ANALYSIS AND
TRANSMISSION OF
SIGNALS

Y lectrical engineers instinctively think of signals in terms of their frequency spectra
. and think of systems in terms of their frequency responses. Even teenagers know about
M audio signals having a bandwidth of 20 kHz and good-quality loud speakers responding
up to 20 kHz. This is basically thinking in the frequency domain. In the last chapter we
discussed spectral representation of periodic signals (Fourier series). In this chapter we extend
this spectral representation to aperiodic signals.

3.1 APERIODIC SIGNAL REPRESENTATION BY
FOURIER INTEGRAL

Applying a limiting process, we now show that an aperiodic signal can be expressed as a
continuous sum (integral) of everlasting exponentials. To represent an aperiodic signal g(¢)
such as the one shown in Fig. 3.1a by everlasting exponential signals, let us construct a
new periodic signal gr, (¢) formed by repeating the signal g(¢) every Ty seconds, as shown in
Fig. 3.1b. The period T is made long enough to avoid overlap between the repeating pulses. The
periodic signal g7, (f) can be represented by an exponential Fourier series. If we let Ty — oq,
the pulses in the periodic signal repeat after an infinite interval, and therefore

m g, (6) = g(®)
To—o00

Thus, the Fourier series representing g7, (¢) will also represent g(¢) in the limit 7o — oo.
The exponential Fourier series for g7, (¢) is given by

o0
gro(t) = Y Dy 3.1)
A==—00
in which
1 To/2 ,
Dy, = “TG P 8Ty ({)e«jnwgt dt (3.2a)
w'[o
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Figure 3.1 0
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Observe that integrating gr, () over (—719/2,To/2) is the same as integrating g{t) over
(—00, 00). Therefore, Eq. (3.2a) can be expressed as

(o]
Dp=— g()e "0 dy (3.2¢)
70 J-oo

I ;
= — | g@e T gt
ToJ -

Ttisinteresting to see how the nature of the spectrum changes as 7y increases. To understand
this fascinating behavior, let us define G(f), a continuous function of w, as

G(f) :f (e ¥ dr (3.3)
= / - gOe P dr (3.4)

in which @ = 27f . A glance at Egs. (3.2¢) and (3.3) shows that
1
Dy = ;—G(nfo) (3.5)
0

This in turn shows that the Fourier coefficients Dy, are (1/Tp times) the samples of G(f)
uniformly spaced at intervals of fo Hz, as shown in Fig. 3.2a*

Therefore, (1/Tg)G(f) is the envelope for the coefficients Dy. We now let Ty — <0
by doubling T repeatedly. Doubling Ty halves the fundamental frequency fp, so that there
are now twice as many components (samples) in the spectrum. However, by doubling 7y, the
envelope (1/75)G(f) is halved, as shown in Fig. 3.2b. If we continue this process of doubling Tp
repeatedly, the spectrum progressively becomes denser while its magnitude becomes smaller.

* For the sake of simplicity we assume D and therefore G(f) in Fig. 3.2 tobe real. The argument, however, is also
valid for complex Dy, [or G(f)1.
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Figure 3.2
Change in the
Fourier spectrum
when the period
TpinFig. 3.1 is
doubled.
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Note, however, that the relative shape of the envelope remains the same [proportional to G(f)
in Eq. (3.3)]. In the limit as Ty — 00, fo — 0 and D, — 0. This means that the spectrum is
so dense that the spectral components are spaced at zero (infinitesimal) interval. At the same
time, the amplitude of each component is zero (infinitesimal). We have nothing of everything,
yet we have something! This sounds like Alice in Wonderland, but as we shall see, these are
the classic characteristics of a very familiar phenomenon.*

Substitution of Eq. (3.5) in Eq. (3.1) yields

o0
G(nf(]) in2nfor
g = Y 70_61 b (3.6)
A==—0Q
As Ty — 00, fo = 1/Ty becomes infinitesimal (fy — 0). Because of this, we shall replace f;
by a more appropriate notation, Af. In terms of this new notation, Eg. (3.2b) becomes

1
and Eq. (3.6) becomes
g1y(t) = ) [G(nAf)Af] V2o (3.72)

Equation (3.7a) shows that g, (f) can be expressed as a sum of everlasting exponentials of
frequencies 0, £Af, +2Af, £3Af,-- - (the Fourier series). The amount of the component
of fiequency nAf is [G(nAf)Af]. In the limit as Ty — oo, Af — Oand grt) — g(0.
Therefore,

oo
= I = [ (2AnAf)t a ¢ )
g0 = fim gr,() = fim Y Gnafe Af (3.7b)

=00
The sum on the right-hand side of Eq. (3.7b) can be viewed as the area under the function
G(f)é*™#, as shown in Fig. 3.3. Therefore,

* You may consider this as an irrefutable proof of the proposition that 0% ownership of everythin g is better than
100% ownership of nothing!



Figure 3.3

The Fourier series
becomes the
Fourier integral
in the limit as

Ty — ©0.

3.1 Aperiodic Signal Representation by Fourier Integral 65

G(fyel™
Area G(nAf)ej?'MAﬂAf

g = f ” G(f) e qf (3.8)

The integral on the right-hand side is called the Fourier integral. We have now succeeded
in representing an aperiodic signal g(¢) by a Fourier integral* (rather than a Fourier series).
This integral is basically a Fourier series (in the limit) with fundamental frequency Af — 0, as
seen from Eg. (3.7b). The amount of the exponential /2" is G(nAf ) Af . Thus, the function
G(f) given by Eq. (3.3) acts as a spectral function.

We call G(f) the direct Fourier transform of g(¢), and g(¢) the inverse Fourier transform
of G(f). The same information is conveyed by the statement that g(¢) and G(f) are a Fourier
transform pair. Symbolically, this is expressed as

e

G(f) = Flg»] and g = FLG()]

or
gty == G(f)
To recapitulate,
t G(f) = / e dr (3.92)
-
O (3.95)

where ® = 271f.

It is helpful to keep in mind that the Fourier integral in Eq. (3.9b) is of the nature of a
Fourier series with fundamental frequency Af approaching zero [Eq. (3.7b)]. Therefore, most
of the discussion and properties of Fourier series apply to the Fourier transform as well. We
can plot the spectrum G(f) as a function of f. Since G(f) is complex, we have both amplitude
and angle (or phase) spectra:

G(f) = |G(f) %D

in which |G(f)] is the amplitude and 6, (f) is the angle (or phase) of G(f). From Eq. (3.9a),

—C0

* This should not be considered as a rigorous proof of Eq. (3.8). The situation is not as simple as we have made it
1
appear.
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J versus w

Traditionally, we often use two equivalent notations of angular frequency w and frequency
f interchangeably in representing signals in the frequency domain. There is no conceptual
difference between the use of angular frequency o (in unit of radians per second) and frequency
/ (in units of hertz, Hz). Because of their direct relationship, we can simply substitute @ = 27f
into G(f) to arrive at the Fourier transform relationship in the w-domain:

o0

Flg®] = f g(ne ™™ d (3.10)

-0

Because of the additional 27 factor in the variable w used by Eq. (3.10), the inverse transform
as a function of w requires an extra division by 2x. Therefore, the notation of f is slightly
favored in practice when one is writing Fourier transforms, For this reason, we shall, for the
most part, denote the Fourier transform of signals as functions of G(f) in this book. On the
other hand, the notation of angular frequency w can also offer some convenience in dealing
with sinusoids. Thus, in later chapters, whenever it is convenient and nenconfising, we shall
use the two equivalent notations interchangeably.

Conjugate Symmetry Property
From Eq. (3.9a), it follows that if g(¢) is a real function of t, then G(f) and G(—f) are complex
conjugates, that is,*

G(=f) = G*(f) (3.1D)

Therefore,
IG(—f) = |G (3.12a)
B (—f) = —0,(f) (3.120)

Thus, for real g(z), the amplitude spectrum |G(f )] is an even function, and the phase spectrum
B (f) is an odd function of f. This property (the conjugate symmetry property) is valid only
forreal g(r). These results were derived for the Fourier spectrum of a periodic signal in Chapter
2 and should come as no surprise. The transform G(f) is the frequency domain specification

of g(t).

Example 3.1

Find the Fourier transform of e~ u(r).

By definition [Eq. (3.9a)],

00 . o0 4 —1 - e
G(f) = f e-—atuU_)e—ﬂnft dt = / e~ @2 gy : e~ latiznfit
oo 0 a-+jlnf o
But |e™/2f| = 1. Therefore, as 1 — oo, ¢ WHZNE = =@l e=12nfl = (if g > 0.
Therefore,
G{f) = - a>0 (3.13a)
a+jow

* Hermitian symmetry is the term used to describe complex functions that satisfy Eq. (3.11)
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where w = 27rf . Expressing a + jo in the polar form as v/a? + w2 e/ %), we obtain

s 1 27
ot ()

(3.13ba)

1
G(f) = ——e e
& Va*+ 2nf)?

Therefore,

GO = e (2
lG(fN_\/c_zW and  6,(f) = —tan (a)

|G(F3|

&n

i?f%

e u(r)

()

The amplitude spectrum |G(f)| and the phase spectrum 6, (f) are shown in Fig. 3.4b.
Observe that |G(f)] is an even function of f, and 8, (f) is an odd function of f, as expected.

Existence of the Fourier Transform

In Example 3.1 we observed that when a < 0, the Fourier integral for e™*“u(r) does not
converge. Hence, the Fourier transform for e ™#u(t) does not existif a < 0 (growing exponen-
tially). Clearly, not all signals are Fourier transformable. The existence of the Fourier transform
is assured for any g(z) satisfying the Dirichlet conditions, the first of which is™

f lg)dr < oo (3.14)

-0

To show this, recall that ]e”j 2nft | = 1. Hence, from Eq. (3.9a) we obtain

G()| < f ()| dt

—0Q

This shows that the existence of the Fourier transform is assured if condition (3.14) is satisfied.
Otherwise, there is no gnarantee, We have seen in Example 3.1 that for an exponentially growing
signal (which violates this condition) the Fourier transform does not exist. Although this
condition is sufficient, it is not necessary for the existence of the Fourier transform of a signal.

* The remaining Dirichlet conditions are as follows: In any finite interval, g(z) may have oply a finite number of
maxima and minima and a finite number of finite discontinuities. When these conditions are satisfied, the Fourier
integral on the right-hand side of Eq. (3.9b) converges to g(z) at all points where g () is continuous and converges to
the average of the right-hand and left-hand limits of g(¢) at points where g(r) is discontinuous.
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Figure 3.5
Analogy for
Fourier
transform,

For example, the signal (sin at) /¢, violates condition (3.14), but does have a Fourier transform.
Any signal that can be generated in practice satisfies the Dirichlet conditions and therefore has
a Fourier transform. Thus, the physical existence of a signal is a sufficient condition for the
existence of its transform. ‘

Linearity of the Fourier Transform (Superposition Theorem)
The Fourier transform is linear; that is, if

516 <= Gi(f) and 22(t) &= Go(f)

then for all constants a; and a», we have
a181(t) + axg2(t) <= a1G((f) + a2G2(f) (3.15)

The proof is simple and follows directly from Eq. (3.9a). This theorem simply states that
linear combinations of signals in the time domain correspond to linear combinations of their
Fourier transforms in the frequency domain. This result can be extended to any finite number
of terms as

Yo mer(t) = Y aGilf)
k k

for any constants {az} and signals {g (2)}.

