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Dynamic System Identification with 
Or der Stat istics 

Wlodzimierz Greblicki, Member, IEEE, and Miroslaw Pawlak, Member, IEEE 

Abstract-Systems consisting of linear dynamic and memory- 
less nonlinear subsystems are identified. The paper deals with 
systems in which the nonlinear element is followed by a linear 
element, as well as systems in which the subsystems are con- 
nected in parallel. The goal of the identification is to recover the 
nonlinearity from noisy input-output observations of the whole 
system; signals interconnecting the elements are not measured. 
Observed values of the input signal are rearranged in increasing 
order, and coefficients for the expansion of the nonlinearity in 
trigonometric series are estimated from the new sequence of 
observations obtained in this way. Two algorithms are present- 
ed, and their mean integrated square error is examined. Condi- 
tions for pointwise convergence are also established. For the 
nonlinearity satisfying the Lipschitz condition, the error con- 
verges to zero. The rate of convergence derived for differentiable 
nonlinear characteristics is insensitive to the roughness of the 
probability density of the input signal. Results of numerical 
simulation are also presented. 

Index Terms-Nonlinear system identification, nonparametric 
regression, order statistics, spacings, orthogonal series. 

I. INTRODUCTION 
EGRESSION analysis is a standard tool used for R recovering a general relationship between two ran- 

dom variables. Applied to nonlinear system identification, 
the analysis makes possible the recovery of the nonlinear 
characteristic of the system, provided that the nonlinearity 
can be represented as a regression function. Classically, 
the relationship between the random variables, i.e., be- 
tween input and output signals of the identified system, is 
postulated to be of a parametric form. There is no partic- 
ular reason, however, to assume that the data observed in 
a certain real system are actually related parametrically. 
One is obviously closer to real situations when one as- 
sumes that the identified characteristic, i.e., a regression 
function in terms of mathematical statistics, is just bound- 
ed, or continuous, or satisfies the Lipschitz condition, or is 
differentiable, or square integrable, and so on. Each of 
those assumptions is clearly very mild, and leads to non- 
parametric inference since the class of all possible charac- 
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teristics cannot be represented in a parametric form. In 
this paper, our a priori knowledge about the unknown 
characteristic is nonparametric, and we apply the non- 
parametric regression methodology to recover it. We refer 
to t91, [lo], t191, t221, t301, t331, D51, WI ,  1391 for a 
summary and large bibliography concerning nonparamet- 
ric techniques. 

In this paper, we identify nonlinear dynamic systems 
consisting of memoryless nonlinear elements and linear 
dynamic subsystems. We consider two types of such sys- 
tems, i.e., a system in which the nonlinear subsystem is 
followed by the dynamic one, and a system in which the 
subsystems are connected in parallel. In order to recover 
the characteristic of the nonlinear subsystem in both 
cases, we propose two identification algorithms employing 
Fourier expansions. In order to estimate the coefficients 
of the trigonometric expansion of the unknown character- 
istic, i.e., the Fourier regression coefficients, we rearrange 
input observations in increasing order. In this way, we 
partition the range of the input signal into intervals whose 
ends are determined by consecutive ordered observations. 
All the intervals (called spacings in the statistical liter- 
ature) have random length; see [32]. As a result, the 
estimates of the coefficients, as well as the identification 
algorithms themselves, are of the form of a certain combi- 
nation of order statistics. 

In this way, we obtain computationally simple estimates 
of the unknown nonlinear characteristic. We examine 
both global and pointwise properties of our estimates. 
Imposing some smoothness restrictions on the identified 
characteristic, we give the rate of convergence of the 
algorithms of the characteristic. Our estimates converge 
at a rate insensitive to the roughness of the probability 
density of the input signal. In fact, we only require for the 
density to be bounded away from zero on its support. 

The algorithms are also used to identify a nonlinearity 
in a system in which the memoryless and the dynamic 
systems are connected in parallel. We also present some 
results of simulation experiments. 

The nonparametric approach to the identification of 
Hammerstein cascade systems, i.e., systems in which a 
nonlinear memoryless element is followed by a linear 
dynamic subsystem, has been proposed by Greblicki and 
Pawlak [14]-[16]; see also Greblicki [121, Pawlak [31], and 
Krzyzak [25]-[26]. Wiener systems, i.e., systems in which 
the subsystems are connected in reverse order, also can 
be identified nonparametrically; see Greblicki [171. Identi- 
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fication algorithms introduced in this paper are simpler 
than those applying orthogonal series examined by Gre- 
blicki and Pawlak [15]-[16], Greblicki [12], Pawlak [31], 
and Krzyzak [251. We directly expand the unknown non- 
linear characteristic into trigonometric series, while the 
authors mentioned above expanded some functions de- 
pending on the unknown characteristic and then recov- 
ered the nonlinearity from the expansions. As a conse- 
quence, algorithms proposed by them are of the form of a 
fraction. Moreover, the convergence rate of our estimates 
is insensitive to the roughness of the input probability 
density, a property not observed for their estimates. 

From another viewpoint, our approach is called block- 
oriented; see, e.g., Billings [51, since we assume that the 
nonlinear dynamic system consists of relatively simple 
elements and has a known structure. The goal is to 
recover properties of subsystems from input-output ob- 
servations of the whole system. Because signals intercon- 
necting the subsystems are not measured, the subsystems 
can be identified up to some unknown constant, which is 
also the case with this paper. This approach is an interest- 
ing proposition in the area of identification of nonlinear 
systems; see Bendat 141 and Brillinger [6]. A nonparamet- 
ric approach to other classes of nonlinear systems has 
been made by Georgiev [ll] who, however, imposed on 
the system some restrictions rather difficult to be verified. 
For related problems of nonparametric inference from 
dependent data, we refer to [191, [22], 231, and references 
cited therein. 

