =
n∑

i=1

log
2∑

j=0

[ωj|ifj(yi)],(11.17)

where
Ω = (µ2, µ1, µ0, σ

2, θ) ≡ (Ωq, θ).

Differentiating the log of the likelihood with respect to any unknown parameter con-
tained in the vector above gives

∂

∂Ω
log L(Ω|y,M-N) =

n∑

i=1

(
ωj|ifj(yi)∑2

j′=0[ωj′|ifj′(yi)]

)(
∂

∂Ωq
log fj(yi) +

1
ωj|i

∂

∂θ
ωj|i

)

=
n∑

i=1

Pj|i

(
∂

∂Ωq
log fj(yi) +

1
ωj|i

∂

∂θ
ωj|i

)
,(11.18)

where

Pj|i =
ωj|ifj(yi)∑2

j′=0[ωj′|ifj′(yi)]
(11.19)

can be viewed as the posterior probabilities of the QTL genotypes for individual i
given a marker genotype, with

2∑

j=0

Pj|i = 1.

In the posterior probabilities, ωj|i’s are the prior probabilities for individual i that
bear on QTL genotype j, whereas fj(yi)’s are the likelihoods of the individual. The
posterior probability that an individual will carry a particular QTL genotype can be
used to infer the individual’s identification.
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Setting the partial derivative of equation (11.18) with respect to each unknown
equal to zero, we derive the MLEs of the genotypic value µj for QTL genotype j as

µ̂j =
∑n

i=1 Pj|iyi∑n
i=1 Pj|i

, j = 2, 1, 0,(11.20)

and the MLE of σ2 in a mapping population as

σ̂2 =
1
n

n∑

i=1

2∑

j=0

[Pj|i(yi − µ̂j)2].(11.21)

The additive (a) and dominant effects (d) of the QTL can be estimated from the
MLEs of µj ’s as

â =
1
2
(µ̂2 − µ̂0),

d̂ = µ̂1 −
1
2
(µ̂2 + µ̂0).

Similarly, the MLE of the QTL location (measured by the ratio θ) can be obtained
with a scanning approach in which a putative QTL is assumed at every 2 cM in each
marker interval. The likelihood ratio statistic (λ(x)) calculated by equation (11.16) is
then plotted against the length (x) of the linkage group. The peak of the λ(x) curve
corresponds to the optimal estimate of the QTL location.

Example 11.4. (F2 Mouse Data). Cheverud et al. (1996) constructed a linkage map
using 75 microsatellite markers in a population of 535 F2 progeny derived from two
strains, the Large (LG/J) and Small (SM/J). The F2 progeny were measured for body
mass at ten weekly intervals starting at age 7 days. The raw weights were corrected
for the effects of each covariate due to dam, litter size at birth, and parity but not
for the effect due to sex. Chromosome 1 composed of nine markers was used as an
example to map the QTL affecting body weight at age 10 weeks (Table 11.8) with
the ML-based interval mapping method.

The map of the likelihood is shown in Fig. 11.3. The maximum of the likelihood
is at marker interval [D2MIT93–D2MIT389], at 37 cM from the first marker on the
left of the chromosome, suggesting there might be a QTL there. The LR at the peak
is 33.81, greater than the critical threshold, 14.58, calculated from permutation tests,
indicating that the QTL detected is significant.

11.4.2 Independence

In Section 11.4.1, the conditional probabilities were derived by assuming no double
recombinations in different intervals. This assumption may be true when the map
density is high, in which case the product of the recombination fractions between
marker M and QTL (r1) and between QTL and marker N (r2) approaches zero.
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Table 11.8. A portion of the mouse data from Cheverud et al. (1996). The first six markers,
D1Mit3, D1Mit20, D1Mit7, D1Mit11, D1Mit14, and D1Mit17, on chromosome 1 at 0, 6.3,
41.6, 52.5, 77.6, and 119.2 cM, respectively, are shown. The phenotypic trait is body weight
at age 10 weeks.

ID D1Mit3 D1Mit20 D1Mit7 D1Mit11 D1Mit14 D1Mit17 WtGain

44 1 3 2 3 2 3 29.804

45 3 2 2 2 2 2 20.622

46 2 2 1 2 2 2 25.959

47 1 3 1 1 1 2 27.484

51 3 2 3 2 2 1 24.338

54 2 2 2 2 2 3 34.980

...
...

...
...

...
...

...
...

634 2 2 3 2 2 2 30.199

636 1 1 1 1 1 2 30.303

637 2 2 2 2 2 2 32.670

638 2 2 2 2 1 2 36.849

640 3 2 3 2 2 2 25.291

641 2 2 3 2 3 1 37.824

642 1 1 3 2 3 2 16.441

Here, we describe a model that relaxes the assumption of no double recombinations
but assumes the independence of recombination occurrences.

Table 10.5 tabulates the joint frequencies of marker interval (M–N) and QTL
genotypes in the F2 under the assumption of recombination independence but al-
lowing for double recombination. As before, let ωj|i be the conditional probability
of a QTL genotype j (j = 2, 1, 0), conditional upon the marker interval genotype of
progeny i. Similar to likelihood (11.15) for no double recombination, the likelihood
incorporated by conditional probabilities derived from Table 10.5 can be constructed.
By maximizing the likelihood, the EM algorithm can be implemented to provide the
MLEs of parameters.

In the E step, the posterior probability of QTL genotype j for progeny i given its
marker interval genotype and phenotypic observation can be calculated with equation
(11.19). In the M step, the QTL genotypic values and residual variance are estimated
from the posterior probabilities using equations (11.20) and (11.21), while the marker-
QTL recombination fractions are estimated by
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Fig. 11.3. Profile of the LR–value across chromosome 1 for the test of QTL that controls
body weight at age 10 weeks in the mouse F2 population of Example 11.4 (Cheverud et al.
1996).

r̂1 =
1
n

[
n22+n21+n20∑

i=1

(P1|i + 2P0|i)

+
n12+n11+n10∑

i=1

(P2|i + 2φ1P1|i + P0|i) +
n02+n01+n00∑

i=1

(2P2|i + P1|i)

]
,

r̂2 =
1
n

[
n22+n12+n02∑

i=1

(P1|i + 2P0|i)

+
n21+n11+n01∑

i=1

(P2|i + 2φ2P1|i + P0|i) +
n20+n10+n00∑

i=1

(2P2|i + P1|i)

]
,

where

φ1 =
r2
1

(1 − r1)2 + r2
1

,

φ2 =
r2
2

(1 − r2)2 + r2
2

.
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The E and M steps are iterated until convergence. The estimates at convergence are
regarded as the MLEs of parameters.

11.4.3 Interference

It is possible that recombinations are interfered within different intervals so that
the coefficient of interference should be incorporated into the mapping model. As
in the backcross, define g11, g10, g01, and g00 as the probabilities of recombination
occurrences in two intervals constructed by order M–QTL–N. Based on the three-
point analysis in Table 4.2, we derive joint marker-QTL-marker genotype frequencies
in terms of g11, g10, g01, and g00, which are given in Table (11.9). Instead of using
Table 11.7, we now use the conditional probabilities, generally expressed as ωj|i,
derived from Table (11.9) to construct the likelihood similar to equation (11.7).

Table 11.9. Joint three-point genotype frequencies in the F2.

Marker Interval QTL Genotype

Genotype Sample Size QQ(2) Qq (1) qq (0)

MMNN (22) n22 g2
00 2g00g11 g2

11

MMNn (21) n21 2g00g01 2(g00g10 + g01g11) 2g11g10

MMnn (20) n20 g2
01 2g01g10 g2

10

MmNN (12) n12 2g00g10 2(g00g11 + g01g10) 2g01g11

MmNn (11) n11 2(g00g01 + g10g11) 2(g2
00 + g2

01 + g2
10 + g2

11) 2(g00g01 + g10g11)

Mmnn (10) n10 2g01g11 2(g00g11 + g01g10) 2g00g10

mmNN (02) n02 g2
10 2g10g01 g2

01

mmNn (01) n01 2g11g10 2(g00g10 + g01g11) 2g00g01

mmnn (00) n00 g2
11 2g00g11 g2

00

By defining and calculating the posterior probabilities based on equation (11.19),
we derived the closed-form MLEs for th probabilities of occurrence of crossovers. They
are given as

ĝ00 =
1
2n

[
n22∑

i=1

(2P2|i + P1|i) +
n21∑

i=1

(P2|i + φ1P1|i) +
n12∑

i=1

(P2|i + φ2P1|i)

+
n11∑

i=1

(φ3P2|i + 2φ4P1|i + φ3P0|i)

+
n10∑

i=1

(φ2P1|i + P0|i) +
n01∑

i=1

(φ1P1|i + P0|i) +
n00∑

i=1

(P1|i + 2P0|i)

]
,

(11.22)
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ĝ01 =
1
2n

{
n21∑

i=1

[P2|i + (1 − φ1)P1|i] +
n20∑

i=1

(2P2|i + P1|i) +
n12∑

i=1

[(1 − φ2)P1|i + P0|i]

+
n11∑

i=1

(φ3P2|i + 2φ′
4P1|i + φ3P0|i)

+
n10∑

i=1

[P2|i + (1 − φ2)P1|i] +
n02∑

i=1

(P1|i + 2P0|i) +
n01∑

i=1

[(1 − φ1)P1|i + P0|i]

}
,

(11.23)

ĝ10 =
1
2n

{
n21∑

i=1

(φ1P1|i + P0|i) +
n20∑

i=1

(P1|i + 2P0|i) +
n12∑

i=1

[P2|i + (1 − φ2)P1|i]

+
n11∑

i=1

[(1 − φ3)P2|i + 2φ′′
4P1|i + (1 − φ3)P0|i]

+
n10∑

i=1

[(1 − φ2)P1|i + P0|i] +
n02∑

i=1

(2P2|i + P1|i) +
n01∑

i=1

(P2|i + φ1P1|i)

}
,

(11.24)

ĝ11 =
1
2n

[
n22∑

i=1

(P1|i + 2P0|i) +
n21∑

i=1

(φ1P1|i + P0|i) +
n12∑

i=1

(φ1P1|i + P0|i)

+
n11∑

i=1

[(1 − φ3)P2|i + 2(1 − φ4 − φ′
4 − φ′′

4)P1|i + (1 − φ3)P0|i]

+
n10∑

i=1

(P2|i + φ2P1|i) +
n01∑

i=1

[P0|i + (1 − φ1)P1|i] +
n00∑

i=1

(2P2|i + P1|i)

]
,

(11.25)

where

φ1 =
g00g10

g00g10 + g01g11
,

φ2 =
g00g11

g00g11 + g01g10
,

φ3 =
g00g01

g00g01 + g10g11
,

φ4 =
g2
00

g2
00 + g2

01 + g2
10 + g2

11

,

φ′
4 =

g2
01

g2
00 + g2

01 + g2
10 + g2

11

,

φ′′
4 =

g2
10

g2
00 + g2

01 + g2
10 + g2

11

.

The MLEs of g’s can be used to estimate r1 and r2 by equations (11.13), and
the degree of interference is then estimated by equation (11.14). The significance of
=interference can be tested by calculating the likelihood ratio under the null (I = 0)
and alternative (I �= 0) hypotheses.
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11.4.4 Testing Hypotheses

The existence of a segregating QTL linked with known markers can be tested by a
likelihood ratio test. In a mapping population, the hypotheses for testing the putative
QTL in the F2 can be formulated as

H0 : µ2 = µ1 = µ0 ≡ µ,
H1 : At least one of the equalities does not hold.

(11.26)

This null hypothesis is equivalent to a = d = 0 for the F2. As in the backcross,
the LR value for hypothesis (11.26) can be calculated and compared with the critical
threshold determined from permutation tests. But the procedure for the significance
tests in the F2 should be to find:

(1) the existence of a significant QTL,
(2) the additive effect (a), and
(3) the dominance effect (d) of the QTL.

The null hypotheses for these three tests are formulated by posing the constraints

(1) H0 : µ2 = µ1 = µ0,
(2) H0 : 1

2 (µ2 − µ0) = 0, and
(3) H0 : µ1 = 1

2 (µ2 + µ0),

respectively. Corresponding to each of these tests, the test statistic is calculated as
above with equations (11.8) and (11.9).

Example 11.5. Revisit Example 11.4, in which a significant QTL was detected for 10-
week body weight on chromosome 1 (Fig. 11.3) in the F2 mouse population. The F2

allows the tests of both the additive (a) and dominance effects (d) exerted by the
QTL. The MLEs of a and d are 1.59 and 1.71, respectively. The parameters under
the null hypothesis of a = 0 or d = 0 are estimated by maximizing the likelihoods,
leading to L(d̃, σ̃2) and L(ã, σ̃2), respectively.

The log-likelihood ratios between the null and alternative hypotheses for the sig-
nificance tests of a and d are calculated as 12.59 and 10.55, respectively. Because no
parameter is nonidentifiable in the null hypothesis for separate tests of a and d, the
likelihood ratios of each of these two tests can be thought to asymptotically follow a
χ2 distribution with one degree of freedom. Thus, for a large sample size, the critical
threshold can be obtained from the χ2 distribution table. However, if the sample size
used is not adequately large, the threshold can be empirically determined by simula-
tion studies with the data simulated under the null hypothesis. In this example with
a good sample size, we obtained the threshold from the table, suggesting that both
the additive and dominant effects of the detected QTL are significant.

11.5 Factors That Affect QTL Detection

The statistical power to detect segregating QTLs depends on many factors. They
include the size of samples measured for molecular markers and quantitative traits,
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the magnitude of the type I error allowed, the contribution of the segregating QTL
to observed phenotypic variances, the recombination distances between the QTL and
the genetic markers, the specific experimental design employed, and the method of
statistical analysis. The influences of these factors on the power of QTL detection
and parameter estimates can be investigated analytically or through computer simu-
lation. The results from simulation studies are broadly consistent with those obtained
analytically for large samples. In most cases of QTL mapping, approaches based on
Monte Carlo simulation are widely used because analytical approaches are often dif-
ficult to derive.

Numerous misconceptions with respect to the power of QTL detection and
experiment design optimization are prevalent. In most cases, the power to detect a
segregating QTL of a magnitude likely to be segregating in the population will require
genotyping at least 500 individuals and often many more. Most experiments have been
too small to find effects of the magnitude that could be reasonably expected. Unless
the phenotyping costs are very high relative to genotyping costs, experimental designs
with very wide marker spacing are optimum, and decreasing marker intervals below 20
cM will have virtually no effect for most experimental designs. Power per individual
genotype can be dramatically increased by replicate progeny, selective genotyping,
sample pooling, and sequential sampling, and the effect of these techniques is cumu-
lative. Except for replicate progeny, these other techniques are trait-specific and are
therefore most appropriate for experiments that consider only a few traits.

11.6 Procedures for QTL Mapping

The problem of mapping QTLs for observed phenotypic traits can be divided into
two stages: (1) initial detection for the existence of segregating QTLs and their enu-
meration in a mapping population, and (2) genomic localization or fine mapping of
the QTLs. The first stage depends on the test and modeling of the number of compo-
nents within the mixture-model context, with no requirement of marker information,
whereas the second stage capitalizes on marker information to locate the positions of
QTLs based on marker-QTL cosegregation.

11.6.1 The Number of QTLs

The existence of segregating QTLs in a mapping population is a prerequisite for QTL
mapping. Many poorly designed molecular studies fail to detect significant QTLs
because of the use of a wrong mapping population in which no such QTLs exist.
Also, prior knowledge about the existence of QTLs helps to confirm results from
molecular mapping. The pattern of QTL segregation can be well predicted for inbred
line crosses based on Mendelian inheritance. In this chapter, maximum likelihood
based on a mixture model was implemented to estimate the genetic effects of QTLs.
This procedure is extended here to detect any number of QTLs in the mapping
population.
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Consider a mapping population of size n in which there are k segregating QTLs
for a phenotypic trait y that form J genotypes. At each QTL, there are two QTL
genotypes, symbolized by 1 and 0 for the backcross, and three QTL genotypes, sym-
bolized by 2, 1 and 0 for the F2, respectively. Thus, J is 2k for the backcross or 3k

for the F2. Considering a backcross, a mixture model that specifies the segregation of
all k putative QTLs can be written as

L(Ω|y) =
n∏

i=1

[(
1
2

)k
f11···1(yi) +

(
1
2

)k
f11···0(yi) + · · · +

(
1
2

)k
f00···0(yi)

]
,(11.27)

where Ω = (µ11···1, µ11···0, · · · , µ00···0, σ
2) and (1

2 )k is the prior probability of a QTL
genotype in the mapping population. The MLEs of Ω can be estimated by

µ̂11···1 =
∑n

i=1 P11···1|iyi∑n
i=1 P11···1|i

,

µ̂11···0 =
∑n

i=1 P11···0|iyi∑n
i=1 P11···0|i

,

· · ·(11.28)

µ̂00···0 =
∑n

i=1 P00···0|iyi∑n
i=1 P00···0|i

,

σ̂2 =
1
n

[(yi − µ11···1)2 + · · · + (yi − µ00···0)2],

where

P11···1|i =

(
1
2

)k
f11···1(yi)

(
1
2

)k
f11···1(yi) +

(
1
2

)k
f11···0(yi) + · · · +

(
1
2

)k
f00···0(yi)

,

P11···0|i =

(
1
2

)k
f11···0(yi)

(
1
2

)k
f11···1(yi) +

(
1
2

)k
f11···0(yi) + · · · +

(
1
2

)k
f00···0(yi)

,(11.29)

...

P00···0|i =

(
1
2

)k
f00···0(yi)

(
1
2

)k
f11···1(yi) +

(
1
2

)k
f11···0(yi) + · · · +

(
1
2

)k
f00···0(yi)

,

are the posterior probabilities of a particular QTL genotype for an individual i given
its phenotypic value. The ML estimates are computed as follows:

(1) Provide initial values Ω(0) = (µ(0)
11···1, µ

(0)
11···0, · · · , µ

(0)
00···0, σ

2(0)) for unknown para-
meters.

(2) Calculate the posterior probabilities P
(0)
11···1|i, P

(0)
11···0|i, · · · . P

(0)
00···0|i using equation

(11.29).
(3) Obtain a new estimate of the unknown parameters Ω(1) = (µ(1)

11···1, µ
(1)
11···0, · · · ,

µ
(1)
00···0, σ2(1)) using equation (11.28).
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(4) Repeat steps (2) and (3) until the estimate of Ω converges at a stable value.

The stable values are regarded as the MLEs of the unknown parameters. These MLEs
can be substituted to calculate the plug-in values of the likelihood function (11.27).

The analyses of the mixture model (11.27) above are performed to estimate the
number of QTLs involved in the trait. In statistics, the estimation of the QTL number
is equivalent to the determination of the number of mixing components that can best
explain the phenotypic data. Let k1 and k2 be two alternative QTL numbers, which
generate the number of QTL genotypes 2k1 and 2k2 for the backcross, respectively.
Lo et al. (2001) proposed a statistical model for the characterization of the number
of mixture components based on the likelihood ratio statistic calculated from the
Kullback-Leibler information criterion. Under a theorem proposed by Vuong (1989),
the likelihood ratio between the null hypothesis that the mapping population con-
tains k1 QTLs and the alternative hypothesis that the mapping population contains
k2 QTLs is asymptotically distributed as a weighted sum of independent χ2 random
variables with one degree of freedom under general regularity conditions. By calculat-
ing the likelihood ratio under two alternative hypotheses, Lo et al.’s model can be used
to determine the number of QTL that are segregating in the mapping population.

Alternatively, the estimation of the number of segregating QTLs for a quantitative
trait in a population can be based on model selection criteria, AIC (Akaike 1997)
or BIC (Schwarz 1978). The AIC or BIC, depending the likelihood, the number of
parameters being estimated and the sample size used, is calculated. The model that
gives the smallest AIC or BIC values is considered to best explain the mapping data
analyzed.

A similar procedure can be formulated for the F2, for which the likelihood function
assuming k QTLs is expressed as

L(y) =
n∏

i=1

[(
1
3

)k
f22···2(yi) +

(
1
3

)k
f22···0(yi) + · · · +

(
1
3

)k
f00···0(yi)

]
,

where the prior probability of a QTL genotype is 3k. The calculation of the likelihood
ratio in two different cases each for a different number of QTLs, k1 and k2, is used to
determine the optimal number of actual QTLs involved in the F2 mapping population.

Example 11.6. Revisit Example 3.1. Two inbred lines, semi-dwarf IR64 and tall Azu-
cena, were crossed to generate a heterozygous F1. The haploid chromosomes for pol-
lens (gametes) of the F1 were doubled to produce 123 doubled haploid (DH) plants.
These DH plants, equivalent to a backcross progeny, were genotyped for 135 RFLP
and 40 isozyme and RAPD markers, from which a linkage map covering the entire
genome of 12 chromosomes was constructed (Yan et al. 1998; Fig. 3.3). Each of the
DH lines was measured for plant height at 10 weeks after the plants were grown in
the field.

The number of QTL for plant height at age 10 weeks contained in the HD pop-
ulation is estimated. Assuming that there are k = 0, 1, 2, . . . , 8 QTLs for the trait,
the log-likelihood ratios (LR) are calculated under two alternative hypotheses of QTL
numbers k and k − 1. Based on the AIC and BIC information criteria, we suggest
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that there possibly exists one major QTL that controls 10-week plant heights in rice
(Table 11.10). Further genetic mapping with a linkage map constructed by molecular
markers (Fig. 3.3) can be used to locate the location of this QTL.

Table 11.10. AIC and BIC information criteria under different numbers of QTLs in a rice
DH population.

