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Preface


Computing systems are widely used today and in many areas they serve the key 

function in achieving highly complicated and safety-critical mission. At the 

same time, the size and complexity of computing systems have continued to 

increase, making its performance evaluation more difficult than ever before. 

The purpose of this book is to provide a comprehensive coverage of tools 

and techniques for computing system reliability modeling and analysis. 

Reliability analysis is a useful tool in evaluating the performance of complex 

systems. Intensive studies have been carried out to improve the likelihood for 

computing systems to perform satisfactorily in operation. 

Software and hardware are two major building blocks in computing systems. 

They have to work together successfully to complete many critical computing 

tasks. This book systematically studies the reliability of software, hardware and 

integrated software/hardware systems. It also introduces typical models in the 

reliability analysis of the distributed/networked systems, and then further 
develops some new models and analytical tools. 

“Grid” computing system has emerged as an important new field, 

distinguished from conventional distributed computing systems by its focus on 

large-scale resource sharing, innovative applications, and, in many cases, high-

performance orientation. This book also presents general reliability models for 

the grid and discusses analytical tools to estimate the grid reliability related to 

the resource management system, wide-area network communication, and 

parallel running programs with multiple shared resources. 

v




vi Computing System Reliability 

Furthermore, this book introduces the basic reliability theories and models 

for various multi-state systems. Based on the models, some interesting decision 

problems in system design and resource allocation are further discussed. 

This book is organized as follows. 

Chapter 1 provides an introduction to the field of computing systems and 

reliability analysis. Simple reliability concepts are also discussed. Chapter 2 

provides the basic knowledge in reliability analysis and summarizes some 

common techniques for analyzing the computing system reliability. The 

fundamentals of Markov processes and Nonhomogeneous Poisson processes 

(NHPP) are also introduced, which are essential tools used in this book. 

Chapters 3 and 4 present important models for the reliability analysis of 

hardware and software systems, respectively. They are useful when hardware 

and software issues are dealt with separately at the system analysis stage. 

Chapter 5 discusses the models for integrated systems. This is essential in 

computing system analysis as both software and hardware systems have to work 

together. 

In Chapter 6, the reliability of various distributed computing systems 

which incorporate the network communication into the hardware/software 

reliability is studied. The distributed computing system is a common and 

widely-used networked system and hence a chapter is devoted to this. 

The reliability of grid computing systems, which is a new direction in 

computing technology, is studied in Chapter 7. Since the grid reliability is 
difficult to evaluate due to its wide-area, heterogeneous and time various 

characteristics, we initially construct the reliability models for the different parts 

of the grid, including resource management system, large-scale network, 

distributed software and resources. 

Finally, Chapter 8 studies the multi-state system reliability. Some 

optimization models in the system design and resource allocation are presented 

in Chapter 9. This is an area where research is going on and further development 

is needed. 



Preface vii 

The basic chapters in this book are Chapters 3-7. Readers familiar with 

basic reliability can start from Chapter 3 directly. Chapters 8 and 9 are on 

advanced topics and can be read by those interested in those specific topics. 

Many models and results found in the literature and from our research are 

presented in the book. It is hoped that these approaches are easily implemented 

by practitioners as well. In addition, many examples are accompanied with those 

approaches. 

The book serves as reference book for students, professors, engineers and 

researchers in related science and engineering field. It can be used for graduate 
and senior undergraduate courses. Researchers and students should find many 

ideas useful in their academic work. 

The readers should have some basic knowledge in probability and calculus. 

However, difficult details are omitted to benefit the general audience. 

References are given so that further details can be found for those who are 

interested in more specific results. 

M. Xie 

Y. S. Dai 

K. L. Poh 
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CHAPTER


INTRODUCTION 

1.1. Need for Computing System Reliability Analysis 

Computing has been the fastest developing technology during the last century. 

Computing systems are widely used in many areas, and they are desired to 

achieve various complex and safety-critical missions. The applications of the 

computing systems have now crossed many different fields and can be found in 

different products, for example, air traffic control systems, nuclear power 

plants, aircrafts, real-time military systems, telephone switching, bank 

auto-payment, hospital patient monitoring systems, and so forth. 

The size and complexity of the computing systems has increased from one 

single processor to multiple distributed processors, from individual-separated 

systems to networked-integrated systems, from small-scale program running to 

large-scale resource sharing, and from local-area computation to global-area 

collaboration. A computing system today may contain many processors and 

communication channels and it may cover a wide area all over the world. They 

combine both software and hardware that have to function together to complete 
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2 Introduction 

various tasks. They may incorporate multiple states and their failures may be 

correlated with one another. These factors make the system modeling and 

analysis complicated. As a result, making decisions in the system design or 

resource allocation also becomes difficult accordingly. 

There is no common approach to assess computing systems. Reliability is a 

quantitative measure useful in this context as reliability can be broadly 

interpreted as the ability for a system to perform its intended function. Intensive 

studies on reliability models and analytical tools are carried out to improve the 

chance that the computing systems will perform satisfactorily in operations. As 

the functionality of computing operations becomes more essential, there is a 

greater need for a high reliability of the computing systems. 

In fact, in order to increase the performance of the computing systems and 

to improve the development process, a thorough analysis of their reliability is 

needed. Based on the models and analysis, approaches to improve system 

reliability can be further implemented. 

1.2. Computing System Reliability Concepts 

In general, the basic reliability concept is defined as the probability that a 

system will perform its intended function during a period of running time 

without any failure (Musa, 1998). A failure causes the system performance to 

deviate from the specified performance. 

A fault is an erroneous state of the system. Although the definitions of fault 

are different for different systems and in different situations, a fault is always 

an existing part in the system and it can be removed by correcting the erroneous 

part of the system. For the computing systems, the basic reliability concept can 

be adapted to some specific forms such as “software reliability”, “system 

reliability”, “service reliability”, “system availability”, etc., for different 

purposes. 
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Most computing systems contain software programs to achieve various 

computing tasks. Software reliability is an important metric to assess the 

software performance. Similar to the general reliability concept, software 

reliability is defined as the probability that the software will be functioning 

without failure under a given environmental condition during a specified period 

of time (Xie, 1991). Here, a software failure means generally the inability of 

performing an intended task specified by the requirement. 

Software reliability is only a measurement of software program. In order to 

assess the computing system that may contain multiple software programs and 

hardware components, system reliability is commonly used. It is defined as the 

probability that all the tasks for which the system is desired can be successfully 

completed (Kumar et al., 1986). Those software programs may be in parallel or 
serial and they may even have any arbitrarily distributed structure. The system 

reliability needs to be computed in a different way according to the system 

structure. 

Some computing systems are developed to provide different services for 

the users. The users may only be concerned with whether the service they are 

using is reliable or not. From the users’ point of view, service reliability is an 

important measure, and it is defined as the probability for a given service to be 

achieved successfully. This is a useful concept in service quality analysis, and it 

broadens the traditional reliability definition. 

1.3. Approaches to Computing System Modeling 

Computing system reliability is an interesting, but difficult, research area. 

Although there are many reliability models suggested and studied in the 

literature, none can be used universally, and there is no unique model which 

can perform well in all situations. The reason for this is that the assumptions 

made for each model are correct or are good approximations of the reality only 

in specific cases. 
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In the computing systems, hardware (such as computers, routers, 

processors, CPUs, memories, disks, etc.) provides the fundamental 

configurations to support computing tasks. Many traditional reliability models 

mainly dealt with the hardware reliability, such as Barlow & Proschan (1981), 

Elsayed (1996) and Blishcke & Murthy (2000). 

Software is another important element in the computing systems besides 

the hardware. Different from the hardware, the software does not wear-out and 

it can be easily reproduced. Furthermore, software systems are usually 

debugged during testing phase so that its reliability is improving over time. 

Many software reliability models have been proposed for the study of software 

reliability, see e.g., Xie (1991), Lyu (1996), Musa (1998) and Pham (2000). 

However, a computing system usually includes not only a hardware 

subsystem but also a software subsystem, which ought not to be separately 

studied. Both software and hardware failures should be integrated together in 

analyzing the performance of the whole system. Many reliability models for the 

integrated software and hardware systems have been recently presented, such 

as Goel & Soenjoto (1981), Siegrist (1988), Laprie & Kanoun (1992), Dugan & 

Lyu, (1994), Welke et al., (1995) and Lai et al. (2002). Although there are some 

books that contain discussion on integrated software and hardware system 

reliability, this book is entirely devoted to this topic and the associated issues. 

Accompanying the development of network techniques, many computing 

systems need to communicate information through the (local or global) 

networks. The programs and resources of such systems are distributed all over 

the different sites connected by the networks. This kind of computing system is 

usually called distributed computing system. The performance of a distributed 

computing system is determined not only by the software/hardware reliability 

but also by the reliability of the networks for communication. Many models 

and algorithms have been presented for the distributed system reliability, see 
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e.g. Hariri et al. (1985), Kumar et al. (1986), Chen & Huang (1992), Chen et 

al. (1997), Lin et al. (1999, 2001) and Dai et al. (2003a). 

As a special type of the distributed computing systems, grid computing is a 

recently developed technique by its focus on various shared resources, 

large-scale networks, wide-area communications, real-time programs, diverse 

virtual organizations, heterogeneous platforms etc. Many experts believe that 

the grid computing systems and technologies will offer a second chance to 

fulfill the promises of the Internet, see e.g. Foster & Kesselman (1998). 

Although it is difficult to study due to its complexity, the reliability of the grid 

computing systems begins to be of concern today. 

Most of reliability models for computing systems assume only two 

possible states of the system. In reality, many computing systems may contain 

more than two states (Lisnianski & Levitin, 2003), especially for those 

real-time systems. For example, if some computing elements in a real-time 

system fail, the system may still continue working but its performance should 

be degraded. Such a degradation state is another state between the perfect 

working and completely failed states. To study these types of systems, the 

Multi-State system reliability is also of concern recently to many researchers, 

e.g. Brunelle & Kapur (1999), Pourret et al. (1999), Levitin et al. (2003) and 

Wu & Chan (2003). 

The book provides a systematic and comprehensive study of different 

reliability models and analytical tools for various computing systems including 

hardware, software, integrated software/hardware, distributed computing, grid 

computing, multi-state systems etc. Some interesting optimization problems for 

system design and resource allocation are further discussed. Many examples 

are used to illustrate to the use of these models. 



This page intentionally left blank 



CHAPTER 
BASIC RELIABILITY 

CONCEPTS AND ANALYSIS 

Reliability concepts and analytical techniques are the foundation of this book. 

Many books dealing with general and specific issues of reliability are available, 

see e.g., Barlow & Proschan (1981), Shooman (1990), Hoyland & Rausand 

(1994), Elsayed (1996), and Blischke & Murthy (2000). Some basic and 

important reliability measures are introduced in this chapter. Since computing 

system reliability is related to general system reliability, the focus will be on tools 

and techniques for system reliability modeling and analysis. Since Markov 

models will be extensively used in this book, this chapter also introduces the 

fundamentals of Markov modeling. Moreover, Nonhomogeneous Poisson Process 

(NHPP) is widely used in reliability analysis, especially for repairable systems. 

Its general theory is also introduced for the reference. 

2.1. Reliability Measures 

Reliability is the analysis of failures, their causes and consequences. It is the most 

important characteristic of product quality as things have to be working 

satisfactorily before considering other quality attributes. Usually, specific 

7
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performance measures can be embedded into reliability analysis by the fact that if 

the performance is below a certain level, a failure can be said to have occurred. 

2.1.1. Definition of reliability 

The commonly used definition of reliability is the following. 

Definition 2.1. Reliability is the probability that the system will perform its 

intended function under specified working condition for a specified period of 

time. 

Mathematically, the reliability function  R(t) is the probability that a system will 

be successfully operating without failure in the interval from time 0 to time t, 

where T is a random variable representing the failure time or time-to-failure. 

The failure probability, or unreliability, is then 

which is known as the distribution function of T.


If the time-to-failure random variable  T has a density function f (t), then


The density function can be mathematically described as 

This can be interpreted as the probability that the failure 

time  T will occur between time  t and the next interval of operation, The 

three functions,  R(t), F(t) and  f(t) are closely related to one another. If any of 

them is known, all the others can be determined. 
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2.1.2. Mean time to failure (MTTF) 

Usually we are interested in the expected time to next failure, and this is termed 

mean time to failure. 

Definition 2.2. The mean time to failure (MTTF) is defined as the expected value 

of the lifetime before a failure occurs. 

Suppose that the reliability function for a system is given by  R(t), the MTTF 

can be computed as 

Example 2.1. If the lifetime distribution function follows an exponential 

distribution with parameter that is, the MTTF is 

This is an important result as for exponential distribution. MTTF is related to a 

single model parameter in this case. Hence, if MTTF is known, the distribution is 

specified. 

2.1.3. Failure rate function 

The failure rate function, or hazard function, is very important in reliability 

analysis because it specifies the rate of the system aging. The definition of failure 

rate function is given here. 

Definition 2.3. The failure rate function is defined as 
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The quantity represents the probability that a device of age t will fail in 

the small interval from time  t to t + dt. The importance of the failure rate 

function is that it indicates the changing rate in the aging behavior over the life of 

a population of components. For example, two designs may provide the same 

reliability at a specific point in time, but the failure rate curves can be very 

different. 

Example 2.2. If the failure distribution function follows an exponential 

distribution with parameter then the failure rate function is 

This means that the failure rate function of the exponential distribution is a 

constant. In this case, the system does not have any aging property. This 

assumption is usually valid for software systems. However, for hardware 

systems, the failure rate could have other shapes. 

2.1.4. Maintainability and availability 

When a system fails to perform satisfactorily, repair is normally carried out to 

locate and correct the fault. The system is restored to operational effectiveness by 

making an adjustment or by replacing a component. 
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Definition 2.4. Maintainability is defined as the probability that a failed system 

will be restored to a functioning state within a given period of time when 

maintenance is performed according to prescribed procedures and resources. 

Generally, maintainability is the probability of isolating and repairing a fault in a 

system within a given time. Maintenance personnel have to work with system 

designers to ensure that the system product can be maintained cost effectively. 

Let T denote the time to repair or the total downtime. If the repair time T has 

a density function  g(t) , then the maintainability,  V(t) , is defined as the 

probability that the failed system will be back in service by time t, i.e., 

An important measure often used in maintenance studies is the mean time to 

repair (MTTR) or the mean downtime. MTTR is the expected value of the repair 

time. 

Another important reliability related concept is system availability. This is a 

measure that takes both reliability and maintainability into account. 

Definition 2.5. The availability function of a system, denoted by  A(t) , is 

defined as the probability that the system is available at time t. 

Different from the reliability that focuses on a period of time when the system is 

free of failures, availability concerns a time point at which the system does not 

stay at the failed state. Mathematically, 

A(t) = Pr(System is up or available at time instant t) 

The availability function, which is a complex function of time, has a simple 

steady-state or asymptotic expression. In fact, usually we are mainly concerned 
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with systems running for a long time. The steady-state or asymptotic availability 

is given by 

The mean time between failures (MTBF) is another important measure in 

repairable systems. This implies that the system has failed and has been repaired. 

Like MTTF and MTTR, MTBF is an expected value of the random variable time 

between failures. Mathematically, MTBF=MTTR+ MTTF. 

Example 2.3. If a system has a lifetime distribution function 

and a maintainability function then and 

The MTBF is the sum of MTTF and MTTR and the steady-state 

availability is 

2.2. Common Techniques in Reliability Analysis 

There are many techniques in reliability analysis. The most widely used 

techniques in computing systems are reliability block diagrams, network 

diagrams, fault tree analysis and Monte Carlo simulation, which will be 

introduced in the following sections. Another popular and important analytical 

tool, Markov model, will be introduced in Section 2.3 since it is the main 

technique used in this book. 
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2.2.1. Reliability block diagram 

A reliability block diagram is one of the conventional and most common tools of 

system reliability analysis. A major advantage of using the reliability block 

diagram approach is the ease of reliability expression and evaluation. 

A reliability block diagram shows the system reliability structure. It is made 

up of individual blocks and each block corresponds to a system module or 

function. Those blocks are connected with each other through certain basic 

relationships, such as series and parallels. The series relationship between two 

blocks is depicted by Fig. 2.1 (a) and parallel by Fig. 2.1 (b). 

Suppose that the reliability of a block for module  i is known or estimated, and it 

is denoted by Assuming that the blocks are independent from a reliability 

point of view, the reliability of a system with two serially connected blocks is 

and that of a system with two parallel blocks is


The blocks in either series or parallel structure can be merged into a new block 

with the reliability expression of the above equations. Using such combinations, 

any parallel-series system can be eventually merged to one block and its 

reliability can be easily computed by repeatedly using those equations. 
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Example 2.4. A parallel-series system consists of five modules whose reliability 

block diagram is shown as Fig. 2.2(a). The parallel blocks can be merged as 

shown by Fig. 2.2(b). It can be further merged into one block simply through the 

series expression (2.6). The combined reliability expression is given under the 

new blocks. 

Furthermore, a library for reliability block diagrams can be constructed in order 

to include other configurations or relationships. Additional notational description 

is needed and specific formulas for evaluating these blocks must be obtained and 

added to the library. One such example is the simple k-out-of-n in the following. 
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Example 2.5.  A  k-out-of-n system requires that at least k modules out of a total 

of n must be operational in order for the system to be working. Usually a voter is 

needed, see Fig. 2.3. 

If the voter is perfect and all the modules have reliability R , the formula to 

evaluate the reliability of these blocks, which can be obtained via conditioning or 

binomial distribution (Barlow & Proschan, 1981), is 

A majority voting system requires more than half of modules to be operational. 

The reliability of such a system is given by 

where [X ] denotes the largest integer that is less than or equal to X.
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2.2.2 Network diagram 

Network diagrams are commonly used in representing communication networks 

consisting of individual links. Most network applications are in the 

communication domain. The computation of network reliability is the primary 

application of network diagrams. 

The purpose of a network is to execute programs by connecting different 

sites that contain processing elements and resources. For simple network 

diagrams, computation is not complex and reliability block diagrams can 

alternatively be used. For example, Fig. 2.4 shows the network diagrams that are 

connected through series or parallel links. 

Fig. 2.4 can alternatively be represented by the reliability block diagrams if we 

view each link as a block, depicted by Fig. 2.1. 

The choice of reliability block diagram or network diagram depends on the 

convenience of their usage and description for certain specific problems. Usually, 

the reliability block diagram is mainly used in a modular system that consists of 

many independent modules and each module can be easily represented by a 

reliability block. The network diagram is often used in networked system where 

processing nodes are connected and communicated through links, such as the 

distributed computing system, local/wide area networks and the wireless 

communication channels, etc. 
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2.2.3. Fault tree analysis 

Fault tree analysis is a common tool in system safety analysis. It has been adapted 

in a range of reliability applications. 

A fault tree diagram is the underlying graphical model in fault tree analysis. 

Whereas the reliability block diagram is mission success oriented, the fault tree 

shows which combinations of the component failures will result in a system 

failure. The fault tree diagram represents the logical relationships of ‘AND’ and 

‘OR’ among diverse failure events. Various shapes represent different meanings. 

In general, four basic shapes corresponding to four relationships are depicted by 

Fig. 2.5. 

Since any logical relationships can be transformed into the combinations of 

‘AND’ and ‘OR’ relationships, the status of output/top event can be derived by 

the status of input events and the connections of the logical gates. 

Example 2.6. An example of a fault tree diagram corresponding to the reliability 

block diagram in Example 2.4 is shown by Fig. 2.6. As the fault tree shows, the 

top-event of the system fails if both module 1 and 2 fail, or module 3 fails, or 

both module 4 and 5 fail. 
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A fault tree diagram can describe the fault propagation in a system. However, 

complex systems may exhibit much more complex failure behavior, including 

multiple failure modes and dependent failure modes. These failures will have 

different effects on the mission outcome. The basic fault tree analysis does not 

support this type of modeling. Moreover, repair and maintenance are two 

important operations in system analysis that cannot be expressed easily using a 

fault tree formulation. 

2.2.4. Monte Carlo simulation 

In a Monte Carlo simulation, a reliability model is evaluated repeatedly using 

parameter values drawn from a specific distribution. The Monte Carlo simulation 

is often used to evaluate the MTBF for complex systems. Here, the following 

steps apply: 
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1) Simulate random numbers for each random variable needed in the 

simulation model. 

2) Evaluate the desired function. 

3)	 Repeat steps 1 and 2 a total of n times, to obtain n samples of the desired 

function. For example, the system failure times will be T(1) , 

T (2),…,T(n). 

4)	 Estimate the desired parameter. For example, the expected value of the 

system failure time can be obtained from 

5)	 Obtain an estimate of the precision of the estimate, such as the sample 

standard deviation of the estimated value. 

Monte Carlo simulation can handle a variety of complex system 

configurations and failure rate models. However, Monte Carlo simulation usually 

requires the development of a customized program, unless the system 

configuration fits a standard model. It also requires lengthy computer runs if 

accurate and converging computations are desired. 

2.3. Markov Process Fundamentals 

Markov model is another widely used technique in reliability analysis. It 

overcomes most disadvantages of other techniques and is more flexible to be 

implemented in reliability analysis for various computing systems, which will be 

applied in the later chapters. 
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2.3.1. Stochastic processes 

When we examine the evolution of a process governed by the rules of 

probability, we observe a stochastic process. The study of stochastic processes 

involves the analysis of a collection of random variables, their interdependence, 

their change over time, and limiting behavior, among others (Ross, 2000). 

In the study of stochastic processes, it is useful to establish two distinct 

categories: 

1) Stationary: A stationary process is one for which the distribution remains 

the same over time. 

2) Evolutionary  (Nonstationary): An evolutionary process can be defined as 

one that is not stationary and the process evolves with time. 

Almost all systems are dynamic in nature. Markov model is a powerful tool 

to solve such dynamic problems. Its stochastic process is a sequence of outcomes 

where t takes value from a parameter space T. 

If the parameter space  T is discrete and countably finite, the sequence is 

called a discrete-time process and is denoted by where  n=1,2,.... The 

index  n identifies the steps of the process. On the other hand, if the parameter 

space  T is continuous or uncountable, the sequence is called a continuous-time 

process and is denoted by 

The set of all possible and distinct outcomes of all experiments in a 

stochastic process is called its state space and normally is denoted by Its 

elements are called the states. If the state space is discrete, then the process 

is called a discrete-state process. Otherwise, it is called continuous-state process. 
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2.3.2. Standard Markov models 

There are four types of standard Markov models corresponding to four types of 

Markov processes classified according to their state-space and time 

characteristics as Table 2.1 shows below. 

The standard Markov models satisfy the Markov property, which is defined here. 

Definition 2.6. For a stochastic process that possesses Markov property, the 

probability of any particular future behavior of the process, when its current state 

is known exactly, is not changed by additional information concerning its past 

behavior. 

These four Markov models are described in more details in the following 

sections. 

Discrete-Time Markov chain 

The discrete-state process is referred to as chain, so the discrete-state and 

discrete-time Markov process is usually called discrete time Markov chain 

(DTMC). 
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A general discrete-time chain is a sequence of discrete random variables 

in which is dependent on all previous outcomes 

The analysis of this type of chain can easily become 

unmanageable, especially for long-term evaluation. Fortunately, in many 

practical situations, the influence of the earlier outcomes on its future one tends 

to diminish rapidly with time. 

For mathematical tractabiiity, we can assume that is dependent only 

on  i previous outcomes, where is a fixed and finite number. In this case, 

deriving requires only the information about the previous

outcomes (from step n-i+1 to step n), i.e., 

We call this type of chain a Markov chain of order i. 

We usually refer to the first-order Markov chain simply as a Markov chain. 

For these chains, only their present (at time  n) has any influence on their future 

(at time n+1). In other words, for all n>0, 

The essential characteristic of such a Markov process can be thought of as 

memoryless. 

For the right-hand side of the above equation, it is assumed that the state 

space under consideration is either finite or countably infinite. Define 

The conditional probability is called the (one-step) transition 

probability from state  i to state  j at time n. The m-step transition probabilities at 

time n are defined by 

 i 
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and the corresponding  m-step transition matrix at time  n is P(n,n+m). The 

transition matrix should satisfy, 

or, equivalently, 

This equation is known as the Chapman-Kolmogorov equation (Ross, 2000). 

Example 2.7. Suppose that a computing system has three states after each run. 

The states are perfect, degraded, and failed states denoted by state 1, 2 and 3. The 

state of the current run will just affect the state of the next run. The matrix of one 

step transition probability is 

This is a discrete time, discrete state Markov chain (DTMC) that is depicted 

by the transition graph in Fig. 2.7. 

According to the Chapman-Kolmogorov equation, the two-step transition 

matrix can be obtained as 
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Thereafter, if the system initially stays at a perfect state, then the probability that 

the system still stays at that state after 2 runs should be 

four-step transition matrix is 

The 

The probability that the system does not stay at the failed state after 4 runs is


Continuous-time Markov chain 

Similar to the case of DTMC, the discrete-state and continuous-time Markov 

process is usually called the continuous time Markov chain. Let the time space 

be an index set and consider a continuous-time stochastic process 

taking values on the discrete state space We say that the 
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process is a Markov chain in continuous time if, for each 

t > 0 and each set A, we have 

Specifically, if, for each t > 0 and each i, and every history 

x(u) , 

then the process { X (t) } is called a continuous-time Markov chain (CTMC). 

A CTMC is a stochastic process having the Markov property that the 

conditional distribution of the future state, given the present state and all past 

states, depends only on the present state and is independent of the past. Also, 

define 

The conditional probability is called the transition probability function 

from state i to state j and the matrix P(s,t) is called the transition matrix function. 

Similar to the DTMC, we have the Chapman-Kolmogorov equation as 

In matrix notation, this can be written as


The above equation can be compared with its discrete-time counter-part (2.13) or 

(2.14). 

When the transition probability functions depend only on the 

difference i.e., 
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the continuous-time Markov chain {X(t)} is said to be homogeneous. For any


homogeneous Markov chain, the Chapman-Kolmogorov equation is expressed as


This can be written in matrix form as 

where which satisfies 

As given by Kijima (1997, p. 174), the derivative of P(t) is defined as


which shows that  P(t) is infinitely differentiable with respect to t > 0. 

Define The matrix is called infinitesimal generator, or 

generator for short. This is of fundamental importance in the theory of CTMC. 

Since P(0)=I, we have 

Since P(t) is differentiable, it follows from (2.22) that
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which are the systems of ordinary linear differential equations. The former is 

known as the backward Kolmogorov equation and the latter as the forward 

Kolmogorov equation (Ross, 2000). 

Example 2.8. Suppose that a computing system has two states: Good and Failed, 

denoted by 1 and 2, respectively. Suppose that the transition from state  i to  j 

follow a continuous time distribution, say the exponential distribution, 

The CTMC is depicted in Fig. 2.8. 

From the exponential distribution, we have


Then, can be written as Eq. (2.22) for 

Let We have, 
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This solution is useful, and it implies that for exponential distribution, the is 

equal to its rate. 

Then, the Chapman-Kolmogorov equation for Fig. 2.8 can be written as 

and 

With the initial condition (assume the system initially stays at the good state)


we obtain the availability function as 

Discrete Time, Continuous State 

The discrete-time continuous-state Markov model is applicable if there are 

discrete changes in time in an environment where the states of the system are 

continuous over a specified range. 

It is easy to see how the concept could be applied to the component 

parameter drift problem. However, little work has been done in this area, and 

multi-parameter modeling and computation remain a difficult problem. There are 
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two possible reasons: numerical data are seldom available, and the solution of the 

resulting partial differential equations is more complex. 

Continuous Time, Continuous State 

The conventional diffusion equations fall in this category of continuous-time and 

continuous-state Markov models. Usually when we talk about the system state 

space, we attempt to describe it in fixed terms. In reliability, we talk about fully 

operational systems or failed systems. Once we introduce the concept of 

degraded operability, it is easy to imagine a continuum of physical states in 

which the system can exist. There could be some other advanced applications. 

However, the evaluation of these equations will be costly and more involved. 

Since little work has been done in the area of the continuous state (Type 3 and 

4 in Table 2.1), the continuous-state Markov process will not be discussed in this 

book. For details about them, the readers can refer to Kijima (1997). 

