

Computing System Reliability

Models and Analysis

This page intentionally left blank

Computing System Reliability
Models and Analysis

Min Xie
Yuan-Shun Dai
and

Kim-Leng Poh

National University of Singapore
Singapore

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-48636-9
Print ISBN: 0-306-48496-X

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2004 Kluwer Academic/Plenum Publishers
New York

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Preface

Computing systems are widely used today and in many areas they serve the key

function in achieving highly complicated and safety-critical mission. At the

same time, the size and complexity of computing systems have continued to

increase, making its performance evaluation more difficult than ever before.

The purpose of this book is to provide a comprehensive coverage of tools

and techniques for computing system reliability modeling and analysis.

Reliability analysis is a useful tool in evaluating the performance of complex

systems. Intensive studies have been carried out to improve the likelihood for

computing systems to perform satisfactorily in operation.

Software and hardware are two major building blocks in computing systems.

They have to work together successfully to complete many critical computing

tasks. This book systematically studies the reliability of software, hardware and

integrated software/hardware systems. It also introduces typical models in the

reliability analysis of the distributed/networked systems, and then further
develops some new models and analytical tools.

“Grid” computing system has emerged as an important new field,

distinguished from conventional distributed computing systems by its focus on

large-scale resource sharing, innovative applications, and, in many cases, high-

performance orientation. This book also presents general reliability models for

the grid and discusses analytical tools to estimate the grid reliability related to

the resource management system, wide-area network communication, and

parallel running programs with multiple shared resources.

v

vi Computing System Reliability

Furthermore, this book introduces the basic reliability theories and models

for various multi-state systems. Based on the models, some interesting decision

problems in system design and resource allocation are further discussed.

This book is organized as follows.

Chapter 1 provides an introduction to the field of computing systems and

reliability analysis. Simple reliability concepts are also discussed. Chapter 2

provides the basic knowledge in reliability analysis and summarizes some

common techniques for analyzing the computing system reliability. The

fundamentals of Markov processes and Nonhomogeneous Poisson processes

(NHPP) are also introduced, which are essential tools used in this book.

Chapters 3 and 4 present important models for the reliability analysis of

hardware and software systems, respectively. They are useful when hardware

and software issues are dealt with separately at the system analysis stage.

Chapter 5 discusses the models for integrated systems. This is essential in

computing system analysis as both software and hardware systems have to work

together.

In Chapter 6, the reliability of various distributed computing systems

which incorporate the network communication into the hardware/software

reliability is studied. The distributed computing system is a common and

widely-used networked system and hence a chapter is devoted to this.

The reliability of grid computing systems, which is a new direction in

computing technology, is studied in Chapter 7. Since the grid reliability is
difficult to evaluate due to its wide-area, heterogeneous and time various

characteristics, we initially construct the reliability models for the different parts

of the grid, including resource management system, large-scale network,

distributed software and resources.

Finally, Chapter 8 studies the multi-state system reliability. Some

optimization models in the system design and resource allocation are presented

in Chapter 9. This is an area where research is going on and further development

is needed.

Preface vii

The basic chapters in this book are Chapters 3-7. Readers familiar with

basic reliability can start from Chapter 3 directly. Chapters 8 and 9 are on

advanced topics and can be read by those interested in those specific topics.

Many models and results found in the literature and from our research are

presented in the book. It is hoped that these approaches are easily implemented

by practitioners as well. In addition, many examples are accompanied with those

approaches.

The book serves as reference book for students, professors, engineers and

researchers in related science and engineering field. It can be used for graduate
and senior undergraduate courses. Researchers and students should find many

ideas useful in their academic work.

The readers should have some basic knowledge in probability and calculus.

However, difficult details are omitted to benefit the general audience.

References are given so that further details can be found for those who are

interested in more specific results.

M. Xie

Y. S. Dai

K. L. Poh

This page intentionally left blank

Acknowledgements

This book has evolved over the past ten years. We would like to thank our

collaborators and students who have worked on one or more topics covered in

the book. Especially, G. Y. Hong, B. Yang, S. L. Ho and G. Q. Liu have
contributed a significant amount to the work presented in the book.

We are fortunate to have worked closely with many overseas colleagues,

such as L. R. Cui, O. Gaudoin, P. K. Kapur, C. D. Lai, G. Levitin,

D. N. P. Murthy, K. Way, C. Wohlin, M. Zhao, among others. This has helped
broaden our view which is needed for a book as such. Many people worldwide

have been interested in our work and we are grateful to T. Dohi, K. Kanoun,

T. Khoshgoftaar, S. Y. Kuo, M. R. Lyu, J. Musa, S. Osaki, H. Pham,

N. Schneidewind, Y. Tohma, K. S. Trivedi, M. Vouk, L. Walls, S. Yamada,

M. J. Zuo and others for their help in our research.

Our research is supported by the National University of Singapore. We are

also grateful to all staff and other students in the Department of Industrial and

Systems Engineering for their help in one way or another.

The effort of Gary Folven of Kluwer and other staff at the Kluwer

Academic Publisher is also appreciated. The idea of putting together this book
was firmed up after his trip to Singapore at the beginning of the millennium.

Finally, we would like to thank our families for their understanding and

support in all these years.

ix

This page intentionally left blank

Contents

1 INTRODUCTION 1

1.1. Need for Computing System Reliability Analysis 1

1.2. Computing System Reliability Concepts 2

1.3. Approaches to Computing System Modeling 3

2 BASIC RELIABILITY CONCEPTS AND ANALYSIS 7

2.1. Reliability Measures 7

2.2. Common Techniques in Reliability Analysis 12

2.3. Markov Process Fundamentals 19

2.4. Nonhomogeneous Poisson Process (NHPP) Models 36

3 MODELS FOR HARDWARE SYSTEM RELIABILITY 41

3.1. Single Component System 41

3.2. Parallel Configurations 48

3.3. Load-Sharing Configurations 58

3.4. Standby Configurations 61

3.5. Notes and References 69

4 MODELS FOR SOFTWARE RELIABILITY 71

4.1. Basic Markov Model 71

xi

xii Computing System Reliability

4.2. Extended Markov Models	 76

4.3. Modular Software Systems	 90

4.4. Models for Correlated Failures	 94

4.5. Software NHPP Models	 101

4.6. Notes and References	 110

5 MODELS FOR INTEGRATED SYSTEMS	 113

5.1. Single-Processor System	 113

5.2. Models for Modular System	 122

5.3. Models for Clustered System	 128

5.4. A Unified NHPP Markov Model	 139

5.5. Notes and References	 143

6	 AVAILABILITY AND RELIABILITY OF DISTRIBUTED

COMPUTING SYSTEMS 145

6.1. Introduction to Distributed Computing	 146

6.2. Distributed Program and System Reliability	 148

6.3. Homogeneously Distributed Software/Hardware Systems 163

6.4. Centralized Heterogeneous Distributed Systems	 171

6.5. Notes and References	 176

7	 RELIABILITY OF GRID COMPUTING SYSTEMS 179

7.1. Introduction of the Grid Computing System	 180

7.2. Grid Reliability of the Resource Management System 184

7.3. Grid Reliability of the Network	 188

7.4. Grid Reliability of the Software and Resources	 201

7.5. Notes and References	 204

Contents xiii

8 MULTI-STATE SYSTEM RELIABILITY 207

8.1. Basic Concepts of Multi-State System (MSS) 207

8.2. Basic Models for MSS Reliability 214

8.3. A MSS Failure Correlation Model 224

8.4. Notes and References 236

9 OPTIMAL SYSTEM DESIGN AND RESOURCE

ALLOCATION 239

9.1. Optimal Number of Hosts 240

9.2. Resource Allocation - Independent Modules 247

9.3. Resource Allocation - Dependent Modules 258

9.4. Optimal Design of the Grid Architecture 266

9.5. Optimal Integration of the Grid Services 269

9.6. Notes and References 272

References 275

Subject Index 291

This page intentionally left blank

CHAPTER

INTRODUCTION

1.1. Need for Computing System Reliability Analysis

Computing has been the fastest developing technology during the last century.

Computing systems are widely used in many areas, and they are desired to

achieve various complex and safety-critical missions. The applications of the

computing systems have now crossed many different fields and can be found in

different products, for example, air traffic control systems, nuclear power

plants, aircrafts, real-time military systems, telephone switching, bank

auto-payment, hospital patient monitoring systems, and so forth.

The size and complexity of the computing systems has increased from one

single processor to multiple distributed processors, from individual-separated

systems to networked-integrated systems, from small-scale program running to

large-scale resource sharing, and from local-area computation to global-area

collaboration. A computing system today may contain many processors and

communication channels and it may cover a wide area all over the world. They

combine both software and hardware that have to function together to complete

1

2 Introduction

various tasks. They may incorporate multiple states and their failures may be

correlated with one another. These factors make the system modeling and

analysis complicated. As a result, making decisions in the system design or

resource allocation also becomes difficult accordingly.

There is no common approach to assess computing systems. Reliability is a

quantitative measure useful in this context as reliability can be broadly

interpreted as the ability for a system to perform its intended function. Intensive

studies on reliability models and analytical tools are carried out to improve the

chance that the computing systems will perform satisfactorily in operations. As

the functionality of computing operations becomes more essential, there is a

greater need for a high reliability of the computing systems.

In fact, in order to increase the performance of the computing systems and

to improve the development process, a thorough analysis of their reliability is

needed. Based on the models and analysis, approaches to improve system

reliability can be further implemented.

1.2. Computing System Reliability Concepts

In general, the basic reliability concept is defined as the probability that a

system will perform its intended function during a period of running time

without any failure (Musa, 1998). A failure causes the system performance to

deviate from the specified performance.

A fault is an erroneous state of the system. Although the definitions of fault

are different for different systems and in different situations, a fault is always

an existing part in the system and it can be removed by correcting the erroneous

part of the system. For the computing systems, the basic reliability concept can

be adapted to some specific forms such as “software reliability”, “system

reliability”, “service reliability”, “system availability”, etc., for different

purposes.

3 Computing System Reliability Analysis

Most computing systems contain software programs to achieve various

computing tasks. Software reliability is an important metric to assess the

software performance. Similar to the general reliability concept, software

reliability is defined as the probability that the software will be functioning

without failure under a given environmental condition during a specified period

of time (Xie, 1991). Here, a software failure means generally the inability of

performing an intended task specified by the requirement.

Software reliability is only a measurement of software program. In order to

assess the computing system that may contain multiple software programs and

hardware components, system reliability is commonly used. It is defined as the

probability that all the tasks for which the system is desired can be successfully

completed (Kumar et al., 1986). Those software programs may be in parallel or
serial and they may even have any arbitrarily distributed structure. The system

reliability needs to be computed in a different way according to the system

structure.

Some computing systems are developed to provide different services for

the users. The users may only be concerned with whether the service they are

using is reliable or not. From the users’ point of view, service reliability is an

important measure, and it is defined as the probability for a given service to be

achieved successfully. This is a useful concept in service quality analysis, and it

broadens the traditional reliability definition.

1.3. Approaches to Computing System Modeling

Computing system reliability is an interesting, but difficult, research area.

Although there are many reliability models suggested and studied in the

literature, none can be used universally, and there is no unique model which

can perform well in all situations. The reason for this is that the assumptions

made for each model are correct or are good approximations of the reality only

in specific cases.

4 Introduction

In the computing systems, hardware (such as computers, routers,

processors, CPUs, memories, disks, etc.) provides the fundamental

configurations to support computing tasks. Many traditional reliability models

mainly dealt with the hardware reliability, such as Barlow & Proschan (1981),

Elsayed (1996) and Blishcke & Murthy (2000).

Software is another important element in the computing systems besides

the hardware. Different from the hardware, the software does not wear-out and

it can be easily reproduced. Furthermore, software systems are usually

debugged during testing phase so that its reliability is improving over time.

Many software reliability models have been proposed for the study of software

reliability, see e.g., Xie (1991), Lyu (1996), Musa (1998) and Pham (2000).

However, a computing system usually includes not only a hardware

subsystem but also a software subsystem, which ought not to be separately

studied. Both software and hardware failures should be integrated together in

analyzing the performance of the whole system. Many reliability models for the

integrated software and hardware systems have been recently presented, such

as Goel & Soenjoto (1981), Siegrist (1988), Laprie & Kanoun (1992), Dugan &

Lyu, (1994), Welke et al., (1995) and Lai et al. (2002). Although there are some

books that contain discussion on integrated software and hardware system

reliability, this book is entirely devoted to this topic and the associated issues.

Accompanying the development of network techniques, many computing

systems need to communicate information through the (local or global)

networks. The programs and resources of such systems are distributed all over

the different sites connected by the networks. This kind of computing system is

usually called distributed computing system. The performance of a distributed

computing system is determined not only by the software/hardware reliability

but also by the reliability of the networks for communication. Many models

and algorithms have been presented for the distributed system reliability, see

5 Computing System Reliability Analysis

e.g. Hariri et al. (1985), Kumar et al. (1986), Chen & Huang (1992), Chen et

al. (1997), Lin et al. (1999, 2001) and Dai et al. (2003a).

As a special type of the distributed computing systems, grid computing is a

recently developed technique by its focus on various shared resources,

large-scale networks, wide-area communications, real-time programs, diverse

virtual organizations, heterogeneous platforms etc. Many experts believe that

the grid computing systems and technologies will offer a second chance to

fulfill the promises of the Internet, see e.g. Foster & Kesselman (1998).

Although it is difficult to study due to its complexity, the reliability of the grid

computing systems begins to be of concern today.

Most of reliability models for computing systems assume only two

possible states of the system. In reality, many computing systems may contain

more than two states (Lisnianski & Levitin, 2003), especially for those

real-time systems. For example, if some computing elements in a real-time

system fail, the system may still continue working but its performance should

be degraded. Such a degradation state is another state between the perfect

working and completely failed states. To study these types of systems, the

Multi-State system reliability is also of concern recently to many researchers,

e.g. Brunelle & Kapur (1999), Pourret et al. (1999), Levitin et al. (2003) and

Wu & Chan (2003).

The book provides a systematic and comprehensive study of different

reliability models and analytical tools for various computing systems including

hardware, software, integrated software/hardware, distributed computing, grid

computing, multi-state systems etc. Some interesting optimization problems for

system design and resource allocation are further discussed. Many examples

are used to illustrate to the use of these models.

This page intentionally left blank

CHAPTER
BASIC RELIABILITY

CONCEPTS AND ANALYSIS

Reliability concepts and analytical techniques are the foundation of this book.

Many books dealing with general and specific issues of reliability are available,

see e.g., Barlow & Proschan (1981), Shooman (1990), Hoyland & Rausand

(1994), Elsayed (1996), and Blischke & Murthy (2000). Some basic and

important reliability measures are introduced in this chapter. Since computing

system reliability is related to general system reliability, the focus will be on tools

and techniques for system reliability modeling and analysis. Since Markov

models will be extensively used in this book, this chapter also introduces the

fundamentals of Markov modeling. Moreover, Nonhomogeneous Poisson Process

(NHPP) is widely used in reliability analysis, especially for repairable systems.

Its general theory is also introduced for the reference.

2.1. Reliability Measures

Reliability is the analysis of failures, their causes and consequences. It is the most

important characteristic of product quality as things have to be working

satisfactorily before considering other quality attributes. Usually, specific

7

8 Basic Reliability Concepts

performance measures can be embedded into reliability analysis by the fact that if

the performance is below a certain level, a failure can be said to have occurred.

2.1.1. Definition of reliability

The commonly used definition of reliability is the following.

Definition 2.1. Reliability is the probability that the system will perform its

intended function under specified working condition for a specified period of

time.

Mathematically, the reliability function R(t) is the probability that a system will

be successfully operating without failure in the interval from time 0 to time t,

where T is a random variable representing the failure time or time-to-failure.

The failure probability, or unreliability, is then

which is known as the distribution function of T.

If the time-to-failure random variable T has a density function f (t), then

The density function can be mathematically described as

This can be interpreted as the probability that the failure

time T will occur between time t and the next interval of operation, The

three functions, R(t), F(t) and f(t) are closely related to one another. If any of

them is known, all the others can be determined.

9 Computing System Reliability

2.1.2. Mean time to failure (MTTF)

Usually we are interested in the expected time to next failure, and this is termed

mean time to failure.

Definition 2.2. The mean time to failure (MTTF) is defined as the expected value

of the lifetime before a failure occurs.

Suppose that the reliability function for a system is given by R(t), the MTTF

can be computed as

Example 2.1. If the lifetime distribution function follows an exponential

distribution with parameter that is, the MTTF is

This is an important result as for exponential distribution. MTTF is related to a

single model parameter in this case. Hence, if MTTF is known, the distribution is

specified.

2.1.3. Failure rate function

The failure rate function, or hazard function, is very important in reliability

analysis because it specifies the rate of the system aging. The definition of failure

rate function is given here.

Definition 2.3. The failure rate function is defined as

10 Basic Reliability Concepts

The quantity represents the probability that a device of age t will fail in

the small interval from time t to t + dt. The importance of the failure rate

function is that it indicates the changing rate in the aging behavior over the life of

a population of components. For example, two designs may provide the same

reliability at a specific point in time, but the failure rate curves can be very

different.

Example 2.2. If the failure distribution function follows an exponential

distribution with parameter then the failure rate function is

This means that the failure rate function of the exponential distribution is a

constant. In this case, the system does not have any aging property. This

assumption is usually valid for software systems. However, for hardware

systems, the failure rate could have other shapes.

2.1.4. Maintainability and availability

When a system fails to perform satisfactorily, repair is normally carried out to

locate and correct the fault. The system is restored to operational effectiveness by

making an adjustment or by replacing a component.

11 Computing System Reliability

Definition 2.4. Maintainability is defined as the probability that a failed system

will be restored to a functioning state within a given period of time when

maintenance is performed according to prescribed procedures and resources.

Generally, maintainability is the probability of isolating and repairing a fault in a

system within a given time. Maintenance personnel have to work with system

designers to ensure that the system product can be maintained cost effectively.

Let T denote the time to repair or the total downtime. If the repair time T has

a density function g(t) , then the maintainability, V(t) , is defined as the

probability that the failed system will be back in service by time t, i.e.,

An important measure often used in maintenance studies is the mean time to

repair (MTTR) or the mean downtime. MTTR is the expected value of the repair

time.

Another important reliability related concept is system availability. This is a

measure that takes both reliability and maintainability into account.

Definition 2.5. The availability function of a system, denoted by A(t) , is

defined as the probability that the system is available at time t.

Different from the reliability that focuses on a period of time when the system is

free of failures, availability concerns a time point at which the system does not

stay at the failed state. Mathematically,

A(t) = Pr(System is up or available at time instant t)

The availability function, which is a complex function of time, has a simple

steady-state or asymptotic expression. In fact, usually we are mainly concerned

12 Basic Reliability Concepts

with systems running for a long time. The steady-state or asymptotic availability

is given by

The mean time between failures (MTBF) is another important measure in

repairable systems. This implies that the system has failed and has been repaired.

Like MTTF and MTTR, MTBF is an expected value of the random variable time

between failures. Mathematically, MTBF=MTTR+ MTTF.

Example 2.3. If a system has a lifetime distribution function

and a maintainability function then and

The MTBF is the sum of MTTF and MTTR and the steady-state

availability is

2.2. Common Techniques in Reliability Analysis

There are many techniques in reliability analysis. The most widely used

techniques in computing systems are reliability block diagrams, network

diagrams, fault tree analysis and Monte Carlo simulation, which will be

introduced in the following sections. Another popular and important analytical

tool, Markov model, will be introduced in Section 2.3 since it is the main

technique used in this book.

13 Computing System Reliability

2.2.1. Reliability block diagram

A reliability block diagram is one of the conventional and most common tools of

system reliability analysis. A major advantage of using the reliability block

diagram approach is the ease of reliability expression and evaluation.

A reliability block diagram shows the system reliability structure. It is made

up of individual blocks and each block corresponds to a system module or

function. Those blocks are connected with each other through certain basic

relationships, such as series and parallels. The series relationship between two

blocks is depicted by Fig. 2.1 (a) and parallel by Fig. 2.1 (b).

Suppose that the reliability of a block for module i is known or estimated, and it

is denoted by Assuming that the blocks are independent from a reliability

point of view, the reliability of a system with two serially connected blocks is

and that of a system with two parallel blocks is

The blocks in either series or parallel structure can be merged into a new block

with the reliability expression of the above equations. Using such combinations,

any parallel-series system can be eventually merged to one block and its

reliability can be easily computed by repeatedly using those equations.

14 Basic Reliability Concepts

Example 2.4. A parallel-series system consists of five modules whose reliability

block diagram is shown as Fig. 2.2(a). The parallel blocks can be merged as

shown by Fig. 2.2(b). It can be further merged into one block simply through the

series expression (2.6). The combined reliability expression is given under the

new blocks.

Furthermore, a library for reliability block diagrams can be constructed in order

to include other configurations or relationships. Additional notational description

is needed and specific formulas for evaluating these blocks must be obtained and

added to the library. One such example is the simple k-out-of-n in the following.

15 Computing System Reliability

Example 2.5. A k-out-of-n system requires that at least k modules out of a total

of n must be operational in order for the system to be working. Usually a voter is

needed, see Fig. 2.3.

If the voter is perfect and all the modules have reliability R , the formula to

evaluate the reliability of these blocks, which can be obtained via conditioning or

binomial distribution (Barlow & Proschan, 1981), is

A majority voting system requires more than half of modules to be operational.

The reliability of such a system is given by

where [X] denotes the largest integer that is less than or equal to X.

16 Basic Reliability Concepts

2.2.2 Network diagram

Network diagrams are commonly used in representing communication networks

consisting of individual links. Most network applications are in the

communication domain. The computation of network reliability is the primary

application of network diagrams.

The purpose of a network is to execute programs by connecting different

sites that contain processing elements and resources. For simple network

diagrams, computation is not complex and reliability block diagrams can

alternatively be used. For example, Fig. 2.4 shows the network diagrams that are

connected through series or parallel links.

Fig. 2.4 can alternatively be represented by the reliability block diagrams if we

view each link as a block, depicted by Fig. 2.1.

The choice of reliability block diagram or network diagram depends on the

convenience of their usage and description for certain specific problems. Usually,

the reliability block diagram is mainly used in a modular system that consists of

many independent modules and each module can be easily represented by a

reliability block. The network diagram is often used in networked system where

processing nodes are connected and communicated through links, such as the

distributed computing system, local/wide area networks and the wireless

communication channels, etc.

17 Computing System Reliability

2.2.3. Fault tree analysis

Fault tree analysis is a common tool in system safety analysis. It has been adapted

in a range of reliability applications.

A fault tree diagram is the underlying graphical model in fault tree analysis.

Whereas the reliability block diagram is mission success oriented, the fault tree

shows which combinations of the component failures will result in a system

failure. The fault tree diagram represents the logical relationships of ‘AND’ and

‘OR’ among diverse failure events. Various shapes represent different meanings.

In general, four basic shapes corresponding to four relationships are depicted by

Fig. 2.5.

Since any logical relationships can be transformed into the combinations of

‘AND’ and ‘OR’ relationships, the status of output/top event can be derived by

the status of input events and the connections of the logical gates.

Example 2.6. An example of a fault tree diagram corresponding to the reliability

block diagram in Example 2.4 is shown by Fig. 2.6. As the fault tree shows, the

top-event of the system fails if both module 1 and 2 fail, or module 3 fails, or

both module 4 and 5 fail.

18 Basic Reliability Concepts

A fault tree diagram can describe the fault propagation in a system. However,

complex systems may exhibit much more complex failure behavior, including

multiple failure modes and dependent failure modes. These failures will have

different effects on the mission outcome. The basic fault tree analysis does not

support this type of modeling. Moreover, repair and maintenance are two

important operations in system analysis that cannot be expressed easily using a

fault tree formulation.

2.2.4. Monte Carlo simulation

In a Monte Carlo simulation, a reliability model is evaluated repeatedly using

parameter values drawn from a specific distribution. The Monte Carlo simulation

is often used to evaluate the MTBF for complex systems. Here, the following

steps apply:

19 Computing System Reliability

1) Simulate random numbers for each random variable needed in the

simulation model.

2) Evaluate the desired function.

3)	 Repeat steps 1 and 2 a total of n times, to obtain n samples of the desired

function. For example, the system failure times will be T(1) ,

T (2),…,T(n).

4)	 Estimate the desired parameter. For example, the expected value of the

system failure time can be obtained from

5)	 Obtain an estimate of the precision of the estimate, such as the sample

standard deviation of the estimated value.

Monte Carlo simulation can handle a variety of complex system

configurations and failure rate models. However, Monte Carlo simulation usually

requires the development of a customized program, unless the system

configuration fits a standard model. It also requires lengthy computer runs if

accurate and converging computations are desired.

2.3. Markov Process Fundamentals

Markov model is another widely used technique in reliability analysis. It

overcomes most disadvantages of other techniques and is more flexible to be

implemented in reliability analysis for various computing systems, which will be

applied in the later chapters.

20 Basic Reliability Concepts

2.3.1. Stochastic processes

When we examine the evolution of a process governed by the rules of

probability, we observe a stochastic process. The study of stochastic processes

involves the analysis of a collection of random variables, their interdependence,

their change over time, and limiting behavior, among others (Ross, 2000).

In the study of stochastic processes, it is useful to establish two distinct

categories:

1) Stationary: A stationary process is one for which the distribution remains

the same over time.

2) Evolutionary (Nonstationary): An evolutionary process can be defined as

one that is not stationary and the process evolves with time.

Almost all systems are dynamic in nature. Markov model is a powerful tool

to solve such dynamic problems. Its stochastic process is a sequence of outcomes

where t takes value from a parameter space T.

If the parameter space T is discrete and countably finite, the sequence is

called a discrete-time process and is denoted by where n=1,2,.... The

index n identifies the steps of the process. On the other hand, if the parameter

space T is continuous or uncountable, the sequence is called a continuous-time

process and is denoted by

The set of all possible and distinct outcomes of all experiments in a

stochastic process is called its state space and normally is denoted by Its

elements are called the states. If the state space is discrete, then the process

is called a discrete-state process. Otherwise, it is called continuous-state process.

21 Computing System Reliability

2.3.2. Standard Markov models

There are four types of standard Markov models corresponding to four types of

Markov processes classified according to their state-space and time

characteristics as Table 2.1 shows below.

The standard Markov models satisfy the Markov property, which is defined here.

Definition 2.6. For a stochastic process that possesses Markov property, the

probability of any particular future behavior of the process, when its current state

is known exactly, is not changed by additional information concerning its past

behavior.

These four Markov models are described in more details in the following

sections.

Discrete-Time Markov chain

The discrete-state process is referred to as chain, so the discrete-state and

discrete-time Markov process is usually called discrete time Markov chain

(DTMC).

22 Basic Reliability Concepts

A general discrete-time chain is a sequence of discrete random variables

in which is dependent on all previous outcomes

The analysis of this type of chain can easily become

unmanageable, especially for long-term evaluation. Fortunately, in many

practical situations, the influence of the earlier outcomes on its future one tends

to diminish rapidly with time.

For mathematical tractabiiity, we can assume that is dependent only

on i previous outcomes, where is a fixed and finite number. In this case,

deriving requires only the information about the previous

outcomes (from step n-i+1 to step n), i.e.,

We call this type of chain a Markov chain of order i.

We usually refer to the first-order Markov chain simply as a Markov chain.

For these chains, only their present (at time n) has any influence on their future

(at time n+1). In other words, for all n>0,

The essential characteristic of such a Markov process can be thought of as

memoryless.

For the right-hand side of the above equation, it is assumed that the state

space under consideration is either finite or countably infinite. Define

The conditional probability is called the (one-step) transition

probability from state i to state j at time n. The m-step transition probabilities at

time n are defined by

 i

23 Computing System Reliability

and the corresponding m-step transition matrix at time n is P(n,n+m). The

transition matrix should satisfy,

or, equivalently,

This equation is known as the Chapman-Kolmogorov equation (Ross, 2000).

Example 2.7. Suppose that a computing system has three states after each run.

The states are perfect, degraded, and failed states denoted by state 1, 2 and 3. The

state of the current run will just affect the state of the next run. The matrix of one

step transition probability is

This is a discrete time, discrete state Markov chain (DTMC) that is depicted

by the transition graph in Fig. 2.7.

According to the Chapman-Kolmogorov equation, the two-step transition

matrix can be obtained as

24 Basic Reliability Concepts

Thereafter, if the system initially stays at a perfect state, then the probability that

the system still stays at that state after 2 runs should be

four-step transition matrix is

The

The probability that the system does not stay at the failed state after 4 runs is

Continuous-time Markov chain

Similar to the case of DTMC, the discrete-state and continuous-time Markov

process is usually called the continuous time Markov chain. Let the time space

be an index set and consider a continuous-time stochastic process

taking values on the discrete state space We say that the

25 Computing System Reliability

process is a Markov chain in continuous time if, for each

t > 0 and each set A, we have

Specifically, if, for each t > 0 and each i, and every history

x(u) ,

then the process { X (t) } is called a continuous-time Markov chain (CTMC).

A CTMC is a stochastic process having the Markov property that the

conditional distribution of the future state, given the present state and all past

states, depends only on the present state and is independent of the past. Also,

define

The conditional probability is called the transition probability function

from state i to state j and the matrix P(s,t) is called the transition matrix function.

Similar to the DTMC, we have the Chapman-Kolmogorov equation as

In matrix notation, this can be written as

The above equation can be compared with its discrete-time counter-part (2.13) or

(2.14).

When the transition probability functions depend only on the

difference i.e.,

26 Basic Reliability Concepts

the continuous-time Markov chain {X(t)} is said to be homogeneous. For any

homogeneous Markov chain, the Chapman-Kolmogorov equation is expressed as

This can be written in matrix form as

where which satisfies

As given by Kijima (1997, p. 174), the derivative of P(t) is defined as

which shows that P(t) is infinitely differentiable with respect to t > 0.

Define The matrix is called infinitesimal generator, or

generator for short. This is of fundamental importance in the theory of CTMC.

Since P(0)=I, we have

Since P(t) is differentiable, it follows from (2.22) that

27 Computing System Reliability

which are the systems of ordinary linear differential equations. The former is

known as the backward Kolmogorov equation and the latter as the forward

Kolmogorov equation (Ross, 2000).

Example 2.8. Suppose that a computing system has two states: Good and Failed,

denoted by 1 and 2, respectively. Suppose that the transition from state i to j

follow a continuous time distribution, say the exponential distribution,

The CTMC is depicted in Fig. 2.8.

From the exponential distribution, we have

Then, can be written as Eq. (2.22) for

Let We have,

28 Basic Reliability Concepts

This solution is useful, and it implies that for exponential distribution, the is

equal to its rate.

Then, the Chapman-Kolmogorov equation for Fig. 2.8 can be written as

and

With the initial condition (assume the system initially stays at the good state)

we obtain the availability function as

Discrete Time, Continuous State

The discrete-time continuous-state Markov model is applicable if there are

discrete changes in time in an environment where the states of the system are

continuous over a specified range.

It is easy to see how the concept could be applied to the component

parameter drift problem. However, little work has been done in this area, and

multi-parameter modeling and computation remain a difficult problem. There are

29 Computing System Reliability

two possible reasons: numerical data are seldom available, and the solution of the

resulting partial differential equations is more complex.

Continuous Time, Continuous State

The conventional diffusion equations fall in this category of continuous-time and

continuous-state Markov models. Usually when we talk about the system state

space, we attempt to describe it in fixed terms. In reliability, we talk about fully

operational systems or failed systems. Once we introduce the concept of

degraded operability, it is easy to imagine a continuum of physical states in

which the system can exist. There could be some other advanced applications.

However, the evaluation of these equations will be costly and more involved.

Since little work has been done in the area of the continuous state (Type 3 and

4 in Table 2.1), the continuous-state Markov process will not be discussed in this

book. For details about them, the readers can refer to Kijima (1997).

2.3.3. Some non-standard Markovian models

Some important aspects of system behavior cannot be easily captured in certain

types of the above Markov models. The common characteristic these problems

share is that the Markov property is not valid at all time instants. This category of

problems is jointly referred to as non-Markovian models and can be analyzed

using several approaches, see e.g., Limnios & Oprisan (2000).

Markov renewal sequence

We first introduce the renewal process. Let be the time

instants of successive events to occur. The sequence of non-negative independent

and identically distributed random variables,

renewal process.

ais

30 Basic Reliability Concepts

The idea of having the times depend on a state which can be

generalized. We can assume that there is a set of states which can be thought

of as the set 0, 1,…, as before. The state at is given by The chain

now forms a process on its own. In particular, they may form a DTMC. The

points are called Markov regeneration epochs, or Markov

renewal moments. Together with the states of the embedded Markov chain

they define a Markov renewal sequence.

Definition 2.7. The bivariate stochastic process

Markov renewal sequence provided that

 is a

The random variables are the regeneration epochs, and the are the

states at these epochs.

Markov renewal sequences are embedded into Markov Renewal Models. Markov

renewal models can be classified into two categorizations called semi-Markov

model and Markov regenerative model.