QTL Likelihood

Number Value LR AIC BIC

0 -483.0999 968.19989 970.86333

2.8541

1 -480.2458 964.49168 969.81856

0.2296

2 -480.0163 968.0325 978.68626

4.3810

3 -475.6352 967.27044 988.57796

4.8085

4 -470.8267 973.65336 1016.2684

3.6248

5 -467.2019 998.4038 1083.6338

34.2540

6 -432.9479 993.8958 1164.3559

0.7343

7 -432.2136 1120.4272 1461.3475

9.0629

8 -423.1507 1358.3014 2040.1418

11.6.2 Locations of Individual QTLs

With the knowledge about the number of segregating QTLs in a mapping population,
the linkage map constructed from molecular markers is used to localize the positions
of these QTLs. In general, a scanning approach based on a grid of evenly–spaced
genomic positions from one marker to the next is used to search for the existence of
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all possible QTL throughout the genome. Interval mapping assuming one QTL at a
time makes use of the mixture-based likelihood function

L(Ω|y) =
n∏

i=1

[
ω1|if1(yi) + ω0|if0(yi)

]
(11.30)

for the backcross and

L(Ω|y) =
n∏

i=1

[
ω2|if2(yi) + ω1|if1(yi) + ω0|if0(yi)

]
(11.31)

for the F2, where ωj|i’s are the conditional probabilities of QTL genotypes given
a marker genotype for individual i. Thus, by estimating a maximal log-likelihood
ratio across the genome, we can determine the position of a QTL. The number of
QTLs detected from the genetic linkage map is smaller than that detected by a pure
phenotypic analysis (with no marker) if the linkage map does not well cover the entire
genome.

Theoretically, multi-QTL models can be more efficient in detecting QTL effects
than a one-QTL model because possible QTL–QTL interactions are considered for
the former. But this may not always be true in practice. Simultaneous analysis and
modeling of multiple QTLs will be likely to lead to a computational burden.

11.7 Exercises

11.1 Compare the advantages and disadvantages of the regression analysis and maximum
likelihood approaches in QTL mapping.

11.2 Use Bayes’ theorem to derive Table 10.3.
11.3 (a) Verify that equation (11.3) is the full likelihood.

(b) Verify that equation (11.5) is the likelihood under H0 and is independent of θ.
11.4 For the likelihood equations of Section 11.4.1, show that

E(ωj|i|y,Ω) = Pj|i,

E(ω2
j|i|y,Ω) = Pj|i,

E(ωj1|iωj2|i|y,Ω) = 0,

where the expectation is over the distribution of ωj|i conditional on the data y and
the other parameters. This is the E step of an EM algorithm in which the expected
conditional QTL genotypes are determined with the equation (11.19), with the M
step being equations (11.20) and (11.21), and the unknown parameters are estimated
using the posterior value calculated from the E step. This iterative process is repeated
between the E and M steps until convergence of estimates.

11.5 Interval mapping
When the interval mapping model was constructed, three different cases for the forma-
tion of gametes during meiosis were considered: (1) there is no double recombination,
r = r1 + r2; (2) recombinations are independent, r = r1 + r2 − 2r1r2; and (3) there is
interference between different intervals, r = r1 + r2 − 2(1 − I)r1r2 (see Section 11.3.2
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for the definitions of r1, r2, r, and I). Case 3 is the most general and can be reduced
to case 1 when I = 1 and case 2 when I = 0. Interference, I, has limits (Ott 1991)

1 − min
(

1

r1
,

1

r2

)
≤ I ≤ 1 − max

[
0,

r1 + r2 − 1/2

2r1r2

]
.

(a) Perform simulation studies to compare these cases by assuming different I values
with regard to power and the precision of parameter estimation.

(b) Provide guidance for QTL mapping practitioners to select an appropriate analytical
model for their data.

11.6 Epistatic mapping
Epistasis is defined as the dependence of the expression of one gene upon the expression
of other genes. Show how the likelihood functions (11.1) and (11.15) can be extended
to map two epistatic QTL for a mapping population.
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Threshold and Precision Analysis

12.1 Introduction

In the preceding chapter, we described the basic principle for interval mapping of
QTLs within the maximum likelihood context, but two fundamental questions should
be addressed toward the QTL analysis of complex traits. First, what is the critical
threshold of the test statistic that can be used to declare the statistical significance
of a QTL? Second, after the significant QTL is determined, how are the estimates
of likelihoods and QTL parameters adequately precise to make a scientific inference
about QTL position and effect? Statistically, these two questions present different
aspects of QTL mapping, but we will describe them here in a single chapter as two
important follow-ups of QTL mapping.

All the statistical methods for QTL mapping rely upon the determination of ap-
propriate significance thresholds (or critical values) with which the test statistics
estimated from a particular data set are compared to declare whether a significant
QTL exists. It is often difficult to determine critical thresholds because this relies
heavily upon the assumption about the distribution of test statistics (LOD scores or
likelihood ratios) under the null hypothesis that this is no QTL. The distributional
properties of test statistics are affected by many factors, such as sample sizes, the
distribution of the quantitative trait studies, etc. Because of the importance of this
issue, there is a wealth of statistical literature on the determination of critical thresh-
olds (Lander and Botstein 1989; Rebai et al 1994; Doerge and Rebai 1996; Piepho
2001; Churchill and Doerge 1994; Dupuis and Siegmund 1999; Zou et al. 2004). In the
first part of this chapter, we will introduce several approaches for the determination
of critical thresholds and discuss their advantages and disadvantages.

For a significant QTL detected in terms of the test statistics beyond the pre-
determined critical threshold, it is important to assess the accuracy and precision
of the estimation of its genetic effects. The assessment of the precision of a statis-
tical method for QTL mapping can be made through simulation studies. For a set
of parameters, each with a given value, artificial data are simulated on the basis of
the structure of the model, with multiple replicates in each of which the parameters
are estimated. The means and mean square errors are then calculated using the esti-
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mates from all the simulation replicates. However, for a real data set, the precision of
parameter estimation can be examined by calculating the estimation of asymptotic
variance-covariances of the estimates of the parameters. Theories have been developed
for estimating asymptotic variance-covariances of the parameter estimates within a
mixture-model context (Louis 1982; Meng and Rubin 1991). Kao and Zeng (1997)
and Chen (2005) extended these theories to evaluate the precision of the estimation
of QTL parameters. In the second part of this chapter, we will describe key technical
issues for estimating the asymptotic variance-covariances of QTL effect and position
parameters. Interested readers are referred to the original papers cited above.

12.2 Threshold Determination

12.2.1 Background

In a scientific experiment, it is always crucial to know the probability of arriving at
the wrong conclusions. For a QTL mapping study, these conclusions are: (1) there
is a segregating QTL when in fact it is not present, and (2) a QTL is not detected
that actually exists. The first type of error results in a false positive (type I), whereas
the second in a false negative (type II). The probability of false positives (i.e., the
significance level) can be controlled by choosing the appropriate significance threshold.
The rate of false negatives is determined by the setting of an experiment and the
magnitudes of the QTL effects (Jansen 1994; van Ooijen 1999).

Despite its importance for the declaration of significant QTLs, the characteriza-
tion of critical thresholds has been considered one of the most difficult issues in QTL
mapping. There are two issues that make threshold determination thorny (Lander
and Schork 1994; Churchill and Doerge 1994). First, the distribution of test statis-
tics (LOD or LR) under the null hypothesis cannot be well determined because the
regularity conditions for an asymptotic χ2 distribution for the LR test statistic are
violated. This arises from the fact that, under the null hypothesis of no QTL, the
QTL position is not identifiable and becomes a nuisance parameter. Also, the relia-
bility of asymptotic approximations can be affected by other factors, such as finite
sample size and distribution of the trait studied. Second, when the test is performed
in the entire genome, as is usually done, a multiple-test problem will arise because
the tests across the length of a linkage group are not mutually independent owing to
the nature of linkage. It is difficult to characterize the dependence structure of such
series of tests. To control the genome-wide type I error rate, critical threshold values
of the test statistic therefore need to be adjusted.

Currently, three different approaches are available to calculate the threshold value
throughout a genome; i.e., (1) analytical methods, (2) simulation studies, and (3)
permutation tests. Piepho (2001) proposed a quick approximate approach for calcu-
lating the threshold for assessing genome-wide significance. More recently, Zou et al.
(2004)) derived a score statistic aimed at increasing the computational efficiency of
threshold determination. In this section, we will introduce each of these approaches.
Some methodological comparisons will be made.
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12.2.2 Analytical Approximations

The analytical approach depends on the distribution of the underlying test statistics.
Typically, the profile of LR test statistics is constructed over the grid of possible QTL
locations in a linkage group or an entire genome and the maximum of the LR (MLR)
is used as a global test statistic. At a given position of the QTL, the LR test statistic is
asymptotically χ2-distributed under the null hypothesis with degrees of freedom equal
to the number of associated QTL effects. However, under the null hypothesis H0: no
QTL, as mentioned above, the QTL position is unidentified and therefore the LR test
statistic does not follow the standard χ2–distribution asymptotically. Based on the
results of Davies (1977, 1987), several authors have derived approximate formulas to
determine critical thresholds for a particular design, where closed form thresholds are
not available (Rebai et al. 1994; Doerge and Rebai 1996; Piepho 2001).

When a QTL is tested at a particular position, the significance level is the prob-
ability that we will reject the null hypothesis assuming that the null hypothesis is
true. Letting LR(x) be the likelihood ratio test statistic at position x, the nominal
significance level for this test would be

α = Prob(LR(x) > TP
α |no QTL at position x),(12.1)

where TP
α is the critical threshold for the α-level significance test of a QTL at a point.

The probability specified by equation (12.1) is called the comparison-wise error rate.
The comparison-wise error rate can be controlled by determining the distribution of
the test statistic at a specific point in the genome. This point-specific test is possible in
the practical case in which we are only interested in testing if a specific QTL detected
in one population also exists in a different population. When the test is performed
at a single point in the genome, the test statistic typically follows an asymptotic χ2

distribution with one degree of freedom.
In QTL mapping, we need to do many tests for each marker interval across the

genome. If there are no QTLs in a tested interval, we need to control the probability
of falsely identifying any QTL in that interval. The probability of finding at least one
QTL in an interval when in fact none exists is called the experiment-wide error rate.
For a backcross design, the MLR for an entire marker interval is suggested to have a
distribution between χ2

1 and χ2
2,

χ2
1,α < T I

α < χ2
2,α,(12.2)

where T I
α is the critical threshold for the α-level significance test of a QTL in the

interval. The χ2–distribution with two degrees of freedom results from the fact that
two parameters in the backcross, the QTL position and QTL (additive) effect, are
mixed under the null hypothesis. Intuitively, the distribution of the MLR is closer to
χ2

1 for a smaller interval than for a larger one.
In an experimental genomic study, we are more interested in the existence of a

QTL in the entire genome. Thus, it is important to determine the distribution and
appropriate threshold for the MLR where the maximum is over the entire genome.
Under the null hypothesis (i.e., there is no QTL in the entire genome of total length
L), the chance (α) of the MLR exceeding Tα somewhere in the genome is
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α = Prob(MLR0≤x≤L > Tα|no QTL in the genome).

A number of approximated analytical methods have been proposed to compute
the threshold Tα for any significance level α (Lander and Botstein 1989; Dupuis
and Siegmund 1999; Rebai et al. 1994). These methods are basically suitable for
the extremes of very dense and very sparse genetic maps. We will discuss how to
characterize Tα separately for these two extreme cases, mostly based on Lander and
Botstein’s (1989) argument. Further approximations for dense (< 1 cM) and sparse
maps are given by Dupuis and Siegmund (1999).

Genome-wide Threshold for a Sparse Map

In QTL mapping, an experiment-wide significance level is usually desirable unless one
wants to examine if the previously determined QTL exists in a new experiment. For
this reason, the genome-wide significance–the probability of obtaining a test statistic
above the threshold somewhere on the whole genome by chance–should be used.
A genome-wide threshold will depend not only on the number and length of the
chromosomes but also on the numbers of markers (i.e., density) on the chromosomes.
When just a few markers are tested per chromosome (i.e., the so-called sparse map
case), a lower threshold is needed at the same genome-wide significance level than
when many markers are tested per chromosome (i.e., the so-called dense map case)
(Lander and Botstein 1989; van Ooijen 1999).

For a sparse map in which markers are widely separated over the genome, we can
safely assume that the probabilities of no QTLs within different marker intervals are
approximately independent. Let α and p be the genome- and interval-wide signifi-
cance levels for declaring a significant QTL, respectively. If m marker intervals are
considered, we have

1 − α = Prob(no QTL in the genome)

=
m∏

i=1

Prob(no QTL in interval i)

=
m∏

i=1

(1 − p)

= (1 − p)m

≈ 1 − mp,

or

p ≈ α

m
.(12.3)

The interval-wide significance level required to declare the genome-wide existence
of a QTL over the genome of m intervals with equation (12.3) is conservative. This
can be proven using the simple Bonferroni inequality, which states
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Prob(MLR0≤x≤L > Tα) ≤
m∏

i=1

Prob(MLR0≤x≤l > T I
α)(12.4)

assuming each marker interval has length l. This is equivalent to α ≤
∏m

i=1 p = mp,
or

p ≥ α

m
.

Based on equation (12.3), the approximate threshold for the significance test of a
QTL in the entire genome for a backcross is given by

χ2
1, α

m
< Tα < χ2

2, α
m

.(12.5)

Example 12.1. Huang et al. (1997) founded a doubled haploid (DH) population of 123
lines with two inbred lines, semi-dwarf IR64 and tall Azucena. This DH population
was formed by doubling haploid chromosomes of the gametes derived from the het-
erozygous F1 and thus it is equivalent to a backcross population because its marker
segregation follows a 1:1 ratio. A linkage map (Fig. 3.3) was constructed with a total
of 175 polymorphic markers (including 146 RFLPs, 8 isozymes, 14 RAPDs, and 12
cloned genes), representing a good coverage of 12 rice chromosomes. The constructed
map is 2005 cM long with 163 marker intervals, having an average distance of 11.5
cM, with 6 gaps larger than 35 cM.

Three grain traits (grain length, grain width, and the ratio of length to width)
were measured for each DH line. Interval mapping was used to detect the QTLs that
determine these traits. Huang et al. (1997) reported 12 such QTLs located on five
different chromosomes. Table ?? tabulates the QTLs for grain traits, their locations,
LR values, interval-wide significance levels (p) based on χ2

1,p and χ2
2,p (see equation

(12.2)), and adjusted genome-wide significance levels (α).

Genome-wide Threshold for a Dense Map

Suppose there is an infinitely dense map in which markers are located everywhere
over the genome. For such a dense map, occurrences of spuriously high test statistics
at nearby intervals are no longer independent. For an infinitely dense map (i.e., the
number of intervals (m) → 0), the required nominal significance level for each interval
test tends to be a nonzero limit independent of m. If the sample size used is large,
Lander and Botstein (1989) argued that the change of the LOD score obeys the square
of an Orenstein-Uhlenbeck (OU) diffusion process in the infinitely dense map.

According to the central limit theorem, the log-likelihood ratio (LR) test statistic
at each position (x) is shown to be asymptotically proportional to the square of a
random normal variable z2(x),

LR(x) ∼ z2(x),

where z(x) ∼ N(0, 1). For two positions, x1 and x2, LR(x1) and LR(x2) are correlated,
with

Corr[z(x1), z(x2)] ∼ 1 − 2r = e−2d,
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Table 12.1. Chromosomal location and LR values of QTLs for grain traits measured in the
DH population. Adapted from Huang et al. (1997).

Chromo- p-value α value

Trait Peak Interval some MLR χ2
1,p χ2

2,p χ2
1,α χ2

2,α

Length RZ730–RZ801 1 28.6 8.90e−8 6.16e−7 1.45e−5 1.00e−4

RZ519–RZ448 3 19.2 1.18e−5 6.77e−5 1.92e−3 1.10e−2

RZ337A–CDO337 3 28.6 8.90e−8 6.16e−7 1.45e−5 1.00e−4

G2155–RG134 10 26.2 3.08e−7 2.04e−6 5.02e−5 3.33e−4

Width RG810–RG331 1 18.2 1.99e−5 1.12e−4 3.24e−3 1.82e−2

RZ318–RZ58 2 14.0 1.83e−4 9.12e−4 2.98e−2 1.49e−1

CDO87–Pgi-1 3 14.4 1.48e−4 7.46e−4 2.41e−2 1.22e−1

RG134–RZ500 10 14.1 1.73e−4 8.67e−4 2.82e−2 1.41e−1

RZ536–G186 11 15.7 7.42e−5 3.90e−4 1.21e−2 6.35e−2

Length/width RG157-RZ318 2 19.6 9.55e−6 5.54e−5 1.56e−3 9.04e−3

RZ519–Pgi-1 3 18.5 1.70e−5 9.61e−5 2.77e−3 1.57e−2

RG179–CDO337 3 23.2 1.4600e−6 9.1661e−6 2.38e−4 1.49e−3

where r and d are the recombination fraction and genetic distance (measured in Mor-
gans) between the two genomic positions, respectively, and the relationship between
r and d is specified by the Haldane map function. It can be seen that z(x) is a sta-
tionary normal process with covariance function e−2d, which can be described by the
OU diffusion process.

Lander and Botstein (1989) further derived appropriate genome-wide critical val-
ues for the backcross based on the asymptotic theory by the OU process. Considering
a genome with C chromosomes and a total genetic length L (measured in Morgans),
the probability that the LOD score exceeds a high level T in the case where there is
no QTL is approximated by

(C + 2Lt)χ2(t),(12.6)

where T = (2 ln 10)−1t and χ2(t) denotes the inverse cumulative distribution function
of the χ2 distribution with one degree of freedom.

To control the probability of a false positive at the genome-wide significance level
(α), we approximate the appropriate LOD threshold by

Tα = (2 ln 10)−1tα,(12.7)

where tα solves the equation α = (C + 2Ltα)χ2(tα).
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Lander and Botstein (1989) suggested that a typical LOD score threshold should
be between 2 and 3 to ensure a 5 percent overall false positive error for detecting
a QTL. Lander and Botstein’s OU diffusion-process–based theory was used for the
F2 (Dupuis and Siegmund 1999), in which the LOD score follows a χ2 process with
two degrees of freedom, because of the fitting of both the additive and dominance
components and more general mating designs (Zou et al. 2004).

12.2.3 Simulation Studies

For many practical data sets, we cannot know the distribution of the test statistics.
The best approach in this case is to directly estimate the false-positive rate by sim-
ulation. Based on a particular genetic setting, one can randomly simulate both the
marker data according to the laws of Mendelian inheritance and phenotypic data fol-
lowing a normal distribution under the null hypothesis of no QTL. The simulated
data are analyzed by a given statistical method, and the value of the test statistic
is calculated for each simulation replicate. The distribution of the LR values over a
number of simulation replicates (say 1000) can be approximated by a χ2 distribution.
The 95th and 99th percentiles of the distribution of the maximum are used as em-
pirical critical values to declare the existence of a QTL for a quantitative trait at the
significance levels α = 0.05 and 0.01.

12.2.4 Permutation Tests

Churchill and Doerge (1994 proposed a data-based numerical method, based on the
concept of a permutation test, to estimate empirical critical values for mapping QTL
for a given data set. By randomly reshuffling the relationships between the phenotypic
and marker data across individuals, permutation tests generate a new data set in
which the original marker–QTL association was destroyed. The great advantages of
this approach are its conceptual simplicity, its distribution-free nature, and its general
applicability in different population structures, although its computational workload
is heavy. The method proceeds as follows:

1. Randomly pair individual marker genotypes with an individual trait phenotype
to generate a permuted sample of the data (this simulates the null hypothesis of
no association between the QTL and phenotype).

2. Perform an interval mapping analysis on the permuted sample.
3. Repeat steps 1 and 2 a number of times to obtain an empirical distribution of the

test statistic at the null hypothesis for determining an appropriate critical value
for the test statistic in the original data analysis.

More specifically, let X = {X1,X2, ...,Xn} denote a random sample of size n from a
population. In QTL mapping, each observation point Xi is composed of a trait value
yi and marker genotype Mi = {Mi1,Mi2, ...,Mim} for m markers; i.e.,

Xi = {yi,Mi}.
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A permuted sample of size n, denoted X′ = {X ′
1,X

′
2, ...,X

′
n}, is a sample from the

original sample without replacement, such that there are random matches between yi

and Mi. That is,
X ′

k = {yik
,Mik

},
where the yik

is chosen without replacement from (y1, . . . , yn) and, independently, Mik

is chosen without replacement from (M1, . . . ,Mn). Thus, in permuted samples, X′,
y′, and M′ do not have any intrinsic relationship, thus simulating the null hypothesis
of no QTL.

For N permuted samples, let LR′
p be the maximum likelihood test statistic for

a particular genomic position or maximum value of the test statistic for a marker
interval or for the entire genome in the pth permuted sample. The α × 100 percent
threshold of the test statistic under the null hypothesis can be estimated empirically
as

T̂α = α × 100 percent of {LR′
1,LR′

2, ...,LR′
N}.

How large should N be for practical data analysis? Churchill and Doerge (1994)
suggest that for α = 0.05, N should be at least 1000, and for α = 0.01, N should be
at least 5000.