2.3.3. Some non-standard Markovian models 

Some important aspects of system behavior cannot be easily captured in certain 

types of the above Markov models. The common characteristic these problems 

share is that the Markov property is not valid at all time instants. This category of 

problems is jointly referred to as non-Markovian models and can be analyzed 

using several approaches, see e.g., Limnios & Oprisan (2000). 

Markov renewal sequence 

We first introduce the renewal process. Let be the time 

instants of successive events to occur. The sequence of non-negative independent 

and identically distributed random variables, 

renewal process. 

ais 
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The idea of having the times depend on a state which can be 

generalized. We can assume that there is a set of states which can be thought 

of as the set 0, 1,…, as before. The state at is given by The chain 

now forms a process on its own. In particular, they may form a DTMC. The 

points are called Markov regeneration epochs, or Markov 

renewal moments. Together with the states of the embedded Markov chain 

they define a Markov renewal sequence. 

Definition 2.7. The bivariate stochastic process

Markov renewal sequence provided that 

 is a 

The random variables are the regeneration epochs, and the are the 

states at these epochs. 

Markov renewal sequences are embedded into Markov Renewal Models. Markov 

renewal models can be classified into two categorizations called semi-Markov 

model and Markov regenerative model. 

Semi-Markov process 

A possible generalization of the CTMC is to allow the holding time to follow 

general distributions. That is, by letting be the holding-time distribution 

when the process is in state  i, we can construct a stochastic process {X(t)} as 

follows. If X(0) = i , then the process stays in state i for a time with distribution 

function At the end of the holding time, the process moves to state j, 

which can be equal to i, according to the Markovian law The process 
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stays in state j for a time with distribution function and then moves to 

some state according to P. Under some regularity conditions, we can construct a 

stochastic process by repeating the above procedure. 

We can introduce more dependent structure into the holding times. Namely, 

when  X (0) =  i , we choose the next state  j and the holding time simultaneously 

according to a joint distribution Given the next state j, the holding-time 

distribution is given by After the holding time, a transition to state 

j occurs. At the same time, the next state  k as well as the holding time is 

determined according to a joint distribution A stochastic process 

constructed in this way is called a semi-Markov process. 

Definition 2.8. Let denote the state space and let be a sequence of 

random variables taking values on Let be a sequence of random 

variables taking values on and let 

We define the renewal process associated with 

Thereafter, with the above notation, suppose that 

for all  n=0,1,...; i, and Then the stochastic process {X(t)} 

defined by is called a semi-Markov process. 

For a semi-Markov process, the time distribution satisfies the following 

equation. 
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where denotes the convolution of the two functions, defined as 

Using the Laplace-Stieltjes Transform, the above equation can be simplified 

as 

where is the Laplace-Stieltjes transform of 

Markov regenerative process 

The Markov regenerative model combines the Markov regenerative process into 

its modeling. A stochastic process with the state space is 

called regenerative if there exist time points at which the process probably 

restarts itself. The formal definition of Markov regenerative process is given now. 

Definition 2.9.  A Markov regenerative process is defined as a stochastic process 

are the same as those of 

As a special case, the definition implies that for 

), 

which has the additional property that all conditional finite distributions 

given 

given 

with an embedded Markov regenerative process (X, S

of 

The expression in Eq. (2.36) implies that the Markov regenerative process does


not have the Markov property in general, but there is a sequence of embedded
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time points such that the states realized at these 

points satisfy the Markov property. It also implies that the future of the process Z 

from time onwards depends on the past only through 

Different from the semi-Markov processes, state changes in Markov 

regenerative process may occur between two consecutive Markov regeneration 

epochs. An example of Markov regenerative process is illustrated below. 

Example 2.9. Suppose that a system has two states: 0 and 1 (good and failed). 

When the system fails, it is restarted immediately. After restarting, the system 

may stay at the good state (with the probability p ) or failed state again (with the 

failure rate

 p ). When the system stays at a good state, it may fail with aprobability 1 –

 Then the process is a Markov regenerative process, where the 

restarting points are regeneration epochs. 

Given the initial state is the first restart state, the Markov regenerative 

process is depicted by Fig. 2.9 in which state is the i:th restart point and 

is the good state between and 
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2.3.4. General procedure of Markov modeling 

A Markov process is characterized by its state space together with the transition 

probabilities over time between these states. The basic steps in the modeling and 

analysis are described in the following. 

Setting up the model 

In the first step, a Markov state diagram can be developed by determining the 

system states and the transitions between these states. It also includes labeling the 

states such as operational, degraded, or failed. There could be several states in the 

degraded category. 

The state diagrams depict all possible internal relationships among states and 

define the allowable transitions from one state to another. In general, the state 

diagram is made up of nodes and links, where the nodes represent the different 

states and the links represent the transition between the connected two states. 

For DTMC, the time between the two states is discrete, which is usually set 

as 1 unit. On the other hand, the time between the two states is continuous for 

CTMC. The Markov chain can be constructed by drawing a state diagram that is 

made up of the units. 

For the semi-Markov process, the building of the model is more complex for 

it contains two steps. First, the state diagram is drawn as a DTMC with transition 

probability matrix P. Then, the process in continuous time is set up by making 

the time spent in a transition from state i to state j have Cdf 

Chapman-Kolmogorov equations 

The second step converts the Markov state diagram developed in the preceding 

step into a set of equations. The well known equation for Markov models is the 

Chapman-Kolmogorov equations, see e.g. Trivedi (1982). 
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Solving the equations 

Solving the state equations is sometimes complicated. An analytical solution of 

the state equations is feasible only for simple problems. Fortunately, a number of 

solution techniques exist, such as analytical solution, Laplace-Stieltjes 

transforms, numerical integration and computer-assisted evaluation, which can 

simplify this task, see e.g. Pukite & Pukite (1998, pp. 119-136). 

The use of Laplace-Stieltjes transforms in engineering is well known, see 

Gnedenko & Ushakov (1995) for details. Important applications are in control 

system stability evaluation, circuit analysis, and so on. Laplace-Stieltjes 

transforms provide a convenient way of solving simpler models. Solution of the 

Markov state equations using this approach involves two steps: 

a) State equations are transformed to their Laplace counterparts. 

b) The resulting equations are inverted to obtain their time-domain solutions. 

If the mission times are short and if the transition rates are small, then 

approximations can be used that may meet the accuracy requirements. An 

example is as follows. 

Example. 2.10. Consider that a state diagram can be expressed as a sequence of 

transitions, as shown in Fig. 2.10. 

The state probability for the last state can be given in Laplace-Stieltjes transform 

by 
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By expanding the denominator, substituting this expression in the equation for 

and then performing the long division, we get 

This equation can be easily inverted using inverse Laplace-Stieltjes transform and 

we have 

2.4. Nonhomogeneous Poisson Process (NHPP) Models 

A counting process,  N(t), is obtained by counting the number of certain events 

occurring in the time interval [0, t). The simplest model is the Poisson process 

model which assumes that time between failures are exponentially distributed and 

has independent increment, and it has a constant failure occurrence rate over 

time. Such a model is also a Markov model that has been discussed before. Here 

we will focus on the case of time-dependent failure occurrence rate, or general 

NHPP models. Such models are widely used to model the number of failures of a 

system over time, especially in software reliability analysis (Xie, 1991). 

2.4.1. General formulation 

Nonhomogeneous Poisson Process (NHPP) models are very useful in reliability 

analysis, especially for repairable systems. Since hardware systems are usually 
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repairable, and software debugging is a repair process, NHPP models can be used 

for both software and hardware, and for combined systems. 

For a counting process modeled by NHPP,  N(t) follows a 

Poisson distribution given the following underlying assumptions of the NHPP: 

1)  N(0) = 0, 

2) has independent increments, 

3) 

4) 

In the above denotes a quantity which tends to zero for small h. The 

intensity function is defined as 

letIf we

then it can be shown, see e.g. (Ross, 2000: pp. 284-286), that


That is, is a Poisson random variable with mean 

This implies that  N(t) is Poisson given N(0) = 0 at the 

initial time i.e., 

Here  m(t) is called the mean value function of the NHPP. If  N(t) represents


the number of system failures, the function  m(t) describes the expected
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cumulative number of failures in [0, t). Hence,  m(t) is a very useful descriptive 

measure of the failure behavior. 

2.4.2. Reliability measures and properties 

Given the mean value function  m(t), the failure intensity function can be 

computed by 

Moreover, the reliability function at time is given by 

Generally, by using different functions  m(t), different NHPP models can be 

obtained. In the simplest case for which is constant, the NHPP becomes a 

homogeneous Poisson process which has a mean value function as t multiplied by 

a constant. 

Similar to the Poisson distribution to which the NHPP is related, it is 

characterized by several unique and desirable mathematical properties. For 

example, NHPPs are closed under superposition, that is, the sum of a number of 

NHPPs is also a NHPP. Generally, we may mix the failure time data from 

different failure processes assumed to be NHPP and obtain an overall NHPP with 

a mean value function which is the sum of the mean value functions of the 

underlying NHPP models. 

Any NHPP can be transformed to a homogeneous Poisson process through 

an appropriate time-transformation. From the general theory of NHPP, it is 

well-known that if is a NHPP with mean value function  m(t), then 

the time-transformed process defined as 

is also NHPP. The mean value function of the NHPP
 is 
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Especially, if we have that the time-transformed process becomes 

a homogeneous Poisson process with rate one, i.e., the mean value function is 

equal to t. 

Example 2.11. Suppose the mean value function of an NHPP model is 

Let 

Then the time-transformed process is also an NHPP with the 

mean 

Therefore, the failure intensity function is derived by 

where is a constant which indicates that this time-transformed process 

becomes a homogeneous Poisson process with constant rate 1. 

2.4.3. Parameter estimation 

Usually, the mean value function  m(t) contains some unknown parameters. The 

estimation of them is generally carried out by using the method of maximum 

likelihood or the method of least squares. 
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Denote by the number of faults detected in the time interval 

where and is the running time since the beginning. The 

likelihood function for the NHPP model with mean value function  m(t) is 

The parameters in  m(t) can then be estimated by maximizing this likelihood 

function. Usually, numerical procedures have to be used in solving the likelihood 

equations. 



CHAPTER MODELS FOR HARDWARE 

SYSTEM RELIABILITY 

In the computing systems, hardware (such as hard disk, router, processor, CPU, 

memory, etc.) provides the fundamental configurations to support computing 

tasks. This chapter focuses on the methods and models that are commonly used in 

analyzing the hardware reliability. They are also useful for integrated systems 

which will be discussed in later chapters. 

Reliability models for single component system are first presented. Then, 

some models of parallel configurations are studied. Following that, some other 

techniques in fault tolerance system including load-sharing and standby 

configurations are also shown. 

3.1. Single Component System 

We first consider a system with one component or when the system is considered 

as a black-box. A single hardware component may have a normal functioning 

state, a few degraded states and a failed state. This section analyzes the reliability 

performance of the single component, considering a single failure mode, double 

failure modes and multiple failure modes. 

41 
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3.1.1. Case of a single failure mode 

Suppose that there are two states, and a single, irreversible transition between the 

two states as shown in Fig. 3.1. The two states are operational state and failed 

state denoted by state 1 and 2 respectively. Such a case is called single failure 

mode case here. 

In Fig. 3.1, is the transition rate from state 1 to state 2, and it corresponds to 

the failure rate of the hardware component whose lifetime is assumed to follow 

exponential distribution. The component reliability (the probability of being in 

state 1) is given by 

If the component is repairable with the repair rate the Markov model is 

shown by Fig. 3.2.


The reliability function that the component first reaches the failed state is also 

However, the system availability function is the probability for the 
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component to stay at operational state (state 1) at the time instant t and it is given 

by 

Substituting this 

To obtain the Chapman-Kolmogorov equations can be written as 

Since the system has to be at state 1 or state 2, 

into the above equations, we get 

With the initial conditions 

we can obtain the availability function as


Example 3.1. Suppose that a hardware system has been working for 1000 hours 

during which the system failed 30 times and the total repair time for all the 

failures is 150 hours. If the hardware failure time and repair time follow the 

exponential distributions, then the expected failure rate and repair rate can be 

estimated by 

The reliability function is


and the availability function is
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The curve for availability function  A(t) is depicted by Fig. 3.3.


3.1.2. Case of double failure modes 

The reliability evaluation above is based on faults which are permanent in nature. 

By considering the double failure modes including both intermittent failures and 

permanent failures (Prasad, 1991), a reliability model is presented here. The 

hardware component is assumed to start from an operational state and can go to 

either an intermittent failure state or a permanent failure state. The intermittent 

failure can also lead the component into the permanent failure state. This 

scenario is presented by a Markov model as shown in Fig. 3.4. 

In Fig. 3.4, the states 0, 1 and 2 are operational, intermittent failure and 

permanent failure states, respectively. According to the model, the state 0 can 

make a transition to state 1 with a rate  v and to state 2 with a rate From the 
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intermittent failure state 1, it can either go to operational state 0 with a rate or 

to permanent failure state 2 with a rate 

Let and be the probabilities of being in the states 0, 1 and 

2, respectively. From Fig. 3.4, a set of Chapman-Kolmogorov equations can be 

written in the matrix form as: 

where the transition matrix T is given by 

Taking the Laplace-Stieltjes transform, we get


where 

and is the initial value of at t=0, i=0,1,2. Hence, we have 
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Assuming that the system starts from the operational state, then the boundary 

condition is 

Hence, 

and the inverse of the matrix is given by:


where 

Solving for we obtain (Prasad, 1991), 

Taking the inverse Laplace-Stieltjes transform, the system availability function 

can be obtained as 

Example 3.2. Suppose that for a computing system, the rate for intermittent


failures to occur is v = 0.02 and for permanent failures The repair rate 

from the intermittent failure state to operational state Substitute them 

into the above availability function, we get 
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3.1.3. Case of multiple failure modes 

This model with multiple failure modes applies if the given component can fail in 

several modes. These modes have different effects on the system operations, e.g. 

Levitin et al. (1998). The Markov diagram for a component with three failure 

modes, such as a component that can fail in either open or shorted mode or may 

experience drift outside the specified range, has the following states: 

State 1: Component is fully operational. 

State 2: Component has failed in open mode.


State 3: Component has failed in shorted mode.


State 4: Component has drifted outside specification values.


Note that in this case states 2 and 3 will be failed states and state 4 a degraded


state. The Markov transition diagram for this case is shown in Fig. 3.5. 

In effect, the total failure rate for the component is given by 
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Generally, if the hardware component has  n-type of failure modes and the 

transition among different failure modes is allowed, the Markov transition 

diagram is depicted by Fig. 3.6. 

In Fig. 3.6, the state 0 is the fully operational state, and states 1 to n represent the 

n different failure modes. Denote the transition probability from state i to state j 

by 

In fact, the models of single failure mode and double failure modes are two 

special cases of the n-type failure modes with n=1 and n=2, respectively. 

3.2. Parallel Configurations 

Parallel system is one of the most frequently used redundancy configurations in 

order to achieve fault-tolerance which is important in computing systems. A 

parallel configuration assumes that the failure of a component will not affect the 
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operation of the remaining components and all the components can support the 

functions of one another. 

3.2.1. Two-component parallel configuration 

As the simplest parallel system, two-component configuration is studied here. Its 

reliability block diagram is shown in Fig. 3.7. 

For this two-component parallel configuration, if both components are identical, 

there are three states: 

State 1: Two components are operational. 

State 2: Only one component is operational. 

State 3: System has failed (all components have failed). 

The applicable Markov transition diagram for the parallel two-component 

redundant system is depicted by Fig. 3.8. 

The solution for the system reliability can be shown to be
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3.2.2. Majority voting configuration 

Majority voting systems form an important class of redundant systems. In a 

majority voting system, all of the components are assumed to be in operation. 

Many voting systems for the  N-component hardware are based on the majority 

rule, see e.g., Ashrafi et al. (1994). 

The simplest majority voting system consists of three components and a voter. 

The reliability block diagram for a majority voter configuration is shown in Fig. 

3.9. 

This configuration is also known as a triple modular redundancy configuration, 

and it requires at least two good components for operation. Assuming that the 

voter is perfect, the system states are: 

State 1: Three components are operational. 

State 2: Two components are operational. 

State 3: System has failed. 

The Markov transition diagram is shown in Fig. 3.10. The solution for evaluating 

the reliability of the triple modular redundancy configuration is 
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A modified scheme 

It is also possible to increase the reliability of the triple modular redundancy 

system by making a simple modification in the operating sequence. After the first 

failure has been detected, there are two remaining modules or components. There 

is usually no need to keep both of the remaining components, since it will not be 

possible to identify the failed component after the second failure. The resulting 

state transition diagram will become as shown in Fig. 3.11. 

The reliability function can be derived as


Example 3.3. A three-component majority voting system has the failure rate 

for each parallel component. 

Without removing any component when the first component fails, the 

reliability function is 
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The probability for the system to successfully complete a 10-hour mission can be 

computed as 

If we remove either one component if the first component fails, the reliability 

function is 

Both 

curves for the two reliability functions and are depicted by Fig. 3.12. 

The probability for the system to work well in 10 hours is 

3.2.3. k-out-of-N voting configuration 

This redundancy configuration is known as the  N-Modular Redundancy. The 

configuration requires that k functional components out of a total of N are needed 

for the system to remain operational. Akhtar (1994) presented a Markov model to 
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analyze the k-out-of-N voting system for both perfect and imperfect fault-

coverage problems. The failures in the system may be covered or uncovered. 

Fault coverage is a measure of the ability to perform fault detection, fault 

location, fault containment, or fault recovery. 

Perfect fault-coverage modeling 

Fig. 3.13 shows the Markov chain for the N-component system with perfect fault-

coverage. The process is birth-death process with a constant failure rate, denoted 

by for each component. Here is repair rate for state i, 

State i means i components have failed and the rest are operational. The 

probability for staying at the  i:th state is denoted by which can be easily 

obtained by solving the following Chapman-Kolmogorov equation: 

with the initial conditions 

The system availability can be computed through
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and the system reliability can be obtained by considering a pure birth process 

with through the equation: 

Since there is no absorbing state in Fig. 3.13, the steady-state availability can be 

calculated by 

Imperfect fault-coverage modeling 

Under the assumption that each fault is recoverable with probability c, Fig. 3.14 

shows the Markov chain for the imperfect fault-coverage model, see, e.g., Akhtar 

(1994). There is a transition to an absorbing state (where no repair is possible) 

with probability (1-c). The absorbing state is represented by state “N+1”. Thus, 

there are N+2 states, denoted by 

As Fig. 3.14, the model is obtained by considering 3 classes of states: 

State 0: all units are operational. 
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State i  i of the components have failed with repair possible at all i 

for 

a single-repair facility; 

i to istates, and the system transits from state -1 with rate 

for a multiple-repair facility). 

State N+1: a system failure state, where repair is not possible. 

The Chapman-Kolmogorov equations can be given by 

and 

Denote by X = SI – Q where Q is the transition-rate matrix by excluding the last


row and last column of the whole transition-rate matrix. With the initial condition


and 

Akhtar (1994) showed that 

where are the roots of and is the determination 

of the matrix that replaces the i:th column of  X by the initial vector


The system availability can be computed with 
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The system reliability  R(t) can be derived by considering a pure birth process as


The perfect fault-coverage model is a special case of the imperfect model by 

fixing c=1. The above results of availability and reliability functions can be 

similarly implemented in the perfect case by substituting c=1 in those equations. 

Example 3.4. Consider a 1-out-of-3 system with imperfect fault-coverage. 

Suppose for a multiple-repair facility and the numerical values for 

and c = 0.95. The Markov model will contain five states 

{0,1,2,3,4} as the Fig. 3.14, where state 4 is an absorbing failure state, and state 3 

is a non-absorbing failure state. 

For availability function  A(t), from the state transition rate, we have 

The four real roots are obtained by solving using numerical method: 

Finally, the state probabilities are obtained as 

where 
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and 

The numerical results of the five state probabilities are plotted in Fig. 3.15, where 

and are almost 0. 

The availability and the reliability functions can be obtained accordingly using 

Eqs. (3.28) and (3.29). 
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3.3. Load-Sharing Configurations 

While components in parallel systems are designed to carry full load, in load-

sharing systems, each component is designed to carry only part of the load. If one 

component fails in the load-sharing system, then the remaining components share 

its load. Furthermore, since the components now carry heavier load, their failure 

rates will increase due to the additional stress. 

3.3.1.  Two-component load-sharing system 

Consider a parallel load-sharing system consisting of two components. Under the 

load-sharing conditions, assume each component carries only one-half of the 

load. The following states can be identified: 

State 1: Two components are operational on a load-sharing basis. 

State 2: One component has failed, the other carries full load. 

State 3: Both components have failed, i.e., system failure. 

The state transition diagram is shown in Fig. 3.16. 

Here, the transition rate for the first transition is only one-half that for the full-

load parallel system. The system reliability function is then given by 
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3.3.2. k-out-of-N load-sharing system 

A load-sharing k-out-of-N system is a configuration which works if at least k out 

of N components are functioning and the surviving subsystems share the total 

load. Shao & Lamberson (1991) studied such a system. The assumptions of the 

model are given as follows: 

1)	 The failure rate of all functioning components is the same
functioning unit of i components has the constant failure rate, 

i = k,..., N. 

a and 

2)	 A failed component must be detected and disconnected by a controller 

and the probability of success is If the controller cannot detect and 

disconnect a failed unit or the controller itself has failed, the system fails. 

The controller failure rate is a constant, denoted by 

3)	 At most  r components can be in repair at one time each with a repair rate 

so the repair rate for j components failed is: 

4) A repaired component is as good as new and is immediately reconnected 

to the system with negligible switch-over time. 

5)	 The controller is never repaired or replaced during a mission. 

Based on the above assumptions, the Markov model can be constructed as 

depicted by Fig. 3.17. 
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As shown in Fig. 3.17, the state space for the system is defined below: 

State  j  (j=0,1,..., N-k): j components have failed and have been disconnected 

from the network, the remaining (N-j) components and the controller are 

functioning. 

State N-k+1: the system fails because only (k-1) components are functioning, 

but the system can return to working state (N-k) at a repair rate 

State F: the system fails because the controller cannot detect and disconnect a 

failed unit. 

The Chapman-Kolmogorov equations can be given by 

The initial conditions are:


These equations can be numerically solved. The system avhailability function and 

reliability can be obtained accordingly. 

Example 3.5. Consider a jet engine functioning under full load on a commercial 

airplane. Two functioning jet engines are required for flying, but 4 engines are 

functioning for full power. An engine controller manages the load-sharing. When 
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4 engines function in the airplane, the load on each is much less than when they 

function alone. From the test data, if 4 engines are functioning for an airplane, the 

failure rate for each engine is reduced to 50%, while if three engines are 

functioning, the failure rate is reduced to 60% and two engines to 70%. The 

switching probability, the jet engine failure rate under the full load 

and repair rate (i=1,2,3). 

The above jet engine system is a 2-out-of-4 load-sharing system. Its CTMC 

can be modeled as Fig. 3.18. 

The Chapman-Kolmogorov equation can be constructed. It is then possible to 

solve for all the state probability functions and then obtain the system 

availability function A(t). 

3.4. Standby Configurations 

Standby redundancy is particularly important in those applications where low 

power consumption is mandatory, such as in spacecraft systems. Standby systems 

also yield better reliability than can be achieved using the same quantity of 
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equipment in parallel mode. This happens when the standby condition failure rate 

is assumed to be zero. If this assumption does not apply, the model needs to be 

modified to account for the storage failure rate. Moreover, the switch and monitor 

to control the system may fail caused by their own faults, which will also be 

considered in this section. Finally, the multi-mode operations for the standby 

redundancies will be discussed as well. 

3.4.1. Standby with zero storage failure rate 

Usually standby components can be assumed to have zero or very low failure rate 

in storage. If this is the case, then we have a simple system consisting of only two 

components, a primary and a standby spare, as shown in Fig. 3.19. The spare is 

passive until switched in. 

Both components are assumed to have the same failure rate, when operating. 

In the standby mode, the failure rate is zero (i.e. cold standby). Since only one of 

these components is used at a given time, we identify the following states: 

State 1: Primary component is operational. 
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State 2: Standby component has been switched in and is operational. 

State 3: Both components have failed, i.e., system failure. 

to

The transition rate from state 1 to state 2 and that from state 2 to state 3 are equal

The reliability function can be obtained as 

The same approach can be extended to standby systems where there are (N-1) 

cold standby components together with one primary component. The state 

transition diagram is depicted by Fig. 3.20, where state N+l is the system failure 

state. 

The reliability function can be obtained as


Example 3.6. A system contains two cold standby components and one primary 

component each of which has the failure rate Then, its reliability 

function is computed as 

and the curve is shown in Fig. 3.21.
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3.4.2. Standby with nonzero storage failure rate 

If the standby component has a nonzero failure rate of (such as it is energized 

as a warm or hot component), see e.g. Pukite & Pukite (1998, pp. 73-80), then we 

can identify these states: 

State 1: Both components are good, primary component is operating. 

State 2: Primary component has failed; secondary has been switched on and is 

operational. 

State 3: Standby component has failed; system is still operating with primary 

component. 

State 4: Both components have failed; system failure. 

The state transition diagram is depicted by Fig. 3.22. 
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After merging states 3 and 2 into we can easily obtain the reliability 

function as 

3.4.3. Imperfect monitor and switch 

In the models described so far, the monitors and switches are assumed to be 

perfectly operational. In this section, we include the effects of imperfect monitor 

and switch, i.e. we consider the failure of the fault monitor and switch, 

respectively. 

The conventional failure monitor and switch can fail in one of two modes: 

1.	 In a state where the failure monitoring ability is disabled. 

2.	 In a state where a false switching to the next standby component has 

occurred. 

If we assume equal failure rates to the primary and secondary components 

and initially ignore the component storage failure rates, then by assigning and 

to the monitor and switch failure rates for the two modes described above, 

the system states will be: 

State 1: Primary component, fault monitor, and switch are in operational 

condition. 

State 2: Primary component is operating, but the switch has failed. 
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State 3: Secondary component is operating. 

State 4: System failure. 

The state transition diagram is shown in Fig. 3.23. 

Note that the states 2 and 3 are identical, in which there is only one operational 

component left. We can reduce the number of system states and simplify the state 

diagram. The final reliability function is given by 

It is possible to extend the same concept to system configurations with more 

than one standby component by viewing the imperfect monitor/switch as another 

parallel component. 

3.4.4. Multiple mode operation 

Many standby systems are designed for multiple mode operation. Chen & Bastani 

(1992) constructed a CTMC to evaluate the reliability of multiple mode operation 

system with both full and partial redundancies. The assumptions in their model 

are given below: 

1)	 Failure times of components are exponentially distributed with a constant 

failure rate. 
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2) A full redundancy requires the full power of a component and serves as 

either a primary component or a hot standby of that component. 

3) A partial redundancy requires part of the processing power of the full 

primary component and serves as a warm standby of that component. 

Suppose a system has a full redundancy or primary with failure rate and a 

partial redundancy with failure rate Using the Markov model for this system, 

the reliability function can be obtained as 

Also, this Markov model can be extended to an  N modes operation system. 

Suppose a system has one primary component with failure rate and N-1 partial 

redundancies with failure rates The reliability function can be 

obtained as 

Example 3.7. Suppose a system contains one primary with failure rate 0.03 and 

two partial redundancies with same failure rate of 0.05. Substitute the 

and into the Eq. (3.37), we have 

The curve of the reliability function is shown in Fig. 3.24. 

If we further consider a system with two partial redundancies having nonzero 

storage failure rate, say 0.01, the Markov model is constructed as the CTMC in 

Fig. 3.25. 
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At state 1, all the three components are functioning. At state 2, the primary fails 

and the other two are functioning. At state 3, one primary and one redundancy 

fail while the other is functioning. At state 4, the primary and one redundancy are 

functioning but the other redundancy fails due to nonzero storage failure. At state 

5, the primary is functioning while the two redundancies fail due to nonzero 
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storage failure. Finally, at state F, all the three components have failed and the 

system fails. 