11. PRELIMINARIES 

In this section, we give some basic results concerning 
order statistics which will be used in the paper. Suppose 
that {U,; II = - 1 .  , - 1,0,1,2, } is a sequence of inde- 
pendent random variables, bounded to the interval [ - r r ,  
T I ,  and having a probability density denoted by f. We 
assume, however, that there exists’ 6 > 0 such that 

all u E ( -  n-, n-), i.e., it is assumed that f is bounded 
away from zero on ( - n-, n-). In further parts of the paper, 
{U,} will be the input signal of the identified system. We 
rearrange the sequence U,, U,,..., U, into a new one: 

in which U,,) < q2, < < U,,,. Ties have zero proba- 
bility since the U,’s have a density. Moreover, we de- 
fine qo, = - n- and U,,, l )  = n-. The sequence qo,, U,l,, 
U,,);.., U,,,, q,+ 1) is called the order statistics of Ul, 

are called spacings. Spacings play important role in the 
paper, and we now give some useful results (see [81, [32], 
[40] for a review of the theory of order statistics and 
spacings). We shall need the following. 

U,,..., U,, while q n + l )  - q n , ,  q n )  - U,,- 1),*.., ql) - qo) 

Lemma 1: Let f satisfy (1). Then, for any real p > 0 
and any n 2 1, 

E(u,,, - qi-,))’ I rp6-Pn-P 

any i = 1,2;.., n + 1, some 7p > 0, 

Moreover, 

Hq,) - qi-l))(qj) - I s -2( (n  + l > ( n  + 2 w 1 ,  

any i, j = 1,2,.-., n + 1 such that i f j .  
Remark 1: Owing to (B.3) in Appendix B, we note that 

7p = (&/(& - 1))pIXp) I 1.67pUp1, where J X p )  
is the gamma function. 

Proof of Lemma 1: Since, by virtue of (11, 

application of (B.4) and (B.5) given in Appendix B yields 
the first and third parts of the lemma. In order to verify 
the second, observe 

j =  1 

n + l  

j =  1 

which completes the proof. 0 

111. IDENTIFICATION ALGORITHMS 

We now identify a nonlinear dynamic system consisting 
of a nonlinear memoryless subsystem followed by a linear 
dynamic one, i.e., a Hammerstein system. We present and 
examine two algorithms recovering the nonlinearity from 
noisy input-output observations. 

The identified cascade system, Fig. 1, is driven by a 
random process defined in Section 11, i.e., by a strictly 
stationary white random noise {Un; n = ... , - 1,0,1, 
2, ... }. Input random variables U,’s are bounded to the 
interval [ - r r ,  n-1. Their probability density denoted by f 
is unknown. It nevertheless satisfies (1). 

The system comprises two elements, the first of which is 
nonlinear memoryless and its characteristic is denoted by 
m. It means that 

W, = m(U,). (2) 

We assume that m is Bore1 measurable and satisfies the 
Lipschitz condition of order CY, i.e., that 

Im(u) - m(u)l I ylu - ula ,  (3) 

some0 < CY I 1 and y >  0, all u,u  in [ - n - , r r ] .  
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[l], [2]. Hence, if {m(U,)} is a sequence of i.i.d. symmetric 
Bernoulli random variables, then {Y,} is not strongly mix- 
ing [l], [2]. The latter requirement can be easily satisfied 
by taking m(u) = 1 for u 2 0 and m(u) = 0 otherwise, 
with f(u) being a symmetric density on [ - T, TI. This 
observation should be contrasted with the most literature 
on the nonparametric estimation for dependent data, 
where some sort of mixing conditions are assumed; see, 
e.g., ~191, [22], [23]. 

The identification algorithms proposed in this paper 
make use of the trigonometric series { e i k u ;  k = 0, 5 1, k 
2, ... }, orthogonal on the interval [ - T, T]. p is obviously 
integrable and 

m (3 subsystem 
U, wg r G  yk 

Fig. 1. The cascade system. 

The dynamic subsystem is described by a state-space 
equation 

(4) 
X,,, =AX, + bW, 

V,  = cTX,  + dW, 

where X ,  is a state vector at time n and where the matrix 
A as well as vectors b, c, and d are all unknown. We 
assume nevertheless that A is an asymptotically stable 
matrix, i.e., that all its eigenvalues are inside the unit 
circle. The system is disturbed by a stationary white ran- 
dom noise {Z,; n = ... , - 1,0,1,2, ...} and 

Y, = v, + 2,. 

The noise is independent of the input signal and has zero 
mean and finite variance. Thus, {x; n = .e., -1,0,1, 
2, ... } is a stationary stochastic process. 

Our goal is to recover m from observations (Ul,Y,), 
<U,,Y,>,..-,(U,,Y,) taken at the input and output of the 
system. 

Defining [, = c’(X, - EX,), we get 

Y, = /-dun) + 5, + z, ( 5 )  

where p(u)  = dm(u) + p, p = cTEX,,, which means that 
p is observed in the presence of noise 6, + Z,, of which 
the first component is correlated, while the second is 
white. Observing E{Y,IU, = U }  = p(u), we shall now pre- 
sent two algorithms for estimating the regression of Y, on 
U,, i.e., algorithms which recover p. That we are able to 
identify m up to some unknown constants d and p is a 
simple consequence of the cascade structure of the system 
and the fact that the signal W, interconnecting the subsys- 
tems is not accessible. Nevertheless, if f(u) is symmetric 
and m(u) is odd, then Em(U,) = 0, and if, additionally, 
d = 1, then EX, = 0, and consequently, p(u) = m(u). 

It is worth noting the (5) can be written in the input- 
output form 

cc 

Y, = Cg,m(U,-J + z, 
1=0  

where go = d ,  g ,  = cTAL-lb, i = 1,2, . . .  is the impulse 
response of the linear subsystem. The class of stochastic 
processes {Y,} so generated is very broad. It covers m-de- 
pendent sequences, all autoregressive-moving average pro- 
cesses and certain sequences which are neither + mixing 
nor strong mixing. Examples of sequences which are not 
strong mixing are easily obtained. In fact, the first-order 
autoregressive process Y, = + Y ~ - ~  + m ( ~ , ) ,  i.e., Y, = 

Cy= ,,2-Jm(Un -,), is strongly mixing if m(U,) has a distri- 
bution with absolutely integrable characteristic function 

where 

is the kth Fourier coefficient of the expansion of p. It is 
worth noting that in [24] the problem of recovering the 
regression model 

has been studied (clearly, eiku can be replaced by other 
orthogonal functions). Here, one would like to estimate 
{ek}  and q (model order). It has been assumed, however, 
that q is finite and smaller than some known number. 
Our case is fully nonparametric since m(u) is represented 
by =ekeiku.  