12.2.5 A Quick Approach

To overcome the drawback of empirical approaches caused by their computational
load, Piepho (2001) proposed a quick method to compute approximate threshold
values that control the genome-wide type I error rate of tests for QTL detection based
on Davies’s (1977) results. Given a mixture of normal distributions with constant
variance and location parameters depending on QTL effects, LR test statistics at
different QTL positions (θ) are calculated. Assuming that LR values are a continuous
function of θ, expressed as L(θ), and conditional on the QTL position, L(θ) follows
a χ2–distribution with k degrees of freedom, where k is the number of genetic effects
for a putative QTL. The upper bound of the chromosome-wide type I error rate (α)
is estimated (Piepho 2001) by

α = Pr(χ2
k > T ) +

V T
1
2 (k−1)e−

1
2 T 2−( 1

2 )k

Γ ( 1
2k)

,(12.8)

where Pr(χ2
k > T ) is the cumulative distribution function of χ2 with k degrees of

freedom, T is the critical threshold value for the LR test statistic, Γ (·) is the Gamma
function, and

V =
∫ �

0

∣∣∣∣∣
∂
√

L(θ)
∂θ

∣∣∣∣∣ dθ

=
∣∣∣
√

L(0) −
√

L(θ1)
∣∣∣ +

∣∣∣
√

L(θ1) −
√

L(θ2)
∣∣∣ + · · · +

∣∣∣
√

L(θs) −
√

L(θ�)
∣∣∣ ,
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where θ1, · · · , θs are the successive turning points (points of inflection) of
√

L(θ) (i.e.,
the values of θ where the first derivative ∂

√
L(θ)/∂θ changes sign). This change of

sign occurs at the local minima and maxima of
√

L(θ).
For a given α, T may be found from equation (12.8) by numerical methods. The

problem in practice is to find the turning points θ1, · · · , θs. In most cases, this will
have to be done numerically. Usually a grid search is done over all θ, so the turning
points can only be determined to the accuracy given by the step size of the grid. We
therefore suggest using a relatively fine grid (e.g., between 1 and 2 cM). The analysis
is simplified by pretending that every point on the grid is a turning point.

Using the Bonferroni inequality, Piepho (2001) showed that the genome-wide type
I error rate is calculated by

γ = CPr(χ2
k > T ) +

(
∑C

c=1 Vc)T
1
2 (k−1)e−

1
2 T 2−( 1

2 )k

Γ ( 1
2k)

,(12.9)

where C is the number of chromosomes and Vc is the value of V for the cth chromo-
some. Instead of choosing the same αc for each chromosome, it is suggested that a
common critical value T be used for all chromosomes, while αc may be different on
each chromosome.

Example 12.2. (Empirical Determination of Critical Thresholds). Examples
12.4 and 11.5 report the results for QTL mapping in the backcross-like DH population
of rices and the F2 population of mice, respectively. Here, we calculate the critical
thresholds for these two examples using analytical approaches, Piepho’s (2001) quick
approach, simulation studies, and permutation tests as below.

DH of Rices F2 of Mice

Approach α = 0.05 α = 0.01 α = 0.05 α = 0.01

Quick approach 12.96 16.18 16.45 19.86

Simulation studies 9.14 12.64 10.60 14.58

Permutation tests 8.20 12.79 9.71 13.49

It can be seen that the three approaches provide broadly consistent results for
the critical thresholds. A quick approach tends to be more conservative than the two
others, especially when the markers are relatively dense (Piepho 2001).

12.2.6 A Score Statistic

More recently, Zou et al. (2004) have proposed a score statistic to test the significance
of genome-wide QTL mapping for experimental crosses. The proposed method based
on a resampling procedure is computationally much less intensive than the permuta-
tion procedure (on the order of 102 or higher) and is applicable to complex breeding
designs and sophisticated genetic models that cannot be handled by the permutation
and theoretical methods.
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The idea of this approach is derived from the argument that the likelihood ratio
test statistic for testing the existence is equivalent to the score test statistic in large
samples (see Cox and Hinkley 1974). The score statistic can be approximated by a
sum of independent random vectors and, as a result, its distribution for large samples
can be readily derived. In interval mapping, we denote the vectors of QTL effect
parameters by β and these of nuisance parameters (including the overall mean and
residual variance) by η. These two types of parameters are arrayed as Φ = (β, η). The
log-likelihood for Φ at a given position x for individual i can be expressed as

Li(Φ;x) = log

⎡

⎣
J∑

j=1

ωj|i(x)fj(yi;Φ)

⎤

⎦ ,(12.10)

assuming there are J QTL genotypes for a mapping population. Let LR(x) be the LR
value at a position x over the genome or a specific region. Because x can be anywhere
in the genome, the distribution of LR(x) can be regarded as a stochastic process.

The score functions of individual i for β and η are calculated, respectively, by

Sβi(Φ;x) =
∂

∂β
Li(Φ;x),

Sηi(Φ;x) =
∂

∂η
Li(Φ;x).

Under the null hypothesis H0 : β = 0, we estimate the nuisance parameters denoted
as η̃. Let Si(x) be the score function of an individual i for β evaluated at H0 : β = 0
and η = η̃. Based on Taylor series expansions and the law of large numbers, we derive
the expression of Si(x) (Zou et al. 2004) and estimate it by

Ŝi(x) = Sβi(0, η̃;x) −
[

∂2

∂β∂η
Li(0, η̃;x)

] [
∂2

∂η2
Li(0, η̃;x)

]−1

Sηi(0, η̃;x).

The score test statistic for H0 : β = 0 against H1 : β �= 0 at position x takes the form

W (x) = ŜT(x)V̂ −1(x)Ŝ(x),(12.11)

where

Ŝ(x) =
n∑

i=1

Ŝi(x),

V̂ (x) = nΨ̂(x, x),

with Ψ̂(x, x) being a special case of

Ψ̂(x1, x2) = n−1
n∑

i=1

Ŝi(x1)ŜT
i (x2)

as the covariance between n−1/2S(x1) and n−1/2S(x2) at any two given positions
x1 and x2. As shown in Cox and Hinkley (1974), W (x) is asymptotically equivalent
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to LR(x). The genome-wide significance of a QTL can be tested by evaluating the
distribution of maxx W (x) through a resampling method. This is described by Zou
et al. (2004) as follows:

1 Sample an independent standard normal random variable Gi (i = 1, . . . , n) from
N(0, 1).

2 Calculate

S∗(d) =
n∑

i=1

Ŝi(x)Gi,

W ∗(d) = S∗T(d)V̂ −1(d)S∗(d),

M∗ = max
x

W ∗(x).

3 Repeat steps 1 and 2 R times (R is a large number).
4 For a given genome-wide type I error rate α, calculate the 100(1−α)th percentile

of the R values of the M∗. If the observed value of the LR exceeds this threshold,
then reject the null hypothesis.

Example 12.3. Zou et al. (2004) used a published Drosophila data set (Zeng et al.
2000) to demonstrate the usefulness of the score test statistic. A linkage map composed
of 42 markers was constructed for chromosomes X, 2, and 3 in a backcross of 299 flies
between D. simulans and D. mauritiana. Interval mapping was used to search for QTL
that affect a morphometric trait. Figure 12.1 illustrates the profile of LOD scores
calculated at every 1 cM across the three chromosomes. The genome-wide critical
threshold was determined by permutation tests and the score statistic approach, both
giving similar values, 10.08 and 9.96, at the 5 percent significance level based on 10,000
permutations and resamples (Fig. 12.1). But these two approaches differ dramatically
in computing time, with the score statistic using 13 seconds whereas permutation
tests use 6000 seconds.

12.3 Precision of Parameter Estimation

Precise estimates of QTL parameters are crucial for genetic mapping. The estimation
precision of parameters can be assessed by estimating the sampling variances of the
estimates derived from the asymptotic variance-covariance matrix. An alternative is
to simulate multiple data sets via mimicking the data structure of the example and
estimate the means and sampling variance of the simulation replicates.

12.3.1 Asymptotic Variance-Covariance Matrix

After the point estimates of parameters are obtained by the EM algorithm, we need
to derive the asymptotic variance-covariance matrix and evaluate the sampling errors
of the estimates. In this section, we provide a procedure for deriving the asymptotic
variance-covariance matrix for QTL positions and effects. The techniques for so doing
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Fig. 12.1. The profile of the LOD score across chromosomes X, 2, and 3. The horizontal lines
represent the 95 percent resampling (solid) and permutation (dashed) thresholds. Adapted
from Zou et al. (2004).

involve calculation of the incomplete-data information matrix which is the negative
second-order derivative of the incomplete-data log-likelihood. An in-depth discussion
about this procedure was given in Kao and Zeng (1997). As seen from above, the
EM algorithm does not automatically generate the variance-covariance matrix for
the estimates, which thus suggests that some extra steps are necessary to do so.
Louis (1982) and Meng and Rubin (1991) derived a general procedure for estimating
the variance-covariance matrix within the mixture-model context. The basic idea of
this procedure is that incomplete-data (observed) information can be obtained by
extracting the missing-data information from the complete-data information.

Equations (9.2) and (9.3) are the mixture models in which the phenotype (yi)
and marker information (M) are the observed or incomplete data, denoted by Yobs,
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whereas the QTL genotype information contained in the conditional probabilities
(ωj|i) presents the unobserved or missing data, denoted by Ymis. The combination of
incomplete and missing data is the complete data denoted by Ycom.

The joint probability distribution function of the complete-data can be factored
as

f(Ycom|Ω) = f(Yobs, Ymis|Ω)
= f(Yobs|Ω)f(Ymis|Yobs,Ω),(12.12)

where f(Yobs|Ω) is the density of the observed data, which is the mixture likelihood,
and f(Ymis|Yobs,Ω) is the density of missing data given observed data. The log-
likelihood corresponding to f(Ycom|Ω) is

log L(Ω|Ycom) = log L(Ω|Yobs) + log f(Ymis|Yobs,Ω);

that is,

log L(Ω|Yobs) = log L(Ω|Ycom) − log f(Ymis|Yobs,Ω).(12.13)

By taking second derivatives and expectations over f(Ymis|Yobs,Ω) and evaluating at
Ω = Ω̂ for equation (10.18), Louis (1982) found the observed information

Iobs(Ω̂|Yobs) = Icom − Imis,(12.14)

where the missing information is

Imis = E

[
−∂2 log f(Ymis|Yobs,Ω)

∂Ω2
|Yobs,Ω

]

Ω=Ω̂

= E[S(Ycom,Ω)ST(Ycom,Ω)|Yobs,Ω]
Ω=Ω̂

,

and the complete information is

Icom = E

[
−∂2 log f(Ycom|Ω)

∂Ω2
|Yobs,Ω

]

Ω=Ω̂

,

with s being the gradient vector of the log-likelihood.
Based on equation (10.19), the observed information matrix for the independent

but not necessarily identically distributed case can be expressed as

Iobs(Ω̂|Yobs)

=
n∑

i=1

E

[
−∂2 log fi(Ycom|Ω)

∂Ω2
|Yobs,Ω

]

Ω=Ω̂

−
n∑

i=1

E[Si(Y(com,i),Ω)ST
i (Y(com,i),Ω)|Y(obs,i),Ω]

Ω=Ω̂

−
∑

i1 �=i2

E[Si1(Y(com,i1),Ω)|Y(obs,i1),Ω]
Ω=Ω̂

E[ST
i2(Y(com,i2),Ω)|Y(obs,i2),Ω]

Ω=Ω̂
.

Kao and Zeng (1997) provided the expressions of each element in both the complete
and missing information matrices.
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12.3.2 Simulation Studies

From a real data set, interval mapping has been used to estimate the position and
effects of a QTL and the residual variance behind it. The precision of parameter
estimation can be investigated through simulation studies. Here, a basic simulation
scheme used to serve this purpose is described.

Consider a backcross in which a total of m markers were genotyped to construct a
linkage map and a quantitative trait was phenotyped for each of n individuals. Interval
mapping has successfully detected a QTL (Q) located at a position (θ̂) between a
pair of flanking markers Ml and Ml+1 with the recombination fraction of rl (l =
1, . . . , m − 1) on a chromosome. The additive effect of the QTL was estimated as
â and two nuisance parameters estimated as µ̂ for the overall mean and σ̂2 for the
residual variance. Based on these estimates, we need to simulate the same linkage
map composed of m markers and the phenotypic values determined by Q and residual
errors for this backcross of size n. The marker genotype observations of n individuals
at m known markers are sampled from a polynomial distribution,

[(1 − r1)(1 − r2) . . . (1 − rm−1)]N1 [(1 − r1)(1 − r2) . . . rm−1]N2 . . . [r1r2 . . . rm−1]N2m ,

where n = N1 + N2 + . . . + N2m .
The statistical model used to simulate the phenotypic value for individual i takes

the form

yi = µ̂ + xiâ + ei,(12.15)

where xi is the indicator variable, defined as 1 or 0 depending on the QTL genotype,
and ei is the residual error for individual i, following N(0, σ̂2). For any individual i
whose marker genotype is known, the probability of its xi taking 1 or 0 is determined
by the conditional probability of a QTL genotype given the marker genotype at Ml

and Ml+1 (Table 10.3 or Table 10.4).
The simulated data that completely mimicked the real data set are analyzed by

interval mapping in which the same set of parameters (µ, a, σ2, θ) can be estimated.
This procedure is repeated a large number of times (e.g., 1000), which allows the
estimates of the means and the sampling errors of the estimates. Based on the means
and sampling errors, one can determine the accuracy and precision of each parameter
estimation.

Another use of simulation studies is to examine the power of interval mapping to
analyze this given real data set. For each simulation replicate, the critical threshold
for declaring the existence of a QTL can be determined using the approaches above.
This threshold is compared with the LR value calculated from the simulated data to
detect whether the QTL is significant at a given significance level. The proportion of
the number of simulation replicates in which the QTL is detected to be significant
over the total number of simulation replicates can be empirically used as the power
for QTL detection in the given real data set.

Example 12.4. Revisit Example 3.1. Two inbred lines, semi-dwarf IR64 and tall Azu-
cena, were crossed to generate a doubled haploid (DH) population in which a linkage
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map was constructed and plant heights were measured at age 10 weeks. In Exam-
ple 12.4, a significant QTL was detected between markers RG810 and RG331 on
chromosome 1 (Fig. 11.2).

Table 12.2 gives the MLEs of the QTL parameters and the estimates of the sam-
pling errors (SE) of the MLEs by the asymptotic variance-covariance matrix for the
detected QTL at the peak of the LR profile. The estimated values are used to sim-
ulate the data by mimicking the data structure of the real example. Simulated data
are estimated for the parameters given in Table 12.2 and the same procedure is re-
peated 1000 times. The means and sampling errors of all simulation replicates for
each parameter, along with the power to detect this QTL, are given in Table 12.2. It
is found that genetic parameters for this DH population can be estimated with good
precision, and the power to detect significant QTLs with this population is very high.
The asymptotic and simulation approaches provide consistent estimation precision
for the parameters of QTL position and effect and two nuisance parameters (overall
mean, µ, and residual variance, σ2).

Table 12.2. Precision analysis of QTL mapping in a rice DH population by the asymptotic
and simulation approaches.

Asymptotic Simulation

Parameter MLE SE Mean SE Power

µ 109.32 1.7 109.34 1.8

a 30.79 3.4 31.03 3.6 0.99

σ2 295.46 29.5 278.55 45.2

Position 215.98 1.6 216.04 1.0

12.4 Confidence Intervals for the QTL Location

In the preceding section, we attempted to estimate the asymptotic variance-covariance
matrix for all the QTL parameters, including the QTL location (θ). To avoid non-
identifiability between the QTL effect and position under the null hypothesis, we
often treat the QTL location as a constant. If the QTL location is fixed, the above-
mentioned asymptotic derivation is only needed for the QTL effects and residual
variance, arrayed in Ω. In this case, we need to estimate the sampling error and
confidence interval for the QTL location based on other approaches.

Lander and Botstein (1989) proposed a dropoff method to estimate the “support
intervals” or confidence intervals (CI) for the QTL location based on the likelihood
ratio test. Using this method, the CI is calculated by finding the location at either
side of the estimated QTL location that corresponds to a decrease in the LOD score
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of 1 or 2 units. The total width corresponding to a 1 or 2 LOD dropoff is then taken as
the CI and, asymptotically, these should be approximately equivalent to 96.6 percent
and 99.8 percent CI, respectively (Mangin et al. 1994). However, they noted that the
LOD dropoff method of Lander and Botstein (1989) consistently underestimated the
CI, especially for small QTL effects. They derived a complicated test statistic that
accurately estimated the CI for small QTL effects, but the distribution of this test
statistic must be computed empirically (Mangin et al. 1994).

A confidence interval can also be estimated by the simulation of a large number of
samples. If 1000 samples are generated, the 95 percent confidence limits are obtained
by determining the 25 lowest and 25 highest estimates for each parameter. Darvasi et
al. (1993) estimated QTL parameter estimation error variances based on the Fisher
information matrix and by repeated simulation for the backcross design with marker
brackets. The 95 percent CI was then estimated as a ±2 estimation SE for each
parameter. Darvasi et al. (1993) also directly estimated the 95 percent CI for each
parameter by repeated simulation. All methods were very accurate for estimation of
QTL effect variances. Estimates based on the second derivative tended to slightly
overestimate the SE for QTL means relative to the empirical estimates, especially for
a large spacing between markers.

For the QTL map location, the estimates based on the empirical 95 percent CI
and estimates based on four times the empirical SE were generally similar. However,
estimates based on the second derivative matrix tended to underestimate the CI for
small marker intervals and overestimate the CI for large marker intervals. Differences
were in some cases more than two-fold. Clearly, for this parameter, the asymptotic
properties of the second derivative matrix do not hold.

Empirical methods for estimating the CI also include parametric and nonparamet-
ric bootstrap and jackknife methods (Efron and Tibshirani 1993). In the parametric
bootstrap method, parameter estimates are first obtained by any of the methods con-
sidered. In the second step, a large number of bootstrap samples are then derived
from the assumed theoretical distribution, assuming that the original parameter es-
timates are the parameter values. Parameter estimates are then obtained for each
sample. The CI for each parameter is then derived from the empirical distributions
of the parameter estimates from the samples generated.

In nonparametric bootstrapping (Visscher et al. 1996), a large number of boot-
strap samples are generated by sampling with repeats from the original data. Thus,
in a particular sample some of the actual records will appear more than once, while
other observations will be missing. If the actual data consist of at least several hundred
points, it will be possible to draw a virtually unlimited number of different samples
in this method. The parameter estimates are then derived for each sample, and as in
parametric bootstrapping, the distribution of these estimates is used to derive empir-
ical CI limits. This method is not strictly nonparametric because assumptions about
the distribution are still employed to derive parametric estimates for each sample.
This method is more robust to violations of assumptions used to derive parameter
estimates.
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12.5 Exercises

12.1 There has been an increasing number of data sets for QTL mapping in various or-
ganisms. Try to work on a real example and practice how a critical threshold can be
determined using different approaches.

12.2 By fixing a putative QTL at a given chromosomal position, Kao and Zeng (1997)
derived general formulas for estimating the MLEs of QTL effects and nuisance pa-
rameters and the asymptotic variance-covariance matrix of the MLEs. Chen (2005)
derived the simultaneous estimation of the asymptotic variance-covariance matrix for
the QTL position and effect and nuisance parameters with the EM context. The dif-
ference between these two studies lies in the estimation strategy for the QTL position.
Kao and Zeng used a grid approach, whereas Chen made use of a closed form of the po-
sition estimation. Chen’s approach made it possible to directly estimate the sampling
variance of the QTL position.

In his derivations for the backcross, however, Chen (2005) used simplified but
approximated conditional probabilities (Table 10.4). As shown before, this approxi-
mated form works only when marker intervals are reasonably small, which is hard in
many practical mapping studies. It would be a nice addition to the mapping literature
if Chen’s approach could be incorporated by exact conditional probabilities (Table
10.3). Please try to answer the following questions:

(a) Show how the MLE of the QTL position and its sampling error can be estimated
by considering the conditional probabilities of Table 10.3.

(b) Derive the asymptotic variance-covariance matrix for the QTL effect, position, and
nuisance parameters for the F2.

(c) Consider how the exact conditional probabilities of the F2 can be incorporated for
the estimation of the asymptotic variance-covariance matrix.
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Composite QTL Mapping

13.1 Introduction

Lander and Botstein’s interval method has an advantage for mapping QTLs genome-
wide by scanning for the position of a QTL throughout the genome. But this method
can lead to biased estimates of QTL positions and effects when multiple QTLs occur
on the same linkage group because it makes use of one single-marker interval at a time
and has no mechanism to alleviate the impact of other QTLs outside the interval.
For this reason, if a real QTL is located near a marker interval with no QTL, interval
mapping may still detect a “ghost” QTL due to the linkage between the real QTL
and the interval being tested (Martinez and Curnow 1992). Although a simultaneous
search for multiple QTLs on different intervals can overcome this problem, this will
bring about new difficulties in parameter estimation and model identifiability.

Referring to Fig. 10.1, if the interest is in mapping a QTL effect in the interval
(M,N), there could be confounding effects from markers (or QTLs) that are outside
the interval. A natural way to eliminate the influences of genetic background is to
attempt to remove this confounding information using covariates or cofactors. This is
the approach of composite interval mapping, which constructs test statistics by com-
bining interval mapping on two flanking markers and multiple regression analysis on
the other markers. This composite interval mapping strategy, proposed independently
by Zeng (1993, 1994) and Jansen and Stam (1994), removes some of the interference
from QTLs outside the interval being tested. Zeng (1993) particularly demonstrates
the advantages and disadvantages of composite interval mapping.

In this chapter, we introduce the basic theory for composite interval mapping
and its algorithm for the estimation of QTL position and effect parameters. We will
compare the advantages of composite interval mapping over interval mapping through
simulation studies and real examples. The areas in which composite interval mapping
can be improved toward a complete characterization of the genetic architecture of a
quantitative trait are mentioned.
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13.2 Composite Interval Mapping for a Backcross

We start the description of the analysis of composite interval mapping with a back-
cross design toward the homozygous parent carrying unfavorable alleles. Assume that
this backcross has a size n in which a number of markers (M1, . . . ,Mm) have been
genotyped to construct a linkage map. At a putative QTL bracketed by a particular
pair of markers, Mt and Mt+1, there are two classes of genotypes, heterozygote Qq
(1) and homozygote qq (0), in the backcross.