The Chapman-Kolmogorov equations can be written as 

with the initial conditions are and others are 0, the system reliability 

function can be obtained as: 

3.5. Notes and References 

For reliability of hardware systems, Pukite & Pukite (1998) summarized some 

common configurations and implemented simple Markov models. Other than the 

Markov models, Elsayed (1996) described many other models that are commonly 

used in reliability engineering. There are also many general texts on reliability 

engineering and most of them deal with models for hardware systems. 

Bobbio et al. (1980) first used Markov models in the study of a single 

hardware component that may contain multiple failure modes. Recently, Levitin 

et al. (1998) introduced a method called UGF (Universal Generating Function) in 

dealing with multiple failure modes. Alexopoulos & Shultes (2001) presented a 

method using an importance-sampling plan that dynamically adjusts the transition 

probabilities of the embedded Markov chain by attempting to cancel terms of the 

likelihood ratio within each cycle. 
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Kuo & Zuo (2003) summarized the reliability modeling for  k-out-of-N 

configurations and presented the optimization schedules in improving the system 

reliability. Arulmozhi (2003) further presented a simple and efficient 

computational method for determining the reliability of k-out-of-N system whose 

components are of heterogeneous property. For parallel configurations, besides 

the majority voting and  k-out-of-N voting introduced in this chapter, there are 

many other voting schemes, such as the enhanced voting scheme (Ammann & 

Knight, 1988), the weighted voting scheme (Levitin, 2001) and so on. Latif-

Shabgahi et al. (2000) summarized various voting schemes for different fault 

tolerant systems. Chang et al. (2000) provided an extensive coverage on 

consecutive-k-out-of-n systems. 

For the standby configurations, Sherwin & Bossche (1993) summarized the 

reliability analysis for both hot (active) standby and cold standby systems. Later, 

Chen et al. (1994) studied the reliability of a warm standby system which is an 

intermediate case between the hot and cold standby. Recently, Zhao & Liu (2003) 

provided a unified modeling idea for both parallel and standby redundancy 

optimization problems based on the system reliability analysis. 



CHAPTER MODELS FOR 

SOFTWARE RELIABILITY 

Software is an important element in computing systems. Different from 

hardware, the software does not wear-out and it can be easily reproduced. 

Furthermore, software systems are usually debugged during the testing phase so 

that their reliability is improving over time as a result of detecting and removing 

software faults. Many software reliability growth models have been proposed for 

the study of software reliability, e.g. Xie (1991), Lyu (19%) and Pham (2000). 

Markov models are one of the first types of models proposed in software 

reliability analysis. This chapter mainly summarizes models of this type. In 

addition, Nonhomogeneous Poisson Process (NHPP) models, which are 

important in software reliability analysis, are also discussed in this chapter. 

4.1. Basic Markov Model 

The basic Markov model in software reliability is the model originally developed 

by Jelinski & Moranda (1972). It is one of the earliest models and many later 

Markov models which can be considered as modifications or extensions of this 

basic Markov model. 

71 
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4.1.1. Model description 

The underlying assumptions of the Jelinski-Moranda (JM) model are: 

1) The number of initial software faults is an unknown but fixed constant. 

2) A detected fault is removed immediately and no new faults are 

introduced. 

3) Times between failures are independent, exponentially distributed 

random variable. 

4) All remaining faults in the software contribute the same amount to the 

software failure rate. 

The initial number of faults in the software before the testing starts is denoted by 

From the assumptions (3) and (4), the initial failure rate is then equal to 

where is a constant of proportionality denoting the failure rate 

contributed by each fault. It follows from the assumption (2) that, after a new 

fault is detected and removed, the number of remaining faults is decreased by 

one. Hence after the  i:th failure, there are faults left, and the failure rate 

decreases to This Markov process is depicted by Fig. 4.1 where state 

k means that there are k faults left in the software. 

The  i:th failure-free period, i.e., the time between the (i-1):st and the  i:th 

failure is denoted by By the assumptions, ’s are then 

exponentially distributed random variables with parameter 
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The distribution of is given by 

The main property of the JM-model is that the failure rate is constant between 

the detection of two consecutive failures. It is reasonable if the software is 

unchanged and the testing is random and homogeneous. 

4.1.2. Parameter estimation 

The parameters of the JM-model may easily be estimated by using the method of 

maximum likelihood. Let denotes the observed  i:th failure-free time interval 

during the testing phase. The number of faults detected is denoted here by  n 

which will be called the sample size. If a failure time data set 

is given, the parameters and in the JM-model can 

be estimated by maximizing the likelihood function. 

The likelihood function of the parameters and is given by 

The natural logarithm of the above likelihood function is 
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By taking the partial derivatives of this log-likelihood function above with 

respect to and respectively, and equating them to zero, the following 

likelihood equations can be obtained, 

and 

By solving from Eq. (4.6), we get 

and by inserting this into Eq. (4.5), we obtain an equation independent of as 

An estimate of can then be obtained by solving this equation. Inserting the 

estimated value into Eq. (4.7), we obtain an maximum likelihood estimate (MLE) 

of 

Example 4.1. Suppose that a software product is being tested by a group. Each 

time a failure is observed, the fault causing the failure is removed. The 30 test 

data of time between failures are recorded in Table 4.1. 

Substituting the data of Table 4.1 into the likelihood equations, and solving 

them, we obtain and 
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After the failure, the estimated number of

k = 54 – 30 = 21 and the failure rate at that time is 

75 

remaining faults is 

The estimated reliability function after the failures is 

R(t) = exp(–0.0162t) 

and the MTTF after the failures is estimated as 

Note that the estimation of the number of initial faults might be unreasonable. 

Usually more failure data should be accumulated for an estimate to be accurate. 
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4.2. Extended Markov Models 

In many cases, the basic Markov model (JM-model) is not accurate enough. 

Several of the assumptions may not be realistic. For example, software faults are 

not of the same size in a sense that some affect more input data than others do, 

and some faults are easier to be detected than others. Many extended models, 

which relax some assumptions of the JM-model, are proposed (Xie, 1991). Some 

of them are discussed in this section. 

4.2.1. Proportional models 

Moranda (1979) presented an extended Markov model whose basic assumptions 

are same as JM-model except assuming that the (i+1):st failure rate is 

proportional to the i:th failure rate, i.e. 

This Markov process can be depicted by the Markov chain shown in Fig. 4.2, 

where state i represents that i failures have occurred. 

This kind of model is called proportional model in Gaudoin et al. (1994). The 

idea is to consider that the difference between two successive failure rates is due 

only to the debugging, and practical constraints lead us to believe that the effect 

of this debugging is multiplicative. A proportional model is completely defined, 

given the distributions of and 
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Deterministic proportional model 

and  C are constant. Hence it is called Deterministic Proportional Model as 

defined below. 

In the simplest proportional model, all random variables are deterministic, i.e., 

Definition 4.1. The Deterministic Proportional Model, with parameters 

and is the software reliability model where the random variable are 

independent and exponentially distributed with parameter 

This model was originally suggested by Moranda (1979) as geometric 

de-eutrophication model. Its detailed statistical property was studied by Gaudoin 

& Soler (1992) and we summarize some results here. 

For the sake of convenience, let where is a real number. 

In fact, represents the quality of the debugging. If no debugging is done at all 

the failure rate remains constant; if the debugging is successful 

the failure rate decreases, and then the reliability grows, etc. The parameter is 

a scale parameter, and it is given by 

The likelihood for the observation of the first  n times-between-failures 

is: 

are the solution of the following equations 

Consequently, the maximum likelihood estimates of and and 
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and 

This equation expresses that is a root of the polynomial of degree 

n-1, i.e. 

Example 4.2. Suppose a software system is tested by a group. The 30 test data of 

time between failures are recorded in Table 4.2. 
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To estimate parameters of the Deterministic Proportional 

to obtain 

failures, 

the and for 

Model, substitute the data of Table 4.2 into the above equations, and solve them 

and 

The mean time to failure (MTTF) after the is 

If the customers require the MTTF of the software product should be no less than 

70 hours, i.e., then 

Solving this, we get so that the number of removed faults need to be at 

least 45. That is, at least 45 – 30 = 15 more faults need to be removed. 

The expected time for further detecting/removing the additional 11 faults is 

This is an estimated additional testing time needed. 

Lognormal proportional model 

In fact, the assumption of Deterministic Proportional Model that the (mean 

quality) is constant, is not realistic. A more realistic assumption would be that the 

mean qualities of the successive debugging are independent random variables 

with a homogeneous normal distribution. Then, 
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is a lognormal distribution. Gaudoin et al. (1994) presented a lognormal 

proportional model with 

and 

in which is normally distributed with mean and standard deviation 

The mean and variance of are derived by Gaudoin et al. (1994) as: 

4.2.2. DFI (Decreasing Failure Intensity) model 

A serious critique of the JM-model is that not all software faults contribute to the 

same amount of the failure rate. Some generalizations and modifications of the 

JM-model are presented in Xie (1987). We briefly describe this general 

formulation together with some special cases in this section. 

General DFI formulation 

The JM-model can be modified by using other function for Note that 

is defined as the rate of the occurrence of next failure after the removal of i-1 

faults. The failure intensity is DFI (Decreasing Failure Intensity) if is a 

decreasing function of i. A DFI model is thus a Markov counting process model 

with decreasing failure intensity. 
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Under the general assumptions above, the cumulative number of faults 

detected and removed, is a Markov process with decreasing failure 

rate The theory for CTMC can be applied. 

If the Chapman-Kolmogorov equations 

are given as 

with the initial conditions


The above equations can easily be solved and the solution is as follows (Xie, 

1991), 

and for we have 

where the quantities are defined as 
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and can be calculated recursively through 

Some specific DFI models 

A direct generalization of the JM-model is to use a power-type function for the 

failure intensity function, The power type DFI Markov model was studied 

by Xie & Bergman (1988) assuming the failure rate 

It is reasonable to assume that is a convex function of i and is likely to 

be greater than one, since in this case, the decrease of the failure rate is larger at 

the beginning. 

Another special case of the DFI model is the exponential-type Markov model 

which assumes that the failure rate is an exponential function of the number of 

remaining faults. It is characterized by the failure rate function 

For the exponential-type DFI model, the decrease of the failure intensity at the 

beginning is much faster than that at a later phase. 

It is interesting to note that some of the proportional models can also be 

attributed to DFI model. If all the in a proportional model, 
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the failure rate is actually a decreasing function to the number of 

remaining faults, which follows the DFI definition. 

4.2.3. Time-dependent transition probability models 

Sometimes the failure rate function depends not only on the number of detected 

faults i but also on the time whose Markov process is shown as Fig. 4.3. 

There are several models which extend the JM-model by assuming that the 

probability of state change is also time-dependent. Schick-Wolverton model is 

one of the first models of this type (Schick & Wolverton, 1978). The general 

assumptions made by the Schick-Wolverton model are the same as those for the 

JM-model except that the times between failures are independent of the density 

function given by 

in which is the number of initial faults and is another parameter. 

Hence, the main difference between the Schick-Wolverton model and the 

JM-Model is that the times between failures are not exponential. In the 

Schick-Wolverton model the failure rate function to the detection of the i:th fault 

is 
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on

Note that the failure rate function of the Schick-Wolverton model depends both 

i, the number of removed faults and on the time since the removal of last 

fault. 

The Schick-Wolverton model with time-dependent failure rate was further 

extended by Shanthikumar (1981). Shanthikumar (1981) model supposes that 

there are initial software faults and assumed that after i faults are removed, 

the failure rate of the software is given by 

where is a proportionality factor. The parameter estimation can also be 

carried out using the method of maximum likelihood. 

The Markov formulation

model are briefly introduced here. Denote by

 and solution procedures of Shanthikumar (1981)

the probability distribution 

function of  N(t) , the number of faults that are detected and removed during time 

[0, t ). Under the Markovian assumption, we have that the forward Kolmogorov’s 

differential equations are given as follows, 

The initial conditions are 

The equations can easily be solved and the solution is given by
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4.2.4. Imperfect debugging models 

The imperfect removal of a detected fault is a common situation in practice and 

the JM-model does not take this into account. This section extends the JM-model 

by relaxing the assumption of perfect debugging process. During an imperfect 

debugging process, there are two kinds of imperfect removal: 

1)	 the fault is not removed successfully while no new fault is introduced. 

2)	 the fault is not removed successfully while new faults are generated due 

to the incorrect diagnoses. 

For the former type of imperfect removal, the process is still a monotonous death 

process in terms of the number of remaining faults; while the latter one is a 

birth-death process in terms of the number of remaining faults. Both types of 

imperfect debugging models will be discussed in the following. 

Monotonous death process 

Goel (1985) suggested a Markov model by assuming that each detected fault is 

removed with probability p. Hence, with probability q=1-p, a detected fault is not 

perfectly removed and the quantity  q can be interpreted as the imperfect 

debugging probability. This process can be modeled by a DTMC as depicted by 

Fig. 4.4 where i is the number of detected failures. 
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The counting process of the cumulative number of detected faults at time  t is 

modeled as a Markov process with transition probability depending on the 

probability of imperfect debugging. Still it is assumed that times between the 

transitions are exponential with a parameter which depends only on the number 

of remaining faults. After the occurrence of  i-1 failures, p ·  ( i–  1 ) faults are 

removed on the average. Hence, approximately, there are faults 

left, where denotes the number of initial faults as before. The failure rate 

between the (i-1):st and the i:th failures is then 

Using this transition function, other reliability measures can be calculated as 

for the JM-model. Note that the above rate function can be rewritten as 

and from this it can be seen that it is just the same as that for the JM-model with 

replaced by and replaced by 

As a consequence,  p, and are indistinguishable. However, 

and can still be estimated similar to that for the parameters in the 

JM-model and can be interpreted as the expected number of failures that 

will eventually occur. Another advantage of using this model is when we know 

the probability of imperfect debugging, p. For example, from the previous 

experience or by checking after correction, the number of initial faults and 

the constant of proportionality can be estimated. 

Example 4.3. Suppose that a software product is being tested by a group. The 30 

test data of time between failures are recorded in Table 4.3. 

If the software failures follow the above imperfect debugging model given 

p=0.9, viewing it as the JM-model first, we get the following estimates 
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Substituting p=0.9, we get


Birth-death process 

Furthermore, if we allow the imperfect debugging process to introduce new faults 

into the software due to the wrong diagnoses or incorrect modifications, the 

debugging process becomes a birth-death Markov process. Kremer (1983) 

assumes that when a failure occurs, the fault content is assumed to be reduced by 

1 with probability p, the fault content is not changed with probability q, and a 

new fault is generated with probability r. The obvious equality is that 
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This implies that we have a birth-death process with a birth rate 

and a death rate It can be depicted by the CTMC as Fig. 4.5. 

However, in order to fit failure data and obtain further applicable results, 

assumptions on the failure rate function must be made. 

Denoted by  N(t) the number of remaining faults in the software at time  t 

and let 

We obtain the forward Kolmogorov equations of this Markov process as


Generally, by inserting  v(t) and and using the initial condition 

the differential equations can be solved by using the probability 

generating function suggested in Kremer (1983). 

Imperfect debugging model considering multi-type failure 

In practice, software failures can be classified into different types according to 

their severity or characteristics. Different types of failures may cause different 

software reliability performance. Tokuno & Yamada (2001) presented a Markov 

model with two types of failures that have different kinds of failure rates and 

imperfect debugging process. The first type is the failures caused by faults 
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originally latent in the system prior to the testing, denoted by F1. The second type 

is the failures due to faults randomly introduced or regenerated during the testing 

phase, denoted by F2. 

They assumed that 

1) The failure rate for F1 is constant between failures and decreases 

geometrically as each fault is corrected, and the failure rate for F2 is 

constant throughout the testing phase. 

2) The debugging activity for the fault is imperfect: denoted by  p the 

probability for a fault to be removed successfully. 

3) The debugging activity is performed without distinguishing between F1 

and F2. 

4) The probability that two or more software failures occur simultaneously is 

negligible. 

5) At most one fault is corrected when the debugging activity is performed, 

and the fault-correction time is negligible or not considered. 

Let  X(t) be a counting process representing the cumulative number of faults 

corrected up to testing time  t. From the assumption 2, when  i faults have been 

corrected by an arbitrary testing time t, after the next software failure occurs, 

from the assumptions 1 and 3, when  i faults have been corrected, the failure rate 

for the next software failure-occurrence is given by 

where  D is the initial failure rate for F1, k is the decreasing ratio of the failure 

rate, and is the failure rate for F2.


The reliability function to the next software failure is given by
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Furthermore, let denote the one step transition probability that after 

making a transition into state i, the process makes a transition into 

state j by time Then, we have

where are the transition probabilities from state i to state j. 

4.3. Modular Software Systems 

If possible, the architecture of software should be taken into account instead of 

considering the software as a black-box system. Markov models can also be 

applied in analyzing the reliability for modular software system. 

4.3.1. The Littlewood semi-Markov model 

Littlewood (1979) incorporated the structure of the software into the Markov 

process using a kind of semi-Markov model. The program is assumed to be 

comprised of a finite number of modules and the transfer of control between 

modules is described by the probability 

The time spent in each module has a general distribution which depends 

upon  i and j, with finite mean When module  i is executed, failures occur 

according to a Poisson process with parameter The transfer of control 

between modules has a probability of a failure. 

The interest of the composite model is focused on the total number of failures 

of integrated software system in time interval (0,t], denoted by  N(t). The 
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asymptotic Poisson process approximation for  N(t) is obtained under the 

assumption that failures are very infrequent. The times between failures tend to 

be much larger than the times between exchanges of control. The failure 

occurrence rate of this Poisson process is given by 

where 

represents the proportion of time spent in module i, and


is the frequency of transfer of control between i and j. 

4.3.2. Some other modular software models 

User-oriented model 

Similar to the Littlewood semi-Markov model, a model called the user-oriented 

model, was developed by Cheung (1980) where the user profile can be 

incorporated into the modeling. The model is a Markov model based on the 

reliability of each individual module and the inter-modular transition probabilities 

as the user profile. 

Assume that the program flow graph of a terminating application has a single 

entry and a single exit node, and that the transfer of control among modules can 

be described by an absorbing DTMC with a transition probability matrix 

Modules fail independently and the reliability of the module i is the 

probability that the module performs its function correctly. 
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Two absorbing states C and F are added, representing the correct output and 

failure state, respectively, and the transition probability matrix P is modified 

appropriately to The original transition probability between the modules 

i and j is modified to This represents the probability that the module  i 

produces the correct result and the control is transferred to module j. From the 

exit state n, a directed edge to state  C is created with transition probability  R to 

represent the correct execution. The failure of a module  i is considered by 

creating a directed edge to failure state  F with transition probability 

Hence, DTMC defined with transition probability matrix is a composite 

model of the software system. The reliability of the program is the probability of 

reaching the absorbing state  C of the DTMC. 

Let  Q be the matrix obtained from by deleting rows and columns 

corresponding to the absorbing states C and F. represents the 

probability of reaching state n from 1 through k transitions. From initial state 1 to 

final state  n, the number of transitions  k may vary from 0 to infinity. It can be 

show that 

and it follows that the overall system reliability can be computed as


Task-oriented model 

A modular software is usually developed to complete certain tasks. Kubat (1989) 

presented a task-oriented model which considered the case of a terminating 

software application composed of n modules designed for K different tasks. Each 

task may require several modules and the same module can be used for different 

tasks. Transitions between modules follow a DTMC such that with probability 

task k will first call module i and with probability task k will call 
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module j after executing in module i. The sojourn time during the visit in module


i by task k has the density function Hence, a semi-Markov process can 

be used. 

The failure rate of module i is As shown in Kubat (1989), the probability 

that no failure occurs during the execution of task k, while in module i is 

The expected number of visits in module  i by task  k, denoted by can be 

obtained by solving 

The probability that there will be no failure when running for task  k can be 

approximated by 

and the system failure rate is calculated by 

where is the arrival rate of task k. 

Multi-type failure model in modular software 

Ledoux (1999) further proposed a Markov models to include the multi-type 

failures into the modular software reliability analysis. They constructed an 

irreducible CTMC with transition rates to model the software composed of a 

set of components C. In the model, two types of failures are considered: primary 
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failures and secondary failures. The primary failure leads to an execution break; 

the execution is restarted after some delay. A secondary failure does not affect 

the software because the execution is assumed to be restarted instantaneously 

when the failure appears. For an active component a primary failure occurs 

with constant rate while the secondary failures are described as Poisson 

process with rate When control is transferred between two components i and 

j then a primary (secondary) interface failure occurs with probability 

Following the occurrence of a primary failure, a recovery state is occupied, 

and the delay of the execution break is a random variable with a phase type 

Hence, the CTMC that defines the architecture is replaced by a CTMC 

that models alternation of operational-recovery periods. The associated generator 

matrix defines the following transition rates: from 

Rdistribution. Denoting by  the set of recovery states, the state space becomes 

to with no failure; 

from to with a secondary failure; from to with a primary failure; 

from recovery state i to recovery state j; and from recovery state i to 

A Markov model is then constructed according to the architecture of 

different modules and their states. Based on the CTMC, the 

Chapman-Kolmogorov equations can be obtained and solved by computational 

tools. 

4.4. Models for Correlated Failures 

Perhaps the most stringent restriction in most software reliability models is the 

assumption of statistical independence among successive software failures. It is 

common for software failures to be correlated in successive runs. In order to deal 

with this issue, Goseva-Popstojanova & Trivedi (2000) formulated a Markov 

renewal model that can consider the phenomena of failure correlation. 
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4.4.1. Description of the correlated failures 

Since each software run has two possible outcomes (success or failure), the usual 

way of looking at the sequence of software runs is to consider it as a sequence of 

Bernoulli trials, where each trial has success-probability p and failure-probability 

1-p. Goseva-Popstojanova & Trivedi (2000) constructed a Markov renewal 

model for the sequence of dependent software runs in two stages: 

1)	 Define a DTMC which considers the outcomes from the sequence of 

possibly dependent software runs in discrete time. 

2) Construct the process in continuous time by attaching the distributions of 

the runs execution to the transitions of the DTMC. 

The assumptions of the model are: 

1) The probability of success or failure at each run depends on the outcome 

of the previous run. 

2) A sequence of software runs is defined as a sequence of dependent 

Bernoulli trials. 

3) Each software run takes a random amount of time to be executed. 

4) Software execution times are not identically distributed for successful and 

failed runs. 

4.4.2. Constructing the semi-Markov model 

Associated with the  j:th software-run, let be a random variable that 

distinguishes whether the outcome of that particular run resulted in success or 

failure: 
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Here we use score 1 for each time a failure occurs and 0 otherwise. The number 

of runs that have resulted in a failure among  n successive software runs is: 

of n possibly dependent random variables. 

Suppose that if run j results in failure. At run (j+1), the failure probability is 

q and the success probability is Similarly, if run j results in success, then p 

and are the probabilities of success and failure, respectively, at run (j+1). The 

sequence of dependent Bernoulli trials defines a DTMC with 2 

states. One is a success state denoted by 0; the other denoted by 1 is a failure. Its 

transition probability matrix is 

as shown by Fig. 4.6.


The unconditional probability of failure on run (j+1) can be derived, see e.g. 

Goseva-Popstojanova & Trivedi (2000), as 

This equation shows the property of failure correlation in successive runs. If 

p + q =1, the Markov chain describes a sequence of independent Bernoulli trials, 

and the above equation reduces to: 
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which means that the failure probability does not depend on the outcome of the 

previous run. When p + q > 1, runs are positively correlated, i.e. if a software 

failure occurs in run  j, then there is an increased chance that another failure 

occurs in the next run. In this case, failures occur in clusters. Finally, when 

p + q < 1, runs are negatively correlated. In this case, if a software failure occurs 

in run j, then there is an increased chance that a success occurs in run (j+1), i.e., 

there is a lack of clustering. 

time. Let

The next step in the model construction is to obtain a process in continuous

be the cumulative distribution function of the time spent in a 

transition from state  k to state  l. It is realistic to assume that the runs execution 

times are not identically distributed for successful and failed runs. Hence, the 

depend only of the type of point at the end of the interval, i.e., 

and 

renewal process as the software reliability model in continuous time.

With the addition of the to the transitions of DTMC we obtain a Markov 

4.4.3. Considering software reliability growth 

During the testing phase, software is subjected to a sequence of runs, making no 

changes if there is no failure. When a failure occurs on any run, then an attempt is 

made to fix the underlying fault which causes the conditional probabilities of 

success and failure on the next run to change. The software reliability growth 

model in discrete time can be described with a sequence of dependent Bernoulli 

trials with step-dependent probabilities. The underlying stochastic process is a 

nonhomogeneous DTMC. 
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The sequence provides an alternate description of the 

software reliability growth model considered here. That is, defines the 

DTMC presented in Fig. 4.7. 

Both states i and represent that the failure state has been occupied  i times. 

State  i represents the first trial for which State represents all 

subsequent trials for which i.e., all subsequent successful runs before the 

occurrence of next failure (i+1). Without loss of generality let the first run be 

successful which means that 0 is the initial state. 

The software reliability growth model in continuous time can also be 

obtained by assigning runs execution-time distributions to transitions of the 

DTMC in Fig. 4.7. For simplicity, we have chosen the same execution time 

distribution regardless of the outcome: 

Hence, of each software run has cumulative distribution function 
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i and  iLet be the number of runs between failures +1, From Fig. 4.7, 

the random variable has the following distribution: 

It follows that the distribution function of the time to failure (i + 1), given 

that the system has had i failures, is: 

where is k-fold convolution of F(t).


The Laplace-Stieltjes transform of F(t) is 
 and then the above 

equation is transformed as 

Its inversion is straightforward and reasonably simple closed-form results can be 

obtained when F(t) has a rational Laplace-Stieltjes transform. 

Some general properties of the inter-failure time can be developed without 

making assumptions about the form of F(t). For example, the MTTF is: 

where is the mean execution-time. 
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Example 4.4. Suppose that the failures of a software are correlated between 

successive runs with (from success to success state) and (from 

exponential distribution with mean

failure to failure state). The execution time of each run is assumed to follow the

 hours. 

Substituting the above values into the above equation, we get 

During the testing phase, when detecting a failure, we try to remove it, so the 

dependent probabilities are changing as Fig. 4.7. If we assume 

and then 

If the customer requires that the MTTF should be longer than 100 hours, to 

determine the testing time, we should use the following in equation 

Solving this, we get so the least number of detected/debugged failures 

should be 10. Then, the expected testing time before release can be computed as 

That is, in order to satisfy the customer requirement, the software should be 

tested for at least 669 hours before release. 
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4.5. Software NHPP Models 

Although some basic and advanced Markov models are presented in the previous 

sections, some NHPP models are mentioned here due to their significant impact 

on the software reliability analysis. Such a model simply models the failure 

occurrence rate as a function of time (see e.g., Section 2.4). Hopefully this 

occurrence rate is decreasing when faults are removed as an effect of debussing. 

Note that after the release, the failure occurrence rate should be a constant unless 

the debugging is continued (Yang & Xie, 2000). 

4.5.1. The Goel-Okumoto (GO) model 

In 1979, Goel and Okumoto presented a simple model for the description of 

software failure process by assuming that the cumulative failure process is NHPP 

with a simple mean value function. Although NHPP models have been studied 

before, see e.g. Schneidewind (1975), the GO-model is the basic NHPP model 

that later has had a strong influence on the software reliability modeling history. 

Model description 

The general assumptions of the GO-model are 

1)	 The cumulative number of faults detected at time  t follows a Poisson 

distribution. 

2)	 All faults are independent and have the same chance of being detected. 

3)	 All detected faults are removed immediately and no new faults are 

introduced. 

Specifically, the GO-model assumes that the failure process is modeled by an 

NHPP model with mean value function  m(t) given by 
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The failure intensity function can be derived by


where a and  b are positive constant. Note that The physical meaning 

of parameter  a can be explained as the expected number of faults which are 

eventually detected. The quantity  b can be interpreted as the failure occurrence 

rate per fault. 

The expected number of remaining faults at time  t can be calculated as 

The GO-model has a simple but interesting interpretation based on a model 

for fault detection process. Suppose that the expected number of faults detected in 

a time interval is proportional to the number of remaining faults, we 

have that 

where  b is a constant of proportionality. 

