I0312 15:14:58.786797 3400 caffe.cpp:218] Using GPUs 0 I0312 15:14:58.802232 3400 caffe.cpp:223] GPU 0: GeForce GTX 1070 I0312 15:14:59.004849 3400 solver.cpp:44] Initializing solver from parameters: test_iter: 56 test_interval: 28 base_lr: 0.001 display: 20 max_iter: 5000 lr_policy: "step" gamma: 0.1 momentum: 0.9 weight_decay: 0.0005 stepsize: 100000 snapshot: 4999 snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_sinatrain" solver_mode: GPU device_id: 0 net: "examples/alexnetfinetune/train_valsina.prototxt" train_state { level: 0 stage: "" } type: "SGD" I0312 15:14:59.004992 3400 solver.cpp:87] Creating training net from net file: examples/alexnetfinetune/train_valsina.prototxt I0312 15:14:59.005278 3400 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer data I0312 15:14:59.005290 3400 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy I0312 15:14:59.005439 3400 net.cpp:53] Initializing net from parameters: name: "AlexNet" state { phase: TRAIN level: 0 stage: "" } layer { name: "data" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true crop_size: 227 mean_file: "examples/Mydataset_train_lmdb/mean_imagetest.binaryproto" } data_param { source: "examples/Mydataset_train_lmdb" batch_size: 256 backend: LMDB } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 11 stride: 4 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "norm1" type: "LRN" bottom: "conv1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool1" type: "Pooling" bottom: "norm1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 2 kernel_size: 5 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "norm2" type: "LRN" bottom: "conv2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool2" type: "Pooling" bottom: "norm2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "xavier" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "xavier" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "xavier" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4 weight_filler { type: "xavier" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc8" bottom: "label" top: "loss" } I0312 15:14:59.005563 3400 layer_factory.hpp:77] Creating layer data I0312 15:14:59.005635 3400 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_train_lmdb I0312 15:14:59.005655 3400 net.cpp:86] Creating Layer data I0312 15:14:59.005661 3400 net.cpp:382] data -> data I0312 15:14:59.005674 3400 net.cpp:382] data -> label I0312 15:14:59.005686 3400 data_transformer.cpp:25] Loading mean file from: examples/Mydataset_train_lmdb/mean_imagetest.binaryproto I0312 15:14:59.008136 3400 data_layer.cpp:45] output data size: 256,3,227,227 I0312 15:14:59.186409 3400 net.cpp:124] Setting up data I0312 15:14:59.186440 3400 net.cpp:131] Top shape: 256 3 227 227 (39574272) I0312 15:14:59.186458 3400 net.cpp:131] Top shape: 256 (256) I0312 15:14:59.186460 3400 net.cpp:139] Memory required for data: 158298112 I0312 15:14:59.186468 3400 layer_factory.hpp:77] Creating layer conv1 I0312 15:14:59.186497 3400 net.cpp:86] Creating Layer conv1 I0312 15:14:59.186501 3400 net.cpp:408] conv1 <- data I0312 15:14:59.186511 3400 net.cpp:382] conv1 -> conv1 I0312 15:14:59.398895 3400 net.cpp:124] Setting up conv1 I0312 15:14:59.398912 3400 net.cpp:131] Top shape: 256 96 55 55 (74342400) I0312 15:14:59.398914 3400 net.cpp:139] Memory required for data: 455667712 I0312 15:14:59.398947 3400 layer_factory.hpp:77] Creating layer relu1 I0312 15:14:59.398955 3400 net.cpp:86] Creating Layer relu1 I0312 15:14:59.398972 3400 net.cpp:408] relu1 <- conv1 I0312 15:14:59.398977 3400 net.cpp:369] relu1 -> conv1 (in-place) I0312 15:14:59.399150 3400 net.cpp:124] Setting up relu1 I0312 15:14:59.399157 3400 net.cpp:131] Top shape: 256 96 55 55 (74342400) I0312 15:14:59.399159 3400 net.cpp:139] Memory required for data: 753037312 I0312 15:14:59.399160 3400 layer_factory.hpp:77] Creating layer norm1 I0312 15:14:59.399168 3400 net.cpp:86] Creating Layer norm1 I0312 15:14:59.399183 3400 net.cpp:408] norm1 <- conv1 I0312 15:14:59.399186 3400 net.cpp:382] norm1 -> norm1 I0312 15:14:59.399544 3400 net.cpp:124] Setting up norm1 I0312 15:14:59.399552 3400 net.cpp:131] Top shape: 256 96 55 55 (74342400) I0312 15:14:59.399554 3400 net.cpp:139] Memory required for data: 1050406912 I0312 15:14:59.399556 3400 layer_factory.hpp:77] Creating layer pool1 I0312 15:14:59.399575 3400 net.cpp:86] Creating Layer pool1 I0312 15:14:59.399605 3400 net.cpp:408] pool1 <- norm1 I0312 15:14:59.399607 3400 net.cpp:382] pool1 -> pool1 I0312 15:14:59.399665 3400 net.cpp:124] Setting up pool1 I0312 15:14:59.399669 3400 net.cpp:131] Top shape: 256 96 27 27 (17915904) I0312 15:14:59.399672 3400 net.cpp:139] Memory required for data: 1122070528 I0312 15:14:59.399673 3400 layer_factory.hpp:77] Creating layer conv2 I0312 15:14:59.399680 3400 net.cpp:86] Creating Layer conv2 I0312 15:14:59.399696 3400 net.cpp:408] conv2 <- pool1 I0312 15:14:59.399699 3400 net.cpp:382] conv2 -> conv2 I0312 15:14:59.403538 3400 net.cpp:124] Setting up conv2 I0312 15:14:59.403551 3400 net.cpp:131] Top shape: 256 256 27 27 (47775744) I0312 15:14:59.403554 3400 net.cpp:139] Memory required for data: 1313173504 I0312 15:14:59.403578 3400 layer_factory.hpp:77] Creating layer relu2 I0312 15:14:59.403583 3400 net.cpp:86] Creating Layer relu2 I0312 15:14:59.403585 3400 net.cpp:408] relu2 <- conv2 I0312 15:14:59.403589 3400 net.cpp:369] relu2 -> conv2 (in-place) I0312 15:14:59.403933 3400 net.cpp:124] Setting up relu2 I0312 15:14:59.403940 3400 net.cpp:131] Top shape: 256 256 27 27 (47775744) I0312 15:14:59.403942 3400 net.cpp:139] Memory required for data: 1504276480 I0312 15:14:59.403945 3400 layer_factory.hpp:77] Creating layer norm2 I0312 15:14:59.403949 3400 net.cpp:86] Creating Layer norm2 I0312 15:14:59.403965 3400 net.cpp:408] norm2 <- conv2 I0312 15:14:59.403969 3400 net.cpp:382] norm2 -> norm2 I0312 15:14:59.404144 3400 net.cpp:124] Setting up norm2 I0312 15:14:59.404148 3400 net.cpp:131] Top shape: 256 256 27 27 (47775744) I0312 15:14:59.404150 3400 net.cpp:139] Memory required for data: 1695379456 I0312 15:14:59.404152 3400 layer_factory.hpp:77] Creating layer pool2 I0312 15:14:59.404157 3400 net.cpp:86] Creating Layer pool2 I0312 15:14:59.404160 3400 net.cpp:408] pool2 <- norm2 I0312 15:14:59.404176 3400 net.cpp:382] pool2 -> pool2 I0312 15:14:59.404214 3400 net.cpp:124] Setting up pool2 I0312 15:14:59.404219 3400 net.cpp:131] Top shape: 256 256 13 13 (11075584) I0312 15:14:59.404222 3400 net.cpp:139] Memory required for data: 1739681792 I0312 15:14:59.404223 3400 layer_factory.hpp:77] Creating layer conv3 I0312 15:14:59.404229 3400 net.cpp:86] Creating Layer conv3 I0312 15:14:59.404232 3400 net.cpp:408] conv3 <- pool2 I0312 15:14:59.404235 3400 net.cpp:382] conv3 -> conv3 I0312 15:14:59.413219 3400 net.cpp:124] Setting up conv3 I0312 15:14:59.413250 3400 net.cpp:131] Top shape: 256 384 13 13 (16613376) I0312 15:14:59.413254 3400 net.cpp:139] Memory required for data: 1806135296 I0312 15:14:59.413264 3400 layer_factory.hpp:77] Creating layer relu3 I0312 15:14:59.413285 3400 net.cpp:86] Creating Layer relu3 I0312 15:14:59.413286 3400 net.cpp:408] relu3 <- conv3 I0312 15:14:59.413291 3400 net.cpp:369] relu3 -> conv3 (in-place) I0312 15:14:59.413511 3400 net.cpp:124] Setting up relu3 I0312 15:14:59.413516 3400 net.cpp:131] Top shape: 256 384 13 13 (16613376) I0312 15:14:59.413532 3400 net.cpp:139] Memory required for data: 1872588800 I0312 15:14:59.413533 3400 layer_factory.hpp:77] Creating layer conv4 I0312 15:14:59.413542 3400 net.cpp:86] Creating Layer conv4 I0312 15:14:59.413543 3400 net.cpp:408] conv4 <- conv3 I0312 15:14:59.413563 3400 net.cpp:382] conv4 -> conv4 I0312 15:14:59.420562 3400 net.cpp:124] Setting up conv4 I0312 15:14:59.420594 3400 net.cpp:131] Top shape: 256 384 13 13 (16613376) I0312 15:14:59.420596 3400 net.cpp:139] Memory required for data: 1939042304 I0312 15:14:59.420603 3400 layer_factory.hpp:77] Creating layer relu4 I0312 15:14:59.420610 3400 net.cpp:86] Creating Layer relu4 I0312 15:14:59.420614 3400 net.cpp:408] relu4 <- conv4 I0312 15:14:59.420631 3400 net.cpp:369] relu4 -> conv4 (in-place) I0312 15:14:59.420794 3400 net.cpp:124] Setting up relu4 I0312 15:14:59.420799 3400 net.cpp:131] Top shape: 256 384 13 13 (16613376) I0312 15:14:59.420815 3400 net.cpp:139] Memory required for data: 2005495808 I0312 15:14:59.420817 3400 layer_factory.hpp:77] Creating layer conv5 I0312 15:14:59.420851 3400 net.cpp:86] Creating Layer conv5 I0312 15:14:59.420855 3400 net.cpp:408] conv5 <- conv4 I0312 15:14:59.420861 3400 net.cpp:382] conv5 -> conv5 I0312 15:14:59.425384 3400 net.cpp:124] Setting up conv5 I0312 15:14:59.425401 3400 net.cpp:131] Top shape: 256 256 13 13 (11075584) I0312 15:14:59.425403 3400 net.cpp:139] Memory required for data: 2049798144 I0312 15:14:59.425429 3400 layer_factory.hpp:77] Creating layer relu5 I0312 15:14:59.425436 3400 net.cpp:86] Creating Layer relu5 I0312 15:14:59.425438 3400 net.cpp:408] relu5 <- conv5 I0312 15:14:59.425443 3400 net.cpp:369] relu5 -> conv5 (in-place) I0312 15:14:59.425593 3400 net.cpp:124] Setting up relu5 I0312 15:14:59.425601 3400 net.cpp:131] Top shape: 256 256 13 13 (11075584) I0312 15:14:59.425602 3400 net.cpp:139] Memory required for data: 2094100480 I0312 15:14:59.425604 3400 layer_factory.hpp:77] Creating layer pool5 I0312 15:14:59.425623 3400 net.cpp:86] Creating Layer pool5 I0312 15:14:59.425626 3400 net.cpp:408] pool5 <- conv5 I0312 15:14:59.425628 3400 net.cpp:382] pool5 -> pool5 I0312 15:14:59.425691 3400 net.cpp:124] Setting up pool5 I0312 15:14:59.425709 3400 net.cpp:131] Top shape: 256 256 6 6 (2359296) I0312 15:14:59.425711 3400 net.cpp:139] Memory required for data: 2103537664 I0312 15:14:59.425714 3400 layer_factory.hpp:77] Creating layer fc6 I0312 15:14:59.425735 3400 net.cpp:86] Creating Layer fc6 I0312 15:14:59.425737 3400 net.cpp:408] fc6 <- pool5 I0312 15:14:59.425741 3400 net.cpp:382] fc6 -> fc6 I0312 15:14:59.609557 3400 net.cpp:124] Setting up fc6 I0312 15:14:59.609572 3400 net.cpp:131] Top shape: 256 4096 (1048576) I0312 15:14:59.609575 3400 net.cpp:139] Memory required for data: 2107731968 I0312 15:14:59.609596 3400 layer_factory.hpp:77] Creating layer relu6 I0312 15:14:59.609601 3400 net.cpp:86] Creating Layer relu6 I0312 15:14:59.609604 3400 net.cpp:408] relu6 <- fc6 I0312 15:14:59.609608 3400 net.cpp:369] relu6 -> fc6 (in-place) I0312 15:14:59.609860 3400 net.cpp:124] Setting up relu6 I0312 15:14:59.609865 3400 net.cpp:131] Top shape: 256 4096 (1048576) I0312 15:14:59.609868 3400 net.cpp:139] Memory required for data: 2111926272 I0312 15:14:59.609869 3400 layer_factory.hpp:77] Creating layer drop6 I0312 15:14:59.609874 3400 net.cpp:86] Creating Layer drop6 I0312 15:14:59.609876 3400 net.cpp:408] drop6 <- fc6 I0312 15:14:59.609894 3400 net.cpp:369] drop6 -> fc6 (in-place) I0312 15:14:59.609930 3400 net.cpp:124] Setting up drop6 I0312 15:14:59.609948 3400 net.cpp:131] Top shape: 256 4096 (1048576) I0312 15:14:59.609951 3400 net.cpp:139] Memory required for data: 2116120576 I0312 15:14:59.609952 3400 layer_factory.hpp:77] Creating layer fc7 I0312 15:14:59.609969 3400 net.cpp:86] Creating Layer fc7 I0312 15:14:59.609972 3400 net.cpp:408] fc7 <- fc6 I0312 15:14:59.609975 3400 net.cpp:382] fc7 -> fc7 I0312 15:14:59.688920 3400 net.cpp:124] Setting up fc7 I0312 15:14:59.688936 3400 net.cpp:131] Top shape: 256 4096 (1048576) I0312 15:14:59.688940 