A linear model for combining the testing interval formed by the two flanking
markers and other markers is expressed as

(13.1) yi = µ + (x∗
1|i − x∗

0|i)a +
m−2∑

k=1

bkxki + ei,

where yi is the phenotypic trait of the ith progeny in the backcross, µ is the overall
mean, a is the additive genetic effect of the QTL, x∗

1|i and x∗
0|i are the indicator

variables that define the QTL genotype (Qq or qq) of progeny i at a fixed location
in Mt–Mt+1 based on the interval information, xki is the genotype of progeny i on
the kth marker outside of the interval and defined as 1 for the marker heterozygote
and 0 for the marker homozygote, b1, . . . , bm−2 are the partial regression coefficients
(additive marker effects) to be estimated, and ei is the residual error, which includes
effects exerted by other QTLs and nongenetic factors, ei ∼ N(0, σ2).

This approach is essentially interval mapping but controlling for the effects outside
the interval. Thus, the methodologies are very similar to those in Section 11.2, except
they are complicated by the necessity of estimating the additional effects.

13.2.1 The Likelihood

Following the development in Section 11.2, similar to equation (11.3), we have the
likelihood

L(a,b, σ2, ω1|i, ω0|i|y) =
n∏

i=1

[ω1|if1(yi|a,b, σ2) + ω0|if0(yi|b, σ2)](13.2)

or

L(a,b, σ2, θ|y) =
n1∏

i=1

f1(yi|a,b, σ2)

×
n2∏

i=1

[(1 − θ)f1(yi|a,b, σ2) + θf0(yi|b, σ2)]

×
n3∏

i=1

[θf1(yi|a,b, σ2) + (1 − θ)f0(yi|b, σ2)]

×
n4∏

i=1

f0(yi|b, σ2)

.(13.3)
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The mixture-model–based likelihood in equation (13.2) is specified by a general
form of mixture proportions, ω1|i and ω0|i, the conditional probabilities of QTL geno-
types Qq and qq, respectively, given the marker interval genotype of progeny i. The
conditional probabilities in the likelihood of equation (13.3) are a simple form assum-
ing no double recombination (Table 10.4).

The normal density probability of the trait value within each QTL genotype class
is defined as

f1(yi|a,b, σ2) = N
(
a + XibT, σ2

)
,

f0(yi|b, σ2) = N
(
XibT, σ2

)
,

because

yi = µ + a +
m−2∑

k=1

bkxki + ei = a + XibT + ei, for Qq (xi = 1),

yi = µ +
m−2∑

k=1

bkxki + ei = Xib
T + ei, for qq (xi = 0),

where b = (µ, b1, . . . , bm−2) and Xi = (1, x1i, x2i, . . . , x(m−2)i).

13.2.2 Maximizing the Likelihood

The parameters contained in the likelihood (13.2) are estimated by implementing
the EM algorithm. This can be done using a procedure similar to that described in
Section 11.2.2. In the E step, we define the posterior probability that progeny i carries
a particular QTL genotype given its marker genotypes and phenotypic value as

P1|i =
ω1|if1(yi|a,b, σ2)

ω1|if1(yi|a,b, σ2) + ω0|if0(yi|b, σ2)
,

P0|i =
ω0|if0(yi|b, σ2)

ω1|if1(yi|a,b, σ2) + ω0|if0(yi|b, σ2)
.

(13.4)

In the M step, the parameters are estimated in terms of the posterior probabilities
by differentiating the log-likelihood (13.2) with respect to each parameter, setting the
derivatives equal to zero, and solving the log-likelihood equations. This procedure is
described as follows.

For a, we have

∂

∂a
ln L(a,b, σ2, θ|y) ∝

n∑

i=1

P1|i

(
yi − a − XibT

σ2

)
= 0,

which leads to
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â =
∑n

i=1(yi − XibT)P1|i∑n
i=1 P1|i

=
1
c
(y − XbT)TP1,(13.5)

where y = {yi}n×1, X = {Xi}n×1, P1 = {P1|i}n×1, and c =
∑n

i=1 P1|i.
For b and σ2, we have

∂

∂b
ln L(a,b, σ2, θ|y) ∝

n∑

i=1

[P1|iXi(yi − a − XibT) + P0|iXi(yi − XibT)]
1
σ2

= 0

and

∂

∂σ2
ln L(a,b, σ2, θ|y) ∝

n∑

i=1

[P1|iXi(yi − a − XibT)2 + P0|iXi(yi − XibT)2]
1

2σ4

− n

2σ2
= 0,

leading to

b̂ = (XTX)−1XT(y − Pb̂),(13.6)

σ̂2 = (y − Xb̂T)T(y − XbT) − â2c.(13.7)

For the estimation of the QTL position θ, two approaches can be used, one based
on its closed form, like equation (11.7), derived from likelihood (13.3), and the second
based on a grip scan for a series of fixed positions within a marker interval. Given the
initial values for the unknown parameters (a,b, σ2), the E and M steps are calculated
with equations (13.4) and (13.5)–(13.7), respectively, and repeated until the estimates
are stable.

13.2.3 Hypothesis Testing

The significance of the genetic effect of a QTL detected by composite interval mapping
can be tested by formulating the hypotheses

H0 : a = 0 vs. H1 : a �= 0.

The likelihood value under the alternative hypothesis is calculated by plugging the
MLEs of parameters into likelihood (13.2). The likelihood under the null hypothesis
is constructed as

L(b, σ2|y) =
n∏

i=1

f(yi|b, σ2),

from which the MLEs are derived as
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b̃ = (XTX)−1XTY

σ2 =
1
n

(y − Xb̃
T
)T(y − Xb̃

T
).

The likelihood ratio test statistic is then calculated using

LR = −2 ln

[
L(a = 0, b̃, σ̃2|y
L(â, b̂, σ̂2|y,M)

]
.(13.8)

Note that the calculation of the likelihood under the alternative hypothesis involves
marker information (M), whereas under the null hypothesis marker information is
not needed. The critical threshold for declaring the existence of a QTL is determined
using the approaches proposed in Chapter 12. In practice, empirical approaches based
on permutation tests, although they are computationally expensive, are widely used
because they do not rely upon the distribution of the test statistics.

13.3 Composite Interval Mapping for an F2

A similar procedure for composite interval mapping can be developed for the F2

in which three genotypes at a QTL are denoted as QQ (2), Qq (1), and qq (0),
respectively. The linear model of the phenotypic value of progeny i over the tested
interval Mt–Mt+1, similar to equation (13.1), which explicitly models additive and
dominance effects, can be written as

(13.9) yi = µ + (x∗
2|i − x∗

0|i)a + x∗
1|id +

m−2∑

k=1

xkibk +
m−2∑

k=1

zkihk + ei,

where x∗
2|i, x∗

1|i, and x∗
0|i are the indicator variables for the QTL genotypes for progeny

i determined by its marker interval genotype, a and d are the additive and dominant
effects of the QTL, xki and zki are the indicator variables for marker genotypes at
Mk,

xki =

⎧
⎨

⎩

1
2 for MkMk

0 for Mkmk

− 1
2 for mkmk

and

zki =
{

1 for Mkmk

0 for the other,

and bk and hk are the additive and dominance effects associated with marker Mk.
The likelihood function of the observed phenotypic (y) and marker data (M) in

the F2 is

L(Ω|y,M) =
n∏

i=1

[ω2|if2(yi) + ω1|if1(yi) + ω0|if0(yi)],(13.10)
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where the ωj|i’s (j = 2, 1, 0) are the F2 weights for each QTL genotype given the
marker genotype of progeny i, which are determined by the QTL position in the
marker interval (see Table 11.7), and the normal distributions are given by

f2(yi) =
1√
2πσ

exp

[
− (yi − XibT + a)2

2σ2

]
,

f1(yi) =
1√
2πσ

exp

[
− (yi − XibT + d)2

2σ2

]
,

f0(yi) =
1√
2πσ

exp

[
− (yi − XibT − a)2

2σ2

]
,

with

XibT = µ +
m−2∑

k=1

xkibk +
m−2∑

k=1

zkihk,

Xi = (1, x1i, . . . , x(m−2)i, z1i, . . . , z(m−2)i),

b = (µ, b1, . . . , bm−2, h1, . . . , hm−2).

The likelihood (13.10) contains an unknown vector Ω = (a, d,b, σ2, ωj|i). As in
the backcross, the EM algorithm can be implemented to obtain the MLEs of the
parameters (Ω) that maximize the likelihood (13.10).

In the E step, we define the posterior probability of QTL j for progeny i by

Pj|i =
ωj|ifj(yi)∑2

j′=0[ωj′|ifj′(yi)]
,(13.11)

with P2|i +P1|i +P0|i = 1. Then, in the M step, we obtain the MLEs of the unknown
parameters as follows:

â =
(y − Xb̂

T
)TP2

21TP2

,

d̂ =
(y − Xb̂

T
)TP1

1TP1

− â,(13.12)

b̂ = (XTX)−1XT[y − (2P2 + P1)â − P1d̂],

σ̂2 =
1
n

[(Y − Xb̂
T
)T(y − Xb̂

T
) − 4(1TP2)â2 − (1TP1)(a + d)2],

where P2 = (P2|1, . . . ,P2|n)T and P1 = (P1|1, . . . ,P1|n)T.
Equations (13.11) and (13.12) construct an iterative procedure to solve for the

MLEs of the unknown parameters.
For the F2, hypothesis tests include three steps. First, the existence of a QTL can

be teste on the basis of



13.4 A Statistical Justification of Composite Interval Mapping 293

H0 : a = d = 0 vs. H1 : at least one of them is not equal to zero.(13.13)

Second, the significance of the additive effect of the QTL (a) can be tested by

H0 : a = 0 vs. H1 : a �= 0.(13.14)

Third, the dominance effect of the QTL (d) is tested using

H0 : d = 0 vs. H1 : d �= 0.(13.15)

In each case, the log-likelihood ratios under the null and alternative hypotheses
are calculated. The critical threshold for the first hypothesis (13.13) can be deter-
mined empirically from permutation tests. Those for the second (13.14) and third
hypotheses (13.15) can be determined empirically by simulation studies. In fact, hy-
potheses (13.14) and (13.15) do not contain nonidentifiable parameters in their null
hypothesis, and therefore their log-likelihood ratios can each be thought to follow a
χ2 distribution with one degree of freedom.

13.4 A Statistical Justification of Composite Interval Mapping

Zeng (1993) has shown that, under the assumption of no crossover inference and no
epistasis, the true partial regression coefficient (true parameter) of a trait on a marker
depends only on those QTLs that are located on the interval bracketed by these two
flanking markers, independent of any other QTL.

Ideally, the test statistic constructed from a marker interval hypothesized to carry
a QTL is independent of the effects of any possible QTL at the chromosomal region
outside the interval. This relationship is a property of the parameters in a regression-
based composite interval mapping model. Much of the discussion on the statistical
foundations of composite interval mapping is from Zeng (1993).

13.4.1 Conditional Marker (Co)variances

Suppose there are two markers, Mj with two alleles Mj and mj and Mk with two
alleles Mk and mk, genotyped for a backcross population. These two markers are
linked with the recombination fraction rjk. We denote by 1 and 0 the “values” for the
heterozygote and homozygote, respectively, at each marker in the backcross. Thus,
the frequencies and “value” of the two backcross genotypes are expressed as

MjmjMkmk Mjmjmkmk mjmjMkmk mjmjmkmk

Frequency 1
2 (1 − rjk) 1

2rjk
1
2rjk

1
2 (1 − rjk)

“Value” at M1 1 1 0 0

“Value” at M2 1 0 1 0
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The variances at each marker can be calculated as

σ2
j = σ2

k =
1
4

(13.16)

and the covariance between the two markers calculated as

σjk =
1
4
(1 − 2rjk),(13.17)

with a correlation of 1−2rij . Based on equations (13.16) and (13.17), the conditional
variance of marker Mk given marker Mj is

σ2
k|j = σ2

k −
σ2

kj

σ2
j

=
1
4
−

[ 14 (1 − 2rjk)]2

4
= rjk(1 − rjk).(13.18)

Considering three markers, Mj , Mk and Ml, we similarly derive the covariance be-
tween markers Mj and Mk conditional upon marker Ml as

σjk|l = σjk − σjlσkl

σ2
l

=
1
4
[(1 − 2rjk) − (1 − 2rjl)(1 − 2rkl)]

=

⎧
⎨

⎩

0 for order MjMlMk or MkMlMj

rkl(1 − rkl)(1 − 2rjk) for order MjMkMl or MlMkMj

rjl(1 − rjl)(1 − 2rjk) for order MlMjMk or MkMjMl,

(13.19)

because, without inference, (1 − 2rik) = (1 − 2ril)(1 − 2rkl) for order MiMlMk or
MkMlMi. Equation (13.19) states that, conditional on an intermediate marker, the
covariance between two flanking markers is expected to be zero.

Using equations (13.18) and (13.19), we derive the variance of marker Mj condi-
tional on markers Mk and Ml as

σ2
j|kl = σ2

j|k −
σ2

jl|k
σ2

l|k

= σ2
j|l −

σ2
jk|l

σ2
k|l

=

⎧
⎪⎪⎨

⎪⎪⎩

σ2
j|k for order MjMkMl or MlMkMj

σ2
k|j for order MjMlMk or MkMlMj

rjk(1 − rjk)rjl(1 − rjl)
rkl(1 − rkl)

for order MkMjMl or MlMjMk.

(13.20)
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According to equation (13.20), the conditional variance of a marker conditional
upon all other markers is only dependent on the markers that are right next to the
marker under consideration. This can be stated generally as follows. The variance of
marker Mj conditional on all other markers is expressed as

σ2
j|s−j

= σ2
j|(j−1)(j+1),

where s−j denotes a set that includes all markers except for marker Mj .
Similarly, considering four markers with Mj < Mk and Ml < Mm, the conditional

covariance between marker Mj and Mk given Ml and Mm is derived as

σ2
jk|lm = σjk|l −

σjm|lσkm|l
σ2

m|l

= σjk|m −
σjl|mσkl|m

σ2
l|m

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for order MjMlMkMm

or MjMmMkMl

σ2
jk|l for order MjMkMlMm

σ2
jk|m for order MlMmMjMk

rlk(1 − rlk)rkm(1 − rkm)(1 − 2rjk)
rlm(1 − rlm)

For order MlMjMkMm.

(13.21)

Equation (13.21) contains two important conclusions. First, as long as we condition
on one intermediate marker, the covariance between any two markers will be zero.
Second, the covariance between two flanking markers given all other markers is only
dependent on the two markers that are the closest to each of the flanking markers.
In other words, conditioning on two flanking markers would make the covariance
between two interior markers independent of all those markers that are outside the
marker interval. This can be mathematically expressed as

σ2
jk|s−jk

= σ2
jk|(j−1)(k+1),

where s−jk denotes a set that includes all markers except for markers Mj and Mk.

13.4.2 Conditional QTL Variance

In this section, we extend the conditional marker variance to consider the conditional
variance involving QTL. Consider marker Mj and QTL Qu with two alleles, Qu and
qu, whose genotypes, frequencies, and values are expressed in the backcross as

MjmjQuqu Mjmjququ mjmjQuqu mjmjququ

Frequency 1
2 (1 − rju) 1

2rju
1
2rju

1
2 (1 − rju)

“Value” at Mj 1 1 0 0

Value at Qu a 0 a 0
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where rju is the recombination fraction between the marker and QTL and au is the
additive effect due to Qu. It is easy to show σ2

u = 1
4a2 and σju = 1

4 (1 − 2rju)a2
u.

Considering a quantitative trait, y, controlled by U QTLs with no epistasis, we
derive the covariance between trait y and marker Mj conditional on marker Mk as

σyj|k = σyj −
σykσjk

σ2
k

=
1
4

U∑

u=1

[(1 − 2ruj) − (1 − 2ruk)(1 − 2rjk)]au

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rjk(1 − rjk)
∑

u≤j

(1 − 2ruj)au +
∑

j<u<k

ruk(1 − ruk)(1 − 2rju)au

for order MjMk

rjk(1 − rjk)
∑

u≥j

(1 − 2ruj)au +
∑

j<u<k

ruk(1 − ruk)(1 − 2rju)au

for order MkMj ,

(13.22)

which suggests that the covariance between one marker and trait conditional upon a
second marker does not contain those QTLs that are beyond the conditional marker.
More clearly, let us consider two conditional markers. It is easy to derive

σ2
yj|kl = σyj|k −

σyl|kσjl|k
σ2

l|k

= σyj|l −
σyk|lσjk|l

σ2
l|m

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σyj|k for order MjMkMl

σyj|l for order MjMlMk

rjk(1 − rjk)
rkl(1 − rkl)

∑

l<u≤j

rlu(1 − tlu)(1 − 2ruj)au+

rjk(1 − rjk)
rkl(1 − rkl)

∑

j<u≤k

ruk(1 − tuk)(1 − 2rju)au for order MlMjMk.

(13.23)

The general expression for equation (13.23) is σyj|s−j
= σyj|(j−1)(j+1). Based on the

formulas above, the partial regression coefficient of the trait value on marker Mj

conditional upon the rest of the markers is derived as
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byj|s−j
=

σyj|s−j

σ2
j|s−j

=
σyj|(j−1)(j+1)

σ2
j|(j−1)(j+1)

=
∑

j−1<u≤j

r(j−1)u(1 − r(j−1)u)(1 − 2ruj)
r(j−1)j(1 − r(j−1)j)

au

+
∑

j<u<j+1

ru(j−1)(1 − ru(j+1))(1 − 2rju)
rj(j+1)(1 − rj(j+1))

au.(13.24)

which contains two summations for all QTLs located between markers Mj−1 and
Mj and for all QTLs between markers Mj and Mj+1. This suggests that the partial
regression coefficient depends only on those QTLs located between markers Mj−1 and
Mj+1, although this does not apply when QTLs display strong epistatic interactions.
In any case with no epistasis, if interval mapping with a pair of flanking markers is
combined with multiple regression analysis of other markers, all possible QTLs outside
this testing interval will be absorbed into the partial regression coefficients. For this
reason, the combination of interval mapping and regression analysis can limit test
statistics for QTL localization within a specific marker interval under consideration
and makes it independent of the effects of other possible QTLs outside the tested
interval on a chromosome. This has laid a statistical foundation for composite interval
mapping.

With further derivations, Zeng (1993) showed that the sampling variance of the
partial regression coefficient can be reduced and therefore the statistical power of QTL
mapping can be increased when conditional on unlinked markers. According to the
analysis of the sampling variance of the partial regression coefficient, the combination
of interval mapping and a multiple-regression analysis can reduce the influence of
multiple linked QTLs on hypothesis testing and thus the precision of the QTL test and
estimation when the conditioned markers are linked, although this possibly reduces
the statistical power. The tradeoff between the power and precision of QTL mapping
can be balanced for a practical problem. If one purports to separate multiple QTLs
on the same genomic region, linked markers should be chosen for regression analysis.
On the other hand, if one hopes to increase the power of QTL mapping, regression
analysis should be constructed with unlinked markers.

Zeng (1993) derived the form of the sampling correlation between two partial
regression coefficients on different markers. He showed that such a correlation is gen-
erally zero unless the two markers are adjacent. This property helps to derive the
correlation of test statistics between two testing positions in two intervals for an in-
terval test and determine the significance threshold of a test statistic under a null
hypothesis for an overall test covering the entire genome.

Zeng (1993) thought that the theoretical aspects of composite interval mapping
derived for the backcross are also applicable to the F2. For the F2 with no dominance,
the underlying theory is qualitatively equivalent to the backcross. But for the F2 with
dominance, the regression analysis needs to introduce one more parameter to reflect
dominance deviation.



298 13 Composite QTL Mapping

13.4.3 Marker Selection

Composite interval mapping integrates interval mapping and multiple regression
analysis. The selection of markers as cofactors is an important issue. Conditioning
on linked markers helps to separate multiple linked QTLs on a region but leads to
the reduction of statistical power. Although conditioning on unlinked markers can
increase analytical power by reducing residual variance, it has little to do with the
separation of linked QTLs. These properties of composite interval mapping make its
marker selection difficult.

Unfortunately, there is no theoretical derivation for the choice of markers as cofac-
tors. Zeng (1994) proposed forward or backward stepwise regression analysis to add
or drop markers. As discussed above, marker selection should also be made empiri-
cally on the basis of the purpose of the study. The high-resolution mapping of linked
QTLs favors the inclusion of more linked markers, whereas statistical power can be
increased by conditioning on more unlinked markers.

13.5 Comparisons Between Composite Interval Mapping
and Interval Mapping

Zeng (1994) performed extensive simulation studies to compare the advantages and
disadvantages of composite interval mapping and interval mapping. He simulated four
chromosomes of equal length. Ten QTLs with different effect sizes were simulated for
a quantitative trait. Composite interval mapping conditional on linked markers can
detect individual QTLs that are located on the same chromosome. Composite interval
mapping conditional on all the markers displays greater power, but it cannot well
separate linked QTLs on some chromosome. Traditional interval mapping has lower
power and also is biased for the estimation of QTL positions.

We used two examples to demonstrate the differences between these two different
approaches. In both examples, there are multiple linkage groups, each corresponding
to a different chromosome. Marker selection includes three options: (1) linked markers
on the same chromosome, (2) unlinked markers on a different chromosome, and (3)
all markers on the same and different chromosomes. The results from these options
are compared with those for interval mapping.

Example 13.1. Revisit Example 3.1. Two inbred lines, semi-dwarf IR64 and tall Azu-
cena, were crossed to generate a heterozygous F1. The haploid chromosomes for pol-
lens (gametes) of the F1 were doubled to produce 123 doubled haploid (DH) plants.
These DH plants, equivalent to a backcross progeny, were genotyped for 135 RFLP
and 40 isozyme and RAPD markers, from which a linkage map covering the entire
genome of 12 chromosomes was constructed (Yan et al. 1998; Fig. 3.3). Each of the
DH lines was measured for plant height at each of ten consecutive weeks.

