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Preface

I t is certainly a truism that to do a good job, you have to choose the
right tool, whether the job involves home repair or data analysis. In

some ways, we have reached a point in social work research, however,
where the toolbox contains so many different and specialized tools that it
can be difficult to select the appropriate one. Each data analysis method
has numerous assumptions, options, exceptions, and limitations, but at
the same time the availability of easy-to-use software tempts us to simply
try everything until we get results that please us.

Most social work researchers’ toolboxes contain linear regression,
usually referred to as multiple regression or ordinary least squares multi-
ple regression, and we frequently employ it. Linear regression is a versatile
and powerful statistical method that can be used to model the effects of
one or more independent variables (IVs) on a dependent variable (DV)
(Cohen, Cohen, West, & Aiken, 2003; Fox, 2008). It can be employed
to analyze data collected using diverse research designs, including exper-
imental, quasi-experimental, and nonexperimental designs. It can also
accommodate any type of IV. However, linear regression assumes (among
other things) a continuous DV.

Continuous variables are quantitative variables that can take on any
value within the limits of the variable. For example, distance, time, or
length can have an infinite number of possible divisions between any two
values, at least theoretically. On the other hand, both Cohen et al. (2003)
and Nunnally and Bernstein (1994) note that by this strict mathematical
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viii Preface

definition no empirically defined quantities would be considered contin-
uous. That is, no measured variable is truly continuous. Nunnally and
Bernstein asserted that a variable could be treated as continuous if it can
assume more than 11 ordered values. By this definition, many depen-
dent variables of interest to social workers are at least quasi-continuous.
These include, for example, scores on standardized scales such as those
that measure parenting attitudes, depression, family functioning, and
children’s behavioral problems.

On the other hand, many DVs that interest us are discrete, not con-
tinuous. In contrast to continuous variables, discrete variables have a
finite number of indivisible values; they cannot take on all possible values
within the limits of the variable. Discrete variables include variables that
are dichotomous, polytomous, ordinal, or counts. Dichotomous vari-
ables have two categories that indicate whether an event has or has not
occurred, or that some characteristic is or is not present (e.g., place-
ment in foster care coded yes or no). Polytomous variables have three
or more unordered categories (e.g., type of foster care placement coded
kin care, non-kin family care, group home care, or institutional care). Ordi-
nal variables have three or more ordered categories (e.g., severity of child
abuse injury rated none, mild, moderate, or severe). Count variables indi-
cate the number of times a particular event occurs, usually within some
time period (e.g., number of hospital visits per year), population size
(e.g., number of registered sex offenders per 100,000 population), or
geographical area (e.g., county or state).

It is our impression that many social work researchers and those in
related areas are not sufficiently familiar with the tools available for ana-
lyzing such variables, with perhaps the exception of logistic regression for
dichotomous DVs. Nor are they sufficiently aware of the similarities and
differences among these different models, considerations involved in the
selection of the most appropriate models, or interpretation and presen-
tation of results from these models. This lack of broad knowledge about
multiple regression is unfortunate, because many important DVs cannot
or should not be modeled using linear regression.

The purpose of this book is to add a few new versatile tools to
your toolbox: to extend the knowledge of alternative regression mod-
els among social work researchers and those in related areas so that they
will be in a better position to accurately model important DVs of inter-
est to the profession. To that end, in this book we will demonstrate the
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ease with which these different regression models may be estimated and
interpreted.

Organization and Overview of Chapters

The book has five chapters: (1) Introduction to Regression Modeling;
(2) Regression With a Dichotomous Dependent Variable; (3) Regression
With a Polytomous Dependent Variable; (4) Regression With an Ordi-
nal Dependent Variable; and (5) Regression With a Count Dependent
Variable.

In Chapter 1, you will find a very brief review of the key concepts
of linear regression. Then, we provide an introduction to the General-
ized Linear Model (GZLM), which extends the linear regression model
to DVs that are not continuous and provides a unifying framework for
analyzing the entire class of regression models in this book, including lin-
ear regression. Finally, this chapter provides a discussion of assumptions
common to all regression models in this book.

Chapter 2 provides a foundation for the other regression models
presented in the remainder of this book. In fact, regression models for
dichotomous outcomes are the foundation from which these more com-
plex models are derived (Long & Freese, 2006). Therefore, in this chapter,
we introduce many of the concepts and principles of estimating, test-
ing, and interpreting regression models that can be adapted to regression
models presented in the remaining chapters. Consequently, this chapter
is longer and more detailed than subsequent chapters, and we strongly
advise that you read it carefully before turning to the remaining chapters.

Chapters 3 through 5 are largely self-contained and can be read in
any order. However, each of these chapters assumes that you have read
the first two chapters. In fact, although you can sit down with a glass
of wine and read the book from front to back, it is not written for that
purpose, and we expect many readers to pick it up when they need guid-
ance in conducting specific analyses. Therefore, some of the material is
repeated across these three chapters, to allow you to easily use the book
this way.

In Chapters 2 through 5, you will find discussions of appropri-
ate situations for use of the particular regression methods presented,
steps in estimating the regression model, substantive interpretation and
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presentation of the results of the analysis, and procedures for examin-
ing the assumptions underlying the model. Special emphasis is placed
throughout on interpretation of the regression parameters, because this
is more challenging for methods other than linear regression, and it is
where we often find the published research lacking.

You will see that Chapters 2 through 3 follow a similar format. We
start by introducing a simple example with a single dichotomous IV
using a cross-tabulation table (except in Chapter 5, where a compar-
ison of means is more appropriate). Then, we use the familiar con-
text of the cross-tabulation table to introduce methods for quantifying
the strength and direction of the relationships between the variables.
We follow by introducing the regression model, and then analyzing
the example with the regression model and relating those results back
to the cross-tabulation results. We hope that this link between the
familiar and the new will be helpful for understanding the regression
models.

In subsequent sections, we expand each regression model to include
quantitative IVs (sometimes called covariates), polytomous IVs (some-
times called factors), multiple IVs, and curvilinear and interaction
effects. (However, for the most part, we have kept the models we illus-
trate relatively simple for pedagogical purposes.) In the following section,
we present the assumptions underlying each regression model and dis-
cuss the methods for examining the assumptions. Given the brevity of
the book, there are a number of variations of the regression models
that we cannot cover, but at the end of each chapter, we note especially
important variations of the models and direct readers to accessible read-
ings and Web sites on the subject. The end of each chapter provides
instructions for using SPSS to estimate the regression model and a brief
description of the MS Excel Workbooks we used to create figures and
tables.

You will need to use simple calculations to create your own tables and
graphs from the SPSS output to fully understand and present results in
the most meaningful and parsimonious way. We use MS Excel to do this,
and the MS Excel Workbooks we used to create the figures and tables in
this book are available to you on the companion Web site of this book
(www.oup.com/us/pocketguides). These workbooks also contain addi-
tional figures and tables not presented in this book, and we encourage
you to peruse these workbooks.

www.oup.com/us/pocketguides
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We provide recent examples from social work research throughout
the book (see Orme & Buehler [2001] for earlier examples). We also
provide data from our own research on foster families and disadvan-
taged mothers to illustrate the regression models, and these data and
the SPSS output for the analyses we present are available to you on the
companion Web site of this book (www.oup.com/us/pocketguides). We
illustrate these different models using SPSS because SPSS is relatively easy
to use and widely known to social workers and those in related areas.
Throughout the book, we also direct you to accessible, more detailed
discussions and applications of the topics discussed.