3400 net.cpp:139] Memory required for data: 2120314880 I0312 15:14:59.688959 3400 layer_factory.hpp:77] Creating layer relu7 I0312 15:14:59.688966 3400 net.cpp:86] Creating Layer relu7 I0312 15:14:59.688968 3400 net.cpp:408] relu7 <- fc7 I0312 15:14:59.688973 3400 net.cpp:369] relu7 -> fc7 (in-place) I0312 15:14:59.689429 3400 net.cpp:124] Setting up relu7 I0312 15:14:59.689437 3400 net.cpp:131] Top shape: 256 4096 (1048576) I0312 15:14:59.689440 3400 net.cpp:139] Memory required for data: 2124509184 I0312 15:14:59.689441 3400 layer_factory.hpp:77] Creating layer drop7 I0312 15:14:59.689462 3400 net.cpp:86] Creating Layer drop7 I0312 15:14:59.689465 3400 net.cpp:408] drop7 <- fc7 I0312 15:14:59.689467 3400 net.cpp:369] drop7 -> fc7 (in-place) I0312 15:14:59.689502 3400 net.cpp:124] Setting up drop7 I0312 15:14:59.689519 3400 net.cpp:131] Top shape: 256 4096 (1048576) I0312 15:14:59.689522 3400 net.cpp:139] Memory required for data: 2128703488 I0312 15:14:59.689522 3400 layer_factory.hpp:77] Creating layer fc8 I0312 15:14:59.689553 3400 net.cpp:86] Creating Layer fc8 I0312 15:14:59.689554 3400 net.cpp:408] fc8 <- fc7 I0312 15:14:59.689558 3400 net.cpp:382] fc8 -> fc8 I0312 15:14:59.690343 3400 net.cpp:124] Setting up fc8 I0312 15:14:59.690353 3400 net.cpp:131] Top shape: 256 4 (1024) I0312 15:14:59.690356 3400 net.cpp:139] Memory required for data: 2128707584 I0312 15:14:59.690359 3400 layer_factory.hpp:77] Creating layer loss I0312 15:14:59.690363 3400 net.cpp:86] Creating Layer loss I0312 15:14:59.690379 3400 net.cpp:408] loss <- fc8 I0312 15:14:59.690382 3400 net.cpp:408] loss <- label I0312 15:14:59.690387 3400 net.cpp:382] loss -> loss I0312 15:14:59.690409 3400 layer_factory.hpp:77] Creating layer loss I0312 15:14:59.690651 3400 net.cpp:124] Setting up loss I0312 15:14:59.690657 3400 net.cpp:131] Top shape: (1) I0312 15:14:59.690659 3400 net.cpp:134] with loss weight 1 I0312 15:14:59.690685 3400 net.cpp:139] Memory required for data: 2128707588 I0312 15:14:59.690686 3400 net.cpp:200] loss needs backward computation. I0312 15:14:59.690691 3400 net.cpp:200] fc8 needs backward computation. I0312 15:14:59.690692 3400 net.cpp:200] drop7 needs backward computation. I0312 15:14:59.690695 3400 net.cpp:200] relu7 needs backward computation. I0312 15:14:59.690696 3400 net.cpp:200] fc7 needs backward computation. I0312 15:14:59.690698 3400 net.cpp:200] drop6 needs backward computation. I0312 15:14:59.690699 3400 net.cpp:200] relu6 needs backward computation. I0312 15:14:59.690716 3400 net.cpp:200] fc6 needs backward computation. I0312 15:14:59.690718 3400 net.cpp:200] pool5 needs backward computation. I0312 15:14:59.690722 3400 net.cpp:200] relu5 needs backward computation. I0312 15:14:59.690738 3400 net.cpp:200] conv5 needs backward computation. I0312 15:14:59.690740 3400 net.cpp:200] relu4 needs backward computation. I0312 15:14:59.690742 3400 net.cpp:200] conv4 needs backward computation. I0312 15:14:59.690745 3400 net.cpp:200] relu3 needs backward computation. I0312 15:14:59.690747 3400 net.cpp:200] conv3 needs backward computation. I0312 15:14:59.690749 3400 net.cpp:200] pool2 needs backward computation. I0312 15:14:59.690752 3400 net.cpp:200] norm2 needs backward computation. I0312 15:14:59.690754 3400 net.cpp:200] relu2 needs backward computation. I0312 15:14:59.690757 3400 net.cpp:200] conv2 needs backward computation. I0312 15:14:59.690758 3400 net.cpp:200] pool1 needs backward computation. I0312 15:14:59.690760 3400 net.cpp:200] norm1 needs backward computation. I0312 15:14:59.690763 3400 net.cpp:200] relu1 needs backward computation. I0312 15:14:59.690765 3400 net.cpp:200] conv1 needs backward computation. I0312 15:14:59.690768 3400 net.cpp:202] data does not need backward computation. I0312 15:14:59.690770 3400 net.cpp:244] This network produces output loss I0312 15:14:59.690780 3400 net.cpp:257] Network initialization done. I0312 15:14:59.691009 3400 solver.cpp:173] Creating test net (#0) specified by net file: examples/alexnetfinetune/train_valsina.prototxt I0312 15:14:59.691061 3400 net.cpp:296] The NetState phase (1) differed from the phase (0) specified by a rule in layer data I0312 15:14:59.691197 3400 net.cpp:53] Initializing net from parameters: name: "AlexNet" state { phase: TEST } layer { name: "data" type: "Data" top: "data" top: "label" include { phase: TEST } transform_param { mirror: false crop_size: 227 mean_file: "examples/Mydataset_test_lmdb/mean_imagetest.binaryproto" } data_param { source: "examples/Mydataset_test_lmdb" batch_size: 50 backend: LMDB } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 11 stride: 4 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "norm1" type: "LRN" bottom: "conv1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool1" type: "Pooling" bottom: "norm1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 2 kernel_size: 5 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "norm2" type: "LRN" bottom: "conv2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool2" type: "Pooling" bottom: "norm2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "xavier" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "xavier" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "xavier" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4 weight_filler { type: "xavier" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "accuracy" type: "Accuracy" bottom: "fc8" bottom: "label" top: "accuracy" include { phase: TEST } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc8" bottom: "label" top: "loss" } I0312 15:14:59.691308 3400 layer_factory.hpp:77] Creating layer data I0312 15:14:59.691346 3400 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_test_lmdb I0312 15:14:59.691357 3400 net.cpp:86] Creating Layer data I0312 15:14:59.691364 3400 net.cpp:382] data -> data I0312 15:14:59.691368 3400 net.cpp:382] data -> label I0312 15:14:59.691373 3400 data_transformer.cpp:25] Loading mean file from: examples/Mydataset_test_lmdb/mean_imagetest.binaryproto I0312 15:14:59.692934 3400 data_layer.cpp:45] output data size: 50,3,227,227 I0312 15:14:59.731097 3400 net.cpp:124] Setting up data I0312 15:14:59.731127 3400 net.cpp:131] Top shape: 50 3 227 227 (7729350) I0312 15:14:59.731145 3400 net.cpp:131] Top shape: 50 (50) I0312 15:14:59.731147 3400 net.cpp:139] Memory required for data: 30917600 I0312 15:14:59.731151 3400 layer_factory.hpp:77] Creating layer label_data_1_split I0312 15:14:59.731160 3400 net.cpp:86] Creating Layer label_data_1_split I0312 15:14:59.731163 3400 net.cpp:408] label_data_1_split <- label I0312 15:14:59.731181 3400 net.cpp:382] label_data_1_split -> label_data_1_split_0 I0312 15:14:59.731189 3400 net.cpp:382] label_data_1_split -> label_data_1_split_1 I0312 15:14:59.731282 3400 net.cpp:124] Setting up label_data_1_split I0312 15:14:59.731287 3400 net.cpp:131] Top shape: 50 (50) I0312 15:14:59.731303 3400 net.cpp:131] Top shape: 50 (50) I0312 15:14:59.731305 3400 net.cpp:139] Memory required for data: 30918000 I0312 15:14:59.731308 3400 layer_factory.hpp:77] Creating layer conv1 I0312 15:14:59.731317 3400 net.cpp:86] Creating Layer conv1 I0312 15:14:59.731318 3400 net.cpp:408] conv1 <- data I0312 15:14:59.731323 3400 net.cpp:382] conv1 -> conv1 I0312 15:14:59.734802 3400 net.cpp:124] Setting up conv1 I0312 15:14:59.734823 3400 net.cpp:131] Top shape: 50 96 55 55 (14520000) I0312 15:14:59.734827 3400 net.cpp:139] Memory required for data: 88998000 I0312 15:14:59.734833 3400 layer_factory.hpp:77] Creating layer relu1 I0312 15:14:59.734853 3400 net.cpp:86] Creating Layer relu1 I0312 15:14:59.734854 3400 net.cpp:408] relu1 <- conv1 I0312 15:14:59.734858 3400 net.cpp:369] relu1 -> conv1 (in-place) I0312 15:14:59.735003 3400 net.cpp:124] Setting up relu1 I0312 15:14:59.735009 3400 net.cpp:131] Top shape: 50 96 55 55 (14520000) I0312 15:14:59.735025 3400 net.cpp:139] Memory required for data: 147078000 I0312 15:14:59.735028 3400 layer_factory.hpp:77] Creating layer norm1 I0312 15:14:59.735033 3400 net.cpp:86] Creating Layer norm1 I0312 15:14:59.735035 3400 net.cpp:408] norm1 <- conv1 I0312 15:14:59.735051 3400 net.cpp:382] norm1 -> norm1 I0312 15:14:59.735203 3400 net.cpp:124] Setting up norm1 I0312 15:14:59.735208 3400 net.cpp:131] Top shape: 50 96 55 55 (14520000) I0312 15:14:59.735225 3400 net.cpp:139] Memory required for data: 205158000 I0312 15:14:59.735226 3400 layer_factory.hpp:77] Creating layer pool1 I0312 15:14:59.735230 3400 net.cpp:86] Creating Layer pool1 I0312 15:14:59.735232 3400 net.cpp:408] pool1 <- norm1 I0312 15:14:59.735235 3400 net.cpp:382] pool1 -> pool1 I0312 15:14:59.735262 3400 net.cpp:124] Setting up pool1 I0312 15:14:59.735266 3400 net.cpp:131] Top shape: 50 96 27 27 (3499200) I0312 15:14:59.735268 3400 net.cpp:139] Memory required for data: 219154800 I0312 15:14:59.735270 3400 layer_factory.hpp:77] Creating layer conv2 I0312 15:14:59.735275 3400 net.cpp:86] Creating Layer conv2 I0312 15:14:59.735277 3400 net.cpp:408] conv2 <- pool1 I0312 15:14:59.735280 3400 net.cpp:382] conv2 -> conv2 I0312 15:14:59.738873 3400 net.cpp:124] Setting up conv2 I0312 15:14:59.738884 3400 net.cpp:131] Top shape: 50 256 27 27 (9331200) I0312 15:14:59.738900 3400 net.cpp:139] Memory required for data: 256479600 I0312 15:14:59.738909 3400 layer_factory.hpp:77] Creating layer relu2 I0312 15:14:59.738914 3400 net.cpp:86] Creating Layer relu2 I0312 15:14:59.738930 3400 net.cpp:408] relu2 <- conv2 I0312 15:14:59.738934 3400 net.cpp:369] relu2 -> conv2 (in-place) I0312 15:14:59.739276 3400 net.cpp:124] Setting up relu2 I0312 15:14:59.739284 3400 net.cpp:131] Top shape: 50 256 27 27 (9331200) I0312 15:14:59.739300 3400 net.cpp:139] Memory required for data: 293804400 I0312 15:14:59.739302 3400 layer_factory.hpp:77] Creating layer norm2 I0312 15:14:59.739310 3400 net.cpp:86] Creating Layer norm2 I0312 15:14:59.739325 3400 net.cpp:408] norm2 <- conv2 I0312 15:14:59.739328 3400 net.cpp:382] norm2 -> norm2 I0312 15:14:59.739482 3400 net.cpp:124] Setting up norm2 I0312 15:14:59.739488 3400 net.cpp:131] Top shape: 50 256 27 27 (9331200) I0312 15:14:59.739504 3400 net.cpp:139] Memory required for data: 331129200 I0312 15:14:59.739506 3400 layer_factory.hpp:77] Creating layer pool2 I0312 15:14:59.739511 3400 net.cpp:86] Creating Layer pool2 I0312 15:14:59.739512 3400 net.cpp:408] pool2 <- norm2 I0312 15:14:59.739516 3400 net.cpp:382] pool2 -> pool2 I0312 15:14:59.739542 3400 net.cpp:124] Setting up pool2 I0312 15:14:59.739559 3400 net.cpp:131] Top shape: 50 256 13 13 (2163200) I0312 15:14:59.739560 3400 net.cpp:139] Memory required for data: 339782000 I0312 15:14:59.739562 3400 layer_factory.hpp:77] Creating layer conv3 I0312 15:14:59.739583 3400 net.cpp:86] Creating Layer conv3 I0312 15:14:59.739584 3400 net.cpp:408] conv3 <- pool2 I0312 15:14:59.739588 3400 net.cpp:382] conv3 -> conv3 I0312 15:14:59.748337 3400 net.cpp:124] Setting up conv3 I0312 15:14:59.748355 3400 net.cpp:131] Top shape: 50 384 13 13 (3244800) I0312 15:14:59.748358 3400 net.cpp:139] Memory required for data: 352761200 I0312 15:14:59.748370 3400 layer_factory.hpp:77] Creating layer relu3 I0312 15:14:59.748378 3400 net.cpp:86] Creating Layer relu3 I0312 15:14:59.748401 3400 net.cpp:408] relu3 <- conv3 I0312 15:14:59.748407 3400 net.cpp:369] relu3 -> conv3 (in-place) I0312 15:14:59.748574 3400 net.cpp:124] Setting up relu3 I0312 15:14:59.748580 3400 