As an example, the first chromosome was used to perform composite interval
mapping (CIM) for plant weight at week 10. We first used interval mapping (IM) to
scan for the existence of a QTL throughout rice chromosome 1. The log-likelihood
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ratio (LR) test statistics were calculated by fixing the position of a putative QTL at
every 2 cM in each marker interval. After scanning for a QTL from the first to the
last interval, we draw a smoothed LR profile with a series of discrete LR values (Fig.
13.1). Two LR peaks were observed by IM, a flatter one between markers RZ730 and
RZ801 and a more narrow one between markers RG810 and RG331. The LR values
at the two peaks (> 55) are largely beyond the critical threshold at the 5 percent
significance level (10.39) determined from 100 permutation tests by destroying the
original phenotype–marker relationships. It was found that these two QTLs detected
by IM for height growth are highly significant.
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Fig. 13.1. Profile plot of likelihood–ratio statistics (LRs) as a function of map position of the
putative QTL in a DH population of rice. IM, Interval Mapping; CIM, Composite Interval
Mapping; CIM1, linked markers on the same chromosome; CIM2, unlinked markers on a
different chromosome; and CIM3, all markers on the same and different chromosomes. The
critical thresholds for IM, CIM1, CIM2 and CIM3 are 10.39, 7.47, 9.79, and 7.13, respectively,
as determined from 100 permutation tests.

To test whether each of the two LR peaks detected by IM correspond to a differ-
ent QTL or collectively present a QTL on chromosome 1, we carried out composite
interval mapping conditional upon linked markers on the same chromosome (CIM1).
According to the property of CIM found by Zeng (1993), CIM1 has greater power to
separate multiple linked QTLs. As shown in Fig. 13.1, CIM1 detects three distinct LR
peaks at marker intervals RG381-RZ19 and RG690-RZ730 and marker RZ801, larger
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than the 5 percent critical threshold (7.47). It seems that CIM1 dissolves a big flat
peak by IM into three smaller but narrower ones, suggesting that CIM1 has better
resolution for mapping linked QTLs than IM. However, because CIM1 has increased
sampling variances, the caution should be taken for the estimation precision of QTL
position and effect parameters.

Composite interval mapping conditional upon unlinked markers (CIM2) can in-
crease the power of QTL mapping by controlling some residual variance (Zeng 1993).
It is not surprising to find that CIM2 in this example identified two higher LR peaks
(> 70) at positions similar to those detected by IM, leading to increased significance
levels (compared to the 5 percent threshold of 9.79). However, as expected, CIM2 has
no improvement for the separation of these two peaks compared with IM.

Composite interval mapping conditional upon both linked and unlinked markers
(CIM3) displays results different from those for IM, CIM1, and CIM2. It detects four
different peaks at marker intervals RG146-RG345, RG381-RZ19, RG690-RZ730 and
RZ730-RZ801, with LR values being larger than the 5 percent threshold (7.13) (Fig.
13.1). Perhaps CIM3 preserves the advantages of CIM1 and CIM2, thus leading to
the better separation of more linked QTL and the better power of QTL detection.

In summary, CIM3 conditional upon unlinked markers, although increasing the
power of QTL detection, obtains results similar to those by IM. CIM1 conditional on
linked markers has better resolution for multiple linked QTL, and its power can be
improved when some unlinked markers are involved in the partial regression analysis.
To determine the reliability of the results about QTL detection, simulation studies can
be performed by mimicking the above example in terms of the genomic distribution
of QTLs, their inheritance mode and effect sizes.

Example 13.2. Revisit Example 3.2. Cheverud et al. (1996) constructed a linkage map
using 75 microsatellite markers in a population of 535 F2 progeny derived from two
strains, the Large (LG/J) and Small (SM/J). The F2 progeny were measured for body
mass at ten weekly intervals starting at age 7 days. The raw weights were corrected
for the effects of each covariate due to dam, litter size at birth, and parity but not for
the effect due to sex. We used chromosome 2 composed of nine markers to map the
QTL affecting body weight at age 10 weeks with interval mapping (IM) and different
types of composite interval mapping (CIM). In each case, permutation tests were used
to empirically determine critical thresholds.

Interval mapping (IM) obtains a flat LR profile covering most of the chromosome
(Fig. 13.2), suggesting that more than one QTL on this chromosome may exist to
affect mouse body weight. Composite interval mapping conditional upon unlinked
markers (CIM2) obtains a similar LR profile, although the peak detected by CIM2 is
larger than that by IM. Composite interval mapping conditional upon linked markers
(CIM1) detects no QTL, despite some distinct small peaks, suggesting that CIM1
tends to decrease the power in this particular example. Composite interval mapping
conditional upon both linked and unlinked markers (CIM3) produces a different LR
profile, with a single peak in marker interval DZMIT17–DZMIT26, showing no ev-
idence for the presence of two QTLs. To examine the reliability of each mapping
scheme above, simulation studies by mimicking the example would be helpful.
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Fig. 13.2. Profile plot of likelihood–ratio statistics (LRs) as a function of map position of
the putative QTL. IM, Interval Mapping; CIM, Composite Interval Mapping; CIM1, linked
markers on the same chromosome; CIM2, unlinked markers on a different chromosome; and
CIM3, all markers on the same and different chromosomes.

13.6 Multiple Interval Mapping

Both interval mapping and composite interval mapping model one QTL at a time.
Although composite interval mapping that combines the idea of interval mapping
and marker regression analysis can overcome the problem of multi-QTL linkage, it
has less power to characterize the detailed genetic architecture of a quantitative trait.
Because a complex trait may be controlled by a number of QTLs, it is crucial to
have a mapping approach that can model multiple QTLs simultaneously and identify
and locate all the QTLs responsible for quantitative variation. Such an approach has
been proposed by Zeng and colleagues, and is named multiple interval mapping (Kao
et al. 1999; Zeng et al. 2000). Kao and Zeng (1997) have derived general formulas
for obtaining maximum likelihood estimates for the positions and effects of multiple
QTLs.

Multiple interval mapping models multiply QTLs in such a way that QTLs can
be directly controlled in the model through the simultaneous use of multiple marker
intervals. They have proven more powerful and precise for estimating the positions
and effects of QTLs than conventional interval mapping and composite interval map-
ping. In addition, by searching and mapping all possible QTLs in multiple marker
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intervals simultaneously, multiple interval mapping allows the full estimation of the
genetic architecture of a quantitative trait in terms of the number of underlying QTLs,
their genetic effects, pleiotropic effects, and epistatic network among different QTLs.
The area of research that is open to multiple interval mapping is the procedure for
the model selection of multiple QTLs, and their genomic positions and effects that
collectively provides the best fit of the data observed.

13.7 Exercises

13.1 Given the likelihoods of composite interval mapping for the backcross (13.2) and F2

(13.10), derive the MLEs of the parameters in the M step as shown by equations (13.5)
(backcross) and (13.7) (F2). (backcross) and (13.12) (F2), respectively.

13.2 Zeng (1993, 1994) provided the statistical properties of composite interval mapping
based on a simple backcross design, which are reiterated below:

(a) For additive QTLs (ignoring epistasis), the expected partial regression coefficient of
the trait on a marker depends only on those QTLs that are located on the interval
bracketed by the two neighboring markers, and is unaffected by the effects of QTLs
located on other intervals.

(b) Conditioning on unlinked markers in the multiple regression analysis will reduce the
sampling variance of the test statistic by controlling some residual genetic variation
and thus will increase the power of QTL mapping.

(c) Conditioning on linked markers in the multiple regression analysis will reduce the
chance of interference of possible multiple linked QTLs on hypothesis testing and
parameter estimation but with a possible increase in sampling variance.

(d) Two sample partial regression coefficients of the trait value on two markers in a
multiple regression analysis are generally uncorrelated unless the two markers are
adjacent markers.

Show that these properties apply to an F2 design with three different genotypes at
each locus. Hint: You can denote 2, 1, and 0 for the homozygote for one parent’s allele,
and heterozygote and homozygote for the other parent’s allele, respectively.

13.3 Perform simulation studies to show how many and what types of markers are involved
in composite interval mapping as cofactors.

13.4 Read Kao and Zeng’s (1997) paper to find out how general formulas for estimating
the asymptotic sampling variances of the MLEs of QTL positions and effects can be
derived in multiple interval mapping. Also, show how the asymptotic covariance matrix
for the MLEs can be derived with Louis’ (1982) mixture-model–based approach.
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QTL Mapping in Outbred Pedigrees

14.1 Introduction

QTL mapping approaches were developed originally for experimental crosses, such
as the backcross, double haploid, RILs, or F2, derived from inbred lines. Because of
the homozygosity of inbred lines, the Mendelian (co)segregation of all markers with
two alternative alleles in such crosses can be observed directly. In practice, there also
is a group of species called outcrossing species, such as forest trees or large animals,
in which it is difficult or impossible to generate inbred lines due to long generation
intervals and high heterozygosity, although experimental hybrids can be commercially
used for their genetic improvement.

Many commercially available hybrid populations for outcrossing species can serve
directly as mapping material. But statistical mapping models used for these popula-
tions should vary, depending on the biological characteristics of species. Some species,
such as forest trees, can generate a large hybrid family (Grattapaglia and Sederoff
1994; Bradshaw and Stettler 1995), so that one single cross would be adequate to
obtain the power needed. On the other hand, for some species, such as dogs, it is im-
possible to produce a large family and thus multiple families, each with a small size
and including some from both related and unrelated parents, will be needed (Bliss et
al. 2002; Todhunter et al. 2005). Linkage analysis for these two different types of out-
crossing species has been described in Chapters 4 and 7, respectively. In this chapter,
we will present statistical models that concern QTL mapping for outcrossing species.
Based on the biological features of outcrossing species, two different types of mapping
models will be described, the first dealing with a full-sib family of large size and the
second type dealing with many related families, each with a small size.

For a given outbred line, some markers may be heterozygous, whereas others may
be homozygous over the genome. All markers may or may not have the same allele
system between any two outbred lines used for a cross. Also, for a pair of heterozy-
gous loci, their allelic configuration along two homologous chromosomes (i.e., linkage
phase) cannot be observed from the segregation pattern of genotypes in the cross. Un-
fortunately, a consistent number of alleles across different markers and their known
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linkage phases are the prerequisites for statistical mapping approaches described for
the backcross or F2 in the preceding chapters.

14.2 A Fixed-Effect Model for a Full-Sib Family

14.2.1 Introduction

Several particular statistical models have been proposed for QTL mapping in a full-sib
family (Schäfer-Pregl et al. 1996; Johnson et al. 1999; Song et al. 1999). In some stud-
ies, more sophisticated statistical algorithms, such as Bayesian approaches relying on
a Markov chain Monte Carlo method, have been proposed to take the complexity of
full-sib family mapping into account (Hoeschele et al. 1997; Sillanpa and Arjas 1999;).
Lin et al. (2003) derived a general model for full-sib mapping by integrating uncer-
tainties about allelic numbers and configurations into the mixture-model context. In
this section, this general model will be described and illustrated by an example.

14.2.2 A Mixture Model for a Parental Diplotype

For a full-sib family derived from two outbred parents, up to four marker alleles,
besides a null allele, can occur at a single locus. Also, the number of alleles may vary
over loci. Each of the marker alleles is dominance to the null allele. In Section 3.4, all
possible cross types for a segregating marker locus were tabulated in Table 3.2.

Consider two outbred parental lines denoted as P1 and P2, which contain two
homologous chromosomes, 12 and 34, respectively, in a set. The cross between these
two lines, 12×34, results in four possible parental chromosome pairings: 13, 14, 23,
and 24. We used bold Arabic numerals to denote parental chromosomes. Although
there may be many different marker types in a full-sib family derived from the two
outbred parental lines, all observed markers, no matter which type they come from,
are generally expressed as 1 and 2 for parent P1 and 3 and 4 for parent P2.

Suppose there is a QTL located between the two markers. The four alleles of the
QTL are denoted by 1 and 2 for parent P1 and 3 and 4 for parent P2, which will
be segregating to generate zygotes 13, 14, 23, and 24 following a 1:1:1:1 ratio in the
family. The recombination fractions between the two markers, between marker M1

and the QTL and between the QTL and marker M2, are denoted by r, r1, and r2,
respectively, with

r =

⎧
⎪⎨

⎪⎩

r1 + r2 for no double recombination

r1 + r2 − 2r1r2 for independent recombination

r1 + r2 − 2cr1r2 for interfered recombination,

where c is the coefficient of coincidence between the recombinations at two differ-
ent intervals. Parent-specific difference of linkage is ignored. The alleles of these two
markers and the QTL are arranged between the two homologous chromosomes in each
of a total of four possible linkage phases for each parent.
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But the allelic linkage phases of the two markers can be known for both parents
through linkage analyses of markers using a strategy proposed in Chapter 4. Thus,
under a fixed marker linkage phase, we will have 2 × 2 = 4 parental combinations
(Φ’s) of linkage phase (or diplotype) of the QTL relative to the two markers, which
are schematically expressed, along with the order of the four QTL genotypes in the
progeny, as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ11 =

1 2

1 2

1 2

×
3 4

3 4

3 4

→ (13, 14, 23, 24),

Φ12 =

1 2

1 2

1 2

×
3 4

4 3

3 4

→ (14, 13, 24, 23),

Φ21 =

1 2

2 1

1 2

×
3 4

3 4

3 4

→ (23, 24, 13, 14),

Φ22 =

1 2

2 1

1 2

×
3 4

4 3

3 4

→ (24, 23, 14, 13),

(14.1)

where the first and second subscripts of Φ denote two possible phases of parents P1

and P2, respectively, and the vertical lines for each diplotype combination denote
two parental chromosomes, 12 and 34, each for a parent. Each parent, no matter
which possible diplotype combination it has, will generate eight three-locus haploid
gametes (haplotypes), with the haplotype frequencies depending on the recombination
fractions of the three loci. Table 14.1 gives the frequencies of the eight haplotypes,
denoted by p111, p121, p112, p122, p211, p221, p212, and p222, for parent P1 along with
the haplotype frequencies for the two markers, denoted by p11, p12, p21, and p22. The
corresponding haplotype frequencies can also be given for parent P2.

The marker–QTL haplotype frequencies can be expressed in terms of the recom-
bination fractions between each marker and QTL (r1 and r2) when no double re-
combination (case 1) or independent recombination (case 2) is assumed. However, if
interference exists between different intervals during meiosis (case 3), the haplotype
frequencies should be expressed differently. Let g00, g01, g10 and g11 be the occurrence
probabilities of no recombination both in the M1–QTL and QTL–M2 intervals, one
recombination only in the M1–QTL interval, one recombination only in the QTL–M2

interval, and one recombination in each interval, respectively. The haplotype frequen-
cies in the three cases are expressed as
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Haplotype Frequency Case 1 Case 2 Case 3

p111 1 1
2 (1 − r1)(1 − r2) 1

2g00

p121 0 1
2r1r2

1
2g11

p112
1
2r2

1
2 (1 − r1)r2

1
2g01

p122
1
2r1

1
2r1(1 − r2) 1

2g10

p211
1
2r1

1
2r1(1 − r2) 1

2g10

p221
1
2r2

1
2 (1 − r1)r2

1
2g01

p212 0 1
2r1r2

1
2g11

p222 1 1
2 (1 − r1)(1 − r2) 1

2g00

Table 14.1. Frequencies of haplotypes formed by two markers and a QTL that is located
between the two markers in parent P1.

Flanking Markers QTL

Haplotype Frequency 1 2

11 p11 = 1
2
(1 − r) p111 p121

12 p12 = 1
2
r p112 p122

21 p21 = 1
2
r p211 p221

22 p22 = 1
2
(1 − r) p212 p222

For the frequencies of two-marker haplotypes, the first and second subscripts correspond to
alleles from markers M1 and M2, respectively. For the frequencies of three-locus haplotypes,
the second subscripts corresponds to the QTL alleles, whereas the first and second subscript
corresponds to the alleles of the two markers, respectively. It can be shown that p11 =
p111 + p121, p12 = p112 + p122, p21 = p211 + p221, and p22 = p212 + p222.

The eight haplotypes from parent P1 unite randomly with the eight haplotypes
from parent P2 to generate a total of 64 zygotic genotypes. The frequencies of these
genotypes in the full-sib family are calculated in terms of the haplotype frequencies
(expressed by g’s), which are tabulated in Table 14.1. It is noticed that the two par-
ents for the cross have four possible combinations of parental diplotypes, as shown
by display (14.1), but one and only one combination is correct. Under these different
diplotype combinations, the two parents form the same set of 64 zygotic genotypes,
but the formation frequencies of genotypes are phase-specific. The genotype frequen-
cies presented in Table 14.1 correspond to different parental diplotype combinations
Φ11, Φ12, Φ21, and Φ22.
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Table 14.2. Genotype frequencies for the two markers and the QTL bracketed by the
markers in a full-sib family generated by two outbred parents under different diplotype
combinations.

Phase QTL genotype

Φ11 13 14 23 24

Φ12 14 13 24 23

Flanking Markers Φ21 23 24 13 14

No. Genotype Frequency Φ22 24 21 14 13

G�1�2

1 13/13 p2
11 p2

111 p111p121 p121p111 p2
121

2 13/14 p11p12 p111p112 p111p122 p121p112 p121p122

3 13/23 p12p11 p111p112 p112p121 p122p111 p121p122

4 13/24 p2
12 p2

112 p112p122 p122p112 p2
122

5 14/13 p11p21 p111p211 p111p221 p121p211 p121p221

6 14/14 p11p22 p111p212 p111p222 p121p212 p121p222

7 14/23 p12p21 p112p211 p112p221 p122p211 p122p221

8 14/24 p12p22 p112p212 p112p122 p122p212 p122p222

9 23/13 p21p11 p211p111 p211p121 p221p111 p221p121

10 23/14 p21p12 p211p112 p211p122 p221p112 p221p122

11 23/23 p22p11 p212p111 p212p121 p222p111 p222p121

12 23/24 p22p12 p212p112 p212p122 p222p112 p222p122

13 24/13 p2
21 p2

211 p211p221 p221p211 p2
221

14 24/14 p21p22 p211p212 p211p222 p221p212 p221p222

15 24/23 p21p22 p211p212 p212p221 p222p211 p221p222

16 24/24 p2
22 p2

212 p212p222 p222p212 p2
222

Note: The genotype frequencies under parental diplotype combination Φ�1�2 (�1, �2 = 1, 2)
are arrayed into a (16 × 4) matrix G�1�2 . By adjusting the order of the QTL genotypes in
the full-sib family under parental diplotype combinations Φ11, Φ12, Φ21, and Φ22, matrices
G11, G12, G21, and G22 can be generated.



308 14 QTL Mapping in Outbred Pedigrees

Let p and q be the probabilities with which the first diplotype in display (14.1)
occurs for parents P1 and P2, respectively. Thus, the corresponding probabilities of the
four parental diplotype combinations will be φ11 = pq, φ12 = p(1− q), φ21 = (1−p)q,
and φ22 = (1−p)(1−q) for Φ11, Φ12, Φ21, and Φ22, respectively. Let G11, G12, G21,
and G22 be the matrices for genotype frequencies under the corresponding diplotype
combinations (Table 14.2). Thus, the observed genotype frequencies G in the full-sib
family should be a mixture of the genotype frequencies weighted by the diplotype
combination probabilities, expressed as

G = φ11G11 + φ12G12 + φ21G21 + φ22G22,(14.2)

which is a (16 × 4) matrix with 16 rows for two-marker genotypes and four columns
for QTL genotypes in the full-sib family. According to Bayes’ theorem, the conditional
probabilities of a QTL genotype, uv (with alleles u = 1, 2 inherited from parent P1

and alleles v = 3, 4 inherited from parent P2), given marker genotypes are estimated
by dividing G by the marker genotype frequencies given in Table 14.2. The conditional
probability of a particular QTL genotype given the marker genotype of individual i
is correspondingly expressed as

ωuv|i = φ11ω
11
uv|i + φ12ω

12
uv|i + φ21ω

21
uv|i + φ22ω

22
uv|i,(14.3)

where the right side contains parental diplotype-specific conditional probabilities.

14.2.3 Quantitative Genetic Model

In a full-sib family, a QTL generates four genotypes. Let µuv be the value of a QTL
genotype inheriting allele u from parent P1 and allele v from parent P2. Based on
quantitative genetic theory, this genotypic value can be partitioned into the additive
and dominance effects as

µuv = µ + αu + βv + γuv,

where µ is the overall mean, αu and βv are the allelic (additive) effects of alleles u and
v, respectively, and γuv is the interaction (dominance) effect at the QTL. Considering
all possible alleles and allele combinations between the two parents, there are a total
of four additive effects (α1 and α2 from parent P1 and β3, and β4 from parent P2)
and four dominance effects (γ13, γ14, γ23, and γ34). But these additive and dominance
effects are not independent and therefore are not estimable. After parameterization,
there are two independent additive effects, α = α1 = −α2 and β = β3 = −β4, and
one dominance effect, γ = γ13 = −γ14 = −γ23 = γ24, to be estimated.

Let u = (µuv)4×1 and a = (µ, α, β, γ)T, which can be connected by a design matrix
D. We have

u = Da,

where

D =

⎡

⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤

⎥⎥⎦ .
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The MLE of a can be obtained from the MLE of u by

â = D−1û.