Physical Appreciation of the Fourier Transform ‘

To understand any aspect of the Fourier transform, we should remember‘ that Fourier repre-
sentation is a way of expressing a signal in terms of everlasting sinusoids, or exponentials.
The Fourier spectrum of a signal indicates the relative amplitudes and phases of the sinu-
soids that are required to synthesize that signal. A periodic signal’s Fourier spectrum has finite
amplitudes and exists at discrete frequencies (f and its multiples). Such a spectrum is easy
to visualize, but the spectrum of an aperiodic signal is not easy to visualize because it has a
continuous spectrum that exists at every frequency. The continuous spectrum concept can be
appreciated by considering an analogous, more tangible phenomenon. One familiar example
of a continuous distribution is the loading of a beam. Consider a beam loaded with weights
Dy,D,,Ds,. .., Dy, units at the uniformly spaced points xj, X2, . . . , X, as shown in Fig. 3.5a.
The total load W7 on the beam is given by the sum of these loads at each of the n points:

n
Wrp = ZD,‘
i=1

Consider now the case of a continuously loaded beam, as shown in Fig. 3.5b. In this case,
although there appears to be a load at every point, the load at any one point is zero. This does




3.2 Transtorms of Some Useful Functions 69

not mean that there is no load on the beam. A meaningful measure of load in this situation is
not the load at a point, but rather the loading density per unit length at that point. Let G(x)
be the loading density per unit length of beam. This means that the load over a beam length
Ax (Ax — 0) at some point x is G(x)Ax. To find the total load on the beam, we divide the
beam into segments of interval Ax (Ax — 0). The load over the nth such segment of length
Ax is [G(nAx)] Ax. The total load Wy is given by

Xn
Wr = 1l G(nhx) Ax
7= fimy 2 Gan

= f " 600 dx

1

In the case of discrete loading (Fig. 3.5a), the load exists only at the » discrete points, At other
points there is no load. On the other hand, in the continuously loaded case, the load exists at
every point, but at any specific point x the load is zero. The load over a'small interval Ax,
however, is [G{rnAx)] Ax (Fig. 3.5b). Thus, even though the load at a point x is zero, the
relative load at that point is G(x).

An exactly analogous situation exists in the case of a signal spectrum. When g(¢) is
periodic, the spectrum is discrete, and g(7) can be expressed as a sum of discrete exponentials
with finite amplitudes: ‘

g(t) =) Dyel™™!

For an aperiodic signal, the spectrum becomes continuous; that is, the spectrum exists for
every value of f, but the amplitude of each component in the spectrum is zero. The meaningful
measure here is not the amplitude of a component of some frequency but the spectral density
per unit bandwidth. From Eq. (3.7b) it is clear that g(z) is synthesized by adding exponentials
of the form &/2™*A%_ in which the contribution by any one exponential component is zero. But
the contribution by exponentials in an infinitesimal band Af located atf = nAf is G(nAf)Af,
and the addition of all these components yields g(¢) in the integral form:

_ Gzt pnp [ 2nfi
£ = i, 3 Gt ag / Gty

The contribution by components within the band df is G(f) df, in which df is the bandwidth
in hertz. Clearly G(f) is the spectral density per unit bandwidth (in hertz). This also means
that even if the amplitude of any one component is zero, the relative amount of a component
of frequency f is G(f ). Although G(f) is a spectral density, in practice it is customarily called
the spectrum of g (r) rather than the spectral density of g (). Deferring to this convention, we
shall call G(f) the Fourier spectrum (or Fourier transform) of g(z).

3.2 TRANSFORMS OF SOME USEFUL FUNCTIONS

For convenience, we now introduce a compact notation for some useful functions such as
rectangular, triangular, and interpolation functions.
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Figure 3.6 (X
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Unit Rectangular Function
We use the pictorial notation I1(x) for a rectangular pulse of unit height and unit width, centered
at the origin, as shown in Fig. 3.6a:

1 k<3
M) =4 05 |xl=4 (3.16)
0 |x>1

Notice that the rectangular pulse in Fig. 3.6b is the unit rectangular pulse I'(x) expanded
by a factor t and therefore can be expressed as IT1(x/7). Observe that the denominator 7 in
TT(x/1) indicates the width of the pulse.

Unit Triangular Function
We use the pictorial notation A (x) for a triangular pulse of unit height and unit width, centered
at the origin, as shown in Fig. 3.7a:

: { T—=2 x| <
Alx) =
0 lx] >

(3.17)

Rl b

Observe that the pulse in Fig. 3.7b is A(x/7). Observe that here, as for the rectangular pulse,
the denominator T in A(x/7) indicates the pulse width.

Sinc¢ Function sine(x)
The function sin x/x is the “sine over argument” function denoted by sinc (x).”

* sinc (x) is also denoted by Sa (x) in the literature. Some authors define sinc (x) as

. sinmx
sine (x) = ———
Tx
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Figure 3.8
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This function plays an important role in signal processing. We define

sin x

sine (x) = (3.18)

Inspection of Eq. (3.18) shows that

[y

. sinc (x) is an even function of x.

2. sinc (x) = 0 when sin x = 0 except at x = 0, where it is indeterminate. This means that
sinc (x) = Ofort = 4w, 2,437, ...

3. Using 1" Hospital’s rule, we find sinc () = 1.

4. sinc (x) is the product of an oscillating signal sin x (of period 27) and a monotonically

decreasing function 1/x , Therefore, sinc (x) exhibits sinusoidal oscillations of period 2,

with amplitude decreasing continuously as 1/x.

5. In summary, sinc €x) is an even oscillating function with decreasing amplitude. It has a unit
peak at x = 0 and zero crossings at integer multiples of 7.

Figure 3.8a shows sinc (x). Observe that sinc (x) = 0 for values of x that are positive and
negative integral multiples of 7. Figure 3.8b shows sinc (3w/7). The argument 3w/7 = n
when @ = 7r/3 orf = 7/6. Therefore, the first zero of this function occurs at @ = 77 /3

= 7/6).



72 ANALYSIS AND TRANSMISSION OF SIGNALS

Exomple 3.2  Find the Fourier transform of g(r) = I1(¢/7) (Fig. 3.9a).

Figure 3.9
Rectangular
pulse and its
Fourier spectrum.

! &0

8 a

We have

G({f) = f n (%) eI gy

Since IT(z/t) = 1 for |t| < 1/2, and since it is zero for |t] > 1/2,

/2 )
G(f) = f e 12 gy

—~1/2
1 s : 2sin (mf 1)

— Jrft _ Jinfry

= amf ¢ 2nf

= Ts_iré(}n‘? =7 sinc (mfr)

Therefore,
n (1> &= 1 sinc (91) =7 sinc (1f7) (3.19)

T 2 :

Recall that sinc (x) = O when x = +nw. Hence, sinc (wt/2) = 0 when wt/2 = +am;
thatis, when f = =£n/t (n = 1,2,3,...), as shown in Fig. 3.9b. Observe that in this case
G(f) happens to be real. Hence, we may convey the spectral ‘nformation by a single plot
of G(f) shown in Fig. 3.9b.

Example 3.3 Find the Fourier transform of the unit impulse signal & (7).

We use the sampling property of the impulse function [Eq. (2.11)] to obtain

- FI8(D] = / (e gt = =20 — (3.20a)

-0

or

8(1) &= 1 (3.20b)
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Figure 3.10 shows §(¢) and its spectrum.

Figure 3.10
Unit impulse and g = 81
its Fourier A
spectrum.
0 [—»
(a)
Example 3.4  Find the inverse Fourier transform of 8 (27rf) = =3(F).

Figure 3.11
Constant {dc}
signal and its
Fourier specfrum.

From Eq. (3.9b) and the sampling property of the impulse function,

FUs@nf)] = f ” sQrf)e* df = i}_ / - sQuf)e¥ dQ2nf)

b o L

2n 2
Therefore,
1
— == §2nf) (3.21a)
2
or .
1 < () (3.21b)

This shows that the spectrum of a constant signal g (1) = 1isanimpulse 5(f) = 28 2rf),
as shown in Fig. 3.11. '

g=1 G(f) = 8(f)

— 4

(a) (&)

The result [Eq. (3.21b)] also could have been anticipated on qualitative grounds. Recall
that the Fourier transform of g(¢) is a spectral representation of g(7) in terms of everlasting
exponential components of the form &7/t Now to represent a constant signal g(r) = 1,
we need a single everlasting exponential &2t with f = 0. This results in a spectrum at a
single frequency f = 0. We could also say that g(r) = 1 is a dc signal that has a single
frequency component at f = 0 (d¢).
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If an impulse at f == 0 is a spectrum of a dc signal, what does an impulse at f = 0
P J P £ [ .

represent? We shall answer this question in the next example.

Exampie 3.5 Find the inverse Fourier transform of § i —fo).
& We the sampling property of the impulse function to obtain
3 oo ] ]
FG ~ k= [ 8¢ —feh af = oo
—CC
Therefore, o
/I s S(F — fo) (3.222)
This result shows thar the spectrum of an everlasting exponential &/270 i5 3 single impulse
at / = fo. We reach the same conclusion by qualitative reasoning. To represent the ever-
lasting exponential &0 we need a single everlasting exponential &2/ with o = 27 fg
‘Therefore, the spectrum consists of a single component at frequency f = fp.
From Eq. (3.22a) it follows that
eI ey 8(F + o) (3.22b)
Example 3.6 Find the Fourier transforms of the everlasting sinusoid cos 27fp.

Figure 3.12
Cosine signal
and its Fourier
spectrum.

Recall the Euler formula
cos 2mfpt = (p» 2ot i pi2wfory

Adding Egs. (3.22a) and (3.22b), and using the preceding formula, we obtain

Cos 2ot = - [a\f+fo)+é(f ] (3.23)

The spectrum of cos 27fys consists of two impuises at fo and —fy in the f-domain, or,
two impulses at drwy = +2nf; in the w-domain as shown in ‘Fig. 3.12. The result also
follows from qualitative reasoning. An everlasting sinusoid cos wgf can be synthesized by
two everlasting exponentials, ¢/*0 and ¢!, Therefore, the Fourier spectrum consists
of only two components of frequencies wg and —ey.

2 cos G(f) }

AR AL T
VUV T e

(b)
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Example 3.7  Find the Fourier transform of the sign function sgn (¢) (pronounced signum 7), shown in
Fig. 3.13. Its value is +1 or —1, depending on whether ¢ is positive or negative:

1 t>0
sgn(®y =4 0 t=0 (3.24)
-1 <0

We cannot use integration to find the transform of sgn (¢) directly. This is because sgn (1)
violates the Dirichlet condition [see B.g. (3.14) and the associated footnote]. Specifically,
sgn (¢) is not absolutely integrable. However, the transform can be obtained by cousidering
sgn{ as a sum of two exponentials, as shown in Fig. 3.13, in the limitas a — 0:

— 1 —at o]
sgnt gli%[e u(®) — e u(=1)}

Figure 3.13

Sign function. sgn (@)
R i
.................................. gﬂalu([)
0
o
Mealu(_r) .........................................
............. »
Therefore, -
Flsga()] = lim {Fle™u(®)] — Fle"u(-0]}
a—
L : 1 (see pairs 1 and 2 in Table 3.1)
== — o in x)
o aijanf a—jinf see pairs 1 an able
. ~janf 1
=1 p sl el 3.25
a0 <a2 + 4n2f2) jnf (3.25)

3.3 SOME PROPERTIES OF THE
FOURIER TRANSFORM

We now study some of the important properties of the Fourier transform and their implications
as well as their applications. Before embarking on this study, it is important to point out a
pervasive aspect of the Fourier transform—the time-frequency duality.
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TABLE 3.1
Short Table of Fourier Transforms
g G({)
1
—at
I e %ul) T a>0
2 eHu(—n ! a>0
a—jenf
2a
—alt| e
3 e R a>0
4 te %) 1 a>0
(a+j27f )2
Coon,—at n
5 e %u(n %(a oy a>0
6 8@ 1
701 §(H)
8 oot 80 —fo)
9 cos 2mfyt 0.508(f +1fo) +3(f — fo)]
10 sin 2mfyt JOS[S¢F + fo) — 8(F — fl
1
1 S
11w 38 + ot
12 sgnt Ej;f
) 1 2nf
13 cos Zﬂfol‘ u(t) Zfa(f f()) + (S(f ’f‘fO)] + W
. . I
14 sin 2mfpr u(t) 5[5(]6 zfojc 8(f +f0)} -+ m
15 e~%gin2 /0 0
e sin 2w fyr u(t) @ +j2nf)2 n 47[?7%2 a >
_ +j2xf
16 =% cos 2for ulf 4 0
e~ % cos 2mfpt ult) @22 +47t2f02 a>
17 1 (i) T sine (mft)
18 2Bsinc (2xBr) I (5%)
t T . o (nfr
19 A (;) E SINC <—2—')
20 Bsinc? (nBY) A (2—2—)
21 Y02 8t =nT) [ o8¢ — nfp) fo=1

2 127

a/Ime=2onf)

3.3.1 Time—Frequency Duality

Equations (3.9) show an interesting fact: the direct and the inverse transform operations are
remarkably similar. These operations, required to go from g(7) to G(f) and then from G(f)
to g(¢), are shown graphically in Fig. 3.14. The only minor difference between these two
operations lies in the opposite signs used in their exponential indices.