Semi-Markov process

A possible generalization of the CTMC is to allow the holding time to follow

general distributions. That is, by letting be the holding-time distribution

when the process is in state i, we can construct a stochastic process {X(t)} as

follows. If X(0) = i , then the process stays in state i for a time with distribution

function At the end of the holding time, the process moves to state j,

which can be equal to i, according to the Markovian law The process

31 Computing System Reliability

stays in state j for a time with distribution function and then moves to

some state according to P. Under some regularity conditions, we can construct a

stochastic process by repeating the above procedure.

We can introduce more dependent structure into the holding times. Namely,

when X (0) = i , we choose the next state j and the holding time simultaneously

according to a joint distribution Given the next state j, the holding-time

distribution is given by After the holding time, a transition to state

j occurs. At the same time, the next state k as well as the holding time is

determined according to a joint distribution A stochastic process

constructed in this way is called a semi-Markov process.

Definition 2.8. Let denote the state space and let be a sequence of

random variables taking values on Let be a sequence of random

variables taking values on and let

We define the renewal process associated with

Thereafter, with the above notation, suppose that

for all n=0,1,...; i, and Then the stochastic process {X(t)}

defined by is called a semi-Markov process.

For a semi-Markov process, the time distribution satisfies the following

equation.

32 Basic Reliability Concepts

where denotes the convolution of the two functions, defined as

Using the Laplace-Stieltjes Transform, the above equation can be simplified

as

where is the Laplace-Stieltjes transform of

Markov regenerative process

The Markov regenerative model combines the Markov regenerative process into

its modeling. A stochastic process with the state space is

called regenerative if there exist time points at which the process probably

restarts itself. The formal definition of Markov regenerative process is given now.

Definition 2.9. A Markov regenerative process is defined as a stochastic process

are the same as those of

As a special case, the definition implies that for

),

which has the additional property that all conditional finite distributions

given

given

with an embedded Markov regenerative process (X, S

of

The expression in Eq. (2.36) implies that the Markov regenerative process does

not have the Markov property in general, but there is a sequence of embedded

33 Computing System Reliability

time points such that the states realized at these

points satisfy the Markov property. It also implies that the future of the process Z

from time onwards depends on the past only through

Different from the semi-Markov processes, state changes in Markov

regenerative process may occur between two consecutive Markov regeneration

epochs. An example of Markov regenerative process is illustrated below.

Example 2.9. Suppose that a system has two states: 0 and 1 (good and failed).

When the system fails, it is restarted immediately. After restarting, the system

may stay at the good state (with the probability p) or failed state again (with the

failure rate

 p). When the system stays at a good state, it may fail with aprobability 1 –

 Then the process is a Markov regenerative process, where the

restarting points are regeneration epochs.

Given the initial state is the first restart state, the Markov regenerative

process is depicted by Fig. 2.9 in which state is the i:th restart point and

is the good state between and

34 Basic Reliability Concepts

2.3.4. General procedure of Markov modeling

A Markov process is characterized by its state space together with the transition

probabilities over time between these states. The basic steps in the modeling and

analysis are described in the following.

Setting up the model

In the first step, a Markov state diagram can be developed by determining the

system states and the transitions between these states. It also includes labeling the

states such as operational, degraded, or failed. There could be several states in the

degraded category.

The state diagrams depict all possible internal relationships among states and

define the allowable transitions from one state to another. In general, the state

diagram is made up of nodes and links, where the nodes represent the different

states and the links represent the transition between the connected two states.

For DTMC, the time between the two states is discrete, which is usually set

as 1 unit. On the other hand, the time between the two states is continuous for

CTMC. The Markov chain can be constructed by drawing a state diagram that is

made up of the units.

For the semi-Markov process, the building of the model is more complex for

it contains two steps. First, the state diagram is drawn as a DTMC with transition

probability matrix P. Then, the process in continuous time is set up by making

the time spent in a transition from state i to state j have Cdf

Chapman-Kolmogorov equations

The second step converts the Markov state diagram developed in the preceding

step into a set of equations. The well known equation for Markov models is the

Chapman-Kolmogorov equations, see e.g. Trivedi (1982).

35 Computing System Reliability

Solving the equations

Solving the state equations is sometimes complicated. An analytical solution of

the state equations is feasible only for simple problems. Fortunately, a number of

solution techniques exist, such as analytical solution, Laplace-Stieltjes

transforms, numerical integration and computer-assisted evaluation, which can

simplify this task, see e.g. Pukite & Pukite (1998, pp. 119-136).

The use of Laplace-Stieltjes transforms in engineering is well known, see

Gnedenko & Ushakov (1995) for details. Important applications are in control

system stability evaluation, circuit analysis, and so on. Laplace-Stieltjes

transforms provide a convenient way of solving simpler models. Solution of the

Markov state equations using this approach involves two steps:

a) State equations are transformed to their Laplace counterparts.

b) The resulting equations are inverted to obtain their time-domain solutions.

If the mission times are short and if the transition rates are small, then

approximations can be used that may meet the accuracy requirements. An

example is as follows.

Example. 2.10. Consider that a state diagram can be expressed as a sequence of

transitions, as shown in Fig. 2.10.

The state probability for the last state can be given in Laplace-Stieltjes transform

by

36 Basic Reliability Concepts

By expanding the denominator, substituting this expression in the equation for

and then performing the long division, we get

This equation can be easily inverted using inverse Laplace-Stieltjes transform and

we have

2.4. Nonhomogeneous Poisson Process (NHPP) Models

A counting process, N(t), is obtained by counting the number of certain events

occurring in the time interval [0, t). The simplest model is the Poisson process

model which assumes that time between failures are exponentially distributed and

has independent increment, and it has a constant failure occurrence rate over

time. Such a model is also a Markov model that has been discussed before. Here

we will focus on the case of time-dependent failure occurrence rate, or general

NHPP models. Such models are widely used to model the number of failures of a

system over time, especially in software reliability analysis (Xie, 1991).

2.4.1. General formulation

Nonhomogeneous Poisson Process (NHPP) models are very useful in reliability

analysis, especially for repairable systems. Since hardware systems are usually

37 Computing System Reliability

repairable, and software debugging is a repair process, NHPP models can be used

for both software and hardware, and for combined systems.

For a counting process modeled by NHPP, N(t) follows a

Poisson distribution given the following underlying assumptions of the NHPP:

1) N(0) = 0,

2) has independent increments,

3)

4)

In the above denotes a quantity which tends to zero for small h. The

intensity function is defined as

letIf we

then it can be shown, see e.g. (Ross, 2000: pp. 284-286), that

That is, is a Poisson random variable with mean

This implies that N(t) is Poisson given N(0) = 0 at the

initial time i.e.,

Here m(t) is called the mean value function of the NHPP. If N(t) represents

the number of system failures, the function m(t) describes the expected

38 Basic Reliability Concepts

cumulative number of failures in [0, t). Hence, m(t) is a very useful descriptive

measure of the failure behavior.

2.4.2. Reliability measures and properties

Given the mean value function m(t), the failure intensity function can be

computed by

Moreover, the reliability function at time is given by

Generally, by using different functions m(t), different NHPP models can be

obtained. In the simplest case for which is constant, the NHPP becomes a

homogeneous Poisson process which has a mean value function as t multiplied by

a constant.

Similar to the Poisson distribution to which the NHPP is related, it is

characterized by several unique and desirable mathematical properties. For

example, NHPPs are closed under superposition, that is, the sum of a number of

NHPPs is also a NHPP. Generally, we may mix the failure time data from

different failure processes assumed to be NHPP and obtain an overall NHPP with

a mean value function which is the sum of the mean value functions of the

underlying NHPP models.

Any NHPP can be transformed to a homogeneous Poisson process through

an appropriate time-transformation. From the general theory of NHPP, it is

well-known that if is a NHPP with mean value function m(t), then

the time-transformed process defined as

is also NHPP. The mean value function of the NHPP
 is

39 Computing System Reliability

Especially, if we have that the time-transformed process becomes

a homogeneous Poisson process with rate one, i.e., the mean value function is

equal to t.

Example 2.11. Suppose the mean value function of an NHPP model is

Let

Then the time-transformed process is also an NHPP with the

mean

Therefore, the failure intensity function is derived by

where is a constant which indicates that this time-transformed process

becomes a homogeneous Poisson process with constant rate 1.

2.4.3. Parameter estimation

Usually, the mean value function m(t) contains some unknown parameters. The

estimation of them is generally carried out by using the method of maximum

likelihood or the method of least squares.

40 Basic Reliability Concepts

Denote by the number of faults detected in the time interval

where and is the running time since the beginning. The

likelihood function for the NHPP model with mean value function m(t) is

The parameters in m(t) can then be estimated by maximizing this likelihood

function. Usually, numerical procedures have to be used in solving the likelihood

equations.

CHAPTER MODELS FOR HARDWARE

SYSTEM RELIABILITY

In the computing systems, hardware (such as hard disk, router, processor, CPU,

memory, etc.) provides the fundamental configurations to support computing

tasks. This chapter focuses on the methods and models that are commonly used in

analyzing the hardware reliability. They are also useful for integrated systems

which will be discussed in later chapters.

Reliability models for single component system are first presented. Then,

some models of parallel configurations are studied. Following that, some other

techniques in fault tolerance system including load-sharing and standby

configurations are also shown.

3.1. Single Component System

We first consider a system with one component or when the system is considered

as a black-box. A single hardware component may have a normal functioning

state, a few degraded states and a failed state. This section analyzes the reliability

performance of the single component, considering a single failure mode, double

failure modes and multiple failure modes.

41

42 Models for Hardware System Reliability

3.1.1. Case of a single failure mode

Suppose that there are two states, and a single, irreversible transition between the

two states as shown in Fig. 3.1. The two states are operational state and failed

state denoted by state 1 and 2 respectively. Such a case is called single failure

mode case here.

In Fig. 3.1, is the transition rate from state 1 to state 2, and it corresponds to

the failure rate of the hardware component whose lifetime is assumed to follow

exponential distribution. The component reliability (the probability of being in

state 1) is given by

If the component is repairable with the repair rate the Markov model is

shown by Fig. 3.2.

The reliability function that the component first reaches the failed state is also

However, the system availability function is the probability for the

43 Computing System Reliability

component to stay at operational state (state 1) at the time instant t and it is given

by

Substituting this

To obtain the Chapman-Kolmogorov equations can be written as

Since the system has to be at state 1 or state 2,

into the above equations, we get

With the initial conditions

we can obtain the availability function as

Example 3.1. Suppose that a hardware system has been working for 1000 hours

during which the system failed 30 times and the total repair time for all the

failures is 150 hours. If the hardware failure time and repair time follow the

exponential distributions, then the expected failure rate and repair rate can be

estimated by

The reliability function is

and the availability function is

44 Models for Hardware System Reliability

The curve for availability function A(t) is depicted by Fig. 3.3.

3.1.2. Case of double failure modes

The reliability evaluation above is based on faults which are permanent in nature.

By considering the double failure modes including both intermittent failures and

permanent failures (Prasad, 1991), a reliability model is presented here. The

hardware component is assumed to start from an operational state and can go to

either an intermittent failure state or a permanent failure state. The intermittent

failure can also lead the component into the permanent failure state. This

scenario is presented by a Markov model as shown in Fig. 3.4.

In Fig. 3.4, the states 0, 1 and 2 are operational, intermittent failure and

permanent failure states, respectively. According to the model, the state 0 can

make a transition to state 1 with a rate v and to state 2 with a rate From the

45 Computing System Reliability

intermittent failure state 1, it can either go to operational state 0 with a rate or

to permanent failure state 2 with a rate

Let and be the probabilities of being in the states 0, 1 and

2, respectively. From Fig. 3.4, a set of Chapman-Kolmogorov equations can be

written in the matrix form as:

where the transition matrix T is given by

Taking the Laplace-Stieltjes transform, we get

where

and is the initial value of at t=0, i=0,1,2. Hence, we have

46 Models for Hardware System Reliability

Assuming that the system starts from the operational state, then the boundary

condition is

Hence,

and the inverse of the matrix is given by:

where

Solving for we obtain (Prasad, 1991),

Taking the inverse Laplace-Stieltjes transform, the system availability function

can be obtained as

Example 3.2. Suppose that for a computing system, the rate for intermittent

failures to occur is v = 0.02 and for permanent failures The repair rate

from the intermittent failure state to operational state Substitute them

into the above availability function, we get

47 Computing System Reliability

3.1.3. Case of multiple failure modes

This model with multiple failure modes applies if the given component can fail in

several modes. These modes have different effects on the system operations, e.g.

Levitin et al. (1998). The Markov diagram for a component with three failure

modes, such as a component that can fail in either open or shorted mode or may

experience drift outside the specified range, has the following states:

State 1: Component is fully operational.

State 2: Component has failed in open mode.

State 3: Component has failed in shorted mode.

State 4: Component has drifted outside specification values.

Note that in this case states 2 and 3 will be failed states and state 4 a degraded

state. The Markov transition diagram for this case is shown in Fig. 3.5.

In effect, the total failure rate for the component is given by

48 Models for Hardware System Reliability

Generally, if the hardware component has n-type of failure modes and the

transition among different failure modes is allowed, the Markov transition

diagram is depicted by Fig. 3.6.

In Fig. 3.6, the state 0 is the fully operational state, and states 1 to n represent the

n different failure modes. Denote the transition probability from state i to state j

by

In fact, the models of single failure mode and double failure modes are two

special cases of the n-type failure modes with n=1 and n=2, respectively.

3.2. Parallel Configurations

Parallel system is one of the most frequently used redundancy configurations in

order to achieve fault-tolerance which is important in computing systems. A

parallel configuration assumes that the failure of a component will not affect the

49 Computing System Reliability

operation of the remaining components and all the components can support the

functions of one another.

3.2.1. Two-component parallel configuration

As the simplest parallel system, two-component configuration is studied here. Its

reliability block diagram is shown in Fig. 3.7.

For this two-component parallel configuration, if both components are identical,

there are three states:

State 1: Two components are operational.

State 2: Only one component is operational.

State 3: System has failed (all components have failed).

The applicable Markov transition diagram for the parallel two-component

redundant system is depicted by Fig. 3.8.

The solution for the system reliability can be shown to be

50 Models for Hardware System Reliability

3.2.2. Majority voting configuration

Majority voting systems form an important class of redundant systems. In a

majority voting system, all of the components are assumed to be in operation.

Many voting systems for the N-component hardware are based on the majority

rule, see e.g., Ashrafi et al. (1994).

The simplest majority voting system consists of three components and a voter.

The reliability block diagram for a majority voter configuration is shown in Fig.

3.9.

This configuration is also known as a triple modular redundancy configuration,

and it requires at least two good components for operation. Assuming that the

voter is perfect, the system states are:

State 1: Three components are operational.

State 2: Two components are operational.

State 3: System has failed.

The Markov transition diagram is shown in Fig. 3.10. The solution for evaluating

the reliability of the triple modular redundancy configuration is

51 Computing System Reliability

A modified scheme

It is also possible to increase the reliability of the triple modular redundancy

system by making a simple modification in the operating sequence. After the first

failure has been detected, there are two remaining modules or components. There

is usually no need to keep both of the remaining components, since it will not be

possible to identify the failed component after the second failure. The resulting

state transition diagram will become as shown in Fig. 3.11.

The reliability function can be derived as

Example 3.3. A three-component majority voting system has the failure rate

for each parallel component.

Without removing any component when the first component fails, the

reliability function is

52 Models for Hardware System Reliability

The probability for the system to successfully complete a 10-hour mission can be

computed as

If we remove either one component if the first component fails, the reliability

function is

Both

curves for the two reliability functions and are depicted by Fig. 3.12.

The probability for the system to work well in 10 hours is

3.2.3. k-out-of-N voting configuration

This redundancy configuration is known as the N-Modular Redundancy. The

configuration requires that k functional components out of a total of N are needed

for the system to remain operational. Akhtar (1994) presented a Markov model to

53 Computing System Reliability

analyze the k-out-of-N voting system for both perfect and imperfect fault-

coverage problems. The failures in the system may be covered or uncovered.

Fault coverage is a measure of the ability to perform fault detection, fault

location, fault containment, or fault recovery.

Perfect fault-coverage modeling

Fig. 3.13 shows the Markov chain for the N-component system with perfect fault-

coverage. The process is birth-death process with a constant failure rate, denoted

by for each component. Here is repair rate for state i,

State i means i components have failed and the rest are operational. The

probability for staying at the i:th state is denoted by which can be easily

obtained by solving the following Chapman-Kolmogorov equation:

with the initial conditions

The system availability can be computed through

54 Models for Hardware System Reliability

and the system reliability can be obtained by considering a pure birth process

with through the equation:

Since there is no absorbing state in Fig. 3.13, the steady-state availability can be

calculated by

Imperfect fault-coverage modeling

Under the assumption that each fault is recoverable with probability c, Fig. 3.14

shows the Markov chain for the imperfect fault-coverage model, see, e.g., Akhtar

(1994). There is a transition to an absorbing state (where no repair is possible)

with probability (1-c). The absorbing state is represented by state “N+1”. Thus,

there are N+2 states, denoted by

As Fig. 3.14, the model is obtained by considering 3 classes of states:

State 0: all units are operational.

55 Computing System Reliability

State i i of the components have failed with repair possible at all i

for

a single-repair facility;

i to istates, and the system transits from state -1 with rate

for a multiple-repair facility).

State N+1: a system failure state, where repair is not possible.

The Chapman-Kolmogorov equations can be given by

and

Denote by X = SI – Q where Q is the transition-rate matrix by excluding the last

row and last column of the whole transition-rate matrix. With the initial condition

and

Akhtar (1994) showed that

where are the roots of and is the determination

of the matrix that replaces the i:th column of X by the initial vector

The system availability can be computed with

56 Models for Hardware System Reliability

The system reliability R(t) can be derived by considering a pure birth process as

The perfect fault-coverage model is a special case of the imperfect model by

fixing c=1. The above results of availability and reliability functions can be

similarly implemented in the perfect case by substituting c=1 in those equations.

Example 3.4. Consider a 1-out-of-3 system with imperfect fault-coverage.

Suppose for a multiple-repair facility and the numerical values for

and c = 0.95. The Markov model will contain five states

{0,1,2,3,4} as the Fig. 3.14, where state 4 is an absorbing failure state, and state 3

is a non-absorbing failure state.

For availability function A(t), from the state transition rate, we have

The four real roots are obtained by solving using numerical method:

Finally, the state probabilities are obtained as

where

57 Computing System Reliability

and

The numerical results of the five state probabilities are plotted in Fig. 3.15, where

and are almost 0.

The availability and the reliability functions can be obtained accordingly using

Eqs. (3.28) and (3.29).

58 Models for Hardware System Reliability

3.3. Load-Sharing Configurations

While components in parallel systems are designed to carry full load, in load-

sharing systems, each component is designed to carry only part of the load. If one

component fails in the load-sharing system, then the remaining components share

its load. Furthermore, since the components now carry heavier load, their failure

rates will increase due to the additional stress.

3.3.1. Two-component load-sharing system

Consider a parallel load-sharing system consisting of two components. Under the

load-sharing conditions, assume each component carries only one-half of the

load. The following states can be identified:

State 1: Two components are operational on a load-sharing basis.

State 2: One component has failed, the other carries full load.

State 3: Both components have failed, i.e., system failure.

The state transition diagram is shown in Fig. 3.16.

Here, the transition rate for the first transition is only one-half that for the full-

load parallel system. The system reliability function is then given by

59 Computing System Reliability

3.3.2. k-out-of-N load-sharing system

A load-sharing k-out-of-N system is a configuration which works if at least k out

of N components are functioning and the surviving subsystems share the total

load. Shao & Lamberson (1991) studied such a system. The assumptions of the

model are given as follows:

1)	 The failure rate of all functioning components is the same
functioning unit of i components has the constant failure rate,

i = k,..., N.

a and

2)	 A failed component must be detected and disconnected by a controller

and the probability of success is If the controller cannot detect and

disconnect a failed unit or the controller itself has failed, the system fails.

The controller failure rate is a constant, denoted by

3)	 At most r components can be in repair at one time each with a repair rate

so the repair rate for j components failed is:

4) A repaired component is as good as new and is immediately reconnected

to the system with negligible switch-over time.

5)	 The controller is never repaired or replaced during a mission.

Based on the above assumptions, the Markov model can be constructed as

depicted by Fig. 3.17.

60 Models for Hardware System Reliability

As shown in Fig. 3.17, the state space for the system is defined below:

State j (j=0,1,..., N-k): j components have failed and have been disconnected

from the network, the remaining (N-j) components and the controller are

functioning.

State N-k+1: the system fails because only (k-1) components are functioning,

but the system can return to working state (N-k) at a repair rate

State F: the system fails because the controller cannot detect and disconnect a

failed unit.

The Chapman-Kolmogorov equations can be given by

The initial conditions are:

These equations can be numerically solved. The system avhailability function and

reliability can be obtained accordingly.

Example 3.5. Consider a jet engine functioning under full load on a commercial

airplane. Two functioning jet engines are required for flying, but 4 engines are

functioning for full power. An engine controller manages the load-sharing. When

61 Computing System Reliability

4 engines function in the airplane, the load on each is much less than when they

function alone. From the test data, if 4 engines are functioning for an airplane, the

failure rate for each engine is reduced to 50%, while if three engines are

functioning, the failure rate is reduced to 60% and two engines to 70%. The

switching probability, the jet engine failure rate under the full load

and repair rate (i=1,2,3).

The above jet engine system is a 2-out-of-4 load-sharing system. Its CTMC

can be modeled as Fig. 3.18.

The Chapman-Kolmogorov equation can be constructed. It is then possible to

solve for all the state probability functions and then obtain the system

availability function A(t).

3.4. Standby Configurations

Standby redundancy is particularly important in those applications where low

power consumption is mandatory, such as in spacecraft systems. Standby systems

also yield better reliability than can be achieved using the same quantity of

62 Models for Hardware System Reliability

equipment in parallel mode. This happens when the standby condition failure rate

is assumed to be zero. If this assumption does not apply, the model needs to be

modified to account for the storage failure rate. Moreover, the switch and monitor

to control the system may fail caused by their own faults, which will also be

considered in this section. Finally, the multi-mode operations for the standby

redundancies will be discussed as well.

3.4.1. Standby with zero storage failure rate

Usually standby components can be assumed to have zero or very low failure rate

in storage. If this is the case, then we have a simple system consisting of only two

components, a primary and a standby spare, as shown in Fig. 3.19. The spare is

passive until switched in.

Both components are assumed to have the same failure rate, when operating.

In the standby mode, the failure rate is zero (i.e. cold standby). Since only one of

these components is used at a given time, we identify the following states:

State 1: Primary component is operational.

63 Computing System Reliability

State 2: Standby component has been switched in and is operational.

State 3: Both components have failed, i.e., system failure.

to

The transition rate from state 1 to state 2 and that from state 2 to state 3 are equal

The reliability function can be obtained as

The same approach can be extended to standby systems where there are (N-1)

cold standby components together with one primary component. The state

transition diagram is depicted by Fig. 3.20, where state N+l is the system failure

state.

The reliability function can be obtained as

Example 3.6. A system contains two cold standby components and one primary

component each of which has the failure rate Then, its reliability

function is computed as

and the curve is shown in Fig. 3.21.

64 Models for Hardware System Reliability

3.4.2. Standby with nonzero storage failure rate

If the standby component has a nonzero failure rate of (such as it is energized

as a warm or hot component), see e.g. Pukite & Pukite (1998, pp. 73-80), then we

can identify these states:

State 1: Both components are good, primary component is operating.

State 2: Primary component has failed; secondary has been switched on and is

operational.

State 3: Standby component has failed; system is still operating with primary

component.

State 4: Both components have failed; system failure.

The state transition diagram is depicted by Fig. 3.22.

65 Computing System Reliability

After merging states 3 and 2 into we can easily obtain the reliability

function as

3.4.3. Imperfect monitor and switch

In the models described so far, the monitors and switches are assumed to be

perfectly operational. In this section, we include the effects of imperfect monitor

and switch, i.e. we consider the failure of the fault monitor and switch,

respectively.

The conventional failure monitor and switch can fail in one of two modes:

1.	 In a state where the failure monitoring ability is disabled.

2.	 In a state where a false switching to the next standby component has

occurred.

If we assume equal failure rates to the primary and secondary components

and initially ignore the component storage failure rates, then by assigning and

to the monitor and switch failure rates for the two modes described above,

the system states will be:

State 1: Primary component, fault monitor, and switch are in operational

condition.

State 2: Primary component is operating, but the switch has failed.

66 Models for Hardware System Reliability

State 3: Secondary component is operating.

State 4: System failure.

The state transition diagram is shown in Fig. 3.23.

Note that the states 2 and 3 are identical, in which there is only one operational

component left. We can reduce the number of system states and simplify the state

diagram. The final reliability function is given by

It is possible to extend the same concept to system configurations with more

than one standby component by viewing the imperfect monitor/switch as another

parallel component.

3.4.4. Multiple mode operation

Many standby systems are designed for multiple mode operation. Chen & Bastani

(1992) constructed a CTMC to evaluate the reliability of multiple mode operation

system with both full and partial redundancies. The assumptions in their model

are given below:

1)	 Failure times of components are exponentially distributed with a constant

failure rate.

67 Computing System Reliability

2) A full redundancy requires the full power of a component and serves as

either a primary component or a hot standby of that component.

3) A partial redundancy requires part of the processing power of the full

primary component and serves as a warm standby of that component.

Suppose a system has a full redundancy or primary with failure rate and a

partial redundancy with failure rate Using the Markov model for this system,

the reliability function can be obtained as

Also, this Markov model can be extended to an N modes operation system.

Suppose a system has one primary component with failure rate and N-1 partial

redundancies with failure rates The reliability function can be

obtained as

Example 3.7. Suppose a system contains one primary with failure rate 0.03 and

two partial redundancies with same failure rate of 0.05. Substitute the

and into the Eq. (3.37), we have

The curve of the reliability function is shown in Fig. 3.24.

If we further consider a system with two partial redundancies having nonzero

storage failure rate, say 0.01, the Markov model is constructed as the CTMC in

Fig. 3.25.

68 Models for Hardware System Reliability

At state 1, all the three components are functioning. At state 2, the primary fails

and the other two are functioning. At state 3, one primary and one redundancy

fail while the other is functioning. At state 4, the primary and one redundancy are

functioning but the other redundancy fails due to nonzero storage failure. At state

5, the primary is functioning while the two redundancies fail due to nonzero

69 Computing System Reliability

storage failure. Finally, at state F, all the three components have failed and the

system fails.

The Chapman-Kolmogorov equations can be written as

with the initial conditions are and others are 0, the system reliability

function can be obtained as:

3.5. Notes and References

For reliability of hardware systems, Pukite & Pukite (1998) summarized some

common configurations and implemented simple Markov models. Other than the

Markov models, Elsayed (1996) described many other models that are commonly

used in reliability engineering. There are also many general texts on reliability

engineering and most of them deal with models for hardware systems.

Bobbio et al. (1980) first used Markov models in the study of a single

hardware component that may contain multiple failure modes. Recently, Levitin

et al. (1998) introduced a method called UGF (Universal Generating Function) in

dealing with multiple failure modes. Alexopoulos & Shultes (2001) presented a

method using an importance-sampling plan that dynamically adjusts the transition

probabilities of the embedded Markov chain by attempting to cancel terms of the

likelihood ratio within each cycle.

70 Models for Hardware System Reliability

Kuo & Zuo (2003) summarized the reliability modeling for k-out-of-N

configurations and presented the optimization schedules in improving the system

reliability. Arulmozhi (2003) further presented a simple and efficient

computational method for determining the reliability of k-out-of-N system whose

components are of heterogeneous property. For parallel configurations, besides

the majority voting and k-out-of-N voting introduced in this chapter, there are

many other voting schemes, such as the enhanced voting scheme (Ammann &

Knight, 1988), the weighted voting scheme (Levitin, 2001) and so on. Latif-

Shabgahi et al. (2000) summarized various voting schemes for different fault

tolerant systems. Chang et al. (2000) provided an extensive coverage on

consecutive-k-out-of-n systems.

For the standby configurations, Sherwin & Bossche (1993) summarized the

reliability analysis for both hot (active) standby and cold standby systems. Later,

Chen et al. (1994) studied the reliability of a warm standby system which is an

intermediate case between the hot and cold standby. Recently, Zhao & Liu (2003)

provided a unified modeling idea for both parallel and standby redundancy

optimization problems based on the system reliability analysis.

CHAPTER MODELS FOR

SOFTWARE RELIABILITY

Software is an important element in computing systems. Different from

hardware, the software does not wear-out and it can be easily reproduced.

Furthermore, software systems are usually debugged during the testing phase so

that their reliability is improving over time as a result of detecting and removing

software faults. Many software reliability growth models have been proposed for

the study of software reliability, e.g. Xie (1991), Lyu (19%) and Pham (2000).

Markov models are one of the first types of models proposed in software

reliability analysis. This chapter mainly summarizes models of this type. In

addition, Nonhomogeneous Poisson Process (NHPP) models, which are

important in software reliability analysis, are also discussed in this chapter.

4.1. Basic Markov Model

The basic Markov model in software reliability is the model originally developed

by Jelinski & Moranda (1972). It is one of the earliest models and many later

Markov models which can be considered as modifications or extensions of this

basic Markov model.

71

72 Models for Software Reliability

4.1.1. Model description

The underlying assumptions of the Jelinski-Moranda (JM) model are:

1) The number of initial software faults is an unknown but fixed constant.

2) A detected fault is removed immediately and no new faults are

introduced.

3) Times between failures are independent, exponentially distributed

random variable.

4) All remaining faults in the software contribute the same amount to the

software failure rate.

The initial number of faults in the software before the testing starts is denoted by

From the assumptions (3) and (4), the initial failure rate is then equal to

where is a constant of proportionality denoting the failure rate

contributed by each fault. It follows from the assumption (2) that, after a new

fault is detected and removed, the number of remaining faults is decreased by

one. Hence after the i:th failure, there are faults left, and the failure rate

decreases to This Markov process is depicted by Fig. 4.1 where state

k means that there are k faults left in the software.

The i:th failure-free period, i.e., the time between the (i-1):st and the i:th

failure is denoted by By the assumptions, ’s are then

exponentially distributed random variables with parameter

73 Computing System Reliability

The distribution of is given by

The main property of the JM-model is that the failure rate is constant between

the detection of two consecutive failures. It is reasonable if the software is

unchanged and the testing is random and homogeneous.

4.1.2. Parameter estimation

The parameters of the JM-model may easily be estimated by using the method of

maximum likelihood. Let denotes the observed i:th failure-free time interval

during the testing phase. The number of faults detected is denoted here by n

which will be called the sample size. If a failure time data set

is given, the parameters and in the JM-model can

be estimated by maximizing the likelihood function.

The likelihood function of the parameters and is given by

The natural logarithm of the above likelihood function is

74 Models for Software Reliability

By taking the partial derivatives of this log-likelihood function above with

respect to and respectively, and equating them to zero, the following

likelihood equations can be obtained,

and

By solving from Eq. (4.6), we get

and by inserting this into Eq. (4.5), we obtain an equation independent of as

An estimate of can then be obtained by solving this equation. Inserting the

estimated value into Eq. (4.7), we obtain an maximum likelihood estimate (MLE)

of

Example 4.1. Suppose that a software product is being tested by a group. Each

time a failure is observed, the fault causing the failure is removed. The 30 test

data of time between failures are recorded in Table 4.1.

Substituting the data of Table 4.1 into the likelihood equations, and solving

them, we obtain and

Computing System Reliability

After the failure, the estimated number of

k = 54 – 30 = 21 and the failure rate at that time is

75

remaining faults is

The estimated reliability function after the failures is

R(t) = exp(–0.0162t)

and the MTTF after the failures is estimated as

Note that the estimation of the number of initial faults might be unreasonable.

Usually more failure data should be accumulated for an estimate to be accurate.

76 Models for Software Reliability

4.2. Extended Markov Models

In many cases, the basic Markov model (JM-model) is not accurate enough.

Several of the assumptions may not be realistic. For example, software faults are

not of the same size in a sense that some affect more input data than others do,

and some faults are easier to be detected than others. Many extended models,

which relax some assumptions of the JM-model, are proposed (Xie, 1991). Some

of them are discussed in this section.

4.2.1. Proportional models

Moranda (1979) presented an extended Markov model whose basic assumptions

are same as JM-model except assuming that the (i+1):st failure rate is

proportional to the i:th failure rate, i.e.

This Markov process can be depicted by the Markov chain shown in Fig. 4.2,

where state i represents that i failures have occurred.

This kind of model is called proportional model in Gaudoin et al. (1994). The

idea is to consider that the difference between two successive failure rates is due

only to the debugging, and practical constraints lead us to believe that the effect

of this debugging is multiplicative. A proportional model is completely defined,

given the distributions of and

77 Computing System Reliability

Deterministic proportional model

and C are constant. Hence it is called Deterministic Proportional Model as

defined below.