Audience and Background of Readers

This book is not for students in beginning statistics classes, but you
also do not need to be a statistician to use it productively. Good use
of the material requires a working knowledge of sampling, design, and
measurement. We assume that you have an applied knowledge of statis-
tics, including understanding of estimation and hypothesis-testing and
chi-squared tests, t-tests, analysis of variance and applied linear regres-
sion. Finally, we assume that you have a basic understanding of SPSS,
including how to recode and compute new variables, how to construct
scatter plots and histograms, and how to compute basic descriptive
statistics.

We hope that this book will be useful as a textbook, perhaps as one
text in a course on multiple regression (which is how we use this book).
We also hope that this book will be useful to graduate students in the
social sciences who have modest backgrounds in applied statistics and
who would like an introduction to the GZLM and, more specifically, the
most widely used multiple regression models for discrete dependent vari-
ables. Finally, we think that this book will be useful to researchers who
did not encounter this material in graduate school but find themselves
needing an applied understanding of how to use and interpret one or
more of these regression models.

Glossaries of Statistical Terms

We define the major terms as we use them, but you might not be familiar
with some of the terms that we do not define, or you might be interested

www.oup.com/us/pocketguides
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in alternative definitions. The following provide glossaries of statistical
terms that you might find useful:

http://www.statsoft.com/textbook/glosfra.html
http://www.geodata.soton.ac.uk/biology/lexstats.html
http://www.animatedsoftware.com/elearning/Statistics%20Explained/

glossary/se_glossary.html
http://dorakmt.tripod.com/mtd/glosstat.html
http://davidmlane.com/hyperstat/glossary.html
http://www.stats.gla.ac.uk/steps/glossary/alphabet.html
http://www.ablongman.com/html/abrami/glossary/glossary.html

Statistical Symbols and Abbreviations

We use some abbreviations, and again we define them when we present
them. The following is a summary of these that you can refer to as
needed. Note that Greek letters symbolize parameters (a numerical char-
acteristic of a population), and letters from the Latin alphabet symbolize
statistics (a numerical characteristic of a sample).

a Intercept
α Intercept (alpha)
B Unstandardized slope
β Population slope and standardized sample slope (beta)
CI Confidence interval
df Degrees of freedom
DV Dependent variable, Y
E Exposure
e Error (residual)
ε Error (epsilon)
η linear predictor (eta)
G Link function
GLM General linear model
GZLM Generalized linear model
IIA Independence of irrelevant alternatives
IRR Incidence rate ratio
IV Independent variable, X
k Number of independent variables
λ Rate (lambda)
L Likelihood

http://www.statsoft.com/textbook/glosfra.html
http://www.geodata.soton.ac.uk/biology/lexstats.html
http://www.animatedsoftware.com/elearning/Statistics%20Explained/glossary/se_glossary.html
http://www.animatedsoftware.com/elearning/Statistics%20Explained/glossary/se_glossary.html
http://dorakmt.tripod.com/mtd/glosstat.html
http://davidmlane.com/hyperstat/glossary.html
http://www.stats.gla.ac.uk/steps/glossary/alphabet.html
http://www.ablongman.com/html/abrami/glossary/glossary.html
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L Logit
Ln Natural logarithm, to the base e
m Number of categories in a DV
M Mean
µ Mean (mu)
Mdn Median
ML Maximum likelihood
N Total number in a sample
n Number in a subsample
OR Odds ratio
OLS Ordinary least squares
π Probability (pi)
p Probability
p̂ Estimated probability
ψ Odds ratio (psi)
SD Standard deviation
t Threshold
τ Threshold (tau)
VIF Variance inflation factor
Z Standardized variable

SPSS Instructions

We use SPSS 16.0 for the analyses reported in this book (http://spss.com/).
Throughout each chapter, we present and discuss the SPSS output, and
at the end of each chapter, we describe the steps used to obtain this
output. You might want to consult SPSS Advanced Models 16.0 (2007),
which describes features of the SPSS Generalized Linear Model (GZLM)
that was used in most of the analyses we report. Norusis (2006, 2007) is
also a valuable source about estimating many of the regression models
discussed in this book.

Companion Web site

The companion Web site for this book (www.oup.com/us/pocketguides)
contains the following materials organized by chapter:

• SPSS (16.0) data set used in the chapter
• SPSS (16.0) output discussed in the chapter and related output not

presented

www.oup.com/us/pocketguides
http://spss.com/
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• MS Excel Workbooks used to create figures (and in a few cases
tables) presented in the chapter and related figures not presented

We hope that you will download these materials and use them with this
book.
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1

Introduction to Regression
Modeling

A researcher is interested in the effects of mothers’ behavior dur-
ing pregnancy on their newborns’ birthweights. She considers

maternal smoking and alcohol use, age and other demographics, and
measures of psychological health, and she records infant birthweight
in grams from birth certificates. Birthweight ranges from 750 g for a
premature infant to over 4000 g, and because this outcome variable
is continuous, she considers using multiple regression to analyze the
data.

Multiple regression is used so frequently because it is so useful. It
provides a way to understand the relationship of a set of independent
variables (IVs) to a dependent variable (DV), and it allows us to explain
or to predict a dependent variable.

Linear Regression

Although we assume that readers have a fundamental knowledge of linear
regression, this section is designed as a brief review of some major con-
cepts of linear regression presented in the context of an example. Even
if you are well versed in linear regression, you may find a review of this
section useful.

3



4 Multiple Regression with Discrete Dependent Variables

Throughout this book, you will see that when showing calculations we carry
numbers out to three or four decimal places, although when we show results
we will use two decimal places. We do this so that you can reproduce the
calculations and get the same final results we obtain.

Bivariate Regression with a Dichotomous Independent Variable

Let us briefly discuss and illustrate linear regression by first examin-
ing the relationship between a single dichotomous IV and a continuous
DV. We hypothesized that foster mothers who provide kinship care (we
call them “kinship mothers,” and the variable name is KinCare) would
have greater potential to foster challenging children (e.g., children with
emotional or behavioral problems) than non-kinship foster mothers,
because kinship mothers would be motivated by the family relationship.
We measured foster mothers’ potential to foster challenging children
with the Challenging Children Scale (variable name CCS). This scale
has a potential range from 0 through 100, with higher scores indicat-
ing greater potential to foster challenging children (Orme, Cuddeback,
Buehler, Cox, & Le Prohn, 2007). CCS has a fairly normal distribu-
tion, with M = 58.69 (SD = 12.91). KinCare is a dichotomous variable
(0 = no, 1 = yes). The sample contains 65 (21.38%) kinship care and 239
(78.62%) non-kinship care mothers.