Figure 3.14
Near symmetry
between direct
and inverse
Fourier
transforms.
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0 G

This similarity has far-reaching consequences in the study of Fourier transforms. It is the
basis of the so-called duality of time and frequency. The duality principle may be compared
with a photograph and its negative. A photograph can be obtained from its negative, and
by using an identical procedure, the negative can be obtained from the photograph. For any
result or relationship between g(¢) and G(f), there exists a dual result or relationship, obtained
by interchanging the roles of g(r) and G(f) in the original result (along with some minor
modifications arising because of the factor 277 and a sign change). For example, the time-
shifting property, to be proved later, states that if g(r) <= G(f), then

g(t —10) &= G(Ne >0
The dual of this property (the frequency-shifting property) states that
g = G(f —fo)

Observe the role reversal of time and frequency in these two equations (with the minor differ-
ence of the sign change in the exponential index). The value of this principle lies in the fact
that whenever we derive any result, we can be sure that it has a dual. This knowledge can give
valuable insights about many unsuspected properties or results in signal processing.

The properties of the Fourier transform are useful not only in deriving the direct and
the inverse transforms of many functions, but also in obtaining several valuable results in
signal processing. The reader should not fail to observe the ever-present duality in this dis-
cussion. We begin with the duality property, which is one of the consequences of the duality
principle.

3.3.2 Dudlity Property
The duality property states that if
g1 = G(f)

then
G(t) <= g(—f) (3.26)
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The duality property states that if the Fourier transform of g(¢) is G(f) then the Fourier
transform of G (1), with f replaced by 1, is the g (—f) which is the original time domain signal
with ¢ replaced by —f. )

Proof. From Eq. (3.9b),
o0 .
go:f G(xye/*™ dx
—00
Hence,

o0 .
gknzf Gx)e ™ dx

Changing ¢ to f yields Eg. (3.26). ]

Example 3.8

Figure 3.15
Dudlity property
of the Fourier
transform.

In this exarhp}e we shall apply the duality property [Eq. (3.26)] to the pair in Fig. 3.15a.

&

X 0 T e
2 2
110
/ |
_ANOAL ‘ IN_ 2
T T T

From Eq. (3.19) we have

I1 (%) == T sinc (T 1) (3.27a)
IT (i) &= o sine (mf o) (3.27b)
o R Sp—
I
g

Also G(7) 1s the same as G(f) with f replaced by 7, and g(~—f) is the same as g(¢) with ¢
replaced by —f . Therefore, the duality property (3.26) yields

o sinc (mat) <= 11 (—J—t-) =TI <Ji> {3.28a)
NSRS o o
G R

S

g(=f)

B
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Substituting 7 = 2o, we obtain

¢ 2
rsine () = 2n 1 (i’i) (3.28b)
\2/ T

InEq. (3.8) we used the fact that IT (—1) = TI (r} because I1(¢) is an even function. Figure
3.15b shows this pair graphically. Observe the interchange of the roles of £ and 2/ (with
the minor adjustment of the factor 2x). This result appears as pair 18 in Table 3.1 (with
/2 =W).

As an interesting exercise, generate a dual of every pair in Table 3.1 by applying the duality
property.

3.3.3 Time-Scaling Property

If
g(t) <= G(f)
then, for any real constant a,
1 .
glat) &= —G (}i) (3.29)
lal  \a

Proof: For a positive real constant a,

o

Flglan] = [

—00

" 1 e 5 1 /f
glatye ™ PR gt = ~jf g () TOx gy = — G (m\
a 5 a \a/

-0

Similarly, it can be shown that if @ < 0,

-1 . /f
g(al) < —a‘—‘G (—)

a

Hence follows Hq. (3.29).

Significance of the Time-Scaling Property

The function g(at) represents the function g(r) compressed in time by a factor a (la| > 1.
Similarly, a function G(f /a) represents the function G(f) expanded in frequency by the same
factor a. The time-scaling property states that time compression of a signal vesults inits spectral
expansion, and time expansion of the signal results in its spectral compression. Intuitively,
compression in time by a factor @ means that the signal is varying more rapidly by the
same factor. To synthesize such a signal, the frequencies of its sinusoidal components must
be increased by the factor a, implying that its frequency spectrum is expanded by the factor
a. Similarly, a signal expanded in time varies more slowly; hence, the frequencies of its
components are lowered, implying that its frequency spectrum is compressed. For instance,.
the signal cos 47fyt is the same as the signal cos 27fyf time-compressed by a factor of 2.
Clearly, the spectrum of the former (impulse at 2/y) is an expanded version of the spectrum
of the latter (impulse at ). The effect of this scaling is demonstrated in Fig. 3.16.
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Figure 3.16 g0
Scaling property 1
of the Fourier
fransform,
X 0 T ¢
2 2
&
1
= 0 T
1 —o
(b)
Reciprocity of Signal Duration and Its Bandwidth
The time-scaling property implies that if g(r) is wider, its spectrum is narrower, and vice
versa. Doubling the signal duration halves its bandwidth, and vice versa. This suggests that the
bandwidth of a signal is inversely proportional to the signal duration or width (in seconds). We
have already verified this fact for the rectangular pulse, where we found that the bandwidth
of a gate pulse of Wldth 7 seconds is 1/t Hz. More discussion of this interesting topic can be
found in the literature.?
Example 3.9 Show that

g(=1) <= G(-f) (3.30)

Use this result and the fact that e " ¥u(t) <= 1/ (a +j27f), to find the Fourier transforms of
e‘”u( #) and 41", ~

Equation (3.30) follows from Eq. (3.29) by letting a = —1. Application of Eq. (3.30) to
pair | of Table 3.1 yields

e u(—1) <= Zz—:%ﬁ
Also
™M = ¢7H (1) + e u(—1)
Therefore,
e el 1 ! 2 331)

atianf “a—jonf - @+ @)



Figure 3.17
e and its

Fourier spectrum.

3.3 Some Properties of the Fourier Transform 81

The signal ¢ =%l and its spectrum are shown in Fig. 3.17.

(2nf )

(a) ®

3.3.4 Time-Shifting Property

If
g(t) <= G()
then ‘
gt — 1p) = G(f)e 72/ (3.322)
Proof. By definition,
OO .,
Flg(t —t9)] =/ g(t — tp)e 7 gy
—0C

Letting ¢ — 1o = x, we have

Flott—19)] = / g (et gy

—0Q

00 _— .
= /27t / g(x)e”ﬂ”fxdx o G(f)e—ﬂﬂ.ﬁ‘o (3.32b)
00

This result shows that delaying a signal by ty seconds does not change its amplztude spectrum.
The phase spectrum, however, is changed by —2xfty.

Physical Explanation of the Linear Phase

Time delay in a signal causes a linear phase shift in its spectrum. This result can also be derived
by heuristic reasoning. Imagine g(#) being synthesized by its Fourier components, which are
sinusoids of certain amplitudes and phases: The delayed signal g(t — ) can be synthesized by
the same sinusoidal components, each delayed by 7 seconds. The amplitudes of the components
remain unchanged. Therefore, the amplitude spectrum of g(z — fo) is identical to that of g(z).
The time delay of #p in each sinusoid, however, does change the phase of each component.
Now, a sinusoid cos 2xft delayed by #g is given by

‘cos 2f (t — tg) = cos 2nft — 2nftg)

Therefore, a time delay 1y in a sinusoid of frequency f manifests as a phase delay of 27 ffp. This is
alinear function of f, meaning that higher frequency components must undergo proportionately
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Figure 3,18
Physical
explanation of
the time-shifting
property.:

higher phase shifts to achieve the same time delay. This effect is shown in Fig. 3.18 with two
sinusoids, the frequency of the lower sinusoid being twice that of the upper. The same time
delay fo amounts to a phase shift of /2 in the upper sinusoid and a phase shift of 7 in the
lower sinusoid. This verifies that to achieve the same time delay, higher frequency sinusoids
must undergo proportionately higher phase shifis.

Example 3.10 Find the Fourier transform of e %"=/l

Figure 3.19
Effect of time
shifting on the
Fourier spectrum
of @ signal.

This function, shown in Fig. 3.19a, is a time-shifted version of e %!l (shown in Fig. 3.17a).
From Egs. (3.31) and (3.32) we have

2a

e»a[l—l‘(}]
a? + (2zf)?

e~ (3.33)

The spectrum of e~#/"~%l (Fig. 3.19b) is the same as that of e ~°!"! (Fig. 3.17b), except for
an added phase shift of -27f;.

0i( = 2nft,”
(@ ®

Observe that the time delay 7y causes a linear phase spectrum —27ffy. This example
clearly demonstrates the effect of time shift.
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3.3.5 Frequency-Shifting Property
It
g() <= G(f)

then o
g oy G(F — fi) (3.34)

This property is also called the modulation property.

Proof: By definition,

’ - m - 3 P OO s
f{g(t)eﬂﬁfof] — / g(t)eﬂﬂfote—ﬂﬂﬁ dr = / g(t)e'f(bff—hfo)f df = G(f - fo)

-0 -0

B
This property states that multiplication of a signal by a factor /™0 ghifts the spectrum
of that signal by f = fy. Note the duality between the time-shifting and the frequency-shifting
properties.
Changing fo to —fp in Eq. (3.34) yields

g(Ne TP = G(f 4 fo) ' (3.35)

Because /207 is not a real function that can be generated, frequency shifting in practice
is achieved by multiplying ¢(¢) by a sinusoid. This can be seen from

g(t) cos 2mfot = % [g(t)eﬂ?tfot + gO)e—janoz]

From Egs. (3.34) and (3.35), it follows that

‘ 1
g(t) cos 2mfor = 3 (G —fo) + G +fo)l (3.36)

This shows that the multiplication of a signal g(¢) by a sinusoid of frequency fy shifts the
spectrum G(f) by £fp. Multiplication of a sinusoid cos 27 fpf by g(f) amounts to modulating
the sinusoid amplitude. This type of modulation is known as amplitude modulation. The
sinusoid cos 2mfyt is called the carrier, the signal g (#) is the modulating signal, and the signal
g(f) cos 2mfyt is the modulated signal. Modulation and demodulation will be discussed in
detail in Chapters 4 and 5. '

To sketch a signal g(¥) cos 27fyt, we observe that

g(t) when cos 2xfor = 1
8(#) cos 2 for = { —g(f) whencos 2nfpt = —1
Therefore, g(r) cos 2mfyt touches g () when the sinusoid cos 27/t is at its positive peaks and
touches —g(r) when cos 2rfot is at its negative peaks. This'means that g(¢) and —g(?) act as
envelopes for the signal g(7) cos 2nfpr (see Fig. 3.20c). The signal —g(¢) is a mirror image
of g(z) about the horizontal axis. Figure 3.20 shows the signals g(#), g(¢) cos 2rtfyt, and their
respective spectra.
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Figure 3.20
Amplitude
modulation of @
signal causes
spectral shifting.
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Shifting the Phase Spectrum of a Modulated Signal

‘We can shift the phase of each spectral component of a modulated signal by a constant amount
6y merely by using a carrier cos (2 fot + fp) instead of cos 2mfpt. If a signal g(z) is multiplied
by cos (27 fyt + 6p), then we can use an argument similar to that used to derive Eq. (3.36), to
show that

1 . ,
(1) cos 2efot +60) <= 3 (66— e + G0 + 0 e ] (3.37)

For a special case when 6y = —n /2, Eq. (3.37) becomes
() sin 2mfpr <= % [G(f —f0) e T2 LG + 1) ef”/Z] (3.38)

Observe that sin 27yt is cos 2mfpr with a phase delay of 5 /2. Thus, shifting the carrier phase
by /2 shifts the phase of every spectral component by 7/2. Figures 3.20¢ and f show the
signal g(¢) sin 27 fot and its spectrum. ,
Modulation is a common application that shifts signal spectra. In particular, If several
message signals, each occupying the same frequency band, are transmitted simultaneously
over a common transmission medium, they will all interfere; it will be impossible to separate
or retrieve them at a receiver. For example, if all radio stations decide to broadcast audio signals
simultaneously, receivers will not be able to separate them. This problem is solved by using
modulation, whereby each radio station is assigned a distinct carrier frequency. Each station
transmits a modulated signal, thus shifting the signal spectrum to its allocated band, which is
not occupied by any other station. A radio receiver can pick up any station by tuning to the



Figure 3.21
Bandpass signal
and its spectrum.
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band of the desired station. The receiver must now demodulate the received signal (undo the
effect of modulation). Demodulation therefore consists of another spectral shift required to
restore the signal to its original band.