In the simplest proportional model, all random variables are deterministic, i.e.,

Definition 4.1. The Deterministic Proportional Model, with parameters

and is the software reliability model where the random variable are

independent and exponentially distributed with parameter

This model was originally suggested by Moranda (1979) as geometric

de-eutrophication model. Its detailed statistical property was studied by Gaudoin

& Soler (1992) and we summarize some results here.

For the sake of convenience, let where is a real number.

In fact, represents the quality of the debugging. If no debugging is done at all

the failure rate remains constant; if the debugging is successful

the failure rate decreases, and then the reliability grows, etc. The parameter is

a scale parameter, and it is given by

The likelihood for the observation of the first n times-between-failures

is:

are the solution of the following equations

Consequently, the maximum likelihood estimates of and and

78 Models for Software Reliability

and

This equation expresses that is a root of the polynomial of degree

n-1, i.e.

Example 4.2. Suppose a software system is tested by a group. The 30 test data of

time between failures are recorded in Table 4.2.

79 Computing System Reliability

To estimate parameters of the Deterministic Proportional

to obtain

failures,

the and for

Model, substitute the data of Table 4.2 into the above equations, and solve them

and

The mean time to failure (MTTF) after the is

If the customers require the MTTF of the software product should be no less than

70 hours, i.e., then

Solving this, we get so that the number of removed faults need to be at

least 45. That is, at least 45 – 30 = 15 more faults need to be removed.

The expected time for further detecting/removing the additional 11 faults is

This is an estimated additional testing time needed.

Lognormal proportional model

In fact, the assumption of Deterministic Proportional Model that the (mean

quality) is constant, is not realistic. A more realistic assumption would be that the

mean qualities of the successive debugging are independent random variables

with a homogeneous normal distribution. Then,

80 Models for Software Reliability

is a lognormal distribution. Gaudoin et al. (1994) presented a lognormal

proportional model with

and

in which is normally distributed with mean and standard deviation

The mean and variance of are derived by Gaudoin et al. (1994) as:

4.2.2. DFI (Decreasing Failure Intensity) model

A serious critique of the JM-model is that not all software faults contribute to the

same amount of the failure rate. Some generalizations and modifications of the

JM-model are presented in Xie (1987). We briefly describe this general

formulation together with some special cases in this section.

General DFI formulation

The JM-model can be modified by using other function for Note that

is defined as the rate of the occurrence of next failure after the removal of i-1

faults. The failure intensity is DFI (Decreasing Failure Intensity) if is a

decreasing function of i. A DFI model is thus a Markov counting process model

with decreasing failure intensity.

81 Computing System Reliability

Under the general assumptions above, the cumulative number of faults

detected and removed, is a Markov process with decreasing failure

rate The theory for CTMC can be applied.

If the Chapman-Kolmogorov equations

are given as

with the initial conditions

The above equations can easily be solved and the solution is as follows (Xie,

1991),

and for we have

where the quantities are defined as

82 Models for Software Reliability

and can be calculated recursively through

Some specific DFI models

A direct generalization of the JM-model is to use a power-type function for the

failure intensity function, The power type DFI Markov model was studied

by Xie & Bergman (1988) assuming the failure rate

It is reasonable to assume that is a convex function of i and is likely to

be greater than one, since in this case, the decrease of the failure rate is larger at

the beginning.

Another special case of the DFI model is the exponential-type Markov model

which assumes that the failure rate is an exponential function of the number of

remaining faults. It is characterized by the failure rate function

For the exponential-type DFI model, the decrease of the failure intensity at the

beginning is much faster than that at a later phase.

It is interesting to note that some of the proportional models can also be

attributed to DFI model. If all the in a proportional model,

83 Computing System Reliability

the failure rate is actually a decreasing function to the number of

remaining faults, which follows the DFI definition.

4.2.3. Time-dependent transition probability models

Sometimes the failure rate function depends not only on the number of detected

faults i but also on the time whose Markov process is shown as Fig. 4.3.

There are several models which extend the JM-model by assuming that the

probability of state change is also time-dependent. Schick-Wolverton model is

one of the first models of this type (Schick & Wolverton, 1978). The general

assumptions made by the Schick-Wolverton model are the same as those for the

JM-model except that the times between failures are independent of the density

function given by

in which is the number of initial faults and is another parameter.

Hence, the main difference between the Schick-Wolverton model and the

JM-Model is that the times between failures are not exponential. In the

Schick-Wolverton model the failure rate function to the detection of the i:th fault

is

84 Models for Software Reliability

on

Note that the failure rate function of the Schick-Wolverton model depends both

i, the number of removed faults and on the time since the removal of last

fault.

The Schick-Wolverton model with time-dependent failure rate was further

extended by Shanthikumar (1981). Shanthikumar (1981) model supposes that

there are initial software faults and assumed that after i faults are removed,

the failure rate of the software is given by

where is a proportionality factor. The parameter estimation can also be

carried out using the method of maximum likelihood.

The Markov formulation

model are briefly introduced here. Denote by

 and solution procedures of Shanthikumar (1981)

the probability distribution

function of N(t) , the number of faults that are detected and removed during time

[0, t). Under the Markovian assumption, we have that the forward Kolmogorov’s

differential equations are given as follows,

The initial conditions are

The equations can easily be solved and the solution is given by

85 Computing System Reliability

4.2.4. Imperfect debugging models

The imperfect removal of a detected fault is a common situation in practice and

the JM-model does not take this into account. This section extends the JM-model

by relaxing the assumption of perfect debugging process. During an imperfect

debugging process, there are two kinds of imperfect removal:

1)	 the fault is not removed successfully while no new fault is introduced.

2)	 the fault is not removed successfully while new faults are generated due

to the incorrect diagnoses.

For the former type of imperfect removal, the process is still a monotonous death

process in terms of the number of remaining faults; while the latter one is a

birth-death process in terms of the number of remaining faults. Both types of

imperfect debugging models will be discussed in the following.

Monotonous death process

Goel (1985) suggested a Markov model by assuming that each detected fault is

removed with probability p. Hence, with probability q=1-p, a detected fault is not

perfectly removed and the quantity q can be interpreted as the imperfect

debugging probability. This process can be modeled by a DTMC as depicted by

Fig. 4.4 where i is the number of detected failures.

86 Models for Software Reliability

The counting process of the cumulative number of detected faults at time t is

modeled as a Markov process with transition probability depending on the

probability of imperfect debugging. Still it is assumed that times between the

transitions are exponential with a parameter which depends only on the number

of remaining faults. After the occurrence of i-1 failures, p · (i– 1) faults are

removed on the average. Hence, approximately, there are faults

left, where denotes the number of initial faults as before. The failure rate

between the (i-1):st and the i:th failures is then

Using this transition function, other reliability measures can be calculated as

for the JM-model. Note that the above rate function can be rewritten as

and from this it can be seen that it is just the same as that for the JM-model with

replaced by and replaced by

As a consequence, p, and are indistinguishable. However,

and can still be estimated similar to that for the parameters in the

JM-model and can be interpreted as the expected number of failures that

will eventually occur. Another advantage of using this model is when we know

the probability of imperfect debugging, p. For example, from the previous

experience or by checking after correction, the number of initial faults and

the constant of proportionality can be estimated.

Example 4.3. Suppose that a software product is being tested by a group. The 30

test data of time between failures are recorded in Table 4.3.

If the software failures follow the above imperfect debugging model given

p=0.9, viewing it as the JM-model first, we get the following estimates

87 Computing System Reliability

Substituting p=0.9, we get

Birth-death process

Furthermore, if we allow the imperfect debugging process to introduce new faults

into the software due to the wrong diagnoses or incorrect modifications, the

debugging process becomes a birth-death Markov process. Kremer (1983)

assumes that when a failure occurs, the fault content is assumed to be reduced by

1 with probability p, the fault content is not changed with probability q, and a

new fault is generated with probability r. The obvious equality is that

88 Models for Software Reliability

This implies that we have a birth-death process with a birth rate

and a death rate It can be depicted by the CTMC as Fig. 4.5.

However, in order to fit failure data and obtain further applicable results,

assumptions on the failure rate function must be made.

Denoted by N(t) the number of remaining faults in the software at time t

and let

We obtain the forward Kolmogorov equations of this Markov process as

Generally, by inserting v(t) and and using the initial condition

the differential equations can be solved by using the probability

generating function suggested in Kremer (1983).

Imperfect debugging model considering multi-type failure

In practice, software failures can be classified into different types according to

their severity or characteristics. Different types of failures may cause different

software reliability performance. Tokuno & Yamada (2001) presented a Markov

model with two types of failures that have different kinds of failure rates and

imperfect debugging process. The first type is the failures caused by faults

89 Computing System Reliability

originally latent in the system prior to the testing, denoted by F1. The second type

is the failures due to faults randomly introduced or regenerated during the testing

phase, denoted by F2.

They assumed that

1) The failure rate for F1 is constant between failures and decreases

geometrically as each fault is corrected, and the failure rate for F2 is

constant throughout the testing phase.

2) The debugging activity for the fault is imperfect: denoted by p the

probability for a fault to be removed successfully.

3) The debugging activity is performed without distinguishing between F1

and F2.

4) The probability that two or more software failures occur simultaneously is

negligible.

5) At most one fault is corrected when the debugging activity is performed,

and the fault-correction time is negligible or not considered.

Let X(t) be a counting process representing the cumulative number of faults

corrected up to testing time t. From the assumption 2, when i faults have been

corrected by an arbitrary testing time t, after the next software failure occurs,

from the assumptions 1 and 3, when i faults have been corrected, the failure rate

for the next software failure-occurrence is given by

where D is the initial failure rate for F1, k is the decreasing ratio of the failure

rate, and is the failure rate for F2.

The reliability function to the next software failure is given by

90 Models for Software Reliability

Furthermore, let denote the one step transition probability that after

making a transition into state i, the process makes a transition into

state j by time Then, we have

where are the transition probabilities from state i to state j.

4.3. Modular Software Systems

If possible, the architecture of software should be taken into account instead of

considering the software as a black-box system. Markov models can also be

applied in analyzing the reliability for modular software system.

4.3.1. The Littlewood semi-Markov model

Littlewood (1979) incorporated the structure of the software into the Markov

process using a kind of semi-Markov model. The program is assumed to be

comprised of a finite number of modules and the transfer of control between

modules is described by the probability

The time spent in each module has a general distribution which depends

upon i and j, with finite mean When module i is executed, failures occur

according to a Poisson process with parameter The transfer of control

between modules has a probability of a failure.

The interest of the composite model is focused on the total number of failures

of integrated software system in time interval (0,t], denoted by N(t). The

91 Computing System Reliability

asymptotic Poisson process approximation for N(t) is obtained under the

assumption that failures are very infrequent. The times between failures tend to

be much larger than the times between exchanges of control. The failure

occurrence rate of this Poisson process is given by

where

represents the proportion of time spent in module i, and

is the frequency of transfer of control between i and j.

4.3.2. Some other modular software models

User-oriented model

Similar to the Littlewood semi-Markov model, a model called the user-oriented

model, was developed by Cheung (1980) where the user profile can be

incorporated into the modeling. The model is a Markov model based on the

reliability of each individual module and the inter-modular transition probabilities

as the user profile.

Assume that the program flow graph of a terminating application has a single

entry and a single exit node, and that the transfer of control among modules can

be described by an absorbing DTMC with a transition probability matrix

Modules fail independently and the reliability of the module i is the

probability that the module performs its function correctly.

92 Models for Software Reliability

Two absorbing states C and F are added, representing the correct output and

failure state, respectively, and the transition probability matrix P is modified

appropriately to The original transition probability between the modules

i and j is modified to This represents the probability that the module i

produces the correct result and the control is transferred to module j. From the

exit state n, a directed edge to state C is created with transition probability R to

represent the correct execution. The failure of a module i is considered by

creating a directed edge to failure state F with transition probability

Hence, DTMC defined with transition probability matrix is a composite

model of the software system. The reliability of the program is the probability of

reaching the absorbing state C of the DTMC.

Let Q be the matrix obtained from by deleting rows and columns

corresponding to the absorbing states C and F. represents the

probability of reaching state n from 1 through k transitions. From initial state 1 to

final state n, the number of transitions k may vary from 0 to infinity. It can be

show that

and it follows that the overall system reliability can be computed as

Task-oriented model

A modular software is usually developed to complete certain tasks. Kubat (1989)

presented a task-oriented model which considered the case of a terminating

software application composed of n modules designed for K different tasks. Each

task may require several modules and the same module can be used for different

tasks. Transitions between modules follow a DTMC such that with probability

task k will first call module i and with probability task k will call

93 Computing System Reliability

module j after executing in module i. The sojourn time during the visit in module

i by task k has the density function Hence, a semi-Markov process can

be used.

The failure rate of module i is As shown in Kubat (1989), the probability

that no failure occurs during the execution of task k, while in module i is

The expected number of visits in module i by task k, denoted by can be

obtained by solving

The probability that there will be no failure when running for task k can be

approximated by

and the system failure rate is calculated by

where is the arrival rate of task k.

Multi-type failure model in modular software

Ledoux (1999) further proposed a Markov models to include the multi-type

failures into the modular software reliability analysis. They constructed an

irreducible CTMC with transition rates to model the software composed of a

set of components C. In the model, two types of failures are considered: primary

94 Models for Software Reliability

failures and secondary failures. The primary failure leads to an execution break;

the execution is restarted after some delay. A secondary failure does not affect

the software because the execution is assumed to be restarted instantaneously

when the failure appears. For an active component a primary failure occurs

with constant rate while the secondary failures are described as Poisson

process with rate When control is transferred between two components i and

j then a primary (secondary) interface failure occurs with probability

Following the occurrence of a primary failure, a recovery state is occupied,

and the delay of the execution break is a random variable with a phase type

Hence, the CTMC that defines the architecture is replaced by a CTMC

that models alternation of operational-recovery periods. The associated generator

matrix defines the following transition rates: from

Rdistribution. Denoting by the set of recovery states, the state space becomes

to with no failure;

from to with a secondary failure; from to with a primary failure;

from recovery state i to recovery state j; and from recovery state i to

A Markov model is then constructed according to the architecture of

different modules and their states. Based on the CTMC, the

Chapman-Kolmogorov equations can be obtained and solved by computational

tools.

4.4. Models for Correlated Failures

Perhaps the most stringent restriction in most software reliability models is the

assumption of statistical independence among successive software failures. It is

common for software failures to be correlated in successive runs. In order to deal

with this issue, Goseva-Popstojanova & Trivedi (2000) formulated a Markov

renewal model that can consider the phenomena of failure correlation.

95 Computing System Reliability

4.4.1. Description of the correlated failures

Since each software run has two possible outcomes (success or failure), the usual

way of looking at the sequence of software runs is to consider it as a sequence of

Bernoulli trials, where each trial has success-probability p and failure-probability

1-p. Goseva-Popstojanova & Trivedi (2000) constructed a Markov renewal

model for the sequence of dependent software runs in two stages:

1)	 Define a DTMC which considers the outcomes from the sequence of

possibly dependent software runs in discrete time.

2) Construct the process in continuous time by attaching the distributions of

the runs execution to the transitions of the DTMC.

The assumptions of the model are:

1) The probability of success or failure at each run depends on the outcome

of the previous run.

2) A sequence of software runs is defined as a sequence of dependent

Bernoulli trials.

3) Each software run takes a random amount of time to be executed.

4) Software execution times are not identically distributed for successful and

failed runs.

4.4.2. Constructing the semi-Markov model

Associated with the j:th software-run, let be a random variable that

distinguishes whether the outcome of that particular run resulted in success or

failure:

96 Models for Software Reliability

Here we use score 1 for each time a failure occurs and 0 otherwise. The number

of runs that have resulted in a failure among n successive software runs is:

of n possibly dependent random variables.

Suppose that if run j results in failure. At run (j+1), the failure probability is

q and the success probability is Similarly, if run j results in success, then p

and are the probabilities of success and failure, respectively, at run (j+1). The

sequence of dependent Bernoulli trials defines a DTMC with 2

states. One is a success state denoted by 0; the other denoted by 1 is a failure. Its

transition probability matrix is

as shown by Fig. 4.6.

The unconditional probability of failure on run (j+1) can be derived, see e.g.

Goseva-Popstojanova & Trivedi (2000), as

This equation shows the property of failure correlation in successive runs. If

p + q =1, the Markov chain describes a sequence of independent Bernoulli trials,

and the above equation reduces to:

97 Computing System Reliability

which means that the failure probability does not depend on the outcome of the

previous run. When p + q > 1, runs are positively correlated, i.e. if a software

failure occurs in run j, then there is an increased chance that another failure

occurs in the next run. In this case, failures occur in clusters. Finally, when

p + q < 1, runs are negatively correlated. In this case, if a software failure occurs

in run j, then there is an increased chance that a success occurs in run (j+1), i.e.,

there is a lack of clustering.

time. Let

The next step in the model construction is to obtain a process in continuous

be the cumulative distribution function of the time spent in a

transition from state k to state l. It is realistic to assume that the runs execution

times are not identically distributed for successful and failed runs. Hence, the

depend only of the type of point at the end of the interval, i.e.,

and

renewal process as the software reliability model in continuous time.

With the addition of the to the transitions of DTMC we obtain a Markov

4.4.3. Considering software reliability growth

During the testing phase, software is subjected to a sequence of runs, making no

changes if there is no failure. When a failure occurs on any run, then an attempt is

made to fix the underlying fault which causes the conditional probabilities of

success and failure on the next run to change. The software reliability growth

model in discrete time can be described with a sequence of dependent Bernoulli

trials with step-dependent probabilities. The underlying stochastic process is a

nonhomogeneous DTMC.

98 Models for Software Reliability

The sequence provides an alternate description of the

software reliability growth model considered here. That is, defines the

DTMC presented in Fig. 4.7.

Both states i and represent that the failure state has been occupied i times.

State i represents the first trial for which State represents all

subsequent trials for which i.e., all subsequent successful runs before the

occurrence of next failure (i+1). Without loss of generality let the first run be

successful which means that 0 is the initial state.

The software reliability growth model in continuous time can also be

obtained by assigning runs execution-time distributions to transitions of the

DTMC in Fig. 4.7. For simplicity, we have chosen the same execution time

distribution regardless of the outcome:

Hence, of each software run has cumulative distribution function

99 Compting System Reliability

i and iLet be the number of runs between failures +1, From Fig. 4.7,

the random variable has the following distribution:

It follows that the distribution function of the time to failure (i + 1), given

that the system has had i failures, is:

where is k-fold convolution of F(t).

The Laplace-Stieltjes transform of F(t) is
 and then the above

equation is transformed as

Its inversion is straightforward and reasonably simple closed-form results can be

obtained when F(t) has a rational Laplace-Stieltjes transform.

Some general properties of the inter-failure time can be developed without

making assumptions about the form of F(t). For example, the MTTF is:

where is the mean execution-time.

100 Models for Software Reliability

Example 4.4. Suppose that the failures of a software are correlated between

successive runs with (from success to success state) and (from

exponential distribution with mean

failure to failure state). The execution time of each run is assumed to follow the

 hours.

Substituting the above values into the above equation, we get

During the testing phase, when detecting a failure, we try to remove it, so the

dependent probabilities are changing as Fig. 4.7. If we assume

and then

If the customer requires that the MTTF should be longer than 100 hours, to

determine the testing time, we should use the following in equation

Solving this, we get so the least number of detected/debugged failures

should be 10. Then, the expected testing time before release can be computed as

That is, in order to satisfy the customer requirement, the software should be

tested for at least 669 hours before release.

101 Computing System Reliability

4.5. Software NHPP Models

Although some basic and advanced Markov models are presented in the previous

sections, some NHPP models are mentioned here due to their significant impact

on the software reliability analysis. Such a model simply models the failure

occurrence rate as a function of time (see e.g., Section 2.4). Hopefully this

occurrence rate is decreasing when faults are removed as an effect of debussing.

Note that after the release, the failure occurrence rate should be a constant unless

the debugging is continued (Yang & Xie, 2000).

4.5.1. The Goel-Okumoto (GO) model

In 1979, Goel and Okumoto presented a simple model for the description of

software failure process by assuming that the cumulative failure process is NHPP

with a simple mean value function. Although NHPP models have been studied

before, see e.g. Schneidewind (1975), the GO-model is the basic NHPP model

that later has had a strong influence on the software reliability modeling history.

Model description

The general assumptions of the GO-model are

1)	 The cumulative number of faults detected at time t follows a Poisson

distribution.

2)	 All faults are independent and have the same chance of being detected.

3)	 All detected faults are removed immediately and no new faults are

introduced.

Specifically, the GO-model assumes that the failure process is modeled by an

NHPP model with mean value function m(t) given by

102 Models for Software Reliability

The failure intensity function can be derived by

where a and b are positive constant. Note that The physical meaning

of parameter a can be explained as the expected number of faults which are

eventually detected. The quantity b can be interpreted as the failure occurrence

rate per fault.

The expected number of remaining faults at time t can be calculated as

The GO-model has a simple but interesting interpretation based on a model

for fault detection process. Suppose that the expected number of faults detected in

a time interval is proportional to the number of remaining faults, we

have that

where b is a constant of proportionality.

The above difference equation can be transformed into a differential

equation. Divide both sides by and take limits by letting tend to zero,

we get the following equation,

It can be shown that the solution of this differential equation, together with the

initial condition m(0) = 0, lead to the mean value function of the GO-model.

Note that both the GO-model and JM-model give the exponentially

decreasing number of remaining faults. It can be shown that these two models

cannot be distinguished using only one realization from each model. However,

the models are different because the JM-model assumes a discrete change of the

failure intensity at the time of the removal of a fault while the GO-model assumes

a continuous failure intensity function over the whole time domain.

103 Computing System Reliability

Parameter estimation

Denoted by the number of faults detected in time interval where

and are the running times since the software testing

begins. The estimation of model parameters a and b can be carried out by

maximizing the likelihood function, see e.g. Goel & Okumoto (1979). The

likelihood function can be reduced to

Solving this equation to calculate the estimate of b, and then a can be estimated
as

Usually, the above two equations has to be solved numerically. It can also be

shown that the estimates are asymptotically normal and a confidence region can

easily be established. A numerical example is illustrated below.

Example 4.5. Suppose a software product is being tested by a group. Each time

when detecting the failure, it is removed and the time for repair is not computed

in the test time. The 30 test data of time to failures are recorded in Table 4.4.

Solving the likelihood equations, we get b = 0.0008 and a = 57. The

failure intensity function and the mean value function for this GO model are

and

104 Models for Software Reliability

4.5.2. S-shaped NHPP models

The mean value function of the GO-model is exponential-shaped. Based on the

experience, it is observed that the curve of the cumulative number of faults is

often S-shaped as shown by Fig. 4.8, see e.g. Yamada et al. (1984).

105 Computing System Reliability

This can be explained by the fact that at the beginning of the testing, some

faults might be “covered” by other faults. Removing a detected fault at the

beginning does not reduce the failure intensity very much since the same test data

will still lead to a failure caused by other faults. Another reason of the S-shaped

behavior is the learning effect as indicated in Yamada et al. (1984).

Delayed S-shaped NHPP model

The mean value function of the delayed S-shaped NHPP model is

This is a two-parameter S-shaped curve with parameter a denoting the number of

faults to be detected and b corresponding to a fault detection rate. The

corresponding failure intensity function of this delayed S-shaped NHPP model is

The expected number of remaining faults at time t is then

Inflected S-shaped NHPP model

The mean value function of the inflected S-shaped NHPP model is

In the above a is again the total number of faults to be detected while b and c are

called the fault detection rate and the inflection factor, respectively. The intensity

function of this inflected S-shaped NHPP model can easily be derived as

106 Models for Software Reliability

Given a set of failure data, for both delayed and inflated S-shaped NHPP models,

numerical methods have to be used to solve the likelihood equation so that

estimates of the parameters can be obtained.

4.5.3. Some other NHPP models

Besides the S-shaped models, there are many other NHPP models that extend the

GO-model for different specific conditions.

Duane model

The Duane model assumes that the mean value function satisfies

In the above, and are parameters which can be estimated by using

collected failure data. The mean value functions with and different

are depicted by the Fig. 4.9.

It can be noted that when the Duane NHPP model is reduced to a

Poisson process whose mean value function is a straight line. In such a case, there

is no reliability growth. In fact, the Duane model can be used to model both

reliability growth and reliability deterioration which is common

in hardware systems.

The failure intensity function, is

107 Computing System Reliability

One of the most important advantages of the Duane model is that if we plot the

cumulative number of failure versus the cumulative testing time on a

log-log-scale, the plotted points tends to be close to a straight line if the model is

valid. This can be seen from the fact that the relation between m(t) and t can be

rewritten as

where ln and Hence, ln m(t) is a linear function of ln t and

due to this linear relation, the parameters and may be estimated

graphically and the model validity can easily be verified. In fact, this is called

first-model-validation-then-parameter-estimation approach (Xie & Zhao, 1993).

The Duane model gives an infinite failure intensity at time zero. Littlewood

(1984) proposed a modified Duane model with the mean value function

108 Models for Software Reliability

The parameter k can be interpreted as the number of faults eventually to be

detected.

Log-power model

Xie & Zhao (1993) presented a log-power model. The mean value function of

this model can be written as

This model has shown to be useful for software reliability analysis as it is a pure

reliability growth model. It is also easy to use due to its graphical interpretation.

The plot of the cumulative number of failures at time t against t+1 will tend to be

a straight line on a log-double-log scale if the failures follow the log-power

model. This can be seen from the following relationship

The slope of the fitted line gives an estimation of b and its intercept on the

vertical axis gives an estimation of lna.

The failure intensity function of the log-power model can be obtained as

The failure intensity function is interesting from a practical point of view. The

log-power model is able to analyze both the case of strictly decreasing failure

intensity and the case of increasing-then-decreasing failure intensity function. For

example, if then of the above equation is a monotonic decreasing

function of t; Otherwise given is increasing if

and decreasing if

The estimation of the parameters a and b is also simple. Suppose total n

failures are detected during the a testing period (0,T] and the times to failures

109 Computing System Reliability

are ordered by The maximum likelihood estimation of a

and b is then given by:

and

They can be simply calculated without numerical procedures.

Musa-Okumoto model

Musa and Okumoto (1984) is another model for infinite failures. This NHPP

model is also called the logarithmic Poisson model. The mean value function is

The failure intensity function is derived as

Given a set of failure time data the maximum likelihood

estimates of the parameters are the solutions of the following equations:

These equations have to be solved numerically.

110 Models for Software Reliability

4.6. Notes and References

Software reliability is an important research area that has been studied by many

researchers. Some books related to this are Musa et al. (1987), Xie (1991), Lyu

(1996), Musa (1998) and Pham (2000). An earlier annotated biography can be

found in Xie (1993). In addition, Ammar et al. (2000) presented a brief

comparative survey of fault tolerance as it arises in hardware systems and

software systems and discussed logical models as well as statistical models.

Other than Markov models discussed in this chapter, Limnios (1997)

analyzed the dependability of semi-Markov systems with finite state space based

on algebraic calculus within a convolution algebra. Tokuno & Yamada (2001)

constructed a Markov model, which related the failure and restoration

characteristics of the software system with the cumulative number of corrected

faults, and also considered the imperfect debugging process together with the

time-dependent property. Goseva-Popstojanova & Trivedi (2003) presented an

interesting study on some architecture-based approaches in software reliability.

Becker et al. (2000) presented a semi-Markov model for software reliability

allowing for inhomogenities with respect to process time. Rajgopal & Mazumdar

(2002) also presented a Markov model for the transfer of control between

different software modules. Boland & Singh (2003) also investigated a

birth-process approach.

For the NHPP models, Yamada & Osaki (1985) summarized some earlier

software reliability growth models. Recently, many specific NHPP models have

been studied. For example, Kuo et al. (2001) proposed a scheme for constructing

software reliability growth models based on a NHPP model. Huang et al. (2003)

further described how several existing software reliability growth models based

on NHPP can be comprehensively derived by applying the concept of weighted

arithmetic, weighted geometric, or weighted harmonic mean. Huang & Kuo

(2003) presented some analysis that incorporates logistic testing-effort function

into software reliability modeling. Zhang & Pham (2002) studied the problem of

predicting operational software availability for telecommunication systems.

111 Computing System Reliability

Shyur (2003) also presented an NHPP model that considers both imperfect

debugging and the change-point. Pham (2003) recently presented studies in

software reliability that includes NHPP software reliability models, NHPP

models with environmental factors, and cost models. See Pham & Zhang (2003)

on some further discussion on some reliability and cost models with testing

coverage.

Although the Markov and NHPP models are widely used in software

reliability, some other models and tools might be also useful. Miller (1986)

introduced “Order Statistic” models in studying the software reliability, which

can also be found in the later research of Kaufman (1996), Aki & Hirano (1996),

among others. Xie et al. (1998) described a double exponential smoothing

technique to predict software failures. Helander et al. (1998) presented planning

models for distributing development effort among software components to

facilitate cost-effective progress toward a system reliability goal. Recently,

Zequeira (2000), Sahinoglu et al. (2001), Littlewood et al. (2003) and Ozekici &

Soyer (2003), among others, studied some Bayesian approaches to model and

estimate the reliability of software-based systems.

This page intentionally left blank

CHAPTER MODELS FOR
INTEGRATED SYSTEMS

A computing system usually integrates both software and hardware, and software

cannot work without the support of hardware. Hence, computing system

reliability should be studied by considering both software and hardware

components. This chapter presents some models for the reliability analysis at the

system level by incorporating both software and hardware failures. First, a single

processor system is studied. Second, the case of modular system reliability is

discussed. Following that, Markov models for clustered computing system are

presented. Finally, a unified model that integrates NHPP software model into the

Markov hardware model is shown.

5.1. Single-Processor System

The simplest case for the integrated software and hardware system is to view it as

a single processor divided into two subsystems: software and hardware

subsystems. Considering such system, Goel & Soenjoto (1981) presented one of

the first, but general, Markov models, which will be described in this section.

113

114 Models for Integrated Systems

5.1.1. Markov modeling

The assumptions of the model are as follows:

1)

each has a failure occurrence rate of

2) Failures of hardware subsystem are also independent and have a failure
occurrence rate of

3) The time to remove a software fault, when there are i such faults in the

system follows an exponential distribution with parameter

4) The time to remove the cause of a hardware failure also follows an

exponential distribution with parameter

5) Failures and repairs of the hardware subsystem are independent of both

the failures and repairs of the software subsystem.

6) At most one software fault is removed and no new software faults are
introduced during the fault correction stage.

7) When the system is not operational due to the occurrence of a software
failure, the fault causing the failure is corrected with probability

Faults in the software subsystem are independent from each other and

 and

is the probability of imperfect repair of software.

8) After the occurrence of a hardware failure, the hardware subsystem is
recovered with probability, and is the probability for the

hardware still staying at the failed state after the repair.

Let X (t) denote the state of the system at time t and ‘ X (t) = i’, i=0,1,... ,N,

implies that the system is operational while there are i remaining software faults.

Here N is the initial number of software faults. Also,

implies that the system is down for repair of software with i

remaining software faults at the time of failure. Similarly,

implies the system is down for repair of hardware with i

remaining software faults at the time of failure. The Markov chain is shown in

Fig. 5.1.

115 Computing System Reliability

Suppose that the system is at state i (an operational state containing i software

faults), i=1,2,...,N. The system may fail due to the software failure with

probability to state and due to the hardware failure with the probability

to state At state debugging is taking place to remove the fault that

causes the software failure. With probability the software fault is

successfully removed and the system goes to state i-1. Otherwise with probability

the fault is not removed and the software is only restarted at state i. For state

maintenance personnel will try to recover the hardware failure and it has a

probability to return to the operational state i and probability to remain

at the failure state After the software is fault-free, i.e. at the state 0, the

system reduces to a hardware system subject to hardware failures only.

Let be the one-step transition probability that, after transiting into

state k, the process X(t) next transits to state j in an amount of time less than or

equal to t. Denoted by the cumulative distributing function of the time

from state k to state j. Then, is the product of and The

expressions for in the Fig. 5.1 are as follows:

116 Models for Integrated Systems

These basic equations describe the stochastic process as a semi-Markov process

and can be used to derive some system-performance measures, see e.g. Goel &

Soenjoto (1981), such as time to a specified number of software faults, system

operational probabilities, system reliability and availability, and expected number

of software, hardware and total failures by time t. Some of the issues are

discussed in the following.

5.1.2. Time to a specified number of remaining software faults

The faults remaining in the software are sources of failures and we would like to

remove them as soon as possible. However, it is not always feasible or practical

to remove all of the faults during a limited time period of testing. In that case, we

would like to know the distribution of time to a specified purity level, i.e., of the

time to n remaining faults.

Let
 be the first passage time from state i to n, and let be its

distribution function. Consider a time interval (r, r + dr) . For any i, the

probability of remaining in the state i, in this interval is and the

probability of going from the state i to is

After the process X(t) reaches either state
 or further transitions will

be governed by distribution functions, and respectively,

i = n +1,..., N, as shown in Goel & Soenjoto (1981): for

can be obtained by taking the Laplace-Stieltjes transform of the renewal equation

117 Computing System Reliability

where

Then, it can be shown that

and

Example 5.1. Consider a system with N = 10 faults, and

Suppose that and the parametric values are

Substituting the numerical values into Eq. (5.2), we obtain the distribution of

The distribution of is shown in Fig. 5.2 and the trend for other

distributions are similar to this. The means and standard deviations of these

distributions are obtained from the above equations respectively, and some

numerical results are shown in Table 5.1.