Table 1.1 shows descriptive statistics, and Table 1.2 shows partial
results of the linear regression. The intercept (or Constant, as shown in
Table 1.2 directly from the SPSS output) is the mean value of the DV
when the IV (or IVs in multiple regression) equals 0; in our example,
this is the mean of CCS scores for non-kinship applicant mothers. The
unstandardized slope (Coefficient, in SPSS output and the table) indicates
the direction and amount of change in the DV associated with a one-
unit increase in the IV, when controlling for other IVs; in our example,

Table 1.1 Descriptive Statistics for Challenging Children Scale as a
Function of Kinship Care Status

Kinship Care Mean N Std. Deviation Variance

(0) No 57.877 239 12.911 166.698
(1) Yes 61.657 65 12.573 158.085
Total 58.686 304 12.913 166.738
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Table 1.2 Coefficients

Unstandardized
Coefficients

Standardized
Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 57.877 .831 69.684 .000
Kinship Care 3.779 1.796 .120 2.104 .036

a positive slope would indicate that the CCS mean is higher for kinship
mothers, a negative slope would indicate the reverse, and the numerical
value of the slope indicates the difference between the mean CCS scores
for the two groups of mothers.

As shown in Table 1.2, KinCare and CCS scores are significantly
related. The overall mean CCS score for kinship mothers equals 57.877,
the intercept. Kinship mothers have higher scores on the CCS (3.78
points higher, to be exact), and so the mean of the CCS scores for these
mothers equals 61.66 (57.877 + 3.779). However, R2 (not shown) equals
.014( F ( 1, 302) = 4.41, p = .036), indicating that KinCare accounts for
only 1.4% of the variance in CCS.

Inserting the intercept (57.877) and unstandardized slope (3.779)
from Table 1.2 gives us the following regression equation:

Ŷ = 57.877 + ( 3.779) ( X )

In this equation Ŷ (Y “hat”) represents the estimated mean value of the
DV, and X represents the IV.

The estimated mean CCS score for non-kinship mothers (i.e., when
X = 0) is:

57.877 = 57.877 + ( 3.779) ( 0)

The estimated mean CCS score for kinship mothers (i.e., when X = 1) is:

61.656 = 57.877 + ( 3.779) ( 1)

Compare these values to those in Table 1.1.
In linear regression, a residual is the difference between the observed

(Y) and the estimated (Ŷ ) values of the DV for a case (Y −Ŷ ). The sample
includes 304 foster mothers, and each case has a residual. For example,
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a non-kinship mother with a CCS score of 60 would have a residual of
2.12 (60.00 − 57.877), indicating an observed CCS score higher than
expected.

Linear regression assumes (among other things) that the errors are
normally distributed; this is equivalent to saying that the DV is nor-
mally distributed for all values of the IVs (Fox, 2008). Linear regression
also assumes that the variance of the errors is the same for all values of
the IVs.

Error is simply the total of all causes of a DV except the IVs included
in the regression model—that is the excluded IVs, measurement error in
the DV, and the random component of the DV (Fox, 2008). Residuals are
sample estimates of the unknown population error, and linear regression
assumes that residuals are normally distributed and that the variance of
the residuals is the same for all values of the IVs. Of course, in this case
we have only two values of the IV: 0 and 1. Let’s take a look at these
assumptions for this example.

Figure 1.1 shows a histogram of the distribution of residuals. As you
can see, this distribution is approximately normal. Descriptive statistics

–50.00000
0

10

20

30

40

50

60

–25.00000 0.00000 25.00000 50.00000
Unstandardized residual

Fr
eq

ue
nc

y

Figure 1.1 Histogram of Unstandardized Residuals
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Table 1.3 Descriptive Statistics for Unstandardized Residuals by
Kinship Care

Kinship Care Mean N Std. Deviation Variance

(0) No 0.000 239 12.911 166.698
(1) Yes 0.000 65 12.573 158.085
Total 0.000 304 12.819 164.329

for the residuals in Table 1.3 demonstrate approximately equal variances
for the unstandardized residuals for kinship and non-kinship mothers.

Multiple Regression with Dichotomous and Continuous Independent Variables

Here we build on our example to illustrate multiple regression with both
a dichotomous and a continuous IV. Earlier we saw that kinship moth-
ers had greater potential to foster challenging children, but it is possible
that the relationship between KinCare and CCS scores is due to some-
thing else entirely, for example the time mothers have available to foster
(i.e., available time to foster is a common cause of both, and so the rela-
tionship is spurious). Specifically, we suspected that foster mothers who
report that they have more time to foster would have greater potential
to foster challenging children and also to provide kinship care, perhaps
because they are more committed to making more time available. So,
the research question examined here is this: Do kinship caregivers have
greater potential to foster challenging children, controlling for avail-
able time to foster? To examine this question, we included a measure
of available time to foster in our regression model, the Available Time
Scale (variable name ATS). The ATS has a potential range of values
from 0 through 100, with higher scores indicating more time to foster
( M = 77.28, SD = 12.73).

Table 1.4 shows intercorrelations among the three variables. As
hypothesized, ATS scores are correlated in the expected direction
with both potential to foster challenging children (CCS) scores and
KinCare.

KinCare was entered into the regression model in the first block, and
ATS scores in the second. (When you enter variables one at a time, or
in blocks, in a predetermined order dictated by the purpose and logic
of the research questions, this is called sequential or hierarchical entry
of variables [Cohen et al., 2003]) Tables 1.5, 1.6, and 1.7 show partial



Table 1.4 Correlations

Challenging
Children Scale

Kinship
Care

Available Time
Scale

Pearson
Correlation

Challenging
Children Scale

1.000 .120 .341

Kinship Care .120 1.000 .260
Available Time
Scale

.341 .260 1.000

Sig.
(1-tailed)

Challenging
Children Scale

— .018 .000

Kinship Care .018 — .000
Available Time
Scale

.000 .000 —

N Challenging
Children Scale

304 304 304

Kinship Care 304 304 304
Available Time
Scale

304 304 304

Table 1.5 Model Summary

Change Statistics
Std. Error

Adjusted of the R Squared F Sig. F
Model R R Square R Square Estimate Change Change df1 df2 Change

1 .120 .014 .011 12.84028 .014 4.427 1 302 .036
2 .343 .118 .112 12.17008 .103 35.178 1 301 .000

Table 1.6 ANOVA

Model Sum of Squares df Mean Square F Sig.