net.cpp:131] Top shape: 50 384 13 13 (3244800) I0312 15:14:59.748584 3400 net.cpp:139] Memory required for data: 365740400 I0312 15:14:59.748585 3400 layer_factory.hpp:77] Creating layer conv4 I0312 15:14:59.748592 3400 net.cpp:86] Creating Layer conv4 I0312 15:14:59.748595 3400 net.cpp:408] conv4 <- conv3 I0312 15:14:59.748600 3400 net.cpp:382] conv4 -> conv4 I0312 15:14:59.757342 3400 net.cpp:124] Setting up conv4 I0312 15:14:59.757372 3400 net.cpp:131] Top shape: 50 384 13 13 (3244800) I0312 15:14:59.757376 3400 net.cpp:139] Memory required for data: 378719600 I0312 15:14:59.757382 3400 layer_factory.hpp:77] Creating layer relu4 I0312 15:14:59.757403 3400 net.cpp:86] Creating Layer relu4 I0312 15:14:59.757406 3400 net.cpp:408] relu4 <- conv4 I0312 15:14:59.757412 3400 net.cpp:369] relu4 -> conv4 (in-place) I0312 15:14:59.757581 3400 net.cpp:124] Setting up relu4 I0312 15:14:59.757587 3400 net.cpp:131] Top shape: 50 384 13 13 (3244800) I0312 15:14:59.757603 3400 net.cpp:139] Memory required for data: 391698800 I0312 15:14:59.757606 3400 layer_factory.hpp:77] Creating layer conv5 I0312 15:14:59.757612 3400 net.cpp:86] Creating Layer conv5 I0312 15:14:59.757628 3400 net.cpp:408] conv5 <- conv4 I0312 15:14:59.757632 3400 net.cpp:382] conv5 -> conv5 I0312 15:14:59.761788 3400 net.cpp:124] Setting up conv5 I0312 15:14:59.761816 3400 net.cpp:131] Top shape: 50 256 13 13 (2163200) I0312 15:14:59.761818 3400 net.cpp:139] Memory required for data: 400351600 I0312 15:14:59.761828 3400 layer_factory.hpp:77] Creating layer relu5 I0312 15:14:59.761849 3400 net.cpp:86] Creating Layer relu5 I0312 15:14:59.761852 3400 net.cpp:408] relu5 <- conv5 I0312 15:14:59.761855 3400 net.cpp:369] relu5 -> conv5 (in-place) I0312 15:14:59.762032 3400 net.cpp:124] Setting up relu5 I0312 15:14:59.762037 3400 net.cpp:131] Top shape: 50 256 13 13 (2163200) I0312 15:14:59.762054 3400 net.cpp:139] Memory required for data: 409004400 I0312 15:14:59.762056 3400 layer_factory.hpp:77] Creating layer pool5 I0312 15:14:59.762063 3400 net.cpp:86] Creating Layer pool5 I0312 15:14:59.762079 3400 net.cpp:408] pool5 <- conv5 I0312 15:14:59.762100 3400 net.cpp:382] pool5 -> pool5 I0312 15:14:59.762141 3400 net.cpp:124] Setting up pool5 I0312 15:14:59.762146 3400 net.cpp:131] Top shape: 50 256 6 6 (460800) I0312 15:14:59.762148 3400 net.cpp:139] Memory required for data: 410847600 I0312 15:14:59.762151 3400 layer_factory.hpp:77] Creating layer fc6 I0312 15:14:59.762156 3400 net.cpp:86] Creating Layer fc6 I0312 15:14:59.762157 3400 net.cpp:408] fc6 <- pool5 I0312 15:14:59.762161 3400 net.cpp:382] fc6 -> fc6 I0312 15:14:59.942030 3400 net.cpp:124] Setting up fc6 I0312 15:14:59.942045 3400 net.cpp:131] Top shape: 50 4096 (204800) I0312 15:14:59.942047 3400 net.cpp:139] Memory required for data: 411666800 I0312 15:14:59.942054 3400 layer_factory.hpp:77] Creating layer relu6 I0312 15:14:59.942072 3400 net.cpp:86] Creating Layer relu6 I0312 15:14:59.942075 3400 net.cpp:408] relu6 <- fc6 I0312 15:14:59.942080 3400 net.cpp:369] relu6 -> fc6 (in-place) I0312 15:14:59.942311 3400 net.cpp:124] Setting up relu6 I0312 15:14:59.942315 3400 net.cpp:131] Top shape: 50 4096 (204800) I0312 15:14:59.942317 3400 net.cpp:139] Memory required for data: 412486000 I0312 15:14:59.942319 3400 layer_factory.hpp:77] Creating layer drop6 I0312 15:14:59.942323 3400 net.cpp:86] Creating Layer drop6 I0312 15:14:59.942325 3400 net.cpp:408] drop6 <- fc6 I0312 15:14:59.942342 3400 net.cpp:369] drop6 -> fc6 (in-place) I0312 15:14:59.942391 3400 net.cpp:124] Setting up drop6 I0312 15:14:59.942395 3400 net.cpp:131] Top shape: 50 4096 (204800) I0312 15:14:59.942397 3400 net.cpp:139] Memory required for data: 413305200 I0312 15:14:59.942399 3400 layer_factory.hpp:77] Creating layer fc7 I0312 15:14:59.942404 3400 net.cpp:86] Creating Layer fc7 I0312 15:14:59.942405 3400 net.cpp:408] fc7 <- fc6 I0312 15:14:59.942409 3400 net.cpp:382] fc7 -> fc7 I0312 15:15:00.021935 3400 net.cpp:124] Setting up fc7 I0312 15:15:00.021950 3400 net.cpp:131] Top shape: 50 4096 (204800) I0312 15:15:00.021952 3400 net.cpp:139] Memory required for data: 414124400 I0312 15:15:00.021958 3400 layer_factory.hpp:77] Creating layer relu7 I0312 15:15:00.021980 3400 net.cpp:86] Creating Layer relu7 I0312 15:15:00.021981 3400 net.cpp:408] relu7 <- fc7 I0312 15:15:00.021986 3400 net.cpp:369] relu7 -> fc7 (in-place) I0312 15:15:00.022466 3400 net.cpp:124] Setting up relu7 I0312 15:15:00.022475 3400 net.cpp:131] Top shape: 50 4096 (204800) I0312 15:15:00.022476 3400 net.cpp:139] Memory required for data: 414943600 I0312 15:15:00.022478 3400 layer_factory.hpp:77] Creating layer drop7 I0312 15:15:00.022482 3400 net.cpp:86] Creating Layer drop7 I0312 15:15:00.022498 3400 net.cpp:408] drop7 <- fc7 I0312 15:15:00.022501 3400 net.cpp:369] drop7 -> fc7 (in-place) I0312 15:15:00.022554 3400 net.cpp:124] Setting up drop7 I0312 15:15:00.022570 3400 net.cpp:131] Top shape: 50 4096 (204800) I0312 15:15:00.022572 3400 net.cpp:139] Memory required for data: 415762800 I0312 15:15:00.022574 3400 layer_factory.hpp:77] Creating layer fc8 I0312 15:15:00.022578 3400 net.cpp:86] Creating Layer fc8 I0312 15:15:00.022580 3400 net.cpp:408] fc8 <- fc7 I0312 15:15:00.022583 3400 net.cpp:382] fc8 -> fc8 I0312 15:15:00.022816 3400 net.cpp:124] Setting up fc8 I0312 15:15:00.022821 3400 net.cpp:131] Top shape: 50 4 (200) I0312 15:15:00.022822 3400 net.cpp:139] Memory required for data: 415763600 I0312 15:15:00.022826 3400 layer_factory.hpp:77] Creating layer fc8_fc8_0_split I0312 15:15:00.022830 3400 net.cpp:86] Creating Layer fc8_fc8_0_split I0312 15:15:00.022831 3400 net.cpp:408] fc8_fc8_0_split <- fc8 I0312 15:15:00.022835 3400 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_0 I0312 15:15:00.022851 3400 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_1 I0312 15:15:00.022925 3400 net.cpp:124] Setting up fc8_fc8_0_split I0312 15:15:00.022929 3400 net.cpp:131] Top shape: 50 4 (200) I0312 15:15:00.022943 3400 net.cpp:131] Top shape: 50 4 (200) I0312 15:15:00.022945 3400 net.cpp:139] Memory required for data: 415765200 I0312 15:15:00.022948 3400 layer_factory.hpp:77] Creating layer accuracy I0312 15:15:00.022989 3400 net.cpp:86] Creating Layer accuracy I0312 15:15:00.022991 3400 net.cpp:408] accuracy <- fc8_fc8_0_split_0 I0312 15:15:00.022994 3400 net.cpp:408] accuracy <- label_data_1_split_0 I0312 15:15:00.022999 3400 net.cpp:382] accuracy -> accuracy I0312 15:15:00.023017 3400 net.cpp:124] Setting up accuracy I0312 15:15:00.023020 3400 net.cpp:131] Top shape: (1) I0312 15:15:00.023036 3400 net.cpp:139] Memory required for data: 415765204 I0312 15:15:00.023038 3400 layer_factory.hpp:77] Creating layer loss I0312 15:15:00.023041 3400 net.cpp:86] Creating Layer loss I0312 15:15:00.023043 3400 net.cpp:408] loss <- fc8_fc8_0_split_1 I0312 15:15:00.023046 3400 net.cpp:408] loss <- label_data_1_split_1 I0312 15:15:00.023049 3400 net.cpp:382] loss -> loss I0312 15:15:00.023053 3400 layer_factory.hpp:77] Creating layer loss I0312 15:15:00.023260 3400 net.cpp:124] Setting up loss I0312 15:15:00.023267 3400 net.cpp:131] Top shape: (1) I0312 15:15:00.023268 3400 net.cpp:134] with loss weight 1 I0312 15:15:00.023274 3400 net.cpp:139] Memory required for data: 415765208 I0312 15:15:00.023277 3400 net.cpp:200] loss needs backward computation. I0312 15:15:00.023293 3400 net.cpp:202] accuracy does not need backward computation. I0312 15:15:00.023296 3400 net.cpp:200] fc8_fc8_0_split needs backward computation. I0312 15:15:00.023298 3400 net.cpp:200] fc8 needs backward computation. I0312 15:15:00.023299 3400 net.cpp:200] drop7 needs backward computation. I0312 15:15:00.023301 3400 net.cpp:200] relu7 needs backward computation. I0312 15:15:00.023317 3400 net.cpp:200] fc7 needs backward computation. I0312 15:15:00.023319 3400 net.cpp:200] drop6 needs backward computation. I0312 15:15:00.023321 3400 net.cpp:200] relu6 needs backward computation. I0312 15:15:00.023324 3400 net.cpp:200] fc6 needs backward computation. I0312 15:15:00.023326 3400 net.cpp:200] pool5 needs backward computation. I0312 15:15:00.023342 3400 net.cpp:200] relu5 needs backward computation. I0312 15:15:00.023344 3400 net.cpp:200] conv5 needs backward computation. I0312 15:15:00.023346 3400 net.cpp:200] relu4 needs backward computation. I0312 15:15:00.023349 3400 net.cpp:200] conv4 needs backward computation. I0312 15:15:00.023350 3400 net.cpp:200] relu3 needs backward computation. I0312 15:15:00.023351 3400 net.cpp:200] conv3 needs backward computation. I0312 15:15:00.023353 3400 net.cpp:200] pool2 needs backward computation. I0312 15:15:00.023356 3400 net.cpp:200] norm2 needs backward computation. I0312 15:15:00.023358 3400 net.cpp:200] relu2 needs backward computation. I0312 15:15:00.023360 3400 net.cpp:200] conv2 needs backward computation. I0312 15:15:00.023362 3400 net.cpp:200] pool1 needs backward computation. I0312 15:15:00.023365 3400 net.cpp:200] norm1 needs backward computation. I0312 15:15:00.023366 3400 net.cpp:200] relu1 needs backward computation. I0312 15:15:00.023368 3400 net.cpp:200] conv1 needs backward computation. I0312 15:15:00.023370 3400 net.cpp:202] label_data_1_split does not need backward computation. I0312 15:15:00.023373 3400 net.cpp:202] data does not need backward computation. I0312 15:15:00.023375 3400 net.cpp:244] This network produces output accuracy I0312 15:15:00.023377 3400 net.cpp:244] This network produces output loss I0312 15:15:00.023392 3400 net.cpp:257] Network initialization done. I0312 15:15:00.023463 3400 solver.cpp:56] Solver scaffolding done. I0312 15:15:00.023947 3400 caffe.cpp:248] Starting Optimization I0312 15:15:00.023952 3400 solver.cpp:273] Solving AlexNet I0312 15:15:00.023952 3400 solver.cpp:274] Learning Rate Policy: step I0312 15:15:00.025804 3400 solver.cpp:331] Iteration 0, Testing net (#0) I0312 15:15:00.196871 3400 blocking_queue.cpp:49] Waiting for data I0312 15:15:01.865114 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:01.888545 3400 solver.cpp:398] Test net output #0: accuracy = 0.180714 I0312 15:15:01.888568 3400 solver.cpp:398] Test net output #1: loss = 1.59707 (* 1 = 1.59707 loss) I0312 15:15:02.152133 3400 solver.cpp:219] Iteration 0 (0 iter/s, 2.12822s/20 iters), loss = 1.79293 I0312 15:15:02.154552 3400 solver.cpp:238] Train net output #0: loss = 1.79293 (* 1 = 1.79293 loss) I0312 15:15:02.154572 3400 sgd_solver.cpp:105] Iteration 0, lr = 0.001 I0312 15:15:07.469552 3400 solver.cpp:219] Iteration 20 (3.76284 iter/s, 5.31514s/20 iters), loss = 1.15939 I0312 15:15:07.481657 3400 solver.cpp:238] Train net output #0: loss = 1.15939 (* 1 = 1.15939 loss) I0312 15:15:07.481684 3400 sgd_solver.cpp:105] Iteration 20, lr = 0.001 I0312 15:15:08.407680 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:09.181119 3400 solver.cpp:331] Iteration 28, Testing net (#0) I0312 15:15:11.139320 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:11.163296 3400 solver.cpp:398] Test net output #0: accuracy = 0.545357 I0312 15:15:11.163332 3400 solver.cpp:398] Test net output #1: loss = 1.17676 (* 1 = 1.17676 loss) I0312 15:15:14.600911 3400 solver.cpp:219] Iteration 40 (2.80925 iter/s, 7.11935s/20 iters), loss = 1.20282 I0312 15:15:14.613029 3400 solver.cpp:238] Train net output #0: loss = 1.20282 (* 1 = 1.20282 loss) I0312 15:15:14.613056 3400 sgd_solver.cpp:105] Iteration 40, lr = 0.001 I0312 15:15:16.898764 