14.2.4 Likelihood Analysis

Suppose there is a full-sib family of size n derived from two outbred lines. Consider
a QTL for a quantitative trait that is bracketed by two markers. The linear model of
the trait value for individual i (yi) affected by this bracketed QTL is written as

yi =
2∑

u=1

4∑

v=3

ξiuvµuv + ei,(14.4)

where ξiuv is the indicator variable for QTL genotypes, defined as 1 if a particular
genotype uv is considered for individual i and 0 otherwise, and ei is the residual
error normally distributed with mean 0 and variance σ2. The probability that indi-
vidual i carries QTL genotype uv can be inferred from its marker genotype, with this
probability expressed as ωuv|i.

The log-likelihood of the trait values (y) and marker information (M) is given by

(14.5) log L(Ω|y,M) =
n∑

i=1

log

[
2∑

u=1

4∑

v=3

ωuv|ifuv(yi)

]
,

where Ω is the vector for unknown parameters QTL that include the QTL position
(r1 and r2), parental phase probabilities, QTL genotypic values (µuv), and the resid-
ual variance (σ2). The first two parameters, denoted by Ωp, are contained in the
mixture proportions of the model above, whereas the second two, denoted by Ωq, are
quantitative genetic parameters.

As usual, the MLEs of the unknown vector are obtained by differentiating the log-
likelihood function with respect to each unknown Ωτ , setting the derivatives equal to
zero, and solving the log-likelihood equations. This procedure is shown as follows:

∂

∂Ωτ
log L(Ω|y,M)

=
n∑

i=1

2∑

u=1

4∑

v=3

fuv(yi) ∂
∂Ωp

ωuv|i + ωuv|i
∂

∂Ωq
fuv(yi)

∑2
u′=1

∑4
v′=3 ωu′v′|ifu′v′(yi)

=
n∑

i=1

2∑

u=1

4∑

v=3

[
ωuv|ifuv(yi) 1

ωuv|i
∂

∂Ωp
ωuv|i

∑2
u′=1

∑4
v′=3 ωu′v′|ifu′v′(yi)

+
ωuv|ifuv(yi) ∂

∂Ωq
log fuv(yi)

∑2
u′=1

∑4
v′=3 ωu′v′|ifu′v′(yi)

]

=
n∑

i=1

2∑

u=1

4∑

v=3

Πuv|i

[
1

ωuv|i

∂

∂Ωp
ωu′v′|i +

∂

∂Ωq
log fuv(yi)

]
,

where we define
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(14.6) Πuv|i =
ωuv|ifuv(yi)∑2

u′=1

∑4
v′=3 ωu′v′|ifu′v′(yi)

,

which could be thought of as the posterior probability that individual i has a QTL
genotype uv. We then implement the EM algorithm with the expanded parame-
ter set {Ω,Π}, where Π = {Πuv|i}. Conditional on Π, we solve for the zeros of

∂
∂Ω�

log L(Ω|y,M) to get the estimates of Ω (the M step). The estimates are then
used to update Π (the E step), and the process is repeated until convergence. The
values at convergence are the maximum likelihood estimates (MLEs).

The estimates of the genotypic values and variance in the M step are derived as

µ̂uv =
∑n

i=1 Πuv|iyi∑n
i=1 Πuv|i

,

σ̂2 =
1
n

n∑

i=1

2∑

u=1

4∑

v=3

Πuv|i(yi − µ̂uv)2.

(14.7)

The estimates of the parental diplotype probabilities will be difficult because these
probabilities are contained at a lower hierarchy of the mixture proportions, as shown
by equation (14.3).

Substituting equation (14.3) into the log-likelihood (14.5), we have

log L(Ω|y,M) =
n∑

i=1

log[ω13f13(yi) + ω14f14(yi) + ω23f23(yi) + ω24f24(yi)]

=
n∑

i=1

log
{[

pqω11
13|i + p(1 − q)ω12

13|i + (1 − p)qω21
13|i + (1 − p)(1 − q)ω22

13|i

]
f13(yi)

+
[
pqω11

14|i + p(1 − q)ω12
14|i + (1 − p)qω21

14|i + (1 − p)(1 − q)ω22
14|i

]
f14(yi)

+
[
pqω11

23|i + p(1 − q)ω12
23|i + (1 − p)qω21

23|i + (1 − p)(1 − q)ω22
23|i

]
f23(yi)

+
[
pqω11

24|i + p(1 − q)ω12
24|i + (1 − p)qω21

24|i + (1 − p)(1 − q)ω22
24|i

]
f24(yi)

}
,

from which the closed forms for the estimates of the parental diplotype probabilities
are derived as

p̂ =
1
n

n∑

i=1

(
ψ1Π13|i + ψ2Π14|i + ψ3Π23|i + ψ4Π24|i

)
,

q̂ =
1
n

n∑

i=1

(
ψ′

1Π13|i + ψ′
2Π14|i + ψ′

3Π23|i + ψ′
4Π24|i

)
,

(14.8)

where

ψ1 =
pqω11

13|i + p(1 − q)ω12
13|i

ω13|i
,
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ψ2 =
pqω11

14|i + p(1 − q)ω12
14|i

ω14|i
,

ψ3 =
pqω11

23|i + p(1 − q)ω12
23|i

ω23|i
,

ψ4 =
pqω11

24|i + p(1 − q)ω12
24|i

ω24|i
,

ψ′
1 =

pqω11
13|i + (1 − p)qω12

13|i
ω13|i

,

ψ′
2 =

pqω11
14|i + (1 − p)qω12

14|i
ω14|i

,

ψ′
3 =

pqω11
23|i + (1 − p)qω12

23|i
ω23|i

,

ψ′
4 =

pqω11
24|i + (1 − p)qω12

24|i
ω24|i

.

There are two approaches for estimating the recombination fraction between the
markers and QTL (r1 or r2) that describes the QTL position when no double re-
combination (case 1) or independent recombination (case 2) is assumed. The first is
based on genome-wide scanning where the QTL position is estimated by treating r1

(and therefore r2) as fixed. Using a grid search, we can obtain the MLE of the QTL
position from the peak of the profile of the log-likelihood ratio test statistics across a
chromosome. The second is based on closed-form estimates of haplotype frequencies
p’s (and therefore the recombination fractions). If interference is assumed between
different intervals (case 3), only the closed-form estimate is used. Combining Table
14.2 and equation (14.3) will generate a mixture of conditional probabilities in terms
of p. Closed forms can be derived for the MLEs of p’s, with constraints p121 = p212 = 0
for case 1 and p121 + p212 = (p121 + p212 + p122 + p211)(p121 + p212 + p112 + p221) for
case 2 and no constraint for case 3. In each case, the MLEs of p’s are used to obtain
the MLEs of the recombination fractions by

MLE Case 1 Case 2 Case 3

r̂1 p̂122 + p̂211 p̂121 + p̂212 + p̂122 + p̂211 p̂122 + p̂211 + p̂121 + p̂212

r̂2 p̂112 + p̂221 p̂121 + p̂212 + p̂112 + p̂221 p̂112 + p̂221 + p̂121 + p̂212

Note that the MLEs of the recombination fractions may be different among the three
cases, with the degrees depending on how much these cases are consistent for a given
data set.



312 14 QTL Mapping in Outbred Pedigrees

14.2.5 Fitting Marker Phenotypes

We have built a general framework for QTL mapping in a full-sib family based on
marker zygote genotypes. But in practice only the phenotypes of the marker zygotes
can be observed. The number of zygote phenotypes of a marker is 4, 3, or 2, depending
on marker cross types (see Fig. 3.3). We can design different incidence matrices I to
connect zygotic genotypes to zygotic phenotypes for all different marker types listed in
Table 3.2. Thus, the joint frequency matrix of two markers and a QTL for particular
marker types can be derived by using the corresponding incidence matrices, which
are expressed as

Ġ = (IM1 ⊗ IM2)G,

where ⊗ is the Kronecker product and IM1 and IM2 are the incidence matrices for
markers M1 and M2. The frequency vector of two-marker genotypes can also be
collapsed in a similar way.

The pattern and structure of an incidence matrix (I) relating the zygotic genotypes
to phenotypes for a marker depend on the cross type of this marker. Let a, b, c, and
d be alleles at a marker between two outbred parents P1 × P2, all dominance to a
null allele o. We have

I =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

and for marker cross type ab × cd,

I =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎦ for ab × ab

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎦ for ab × ao,

I =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
1 0 1 0
0 1 0 0
0 0 0 1

⎤

⎦ for ao × ab

⎡

⎣
1 0 0 0
0 1 0 1
0 0 0 1

⎤

⎦ for ab × ao,
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I =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
1 0 0 0
0 1 1 0
0 0 0 1

⎤

⎦ for ab × ao

⎡

⎣
1 0 0 1
0 1 0 0
0 0 0 1

⎤

⎦ for ab × ao,

I =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 1 1 0
0 0 0 1

]
for ab × ao

[
1 1 0 1
0 0 1 0

]
for ab × ao

[
1 0 1 1
0 1 0 0

]
for ab × ao

[
1 0 0 0
0 1 1 1

]
for ab × ao,

I =
[

1 1 0 0
0 0 1 1

]
,

I =
[

1 0 1 0
0 1 0 1

]
.

With the marker-QTL joint frequencies and marker frequencies for a given marker
type, the conditional probability (ωuv|i) of a QTL genotype given the marker geno-
type of individual i can be calculated. This is used as a basis for QTL mapping in
outcrossing species.

14.2.6 Hypothesis Tests

The existence of a QTL of significant effect within a marker interval can be tested by
calculating a log-likelihood ratio (LR) test statistic under the null (H0: There is no
QTL) and alternative hypotheses (H1: There is a QTL) expressed as

LR = −2[log L0(µuv = µ̃, σ̃2, p̃, q̃) − log L1(Ω̂)].

Because the position of a QTL under the null hypothesis is not identifiable, the LR
under the null hypothesis may not be asymptotically χ2-distributed with four degrees
of freedom. Churchill and Doerge (1994) proposed a permutation test approach to
determine a critical threshold for declaring the existence of a QTL at a given type I
error rate.
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Hypotheses can be made regarding the significance of genetic additive (H0 : α =
β = 0) and dominance effects (H0 : γ = 0). The log-likelihood ratio (LR) test statistics
are calculated for each test, in which the critical thresholds can be determined either
by simulation studies or from the χ2 distribution with two or one degrees of freedom,
respectively, if the sample size used is sufficiently large.

In a full-sib family derived from two outbred parents, it is possible that a putative
QTL does not segregate in a 1:1:1:1 ratio. In practice, the segregation pattern of a
significant QTL should be tested because this is important for designing an efficient
breeding strategy. We can test if the QTL detected is diallelic, segregating 1:2:1 or
1:1. The hypothesis that a significant QTL conforms to segregation type ab × ab, for
example, can be tested by formulating

H0 : α = β,

H1 : α �= β.

Similarly, the hypothesis for testing for the consistency of the QTL segregation to
type ab × bb can be formulated as

H0 : α = 0 or β = 0,

H1 : Neither of them equals zero.

As usual, the critical values for claiming the significance of these effects are deter-
mined on the basis of simulation studies.

We can also make a hypothesis test for the occurrence of double or interfered
recombinations by formulating the null hypotheses

H0 : p121 = p212 = 0(14.9)

and

H0 : c =
p121 + p212

(p121 + p212 + p122 + p211)(p121 + p212 + p112 + p221)
= 1,(14.10)

respectively. The LR values under each of the two null hypotheses (14.9) and (14.10)
and its alternative are calculated, which can each be thought to asymptotically follow
a χ2 distribution with one degree of freedom.

Example 14.1. The first examples of using a controlled cross to map QTL for outbred
trees include studies in poplar (Bradshaw and Stettler 1995), eucalyptus (Grattapaglia
et al. 1995) and loblolly pine (Groover et al. 1994). Here, we use an example from the
hybridization between two poplar species, Populus deltoides and P. euramericana.
A genetic linkage map was constructed using a so-called pseudo-testcross strategy
(Grattapaglia and Sederoff 1994) based on 90 genotypes randomly selected from the
F1 interspecific hybrid family with random amplified polymorphic DNAs (RAPDs),
amplified fraction length polymorphisms (AFLPs), and inter-sample sequence repeats
(ISSR) (Yin et al. 2002). This map comprises the 19 largest linkage groups for each
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parental map, which roughly represent 19 pairs of chromosomes. The 90 hybrid geno-
types used for map construction were measured for wood density with wood samples
collected from 11-year-old stems in a field trial. The measurement for each genotype
was repeated 4–6 times to reduce measurement errors. The means of these genotypes
were calculated and used for QTL mapping here.

A significant QTL for wood density is detected on linkage group D17 reported
in Yin et al. (2002). In this example, the empirical estimate of the critical value is
obtained from 1000 permutation tests. It is found that the critical value for declaring
the existence of a QTL on the whole linkage group under consideration is 6.9 at
the significance level p = 0.05. The profile of the LRs of the full vs. reduced model
across the length of linkage group D17 has a steep peak between a narrow marker
interval AG/CGA-480–AG/CGA-330 (Fig. 14.1). The LR value at this peak is 11.7,
well beyond the empirical critical threshold at the significance level p = 0.05.
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Fig. 14.1. The profile of the log-likelihood ratio (LR) test statistic for QTL detection across
linkage group D17 in Yin et al. (2002) using the mixed-phase analysis. The empirical thresh-
old based on permutation tests (Churchill and Doerge 1994) is indicated at the horizontal
line. The marker names across the linkage group are given below the profile. Adapted from
Lin et al. (2003).

The additive effect of this significant QTL detected is 0.033, or equivalent to 7
percent relative to the overall mean. This QTL was found to explain about 30 percent
of the phenotypic variance for wood density in hybrid poplars. The MLE of phase
probability p is 0.82, thus suggesting that there is quite a high probability of having
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a linkage phase Φ11. This indicates that the positive allele of this QTL that increases
wood density is, at a probability of 0.82, in coupling phase with dominance alleles of
the two markers AG/CGA-480 and AG/CGA-330 flanking the QTL.

The same material was analyzed using a traditional interval mapping approach
that assumes a possible QTL-marker linkage phase at one time. This phase-separate
approach can also identify a significant QTL for wood density but cannot determine
a correct linkage phase because the maximums of the LR values are identical between
two possible linkage phases. Our method provides important information about non-
allelic arrangements on the homologous chromosomes.

14.2.7 The Influence of Linkage Phases

A simulation was performed to test the influence of incorrectly characterizing a linkage
phase on QTL detection and parameter estimation. A full-sib family is simulated for
six equally spaced (20 cM) fully informative markers, forming five intervals. A QTL
is hypothesized at 26 cM from the first marker (located within the second interval).
The phenotypic values for this full-sib family are simulated by giving a particular set
of unknown QTL effect parameters under the parental phase combination Φ11 for the
two parents. The sample size simulated is 400 and the heritability of the trait is 0.4.
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Fig. 14.2. The profiles of the log-likelihood ratio (LR) test statistic from one random
simulation replicate for QTL detection across a linkage group under one mixed- (solid curve)
and four separate (dot curves) phase analyses. The heritability for the trait hypothesized is
H2 = 0.4 with a sample size of 400. It should be noted that the same simulated data set
given α = 0.5, β = 0.5, and γ = 0.5) is used for all of these five different (one mixed- and
four separate-phase) analyses. Adapted from Lin et al. (2003).
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The simulated data under linkage phase combination Φ11 were analyzed using
models based on this phase and three other different phases, Φ12, Φ21, and Φ22.
Because different linkage phases only change the order of the parental chromosomal
pairings, the maximums of the LR values from the correct linkage phase Φ11 and
the three incorrect linkage phases Φ12, Φ21, and Φ22 will be identical (see Fig. 14.2),
suggesting that phase-separate analyses have no power to select a most likely linkage
phase. Also, as shown by flat, crooked curves, the maximum LR value from a single
linkage phase model cannot be used to precisely determine the QTL position. Figure
14.2 also illustrates the LR values across the linkage group calculated when all linkage
phase combinations are considered simultaneously based on the same simulated data
set. A higher peak of the curve for a mixed-phase analysis indicates that the mixed
model is better at detecting a significant QTL than the usual phase-separate analyses.
When an incorrect linkage phase is used, the signs of the MLEs of the additive and
dominance effects of a QTL will reverse.

Example 14.2. Wullschleger et al. (2005) performed QTL mapping for biomass par-
titioning in a backcross, (T × D) × D, derived from two poplar species, Populus
trichocarpa Torr. & Gray (T) and P. deltoids Bartr. (D). The mapping population
includes a total of 171 backcross trees that were genotyped for microsatellite (SSR)
and AFLP markers. Because of the heterozygous nature of poplars, multiple types
of markers were observed. Of them, the testcross markers that are segregating in
parent F1 but not in parent D include 92 SSR and 556 AFLP markers. A genetic
linkage map based on the F1 parent was then constructed from these markers with
the pseudo-testcross strategy (Yin et al. 2004). This map is composed of 19 linkage
groups, equivalent to the Populus chromosome number.

If we are going to map an intercross QTL (Qq × Qq) using a pair of flanking
testcross markers (TD × DD), the F1 parent may have two different diplotypes,
[TQT ][DqD] and [TqT ][DDD]. These two diplotypes with a probability of p and
1− p, respectively, are incorporated into the model for QTL mapping, leading to the
detection of a few significant QTLs that affect biomass partitioning traits in poplar
(Table 14.2).

An intercross QTL for stem biomass was mapped to marker P−204−C2 on linkage
group 6, whereas an intercross QTL near marker T4−10 on linkage group 13 was
observed for stem biomass, leaf biomass percentage, above-ground biomass, and total
biomass.

14.3 Random-Effect Mapping Model for a Complicated
Pedigree

14.3.1 Introduction

In the mixture model (9.4), we assume that different normal components are charac-
terized by a known or unknown number of QTL genotypes. Genetic effects of putative
QTLs on the phenotype, which are embedded within normal distributions, can be di-
rectly estimated by incorporating the fixed-effect model approach. This approach is
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Table 14.3. The detection of intercross QTLs and the parental origin of favorable QTL
alleles for biomass partitioning at year 2 in the field for a hybrid poplar family.

Trait Group Position Phase p̂ â d̂ LR

Stem biomass 6 P−204−C2 DQT 0.71 0.15 -0.02 29.51

Branch biomass 13 T4−10 DQT 0.82 0.92 0.23 35.03

Leaf% 13 T4−10 DQT 0.81 0.79 0.18 31.03

Above-ground biomass 13 T4−10 DQT 0.82 0.83 0.19 32.84

Total biomass 13 T4−10 DQT 0.81 0.80 0.19 31.47

Note: a and d are the additive and dominance genetic effects of an outcrossed QTL, respec-
tively.

useful if the underlying genetic effects can be readily specified, as for controlled crosses
of large size derived from inbred or outbred lines (Lander and Botstein 1989; Haley
and Knott 1992; Zeng 1994; Lin et al. 2003). However, for many outcrossing popu-
lations, the size of a single family can be limited, so that the combination analysis
of multiple families derived from unrelated or related parents is merely a choice. Be-
cause these parents are heterozygous, in which the number of alleles at a locus and
the linkage phase of different loci are unknown, it would be difficult to specify the
genetic effects. A robust method based on a random-effect model approach (Xu and
Atchley 1995), which is not dependent on the parental diplotypes and the number of
QTL alleles, can be used.

Under the fixed model, all effects contained in the expected mean of the normal
distribution are fixed and can be estimated directly from the mixture model. Since
there are no variances for the fixed effects, the phenotypic variance only contains the
residual variance within a QTL genotype. However, in the random-effects model, all
effects contained in the expected mean cannot be estimated because their expectations
are zero. But their variances can be estimated by partitioning the total phenotypic
(co)variances into the corresponding components. Thus, where the fixed model ap-
proach estimates the effect of allelic substitution (or allelic effect), the random model
mapping approach estimates the segregating variance of the QTL.

The theoretical basis of the random model approach is the phenotypic resemblance
(or covariance) between genetically related individuals. The phenotypic variance of an
individual from a noninbred full-sib family is partitioned into the genetic variance due
to the putative QTL, the variance due to the family-specific effect, and the variance
due to the residual effect. Yet, the phenotypic covariance of two different individuals
within the same family can be partitioned into the genetic covariance due to the QTL
and the covariance due to the family-specific effect since the residual effects can be
assumed to be independent between the sibs.
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14.3.2 Statistical Model

Consider multiple related families, each with a different number of sibs. A quantitative
trait, y, is measured for each sib within each family. The phenotypic value of sib j
(j = 1, . . . ,mi) within family i (i = 1, . . . , n) is expressed as a linear function of K
QTLs and other fixed covariates,

yij = µ +
K∑

k=1

αk +
L∑

l=1

βlXl + eij ,(14.11)

where µ is the grand mean, αk is the effect of the kth QTL, Xl’s are some covari-
ates such as sex or age, βl is the effect of the lth covariate that is assumed to be
uncorrelated with genetic and environmental errors, and eij represents a random en-
vironmental error term. The total sample size is N =

∑n
i=1 mi.

Suppose there is a QTL of interest with an additive effect on the trait. Such a
one-QTL model can be written as

yij = µ + aij + dij + gij +
L∑

l=1

βlXl + eij ,(14.12)

where aij ∼ N (0, σ2
a) is the additive genetic effect, dij ∼ N (0, σ2

d) is the dominance
genetic effect, gij ∼ N (0, σ2

g) is the polygenic additive effect that reflects the effects of
unlinked genes or other familial influences, including environmental factors shared by
families (excluding the hypothesized QTL), and eij ∼ N (0, σ2

e) is the environmental
error.

Assuming that aij , dij , gij and eij are uncorrelated random variables, each with
expectation 0, the total variance for a single observation (yij) becomes

var(yij) = σ2
a + σ2

d + σ2
g + σ2

e .