1 Regression 729.946 1 729.946 4.427 .036
Residual 49791.611 302 164.873
Total 50521.556 303

2 Regression 5940.220 2 2970.110 20.053 .000
Residual 44581.336 301 148.111
Total 50521.556 303

8
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Table 1.7 Coefficients

Unstandardized
Coefficients

Standardized
Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 57.877 .831 69.684 .000
Kinship Care 3.779 1.796 .120 2.104 .036

2 (Constant) 32.389 4.369 7.413 .000
Kinship Care 1.060 1.763 .034 .601 .548
Available Time Scale .337 .057 .333 5.931 .000

results of the regression analysis. No statistically significant relationship
exists between KinCare and CCS scores when controlling for ATS scores
(t( 1, 301) = .60, p = .548, Table 1.7). On the other hand, you see that
the relationship between ATS and CCS scores is statistically significant
when controlling for KinCare (t( 1, 301) = 5.93, p < .001). For every
one-unit increase in ATS scores, CCS scores increase by .34, when con-
trolling for KinCare, as indicated by the unstandardized ATS slope. For
every one standard-deviation increase in ATS scores, CCS scores increase
by .33 standard-deviation units, as indicated by the standardized ATS
slope. R2

change equals .103 (Table 1.5), indicating that the inclusion of ATS

scores accounts for an additional 10.3% of variance in CCS scores. R2 for
the total model equals .118, indicating that 11.8% of the variance in CCS
scores is accounted for by KinCare and ATS scores.

Inserting the intercept (32.389) and unstandardized slopes for Kin-
Care (1.060) and ATS (.337) from Table 1.7 gives us the following
regression equation:

Ŷ = 32.389+( 1.060) ( XKinCare) +( .337) ( XATS)

You could use this regression equation to estimate a CCS score for
each case. Then, for each case, you would subtract the estimated CCS
score from the observed CCS score to get the residual (Y − Ŷ ).
SPSS will do these calculations for you. Figure 1.2 shows a histogram
of the distribution of residuals. This distribution is approximately
normal.

Figure 1.3 shows a scatterplot with the residuals on the vertical axis
and ATS scores on the horizontal axis. The variance of the unstandard-
ized residuals is relatively constant across ATS scores.
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Model and Notation

Formally, the linear regression equation for a DV, Y, and a linear
combination of IVs, X1 through Xk, can be written as:

Y = α + β1X1 + β2X2 + . . . βkXk + ε

In this equation α (Greek letter alpha) (some authors use β0) represents
the population value of the intercept, which is the mean value of the DV
when all IVs equal 0. Each IV is symbolized by X, and X1 through Xk

refer to specific values of IVs that vary from case to case. β1 through
βk (Greek letter Beta) represent population values of the slopes, which
indicate the direction and amount of change in the mean value of the DV
associated with a one-unit increase in the associated IV, when controlling
for the other IVs. Finally, ε (Greek letter epsilon) represents unexplained
variation in the DV, typically called the error term.

The population values of the intercept and slope (the parameters)
are unknown and estimated from sample data. The estimated regression
model can be written as:

Ŷ = a + B1X1 + B2X2 + . . . BkXk

Ŷ (Y “hat”) represents the estimated mean value of the DV; sometimes
this is called the conditional mean because it depends on values of the IVs
for each case. The estimated intercept is symbolized by a (some authors
use B0). Each IV is symbolized by X, and X1 through Xk refer to specific
values of IVs that vary from case to case. Each estimated slope is symbol-
ized by B. Each IV has a slope, B1 through Bk, and each slope indicates the
direction and amount of change in the mean value of the DV associated
with a one-unit increase in the IV, controlling for the other IVs.

When values of the DV are estimated for specific cases, frequently the
estimated regression model is written as:

Ŷi = a + B1X1i + B2X2i + . . . BkXki

You will note that the only difference between this equation and the one
above is the subscript i. The subscript i indicates that the equation is
estimating values for specific cases (i = 1 for the first case, 2 for the
second case, etc.). So, for example, Ŷ1 represents the estimated value of
the DV for the first case.
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Additional Readings and Web Links

We have read a number of excellent books on linear regression. Keith
(2006) is an especially good place to start. Cohen et al. (2003), Pedhazur
(1997), and Fox (2008) are all readable, comprehensive texts.

You might find the following Web sites useful resources for linear
regression:

http://www2.chass.ncsu.edu/garson/PA765/regress.htm
http://www.ats.ucla.edu/stat/SPSS/webbooks/reg/
http://mlrv.ua.edu/

The following Web sites also provide useful interactive exercises illus-
trating principles of linear regression:

http://www.ruf.rice.edu/∼lane/stat_sim/reg_by_eye/index.html
http://www.civil.uwaterloo.ca/brodland/statistics/linear_regression.html
http://www.math.csusb.edu/faculty/stanton/m262/regress/regress.html
http://wise.cgu.edu/applets/Correl/correl.html
http://www.ruf.rice.edu/∼lane/stat_sim/restricted_range/index.html

Generalized Linear Models (GZLM)

Linear regression is a member of a family of statistical models known as
the general linear model (GLM). The general linear model incorporates
a number of different statistical models for use with one or more con-
tinuous DVs. The general linear model includes the t-test, ANOVA, and
ANCOVA, and these single DV models are subsumed under linear regres-
sion. Common to these models are the assumptions of the following: a
continuous DV; normally distributed independent errors with a constant
variance; and a linear relationship between a linear combination of one
or more IVs and one DV.

The generalized linear model (GZLM), the topic we turn to next,
extends the GLM to include discrete DVs (McCullagh & Nelder, 1989).
Linear and other regression models described in this book, and a num-
ber of regression models not described in this book, are members of this
family of regression models (Fox, 2008; Greene, 2008; McCulloch, Searle,
& Neuhaus, 2008).

http://www2.chass.ncsu.edu/garson/PA765/regress.htm
http://www.ats.ucla.edu/stat/SPSS/webbooks/reg/
http://mlrv.ua.edu/
http://www.ruf.rice.edu/~lane/stat_sim/reg_by_eye/index.html
http://www.civil.uwaterloo.ca/brodland/statistics/linear_regression.html
http://www.math.csusb.edu/faculty/stanton/m262/regress/regress.html
http://wise.cgu.edu/applets/Correl/correl.html
http://www.ruf.rice.edu/~lane/stat_sim/restricted_range/index.html
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In the statistics literature GLM is used as the abbreviation for both the
generalized linear model and the general linear model. Some authors also use
GLIM as the abbreviation for the generalized linear model. We use GZLM as
the abbreviation for the generalized linear model throughout this book to
clearly distinguish it from the general linear model and to be consistent with
SPSS, which uses GZLM as the abbreviation for the generalized linear model.

Linear regression is most appropriate with a continuous DV and nor-
mally distributed independent errors with a constant variance, and it
is subsumed under the GZLM. The GZLM extends the linear regres-
sion model to DVs that are not continuous and to DVs that do not
have normally distributed errors with a constant variance. (This is the
“generalized” part of the GZLM.) The GZLM provides a framework for
analyzing an entire class of models using unified techniques. At the same
time, it uses many familiar ideas from linear regression.

The linear regression equation can be written as:

µ = α + β1X1 + β2X2 + . . . βkXk

In this equation, µ (Greek letter mu) represents the population value of
the mean of the DV.