We estimate the Fourier coefficients in (7) from the 
order statistics qo,, q,), q2),-.., q,,, q,+ rather than 
from the input sequence itself. In order to estimate the 
coefficients, we rearrange the sequence of input-output 
observations (U,, Y,), (U2, Y2);**, (U,, Y,) into the follow- 
ing one: 

Note that yi,’s are not ordered; they are just paired with 
q i ) ’ S .  

We propose two estimators of c k ,  namely, 

and 
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As a consequence, our identification algorithms are the 
following: 

j x u )  = Zkeiku (8) 
lkl I q ( n )  

and 

,Xu)  = EkeikU (9) 
Iklsq(n) 

where {q(n)} is an integer sequence. Obviously, the quan- 
tities in (8) and (9) are estimates of Sq(n)(u) = 

expansion of p in the trigonometric series. It is also worth 
noting that the estimates in (8) and (9) can be represented 
in a convolution form, i.e., 

ClkIsq(,) k e i k u  , i.e., of the q(n)th partial sum of the 

n 

/ x u )  = c q/](q/)  - q , - l ) )Dq(n ) (u  - q,,> (9') 

where 2rrDq(u) = Clkl ~ qe-'ku = (sin ( q  + +)u/sin(u/2) 
and rrDq(u) is the Dirichlet kernel of the qth order [411. 
The representations in (8') and (9') are useful for studying 
the pointwise properties of our estimates; see Section V 
for a short discussion of this issue. 

] = I  

We shall need the following crucial lemma. 
Lemma 2: Let f be any density on [ - r r ,  TI. Let m be 

any bounded Borel measurable function on [ - n-, r r ] .  For 
the cascade system whose linear part is asymptotically 
stable, 

E{ tp](qz) - ql-,))}z 5 PIE(q,,  - qz-1))2> 
any i and any n 2 1. 

Furthermore, 

E{ 5[,1 t[,IWl) - q1- I ) ) (%)  - q,- I ) ) )  

- < Pzn-'E{(q,, - q,-l))(q,) - q,-l))}> 
any i and j such that i # j and any n 2 1, where p1 and 
p2 are independent of i, j ,  rz as well as f .  

The proof of the lemma is in Appendix A. From Lem- 
mas 1 and 2, we get the following. 

Lemma 3: Let f satisfy (1). Let m be any bounded 
Borel measurable function on [ - r r ,  r r ] .  For the cascade 
system whose linear part is asymptotically stable, 

any n 2 1 and some p > 0 independent of n. 

IV. MEAN INTEGRATED SQUARE ERROR 
In this section, we show that the mean integrated 

square error (MISE) converges to zero as the number of 

observations tends to infinity. We also give the rate of the 
convergence. For algorithm (81, the MISE is defined as 

and similarly for (9). We assume that the integer sequence 
satisfies the restriction 

q ( n )  -+ 00 as n + 00 (10) 

q ( n ) / n  + 0 as n - 00 (11) 
q ( n ) / n Z a  - O as n -+ (12) 

and some of the following: 

q3(n ) /n2  + O as n -+ (13) 

where a is defined in (3). 
We shall now prove the following. 
Theorem 1: Let f satisfy (l), and let m satisfy (3) with 

0 < a I 1. Let A be an asymptotically stable matrix. If 
(10)-(12) hold, then 

MISE(j l )  + 0 as n - E .  

Remark 2: For 1/2 5 a ,  i.e., in particular for a = 1, 
(11) implies (12), and as a consequence, (10) and (11) are 
sufficient for the estimate to be consistent. For 0 < a < 
1/2, (12) entails ( l l ) ,  and owing to that, (10) and (12) 
constitute a sufficient consistency condition. 

Remark 3: Selecting q(n) = n', we find that the esti- 
mate is consistent for 0 < E < min (1,2 a) .  Here and 
throughout the paper a ,  = b, denotes that an/bn + c as 
n + M, where c is a nonzero constant. 

Proof of Theorem 1: Since 

we have 

where 
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and Proof of Theorem 2: We have 

Applying Lemma 1, we get VI 5 2 ~ , 2 6 - ~ n - ' .  Lemma 2 
leads to V, I 6,n-',  some 6, > 0. Owing to (3), the + 1"'" [ p(q,))e-'ku(Jl - p ( z ~ ) e - ' ~ ~ ]  du 
integral in the expression defining V3 is not greater than J = 1  qJ-1) 

f some positive S, and 6,, which completes the proof. 0 
Remark 4: The result of Theorem 1 can be extended to 

the case when the noise process Z,  in (5 )  is not homoge- 
neous, i.e., the input-output relationship is given by 

+(1/2)ji2k2E (q,) - q,-l))' . 

Applying Lemma 1, we find Vi 5 Sin-'" + 6;k2n-', 
some Si,  a:, and finally, 

MISE(,&) I G,q(n)n-' + 6,,q(n)n-2" 

{ J ' l  

Y, = p(U,) + 6, + a(U,)Z, 

where d u )  is a measurable bounded function on (- n-, n-) 
and {Z,} is independent on {U,}. It is obvious that all 
terms in (14), except VI, remain unaltered. The term V, is 
now of the form Some 6,, 6,,, a,,. Observing that (13) means that 

[q(n)/n2/3]3 -+ CC as n -+ CO, i.e., that (13) implies (111, we 

+ 61,q3(n)np2 f lck12, (20) 
lkl>q(n) 

This does not exceed 

The next theorem concerns algorithm (9). 
Theorem 2: Let f satisfy (l), and let m satisfy (3) with 

0 < a 5 1. Let A be an asymptotically stable matrix. If 
(lo), (121, and (13) hold, then 

can complete the proof. 0 
Hence, if a 2 1/2, then q(n)/n + 0 and q3(n)/n2 -+ 

0 are sufficient for convergence of MISE(fi)  and 
MISE( ,&I to zero, respectively. Clearly, q3(n)/n2 -+ 0 is 
more restrictive than q(n) /n  -+ 0. This is due to the fact 
that E, defined in ( 5 )  is a less accurate approximation of 
ck than c^k in (4). However, this scheme fails if m(u) is so 
rough that a < 1/2. Then q(n)/n2" -+ 0 is required for 
c ( u )  and max(q3(n)/n2, q(n)/n2")  -+ 0 for ,&(U). Hence, 
for a < 1/3, the condition q(n)/n2" -+ 0 has to be as- 
sumed for both estimates. If 1/3 < a < 1/2, the condi- 
tion q3(n)/n2 -+ 0 is less restrictive than q(n)/n2" -+ 0. 