The above difference equation can be transformed into a differential 

equation. Divide both sides by  and take limits by letting tend to zero, 

we get the following equation, 

It can be shown that the solution of this differential equation, together with the 

initial condition  m(0) = 0, lead to the mean value function of the GO-model. 

Note that both the GO-model and JM-model give the exponentially 

decreasing number of remaining faults. It can be shown that these two models 

cannot be distinguished using only one realization from each model. However, 

the models are different because the JM-model assumes a discrete change of the 

failure intensity at the time of the removal of a fault while the GO-model assumes 

a continuous failure intensity function over the whole time domain. 
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Parameter estimation 

Denoted by the number of faults detected in time interval where 

and are the running times since the software testing 

begins. The estimation of model parameters  a and  b can be carried out by 

maximizing the likelihood function, see e.g. Goel & Okumoto (1979). The 

likelihood function can be reduced to 

Solving this equation to calculate the estimate of b, and then a can be estimated 
as 

Usually, the above two equations has to be solved numerically. It can also be 

shown that the estimates are asymptotically normal and a confidence region can 

easily be established. A numerical example is illustrated below. 

Example 4.5. Suppose a software product is being tested by a group. Each time 

when detecting the failure, it is removed and the time for repair is not computed 

in the test time. The 30 test data of time to failures are recorded in Table 4.4. 

Solving the likelihood equations, we get b = 0.0008 and a = 57. The 

failure intensity function and the mean value function for this GO model are 

and
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4.5.2. S-shaped NHPP models 

The mean value function of the GO-model is exponential-shaped. Based on the 

experience, it is observed that the curve of the cumulative number of faults is 

often S-shaped as shown by Fig. 4.8, see e.g. Yamada et al. (1984). 
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This can be explained by the fact that at the beginning of the testing, some 

faults might be “covered” by other faults. Removing a detected fault at the 

beginning does not reduce the failure intensity very much since the same test data 

will still lead to a failure caused by other faults. Another reason of the S-shaped 

behavior is the learning effect as indicated in Yamada et al. (1984). 

Delayed S-shaped NHPP model 

The mean value function of the delayed S-shaped NHPP model is 

This is a two-parameter S-shaped curve with parameter a denoting the number of


faults to be detected and  b corresponding to a fault detection rate. The


corresponding failure intensity function of this delayed S-shaped NHPP model is


The expected number of remaining faults at time t is then 

Inflected S-shaped NHPP model 

The mean value function of the inflected S-shaped NHPP model is 

In the above a is again the total number of faults to be detected while b and c are 

called the fault detection rate and the inflection factor, respectively. The intensity 

function of this inflected S-shaped NHPP model can easily be derived as 
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Given a set of failure data, for both delayed and inflated S-shaped NHPP models, 

numerical methods have to be used to solve the likelihood equation so that 

estimates of the parameters can be obtained. 

4.5.3. Some other NHPP models 

Besides the S-shaped models, there are many other NHPP models that extend the 

GO-model for different specific conditions. 

Duane model 

The Duane model assumes that the mean value function satisfies 

In the above, and are parameters which can be estimated by using 

collected failure data. The mean value functions with and different 

are depicted by the Fig. 4.9. 

It can be noted that when the Duane NHPP model is reduced to a 

Poisson process whose mean value function is a straight line. In such a case, there 

is no reliability growth. In fact, the Duane model can be used to model both 

reliability growth and reliability deterioration which is common 

in hardware systems. 

The failure intensity function, is 
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One of the most important advantages of the Duane model is that if we plot the 

cumulative number of failure versus the cumulative testing time on a 

log-log-scale, the plotted points tends to be close to a straight line if the model is 

valid. This can be seen from the fact that the relation between  m(t) and  t can be 

rewritten as 

where ln and Hence, ln m(t) is a linear function of ln t and 

due to this linear relation, the parameters and may be estimated 

graphically and the model validity can easily be verified. In fact, this is called 

first-model-validation-then-parameter-estimation approach (Xie & Zhao, 1993). 

The Duane model gives an infinite failure intensity at time zero. Littlewood 

(1984) proposed a modified Duane model with the mean value function 



108 Models for Software Reliability 

The parameter  k can be interpreted as the number of faults eventually to be 

detected. 

Log-power model 

Xie & Zhao (1993) presented a log-power model. The mean value function of 

this model can be written as 

This model has shown to be useful for software reliability analysis as it is a pure 

reliability growth model. It is also easy to use due to its graphical interpretation. 

The plot of the cumulative number of failures at time t against t+1 will tend to be 

a straight line on a log-double-log scale if the failures follow the log-power 

model. This can be seen from the following relationship 

The slope of the fitted line gives an estimation of  b and its intercept on the 

vertical axis gives an estimation of lna. 

The failure intensity function of the log-power model can be obtained as 

The failure intensity function is interesting from a practical point of view. The 

log-power model is able to analyze both the case of strictly decreasing failure 

intensity and the case of increasing-then-decreasing failure intensity function. For 

example, if then of the above equation is a monotonic decreasing 

function of  t; Otherwise given is increasing if 

and decreasing if 

The estimation of the parameters  a and  b is also simple. Suppose total  n 

failures are detected during the a testing period (0,T] and the times to failures 
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are ordered by The maximum likelihood estimation of a 

and b is then given by: 

and 

They can be simply calculated without numerical procedures. 

Musa-Okumoto model 

Musa and Okumoto (1984) is another model for infinite failures. This NHPP 

model is also called the logarithmic Poisson model. The mean value function is 

The failure intensity function is derived as


Given a set of failure time data the maximum likelihood 

estimates of the parameters are the solutions of the following equations: 

These equations have to be solved numerically.
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4.6. Notes and References 

Software reliability is an important research area that has been studied by many 

researchers. Some books related to this are Musa et al. (1987), Xie (1991), Lyu 

(1996), Musa (1998) and Pham (2000). An earlier annotated biography can be 

found in Xie (1993). In addition, Ammar et al. (2000) presented a brief 

comparative survey of fault tolerance as it arises in hardware systems and 

software systems and discussed logical models as well as statistical models. 

Other than Markov models discussed in this chapter, Limnios (1997) 

analyzed the dependability of semi-Markov systems with finite state space based 

on algebraic calculus within a convolution algebra. Tokuno & Yamada (2001) 

constructed a Markov model, which related the failure and restoration 

characteristics of the software system with the cumulative number of corrected 

faults, and also considered the imperfect debugging process together with the 

time-dependent property. Goseva-Popstojanova & Trivedi (2003) presented an 

interesting study on some architecture-based approaches in software reliability. 

Becker et al. (2000) presented a semi-Markov model for software reliability 

allowing for inhomogenities with respect to process time. Rajgopal & Mazumdar 

(2002) also presented a Markov model for the transfer of control between 

different software modules. Boland & Singh (2003) also investigated a 

birth-process approach. 

For the NHPP models, Yamada & Osaki (1985) summarized some earlier 

software reliability growth models. Recently, many specific NHPP models have 

been studied. For example, Kuo et al. (2001) proposed a scheme for constructing 

software reliability growth models based on a NHPP model. Huang et al. (2003) 

further described how several existing software reliability growth models based 

on NHPP can be comprehensively derived by applying the concept of weighted 

arithmetic, weighted geometric, or weighted harmonic mean. Huang & Kuo 

(2003) presented some analysis that incorporates logistic testing-effort function 

into software reliability modeling. Zhang & Pham (2002) studied the problem of 

predicting operational software availability for telecommunication systems. 
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Shyur (2003) also presented an NHPP model that considers both imperfect 

debugging and the change-point. Pham (2003) recently presented studies in 

software reliability that includes NHPP software reliability models, NHPP 

models with environmental factors, and cost models. See Pham & Zhang (2003) 

on some further discussion on some reliability and cost models with testing 

coverage. 

Although the Markov and NHPP models are widely used in software 

reliability, some other models and tools might be also useful. Miller (1986) 

introduced “Order Statistic” models in studying the software reliability, which 

can also be found in the later research of Kaufman (1996), Aki & Hirano (1996), 

among others. Xie et al. (1998) described a double exponential smoothing 

technique to predict software failures. Helander et al. (1998) presented planning 

models for distributing development effort among software components to 

facilitate cost-effective progress toward a system reliability goal. Recently, 

Zequeira (2000), Sahinoglu et al. (2001), Littlewood et al. (2003) and Ozekici & 

Soyer (2003), among others, studied some Bayesian approaches to model and 

estimate the reliability of software-based systems. 
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CHAPTER MODELS FOR 
INTEGRATED SYSTEMS 

A computing system usually integrates both software and hardware, and software 

cannot work without the support of hardware. Hence, computing system 

reliability should be studied by considering both software and hardware 

components. This chapter presents some models for the reliability analysis at the 

system level by incorporating both software and hardware failures. First, a single 

processor system is studied. Second, the case of modular system reliability is 

discussed. Following that, Markov models for clustered computing system are 

presented. Finally, a unified model that integrates NHPP software model into the 

Markov hardware model is shown. 

5.1. Single-Processor System 

The simplest case for the integrated software and hardware system is to view it as 

a single processor divided into two subsystems: software and hardware 

subsystems. Considering such system, Goel & Soenjoto (1981) presented one of 

the first, but general, Markov models, which will be described in this section. 

113




114 Models for Integrated Systems 

5.1.1. Markov modeling 

The assumptions of the model are as follows: 

1) 

each has a failure occurrence rate of 

2) Failures of hardware subsystem are also independent and have a failure 
occurrence rate of 

3) The time to remove a software fault, when there are  i such faults in the 

system follows an exponential distribution with parameter 

4) The time to remove the cause of a hardware failure also follows an 

exponential distribution with parameter 

5) Failures and repairs of the hardware subsystem are independent of both 

the failures and repairs of the software subsystem. 

6) At most one software fault is removed and no new software faults are 
introduced during the fault correction stage. 

7) When the system is not operational due to the occurrence of a software 
failure, the fault causing the failure is corrected with probability

Faults in the software subsystem are independent from each other and 

 and 

is the probability of imperfect repair of software. 

8) After the occurrence of a hardware failure, the hardware subsystem is 
recovered with probability, and is the probability for the 

hardware still staying at the failed state after the repair. 

Let  X (t) denote the state of the system at time  t and ‘ X (t) =  i’,  i=0,1,... ,N, 

implies that the system is operational while there are  i remaining software faults. 

Here  N is the initial number of software faults. Also, 

implies that the system is down for repair of software with i 

remaining software faults at the time of failure. Similarly, 

implies the system is down for repair of hardware with  i 

remaining software faults at the time of failure. The Markov chain is shown in 

Fig. 5.1. 
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Suppose that the system is at state  i (an operational state containing  i software 

faults), i=1,2,...,N. The system may fail due to the software failure with 

probability to state and due to the hardware failure with the probability 

to state At state debugging is taking place to remove the fault that 

causes the software failure. With probability the software fault is 

successfully removed and the system goes to state i-1. Otherwise with probability 

the fault is not removed and the software is only restarted at state  i. For state 

maintenance personnel will try to recover the hardware failure and it has a 

probability to return to the operational state  i and probability to remain 

at the failure state After the software is fault-free, i.e. at the state 0, the 

system reduces to a hardware system subject to hardware failures only. 

Let be the one-step transition probability that, after transiting into 

state k, the process  X(t) next transits to state j in an amount of time less than or 

equal to t. Denoted by the cumulative distributing function of the time 

from state  k to state j. Then, is the product of and The 

expressions for in the Fig. 5.1 are as follows: 
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These basic equations describe the stochastic process as a semi-Markov process 

and can be used to derive some system-performance measures, see e.g. Goel & 

Soenjoto (1981), such as time to a specified number of software faults, system 

operational probabilities, system reliability and availability, and expected number 

of software, hardware and total failures by time  t. Some of the issues are 

discussed in the following. 

5.1.2. Time to a specified number of remaining software faults 

The faults remaining in the software are sources of failures and we would like to 

remove them as soon as possible. However, it is not always feasible or practical 

to remove all of the faults during a limited time period of testing. In that case, we 

would like to know the distribution of time to a specified purity level, i.e., of the 

time to n remaining faults.


Let
 be the first passage time from state  i to n, and let be its 

distribution function. Consider a time interval (r, r + dr)  . For any  i, the 

probability of remaining in the state i, in this interval is and the 

probability of going from the state i to is


After the process  X(t) reaches either state
 or further transitions will 

be governed by distribution functions, and respectively, 

i  = n +1,..., N, as shown in Goel & Soenjoto (1981): for

can be obtained by taking the Laplace-Stieltjes transform of the renewal equation 
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where 

Then, it can be shown that 

and 

Example 5.1. Consider a system with  N = 10 faults, and 

Suppose that and the parametric values are 

Substituting the numerical values into Eq. (5.2), we obtain the distribution of 

The distribution of is shown in Fig. 5.2 and the trend for other 

distributions are similar to this. The means and standard deviations of these 

distributions are obtained from the above equations respectively, and some 

numerical results are shown in Table 5.1. 
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5.1.3. System reliability and availability 

The system reliability, or the probability that the system is operational at time  t 

with a specified number of remaining software faults, can then be derived as the 

following. Let be the probability that the system is operational at time  t 



119 Computing System Reliability 

with  n remaining software faults, given that it was in operation at time t = 0 

with N software faults, i.e., 

We call the (operational) state occupancy probability. By conditioning 

on the first up-down cycle of the process, as shown by Goel & Soenjoto (1981), 

the following equation for can be obtained: 

In the above, is the convolution operator as in Eq. (2.35). By conditioning on 

the first passage time, we have 

where is given by Eq. (5.2). 

By taking the Laplace-Stieltjes transforms of the above equations and solving 

the resulting equations, we have 

The system availability can then be computed as 

An example for operational probability and system availability is shown below. 

Example 5.2. Continued with Example 5.1. The distributions obtained 

from Eq. (5.9) and the availability function  A(t) obtained from Eq. (5.10) are 

shown in Table 5.2 for some different time points. 
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5.1.4. Expected number of failures by time t 

Expected number of software failures 

Let be the expected number of software failures detected by time t. 

Consider a counting process where is the number of 

software failures detected during the time interval (0,t],when the initial number 

of faults in the software system is i. Let 

conditioning on the first passage time going from state  N to  i, we have 

By 

Using the Laplace-Stieltjes transforms as shown in Goel & Soenjoto (1981), we 

get 
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Expected number of hardware failures 

Let be the expected number of hardware failures detected by time t. 

Consider a counting process where is the number of 

of faults in the hardware subsystem is  i. Let 

conditioning on the first passage time from state  N to  i, we have 

thardware failures detected during the time interval (0, ], when the initial number 

By 

Using the Laplace-Stieltjes transforms, we get


The expected total number of failures denoted by M (t) is the summation of 

software failures and hardware failures as 

Example 5.3. Consider the same example as in Examples 5.1 and 5.2. For this 

system, the expected numbers of software, hardware, and system failures are 

computed from the above equations. Some numerical values are given in Table 

5.3. 

Table 5.3 shows that the number of software failures detected increases 

rapidly at the beginning, leveling off at a value of about 11 at  t=500. This 

happens because the software failure rate depends on the number of remaining 

faults and this number decreases with time. After  t=800, there are no software 
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faults left and the system is composed of a perfect software subsystem and a 

failure-prone hardware subsystem. The rate of occurrence of hardware failures, 

on the other hand, is unaffected by the passage of time. 

5.2. Models for Modular System 

Similar to the case of modular software presented in the previous chapter, 

integrated software and hardware systems can also be decomposed into a finite 

number of modules. Markov models can also be used in analyzing such modular 

systems as shown below. 

5.2.1. Markov modeling 

Siegrist (1988) might be one of the first models using Markov processes to 

analyze the modular software/hardware systems. It was assumed that the control 

of the system is transferred among the modules according to a Markov process. 

Each module has an associated reliability which gives the probability that the 
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module will operate correctly when called and will transfer control successfully 

when finished. The system will eventually either fail or complete its task 

successfully so that to enter a terminal state. 

The modules (or states) of the system is denoted by  i  (i=1,2,...,n). The ideal 

and transition matrix

n}(failure free) system is described by a Markov chain with state space {1,2,...,

P. That is, is the conditional probability that the next 

state will be j given that the current state is i. The reliability of state i, denoted by 

is the probability that state i will function correctly when called and will 

transfer control successfully when finished. The imperfect system is modeled by 

adding an absorbing state  F (failure state) and the transition matrix is modified 

accordingly. 

space {1,2,...,

Specifically, the imperfect system is described by a Markov chain with state 

n, F} and transition matrix given by 

Usually for each  i and hence each of the states 1,2,...,n eventually 

leads to the absorbing state F. Note that the dynamics of the imperfect system are 

completely described by the state reliability function R and the transition matrix 

P since this description is equivalent to specifying the transition matrix of the 

imperfect system. 

5.2.2. Expected number of transitions until failure 

Based on 

number of transitions until failure as the measure of system reliability. Let 

denote the expected number of transitions until failure for the imperfect system, 

expectedthe above Markov model, Siegrist (1988) presented the 
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regular time intervals, then

 istarting in state . If the transitions of the system correspond to inputs received at

 is proportional to the expected time until failure, 

starting in state i. Two methods of computing the function M will be given. 

Let Q denote the restriction of the transition matrix of the imperfect 

system to the (transient) states 1,2,...,n. Note that Then 

It follows that 

Let i and j be any of the states 1,2,...,n. We have that


where is the expected number of transitions until the imperfect system either 

fails or reaches state j, starting in state  i; and is the probability that the 

imperfect system eventually reaches state j, starting in state  i. If i=j, “reaches” 

should be interpreted as “returns to” in which case, we obtain from the above 

equation 

Then, the desired result is 

From the Markov property, the matrices  A and  B are related to the basic data  R 

and  P according to the following systems of equations: 
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and 

Moreover

of visits to j for the imperfect system starting in state i. 

 is the same as namely, the expected number 

With the Markov property, the measure of expected number of transitions 

until failure is derived. As a result, this model is more appropriate for systems 

which run for fixed periods of time or which run continuously (until failure). Two 

examples of branching and sequential structures are illustrated here. 

Example 5.4. (A Branching System) A general branching system has the 

transition graph depicted in Fig. 5.3. State 1 acts as a central control which may 

pass the control to any of the states 2,...,n or back to itself. Each of the branch 

states 2,...,n can pass control back to itself or back to the center state 1. 
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Given the transition matrix P and the state reliability function R and let state 1 be 

the initial state, the expected number of transitions until failure starting in 

state 1, can be computed. Note first that the imperfect system, starting in state 1 

will make at least one transition before failure or return to state 1 occurs. 

Furthermore, if the stem moves to state j on the first transition, then on average, 

the system will make transitions until failure or return to state 1 

occurs. It follows that 

On the other hand, the probability that the imperfect system, starting from state 1, 

will eventually return to state 1 is 

Therefore, from Eq. (5.20)


If n=3 modules including a CPU, a memory and a computing software, CPU is 

the central state that any computing control starting from it and the other two 

modules are branch states that are transferred with only CPU and itself. Given a 

transition matrix 

and reliability and by substituting the numerical 

values into the above equations, we get 
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The expected number of transition till failure is 

Given the expected time of each transition is 26 seconds, the MTTF is


Example 5.5. (A Sequential System) The transition graph of a sequential system 

is given in Fig. 5.4. Note that control tends to pass sequentially from state 1 or 

state 2,..., to state n except that in each state, control can return to that state or to 

state 1 which is the initial state. 

Suppose that the transition matrix  P and the state reliability function  R are


known. First note that when the system is in state i, the expected number of


itransitions until the process leaves state  is It follows that 



128 Models for Integrated Systems 

By a similar argument, the probability of eventual return to state 1, starting in 

state 1 for the imperfect system is 

5.3. Models for Clustered System 

Clustered computing systems use commercially available computers networked 

in a loosely-coupled fashion. It can provide high levels of reliability if 

appropriate levels of fault detection and recovery software are implemented in the 

middleware (an application layer). The application, therefore, can be made as 

reliable as the user requires and it is constrained only by the upper bounds on 

reliability imposed by the architecture, performance and cost considerations. 

5.3.1. Introduction to clustered computing systems 

A cluster is a collection of computers in which any member of the cluster is 

capable of supporting the processing functions of any other member. A clustered 

computing system has a redundant n + k configuration, where  n processing 

nodes are actively processing the application and  k processing nodes are in a 

standby state, serving as spares. In the event of a failure of an active node, the 

application that was running on the failed node is moved to one of the standby 

nodes. 

The simplest cluster system is one active and one standby, in which one node 

is actively processing the application and the other node is in a standby state. 

Other common cluster systems include simplex (one active node, no spare), n+1 

(n active nodes, 1 spare), and n+0 (all n active nodes). In a system with n active 

nodes, the applications from the failed node are redistributed among the other 

active nodes using a pre-specified algorithm. 
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Consider a general clustered computing system with  n active processors and 

k spares, see e.g., Mendiratta (1998). In this system, there is a Power Dog (PD) 

attached to each processor that can power cycle or power down the processor, and 

a Watch Dog (WD) with connections to each processor that monitors 

performance from each processor and initiate failover if it detects a processor 

failure. Then, the failover information is transferred to a switching system (SS) 

that can turn on the Power Dog of the standby processors to replace the failed 

ones. 

The block diagram for this clustered system architecture is shown in Fig. 5.5 

and represents the system to be modeled. 

5.3.2. Markov modeling 

For each processor, there are two types of failures: software and hardware 

failures. Suppose the failure rate for software is and for hardware Those 
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failed processors may or may not be repaired, which will be discussed in the 

following, respectively. 

Model for non-repairable system 

Non-repairable system means that the processors are not repaired if they are 

failed. Thus, for the n + k clustered system without repair, the Markov model 

can be depicted by the CTMC in Fig. 5.6. 

The state i in Fig. 5.6 represents the number of good processors (both active and 

standby). If the cluster system must keep  n processors active, so the 

failure rate should be If 0 < i < n , it means that no spares are 

available and the number of active processors is i. Hence, the failure occurrence 

rate is 

Denote by (i=0,1,2,..., n+k) the probability for the system to stay at 

state  i at time instant t. The Chapman-Kolmogorov equation can be written as 
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We assume that the process begins from the state n+k that all the processors are 

good initially. Hence, the initial conditions are 

With a numerical program, one can obtain the solution of the above differential 

equations with initial conditions even for large value of n+k. 

The probability of the system failure state determines the unreliability 

function. Therefore, the reliability function defined as the probability that at least 

one processor works well is 

Moreover, we can use Laplace-Stieltjes transform to approximate the reliability 

function. For example, the state probability for the failed state after the 

transformation is 

where 

Expanding the denominator, substituting the expression in the equation for


we obtain: 

The above equation can be easily inverted using inverse Laplace-Stieltjes 

transforms 
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Generally, we use only the first term for the approximation and we have


Since we have an alternating power series, the next term will provide a bound on 

the absolute error in using this approximation: 

Model for repairable system 

If a system is repairable, the failed processor can be recovered with a repair rate 

from state  i-1 back to state i. The Markov model is built as the CTMC of Fig. 

5.7. 

As before, the Chapman-Kolmogorov equation can be written as 
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with the initial conditions (5.30). 

Again, these equations can be solved numerically using certain computer 

programs. 

Model with different repair rates of software and hardware 

In the above model for repairable clusters, is the expected system repair rate 

no matter whether the failed processors are caused by software failures or 

hardware failures. Actually, the rate for repairing software failure should be 

different from that for repairing hardware failure (Lai et al., 2002). A model for 

this different repair rates is discussed here. 

Let be the rate to repair one failed processor caused by software failure 

and by hardware failure. Then part of the CTMC can be depicted as shown 

in Fig. 5.8. 

In fig. 5.8, the transition rates are given by 

and 
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The corresponding Chapman-Kolmogorov differential equation for the


probability that the system is in the state (i,  j) at time  t is, for


n + k; 

The initial conditions are


The boundary conditions are:
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and 

The above equations need to be solved numerically with a computer program. 

After that, the system availability for the n+k clustered system can be calculated 

by 

Example 5.6. Consider a clustered system containing 2 active processors. 

Suppose that the failure rate of software is and that of hardware is 

in a processor. We discuss the following three different conditions 

in the following. 

1) The case without repair 

In this case, the Markov model for this 2+0 cluster is constructed in Fig. 5.9. 
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Solving the Chapman-Kolmogorov differential equations in (5.28) with initial 

condition (5.29), we get 

and the reliability function 

2) The case of the identical repair rate 

With the identical repair rate the Markov model for this 2+0 cluster is 

constructed in Fig. 5.10. 
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By constructing the Chapman-Kolmogorov differential equations, we get


with the initial condition If the repair rate 

for both software failure and hardware failure, we can obtain the availability 

numerically, as shown in Fig. 5.11. function 

3) General case of different repair rates 

Considering different repair rates for software and hardware, the Markov model 

for this 2+0 cluster is constructed in Fig. 5.12. 
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The corresponding Chapman-Kolmogorov differential equations are


with initial condition and other probabilities 0. If the repair rates are 

and the availability function can be 

computed numerically. 
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5.4. A Unified NHPP Markov Model 

In order to incorporate the NHPP software reliability model into the Markov 

hardware reliability model, Welke et al. (1995) developed a unified NHPP 

Markov model. The unified model is accomplished by determining a transition 

probability for a software failure and then incorporating the software failure 

transitions into the hardware reliability model. Based on this unified model, the 

differential equations can be easily established and solved despite the 

time-varying software failure rates. 

The basic assumptions of this unified model are listed below: 

1)	 Software failures are described by a general NHPP model, with the 

probability function 

where  m(t) is the mean value function and  n is the number of failures 

occurring up to time t. 

2)	 The times between hardware failures are exponentially distributed random 

variable. 

5.4.1. Software failure transition probability 

The mathematical justification for implementing the NHPP model as a Markov 

process is based on the concept of r:th order inter-arrival times (Drake, 1967). 

Denoted by the random variable of the r:th order inter-arrival times and let 

be the probability density function of we then have 
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This equation provides a discrete-time relationship that can be incorporated into 

the discrete-time Markov model. The time between failures in a Poisson model 

has an exponential distribution, so the same derivation used in hardware 

modeling can be used here to show: 

Given this approximation, the discrete-time relationship can be written in a 

slightly different form as: 

where  P(r –  1,l) is the probability that there are exactly r – 1 failures in an 

interval of duration l. 

Note that the failure intensity of NHPP is time-varying (Welke et al., 1995) 

and Eq. (5.45) becomes: 

Substituting Eq. (5.42) into the above equation, we have


5.4.2. Markov modeling 

We now use the above equation to describe software state transitions in a Markov 

model. The transition we evaluate is the probability that the software remains in 

the

the same (operational) state, given it started in the state. Since Eq. (5.43) gives

 probability that failure  r occurs in the probability that any 

software failure occurs in this interval is simply the sum of Eq. (5.43) over all 

possible values of r. Assume that the maximum value of r is large enough to 

approximate this sum as 
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Therefore, the probability that no failures occur in
 is 

By substituting Eq. (5.47) into the above equation and performing some algebraic 

manipulation, we have 

since The above equation means the probability that no software failure 

occurs during a short time so the transition probability from the operational 

state to the software failure state during the short enough can be expressed 

as 

Hence, with the above transition probability, NHPP model can be integrated into 

the Markov model. For details, see Welke et al. (1995). Based on the above 

equations, the differential equations can be obtained and solved as usual. An 

example for it is illustrated below. 

Example 5.7. Suppose that a processing element contains both software and 

hardware parts. The software failures follow a classical NHPP model, the 

GO-model (Goel & Okumoto, 1979) with failure intensity function 
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and of the hardware follow the exponential distribution with parameter 

Suppose a = 0.001, b = 10, and the failed system will be repaired 

with repair rate for software and for hardware.


The state probabilities satisfy the following differential equations


function 

with the initial condition we can get the availability 

numerically, as shown by Fig. 5.13. 
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Note that although this example implemented the GO model for software failures, 

other NHPP software models, see e.g. Xie (1991), can also be integrated into the 

unified model according to their specific conditions. 