In the language of the GZLM, the linear combination of the IVs, the
right-hand side of this equation, is symbolized by η (Greek letter eta),
and is called the linear predictor. The symbol η is just an abbreviation for
the right-hand side of this equation. So, another way to express the linear
regression model is:

µ = η

Like all family members, GZLMs have a lot in common. Those famil-
iar with linear regression will find many important similarities between
linear regression and the regression models discussed in this book. In all
of these regression models, (a) IVs are combined in a linear fashion (e.g.,
α+β1X1 +β2X2 + . . . βkXk); (b) a slope is estimated for each IV; (c) each
slope has an accompanying test of statistical significance and a confidence
interval; (d) each slope indicates the IV’s independent contribution to the
explanation or prediction of the DV; (e) the sign of each slope indicates
the direction of the relationship; (f) IVs can be any level of measurement;
(g) the same methods are used for coding categorical IVs (e.g., dummy
coding, effect coding); (h) IVs can be entered simultaneously, sequen-
tially, or using other methods (e.g., backward selection); (i) product
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terms can be used to test interactions; (j) powered terms (e.g., the square
or cube of an IV) can be used to test curvilinearity; (k) overall model
fit can be tested, as can incremental improvement in a model brought
about by the addition or deletion of IVs (nested models); (l) residuals,
leverage values, Cook’s D, and other indices are used to diagnose model
problems; and (m) multicollinearity can present problems in estimation
and interpretation.

Population Distributions

We will call your attention to several basic differences between linear
regression and the other regression models discussed in this book. One
fundamental difference concerns the level of measurement of the DV.
Linear regression is most appropriate with a continuous DV and nor-
mally distributed independent errors with a constant variance. Other
regression models accommodate other types of DVs and errors with dif-
ferent distributions. Table 1.8 shows the assumed distributions and DVs
for the regression models discussed in this book. All of these distributions
are in what is known as the exponential family of distributions (which
includes the normal, binomial, Poisson, multinomial, gamma, and other
distributions).

Link Functions

Linear regression models the mean DV (µ) directly. The other regression
models discussed in this book model a function of the mean DV through
a “link function.” The link function provides a unifying framework for

Table 1.8 Dependent Variables and Regression Models

DV Regression Link Name Link Function Inverse Link Distribution

Continuous Model Linear Identity µ η Normal
Unordered
categorical
(binary)

Binary logistic Logit ln( µ/( 1 − µ) ) µ = eη/( 1 + eη) Binomial

Unordered
categorical
(polytomous)

Multinomial
logistic

Logit ln( µ/( 1 − µ) ) µ = eη/( 1 + eη) Multinomial

Ordered
categorical

Ordinal logistic Logit ln( µ/( 1 − µ) ) µ = eη/( 1 + eη) Multinomial

Count Poisson Log ln( µ) µ = eη Poisson

Count Negative
binomial

Log ln( µ) µ = eη Negative
Binomial

Note. This does not include the full range of GZLMs.
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analyzing the entire class of regression models in this book, including
linear regression. The link function is what makes it possible to model
DVs that are not continuous, do not have normally distributed errors,
do not have constant variance, and do not have a linear relationship with
a linear combination of the IVs.

Usually the link function is designated g(µ), where g represents some
function. For example, Poisson regression is used to model DVs that are
counts (e.g., number of children adopted), as discussed in Chapter 5.
Poisson regression models the natural log of the mean count, ln(µ), not
the mean count itself. The function, in this example the log, links the DV
to the linear combination of the IVs, η (i.e., α +β1X1 +β2X2 + . . . βkXk).
This particular link function is called the log link. (If you are not famil-
iar with logarithms, we urge you to read the discussion of logarithms in
Appendix B.)

Different regression models have different link functions, and the
appropriate link function and regression model depend on the assumed
distribution of the errors. Table 1.8 shows the link functions for regres-
sion models discussed in this book. You will note in Table 1.8 that in
linear regression g(µ) equals µ; no link is required, and this is known as
the identity function.

The relationships between g(µ) and η are assumed to be linear in
the regression models discussed in this book. The link function makes it
possible to model DVs that have nonlinear relationships with the linear
combination of the IVs. The link function transforms the relationship
between the mean DV (µ) and the linear combination of the IVs (η)
so the relationship is linear, just as it is in linear regression. (This is the
“linear” part of the generalized linear model.)

In Poisson regression, for example, a linear relationship between the
log of the estimated mean count and the linear combination of the IVs is
assumed. This can be written as:

ln(µ) = α + β1X1 + β2X2 + . . . βkXk

Or, for short, it can be written as:

ln(µ) = η

This is read as “the natural log of the mean equals the linear predictor.”
Let’s take an example. Suppose you are interested in the relation-

ship between a linear combination of IVs and the number of chil-
dren adopted, a count variable. Figure 1.4 illustrates the hypothetical
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Figure 1.4 Mean Count as a Function of Linear Predictor

Table 1.9 Relationship Between the Linear Predictor, Mean, and Natural Log of
the Mean

Linear
Predictor

Mean Number of
Children Adopted

Natural Logarithm of the Mean
Number of Children Adopted

0.00 1.0000 0.0000
0.14 1.1500 0.1398
0.28 1.3225 0.2795
0.42 1.5209 0.4193
0.56 1.7490 0.5590
0.70 2.0114 0.6988
0.84 2.3131 0.8386
0.98 2.6600 0.9783
1.12 3.0590 1.1181
1.26 3.5179 1.2579
1.40 4.0456 1.3976
1.54 4.6524 1.5374
1.68 5.3503 1.6771
1.82 6.1528 1.8169
1.96 7.0757 1.9567
2.10 8.1371 2.0964
2.24 9.3576 2.2362

relationship between a linear combination of IVs and the mean number
of children adopted. Table 1.9 shows the data used to create this figure.
As you can see, this relationship is not linear. For example, the mean
number of children adopted increases by .17 when the linear predictor
goes from .14 to .28 (an increase of .14), but it increases by 1.06 when the
linear predictor goes from 1.96 to 2.10 (an increase of .14).
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Figure 1.5 Log of Mean Count as a Function of Linear Predictor

Figure 1.5 illustrates the relationship between the linear predictor
and the natural logarithm of the mean number of children adopted. As
you can see, this relationship is linear.

Functions of the DV like ln(µ) can transform a non-linear relation-
ship to a linear relationship. However, values such as ln(µ) are difficult to
interpret because they do not have intuitive or substantive meaning. For
example, the mean number of children adopted has intuitive and sub-
stantive meaning, but the log of the mean number of children adopted
does not. Inverse functions, functions that undo the original function,
can be applied to values such as ln(µ) to obtain meaningful values of the
DV, such as the mean number of children adopted.

Let’s take an example of a familiar inverse function, and then we’ll
turn to one that might not be familiar to you. Take the square root of
a number; for example, the square root of 4 is 2 (

√
4 = 2). To get

back to the original number, you just square the value of the square root
(22 = 4). Squaring the number does the reverse of taking the square
root, and in mathematics this is called an inverse function. Table 1.8
shows inverse functions for the regression models discussed in this
book.

The exponential function is the inverse of the natural log, and it is
written as ex or exp(x). For x, just insert the value of η (i.e., α + β1X1 +
β2X2 + . . . βkXk). This is written as: eη or exp( η). This is read as “the base
of the natural log raised to the power of the linear predictor.”