Bandpass Signals

Figure 3.20(d){f) shows that if g.(r) and g,(r) are low-pass signals, each with a bandwidth B
Hz or 277 B rad/s, then the signals g.(f) cos 2mfpt and g,(¢) sin 27yt are both bandpass signals
occupying the same band, and each having a bandwidth of 2B Hz. Hence, a linear combination
of both these signals will also be a bandpass signal occupying the same band as that of the
either signal, and with the same bandwidth (28 Hz). Hence, a general bandpass signal g, (1)
can be expressed as™

2op () = gc(0) cos 2mfot + g4(£) sin 2 for , (3.39)

The spectrum of g, (¢) is centered at 4+fy and has a bandwidth 28, as shown in Fig. 3.21.
Although the magnitude spectra of both g.(¢) cos 2nfot and gs(¢) sin 2xfyt are symmetrical
about =fp, the magnitude spectrum of their sum, gy, (2), is not necessarily symmetrical about
=fp. This is because the different phases of the two signals do not allow their amplitudes to
add directly for the reason that

alej(pl + azeim # (a1 + az)ei(¢‘+m)

Atypical bandpass signal gy, (¢) and its spectra are shown in Fig. 3.21. We can use a well-known
trigonometric identity to express Eq. (3.39) as :

gop(t) = E(t) cos [2mfpr + ¥ (1)] (3.40)

where

E(t) = +,/g2() + g2(1) (3.41a)

IR | gs(t)}
v =—un [gca)

(3.41b)

* See Sec. 9.9 for a rigorous proof of this statement.
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Because g.(¢) and g,(¢) are low-pass signals, E(f) and ¥ () are also low-pass signals. Because
E(¢) is nonnegative [Eq. (3.41a)], it follows from Eq. (3.40) that £(¢) is a slowly varying
envelope and v/ () is a slowly varying phase of the bandpass signal g5, (¢), as shown in Fig. 3.21.
Thus, the bandpass signal g, (7) will appear as a sinusoid of slowly varying amplitude. Because
of the time-varying phase ¥ (¢), the fréquency of the sinusoid also varies slowly® with time
about the center frequency fp.

Example 3.11 Find the Fourier transform of a general periodic signal g(f) of period Ty, and hence, determine

Figure 3.22
Impulse train and
its. spectrum.

the Fourier transform of the periodic impulse train 87, (¢) shown in Fig. 3.22a.

1
igm ‘Gm = 7o)
A I\
3T, 15 0 2T, 4T, ~2fo -fo O fo 2o
f— S o
(a) (b)

A periodic signal g(7) can be expressed as an exponential Fourier series as

H

o)
g = ) Dy o=
n=-—cC Ty

Therefore,

gty &= Y FiD, "]

R=—00

Now from Eq. (3.22a), it follows that

gty &= > Dy8(f —nfo) (3.42)

n=—00

Equation (2.67) shows that the impulse train 87, () can be expressed as an exponential
Fourier series as

jee]

1 in2
@ = Y T =

n=—00

* It is necessary that B < f for a well-defined envelope. Otherwise the variations of £(z) are of the same order as
the carrier, and it will be difficult to separate the envelope from the carrier.
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Here D, = 1/Tp. Therefore, from Eq. (3.42),

1 o0
) == = n;ww ~ nfo)

1

1
~ s - 3.43)
To Y fo T (3.43)

Thus, the spectrum of the impulse train also happens to be an impulse train (in the frequency
domain), as shown in Fig. 3.23b.

L

3.3.6 Convolution Theorem
The convolution of two functions g(¢) and w(r), denoted by g{£) * w(z), is defined by the
integral
o0
gy xw(t) = / g{tyw(t — v)dr
—o0
The time convolution property and its dual, the frequency convolution property, state
that if
g1(n) == Gi(f)  and g <= Go(f)

then (time convolution)
g1 * g2(0) == G1(HG2(f) (3.44)
and (frequency convolution)

81(1)g2(t) &= G1(f) * Go{f) (3.45)

These two relationships of the convolution theorem state that convolution of two signals in
the time domain hecomes multiplication in the frequency domain, while multiplication of two
signals in the time domain becomes convolution in the frequency domain.

FProof: By definition,

Flgi(t) * g2(t)] = f e /2t [ f gmgza-r)dr] dt

- —00

o0 - o0 .
= / gi{r) [/ e"""”f’gg{t — r}dz] ar
—00 -0

The inner integral is ?he Fourier transform of g2(t — 1), given by [time-shifting property in
Eqg. (3.32a)] Ga(f)e 727 Hence,

OO .
Flgi(t) * g2(t)] = f (D) FIT Gy (f) de

OO .,
= Gy(f) / g1 (e v = G1(H)Ga(f) ]
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The frequency convolution property (3.45) can be proved in exactly the same way by reversing
the roles of g(¢) and G(f).

Bandwidth of the Product of Two Signals

If g1(¢) and g»(#) have bandwidths B and B; Hz, respectively, the bandwidth of g1(£)g2(f) is
By + B, Hz. This result follows from the application of the width property of convolution®
to Eq. (3.45). This property states that the width of x * y is the sum of the widths of x and y.
Consequently, if the bandwidth of g(¢) is B Hz, then the bandwidth of g2(¢) is 2B Hz, and the
bandwidth of g"(#) is nB Hz.*

Example 3.12

Using the time convolution property, show that if
g & G(f)
then
: G()
/ g(t)dr = o+ G(O)E(f) (3.46)
- jenf
Because
1 <1t
u(t_t)"{ 0 7>1
it follows that

x> t
20 % ut) = / (Ol — 1) dv = f (@) dt

ee) —00

Now from the time convolution property [Eq. (3.44)], it follows that

g xu®) & GHU{)

=G(f) —~f~+ S(f)]
_G)
2f+ G(O)S(f)

In deriving the last result we used pair 11 of Table 3.1 and Eq. (2.10a).

3.3.7 Time Differentiation and Time Integration

If

g(t) = G(),

* The width property of convolution does not hold in some pathological cases. It fails when the convolution of two
functions is zero over a range even when both functions are nonzero [e.g., sin 27 fyt u(f) * u(f)]. Technically the
property holds even in this case if in calculating the width of the convolved function, we take into account the range
in which the convolution is zero.
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then (time differentiation)™

dg(r)

— = J2rfG{f)

di

and (time integration)

Proof: Differentiation of both sides of Eq. (3.9b) yields

This shows that

Repeated application of this property yields

The time integration property [Eq. (3.48)] already has been proved in Example 3.12.

-

dg()
a )

dg(r)

— == JInfG(f)

dt

a"g(0)
drt

I3
/ glvydr &= —— + =GO

f - PR2rfG(He > gf

&= (J2rfY"G{)

g9

(3.47)

(3.48)

(3.49)

Example 3.13

Figure 3.23
Using the time
differentiation
property fo
finding the
Fourier transform
of a
piecewise-linear
signal.

Use the time differentiation property to find the Fourier transform of the triangular pulse A(¢/1)
shown in Fig. 3.23a.

&A(b
(a)

- O T .
2 2
dg
2a
T
(b}
- 0 T >
2 2 2
T
E
[
1 C
-T 0 L ©
2 2
-4

* Valid only if the transform of dg (¢)/dt exists.
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To find the Fourier transform of this pulse, we differentiate it successively, as shown in
Fig. 3.23b and c. The second derivative consists of a sequence of impulses (Fig. 3.23c).
Recall that the derivative of a signal at a jump discontinuity is an impulse of strength equal
to the amount of jump. The function dg(r)/dt has a positive jump of 2/t at 7 = *1/2,
and a negative jump of 4/7 at ¢ = 0. Therefore,

d’gr) 2 [5 (H %) 280 + 6 (, _ %)] (3.50)

de? T

From the time differentiation property [Eq. (3.49)],
d’g ) _ 2
=5 = (2nf VG () = ~QnfG() (35la)
Also, from the time-shifting property [Egs. (3.32)],
§(t — tg) 4= ¢ 427f0 (3.51b)

Taking the Fourier transform of Eq. (3.50) and using the results in Eq. (3.51), we obtain
2, .
(jan)zG(f) E— (emfr -2+ e—mﬁ) = — {cos Tl'ff - =—- sm ( £T>
T T

and

8 ofafr\ _t[sin(f/)Y t . o (nfT
)= e () =3 e ) 3 (7)o

The spectrum G(f) is shown in Fig. 3.23d. This procedure of finding the Fourier transform
can be applied to any function g () made up of straight-line segments with g(t) — 0 as
|t/ — oo. The second derivative of such a signal yields a sequence of impulses whose
Fourier transform can be found by inspection. This example suggests a numerical method
of finding the Fourier transform of an arbitrary signal g () by approximating the signal by
straight-line segments.

To provide easy reference, several important properties of Fourier transform are summa-

rized in Table 3.2.

3.4 SIGNAL TRANSMISSION THROUGH

A LINEAR SYSTEM

Alinear time-invariant (LTI) continuous time system can be characterized equally well in either
the time domain or the frequency domain. The LTI system model, illustrated in Fig. 3.24,
can often be used to characterize communication channels. In communication systems and
in signal processing, we are interested only in bounded-input-bounded-output (BIBO) stable
linear systems. Detailed discussions on system stability can be found in the textbook by Lathi.?



Figure 3.24
Signal
fransmission
through a linear
time-invariant
system.

3.4 Signal Transmission Through a Llinear System

TABLE 3.2 .
Properties of Fourier Transform Operations
Operation g G(f)
Superposition g1 + g Gi(f) + G
Scalar multiplication kg(t) kG()
Duality Gl g(=f)
Time scaling glat) I_CllT G (g)
Time shifting g(t —10) G(f)e 2 fiu
Frequency shifting g (el G({f —fo)
Time convolution g1 *x g G1(NG()
Frequency convolution  g1(#)g2(t) G1(f) * Ga(f)
n
Time differentiation L%@— (G2 G()
dt

S t Gf) , 1

Time integration [l 8x) dx 7t + 5G(O3(f)
Input signal Output signal
Time-domain x0) LTI system y(t) = h(t) = x(£)
R h(®) ——

Frequency-domain  X(f) HE) Y(f) = H{f) - X(f)

91

Astable LTI system can be characterized in the time domain by its impulse response (), which
is the system response to a unit impulse input, that is,

y(1) = h(2)

when x(2) = 6(8)

The system response to a bounded input signal x(¢) follows the convolutional relationship

y(t) = h(t) * x(2)

(3.53)

The frequency domain relationship between the input and the output is obtained by taking
Fourier transform of both sides of Eq. (3.53). We let

x(t) &= X()
y{(t) &= Y ()
e <= H{)

Then according to the convolution theorem, Eq. (3.53) becomes

Y =H{) -X({F)

(3.54)

Generally H (f), the Fourier transform of the impulse response A(z), is referred to as the
transfer function or the frequency response of the LTI system. Again, in general, H (f) is
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complex and can be written as
H() = [H({)|H)
where |H (f)| is the amplitude response and 6, (f) is the phase response of the LTI system.

3.4.1 Signal Distortion during Transmission

The transmission of an input'signal x() through a system changes it into the output signal y(7).
Bquation (3.54) shows the nature of this change or modification. Here X (f) and ¥ (f) are the
spectra of the input and the output, respectively. Therefore, H (f) is the spectral response of the
system. The output spectrum is given by the input spectrum multiplied by the spectral response
of the system. Equation (3.54) clearly brings out the spectral shaping (or modification) of the
signal by the system. Equation (3.54) can be expressed in polar form as

YONSHD = X ()| H (F)| O+
Therefore, we have the amplitude and phase relationships

YOI = 1XEOHHE) (3.55a)
Oy(f) = 6x(f) + 6u(f) (3.55b)

During the transmission, the input signal amplitude spectrum |X (f)] is changed to |X (f)] -
[H {f}]. Similarly, the input signal phase spectrum 0, (f) is changed to 6,{f) + 6,(F).

