

Reducibility

Ali Shakiba ali.shakiba@vru.ac.ir Vali-e-Asr University of Rafsanjan

What we are going to discuss?

- Undecidable problems from language theory
 - Reductions via computation histories
- Mapping reducibility
 - Computable functions
 - Formal definition of mapping reducibility
- Post correspondence problem, or PCP

$ALL_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$

Theorem 5.13

Do not forget EQ_{CFG} is undecidable (Exercise 5.1).

- We reduce it from A_{TM} with computation histories
 - Given a TM *M* and an input *w*, we construct an instance of PCP P where *M* accepts w if there is a match in P.
- How can we construct *P* so that a match is an accepting computation history for *M* on *w*?
 - Each domino links a position or positions in one configuration with the corresponding ones in the next configuration.
 - Some simplifications:
 - TM M on input w never tries to move its head off the left-hand end of tape 1.
 - 2. If $w = \varepsilon$, the string \sqcup is used in place of w in the construction
 - MPCP PCP is modified such that a match must start with the first domino $\left|\frac{t_1}{b_1}\right|$.

- Assume TM *R* decides *PCP*, then we construct a TM *S* which decides A_{TM} .
 - Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
 - TM *S* needs to construct an instance of PCP *P* that has a match iff *M* accepts *w*.
 - At first, *S* constructs and instance of MPCP *P*'

MPCP P'

1.

MPCP P'

- 2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text{reject}}$, if $\delta(q, a) = (r, b, \mathbf{R})$, put $\left[\frac{qa}{br}\right]$ into P'.
- For every a, b ∈ Γ and every q, r ∈ Q where q ≠ qreject, if δ(q, a) = (r, b, L), put [cqa/rcb] into P'.
 For every a ∈ Γ, put [a/a] into P'.
- 5. Put $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\amalg\#}\right]$ into P'.

MPCP *P*′

6. For every a ∈ Γ, put [^{aq}accept]/_{qaccept}] and [^{qaccepta}/_{qaccept}] into P'.
7. Finally, add the following domino into P': ^{qaccept##}/_#

MPCP *P*′

- The MPCP instance P' constructed so far has a match iff M accepts w.
- However, if we treat it as a PCP instance, it always has a match ...
 - What's that match?
- We need to convert MPCP *P*' into an instance of PCP *P* where a match in *P* exists iff *M* accepts *w*.
 - How?

Our trick

- For string $u = u_1 u_2 \dots u_n$, we define:
 - $\star u = \ast u_1 \ast u_2 \ast \cdots \ast u_n$
 - $\star u \star = \ast u_1 \ast u_2 \ast \cdots \ast u_n \ast$
 - $u \star = u_1 * u_2 * \cdots * u_n *$
- For MPCP instance $P' = \left\{\frac{t_1}{b_1}, \frac{t_2}{b_2}, \frac{t_3}{b_3}, \dots, \frac{t_k}{b_k}\right\}$, we construct the following PCP instance

$$P = \left\{ \frac{\star t_1}{\star b_1 \star}, \frac{\star t_1}{b_1 \star}, \frac{\star t_2}{b_2 \star}, \frac{\star t_3}{b_3 \star}, \dots, \frac{\star t_k}{b_k \star}, \frac{\star \aleph}{\aleph} \right\}.$$

39

Mapping reducibility, a.k.a. many-to-one reducibility

- Reducing problem *A* to *B* by mapping reducibility means:
 - There exists a **computable function** which converts instances of problem *A* to instances of problem *B*.
- A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** if some Turing machine *M* on every input *w* halts with just f(w) on its tape.
- Language *A* is mapping reducible to language *B*, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$ where for every $w \in \Sigma^*$ $w \in A \Leftrightarrow f(w) \in B$
 - The function f is called the reduction from A to B.

Some Results

Theorem 5.22: If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary 5.23: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Theorem 5.28: If $A \leq_m B$ and B is Turing-recognizable, then A is Turing recognizable.

Corollary 5.29: If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Theorem 5.30

 EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

- EQ_{TM} is not Turing-recognizable:
 - Reducing from A_{TM} to $\overline{EQ_{TM}}$.

 $F = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:} \\ 1. \text{ Construct the following two machines, } M_1 \text{ and } M_2. \\ M_1 = \text{``On any input:} \\ 1. Reject.'' \\ M_2 = \text{``On any input:} \\ 1. \text{ Run } M \text{ on } w. \text{ If it accepts, } accept.'' \\ 2. \text{ Output } \langle M_1, M_2 \rangle.''$

 EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

• *EQ_{TM}* is not Turing-recognizable:

• Reducing from A_{TM} to EQ_{TM} .

G = "On input ⟨M, w⟩, where M is a TM and w a string:
1. Construct the following two machines, M₁ and M₂. M₁ = "On any input:
1. Accept." M₂ = "On any input:
1. Run M on w.
2. If it accepts, accept."

Do not forget the MIDTERM on Aban 10^{TH} , 1395

- Chapters 3 to 5 of Sipser's TOC book.
- Two parts:
 - 1. Closed book: in-class
 - 2. Take home exam: you have 24 hours to return the answers.