5.5. Notes and References 

Pukite & Pukite (1998) summarized some simple models for the reliability 

analysis of the hardware and software system. Another useful reference is Kapur 

et al. (1998). 

Similar to the single-processor model presented in this chapter, Hecht & 

Hecht (1986) also studied the reliability in the system context considering both 

software and hardware. Fryer (1985) implemented the fault tree analysis in 

analyzing the reliability of combined software/hardware systems, which 

determines how component failures can contribute to system failure. Sumita & 

Masuda (1986) developed a combined hardware/software reliability model where 

both lifetimes and repair times of software and hardware subsystems are 

considered together. Kim & Welch (1989) examined the concept of distributed 

execution of recovery blocks as an approach for uniform treatment of hardware 

and software faults. Keene & Lane (1992) reviewed the similarities and 

differences between hardware, software and system reliability. Kanoun & 

Ortalo-Borrel (2000) explicitly modelled the case of hardware and software 

component-interactions. 

For the clustered systems, Laprie & Kanoun (1992) presented Markov 

models for analyzing the system availability. Later, Dugan & Lyu (1995) 

discussed the modeling and analysis of three major architectures of the clustered 

system containing multiple versions of software/hardware, and they combined 

fault tree analysis techniques and Markov modeling techniques to incorporate 

transient and permanent hardware faults as well as unrelated and related software 

faults. 



144 Models for Integrated Systems 

Recently, Pasquini et al. (2001) considered the reliability for systems based 

on software and human resources. Choi & Seong (2001) studied a system 

considering software masking effects on hardware faults. Zhang & Horigome 

(2001) discussed the availability and reliability on the system level considering 

the time-varying failures that are dependent among the software/hardware 

components. Lai et al. (2002) studied the reliability of the distributed 

software/hardware systems, where Markov models were implemented by 

assuming that the software failure rate is decreasing while the hardware has a 

constant failure rate. Dai et al. (2003a) further studied the reliability and 

availability of distributed services which combined both software program 

failures and hardware network failures altogether. 



CHAPTER 
AVAILABILITY AND 

RELIABILITY OF DISTRIBUTED 

COMPUTING SYSTEMS 

Distributed computing system is a type of widely-used computing system. The 

performance of a distributed computing system is determined not only by 

software or hardware reliability but also by the reliability of networks for 

communication. This chapter presents some results on the availability and 

reliability of distributed computing systems by considering the failures of 

software programs, hardware processors and network communication. Graph 

theory and Markov models are mainly used. 

The chapter is divided into four parts. First, general distributed computing 

system and some specific commonly used systems are introduced. Second, the 

distributed program/system reliability is analyzed and some analytical tools of 

evaluating them are demonstrated. The homogeneous distributed 
software/hardware system is then studied. The system availability is analyzed by 

Markov models and the imperfect debugging process is further introduced. 

Finally, the Centralized Heterogeneous Distributed System is studied and 

approaches to its service reliability are shown. 

145 
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6.1. Introduction to Distributed Computing 

The distributed computing system is designed to complete certain computing 

tasks given a networked environment, e.g. Casavant & Singhal (1994) and Loy et 

al. (2001). Such systems have gained in popularity due to the low-cost processors 

in the recent years. A common distributed system is made up of several hosts 

connected by a network where computing functions are shared among the hosts, 

as depicted by Fig. 6.1. 

A typical application in distributed systems is distributed software of which 

identical copies run on all the distributed hosts. A homogeneously distributed 

system is a system for which all of the distributed hosts are of the same type, such 

as workstations from the same vendor. Applications of identical copies of 

distributed software to homogeneously distributed systems are called 

homogeneously distributed software/hardware systems (Lai et al., 2002). 

For example, a search engine system provides the service for searching 

related information. To receive and serve millions of searching requests 

everyday, the search engine system should contain many servers of the same type 
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running the identical software in exploring the database. Such system is a type of 

the homogeneous distributed software/hardware system. Examples of 

applications of this kind of systems can also be found in communication 

protocols, telephone switching systems, web services, and distributed database 

management systems, etc. 

Besides the homogeneous distributed systems, most of the other distributed 

systems can be attributed to centralized heterogeneous distributed system (Dai et 

al. 2003a). This kind of system consists of many heterogeneous subsystems 

managed by a control center. 

For example, in modern warfare, each soldier can be considered as an 

element in a military system and furnished with different electrical equipments 

for diverse purposes. The information collected from each soldier is sent back to 

a control center through wireless communication channels. Then, the control 

center can analyze all the information and send out commands to respective 

soldiers. The functions of different groups of soldiers are diversified in a war 

(such as attacking, defending, supplying, saving etc.) so their electrical 

equipments should also be heterogeneous. Thus, it is a typical Centralized 

Heterogeneous Distributed System, as depicted by Fig. 6.2. 
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The reliability of distributed system is a key point of the QoS (Quality of 

Service). However, reliability analysis of such systems is complicated due to its 

various topologies, the integrated software and hardware or highly heterogeneous 

subsystems. This chapter studies these issues and presents models and analytical 

tools that can be easily implemented to estimate the reliability and availability of 

those distributed systems. 

6.2. Distributed Program and System Reliability 

A general distributed computing system consists of processing elements (nodes), 

communication channels (links), memory units, data files, and programs. These 

resources are interconnected via a network that indicates how information flows 

among them. Programs residing on some nodes can use/load data files from other 

nodes. Hence, the program/system reliability in the general networked 

environment is worth studying in order to comprehensively qualify the 

distributed system. 

6.2.1. Architecture and reliability model of distributed systems 

General architecture of distributed computing systems 

A typical distributed system can be viewed as a two level hierarchical structure 

(Pierre & Hoang, 1990). The first level consists of the communication sub­

network, also called the backbone. It comprises of linked switching nodes and has 

as its main function the end-to-end transfer of information. The second level 

consists of nodes/terminals, such as processors, programs, files, resources and so 

on. 

In general, n-processor distributed systems can be depicted as Fig. 6.3. Each 

node can execute a set of programs and share a set of data files 



149 Computing System Reliability 

(i=1,2,... ,n). Programs residing on some nodes can be run using data files at other 

nodes. 

Reliability model 

Based on the above model for the general distributed computing systems, the 

definition of the distributed program reliability is given below: 

Definition 6.1. Distributed program reliability in a distributed computing system 

is the probability of successful execution of a program running on multiple 

processing elements and needs to retrieve data files from other processing 

elements. 

From the definition, the distributed program reliability varies according to 

1) the network topology of the distributed computing system 
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2) the reliability of the communication links 

3) the reliability of the processing nodes 

4) the data files and programs distribution among processing elements 

5) the data files required to execute a program. 

Example 6.1. Consider the distributed computing system shown in Fig. 6.4. 

This distributed computing system consists of four processing nodes 

(N1,N2,N3,N4) that run three different programs (P1,P2,P3) distributed in 

redundant manner among the processing elements. Four data files (F1,F2,F3,F4) 

are also distributed in a redundant manner. is the set of files that are 

required by the program 

In Fig. 6.4, program can run successfully when either of N1 or N4 is 

working and it is possible to access the data files (F1,F2,F3). If is running on 

N1 which holds the files F1 and F2, it is required to access the file F3 which is 

resident at N2 or N4. That is, additional nodes and links are needed to have 
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access to that required file (F3). Thus, the distributed program reliability depends


on the reliability of all those involved processing nodes and communication links.


The distributed program reliability measures the reliability of one program in 

the system. However, for reliability of the distributed computing systems, it is 

important to obtain a global reliability measure that describes how reliable the 

system is for a given distribution of programs and files (Hariri & Mutlu, 1995). 

The definition of distributed system reliability is given below. 

Definition 6.2. Distributed system reliability is the probability that all the 

distributed programs are executed successfully under the distributed computing 

environment. 

As the distributed computing system depicted by Fig. 6.4, all three programs 

(P1,P2,P3) are required to be successfully achieved. Four data files (F1,F2,F3,F4) 

are needed when running those programs. Thus, the distributed system reliability 

here is the probability for all the three programs to be successfully executed 

meanwhile accessing to all the data files. 

In order to estimate the distributed program/system reliability, some 

assumptions of the reliability model for the distributed computing system, see e.g. 

Kumar et al. (1986), are given below: 

Assumptions: 

1)	 Each node or link in the distributed computing system has two states: 

operational or faulty. 

2)	 If a link is faulty, information cannot be transferred through it. 

3)	 If a node is faulty, the program contained in the node cannot be 
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4) The probability for a processing node to be operational is constant, 

which is denoted by and 

5) The probability for a communication link to be operational is also 

constant, which is denoted by and 

successfully executed, the files saved in it cannot be accessed by other 

nodes, and the information is not able to be transferred through it. 

6)	 Failures of all the nodes and links are statistically independent from each 

other. 

It is indicated in Lin & Chen (1997) that computing distributed reliability is an 

NP-hard problem (Valiant, 1979) even when the distributed computing system is 

restricted to simple structures such as series-parallel, a tree, a star etc. Hence, 

general and effective analytical tools are required to evaluate its reliability. 

6.2.2. Kumar’s analytical tool 

This analytical tool was presented by Kumar et al. (1986), which is based on 

Minimal File Spanning Tree (MFST). In general, the set of nodes and links 

involved in running the given program and accessing its required files form a tree. 

Such tree is called File Spanning Tree (FST) defined below. 

Definition 6.3. File Spanning Tree is a spanning tree that connects the root node 

(the processing element that runs the program under consideration) to some other 

nodes such that its vertices hold all the required files for executing that program. 

The smallest dominating file spanning tree is called MFST and its definition is 

given below. 
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Definition 6.4.  A Minima File Spanning Tree, denoted by is an FST 

such that there exists no other file spanning tree, say which is a subset of 

An example of the FSTs and MFSTs is illustrated below. 

Example 6.2. Continue considering the distributed system of Fig. 6.4. The 
following are some FSTs that make run successfully on 

Likewise, there will be several other FSTs when 

program runs on


The file spanning tree
 is not minimal because its 

subset is also an FST. We are interested in finding all the MFSTs 

to run a distributed program. For to run on either or four MFSTs are 

contained. They are 

Anyone of these four MFSTs can provide a successful execution of the 

program under consideration when all elements are working. 

From the above example, it can be seen that the distributed program can run 

successfully if any one of the MFSTs is operational. Hence, the distributed 

program reliability can be generally described in terms of the probability having 

at least one of the MFSTs operating as 

DPR=Pr(at least one MFST of a given program is operational) 
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This can be written as 

where

evaluation of the reliability of executing a program on a distributed system can be

 is the total number of MFSTs that run the given program. The 

determined by the following two stages. 

Stage 1. Find all the Minimal File Spanning Trees:


The purpose of this stage is to search all the MFSTs in which the roots are the


processing elements that run a program, say 
 The minimal file spanning trees 

are generated in nondecreasing order of their sizes, where the size is defined as 

the number of links in an MFST. At first, all MFSTs of size 0 are determined; this 

occurs when there exist some processing nodes that run and have all the 

needed files (which is denoted by the set ) for its execution. Then, all MFSTs 

of size 1 are determined; these trees have only one link which connects the root 

node to some other node, such that the root node and the other node have all the 

files in This procedure is repeated for all possible sizes of MFSTs up to n-1, 

where  n is the total number of nodes in the system. The detailed description of 

the algorithm to search all the MFSTs is given by Kumar et al. (1986). 

Stage 2. Apply a terminal reliability algorithm to evaluate distributed 

program reliability: 

Here we find the probability that at least one MFST is working which means that 

all the edges and vertices included in it are operational. Any terminal reliability 

evaluation algorithm based on path or cutest enumeration can be used to obtain 

the distributed program reliability of the program under consideration. 
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The distributed system reliability can be written as the probability of the


MFSTs

where MFSTs

intersection of the set of  of each program, which is 

denotes the set of all the  associated with the program 

Example 6.3. An example using the above analytical tool to estimate distributed 

program/system reliability is illustrated below. 

The distributed computing system shown in Fig. 6.5 consists of six processing 

elements that can run four distributed programs and save six data files. The files 

needed for executing these programs are indicated in the following sets: 
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Evaluating the distributed program reliability 

We first derive the reliability of program denoted by The program 

can run on either N1 or N6. Its MFSTs can be found by the step 1 as depicted 

by Fig. 6.6. The double-line circles represent the root node, the single-line circles 

represent the contained vertex, the number in the circle is the node number in the 

distributed computing system, and the files marked around the circles are reached 

new data files in that node. 
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Based on the generated MFSTs in Fig. 6.6, using the terminal reliability algorithm 

as step 2, we can obtain the reliability of program If we assume that all the 

elements (processing nodes and communication links), of the distributed 

computing system shown in Fig. 6.5 have the same reliability and equal to 0.9, 

then the reliability of executing is computed as 0.9378. 

Evaluating the distributed system reliability 

The first step in evaluating the distributed system reliability is to determine all the 

MFSTs for each program that can run on the system. The next step of this 

algorithm is to determine the set of all MFSTs that guarantee successful execution 

of all the programs by recursively intersecting the MFSTs of each program. 

The final step is applying terminal reliability algorithm to obtain the 

following terms for the distributed system reliability. If we still assume that all 

the nodes and links have the same reliability, say 0.9, then the reliability of the 

distributed computing system is 0.842674. 

6.2.3. A family of FST analytical tools 

For analyzing the distributed program/system reliability, another family of File 

Spanning Tree (FST) analytical tools is further developed, which shows good 

efficiency for some specific problems. 

The first FST analytical tool in this family was presented by Chen & Huang 

(1992) without considering node failures (i.e. just consider the communication 

failures of the network links). Hence, this analytical tool is only suitable for the 

distributed computing systems whose processing elements are perfect or highly 

reliable so that the probability for them to fail when working is negligible. 
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The main difference between this and above Kumar’s tool is that Kumar’s 

MFST starts from one root node and further expands the trees; and Chen-Huang’s 

FST starts from the whole system graph and cuts links to prime the trees. 

Moreover, Kumar’s tool requires to further use an additional terminal reliability 

algorithm to derive distributed program/system reliability but this FST tool can 

directly obtain the solution when priming the trees. 

The basic concept of the FST analytical tool 

The basic idea for the FST analytical tool is to find all disjoint FSTs in each size 

starting from the origin graph representing the distributed computing system. If 

we use an efficient method to cut one link each time from the graph at a different 

place to generate possible subgraphs recursively, then we are able to predict if 

each of these resulting subgraphs is an FST by examining the set of data files 

contained in this subgraph against the set of required data files for executing the 

distributed programs. This process can be repeated starting from graph size  K, K­

1,..., to 0 (where  K is the number of links in the graph). Obviously, without an 

efficient method to remove appropriate links, the efficiency for the analytical tool 

could be very poor. 

The method for cutting the graph plays an important role in finding the FSTs 

and in computing the reliability of the distributed computing system. The brief 

introduction for this method is given by the following five steps: 

Step 1. Find a spanning tree from the current graph if necessary and compute 

( : a set of link states that can be used to construct the spanning 

tree of subgraph G), where each link has three states: 1) faulty state, 

denoted by 0; 2) operational state, denoted by 1; 3) undetermined state, 

denoted by *. 

Step 2. Compute the vector by and convert vector 

to the probability expression. ( : a set of link stats that can be used to 

compute the probability of subgraph G. The state condition could be 
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either 1,0, or * as above; : a set of link states that represents the links’ 

conditions in the current subgraph G). 

Step 3. Cut the current graph according to the vectors and to 

obtain its subgraphs (or FSTs), where denotes a set of link states 

that indicate which link cannot be cut in subgraph G. 

Step 4. Repeat steps 1 to 3 to compute each subgraph’s vector 

Step 5. The reliability of the distributed computing system graph is obtained 

by uniting all vectors that are associated with all the FSTs. 

Once the concept of finding all FSTs and computing the reliability of the 

distributed computing system is understood, the detailed algorithm for finding the 

FSTs and computing the reliability of the FST was illustrated in Chen & Huang 

(1992). An example for the FST analytical tool is illustrated below. 

Example 6.4. Consider the simple distributed computing system in Fig. 6.4 again. 

We use the FST reliability analytical tool to analyze the distributed 

program/system reliability. For the program its reliability is 

evaluated by the splitting snapshot of subgraphs generated by the above FST tool. 

To compute the reliability, sum all the disjoint terms represented by 

vectors and then 

Similarly, the distributed system reliability can be obtained from the above FST 

tool as 

If we assume all the links have the same reliability 0.9, then the
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The FST-SPR (Series and Parallel Reduction) analysis 

How to speed the reliability evaluation process up is the major concern of the 

proposed analytical tool. The basic principle of speeding the reliability evaluation 

is to generate correct FSTs with less cutting steps. There are four methods 

presented by Chen & Huang (1992), which can be used interchangeably to speed 

the reliability evaluation. These methods are nodes merged, parallel reduction, 

series reduction, and degree-2 reduction as described below. 

1)	 Nodes merged occurs when a probability subgraph has bit value 1 in its 

LS vector, i.e. the corresponding link must be operational in all its 

subgraphs. Hence the two nodes connected by this link can be merged 

into one node together with the link itself. 

2)	 Parallel reduction occurs when a probability subgraph contains two or 

more links between two nodes. With connectivity property, these 

redundant links can be reduced to one link and the operational probability 
is replaced by 

where is the operational probability for the k:th link between nodes i 

and j. 

3) Series reduction occurs when a probability subgraph has a node, with 

node degree=2 (i.e. two links connect to this node), that contains no data 

file required for executing the distributed program. Since such a node, 

after deletion, still does not affect the correct FST generation, we can 

remove this node and reduce two links that connect to its neighboring 

nodes into one link. The new operation probability between the two 

neighboring nodes (i and j) is replaced by 
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where k is the deleted node. 

4)	 Degree-2 reduction occurs when a probability subgraph has a node, with 

node degree = 2, that is not a leaf node of any MFST of the current graph. 

Since this node is not a leaf node of any MFST, then the two adjacent 

links of this node must be working or fail simultaneously, thus we can 

remove this node and reduce two links that connect to its neighboring 

nodes into one link, and copy the data files and programs in this node to 

either of its two neighboring nodes. The new operation probability 

between the two neighboring nodes (i and j) is replaced by 

where k is the deleted node. 

Note again, similar to FST analytical tool, this FST-SPR also assumes that the 

processing elements (i.e., nodes) in the distributed computing system is perfect. 

Hence, this analytical tool is also only suitable for the distributed computing 

systems whose processing elements are perfect or highly reliable so that the 

probability for them to fail is negligible when running the programs. 

An example for the reduction methods of the FST-SPR is shown below. 

Example 6.5. Suppose there is a subgraph generated as depicted by Fig. 6.9. 

We need to compute the reliability of program which requires data files 

F1,F2,F3,F4 for completing its execution. The states of all the links are 

represented by different types of lines (dashed line: failure; double line: 

operational; single line: undetermined) and also by vectors LS and NC. The 

following are reduction steps for speedup the FST generation. 
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Step 1: Since link can no longer be cut and must be up for the rest of its 

subgraph generation due to LS=1**0**, we apply nodes merged 

reduction on nodes N1 and N2. The resulting subgraph(b) is shown in Fig. 

6.8(b). 

Step 2: A parallel reduction can be applied on the resulting subgraph (from 

step 1) since links and are parallel. The new resulting subgraph (c) 

is shown in Fig. 6.8(c). 

Step 3: A series reduction occurs since node N5 contains no data files for the 
execution of The new resulting subgraph (d) is shown in Fig. 6.8(d). 
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Step 4: A degree-2 reduction occurs since node N3 is not a leaf node of any 

MFST. The final subgraph (e) after these reductions is also shown in Fig. 

6.8(e). 

6.3. Homogeneously Distributed Software/Hardware 
Systems 

A typical kind of application on distributed systems has a homogeneously 

distributed software/hardware structure. The physical system is assumed to 

contain N software subsystems (SW1-SWN) running on N hosts (HW1-HWN) as 

depicted in Fig. 6.9. 

That is, identical copies of distributed application software run on the same type


of hosts, called Homogeneous Distributed Software/Hardware System. This
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system may be implemented to provide services for uncorrelated random requests 

of customers. 

In this system, the software is usually improved. Since the system considers 

combined software and hardware failures as well as maintenance process, its 

reliability cannot be simply estimated by the above analytical tools for computing 

the distributed program reliability. The availability models and analyses of the 

homogeneous distributed software/hardware system are studied here. 

6.3.1. Availability model 

Actually, homogeneous distributed software/hardware system is a type of cluster 

system, which is a collection of computers in which any member of the cluster is 

capable of supporting the processing functions of any other member Mendiratta 

(1998) and Lyu & Mendiratta (1999). A cluster has a redundant n+k 

configuration, where n processing nodes are necessary and k processing nodes are 

in spare state, serving as backup. In this subsection, our model is a cluster of N 

homogeneous hosts that are working in parallel. This means that if all of the  N 

hosts failed, the system fails. Otherwise whenever 1 host can work, the system is 

still working. 

The following are the assumptions concerning this system: 

(a)	 All the hosts have the same hardware failure rate arising from an 

exponential distribution. 

(b) Each of the hosts runs a copy of the same software with a failure rate 
function of a given software model. 

(c)	 Both the software and hardware have only two states, up (working state) 

and down (malfunctioning state), which means all the failures of software 

or hardware are crash failures. 

(d) There are maintenance personnel to repair the system upon software or 

hardware malfunction. The repair time has an exponential distribution 
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with parameter for software and parameter for hardware, 

respectively. 

(e) All the failures involved (either software or hardware) are mutually 

independent. 

(f) No two or more failures (either software or hardware) occur at the same 

time. 

There are some real cases of homogeneously distributed software/hardware 

system in which all the hosts can work independently for random/unknown 

request. Such applications can be found in search engine system, telephone 

switching system and banking system, and so on. Most homogeneous distributed 

software/hardware systems that work independently under the case of 

uncorrelated random requests can implement our models. 

Systems in practice can be complex and usually we have a multi-host 

situation. Lai et al. (2002) used a Markov process to model this type of system. 

Fig. 6.10 illustrates a partial system state transition of the Markov process, in 

which (i, j) is the state when i hosts suffer hardware failures and j hosts suffer 

software failures. 

The corresponding Chapman-Kolmogorov differential equation for the 

probability that the system is in the state (i,j) at time  t is, for 

where 

The initial conditions are
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The boundary conditions are:
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The system availability for the N-host based system can be calculated by


Here, we assume each copy of software suffers a failure rate of the JM model 

(Jelinski & Moranda, 1972), i.e., 

To solve the above differential equations, we need to know the expected 

number of remaining software faults However, since changes with 

software debugging, it is usually a function of time. We have used the following 

scheme for the numerical calculation, as shown by Lai et al. (2002). According to 

the JM model, the probability of software having k remaining faults at time t is 

Based on this equation, the expected number of remaining software faults at time 

t can be computed as 

The system availability can be computed using any available numerical 

algorithm to solve the differential equations. An example using our above 

Markov model to analyze availability of homogeneous distributed 

software/hardware system is numerically illustrated below. 

Example 6.6. We assume that the hardware failure rate is 0.02 and software 

failure rate per fault is 0.006. The repair rate for hardware is 0.1 while that for 

software is 0.12. Fig. 6.11 depicts the result of system availability of a triple-host 

system with different number of initial faults. 
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It can be seen from Fig. 6.11 that the system availability reaches the lowest point 

at an early stage. This is because a large number of faults are identified when 

software system testing begins. System availability starts recovering after the 

lowest point and approaches a certain value less than 1 asymptotically after a 

longer period of time. This is because identified faults are fixed and as a result 

software failure rate decreases. 

6.3.2. Model of the imperfect debugging process 

In the above section, the homogeneous distributed software/hardware system 

model assumed that the debugging process was a perfect one. It is possible in 
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reality that the fault that is supposed to have been removed may cause a failure 

again. It may be due to the spawning of a new fault because of imperfect 

debugging, see e.g. Fakhre-Zakeri & Slud (1995), Sridharan & Jayashree (1998), 

Pham et al. (1999) and Tokuno & Yamada (2000). 

Markov modeling 

The assumptions used in this imperfect debugging model are almost the same as 

the assumptions (a-f) in earlier model except that the following assumption is 

added. 

(g)	 When a software failure occurs, instantaneously repair starts with the 
following debugging probabilities: 

The software fault content is reduced by one with probability p. 

The software fault content remains unchanged with probability r. 

The software fault content is increased by one with probability q. 

This assumption is same as the birth-death process that was introduced in Kremer 

(1983). 

Fig. 6.12 illustrates a partial system state transition, in which (i, j,  k) is the 

state when i hosts suffer hardware failures, j hosts suffer software failures and k is 

the number of remaining software faults at that time. Here N is the total number 

of hosts in the system. 

The corresponding Chapman-Kolmogorov differential equation for the 

probability that the system is in the state (i, j, k), at time  t can be 

obtained. They can be solved numerically or analytically in some cases. The 

system availability at time t can be calculated as 
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Although those differential equations can be solved, the procedure becomes 

difficult when the number of hosts is large. Hence, some computing tools can be 

used to solve them. An example is illustrated below. 

Example 6.7. In this numerical example, the software failures are assumed to 

follow the JM-model. For the multi-host systems with different number of hosts, 

the system availability functions can be obtained numerically. The curves of 

system availability functions for (N=2,3,4,5) are depicted in Fig. 6.13 with 

parameters 
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Fig. 6.13 shows a similar trend as that of Fig. 6.11. System availability reaches 

the lowest point at an early stage. After that period, system availability starts 

recovering because identified faults are fixed and as a result software failure 

occurrence rate decreases. 

6.4. Centralized Heterogeneous Distributed Systems 

Most of the distributed service systems can be modeled by a centralized 

heterogeneous distributed system. This type of distributed systems consists of 
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heterogeneous subsystems that are managed by a control center, see e.g. Hussain 

& Hussain (1992) and Langer (2000, pp. 188-217). The system is different from 

the systems and models in the above sections, because those models either 

assumed constant operational probability without reliability growth or excluded 

the network reliability. However, the system incorporates not only the 

hardware/software/network reliability but also the improvement of the control 

center through debugging/maintenance process. Dai et al. (2003a) has analyzed 

its service reliability, and the results are summarized in the following. 

6.4.1. Service of the system and its reliability 

The structure of the Centralized Heterogeneous Distributed System is depicted by 

Fig. 6.14. The control center may consist of many servers. These servers support 

a virtual machine. The virtual machine can manage programs and data from 

heterogeneous subsystems through virtual nodes. The virtual nodes can mask the 

differences among various platforms. They are a kind of virtual executing 

elements, which only includes a basic unit for executing data, i.e. CPU and 

Memory. The entities of virtual machine and virtual nodes are supported by the 

software and hardware in the control center. 

The heterogeneous sub-distributed systems are composed of different types of 

computers with various operating systems connected by different topologies of 

networks. These subsystems exchange data with virtual machine through System 

Service Provider Interface (SSPI). They are connected with virtual nodes by 

routers. They can cooperate to achieve a distributed service under the 

management of the virtual machine. 

In fact, most of service systems can be categorized as centralized 

heterogeneous distributed systems such as the example of military system shown 

in Fig. 6.2. 



173 Computing System Reliability 

The whole process for a service in a distributed system is repeated so the 

reliability analysis of a distributed service is crucial for a distributed system. The 

distributed service reliability is defined as below. 

Definition 6.5. Distributed service reliability is the probability for a service to be 

successfully achieved in a distributed computing system. 

6.4.2. Model of distributed service reliability 

In a distributed service system, a service includes various distributed programs 

completed by diverse computers. Some later programs might require several 

precedent programs to be completed. Every program requires a certain execution 

time. The execution of some programs might require certain input files that are 
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saved or generated in different computers of the distributed systems. The overall 

distributed service reliability depends on the reliability of a program, the 

availability of input files to the program and the system reliability of the 

subsystem. 

The reliability of a service is determined by the distributed programs 

reliability in each subsystem and the availability of the control center. If a service 

can be achieved successfully, the programs running in every subsystem must be 

successful. The virtual machine should be available at the moment when any 

program needs certain input file prepared in the virtual machine. It has to be also 

available during the period when the programs are being executed in the virtual 

machine. 