So, again, the Poisson regression model can be written as:

ln(µ) = η
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where η is the linear predictor and ln(µ) is the log of the mean count,
a value that does not have intuitive or substantive meaning. When you
exponentiate η you get the mean count, µ (e.g., mean number of children
adopted), a value that does have intuitive and substantive meaning:

µ = eη

The exponential function is central to all regression models discussed in
this book, as you can see from Table 1.8. Exponentiating estimated val-
ues of the linear predictor, η, is key to interpreting and presenting results
of all GZLMs. You need to know how to use the exponential function to
obtain meaningful values of the DV, such as the mean number of children
adopted, and you will need to do this for all of the GZLMs discussed in
this book. Apply the exponential function to several values of the linear
predictor from Table 1.9 to make sure that you know how to do this (e.g.,
e0 = 1.00, e.70 = 2.01); that is, “exponentiate” values of the linear pre-
dictor. If you are using a calculator, enter the value (e.g., 0 or .70), press
your “2nd” key, and press ex (This procedure is somewhat different for
some calculators). If you are using MS Excel, the mathematical function
is exp(x).

Maximum Likelihood Estimation

The intercept and slopes obtained from a regression analysis are esti-
mates of population values (i.e., parameters). Linear regression param-
eters are estimated in a way that minimizes the sum of the squared
differences between the observed and estimated values of the DV. That
is, the intercept and slopes are determined in such a way that the sum of
the squared residuals is as small as possible. No other values of the slopes
and intercept would result in a lower value for the sum of the squared
residuals. This is called ordinary least squares (OLS) estimation, which is
why linear regression oftentimes is called OLS regression.

A different method, maximum likelihood (ML), is used to estimate
parameters for the regression models described in this book. ML esti-
mates are values of the parameters that have the greatest likelihood (i.e.,
the maximum likelihood) of generating the observed sample data if the
assumptions of the model are true (Long & Freese, 2006). For example,
suppose you have no idea of the “real” probability of obtaining “heads”
in the flip of a coin. You flip it 10 times and it comes up heads four times.
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The estimated probability of heads that gives the maximum likelihood of
producing the observed sample data is .40. Given the sample results, the
likelihood is much less that the population probability is, for example,
.10 or .90.

The probability of the observed sample data, given the parameter
estimates, is known as the likelihood, typically abbreviated L. A good
regression model is one that results in a high likelihood of the observed
sample data (Norusis, 2007). The likelihood, L, is used in the generation
of maximum likelihood estimates, and it is also used to test hypotheses
about model parameters.

You may wonder how the outcomes differ for these two estimation
methods. Since OLS methods cannot be used with the types of models
we discuss in this book, we cannot answer that question. Both methods
can be used with linear regression, however, and when the assumptions
of linear regression are met, the outcomes are identical.

Test Statistics

The t-statistic is used to test hypotheses about individual slopes with lin-
ear regression, but the Wald statistic or likelihood ratio χ2 typically is used
with other regression models described in this book. Likewise, while the
F statistic is used to test hypotheses about overall and nested models in
linear regression, the likelihood ratio χ2 is used for these purposes with
the regression models discussed in this book. If you understand statisti-
cal tests in linear regression, it is a small step to apply similar techniques
to other regression models discussed in this book.

Model Evaluation

Before you test hypotheses or interpret substantive results of any regres-
sion model, linear or otherwise, you should examine how well your
regression model fits your data, that is, how effectively the model
describes the DV. You will want to test the overall model, and often you
will also want to compare different models. You also need to know if
some individual cases are not well explained by the estimated model,
or if some cases exert undue influence on the estimation of the model.
Finally, you will want to know how well your model explains your DV
overall.
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One way to think about the quality of your regression model is to
consider how closely the values of the DV estimated from your regression
model (Ŷ ) correspond to the observed values (Y) (Gill, 2001). The closer
the correspondence, the better your model is at describing reality. In
linear regression, R2 is the squared correlation between estimated and
observed values of the DV, and so it provides a direct measure of the
quality of your regression model. For the regression models described in
this book, there is no exact counterpart with the same properties as R2. A
number of analogs to R2 exist, but none is in standard use and each may
give different results (DeMaris, 2004).

In linear regression, we typically examine various types of residu-
als (e.g., unstandardized, standardized, and studentized) and leverage
values to identify individual cases that are not explained well by the esti-
mated model. Statistics such as Cook’s D are examined to identify cases
that exert undue influence on the estimation of the regression model.
Comparable statistics are available for the regression models discussed
in this book. We will discuss and illustrate these statistics and issues in
subsequent chapters.

Sample Size

Sample size is an important determinant of the statistical power of tests
of hypotheses and the precision with which parameters are estimated.
ML estimation is known to work well with large samples. However, we
do not have clear and agreed-upon guidelines for deciding just what
sample size is necessary for ML estimation. Long and Freese (2006) pro-
vided some tentative working guidelines, advising that it is risky to use
ML estimation with samples of fewer than 100 no matter the number
of estimated parameters, and that you also should have at least 10 cases
per estimated parameter. So, for example, regression models with fewer
than 10 IVs would require a sample of at least 100, and models with
more than 10 IVs would require larger samples (e.g., a model with 12
IVs would require a sample size of at least 120). However, little varia-
tion in the DV or considerable multicollinearity results in the need for
samples larger than the suggested minimums. Finally, some regression
models may require samples larger than the suggested minimums; in
particular, this is true for the ordinal regression models we discuss in
Chapter 4.
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Additional Readings and Web Links

A number of good books discuss the GZLM. Applied researchers will find
Hoffmann (2004) an especially good place to start learning about the
GZLM and more specific regression models encompassed by the GZLM.
Cohen et al. (2003) also provide a good introduction to the GZLM,
and applied researchers interested in the GZLM and the models encom-
passed by it should read DeMaris (2004), Fox (2008), and Long’s work
(Long, 1997; Long & Cheng, 2004; Long & Freese, 2006). Hardin and
Hilbe (2007) and Long and Freese both provide extensive treatment of
the GZLM in the context of the statistical program STATA.

You might also find the following Web sites useful for learning more
about the GZLM and the more specific regression models encompassed
by the GZLM:

http://www.statsoft.com/textbook/stglz.html
http://userwww.sfsu.edu/∼efc/classes/biol710/Glz/Generalized