118 Models for Integrated Systems

5.1.3. System reliability and availability

The system reliability, or the probability that the system is operational at time t

with a specified number of remaining software faults, can then be derived as the

following. Let be the probability that the system is operational at time t

119 Computing System Reliability

with n remaining software faults, given that it was in operation at time t = 0

with N software faults, i.e.,

We call the (operational) state occupancy probability. By conditioning

on the first up-down cycle of the process, as shown by Goel & Soenjoto (1981),

the following equation for can be obtained:

In the above, is the convolution operator as in Eq. (2.35). By conditioning on

the first passage time, we have

where is given by Eq. (5.2).

By taking the Laplace-Stieltjes transforms of the above equations and solving

the resulting equations, we have

The system availability can then be computed as

An example for operational probability and system availability is shown below.

Example 5.2. Continued with Example 5.1. The distributions obtained

from Eq. (5.9) and the availability function A(t) obtained from Eq. (5.10) are

shown in Table 5.2 for some different time points.

120 Models for Integrated Systems

5.1.4. Expected number of failures by time t

Expected number of software failures

Let be the expected number of software failures detected by time t.

Consider a counting process where is the number of

software failures detected during the time interval (0,t],when the initial number

of faults in the software system is i. Let

conditioning on the first passage time going from state N to i, we have

By

Using the Laplace-Stieltjes transforms as shown in Goel & Soenjoto (1981), we

get

121 Computing System Reliability

Expected number of hardware failures

Let be the expected number of hardware failures detected by time t.

Consider a counting process where is the number of

of faults in the hardware subsystem is i. Let

conditioning on the first passage time from state N to i, we have

thardware failures detected during the time interval (0,], when the initial number

By

Using the Laplace-Stieltjes transforms, we get

The expected total number of failures denoted by M (t) is the summation of

software failures and hardware failures as

Example 5.3. Consider the same example as in Examples 5.1 and 5.2. For this

system, the expected numbers of software, hardware, and system failures are

computed from the above equations. Some numerical values are given in Table

5.3.

Table 5.3 shows that the number of software failures detected increases

rapidly at the beginning, leveling off at a value of about 11 at t=500. This

happens because the software failure rate depends on the number of remaining

faults and this number decreases with time. After t=800, there are no software

122 Models for Integrated Systems

faults left and the system is composed of a perfect software subsystem and a

failure-prone hardware subsystem. The rate of occurrence of hardware failures,

on the other hand, is unaffected by the passage of time.

5.2. Models for Modular System

Similar to the case of modular software presented in the previous chapter,

integrated software and hardware systems can also be decomposed into a finite

number of modules. Markov models can also be used in analyzing such modular

systems as shown below.

5.2.1. Markov modeling

Siegrist (1988) might be one of the first models using Markov processes to

analyze the modular software/hardware systems. It was assumed that the control

of the system is transferred among the modules according to a Markov process.

Each module has an associated reliability which gives the probability that the

123 Computing System Reliability

module will operate correctly when called and will transfer control successfully

when finished. The system will eventually either fail or complete its task

successfully so that to enter a terminal state.

The modules (or states) of the system is denoted by i (i=1,2,...,n). The ideal

and transition matrix

n}(failure free) system is described by a Markov chain with state space {1,2,...,

P. That is, is the conditional probability that the next

state will be j given that the current state is i. The reliability of state i, denoted by

is the probability that state i will function correctly when called and will

transfer control successfully when finished. The imperfect system is modeled by

adding an absorbing state F (failure state) and the transition matrix is modified

accordingly.

space {1,2,...,

Specifically, the imperfect system is described by a Markov chain with state

n, F} and transition matrix given by

Usually for each i and hence each of the states 1,2,...,n eventually

leads to the absorbing state F. Note that the dynamics of the imperfect system are

completely described by the state reliability function R and the transition matrix

P since this description is equivalent to specifying the transition matrix of the

imperfect system.

5.2.2. Expected number of transitions until failure

Based on

number of transitions until failure as the measure of system reliability. Let

denote the expected number of transitions until failure for the imperfect system,

expectedthe above Markov model, Siegrist (1988) presented the

124 Models for Integrated Systems

regular time intervals, then

 istarting in state . If the transitions of the system correspond to inputs received at

 is proportional to the expected time until failure,

starting in state i. Two methods of computing the function M will be given.

Let Q denote the restriction of the transition matrix of the imperfect

system to the (transient) states 1,2,...,n. Note that Then

It follows that

Let i and j be any of the states 1,2,...,n. We have that

where is the expected number of transitions until the imperfect system either

fails or reaches state j, starting in state i; and is the probability that the

imperfect system eventually reaches state j, starting in state i. If i=j, “reaches”

should be interpreted as “returns to” in which case, we obtain from the above

equation

Then, the desired result is

From the Markov property, the matrices A and B are related to the basic data R

and P according to the following systems of equations:

125 Computing System Reliability

and

Moreover

of visits to j for the imperfect system starting in state i.

 is the same as namely, the expected number

With the Markov property, the measure of expected number of transitions

until failure is derived. As a result, this model is more appropriate for systems

which run for fixed periods of time or which run continuously (until failure). Two

examples of branching and sequential structures are illustrated here.

Example 5.4. (A Branching System) A general branching system has the

transition graph depicted in Fig. 5.3. State 1 acts as a central control which may

pass the control to any of the states 2,...,n or back to itself. Each of the branch

states 2,...,n can pass control back to itself or back to the center state 1.

126 Models for Integrated Systems

Given the transition matrix P and the state reliability function R and let state 1 be

the initial state, the expected number of transitions until failure starting in

state 1, can be computed. Note first that the imperfect system, starting in state 1

will make at least one transition before failure or return to state 1 occurs.

Furthermore, if the stem moves to state j on the first transition, then on average,

the system will make transitions until failure or return to state 1

occurs. It follows that

On the other hand, the probability that the imperfect system, starting from state 1,

will eventually return to state 1 is

Therefore, from Eq. (5.20)

If n=3 modules including a CPU, a memory and a computing software, CPU is

the central state that any computing control starting from it and the other two

modules are branch states that are transferred with only CPU and itself. Given a

transition matrix

and reliability and by substituting the numerical

values into the above equations, we get

127 Computing System Reliability

The expected number of transition till failure is

Given the expected time of each transition is 26 seconds, the MTTF is

Example 5.5. (A Sequential System) The transition graph of a sequential system

is given in Fig. 5.4. Note that control tends to pass sequentially from state 1 or

state 2,..., to state n except that in each state, control can return to that state or to

state 1 which is the initial state.

Suppose that the transition matrix P and the state reliability function R are

known. First note that when the system is in state i, the expected number of

itransitions until the process leaves state is It follows that

128 Models for Integrated Systems

By a similar argument, the probability of eventual return to state 1, starting in

state 1 for the imperfect system is

5.3. Models for Clustered System

Clustered computing systems use commercially available computers networked

in a loosely-coupled fashion. It can provide high levels of reliability if

appropriate levels of fault detection and recovery software are implemented in the

middleware (an application layer). The application, therefore, can be made as

reliable as the user requires and it is constrained only by the upper bounds on

reliability imposed by the architecture, performance and cost considerations.

5.3.1. Introduction to clustered computing systems

A cluster is a collection of computers in which any member of the cluster is

capable of supporting the processing functions of any other member. A clustered

computing system has a redundant n + k configuration, where n processing

nodes are actively processing the application and k processing nodes are in a

standby state, serving as spares. In the event of a failure of an active node, the

application that was running on the failed node is moved to one of the standby

nodes.

The simplest cluster system is one active and one standby, in which one node

is actively processing the application and the other node is in a standby state.

Other common cluster systems include simplex (one active node, no spare), n+1

(n active nodes, 1 spare), and n+0 (all n active nodes). In a system with n active

nodes, the applications from the failed node are redistributed among the other

active nodes using a pre-specified algorithm.

129 Computing System Reliability

Consider a general clustered computing system with n active processors and

k spares, see e.g., Mendiratta (1998). In this system, there is a Power Dog (PD)

attached to each processor that can power cycle or power down the processor, and

a Watch Dog (WD) with connections to each processor that monitors

performance from each processor and initiate failover if it detects a processor

failure. Then, the failover information is transferred to a switching system (SS)

that can turn on the Power Dog of the standby processors to replace the failed

ones.

The block diagram for this clustered system architecture is shown in Fig. 5.5

and represents the system to be modeled.

5.3.2. Markov modeling

For each processor, there are two types of failures: software and hardware

failures. Suppose the failure rate for software is and for hardware Those

130 Models for Integrated Systems

failed processors may or may not be repaired, which will be discussed in the

following, respectively.

Model for non-repairable system

Non-repairable system means that the processors are not repaired if they are

failed. Thus, for the n + k clustered system without repair, the Markov model

can be depicted by the CTMC in Fig. 5.6.

The state i in Fig. 5.6 represents the number of good processors (both active and

standby). If the cluster system must keep n processors active, so the

failure rate should be If 0 < i < n , it means that no spares are

available and the number of active processors is i. Hence, the failure occurrence

rate is

Denote by (i=0,1,2,..., n+k) the probability for the system to stay at

state i at time instant t. The Chapman-Kolmogorov equation can be written as

131 Computing System Reliability

We assume that the process begins from the state n+k that all the processors are

good initially. Hence, the initial conditions are

With a numerical program, one can obtain the solution of the above differential

equations with initial conditions even for large value of n+k.

The probability of the system failure state determines the unreliability

function. Therefore, the reliability function defined as the probability that at least

one processor works well is

Moreover, we can use Laplace-Stieltjes transform to approximate the reliability

function. For example, the state probability for the failed state after the

transformation is

where

Expanding the denominator, substituting the expression in the equation for

we obtain:

The above equation can be easily inverted using inverse Laplace-Stieltjes

transforms

132 Models for Integrated Systems

Generally, we use only the first term for the approximation and we have

Since we have an alternating power series, the next term will provide a bound on

the absolute error in using this approximation:

Model for repairable system

If a system is repairable, the failed processor can be recovered with a repair rate

from state i-1 back to state i. The Markov model is built as the CTMC of Fig.

5.7.

As before, the Chapman-Kolmogorov equation can be written as

133 Computing System Reliability

with the initial conditions (5.30).

Again, these equations can be solved numerically using certain computer

programs.

Model with different repair rates of software and hardware

In the above model for repairable clusters, is the expected system repair rate

no matter whether the failed processors are caused by software failures or

hardware failures. Actually, the rate for repairing software failure should be

different from that for repairing hardware failure (Lai et al., 2002). A model for

this different repair rates is discussed here.

Let be the rate to repair one failed processor caused by software failure

and by hardware failure. Then part of the CTMC can be depicted as shown

in Fig. 5.8.

In fig. 5.8, the transition rates are given by

and

134 Models for Integrated Systems

The corresponding Chapman-Kolmogorov differential equation for the

probability that the system is in the state (i, j) at time t is, for

n + k;

The initial conditions are

The boundary conditions are:

135 Computing System Reliability

and

The above equations need to be solved numerically with a computer program.

After that, the system availability for the n+k clustered system can be calculated

by

Example 5.6. Consider a clustered system containing 2 active processors.

Suppose that the failure rate of software is and that of hardware is

in a processor. We discuss the following three different conditions

in the following.

1) The case without repair

In this case, the Markov model for this 2+0 cluster is constructed in Fig. 5.9.

136 Models for Integrated Systems

Solving the Chapman-Kolmogorov differential equations in (5.28) with initial

condition (5.29), we get

and the reliability function

2) The case of the identical repair rate

With the identical repair rate the Markov model for this 2+0 cluster is

constructed in Fig. 5.10.

137 Computing System Reliability

By constructing the Chapman-Kolmogorov differential equations, we get

with the initial condition If the repair rate

for both software failure and hardware failure, we can obtain the availability

numerically, as shown in Fig. 5.11. function

3) General case of different repair rates

Considering different repair rates for software and hardware, the Markov model

for this 2+0 cluster is constructed in Fig. 5.12.

138 Models for Integrated Systems

The corresponding Chapman-Kolmogorov differential equations are

with initial condition and other probabilities 0. If the repair rates are

and the availability function can be

computed numerically.

139 Computing System Reliability

5.4. A Unified NHPP Markov Model

In order to incorporate the NHPP software reliability model into the Markov

hardware reliability model, Welke et al. (1995) developed a unified NHPP

Markov model. The unified model is accomplished by determining a transition

probability for a software failure and then incorporating the software failure

transitions into the hardware reliability model. Based on this unified model, the

differential equations can be easily established and solved despite the

time-varying software failure rates.

The basic assumptions of this unified model are listed below:

1)	 Software failures are described by a general NHPP model, with the

probability function

where m(t) is the mean value function and n is the number of failures

occurring up to time t.

2)	 The times between hardware failures are exponentially distributed random

variable.

5.4.1. Software failure transition probability

The mathematical justification for implementing the NHPP model as a Markov

process is based on the concept of r:th order inter-arrival times (Drake, 1967).

Denoted by the random variable of the r:th order inter-arrival times and let

be the probability density function of we then have

140 Models for Integrated Systems

This equation provides a discrete-time relationship that can be incorporated into

the discrete-time Markov model. The time between failures in a Poisson model

has an exponential distribution, so the same derivation used in hardware

modeling can be used here to show:

Given this approximation, the discrete-time relationship can be written in a

slightly different form as:

where P(r – 1,l) is the probability that there are exactly r – 1 failures in an

interval of duration l.

Note that the failure intensity of NHPP is time-varying (Welke et al., 1995)

and Eq. (5.45) becomes:

Substituting Eq. (5.42) into the above equation, we have

5.4.2. Markov modeling

We now use the above equation to describe software state transitions in a Markov

model. The transition we evaluate is the probability that the software remains in

the

the same (operational) state, given it started in the state. Since Eq. (5.43) gives

 probability that failure r occurs in the probability that any

software failure occurs in this interval is simply the sum of Eq. (5.43) over all

possible values of r. Assume that the maximum value of r is large enough to

approximate this sum as

141 Computing System Reliability

Therefore, the probability that no failures occur in
 is

By substituting Eq. (5.47) into the above equation and performing some algebraic

manipulation, we have

since The above equation means the probability that no software failure

occurs during a short time so the transition probability from the operational

state to the software failure state during the short enough can be expressed

as

Hence, with the above transition probability, NHPP model can be integrated into

the Markov model. For details, see Welke et al. (1995). Based on the above

equations, the differential equations can be obtained and solved as usual. An

example for it is illustrated below.

Example 5.7. Suppose that a processing element contains both software and

hardware parts. The software failures follow a classical NHPP model, the

GO-model (Goel & Okumoto, 1979) with failure intensity function

142 Models for Integrated Systems

and of the hardware follow the exponential distribution with parameter

Suppose a = 0.001, b = 10, and the failed system will be repaired

with repair rate for software and for hardware.

The state probabilities satisfy the following differential equations

function

with the initial condition we can get the availability

numerically, as shown by Fig. 5.13.

143 Computing System Reliability

Note that although this example implemented the GO model for software failures,

other NHPP software models, see e.g. Xie (1991), can also be integrated into the

unified model according to their specific conditions.

5.5. Notes and References

Pukite & Pukite (1998) summarized some simple models for the reliability

analysis of the hardware and software system. Another useful reference is Kapur

et al. (1998).

Similar to the single-processor model presented in this chapter, Hecht &

Hecht (1986) also studied the reliability in the system context considering both

software and hardware. Fryer (1985) implemented the fault tree analysis in

analyzing the reliability of combined software/hardware systems, which

determines how component failures can contribute to system failure. Sumita &

Masuda (1986) developed a combined hardware/software reliability model where

both lifetimes and repair times of software and hardware subsystems are

considered together. Kim & Welch (1989) examined the concept of distributed

execution of recovery blocks as an approach for uniform treatment of hardware

and software faults. Keene & Lane (1992) reviewed the similarities and

differences between hardware, software and system reliability. Kanoun &

Ortalo-Borrel (2000) explicitly modelled the case of hardware and software

component-interactions.

For the clustered systems, Laprie & Kanoun (1992) presented Markov

models for analyzing the system availability. Later, Dugan & Lyu (1995)

discussed the modeling and analysis of three major architectures of the clustered

system containing multiple versions of software/hardware, and they combined

fault tree analysis techniques and Markov modeling techniques to incorporate

transient and permanent hardware faults as well as unrelated and related software

faults.

144 Models for Integrated Systems

Recently, Pasquini et al. (2001) considered the reliability for systems based

on software and human resources. Choi & Seong (2001) studied a system

considering software masking effects on hardware faults. Zhang & Horigome

(2001) discussed the availability and reliability on the system level considering

the time-varying failures that are dependent among the software/hardware

components. Lai et al. (2002) studied the reliability of the distributed

software/hardware systems, where Markov models were implemented by

assuming that the software failure rate is decreasing while the hardware has a

constant failure rate. Dai et al. (2003a) further studied the reliability and

availability of distributed services which combined both software program

failures and hardware network failures altogether.

CHAPTER
AVAILABILITY AND

RELIABILITY OF DISTRIBUTED

COMPUTING SYSTEMS

Distributed computing system is a type of widely-used computing system. The

performance of a distributed computing system is determined not only by

software or hardware reliability but also by the reliability of networks for

communication. This chapter presents some results on the availability and

reliability of distributed computing systems by considering the failures of

software programs, hardware processors and network communication. Graph

theory and Markov models are mainly used.

The chapter is divided into four parts. First, general distributed computing

system and some specific commonly used systems are introduced. Second, the

distributed program/system reliability is analyzed and some analytical tools of

evaluating them are demonstrated. The homogeneous distributed
software/hardware system is then studied. The system availability is analyzed by

Markov models and the imperfect debugging process is further introduced.

Finally, the Centralized Heterogeneous Distributed System is studied and

approaches to its service reliability are shown.

145

146 Reliability of Distributed Systems

6.1. Introduction to Distributed Computing

The distributed computing system is designed to complete certain computing

tasks given a networked environment, e.g. Casavant & Singhal (1994) and Loy et

al. (2001). Such systems have gained in popularity due to the low-cost processors

in the recent years. A common distributed system is made up of several hosts

connected by a network where computing functions are shared among the hosts,

as depicted by Fig. 6.1.

A typical application in distributed systems is distributed software of which

identical copies run on all the distributed hosts. A homogeneously distributed

system is a system for which all of the distributed hosts are of the same type, such

as workstations from the same vendor. Applications of identical copies of

distributed software to homogeneously distributed systems are called

homogeneously distributed software/hardware systems (Lai et al., 2002).

For example, a search engine system provides the service for searching

related information. To receive and serve millions of searching requests

everyday, the search engine system should contain many servers of the same type

147 Computing System Reliability

running the identical software in exploring the database. Such system is a type of

the homogeneous distributed software/hardware system. Examples of

applications of this kind of systems can also be found in communication

protocols, telephone switching systems, web services, and distributed database

management systems, etc.

Besides the homogeneous distributed systems, most of the other distributed

systems can be attributed to centralized heterogeneous distributed system (Dai et

al. 2003a). This kind of system consists of many heterogeneous subsystems

managed by a control center.

For example, in modern warfare, each soldier can be considered as an

element in a military system and furnished with different electrical equipments

for diverse purposes. The information collected from each soldier is sent back to

a control center through wireless communication channels. Then, the control

center can analyze all the information and send out commands to respective

soldiers. The functions of different groups of soldiers are diversified in a war

(such as attacking, defending, supplying, saving etc.) so their electrical

equipments should also be heterogeneous. Thus, it is a typical Centralized

Heterogeneous Distributed System, as depicted by Fig. 6.2.

148 Reliability of Distributed Systems

The reliability of distributed system is a key point of the QoS (Quality of

Service). However, reliability analysis of such systems is complicated due to its

various topologies, the integrated software and hardware or highly heterogeneous

subsystems. This chapter studies these issues and presents models and analytical

tools that can be easily implemented to estimate the reliability and availability of

those distributed systems.

6.2. Distributed Program and System Reliability

A general distributed computing system consists of processing elements (nodes),

communication channels (links), memory units, data files, and programs. These

resources are interconnected via a network that indicates how information flows

among them. Programs residing on some nodes can use/load data files from other

nodes. Hence, the program/system reliability in the general networked

environment is worth studying in order to comprehensively qualify the

distributed system.

6.2.1. Architecture and reliability model of distributed systems

General architecture of distributed computing systems

A typical distributed system can be viewed as a two level hierarchical structure

(Pierre & Hoang, 1990). The first level consists of the communication sub­

network, also called the backbone. It comprises of linked switching nodes and has

as its main function the end-to-end transfer of information. The second level

consists of nodes/terminals, such as processors, programs, files, resources and so

on.

In general, n-processor distributed systems can be depicted as Fig. 6.3. Each

node can execute a set of programs and share a set of data files

149 Computing System Reliability

(i=1,2,... ,n). Programs residing on some nodes can be run using data files at other

nodes.

Reliability model

Based on the above model for the general distributed computing systems, the

definition of the distributed program reliability is given below:

Definition 6.1. Distributed program reliability in a distributed computing system

is the probability of successful execution of a program running on multiple

processing elements and needs to retrieve data files from other processing

elements.

From the definition, the distributed program reliability varies according to

1) the network topology of the distributed computing system

150 Reliability of Distributed Systems

2) the reliability of the communication links

3) the reliability of the processing nodes

4) the data files and programs distribution among processing elements

5) the data files required to execute a program.

Example 6.1. Consider the distributed computing system shown in Fig. 6.4.

This distributed computing system consists of four processing nodes

(N1,N2,N3,N4) that run three different programs (P1,P2,P3) distributed in

redundant manner among the processing elements. Four data files (F1,F2,F3,F4)

are also distributed in a redundant manner. is the set of files that are

required by the program

In Fig. 6.4, program can run successfully when either of N1 or N4 is

working and it is possible to access the data files (F1,F2,F3). If is running on

N1 which holds the files F1 and F2, it is required to access the file F3 which is

resident at N2 or N4. That is, additional nodes and links are needed to have

151 Computing System Reliability

access to that required file (F3). Thus, the distributed program reliability depends

on the reliability of all those involved processing nodes and communication links.

The distributed program reliability measures the reliability of one program in

the system. However, for reliability of the distributed computing systems, it is

important to obtain a global reliability measure that describes how reliable the

system is for a given distribution of programs and files (Hariri & Mutlu, 1995).

The definition of distributed system reliability is given below.

Definition 6.2. Distributed system reliability is the probability that all the

distributed programs are executed successfully under the distributed computing

environment.

As the distributed computing system depicted by Fig. 6.4, all three programs

(P1,P2,P3) are required to be successfully achieved. Four data files (F1,F2,F3,F4)

are needed when running those programs. Thus, the distributed system reliability

here is the probability for all the three programs to be successfully executed

meanwhile accessing to all the data files.

In order to estimate the distributed program/system reliability, some

assumptions of the reliability model for the distributed computing system, see e.g.

Kumar et al. (1986), are given below:

Assumptions:

1)	 Each node or link in the distributed computing system has two states:

operational or faulty.

2)	 If a link is faulty, information cannot be transferred through it.

3)	 If a node is faulty, the program contained in the node cannot be

152 Reliability of Distributed Systems

4) The probability for a processing node to be operational is constant,

which is denoted by and

5) The probability for a communication link to be operational is also

constant, which is denoted by and

successfully executed, the files saved in it cannot be accessed by other

nodes, and the information is not able to be transferred through it.

6)	 Failures of all the nodes and links are statistically independent from each

other.

It is indicated in Lin & Chen (1997) that computing distributed reliability is an

NP-hard problem (Valiant, 1979) even when the distributed computing system is

restricted to simple structures such as series-parallel, a tree, a star etc. Hence,

general and effective analytical tools are required to evaluate its reliability.

6.2.2. Kumar’s analytical tool

This analytical tool was presented by Kumar et al. (1986), which is based on

Minimal File Spanning Tree (MFST). In general, the set of nodes and links

involved in running the given program and accessing its required files form a tree.

Such tree is called File Spanning Tree (FST) defined below.

Definition 6.3. File Spanning Tree is a spanning tree that connects the root node

(the processing element that runs the program under consideration) to some other

nodes such that its vertices hold all the required files for executing that program.

The smallest dominating file spanning tree is called MFST and its definition is

given below.

153 Computing System Reliability

Definition 6.4. A Minima File Spanning Tree, denoted by is an FST

such that there exists no other file spanning tree, say which is a subset of

An example of the FSTs and MFSTs is illustrated below.

Example 6.2. Continue considering the distributed system of Fig. 6.4. The
following are some FSTs that make run successfully on

Likewise, there will be several other FSTs when

program runs on

The file spanning tree
 is not minimal because its

subset is also an FST. We are interested in finding all the MFSTs

to run a distributed program. For to run on either or four MFSTs are

contained. They are

Anyone of these four MFSTs can provide a successful execution of the

program under consideration when all elements are working.

From the above example, it can be seen that the distributed program can run

successfully if any one of the MFSTs is operational. Hence, the distributed

program reliability can be generally described in terms of the probability having

at least one of the MFSTs operating as

DPR=Pr(at least one MFST of a given program is operational)

154 Reliability of Distributed Systems

This can be written as

where

evaluation of the reliability of executing a program on a distributed system can be

 is the total number of MFSTs that run the given program. The

determined by the following two stages.

Stage 1. Find all the Minimal File Spanning Trees:

The purpose of this stage is to search all the MFSTs in which the roots are the

processing elements that run a program, say
 The minimal file spanning trees

are generated in nondecreasing order of their sizes, where the size is defined as

the number of links in an MFST. At first, all MFSTs of size 0 are determined; this

occurs when there exist some processing nodes that run and have all the

needed files (which is denoted by the set) for its execution. Then, all MFSTs

of size 1 are determined; these trees have only one link which connects the root

node to some other node, such that the root node and the other node have all the

files in This procedure is repeated for all possible sizes of MFSTs up to n-1,

where n is the total number of nodes in the system. The detailed description of

the algorithm to search all the MFSTs is given by Kumar et al. (1986).

Stage 2. Apply a terminal reliability algorithm to evaluate distributed

program reliability:

Here we find the probability that at least one MFST is working which means that

all the edges and vertices included in it are operational. Any terminal reliability

evaluation algorithm based on path or cutest enumeration can be used to obtain

the distributed program reliability of the program under consideration.

155 Computing System Reliability

The distributed system reliability can be written as the probability of the

MFSTs

where MFSTs

intersection of the set of of each program, which is

denotes the set of all the associated with the program

Example 6.3. An example using the above analytical tool to estimate distributed

program/system reliability is illustrated below.

The distributed computing system shown in Fig. 6.5 consists of six processing

elements that can run four distributed programs and save six data files. The files

needed for executing these programs are indicated in the following sets:

156 Reliability of Distributed Systems

Evaluating the distributed program reliability

We first derive the reliability of program denoted by The program

can run on either N1 or N6. Its MFSTs can be found by the step 1 as depicted

by Fig. 6.6. The double-line circles represent the root node, the single-line circles

represent the contained vertex, the number in the circle is the node number in the

distributed computing system, and the files marked around the circles are reached

new data files in that node.

157 Computing System Reliability

Based on the generated MFSTs in Fig. 6.6, using the terminal reliability algorithm

as step 2, we can obtain the reliability of program If we assume that all the

elements (processing nodes and communication links), of the distributed

computing system shown in Fig. 6.5 have the same reliability and equal to 0.9,

then the reliability of executing is computed as 0.9378.

Evaluating the distributed system reliability

The first step in evaluating the distributed system reliability is to determine all the

MFSTs for each program that can run on the system. The next step of this

algorithm is to determine the set of all MFSTs that guarantee successful execution

of all the programs by recursively intersecting the MFSTs of each program.

The final step is applying terminal reliability algorithm to obtain the

following terms for the distributed system reliability. If we still assume that all

the nodes and links have the same reliability, say 0.9, then the reliability of the

distributed computing system is 0.842674.

6.2.3. A family of FST analytical tools

For analyzing the distributed program/system reliability, another family of File

Spanning Tree (FST) analytical tools is further developed, which shows good

efficiency for some specific problems.

The first FST analytical tool in this family was presented by Chen & Huang

(1992) without considering node failures (i.e. just consider the communication

failures of the network links). Hence, this analytical tool is only suitable for the

distributed computing systems whose processing elements are perfect or highly

reliable so that the probability for them to fail when working is negligible.

158 Reliability of Distributed Systems

The main difference between this and above Kumar’s tool is that Kumar’s

MFST starts from one root node and further expands the trees; and Chen-Huang’s

FST starts from the whole system graph and cuts links to prime the trees.

Moreover, Kumar’s tool requires to further use an additional terminal reliability

algorithm to derive distributed program/system reliability but this FST tool can

directly obtain the solution when priming the trees.

The basic concept of the FST analytical tool

The basic idea for the FST analytical tool is to find all disjoint FSTs in each size

starting from the origin graph representing the distributed computing system. If

we use an efficient method to cut one link each time from the graph at a different

place to generate possible subgraphs recursively, then we are able to predict if

each of these resulting subgraphs is an FST by examining the set of data files

contained in this subgraph against the set of required data files for executing the

distributed programs. This process can be repeated starting from graph size K, K­

1,..., to 0 (where K is the number of links in the graph). Obviously, without an

efficient method to remove appropriate links, the efficiency for the analytical tool

could be very poor.

The method for cutting the graph plays an important role in finding the FSTs

and in computing the reliability of the distributed computing system. The brief

introduction for this method is given by the following five steps:

Step 1. Find a spanning tree from the current graph if necessary and compute

(: a set of link states that can be used to construct the spanning

tree of subgraph G), where each link has three states: 1) faulty state,

denoted by 0; 2) operational state, denoted by 1; 3) undetermined state,

denoted by *.

Step 2. Compute the vector by and convert vector

to the probability expression. (: a set of link stats that can be used to

compute the probability of subgraph G. The state condition could be

159 Computing System Reliability

either 1,0, or * as above; : a set of link states that represents the links’

conditions in the current subgraph G).

Step 3. Cut the current graph according to the vectors and to

obtain its subgraphs (or FSTs), where denotes a set of link states

that indicate which link cannot be cut in subgraph G.

Step 4. Repeat steps 1 to 3 to compute each subgraph’s vector

Step 5. The reliability of the distributed computing system graph is obtained

by uniting all vectors that are associated with all the FSTs.

Once the concept of finding all FSTs and computing the reliability of the

distributed computing system is understood, the detailed algorithm for finding the

FSTs and computing the reliability of the FST was illustrated in Chen & Huang

(1992). An example for the FST analytical tool is illustrated below.

Example 6.4. Consider the simple distributed computing system in Fig. 6.4 again.

We use the FST reliability analytical tool to analyze the distributed

program/system reliability. For the program its reliability is

evaluated by the splitting snapshot of subgraphs generated by the above FST tool.

To compute the reliability, sum all the disjoint terms represented by

vectors and then

Similarly, the distributed system reliability can be obtained from the above FST

tool as

If we assume all the links have the same reliability 0.9, then the

160 Reliability of Distributed Systems

The FST-SPR (Series and Parallel Reduction) analysis

How to speed the reliability evaluation process up is the major concern of the

proposed analytical tool. The basic principle of speeding the reliability evaluation

is to generate correct FSTs with less cutting steps. There are four methods

presented by Chen & Huang (1992), which can be used interchangeably to speed

the reliability evaluation. These methods are nodes merged, parallel reduction,

series reduction, and degree-2 reduction as described below.

1)	 Nodes merged occurs when a probability subgraph has bit value 1 in its

LS vector, i.e. the corresponding link must be operational in all its

subgraphs. Hence the two nodes connected by this link can be merged

into one node together with the link itself.

2)	 Parallel reduction occurs when a probability subgraph contains two or

more links between two nodes. With connectivity property, these

redundant links can be reduced to one link and the operational probability
is replaced by

where is the operational probability for the k:th link between nodes i

and j.

3) Series reduction occurs when a probability subgraph has a node, with

node degree=2 (i.e. two links connect to this node), that contains no data

file required for executing the distributed program. Since such a node,

after deletion, still does not affect the correct FST generation, we can

remove this node and reduce two links that connect to its neighboring

nodes into one link. The new operation probability between the two

neighboring nodes (i and j) is replaced by

161 Computing System Reliability

where k is the deleted node.

4)	 Degree-2 reduction occurs when a probability subgraph has a node, with

node degree = 2, that is not a leaf node of any MFST of the current graph.

Since this node is not a leaf node of any MFST, then the two adjacent

links of this node must be working or fail simultaneously, thus we can

remove this node and reduce two links that connect to its neighboring

nodes into one link, and copy the data files and programs in this node to

either of its two neighboring nodes. The new operation probability

between the two neighboring nodes (i and j) is replaced by

where k is the deleted node.

Note again, similar to FST analytical tool, this FST-SPR also assumes that the

processing elements (i.e., nodes) in the distributed computing system is perfect.