It can be obtained through the critical path method, see e.g. Hillier & 

Lieberman (1995), that the time point when the programs require the files 

prepared in the virtual machine We can also obtain the starting 

time when the programs run in the virtual machine and the corresponding 

execution time period for those programs 

It is noted that  A(t) is the availability of the virtual machine at time  t. We 

also assume that the programs require input files at the beginning time, so 

the availability of the input files can be calculated as 

It is assumed that the virtual machine has to be available from the beginning to 

the end when a program runs in it; otherwise, the program fails. The average 
availability of the programs, which start at time with the execution time 

period can be calculated as 
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Let N be the number of subsystems. The distributed system reliability for the 

i:th subsystem is denoted by where the virtual machine is 

viewed as a perfect node in each sub-distributed systems at first. The 

can be computed by the various algorithms presented in the previous 

distributed service reliability together with the 

section. Then, the availability of the virtual machine is incorporated into the 

In order to calculate distributed service reliability, some additional 

assumptions on statistical independence are needed: 

1) is assumed to be mutually independent. 

2) The files prepared in the virtual machine are also mutually independent. 

3) The programs running in the virtual machine are mutually independent. 

Although the independence assumption may not always be true, they are first 

order approximation. 

The distributed service reliability function to the initial time, , can be 

calculated by 

Eq. (6.18) can be explained as follows. The virtual machine can be viewed as a 

perfect node in calculating without considering the availability of prepared 

files and executed programs in it. Thus, the service reliability is the whole 

and programs in the virtual machine.

distributed system reliability multiplied by the availability of files 

Furthermore, the availability of files and programs in the virtual machine can 

be expressed as the product of and Hence, the overall 

distributed service reliability function which is the product of all three quantities 

can be expressed as in the above equation. 
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6.4.3. Algorithm for distributed service reliability 

In applying the general approach, we will need the system structure and then the 

above model can be used. The algorithm for the calculation of the distributed 

service reliability can be presented as the following six steps: 

Step 1: Identify the structure of Centralized Heterogeneous Distributed 

System and relationship between programs and files. 

Step 2: Obtain the availability function of the virtual machine with any 

existing models. 

Step 3: Let the virtual machine to be a perfect node in every subsystem and 

calculate 

Step 4: Using the critical path method to determine and 

Step 5: Calculate and 

Step 6: Calculate the distributed service reliability function at time 

Note that we can implement different models and methods to calculate distributed

service reliability. For subsystems, the can be calculated through the 

algorithms, e.g. MFST (Kumar et al., 1986), FST (Chen & Huang, 1992), HRFST 

(Chen et al., 1997), etc. For the availability function of the virtual machine  A(t), 

it can be calculated through the models presented by Lai et al. (2002). 

6.5. Notes and References 

In the distributed computing systems, the group of MFST algorithms is further 

developed. Kumar (1988) proposed a “Fast Algorithm for Reliability Evaluation” 

that used a connection matrix to represent each MFST and proposed some 

simplified techniques for speeding up the analysis process. Then, Kumar & 

Agrawal (1996) further introduced “Distributed Program/System Performance 
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Index” which can be used to compare networks with different features for 

application execution. 

For the group of FST analytical tools, Lin et al. (1999a) further presented an 

efficient algorithm for reliability analysis of distributed computing systems. The 

efficient algorithm was studied specifically in the different kinds of network 

topologies such as star topologies (Chang et al., 2000 and Lin, 2003) and ring-

type topologies (Lin et al., 2001). This group of analytical tools can be further 

extended to allow the failures of imperfect nodes, see e.g. Ke & Wang (1997) and 

Lin et al. (1999b). 

Other than the above two groups of analytical tools, Lopez-Benitez (1994) 

also presented a modeling approach based on stochastic Petri nets to estimate the 

reliability and availability of programs in a distributed computing system. Later, 

Chen et al. (1998) presented a Markov model to study the distributed system 

reliability with the information on time constraints. Malluhi & Johnston (1998) 

developed a distributed parallel storage system to achieve scalability and high 

data throughput. Fricks et al. (1999) proposed an analytic approach, based on the 

Markov regenerative processes and the Petri nets, to compute the response-time 

distribution of operator consoles in a distributed process control environment. 

Das & Woodside (2001) evaluated the layered distributed software systems with 

fault-tolerant features. Yeh & Chiu (2001) proposed a reversing traversal method 

to derive a k-node distributed system under capacity constraint. Chiu et al. (2002) 

recently developed a reliability-oriented task allocation scheme for the distributed 

computing systems. Mahmood (2001) discussed the task allocation algorithms for 

maximizing reliability of heterogeneous distributed computing systems. 

Fahmy (2001) considered reliability evaluation in distributed computing 

environments by using the concept of Analytical Hierarchy Process (AHP). 

Lanus et al. (2003) presented hierarchical composition and aggregation models 

based on Markov reward models to study the state-based availability and 

performability of distributed systems. Yeh (2003) extended the distributed system 

reliability by introducing a multi-state concept. 
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CHAPTER RELIABILITY OF GRID 
COMPUTING SYSTEMS 

Grid computing is a recently developed technique for complex systems with 

large-scale resource sharing, wide-area program communicating, and 

multi-institutional organization collaborating etc. Many experts believe that the 

grid technologies will offer a second chance to fulfill the promises of the 

Internet (Forster et al., 2002). However, it is difficult to analyze the grid 

reliability due to its highly heterogeneous and wide-area distributed 

characteristics. 

This chapter first presents a brief discussion of the Grid computing system. 

A general grid reliability model is then constructed. We also present 

approaches to compute the grid reliability by incorporating various aspects of 

the grid structure including the resource management system, the network and 

the integrated software/resources. 

179
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7.1. Introduction of the Grid Computing System 

7.1.1. Grid technology 

The term “Grid” was created in the mid 1990s to denote a proposed distributed 

computing infrastructure for advanced science and engineering (Foster & 

Kesselman, 1998). Grid concepts and technologies were first developed to enable 

resource sharing within far-flung scientific collaborations. Applications include 

collaborative visualization of large scientific datasets (pooling of expertise), 

distributed computing for computationally demanding data analyses (pooling of 

compute power and storage), and coupling of scientific instruments with remote 

computers and archives (increasing functionality as well as availability). 

The real and specific problem that underlies the Grid concept is coordinated 

resource sharing and problem solving in dynamic, multi-institutional virtual 

organizations (Foster et al., 2001). The sharing that we are concerned with is not 

primarily file exchange but rather direct access to computers, software, data, and 

other resources. This is required by a range of collaborative problem-solving and 

resource-brokering strategies emerging in industry, science, and engineering. 

This sharing is highly controlled, with resource providers and consumers defining 

what is shared, who is allowed to share, and the conditions under which the 

sharing occurs. A set of individuals or institutions are defined by such sharing 

rules form what is usually called virtual organization (VO). 

For example, in a data grid project thousands of physicists at hundreds of 

laboratories could be involved. They can be divided into different virtual 

organizations according to their locations or functions. It is depicted by Fig. 7.1. 

In this case, virtual organizations can vary tremendously in their purpose, 

scope, size, duration, structure, community, and sociology. A careful study of 

underlying technology requirements, however, leads us to identify a broad set of 

common concerns and requirements and current distributed computing 

technologies do not address the concerns and requirements of the grid. 
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Over the past several years, research and development efforts within the grid 

community have produced protocols, services, and tools that address precisely 

the challenges that arise when we seek to build scalable virtual organizations, 

e.g. Foster & Kesselman (1998), Foster et al. (2001, 2002), Frey et al. (2002) 

and Buyya et al. (2003). 

Because of their focus on dynamic, cross-organizational sharing, Grid 

technologies complement rather than compete with the existing distributed 

computing technologies. For example, enterprise distributed computing 

systems can use the grid technologies to achieve resource sharing across 

institutional boundaries. The grid technologies can also be used to establish 

dynamic markets for computing and storage resources. 

The continuing decentralization and distribution of software, hardware, and 

human resources make it essential that we achieve the desired quality of service 

(QoS) on resources assembled dynamically from enterprise, service provider, 

and customer systems. This also requires new abstractions and concepts that let 
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applications access and share resources across wide-area networks. Common 

security semantics, system reliability, distributed resource management 

performance, or other QoS metrics need to be provided. 

Although the development tools and techniques for the grid have been 

studied, grid reliability analysis is not easy due to the complexity of the grid. 

As one of the important measures of QoS for the grid, the grid reliability needs 

to be precisely and effectively assessed using new analytical tools. This chapter 

presents some new results based on general grid reliability models that relax 

some unsuitable traditional assumptions in the small-scale distributed 

computing systems. 

7.1.2. General architecture of grid computing system 

The general architecture of the grid computing systems can be depicted as Fig. 

7.2. The virtual node is a general unit in the grid, which can execute programs 

or share resources. Virtual nodes are connected with each other through the 

virtual links. Virtual organizations are made up of a number of virtual nodes. 
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A grid system is designed to complete a set of programs/applications, so 

that to complete certain tasks. Executing those programs need use some 

resources in the grid. These programs and resources are distributed on the 

virtual nodes as in Fig. 7.2. A virtual link between two virtual nodes (i and  j), 

denoted by L(i, j), is defined as a direct communication channel between the 

two nodes i and j without passing through other virtual nodes. 

Let represent the set of resources shared by the  n:th virtual node and 

represent the set of programs executed by the  n:th virtual node, 

(n=1,2,...,N). We also assume that  M programs denoted by are 

running in the grid system. The required processing time for each program is 

denoted by  t(1),  t(2) ,..., t(M), respectively. The programs may use some 

necessary resources during their execution, which is in fact to exchange 

information between them through the network. These resources are denoted by 

which is registered in a resource management system of the grid. 

When a program requests certain remote resources, the resource 

management system receives these requests and matches the registered 

resources to the requests. It then instructs the program the sites of those 

matched resources. After the programs know the sites of their required 

resources, they begin to access to them through the network. 

In an early stage, the grid reliability is mainly determined by the reliability 

of the resource management system, while in a later stage, the grid reliability is 

mostly affected by the reliability of the network for communicating or 

processing. The grid reliability model related to the two stages will be studied 

respectively in the following two sections. Then, Section 7.4 further integrates 

other components such as software and resources etc into the grid reliability 

analysis. 
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7.2. Grid Reliability of the Resource Management 
System 

Before the programs begin to access to their required resources in the grid, they 

have to know the sites of those resources, which is managed by the resource 

management system. The resource management system of the grid, see e.g. 

Livny & Raman (1998), is to receive the resource requests from application 

programs, and then to match the requests with the registered resources. 

7.2.1. Introduction of resource management system 

For grid computing, the resource management system that manages its pool of 

shared resources is very important. This is especially the case for Open Grid 

Service Architecture, see e.g. Foster et al. (2002), that allows individual virtual 

organizations to aggregate their own resources on the grid. 

The resource management system provides resource management services, 

which can be divided into four general layers as depicted by Fig. 7.3. They are 

program layer (A), request layer (B), management layer (C) and resource layer 

(D). 

A. Program layer: The program layer represents the programs (or tasks) of 

the customer’s applications. The programs describe their required 

resources and constraint requirements (such as deadline, budget, 

function etc). 

B. Request layer: The request layer represents the program’s requirement 

for the resources. This layer provides the abstraction of “program 

requirements” as a queue of resource requests. 

C. Management layer: The management layer may be thought of as the 

global resource allocation layer and its principal function is to match 

the resource requests and resource offers so that the constraints of both 

are satisfied. 
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D. Resource layer: The resource layer represents the registered resources 

from different sites including the requirements and conditions. 

In grid computing, failures may occur at any of the layers in the resource 

management system. For example, 

1)	 In the program layer, the resource described by the program may be 
unclear or translated into wrong resource requests. 

2)	 In the request layer, the request queue may be too long to be waited by 

the program (generating so called time-out failures), or some requests 

may be lost due to certain management faults. 
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3)	 In the management layer, the request may be matched to a wrong 

resource because of misunderstanding or faulty matching. 

4)	 In the resource layer, the virtual organization may register wrong 

information of their resources or remove its registered resources without 

notifying/updating the resource management system. 

If a grid program experiences any of the above resource management system 

failures, the program cannot be achieved successfully. The grid reliability 

should be computed by considering not only the reliability of physical networks 

or processing elements but also the resource management system reliability. In 

order to analyze the resource management system reliability, we construct a 

Markov model below. 

7.2.2. Markov modeling 

For the resource management system, if any failure that the program is matched 

to a wrong resource occurs, the program will send a failed feedback to it. It will 

remove the faults that cause the failures through an updating/debugging 

process. It is also possible for new faults to be generated in the resource 

management system such as some virtual organizations register wrong 

resources to it, etc. The assumptions for our resource management system 

reliability model are listed as follows: 

1)	 The failures of resource management system follow an exponential 

distribution with parameter where  k is the number of contained 

faults. 

2)	 If any failure occurs, a fault that causes this failure is assumed to be 

removed immediately by an updating/debugging process, i.e. the time 

for removing the detected fault is not counted. 

3)	 The resource management system may generate a new fault, and the 

occurrence of such event follows an exponential distribution with a 

constant rate v. 
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According to the above assumptions, the reliability model of resource 

management system can be constructed by a continuous time Markov chain 

(CTMC). This Markov model depicted in Fig. 7.4 is a typical birth-death 

Markov process with infinite number of states, where state k represents k faults 

contained in the resource management system. 

In this model, can be a function of the number of remaining faults k. 

Usually, is an increasing function to the number of remaining faults k. It 

is desired for a resource management system to be in service for a long time, 

especially for the Open Grid Service Architecture (Foster et al., 2002), so the 

birth-death process of failures can be viewed as a long-run Markov process 

(Trivedi, 1982). After running for a long time, the expected death rate 

will approach to a steady value. The failure rate can be approximately 

viewed as a constant during a small enough time. An example is illustrated 

below. 

Example 7.1. Consider a grid program denoted by P1 need access to remote 

resources. The time for resource management system to deal with its request is 

supposed t=15 seconds and the failure rate of resource management system at 

that time slot per second. The reliability for the resource 

management system to deal with the request is computed as 
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Based on the long-run birth-death Markov process, this approximation of 

constant failure rate indicates a way to reasonably and dynamically update the 

failure rate at different time slots. The resource management system can count 

the number of failures, say  n, reported by the grid programs between a 

relatively small time interval, say and dynamically updates the value of 

failure rate by 

Also, the fault birth rate v can be reduced through some information 

controls such as standardized resource registering, synchronic resource 

updating, consistent resource descriptions etc, so that to improve the reliability 

of the resource management system. 

7.3. Grid Reliability of the Network 

If the resource management system has informed the programs of the sites of 

their required resources in the grid after matchmaking, the running programs 

are able to access to those resources through the grid network as depicted by 

the previous Fig. 7.2. Then, the grid program/system/service reliability is 

mainly determined by the reliability of network, which will be studied in the 

following subsections. 

7.3.1. Reliability model for the grid network 

To analyze the grid reliability, two assumptions about the model are given 

below: 

1)	 The failures of virtual nodes and virtual links can be modeled by 
Poisson processes. 

2)	 The failures of different elements (nodes and links) are independent 

from each other. 
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The first assumption can be justified as in the operational phase without 

debugging process, the failure rates can remain constant, see e.g. Yang & Xie 

(2000). The second assumption can be explained as that since the grid is a 

wide-area distributed system, the nodes and links should be allocated far away 

from each other so that the possibility of correlation among them can be viewed 

as very slight or even negligible. 

Different programs can exchange information of different sizes with the 

same resources. Denote by the size of information exchanged between 

program (m=1,2,...M) and resource (h=1,2,...,H). The 

communication time between node i and node j, can be derived from 

where D(i,j) is the total size of information exchanged through the L(i,j), and 

S(i,j) is the expected bit rate of the link. 

Denote the failure rate of the node n by and of the link L(i,j) by 

If any failure occurs either on the link or on the connected two nodes during the 

communication, the communication process is viewed as a failed process. The 

reliability of communication between node i and node j through the link L(i,j) 
can be expressed as 

Similarly, during the execution of a program, any failure occurring on the 

virtual node that executes the program will also make the program failed. The 

reliability of the node n to run the program is then given by 

This network reliability model is much more reasonable for the grid than 

that of conventional distributed systems shown in Chapter 6. Those 
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conventional models somehow inherit the assumptions of Kumar (1986) model.


The most stringent assumption that is not suitable for the grid is that the


operational probabilities of nodes or links are assumed constant, i.e.


and
 in the above two equations are constant no matter how long or 

how different the and t(m) are. 

Some concepts of grid reliability are defined as follows. 

Definition 7.1. Grid program reliability (GPR) is defined as the probability of 

successful execution of a given program running on multiple virtual nodes and 

exchanging information through virtual links with the remote resources, under 

the environment of grid computing system. 

Then, the grid system reliability (GSR) can be defined as the probability for all 

of the programs involved in the considered grid system to be executed 

successfully. 

Furthermore, a grid service is to complete certain programs by using some 

resources distributed in the grid. The grid service reliability is similar to the 

grid system reliability by considering the programs of the given service, i.e. 

without taking other programs that are not used by the service into account. 

Thereby, the grid service reliability is defined as the probability that all the 

programs of a given service are achieved successfully. 

7.3.2. Reliability of minimal resource spanning tree 

Recall that the set of virtual nodes and virtual links involved in running the 

given programs and exchanging information with the resources form a resource 

spanning tree. The smallest dominating resource spanning tree (RST) is called 

MRST (Minimal Resource Spanning Tree). The reliability of an MRST is the 
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probability for the MRST to be operational to execute the given program. The 

reliability of an MRST denoted by has three parts: 

1)	 Reliability of all the links contained in the MRST during the 
communication. 

2)	 Reliability of all the nodes contained in the MRST during the 

communication. 

3) Reliability of the root node that executes the program during the 
processing time of the program. 

The reliability of the link  L(i, j) for exchanging the information can be 

expressed by 

The total communication time of the node 

where 

the MRST. The reliability function of the node

can be calculated by 

represents the set of nodes that communicate with the node in 

 for communication is 

Finally, the reliability for a program to be executed successfully during 

the processing time t(m) on the node n is 

The reliability of the MRST can be derived from the above equations as 
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In order to simplify the expression, we generalize the term of 

“communication time” for the root node that contains not only the time of 

exchanging information with other elements but also the time of executing the 

given program, i.e. t(m)+T(n) . 

The term of “element” is defined here to represent both the nodes and links 

of the MRST. Assume there are totally  K elements in an MRST, so that 

(i=1,2,...,K) denotes the  i:th element in the MRST. Accordingly, the 

communication time of the  i:th element is denoted by and 

represents its failure rate. The reliability of the MRST of the 

above equation can be simply expressed as 

With this equation, the reliability of an MRST can be computed if the 

communication time and failure rate of all the elements are given. Hence, 

finding all the MRSTs and determining the communication time of their 

elements are the first step in deriving the grid program reliability and grid 

system reliability. 

The same program executed by different root nodes may cause different 

communication time on the same elements. Hence, the MRSTs should be 

treated distinctly for the same program executed by different nodes. An 

example is given below. 
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Example 7.2. As shown in Fig. 7.5, program P1 can run successfully when 

either computing node G1 or G4 is successfully working during the processing 

time, and it is able to successfully exchange information with the required 

resources (say R1, R2 and R3). 

The MRSTs considering the communication time of the elements should be 

separated into two parts: 

(a)	 P1 being executed by G1 contains three MRSTs: 1) {G1, G2, L(1,2)}; 2) 

{G1,G2,G3, L (1,3); 3} {G1,G3,G4,L(1,3),L(3,4)}. 

(b) P1 being executed by G4 contains another three MRSTs: 4) {G3, G4, 
L(3,4)}; 5) {G2, G3, G4, L(2,4), L(2,3)}; 6) {G1,G2,G4,L(1,2),L(2,4)} 

An algorithm is presented in Dai et at. (2002) to search the MRSTs for a given


program executed by one given virtual node. Repeatedly using this algorithm,
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all the MRSTs for different virtual nodes to execute this program can be found, 

respectively. This algorithm can be briefly described as follows: 

Step 1. Start from the given node to search the required resources along the 

possible links, and record elements that compose the searching route 

and their communication times. 

Step 2. Until all the required resources are reached, an MRST is found, and 

record this MRST. 

Step 3. Then other routes are tried to search other MRSTs until all the 

MRSTs are searched. 

An example of the algorithm to search the MRSTs is illustrated below. 

Example 7.3. Continued with the above Example 7.2. Referring to Fig. 7.5 

again, the program is assumed to exchange information with resources 

R1,R2,R3 (corresponding exchanged information size are: 500,400,300 Kbit). 

The bit rates of links L(1,2), L(1,3), L(2,3), L(2,4), L(3,4) are assumed 30, 20, 

40, 50, 45 (Kbit/s). Then, search the MRSTs for executed by the node G1 

and compute the communication time of each elements in those MRSTs, as 

shown by Fig. 7.6. 

Three MRSTs are found by the algorithm marked by in the Fig. 7.6 

where all the values in vector RV are 0. The corresponding elements contained 

in those MRSTs are recorded in vector EV with the value 1 and the 

corresponding communication time is saved in vector WV. 

Similarly, other three MRSTs for executed by the other node G4 can 

also be obtained as listed in the above Example 7.2. 
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7.3.3. Grid program and system reliability 

Grid program reliability 

Note that failures of all the MRSTs will lead to the failure of the given program, 

and any one of the MRSTs can successfully complete the program only if all of 

its elements are reliable. The grid program reliability of a given program can be 

described as the probability of having at least one of the MRSTs working 

successfully, 

Let be the total number of MRSTs for the given program of and 

be the event in which the is able to 
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successfully execute the given program. The grid program reliability of a given 

program can be written as 

By using the concept of conditional probability, the events considered in this 

equation can be decomposed into mutually exclusive events as 

where denotes the conditional probability that is in the 

failure state given that is in the successful state. 

Hence, the grid program reliability can be evaluated in terms of the 

probability of two distinct events. The first event indicates that the 

in the operational state while the second indicates that all of its previous trees 

(j=1,2,...,i-1) are in the failure state given that 

is 

is in the 

operational state. The probability of the first event, is straightforward,


and it can be calculated through Eq. (7.8). The probability of the second event,


can be computed using the algorithms presented by Dai


(2002).et al.

The brief introduction of the algorithm is given here. It contains two steps. 

Step 1 identifies all the conditional elements that can lead to the failure of 

any (j=l,2,...,i–1) while keeping to be operational. 

Such a conditional element, say (contained in any 

j=1,2,...,i –1), has starting time and end time. If any failure occurs on 

the between its starting time and end time, it can lead the 

to fail. 
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Step 2 uses a binary search tree (Johnsonbaugh, 2001: pp. 349-354) to seek 

the possible combinations of these identified elements that can make all 

the (j=1,2,..., i–1) fail and computes the probabilities of those 

combinations. 

The summation of the probabilities is the result of 

For detailed procedures of the two steps can be found in Dai et al. (2002). An 

example of this algorithm can also be found. 

Grid system reliability 

The grid system reliability equation can be written as the probability of the 

intersection of the set of MRSTs of each program, which is 

where denotes the set of all the MRSTs associated with the 

program 

The intersection of the trees of each can be evaluated first by 

intersecting The intersected tree of two MRSTs is generated by 

putting all the elements of the two MRSTs together, where the communication 

time of overlapped elements should be added together. An example of 

intersected MRST is illustrated below. 

Example 7.4. Suppose one MRST related to program is 

{G1,G2,G3,L(1,3),L(2,3)} with the communication time {45, 7.5, 22.5, 15, 

7.5} and one MRST related to program is {G1,G2,G3,L(1,2),L(1,3)} with 

the communication time {50, 70, 30, 20, 30}. Then, the intersected MRST of 
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the above two MRSTs should be {G1,G2,G3,L(1,2),L(1,3),L(2,3)} with the 

communication time {95, 77.5, 52.5, 20, 45, 7.5}. 

In fact, if any one of the intersected MRSTs of (m=1,2,...,M) is 

reliable, all the programs required in the grid system can be successfully 

completed; If all the intersected MRSTs fail, the grid system cannot be 

successfully completed. 

After generating all the intersected MRSTs, the grid system reliability can 

be written as 

where

the previous Eq. (7.9), so the above algorithms for deriving the grid program

 is the total number of intersected MRSTs. This equation is similar to 

reliability can be similarly used in deriving the grid system reliability here. 

Grid service reliability 

The grid service reliability can be viewed as a special type of the grid system 

reliability if we consider the grid service in a way that the whole grid system is 

only providing this required service and other services are not considered now. 

With this classification, the concept of grid system reliability is generalized to 

include the reliability of different number of services. 

All the above algorithms computing the grid program/system reliability are 

illustrated by a numerical example as below, and then the reliability of resource 

management system is also integrated into the grid reliability analysis. 
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Example 7.5. Suppose that a simple grid system is to provide a web service of 

“Stock Analysis” for different countries. Three different resources (R1,R2,R4) 

store the real-time stock price of different countries, and another resource (R3) 

is the database of a website that outputs and shows the results out of the “Stock 

Analysis”. The service procedure can be described as that two programs (P1 

and P2) collect data from the three resources (R1,R2,R4) to analyze the stock 

market information for different countries, and then output the results into the 

database (R3) which can be loaded by a website service. 

Revisit Fig. 7.5 that contains four virtual nodes and five virtual links and 

runs the two programs and prepare the four resources. Tables 7.1-7.2 show the 

necessary input information. 

With the approaches presented above, Table 7.3 shows all MRSTs of the 

program P1 with the communication time of each element evaluated by the 

above Example 7.3 and its reliability calculated by Eq. (7.8). Table 7.3 
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also shows the conditional probability of

similarly as the above Example 7.4. 

evaluated 

Substituting the values of and of Table 7.3 

into Eq. (7.10), the grid program reliability of P1 is 

Similarly, the grid program reliability of P2 can be obtained as


where three MRSTs are found for P2 to be executed by G2. 

The grid system reliability can then be derived. The total number of 

intersected trees is 6×3=18. Similar to grid program reliability, the grid 

system reliability is obtained as 
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Suppose that the total time for resource management system to deal with 

The reliability for the request of the program P1 is then 

computed as 

the program P1’s requests is t=15 seconds and the failure rate at that time slot 

The grid program reliability of P1 considering the reliability of resource 

management system can be calculated by multiplying the above 

together with  R(P1) as 

For P2, if the total time for resource management system to deal with its 
resource requests is 10 seconds, a similar way can be used to obtain 

Multiplying it with  R(P2), we get


For the grid system reliability that includes both P1 and P2, the reliability can 

be computed as 

7.4. Grid Reliability of the Software and Resources 

In the above section, the grid reliability is analyzed by considering only the 

network hardware failures, i.e. failures of processing nodes and communicating 

links. However, software program failures and resource failures should also be 

integrated into the grid reliability analysis. 
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7.4.1. Reliability of software programs and resources 

Besides hardware causes, failures of a software program may also be caused by 

the faults in the program itself. In the operational phase, the software program 

failures can be assumed to follow the exponential distributions here. The 

software failure occurrence rate of program running on processing node 

is denoted by because a same program running on different 

processing nodes may have different failure rates. Also, the processing time of 

on is denoted by t(i, j) . Thus, the reliability of the software program 

running on can be simply computed by 

For the resource reliability, the previous section assumes that if the 

program uses the resource, the resource itself is perfect and the failures only 

occur when transferring the information through the communication network. 

However, the resource possibly risks failures when it is needed. 

Suppose the time for resource h to work is determined by the program 

by which the resource is requested and the node on which the resource is 

integrated, denoted by t(h, i, j). Also, considering the operational phase for the 

integrated resources, we denote the failure rate of the resource  h on the node 

by which follows the exponential distribution. Thus, the 

reliability of resource h requested by and integrated on can be simply 

expressed by 

7.4.2. Grid reliability integrating software and resource failures 

In order to integrate the software program and resource failures into grid 

reliability analysis together with the hardware network reliability, we revise the 



203 Computing System Reliability 

model presented in Section 7.3. For each virtual node, consider its programs 

and resources as its sub nodes, as shown by Fig. 7.7. Here is a virtual node 

on which are attached as the sub nodes representing programs and 

corresponding to resources. 