%20Linear%20Models.htm
http://www.education.man.ac.uk/rgsweb/EDUC61022.html
http://socserv.mcmaster.ca/jfox/Courses/soc740/index.html
http://www.unc.edu/courses/2006spring/ecol/145/001/docs/lectures/

lecture20.htm
http://www.ed.uiuc.edu/courses/EdPsy490AT/lectures/

4glm1-ha-online.pdf
http://www.gseis.ucla.edu/courses/ed231c/notes.html

Also, GZLM data sets are available at:

http://www.sci.usq.edu.au/staff/dunn/Datasets/tech-glms.html

Common Assumptions

All regression models have assumptions, and violation of these assump-
tions can result in a number of undesirable consequences. For example,
the effects of IVs might be over- or underestimated (i.e., biased). Param-
eter estimates might be inefficient (vary relatively more from sample
to sample) or inconsistent (have sampling distributions whose variabil-
ity does not decrease with larger samples) (Fox, 2008; Long, 1997).
Consequently, the assumptions underlying a regression model should

http://www.statsoft.com/textbook/stglz.html
http://userwww.sfsu.edu/~efc/classes/biol710/Glz/Generalized%20Linear%20Models.htm
http://userwww.sfsu.edu/~efc/classes/biol710/Glz/Generalized%20Linear%20Models.htm
http://www.education.man.ac.uk/rgsweb/EDUC61022.html
http://socserv.mcmaster.ca/jfox/Courses/soc740/index.html
http://www.unc.edu/courses/2006spring/ecol/145/001/docs/lectures/lecture20.htm
http://www.unc.edu/courses/2006spring/ecol/145/001/docs/lectures/lecture20.htm
http://www.ed.uiuc.edu/courses/EdPsy490AT/lectures/4glm1-ha-online.pdf
http://www.ed.uiuc.edu/courses/EdPsy490AT/lectures/4glm1-ha-online.pdf
http://www.gseis.ucla.edu/courses/ed231c/notes.html
http://www.sci.usq.edu.au/staff/dunn/Datasets/tech-glms.html
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be examined carefully before the model is used and the results are
interpreted.

Linear regression is most appropriate with a continuous DV, and it
assumes that the population values of the errors are independent and
normally distributed with a constant variance and a linear relation-
ship between a linear combination of one or more IVs and one DV.
Other regression models make other assumptions about characteristics
of the DVs and the distributions of the errors. We will discuss assump-
tions unique to the particular types of regression covered in subsequent
chapters. However, all regression models discussed in this book have a
common set of assumptions (Gill, 2001).

Correct Model Specification

A regression equation is a mathematical representation—a model—of
what and how IVs are related to your DV. You should ask yourself some
general questions when you construct your regression model, and these
questions are central to the correct estimation and interpretation of any
regression model (Cohen et al., 2003; Pedhazur, 1997):

• Have you included the relevant IVs in your regression model?
• Have you excluded the irrelevant IVs?
• Do the IVs that you have included have linear or nonlinear

relationships with your DV (or some function of your DV, as is
assumed with the models discussed in this book)?

• Are one or more of your IVs moderated by other IVs (i.e., are there
interaction effects)?

Including the Relevant Variables and Excluding the Irrelevant Ones

Your first decisions in testing a model involve variable specification, and
it is at this step that you use theory and the research literature to direct
your attention to the most meaningful IVs. These variables can then be
included in the model to provide the largest possible meaningful model
for initial consideration (Kleinbaum & Klein, 2002). It is important not
to omit variables that are crucial to the phenomenon; a model that does
not include the relevant variables may produce results that look reason-
able but that are misspecified. That is, if important variables are omitted,
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the regression coefficients you obtain may not accurately estimate the
relationships among the variables.

For example, suppose you leave out an IV that is a common cause of
your DV and one or more of your IVs (Cohen et al., 2003; Keith, 2006).
(Sometimes these variables are referred to as confounders) (Hosmer &
Lemeshow, 2000). In our linear regression example, we hypothesized that
available time to foster influenced both potential to foster challenging
children and whether or not mothers provided kinship care. We found
a relationship between kinship care and potential to foster challenging
children when we did not control for available time to foster, but not
when we controlled for this presumed common cause. If we had omit-
ted available time to foster from our regression model, we would have
been left with a false impression about the effect of kinship care on the
potential to foster challenging children. That is, the relationship between
kinship care and potential to foster challenging children was confounded
by available time to foster, and so the relationship was spurious. (Note
that earlier the unstandardized slope for kinship care went from 3.78 to
1.06 when controlling for available time to foster. That is, the slope for
kinship care was biased when available time to foster was excluded.).

Linear regression assumes that the IVs and the error are independent in the
population. Correlations of one or more IVs with the residuals indicate a
violation of this assumption. The violation of this assumption implies the
omission of an IV that is associated with one or more of the IVs that are
included (Hoffmann, 2004).

On the other hand, you should not include irrelevant variables
because you risk reducing your statistical power and increasing the width
of confidence intervals for your regression parameters. This is espe-
cially problematic with small samples and even more so in areas without
well-developed theories.

Including Relevant Interaction Terms

An interaction occurs when the effect of one IV (focal variable) is condi-
tional on the values of one or more other IVs (moderator variable). The
focal variable is the IV whose effect on the DV is thought to vary as a
function of the moderator variable. The effect of the focal variable is said
to be conditional on the moderating variable(s) (Jaccard, 2001).



24 Multiple Regression with Discrete Dependent Variables

For example, suppose you hypothesize that the effect of available
time to foster (the focal variable) is different for non-kinship and kinship
foster mothers (kinship care is the moderator variable). More specifi-
cally, available time might be less important for kinship foster mothers
because they plan to foster children from their own families, whether or
not they have the time. You model interactions in much the same way
in all regression models: compute a new variable, the cross-product of
the focal and moderator variables, and enter the new computed variable
sequentially into the regression model. However, interactions are a bit
more work to present and interpret for the regression models discussed
in this book, given the nonlinear relationships between the IVs and the
DV (e.g., Jaccard, 2001). We will come back to this issue in subsequent
chapters.

Including Relevant Curvilinear Terms

Linear regression and all regression models discussed in this book assume
that the relationship between the linear combination of the IVs (η) and
some function of the mean DV (µ) is linear. Poisson regression, for
example, assumes that the relationship between the linear combination
of the IVs and the log of the mean DV is linear (although the relationship
between the linear combination of the IVs and the DV is not linear).

You model curvilinear relationships in much the same way in all
regression models; compute polynomials for continuous predictors (e.g.,
squared or cubic terms), and enter the computed variables into the
regression model. We will come back to this issue in subsequent chapters.

Final Thoughts on Model Specification

How do you achieve a balance between comprehensiveness and parsi-
mony? Your substantive knowledge of the theory and previous research
in the area must guide your selection of variables, and the steps you
take in making those decisions should be articulated. For example, infor-
mation is often not provided in research reports as to how variables
were chosen for the initial model, how variables were selected for the
final model, and how effect modifiers and confounders were assessed for
their roles in the final model. Without meaningful information about the
modeling strategy used, it is difficult to assess the validity of the results.
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Moreover, you cannot divorce the issue of model specification from
design issues. Issues related to model specification and interpretation are
more difficult with non-experimental research, because we cannot be
certain what other factors might be influencing the DV. Statistical con-
trol cannot resolve this problem completely, even when we are aware of
the problematic variables.

Variables Measured without Error

Linear regression and all of the regression models discussed in this book
assume that the variables included in the regression analysis are mea-
sured without error. This is a limitation of regression models, given that
most often our variables contain some measurement error.

Independent Errors

Imagine that you doubled your sample size by entering data for each case
twice. If you did this you would have pairs of cases that were exactly the
same. Values of the DV would be the same for each pair of “matched”
cases, and the error for each pair (i.e., the difference between observed
and expected values of the DV) would be the same. Linear regression
and all regression models discussed in this book assume that the errors
for each case are independent from the errors of all others. That is, the
errors for any subset of cases are not related with each other. The errors
for the “matched” cases in the example just discussed would be exactly
the same, so this assumption would be violated.