The covariance between two sibs j and j′ from family i is

cov(yij , yij′) = πiaσ2
a + πidσ

2
d + φigσ

2
g ,

where πia is the proportion of alleles identical–by–descent (IBD) shared by family
members j and j′, πid is a binary variable indicating whether j and j′ share both
alleles IBD, and φig is the expected proportion of shared alleles IBD and is, by
expectation, equal to 0.5 for full-sib pairs. Therefore, the total variance-covariance
matrix for y is given by

Σ = Πaσ2
a + Πdσ

2
d + Φgσ

2
g + Iσ2

e ,(14.13)

where Πa is the matrix of the proportion of shared marker alleles IBD, Πd is the
matrix of binary variable πid, and Φg is a matrix of the expected proportion of
shared alleles IBD, and I is the identity matrix.

We write the covariance matrix for two sibs j and j′ in the same family i as
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Σi = Var
[

yij

yij′

]
= σ2

[
1 ρi

ρi 1

]
= σ2Ri,(14.14)

where σ2 is the total phenotypic variance, and

ρi = πia

(
σ2

a

σ2

)
+ πid

(
σ2

d

σ2

)
+ φig

(
σ2

g

σ2

)

= πiah2
a + πidh

2
d + φigh

2
g,

(14.15)

where σ2
a, σ2

d, and σ2
g , as defined, are the additive and dominance genetic variances

of the QTL and the polygenic genetic variance, respectively, and h2
a, h2

d, and h2
g are

the additive and dominance heritabilities of the putative QTL and the proportion of
the phenotypic variance accounted for by the polygenic effect, respectively. The IBD
variables have discrete distributions

πia =

⎧
⎪⎨

⎪⎩

0 if no allele is IBD
1
2 if one allele is IBD
1 if both alleles are IBD

and

πid =

{
1 if both alleles are IBD
0 otherwise.

Equation (14.15) can be extended to relate individuals from different but related
families i and i′, in which case φig should be denoted as φii′g. The determination of
φii′g should be based on quantitative genetic theory. For example, φii′g = 1/4 for two
half-sibs, 1/8 for two cousins, and so on (Falconer and Mackay 1996).

14.3.3 IBD at a QTL

Since genotypes of a QTL cannot be directly observed, we need to use observed marker
information to infer QTL genotypes linked with the markers. It has been shown from
the joint probability for two linked loci that the expected IBD of one locus can be
expressed as a linear function of the IBD of another locus (Haseman and Elston
1972). More recently, a linear model for expressing the IBD of a putative QTL (πia)
in terms of the IBD of two flanking markers M1 and M2 has been developed (Fulker
and Cardon 1994). Let r1, r2, and r be the recombination fractions between marker
M1 and the QTL, the QTL and marker M2, and the two markers, respectively. Fulker
and Cardon (1994) found the relationship

πia = a + b1π1 + b2π2,(14.16)

where π1 and π2 are the IBDs of the two markers, respectively,

b1 =
(1 − 2r1)2 − (1 − 2r2)2(1 − 2r)2

1 − (1 − 2r)4
,
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b2 =
(1 − 2r2)2 − (1 − 2r1)2(1 − 2r)2

1 − (1 − 2r)4
,

a = (1 − b1 − b2)/2.

The IBD of the QTL considered in equation (14.15) is then substituted by equation
(14.16).

Example 14.3. Consider two outbred parents with genotypes 12/12 and 34/34 at two
markers, respectively. These two parents are crossed to generate two offspring, j and
j′, with two-marker genotypes 13/24 and 14/24 (see Fig. 14.3). The IBD coefficients of
alleles shared between sibs j and j′ are π1 = 0.5 for marker A and π2 = 1 for marker
B. Suppose there is a QTL between the two markers with the recombination fractions
r1 = 0.05 and r2 = 0.10. The recombination fraction between the two markers is then
0.14, assuming no interference for crossover at meioses. Based on equation (14.16),
we calculate the IBD of the QTL as follows:

πia =
[
1 − (1 − 2 × 0.05)2 − (1 − 2 × 0.10)2(1 − 2 × 0.14)2

1 − (1 − 2 × 0.14)4

− (1 − 2 × 0.10)2 − (1 − 2 × 0.05)2(1 − 2 × 0.14)2

1 − (1 − 2 × 0.14)4

]

+
(1 − 2 × 0.05)2 − (1 − 2 × 0.10)2(1 − 2 × 0.14)2

1 − (1 − 2 × 0.14)4
× 0.5

+
(1 − 2 × 0.10)2 − (1 − 2 × 0.05)2(1 − 2 × 0.14)2

1 − (1 − 2 × 0.14)4
× 1

= 0.6730

Parent

Offspring 14/2413/24

34/3412/12 x

 j’ j

Fig. 14.3. Diagram for marker segregation between two outbred parents.

14.3.4 The Likelihood

Unrelated Families

The likelihood of observations for a pedigree can be constructed in terms of its struc-
ture. We will consider two types of pedigrees, one in which families are unrelated to
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each other and one in which families are related to different extents. Consider one (i)
of n unrelated families in which there are mi sibs. As defined in equation (14.14), Ri

is now the mi ×mi matrix with 1 on the diagonal and ρi on the off-diagonals. Then,
under the normality assumption, we have a density function

(14.17) fi(yi) =
1

(2πσ2)n/2|Ri|
exp

[
− 1

2σ2

(
ZT

i R−1
i Zi

)]
,

where Zi = yi−1µ−
∑L

l=1 βlXl, yi = (y1, , ymi
)T is an (mi×1) vector of phenotypes,

and 1 is an (m1 × 1) vector with all entries equal to 1. For n independent families,
we have the overall log-likelihood

L(Ω|y) = log[f1(yi)] + ... + log[fn(yn)].(14.18)

The unknown parameters Ω = (µ, βl, σ
2, h2

a, h2
d, h

2
g, r1, r2) contained in the likelihood

(14.18) can be estimated using a maximum likelihood method. As usual, the estimate
of the QTL position can be based on a grid approach by treating r1 or r2 as a known
constant and varying it throughout the marker interval. By taking the derivative of
the log-likelihood function with respect to µ, βl, and σ2, we obtain their MLEs as

µ̂ =

[
n∑

i=1

1TR−1
i 1

]−1 [ n∑

i=1

1TR−1
i yi

]
,

β̂l = (1TR−11)−1(1TR−1y),

σ̂2 =
1
N

n∑

i=1

Ẑ
T
R−1

i Ẑi,

where Ẑi = yi−1µ̂−
∑L

l=1 β̂lXl and N =
∑n

i=1 mi. By plugging µ̂, β̂l, and σ̂2 into the
log-likelihood function, the MLEs of h2

a, h2
d, and h2

g are estimated using the simplex
algorithm (Nelder and Mead 1965).

Related Families

If all families in the pedigree are related to each other, the likelihood function of
phenotypic data (y) is given, under the assumption of multivariate normality, by

L(Ω|y) = (2π)
N
2 |Σ| 12 exp

[
−1

2

(
ZTΣ−1Z

)]
,(14.19)

where N is the total number of offspring from all families, Z = {Zi}n
i=1, y = {yimi

}n
i=1

is an (N × 1) vector of all phenotypes, 1 is an (N × 1) vector with all entries equal
to 1, and

Σ = σ2(Πah2
a + Πdh

2
d + Πgh

2
g + I)

= σ2R,
(14.20)
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where Πa, Πd, and Πg are the (N ×N) matrices for the coefficients of IBD alleles at
the QTL shared with any pair of individuals, the binary variables indicating whether
the IBD alleles are shared between any pair of individuals, and the coefficients of IBD
alleles generally shared with any pair of individuals in the pedigree, respectively. By
taking the derivative of the log-likelihood with respect to µ, βl, and σ2

e , their MLEs
can be obtained as

µ̂ = (1TH−11)−1(1TH−1y),

β̂l = (1TH−11)−1(1TH−1y),

σ̂2 =
1
N

(y − 1µ)T H−1 (y − 1µ) .

By plugging µ̂, β̂l, and σ̂2 into the log-likelihood function, the MLEs of h2
a, h2

d, and
h2

g are estimated using the simplex algorithm.

14.3.5 Hypothesis Testing

After the parameters are estimated, the hypothesis regarding the existence of QTLs
can be tested. This can be done by formulating the hypotheses

H0 : h2
a = h2

d = 0,

H1 : At least one of the heritabilities above is not equal to zero.
(14.21)

The likelihoods under the null (L0(Ω̃|y) and alternative hypotheses (L1(Ω̂|y)) are
calculated, with which the log-likelihood ratio is calculated

LR = −2[ln L0(Ω̃|y) − ln L1(Ω̂|y)],(14.22)

where Ω̃ and Ω̂ are the MLEs of parameters under the H0 and H1, with the former
not affected by marker genotypes. The critical value for the declaration of the exis-
tence of a QTL can be empirically determined by permutation tests. Similar tests for
the additive or dominance variances explained by the QTL can also be made. The
polygenic variance is important in explaining the results, whose significance can be
tested by constructing the corresponding log-likelihood ratio.

Example 14.4. (The Canine Genome Project). A canine pedigree was developed
to map the QTL responsible for canine hip dysplasia (CHD) using molecular markers.
Seven founding Greyhounds and six founding Labrador retrievers were intercrossed,
followed by backcrossing F1’s to the Greyhounds and Labrador retrievers and inter-
crossing the F1’s. A series of subsequent intercrosses among the progeny at different
generation levels led to a complex network pedigree structure (Fig. 14.4) that maxi-
mized phenotypic ranges in CHD-related quantitative traits and the chance of detect-
ing a segregating QTL (Bliss et al. 2002; Todhunter et al. 2005). A total of 148 dogs
from this outbred population were genotyped for 240 microsatellite markers located
on 38 pairs of autosomes and 1 pair of sex chromosomes (Breen et al. 2001). A linkage
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map of the canine genome constructed with these markers displays good coverage of
each chromosome. The distances between adjacent markers were estimated in cM for
the linkage map (Breen et al. 2001). Age at detection of femoral capital ossification
(OSS), one of the important criteria for evaluating CHD, was measured for each of
the dogs studied at its left and right side.

Fig. 14.4. Diagram of an outbred pedigree in a dog. Squares and circles represent males
and females, respectively. Filled and open portions of each symbol represent the proportion
of Greyhound and Labrador Retriever alleles, respectively, possessed by that dog.

We will use the random-effect Mendelian model (14.12) to map OSS based on the
linkage map constructed by the 240 markers. For simplicity, this model ignores the
dominance effect of the QTL and covariate effects, which is expressed as

yij = µ + aij + gij + eij ,

allowing the estimates of the overall mean (µ), the genetic variance contributed by
the QTL (σ2

a), polygenic variance (σ2
g), and residual variance (σ2).

We identified 13 QTLs for OSS at the 0.1 percent genome-wide significance level,
as shown by the peaks of the genome-wide log-likelihood ratio profile that indicate
the MLEs of the QTL positions (Fig. 14.5). There are different estimation values
of σ2

a, suggesting that QTLs contribute differently to the genetic variance. Of the
QTLs detected, six detected on CFA1, CFA3, CFA5, CFA8, CFA9, and CFA28 are
“generalist” in that they affect OSS for both the left and right sides of a hip (Fig. 14.5).
In most cases, consistent σ2

a estimates at the left and right imply that these QTLs
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play equally important roles in the susceptibility of CHD for the two sides. Other
QTLs are “specialist”, with two, on CFA17 and CFAX, being responsible for the left
side, while five, on CFA7, CFA10, CFA18, CFA22, and CFA37, being responsible for
the right side. As shown, these specialist QTLs have no contribution to CHD at the
opposite hip.

14.4 Exercises

14.1 The model for full-sib mapping assumes that marker phases were known prior to QTL
analysis. In other words, given the data set of a full-sib family, two steps are used
for QTL mapping: (i) the determination of marker phases using approaches described
in Chapter 4, and (ii) mapping QTL with known marker phases. Theoretically, the
full-sib QTL model can incorporate the uncertainty of marker phases into the mixture
model (14.4).

(a) Show the procedure for jointly modeling marker phases and marker-QTL phases.
(b) Compare the unifying and separate models. Is the former more advantageous than

the latter?
(c) Find a real example in full-sib mapping. Use the statistical models described in this

chapter to analyze the example and make statistical inferences from your analysis.
14.2 Mapping epistatic QTLs in outbred crosses

Mapping approaches for inbred crosses can be readily extended to map epistatic QTLs
by including more QTL genotypes within the mixture model. Similar modeling can be
done for epistatic mapping in outbred crosses. For fully informative loci, there are four
different alleles at a locus between two outbred parents. Consider two QTL, each of
which has four different genotypes, 13, 14, 23, and 24, in the outbred progeny popula-
tion of size n. Let µu1v1/u2v2 be the genotypic value for QTL genotype u1v1/u2v2

for u1, u2 = 1, 2 and v1, v2 = 3, 4 and let u = (µu1v1/u2v2) be the correspond-
ing mean vector. Genetic effect parameters for two interacting QTLs are arrayed in
a = (µ, α1, β1, γ1, α2, β2, γ2, Iαα, Iαβ , Iβα, Iββ , Jαγ , Jβγ , Kγα, Kγβ , Lγγ)T, where

(a) µ is the overall mean;
(b) α1 is the additive effect due to the substitution from allele 1 to 2 at the first QTL;
(c) β1 is the additive effect due to the substitution from allele 3 to 4 at the first QTL;
(d) γ1 is the dominance effect due to the interaction between alleles from different par-

ents;
(e) α2 is the additive effect due to the substitution from allele 1 to 2 at the second QTL;
(f) β2 is the additive effect due to the substitution from allele 3 to 4 at the second QTL;
(g) γ2 is the dominance effect due to the interaction between alleles from different par-

ents;
(h) Iαα is the additive × additive epistatic effect due to the interaction between the

substitutions from allele 1 to 2 at the first and second QTLs;
(i) Iαβ is the additive × additive epistatic effect due to the interaction between the

substitutions from allele 1 to 2 at the first QTL and from allele 3 to 4 at the second
QTL;

(j) Iβα is the additive × additive epistatic effect due to the interaction between the
substitutions from allele 3 to 4 at the first QTL and from allele 1 to 2 at the second
QTL;

(k) Iαβ is the additive × additive epistatic effect due to the interaction between the
substitutions from allele 3 to 4 at the first and second QTLs;
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Fig. 14.5. The profiles of the log-likelihood ratios (LR) between the full (there is a QTL)
and reduced (there is no QTL) models estimated from the interval model for OSS measured
at the left (OSSL, red) and right (OSSR, blue) of a canine hip across the entire genome from
chromosomes 1 to 39 using the linkage map constructed from microsatellite markers. The
horizontal line indicates the critical threshold at p = 0.001 determined from permutation
tests. Adapted from Liu et al. (2006).
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(l) Jαβ is the additive × dominance epistatic effect due to the interaction between the
substitutions from allele 1 to 2 at the first QTL and the dominance effect at the
second QTL;

(m)Jαβ is the additive × dominance epistatic effect due to the interaction between the
substitutions from allele 3 to 4 at the first QTL and the dominance effect at the
second QTL;

(n) Kαβ is the dominance × additive epistatic effect due to the interaction between the
dominance effect at the first QTL and the substitutions from allele 1 to 2 at the
second QTL;

(o) Kαβ is the dominance × additive epistatic effect due to the interaction between the
dominance effect at the first QTL and the substitutions from allele 3 to 4 at the
second QTL;

(p) Kαβ is the dominance × dominance epistatic effect due to the interaction between
the dominance effects at the first and second QTLs.
We relate the genotypic value vector and genetic-effect vector by

u = Da,

where the design matrix is

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1 −1
1 1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 1 −1 −1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1
1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 −1 1 1
1 1 −1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1
1 1 −1 −1 −1 −1 1 −1 −1 1 1 1 −1 1 1 −1
1 −1 1 −1 1 1 1 −1 −1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1 −1 −1 1 1 −1 1 −1 1
1 −1 1 1 −1 −1 1 1 1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1
1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By estimating the genotypic value vector, the genetic-effect vector can be readily
estimated as â = DTû. The likelihood for two interacting “outbred” QTLs can be
formulated as

L(y) =

n∏

i=1

2∑

u1=1

4∑

v1=3

2∑

u2=1

4∑

v2=3

ωu1v1/u2v2|ifu1v1/u2v2(yi),

where ωu1v1/u2v2|i is the conditional probability of a QTL genotype given the marker
genotype of individual i and fu1v1/u2v2(yi) is a normal distribution density with mean
µu1v1/u2v2 and variance σ2. The conditional probabilities can be derived in terms of
the recombination fractions between the markers and QTL.

The standard EM algorithm can be developed to estimate the genotypic values and
residual variance. By defining

Πu1v1/u2v2|i =
ωu1v1/u2v2|ifu1v1/u2v2(yi)∑2

u′
1=1

∑4

v′
1=3

∑2

u′
2=1

∑4

v′
2=3

ωu′
1v′

1/u′
2v′

2|i
fu′

1v′
1/u′

2v′
2
(yi)
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in the E step, we derived the MLEs of the unknown parameters in the M step as

µ̂u1v1/u2v2 =

∑2

u1=1

∑4

v1=3

∑2

u2=1

∑4

v2=3
Πu1v1/u2v2|iyi

∑2

u1=1

∑4

v1=3

∑2

u2=1

∑4

v2=3
Πu1v1/u2v2|i

,

σ̂2 =
1

n

n∑

i=1

2∑

u1=1

4∑

v1=3

2∑

u2=1

4∑

v2=3

(yi − µ̂u1v1/u2v2)
2Πu1v1/u2v2|i.

The E and M steps are iterated until the estimates are stable. After the parameters
are estimated, a number of hypothesis tests can be made.

(a) Show how you test for the existence of a QTL and determine the critical threshold
for declaring the existence of a QTL.

(b) Hypothesis tests for different genetic effects, including the additive, dominance, and
epistatic effects, can be formulated with the respective null hypotheses:

H0 : α1 = 0,
H0 : β1 = 0,
H0 : γ1 = 0,
H0 : α2 = 0,
H0 : β2 = 0,
H0 : γ2 = 0,
H0 : Iαα = 0,
H0 : Iαβ = 0,
H0 : Iβα = 0,
H0 : Iββ = 0,
H0 : Jαγ = 0,
H0 : Jβγ = 0,
H0 : Kγα = 0,
H0 : Kγβ = 0,
H0 : Lγγ = 0.

Under H0 : α1 = 0, the genotypic values should be constrained by

µ13/13 + µ13/14 + µ13/23 + µ13/24

+ µ14/13 + µ14/14 + µ14/23 + µ14/24

= µ23/13 + µ23/14 + µ23/23 + µ23/24

+ µ24/13 + µ24/14 + µ24/23 + µ24/24.

This constraint is implemented with the EM algorithm as described above, which
will lead to the MLEs of the genotypic values with α1 restricted to 0. Provide the
constraints and algorithms for parameter estimation under each of the other null
hypotheses.

(c) Use the algorithms you develop as a practical example for QTL mapping in out-
crossing populations.

14.3 Show how the relationship between the IBDs of the markers and QTL, as described
by equation (14.16), is derived.

14.4 To map QTLs in a complicated pedigree, we need the matrices IBD between each pair
of dogs. Using Fig. 14.4 as an example:

(a) Write down a (148 × 148) matrix for the proportion of alleles IBD at a QTL.



14.4 Exercises 329

(b) Write down a (148× 148) matrix for the binary variables that indicate whether any
pair of dogs are IBD at the QTL.

(c) Write down a (148 × 148) matrix for the coefficients of IBD between each pair of
dogs for all genes.

14.5 Mapping epistatic QTLs in a complicated pedigree
If epistatic QTLs should be mapped for a pedigree as in Fig. 14.4, we need to incorpo-
rated epistatic variances, i.e., additive × additive (σ2

iaa
), additive × dominance (σ2

iad
),

dominance × additive (σ2
ida

), and dominance × dominance (σ2
idd

) into the random-
effects model. In this case, the total variance for a single observation (yij) is expressed
as

var(yij) = σ2
a1 + σ2

d1 + σ2
a2 + σ2

d2 + σ2
iaa

+ σ2
iad

+ σ2
ida

+ σ2
idd

+ σ2
g + σ2

e .

The covariance between two sibs j and j′ from family i is

cov(yij , yij′) = πia1σ2
a1 + πid1σ2

d1 + πia2σ2
a2 + πid2σ2

d2

+πia1πia2σ2
iaa

+ πia1πid2σ2
iad

+ πid1πid2σ2
ida

+ πid1πid2σ2
idd

+ φigσ2
g ,

where the second-order subscripts of π stand for the identification of a QTL.
(a) Formulate the likelihood for two interactive QTLs.
(b) Derive the algorithms for the estimates of the additive (σ2

a1 and σ2
a2) and dominance

variances (σ2
d1

and σ2
d2

) at two different QTLs and their epistatic variances.
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General Statistical Results and Algorithms

A.1 Likelihood Asymptotics

The following material is adapted from the book Statistical Inference, Second Edition,
by Casella and Berger (2001). The material is a bit advanced, and is included for those
who want to see a more complete picture of the asymptotics of likelihood.

After the data X = x are observed, the likelihood function, L(θ|x), is a completely
defined function of the variable θ, and the LR statistic is

λ(x) =
sup
Θ0

L(θ|x)

sup
Θ

L(θ|x)
.

Even if the two suprema of L(θ|x), over the sets Θ0 and Θ, cannot be analytically
obtained, they can usually be computed numerically. Thus, the test statistic λ(x) can
be obtained for the observed data point even if no convenient formula defining λ(x)
is available.

To define a level α test, the constant c must be chosen so that

(A.1) sup
θ∈Θ0

Pθ (λ(X) ≤ c) ≤ α.