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:18.446493 3400 solver.cpp:331] Iteration 56, Testing net (#0) I0312 15:15:20.401070 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:20.426092 3400 solver.cpp:398] Test net output #0: accuracy = 0.545714 I0312 15:15:20.426120 3400 solver.cpp:398] Test net output #1: loss = 1.15208 (* 1 = 1.15208 loss) I0312 15:15:21.738221 3400 solver.cpp:219] Iteration 60 (2.80694 iter/s, 7.12519s/20 iters), loss = 1.21732 I0312 15:15:21.750447 3400 solver.cpp:238] Train net output #0: loss = 1.21732 (* 1 = 1.21732 loss) I0312 15:15:21.750473 3400 sgd_solver.cpp:105] Iteration 60, lr = 0.001 I0312 15:15:25.605252 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:27.077924 3400 solver.cpp:219] Iteration 80 (3.75416 iter/s, 5.32742s/20 iters), loss = 1.18855 I0312 15:15:27.089962 3400 solver.cpp:238] Train net output #0: loss = 1.18855 (* 1 = 1.18855 loss) I0312 15:15:27.089987 3400 sgd_solver.cpp:105] Iteration 80, lr = 0.001 I0312 15:15:27.723026 3400 solver.cpp:331] Iteration 84, Testing net (#0) I0312 15:15:29.689395 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:29.715106 3400 solver.cpp:398] Test net output #0: accuracy = 0.545357 I0312 15:15:29.715128 3400 solver.cpp:398] Test net output #1: loss = 1.13127 (* 1 = 1.13127 loss) I0312 15:15:34.118387 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:34.229269 3400 solver.cpp:219] Iteration 100 (2.80146 iter/s, 7.13915s/20 iters), loss = 1.13812 I0312 15:15:34.241354 3400 solver.cpp:238] Train net output #0: loss = 1.13812 (* 1 = 1.13812 loss) I0312 15:15:34.241380 3400 sgd_solver.cpp:105] Iteration 100, lr = 0.001 I0312 15:15:37.011456 3400 solver.cpp:331] Iteration 112, Testing net (#0) I0312 15:15:38.965276 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:38.991606 3400 solver.cpp:398] Test net output #0: accuracy = 0.546071 I0312 15:15:38.991643 3400 solver.cpp:398] Test net output #1: loss = 1.0943 (* 1 = 1.0943 loss) I0312 15:15:41.372874 3400 solver.cpp:219] Iteration 120 (2.80454 iter/s, 7.1313s/20 iters), loss = 1.08922 I0312 15:15:41.385037 3400 solver.cpp:238] Train net output #0: loss = 1.08922 (* 1 = 1.08922 loss) I0312 15:15:41.385051 3400 sgd_solver.cpp:105] Iteration 120, lr = 0.001 I0312 15:15:42.835633 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:46.298776 3400 solver.cpp:331] Iteration 140, Testing net (#0) I0312 15:15:48.270100 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:48.298099 3400 solver.cpp:398] Test net output #0: accuracy = 0.553214 I0312 15:15:48.298120 3400 solver.cpp:398] Test net output #1: loss = 1.0419 (* 1 = 1.0419 loss) I0312 15:15:48.556108 3400 solver.cpp:219] Iteration 140 (2.7891 iter/s, 7.17077s/20 iters), loss = 1.13393 I0312 15:15:48.558588 3400 solver.cpp:238] Train net output #0: loss = 1.13393 (* 1 = 1.13393 loss) I0312 15:15:48.558614 3400 sgd_solver.cpp:105] Iteration 140, lr = 0.001 I0312 15:15:51.358734 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:53.889725 3400 solver.cpp:219] Iteration 160 (3.75173 iter/s, 5.33087s/20 iters), loss = 1.12009 I0312 15:15:53.901734 3400 solver.cpp:238] Train net output #0: loss = 1.12009 (* 1 = 1.12009 loss) I0312 15:15:53.901760 3400 sgd_solver.cpp:105] Iteration 160, lr = 0.001 I0312 15:15:55.606535 3400 solver.cpp:331] Iteration 168, Testing net (#0) I0312 15:15:57.567255 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:15:57.596175 3400 solver.cpp:398] Test net output #0: accuracy = 0.569286 I0312 15:15:57.596201 3400 solver.cpp:398] Test net output #1: loss = 0.994541 (* 1 = 0.994541 loss) I0312 15:16:00.104831 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:01.059020 3400 solver.cpp:219] Iteration 180 (2.79451 iter/s, 7.15688s/20 iters), loss = 1.077 I0312 15:16:01.071106 3400 solver.cpp:238] Train net output #0: loss = 1.077 (* 1 = 1.077 loss) I0312 15:16:01.071132 3400 sgd_solver.cpp:105] Iteration 180, lr = 0.001 I0312 15:16:04.928994 3400 solver.cpp:331] Iteration 196, Testing net (#0) I0312 15:16:06.895695 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:06.925457 3400 solver.cpp:398] Test net output #0: accuracy = 0.576071 I0312 15:16:06.925496 3400 solver.cpp:398] Test net output #1: loss = 0.971296 (* 1 = 0.971296 loss) I0312 15:16:08.246050 3400 solver.cpp:219] Iteration 200 (2.78767 iter/s, 7.17446s/20 iters), loss = 0.94749 I0312 15:16:08.258175 3400 solver.cpp:238] Train net output #0: loss = 0.94749 (* 1 = 0.94749 loss) I0312 15:16:08.258188 3400 sgd_solver.cpp:105] Iteration 200, lr = 0.001 I0312 15:16:08.667268 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:13.626134 3400 solver.cpp:219] Iteration 220 (3.72607 iter/s, 5.36759s/20 iters), loss = 0.933928 I0312 15:16:13.638236 3400 solver.cpp:238] Train net output #0: loss = 0.933928 (* 1 = 0.933928 loss) I0312 15:16:13.638248 3400 sgd_solver.cpp:105] Iteration 220, lr = 0.001 I0312 15:16:14.275890 3400 solver.cpp:331] Iteration 224, Testing net (#0) I0312 15:16:16.253525 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:16.284018 3400 solver.cpp:398] Test net output #0: accuracy = 0.579643 I0312 15:16:16.284056 3400 solver.cpp:398] Test net output #1: loss = 0.951704 (* 1 = 0.951704 loss) I0312 15:16:17.237542 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:20.832008 3400 solver.cpp:219] Iteration 240 (2.78039 iter/s, 7.19324s/20 iters), loss = 0.987299 I0312 15:16:20.844086 3400 solver.cpp:238] Train net output #0: loss = 0.987299 (* 1 = 0.987299 loss) I0312 15:16:20.844097 3400 sgd_solver.cpp:105] Iteration 240, lr = 0.001 I0312 15:16:23.635071 3400 solver.cpp:331] Iteration 252, Testing net (#0) I0312 15:16:23.995193 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:25.599102 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:25.630218 3400 solver.cpp:398] Test net output #0: accuracy = 0.5975 I0312 15:16:25.630256 3400 solver.cpp:398] Test net output #1: loss = 0.937659 (* 1 = 0.937659 loss) I0312 15:16:28.027734 3400 solver.cpp:219] Iteration 260 (2.78432 iter/s, 7.18308s/20 iters), loss = 0.990188 I0312 15:16:28.039851 3400 solver.cpp:238] Train net output #0: loss = 0.990188 (* 1 = 0.990188 loss) I0312 15:16:28.039878 3400 sgd_solver.cpp:105] Iteration 260, lr = 0.001 I0312 15:16:32.976518 3400 solver.cpp:331] Iteration 280, Testing net (#0) I0312 15:16:32.978247 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:34.949976 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:34.981762 3400 solver.cpp:398] Test net output #0: accuracy = 0.5875 I0312 15:16:34.981802 3400 solver.cpp:398] Test net output #1: loss = 0.942969 (* 1 = 0.942969 loss) I0312 15:16:35.241040 3400 solver.cpp:219] Iteration 280 (2.77755 iter/s, 7.20059s/20 iters), loss = 1.05443 I0312 15:16:35.243535 3400 solver.cpp:238] Train net output #0: loss = 1.05443 (* 1 = 1.05443 loss) I0312 15:16:35.243561 3400 sgd_solver.cpp:105] Iteration 280, lr = 0.001 I0312 15:16:40.607734 3400 solver.cpp:219] Iteration 300 (3.72875 iter/s, 5.36373s/20 iters), loss = 0.853462 I0312 15:16:40.619915 3400 solver.cpp:238] Train net output #0: loss = 0.853462 (* 1 = 0.853462 loss) I0312 15:16:40.619928 3400 sgd_solver.cpp:105] Iteration 300, lr = 0.001 I0312 15:16:41.549270 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:42.333878 3400 solver.cpp:331] Iteration 308, Testing net (#0) I0312 15:16:44.299496 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:44.332072 3400 solver.cpp:398] Test net output #0: accuracy = 0.605714 I0312 15:16:44.332109 3400 solver.cpp:398] Test net output #1: loss = 0.900171 (* 1 = 0.900171 loss) I0312 15:16:47.805300 3400 solver.cpp:219] Iteration 320 (2.78368 iter/s, 7.18474s/20 iters), loss = 0.975026 I0312 15:16:47.817509 3400 solver.cpp:238] Train net output #0: loss = 0.975026 (* 1 = 0.975026 loss) I0312 15:16:47.817523 3400 sgd_solver.cpp:105] Iteration 320, lr = 0.001 I0312 15:16:50.130303 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:51.691027 3400 solver.cpp:331] Iteration 336, Testing net (#0) I0312 15:16:53.658074 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:16:53.691260 3400 solver.cpp:398] Test net output #0: accuracy = 0.618214 I0312 15:16:53.691298 3400 solver.cpp:398] Test net output #1: loss = 0.902877 (* 1 = 0.902877 loss) I0312 15:16:55.010742 3400 solver.cpp:219] Iteration 340 (2.78065 iter/s, 7.19257s/20 iters), loss = 0.900574 I0312 15:16:55.022836 3400 solver.cpp:238] Train net output #0: loss = 0.900574 (* 1 = 0.900574 loss) I0312 15:16:55.022864 3400 sgd_solver.cpp:105] Iteration 340, lr = 0.001 I0312 15:16:58.919059 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:00.406522 3400 solver.cpp:219] Iteration 360 (3.71528 iter/s, 5.38317s/20 iters), loss = 0.93244 I0312 15:17:00.418678 3400 solver.cpp:238] Train net output #0: loss = 0.93244 (* 1 = 0.93244 loss) I0312 15:17:00.418704 3400 sgd_solver.cpp:105] Iteration 360, lr = 0.001 I0312 15:17:01.056758 3400 solver.cpp:331] Iteration 364, Testing net (#0) I0312 15:17:03.015851 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:03.050194 3400 solver.cpp:398] Test net output #0: accuracy = 0.623929 I0312 15:17:03.050235 3400 solver.cpp:398] Test net output #1: loss = 0.867694 (* 1 = 0.867694 loss) I0312 15:17:06.637147 3400 blocking_queue.cpp:49] Waiting for data I0312 15:17:07.504999 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:07.612885 3400 solver.cpp:219] Iteration 380 (2.78029 iter/s, 7.1935s/20 iters), loss = 0.872377 I0312 15:17:07.624950 3400 solver.cpp:238] Train net output #0: loss = 0.872377 (* 1 = 0.872377 loss) I0312 15:17:07.624976 3400 sgd_solver.cpp:105] Iteration 380, lr = 0.001 I0312 15:17:10.419472 3400 solver.cpp:331] Iteration 392, Testing net (#0) I0312 15:17:12.390650 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:12.425534 3400 solver.cpp:398] Test net output #0: accuracy = 0.615714 I0312 15:17:12.425559 3400 solver.cpp:398] Test net output #1: loss = 0.915761 (* 1 = 0.915761 loss) I0312 15:17:14.830678 3400 solver.cpp:219] Iteration 400 (2.77585 iter/s, 7.205s/20 iters), loss = 0.836408 I0312 15:17:14.842885 3400 solver.cpp:238] Train net output #0: loss = 0.836408 (* 1 = 0.836408 loss) I0312 15:17:14.842911 3400 sgd_solver.cpp:105] Iteration 400, lr = 0.001 I0312 15:17:16.303714 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:19.794162 3400 solver.cpp:331] Iteration 420, Testing net (#0) I0312 15:17:21.750341 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:21.785835 3400 solver.cpp:398] Test net output #0: accuracy = 0.645714 I0312 15:17:21.785862 3400 solver.cpp:398] Test net output #1: loss = 0.831009 (* 1 = 0.831009 loss) I0312 15:17:22.045446 3400 solver.cpp:219] Iteration 420 (2.77678 iter/s, 7.20259s/20 iters), loss = 0.956732 I0312 15:17:22.047906 3400 solver.cpp:238] Train net output #0: loss = 0.956732 (* 1 = 0.956732 loss) I0312 15:17:22.047932 3400 sgd_solver.cpp:105] Iteration 420, lr = 0.001 I0312 15:17:24.887140 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:27.430994 3400 solver.cpp:219] Iteration 440 (3.71484 iter/s, 5.38382s/20 iters), loss = 0.953717 I0312 15:17:27.443086 3400 solver.cpp:238] Train net output #0: loss = 0.953717 (* 1 = 0.953717 loss) I0312 15:17:27.443112 3400 sgd_solver.cpp:105] Iteration 440, lr = 0.001 I0312 15:17:29.158365 3400 solver.cpp:331] Iteration 448, Testing net (#0) I0312 15:17:31.106226 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:31.162901 3400 