An input signal spectral component of frequency f is modified in amplitude by a factor
|2 (f)| and is shifted in phase by an angle 6;(f). Clearly, |H (f)| is the amplitude response,
and 6, (f) is the phase response of the system. The plots of [H (f)| and #,(f) as functions of
J show at a glance how the system modifies the amplitudes and phases of various sinusoidal
inputs. This is why H (f) is called the frequency response of the system, During transmission
through the system, some frequency components may be boosted in amplitude, while others
may be attenuated. The relative phases of the various components also change. In general, the
output waveform will be different from the input waveform.

3.4.2 Distortionless Transmission

In several applications, such as signal amplification or message signal transmission over a
communication channel, we require the output waveform to be a replica of the input waveform.
In such cases, we need to minimize the distortion caused by the amplifier or the communication
channel. It is therefore of practical interest to determine the characteristics of a system that
allows a signal to pass without distortion (distortionless transmission).

Transmission is said (o be distortionless if the input and the output have identical wave
shapes within a multiplicative constant. A delayed output that retains the input waveform is also
considered distortionless. Thus, in distortionless transmission, the input x(¢) and the output
v{#) satisfy the condition
' vty =k -x(t — 1) (3.56)

The Fourier transform of this equation yields

Y(f) = kX (f)e /2



Figure 3.25
Linear
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But because

Yif)y =X(HHE{F)
we therefore have

H(F) = k e~/2%fd

This is the transfer function required for distortionless transmission. From this equation it
follows that

HE)| =k (3.572)
On(F) = —2nfly (3.57b)

This shows that for distortionless transmission, the amplitude reéponse [H(f)] must be a
constant, and the phase response 6;{f') must be a linear function of f going through the origin

f = 0, as shownin Fig. 3.25. The slope of 6, () with respect to the angular frequency w = 2 f

is —iy, where 14 is the delay of the output with respect to the input.*

All-Pass vs. Distortionless System

In circuit analysis and filter designs, we sometimes are mainly concerned with the gain of a .
system response. An all-pass system has a constant gain for all frequencies [i.e., |[H{f)] = k],
without the linear phase requirement. Note from Eq. (3.57) that a distortionless system is
always an all-pass system, whereas the converse is not true. Because it is very common for
beginners to be confused by the difference between all-pass and distortionless systems, now
is the best time fo clarify,

To see how an all-pass system may lead to distortion, let us consider an illustrative example.
Imagine that we would like to transmit a recorded music signal from a viclin-cello duet. The
violin contributes to the high frequency part of this music signal, while the cello contributes to
the bases part. When this music signal is transmitted through a particular all-pass system, both
parts have the same gain. However, suppose that this all-pass system would cause a T-second
exira delay on the high-frequency content of the music (from the violin). As a result, the
audience on the receiving end will hear a “music” signal that is totally out of sync even though
all signal components have the same gain and all are present. The difference in transmission
delay for components of different frequencies is contributed by the nonlinear phase of H (f)
int the all-pass filter.

* In addition, we require that 8, (0) either be 0 (as shown in Fig. 3.25) or have a constant value n7t (1 an integer),
thatis, 0 (f) = nir - 2mft,. The addition of the excess phase of n may at most change the sign of the signal.
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To be more precise, the transfer function gain [H ()| determines the gain of each input
frequency component, whereas £H (f) determines the delay of each component. Imagine a
system input x(¢) consisting of multiple sinusoids (its spectral components). For the output
signal y(¢) to be distortionless, it should be the input signal multiplied by a gain k and delayed
by 14. To synthesize such a signal, y(f) needs exactly the same components as those of x(1),
with each component multiplied by k and delayed by ;. This means that the system transfer
function H (f) should be such that each sinusoidal component encounters the same gain (or
loss) k and each component undergoes the same time delay of #; seconds. The first condition
requires that

H{) =k

We have seen earlier (Sec. 3.3) that to achieve the same time delay #; for every frequency
component requires a linear phase delay 27ty (Fig. 3.18) through the origin

O (f) = —2nfty

In practice, many systems have a phase characteristic that may be only approximately
linear. A convenient method of checking phase linearity is to plot the slope of ZH(f) as a
function of frequency. This slope can be a function of /' in the general case and is given by

1 th(f)
o df

() = (3.58)

If the slope of 6y is constant (that is, if 6 is linear with respect to f), all the components
are delayed by the same time interval 7. But if the slope is not constant, then the time delay
t; varies with frequency. This means that different frequency components undergo different
amounts of time delay, and consequently the output waveform will not be a replica of the
input waveform (as in the example of the violin-cello duet). For a signal transmission to be
distortionless, 74 (f) should be a constant z; over the frequency band of interest.

Thus, there is a clear distinction between all-pass and distortionless systems. Itis a common
mistake to think that flatness of amplitude response |H (f)| alone can guarantee signal quality.
A system that has a flat amplitude response may yet distort a signal beyond recognition if the
phase response is not linear (£7 not constant).

The Nature of Distortion in Audio and Video Signals
Generally speaking, a human ear can readily perceive amplitude distortion, although it is
relatively insensitive to phase distortion. For the phase distortion to become noticeable, the

* Figure 3.25 shows that for distortionless transmission, the phase response not only is linear but also must pass
through the origin. This latter requirement can be somewhat relaxed for bandpass signals. The phase at the origin
may be any constant [0 (f) = 6y — 2nfty or 6(0) == fy]. The reason for this can be found in Eq. (3.37), which
shows that the addition of a constant phase g fo a spectrum of a bandpass signal amounts to a phase shift of the
carrier by 6. The modulating signai (the envelope) is not affected. The output envelope is the same as the input
envelope delayed by

_ Y ag)
8~ T df
called the group delay or envelope delay, and the output carrier is the same as the input carrier delayed by
o)
tp ol
2nf

called the phase delay, where fj is the center frequency of the passband.
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variation in delay (variation in the slope of 6;,) should be comparable to the signal duration (or
the physically perceptible duration, in case the signal itself is long). In the case of audio signals,
each spoken syllable can be considered to be an individual signal. The average duration of a
spoken syllable is of a magnitude on the order of 0.01 to 0.1 second. The audio systems may
have nonlinear phases, yet no noticeable signal distortion results because in practical andio
systems, maximum variation in the slope of 8y is only a'smal] fraction of a millisecond. This
is the real reason behind the statement that “the human ear is relatively insensitive to phase
distortion.? As a result, the manufacturers of audio equipment make available only |H ()], the
amplitude response characteristic of their systems.

' For video signals, on the other hand, the situation is exactly the opposite. The human
eye is sensitive to phase distortion but is relatively insensitive to amplitude distortion. The
amplitude distortion in television signals manifests itself as a partial destruction of the relative
half-tone values of the resulting picture, which is not readily apparent to the human eye. The
phase distortion (nonlinear phase), on the other hand, causes different time delays in different
picture elements. This results in a smeared picture, which is readily apparent to the human eye.
Phase distortion is also very important in digital communication systems because the nonlinear
phase characteristic of a channel causes pulse dispersion (spreading out), which in turn causes
pulses to interfere with neighboring pulses. This interference can cause an error in the pulse
amplitude at the receiver: a binary 1 may read as 0, and vice versa.

3.5 IDEAL VERSUS PRACTICAL FILTERS

Figure 3.26
Ideal fow-pass
filter frequency
response and its
impulse
response.

Ideal filters allow distortionless transmission of a certain band of frequencies and suppress
all the remaining frequencies. The ideal low-pass filter (Fig. 3.26), for example, allows all
components below f = B Hz to pass without distortion and suppresses all components above
f = B. Figure 3.27 shows ideal high-pass and bandpass filter characteristics.

The ideal low-pass filter in Fig. 3.26a has a linear phase of slope —t4, which results in a
time delay of 7 seconds for all its input components of frequencies below B Hz. Therefore, if
the input is a signal g(r) band-limited to B Hz, the output y(z) is g(1) delayed by 1,4, that is,

y(O) =g — 1)

The signal g(¢) is transmiited by this system without distortion, but with time delay 4.
For this filter |H(f)| = T1(f/2B), and 6,(f) = —2mfg, so that

H(f) =T (%) g~ I¥rha (3.59a)

):463) h(t)

V/\ AN .
0 \/ [ \/ »i\;ﬂta
ek

(a) (b

8,05 =-2nfy, 7
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Figure 3.27
ideal high-pass
and bandpuass
filter frequency
responses.
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The unit impulse response A(z) of this filter is found from pair 18 in Table 3.1 and the time-

shifting property:
- I\ -
B = F 1 [ L) o V2mf
H=F [ ( 28) €

= 2B sinc [27 B(t — 15)] (3.59h)

Recall that 4(7) is the system response to impulse input §(r), which is applied at t = 0. Figure
3.26b shows a curious fact: the response k(¢} begins even before the input is applied (at ¢ = 0).
Clearly, the filter is noncausal and therefore unrealizable; that is, such a system is physically
impossible, since no sensible system can respond to an input before it is applied to the system.
Similarly, one can show that other ideal filters (such as the ideal high-pass or the ideal bandpass
filters shown in Fig. 3.27) are also physically unrealizable.

For a physically realizable system, k() must be causal; that is,

h(H) =0 fort <0

In the frequency domain, this condition is equivalent to the Paley-Wiener criterion, which
states that the necessary and sufficient condition for |H (f)| to be the amplitude response of a
realizable (or causal) system is*

foo | H @]

If H(f) does not satisfy this condition, it is unrealizable. Note that if [H (f)| = 0 over any
finite band, [ InjH{f )[f = 00 over that band, and the condition (3.60) is violated. If, however,
H(f) = 0 at a single frequency (or a set of discrete frequencies), the integral in Eq. (3.60)
may still be finite even though the integrand is infinite. Therefore, for a physically realizable
system, H (f') may be zero at some discrete frequencies, but it cannot be zero over any finite
band. According to this criterion, ideal filter characteristics (Figs. 3.26 and 3.27) are clearly
unrealizable.

* |H ()] is assumed to be square integrable. That is,
[o.¢]
| wnre
—C0
is assumed to be finite.
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The impulse response h(r) in Fig. 3.26 is not realizable. One practical approach to filter
design is 1o cut off the tail of A(7) for # < 0. The resulting causal impulse response k(t), where

By = h(Huls)

is physically realizable because it is causal (Fig. 3.28). If 1, is sufficiently large, ?1\.({) will be a
close approximation of 4{¢), and the resulting filter i (f) will be a good approximation of an
ideal filter. This close realization of the ideal filter is achieved because of the increased value
of time delay 7;. This means that the price of close physical approximation is higher delay in
the output; this is often true of noncausal systems. Of course, theoretically a delay #; = oo is
needed to realize the ideal characteristics. But a glance at Fig. 3.27b shows that a delay ¢4 of
three or four times /W will make k() a ‘reasonably close version of k(r — 1;). For instance,
audio filters are required to handle frequencies of up-to 20 kHz (the highest frequency the
human ear can hear). In this case a f; of about 10~* (0.1 ms) would be a reasonable choice.
The truncation operation [cutting the tail of A(¢) to make it causal], however, creates some
unsuspected problems of spectral spread and leakage, and which can be partly corrected by
using a tapered window function to truncate /(¢) gradually (rather than abruptly).”

In practice, we can realize a variety of filter characteristics to approach ideal charac-
teristics. Practical (realizable) filter characteristics are gradual, without jump discontinuities
in the amplitude response [H(f)|. For example, Butterworth and Chebychev filters are used
extensively in various applications including practical communication circuits.

Analog signals can also be processed by digital means (A/D conversion). This involves
sampling, quantizing, and coding. The resulting digital signal can be processed by a small,
special-purpose digital computer designed to convert the input sequence into a desired output
sequence. The output sequence is converted back into the desired analog signal. A special
algorithm of the processing digital computer can be used to achieve a given signal operation
(e.g.. low-pass, bandpass, or high-pass filtering). The subject of digital filtering is somewhat
beyond our scope in this book. Several excellent books are available on the subject.?

3.6 SIGNAL DISTORTION OVER A
COMMUNICATION CHANNEL

A signal transmitted over a channel is distorted because of various channel imperfections, The
nature of signal distortion will now be studied.