Such abstraction of the Fig. 7.7 has the following advantages: 

1)	 The reliability of different software programs and resources can be 
integrated into the grid reliability analysis given the failure rates of all 

the sub nodes and their communication time. 

2)	 It incorporates the hardware reliability in the grid reliability analysis 
and the common cause failures among those programs and resources are 

considered. For example, if fails, all its sub nodes (corresponding 

to the programs or resources executed by or integrated on the same 

virtual node) are no longer working. 

3)	 All the approaches presented in the Section 7.3 can be directly 
implemented to compute grid program/system/service reliability if each 

sub node is viewed as an element itself, and the link between the virtual 

node and its sub node is assumed to be perfect. 
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Example 7.6. Revisit Fig. 7.5. Replace the nodes with those in the Fig. 7.7 that 

considers the software program and resource failures. Fig. 7.8 depicts the new 

network graph for the grid computing system containing the sub nodes of 

programs and resources. The approaches presented by Section 7.3 can be 

directly and similarly implemented in deriving the grid reliability of Fig. 7.8. 

7.5. Notes and References 

Foster & Kesselman (1998) summarized the basic concepts of the grid and 

presented a grid development tool which addresses issues of security, 

information discovery, resource management, data management, 

communication, and portability. It is implemented in many Grid projects. 

Recently, Foster et al. (2002) further developed the grid technologies toward an 
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Open Grid Services Architecture in which a Grid provides an extensible set of 

services that virtual organizations can aggregate in various ways. 

For the resource management systems, Krauter et al. (2002) classified the 

existing techniques into different types according to their control property and 

investigated their applications. In order to address complex resource 

management issues such as cost, Buyya et al. (2002) further proposed a 

computational economy framework for resource allocation and for regulating 

supply and demand in the gird computing environments. This framework 

provides mechanisms for optimizing resource provider and consumer objective 

functions through trading and brokering services. Cao et al. (2002) also 

presented an agent-based resource management system that was implemented 

for the grid computing. It utilized the performance prediction techniques of the 

PACE toolkit to provide quantitative data regarding the performance of 

complex applications running on a local grid resource. 

For the network issues of the grid, Postel & Touch (1998) reviewed the 

evolution of network techniques in different stages and summarized those that 

could be implemented into the grid network. Keahey et al. (2002) introduced 

the concept of “network services” in their “National Fusion Collaboratory” 

project, which build on the top of the computational grids, and provide Fusion 

codes, together with their maintenance and hardware resources as a service to 

the community. Weissman & Lee (2002) also presented the design of system 

architecture, called Virtual Service Grid, for delivering high-performance 

network services. 
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CHAPTER 
MULTI-STATE 

SYSTEM RELIABILITY 

Most of reliability models for computing systems assume only two possible 

states of the system: operational state and failed state. In reality, many systems 

exhibit noticeable gradations of performance besides the above two. For example, 

if some computing elements in a computing system fail, the system may still 

continue working but its performance may be degraded. Such degradation state is 

another state between the perfect working state and the completely failed state. 

To study this type of systems, the multi-state system (MSS) reliability is 

investigated in this chapter. 

The chapter is divided into three parts. First, the basic concepts of the MSS 

are introduced. Some basic Markov models for MSS reliability analysis are then 

presented. Finally, the MSS failure correlation model is studied using a Markov 

renewal process model. 

8.1. Basic Concepts of Multi-State System (MSS) 

All engineering systems are designed to perform their intended tasks in a given 

environment. Some systems can perform their tasks with various distinguished 

207
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levels of efficiency which can be referred to as performance levels. A system that 

can have a finite number of performance levels is referred to as a multi-state 

system, e.g. Brunelle & Kapur (1999), Pourret et al. (1999), Lisnianski & Levitin 

(2003) and Wu & Chan (2003). 

A binary system is the simplest case of the MSS having only two 

distinguished states. There are many different situations in which a system 

should be considered to be a MSS: 

1)	 Any system consisting of different units that have a cumulative effect on 

the entire system performance can be considered as a MSS. 

2)	 The performance level of elements composing a system can also vary as a 

result of their deterioration (fatigue, partial failures) or because of 

variable ambient conditions. 

8.1.1. Generic MSS model 

A system element j is assumed to have different states of the performance 

level, represented by the set 

where denotes the performance level of element j in the state i, 

The performance level of element  j at any instant is a random 

variable that takes its values from Therefore, for the time interval 

[0,T], where T is the MSS operation period, the performance level of element j 

is defined as a stochastic process (Lisnianski & Levitin, 2003). 

In some cases, the element performance cannot be measured only by a single 

value, but by more complex mathematical objects, usually vectors. In these cases, 

the element performance is defined as a vector stochastic process 
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The probabilities associated with the different states (performance levels) of


the system element j at any instant t can be represented by the set 

where 

Note that since the states of an element compose the complete group of mutually 

exclusive events, we have 

Eq. (8.2) defines the mass function for discrete performance levels at 

any instant t. The collection of pairs completely 

determines the probability distribution of performance of the element  j at any 

instant t, see, e.g., Lisnianski & Levitin (2003). 

When the MSS consists of  n elements, its performance levels are 

unambiguously determined by the performance levels of these elements. At any 

time, the system elements have certain performance levels corresponding to their 

states. The state of the system has  K different states and that is the entire 

system performance level in state i , The MSS performance level at 

time t is a random variable that takes values from the set 

Let 

be a space of possible combinations of performance levels for all of the system 

elements and is a space of possible values of the performance 

level for the entire system. The transform 
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which maps the space of the elements’ performance levels into the space of 

system performance levels, is called the system structure function. Note that the 

MSS structure function is an extension of a binary structure function. The only 

mapped

difference is in the definition of the state spaces: the binary structure function is

 as while in the MSS, one deals with more complex 

spaces. 

A generic model of the multi-state system can be defined as follows. The 

performance processes are modelled as stochastic process

each system element j. The system structure function that produces the stochastic 

process corresponding to the output performance of the entire MSS is 

 for 

In practice, a simpler MSS model can be used. This can be based on 

probability distribution of performances for all of the system elements at any 

instant time t during the operation period [0,T) and system structure function: 

and 

The system state can also be represented in a table, in analytical form, or be 

described as an algorithm for unambiguously determining the system 

performance  G(t) for any given set An example of MSS 

modeling is illustrated below. 

Example 8.1. Consider a 2-out-of-3 MSS. This system consists of 3 binary 

elements with the performance levels for  i=1,2,3, where 

The system output performance level G(t) at any instant t is:
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The values of the system structure function for all 

the possible system states are presented in Table 8.1.


8.1.2. Basic MSS reliability measures 

To characterize MSS behavior from a reliability point of view one has to 

determine the MSS reliability measures. These measures can be considered as 

extensions of the corresponding reliability measures for a binary-state system. 

Brunelle & Kapur (1999) and Lisnianski & Levitin (2003) reviewed many MSS 

reliability measures. Some commonly used ones are introduced as follows. 

Since the system is characterized by its output performance G(t), the state 

acceptability depends on the value of this index. This dependency can be 

expressed by the acceptability function  F(G(t)) that takes non-negative values if 

and only if the MSS functioning is acceptable. This takes place when the 

efficiency of the system functioning is completely determined by its internal state 
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(Lisnianski & Levitin, 2003). In such cases, a particular set of MSS states is of 

interest to the customer. Usually these states are interpreted as system failure 

states, which when reached, imply that the system should be repaired or 

discarded. The set of acceptable states can be also defined when the system 

functionality level is of interest at a particular point in time (such as at the end of 

the warranty period). 

More frequently, the system state acceptability depends on the relation 

between the MSS performance and the desired level of this performance 

discrete values from the

 W(t(demand). In general, the demand ) is also a random process. It can take

set The desired relation between the 

system performance and the demand can also be expressed by the acceptability 

function  F(G(t),W(t))  . The acceptable system states correspond to 

and the unacceptable states correspond to  F(G(t),W(t))<0. 

The last inequality defines the MSS failure criterion. 

The performance of MSS should exceed the demand. In such cases the 

acceptability function takes the form 

Since  G(t) and  W(t) are random processes, the subset of acceptable states 

can vary in time. The system behavior during the operation period can be 

characterized by the possibility of entering the subset of unacceptable states more 

than once. The case when MSS can enter this subset only once corresponds to 

non-repairable systems. For repairable systems or for the systems with variable 

demands, the transitions between subsets of acceptable and unacceptable states 

may occur an arbitrary number of times. 

Some other reliability measures are based on the above acceptability 

function  F(G(t),W(t)) . The following random variables can be of interest: 

(a) Time to failure, is the time from the beginning of the system life up 

to the instant when the system enters the subset of unacceptable states the 

first time. 
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(b) Time between failures, is the time between two consecutive 

transitions from the subset of acceptable states to the subset of 

unacceptable states. 

(c) Number of failures, is the number of times the system enters the 

subset of unacceptable states during the time interval [0,T ]. 

The probability of a failure-free operation or reliability function is 

The Mean Time To Failure (MTTF) is the expected time up to the instant 

when the system enters the subset of unacceptable states for the first time, as 

The MSS instantaneous (point) availability  A(t) is the probability that the 

MSS at instant t is in one of the acceptable states: 

The MSS availability in the time interval [0,T] is defined as:


which represents the portion of time when the MSS output performance level is 

in an acceptable area. 

Wu & Chan (2003) further presented an MSS measure called expected utility 

function to evaluate the overall performance of the MSS at a time instant t, 

expressed by 

where is the utility of the MSS to stay at state j. 
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8.2. Basic Models for MSS Reliability 

According to the generic MSS model, any system element  j can have 

different states corresponding to the performance levels, represented by the set 

The current state of the element j and, therefore, the current 

value of the element performance level at any instant t, are random 

variables. takes values from Therefore, for the time 

interval [0,T ], where  T is the MSS operation period, the performance level of 

element j is defined as a stochastic process. 

In this section when we deal with a single multi-state element, the index j 

will be omitted for the designation of a set of the element’s performance levels. 

This set is denoted as We also assume that this set is ordered so 

that for any i. 

8.2.1. Non-repairable multi-state elements 

The lifetime of a non-repairable element lasts until its first entrance into the 

subset of unacceptable states. In general, the acceptability of the state of an 

element depends on the relation between the performance of the element and the 

desired level of this performance (demand). The demand  W(t) is also a random 

process that takes discrete values from the set The desired 

relation between the system performance and the demand can be expressed by 

the acceptability function F(G(t),W(t)) . 

Minor failures 

First consider a multi-state element with only minor failures defined as failures 

that cause element transition from state i to the adjacent state i-1. In other words, 

minor failure causes minimal degradation of element performance. The CTMC 

for such an element is presented in Fig. 8.1. 
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Denote by (i=1,2,...k) the probability for the system to stay at state i at time 

instant t. Then the Chapman-Kolmogorov equation can be written as 

We assume that the process starts from the best state  k with a maximal 

element performance level of Hence, the initial conditions are 

and 

One can obtain the numerical solution of the above differential equations under 

the initial conditions even for large k. They can also be solved analytically by 

using Laplace-Stieltjes transform in some cases. With this transform and by 

taking into account the initial conditions, one can represent the above differential 

equations in the form of linear algebraic equations and solved to obtain 
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Now in order to find the function the inverse Laplace-Stieltjes transform 

can be applied. 

The probability of the state with the lowest performance determines 

the unreliability function of the multi-state element for the constant demand level 

The reliability function defined as the probability that the element is 

not in its worst state (total failure) is 

In general, if the constant demand is (i=1,...,k-1), the 

unreliability function for the multi-state element is a sum of the probabilities of 

the unacceptable states 1,...,i. The reliability function is then 

The mean time up to multi-state element failure for this constant demand level 

can be interpreted as the time of the process entering state i. It can be calculated 

as the sum of the time periods during which the process is remaining in each state 

j > i. Since the process begins from the best state  k with the maximal element 

performance level, we have 

Example 8.2. Consider a non-repairable multi-state system that has only minor 

failures. The system has 4 possible states whose performance levels are set as 

100, 80, 50 and 0, respectively. Its Markov model can be built as Fig. 8.1 with 

k=4. Assume that the failure rates are given by 

and the initial state is the best state, state 4.
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Substituting the above numerical values into the Laplace-Stieltjes transforms 

and inverting them, the state probabilities can be obtained. The state probabilities 

as a function of time are shown in Fig. 8.2. 

Assume that the constant demand is  w = 75 . Therefore, the system is 

reliable only if the system is at least at state 3 with performance level 80. Then, 

the reliability function can be obtained as 

Then, the mean time to failure is obtained by
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Both minor and major failures 

Now consider a non-repairable multi-state element that can have both minor and 

major failures (major failure is a failure that causes the element transition from 

state  i to state  j: j < i –  1 ). The state-space diagram for such an element 

representing transitions corresponding to both minor and major failures is 

presented in Fig. 8.3. 

For this Markov model, the Chapman-Kolmogorov equation can be written 

as 

theAfter solving the above equations and obtaining the state probabilities

reliability can be easily derived as Eqs. (8.8-8.9). 
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8.2.2. Repairable multi-state elements 

Availability modeling 

A more general model of a multi-state element is the model with repair. The 

repairs can also be both minor and major. The minor repair returns an element 

from state j to state j+1 while the major repair returns it from state j to state  i, 

where i > j +1, see, e.g., Lisnianski & Levitin (2003). 

A special case is when an element has only minor failures and minor repairs. 

It is actually a birth and death process. The CTMC of this process is presented in 

Fig. 8.4. The CTMC for the general case of the repairable multi-state element 

with minor and major failures and repairs is presented in Fig. 8.5. 
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The following are Chapman-Kolmogorov equations for the general case:


Solving the above equations, one obtains the state probabilities (i=1,2,...,k). 

When for the constant demand level the 

acceptable states where the element performance is above level are  i + 1, ..., 

k. Hence, the availability function is 

In many applications, the long-run or final states probabilities 

of interest for the repairable element. 

For the long run state probabilities, the computations become simpler. The 

above differential equations is reduced to a set of  k algebraic linear equations 

are 

because for the constant probabilities, all time derivatives as below 
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An additional independent equation can be provided by the simple fact that the 

sum of the state probabilities is equal to 1 at any time. The above equations can 

then be solved. 

Example 8.3. Consider a 4-state repairable system with both minor and major 

failures and repairs. The performance levels of the four states are 

respectively. The unit has the following failure rates:


and the following repair rates: 

The Markov model can be constructed as Fig. 8.5 with k=4. Substituting the 

above numerical values into Eq. (8.12), we can obtain the state probability 

functions as depicted by Fig. 8.6. 
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Assume that the constant demand w = 75. The available states of the system 

are states 4 and 3, so the system availability function is 

which is also shown in Fig. 8.6 as the dashed line. 

Reliability modeling 

The determination of the reliability function for the repairable multi-state 

element is based on finding the probability of the event when the element enters 

the set of unacceptable states the first time. In order to find the element 

reliability function for the constant demand an 

additional Markov model should be built. All states 1,2,...,i of the element 

corresponding to the performance levels lower than the demand w, should be 

combined in one absorbing state. This absorbing state can be considered now as 

state 0 and all repairs that return the element from this state back to the set of 

acceptable states should be forbidden. 

The transition rate from any acceptable state  m  (m > i) to the combined 

absorbing state 0 is equal to the sum of the transition rates from the state m to all 

the unacceptable states (states 1,2,...,i): 

The CTMC model for the computation of the reliability function is depicted by 

Fig. 8.7 

For this CTMC, the state probability characterizes the unreliability 

function of the element because after the first entrance into the absorbing state 0 

the element never leaves it, i.e., we have 
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It is easy to obtain by solving the following Chapman-Kolmogorov 

equations: 

The reliability function can then be obtained. 

Example 8.4. Continue with Example 8.3. The reliability is the probability that 

the system performance level is lower than the demand w=75, i.e. the system 
leaves states 4 and 3 the first time. The Markov model can then be constructed as 

Fig. 8.8. 
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By substituting the numerical values as given by Example 8.3 into the above 

equations and solving them, we obtain the state probability functions as 

Then, the reliability function is given by 

8.3. A MSS Failure Correlation Model 

Most of MSS reliability models assume independence of successive system runs. 

It is an assumption not valid in reality. This section presents an MSS reliability 

model based on Markov renewal processes for the modeling of the dependence 

among successive runs. 
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8.3.1. Modeling MSS correlated failures 

Except the perfect working state, other states in the MSS can be viewed as 

different types of failure states. Note that if the failures can be of  n different 

types, the total number of possible states for the MSS will be n+1, in which there 

is a perfect state. 

For the correlated MSS with  n types of failures and a successful state, a 

general Markov process can be constructed as follows: 

1)	 Build an n+1-state discrete time Markov chain with transition probability 
matrix as 

2)	 To overcome the discrete-time property, introduce a process in 
continuous time by letting the time spent in a transition from state k to 

state l to have Cdf 

Such a process is attributed to a Semi-Markov Process. 

Model for two failure states 

When there are two failure states, there will be three states for the MSS after a 

run; a successful state, Type A failure state and Type B failure state. Type A 

failure could be a kind of serious failure such as Catastrophic or Critical failure. 

Type B failure could be less serious than Type A failure such as Minor or 

Marginal failure. 

A common situation is that the system is not able to continue to perform its 

function when Type A failure occurs, but when Type B failure occurs, the system 

can still work, although it will have more chances to induce a Type A failure in 

the next run. The result from a run will affect the probable state in the next run as 
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shown in Fig. 8.9. Here we consider the case when there is no debugging except 

the resetting or restarting when Type A failure occurs. The transition probability 

will remain unchanged under this assumption. 

Let be a random variable of the state after a run, and denote by 

The transition matrix is


in which 
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The unconditional probability of failure on run (i+1) is: 

Substituting Eq. (8.18) into the above equation, we have that


The next step is to develop a model in continuous time, considering the time 

that the system spends on running. Let be a Cdf of the time spent in a 

transition from state k to state l of the DTMC in Fig. 8.9. Here, is assumed 

to depend only on the state at the end of each interval in a system run, see e.g. 

Goseva-Popstojanova & Trivedi (2000) as: 

With the addition of the to the transitions of discrete time Markov chain, 

we obtain a Semi-Markov Process as the system reliability model in continuous 

time. 

Model for two failure states with debugging 

Furthermore, we assume that after a Type A failure, the system may be debugged 

and it is an instantaneous fault removing process. Hence, after removing the 

fault, the transition probability matrix will be changed. When the successive runs 

are successful or only cause the Type B failure, the system does not have to be 

debugged and it will continue running in the same way. In this case, the 

transition probability matrix can then be assumed to be unchanged until a Type A 

failure happens. 

The Markov renewal model is modified as the Fig. 8.10. 
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Here ‘i’ is the number of Type A failures, which is already detected and 

removed. During the testing phase, system is subjected to a sequence of runs, 

making no changes if there is no Type A failure. When a Type A failure occurs 

on any run, then an attempt is made to fix the underlying fault, which causes the 

conditional probabilities of the state on the next run to change. The transition 

probability matrix for the period from the occurrence of the i:th Type A failure to 

the occurrence of the next (i+1):st Type A failure, is 

Assume is the total number of Type A failures after m runs. The sequence 

provides an alternate description of system reliability model with debugging 

process considered here. Thus, defines the DTMC presented in the above 

Fig. 8.10. All states, i, and represent that the Type A failure state has been 

occupied  i times. State  i represents the initial state for which State 

represents all the successful subsequent trials for which State 

represents all Type B failures subsequent trials for which 
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General model for n failure states 

The above models can be extended to the case of general multi-state of failures. 

Assume that the failures can be divided into  n states, so the MSS totally contains 

n+1 states including the perfect state. Denote again the critical failure type as 

Type A failure state. When this type of failures occurs, the system will 

completely stop working and action has to be taken. First we assume there are no 

changes in the system except resetting and restarting when Type A failure occurs. 

The transition probability matrix for the successive runs will remained 

unchanged. The Markov process can be expressed as the Fig. 8.11. 

Denote
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and the transition probability matrix is then 

and transition probabilities should satisfy 

The unconditional probability of failure on run (i+1) is:


Similar to the previous case of two types of failures, when there is a debugging 

after Type A failure, the transition probability matrix changes accordingly. A n-

type failure states Markov renewal model can be constructed. 

Let ‘i’ be the number of Type A failure, which have already been detected and 

removed. The transition matrix for the period from the occurrence of the  i:th 

Type A failure to the occurrence of the next (i+1):st Type A failure, is given as 

follow: 

and the transition probability should satisfy
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Again defines the DTMC. All the states, represent that the 

Type A failure state has been occupied i times. State i represents the first trial for 

which State represents all the successful subsequent trials for which 

State to represents Type 2 to  n failure states subsequent trials for 

which 

8.3.2. Application of the model 

The above Markov renewal model can be used to analyze the system 

performance in both testing phase and validation phase. In testing phase, the 

system is debugged, so the transition probabilities should change after each Type 

A failure. However, between two Type A failures, the transition probabilities are 

constant, so the distribution of time between two successive Type A failures can 

be easily derived by using the Laplace-Stieltjes transform. The conditional 

system reliability, which is defined as the survivor time distribution between two 

Type A failures, can also be obtained. 

On the other hand, the probability transition matrix will be constant during 

the validation phase after the test, because no changes are made to the system 

during that phase. Hence, the system reliability can be easily calculated. 

Some quantitative measures 

From a reliability point of view, the time between failures or the number of 

failures over time is very important. Here, we derive the distribution of the 

discrete random variable (j=0,2,3...n) defined as the number of runs 

visiting the j:th state between two successive visits from the i:th Type A failure 

to the (i+1):st Type A failure. 

The probability of every possible number of (j=0,2,3...,n) is given by 
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in which is the function of and 

denotes the number of runs occupied on the j:th failure state The 

value of can be obtained in principle. 

Under the condition of that it visits the  j:th state with times 

(j=0,2,3,...,n) and that Type A failure occurs once between the i:th and (i+1):st 

Type A failures, the distribution of the time period used for this event can be 

derived as 

in which is the convolution of (j = 0,2,3...,n) and 

can be 0,1,2.... Also, denotes the convolution of the two functions. 

Denote the distribution of time between the  i:th and (i+1):st Type A failures 

as Assume is the random variable of time between the  i:th and 

(i+1):st Type A failure runs. With the above two equations, it can be shown that 

the distribution of 

The Laplace-Stieltjes transform of can be obtained and the inversion of it 

is straightforward. A closed-form result can be obtained when 

(j = 1,2,...n) has a rational Laplace-Stieltjes transform. 

The reliability of the system after i:th Type A failure is 
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Some general properties of the inter-failure time can be developed without 

making other assumptions. For example, the mean time between failures (i and 

i+1 Type A failures) is: 

or, see e.g. Goseva-Popstojanova & Trivedi (2000)


Application to the validation phase 

After the testing (debugging) phase, the system enters a validation phase to show 

that it has a high reliability prior to actual use. In this phase, no changes are made 

to the system. Here, we use the two-type failure case as an illustration. Similar 

procedures can be implemented in solving general n-type failure problems. 

First we consider the independent condition, that is, 

If the state is not a Type A failure after a run, the system is reliable until the Type 

A failure occurs. The reliability in a run is The reliability for  m 

successive runs is defined as the probability that m successive independent test 

runs are conducted without Type A failure, which can be derived as: 

if 

m

Given a confidence level we can say that the system is reliable 

in successive  runs without Type A failure with confidence. In order to 

satisfy this condition, the value of should satisfy 
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Given a confidence level we can obtain an upper confidence bound on 

which is denoted by Solving we obtain the upper bound 

This can help to test whether the system can be certified or not, i.e., if 

the system is certified with confidence to say that the system is reliable in  n 

successive runs without Type A failure. 

Now consider a sequence of possibly dependent system runs. During the 

validation phase, the system is not changing, i.e., does not change. That is, the 

sequence of runs can be described by the homogeneous DTMC with the 

transition probability matrix. Assume that the DTMC is steady, i.e., each run has 

the same failure-probability: 

Let and substitute it into the above equation to get 

Solve the above equations to obtain unconditional probability of failure on run as


The reliability for m successive runs will be 

An example is given here to illustrate the procedure. 
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Example 8.5. Suppose the distribution of the execution time of each run is 

exponential so that 

Let as illustration. In the operational phase we 

can estimate the transition probability matrix from empirical data of successive 

runs. The following transition probability matrix is used as illustration 

Substitute those values into Eq. (8.27), we can obtain the Laplace-Stieltjes 

transform equation and then invert it to get the Cdf of the time between failures 
as: 

This equation implies that when successive runs are dependent, the Cdf of the 

time between failures is a mixture of exponential distributions. Fig. 8.12 displays 

the distribution of  F(t). 

Using the distribution function, the mean time to failure can be obtained as 

The unconditional probability of the threeh different states can be calculated 

through Eqs. (8.36-8.38) 
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The steady probability for the system to be reliable is 

8.4. Notes and References 

For the multi-state systems, the book of Lisnianski & Levitin (2003) summarized 

many MSS reliability models, which can provide the readers a complement view 

to this chapter. They have carried extensive research on this topic. The book 

describes many MSS reliability models of different structures including series, 

parallel, bridge and distributed networks etc, and under different environments 
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including weighted voting systems, consecutively connected systems, sliding 

window systems and so on. 

Xue & Yang (1997) showed that multi-state reliability dynamic analysis 

could be transformed to a set of 2-state ones by using some generalized reliability 

parameters. Bukowski & Goble (2001) studied the MTTF of the MSS. 

Kolowrocki (2001) studied the MSS with components having exponential 

reliability functions with different transition rates between subsets of their states, 

which introducing the aging concept into the components of the MSS. Levitin & 

Lisnianski (2001) considered vulnerable systems, which could have different 

states corresponding to different combinations of available elements composing 

the system. In real systems, a multilevel protection is often used, for example, in 

defense-in-depth design methodology (Fleming & Silady, 2002). The multilevel 

protection means that a subsystem and its inner level protection are in their turn 

protected by the protection of the outer level, which has been studied by Levitin 

(2003). Yeh (2003) presented an interesting model for the network reliability by 

assuming the nodes and links composing the network are of multiple states. 

Levitin & Lisnianski (2003) formulated the optimization problem of 

designing structure of series-parallel multi-state system (including choice of 

system elements, their separation and protection) in order to achieve a desired 

level of system survivability by the minimal cost. Liu et al. (2003) also presented 

a neural network to solve this optimization problem. Recently, Levitin et al. 

(2003) further extended it to include multiple levels of protections and presented 

a multi-processor genetic algorithm to solve it. 
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CHAPTER OPTIMAL SYSTEM DESIGN 
AND RESOURCE ALLOCATION 

In the design of computing systems, some important decision problems need be 

solved. These problems could be the determination of optimal number of 

distributed hosts, the system structure and the network architecture. The 

objectives could be to maximize the reliability, to minimize the cost, or both. 

Besides the optimal system design, the problem of optimally allocating 

limited resources (such as time, manpower, programs or files) on the 

computing systems are also of great concern. Given limited resources, different 

allocation strategies will cause different system reliability and cost. In order to 

make the best of the resources, their allocations must be carefully considered. 

This chapter discusses some of these optimization problems. The optimal 

number of redundant hosts for a distributed system design is first presented. 

Optimal testing resource allocation problems on either independent modules or 

dependent versions of software are discussed. Finally, the optimization of grid 

architecture design and the grid service integration problems are studied. 

239
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9.1. Optimal Number of Hosts 

An important goal in computing system design is to achieve a high reliability or 

availability through some kind of redundancy (such as redundant hosts) or fault 

tolerance. Many systems are developed in the environment with redundant 

hosts. The number of hosts has significant influence on the cost and system 

availability because it can be very costly while they are able to improve system 

availability easily. The objective here is to minimize the total cost based on the 

following cost model. 

9.1.1. The cost model 

To illustrate the relationships among the decisions and cost, an influence 

diagram which provides simple graphical representations of decision situations, 

is displayed in Fig. 9.1. Different decision elements are shown in the influence 

diagram as of different shapes, see e.g., Clemen (1995 pp. 50-65). 