V. POINTWISE CONVERGENCE 

In this section, we study the pointwise properties of our 
estimates. These are summarized in the following theo- 
rem. 

MISE(,&) --j 0 as n -+ W. 

Remark 5: Selecting q(n> = ne,  we find the estimate 
consistent for 0 < E I min (2/3,2 a) .  
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Theorem 3: Let f satisfy (l), and let m satisfy (3) with 
0 < a I 1. Let A be an asymptotically stable matrix. If 
(10)-(12) hold, then 

Concerning the term V,, note that by the Cauchy- 
Schwarz inequality, we obtain 

If, in turn, (101, (12), and (13) hold, then 

E ( , L ( ~ )  - p(u>>, + o as n + m. 

To evaluate VI, let us note that due to (1) and the 
Cauchy-Schwarz inequality, we get 

V, I var(Z,)6pl ~ ; ( , , ( u  - u >  du 
j =  1 

- /u-~+l)Dq(n,(u - u ) p ( u )  dv + Sq[ , , (u)  where d, is the uniform spacing. 
Applying Abel's transform [3] we can write 

where Sq(,)(u) = /7171Dq(n,(~ - u > p ( u )  du is the q(n)th 
partial sum of the expansion of p(u) in the trigonometric 
series. This yields the following bound: 

n - 1  5 d,/'(IJ D;(,,,(u - 0) dv = ( d k  - dk+l )Lk  + d,L, 
k =  1 J = 1  q1-1, 

where L ,  = E:=, /$~!~~Di( , , (u  - U )  du. Noting that Lk 5 
(3/2n-)q(n) and applying results of Appendix B.l, we can 
obtain that VI = O(q(n)/n).  Proceeding in a similar way 
and using the result of Lemma 3, we can also conclude 
that V, = O(q(n)/n). The proof of Theorem 3 is thus 

0 

VI. CONVERGENCE RATES 

E ( j i ( u )  - P(U)>* 5 8(V; + V, + v3 + 1/41 
+ 2(Sq(,,(U) - d u ) )  

where 

VI = var (2 , )  2 E (  lqJJ Dq(,,(u - U )  du , 
J = 1  q ] - I J  r 

V, = E{  t t , , p  Dq(,)(U - U >  du , 
/ = 1  % I )  r 

complete. 

In order to present the convergence rate of the algo- 
rithms, we need the following lemma. 

Lemmu 4: (Lorentz's inequality [281; see also Bary [3, 
pp. 215-2171]: Let g defined on [ -  n-, n-I satisfy the 
Lipschitz condition of order a ,  where 0 < a I 1, i.e., let p(%))  - P( ' ) ]  Dq(,)(u - du 

lg(x) - g(y)l 5 CIX - y la ,  
f V3 = E {  5 / q J )  [ 

J = 1  q1-1) 

some c > 0, all x, y E [ - r ,  TI. Then 

lak12 I d q - 2 a ,  Observe that due to Dini's convergence criterion, Sq(u) 
-+ p(u) as q + m at every point U E (- T, n-) where the 
condition in (3) is satisfied [31. For later purposes, we note 
the following easily verified facts: D;(u) du = n--'(q 
+ 1/21 and lDq(u)l I n-"(q + 1/21. By this, Lemma 1, 
and by virtue of the mean value theorem of integration, 
we get 

v, = E(D;( , , (~ - e)pZ(e>(q,+,, - q.,)z) 

Iklzq 

some d > 0, where, uk's are the Fourier coefficients of g. 
If, in turn, a > 1/2, then 

ISq(u) - g(u)l 5 bq-(a-"2), 

some b, where S,(u) is the qth partial sum of the expan- 
sion of g(u) in the Fourier series. 

From Lorentz's inequality and (3), it follows that 
Clkl,q(n,l~k12 I p/q(nI2", some p > 0, provided that 0 < 
a 5 1. From this, (31, (19), and (20), we easily get the 
following. 

= o[ (  y] 
where 8 E (q,,, qn+,,). 
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Theorem 4: Suppose the f satisfies (1) and m satisfies 
(3).  Let 0 < CY I 1/2.  For q(n) = n2a/(1+2a! 

MISE ( jl) = O(12-4a2/(1 + 2 a ) )  and 

MISE( f i )  = 0 ( ~ - 4 * ’ / ( 1 + 2 a )  1. 
Let 1 / 2  I CY I 1. For q(n) = n’/(lt2”), 

MISE( E )  = O ( n - 2 a / ( 1 + 2 a ) )  and 

MISE ( G )  = O(n-2*/(’+2*) ). 

Furthermore, Theorem 3 and Lemma 4 yield the follow- 
ing. 

Theorem 5: Suppose that f satisfies (1) and m satisfies 
(3). Let 1 / 2  < CY I 1. For q(n) = n1/2a,  

E(  jl(u> - p(u))2 = O(n- (2a-1 ) /2a  1 and 

E( f i (u )  - p(u) I2  = O(n-(2a-1) /2u  1. 
From the theorem, it follows that the algorithms behave 

asymptotically very alike. In particular, for a = 1, MISE 
for both estimates is O(n-2/3),  provided that q(n)  = n1/3, 
whereas the mean-square error is O(n-’ i2)  for q(n )  = 
n’l2. 

Imposing further smoothness restrictions on m, we can 
improve the convergence rate. We shall, however, need 
the following. 