3.6.1 Linear Distortion

We shall first consider linear time-invariant channels. Signal distortion can be caused over
such a channel by nonideal characteristics of magnitude distortion, phase distortion, or both.
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We can identify the effects these nonidealities will have on a pulse g(z) transmitted through
such a channel. Let the pulse exist over the interval (a, b) and be zero outside this interval. The
components of the Fourier spectrum of the pulse have such a perfect and delicate balance of
magnitudes and phases that they add up precisely to the pulse g(#) over the interval (@, b) and
to zero outside this interval. The transmission of g (z) through an ideal channel that satisfies the
conditions of distortionless transmission also leaves this balance undisturbed, because a dis-
tortionless channel multiplies each component by the same factor and delays each component
by the same amount of time. Now, if the amplitude response of the channel is not ideal [i.e.,
if [H(f)] is not equal to a constant], this delicate balance will be disturbed, and the sum of all
the components cannot be zero outside the interval (a,b). In short, the pulse will spread out
(see Example 3.14). The same thing happens if the channel phase characteristic is not ideal,
that is, if 6, (f) = —27fty. Thus, spreading, or dispersion, of the pulse will occur if either the
amplitude response or the phase response, or both, are nonideal.

Linear channel distortion (dispersion in time) is particularly damaging to digital communi-
cation systems. It introduces what is known as intersymbol interferences (IS1). In other words,
a digital symbol, when transmitted over a dispersive channel, tends to spread more widely
than its allotted time. Therefore, adjacent symbols will interfere with one another, thereby
increasing the probability of detection error at the receiver,

Example 3.14 Alow-pass filter (Fig. 3.29a) transfer function H(f) is given by

| (1 +kcos2nfTye e |f| < B
H(f)~{ 0 | > B (3.61)

Apulse g(¢) band-limited to B Hz (Fig. 3.29b) is applied at the input of this filter. Find the
output y(1).

Figure 3.29

- Pulse is

dispersed when

it passes through

a system that is

not distortionless. (a)

|H(f)]
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This filter has ideal phase and nonideal magnitude characteristics. Because g() &
G(), y(0) < Y(f)and

Y{f) =GH()
=G(f)-T1 (L) (1 + k cos 2 fT)e 7>
2B
= G(f)e ¥ 4 k[G(f) cos 2mfT] e 2" (3.62)

Note that in the derivation of Bq. (3.62) because g(#) is band-limited to B Hz, we have
G 11 (zf_B) = G(f). Then, by using the time-shifting property and Eq. (3.32a), we
have

k
y(@O) =gt —ta) + 518l —ta = T)+glt—tg+1)] (3.63)

The output is actually g(#) + (k/2)[g (¢ — T) +g(t + T)] delayed by £5. It consists of g(r)
and its echoes shifted by =1,4. The dispersion of the pulse caused by its echoes is evident
from Fig. 3.29¢. Ideal amplitude but nonideal phase response of H (f) has a similar effect
(see Prob. 3.6-1).

3.6.2 Distortion Caused by Channel Nonlinearities

Until now we have considered the channel to be linear. This approximation is valid only
for small signals. For large signal amplitudes, nonlinearities cannot be ignored. A general
discussion of nonlinear systems is beyond our scope. Here we shall consider a simple case
of a memoryless nonlinear channel where the input g and the output y are related by some
(memoryless) nonlinear equation,

y=f(g)

The right-hand side of this equation can be expanded in a Maclaurin series as
YO = ag + a1g(t) + azg? () + asg (O + - + agg" @) + -+

Recall the result in Sec. 3.3.6 (convolution) that if the bandwidth of g(t) is B Hz, then the
bandwidth of gk (t) is kB Hz. Hence, the bandwidth of y () is greater than kB Hz. Consequently,
the output spectrum spreads well beyond the input spectrum, and the output signal contains -
new frequency components not contained in the input signal. In broadcast cominunication, we
need to amplify signals at very high power levels, where high-efficiency (class C) amplifiers are
desirable. Unfortunately, these amplifiers are nonlinear, and they cause distortion when used
~ to amplify signals. This is one of the serious problems in AM signals. However, FM signals
are not affected by nonlinear distortion, as shown in Chapter 5. If a signal is transmitted over
a nonlinear channel, the nonlinearity not only distorts the signal but also causes interference
with other signals on the channel because of its spectral dispersion (spreading).

For digital communication systems, the nonlinear distortion effect is in contrast to the
time dispersion effect due to linear distortion. Linear distortion causes interference among
signals within the same channel, whereas spectral dispersion due to nonlinear distortion canses
interference among signals using different frequency channels.
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Example 3.15 The input x(¢) and the output y(z) of a certain nonlinear channel are related as

y(£) = x(£) + 0.000158x%(r)

Find the output signal y(r) and its spectrum Y (f) if the input signal is x(r) = 2000
sinc (20007 7). Verify that the bandwidth of the output signal is twice that of the input sig-
nal. This is the result of signal squaring. Can the signal x(¢) be recovered (without distortion)
from the output y(2)?

1.

Since

x(#) = 2000 sinc (20007 1) == X() = (2(;00)

%% We have

(1) = x(t) + 0.000158x%(r) = 2000 sinc (200071) + 0.316 - 2000 sinc? (20007 1)

Y(f) =TI (-f— +o316a (L)
2000 4000

Observe that 0.316 - 2000sinc? (200077) is the unwanted (distortion) term in the received
signal. Figure 3.30a shows the input (desired) signal spectrum X (f); Fig. 3.30b shows
the spectrum of the undesired (distortion) term; and Fig. 3.30c shows the received signal
spectrum Y (). We make the following observations.

The bandwidth of the received signal y(r) is twice that of the input signal x(¢) (because
of signal squaring).

The recewed signal contains the input signal x(¢) plus an unwanted signal
632 sinc?(20007¢). The spectra of these two signals are shown in Fig. 3.30a and b.
Figure 3.30c shows Y (f), the spectrum of the received signal. Note that spectra of
the desired signal and the distortion signal overlap, and it is impossible to recover the
signal x(z) from the received signal y(z) without some distortion.

- We can reduce the distortion by passing the received signal through a low-pass filter

of bandwidth 1000 Hz. The spectrum of the output of this filter is shown in Fig. 3.30d.
Observe that the output of this filter is the desired input signal x(¢) with some residual
distortion.

. We have an additional problem of interference with other signals if the input signal x(z)

is frequency-division-multiplexed along with several other signals on this channel. This
means that several signals occupying nonoverlapping frequency bands are transmitted
simultaneously on the same channel. Spreading the spectrum X (f) outside its original
band of 1000 Hz will interfere with the signal in the band of 1000 to 2000 Hz. Thus,
in addition to the distortion of x(¢), we have an interference with the neighboring
band.
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5. If x(r) were a digital signal consisting of a pulse train, each pulse would be dis-
torted, but there would be no interference with the neighboring pulses. Moreover even
with distorted pulses, data can be received without loss because digital communica-
tion can withstand considerable pulse distortion without loss of information. Thus,
if this channel were used to transmit a time-division multiplexed signal consisting
of two interleaved pulse trains, the data in the two trains would be recovered at the
receiver.

3.6.3 Distortion Caused by Multipath Effects

A multipath transmission occurs when a transmitted signal arrives at the receiver by two or
more paths of différent delays, For example, if a signal is transmitted over a cable that has
impedance irregularities (mismatching) along the path, the signal will arrive at the receiver
in the form of a direct wave plus various reflections with various delays. In radio links, the
signal ;afi be received by direct path between the transmitting and the receiving antennas and

2lso by reflections from other objects, such as hills and buildings. In long-distance radio links

using the ionosphere, similar effects occur because of one-hop and multihop paths. In each
of these cases, the transmission channel can be represented as several channels in parallel,
each with a different relative attenuation and a different time delay. Let us consider the case
of only two paths: one with a unity gain and a delay ¢4, and the other with a gain « and a
delay 75 + Az, as shown in Fig. 3.31a. The transfer functions of the two paths are given by
e and ge/2 (at i), respectively. The overall transfer function of such a channel is
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Figure 3.31
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H(f), given by
H({) = o2l eI g +B0
= ¢ VP (] 4 eI ATy (3.64a)

= eI (1 + o cos 2mf At — ja sin 27f At)

(3.64b)

in 2mf At
= \/1 +a? + 20 cos2nf At exp | —] (Zﬂﬂd + tan”! o sin 21 )

I +acos2afAr)
I (£ ()

Both the magnitude and the phase characteristics of H (f) are periodic in f with a period of
1/ At (Fig. 3.31b). The multipath channel, therefore, can exhibit nonidealities in the magnitude
and the phase characteristics of the channel and can cause linear distortion (pulse dispersion),
as discussed earlier.

If, for instance, the gains of the two paths are very close, that is, @ & 1, then the signals
received from the two paths may have opposite phase (7 radians apart) at certain frequen-
cies. This means that at those frequencies where the two paths happen to result in opposite
phases, the signals from the two paths will almost cancel each other. Equation (3.64b) shows

- that at frequencies where f = n/(2Af) (n 0dd), cos 2mf At = —1, and [H(f)] &~ 0 when

o =~ 1. These frequencies are the multipath null frequencies. At frequencies f = n/(2At)
(n even), the two signals interfere constructively to enhance the gain. Such channels cause
frequency-selective fading of transmitted signals. Such distortion can be partly corrected by
using the tapped delay-line equalizer, as shown in Prob. 3.6-2. These equalizers are useful in
several applications in communications. Their design issues are addressed later in Chapters 7
and 12.
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3.6.4 Fading Channels

Thus far, the channel characteristics have been assumed to be constant with time. In prac-
tice, we encounter channels whose transmission characteristics vary with time. These include
troposcatter channels and channels using the ionosphere for radio reflection to achieve long-
distance communication. The time variations of the channel properties arise because of semi
periodic and random changes in the propagation characteristics of the medium. The reflection
properties of the ionosphere, for example, are related to meteorological conditions that change
seasonally, daily, and even from hour to hour, much like the weather. Periods of sudden storms
also occur. Hence, the effective channel transfer function varies semi periodically and ran-
domly, causing random attenuation of the signal. This phenomenon is known as fading. One
way to reduce the effects of slow fading is to use automatic gain control (AGC).”

Fading may be strongly frequency dependent where different frequency components
are affected unequally. Such fading, known as frequency-selective fading, can cause serious
problems in communication. Multipath propagation can cause frequency-selective fading.

3.7 SIGNAL ENERGY AND ENERGY
SPECTRAL DENSITY

The energy £, of a signal g(z) is defined as the area under g (#) |2. We can also determine the
signal energy from its Fourier transform G(f) through Parseval’s theorem.

3.7.1 Parseval's Theorem

Signal energy can be related to the signal spectrum G(f ) by substituting Eq. (3.9b) in Eq. (2.2}:

B, = f " egrdi= f g0 { ] Gty df} it

—oC - —00

Here, we used the fact that g* (), being the conjugate of g(7), can be expressed as the conjugate
of the right-hand side of Eq. (3.9b). Now, interchanging the order of integration yields

E, = [Z G*(f) UOO 10 dt] df

~0Q

= Z GG df

SN GR (3.65

-

This is the well-known statement of Parseval theorem. A similar result was obtained for a
periodic signal and its Fourier series in Eq. (2.68). This result allows us to determine the signal
energy from either the time domain specification g (¢) or the frequency domain specification
G(f) of the same signal.

* AGC will also suppress slow variations of the original signal.
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Example 3.16 Verify Parseval's theorem for the signal g () = e @ u(t) (a > 0).
P

[oe] o0 1
E, = f gr®dr = / et = — {(3.66)
N —o0 [t} 2a
We now determine £, from the signal spectrum G(f) given by

1

G = je2rf +a

and from Eq. (3.65),

00 o0 1 | wrl® 1
E, = GO df = e df = tan ! |
8 foo' Ohd=| iYL . 2a

which verifies Parseval’s theorem.