Hence, this analytical tool is also only suitable for the distributed computing

systems whose processing elements are perfect or highly reliable so that the

probability for them to fail is negligible when running the programs.

An example for the reduction methods of the FST-SPR is shown below.

Example 6.5. Suppose there is a subgraph generated as depicted by Fig. 6.9.

We need to compute the reliability of program which requires data files

F1,F2,F3,F4 for completing its execution. The states of all the links are

represented by different types of lines (dashed line: failure; double line:

operational; single line: undetermined) and also by vectors LS and NC. The

following are reduction steps for speedup the FST generation.

162 Reliability of Distributed Systems

Step 1: Since link can no longer be cut and must be up for the rest of its

subgraph generation due to LS=1**0**, we apply nodes merged

reduction on nodes N1 and N2. The resulting subgraph(b) is shown in Fig.

6.8(b).

Step 2: A parallel reduction can be applied on the resulting subgraph (from

step 1) since links and are parallel. The new resulting subgraph (c)

is shown in Fig. 6.8(c).

Step 3: A series reduction occurs since node N5 contains no data files for the
execution of The new resulting subgraph (d) is shown in Fig. 6.8(d).

163 Computing System Reliability

Step 4: A degree-2 reduction occurs since node N3 is not a leaf node of any

MFST. The final subgraph (e) after these reductions is also shown in Fig.

6.8(e).

6.3. Homogeneously Distributed Software/Hardware
Systems

A typical kind of application on distributed systems has a homogeneously

distributed software/hardware structure. The physical system is assumed to

contain N software subsystems (SW1-SWN) running on N hosts (HW1-HWN) as

depicted in Fig. 6.9.

That is, identical copies of distributed application software run on the same type

of hosts, called Homogeneous Distributed Software/Hardware System. This

164 Reliability of Distributed Systems

system may be implemented to provide services for uncorrelated random requests

of customers.

In this system, the software is usually improved. Since the system considers

combined software and hardware failures as well as maintenance process, its

reliability cannot be simply estimated by the above analytical tools for computing

the distributed program reliability. The availability models and analyses of the

homogeneous distributed software/hardware system are studied here.

6.3.1. Availability model

Actually, homogeneous distributed software/hardware system is a type of cluster

system, which is a collection of computers in which any member of the cluster is

capable of supporting the processing functions of any other member Mendiratta

(1998) and Lyu & Mendiratta (1999). A cluster has a redundant n+k

configuration, where n processing nodes are necessary and k processing nodes are

in spare state, serving as backup. In this subsection, our model is a cluster of N

homogeneous hosts that are working in parallel. This means that if all of the N

hosts failed, the system fails. Otherwise whenever 1 host can work, the system is

still working.

The following are the assumptions concerning this system:

(a)	 All the hosts have the same hardware failure rate arising from an

exponential distribution.

(b) Each of the hosts runs a copy of the same software with a failure rate
function of a given software model.

(c)	 Both the software and hardware have only two states, up (working state)

and down (malfunctioning state), which means all the failures of software

or hardware are crash failures.

(d) There are maintenance personnel to repair the system upon software or

hardware malfunction. The repair time has an exponential distribution

165 Computing System Reliability

with parameter for software and parameter for hardware,

respectively.

(e) All the failures involved (either software or hardware) are mutually

independent.

(f) No two or more failures (either software or hardware) occur at the same

time.

There are some real cases of homogeneously distributed software/hardware

system in which all the hosts can work independently for random/unknown

request. Such applications can be found in search engine system, telephone

switching system and banking system, and so on. Most homogeneous distributed

software/hardware systems that work independently under the case of

uncorrelated random requests can implement our models.

Systems in practice can be complex and usually we have a multi-host

situation. Lai et al. (2002) used a Markov process to model this type of system.

Fig. 6.10 illustrates a partial system state transition of the Markov process, in

which (i, j) is the state when i hosts suffer hardware failures and j hosts suffer

software failures.

The corresponding Chapman-Kolmogorov differential equation for the

probability that the system is in the state (i,j) at time t is, for

where

The initial conditions are

166 Reliability of Distributed Systems

The boundary conditions are:

167 Computing System Reliability

The system availability for the N-host based system can be calculated by

Here, we assume each copy of software suffers a failure rate of the JM model

(Jelinski & Moranda, 1972), i.e.,

To solve the above differential equations, we need to know the expected

number of remaining software faults However, since changes with

software debugging, it is usually a function of time. We have used the following

scheme for the numerical calculation, as shown by Lai et al. (2002). According to

the JM model, the probability of software having k remaining faults at time t is

Based on this equation, the expected number of remaining software faults at time

t can be computed as

The system availability can be computed using any available numerical

algorithm to solve the differential equations. An example using our above

Markov model to analyze availability of homogeneous distributed

software/hardware system is numerically illustrated below.

Example 6.6. We assume that the hardware failure rate is 0.02 and software

failure rate per fault is 0.006. The repair rate for hardware is 0.1 while that for

software is 0.12. Fig. 6.11 depicts the result of system availability of a triple-host

system with different number of initial faults.

168 Reliability of Distributed Systems

It can be seen from Fig. 6.11 that the system availability reaches the lowest point

at an early stage. This is because a large number of faults are identified when

software system testing begins. System availability starts recovering after the

lowest point and approaches a certain value less than 1 asymptotically after a

longer period of time. This is because identified faults are fixed and as a result

software failure rate decreases.

6.3.2. Model of the imperfect debugging process

In the above section, the homogeneous distributed software/hardware system

model assumed that the debugging process was a perfect one. It is possible in

169 Computing System Reliability

reality that the fault that is supposed to have been removed may cause a failure

again. It may be due to the spawning of a new fault because of imperfect

debugging, see e.g. Fakhre-Zakeri & Slud (1995), Sridharan & Jayashree (1998),

Pham et al. (1999) and Tokuno & Yamada (2000).

Markov modeling

The assumptions used in this imperfect debugging model are almost the same as

the assumptions (a-f) in earlier model except that the following assumption is

added.

(g)	 When a software failure occurs, instantaneously repair starts with the
following debugging probabilities:

The software fault content is reduced by one with probability p.

The software fault content remains unchanged with probability r.

The software fault content is increased by one with probability q.

This assumption is same as the birth-death process that was introduced in Kremer

(1983).

Fig. 6.12 illustrates a partial system state transition, in which (i, j, k) is the

state when i hosts suffer hardware failures, j hosts suffer software failures and k is

the number of remaining software faults at that time. Here N is the total number

of hosts in the system.

The corresponding Chapman-Kolmogorov differential equation for the

probability that the system is in the state (i, j, k), at time t can be

obtained. They can be solved numerically or analytically in some cases. The

system availability at time t can be calculated as

170 Reliability of Distributed Systems

Although those differential equations can be solved, the procedure becomes

difficult when the number of hosts is large. Hence, some computing tools can be

used to solve them. An example is illustrated below.

Example 6.7. In this numerical example, the software failures are assumed to

follow the JM-model. For the multi-host systems with different number of hosts,

the system availability functions can be obtained numerically. The curves of

system availability functions for (N=2,3,4,5) are depicted in Fig. 6.13 with

parameters

171 Computing System Reliability

Fig. 6.13 shows a similar trend as that of Fig. 6.11. System availability reaches

the lowest point at an early stage. After that period, system availability starts

recovering because identified faults are fixed and as a result software failure

occurrence rate decreases.

6.4. Centralized Heterogeneous Distributed Systems

Most of the distributed service systems can be modeled by a centralized

heterogeneous distributed system. This type of distributed systems consists of

172 Reliability of Distributed Systems

heterogeneous subsystems that are managed by a control center, see e.g. Hussain

& Hussain (1992) and Langer (2000, pp. 188-217). The system is different from

the systems and models in the above sections, because those models either

assumed constant operational probability without reliability growth or excluded

the network reliability. However, the system incorporates not only the

hardware/software/network reliability but also the improvement of the control

center through debugging/maintenance process. Dai et al. (2003a) has analyzed

its service reliability, and the results are summarized in the following.

6.4.1. Service of the system and its reliability

The structure of the Centralized Heterogeneous Distributed System is depicted by

Fig. 6.14. The control center may consist of many servers. These servers support

a virtual machine. The virtual machine can manage programs and data from

heterogeneous subsystems through virtual nodes. The virtual nodes can mask the

differences among various platforms. They are a kind of virtual executing

elements, which only includes a basic unit for executing data, i.e. CPU and

Memory. The entities of virtual machine and virtual nodes are supported by the

software and hardware in the control center.

The heterogeneous sub-distributed systems are composed of different types of

computers with various operating systems connected by different topologies of

networks. These subsystems exchange data with virtual machine through System

Service Provider Interface (SSPI). They are connected with virtual nodes by

routers. They can cooperate to achieve a distributed service under the

management of the virtual machine.

In fact, most of service systems can be categorized as centralized

heterogeneous distributed systems such as the example of military system shown

in Fig. 6.2.

173 Computing System Reliability

The whole process for a service in a distributed system is repeated so the

reliability analysis of a distributed service is crucial for a distributed system. The

distributed service reliability is defined as below.

Definition 6.5. Distributed service reliability is the probability for a service to be

successfully achieved in a distributed computing system.

6.4.2. Model of distributed service reliability

In a distributed service system, a service includes various distributed programs

completed by diverse computers. Some later programs might require several

precedent programs to be completed. Every program requires a certain execution

time. The execution of some programs might require certain input files that are

174 Reliability of Distributed Systems

saved or generated in different computers of the distributed systems. The overall

distributed service reliability depends on the reliability of a program, the

availability of input files to the program and the system reliability of the

subsystem.

The reliability of a service is determined by the distributed programs

reliability in each subsystem and the availability of the control center. If a service

can be achieved successfully, the programs running in every subsystem must be

successful. The virtual machine should be available at the moment when any

program needs certain input file prepared in the virtual machine. It has to be also

available during the period when the programs are being executed in the virtual

machine.

It can be obtained through the critical path method, see e.g. Hillier &

Lieberman (1995), that the time point when the programs require the files

prepared in the virtual machine We can also obtain the starting

time when the programs run in the virtual machine and the corresponding

execution time period for those programs

It is noted that A(t) is the availability of the virtual machine at time t. We

also assume that the programs require input files at the beginning time, so

the availability of the input files can be calculated as

It is assumed that the virtual machine has to be available from the beginning to

the end when a program runs in it; otherwise, the program fails. The average
availability of the programs, which start at time with the execution time

period can be calculated as

175 Computing System Reliability

Let N be the number of subsystems. The distributed system reliability for the

i:th subsystem is denoted by where the virtual machine is

viewed as a perfect node in each sub-distributed systems at first. The

can be computed by the various algorithms presented in the previous

distributed service reliability together with the

section. Then, the availability of the virtual machine is incorporated into the

In order to calculate distributed service reliability, some additional

assumptions on statistical independence are needed:

1) is assumed to be mutually independent.

2) The files prepared in the virtual machine are also mutually independent.

3) The programs running in the virtual machine are mutually independent.

Although the independence assumption may not always be true, they are first

order approximation.

The distributed service reliability function to the initial time, , can be

calculated by

Eq. (6.18) can be explained as follows. The virtual machine can be viewed as a

perfect node in calculating without considering the availability of prepared

files and executed programs in it. Thus, the service reliability is the whole

and programs in the virtual machine.

distributed system reliability multiplied by the availability of files

Furthermore, the availability of files and programs in the virtual machine can

be expressed as the product of and Hence, the overall

distributed service reliability function which is the product of all three quantities

can be expressed as in the above equation.

176 Reliability of Distributed Systems

6.4.3. Algorithm for distributed service reliability

In applying the general approach, we will need the system structure and then the

above model can be used. The algorithm for the calculation of the distributed

service reliability can be presented as the following six steps:

Step 1: Identify the structure of Centralized Heterogeneous Distributed

System and relationship between programs and files.

Step 2: Obtain the availability function of the virtual machine with any

existing models.

Step 3: Let the virtual machine to be a perfect node in every subsystem and

calculate

Step 4: Using the critical path method to determine and

Step 5: Calculate and

Step 6: Calculate the distributed service reliability function at time

Note that we can implement different models and methods to calculate distributed

service reliability. For subsystems, the can be calculated through the

algorithms, e.g. MFST (Kumar et al., 1986), FST (Chen & Huang, 1992), HRFST

(Chen et al., 1997), etc. For the availability function of the virtual machine A(t),

it can be calculated through the models presented by Lai et al. (2002).

6.5. Notes and References

In the distributed computing systems, the group of MFST algorithms is further

developed. Kumar (1988) proposed a “Fast Algorithm for Reliability Evaluation”

that used a connection matrix to represent each MFST and proposed some

simplified techniques for speeding up the analysis process. Then, Kumar &

Agrawal (1996) further introduced “Distributed Program/System Performance

177 Computing System Reliability

Index” which can be used to compare networks with different features for

application execution.

For the group of FST analytical tools, Lin et al. (1999a) further presented an

efficient algorithm for reliability analysis of distributed computing systems. The

efficient algorithm was studied specifically in the different kinds of network

topologies such as star topologies (Chang et al., 2000 and Lin, 2003) and ring-

type topologies (Lin et al., 2001). This group of analytical tools can be further

extended to allow the failures of imperfect nodes, see e.g. Ke & Wang (1997) and

Lin et al. (1999b).

Other than the above two groups of analytical tools, Lopez-Benitez (1994)

also presented a modeling approach based on stochastic Petri nets to estimate the

reliability and availability of programs in a distributed computing system. Later,

Chen et al. (1998) presented a Markov model to study the distributed system

reliability with the information on time constraints. Malluhi & Johnston (1998)

developed a distributed parallel storage system to achieve scalability and high

data throughput. Fricks et al. (1999) proposed an analytic approach, based on the

Markov regenerative processes and the Petri nets, to compute the response-time

distribution of operator consoles in a distributed process control environment.

Das & Woodside (2001) evaluated the layered distributed software systems with

fault-tolerant features. Yeh & Chiu (2001) proposed a reversing traversal method

to derive a k-node distributed system under capacity constraint. Chiu et al. (2002)

recently developed a reliability-oriented task allocation scheme for the distributed

computing systems. Mahmood (2001) discussed the task allocation algorithms for

maximizing reliability of heterogeneous distributed computing systems.

Fahmy (2001) considered reliability evaluation in distributed computing

environments by using the concept of Analytical Hierarchy Process (AHP).

Lanus et al. (2003) presented hierarchical composition and aggregation models

based on Markov reward models to study the state-based availability and

performability of distributed systems. Yeh (2003) extended the distributed system

reliability by introducing a multi-state concept.

This page intentionally left blank

CHAPTER RELIABILITY OF GRID
COMPUTING SYSTEMS

Grid computing is a recently developed technique for complex systems with

large-scale resource sharing, wide-area program communicating, and

multi-institutional organization collaborating etc. Many experts believe that the

grid technologies will offer a second chance to fulfill the promises of the

Internet (Forster et al., 2002). However, it is difficult to analyze the grid

reliability due to its highly heterogeneous and wide-area distributed

characteristics.

This chapter first presents a brief discussion of the Grid computing system.

A general grid reliability model is then constructed. We also present

approaches to compute the grid reliability by incorporating various aspects of

the grid structure including the resource management system, the network and

the integrated software/resources.

179

180 Reliability of Grid Computing Systems

7.1. Introduction of the Grid Computing System

7.1.1. Grid technology

The term “Grid” was created in the mid 1990s to denote a proposed distributed

computing infrastructure for advanced science and engineering (Foster &

Kesselman, 1998). Grid concepts and technologies were first developed to enable

resource sharing within far-flung scientific collaborations. Applications include

collaborative visualization of large scientific datasets (pooling of expertise),

distributed computing for computationally demanding data analyses (pooling of

compute power and storage), and coupling of scientific instruments with remote

computers and archives (increasing functionality as well as availability).

The real and specific problem that underlies the Grid concept is coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual

organizations (Foster et al., 2001). The sharing that we are concerned with is not

primarily file exchange but rather direct access to computers, software, data, and

other resources. This is required by a range of collaborative problem-solving and

resource-brokering strategies emerging in industry, science, and engineering.

This sharing is highly controlled, with resource providers and consumers defining

what is shared, who is allowed to share, and the conditions under which the

sharing occurs. A set of individuals or institutions are defined by such sharing

rules form what is usually called virtual organization (VO).

For example, in a data grid project thousands of physicists at hundreds of

laboratories could be involved. They can be divided into different virtual

organizations according to their locations or functions. It is depicted by Fig. 7.1.

In this case, virtual organizations can vary tremendously in their purpose,

scope, size, duration, structure, community, and sociology. A careful study of

underlying technology requirements, however, leads us to identify a broad set of

common concerns and requirements and current distributed computing

technologies do not address the concerns and requirements of the grid.

181 Computing System Reliability

Over the past several years, research and development efforts within the grid

community have produced protocols, services, and tools that address precisely

the challenges that arise when we seek to build scalable virtual organizations,

e.g. Foster & Kesselman (1998), Foster et al. (2001, 2002), Frey et al. (2002)

and Buyya et al. (2003).

Because of their focus on dynamic, cross-organizational sharing, Grid

technologies complement rather than compete with the existing distributed

computing technologies. For example, enterprise distributed computing

systems can use the grid technologies to achieve resource sharing across

institutional boundaries. The grid technologies can also be used to establish

dynamic markets for computing and storage resources.

The continuing decentralization and distribution of software, hardware, and

human resources make it essential that we achieve the desired quality of service

(QoS) on resources assembled dynamically from enterprise, service provider,

and customer systems. This also requires new abstractions and concepts that let

182 Reliability of Grid Computing Systems

applications access and share resources across wide-area networks. Common

security semantics, system reliability, distributed resource management

performance, or other QoS metrics need to be provided.

Although the development tools and techniques for the grid have been

studied, grid reliability analysis is not easy due to the complexity of the grid.

As one of the important measures of QoS for the grid, the grid reliability needs

to be precisely and effectively assessed using new analytical tools. This chapter

presents some new results based on general grid reliability models that relax

some unsuitable traditional assumptions in the small-scale distributed

computing systems.

7.1.2. General architecture of grid computing system

The general architecture of the grid computing systems can be depicted as Fig.

7.2. The virtual node is a general unit in the grid, which can execute programs

or share resources. Virtual nodes are connected with each other through the

virtual links. Virtual organizations are made up of a number of virtual nodes.

183 Computing System Reliability

A grid system is designed to complete a set of programs/applications, so

that to complete certain tasks. Executing those programs need use some

resources in the grid. These programs and resources are distributed on the

virtual nodes as in Fig. 7.2. A virtual link between two virtual nodes (i and j),

denoted by L(i, j), is defined as a direct communication channel between the

two nodes i and j without passing through other virtual nodes.

Let represent the set of resources shared by the n:th virtual node and

represent the set of programs executed by the n:th virtual node,

(n=1,2,...,N). We also assume that M programs denoted by are

running in the grid system. The required processing time for each program is

denoted by t(1), t(2) ,..., t(M), respectively. The programs may use some

necessary resources during their execution, which is in fact to exchange

information between them through the network. These resources are denoted by

which is registered in a resource management system of the grid.

When a program requests certain remote resources, the resource

management system receives these requests and matches the registered

resources to the requests. It then instructs the program the sites of those

matched resources. After the programs know the sites of their required

resources, they begin to access to them through the network.

In an early stage, the grid reliability is mainly determined by the reliability

of the resource management system, while in a later stage, the grid reliability is

mostly affected by the reliability of the network for communicating or

processing. The grid reliability model related to the two stages will be studied

respectively in the following two sections. Then, Section 7.4 further integrates

other components such as software and resources etc into the grid reliability

analysis.

184 Reliability of Grid Computing Systems

7.2. Grid Reliability of the Resource Management
System

Before the programs begin to access to their required resources in the grid, they

have to know the sites of those resources, which is managed by the resource

management system. The resource management system of the grid, see e.g.

Livny & Raman (1998), is to receive the resource requests from application

programs, and then to match the requests with the registered resources.

7.2.1. Introduction of resource management system

For grid computing, the resource management system that manages its pool of

shared resources is very important. This is especially the case for Open Grid

Service Architecture, see e.g. Foster et al. (2002), that allows individual virtual

organizations to aggregate their own resources on the grid.

The resource management system provides resource management services,

which can be divided into four general layers as depicted by Fig. 7.3. They are

program layer (A), request layer (B), management layer (C) and resource layer

(D).

A. Program layer: The program layer represents the programs (or tasks) of

the customer’s applications. The programs describe their required

resources and constraint requirements (such as deadline, budget,

function etc).

B. Request layer: The request layer represents the program’s requirement

for the resources. This layer provides the abstraction of “program

requirements” as a queue of resource requests.

C. Management layer: The management layer may be thought of as the

global resource allocation layer and its principal function is to match

the resource requests and resource offers so that the constraints of both

are satisfied.

185 Computing System Reliability

D. Resource layer: The resource layer represents the registered resources

from different sites including the requirements and conditions.

In grid computing, failures may occur at any of the layers in the resource

management system. For example,

1)	 In the program layer, the resource described by the program may be
unclear or translated into wrong resource requests.

2)	 In the request layer, the request queue may be too long to be waited by

the program (generating so called time-out failures), or some requests

may be lost due to certain management faults.

186 Reliability of Grid Computing Systems

3)	 In the management layer, the request may be matched to a wrong

resource because of misunderstanding or faulty matching.

4)	 In the resource layer, the virtual organization may register wrong

information of their resources or remove its registered resources without

notifying/updating the resource management system.

If a grid program experiences any of the above resource management system

failures, the program cannot be achieved successfully. The grid reliability

should be computed by considering not only the reliability of physical networks

or processing elements but also the resource management system reliability. In

order to analyze the resource management system reliability, we construct a

Markov model below.

7.2.2. Markov modeling

For the resource management system, if any failure that the program is matched

to a wrong resource occurs, the program will send a failed feedback to it. It will

remove the faults that cause the failures through an updating/debugging

process. It is also possible for new faults to be generated in the resource

management system such as some virtual organizations register wrong

resources to it, etc. The assumptions for our resource management system

reliability model are listed as follows:

1)	 The failures of resource management system follow an exponential

distribution with parameter where k is the number of contained

faults.

2)	 If any failure occurs, a fault that causes this failure is assumed to be

removed immediately by an updating/debugging process, i.e. the time

for removing the detected fault is not counted.

3)	 The resource management system may generate a new fault, and the

occurrence of such event follows an exponential distribution with a

constant rate v.

187 Computing System Reliability

According to the above assumptions, the reliability model of resource

management system can be constructed by a continuous time Markov chain

(CTMC). This Markov model depicted in Fig. 7.4 is a typical birth-death

Markov process with infinite number of states, where state k represents k faults

contained in the resource management system.

In this model, can be a function of the number of remaining faults k.

Usually, is an increasing function to the number of remaining faults k. It

is desired for a resource management system to be in service for a long time,

especially for the Open Grid Service Architecture (Foster et al., 2002), so the

birth-death process of failures can be viewed as a long-run Markov process

(Trivedi, 1982). After running for a long time, the expected death rate

will approach to a steady value. The failure rate can be approximately

viewed as a constant during a small enough time. An example is illustrated

below.

Example 7.1. Consider a grid program denoted by P1 need access to remote

resources. The time for resource management system to deal with its request is

supposed t=15 seconds and the failure rate of resource management system at

that time slot per second. The reliability for the resource

management system to deal with the request is computed as

188 Reliability of Grid Computing Systems

Based on the long-run birth-death Markov process, this approximation of

constant failure rate indicates a way to reasonably and dynamically update the

failure rate at different time slots. The resource management system can count

the number of failures, say n, reported by the grid programs between a

relatively small time interval, say and dynamically updates the value of

failure rate by

Also, the fault birth rate v can be reduced through some information

controls such as standardized resource registering, synchronic resource

updating, consistent resource descriptions etc, so that to improve the reliability

of the resource management system.

7.3. Grid Reliability of the Network

If the resource management system has informed the programs of the sites of

their required resources in the grid after matchmaking, the running programs

are able to access to those resources through the grid network as depicted by

the previous Fig. 7.2. Then, the grid program/system/service reliability is

mainly determined by the reliability of network, which will be studied in the

following subsections.

7.3.1. Reliability model for the grid network

To analyze the grid reliability, two assumptions about the model are given

below:

1)	 The failures of virtual nodes and virtual links can be modeled by
Poisson processes.

2)	 The failures of different elements (nodes and links) are independent

from each other.

189 Computing System Reliability

The first assumption can be justified as in the operational phase without

debugging process, the failure rates can remain constant, see e.g. Yang & Xie

(2000). The second assumption can be explained as that since the grid is a

wide-area distributed system, the nodes and links should be allocated far away

from each other so that the possibility of correlation among them can be viewed

as very slight or even negligible.

Different programs can exchange information of different sizes with the

same resources. Denote by the size of information exchanged between

program (m=1,2,...M) and resource (h=1,2,...,H). The

communication time between node i and node j, can be derived from

where D(i,j) is the total size of information exchanged through the L(i,j), and

S(i,j) is the expected bit rate of the link.

Denote the failure rate of the node n by and of the link L(i,j) by

If any failure occurs either on the link or on the connected two nodes during the

communication, the communication process is viewed as a failed process. The

reliability of communication between node i and node j through the link L(i,j)
can be expressed as

Similarly, during the execution of a program, any failure occurring on the

virtual node that executes the program will also make the program failed. The

reliability of the node n to run the program is then given by

This network reliability model is much more reasonable for the grid than

that of conventional distributed systems shown in Chapter 6. Those

190 Reliability of Grid Computing Systems

conventional models somehow inherit the assumptions of Kumar (1986) model.

The most stringent assumption that is not suitable for the grid is that the

operational probabilities of nodes or links are assumed constant, i.e.

and
 in the above two equations are constant no matter how long or

how different the and t(m) are.

Some concepts of grid reliability are defined as follows.

Definition 7.1. Grid program reliability (GPR) is defined as the probability of

successful execution of a given program running on multiple virtual nodes and

exchanging information through virtual links with the remote resources, under

the environment of grid computing system.

Then, the grid system reliability (GSR) can be defined as the probability for all

of the programs involved in the considered grid system to be executed

successfully.

Furthermore, a grid service is to complete certain programs by using some

resources distributed in the grid. The grid service reliability is similar to the

grid system reliability by considering the programs of the given service, i.e.

without taking other programs that are not used by the service into account.

Thereby, the grid service reliability is defined as the probability that all the

programs of a given service are achieved successfully.

7.3.2. Reliability of minimal resource spanning tree

Recall that the set of virtual nodes and virtual links involved in running the

given programs and exchanging information with the resources form a resource

spanning tree. The smallest dominating resource spanning tree (RST) is called

MRST (Minimal Resource Spanning Tree). The reliability of an MRST is the

191 Computing System Reliability

probability for the MRST to be operational to execute the given program. The

reliability of an MRST denoted by has three parts:

1)	 Reliability of all the links contained in the MRST during the
communication.

2)	 Reliability of all the nodes contained in the MRST during the

communication.

3) Reliability of the root node that executes the program during the
processing time of the program.

The reliability of the link L(i, j) for exchanging the information can be

expressed by

The total communication time of the node

where

the MRST. The reliability function of the node

can be calculated by

represents the set of nodes that communicate with the node in

 for communication is

Finally, the reliability for a program to be executed successfully during

the processing time t(m) on the node n is

The reliability of the MRST can be derived from the above equations as

192 Reliability of Grid Computing Systems

In order to simplify the expression, we generalize the term of

“communication time” for the root node that contains not only the time of

exchanging information with other elements but also the time of executing the

given program, i.e. t(m)+T(n) .

The term of “element” is defined here to represent both the nodes and links

of the MRST. Assume there are totally K elements in an MRST, so that

(i=1,2,...,K) denotes the i:th element in the MRST. Accordingly, the

communication time of the i:th element is denoted by and

represents its failure rate. The reliability of the MRST of the

above equation can be simply expressed as

With this equation, the reliability of an MRST can be computed if the

communication time and failure rate of all the elements are given. Hence,

finding all the MRSTs and determining the communication time of their

elements are the first step in deriving the grid program reliability and grid

system reliability.

The same program executed by different root nodes may cause different

communication time on the same elements. Hence, the MRSTs should be

treated distinctly for the same program executed by different nodes. An

example is given below.

193 Computing System Reliability

Example 7.2. As shown in Fig. 7.5, program P1 can run successfully when

either computing node G1 or G4 is successfully working during the processing

time, and it is able to successfully exchange information with the required

resources (say R1, R2 and R3).

The MRSTs considering the communication time of the elements should be

separated into two parts:

(a)	 P1 being executed by G1 contains three MRSTs: 1) {G1, G2, L(1,2)}; 2)

{G1,G2,G3, L (1,3); 3} {G1,G3,G4,L(1,3),L(3,4)}.

(b) P1 being executed by G4 contains another three MRSTs: 4) {G3, G4,
L(3,4)}; 5) {G2, G3, G4, L(2,4), L(2,3)}; 6) {G1,G2,G4,L(1,2),L(2,4)}

An algorithm is presented in Dai et at. (2002) to search the MRSTs for a given

program executed by one given virtual node. Repeatedly using this algorithm,

194 Reliability of Grid Computing Systems

all the MRSTs for different virtual nodes to execute this program can be found,

respectively. This algorithm can be briefly described as follows:

Step 1. Start from the given node to search the required resources along the

possible links, and record elements that compose the searching route

and their communication times.

Step 2. Until all the required resources are reached, an MRST is found, and

record this MRST.

Step 3. Then other routes are tried to search other MRSTs until all the

MRSTs are searched.

An example of the algorithm to search the MRSTs is illustrated below.

Example 7.3. Continued with the above Example 7.2. Referring to Fig. 7.5

again, the program is assumed to exchange information with resources

R1,R2,R3 (corresponding exchanged information size are: 500,400,300 Kbit).

The bit rates of links L(1,2), L(1,3), L(2,3), L(2,4), L(3,4) are assumed 30, 20,

40, 50, 45 (Kbit/s). Then, search the MRSTs for executed by the node G1

and compute the communication time of each elements in those MRSTs, as

shown by Fig. 7.6.

Three MRSTs are found by the algorithm marked by in the Fig. 7.6

where all the values in vector RV are 0. The corresponding elements contained

in those MRSTs are recorded in vector EV with the value 1 and the

corresponding communication time is saved in vector WV.

Similarly, other three MRSTs for executed by the other node G4 can

also be obtained as listed in the above Example 7.2.

195 Computing System Reliability

7.3.3. Grid program and system reliability

Grid program reliability

Note that failures of all the MRSTs will lead to the failure of the given program,

and any one of the MRSTs can successfully complete the program only if all of

its elements are reliable. The grid program reliability of a given program can be

described as the probability of having at least one of the MRSTs working

successfully,

Let be the total number of MRSTs for the given program of and

be the event in which the is able to

196 Reliability of Grid Computing Systems

successfully execute the given program. The grid program reliability of a given

program can be written as

By using the concept of conditional probability, the events considered in this

equation can be decomposed into mutually exclusive events as

where denotes the conditional probability that is in the

failure state given that is in the successful state.

Hence, the grid program reliability can be evaluated in terms of the

probability of two distinct events. The first event indicates that the

in the operational state while the second indicates that all of its previous trees

(j=1,2,...,i-1) are in the failure state given that

is

is in the

operational state. The probability of the first event, is straightforward,

and it can be calculated through Eq. (7.8). The probability of the second event,

can be computed using the algorithms presented by Dai

(2002).et al.

The brief introduction of the algorithm is given here. It contains two steps.

Step 1 identifies all the conditional elements that can lead to the failure of

any (j=l,2,...,i–1) while keeping to be operational.

Such a conditional element, say (contained in any

j=1,2,...,i –1), has starting time and end time. If any failure occurs on

the between its starting time and end time, it can lead the

to fail.

197 Computing System Reliability

Step 2 uses a binary search tree (Johnsonbaugh, 2001: pp. 349-354) to seek

the possible combinations of these identified elements that can make all

the (j=1,2,..., i–1) fail and computes the probabilities of those

combinations.

The summation of the probabilities is the result of

For detailed procedures of the two steps can be found in Dai et al. (2002). An

example of this algorithm can also be found.

Grid system reliability

The grid system reliability equation can be written as the probability of the

intersection of the set of MRSTs of each program, which is

where denotes the set of all the MRSTs associated with the

program

The intersection of the trees of each can be evaluated first by

intersecting The intersected tree of two MRSTs is generated by

putting all the elements of the two MRSTs together, where the communication

time of overlapped elements should be added together. An example of

intersected MRST is illustrated below.

Example 7.4. Suppose one MRST related to program is

{G1,G2,G3,L(1,3),L(2,3)} with the communication time {45, 7.5, 22.5, 15,

7.5} and one MRST related to program is {G1,G2,G3,L(1,2),L(1,3)} with

the communication time {50, 70, 30, 20, 30}. Then, the intersected MRST of

198 Reliability of Grid Computing Systems

the above two MRSTs should be {G1,G2,G3,L(1,2),L(1,3),L(2,3)} with the

communication time {95, 77.5, 52.5, 20, 45, 7.5}.