Lemma 5: Let g have s - 1 absolutely continuous 
derivatives, and let g ( r ) ( -  r r )  = g ( r ) ( r )  for r = 0, I;.., s 
- 1, s 2 1. Suppose that 

some c > 0, 0 < a I 1, all x,y E [ - r r ,  r r ] .  Then 

1 l Z k l 2  2 d / q 2 ( s + a ) ,  
lkl>q 

some d > 0, where ak’s are the Fourier coefficients of g. 
The proof of this lemma results from [28] and integra- 

tion by parts; see also [9]. There is also a pointwise 
counterpart of Lemma 5; see [13, Lemma 21. It is worth 
noting that the periodicity assumption g ( r ) ( -  r r )  = g ( r ) ( r ) ,  
r = 0, 1;.., s - 1 must be required due to the well-known 
edge effect (Gibbs phenomenon) of trigonometric series; 
see [3]. In fact, if this condition is not assumed, then 

= O ( q - 2 ) ,  
Ikl>q 

regardless of how many derivatives of g(x) exist. As a 
result, the rate of convergence cannot be faster than 
O(n-2/3).  This phenomenon need not occur for other 
orthogonal series. See also [20] for some techniques for 
removing edge effects in the context of kernel regression 
estimates. 

Observe now that if m(u) satisfies the conditions of 
Lemma 5, then also p(u) = dm(u)  + p does. Hence, 

Cl,,> (“)IckI2 I d/q2”(n), p = s + a ,  some d > 0. Hence, 
for q{n) 2 n1/(1+2~), 

MISE ( jl) = O(n-2”(’+2p)) and 
MISE ( f i )  = O(n-”’/(’+2’’)). 

For a smooth characteristic m, i.e., for large p ,  the rate 
becomes close to n -’, i.e., the rate typical for parametric 
inference. Moreover, the rate is independent of the 
roughness of the input density f since the result holds for 
any density satisfying (1). The density can be an arbitrarily 
rough function and, in particular, can have no derivative. 
Such a property has not been observed for other regres- 
sion estimates, even when a regression is observed in the 
presence of only a white noise. It should be stressed here 
that in our identification problem, the noise disturbing the 
regression has two components, white and correlated. 

It it also interesting to compare the rate with those 
achieved by other estimates. Of those, the kernel estimate 
is most thoroughly examined in the literature, and there- 
fore results obtained for it are not easily equaled. It is 
known, see e.g., Hardle [13], that the classical kernel 
estimate (Nadaraya-Watson estimate) 

n 

E;K((u - U , ) / h ( n ) )  K ( < u  - U , ) / h ( n ) ) ,  (21) 
J = 1  

where K is a kernel function and {h(n)}  a number se- 
quence, has MISE of order O(nPp ), where /3 = 2 min [ p /  
(1 + 2p) ,  r / (2  + 2r) ,  s/(l + s)].  In the expression, p and 
r are the number of existing derivatives of m and f ,  
respectively, while s - 1 is the number of vanishing mo- 
ments of the kernel. 

In [29] (see also [7]), the kernel estimate of the form 
n - 1  1 c q,](q,+l) - q , , ) m K ( ( U  - q , ) ) / h q  (22)  
J =  1 

has been studied. This is clearly a counterpart of our 
estimate (9). The pointwise properties of this estimate 
have been studied, and it has been demonstrated that it 
has the mean-squared error of order O ( t f Y ) ,  where 
y = 2 min [ p / ( 2 p  + 1), s / (2s  + 01. The density of U is 
assumed to be defined on a compact set, continuously 
differentiable and to satisfy condition (1). 

These rates have been obtained for conditions more 
comfortable than ours, i.e., for a regression observed in 
the presence of white noise only, and for independent 
pairs (U,,E;)’s. Observe that the rate equals that derived 
by us, provided that the input density has p derivatives 
[for the estimate in (21)] and that the kernel is suitably 
selected. Our estimate achieves that rate for any density 
satisfying (l), i.e., for a very wide class of densities. There- 
fore, if the density does not have a derivative, the rate 
obtained for our estimate seems to be better. For exam- 
ple, for m and f having three and one derivatives, respec- 
tively, and for a symmetric kernel function (a common 
choice in practice), the kernel estimates in (21) and (22) 
converge as fast as O(n-2/1) and O(n-4/5),respectively, 
while ours have the convergence rate It should 
be also noted that the rate derived by us equals the best 
possible one obtained by Stone [381. 
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Fig. 2. The parallel system. 

Finally we mention that, so far, the following orthogo- 
nal series algorithm (in random design setting) has been 
studied: 

i ikeiku 

(23) 

where 
t n  I n  

are estimates of the coefficients of expansions of f ( . )p ( - )  
and f(.) in the trigonometric series, respectively; see [12], 
[13], [151, [161, [21], [25], [31]. The estimate is of a frac- 
tional form, and its pointwise convergence rate is sensitive 
to the roughness of the input density; see [13] and [21] for 
some specific convergence results concerning P(u)  in the 
case of independent data. 

VII. OTHER SYSTEMS 
Some authors have examined dynamic systems de- 

scribed by (4) and assumed that d = 0. In such a case, 

y, = V(U,_ , )  + 5, + z, 
where v(u)  = cTbm(u) + &EX,, and 5, = c?A(X, - 
EX,). We can say that the regression v is observed in the 
presence of noise L,, + Z,. Therefore, one can recover v 
from pairs (Ul ,  Y,), (U2, YJ,..., (U,, Y,, 1) ,  i.e., from order 
statistics 

(ql,, ? 2 ] ) ,  (qz), q 3 1 ) , . * * >  ( q n , ,  ? , + I ] ) .  

In the definition of our estimates, YJl should be replaced 
by ?,+ll .  One can easily verify that all results in Ap- 
pendix A given for t, hold also for 6,. 

Another extension would include a general description 
of the cascade model of the form 

n 

Y, = C g n - , y  + z n  ,= --li 

where {g,) is the impulse response sequence satisfying 
C7=og: < w. Clearly, the description in (4) is of this form 
with go = d, g, = cTA'-'b, j 2 1. 