solver.cpp:398] Test net output #0: accuracy = 0.661071 I0312 15:17:31.162943 3400 solver.cpp:398] Test net output #1: loss = 0.824015 (* 1 = 0.824015 loss) I0312 15:17:33.689541 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:34.648578 3400 solver.cpp:219] Iteration 460 (2.77531 iter/s, 7.2064s/20 iters), loss = 0.888829 I0312 15:17:34.660645 3400 solver.cpp:238] Train net output #0: loss = 0.888829 (* 1 = 0.888829 loss) I0312 15:17:34.660656 3400 sgd_solver.cpp:105] Iteration 460, lr = 0.001 I0312 15:17:38.539413 3400 solver.cpp:331] Iteration 476, Testing net (#0) I0312 15:17:40.475811 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:40.535271 3400 solver.cpp:398] Test net output #0: accuracy = 0.6625 I0312 15:17:40.535308 3400 solver.cpp:398] Test net output #1: loss = 0.80534 (* 1 = 0.80534 loss) I0312 15:17:41.858047 3400 solver.cpp:219] Iteration 480 (2.77846 iter/s, 7.19822s/20 iters), loss = 0.850351 I0312 15:17:41.870193 3400 solver.cpp:238] Train net output #0: loss = 0.850351 (* 1 = 0.850351 loss) I0312 15:17:41.870219 3400 sgd_solver.cpp:105] Iteration 480, lr = 0.001 I0312 15:17:42.282505 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:47.264785 3400 solver.cpp:219] Iteration 500 (3.70703 iter/s, 5.39515s/20 iters), loss = 0.766672 I0312 15:17:47.276868 3400 solver.cpp:238] Train net output #0: loss = 0.766672 (* 1 = 0.766672 loss) I0312 15:17:47.276895 3400 sgd_solver.cpp:105] Iteration 500, lr = 0.001 I0312 15:17:47.915307 3400 solver.cpp:331] Iteration 504, Testing net (#0) I0312 15:17:49.864032 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:49.922363 3400 solver.cpp:398] Test net output #0: accuracy = 0.663571 I0312 15:17:49.922412 3400 solver.cpp:398] Test net output #1: loss = 0.785628 (* 1 = 0.785628 loss) I0312 15:17:51.095754 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:54.490452 3400 solver.cpp:219] Iteration 520 (2.77228 iter/s, 7.21427s/20 iters), loss = 0.812744 I0312 15:17:54.502517 3400 solver.cpp:238] Train net output #0: loss = 0.812744 (* 1 = 0.812744 loss) I0312 15:17:54.502542 3400 sgd_solver.cpp:105] Iteration 520, lr = 0.001 I0312 15:17:57.298475 3400 solver.cpp:331] Iteration 532, Testing net (#0) I0312 15:17:57.663458 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:59.226677 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:17:59.286490 3400 solver.cpp:398] Test net output #0: accuracy = 0.687143 I0312 15:17:59.286527 3400 solver.cpp:398] Test net output #1: loss = 0.76098 (* 1 = 0.76098 loss) I0312 15:18:01.688042 3400 solver.cpp:219] Iteration 540 (2.78314 iter/s, 7.18613s/20 iters), loss = 0.804691 I0312 15:18:01.700240 3400 solver.cpp:238] Train net output #0: loss = 0.804691 (* 1 = 0.804691 loss) I0312 15:18:01.700268 3400 sgd_solver.cpp:105] Iteration 540, lr = 0.001 I0312 15:18:06.657513 3400 solver.cpp:331] Iteration 560, Testing net (#0) I0312 15:18:06.663669 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:08.591706 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:08.651191 3400 solver.cpp:398] Test net output #0: accuracy = 0.674643 I0312 15:18:08.651216 3400 solver.cpp:398] Test net output #1: loss = 0.746633 (* 1 = 0.746633 loss) I0312 15:18:08.914775 3400 solver.cpp:219] Iteration 560 (2.77197 iter/s, 7.21508s/20 iters), loss = 0.824877 I0312 15:18:08.917230 3400 solver.cpp:238] Train net output #0: loss = 0.824877 (* 1 = 0.824877 loss) I0312 15:18:08.917256 3400 sgd_solver.cpp:105] Iteration 560, lr = 0.001 I0312 15:18:14.304972 3400 solver.cpp:219] Iteration 580 (3.71189 iter/s, 5.3881s/20 iters), loss = 0.647147 I0312 15:18:14.317092 3400 solver.cpp:238] Train net output #0: loss = 0.647147 (* 1 = 0.647147 loss) I0312 15:18:14.317106 3400 sgd_solver.cpp:105] Iteration 580, lr = 0.001 I0312 15:18:15.262302 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:16.038519 3400 solver.cpp:331] Iteration 588, Testing net (#0) I0312 15:18:17.986201 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:18.046329 3400 solver.cpp:398] Test net output #0: accuracy = 0.705 I0312 15:18:18.046355 3400 solver.cpp:398] Test net output #1: loss = 0.714921 (* 1 = 0.714921 loss) I0312 15:18:21.529448 3400 solver.cpp:219] Iteration 600 (2.77285 iter/s, 7.21279s/20 iters), loss = 0.788523 I0312 15:18:21.541590 3400 solver.cpp:238] Train net output #0: loss = 0.788523 (* 1 = 0.788523 loss) I0312 15:18:21.541604 3400 sgd_solver.cpp:105] Iteration 600, lr = 0.001 I0312 15:18:24.077775 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:25.428196 3400 solver.cpp:331] Iteration 616, Testing net (#0) I0312 15:18:27.360915 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:27.422842 3400 solver.cpp:398] Test net output #0: accuracy = 0.668571 I0312 15:18:27.422868 3400 solver.cpp:398] Test net output #1: loss = 0.782879 (* 1 = 0.782879 loss) I0312 15:18:28.751802 3400 solver.cpp:219] Iteration 620 (2.7737 iter/s, 7.21058s/20 iters), loss = 0.679942 I0312 15:18:28.763985 3400 solver.cpp:238] Train net output #0: loss = 0.679942 (* 1 = 0.679942 loss) I0312 15:18:28.763998 3400 sgd_solver.cpp:105] Iteration 620, lr = 0.001 I0312 15:18:32.677551 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:34.164574 3400 solver.cpp:219] Iteration 640 (3.70313 iter/s, 5.40083s/20 iters), loss = 0.774282 I0312 15:18:34.176654 3400 solver.cpp:238] Train net output #0: loss = 0.774282 (* 1 = 0.774282 loss) I0312 15:18:34.176666 3400 sgd_solver.cpp:105] Iteration 640, lr = 0.001 I0312 15:18:34.817320 3400 solver.cpp:331] Iteration 644, Testing net (#0) I0312 15:18:36.734540 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:36.797863 3400 solver.cpp:398] Test net output #0: accuracy = 0.705715 I0312 15:18:36.797888 3400 solver.cpp:398] Test net output #1: loss = 0.721174 (* 1 = 0.721174 loss) I0312 15:18:41.261659 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:41.364552 3400 solver.cpp:219] Iteration 660 (2.78235 iter/s, 7.18816s/20 iters), loss = 0.650005 I0312 15:18:41.376653 3400 solver.cpp:238] Train net output #0: loss = 0.650005 (* 1 = 0.650005 loss) I0312 15:18:41.376667 3400 sgd_solver.cpp:105] Iteration 660, lr = 0.001 I0312 15:18:44.176199 3400 solver.cpp:331] Iteration 672, Testing net (#0) I0312 15:18:46.116256 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:46.180114 3400 solver.cpp:398] Test net output #0: accuracy = 0.744643 I0312 15:18:46.180153 3400 solver.cpp:398] Test net output #1: loss = 0.65881 (* 1 = 0.65881 loss) I0312 15:18:48.590128 3400 solver.cpp:219] Iteration 680 (2.7725 iter/s, 7.21371s/20 iters), loss = 0.676694 I0312 15:18:48.602308 3400 solver.cpp:238] Train net output #0: loss = 0.676694 (* 1 = 0.676694 loss) I0312 15:18:48.602334 3400 sgd_solver.cpp:105] Iteration 680, lr = 0.001 I0312 15:18:50.076055 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:53.563628 3400 solver.cpp:331] Iteration 700, Testing net (#0) I0312 15:18:55.500000 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:18:55.564798 3400 solver.cpp:398] Test net output #0: accuracy = 0.726429 I0312 15:18:55.564836 3400 solver.cpp:398] Test net output #1: loss = 0.674512 (* 1 = 0.674512 loss) I0312 15:18:55.826586 3400 solver.cpp:219] Iteration 700 (2.76838 iter/s, 7.22445s/20 iters), loss = 0.651219 I0312 15:18:55.829041 3400 solver.cpp:238] Train net output #0: loss = 0.651219 (* 1 = 0.651219 loss) I0312 15:18:55.829067 3400 sgd_solver.cpp:105] Iteration 700, lr = 0.001 I0312 15:18:58.672683 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:01.227725 3400 solver.cpp:219] Iteration 720 (3.70454 iter/s, 5.39878s/20 iters), loss = 0.647588 I0312 15:19:01.239888 3400 solver.cpp:238] Train net output #0: loss = 0.647588 (* 1 = 0.647588 loss) I0312 15:19:01.239915 3400 sgd_solver.cpp:105] Iteration 720, lr = 0.001 I0312 15:19:02.964723 3400 solver.cpp:331] Iteration 728, Testing net (#0) I0312 15:19:04.926232 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:04.989537 3400 solver.cpp:398] Test net output #0: accuracy = 0.753929 I0312 15:19:04.989574 3400 solver.cpp:398] Test net output #1: loss = 0.619521 (* 1 = 0.619521 loss) I0312 15:19:07.528949 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:08.485841 3400 solver.cpp:219] Iteration 740 (2.76012 iter/s, 7.24605s/20 iters), loss = 0.675941 I0312 15:19:08.497941 3400 solver.cpp:238] Train net output #0: loss = 0.675941 (* 1 = 0.675941 loss) I0312 15:19:08.497967 3400 sgd_solver.cpp:105] Iteration 740, lr = 0.001 I0312 15:19:12.381670 3400 solver.cpp:331] Iteration 756, Testing net (#0) I0312 15:19:14.249562 3400 blocking_queue.cpp:49] Waiting for data I0312 15:19:14.319602 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:14.385287 3400 solver.cpp:398] Test net output #0: accuracy = 0.761072 I0312 15:19:14.385324 3400 solver.cpp:398] Test net output #1: loss = 0.59158 (* 1 = 0.59158 loss) I0312 15:19:15.715216 3400 solver.cpp:219] Iteration 760 (2.77111 iter/s, 7.21733s/20 iters), loss = 0.626121 I0312 15:19:15.727432 3400 solver.cpp:238] Train net output #0: loss = 0.626121 (* 1 = 0.626121 loss) I0312 15:19:15.727458 3400 sgd_solver.cpp:105] Iteration 760, lr = 0.001 I0312 15:19:16.149528 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:21.129549 3400 solver.cpp:219] Iteration 780 (3.70224 iter/s, 5.40214s/20 iters), loss = 0.540354 I0312 15:19:21.141628 3400 solver.cpp:238] Train net output #0: loss = 0.540354 (* 1 = 0.540354 loss) I0312 15:19:21.141654 3400 sgd_solver.cpp:105] Iteration 780, lr = 0.001 I0312 15:19:21.782236 3400 solver.cpp:331] Iteration 784, Testing net (#0) I0312 15:19:23.720639 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:23.784689 3400 solver.cpp:398] Test net output #0: accuracy = 0.769643 I0312 15:19:23.784726 3400 solver.cpp:398] Test net output #1: loss = 0.570081 (* 1 = 0.570081 loss) I0312 15:19:24.963053 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:28.356974 3400 solver.cpp:219] Iteration 800 (2.77187 iter/s, 7.21534s/20 iters), loss = 0.51104 I0312 15:19:28.369065 3400 solver.cpp:238] Train net output #0: loss = 0.51104 (* 1 = 0.51104 loss) I0312 15:19:28.369092 3400 sgd_solver.cpp:105] Iteration 800, lr = 0.001 I0312 15:19:31.176674 3400 solver.cpp:331] Iteration 812, Testing net (#0) I0312 15:19:31.564457 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:33.127796 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:33.192548 3400 solver.cpp:398] Test net output #0: accuracy = 0.771429 I0312 15:19:33.192596 3400 solver.cpp:398] Test net output #1: loss = 0.571397 (* 1 = 0.571397 loss) I0312 15:19:35.609904 3400 solver.cpp:219] Iteration 820 (2.76213 iter/s, 7.24079s/20 iters), loss = 0.533786 I0312 15:19:35.622110 3400 solver.cpp:238] Train net output #0: loss = 0.533786 (* 1 = 0.533786 loss) I0312 15:19:35.622138 3400 sgd_solver.cpp:105] Iteration 820, lr = 0.001 I0312 15:19:40.597286 3400 solver.cpp:331] Iteration 840, Testing net (#0) I0312 15:19:40.608041 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:42.550683 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:42.616173 3400 solver.cpp:398] Test net output #0: accuracy = 0.803929 I0312 15:19:42.616212 3400 solver.cpp:398] Test net output #1: loss = 0.520615 (* 1 = 0.520615 loss) I0312 15:19:42.878137 3400 solver.cpp:219] Iteration 840 (2.75636 iter/s, 7.25595s/20 iters), loss = 0.560993 I0312 15:19:42.880589 3400 solver.cpp:238] Train net output #0: loss = 0.560993 (* 1 = 0.560993 loss) I0312 15:19:42.880614 