The number of redundant hosts affects the optimal decision of the release 

time. Both the number of redundant hosts and release time affect the system 

availability. These factors determine the development cost. The number of 

hosts also determines the cost of redundant hosts. The release time determines 

the rewards or penalty depending on whether the release is before or after the 

deadline. If the system is unavailable after release, a risk cost is incurred. 

Hence, the cost of redundant hosts, the development cost, reward and penalty 

should be considered together when deriving the total expected cost. Each cost 

component will be described in the following. 

Cost of redundant hosts 

The cost function for a multi-version fault-tolerant system can be described as a 

linear function to the number of versions as 
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where  N is the number of hosts, is a constant, and is defined as the 

expected cost per host. Here we have assumed the redundant hosts used in the 

system are of the same type. 

Reward for early release 

Usually there is a deadline for release. This is the case when the penalty cost 

for delay is very high. On the other hand, there is a reward for releasing the 

system earlier. We assume is a constant rewarded if the system can be 

released in time, no matter how early the release time is and is the 

expected reward per unit time before the deadline. The reward function of the 

release time can be expressed as 
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where is the deadline for release, is the release time so that is the 

time ahead of the schedule. 

Risk cost for system being unavailable 

This cost factor is generated by the unavailable system after releasing, termed 

risk cost as in Pham & Zhang (1999). Here we assume the risk cost for 

unavailable system is a function of system availability and release time: 

where is the release time, is the ending time for contracted maintenance 

after release, is the availability function at time t for N-host system, and 

is the risk cost per unit time when the system is not available. In the equation 

above, is the probability for the system to be unavailable at time t. 

Development cost 

The development cost function for a single software module proposed in 

Kumar & Malik (1991) is 

where and are constants and is the individual module software 

reliability achieved at the end of testing. 

Then, the total expected cost can be expressed as 
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9.1.2. System availability 

The system availability model for a homogeneous distributed 

software/hardware system can be obtained straightforward from Chapter 6.3. A 

numerical example is shown below. 

Example 9.1. Suppose and and 

the system availability for different number of hosts can be obtained 

from the analysis presented in Chapter 6.3. The results are depicted in Fig. 9.2. 
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We can observe that when the number of redundant hosts increases, the 

system availability increases. The system availability function can be used in 

the optimization model which will be described in the following. 

9.1.3. Optimization model and solution procedure 

The optimization model is based on the cost criteria and the decision variables 

are the number of redundant hosts and the release time. Its objective is to 

minimize the expected total cost. There are three types of constraints in this 

decision problem. First, the customers may require a least system availability 
*A  after the release. Second, there is a deadline for the system to be released 

so the release time should be earlier than that. Finally, the customers may limit 
* the maximum number of redundant hosts  N due to their budget and other 

physical restrictions. 

That is, the decision variables are  N and and the optimization model is 

to 

*where  A is the required system availability after the release, is the 
* deadline for release and  N is the maximum number of redundant hosts 

allowed. If there is no such constraint, we can assume a large enough value of 
*N  in this model. However, usually only a small number of redundant hosts 

will be practical. 

To obtain an optimal solution, the solving procedures are described as 

follows: 
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Step 1: Obtain the system availability function of the distributed system 

with N redundant hosts. 

Step 2: Derive each cost function and obtain the expected total cost. 

*Step 3: Let N take each integer value from 1 to  N  to obtain the expected 

to 

total cost and save the results from to 

Step 4: For each compute the optimal release time, 
* and save the results as OpTr(1) to OpTr(N ), so that the minimum 

* expected total cost is obtained and saved in MinC(1) to MinC(N ). 

Step 5: Compare the minimum total expected cost from MinC(1) to 
*MinC(  N  )to select the optimum number of redundant hosts 

* OpN=Min(MinC(n)) (n=1,2,...,  N ). 

The above procedure can be easily realized in computer programs. A numerical 

example is presented to illustrate the optimization procedures. 

Example 9.2. Company X is awarded a contract to develop a telephone 

switching system. In this case, the hardware hosts are brought from external 

suppliers, but the software is developed in house and tested with the system. 

The main question is how many redundant hosts are needed and also we are 

interested in when the system can be released so that the total cost is 

minimized. For illustrative purpose, the following input values are used: 

1) The system availability needs to be higher than 0.88 when it is released. 

2) The deadline for releasing the system is 800 hours from now. 

3) The penalty cost for unavailable system is about $8000 per hour during 

the first 300 hours after release.


4) Each host costs $17600 and a fixed fee for all the hosts is $1293.


5) The maximum number of redundant hosts is five.
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6)	 If the company can release the system earlier than the deadline, there is 
a constant reward of $2123.7 and a variable reward of $31.5 per hour. 

Based on the conditions and the assumptions given above, the values of the 

parameters can be obtained as 

and 

The parameters for software development cost are assumed as  H=10232, 

B=16,  D=14. The optimization problem can be solved with the required system 
*availability when releasing,  A , of 0.88 and the maximum number of 

*redundant hosts,  N , equal to 5. 

Here we assume the system is a kind of homogeneous distributed 

software/hardware system whose availability function is depicted by Fig. 9.2. 

With the values of parameters given above, we can obtain the total mean cost 

through Eq. (9.5) as 

Finally, the total expected cost as a function of release time for different 

number of redundant hosts are depicted by Fig. 9.3 and the overall results are 

given in Table 9.1. 
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From Table 9.1, the global minimum cost is 

number of redundant hosts N=4 and the optimum release time 

The optimum results indicate that there should be four redundant hosts and the 

system is tested for 261.7 hours. 

104580 (Units) with the 

9.2. Resource Allocation - Independent Modules 

Testing-resource refers to the resource expenditures spent on software testing, 

e.g., man-power and available time, etc. During the testing stage, a project 

manager often faces various decision-making problems such as how to allocate 

available time (the time before deadline) among the modules and how to assign 

personnel, etc. In order to combine these two types of resources (man-power 

and available time), we define a term called total testing time that is calculated 
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by multiplying the number of personnel with the available time. Each unit of 

the total testing time represents the resource of one person to work for one unit 

of time. Here the testing-resource is referred to as total testing time and we use 

the term testing-resource as an exchangeable one with the term total testing 

time. 

For the optimal testing-resource allocation problem, the following 

assumptions are made here: 

(a) n modules in a software are independent during the unit-testing phase. 

(b) After unit time of testing, the failure rate of module i is 

The reliability of module i is 

where  x is the operational time after testing. Note that in the above, we have 

used the operational reliability definition (Yang & Xie, 2000) as it is more 

common that after the release, there will be no reliability growth, and hence the 

failure rate will remain constant equal to 

9.2.1. Allocation on serial modular software 

If the software system fails whenever there is a failure with any of the modules 

that the software system is composed of, then it is called a serial software 

system. For many modular software systems this is right the case. The structure 

for such a system is illustrated in Fig. 9.4. 



249 Computing System Reliability 

i

i i is 

Denote by the testing-time allocated to module . After unit of time of 

testing, the failure rate of module is The reliability of module

The reliability of the whole software system is given by 

The optimal testing-resource allocation problem is formulated as


The formulation above is equivalent to minimizing the sum of failure 

occurrence rates, i.e., 

It can be noted that the general formulation presented above does not 

require a particular model for the mean value function and thus it has much 

flexibility. In fact, we could even use different software reliability models for 

different modules. 

In order to obtain a general solution to this problem, the Lagrangian is 

constructed as 



250 Optimal System Design and Resource Allocation 

The necessary and sufficient conditions for the minimum are (Bazaraa et al., 

1979, p. 149) 

The optimal solution can be obtained by solving the above 

equations numerically. Define then an equivalence of Eq. 

(9.17) is 

For most software reliability models, is a positive and 

non-increasing function. It is shown in Yang & Xie (2001) that if 

and is non-increasing on let 

Then, if we reorder software modules 1, 2,.... n such that

optimal solution to the testing-resource allocation problem is: 

the 

where satisfies and k satisfies 
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From the results above, the optimum solution can be obtained by the 

following iteration algorithm. 

Step 1. Compute using Eq. (9.22).


Step 2. Set l = 1.


Step 3. Obtain 
by solving the following equation: 

Step 4. If then and the optimal solution can be 

obtained by Eq. (9.23), then stop. Otherwise set  l  =  l +1 and go back 

to Step 3. 

Example 9.3. Assume that the software system is composed of three modules 

for which the testing processes follow the logarithmic Poisson execution time 

model (Musa & Okumoto, 1984). That is, 

It can be shown that


are positive and strictly decreasing on The optimization algorithm 

described in previous section can be used. In this case, The solution 

to Eq. (9.24) is 
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and Eq. (9.23) becomes


Suppose that the parameters of the three modules have been estimated by 

historical testing data and are summarized in Table 9.2, and an additional 5000 

CPU hours of testing-time is available to be allocated among these three 

modules. By solving the optimization problem as described in previous section, 

the optimal allocation is obtained and shown in Table 9.2. 

The reliability of the software system after the additional 5000 hours of testing 

is: 

9.2.2. Allocation on parallel modular software 

The system is assumed to be a parallel redundant system (Fig. 9.5). For such a 

software system, the system will fail only when all modules fail. The achieved 

reliability of the system after unit testing phase is 
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where is the operational reliability of module  i. 

The optimal testing-resource allocation problem is formulated as


An equivalence of Eq. (9.26) is: 

Now the optimal testing resource allocation problem is formulated by the above 

equations. The Lagrangian is constructed as: 
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The necessary and sufficient conditions for the minimum are


aboveThe optimal solution can be obtained by solving the 

equations numerically. 

9.2.3. Allocation on mixed parallel-series modules 

The Fig. 9.6 is the structure of a mixed parallel-series modular software system. 

There are n groups of parallel modules and m serial modules. 
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Single objective of maximizing reliability 

The reliability for this parallel-series modular software system is calculated as 

following equation 

where is the testing time allocated to module i. Then, the following 

optimization model is to maximize system reliability: 

in which  T is the total resource of time consuming in all modules of parallel 

group and serial modules 

Multiple objectives of maximizing reliability and minimizing cost 

Assume that the cost function of Module i is in which is the 

reliability for the  i:th module. The total cost in the parallel-series modular 

software system of Fig. 9.6 will be 

where 

is the total cost of the l:th groups of parallel modules 
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is the total cost of all the n groups of parallel modules, and 

is the total cost of all the series modules. 

Here, we adopt the cost function for individual module  i shown by Eq. (9.4), 

proposed in Kumar & Malik (1991). 

The optimal testing-resource allocation problem can then be formulated 

with two objectives as 

in which  T is the total resource of time consuming in every modules of parallel 

group and serial modules 

For mixed parallel-series modular software, it is difficult to solve them, so 

the heuristic algorithms such as genetic algorithm, simulation annealing or 

Tabu search can be applied. Dai et al. (2003b) presented a genetic algorithm to 

solve the above multi-objective allocation problems. Here an example of this 

type is illustrated with that genetic algorithm. 

Example 9.4. The structure of this 8 modules example is shown in Fig. 9.7. 
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We use the GO-model for illustration. The mean value function is:


We assume here that the total testing time is 23000 hours and x is 200 hours to 

complete the given task. The values of parameters and optimal solution out of 

the genetic algorithm are given in the following Table 9.3 where 

(i=1,2,...,8) is the optimal allocated testing time on different modules. 
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9.3. Resource Allocation - Dependent Modules 

A method to increase the reliability of safety critical software is the N-version 

programming technique, e.g. Avizienis (1985). In the analysis of this type of 

systems, a common assumption is the independence of different versions. In the 

following, we first present a model for the dependent N versions of software. 

Then, based on the model, optimum allocation problem of the testing 

resource/time on the dependent N versions is discussed. 

9.3.1. Reliability analysis for dependent N-version programming 

The  N-version programming involves the execution of multiple versions of 

software. A voting scheme matches and tests the outputs, and then determines a 

final result. There are various voting schemes. Here we use the voting scheme 

of “selecting the first qualified result”, which is explained in details in Belli & 

Jedrzejowicz (1991). In this voting scheme, if any one version among the  N 

versions of software passes a test, the voter will select it as the final result no 

matter whether the other versions are qualified or not. 

Decomposition by multi-component modeling 

In the N-version software, any j versions may fail at the same time because of 

certain common cause failures. For example, if  j versions of the  N-version 

software share a common subroutine, these j versions may fail simultaneously. 

We define a parameter for such failure, called dependence level, by the number 

of simultaneously failed versions caused by the failure. 

We denote as the “components” that correspond to different 

common cause failures, where  j  (j=1,2,...,N) is the dependent level that 

correlates any  j out of  N versions and k represents the  k:th 

component among all the j:th dependent components where 
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If all those failures with the j:th dependent level are numbered by k 

can represent all the failures with different dependent levels, 

respectively. The total number of all “components” 

is equal to 

The  N dependent versions of software can be decomposed into the 

mutually exclusive components. Note that the  N versions may not be 

physically separated. An example of three-version programming is illustrated 

below. 

Example 9.5. Consider a fault-tolerant system with three versions of software 

which might be dependent. The three dependent versions are correlated as 

shown in Fig. 9.8 and the states can be decomposed into 7 mutually exclusive 

parts, called components here. 
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Let (k= 1,2,3) denote the failures that affect only the k:th version without


influence on the other two versions; (k=1,2) denote the common cause


failures that correlate the k:th and (k+1):st versions without influence on the


other one version; represents the failure that correlates the first and the 

third versions; and denotes the failures that correlate all the three 

versions. 

The reliability block diagram for those components can be built as shown in 

Fig. 9.9. 

The reliability block diagram is complex containing not only many 

parallel-series units but also some bridge structures. Moreover, the diagram will 

become much more complicated for four or more versions. Hence, the 

reliability estimation for dependent  N-version programming is not 

straightforward. In order to analyze the system reliability based on our above 

model, a general approach is presented below. 

System reliability function 

The reliability of a component is defined as the probability for the 

corresponding common cause failure not to occur, which is denoted by 



261 Computing System Reliability 

The software reliability of the dependent  N-version programming is 

defined as the probability that at least one version of software can achieve the 

task successfully. The software reliability function at time t can be expressed as 

Let represent the event in which the i:th version of software is reliable 

to successfully achieve the given task at time t,  (i=1,2,...,N). The software 

reliability function for the dependent  N-version programming can then be 

written as 

By using conditional probability, the events considered in the above equation 

can be decomposed into mutually exclusive events as 

where denotes the conditional probability that the first version 

of the software fails given that the second version of the software is reliable at 

time t. 

Hence, each term in the software reliability expression of the above 

equation can be evaluated in terms of the probability of two distinct events. The 

first event indicates that the  i:th version of software is reliable while the 

second event indicates that all of its previous versions (m=1,2,...,i-1) fails 

given that is reliable. 

The probability of the first event, is straightforward. It can be 

calculated by multiplying the reliability functions of all the components that 

will make the i:th version fail as 
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where means that the  i:th version of software will fail if the 

component fails. 

The probability of the second event, is not 

as straightforward to compute. It can be done in the following steps: 

Step 1: select all those components that can make any version(s) among the 

fail while is still reliable. 

Step 2: use binary search tree (Johnsonbaugh, 2001) to find out all the 

exclusive combinations, which can make all the  i-1 versions 

fail among those components selected in step 1. 

Step 3: add up all the probabilities of those exclusive combinations to 

After  and i=1,2,...,N, 

obtain the probability of 

 computing

we can obtain the software reliability function for the dependent  N-version 

programming by substituting them into Eq. (9.44). An example of aircraft 

landing is illustrated below. 

Example 9.6. Suppose that three teams will compose three versions of a 

program to control the aircraft landing. If any one version is working, the 

aircraft can land successfully. These three versions may depend on each other 

through certain common cause failures. Those failures may occur on the 

common parts of some versions, such as using the same external electrical 

power, integrating the same software packages, sharing identical subroutines 

and so on. 



263 Computing System Reliability 

As in the approaches presented above, the software is first decomposed 

into its individual components. As shown in example 9.5, The three dependent 

versions can be decomposed into 7 components corresponding to different 

common cause failures as shown in Fig. 9.9. denotes the reliability 

function of We have then 

9.3.2. Optimal testing resource allocation 

An optimization problem for testing resource allocation can be formulated to 

minimize the total cost for the N versions, when constrained by a fixed testing 

time budget T hours. Let be the testing time allocated on the i: th version 

(i=1,2,...,N), and the total testing time is less than T. The allocation of testing 

time significantly affects the total cost. There are mainly two parts in the cost: 

(a) Test duration cost Here, the  N versions of the software can be 

tested respectively given their allocated testing time and their 

expected cost per unit of testing time (i=1,2,...N). The test duration 

cost can be expressed as 

where is the expected cost in testing the i:th version. 

(b) Risk cost this is the cost incurred by an unreliable system, see e.g. 

Pham and Zhang (1999). This can be expressed as 
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where  d is the expected cost if the system fails and 1-R is the 

probability for the system to fail. 

The total cost is the summation of the above two parts. 

Denote by the testing time for component During the testing 

period, the component continues running and risks failure unless all the 

versions related to fail. Hence, the testing time of can be 

calculated by 

where means version  m is related to component Hence, the 

reliability function of the component can be written as 

where  x is the operation time after the test. The software reliability function 

can then be derived through our approach presented above, where 

The optimization problem to minimize the total cost by 

finding a set of testing time allocations can be formulated by 

Solving this problem is also difficult, so heuristic algorithms need be 

implemented. An example is illustrated where a genetic algorithm is used here 

to solve it. 
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Example 9.7. Continuing with Example 9.6 (the air-craft landing example), 

suppose that the testing resource budget is 2000 hours of testing time, i.e., 

T=2000, that the testing cost per hour on the three versions are 

and that the risk cost d = 10000 if the aircraft cannot land 

successfully. The allocation problem becomes how to optimally allocate the 

2000 hours on the three versions in order to minimize the total cost. 

We assume that the common cause failures arriving on each component 

satisfy the Goel-Okumoto (GO) model. That is, the failure rate function for the 

components is modeled with: 

If the testing is stopped after  t units of time, the reliability for a mission of 
duration t is given by (Yang & Xie, 2000) 

The values of the parameters and in the GO model are given in 

Table 9.4 for this example. 

Then, the reliability for the dependent three-version software can be obtained


through Eq. (9.46). Substitute the parameters of Table 9.4 into Eq. (9.54) to


compute the reliability functions of all the components, and then substitute them
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into Eq. (9.46) to compute the software reliability by assuming x=5 (i.e. it will 

take 5 hours for the aircraft to land). 

is used to get the solution

To solve the optimization problem as Eqs. (9.50-9.52), a genetic algorithm

 The best allocation of the 

2000 hours should be to test: the first version for 638.2 hours; the second for 

1361.8 hours and the third for 0 hour. The total expected cost 

and the software reliability 

9.4. Optimal Design of the Grid Architecture 

9.4.1. Grid architecture design 

For the grid computing systems (see Chapter 7), the network architecture is an 

important factor. Although the physical network may have already existed 

when building the grid, constructing a direct link between two remote nodes 

still lead to high cost where the direct link means that both nodes have the right 

to use the shared resources from each other. Hence, the cost of a direct link is 

mainly caused by preparing the resources, purchasing the right to use the 

resources, or dealing with the security problem during communication. Such 

cost is called link cost. Here a link can be a virtual link through the 

Internet/Intranet or even wireless. 

On the other hand, if the grid computing system cannot complete the given 

tasks successfully (such as provide services), another kind of cost, called risk 

cost (Pham & Zhang, 1999) is caused by the unreliable computing. Hence, the 

total expected cost for designing the grid network architecture should consider 

both link cost and risk cost. 

As Fig. 9.10, denoted by the set of programs executed by node i and 

the set of resources prepared in node i. Suppose the grid architecture (i.e. 
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the network of links among nodes) need be designed given and 

(i=1,2...N). 

Adding more links among the nodes might increase the link cost but they 

could improve the system reliability to reduce the risk cost. In order to 

minimize the total cost, how to optimally design the network architecture of the 

grid, i.e. which link should exist or not, is important. 

9.4.2. Optimization model 

Denote by the link between two nodes  i and  j If there 

exists a link between the two nodes, and if there is no link between 

them. Here, is defined as a vector of which 

corresponds to a network architecture of N-node system. The length of is 
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N(N-1)/2, because the maximal number of links to completely connect all the N 

nodes is N(N-1)/2. Thus, the total link cost can be expressed as 

in which is the cost to construct the link between node i and j.


The grid system reliability given a network architecture
 denoted by 

can be derived from the algorithms presented in Chapter 7. We use 

the linear function of the risk cost as 

in which is the probability of a failed task of the grid and is 

a constant which can be explained as the expected risk cost if the task fails. 

The total expected cost is the summation of link cost and risk cost as 

Our objective is to find an optimal network architecture to minimize 

the total expected cost. The optimization model is 

If there are  N nodes in the grid, the length of is N(N-1)/2 and the sample 

size of total network architectures is Since the sample size increases 

exponentially to the number of nodes, it is difficult to exhaustively search all 

the samples for the optimal solution in a complex grid with many nodes. 
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Fortunately, for such complex grids, it is usually sufficient to find a good 

enough network design through certain heuristic algorithms, although it may 

not guarantee the optimum solution. 

9.5. Optimal Integration of the Grid Services 

9.5.1. Grid service integration problem 

After the grid system is built, new services and resources are able to be further 

integrated into the grid by various virtual organizations. This is the objective of 

the second generation of the grid such as the Open Grid Service Architecture 

presented by Foster et al. (2001). 

A grid service is to complete certain programs by using some resources 

distributed in the grid, as mentioned in Chapter 7. Hence, the integration of a 

new service on the grid is to allocate the programs and resources used by the 

service on certain reachable nodes of the grid. The reachable nodes represent 

those nodes that can be reached and used to upload the programs or integrate 

the resources of the new grid service. 

In Chapter 7, we have analyzed the grid service reliability which is a 

special type of the grid system reliability by considering the programs of the 

given service in the grid. Recall that the grid service reliability is the 

probability that all the programs of a given service are achieved successfully 

under the grid computing environment. Maximizing it will serve as the 

objective of the service integration problem in this section. 

The problem here is how to optimally allocate/integrate those programs 

and resources on the reachable nodes in order to maximize the service 

reliability after the integration. The organization may wonder how many 

program/resource redundancies they should prepare under the budget 

limitation, and how to distribute them on different reachable nodes of the grid 

system whose physical architecture has been constructed. 
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Suppose that a grid service is desired to complete  M programs 

which requires to access to  H resources, 

These programs and resources are viewed as the components of the grid 

service. Denoted by (i=1,2,...M,M+1,...,M+H) the  i:th component of the 

service where the first  M components corresponds to the  M programs and the 

rest  H components represent the  H resources. The organization can prepare 

redundancies for each component (program or resource) but there is a budget 

constraint for the total cost denoted by B. Moreover, the number of 

redundancies for the i:th component should be no less than one and no more 

than an upper-bound denoted by (i=1,2,...,K) where K=M+H (the total 

number of programs and resources in a grid service). 

The organization can integrate the  K components on  N reachable nodes 

of the grid. Each node may have a limitation to integrate the 

components, such as the maximal number of components denoted by 

(i=1,2,...,N). 

Also, some components may have been fixed on some specific nodes, and 

some components are allowed to select some nodes to integrate or not allowed 

to integrate on other nodes. Hence, we use to describe the relationship 

between the  i:th node and the  j:th component i=1,2,...,N and 

j=1,2,...,K. Also, has three possible values (d, 0 and 1): if it 

means the organization can freely choose whether to integrate the on the 

or not; if the is not allowed to be integrated on the and if 

the is fixed on the That is, is defined as a vector of 

The values of can be determined given the 

relationship of the nodes and the service components. 

Based on these conditions, the organization has to prepare the redundancies 

of each component and distribute them on those reachable nodes of the grid. To 
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maximize the grid service reliability, the next section presents an optimization 

model for integrating a new service on the grid. 

9.5.2. An optimization model 

Let represent the integration of the j:th component on the i:th node 

means that the is not integrated with the and 

means that is integrated with Let be defined as a vector of 

which represents an integration schedule of the grid 

service components on the nodes. Hence, given the structure of the grid, the 

grid service reliability can be only determined by the integration scheduling 

vector The grid service reliability is then expressed by which can 

be computed by the algorithms in Chapter 7.3. Thus, the optimization problem 

becomes to find the optimal solution of so that the integrated grid service 

reliability is maximized. The optimization model is described as follows: 
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where the first constraint (9.62) is limited by a , the relationship of nodes and


components: 

if (i.e. the component has to be fixed on the value of 

has to be set to 1; and 

if (i.e. the component cannot be integrated on the value 

of has to be set to 0. 

In the second constraint, Eq. (9.63), represents the total number 

of redundancies of component integrated in the grid, which should 

between 1 and its upper-bound In the third constraint, Eq. (9.64), 

represents the total number of components integrated on the node 

which ought to be no more than its upper-bound Finally, for Eq. 

(9.65), is the cost to prepare a redundancy of the  j:th component, so that 

the left hand side represents the total cost for the integration of the grid service, 

which has to be no more than the budget B. 

In order to solve this optimization problem, heuristic algorithms can be 

used. 

9.6. Notes and References 

For the optimal number of redundant units, many other studies have also been 

presented. Pham (1992) determined the optimal number of spare units that 

minimize the average total system cost. Imaizumi et al. (2000) obtained the 

mean time and the expected cost until system failure and discussed an optimal 

number which minimizes the expected cost for a system with multiple 

microprocessor units. Hsieh & Hsieh (2003) developed a relationship between 

system cost and hardware redundancy levels, and presented an optimization 

model aiming at minimizing the total system cost. Hsieh (2003) further 

presented optimization models for the policies of task allocation and hardware 
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redundancy of the distributed computing systems. Chang et al. (2003) further 

presented an optimization model in dynamically adding and removing 

redundant units of the computing system. 

Optimal testing-resource allocation problem has also been studied 

extensively in the literature. Yamada & Nishiwaki (1995) proposed optimal 

allocation policies for testing-resource based on a software reliability growth 

models. Based on the hyper-geometric distribution software reliability growth 

model, Hou et al. (1996) investigated two optimal resource allocation problems 

in software module testing. Leung (1997) later studied the dynamic 

resource-allocation for software-module testing. Coit (1998) presented a 

method to allocate subsystem reliability growth test time in order to maximize 

the system reliability when designers are confronted with limited testing 

resources. Lyu et al. (2002) further considered software component testing 

resource allocation for a system with single or multiple applications. For the 

networked system, Hsieh & Lin (2003) aimed to determine the optimal 

resource allocation policy at source nodes subject to given resource demands at 

sink nodes such that the network reliability of the stochastic-flow network is 

maximized. 

For the grid computing system design, Buyya et al. (2002) presented two 

optimization strategies in providing grid services based on the economic 

models of the resource management. Furmento et al. (2002) used composite 

performance models to optimally combine currently available component into 

the network of the Grid environment. According to the QoS requirements, 

Dogan & Ozguner (2002) presented the optimization model for scheduling 

independent tasks in grid computing with time-varying resource prices. 

Optimization models have been widely studied in other areas of the 

computing systems. Okumoto & Goel (1980) first discussed the software 

optimal release policy from the cost-benefit viewpoint. There are many 

follow-up papers and a chapter in Xie (1991) is devoted to this issue. Zheng 

(2002) considered some dynamic release policies. The sensitivity of software 
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release time remains an issue and some preliminary discussion can be found in 

Xie & Hong (1998). Quigley & Walls (2003) discussed the confidence intervals 

for reliability-growth models when the sample-size is small which is a common 
situation. 

Ashrafi et al. (1994) discussed the optimal design of N-version 

programming system. Berman & Kumar (1999) considered some optimization 

models for recovery block design. Jung & Choi (1999) studied some 

optimization models for modular systems based on cost analysis. 

Tom & Murthy (1999) implemented graph matching and state space search 

techniques in optimizing the schedule of task allocation on the distributed 

computing systems. Karatza (2001) investigated optimal scheduling policies in 

a heterogeneous distributed system, where half of the total processors have 

double the speed of the others. Kuo & Prasad (2000) reviewed some 

system-reliability optimization models. Kuo & Zuo (2003) recently 

summarized many reliability optimization models in the computing systems. 
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