In fact, if any one of the intersected MRSTs of (m=1,2,...,M) is

reliable, all the programs required in the grid system can be successfully

completed; If all the intersected MRSTs fail, the grid system cannot be

successfully completed.

After generating all the intersected MRSTs, the grid system reliability can

be written as

where

the previous Eq. (7.9), so the above algorithms for deriving the grid program

 is the total number of intersected MRSTs. This equation is similar to

reliability can be similarly used in deriving the grid system reliability here.

Grid service reliability

The grid service reliability can be viewed as a special type of the grid system

reliability if we consider the grid service in a way that the whole grid system is

only providing this required service and other services are not considered now.

With this classification, the concept of grid system reliability is generalized to

include the reliability of different number of services.

All the above algorithms computing the grid program/system reliability are

illustrated by a numerical example as below, and then the reliability of resource

management system is also integrated into the grid reliability analysis.

199 Computing System Reliability

Example 7.5. Suppose that a simple grid system is to provide a web service of

“Stock Analysis” for different countries. Three different resources (R1,R2,R4)

store the real-time stock price of different countries, and another resource (R3)

is the database of a website that outputs and shows the results out of the “Stock

Analysis”. The service procedure can be described as that two programs (P1

and P2) collect data from the three resources (R1,R2,R4) to analyze the stock

market information for different countries, and then output the results into the

database (R3) which can be loaded by a website service.

Revisit Fig. 7.5 that contains four virtual nodes and five virtual links and

runs the two programs and prepare the four resources. Tables 7.1-7.2 show the

necessary input information.

With the approaches presented above, Table 7.3 shows all MRSTs of the

program P1 with the communication time of each element evaluated by the

above Example 7.3 and its reliability calculated by Eq. (7.8). Table 7.3

200 Reliability of Grid Computing Systems

also shows the conditional probability of

similarly as the above Example 7.4.

evaluated

Substituting the values of and of Table 7.3

into Eq. (7.10), the grid program reliability of P1 is

Similarly, the grid program reliability of P2 can be obtained as

where three MRSTs are found for P2 to be executed by G2.

The grid system reliability can then be derived. The total number of

intersected trees is 6×3=18. Similar to grid program reliability, the grid

system reliability is obtained as

201 Computing System Reliability

Suppose that the total time for resource management system to deal with

The reliability for the request of the program P1 is then

computed as

the program P1’s requests is t=15 seconds and the failure rate at that time slot

The grid program reliability of P1 considering the reliability of resource

management system can be calculated by multiplying the above

together with R(P1) as

For P2, if the total time for resource management system to deal with its
resource requests is 10 seconds, a similar way can be used to obtain

Multiplying it with R(P2), we get

For the grid system reliability that includes both P1 and P2, the reliability can

be computed as

7.4. Grid Reliability of the Software and Resources

In the above section, the grid reliability is analyzed by considering only the

network hardware failures, i.e. failures of processing nodes and communicating

links. However, software program failures and resource failures should also be

integrated into the grid reliability analysis.

202 Reliability of Grid Computing Systems

7.4.1. Reliability of software programs and resources

Besides hardware causes, failures of a software program may also be caused by

the faults in the program itself. In the operational phase, the software program

failures can be assumed to follow the exponential distributions here. The

software failure occurrence rate of program running on processing node

is denoted by because a same program running on different

processing nodes may have different failure rates. Also, the processing time of

on is denoted by t(i, j) . Thus, the reliability of the software program

running on can be simply computed by

For the resource reliability, the previous section assumes that if the

program uses the resource, the resource itself is perfect and the failures only

occur when transferring the information through the communication network.

However, the resource possibly risks failures when it is needed.

Suppose the time for resource h to work is determined by the program

by which the resource is requested and the node on which the resource is

integrated, denoted by t(h, i, j). Also, considering the operational phase for the

integrated resources, we denote the failure rate of the resource h on the node

by which follows the exponential distribution. Thus, the

reliability of resource h requested by and integrated on can be simply

expressed by

7.4.2. Grid reliability integrating software and resource failures

In order to integrate the software program and resource failures into grid

reliability analysis together with the hardware network reliability, we revise the

203 Computing System Reliability

model presented in Section 7.3. For each virtual node, consider its programs

and resources as its sub nodes, as shown by Fig. 7.7. Here is a virtual node

on which are attached as the sub nodes representing programs and

corresponding to resources.

Such abstraction of the Fig. 7.7 has the following advantages:

1)	 The reliability of different software programs and resources can be
integrated into the grid reliability analysis given the failure rates of all

the sub nodes and their communication time.

2)	 It incorporates the hardware reliability in the grid reliability analysis
and the common cause failures among those programs and resources are

considered. For example, if fails, all its sub nodes (corresponding

to the programs or resources executed by or integrated on the same

virtual node) are no longer working.

3)	 All the approaches presented in the Section 7.3 can be directly
implemented to compute grid program/system/service reliability if each

sub node is viewed as an element itself, and the link between the virtual

node and its sub node is assumed to be perfect.

204 Reliability of Grid Computing Systems

Example 7.6. Revisit Fig. 7.5. Replace the nodes with those in the Fig. 7.7 that

considers the software program and resource failures. Fig. 7.8 depicts the new

network graph for the grid computing system containing the sub nodes of

programs and resources. The approaches presented by Section 7.3 can be

directly and similarly implemented in deriving the grid reliability of Fig. 7.8.

7.5. Notes and References

Foster & Kesselman (1998) summarized the basic concepts of the grid and

presented a grid development tool which addresses issues of security,

information discovery, resource management, data management,

communication, and portability. It is implemented in many Grid projects.

Recently, Foster et al. (2002) further developed the grid technologies toward an

205 Computing System Reliability

Open Grid Services Architecture in which a Grid provides an extensible set of

services that virtual organizations can aggregate in various ways.

For the resource management systems, Krauter et al. (2002) classified the

existing techniques into different types according to their control property and

investigated their applications. In order to address complex resource

management issues such as cost, Buyya et al. (2002) further proposed a

computational economy framework for resource allocation and for regulating

supply and demand in the gird computing environments. This framework

provides mechanisms for optimizing resource provider and consumer objective

functions through trading and brokering services. Cao et al. (2002) also

presented an agent-based resource management system that was implemented

for the grid computing. It utilized the performance prediction techniques of the

PACE toolkit to provide quantitative data regarding the performance of

complex applications running on a local grid resource.

For the network issues of the grid, Postel & Touch (1998) reviewed the

evolution of network techniques in different stages and summarized those that

could be implemented into the grid network. Keahey et al. (2002) introduced

the concept of “network services” in their “National Fusion Collaboratory”

project, which build on the top of the computational grids, and provide Fusion

codes, together with their maintenance and hardware resources as a service to

the community. Weissman & Lee (2002) also presented the design of system

architecture, called Virtual Service Grid, for delivering high-performance

network services.

This page intentionally left blank

CHAPTER
MULTI-STATE

SYSTEM RELIABILITY

Most of reliability models for computing systems assume only two possible

states of the system: operational state and failed state. In reality, many systems

exhibit noticeable gradations of performance besides the above two. For example,

if some computing elements in a computing system fail, the system may still

continue working but its performance may be degraded. Such degradation state is

another state between the perfect working state and the completely failed state.

To study this type of systems, the multi-state system (MSS) reliability is

investigated in this chapter.

The chapter is divided into three parts. First, the basic concepts of the MSS

are introduced. Some basic Markov models for MSS reliability analysis are then

presented. Finally, the MSS failure correlation model is studied using a Markov

renewal process model.

8.1. Basic Concepts of Multi-State System (MSS)

All engineering systems are designed to perform their intended tasks in a given

environment. Some systems can perform their tasks with various distinguished

207

208 Multi-state System Reliability

levels of efficiency which can be referred to as performance levels. A system that

can have a finite number of performance levels is referred to as a multi-state

system, e.g. Brunelle & Kapur (1999), Pourret et al. (1999), Lisnianski & Levitin

(2003) and Wu & Chan (2003).

A binary system is the simplest case of the MSS having only two

distinguished states. There are many different situations in which a system

should be considered to be a MSS:

1)	 Any system consisting of different units that have a cumulative effect on

the entire system performance can be considered as a MSS.

2)	 The performance level of elements composing a system can also vary as a

result of their deterioration (fatigue, partial failures) or because of

variable ambient conditions.

8.1.1. Generic MSS model

A system element j is assumed to have different states of the performance

level, represented by the set

where denotes the performance level of element j in the state i,

The performance level of element j at any instant is a random

variable that takes its values from Therefore, for the time interval

[0,T], where T is the MSS operation period, the performance level of element j

is defined as a stochastic process (Lisnianski & Levitin, 2003).

In some cases, the element performance cannot be measured only by a single

value, but by more complex mathematical objects, usually vectors. In these cases,

the element performance is defined as a vector stochastic process

209 Computing System Reliability

The probabilities associated with the different states (performance levels) of

the system element j at any instant t can be represented by the set

where

Note that since the states of an element compose the complete group of mutually

exclusive events, we have

Eq. (8.2) defines the mass function for discrete performance levels at

any instant t. The collection of pairs completely

determines the probability distribution of performance of the element j at any

instant t, see, e.g., Lisnianski & Levitin (2003).

When the MSS consists of n elements, its performance levels are

unambiguously determined by the performance levels of these elements. At any

time, the system elements have certain performance levels corresponding to their

states. The state of the system has K different states and that is the entire

system performance level in state i , The MSS performance level at

time t is a random variable that takes values from the set

Let

be a space of possible combinations of performance levels for all of the system

elements and is a space of possible values of the performance

level for the entire system. The transform

210 Multi-state System Reliability

which maps the space of the elements’ performance levels into the space of

system performance levels, is called the system structure function. Note that the

MSS structure function is an extension of a binary structure function. The only

mapped

difference is in the definition of the state spaces: the binary structure function is

 as while in the MSS, one deals with more complex

spaces.

A generic model of the multi-state system can be defined as follows. The

performance processes are modelled as stochastic process

each system element j. The system structure function that produces the stochastic

process corresponding to the output performance of the entire MSS is

 for

In practice, a simpler MSS model can be used. This can be based on

probability distribution of performances for all of the system elements at any

instant time t during the operation period [0,T) and system structure function:

and

The system state can also be represented in a table, in analytical form, or be

described as an algorithm for unambiguously determining the system

performance G(t) for any given set An example of MSS

modeling is illustrated below.

Example 8.1. Consider a 2-out-of-3 MSS. This system consists of 3 binary

elements with the performance levels for i=1,2,3, where

The system output performance level G(t) at any instant t is:

211 Computing System Reliability

The values of the system structure function for all

the possible system states are presented in Table 8.1.

8.1.2. Basic MSS reliability measures

To characterize MSS behavior from a reliability point of view one has to

determine the MSS reliability measures. These measures can be considered as

extensions of the corresponding reliability measures for a binary-state system.

Brunelle & Kapur (1999) and Lisnianski & Levitin (2003) reviewed many MSS

reliability measures. Some commonly used ones are introduced as follows.

Since the system is characterized by its output performance G(t), the state

acceptability depends on the value of this index. This dependency can be

expressed by the acceptability function F(G(t)) that takes non-negative values if

and only if the MSS functioning is acceptable. This takes place when the

efficiency of the system functioning is completely determined by its internal state

212 Multi-state System Reliability

(Lisnianski & Levitin, 2003). In such cases, a particular set of MSS states is of

interest to the customer. Usually these states are interpreted as system failure

states, which when reached, imply that the system should be repaired or

discarded. The set of acceptable states can be also defined when the system

functionality level is of interest at a particular point in time (such as at the end of

the warranty period).

More frequently, the system state acceptability depends on the relation

between the MSS performance and the desired level of this performance

discrete values from the

 W(t(demand). In general, the demand) is also a random process. It can take

set The desired relation between the

system performance and the demand can also be expressed by the acceptability

function F(G(t),W(t)) . The acceptable system states correspond to

and the unacceptable states correspond to F(G(t),W(t))<0.

The last inequality defines the MSS failure criterion.

The performance of MSS should exceed the demand. In such cases the

acceptability function takes the form

Since G(t) and W(t) are random processes, the subset of acceptable states

can vary in time. The system behavior during the operation period can be

characterized by the possibility of entering the subset of unacceptable states more

than once. The case when MSS can enter this subset only once corresponds to

non-repairable systems. For repairable systems or for the systems with variable

demands, the transitions between subsets of acceptable and unacceptable states

may occur an arbitrary number of times.

Some other reliability measures are based on the above acceptability

function F(G(t),W(t)) . The following random variables can be of interest:

(a) Time to failure, is the time from the beginning of the system life up

to the instant when the system enters the subset of unacceptable states the

first time.

213 Computing System Reliability

(b) Time between failures, is the time between two consecutive

transitions from the subset of acceptable states to the subset of

unacceptable states.

(c) Number of failures, is the number of times the system enters the

subset of unacceptable states during the time interval [0,T].

The probability of a failure-free operation or reliability function is

The Mean Time To Failure (MTTF) is the expected time up to the instant

when the system enters the subset of unacceptable states for the first time, as

The MSS instantaneous (point) availability A(t) is the probability that the

MSS at instant t is in one of the acceptable states:

The MSS availability in the time interval [0,T] is defined as:

which represents the portion of time when the MSS output performance level is

in an acceptable area.

Wu & Chan (2003) further presented an MSS measure called expected utility

function to evaluate the overall performance of the MSS at a time instant t,

expressed by

where is the utility of the MSS to stay at state j.

214 Multi-state System Reliability

8.2. Basic Models for MSS Reliability

According to the generic MSS model, any system element j can have

different states corresponding to the performance levels, represented by the set

The current state of the element j and, therefore, the current

value of the element performance level at any instant t, are random

variables. takes values from Therefore, for the time

interval [0,T], where T is the MSS operation period, the performance level of

element j is defined as a stochastic process.

In this section when we deal with a single multi-state element, the index j

will be omitted for the designation of a set of the element’s performance levels.

This set is denoted as We also assume that this set is ordered so

that for any i.

8.2.1. Non-repairable multi-state elements

The lifetime of a non-repairable element lasts until its first entrance into the

subset of unacceptable states. In general, the acceptability of the state of an

element depends on the relation between the performance of the element and the

desired level of this performance (demand). The demand W(t) is also a random

process that takes discrete values from the set The desired

relation between the system performance and the demand can be expressed by

the acceptability function F(G(t),W(t)) .

Minor failures

First consider a multi-state element with only minor failures defined as failures

that cause element transition from state i to the adjacent state i-1. In other words,

minor failure causes minimal degradation of element performance. The CTMC

for such an element is presented in Fig. 8.1.

215 Computing System Reliability

Denote by (i=1,2,...k) the probability for the system to stay at state i at time

instant t. Then the Chapman-Kolmogorov equation can be written as

We assume that the process starts from the best state k with a maximal

element performance level of Hence, the initial conditions are

and

One can obtain the numerical solution of the above differential equations under

the initial conditions even for large k. They can also be solved analytically by

using Laplace-Stieltjes transform in some cases. With this transform and by

taking into account the initial conditions, one can represent the above differential

equations in the form of linear algebraic equations and solved to obtain

216 Multi-state System Reliability

Now in order to find the function the inverse Laplace-Stieltjes transform

can be applied.

The probability of the state with the lowest performance determines

the unreliability function of the multi-state element for the constant demand level

The reliability function defined as the probability that the element is

not in its worst state (total failure) is

In general, if the constant demand is (i=1,...,k-1), the

unreliability function for the multi-state element is a sum of the probabilities of

the unacceptable states 1,...,i. The reliability function is then

The mean time up to multi-state element failure for this constant demand level

can be interpreted as the time of the process entering state i. It can be calculated

as the sum of the time periods during which the process is remaining in each state

j > i. Since the process begins from the best state k with the maximal element

performance level, we have

Example 8.2. Consider a non-repairable multi-state system that has only minor

failures. The system has 4 possible states whose performance levels are set as

100, 80, 50 and 0, respectively. Its Markov model can be built as Fig. 8.1 with

k=4. Assume that the failure rates are given by

and the initial state is the best state, state 4.

217 Computing System Reliability

Substituting the above numerical values into the Laplace-Stieltjes transforms

and inverting them, the state probabilities can be obtained. The state probabilities

as a function of time are shown in Fig. 8.2.

Assume that the constant demand is w = 75 . Therefore, the system is

reliable only if the system is at least at state 3 with performance level 80. Then,

the reliability function can be obtained as

Then, the mean time to failure is obtained by

218 Multi-state System Reliability

Both minor and major failures

Now consider a non-repairable multi-state element that can have both minor and

major failures (major failure is a failure that causes the element transition from

state i to state j: j < i – 1). The state-space diagram for such an element

representing transitions corresponding to both minor and major failures is

presented in Fig. 8.3.

For this Markov model, the Chapman-Kolmogorov equation can be written

as

theAfter solving the above equations and obtaining the state probabilities

reliability can be easily derived as Eqs. (8.8-8.9).

219 Computing System Reliability

8.2.2. Repairable multi-state elements

Availability modeling

A more general model of a multi-state element is the model with repair. The

repairs can also be both minor and major. The minor repair returns an element

from state j to state j+1 while the major repair returns it from state j to state i,

where i > j +1, see, e.g., Lisnianski & Levitin (2003).

A special case is when an element has only minor failures and minor repairs.

It is actually a birth and death process. The CTMC of this process is presented in

Fig. 8.4. The CTMC for the general case of the repairable multi-state element

with minor and major failures and repairs is presented in Fig. 8.5.

220 Multi-state System Reliability

The following are Chapman-Kolmogorov equations for the general case:

Solving the above equations, one obtains the state probabilities (i=1,2,...,k).

When for the constant demand level the

acceptable states where the element performance is above level are i + 1, ...,

k. Hence, the availability function is

In many applications, the long-run or final states probabilities

of interest for the repairable element.

For the long run state probabilities, the computations become simpler. The

above differential equations is reduced to a set of k algebraic linear equations

are

because for the constant probabilities, all time derivatives as below

221 Computing System Reliability

An additional independent equation can be provided by the simple fact that the

sum of the state probabilities is equal to 1 at any time. The above equations can

then be solved.

Example 8.3. Consider a 4-state repairable system with both minor and major

failures and repairs. The performance levels of the four states are

respectively. The unit has the following failure rates:

and the following repair rates:

The Markov model can be constructed as Fig. 8.5 with k=4. Substituting the

above numerical values into Eq. (8.12), we can obtain the state probability

functions as depicted by Fig. 8.6.

222 Multi-state System Reliability

Assume that the constant demand w = 75. The available states of the system

are states 4 and 3, so the system availability function is

which is also shown in Fig. 8.6 as the dashed line.

Reliability modeling

The determination of the reliability function for the repairable multi-state

element is based on finding the probability of the event when the element enters

the set of unacceptable states the first time. In order to find the element

reliability function for the constant demand an

additional Markov model should be built. All states 1,2,...,i of the element

corresponding to the performance levels lower than the demand w, should be

combined in one absorbing state. This absorbing state can be considered now as

state 0 and all repairs that return the element from this state back to the set of

acceptable states should be forbidden.

The transition rate from any acceptable state m (m > i) to the combined

absorbing state 0 is equal to the sum of the transition rates from the state m to all

the unacceptable states (states 1,2,...,i):

The CTMC model for the computation of the reliability function is depicted by

Fig. 8.7

For this CTMC, the state probability characterizes the unreliability

function of the element because after the first entrance into the absorbing state 0

the element never leaves it, i.e., we have

223 Computing System Reliability

It is easy to obtain by solving the following Chapman-Kolmogorov

equations:

The reliability function can then be obtained.

Example 8.4. Continue with Example 8.3. The reliability is the probability that

the system performance level is lower than the demand w=75, i.e. the system
leaves states 4 and 3 the first time. The Markov model can then be constructed as

Fig. 8.8.

224 Multi-state System Reliability

By substituting the numerical values as given by Example 8.3 into the above

equations and solving them, we obtain the state probability functions as

Then, the reliability function is given by

8.3. A MSS Failure Correlation Model

Most of MSS reliability models assume independence of successive system runs.

It is an assumption not valid in reality. This section presents an MSS reliability

model based on Markov renewal processes for the modeling of the dependence

among successive runs.

225 Computing System Reliability

8.3.1. Modeling MSS correlated failures

Except the perfect working state, other states in the MSS can be viewed as

different types of failure states. Note that if the failures can be of n different

types, the total number of possible states for the MSS will be n+1, in which there

is a perfect state.

For the correlated MSS with n types of failures and a successful state, a

general Markov process can be constructed as follows:

1)	 Build an n+1-state discrete time Markov chain with transition probability
matrix as

2)	 To overcome the discrete-time property, introduce a process in
continuous time by letting the time spent in a transition from state k to

state l to have Cdf

Such a process is attributed to a Semi-Markov Process.

Model for two failure states

When there are two failure states, there will be three states for the MSS after a

run; a successful state, Type A failure state and Type B failure state. Type A

failure could be a kind of serious failure such as Catastrophic or Critical failure.

Type B failure could be less serious than Type A failure such as Minor or

Marginal failure.

A common situation is that the system is not able to continue to perform its

function when Type A failure occurs, but when Type B failure occurs, the system

can still work, although it will have more chances to induce a Type A failure in

the next run. The result from a run will affect the probable state in the next run as

226 Multi-state System Reliability

shown in Fig. 8.9. Here we consider the case when there is no debugging except

the resetting or restarting when Type A failure occurs. The transition probability

will remain unchanged under this assumption.

Let be a random variable of the state after a run, and denote by

The transition matrix is

in which

227 Computing System Reliability

The unconditional probability of failure on run (i+1) is:

Substituting Eq. (8.18) into the above equation, we have that

The next step is to develop a model in continuous time, considering the time

that the system spends on running. Let be a Cdf of the time spent in a

transition from state k to state l of the DTMC in Fig. 8.9. Here, is assumed

to depend only on the state at the end of each interval in a system run, see e.g.

Goseva-Popstojanova & Trivedi (2000) as:

With the addition of the to the transitions of discrete time Markov chain,

we obtain a Semi-Markov Process as the system reliability model in continuous

time.

Model for two failure states with debugging

Furthermore, we assume that after a Type A failure, the system may be debugged

and it is an instantaneous fault removing process. Hence, after removing the

fault, the transition probability matrix will be changed. When the successive runs

are successful or only cause the Type B failure, the system does not have to be

debugged and it will continue running in the same way. In this case, the

transition probability matrix can then be assumed to be unchanged until a Type A

failure happens.

The Markov renewal model is modified as the Fig. 8.10.

228 Multi-state System Reliability

Here ‘i’ is the number of Type A failures, which is already detected and

removed. During the testing phase, system is subjected to a sequence of runs,

making no changes if there is no Type A failure. When a Type A failure occurs

on any run, then an attempt is made to fix the underlying fault, which causes the

conditional probabilities of the state on the next run to change. The transition

probability matrix for the period from the occurrence of the i:th Type A failure to

the occurrence of the next (i+1):st Type A failure, is

Assume is the total number of Type A failures after m runs. The sequence

provides an alternate description of system reliability model with debugging

process considered here. Thus, defines the DTMC presented in the above

Fig. 8.10. All states, i, and represent that the Type A failure state has been

occupied i times. State i represents the initial state for which State

represents all the successful subsequent trials for which State

represents all Type B failures subsequent trials for which

229 Computing System Reliability

General model for n failure states

The above models can be extended to the case of general multi-state of failures.

Assume that the failures can be divided into n states, so the MSS totally contains

n+1 states including the perfect state. Denote again the critical failure type as

Type A failure state. When this type of failures occurs, the system will

completely stop working and action has to be taken. First we assume there are no

changes in the system except resetting and restarting when Type A failure occurs.

The transition probability matrix for the successive runs will remained

unchanged. The Markov process can be expressed as the Fig. 8.11.

Denote

230 Multi-state System Reliability

and the transition probability matrix is then

and transition probabilities should satisfy

The unconditional probability of failure on run (i+1) is:

Similar to the previous case of two types of failures, when there is a debugging

after Type A failure, the transition probability matrix changes accordingly. A n-

type failure states Markov renewal model can be constructed.

Let ‘i’ be the number of Type A failure, which have already been detected and

removed. The transition matrix for the period from the occurrence of the i:th

Type A failure to the occurrence of the next (i+1):st Type A failure, is given as

follow:

and the transition probability should satisfy

231 Computing System Reliability

Again defines the DTMC. All the states, represent that the

Type A failure state has been occupied i times. State i represents the first trial for

which State represents all the successful subsequent trials for which

State to represents Type 2 to n failure states subsequent trials for

which

8.3.2. Application of the model

The above Markov renewal model can be used to analyze the system

performance in both testing phase and validation phase. In testing phase, the

system is debugged, so the transition probabilities should change after each Type

A failure. However, between two Type A failures, the transition probabilities are

constant, so the distribution of time between two successive Type A failures can

be easily derived by using the Laplace-Stieltjes transform. The conditional

system reliability, which is defined as the survivor time distribution between two

Type A failures, can also be obtained.

On the other hand, the probability transition matrix will be constant during

the validation phase after the test, because no changes are made to the system

during that phase. Hence, the system reliability can be easily calculated.

Some quantitative measures

From a reliability point of view, the time between failures or the number of

failures over time is very important. Here, we derive the distribution of the

discrete random variable (j=0,2,3...n) defined as the number of runs

visiting the j:th state between two successive visits from the i:th Type A failure

to the (i+1):st Type A failure.

The probability of every possible number of (j=0,2,3...,n) is given by

232 Multi-state System Reliability

in which is the function of and

denotes the number of runs occupied on the j:th failure state The

value of can be obtained in principle.

Under the condition of that it visits the j:th state with times

(j=0,2,3,...,n) and that Type A failure occurs once between the i:th and (i+1):st

Type A failures, the distribution of the time period used for this event can be

derived as

in which is the convolution of (j = 0,2,3...,n) and

can be 0,1,2.... Also, denotes the convolution of the two functions.

Denote the distribution of time between the i:th and (i+1):st Type A failures

as Assume is the random variable of time between the i:th and

(i+1):st Type A failure runs. With the above two equations, it can be shown that

the distribution of

The Laplace-Stieltjes transform of can be obtained and the inversion of it

is straightforward. A closed-form result can be obtained when

(j = 1,2,...n) has a rational Laplace-Stieltjes transform.

The reliability of the system after i:th Type A failure is

233 Computing System Reliability

Some general properties of the inter-failure time can be developed without

making other assumptions. For example, the mean time between failures (i and

i+1 Type A failures) is:

or, see e.g. Goseva-Popstojanova & Trivedi (2000)

Application to the validation phase

After the testing (debugging) phase, the system enters a validation phase to show

that it has a high reliability prior to actual use. In this phase, no changes are made

to the system. Here, we use the two-type failure case as an illustration. Similar

procedures can be implemented in solving general n-type failure problems.

First we consider the independent condition, that is,

If the state is not a Type A failure after a run, the system is reliable until the Type

A failure occurs. The reliability in a run is The reliability for m

successive runs is defined as the probability that m successive independent test

runs are conducted without Type A failure, which can be derived as:

if

m

Given a confidence level we can say that the system is reliable

in successive runs without Type A failure with confidence. In order to

satisfy this condition, the value of should satisfy

234 Multi-state System Reliability

Given a confidence level we can obtain an upper confidence bound on

which is denoted by Solving we obtain the upper bound

This can help to test whether the system can be certified or not, i.e., if

the system is certified with confidence to say that the system is reliable in n

successive runs without Type A failure.

Now consider a sequence of possibly dependent system runs. During the

validation phase, the system is not changing, i.e., does not change. That is, the

sequence of runs can be described by the homogeneous DTMC with the

transition probability matrix. Assume that the DTMC is steady, i.e., each run has

the same failure-probability:

Let and substitute it into the above equation to get

Solve the above equations to obtain unconditional probability of failure on run as

The reliability for m successive runs will be

An example is given here to illustrate the procedure.

235 Computing System Reliability

Example 8.5. Suppose the distribution of the execution time of each run is

exponential so that

Let as illustration. In the operational phase we

can estimate the transition probability matrix from empirical data of successive

runs. The following transition probability matrix is used as illustration

Substitute those values into Eq. (8.27), we can obtain the Laplace-Stieltjes

transform equation and then invert it to get the Cdf of the time between failures
as:

This equation implies that when successive runs are dependent, the Cdf of the

time between failures is a mixture of exponential distributions. Fig. 8.12 displays

the distribution of F(t).

Using the distribution function, the mean time to failure can be obtained as

The unconditional probability of the threeh different states can be calculated

through Eqs. (8.36-8.38)

236 Multi-state System Reliability

The steady probability for the system to be reliable is

8.4. Notes and References

For the multi-state systems, the book of Lisnianski & Levitin (2003) summarized

many MSS reliability models, which can provide the readers a complement view

to this chapter. They have carried extensive research on this topic. The book

describes many MSS reliability models of different structures including series,

parallel, bridge and distributed networks etc, and under different environments

237 Computing System Reliability

including weighted voting systems, consecutively connected systems, sliding

window systems and so on.

Xue & Yang (1997) showed that multi-state reliability dynamic analysis

could be transformed to a set of 2-state ones by using some generalized reliability

parameters. Bukowski & Goble (2001) studied the MTTF of the MSS.

Kolowrocki (2001) studied the MSS with components having exponential

reliability functions with different transition rates between subsets of their states,

which introducing the aging concept into the components of the MSS. Levitin &

Lisnianski (2001) considered vulnerable systems, which could have different

states corresponding to different combinations of available elements composing

the system. In real systems, a multilevel protection is often used, for example, in

defense-in-depth design methodology (Fleming & Silady, 2002). The multilevel

protection means that a subsystem and its inner level protection are in their turn

protected by the protection of the outer level, which has been studied by Levitin

(2003). Yeh (2003) presented an interesting model for the network reliability by

assuming the nodes and links composing the network are of multiple states.

Levitin & Lisnianski (2003) formulated the optimization problem of

designing structure of series-parallel multi-state system (including choice of

system elements, their separation and protection) in order to achieve a desired

level of system survivability by the minimal cost. Liu et al. (2003) also presented

a neural network to solve this optimization problem. Recently, Levitin et al.

(2003) further extended it to include multiple levels of protections and presented

a multi-processor genetic algorithm to solve it.

This page intentionally left blank

CHAPTER OPTIMAL SYSTEM DESIGN
AND RESOURCE ALLOCATION

In the design of computing systems, some important decision problems need be

solved. These problems could be the determination of optimal number of

distributed hosts, the system structure and the network architecture. The

objectives could be to maximize the reliability, to minimize the cost, or both.

Besides the optimal system design, the problem of optimally allocating

limited resources (such as time, manpower, programs or files) on the

computing systems are also of great concern. Given limited resources, different

allocation strategies will cause different system reliability and cost. In order to

make the best of the resources, their allocations must be carefully considered.

This chapter discusses some of these optimization problems. The optimal

number of redundant hosts for a distributed system design is first presented.

Optimal testing resource allocation problems on either independent modules or

dependent versions of software are discussed. Finally, the optimization of grid

architecture design and the grid service integration problems are studied.

239

240 Optimal System Design and Resource Allocation

9.1. Optimal Number of Hosts

An important goal in computing system design is to achieve a high reliability or

availability through some kind of redundancy (such as redundant hosts) or fault

tolerance. Many systems are developed in the environment with redundant

hosts. The number of hosts has significant influence on the cost and system

availability because it can be very costly while they are able to improve system

availability easily. The objective here is to minimize the total cost based on the

following cost model.

9.1.1. The cost model

To illustrate the relationships among the decisions and cost, an influence

diagram which provides simple graphical representations of decision situations,

is displayed in Fig. 9.1. Different decision elements are shown in the influence

diagram as of different shapes, see e.g., Clemen (1995 pp. 50-65).

The number of redundant hosts affects the optimal decision of the release

time. Both the number of redundant hosts and release time affect the system

availability. These factors determine the development cost. The number of

hosts also determines the cost of redundant hosts. The release time determines

the rewards or penalty depending on whether the release is before or after the

deadline. If the system is unavailable after release, a risk cost is incurred.

Hence, the cost of redundant hosts, the development cost, reward and penalty

should be considered together when deriving the total expected cost. Each cost

component will be described in the following.

Cost of redundant hosts

The cost function for a multi-version fault-tolerant system can be described as a

linear function to the number of versions as

241 Computing System Reliability

where N is the number of hosts, is a constant, and is defined as the

expected cost per host. Here we have assumed the redundant hosts used in the

system are of the same type.

Reward for early release

Usually there is a deadline for release. This is the case when the penalty cost

for delay is very high. On the other hand, there is a reward for releasing the

system earlier. We assume is a constant rewarded if the system can be

released in time, no matter how early the release time is and is the

expected reward per unit time before the deadline. The reward function of the

release time can be expressed as

242 Optimal System Design and Resource Allocation

where is the deadline for release, is the release time so that is the

time ahead of the schedule.

Risk cost for system being unavailable

This cost factor is generated by the unavailable system after releasing, termed

risk cost as in Pham & Zhang (1999). Here we assume the risk cost for

unavailable system is a function of system availability and release time:

where is the release time, is the ending time for contracted maintenance

after release, is the availability function at time t for N-host system, and

is the risk cost per unit time when the system is not available. In the equation

above, is the probability for the system to be unavailable at time t.