3400 sgd_solver.cpp:105] Iteration 840, lr = 0.001 I0312 15:19:48.282490 3400 solver.cpp:219] Iteration 860 (3.70246 iter/s, 5.40182s/20 iters), loss = 0.479458 I0312 15:19:48.294679 3400 solver.cpp:238] Train net output #0: loss = 0.479458 (* 1 = 0.479458 loss) I0312 15:19:48.294693 3400 sgd_solver.cpp:105] Iteration 860, lr = 0.001 I0312 15:19:49.247689 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:50.023023 3400 solver.cpp:331] Iteration 868, Testing net (#0) I0312 15:19:51.958149 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:52.024778 3400 solver.cpp:398] Test net output #0: accuracy = 0.774286 I0312 15:19:52.024813 3400 solver.cpp:398] Test net output #1: loss = 0.53657 (* 1 = 0.53657 loss) I0312 15:19:55.531849 3400 solver.cpp:219] Iteration 880 (2.76356 iter/s, 7.23704s/20 iters), loss = 0.514099 I0312 15:19:55.544028 3400 solver.cpp:238] Train net output #0: loss = 0.514099 (* 1 = 0.514099 loss) I0312 15:19:55.544040 3400 sgd_solver.cpp:105] Iteration 880, lr = 0.001 I0312 15:19:58.087602 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:19:59.442054 3400 solver.cpp:331] Iteration 896, Testing net (#0) I0312 15:20:01.371603 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:01.438855 3400 solver.cpp:398] Test net output #0: accuracy = 0.789643 I0312 15:20:01.438877 3400 solver.cpp:398] Test net output #1: loss = 0.534242 (* 1 = 0.534242 loss) I0312 15:20:02.769948 3400 solver.cpp:219] Iteration 900 (2.76787 iter/s, 7.22576s/20 iters), loss = 0.401579 I0312 15:20:02.782141 3400 solver.cpp:238] Train net output #0: loss = 0.401579 (* 1 = 0.401579 loss) I0312 15:20:02.782167 3400 sgd_solver.cpp:105] Iteration 900, lr = 0.001 I0312 15:20:06.710672 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:08.196038 3400 solver.cpp:219] Iteration 920 (3.69429 iter/s, 5.41376s/20 iters), loss = 0.418515 I0312 15:20:08.208111 3400 solver.cpp:238] Train net output #0: loss = 0.418515 (* 1 = 0.418515 loss) I0312 15:20:08.208137 3400 sgd_solver.cpp:105] Iteration 920, lr = 0.001 I0312 15:20:08.853616 3400 solver.cpp:331] Iteration 924, Testing net (#0) I0312 15:20:10.750771 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:10.840065 3400 solver.cpp:398] Test net output #0: accuracy = 0.803214 I0312 15:20:10.840090 3400 solver.cpp:398] Test net output #1: loss = 0.477671 (* 1 = 0.477671 loss) I0312 15:20:15.432298 3400 solver.cpp:219] Iteration 940 (2.76856 iter/s, 7.22398s/20 iters), loss = 0.388416 I0312 15:20:15.444432 3400 solver.cpp:238] Train net output #0: loss = 0.388416 (* 1 = 0.388416 loss) I0312 15:20:15.444445 3400 sgd_solver.cpp:105] Iteration 940, lr = 0.001 I0312 15:20:15.460371 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:18.259165 3400 solver.cpp:331] Iteration 952, Testing net (#0) I0312 15:20:20.171815 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:20.260933 3400 solver.cpp:398] Test net output #0: accuracy = 0.850714 I0312 15:20:20.260957 3400 solver.cpp:398] Test net output #1: loss = 0.431527 (* 1 = 0.431527 loss) I0312 15:20:22.679644 3400 solver.cpp:219] Iteration 960 (2.76435 iter/s, 7.23498s/20 iters), loss = 0.511667 I0312 15:20:22.691884 3400 solver.cpp:238] Train net output #0: loss = 0.511667 (* 1 = 0.511667 loss) I0312 15:20:22.691895 3400 sgd_solver.cpp:105] Iteration 960, lr = 0.001 I0312 15:20:24.174374 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:27.672485 3400 solver.cpp:331] Iteration 980, Testing net (#0) I0312 15:20:29.607878 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:29.697804 3400 solver.cpp:398] Test net output #0: accuracy = 0.837857 I0312 15:20:29.697826 3400 solver.cpp:398] Test net output #1: loss = 0.446211 (* 1 = 0.446211 loss) I0312 15:20:29.961614 3400 solver.cpp:219] Iteration 980 (2.75123 iter/s, 7.26947s/20 iters), loss = 0.405516 I0312 15:20:29.964067 3400 solver.cpp:238] Train net output #0: loss = 0.405516 (* 1 = 0.405516 loss) I0312 15:20:29.964093 3400 sgd_solver.cpp:105] Iteration 980, lr = 0.001 I0312 15:20:32.825044 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:35.375099 3400 solver.cpp:219] Iteration 1000 (3.6963 iter/s, 5.41082s/20 iters), loss = 0.360694 I0312 15:20:35.387202 3400 solver.cpp:238] Train net output #0: loss = 0.360694 (* 1 = 0.360694 loss) I0312 15:20:35.387228 3400 sgd_solver.cpp:105] Iteration 1000, lr = 0.001 I0312 15:20:37.113565 3400 solver.cpp:331] Iteration 1008, Testing net (#0) I0312 15:20:39.028877 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:39.120355 3400 solver.cpp:398] Test net output #0: accuracy = 0.8525 I0312 15:20:39.120378 3400 solver.cpp:398] Test net output #1: loss = 0.390573 (* 1 = 0.390573 loss) I0312 15:20:41.674085 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:42.630245 3400 solver.cpp:219] Iteration 1020 (2.76138 iter/s, 7.24275s/20 iters), loss = 0.371531 I0312 15:20:42.642331 3400 solver.cpp:238] Train net output #0: loss = 0.371531 (* 1 = 0.371531 loss) I0312 15:20:42.642356 3400 sgd_solver.cpp:105] Iteration 1020, lr = 0.001 I0312 15:20:46.539854 3400 solver.cpp:331] Iteration 1036, Testing net (#0) I0312 15:20:48.450417 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:48.541676 3400 solver.cpp:398] Test net output #0: accuracy = 0.834643 I0312 15:20:48.541698 3400 solver.cpp:398] Test net output #1: loss = 0.413479 (* 1 = 0.413479 loss) I0312 15:20:49.877884 3400 solver.cpp:219] Iteration 1040 (2.76425 iter/s, 7.23524s/20 iters), loss = 0.321864 I0312 15:20:49.890053 3400 solver.cpp:238] Train net output #0: loss = 0.321864 (* 1 = 0.321864 loss) I0312 15:20:49.890080 3400 sgd_solver.cpp:105] Iteration 1040, lr = 0.001 I0312 15:20:50.314105 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:55.310025 3400 solver.cpp:219] Iteration 1060 (3.69022 iter/s, 5.41973s/20 iters), loss = 0.333701 I0312 15:20:55.322134 3400 solver.cpp:238] Train net output #0: loss = 0.333701 (* 1 = 0.333701 loss) I0312 15:20:55.322160 3400 sgd_solver.cpp:105] Iteration 1060, lr = 0.001 I0312 15:20:55.963469 3400 solver.cpp:331] Iteration 1064, Testing net (#0) I0312 15:20:57.854028 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:20:57.945955 3400 solver.cpp:398] Test net output #0: accuracy = 0.870357 I0312 15:20:57.945991 3400 solver.cpp:398] Test net output #1: loss = 0.362958 (* 1 = 0.362958 loss) I0312 15:20:59.134594 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:02.540894 3400 solver.cpp:219] Iteration 1080 (2.77069 iter/s, 7.21842s/20 iters), loss = 0.247844 I0312 15:21:02.552929 3400 solver.cpp:238] Train net output #0: loss = 0.247844 (* 1 = 0.247844 loss) I0312 15:21:02.552954 3400 sgd_solver.cpp:105] Iteration 1080, lr = 0.001 I0312 15:21:05.366915 3400 solver.cpp:331] Iteration 1092, Testing net (#0) I0312 15:21:05.742332 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:07.267343 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:07.360766 3400 solver.cpp:398] Test net output #0: accuracy = 0.865714 I0312 15:21:07.360790 3400 solver.cpp:398] Test net output #1: loss = 0.366755 (* 1 = 0.366755 loss) I0312 15:21:09.781147 3400 solver.cpp:219] Iteration 1100 (2.76707 iter/s, 7.22786s/20 iters), loss = 0.253973 I0312 15:21:09.793283 3400 solver.cpp:238] Train net output #0: loss = 0.253973 (* 1 = 0.253973 loss) I0312 15:21:09.793310 3400 sgd_solver.cpp:105] Iteration 1100, lr = 0.001 I0312 15:21:14.780355 3400 solver.cpp:331] Iteration 1120, Testing net (#0) I0312 15:21:14.795826 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:16.703181 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:16.801316 3400 solver.cpp:398] Test net output #0: accuracy = 0.859286 I0312 15:21:16.801353 3400 solver.cpp:398] Test net output #1: loss = 0.374792 (* 1 = 0.374792 loss) I0312 15:21:17.066205 3400 solver.cpp:219] Iteration 1120 (2.75007 iter/s, 7.27254s/20 iters), loss = 0.292386 I0312 15:21:17.068648 3400 solver.cpp:238] Train net output #0: loss = 0.292386 (* 1 = 0.292386 loss) I0312 15:21:17.068673 3400 sgd_solver.cpp:105] Iteration 1120, lr = 0.001 I0312 15:21:22.483883 3400 solver.cpp:219] Iteration 1140 (3.69348 iter/s, 5.41494s/20 iters), loss = 0.211931 I0312 15:21:22.496067 3400 solver.cpp:238] Train net output #0: loss = 0.211931 (* 1 = 0.211931 loss) I0312 15:21:22.496094 3400 sgd_solver.cpp:105] Iteration 1140, lr = 0.001 I0312 15:21:23.456593 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:24.232170 3400 solver.cpp:331] Iteration 1148, Testing net (#0) I0312 15:21:25.605412 3400 blocking_queue.cpp:49] Waiting for data I0312 15:21:26.153647 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:26.248821 3400 solver.cpp:398] Test net output #0: accuracy = 0.899643 I0312 15:21:26.248862 3400 solver.cpp:398] Test net output #1: loss = 0.310715 (* 1 = 0.310715 loss) I0312 15:21:29.756299 3400 solver.cpp:219] Iteration 1160 (2.75489 iter/s, 7.25983s/20 iters), loss = 0.255113 I0312 15:21:29.768452 3400 solver.cpp:238] Train net output #0: loss = 0.255113 (* 1 = 0.255113 loss) I0312 15:21:29.768478 3400 sgd_solver.cpp:105] Iteration 1160, lr = 0.001 I0312 15:21:32.324887 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:33.668165 3400 solver.cpp:331] Iteration 1176, Testing net (#0) I0312 15:21:35.576524 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:35.674839 3400 solver.cpp:398] Test net output #0: accuracy = 0.853214 I0312 15:21:35.674876 3400 solver.cpp:398] Test net output #1: loss = 0.406227 (* 1 = 0.406227 loss) I0312 15:21:37.006021 3400 solver.cpp:219] Iteration 1180 (2.76352 iter/s, 7.23715s/20 iters), loss = 0.188535 I0312 15:21:37.018227 3400 solver.cpp:238] Train net output #0: loss = 0.188535 (* 1 = 0.188535 loss) I0312 15:21:37.018254 3400 sgd_solver.cpp:105] Iteration 1180, lr = 0.001 I0312 15:21:40.960352 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:42.445075 3400 solver.cpp:219] Iteration 1200 (3.6856 iter/s, 5.42653s/20 iters), loss = 0.213094 I0312 15:21:42.457192 3400 solver.cpp:238] Train net output #0: loss = 0.213094 (* 1 = 0.213094 loss) I0312 15:21:42.457219 3400 sgd_solver.cpp:105] Iteration 1200, lr = 0.001 I0312 15:21:43.096578 3400 solver.cpp:331] Iteration 1204, Testing net (#0) I0312 15:21:45.010499 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:45.107622 3400 solver.cpp:398] Test net output #0: accuracy = 0.876786 I0312 15:21:45.107659 3400 solver.cpp:398] Test net output #1: loss = 0.336491 (* 1 = 0.336491 loss) I0312 15:21:49.706220 3400 solver.cpp:219] Iteration 1220 (2.75916 iter/s, 7.24859s/20 iters), loss = 0.194658 I0312 15:21:49.718585 3400 solver.cpp:238] Train net output #0: loss = 0.194658 (* 1 = 0.194658 loss) I0312 15:21:49.718612 3400 sgd_solver.cpp:105] Iteration 1220, lr = 0.001 I0312 15:21:49.734843 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:52.537127 3400 solver.cpp:331] Iteration 1232, Testing net (#0) I0312 15:21:54.427505 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:21:54.524472 3400 solver.cpp:398] Test net output #0: accuracy = 0.877857 I0312 15:21:54.524494 3400 solver.cpp:398] Test net output #1: loss = 0.358809 (* 1 = 0.358809 loss) I0312 15:21:56.944597 3400 solver.cpp:219] Iteration 1240 (2.76795 iter/s, 7.22556s/20 iters), loss = 0.181977 I0312 15:21:56.956811 3400 solver.cpp:238] Train net output #0: loss = 0.181977 (* 1 = 0.181977 loss) I0312 15:21:56.956838 3400 sgd_solver.cpp:105] Iteration 1240, lr = 0.001 I0312 15:21:58.448406 