3.7.2 Energy Spectral Density (ESD)

Equation (3.65) can be interpreted to mean that the energy of a signal g(¢) is the result of
energies contributed by all the spectral components of the signal g(1). The contribution of a
spectral component of frequency f is proportional to |G(f)|?. To elaborate this further, consider
a signal g(z) applied at the input of an ideal bandpass filter, whose transfer function H(f) is
shown in Fig. 3.32a. This filter suppresses all frequencies except a narrow band Af (Af — 0)
centered at angular frequency wp (Fig. 3.32b). If the filter output is y(¢), then its Fourier
transform Y (f) = G(f)H (f), and E,, the energy of the output y(1), is

Ey = f \GFH () df (3.67)

Because H(f) = 1 over the passband Af, and zero everywhere else, the integral on the
right-hand side is the sum of the two shaded areas in Fig. 3.32b, and we have (for Af — 0)

Ey = 2|G(f) > df

Thus, 2|G(f)|? df is the energy contributed by the spectral components within the two narrow
bands, each of width Af Hz, centered at ;). Therefore, we can interpret |G(F) 12 as the energy
per unit bandwidth (in hertz) of the spectral components of g(¢) centered at frequency f.
In other words, |G(f)|? is the energy spectral density (per unit bandwidth in hertz) of g().
Actually, since both the positive- and the negative-frequency components combine to form the
components in the band Af, the energy contributed per unit bandwidth is 2|G(f)|?. However,
for the sake of convenience we consider the positive- and negative-frequency components to
be independent. The energy spectral density (ESD) W, (¢) is thus defined as

W, (F) = |G (3.68)
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Figure 3.32
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the energy Iy
spectral density " * (a) |

of a signal.

and Eq. (3.65) can be expressed as

Ey = f Y (f)df (3.692)

From the results in Example 3.16, the ESD of the signal g(#) = e “u(#) is

1
) = 16O = G G.690)

3.7.3 Essential Bandwidth of a Signal

The spectra of most signals extend to infinity. However, because the energy of a practical signal
is finite, the signal spectrum must approach O asf — oo. Most of the signal energy is contained
within a certain band of B Hz, and the energy content of the components of frequencies greater
than B Hz is negligible. We can therefore suppress the signal spectrum beyond B Hz with little
effect on the signal shape and energy. The bandwidth B is called the essential bandwidth of the
signal, The criterion for selecting B depends on the error tolerance in a particular application.
We may, for instance, select B to be that bandwidth that contains 95% of the signal energy.” The
energy level may be higher or lower than 95%, depending on the precision needed. We can use
such a criterion to determine the essential bandwidth of a signal. Suppression of all the spectral
components of g () beyond the essential bandwidth results in a signal g(¢), which is a close
approximation of g ().} If we use the 95% criterion for the essential bandwidth, the energy of
the error (the difference) g(t) — g() is 5% of E,. The following example demounstrates the
bandwidth estimation procedure.

* Hssential bandwidth for a low-pass signal may also be defined as a frequency at which the value of the amplitude

spectrum is a small fraction (&bout 5-10%) of its peak value. In Example 3.16, the peak of |G(f)| is 1/a, and it
coccurs at f = 0.

TIn practice the truncation is performed gradually, by using tapered windows, to avoid excessive spectral leakage

due to the abrupt truncation.”
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Example 3.17 Estimate the essential bandwidth W (in rad/s) of the signal e”#u(t) if the essential band is

Figure 3.33
Estimating the
essential
bandwidth of o

signal,

required to contain 95% of the signal energy.

%%a In this case,
s{ I
Gy = ——
) J2nf +a
and the ESD is
I ——
- Quf)t+a?

{ —p
B B f

This ESD is shown in Fig. 3.33. Moreover, the signal energy E, is the area under this
ESD, which has already been found to be 1/2a. Let W rad/s be the esseatial bandwidth,
which contains 95% of the total signal energy E,. This means 1/2x times the shaded area

o
.
=
§
o

§ in Fig. 3.33 is 0.95/2a, that is,
o
. 095 /W/Zﬂ df
( 20 Jowpm Quf)?+ad?
1 2 W/2m 1
= — tan~! Lf = — tan”~! EV—
2ra a \_wpx Ta a
or
0.95 w
: Tt Y — W =127 aradss
Z a

In terms of hertz, the essential bandwidth is

B=—“i=2.02a Hz
2

This means that in the band frdm 0 (dec) to 12.7 x a rad/s (2.02 x a Hz), the spectral
components of g(¢) contribute 95% of the total signal energy; all the remaining spectral
components (in the band from 2.02 x a Hz to co) contribute only 5% of the signal energy.*

* Note that although the ESD exists over the band oo to 0o, the trigonometric spectrum exists only over the band 0
to oo. The spectrum range —oo to oo applies to the exponential spectrum. In practice, whenever we talk about a
bandwidth, we mean it in the trigonometric sense. Hence, the essential band is from 0'to B Hz (or W rad/s), not from
—BtoB. :
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Examp|e 3.18 Estimate the essential bandwidth of a rectangular pulse g(r) = T (¢/T) (Fig. 3.34a), where
the essential bandwidth is to contain at least 90% of the pulse energy.

Figure 3.34
(a) EXFGN/FGC
rectangular
function, (b} its
energy spectral
density, and

{c) fraction of
energy inside
B{Ho).

Also because

For this pulse, the energy E; is

o0 T/2
Eng gz(t)dtzf dt=T

—00 —T/2

1 (-;—) &= T sinc (mfT)

g()
1

=T
2

(YL

(a)

V,(f) = | G(F)?

0.81

0.61

0.41

0.21

t + ¢ BT w2~

t t t WT —>
41 6n 8n
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the ESD for this pulse is
W, (f) = |G(F)* = T sinc? (mfT)

This ESD is shown in Fig. 3.34b as a function of w7 as well as fT, where f is the frequency
in hertz. The energy Fp within the band from 0 to B Hz is given by

e

B
Ep = / 72 sinc? (wfTy df
B

Setting 27T = x in this integral so that df = dx /(2n T), we obtain

T /ZJIBT Yz
Ep = — sine (—) dx
T Jo 2

Also because £, =T, we have

E 2n BT
B if sinc? (f) dx
Eg T Jo 2

The integral on the right-hand side is numerically computed, and the plot of E/E, vs.
BT is shown in Fig. 3.34c. Note that 90.28% of the total energy of the pulse g(r) is
contained within the band B = 1/T Hz. Therefore, by the 90% criterion, the bandwidth
of a rectangular pulse of width 7 seconds is 1/7 Hz.

=

L

3.7.4 Energy of Modulated Signals

We have seen that modulation shifts the signal spectrum G(f) to the left and right by f5. We
now show that a similar thing happens to the ESD of the modulated signal.
Let g(¢) be a baseband signal band-limited to B Hz. The amplitude-modulated signal

@(r) is
@(t) = g(r) cos2nfot

and the spectrum (Fourier transform) of ¢/(r) is
O¢) = S1G( +/0) + OF ~ )
The ESD of the modulated signal ¢(z) is |®(f)|?, that is,
Uo(f) = %@G(f +fo) + G ~ o)
Iffy = B, then G(f + fu) and G(f — fy) are nonoverlapping (see Fig. 3.35), and
W) = 3 160+ + 16 »~fo>|ﬂ

1 i
=7 Ve ¢+ + Z\pg 1) (3.70)



Figure 3.35
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K/4 ‘
(]) [ Jo K ]J’—-’>
(b) 2B

The ESDs of both g(f) and the modulated signal ¢(r) are shown in Fig. 3.35. It is clear that
modulation shifts the BSD of g(z) by +fy. Observe that the area under W, (f) is half the area
under W, (f). Because the energy of a signal is proportional to the area under its ESD, it follows
that the energy of ¢(z) is half the energy of g(¢), that is,

: .
Eo=3E  fo=B (3.71)

It may seem surprising' that a signal ¢(¢), which appears so energetic in comparison to g(7),
should have only half the energy of g(f). Appearances are deceiving, as usual. The energy of
a signal is proportional to the square of its amplitude, and higher amplitudes contribute more
energy. Signal g(¢) remains at higher amplitude levels most of the time. On the other hand,
@(1), because of the factor cos 27 fpt, dips to zero amplitude levels many times, which reduces
its energy.

3.7.5 Time Autocorrelation Function and
the Energy Spectral Density

In Chapter 2, we showed that a good measure of comparing two signals g () and z(2) is the
cross-correlation function ¥, () defined in Eq. (2.46). We also defined the correlation of a
signal g(r) with itself [the autocorrelation function ¥, ()] in Eq. (2.47). For a real signal g (),
the autocorrelation function g (r) is given by*

Yo (T) = / ggt+T)dt (3.72a)

—00

* For a complex signal g (1), we define

o0 o5 .
wo=[ soge-nda= [ fFosroa
oo -0
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Setting x = ¢ + v in Eq. (3.72a) yields

o0
Y (r) = / gx)glx — 1) dx
e}
In this equation, x is a dummy variable and could be replaced by ¢. Thus,

Ye(r) = f ggt £ r)dt (3.72b)

=00

This shows that for a real g(), the autocorrelation function is an even function of 7, that is,
Ve (r) = Yo (—1) (3.72¢0)

There is, in fact, a very important relationship between the autocorrelation of a signal and
its ESD. Specifically, the autocorrelation function of a signal g(r) and its ESD W, (f) form a
Fourier transform pair, that is,

Ve(t) &= ¥ () (3.73a)

Thus, ' -
Ve (f) = f{x/fg(rj} = f Yo (D)e ¥ T gy (3.73b)
V(1) = F W ()} = / " W, (fle# T gf (3.73¢)

Note that the Fourier transform of Eq. (3.73a) is performed with respect to t in place of 7.

We now prove that the ESD W, (f) = |G(f) |? is the Fourier transform of the autocorrelation
function ¥, (7). Although the result is proved here for real signals, itis valid for complex signals
also. Note that the autocorrelation function is a function of 7, not t. Hence, its Fourier transform
is [ Yo (v)e7* dr, Thus,

Flyg ()] = foo e Il Uoo gt + T)dt:| dt

-0 -0

::/ 116 [/ g(r+t)e“j2”frer dt

The inner integrallis the Fourier transform of g (r 4 1), which is g (t) left-shifted by ¢. Hence, it
is given by G(f)e/*™/  in accordance with the time-shifting property in Eq. (3.32a). Therefore,

Flg (D] = G(f) f g™ dt = G(HG(—F) = |G(F))?

This completes the proof that

Yg (1) <= W (f) = |G(F)? ‘ (3.74)

A careful observation of the operation of correlation shows a close connection to con-
volution. Indeed, the autocorrelation function Y, (1) is the convolution of g(t) with g(—1)
because

=00

g(@)xg(—1) :/ g(X)g[~(r—x)]dX=/ g)glx — 1) dx = Vg (1)

Application of the time convolution property [Eq. (3.44)] to this equation yields Eq. (3.74).
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ESD of the Input and the Output
If x(¢) and y(f) are the input and the corresponding output of a linear time-invariant (LTD
system, then

Y({f)=H{HX{T)
Therefore,

YO = 1HOPIXOP

This shows that
Wy (f) = [H ()P (3.75)
Thus, the output signal ESD is [H (f) [ times the input signal ESD.

3.8 SIGNAL POWER AND POWER
SPECTRAL DENSITY

For a power signal, a meaningful measure of its size is its power [defined in Eq. (2.4)] as the
time average of the signal energy averaged over the infinite time interval. The power P, of a
real-valued signal g(r) is given by

i T/2
Py = lim = ][ g () dr (3.76)
T—o0 1 -T2

The signal power and the related concepts can be readily understood by defining a truncated
signal gr(f) as

Je® f=T1/2
gr(t) ‘{ 0 i >T/2

The truncated signal is shown in Fig. 3.36. The integral on the right-hand side of Eq. (3.76)
yields Eg,, which is the energy of the truncated signal g7 (¢). Thus,

- Eer
Py = Tlimoo —_ (3.77)
This equation describes the relationship between power and energy of nonperiodic signals.
Understanding this relationship will be very helpful in understanding and relating all the
power concepts to the energy concepts. Because the signal power is just the time average of
energy, all the concepts and results of signal energy also apply to signal power if we modify
the concepts properly by taking their time averages.