Algorithms proposed in the paper also can be used to 
identify systems other than cascade systems. A model of 

some physical interest is pictured in Fig. 2, where the 
nonlinear memoryless element (2) and the linear dynamic 
system (4) are connected in parallel; see [41. That is, 

(24) 

1 X,,, = AX, + bU, 
V ,  = cTX,  + dU, 

and 
r , = V , + w , + z ,  

where W, = m(U,). 

plus-noise form as in (51, i.e., 
Clearly, this model can also be expressed in the signal- 

Y, = r](u,) + 5, + z, 
where ~ ( n )  = m(u) + du + p, p = cTEX, and t,, = 

cT(Xn - EX,). Thus, E{Y,(U, = U )  = r](u), and one can 
recover m(u) up to a linear function. Hence, let $(U) and 
G(u) be estimates of r](u) defined as in (8) and (9), 
respectively, where now I;  is generated from the model 
(24). In order to show that Theorems 1 and 2 hold for 
$(U) and ? ( U ) ,  let us first observe that Lemmas 2 and 3 
are in force. In fact, since now t,, = C,"I I ,C%"- '~~ b(U, 
- E q ) ,  therefore the proof of Lemma 2 is valid here. To 
evaluate other terms in the proofs of Theorems 1 and 2, it 
remains to observe that if m(u) satisfies (31, then 

Iq(u) - v(u)I I ( y  + d ( 2 n ) 1 p " ) l ~  - ula ,  (2.5) 

i.e., r](u) is also Lipschitz with the same order as m(u). 
All of these considerations yield the following consistency 
result concerning the identification of the parallel model. 

Theorem 6: Let f satisfy ( 0 ,  and let m satisfy (3) with 
0 < a 5 1. Let the linear dynamic subsystem of the paral- 
lel model be an asymptotic stable. If (10)-(12) hold, then 

MISE($) -+ 0 as n + W. 

If, on the other hand, (lo), (12), and (13) are satisfied, 
then 

MISE(5j) + 0 as n -+ W .  

If one assumes that the density of U, is symmetric and 
m(u)  is odd, then EX, = 0, and if, additionally, d = 1, 
then we can recover m(u) + U, i.e., $ ( U )  - U, $ ( U )  - U 

are consistent estimates of m(u). 
Concerning the rate of convergence, we can note that 

due to (23, the results of Theorems 4 and 5 remain valid. 
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Error versus n for estimates (8), (91, (23); m(u) = m,(u). Fig. 3. 

This is not the case, however, under the assumptions of 
Lemma 5 since ~ ( m )  - +-m) = 2dm and the global 
rate does not exceed O(nP2I3) .  Nevertheless, if d is 
known, then ~ ( u )  - du satisfies the conditions of Lemma 
5 and $ ( U >  - du, G ( u )  - du are consistent estimates of 
m(u) + /3, and they can reach the global rate of order 
O(n-2”/(’+2p)). In particular, this is the case if d = 0. 

It is necessary to note here that the case where A ,  b, d 
equal zero in (24), a situation in which the linear subsys- 
tem has no dynamics, (E{Y,IU, = U} = m(u>), has been 
extensively examined in the statistical literature; see, e.g., 
Eubank [lo], Hardle [22], Muller [301, Rao [351, and Wahba 
[391. Such a situation is simpler than that in this paper 
since the nonlinearity is then recovered from independent 
pairs (U,, Y,)’s. Orthogonal series regression estimators 
have been studied by Greblicki and Pawlak [13]; see also 
[211, but their estimators are, however, different from ours 
since their form is fractional. Pointwise convergence rates 
derived by them are sensitive to the roughness of f .  We 
also mention that the case of deterministic regressors has 
been treated with the help of orthogonal series by Ra- 
fajlowicz [341 and Rutkowski [361 (see also [lo, sect. 31). 

VIII. SIMULATION STUDY 
To illustrate the small sample properties of the identi- 

fication algorithms presented in the paper, let us consider 
some numerical examples. Throughout the simulation 
study, the following error has been empirically evaluated: 

1 n  

where k (u )  is a certain estimate of m(u). In all our 
experiments, the error has been determined from 20 dif- 
ferent sets of the input-output data of size n. 

The following particular descriptions for systems in (4) 

and (24) have been used: 

X, = ax,_, + m(U,> 
Y, = x, + z, (26)  

X, = ax,_, + U, 
(27) 

where la1 < 1 and m(u) is the characteristic is to be 
identified. To get some insight into small sample proper- 
ties of our estimation techniques, let us first consider the 
memoryless system. Hence, the situation when a = 0 in 
(26), i.e., Y, = m(U,) + Z,. As a nonlinear characteristic, 
m,(u) = 0.5 + 0.5 cos ( U )  + 2 sin ( U )  + 0.5 cos (2u) + 
sin(2u) has been used; compare with [23]. Note that 
m,(u) is a periodic function, and therefore it seems to be 
ideally suited to our estimates. Fig. 3 shows error as a 
function of n for estimates (81, (91, and (23). It was 
assumed that Z,  is Gaussian (0,O.l) and U, is uniformly 
distributed on [ - r r ,  TI. The truncation parameter q(n)  
was selected as the minimizer of the error for n = 250. 
This value is equal to 2 for algorithms (8) and (9), while it 
equals 4 for the estimate in (23). Surprisingly, the estimate 
in (9) exhibits the best rate of convergence for small 
values of n. For large n, all techniques have virtually the 
same performance and the error becomes negligibly small 
for n 2 200. 

In the next experiment, the sensitivity of the estimates 
to the selection of q(n)  as well as various input distribu- 
tions is presented. It is assumed that n = 128. Fig. 4 
depicts the error of the estimate jl(u) in (8) versus q for 
three different densities of U,. Hence, f l ( u )  is a uniform 
density of [ - m, n-1, f2(u) is a piecewise constant, and is 
equal to 3/4m and 1/4n- for IuI I rr/2 and n-/2 s Iul I 
n-, respectively, and f3(u) is a symmetric triangular den- 
sity on [ - r r ,  n-]. Note that f2(u) is a discontinuous func- 
tion, while f3(u), u E [-m,m] does not satisfy the as- 
sumption in (1). Remarkably, the behavior of k < ~ >  is 
almost insensitive to various distributions of U,. The error 

Y, = x, + m(U,> + 2, 
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Fig. 4. Error versus q for the estimate in (8), for different distributions of Un; m(u)  = m,(u), n = 128. 
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Error versus q for the estimate in (23), for different distributions of U"; m(u) = m,(u), n = 128. Fig. 5. 

is minimized at q = 2 in all cases. Fig. 5 shows an analo- 
gous result for the estimate in (23). A strong sensitivity to 
different input distributions can be observed. In particu- 
lar, the estimate exhibits a poor performance for the 
discontinuous density f 2 (u ) .  The error is minimized at 
q = 4 in all cases. 