Development cost

The development cost function for a single software module proposed in

Kumar & Malik (1991) is

where and are constants and is the individual module software

reliability achieved at the end of testing.

Then, the total expected cost can be expressed as

243 Computing System Reliability

9.1.2. System availability

The system availability model for a homogeneous distributed

software/hardware system can be obtained straightforward from Chapter 6.3. A

numerical example is shown below.

Example 9.1. Suppose and and

the system availability for different number of hosts can be obtained

from the analysis presented in Chapter 6.3. The results are depicted in Fig. 9.2.

244 Optimal System Design and Resource Allocation

We can observe that when the number of redundant hosts increases, the

system availability increases. The system availability function can be used in

the optimization model which will be described in the following.

9.1.3. Optimization model and solution procedure

The optimization model is based on the cost criteria and the decision variables

are the number of redundant hosts and the release time. Its objective is to

minimize the expected total cost. There are three types of constraints in this

decision problem. First, the customers may require a least system availability
*A after the release. Second, there is a deadline for the system to be released

so the release time should be earlier than that. Finally, the customers may limit
* the maximum number of redundant hosts N due to their budget and other

physical restrictions.

That is, the decision variables are N and and the optimization model is

to

*where A is the required system availability after the release, is the
* deadline for release and N is the maximum number of redundant hosts

allowed. If there is no such constraint, we can assume a large enough value of
*N in this model. However, usually only a small number of redundant hosts

will be practical.

To obtain an optimal solution, the solving procedures are described as

follows:

245 Computing System Reliability

Step 1: Obtain the system availability function of the distributed system

with N redundant hosts.

Step 2: Derive each cost function and obtain the expected total cost.

*Step 3: Let N take each integer value from 1 to N to obtain the expected

to

total cost and save the results from to

Step 4: For each compute the optimal release time,
* and save the results as OpTr(1) to OpTr(N), so that the minimum

* expected total cost is obtained and saved in MinC(1) to MinC(N).

Step 5: Compare the minimum total expected cost from MinC(1) to
*MinC(N)to select the optimum number of redundant hosts

* OpN=Min(MinC(n)) (n=1,2,..., N).

The above procedure can be easily realized in computer programs. A numerical

example is presented to illustrate the optimization procedures.

Example 9.2. Company X is awarded a contract to develop a telephone

switching system. In this case, the hardware hosts are brought from external

suppliers, but the software is developed in house and tested with the system.

The main question is how many redundant hosts are needed and also we are

interested in when the system can be released so that the total cost is

minimized. For illustrative purpose, the following input values are used:

1) The system availability needs to be higher than 0.88 when it is released.

2) The deadline for releasing the system is 800 hours from now.

3) The penalty cost for unavailable system is about $8000 per hour during

the first 300 hours after release.

4) Each host costs $17600 and a fixed fee for all the hosts is $1293.

5) The maximum number of redundant hosts is five.

246 Optimal System Design and Resource Allocation

6)	 If the company can release the system earlier than the deadline, there is
a constant reward of $2123.7 and a variable reward of $31.5 per hour.

Based on the conditions and the assumptions given above, the values of the

parameters can be obtained as

and

The parameters for software development cost are assumed as H=10232,

B=16, D=14. The optimization problem can be solved with the required system
*availability when releasing, A , of 0.88 and the maximum number of

*redundant hosts, N , equal to 5.

Here we assume the system is a kind of homogeneous distributed

software/hardware system whose availability function is depicted by Fig. 9.2.

With the values of parameters given above, we can obtain the total mean cost

through Eq. (9.5) as

Finally, the total expected cost as a function of release time for different

number of redundant hosts are depicted by Fig. 9.3 and the overall results are

given in Table 9.1.

247 Computing System Reliability

From Table 9.1, the global minimum cost is

number of redundant hosts N=4 and the optimum release time

The optimum results indicate that there should be four redundant hosts and the

system is tested for 261.7 hours.

104580 (Units) with the

9.2. Resource Allocation - Independent Modules

Testing-resource refers to the resource expenditures spent on software testing,

e.g., man-power and available time, etc. During the testing stage, a project

manager often faces various decision-making problems such as how to allocate

available time (the time before deadline) among the modules and how to assign

personnel, etc. In order to combine these two types of resources (man-power

and available time), we define a term called total testing time that is calculated

248 Optimal System Design and Resource Allocation

by multiplying the number of personnel with the available time. Each unit of

the total testing time represents the resource of one person to work for one unit

of time. Here the testing-resource is referred to as total testing time and we use

the term testing-resource as an exchangeable one with the term total testing

time.

For the optimal testing-resource allocation problem, the following

assumptions are made here:

(a) n modules in a software are independent during the unit-testing phase.

(b) After unit time of testing, the failure rate of module i is

The reliability of module i is

where x is the operational time after testing. Note that in the above, we have

used the operational reliability definition (Yang & Xie, 2000) as it is more

common that after the release, there will be no reliability growth, and hence the

failure rate will remain constant equal to

9.2.1. Allocation on serial modular software

If the software system fails whenever there is a failure with any of the modules

that the software system is composed of, then it is called a serial software

system. For many modular software systems this is right the case. The structure

for such a system is illustrated in Fig. 9.4.

249 Computing System Reliability

i

i i is

Denote by the testing-time allocated to module . After unit of time of

testing, the failure rate of module is The reliability of module

The reliability of the whole software system is given by

The optimal testing-resource allocation problem is formulated as

The formulation above is equivalent to minimizing the sum of failure

occurrence rates, i.e.,

It can be noted that the general formulation presented above does not

require a particular model for the mean value function and thus it has much

flexibility. In fact, we could even use different software reliability models for

different modules.

In order to obtain a general solution to this problem, the Lagrangian is

constructed as

250 Optimal System Design and Resource Allocation

The necessary and sufficient conditions for the minimum are (Bazaraa et al.,

1979, p. 149)

The optimal solution can be obtained by solving the above

equations numerically. Define then an equivalence of Eq.

(9.17) is

For most software reliability models, is a positive and

non-increasing function. It is shown in Yang & Xie (2001) that if

and is non-increasing on let

Then, if we reorder software modules 1, 2,.... n such that

optimal solution to the testing-resource allocation problem is:

the

where satisfies and k satisfies

251 Computing System Reliability

From the results above, the optimum solution can be obtained by the

following iteration algorithm.

Step 1. Compute using Eq. (9.22).

Step 2. Set l = 1.

Step 3. Obtain
by solving the following equation:

Step 4. If then and the optimal solution can be

obtained by Eq. (9.23), then stop. Otherwise set l = l +1 and go back

to Step 3.

Example 9.3. Assume that the software system is composed of three modules

for which the testing processes follow the logarithmic Poisson execution time

model (Musa & Okumoto, 1984). That is,

It can be shown that

are positive and strictly decreasing on The optimization algorithm

described in previous section can be used. In this case, The solution

to Eq. (9.24) is

252 Optimal System Design and Resource Allocation

and Eq. (9.23) becomes

Suppose that the parameters of the three modules have been estimated by

historical testing data and are summarized in Table 9.2, and an additional 5000

CPU hours of testing-time is available to be allocated among these three

modules. By solving the optimization problem as described in previous section,

the optimal allocation is obtained and shown in Table 9.2.

The reliability of the software system after the additional 5000 hours of testing

is:

9.2.2. Allocation on parallel modular software

The system is assumed to be a parallel redundant system (Fig. 9.5). For such a

software system, the system will fail only when all modules fail. The achieved

reliability of the system after unit testing phase is

253 Computing System Reliability

where is the operational reliability of module i.

The optimal testing-resource allocation problem is formulated as

An equivalence of Eq. (9.26) is:

Now the optimal testing resource allocation problem is formulated by the above

equations. The Lagrangian is constructed as:

254 Optimal System Design and Resource Allocation

The necessary and sufficient conditions for the minimum are

aboveThe optimal solution can be obtained by solving the

equations numerically.

9.2.3. Allocation on mixed parallel-series modules

The Fig. 9.6 is the structure of a mixed parallel-series modular software system.

There are n groups of parallel modules and m serial modules.

255 Computing System Reliability

Single objective of maximizing reliability

The reliability for this parallel-series modular software system is calculated as

following equation

where is the testing time allocated to module i. Then, the following

optimization model is to maximize system reliability:

in which T is the total resource of time consuming in all modules of parallel

group and serial modules

Multiple objectives of maximizing reliability and minimizing cost

Assume that the cost function of Module i is in which is the

reliability for the i:th module. The total cost in the parallel-series modular

software system of Fig. 9.6 will be

where

is the total cost of the l:th groups of parallel modules

256 Optimal System Design and Resource Allocation

is the total cost of all the n groups of parallel modules, and

is the total cost of all the series modules.

Here, we adopt the cost function for individual module i shown by Eq. (9.4),

proposed in Kumar & Malik (1991).

The optimal testing-resource allocation problem can then be formulated

with two objectives as

in which T is the total resource of time consuming in every modules of parallel

group and serial modules

For mixed parallel-series modular software, it is difficult to solve them, so

the heuristic algorithms such as genetic algorithm, simulation annealing or

Tabu search can be applied. Dai et al. (2003b) presented a genetic algorithm to

solve the above multi-objective allocation problems. Here an example of this

type is illustrated with that genetic algorithm.

Example 9.4. The structure of this 8 modules example is shown in Fig. 9.7.

257 Computing System Reliability

We use the GO-model for illustration. The mean value function is:

We assume here that the total testing time is 23000 hours and x is 200 hours to

complete the given task. The values of parameters and optimal solution out of

the genetic algorithm are given in the following Table 9.3 where

(i=1,2,...,8) is the optimal allocated testing time on different modules.

258 Optimal System Design and Resource Allocation

9.3. Resource Allocation - Dependent Modules

A method to increase the reliability of safety critical software is the N-version

programming technique, e.g. Avizienis (1985). In the analysis of this type of

systems, a common assumption is the independence of different versions. In the

following, we first present a model for the dependent N versions of software.

Then, based on the model, optimum allocation problem of the testing

resource/time on the dependent N versions is discussed.

9.3.1. Reliability analysis for dependent N-version programming

The N-version programming involves the execution of multiple versions of

software. A voting scheme matches and tests the outputs, and then determines a

final result. There are various voting schemes. Here we use the voting scheme

of “selecting the first qualified result”, which is explained in details in Belli &

Jedrzejowicz (1991). In this voting scheme, if any one version among the N

versions of software passes a test, the voter will select it as the final result no

matter whether the other versions are qualified or not.

Decomposition by multi-component modeling

In the N-version software, any j versions may fail at the same time because of

certain common cause failures. For example, if j versions of the N-version

software share a common subroutine, these j versions may fail simultaneously.

We define a parameter for such failure, called dependence level, by the number

of simultaneously failed versions caused by the failure.

We denote as the “components” that correspond to different

common cause failures, where j (j=1,2,...,N) is the dependent level that

correlates any j out of N versions and k represents the k:th

component among all the j:th dependent components where

259 Computing System Reliability

If all those failures with the j:th dependent level are numbered by k

can represent all the failures with different dependent levels,

respectively. The total number of all “components”

is equal to

The N dependent versions of software can be decomposed into the

mutually exclusive components. Note that the N versions may not be

physically separated. An example of three-version programming is illustrated

below.

Example 9.5. Consider a fault-tolerant system with three versions of software

which might be dependent. The three dependent versions are correlated as

shown in Fig. 9.8 and the states can be decomposed into 7 mutually exclusive

parts, called components here.

260 Optimal System Design and Resource Allocation

Let (k= 1,2,3) denote the failures that affect only the k:th version without

influence on the other two versions; (k=1,2) denote the common cause

failures that correlate the k:th and (k+1):st versions without influence on the

other one version; represents the failure that correlates the first and the

third versions; and denotes the failures that correlate all the three

versions.

The reliability block diagram for those components can be built as shown in

Fig. 9.9.

The reliability block diagram is complex containing not only many

parallel-series units but also some bridge structures. Moreover, the diagram will

become much more complicated for four or more versions. Hence, the

reliability estimation for dependent N-version programming is not

straightforward. In order to analyze the system reliability based on our above

model, a general approach is presented below.

System reliability function

The reliability of a component is defined as the probability for the

corresponding common cause failure not to occur, which is denoted by

261 Computing System Reliability

The software reliability of the dependent N-version programming is

defined as the probability that at least one version of software can achieve the

task successfully. The software reliability function at time t can be expressed as

Let represent the event in which the i:th version of software is reliable

to successfully achieve the given task at time t, (i=1,2,...,N). The software

reliability function for the dependent N-version programming can then be

written as

By using conditional probability, the events considered in the above equation

can be decomposed into mutually exclusive events as

where denotes the conditional probability that the first version

of the software fails given that the second version of the software is reliable at

time t.

Hence, each term in the software reliability expression of the above

equation can be evaluated in terms of the probability of two distinct events. The

first event indicates that the i:th version of software is reliable while the

second event indicates that all of its previous versions (m=1,2,...,i-1) fails

given that is reliable.

The probability of the first event, is straightforward. It can be

calculated by multiplying the reliability functions of all the components that

will make the i:th version fail as

262 Optimal System Design and Resource Allocation

where means that the i:th version of software will fail if the

component fails.

The probability of the second event, is not

as straightforward to compute. It can be done in the following steps:

Step 1: select all those components that can make any version(s) among the

fail while is still reliable.

Step 2: use binary search tree (Johnsonbaugh, 2001) to find out all the

exclusive combinations, which can make all the i-1 versions

fail among those components selected in step 1.

Step 3: add up all the probabilities of those exclusive combinations to

After and i=1,2,...,N,

obtain the probability of

 computing

we can obtain the software reliability function for the dependent N-version

programming by substituting them into Eq. (9.44). An example of aircraft

landing is illustrated below.

Example 9.6. Suppose that three teams will compose three versions of a

program to control the aircraft landing. If any one version is working, the

aircraft can land successfully. These three versions may depend on each other

through certain common cause failures. Those failures may occur on the

common parts of some versions, such as using the same external electrical

power, integrating the same software packages, sharing identical subroutines

and so on.

263 Computing System Reliability

As in the approaches presented above, the software is first decomposed

into its individual components. As shown in example 9.5, The three dependent

versions can be decomposed into 7 components corresponding to different

common cause failures as shown in Fig. 9.9. denotes the reliability

function of We have then

9.3.2. Optimal testing resource allocation

An optimization problem for testing resource allocation can be formulated to

minimize the total cost for the N versions, when constrained by a fixed testing

time budget T hours. Let be the testing time allocated on the i: th version

(i=1,2,...,N), and the total testing time is less than T. The allocation of testing

time significantly affects the total cost. There are mainly two parts in the cost:

(a) Test duration cost Here, the N versions of the software can be

tested respectively given their allocated testing time and their

expected cost per unit of testing time (i=1,2,...N). The test duration

cost can be expressed as

where is the expected cost in testing the i:th version.

(b) Risk cost this is the cost incurred by an unreliable system, see e.g.

Pham and Zhang (1999). This can be expressed as

264 Optimal System Design and Resource Allocation

where d is the expected cost if the system fails and 1-R is the

probability for the system to fail.

The total cost is the summation of the above two parts.

Denote by the testing time for component During the testing

period, the component continues running and risks failure unless all the

versions related to fail. Hence, the testing time of can be

calculated by

where means version m is related to component Hence, the

reliability function of the component can be written as

where x is the operation time after the test. The software reliability function

can then be derived through our approach presented above, where

The optimization problem to minimize the total cost by

finding a set of testing time allocations can be formulated by

Solving this problem is also difficult, so heuristic algorithms need be

implemented. An example is illustrated where a genetic algorithm is used here

to solve it.

265 Computing System Reliability

Example 9.7. Continuing with Example 9.6 (the air-craft landing example),

suppose that the testing resource budget is 2000 hours of testing time, i.e.,

T=2000, that the testing cost per hour on the three versions are

and that the risk cost d = 10000 if the aircraft cannot land

successfully. The allocation problem becomes how to optimally allocate the

2000 hours on the three versions in order to minimize the total cost.

We assume that the common cause failures arriving on each component

satisfy the Goel-Okumoto (GO) model. That is, the failure rate function for the

components is modeled with:

If the testing is stopped after t units of time, the reliability for a mission of
duration t is given by (Yang & Xie, 2000)

The values of the parameters and in the GO model are given in

Table 9.4 for this example.

Then, the reliability for the dependent three-version software can be obtained

through Eq. (9.46). Substitute the parameters of Table 9.4 into Eq. (9.54) to

compute the reliability functions of all the components, and then substitute them

266 Optimal System Design and Resource Allocation

into Eq. (9.46) to compute the software reliability by assuming x=5 (i.e. it will

take 5 hours for the aircraft to land).

is used to get the solution

To solve the optimization problem as Eqs. (9.50-9.52), a genetic algorithm

 The best allocation of the

2000 hours should be to test: the first version for 638.2 hours; the second for

1361.8 hours and the third for 0 hour. The total expected cost

and the software reliability

9.4. Optimal Design of the Grid Architecture

9.4.1. Grid architecture design

For the grid computing systems (see Chapter 7), the network architecture is an

important factor. Although the physical network may have already existed

when building the grid, constructing a direct link between two remote nodes

still lead to high cost where the direct link means that both nodes have the right

to use the shared resources from each other. Hence, the cost of a direct link is

mainly caused by preparing the resources, purchasing the right to use the

resources, or dealing with the security problem during communication. Such

cost is called link cost. Here a link can be a virtual link through the

Internet/Intranet or even wireless.

On the other hand, if the grid computing system cannot complete the given

tasks successfully (such as provide services), another kind of cost, called risk

cost (Pham & Zhang, 1999) is caused by the unreliable computing. Hence, the

total expected cost for designing the grid network architecture should consider

both link cost and risk cost.

As Fig. 9.10, denoted by the set of programs executed by node i and

the set of resources prepared in node i. Suppose the grid architecture (i.e.

267 Computing System Reliability

the network of links among nodes) need be designed given and

(i=1,2...N).

Adding more links among the nodes might increase the link cost but they

could improve the system reliability to reduce the risk cost. In order to

minimize the total cost, how to optimally design the network architecture of the

grid, i.e. which link should exist or not, is important.

9.4.2. Optimization model

Denote by the link between two nodes i and j If there

exists a link between the two nodes, and if there is no link between

them. Here, is defined as a vector of which

corresponds to a network architecture of N-node system. The length of is

268 Optimal System Design and Resource Allocation

N(N-1)/2, because the maximal number of links to completely connect all the N

nodes is N(N-1)/2. Thus, the total link cost can be expressed as

in which is the cost to construct the link between node i and j.

The grid system reliability given a network architecture
 denoted by

can be derived from the algorithms presented in Chapter 7. We use

the linear function of the risk cost as

in which is the probability of a failed task of the grid and is

a constant which can be explained as the expected risk cost if the task fails.

The total expected cost is the summation of link cost and risk cost as

Our objective is to find an optimal network architecture to minimize

the total expected cost. The optimization model is

If there are N nodes in the grid, the length of is N(N-1)/2 and the sample

size of total network architectures is Since the sample size increases

exponentially to the number of nodes, it is difficult to exhaustively search all

the samples for the optimal solution in a complex grid with many nodes.

269 Computing System Reliability

Fortunately, for such complex grids, it is usually sufficient to find a good

enough network design through certain heuristic algorithms, although it may

not guarantee the optimum solution.

9.5. Optimal Integration of the Grid Services

9.5.1. Grid service integration problem

After the grid system is built, new services and resources are able to be further

integrated into the grid by various virtual organizations. This is the objective of

the second generation of the grid such as the Open Grid Service Architecture

presented by Foster et al. (2001).

A grid service is to complete certain programs by using some resources

distributed in the grid, as mentioned in Chapter 7. Hence, the integration of a

new service on the grid is to allocate the programs and resources used by the

service on certain reachable nodes of the grid. The reachable nodes represent

those nodes that can be reached and used to upload the programs or integrate

the resources of the new grid service.

In Chapter 7, we have analyzed the grid service reliability which is a

special type of the grid system reliability by considering the programs of the

given service in the grid. Recall that the grid service reliability is the

probability that all the programs of a given service are achieved successfully

under the grid computing environment. Maximizing it will serve as the

objective of the service integration problem in this section.

The problem here is how to optimally allocate/integrate those programs

and resources on the reachable nodes in order to maximize the service

reliability after the integration. The organization may wonder how many

program/resource redundancies they should prepare under the budget

limitation, and how to distribute them on different reachable nodes of the grid

system whose physical architecture has been constructed.

270 Optimal System Design and Resource Allocation

Suppose that a grid service is desired to complete M programs

which requires to access to H resources,

These programs and resources are viewed as the components of the grid

service. Denoted by (i=1,2,...M,M+1,...,M+H) the i:th component of the

service where the first M components corresponds to the M programs and the

rest H components represent the H resources. The organization can prepare

redundancies for each component (program or resource) but there is a budget

constraint for the total cost denoted by B. Moreover, the number of

redundancies for the i:th component should be no less than one and no more

than an upper-bound denoted by (i=1,2,...,K) where K=M+H (the total

number of programs and resources in a grid service).

The organization can integrate the K components on N reachable nodes

of the grid. Each node may have a limitation to integrate the

components, such as the maximal number of components denoted by

(i=1,2,...,N).

Also, some components may have been fixed on some specific nodes, and

some components are allowed to select some nodes to integrate or not allowed

to integrate on other nodes. Hence, we use to describe the relationship

between the i:th node and the j:th component i=1,2,...,N and

j=1,2,...,K. Also, has three possible values (d, 0 and 1): if it

means the organization can freely choose whether to integrate the on the

or not; if the is not allowed to be integrated on the and if

the is fixed on the That is, is defined as a vector of

The values of can be determined given the

relationship of the nodes and the service components.

Based on these conditions, the organization has to prepare the redundancies

of each component and distribute them on those reachable nodes of the grid. To

271 Computing System Reliability

maximize the grid service reliability, the next section presents an optimization

model for integrating a new service on the grid.

9.5.2. An optimization model

Let represent the integration of the j:th component on the i:th node

means that the is not integrated with the and

means that is integrated with Let be defined as a vector of

which represents an integration schedule of the grid

service components on the nodes. Hence, given the structure of the grid, the

grid service reliability can be only determined by the integration scheduling

vector The grid service reliability is then expressed by which can

be computed by the algorithms in Chapter 7.3. Thus, the optimization problem

becomes to find the optimal solution of so that the integrated grid service

reliability is maximized. The optimization model is described as follows:

272 Optimal System Design and Resource Allocation

where the first constraint (9.62) is limited by a , the relationship of nodes and

components:

if (i.e. the component has to be fixed on the value of

has to be set to 1; and

if (i.e. the component cannot be integrated on the value

of has to be set to 0.

In the second constraint, Eq. (9.63), represents the total number

of redundancies of component integrated in the grid, which should

between 1 and its upper-bound In the third constraint, Eq. (9.64),

represents the total number of components integrated on the node

which ought to be no more than its upper-bound Finally, for Eq.

(9.65), is the cost to prepare a redundancy of the j:th component, so that

the left hand side represents the total cost for the integration of the grid service,

which has to be no more than the budget B.

In order to solve this optimization problem, heuristic algorithms can be

used.

9.6. Notes and References

For the optimal number of redundant units, many other studies have also been

presented. Pham (1992) determined the optimal number of spare units that

minimize the average total system cost. Imaizumi et al. (2000) obtained the

mean time and the expected cost until system failure and discussed an optimal

number which minimizes the expected cost for a system with multiple

microprocessor units. Hsieh & Hsieh (2003) developed a relationship between

system cost and hardware redundancy levels, and presented an optimization

model aiming at minimizing the total system cost. Hsieh (2003) further

presented optimization models for the policies of task allocation and hardware

273 Computing System Reliability

redundancy of the distributed computing systems. Chang et al. (2003) further

presented an optimization model in dynamically adding and removing

redundant units of the computing system.

Optimal testing-resource allocation problem has also been studied

extensively in the literature. Yamada & Nishiwaki (1995) proposed optimal

allocation policies for testing-resource based on a software reliability growth

models. Based on the hyper-geometric distribution software reliability growth

model, Hou et al. (1996) investigated two optimal resource allocation problems

in software module testing. Leung (1997) later studied the dynamic

resource-allocation for software-module testing. Coit (1998) presented a

method to allocate subsystem reliability growth test time in order to maximize

the system reliability when designers are confronted with limited testing

resources. Lyu et al. (2002) further considered software component testing

resource allocation for a system with single or multiple applications. For the

networked system, Hsieh & Lin (2003) aimed to determine the optimal

resource allocation policy at source nodes subject to given resource demands at

sink nodes such that the network reliability of the stochastic-flow network is

maximized.

For the grid computing system design, Buyya et al. (2002) presented two

optimization strategies in providing grid services based on the economic

models of the resource management. Furmento et al. (2002) used composite

performance models to optimally combine currently available component into

the network of the Grid environment. According to the QoS requirements,

Dogan & Ozguner (2002) presented the optimization model for scheduling

independent tasks in grid computing with time-varying resource prices.

Optimization models have been widely studied in other areas of the

computing systems. Okumoto & Goel (1980) first discussed the software

optimal release policy from the cost-benefit viewpoint. There are many

follow-up papers and a chapter in Xie (1991) is devoted to this issue. Zheng

(2002) considered some dynamic release policies. The sensitivity of software

274 Optimal System Design and Resource Allocation

release time remains an issue and some preliminary discussion can be found in

Xie & Hong (1998). Quigley & Walls (2003) discussed the confidence intervals

for reliability-growth models when the sample-size is small which is a common
situation.

Ashrafi et al. (1994) discussed the optimal design of N-version

programming system. Berman & Kumar (1999) considered some optimization

models for recovery block design. Jung & Choi (1999) studied some

optimization models for modular systems based on cost analysis.

Tom & Murthy (1999) implemented graph matching and state space search

techniques in optimizing the schedule of task allocation on the distributed

computing systems. Karatza (2001) investigated optimal scheduling policies in

a heterogeneous distributed system, where half of the total processors have

double the speed of the others. Kuo & Prasad (2000) reviewed some

system-reliability optimization models. Kuo & Zuo (2003) recently

summarized many reliability optimization models in the computing systems.

References

Akhtar, S. (1994), Reliability of k-out-of-n:G systems with imperfect fault-coverage,

IEEE Transactions on Reliability, 43, 101-106.

Aki, S. and Hirano, K. (1996), Lifetime distribution and estimation problems of

consecutive-k-out-of-n:F systems, Annals of the Institute of Statistical Mathematics,
48(1), 185-199.

Alexopoulos, C. and Shultes, B.C. (2001), Estimating reliability measures for

highly-dependable Markov systems using balanced likelihood ratios, IEEE

Transactions on Reliability, 50, 265-280.

Ammann, P.E. and Knight, J.C. (1988), Data diversity: an approach to software fault
tolerance, IEEE Transactions on Computers, 37 (4), 418–425.

Ammar, H.H., Cukic, B., Mili, A. and Fuhrman, C. (2000), A comparative analysis of

hardware and software fault tolerance: impact on software reliability engineering,
Annals of Software Engineering, 10, 103-150.

Arulmozhi, G. (2003), Direct method for reliability computation of k-out-of-n:G systems,

Applied Mathematics and Computation, 143 (2-3), 421-429.

Ashrafi, N., Berman, O. and Cutler, M. (1994), Optimal design of large software-systems

using N-version programming, IEEE Transactions on Reliability, 43, 344-350.

Avizienis, A. (1985), The N-version approach to fault tolerant software, IEEE

Transactions on Software Engineering, 11, 1491-1501.

Barlow, R.E. and Proschan, F. (1981), Statistical Theory of Reliability and Life Testing:

Probability Models, Silver Spring, MD: To Begin With.

Becker, G., Camarinopoulos, L. and Zioutas, G. (2000), A semi-Markovian model

allowing for inhomogenities with respect to process time, Reliability Engineering &

System Safety, 70 (1), 41-48.

Belli, F. and Jedrzejowicz, P. (1991), An approach to the reliability optimization of

software with redundancy, IEEE Transactions on Software Engineering, 17 (3),
310-312.

275

276 References

Berman, O. and Kumar, U.D. (1999), Optimization models for recovery block schemes,

European Journal of Operational Research, 115, 368-379.

Blischke, W.R. and Murthy, D.N.P. (2000), Reliability, New York: Wiley.

Bobbio, A., Premoli, A. and Saracco, O. (1980), Multi-state homogeneous Markov

models in reliability analysis, Microelectronics and Reliability, 20 (6), 875-880.

Boland, P.J. and Singh, H. (2003), A birth-process approach to Moranda’s geometric

software-reliability model, IEEE Transactions on Reliability, 52, 168-174.

Brunelle, R.D. and Kapur, K.C. (1999), Review and classification of reliability measures

for multistate and continuum models, IIE Transactions, 31 (12), 1171-1180.

Bukowski, J.V. and Goble, W.M. (2001), Defining mean time-to-failure in a particular

failure-state for multi-failure-state systems, IEEE Transactions on Reliability, 50,

221-228.

Buyya, R., Abramson, D., Giddy, J. and Stockinger, H. (2002), Economic models for

resource management and scheduling in Grid computing, Concurrency and

Computation Practice & Experience, 14 (13-15), 1507-1542.

Buyya, R., Branson, K., Giddy, J. and Abramson, D. (2003), The virtual laboratory: a

toolset to enable distributed molecular modelling for drug design on the world-wide

grid, Concurrency and Computation Practice & Experience, 15 (1), 1-25.

Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J. and Nudd, G.R. (2002), ARMS: An

agent-based resource management system for grid computing, Scientific

Programming, 10 (2), 135-148.

Casavant, T.L. and Singhal, M. (1994), Readings in Distributed Computing Systems, Los

Alamitos, CA: IEEE Computer Society Press.

Chang, C.W.J., Hsiao, M.F. and Marek-Sadowska, M. (2003), A new reasoning scheme

for efficient redundancy addition and removal, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 22 (7), 945-951.

Chang, G.J., Cui, L.R. and Hwang, F.K. (2000), Reliabilities of Consecutive-k Systems,

Dordrecht, Netherlands: Kluwer Academic Publishers.

Chang, M.S., Chen, D.J., Lin, M.S. and Ku, K.L. (2000), The distributed program

reliability analysis on star topologies, Computers & Operations Research, 27,

129-142.

277 Computing System Reliability Analysis

Chen, D.J., Chang, M.S., Sheng, M.C. and Horng, M.S. (1998), Time-constrained

distributed program reliability analysis, Journal of Information Science and

Engineering, 14 (4), 891-911.

Chen, D.J., Chen, R.S. and Huang, T.H. (1997), A heuristic approach to generating file

spanning trees for reliability analysis of distributed computing systems, Computers

and Mathematics with Application, 34, 115-131.

Chen, D.J. and Huang, T.H. (1992), Reliability analysis of distributed systems based on a

fast reliability algorithm, IEEE Transactions on Parallel and Distributed Systems, 3
(2), 139-154.

Chen, I.R. and Bastani, F.B. (1992), Reliability of fully and partially replicated systems,

IEEE Transactions on Reliability, 41 (2), 175-182

Chen, I.R. and Bastani, F.B. (1994), Warm standby in hierarchically structured

process-control programs, IEEE Transactions on Software Engineering, 20 (8),

658-663.

Cheung, R.C. (1980), A user-oriented software reliability model, IEEE Transactions on

Software Engineering, 6 (2), 118-125.

Chiu, C.C., Yeh, Y.S. and Chou, J.S. (2002), A fast algorithm for reliability-oriented task

assignment in a distributed system, Computer Communications, 25 (17), 1622-1630.

Choi, J.G. and Seong, P.H. (2001), Dependability estimation of a digital system with

consideration of software masking effects on hardware faults, Reliability Engineering

& Systems Safety, 71 (1), 45-55.

Clemen, R.T. (1995), Making Hard Decisions: An Introduction to Decision Analysis,

New Jersey: Duxbury Press.

Coit, D.W. (1998), Economic allocation of test times for subsystem-level reliability

growth testing. IIE Transactions, 30 (12), 1143-1151.

Coit, D.W. and Smith, A.E. (1996), Reliability optimization of series-parallel systems

using a genetic algorithm, IEEE Transactions on Reliability, 45 (2), 254-266.

Dai, Y.S., Xie, M. and Poh, K.L. (2002), Reliability analysis of Grid computing systems,

Proceedings of the Pacific Rim International Symposium on Dependable Computing,

IEEE Computer Society Press, pp. 97-103.

Dai, Y.S., Xie, M., Poh, K.L. and Liu, G.Q. (2003a), A study of service reliability and

availability for distributed systems, Reliability Engineering & System Safety, 79 (1),

103-112.

278 References

Dai, Y.S., Xie, M., Poh, K.L. and Yang, B. (2003b), Optimal testing-resource allocation

with genetic algorithm for modular software systems, Journal of Systems and

Software, 66(1), 47-55.

Das, O. and Woodside, C.M. (2001), Evaluating layered distributed software systems with

fault-tolerant features, Performance Evaluation, 45, 57-76.