3.8.1 Power Spectral Density (PSD)

If the signal g(¢) is a power signal, then its power is finite, and the truncated signal g7 (z) is an
energy signal as long as 7 is finite. If g7(¥) <= Gr(f), then from Parseval’s theorem,

Egp =/ g%(r)dz=f \Gr () df
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Figure 3.36
Limiting process
in derivation of
PSD.

g(t)
TN Y \ LN
T =S ~7
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Hence, Py, the power of g (), is given by

Py = lim = Jim -I-L [ N !GT(f)!de} | (3.78)

T—oo ¥ T—oo T |/ o

As T increases, the duration of gr(f) increases, and its energy E,,. also increases proportion-
ately. This means that |G7(f)|? also increases with7,andas T — oo, |Gr(f) 2 also approaches
oo. However, |Gr(f)|* must approach oo at the same rate as T because for a power signal, the
right-hand side of Eq: (3.78) must converge. This convergence permits us to interchange the
order of the limiting process and integration in Eq. (3.78), and we have

[e’s] 2 :
P :/ lim Mdf (3.79)

oo T—00 T

D

We define the power spectral density (PSD) Se(w) as

1Gr(H?
= —— 3.
%00 =lm e
Consequently,®
o0
szf Se(f)df (3.81a)
—00
o0
zzf S, () df (3.81b)
Jo

This result is parallel to the result [Eq. (3.69a)] for energy signals. The power is the area under
the PSD. Observe that the PSD is the time average of the ESD of gr(t) [Eq. (3.80)].

As is the case with ESD, the PSDis also a positive, real, and even function of £. If g(t) is
a voltage signal, the units of PSD are volts squared per hertz.

* One should be cautious in using a unilateral expression such as Pp = 2 fooo Sg(f) df when Sg (f) contains an
impulse at the origin (a dc component). The impulse part should not be multiplied by the factor 2.
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3.8.2 Time Autocorrelation Function of Power Signals

The (time) autocorrelation function R (7) of a real power signal g (¢) is defined as*

1 T/2
Re(r) = lim — / (gt — 1) dr (3.82)
T—oc T J 7/

We can use the same argument as that used for energy signals [Egs. (3.72b) and (3.72¢)] to
show that R, (7) is an even function of . This means that for a real g (¢),

Rg(r) = lim ,~—/ ggt+1)dr (3.82b)
T—oo T T/2

and :
Re(t) = Rg(—1) (3.83)

For energy signals, the ESD W, (f) is the Fourier transform of the autocorrelation function
V(7). A similar result applies to power signals. We now show that for a power signal, the
PSD S, (f) is the Fourier transform of the autocorrelation function R, (). From Eq. (3.82b)
and Fig. 3.36,

Re() = Jim -11; /_ Oo‘ gr(Dgr(t +v)dr = lim -‘-‘/@T—T@ (3.84)

Recall from the Wiener-Khintchine theorem that g, (1) <= |Gr(f }|2. Hence, the Fourier
transform of the preceding equation yields

2
Ry () <= lim er Il _ Se(f) (3.85)

~>00 T

Although we have proved these results for a real g(r), Egs. (3.80), (3.81a), (3.81b), and (3.85)
are equally valid for a complex g(z).

The concept and relationships for signal power are parallel to those for signal energy. This
is brought out in Table 3.3.

Signal Power Is Its Mean Square Value

A glance at Eq. (3.76) shows that the signal power is the time average or mean of its squared
value. In other words P, is the mean square value of g(r). We must remember, however, that
this is a time mean, not a statistical mean (to be discussed in later chapters). Statistical means
are denoted by overbars. Thus, the (statistical) mean square of a variable x is denoted by x2.
To distinguish from this kind of mean, we shall use a wavy overbar to denote a time average.

[

Thus, the time mean square value of g(¢) will be denoted by g2(1). The time averages are
conventionally denoted by angle brackets, written as (g2()}. We shall, however, use the wavy

* For a complex g(1), we define

/2

172 1
= { —_ f * — = i g * .
Re(r) = lim o /"T/zg(r)g ¢-ndi= lim = /_T/zg (gt + ) dt
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TABLE 3.3
_ oo 2 ,,~1[T/22 I
E, = [2o g7 adt Pg = Tlgnoc T ﬁT/zg (t) dt = T}Lmoo 7
- T R ) o Ygr (D)
pe(r) = [0, (gt + ) dt Rel(r) = Tli)moo T Lrpegt+r)d= Tl—lﬁnoo e
- 2 | _ oo GO _ o Yer®)
Yo (f) = G Sglf) = Tl—l»moo T = Tlimoo
P (1) &= Vo) Re(1) &= Sg()
Ey = [T % (Ndf Py = (20, Sc(Ndf

overbar notation because it is much easier to associate means with a bar on top than with
brackets. Using this notation, we see that

2 1 T/2 2 ’
P, = = lm - 0 dt 3.86
e = g°(1) Tgr;OT/_mg() , (3.86a)

Note that the rms value of a signal is the square root of its mean square value. Therefore,

[e(Olms = /Pg (3.86b)

From Eqs. (3.82), it is clear that for a real signal g(¢), the time autocorrelation function
Rg(r) is the time mean of g(#)g(# & 7). Thus,

Re(r) = g)glt £ 1) (3.87)

This discussion also explains why we have been using “time autocorrelation” rather than just
“autocorrelation”. This is to distinguish clearly the present autocorrelation function (a time
average) from the statistical autocorrelation function (a statistical average) to be introduced in
Chapter 9 in the context of probability theory and random processes.

Interpretation of Power Spectral Density

Because the PSD is the time average of the ESD of g(#), we can argue along the lines used in
the interpretation of ESD. We can readily show that the PSD S, (f) represents the power per
unit bandwidth (in hertz) of the spectral components at the frequency f. The amount of power
contributed by the spectral components within the band f; to f; is given by

2
AP, = 2[ Se(f) df (3.88)
fi

Autocorrelation Method: A Powerful Tool

For a signal g(¢), the ESD, which is equal to |G(f) |2, can also be found by taking the Fourier
transform of its autocorrelation function, If the Fourier transform of a signal is enough to deter-
mine its ESD, then why do we needlessly complicate our lives by talking about autocorrelation
functions? The reason for following this aliernate route is to lay a foundation for dealing with
power signals and random signals. The Fourier transform of a power signal generally does not
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exist, Moreover, the luxury of finding the Fourier transform is available only for deterministic
signals, which can be described as functions of time. The random message signals that occur
in communication problems (e.g., random binary pulse train) cannot be described as functions
of time, and it is impossible to find their Fourier transforms. However, the autocorrelation
function for such signals can be determined from their statistical information. This allows us
to determine the PSD (the spectral information) of such a signal. Indeed, we may consider the .
autocorrelation approach to be the generalization of Fourier techniques to poWer signals and
random signals. The following example of a random binary pulse train dramatically illustrates
the power of this technique. ‘

Example 3.19

Figure 3.37a shows a random binary pulse train g{#). The pulse width is 7/2, and one binary
digitis transmitted every T seconds. Abinary 1 is transmitted by the positive pulse, and a binary
0 is transmitted by the negative pulse. The two symbols are equally likely and occur randomly.
We shall determine the autocorrelation function, the PSD, and the essential bandwidth of this
signal.

random, is not known. We do, however, know its behavior in terms of the averages (the
statistical information). The autocorrelation function, being an average parameter (time
average) of the signal, is determinable from the given statistical (average) information.

% We cannot describe this signal as a function of time because the precise waveform, being
We have {Eq. (3.82a)]

1 T/2
Re(t) = lim — g(Dg(t — v)dr
T—oo T J_1p2

Figure 3.37b shows g(¢) by solid lines and g (r — t), which is g () delayed by 7, by dashed
lines. To determine the integrand on the right-hand side of the preceding equation, we
multiply g(t) with g(t — 1), find the area under the product g(£)g(r — 1), and divide it
by the averaging interval 7. Let there be N bits (pulses) during this interval T so that
T = NTy,andas 7 — oo, N — oo. Thus,

| NTp/2
- = 1i e I3 {— dr
Ry(r) = Jim o f_ o EO8C =D

Let us first consider the case of 7 < Tj/2. In this case there is an overlap (shaded region)
between each pulse of g(z) and of g(¢r — 7). The area under the product g(f)g(t — ) is
T3 /2 — v for each pulse. Since there are N pulses during the averaging interval, the total’
area under g(1)g(r — ) s N(T»/2 — 1), and

. I T
o= i [ (3 )

? 1 2T Tb
. = -] - — T << —
[ 2 Ty 2
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Figure 3.37
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binary pulse
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Because R, (1) is an even function of 7,

Re(r) = % (1 - %YI:?) 7| < % (3.89a)
as shown in Fig. 3.37c. :

As we increase T beyond 7 /2, there will be overlap between each pulse and its immediate
neighbor. The two overlapping pulses are equally likely to be of the same polarity or of
opposite polarity. Their product is equally likely tobe 1 or — 1 over the overlapping interval.
On the average, half the pulse products will be 1 (positive-positive or negative-negative
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pulse combinations), and the remaining half pulse products will be —1 (positive-negative
or negative-positive combinations). Consequently, the area under g ()g(r — 1) will be zero
when averaged over an infinitely large time (7 — oc), and

.
Re(t)=0 |z > 3’1 (3.89b)

The two parts of Eq. (3.89) show that the autocorrelation function in this case is the
triangular function %A(Z/ Tp) shown in Fig. 3.37c. The PSD is the Fourier transform of

%A(t/ Tp). which is found in Example 3.13 (or Table 3.1, pair 19) as

_ D o2 (T
So(f) = n sinc ( ) ) (3.90)

The PSD is the square of the sinc function, as shown in Fig, 3.37d. From the result in
Example 3.18, we conclude that 90.28% of the area of this spectrum is contained within
the band from 0 to 47 /T, rad/s, or from O to 2/7}, Hz. Thus, the essential bandwidth may be
taken as 2/T}, Hz (assuming a 90% power criterion). This example illustrates dramatically
how the autocorrelation function can be used to obtain the spectral information of a
(random) signal when conventional means of obtaining the Fourier spectrum are not
usable.

3.8.3 Input and Output Power Spectral Densities

Because the PSD is a time average of ESDs, the relationship between the input and output
signal PSDs of a linear time-invariant (LTT) system is similar to that of ESDs. Following the
argument used for ESD [Eq. (3.75)], we can readily show that if g(¢) and y(¢) are the input
and output signals of an LTI system with transfer function H (f), then

Sy(f) = |H(F)PS, (f) (3.91)

Exomple 3.20 A noise signal n;(z) with PSD Sy, (f) = K is applied at the input of an ideal differentiator
(Fig. 3.38a). Determine the PSD and the power of the output noise signal n,(f).

Figure 3.38
Power spectral
densities at the
input and the
output of an
idedl
differentiator.

ny(1) d 1
R — w7 TN
(@)

(b)
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o

The transfer function of an ideal differentiator is H(f) = j2xf. If the noise at the
demodulator output is 7, (¢), then from Eq. (3.91),

Su, (F) = [H(F)P Si () = j2nf K

The output PSD S, (f) is parabolic, as shown in Fig. 3.38¢. The output noise power N, is
the area under the output PSD. Therefore,

B B 2n3
Ny = f KQrf)2df = 2K / CrfYdf = g
B 4]

3.8.4 PSD of Modulated Signals

Following the argument in deriving Eqgs. (3.70) and.(3.71) for energy signals, we can derive
similar results for power signals by taking the time averages. We can show that for a power
signal g(r), if

@(t) = g(t) cos2xfor

then the PSD S, (f) of the modulated signal ¢(z) is given by

1
Sp(f) = 7 [Sef +/o) + S (f ~fo)] (3.92)

The detailed derivation is provided in Sec. 7.8. Thus, modulation shifts the PSD of g(¢) by
+fo. The power of ¢(¢) is half the power of g(¢), that is,
1

Py = 5P fo=B (3.93)

3.9 NUMERICAL COMPUTATION OF FOURIER

TRANSFORM: THE DFT

To compute G(f), the Fourier transform of g(¢), numerically, we have to use the samples of
g(). Moreover, we can determine G(f) only at some finite number of frequencies. Tl/ms, we
can compute only samples of G(f'). For this reason, we shall now find the relationships between
samples of g(#) and samples of G(f).

In numerical computations, the data must be finite. This means that the number of samples
of g(¢) and G(f) must be finite. In other words, we must deal with time-limited signals. If the
signal is not time-limited, then we need to truncate it to make its duration finite. The same is
true of G(f). To begin, let us consider a signal g(#) of duration t seconds, starting at ¢ = (0,
as shown in Fig. 3.39a. However, for reasons that will become clear as we go along, we shall
consider the duration of g(¢) to be Ty, where Ty > 7, which makes g(f) = 0 in the interval
T < t < Ty, as shown in Fig. 3.39a. Clearly, this makes no difference in the computation of
G(f). Let us take samples of g() at uniform intervals of 7 seconds. There are a total of Ny
samples, where

Ty

Ng =
o=

(3.94)