So far, we have employed the characteristic m,(u> which 
is well behaved at the boundary points U = fr, i.e., 
m J -  T) = ml(n-) and my)( - r) = my)(n-), Y = 1,2, ... . 

In order to see a possible deterioration in the estimate's 
performance for nonperiodic characteristics, let us con- 
sider the following function: 

Assuming that n = 128 and U, is uniformly distributed, 

Fig. 6 shows m2(u)  along with estimates (8), (91, and (23). 
Optimal values of q(n)  were used, and they are equal to 
3, 2, and 5 ,  respectively. All estimates exhibit poor behav- 
ior at the end points; see also Section V for a theoretical 
discussion concerning the boundary problem. 

Now let a = -0.2 in (26) and (27) and n = 128. The 
nonlinear characteristic is an odd function of the form 
m 3 ( u )  = 0 . 5 ~  + 0 . 5 ~  cos ( U )  + 2 sin ( U >  + 0 . 5 ~  cos ( 2 u )  + 
sin ( 2 u )  and Z,  is Gaussian (0; 0.1). The error versus q 
for the cascade and parallel systems is depicted in Figs. 7 
and 8, respectively. Note, moreover, that the error for the 
parallel model is calculated as (l/n)Cr= ,El ;<U,> - - 

m(U,)I2. This is due to the fact that ; ( U )  - u is a consis- 
tent estimate of m(u):  

Clearly, the estimate (8) exhibits the best performance 
with, however, a much larger value of q minimizing the 
error (it is equal to 16 and 25 for the cascade and parallel 
models, respectively). Furthermore, the error for the 
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Fig. 8. Parallel dynamical system. Error versus q for estimates (8), (9, (23); m(u) = m&), = 128. 

parallel model is about twice as large as the one for 
the cascade model. To explain this phenomenon, let us 
write the state equations for both systems in the sig- 
nal-plus-noise form, i.e., Y, = m(U,) + c,, where 5, = 

ZII?,anp”z(q> + 2, for the cascade model and f = 

Zl:l..an-Jq + 2, for the parallel one. From this we 
can easily calculate the variance of 5, for both systems. 
This is equal to u 2  + var(m(U))(l - a2Ip1 and a’ + 
var(U)(l - a’ ) - ’ ,  respectively, where u’ = var(2) .  In 
our particular case, i.e., m(u) = m,(u), a simple algebra 
yields var ( U )  > var (m,(U)). Hence, the parallel model 
has a smaller signal-to-noise ratio than the cascade one. 
Clearly, the inverse property can occur as well. In fact, if 
m(u) is odd and satisfies c lu  s m(u) 5 c2u for some 
positive c1, c2, c2 2 c1, then var(U) < var(m(U)) if only 
c1 > 1. All the aforementioned considerations reveal the 
importance of the selection of the sequence q(n). One 
has to specify the q(n)  before our estimators can be 
applied. The prescription for q(n) given in Theorem 3 is 

optimal, but only in the asymptotic sense, and it depends 
on some unknown characteristics of the system. Thus, the 
natural question arises how to select an optimal (or nearly 
optimal) q(n)  directly from the data. This problem can be 
carried out by some form of cross-validation techniques. 
For example, the so-called future prediction error (see 

j.k,(q)I’ can be a good candidate for the choice of q(n). 
Here, / L , (u )  is the version of b(u) calculated from all of 
the data points except the jth. This technique requires a 
considerable amount of computing as the estimate has to 
be formed n times in the computation of CV(q). A 
simpler and equally efficient technique aims at minimizing 
the penalized version of the residual error (this is often 
called the generalized cross-validation technique): 

[lo], [193, [211, [221, [261) CJ‘Xq) = (1/’n)Zy=1ly - 
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Error and G versus q for &(U>; m(u> = m,(u), n = 128. Fig. 9. 
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Error and G versus q for &(U>; m(u) = m,(u), a = -0.2, IZ = 128. Fig. 10. 

where Ln(q) is a suitable increasing function of q. One 
possible prescription for .R(q) is (1 - 2m(q + 1/2)/n)-’, 
see [lo], [191, [211, [22], [261 for some other choices. 

Fig. 9 illustrates the above approach for the memoryless 
system using the estimate in (9). The error (9) and G(q)  
measures are plotted with m(u> = m,(u) and n = 128. It 
is seen the the minimum of G(q) agrees with the mini- 
mum of error (4). Note, however, that G(q)  is much 
larger than error (9). 

Fig. 10 shows a similar result in the case of the cascade 
dynamical system. The estimate (9) was used with m(u) = 

The problem of optimality of q selected with respect to 
CV(q)  or G(q) is left for further studies; see [22] for some 
related results in the context of kernel estimates. 

mg(u), U = -0.2, n = 128. 

IX. FINAL REMARKS 
In this paper, we have proposed two nonparametric 

algorithms to recover a nonlinear characteristic of nonlin- 

ear dynamic systems. Since the characteristic has been 
expressed as a regression function, the algorithms are, in 
fact, nonparametric estimates of a regression function 
observed in the presence of additive disturbance. The 
disturbance is a sum of white and correlated noise; the 
source of the latter is the dynamic subsystem. The algo- 
rithms differ from each other by the way the Fourier 
coefficients are estimated. Clearly, is easier to calculate 
than tk .  On the other hand, the latter is a more accurate 
approximation of c k .  Moreover, conditions imposed on 
{q(n)} are more restrictive for the estimate using E,. 
Nevertheless, both algorithms reach the same conver- 
gence rate. 