Dogan, A. and Ozguner, F. (2002), Scheduling independent tasks with QoS requirements

in grid computing with time-varying resource prices, Lecture Notes of Computer

Science, 2536, 58-69.

Duane, J.T. (1964), Learning curve approach to reliability monitoring, IEEE Transactions

on Aerospace, 2, 563-566.

Dugan, J.B. and Lyu, M.R. (1994), System reliability analysis of an N-version

programming application, IEEE Transactions on Reliability, 43 (4), 513-519.

Dugan, J.B. and Lyu, M.R. (1995), System-level reliability and sensitivity analyses for

three fault-tolerant system architectures, Dependable Computing for Critical

Applications, 4, 459-477.

Elsayed, E.A. (1996), Reliability Engineering, Reading, MA: Addison Wesley.

Fahmy, H.M.A. (2001), Reliability evaluation in distributed computing environments

using the AHP, Computer Networks, 36 (5-6): 597-615.

Fakhre-Zakeri, I. and Slud, E. (1995), Mixture models for reliability of software with

imperfect debugging: identifiability of parameters, IEEE Transactions on Reliability,

44, 104-113.

Fleming, K. and Silady, F. (2002), A risk informed defense-in-depth framework for

existing and advanced reactors, Reliability Engineering & System Safety, 78, 205-225.

Foster, I. and Kesselman, C. (1998), The Grid: Blueprint for a New Computing

Infrastructure, San Francisco, CA: Morgan-Kaufmann.

Foster, I., Kesselman, C. and Tuecke, S. (2001), The anatomy of the Grid: Enabling

scalable virtual organizations, International Journal of High Performance Computing

Applications, 15 (3), 200-222.

Foster, I., Kesselman, C., Nick, J.M. and Tuecke, S. (2002), Grid services for distributed

system integration, Computer, 35 (6), 37-46.

Frey, J., Tannenbaum, T., Livny, M., Foster, I. and Tuecke, S. (2002), Condor-G: a

computation management agent for multi-institutional grids, Cluster Computing, 5

(3), 237-246.

279 Computing System Reliability Analysis

Fricks, R.M., Puliafito, A. and Trivedi, K.S. (1999), Performance analysis of distributed

real-time databases, Performance Evaluation, 35, 145-169.

Fryer, M.O. (1985), Risk assessment of computer controlled systems, IEEE Transactions

on Software Engineering, 11 (1), 125-129.

Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T. and Darlington, J.

(2002), ICENI: Optimisation of component applications within a Grid environment,

Parallel Computing, 28 (12), 1753-1772.

Gaudoin, O., Lavergne, C. and Soler, J.L. (1994), A generalized geometric

de-eutrophication software-reliability model, IEEE Transactions on Reliability, 43 (4),

536-541.

Gaudoin, O. and Soler, J.L. (1992), Statistical analysis of the geometric de-eutrophication

software-reliability model, IEEE Transactions on Reliability, 41 (4), 518-524.

Gnedenko, B. and Ushakov, I. (1995), Probabilistic Reliability Engineering, New York:

Wiley.

Goel, A.L. (1980), A summary of the discussion on “an analysis of competing software

reliability models”, IEEE Transactions on Software Engineering, 6, 501-502.

Goel, A.L. (1985), Software reliability models: assumptions, limitations, and

applicability, IEEE Transactions on Software Engineering, 11, 1411-1423.

Goel, A.L. and Okumoto, K. (1979), Time dependent error-detection rate model for

software reliability and other performance measures, IEEE Transactions on

Reliability, 28, 206-211.

Goel, A.L. and Soenjoto, J. (1981), Models for hardware-software system operational

performance evaluation, IEEE Transactions on Reliability, 30, 232-239.

Goseva-Popstojanova, K. and Trivedi, K.S. (2000), Failure correlation in software

reliability model, IEEE Transactions on Reliability, 49, 37-48.

Goseva-Popstojanova, K. and Trivedi, K.S. (2003), Architecture-based approaches to

software reliability prediction, Computers and Mathematics with Applications, 46 (7),

1023-1036.

Hariri, S. and Mutlu, H. (1995), Hierarchical modeling of availability in distributed

systems, IEEE Transactions on Software Engineering, 21, 50–56.

Hecht, H. and Hecht, M. (1986), Software reliability in the system context, IEEE

Transactions on Software Engineering, 12 (1), 51-58.

280 References

Helander, M.E., Zhao, M. and Ohlsson, N. (1998), Planning models for software

reliability and cost, IEEE Transactions on Software Engineering, 24 (6), 420-434.

Hillier, F.S. and Lieberman, G.J. (1995), Introduction to Operations Research, New

York: McGraw-Hill.

Hou, R.H., Kuo, S.Y. and Chang, Y.P. (1996), Needed resources for software module test

using the hyper-geometric software reliability growth model, IEEE Transactions on

Reliability, 45 (4), 541-549.

Hoyland, A. and Rausand, M. (1994), System Reliability Theory, New York: Wiley.

Hsieh, C.C. (2003), Optimal task allocation and hardware redundancy policies in

distributed computing systems, European Journal of Operational Research, 147 (2),

430-447.

Hsieh, C.C. and Hsieh, Y.C. (2003) Reliability and cost optimization in distributed

computing systems, Computers & Operations Research, 30 (8), 1103-1119.

Hsieh, C.C. and Lin, M.H. (2003), Reliability-oriented multi-resource allocation in a

stochastic-flow network, Reliability Engineering & System Safety, 81 (2), 155-161.

Huang, C.Y. and Kuo, S.Y. (2003), Analysis of incorporating logistic testing-effort

function into software reliability modeling, IEEE Transactions on Reliability, 51 (3),

261-270.

Huang, C.Y., Lyu, M.R. and Kuo, S.Y. (2003), A unified scheme of some

nonhomogenous Poisson process models for software reliability estimation, IEEE

Transactions on Software Engineering, 29 (3), 261-269.

Hussain, D.S. and Hussain. K.M. (1992), Information Management: Organization,

Management, and Control of Computer Processing, New York: Prentice Hall.

Imaizumi, M., Yasui, K. and Nakagawa, T. (2000), An optimal number of microprocessor

units with watchdog processor, Mathematical and Computer Modelling, 31 (10-12),

183-189.

Jelinski, Z. and Moranda, P.B. (1972), Software reliability research, In: Freiberger W.

(ed), Statistical Computer Performance Evaluation, New York: Academic Press, pp.

465-497.

Johnsonbaugh, R. (2001), Discrete Mathematics, New Jersey: Prentice-Hall.

Jung, H.W. and Choi, B.J, (1999), Optimization models for quality and cost of modular

software, European Journal of Operational Research, 112, 613-619.

281 Computing System Reliability Analysis

Kanoun, K. and Ortalo-Borrel, M. (2000), Fault-tolerant system dependability - Explicit

modeling of hardware and software component-interactions, IEEE Transactions on

Reliability, 49 (4), 363-376.

Kapur, P.K., Garg, R.B. and Kumar, S. (1998), Contributions to Hardware and Software

Reliability, Singapore: World Scientific.

Karatza, H.D. (2001), Job scheduling in heterogeneous distributed systems, Journal of

Systems and Software, 56 (3), 203-212.

Kaufman, G.M. (1996), Successive sampling and software reliability, Journal of

Statistical Planning and Inference, 49 (3), 343-369.

Ke, W.J. and Wang, S.D. (1997), Reliability evaluation for distributed computing

networks with imperfect nodes, IEEE Transactions on Reliability, 46 (3), 342-349.

Keahey, K., Fredian, T., Peng, Q., Schissel, D.P., Thompson, M., Foster, I., Greenwald,

M. and McCune, D. (2002), Computational grids in action: the national fusion

collaboratory, Future Generation Computer Systems, 18 (8), 1005-1015.

Keene, S. and Lane, C. (1992), Combined hardware and software aspects of reliability,

Quality and Reliability Engineering International, 8 (5), 419-426.

Kijima, M. (1997), Markov Processes for Stochastic Modeling, New York: Chapman &

Hall.

Kim, K.H. and Welch, H.O. (1989), Distributed execution of recovery blocks: an

approach for uniform treatment of hardware and software faults in real-time

applications, IEEE Transactions on Computers, 38, 626-636.

Knight, J.C. and Leveson, N.G. (1986), An experimental evaluation of the assumption of

independence in multiversion programming, IEEE Transactions on Software

Engineering, 12, 96-109.

Kolowrocki, K. (2001), On limit reliability functions of large multi-state systems with

ageing components, Applied Mathematics and Computation, 121 (2-3), 313-361.

Krauter, K., Buyya, R. and Maheswaran, M. (2002), A taxonomy and survey of grid

resource management systems for distributed computing, Software - Practice and

Experience, 32 (2), 135-164.

Kremer,	 W. (1983), Birth-death and bug counting (software reliability), IEEE

Transactions on Reliability, 32 (1), 37-47.

Kubat, P. (1989), Assessing reliability of modular software, Operation Research Letters,

8, 35-41.

282 References

Kumar, A. and Malik, K. (1991), Voting mechanisms in distributed systems, IEEE

Transactions on Reliability, 40 (5), 593-600.

Kumar, A. and Agrawal, D.P. (1993), A generalized algorithm for evaluating

distributed-program reliability, IEEE Transactions on Reliability, 42, 416-424.

Kumar, A. and Agrawal, D.P. (1996), Parameters for system effectiveness evaluation of

distributed systems, IEEE Transactions on Computers, 45 (6), 746-752.

Kumar, A., Rai, S. and Agarwal, D.P. (1988), On computer communication network

reliability under program execution constraints, IEEE Transactions on Selected Areas

in Communications, 6, 1393-1400.

Kumar, V.K., Hariri, S. and Raghavendra, C.S. (1986), Distributed program reliability

analysis, IEEE Transactions on Software Engineering, 12, 42-50.

Kuo, S.Y., Huang, C.Y. and Lyu, M.R. (2001), Framework for modeling software

reliability, using various testing-efforts and fault-detection rates, IEEE Transactions

on Reliability, 50, 310-320.

Kuo, W. and Prasad, V.R. (2000), An annotated overview of system-reliability

optimization, IEEE Transactions on Reliability, 49, 176-187.

Kuo, W. and Zuo, M.J. (2003), Optimal Reliability Modeling: Principles and

Applications, New York: Wiley.

Lai, C.D., Xie, M., Poh, K.L., Dai, Y.S. and Yang, P. (2002), A model for availability

analysis of distributed software/hardware systems, Information and Software

Technology, 44 (6), 343-350.

Langer, A.M. (2000), Analysis and Design of Information Systems, New York: Springer.

Lanus, M., Yin, L. and Trivedi, K.S. (2003), Hierarchical composition and aggregation of

state-based availability and performability models, IEEE Transactions on Reliability,

52 (1), 44-52.

Laprie, J.C. and Kanoun, K. (1992), X-ware reliability and availability modeling, IEEE

Transactions on Software Engineering, 18, 130-147.

Laprie, J.C., Arlat, J., Biounes, C. and Kanoun, K. (1990), Definition and analysis of

hardware and software-fault-tolerant architectures, Computer, 23 (7), 39-51.

Latif-Shabgahi, G., Bennett, S. and Bass, J.M. (2000), Empirical, evaluation of voting

algorithms used in fault-tolerant control systems, Parallel and Distributed Computing

and Systems, 1, 340-345.

283 Computing System Reliability Analysis

Ledoux, J. (1999), Availability modeling of modular software, IEEE Transactions on

Reliability, 48 (2), 159–168.

Leung, Y.W. (1997), Dynamic resource-allocation for software-module testing, Journal

of Systems and Software, 37 (2), 129-139.

Levitin, G. (2001), Analysis and optimization of weighted voting systems consisting of

voting units with limited availability, Reliability Engineering & System Safety, 73 (1),

91-100.

Levitin, G. (2002), Asymmetric weighted voting systems, Reliability Engineering &

System Safety, 76 (2), 205-212.

Levitin, G. (2003), Optimal multilevel protection in series-parallel systems, Reliability

Engineering & System Safety, 81 (1), 93-102.

Levitin, G., Dai, Y.S., Xie M. and Poh, K.L (2003), Optimizing survivability of

multi-state systems with multi-level protection by multi-processor genetic algorithm,

Reliability Engineering & System Safety, 82, 93-104.

Levitin, G. and Lisnianski, A. (2001), A new approach to solving problems of multi-state

system reliability optimization, Quality and Reliability Engineering International, 17

(2), 93-104.

Levitin, G. and Lisnianski, A. (2003), Optimizing survivability of vulnerable

series-parallel multi-state systems, Reliability Engineering & System Safety, 79 (3),

319-331.

Levitin, G., Lisnianski, A., Beh-Haim, H. and Elmakis, D. (1998), Redundancy

optimization for series-parallel multi-state systems, IEEE Transactions on Reliability,

47, 165-172.

Limnios, N. (1997), Dependability analysis of semi-Markov systems, Reliability

Engineering & System Safety, 55 (3), 203-207.

Limnios, N. and Oprisan, G. (2000), Semi-Markov Processes and Reliability, Boston:

Birkhauser.

Lin, M.S. (2001), Linear-time algorithms for computing the reliability of bipartite and (#

<= 2) star distributed computing systems, Computers & Operations Research, 30 (11),

1697-1712.

Lin, M.S., Chang, M.S. and Chen, D.J. (1999a), Distributed-program reliability analysis:

complexity and efficient algorithms, IEEE Transactions on Reliability, 48, 87-95.

284 References

Lin, M.S., Chang, M.S. and Chen, D.J. (1999b), Efficient algorithms for reliability

analysis of distributed computing systems, Information Sciences, 117 (1-2), 89-106.

Lin, M.S., Chang, M.S., Chen, D.J. and Ku, K.L. (2001), The distributed program

reliability analysis on ring-type topologies, Computers & Operations Research, 28,

625-635.

Lin, M.S. and Chen, D.J. (1997), The computational complexity of the reliability problem

on distributed systems, Information Processing Letters, 64, 143-147.

Lin, M.S., Chen, D.J. and Hong, M.S. (1999), The reliability analysis of distributed

computing systems with imperfect nodes, The Computer Journal, 42 (2), 129-141.

Lisnianski, A. and Levitin, G. (2003), Multi-state System Reliability, Singapore: World

Scientific.

Littlewood, B. (1975), A reliability model for systems with Markov structure, Applied

Statistics, 24 (2), 172–177.

Littlewood, B. (1979), How to measure software reliability and how not to, IEEE

Transactions on Reliability, 28 (2), 103-110.

Littlewood, B. (1984), Rationale for a modified Duane model, IEEE Transactions on

Reliability, 33 (2), 157-159.

Littlewood, B., Popov, P. and Strigini, L. (2002), Assessing the reliability of diverse

fault-tolerant software-based systems, Safety Science, 40 (9), 781-796.

Littlewood, B. and Verrall, J.L. (1981), Likelihood function of a debugging model for

computer software reliability, IEEE Transactions on Reliability, 30, 145-148.

Liu, P.X., Zuo, M.J. and Meng, M.Q.H. (2003), Using neural network function

approximation for optimal design of continuous-state parallel–series systems,

Computers & Operations Research, 30 (3), 339-352.

Livny, M. and Raman, R. (1998), High-throughput resource management, In The Grid:

Blueprint for a New Computing Infrastructure, San Francisco, CA:

Morgan-Kaufmann, pp. 311-338.

Lopez-Benitez, N. (1994), Dependability modeling and analysis of distributed programs,

IEEE Transactions on Software Engineering, 20 (5), 345-352.

Loy, D., Dietrich, D. and Schweinzer, H.J. (2001), Open Control Networks, Boston, MA:

Kluwer Academic Publishers.

Lyu, M.R. (1996), Handbook of Software Reliability Engineering, IEEE Computer

Society Press, New York: McGraw-Hill.

285 Computing System Reliability Analysis

Lyu, M.R., Rangarajan, S. and van Moorsel, A.P.A. (2002), Optimal allocation of test

resources for software reliability growth modeling in software development, IEEE

Transactions on Reliability, 51 (2), 183-192.

Mahmood, A. (2001), Task allocation algorithms for maximizing reliability of

heterogeneous distributed computing systems, Control and Cybernetics, 30 (1),

115-130.

Malluhi, Q.M. and Johnston, W.B. (1998), Coding for high availability of a

distributed-parallel storage system, IEEE Transactions on Parallel and Distributed

Systems, 9, 1237-1252.

Mendiratta, V.B. (1998), Reliability analysis of clustered computing systems,

Proceedings of the 9th International Symposium on Software Reliability Engineering,

pp. 268-272.

Miller, D.R. (1986), Exponential order statistic models of software reliability growth,

IEEE Transactions on Software Engineering, 12 (1), 12-24.

Moranda, P.B. (1979), Event-altered rate models for general reliability analysis, IEEE

Transactions on Reliability, 28 (5), 376-381.

Musa, J.D. (1998), Software Reliability Engineering: More Reliable Software, Faster

Development and Testing, New York: McGraw-Hill.

Musa, J.D., Iannino, A. and Okumoto, K. (1987), Software Reliability: Measurement,

Prediction, Application, New York: McGraw-Hill.

Musa, J.D. and Okumoto, K. (1984), A logarithmic Poisson execution time model for

software reliability measurement, Proceedings of the 7th International Conference on

Software Engineering, pp. 230-238.

Okumoto, K. and Goel, A.L. (1980), Optimum release time for software systems based on

reliability and cost criteria, Journal of Systems and Software, 1, 315-318.

Ozekici, S. and Soyer, R. (2003), Reliability of software with an operational profile,

European Journal of Operational Research, 149 (2), 459-474.

Pasquini, A., Pistolesi, G. and Rizzo, A. (2001), Reliability analysis of systems based on

software and human resources, IEEE Transactions on Reliability, 50 (4), 337-345.

Pham, H. (1992), Optimal design of k-out-of-n redundant systems, Microelectronics and

Reliability, 32 (1-2), 119-126.

Pham, H. (1997), Reliability analysis of digital communication systems with imperfect

voters, Mathematical and Computer Modelling, 26, 103-112.

286 References

Pham, H. (2000), Software Reliability, Singapore: Springer-Verlag.

Pham, H. (2003), Software reliability and cost models: Perspectives, comparison, and

practice, European Journal of Operational Research, 149 (3), 475-489.

Pham, H., Nordmann, L. and Zhang, X.M. (1999), General imperfect-software-

debugging model with S-shaped fault-detection rate, IEEE Transactions on

Reliability, 48, 169-175.

Pham, H., Suprasad, A. and Misra, R.B. (1997), Availability and mean life time

prediction of multistage degraded system with partial repairs, Reliability Engineering

& System Safety, 56 (2), 169-173.

Pham, H. and Zhang, X.M. (1999), A software cost model with warranty and risk cost,

IEEE Transactions on Computers, 48 (1), 71-75.

Pham, H. and Zhang, X.M. (2003), NHPP software reliability and cost models with

testing coverage, European Journal of Operational Research, 145 (2), 443-454.

Pierre, S. and Hoang, H.H. (1990), An artificial intelligence approach for improving

computer communications network topologies, Journal of Operational Research

Society, 41 (5), 405-418.

Postel, J. and Touch, J. (1998), Network infrastructure, In The Grid: Blueprint for a New

Computing Infrastructure, San Francisco: Morgan-Kaufmann, pp. 533-566.

Pourret, O., Collet, J. and Bon, J.L. (1999), Evaluation of the unavailability of a

multistate-component system using a binary model, Reliability Engineering & System

Safety, 64 (1), 13-17.

Prasad, V.B. (1991), Markovian model for the evaluation of reliability of computer

networks with intermittent faults, Proceedings of the 1991 IEEE International

Symposium on Circuits and Systems, pp. 2084-2087.

Pukite, P. and Pukite, J. (1998), Modeling for Reliability Analysis. New York: IEEE

Press.

Quigley, J. and Walls, L. (2003), Confidence intervals for reliability-growth models with

small sample-sizes, IEEE Transactions on Reliability, 52 (2), 257-262.

Rajgopal, J. and Mazumdar, M. (2002), Modular operational test plans for inferences on

software reliability based on a Markov model, IEEE Transactions on Software

Engineering, 28 (4), 358-363.

Ross, S.M. (2000), Introduction to Probability Models, San Diego, CA: Academic Press.

287 Computing System Reliability Analysis

Sahinoglu, M., Deely, J.J. and Capar, S. (2001), Stochastic Bayes measures to compare

forecast accuracy of software-reliability models, IEEE Transactions on Reliability, 50
(1), 92-97.

Schick, G.J. and Wolverton, R.W. (1978), An analysis of competing software reliability

models, IEEE Transactions on Software Engineering, 4, 104-120.

Schneidewind, N.F. (1975), Analysis of error processes in computer software, Sigplan

Notices, 10, 337-346.

Shanthikumar, J.G. (1981), Ageneral software reliability model for performance

prediction, Microelectronics and Reliability, 23, 903-943.

Shao, J. and Lamberson, L.R. (1991), Modeling a shared-load k-out-of-n:G system, IEEE

Transactions on Reliability, 40 (2), 205-209.

Shooman, M.L. (1990), Probabilistic Reliability: An Engineering Approach. Florida:

Robert E. Krieger Publishing.

Shyur, H.J. (2003), A stochastic software reliability model with imperfect-debugghing and

change-point, Journal of Systems and Software, 66 (2), 135-141.

Siegrist, K. (1988), Reliability of systems with Markov transfer of control, IEEE

Transactions on Software Engineering, 14 (10), 1478-1480.

Sridharan, V. and Jayashree, P.R. (1998), Transient solutions of a software model with

imperfect debugging and generation of errors by two servers, Mathematical and

Computer Modelling, 27, 103-108.

Sumita, U. and Masuda, Y. (1986), Analysis of software availability/reliability under the

influence of hardware failures, IEEE Transactions on Software Engineering, 12,

32-41.

Tokuno, K. and Yamada, S. (2000), An imperfect debugging model with two types of

hazard rates for software reliability measurement and assessment, Mathematical and

Computer Modelling, 31 (10-12), 343-352

Tokuno, K. and Yamada, S. (2001), Markovian modeling for software availability

analysis under intermittent use, International Journal of Reliability, Quality and

Safety Engineering, 8 (3), 249-258.

Tom, P.A. and Murthy, C.S.R. (1999), Optimal task allocation in distributed systems by

graph matching and state space search, Journal of Systems and Software, 46, 59-75.

Trivedi, K.S. (1982), Probability and Statistics with Reliability, Queuing, and Computer

Applications, Englewood, NJ: Prentice-Hall.

288 References

Valiant, L.G. (1979), The complexity of enumeration and reliability problems, SIAM

Journal of Computing, 8, 410-421.

Weissman, J.B. and Lee, B.D. (2002), The virtual service grid: An architecture for

delivering high-end network services, Concurrency Computation Practice and

Experience, 14 (4), 287-319.

Welke, S.R., Johnson, B.W. and Aylor, J.H. (1995), Reliability modeling of

hardware/software systems, IEEE Transactions on Reliability, 44 (3), 413-418.

Wu, S.M. and Chan, L.Y. (2003), Performance utility-analysis of multi-state systems,

IEEE Transactions on Reliability, 52 (1), 14-21.

Xie, M. (1987), A shock model for software failures, Microelectronics and Reliability, 27,

717-724.

Xie, M. (1991), Software Reliability Modelling, Singapore: World Scientific.

Xie, M. (2000), Software reliability models - past, present and future. In Recent Advances

in Reliability Theory: Methodology, Practice, and Inference, Eds. N. Limnios and M.

Nikulin, Boston: Birkhäuser, pp. 325-340.

Xie, M. and Hong, G.Y. (1998), A study of the sensitivity of software release time,

Journal of Systems and Software, 44 (2), 163-168.

Xie, M., Hong, G.Y. and Wohlin, C. (1997), A study of the exponential smoothing

technique in software reliability growth prediction, Quality and Reliability

Engineering International, 13 (6), 347-353.

Xie, M. and Yang, B. (2003), A study of the effect of imperfect debugging on software

development cost, IEEE Transactions on Software Engineering, 29 (5), 471-473.

Xie, M. and Zhao, M. (1993), On some reliability growth models with graphical

interpretations, Microelectronics and Reliability, 33 (2), 149-167.

Xue, J. and Yang, K. (1995), Dynamic reliability analysis of coherent multistate systems,

IEEE Transactions on Reliability, 44 (4), 683-688.

Yamada, S. and Nishiwaki, I.M., (1995), Optimal allocation policies for testing-resource

based on a software reliability growth model, Mathematical and Computer Modelling,

22 (10-12), 295-301.

Yamada, S., Ohba, M. and Osaki, S. (1984), S-shaped software reliability growth models

and their applications, IEEE Transactions on Reliability, R-33 (4), 289-292.

Yamada, S. and Ohtera, H. (1990), Software reliability growth models for testing-effort

control, European Journal Operational Research, 46, 343-349.

289 Computing System Reliability Analysis

Yamada, S. and Osaki, S. (1985), Software reliability growth modeling: models and

applications, IEEE Transactions on Software Engineering, 11, 1431-1437.

Yamada, S., Tamura, Y. and Kimura, M. (2000), A software reliability growth model for

a distributed development environment, Electronics and Communications in Japan

Part III, 83 (12): 1-8.

Yang, B. and Xie, M. (2000), A study of operational and testing reliability in software

reliability analysis, Reliability Engineering & System Safety, 70, 323-329.

Yang, B. and Xie, M. (2001), Optimal testing-time allocation for modular systems,

International Journal of Quality and Reliability Management, 18 (8), 854-863.

Yeh, W.C. (2003), An evaluation of the multi-state node networks reliability using the

traditional binary-state networks reliability algorithm, Reliability Engineering &

System Safety, 81 (1), 1-7.

Zequeira, R.I. (2000), A model for Bayesian software reliability analysis, Quality and

Reliability Engineering International, 16 (3), 187-193.

Zhang, T.L. and Horigome, M. (2001), Availability and reliability of system with

dependent components and time-varying failure and repair rates, IEEE Transactions

on Reliability, 50, 151-158.

Zhang, X.M. and Pham, H. (2002), Predicting operational software availability and its

applications to telecommunication systems, International Journal of Systems Science,

33 (11), 923-930.

Zhao, R. and Liu, B. (2003), Stochastic programming models for general

redundancy-optimization problems, IEEE Transactions on Reliability, 52 (2),

181-191.

Zheng, S.H. (2002), Dynamic release policies for software systems with a reliability

constraint, IIE Transactions, 34, (3), 253-262.

This page intentionally left blank

Index

Duane model, 106

Availability, 10-12, 137, 142, 164,

213, 243 E
Expected utility function, 213

C Exponential distribution, 9, 42, 235

Centralized heterogeneous distributed
system, 147, 172-176

A

F
Chapman-Kolmogorov equation, 23,

43, 82, 130, 165, 220

Clustered system, 128-140, 145,

Failure correlation, 94-100, 224-236

Failure rate, 9-10, 62, 130, 188

Fault tree analysis, 17-18
Continuous time Markov chain File spanning tree (FST), 152-157

(CTMC), 24-28, 83, 88, 94, 135,
187, 222

G
Convolution, 32, 119, 232

Genetic algorithm, 237, 257-258,
Correlated failures, 94

265-266
Cost model, 240 Goel-Okumoto (GO) model, 101-104,

141, 257, 265
D Grid architecture, 182-183

Decreasing failure intensity (DFI), Grid architecture design, 267-269
80-83

Dependence, 94-100, 224-236

Development cost, 240, 242

Discrete time Markov chain (DTMC),

21-24, 86, 96

Grid computing, 179-206, 266-272

Grid program reliability (GPR), 190,

195-198, 200-201

Grid service integration, 269-272

Grid service reliability, 190, 198-199,
Distributed computing, 146, 148 271
Distributed program reliability, 149, Grid system reliability, 190, 192,

153-155 197-201, 268
Distributed system, 145-178

Distributed system reliability, H
151-155, 159, 175-178

Hardware reliability, 41-70

291

292 Index

Heuristic algorithm, 257, 265, 269

Homogeneously distributed software/

hardware systems, 146, 163

I

Imperfect debugging, 85-90, 168

Imperfect monitor and switch, 65

Integrated software/hardware system,

113-144, 163-171

Intermittent failures, 144, 146

J
Jelinski-Moranda (JM) model, 71-76,

86, 102,170

K
k-out-of-n system, 15, 52-57, 70

L

Laplace-Stieltjes transform, 32, 99,

119, 216, 232

Load-sharing, 58

Log-power model, 108-109

M
Maintainability, 11

Major failures, 218, 221

Majority voting, 15, 50-52

Markov model, 19-36, 169, 186, 221

Markov property, 21, 29, 32, 109

Markov regenerative model, 32

Maximum likelihood, 39, 73, 103

Maximizing reliability, 240-271

Mean time between failures (MTBF),

12,18

Mean time to failure (MTTF), 9, 213

Mean time to repair (MTTR), 11

Minimal file spanning tree (MFST),

152-154, 161

Minimal resource spanning tree

(MRST), 190-193

Minor failures, 214-215, 219

Modular software, 90-94, 122, 248

Modular system, 122-128, 257

Monte Carlo simulation, 18-19

Multiple failure modes, 18, 47-48, 69

Multiple mode operation, 66

Multi-state system (MSS), 207-238

Musa-Okomoto model, 109, 251

N
Network diagrams, 16

Networked system, 145-178, 188-201

Nonhomogeneous Poisson process

(NHPP), 36-40

N-version programming, 258-263,

274

O
Optimal design, 266

Optimal number of hosts, 240

Optimization model, 267, 271

P

Parallel computing, 48-58, 128-139,

163-171, 247-265

293 Computing System Reliability Analysis

Parallel configuration, 48

Parallel-series structure, 14, 254-258

Parameter estimation, 39, 73, 103

Performance levels, 208-209

Proportional model, 76-80

Q
Quality of service (QoS), 148, 181

R

Reliability block diagrams, 13-14

Repair rate, 11, 42, 61, 133

Resource allocation, 247-266

Resource management system

(RMS), 184-188

Resource spanning tree (RST), 190

Risk cost, 240, 242, 264-268

S
Semi-Markov model, 30-31, 90-92

Serial modular software, 248-252

Service reliability, 45, 72-75, 145,

175, 190, 271

Software reliability, 71-112, 249

S-shaped NHPP model, 105-106

Standby system, 61-69

Stochastic process, 20, 32, 208

System availability, 11, 42, 60, 119,

136, 145, 167-171, 240-246

T

Testing resource, 254, 258, 273

Total cost, 244, 255

U
Unified NHPP Markov model, 139

V

Virtual organization (VO), 180-184,

204, 269

	Computing System Reliability: Models And Analysis
	Cover

	Contents
	1 INTRODUCTION
	1.1. Need for Computing System Reliability Analysis
	1.2. Computing System Reliability Concepts
	1.3. Approaches to Computing System Modeling

	2 BASIC RELIABILITY CONCEPTS AND ANALYSIS
	2.1. Reliability Measures
	2.2. Common Techniques in Reliability Analysis
	2.3. Markov Process Fundamentals
	2.4. Nonhomogeneous Poisson Process (NHPP) Models

	3 MODELS FOR HARDWARE SYSTEM RELIABILITY
	3.1. Single Component System
	3.2. Parallel Configurations
	3.3. Load-Sharing Configurations
	3.4. Standby Configurations
	3.5. Notes and References

	4 MODELS FOR SOFTWARE RELIABILITY
	4.1. Basic Markov Model
	4.2. Extended Markov Models
	4.3. Modular Software Systems
	4.4. Models for Correlated Failures
	4.5. Software NHPP Models
	4.6. Notes and References

	5 MODELS FOR INTEGRATED SYSTEMS
	5.1. Single-Processor System
	5.2. Models for Modular System
	5.3. Models for Clustered System
	5.4. A Unified NHPP Markov Model
	5.5. Notes and References

	6 AVAILABILITY AND RELIABILITY OF DISTRIBUTED COMPUTING SYSTEMS
	6.1. Introduction to Distributed Computing
	6.2. Distributed Program and System Reliability
	6.3. Homogeneously Distributed Software/Hardware Systems
	6.4. Centralized Heterogeneous Distributed Systems
	6.5. Notes and References

	7 RELIABILITY OF GRID COMPUTING SYSTEMS
	7.1. Introduction of the Grid Computing System
	7.2. Grid Reliability of the Resource Management System
	7.3. Grid Reliability of the Network
	7.4. Grid Reliability of the Software and Resources
	7.5. Notes and References

	8 MULTI-STATE SYSTEM RELIABILITY
	8.1. Basic Concepts of Multi-State System (MSS)
	8.2. Basic Models for MSS Reliability
	8.3. A MSS Failure Correlation Model
	8.4. Notes and References

	9 OPTIMAL SYSTEM DESIGN AND RESOURCE ALLOCATION
	9.1. Optimal Number of Hosts
	9.2. Resource Allocation - Independent Modules
	9.3. Resource Allocation - Dependent Modules
	9.4. Optimal Design of the Grid Architecture
	9.5. Optimal Integration of the Grid Services
	9.6. Notes and References

	References
	Subject Index
	Team DDU