Theorem A.1 (Asymptotic Distribution of the LRT–Simple H0). For testing
H0 : θ = θ0 versus H1 : θ �= θ0, suppose X1, . . . , Xn are iid f(x|θ), θ̂ is the MLE of
θ, and f(x|θ) satisfies the usual regularity conditions. Then, under H0, as n → ∞,

−2 log λ(X) → χ2
1 in distribution,

where χ2
1 is a χ2 random variable with one degree of freedom.

Theorem A.1 can be extended to the case where the null hypothesis concerns a
vector of parameters. The following generalization, which we also state without proof,
allows us to ensure equation (A.1) is true, at least for large samples.
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Theorem A.2. Let X1, . . . , Xn be a random sample from a pdf or pmf f(x|θ). Un-
der the usual regularity conditions, if θ ∈ Θ0, then the distribution of the statistic
−2 log λ(X) converges to a chi-squared distribution as the sample size n → ∞. The
degrees of freedom of the limiting distribution is the difference between the number of
free parameters specified by θ ∈ Θ0 and the number of free parameters specified by
θ ∈ Θ.

Rejection of H0 : θ ∈ Θ0 for small values of λ(X) is equivalent to rejection for
large values of −2 log λ(X). Thus,

H0 is rejected if and only if − 2 log λ(X) ≥ χ2
ν,α,

where ν is the degrees of freedom specified in Theorem A.2. The type I error prob-
ability will be approximately α if θ ∈ Θ0 and the sample size is large. In this way,
equation (A.1) will be approximately satisfied for large sample sizes, and an asymp-
totic size α test has been defined. Note that the theorem will actually imply only
that

lim
n→∞

Pθ(reject H0) = α for each θ ∈ Θ0,

not that the supθ∈Θ0
Pθ(reject H0) converges to α. This is usually the case for as-

ymptotic size α tests.

Theorem A.3. Let X1, . . . , Xn be a random sample from a pdf or pmf f(x|θ), let θ̂
denote the MLE of θ, and let h(θ) be a continuous function of θ. Under regularity
conditions, √

n[h(θ̂) − h(θ)] → n[0, v(θ)],

where Var(h(θ̂)) = v(θ) can be approximated by

Var(h(θ̂)) ≈ [h′(θ)]2|θ=θ̂

− ∂2

∂θ2 log L(θ|X)|θ=θ̂

,

where the denominator is În(θ̂), the observed information number.

Regularity Conditions. Theorems A.1, A.2, and A.3 refer to “usual regularity con-
ditions”. These are mathematically technical conditions, rather boring, and usually
satisfied in most reasonable problems. But they are a necessary evil.

These conditions mainly relate to differentiability of the density and the ability
to interchange differentiation and integration. For more details and generality, see
Casella and Berger (2001), Stuart, Ord and Arnold (1999, Chapter 18), Ferguson
(1996, Part 4), or Lehmann and Casella (1998, Section 6.3).

A.2 General Form of the EM Algorithm

Although we will give a detailed description of the workings of the EM algorithm, we
will suppress some of the more mathematical details. For those, we refer the reader
to Casella and Berger (2001, Chapter 7).
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We start the statistical formulation in the usual manner, having data y with
likelihood function L(θ|y). Then the “missing data” z are introduced (sometimes
called the augmented data), and we refer to (y, z) as the complete data and L(θ|y, z)
as the complete-data likelihood. (In the problems that we will encounter, it will usually
be clear how to choose L(θ|y, z), as it will be clear what type of missing data will make
the computation easier.) Analogously, L(θ|y) is sometimes called the incomplete-data
likelihood or the observed-data likelihood. From these two likelihoods, the entire EM
algorithm follows.

The critical piece of the algorithm is the definition of the missing-data density k,
which is given by

(A.2) k(z|θ,y) =
L(θ|y, z)
L(θ|y)

,

which we then rearrange and take logs to get

(A.3) log L(θ|y) = log L(θ|y, z) − log k(z|θ,y).

The EM algorithm is an iterated algorithm. At each step t = 1, 2, . . ., we calculate an
estimate of θ, θ̂(t) with the property that as t → ∞, θ̂(t) → θ̂, the true MLE. To get
this sequence we work with the expected value of equation (A.3) in the following way.
At iteration t, we have θ̂(t), and we are ready to calculate θ̂(t+1), which we denote by
θ for now. To do so, we first take the expected value of both sides of equation (A.3)
(The E step) with respect to k(z|θ̂(t+1),y) to get

Eθ̂(t) [log L(θ|y)] = Eθ̂(t) [log L(θ|y, z)] − Eθ̂(t) [log k(z|θ,y)]
or(A.4)

log L(θ|y) = Eθ̂(t) [log L(θ|y, z)] − Eθ̂(t) [log k(z|θ,y)].

As the expectation is over the distribution of z, and log L(θ|y) is free of z, we do not
need to take expectations.

Now here is the beauty of the EM algorithm. We choose θ̂(t+1) to be the value of θ
that maximizes Eθ̂(t) [log L(θ|y, z)], the expected complete-data likelihood. By the EM
algorithm theory, this value of θ automatically decreases the last term in equation
(A.4), Eθ̂(t) [log k(z|θ,y)]. Thus, it follows that

log L(θ̂(t)|y) ≤ log L(θ̂(t+1)|y)

and we do not have to calculate Eθ̂(t) [log k(z|θ,y)]!
Thus, the EM sequence θ̂(1), θ̂(2), . . . , θ̂(t)θ̂(t+1) results in an increasing likelihood

L(θ|y) and under a few mild conditions will converge to the MLE of θ.
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R Programs

B.1 Chapter 2

(1) R program for Example 2.4

y<-c(79,82,85,87,100,101,102,103,124,125,126,127)
n<-length(y);nit<-20;
MAA<-array(max(y),dim=c(nit,1));
MAa<-array(mean(y),dim=c(nit,1));
Maa<-array(min(y),dim=c(nit,1));
S<-array(sd(y),dim=c(nit,1));S2<-array(sy,dim=c(nit,1));
S2[1]<-5;
for(i in 2:nit){
temp1<-.25*dnorm(y,mean=MAA[i-1],sd=S[i-1]);
temp2<-.5*dnorm(y,mean=MAa[i-1],sd=S[i-1]);
temp3<-.25*dnorm(y,mean=Maa[i-1],sd=S[i-1]);
PAA<-temp1/(temp1+temp2+temp3);
PAa<-temp2/(temp1+temp2+temp3);
Paa<-1-PAA-PAa;
MAA[i]<-sum(y*PAA)/sum(PAA);
MAa[i]<-sum(y*PAa)/sum(PAa);
Maa[i]<-sum(y*Paa)/sum(Paa);
#S[i]<-sqrt((1/nit)*(sum((y-MAA[i])^2)

+sum((y-MAa[i])^2)+sum((y-Maa[i])^2)))
S2[i]<-(sum(PAA*(y-MAA[i])^2)+sum(PAa*(y-MAa[i])^2)

+sum(Paa*(y-Maa[i])^2))/(n*sum(PAA+PAa+Paa))
S[i]<-sqrt(S2[i])
}
par(mfrow=c(2,2))
par(mar=c(4,4,1,1))
plot(MAA,type="l",lwd=2,main="",
ylab="Mean AA",xlab="Iteration")
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plot(MAa,type="l",lwd=2,main="",
ylab="Mean Aa",xlab="Iteration")

plot(Maa,type="l",lwd=2,main="",
ylab="Mean aa",xlab="Iteration")

plot(S2,type="l",lwd=2,main="",
ylab="Variance",xlab="Iteration")

MAA[nit];MAa[nit];Maa[nit];S2[nit]

(2) R program for Example 2.12

y<-c(1339,154,151,1195);
m<-length(y);n<-sum(y);nsim<-10000;
#-----Log likelihood function---------
lambda<-function(p1,p2,p3,x1,x2,x3)

(x1*log(p1)+x2*log(p2)+x3*log(p3)
+(n-x1-x2-x3)*log(1-p1-p2-p3));

p1hat<-(y[1]+y[4])/(2*n);p2hat<-(y[2]+y[3])/(2*n);
Lnull<-lambda(p1hat,p2hat,p2hat,y[1],y[2],y[3])
Lmax<-lambda(y[1]/n,y[2]/n,y[3]/n,y[1],y[2],y[3]);
Tobs<- -2*(Lnull-Lmax);
Tsim<-array(0,dim=c(nsim,1));
for(i in 1:nsim)
{
x<-rmultinom(1,n,c(y[1]/n,y[2]/n,y[3]/n,y[4]/n))
Tsim[i]<- -2*(lambda((x[1]+x[4])/(2*n),

(x[2]+x[3])/(2*n),(x[2]+x[3])/(2*n),
x[1],x[2],x[3])-lambda(x[1]/n,
x[2]/n,x[3]/n,x[1],x[2],x[3]))

}
hist(Tsim,main=expression(-2(log)(lambda)),

xlab="Simulated Observations",xlim=c(0,40),
freq=F,col="green",breaks=50)

mean(Tsim>Tobs)
#-----------------------------------------------------
#The function rmultinom returns a random multinomial vector
#n=number of variables desired
#size=sum of cells
#prob=vector of cell probabilities
rmultinom <- function(n,size,prob){
K <- length(prob) # #{classes}
matrix(tabulate(sample(K, n*size,

repl = TRUE, prob)+K *0:(n-1),
nbins=n*K),
nrow=n, ncol=K, byrow=TRUE)}
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(1) R program for Example 8.6

#This gets MLEs for the Tomato data
y1<-c(79,82,100,102,124);y2<-c(85,87,101,103,125,126,127)
n1<-length(y1);n2<-length(y2);n<-n1+n2
#-----Initialize Estimates-------
r<-.25;m1<-mean(y1);m2<-mean(y2);s<-sqrt(var(c(y1,y2)))
m1plot<-m1;m2plot<-m2;splot<-s;rplot<-r
#-----Start Iteration------------------------------
nit<-100
for(i in 1:nit)
{
w1<-P1(y1,m1,m2,s,r);w2<-P2(y2,m1,m2,s,r)
m1<-(sum(w1*y1)+sum(w2*y2))/(sum(w1)+sum(w2))
m2<-(sum((1-w1)*y1)+sum((1-w2)*y2))/(sum((1-w1))+sum((1-w2)))
s<-sqrt((sum(w1*(y1-m1)^2+(1-w1)*(y1-m2)^2)

+sum(w2*(y2-m1)^2+(1-w2)*(y2-m2)^2))/n)
r<-(sum(1-w1)+sum(w2))/n
r<-min(r,.5)
m1plot<-c(m1plot,m1);m2plot<-c(m2plot,m2)
splot<-c(splot,s);rplot<-c(rplot,r)
}
#----------------Plot---------------------------
par(mfrow=c(2,2))
par(mar=c(4,4,1,1))
plot(m1plot,type="l",lwd=2,main="",
ylab="mean 1",xlab="Iteration")

plot(m2plot,type="l",lwd=2,main="",
ylab="mean 2",xlab="Iteration")

plot(splot,type="l",lwd=2,main="",
ylab="std",xlab="Iteration")

plot(rplot,type="l",lwd=2,main="",
ylab="r",xlab="Iteration")

#----------Define Functions for P1 and P2
P1<-function(y,t1,t2,w,r)
{
temp1<-(1-r)*dnorm(y,mean=t1,sd=w)
temp2<-r*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
}
P2<-function(y,t1,t2,w,r)
{
temp1<-r*dnorm(y,mean=t1,sd=w)
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temp2<-(1-r)*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
}

(2) R program for Example 8.6

#This gets permutation distribution for the Tomato data
y1<-c(79,82,100,102,124);y2<-c(85,87,101,103,125,126,127)
n1<-length(y1);n2<-length(y2);n<-n1+n2
y<-c(y1,y2)
#-----Initialize Estimates-------
r<-.25;m1<-mean(y1);m2<-mean(y2);s<-sd(y)
Lplot<- logL(y1,y2,m1,m2,s,r)
#-----Start Iteration------------------------------
nperm<-5000 #number of permutation statistics
nit<-50 #number of iterations to find MLEs
for(j in 1:nperm)
{
yp<-sample(y);y1<-yp[1:n1];y2<-yp[(n1+1):n]
for(i in 1:nit)
{
w1<-P1(y1,m1,m2,s,r);w2<-P2(y2,m1,m2,s,r)
m1<-(sum(w1*y1)+sum(w2*y2))/(sum(w1)+sum(w2))
m2<-(sum((1-w1)*y1)+sum((1-w2)*y2))/(sum((1-w1))+sum((1-w2)))
s<-sqrt((sum(w1*(y1-m1)^2+(1-w1)*(y1-m2)^2)

+sum(w2*(y2-m1)^2+(1-w2)*(y2-m2)^2))/n)
r<-(sum(1-w1)+sum(w2))/n
r<-min(r,.5)
}
L<- logL(y1,y2,m1,m2,s,r);Lplot<-c(Lplot,L)
}
#----------------Calculate Statistics-----------
m<-mean(y);s<-sd(y)
LH0<-logL(y1,y2,m,m,s,.5)
Lplot<- -2*(LH0-Lplot)
sort(Lplot)[.95*nperm]
sort(Lplot)[.05*nperm]
#----------------Plot---------------------------
hist(Lplot,main="Permutation Distribution",

freq=F,xlab="-2 log lambda")
#----------Define Functions for P1 and P2
P1<-function(y,t1,t2,w,r)
{
temp1<-(1-r)*dnorm(y,mean=t1,sd=w)
temp2<-r*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
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}
P2<-function(y,t1,t2,w,r)
{
temp1<-r*dnorm(y,mean=t1,sd=w)
temp2<-(1-r)*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
}
#-------------Define Functions for log likelihood----------
logL<-function(y1,y2,t1,t2,w,r)
{
S1<-sum(log((1-r)*dnorm(y1,t1,s)+r*dnorm(y1,t2,s)))
S2<-sum(log(r*dnorm(y2,t1,s)+(1-r)*dnorm(y2,t2,s)))
return(S1+S2)
}

(3) R program for Example 11.2

#This gets MLEs for the Poplar data
data<-read.table("PoplarMarker3.txt",sep = ",",header=F)
M<-data[,1:4];nm<-dim(M);
Y<-data[,5];n<-length(Y)
mY<-mean(Y);sY<-sd(Y)
LL0<-sum(dnorm(Y,mY,sY,log=T))
#----------Create Classes-------------------
#----------Class1=11, Class2=10,Class3=01,Class4=00
Cl<-array(1,c(nm[1],(nm[2]-1)));nc<-dim(Cl)
for(i in 1:nc[1])
{
for(j in 1:nc[2])
{
c1<-1*(M[i,j]==2)*(M[i,(j+1)]==2);
c2<-2*(M[i,j]==2)*(M[i,(j+1)]==1);
c3<-3*(M[i,j]==1)*(M[i,(j+1)]==2);
c4<-4*(M[i,j]==1)*(M[i,(j+1)]==1);
Cl[i,j]<-c1+c2+c3+c4
}
}
ML<-array(0,c(nc[2],4));LL<-array(0,c(nc[2],1))
#---------Define the Y classes for each Interval-----------
for(j in 1:nc[2])
{
y1<-(Cl[,j]==1)*Y;y1<-y1[y1!=0]
y2<-(Cl[,j]==2)*Y;y2<-y2[y2!=0]
y3<-(Cl[,j]==3)*Y;y3<-y3[y3!=0]
y4<-(Cl[,j]==4)*Y;y4<-y4[y4!=0]
#---------Get MLEs---------------------------------
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#-----Initialize Estimates-------
T<-c(mean(y1),mean(y4),sY,.25)
#-----Start Iteration------------------------------
nit<-1000
for(i in 1:nit){T<-c(MLE(y1,y2,y3,y4,T[1],T[2],T[3],T[4]))}
ML[j,]<-T
LL[j]<-2*(logL(y1,y2,y3,y4,T[1],T[2],T[3],T[4])-LL0)
}
print(cbind(ML,LL))
#----------------------------------------------------------
#----------Define Functions for P1 and P2
P1<-function(y,t1,t2,w,v)
{
temp1<-(1-v)*dnorm(y,mean=t1,sd=w)
temp2<-v*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
}
P2<-function(y,t1,t2,w,v)
{
temp1<-v*dnorm(y,mean=t1,sd=w)
temp2<-(1-v)*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
}
#-------------Define log likelihood---------------
logL<-function(y1,y2,y3,y4,t1,t2,w,v)
{
S1<-sum(dnorm(y1,t1,w,log=T))
S2<-sum((1-v)*dnorm(y2,t1,w,log=T)+v*dnorm(y2,t2,w,log=T))
S3<-sum(v*dnorm(y3,t1,w,log=T)+(1-v)*dnorm(y3,t2,w,log=T))
S4<-sum(dnorm(y4,t2,w,log=T))
return(S1+S2+S3+S4)
}
#--------------Define MLE Solver------------------------
MLE<-function(y1,y2,y3,y4,t1,t2,w,v)
{
n1<-length(y1);n2<-n1+length(y2)
n3<-n2+length(y3);n<-n3+length(y4)
w1<-P1(y2,t1,t2,w,v);w2<-P2(y3,t1,t2,w,v)
t1<-(sum(y1)+sum(w1*y2)+sum(w2*y3))/(n1+sum(w1)+sum(w2))
t2<-(sum((1-w1)*y2)+sum((1-w2)*y3)+sum(y4))/(sum((1-w1))
+sum((1-w2))+n-n3)
s1<-sum((y1-t1)^2)
s2<-sum(w1*(y2-t1)^2+(1-w1)*(y2-t2)^2)
s3<-sum(w2*(y3-t1)^2+(1-w2)*(y3-t2)^2)
s4<-sum((y4-t2)^2)
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w<-sqrt((s1+s2+s3+s4)/n)
v<-(sum(1-w1)+sum(w2))/(n3-n1)
return(c(t1,t2,w,v))
}

(4) R program for Example 11.2

#This gets permutation distribution of MLEs
#for the Poplar data
data<-read.table("PoplarMarker1.txt",
sep=",",header=F)
M<-data[,1:4];nm<-dim(M);
Y<-data[,5];n<-length(Y)
mY<-mean(Y);sY<-sd(Y)
LL0<-sum(dnorm(Y,mY,sY,log=T))
#----------Create Classes-------------------
#----------Class1=11, Class2=10,Class3=01,Class4=00
Cl<-array(1,c(nm[1],(nm[2]-1)));nc<-dim(Cl)
for(i in 1:nc[1])
{
for(j in 1:nc[2])
{
c1<-1*(M[i,j]==2)*(M[i,(j+1)]==2);
c2<-2*(M[i,j]==2)*(M[i,(j+1)]==1)
c3<-3*(M[i,j]==1)*(M[i,(j+1)]==2);
c4<-4*(M[i,j]==1)*(M[i,(j+1)]==1)
Cl[i,j]<-c1+c2+c3+c4
}
}
#---------Start Permutation Loop-----------------------
#---------Initialize Estimates-----------------------------
nperm<-250;nit<-100;LRT<-1;
for(k in 1:nperm)
{
yp<-sample(Y);LL<-array(0,c(nc[2],1))
#-----Get maximum of likelihood ratio-------------
for(j in 1:nc[2])
{
y1<-(Cl[,j]==1)*yp;y1<-y1[y1!=0]
y2<-(Cl[,j]==2)*yp;y2<-y2[y2!=0]
y3<-(Cl[,j]==3)*yp;y3<-y3[y3!=0]
y4<-(Cl[,j]==4)*yp;y4<-y4[y4!=0]
T<-c(mean(y1),mean(y4),sY,.25)
for(i in 1:nit){T<-c(MLE(y1,y2,y3,y4,T[1],T[2],T[3],T[4]))}
LL[j]<-2*(logL(y1,y2,y3,y4,T[1],T[2],T[3],T[4])-LL0)
}
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LRT<-c(LRT, max(LL))
}
hist(LRT,freq=F)
#----------------------------------------------------------
#----------------------------------------------------------
#----------Define Functions for P1 and P2
P1<-function(y,t1,t2,w,v)
{
temp1<-(1-v)*dnorm(y,mean=t1,sd=w)
temp2<-v*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
}
P2<-function(y,t1,t2,w,v)
{
temp1<-v*dnorm(y,mean=t1,sd=w)
temp2<-(1-v)*dnorm(y,mean=t2,sd=w)
return(temp1/(temp1+temp2))
}
#-------------Define log likelihood---------------
logL<-function(y1,y2,y3,y4,t1,t2,w,v)
{
S1<-sum(dnorm(y1,t1,w,log=T))
S2<-sum((1-v)*dnorm(y2,t1,w,log=T)+v*dnorm(y2,t2,w,log=T))
S3<-sum(v*dnorm(y3,t1,w,log=T)+(1-v)*dnorm(y3,t2,w,log=T))
S4<-sum(dnorm(y4,t2,w,log=T))
return(S1+S2+S3+S4)
}
#--------------Define MLE Solver------------------------
MLE<-function(y1,y2,y3,y4,t1,t2,w,v)
{
n1<-length(y1);n2<-n1+length(y2)
n3<-n2+length(y3);n<-n3+length(y4)
w1<-P1(y2,t1,t2,w,v);w2<-P2(y3,t1,t2,w,v)
t1<-(sum(y1)+sum(w1*y2)+sum(w2*y3))/(n1+sum(w1)+sum(w2))
t2<-(sum((1-w1)*y2)+sum((1-w2)*y3)+sum(y4))/(sum((1-w1))
+sum((1-w2))+n-n3)
s1<-sum((y1-t1)^2)
s2<-sum(w1*(y2-t1)^2+(1-w1)*(y2-t2)^2)
s3<-sum(w2*(y3-t1)^2+(1-w2)*(y3-t2)^2)
s4<-sum((y4-t2)^2)
w<-sqrt((s1+s2+s3+s4)/n)
v<-(sum(1-w1)+sum(w2))/(n3-n1)
return(c(t1,t2,w,v))}
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