We emphasize that the algorithms presented in the 
paper cannot be directly extended to multiinput systems 
since the notion of spacings would have to be generalized 
to vector spaces. It is, however, known that even a multi- 
dimensional space of observations can be partitioned into 
subsets whose properties are the same as those of uniform 

1 . . __ . 
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spacings p r e s e n t e d  in  A p p e n d i x  B. This property can be 
used to redefine o u r  a lgori thms.  

and  

P -  1 4 -  1 

r = q + l  ] = 1  
I '  APPENDIX A V, = c*AP-I-' bh, c%q-l-'bh 

Proof of Lemma 2: In the proof, for a matrix P = [ p , , ] ,  P +  
denotes the matrix Ipll(. From the asymptotic stability of A ,  it 
follows that there exist matrices P and Q such that Obviously, 

sup ( A " ) + =  P and sup 2 ( A k ) ' =  Q 
n Em, I;.. I nE{O,I ; . . )  k = O  IE(VIIup,uq,U,,U,II  

Taking into account that 

4 -  1 

(A.1) 

where AI = m ( q )  - Em(U,), and that 1Al1 I 2M, where M = 
sup Im(u)l, we have 

~ u p l t ~ ~ ~ l  = s ~ p l 5 ~ 1  I 2M(cT) 'Qb+ 

some c1 dependent only on A ,  b, and c ,  any p ,  any q. Since 
EA, = 0, for p ,  q, r ,  s all different, we find 

i i 

and the first part of the lemma follows. 
Verification of the second part  is much more difficult. Let us 

first observe that (C7Ap-r-1bc%q-s-'bArh~, if s < q < r < p 

and 

I =  - -m 

This yields 

j =  1 

- CTAp-s-lbCTAq-r-l bhrh,, if r < q < s < p  
otherwise. - i o ,  

Since the cases when p = q + 1 and q > p + 1 can be treated 
in the same way, therefore, by (A.3), (A.4), for any different 
p ,  q ,r ,  s > 1, we have 

E ~ 5 p t q I ~ p ~ ~ q , ~ , , ~ , l  some y ( p ,  q, r ,  s) where 
m 

= var(m(U,) )  c%P+"bc%q+'-' b 
r = O  2 y ( p ,  q ,  r ,  s) 5 c2n3, (A.6) 

p , q , r , s = l  

+ E  c%p-r-lbh, 
p ,  q, r ,  s all different, some c2 .  { :r: 

Let us now fix i and j ,  and for p ,  q, r ,  s all different, define 
(A.2) the following event: i 4-  1 

I =  1 

. c T A 4 -  I -  b AI I Up, U4 , U,, U, 

for any p ,  q, r ,  s 2 1. It is evident that the absolute value of the A p q r s  = is the ( i  -1) smallest, U4 is the ith smallest, 

first term on  the right-hand side of (A.2) does not exceed 

U, is the ( j -1 ) th  smallest, Up is the j t h  smallest), 
var (m(Ul))(cT>' ( A P - ' ) +  Q ( b ) +  ( c T ) +  Pb.  (A.3) 

Concerning the second term on  the right-hand side of (A.21, let 
us assume, without loss of generality, that p > q + 1. Then, this 
term can be decomposed as follows: 

i.e., U,, u4, U,, up have ranks (i - l), i ,  ( j  - l), j ,  respectively. 
Owing to  (A.9,  we have 

E(V1 lupj uq 9 U, ,  U,) + E{Vz Iup > uq > U,,  qI l E ~ t ~ r ~ t ~ j ] ( q i )  - qi-1)) 
where 
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By this, the fact that f'(Apqrs) = (n(n - l ) (n  - 2)(n - 3))-', 
and (A.6), we get 

IE{t[ , , t[ , , (q , )  - ql-l,) for any i ,  any p > 0, and any n 2 1. It is worth noting that by 
the Euler-Gauss Formula q,) - q,- l))lql- I ) ,  q+ q,- I ) ?  q,d 

for some c3 independent on n, i ,  j .  
This completes the proof of Lemma 2. 0 

APPENDIX B 
B. 1 Uniform Spacings 

Suppose that XI, X,;.., Xn are independent random vari- 
ables distributed uniformly in [0,1]. Let X(l), X(2),..., x(,, be a 
sequence obtained by arranging X,'s in increasing order. It 
means that X(,, < X(,, < ... < X(n, .  Ties, i.e., events that X(,) 
= X(,, for i # j, have zero probability. Define, moreover, X(,,) = 

Oand X ( , + , , = l , a n d d e n o t e d , = X ~ , , - X ( , ~ , , , i = l , 2 ; ~ . , n .  
Obviously, d,  + d, + ... +d,+ , = 1. In this way, interval [O, 13 
has been split randomly into n + 1 subintervals called spacings. 

Clearly (see, e.g., David [8], Pyke [32], or Wilks [40]), 

n(1 - . x l n - l ,  for 0 I x I 1 
otherwise f lh)  = ( o, 

where f, is the density of d,. Thus, d, has a beta distribution 
with parameters 1 and n. 

From this, one easily obtains 

(B.1) 

any i ,  any real p > 0, and in particular, E d ,  = l / (n  + l), 
E d :  = 2/(n + 1Xn + 2), and so on. Here, T ( x )  is the gamma 
function. In the proof of Theorems 1 and 2, we need a bound for 
E d f ,  any real p > 0 and any n 2 1. Using (B.1), it is clear that 
if p is an integer, then 

E d f  I p T ( p ) n - P  

for any i and any n 2 1. 
Now let p be a real number. Then p can be represented as 

p = s + y ,  where s is an integer and 0 < y < 1. By invoking 
(B.11, we can get 

(B.2) 

and (B.1), we can get the following asymptotic expression E d !  
N pT(p)n-P as n + 00, i.e., nPEdP - p T ( p )  as n + 00. Recall- 
ing that the joint density of d, and d,, see [32, p. 3981, is given by 

f,, , k Y )  

for x > 0, 

otherwise 

= {;:n - 1)(1 - x  - y ) n - 2  
y > 0,  x + y  I 1 

we can get E d , d ,  = l / (n  + l ) (n  + 21, any i any j such that 
i # j .  Furthermore, E{d:d;) = 4/(n + l)(n + 2)(n + 3)(n + 4) 
for i # j .  

B.2 General Spacings 

In this section, U,, U,;.., U, are input random variables, i.e., 
independent random variables defined on [ - T, T] and having 
density f. Denote 

b, = /"'" f ( x )  du, 
U(t-1) 

i = 1,2;.., n + 1. Clearly, b , ,  b,;.. ,  b,, are random and add 
up to 1. The joint distribution of { b , ,  b,;.. ,  b ,+,)  is the same, 
see [40], as that of (d,, d,;.., d, + discussed in the previous 
section for uniform spacings, and therefore 

Eb,P I r,,iCP (B.4) 

where T,, = 1.67pT(p) for any i any p > 0, and any n 2 1. 
Furthermore, 

Eb,b, = l / ( n  + l ) ( n  + 2>, (€3.5) 

any i, j ,  such that i # j .  
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