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:01.946749 3400 solver.cpp:331] Iteration 1260, Testing net (#0) I0312 15:22:03.851243 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:03.948640 3400 solver.cpp:398] Test net output #0: accuracy = 0.906071 I0312 15:22:03.948668 3400 solver.cpp:398] Test net output #1: loss = 0.290488 (* 1 = 0.290488 loss) I0312 15:22:04.216552 3400 solver.cpp:219] Iteration 1260 (2.75509 iter/s, 7.25928s/20 iters), loss = 0.186585 I0312 15:22:04.219038 3400 solver.cpp:238] Train net output #0: loss = 0.186585 (* 1 = 0.186585 loss) I0312 15:22:04.219063 3400 sgd_solver.cpp:105] Iteration 1260, lr = 0.001 I0312 15:22:07.296706 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:09.635771 3400 solver.cpp:219] Iteration 1280 (3.6925 iter/s, 5.41638s/20 iters), loss = 0.130299 I0312 15:22:09.647881 3400 solver.cpp:238] Train net output #0: loss = 0.130299 (* 1 = 0.130299 loss) I0312 15:22:09.647907 3400 sgd_solver.cpp:105] Iteration 1280, lr = 0.001 I0312 15:22:11.379429 3400 solver.cpp:331] Iteration 1288, Testing net (#0) I0312 15:22:13.277011 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:13.379159 3400 solver.cpp:398] Test net output #0: accuracy = 0.908928 I0312 15:22:13.379182 3400 solver.cpp:398] Test net output #1: loss = 0.274184 (* 1 = 0.274184 loss) I0312 15:22:15.938383 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:16.887956 3400 solver.cpp:219] Iteration 1300 (2.76259 iter/s, 7.2396s/20 iters), loss = 0.183653 I0312 15:22:16.900012 3400 solver.cpp:238] Train net output #0: loss = 0.183653 (* 1 = 0.183653 loss) I0312 15:22:16.900038 3400 sgd_solver.cpp:105] Iteration 1300, lr = 0.001 I0312 15:22:20.801398 3400 solver.cpp:331] Iteration 1316, Testing net (#0) I0312 15:22:22.702507 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:22.801537 3400 solver.cpp:398] Test net output #0: accuracy = 0.848572 I0312 15:22:22.801573 3400 solver.cpp:398] Test net output #1: loss = 0.439101 (* 1 = 0.439101 loss) I0312 15:22:24.137284 3400 solver.cpp:219] Iteration 1320 (2.76366 iter/s, 7.23678s/20 iters), loss = 0.209299 I0312 15:22:24.149406 3400 solver.cpp:238] Train net output #0: loss = 0.209299 (* 1 = 0.209299 loss) I0312 15:22:24.149432 3400 sgd_solver.cpp:105] Iteration 1320, lr = 0.001 I0312 15:22:24.579705 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:29.573554 3400 solver.cpp:219] Iteration 1340 (3.68747 iter/s, 5.42378s/20 iters), loss = 0.156826 I0312 15:22:29.585666 3400 solver.cpp:238] Train net output #0: loss = 0.156826 (* 1 = 0.156826 loss) I0312 15:22:29.585678 3400 sgd_solver.cpp:105] Iteration 1340, lr = 0.001 I0312 15:22:30.229128 3400 solver.cpp:331] Iteration 1344, Testing net (#0) I0312 15:22:32.126505 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:32.226131 3400 solver.cpp:398] Test net output #0: accuracy = 0.888929 I0312 15:22:32.226167 3400 solver.cpp:398] Test net output #1: loss = 0.340275 (* 1 = 0.340275 loss) I0312 15:22:33.418944 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:36.817004 3400 solver.cpp:219] Iteration 1360 (2.76593 iter/s, 7.23084s/20 iters), loss = 0.0888245 I0312 15:22:36.829107 3400 solver.cpp:238] Train net output #0: loss = 0.0888245 (* 1 = 0.0888245 loss) I0312 15:22:36.829133 3400 sgd_solver.cpp:105] Iteration 1360, lr = 0.001 I0312 15:22:39.645694 3400 solver.cpp:331] Iteration 1372, Testing net (#0) I0312 15:22:40.027101 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:41.530071 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:41.651494 3400 solver.cpp:398] Test net output #0: accuracy = 0.906071 I0312 15:22:41.651532 3400 solver.cpp:398] Test net output #1: loss = 0.307399 (* 1 = 0.307399 loss) I0312 15:22:44.074694 3400 solver.cpp:219] Iteration 1380 (2.7605 iter/s, 7.24508s/20 iters), loss = 0.197561 I0312 15:22:44.086817 3400 solver.cpp:238] Train net output #0: loss = 0.197561 (* 1 = 0.197561 loss) I0312 15:22:44.086843 3400 sgd_solver.cpp:105] Iteration 1380, lr = 0.001 I0312 15:22:49.074193 3400 solver.cpp:331] Iteration 1400, Testing net (#0) I0312 15:22:49.094249 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:50.938649 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:51.060781 3400 solver.cpp:398] Test net output #0: accuracy = 0.927142 I0312 15:22:51.060820 3400 solver.cpp:398] Test net output #1: loss = 0.236449 (* 1 = 0.236449 loss) I0312 15:22:51.324509 3400 solver.cpp:219] Iteration 1400 (2.76351 iter/s, 7.23718s/20 iters), loss = 0.110642 I0312 15:22:51.326978 3400 solver.cpp:238] Train net output #0: loss = 0.110642 (* 1 = 0.110642 loss) I0312 15:22:51.327003 3400 sgd_solver.cpp:105] Iteration 1400, lr = 0.001 I0312 15:22:56.742542 3400 solver.cpp:219] Iteration 1420 (3.69332 iter/s, 5.41518s/20 iters), loss = 0.0974992 I0312 15:22:56.754711 3400 solver.cpp:238] Train net output #0: loss = 0.0974992 (* 1 = 0.0974992 loss) I0312 15:22:56.754739 3400 sgd_solver.cpp:105] Iteration 1420, lr = 0.001 I0312 15:22:57.721212 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:22:58.488878 3400 solver.cpp:331] Iteration 1428, Testing net (#0) I0312 15:23:00.368564 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:00.492012 3400 solver.cpp:398] Test net output #0: accuracy = 0.934285 I0312 15:23:00.492048 3400 solver.cpp:398] Test net output #1: loss = 0.218519 (* 1 = 0.218519 loss) I0312 15:23:04.001441 3400 solver.cpp:219] Iteration 1440 (2.76007 iter/s, 7.2462s/20 iters), loss = 0.0782407 I0312 15:23:04.013653 3400 solver.cpp:238] Train net output #0: loss = 0.0782407 (* 1 = 0.0782407 loss) I0312 15:23:04.013679 3400 sgd_solver.cpp:105] Iteration 1440, lr = 0.001 I0312 15:23:06.572952 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:07.918545 3400 solver.cpp:331] Iteration 1456, Testing net (#0) I0312 15:23:09.800770 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:09.924667 3400 solver.cpp:398] Test net output #0: accuracy = 0.921428 I0312 15:23:09.924705 3400 solver.cpp:398] Test net output #1: loss = 0.245003 (* 1 = 0.245003 loss) I0312 15:23:11.262861 3400 solver.cpp:219] Iteration 1460 (2.75912 iter/s, 7.24868s/20 iters), loss = 0.0540647 I0312 15:23:11.274978 3400 solver.cpp:238] Train net output #0: loss = 0.0540647 (* 1 = 0.0540647 loss) I0312 15:23:11.275005 3400 sgd_solver.cpp:105] Iteration 1460, lr = 0.001 I0312 15:23:15.221263 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:16.701591 3400 solver.cpp:219] Iteration 1480 (3.68581 iter/s, 5.42621s/20 iters), loss = 0.0991732 I0312 15:23:16.713642 3400 solver.cpp:238] Train net output #0: loss = 0.0991732 (* 1 = 0.0991732 loss) I0312 15:23:16.713668 3400 sgd_solver.cpp:105] Iteration 1480, lr = 0.001 I0312 15:23:17.355805 3400 solver.cpp:331] Iteration 1484, Testing net (#0) I0312 15:23:19.250823 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:19.375488 3400 solver.cpp:398] Test net output #0: accuracy = 0.906428 I0312 15:23:19.375527 3400 solver.cpp:398] Test net output #1: loss = 0.290387 (* 1 = 0.290387 loss) I0312 15:23:23.975798 3400 solver.cpp:219] Iteration 1500 (2.75421 iter/s, 7.26161s/20 iters), loss = 0.13034 I0312 15:23:23.987970 3400 solver.cpp:238] Train net output #0: loss = 0.13034 (* 1 = 0.13034 loss) I0312 15:23:23.987998 3400 sgd_solver.cpp:105] Iteration 1500, lr = 0.001 I0312 15:23:24.014277 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:26.810633 3400 solver.cpp:331] Iteration 1512, Testing net (#0) I0312 15:23:28.708775 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:28.834867 3400 solver.cpp:398] Test net output #0: accuracy = 0.870714 I0312 15:23:28.834903 3400 solver.cpp:398] Test net output #1: loss = 0.387578 (* 1 = 0.387578 loss) I0312 15:23:31.260344 3400 solver.cpp:219] Iteration 1520 (2.75034 iter/s, 7.27182s/20 iters), loss = 0.0944722 I0312 15:23:31.272511 3400 solver.cpp:238] Train net output #0: loss = 0.0944722 (* 1 = 0.0944722 loss) I0312 15:23:31.272537 3400 sgd_solver.cpp:105] Iteration 1520, lr = 0.001 I0312 15:23:32.768396 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:36.259568 3400 solver.cpp:331] Iteration 1540, Testing net (#0) I0312 15:23:37.462826 3400 blocking_queue.cpp:49] Waiting for data I0312 15:23:38.148380 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:38.274374 3400 solver.cpp:398] Test net output #0: accuracy = 0.933928 I0312 15:23:38.274395 3400 solver.cpp:398] Test net output #1: loss = 0.230134 (* 1 = 0.230134 loss) I0312 15:23:38.536557 3400 solver.cpp:219] Iteration 1540 (2.7535 iter/s, 7.26349s/20 iters), loss = 0.0971224 I0312 15:23:38.539016 3400 solver.cpp:238] Train net output #0: loss = 0.0971224 (* 1 = 0.0971224 loss) I0312 15:23:38.539042 3400 sgd_solver.cpp:105] Iteration 1540, lr = 0.001 I0312 15:23:41.627427 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:43.955335 3400 solver.cpp:219] Iteration 1560 (3.69283 iter/s, 5.41589s/20 iters), loss = 0.0968255 I0312 15:23:43.967442 3400 solver.cpp:238] Train net output #0: loss = 0.0968255 (* 1 = 0.0968255 loss) I0312 15:23:43.967468 3400 sgd_solver.cpp:105] Iteration 1560, lr = 0.001 I0312 15:23:45.698551 3400 solver.cpp:331] Iteration 1568, Testing net (#0) I0312 15:23:47.568752 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:47.699048 3400 solver.cpp:398] Test net output #0: accuracy = 0.926786 I0312 15:23:47.699085 3400 solver.cpp:398] Test net output #1: loss = 0.266172 (* 1 = 0.266172 loss) I0312 15:23:50.263005 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:51.213078 3400 solver.cpp:219] Iteration 1580 (2.7605 iter/s, 7.24507s/20 iters), loss = 0.148818 I0312 15:23:51.225193 3400 solver.cpp:238] Train net output #0: loss = 0.148818 (* 1 = 0.148818 loss) I0312 15:23:51.225219 3400 sgd_solver.cpp:105] Iteration 1580, lr = 0.001 I0312 15:23:55.124668 3400 solver.cpp:331] Iteration 1596, Testing net (#0) I0312 15:23:56.997790 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:23:57.125257 3400 solver.cpp:398] Test net output #0: accuracy = 0.931071 I0312 15:23:57.125279 3400 solver.cpp:398] Test net output #1: loss = 0.243579 (* 1 = 0.243579 loss) I0312 15:23:58.459100 3400 solver.cpp:219] Iteration 1600 (2.76497 iter/s, 7.23334s/20 iters), loss = 0.0652831 I0312 15:23:58.471344 3400 solver.cpp:238] Train net output #0: loss = 0.0652831 (* 1 = 0.0652831 loss) I0312 15:23:58.471356 3400 sgd_solver.cpp:105] Iteration 1600, lr = 0.001 I0312 15:23:59.114401 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:04.013156 3400 solver.cpp:219] Iteration 1620 (3.60921 iter/s, 5.54137s/20 iters), loss = 0.0935076 I0312 15:24:04.025998 3400 solver.cpp:238] Train net output #0: loss = 0.0935076 (* 1 = 0.0935076 loss) I0312 15:24:04.026031 3400 sgd_solver.cpp:105] Iteration 1620, lr = 0.001 I0312 15:24:04.707993 3400 solver.cpp:331] Iteration 1624, Testing net (#0) I0312 15:24:06.577738 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:06.710077 3400 solver.cpp:398] Test net output #0: accuracy = 0.935714 I0312 15:24:06.710114 3400 solver.cpp:398] Test net output #1: loss = 0.241938 (* 1 = 0.241938 loss) I0312 15:24:07.955536 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:11.454594 3400 solver.cpp:219] Iteration 1640 (2.69251 iter/s, 7.42801s/20 iters), loss = 0.051428 I0312 15:24:11.467205 3400 solver.cpp:238] Train net output #0: loss = 0.051428 (* 1 = 0.051428 loss) I0312 15:24:11.467224 3400 sgd_solver.cpp:105] Iteration 1640, lr = 0.001 I0312 15:24:14.320205 3400 solver.cpp:331] Iteration 1652, Testing net (#0) I0312 15:24:14.724130 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:16.194334 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:16.326746 3400 solver.cpp:398] Test net output #0: accuracy = 0.942142 I0312 15:24:16.326769 3400 solver.cpp:398] Test net output #1: loss = 0.223745 (* 1 = 0.223745 loss) I0312 15:24:18.896901 3400 solver.cpp:219] Iteration 1660 (2.69211 iter/s, 7.42911s/20 iters), loss = 0.0416095 I0312 15:24:18.909481 3400 solver.cpp:238] Train net output #0: loss = 0.0416095 (* 1 = 0.0416095 loss) I0312 15:24:18.909512 3400 sgd_solver.cpp:105] Iteration 1660, lr = 0.001 I0312 15:24:24.042721 3400 solver.cpp:331] Iteration 1680, Testing net (#0) I0312 15:24:24.061594 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:25.921290 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:26.051421 3400 solver.cpp:398] Test net output #0: accuracy = 0.945714 I0312 15:24:26.051460 3400 solver.cpp:398] Test net output #1: loss = 0.21022 (* 1 = 0.21022 loss) I0312 15:24:26.313695 3400 solver.cpp:219] Iteration 1680 (2.70138 iter/s, 7.40363s/20 iters), loss = 0.0470645 I0312 15:24:26.316110 3400 solver.cpp:238] Train net output #0: loss = 0.0470645 (* 1 = 0.0470645 loss) I0312 15:24:26.316123 3400 sgd_solver.cpp:105] Iteration 1680, lr = 0.001 I0312 15:24:31.898216 3400 solver.cpp:219] Iteration 1700 (3.58317 iter/s, 5.58164s/20 iters), loss = 0.0492646 I0312 15:24:31.910471 3400 solver.cpp:238] Train net output #0: loss = 0.0492646 (* 1 = 0.0492646 loss) I0312 15:24:31.910604 3400 sgd_solver.cpp:105] Iteration 1700, lr = 0.001 I0312 15:24:32.905202 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:33.710945 3400 solver.cpp:331] Iteration 1708, Testing net (#0) I0312 15:24:35.588150 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:35.719116 3400 solver.cpp:398] Test net output #0: accuracy = 0.947143 I0312 15:24:35.719139 3400 solver.cpp:398] Test net output #1: loss = 0.223752 (* 1 = 0.223752 loss) I0312 15:24:39.229243 3400 solver.cpp:219] Iteration 1720 (2.73291 iter/s, 7.3182s/20 iters), loss = 0.0587909 I0312 15:24:39.241425 3400 solver.cpp:238] Train net output #0: loss = 0.0587909 (* 1 = 0.0587909 loss) I0312 15:24:39.241437 3400 sgd_solver.cpp:105] Iteration 1720, lr = 0.001 I0312 15:24:41.805457 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:43.144937 3400 solver.cpp:331] Iteration 1736, Testing net (#0) I0312 15:24:45.041338 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:45.173462 3400 solver.cpp:398] Test net output #0: accuracy = 0.948214 I0312 15:24:45.173501 3400 solver.cpp:398] Test net output #1: loss = 0.210534 (* 1 = 0.210534 loss) I0312 15:24:46.514678 3400 solver.cpp:219] Iteration 1740 (2.75003 iter/s, 7.27266s/20 iters), loss = 0.0363963 I0312 15:24:46.526796 3400 solver.cpp:238] Train net output #0: loss = 0.0363963 (* 1 = 0.0363963 loss) I0312 15:24:46.526823 3400 sgd_solver.cpp:105] Iteration 1740, lr = 0.001 I0312 15:24:50.481462 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:52.024276 3400 solver.cpp:219] Iteration 1760 (3.63833 iter/s, 5.49702s/20 iters), loss = 0.0759064 I0312 15:24:52.036573 3400 solver.cpp:238] Train net output #0: loss = 0.0759064 (* 1 = 0.0759064 loss) I0312 15:24:52.036598 3400 sgd_solver.cpp:105] Iteration 1760, lr = 0.001 I0312 15:24:52.677892 3400 solver.cpp:331] Iteration 1764, Testing net (#0) I0312 15:24:54.558871 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:24:54.692844 3400 solver.cpp:398] Test net output #0: accuracy = 0.943928 I0312 15:24:54.692884 3400 solver.cpp:398] Test net output #1: loss = 0.217515 (* 1 = 0.217515 loss) I0312 15:24:59.339237 3400 solver.cpp:219] Iteration 1780 (2.73893 iter/s, 7.30212s/20 iters), loss = 0.0333237 I0312 15:24:59.352099 3400 solver.cpp:238] Train net output #0: loss = 0.0333237 (* 1 = 0.0333237 loss) I0312 15:24:59.352130 3400 sgd_solver.cpp:105] Iteration 1780, lr = 0.001 I0312 15:24:59.370473 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:02.257624 3400 solver.cpp:331] Iteration 1792, Testing net (#0) I0312 15:25:04.165477 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:04.298642 3400 solver.cpp:398] Test net output #0: accuracy = 0.940357 I0312 15:25:04.298684 3400 solver.cpp:398] Test net output #1: loss = 0.236867 (* 1 = 0.236867 loss) I0312 15:25:06.756495 3400 solver.cpp:219] Iteration 1800 (2.70132 iter/s, 7.40379s/20 iters), loss = 0.0709304 I0312 15:25:06.768586 3400 solver.cpp:238] Train net output #0: loss = 0.0709304 (* 1 = 0.0709304 loss) I0312 15:25:06.768617 3400 sgd_solver.cpp:105] Iteration 1800, lr = 0.001 I0312 15:25:08.273730 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:11.793817 3400 solver.cpp:331] Iteration 1820, Testing net (#0) I0312 15:25:13.656452 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:13.791921 3400 solver.cpp:398] Test net output #0: accuracy = 0.945 I0312 15:25:13.791944 3400 solver.cpp:398] Test net output #1: loss = 0.217189 (* 1 = 0.217189 loss) I0312 15:25:14.056071 3400 solver.cpp:219] Iteration 1820 (2.74466 iter/s, 7.28688s/20 iters), loss = 0.0877381 I0312 15:25:14.058534 3400 solver.cpp:238] Train net output #0: loss = 0.0877381 (* 1 = 0.0877381 loss) I0312 15:25:14.058560 3400 sgd_solver.cpp:105] Iteration 1820, lr = 0.001 I0312 15:25:17.148061 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:19.475175 3400 solver.cpp:219] Iteration 1840 (3.69264 iter/s, 5.41619s/20 iters), loss = 0.0563678 I0312 15:25:19.487390 3400 solver.cpp:238] Train net output #0: loss = 0.0563678 (* 1 = 0.0563678 loss) I0312 15:25:19.487438 3400 sgd_solver.cpp:105] Iteration 1840, lr = 0.001 I0312 15:25:21.228039 3400 solver.cpp:331] Iteration 1848, Testing net (#0) I0312 15:25:23.099680 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:23.255745 3400 solver.cpp:398] Test net output #0: accuracy = 0.943214 I0312 15:25:23.255784 3400 solver.cpp:398] Test net output #1: loss = 0.229499 (* 1 = 0.229499 loss) I0312 15:25:25.825199 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:26.769888 3400 solver.cpp:219] Iteration 1860 (2.74653 iter/s, 7.2819s/20 iters), loss = 0.0632004 I0312 15:25:26.782080 3400 solver.cpp:238] Train net output #0: loss = 0.0632004 (* 1 = 0.0632004 loss) I0312 15:25:26.782095 3400 sgd_solver.cpp:105] Iteration 1860, lr = 0.001 I0312 15:25:30.710422 3400 solver.cpp:331] Iteration 1876, Testing net (#0) I0312 15:25:32.561218 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:32.713716 3400 solver.cpp:398] Test net output #0: accuracy = 0.949285 I0312 15:25:32.713754 3400 solver.cpp:398] Test net output #1: loss = 0.206619 (* 1 = 0.206619 loss) I0312 15:25:34.049382 3400 solver.cpp:219] Iteration 1880 (2.75228 iter/s, 7.2667s/20 iters), loss = 0.0472578 I0312 15:25:34.061617 3400 solver.cpp:238] Train net output #0: loss = 0.0472578 (* 1 = 0.0472578 loss) I0312 15:25:34.061643 3400 sgd_solver.cpp:105] Iteration 1880, lr = 0.001 I0312 15:25:34.703518 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:39.492034 3400 solver.cpp:219] Iteration 1900 (3.68327 iter/s, 5.42996s/20 iters), loss = 0.0901867 I0312 15:25:39.504140 3400 solver.cpp:238] Train net output #0: loss = 0.0901867 (* 1 = 0.0901867 loss) I0312 15:25:39.504153 3400 sgd_solver.cpp:105] Iteration 1900, lr = 0.001 I0312 15:25:40.148438 3400 solver.cpp:331] Iteration 1904, Testing net (#0) I0312 15:25:41.973055 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:42.131355 3400 solver.cpp:398] Test net output #0: accuracy = 0.941428 I0312 15:25:42.131391 3400 solver.cpp:398] Test net output #1: loss = 0.243495 (* 1 = 0.243495 loss) I0312 15:25:43.339576 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:46.729701 3400 solver.cpp:219] Iteration 1920 (2.76818 iter/s, 7.22495s/20 iters), loss = 0.0168991 I0312 15:25:46.741763 3400 solver.cpp:238] Train net output #0: loss = 0.0168991 (* 1 = 0.0168991 loss) I0312 15:25:46.741789 3400 sgd_solver.cpp:105] Iteration 1920, lr = 0.001 I0312 15:25:49.562788 3400 solver.cpp:331] Iteration 1932, Testing net (#0) I0312 15:25:50.356412 3400 blocking_queue.cpp:49] Waiting for data I0312 15:25:51.415866 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:51.577615 3400 solver.cpp:398] Test net output #0: accuracy = 0.9475 I0312 15:25:51.577651 3400 solver.cpp:398] Test net output #1: loss = 0.22666 (* 1 = 0.22666 loss) I0312 15:25:51.677505 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:25:54.010398 3400 solver.cpp:219] Iteration 1940 (2.75162 iter/s, 7.26846s/20 iters), loss = 0.0458259 I0312 15:25:54.022474 3400 solver.cpp:238] Train net output #0: loss = 0.0458259 (* 1 = 0.0458259 loss) I0312 15:25:54.022500 3400 sgd_solver.cpp:105] Iteration 1940, lr = 0.001 I0312 15:25:59.010727 3400 solver.cpp:331] Iteration 1960, Testing net (#0) I0312 15:25:59.040019 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:26:00.851655 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:26:01.011333 3400 solver.cpp:398] Test net output #0: accuracy = 0.9525 I0312 15:26:01.011358 3400 solver.cpp:398] Test net output #1: loss = 0.21101 (* 1 = 0.21101 loss) I0312 15:26:01.274606 3400 solver.cpp:219] Iteration 1960 (2.75748 iter/s, 7.25299s/20 iters), loss = 0.0183012 I0312 15:26:01.277048 3400 solver.cpp:238] Train net output #0: loss = 0.0183012 (* 1 = 0.0183012 loss) I0312 15:26:01.277072 3400 sgd_solver.cpp:105] Iteration 1960, lr = 0.001 I0312 15:26:06.691892 3400 solver.cpp:219] Iteration 1980 (3.69313 iter/s, 5.41546s/20 iters), loss = 0.0222976 I0312 15:26:06.704053 3400 solver.cpp:238] Train net output #0: loss = 0.0222976 (* 1 = 0.0222976 loss) I0312 15:26:06.704079 3400 sgd_solver.cpp:105] Iteration 1980, lr = 0.001 I0312 15:26:07.678004 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:26:08.437675 3400 solver.cpp:331] Iteration 1988, Testing net (#0) I0312 15:26:10.284507 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:26:10.444213 3400 solver.cpp:398] Test net output #0: accuracy = 0.9525 I0312 15:26:10.444252 3400 solver.cpp:398] Test net output #1: loss = 0.202441 (* 1 = 0.202441 loss) I0312 15:26:13.946060 3400 solver.cpp:219] Iteration 2000 (2.76136 iter/s, 7.2428s/20 iters), loss = 0.0436784 I0312 15:26:13.958148 3400 solver.cpp:238] Train net output #0: loss = 0.0436784 (* 1 = 0.0436784 loss) I0312 15:26:13.958174 3400 sgd_solver.cpp:105] Iteration 2000, lr = 0.001 I0312 15:26:16.527683 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:26:17.866642 3400 solver.cpp:331] Iteration 2016, Testing net (#0) I0312 15:26:19.723129 3410 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:26:19.882864 3400 solver.cpp:398] Test net output #0: accuracy = 0.953214 I0312 15:26:19.882899 3400 solver.cpp:398] Test net output #1: loss = 0.21853 (* 1 = 0.21853 loss) I0312 15:26:21.214287 3400 solver.cpp:219] Iteration 2020 (2.756 iter/s, 7.2569s/20 iters), loss = 0.0215966 I0312 15:26:21.226387 3400 solver.cpp:238] Train net output #0: loss = 0.0215966 (* 1 = 0.0215966 loss) I0312 15:26:21.226413 3400 sgd_solver.cpp:105] Iteration 2020, lr = 0.001 I0312 15:26:25.183472 3409 data_layer.cpp:73] Restarting data prefetching from start. I0312 15:26:26.659919 3400 solver.cpp:219] Iteration 2040 (3.68047 iter/s, 5.43408s/20 iters), loss = 0.0152768 I0312 15:26:26.672003 3400 solver.cpp:238] Train net output #0: loss = 0.0152768 (* 1 = 0.0152768 loss) I0312 15:26:26.672027 3400 sgd_solver.cpp:105] Iteration 2040, lr = 0.001