This assumption can be understood most easily by considering some
common examples of violations. Suppose you examined the effect of par-
enting practices on behavioral problems of children and you collected
reports of parenting practices and behavioral problems from both par-
ents in two-parent families. Couples usually interact with each other
around these issues, and they share a common history and oftentimes
similar perspectives and values regarding these issues. So, even though
these pairs of “matched” cases would not be identical, the errors within
couples probably are not completely independent.

As another example, suppose you collected information from only
one parent per family, but you collected information about two or
more children per family. Children from the same family usually have
many things in common in terms of parenting practices and behavioral
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problems, and so errors for groups of two or more children within the
same family also probably are not completely independent.

Finally, suppose you studied the effects of leader behaviors on group
cohesion in small groups, and you collected information about leader
behaviors and group cohesion from all members of each group. Members
within each group share a common history of leader behaviors and group
cohesion, and so errors within each group probably are not independent.

One thing shared by each of these examples is that individuals from
whom the DVs were measured were not sampled independently. Couples
were sampled as couples, not as individuals. Children were sampled from
families, not independently as individuals. Group members were sam-
pled because they belonged to a common group, not as individuals. That
is, the method used to collect data leads to the lack of independence. So,
although there are graphical and statistical ways to check whether errors
are independent, for the most part this depends on how you collect your
data, and you should be aware of this when you collect your data.

Finally, although linear regression and all regression models dis-
cussed in this book assume that the errors for each case are independent
from the errors of all others, it is important to note that these models
have been extended to allow for the analysis of repeated measurements
or other correlated observations such as multilevel data (e.g., Gelman &
Hill, 2007; McCulloch et al., 2008). However, these extensions are beyond
the scope of this book.

No Perfect Multicollinearity

Linear regression and all of the regression models discussed in this book
assume the absence of perfect multicollinearity. Multicollinearity refers
to the situation where strong linear relationships exist among IVs. It
does not have anything whatsoever to do with your DV. Multicollinear-
ity occurs when highly related IVs are included in a regression model as,
for example, might occur when different measures of the same construct
are included as IVs in a regression model or when highly intercorrelated
demographic characteristics are included.

You can think of multicollinearity as the amount of variance
accounted for in each IV by the remaining IVs. With only two IVs,
this is just the squared correlation between them (sometimes just called
collinearity).
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Perfect multicollinearity exists when an IV is predicted perfectly by a
linear combination of the remaining IVs. When perfect multicollinear-
ity exists, the slope for that IV cannot be computed properly. Another
way to think about this is that neither of these IVs adds anything to the
explanation of the DV after the other is entered.

High levels of multicollinearity (e.g., R2 of .80 or more for one or
more IVs) may pose problems, and very high levels of multicollinearity
(e.g., R2 of .90 or more for one or more IVs) may pose serious problems
(Cohen et al., 2003; Fox, 2008). Slopes may not be statistically significant,
even if they are quite large. Alternatively, the slopes may indicate a neg-
ative instead of a positive relationship (or vice versa). Standard errors
may be inflated and the width of confidence intervals increased. The
overall regression model may be statistically significant while none of
the individual IVs is significant. However, problematic levels of multi-
collinearity may be a relatively rare problem in social science applications
of linear models; small samples, insufficient variability in IVs, and weak
relationships between IVs and DVs are more likely sources of imprecision
in our estimates of the effects of IVs on DVs (Fox, 2008).

One of two related measures of multicollinearity typically is com-
puted, reported, and interpreted for each IV in a regression model to
identify problematic levels of multicollinearity: tolerance or the variance
inflation factor (VIF). Tolerance is the amount of variance in an IV not
accounted for by the remaining IVs (1 − R2). Tolerance values of .10
or less are considered problematic (low tolerance values are undesir-
able) (Cohen et al., 2003). VIF is 1/tolerance, and VIF values of 10 or
more (equal to tolerance values of .10 or less) are considered problem-
atic (DeMaris, 2004). Cohen et al. caution that less extreme tolerance
values also may be problematic, however.

Multicollinearity is relatively easy to detect, but less easy to remedy
in a satisfactory fashion (Fox, 2008). For example, IVs may be deleted
or combined, especially in cases where they clearly measure the same
construct, although this might lead to model misspecification. Addi-
tional data may be collected, but usually this is impractical. Alternative
statistical methods may be employed, but for some of the regression
models in this book there are no easy alternative statistical methods,
some of the alternatives may cause more problems then they solve,
and no single model can be recommended in all situations. Never-
theless, multicollinearity should always be checked before interpreting
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a multiple regression model in order to properly interpret model
results.

Limitations of Regression Models

While regression models are useful, they do have inherent limitations.
First, the accuracy of multiple regression depends on whether the model
includes all the relevant variables (as discussed earlier). If this assump-
tion is untrue, the results of the regressions are suspect. In reality, of
course, it is difficult to know all of the relevant variables, but in-depth
knowledge of the substantive area is an important start.

Second, statistical analyses are useful for understanding aggregate
data, but they cannot explain individual differences. This is a rule from
Statistics 101—but it always bears repeating.

Third, an analysis with only a small number of observations may be
unduly influenced by the characteristics of one or two individual cases.
Fortunately, you can determine if this has occurred, and we discuss many
of the ways to do this in subsequent chapters.

Finally, although cause–effect relationships are often implicit in
regression models, the validity of inferences about cause and effect is
determined by factors external to the data analysis. In particular, the
research design must be considered carefully in making such inferences.
A comprehensive discussion of these issues is beyond the scope of this
book but, for example, see Shadish, Cook, and Campbell (2002).

SPSS Instructions

Linear Regression

• Start SPSS 16 and open the Chapter 1 data set.
• From the menus choose:

Analyze
Regression
Linear. . .

• Select a continuous DV (e.g., CCS) and click the arrow button to
move it to Dependent.

• Select IVs (e.g., KinCare, ATS) and click the arrow button to move
them to Independent(s).

• Use Next to enter IVs sequentially, if desired.
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• Click Statistics and then click Estimates, Confidence intervals,
Model fit, R squared change, Descriptives, Collinearity diagnostics,
and Casewise diagnostics. Click Continue.

• Click Plots and then click Histogram. Select a type of residual (e.g.,
SRESID, which are studentized residuals) and click the arrow button
to move it to Y, and select ZPRED (standardized predicted values)
and move it to X. Click Continue.

• Click Save and then click Studentized, Cooks, and Leverage values.
Click Continue.

• Click OK to get the results.

Note: After you run the analysis, save the data set, which now con-
tains new variables that you can use to create index plots (and for other
purposes).

Excel Workbooks

This workbook shows how we created the data and graphs for Figures 1.4
and 1.5: eta, mu, ln(mu).xls
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Regression with a Dichotomous
Dependent Variable

A researcher has a simple question: Did it happen, or did it not? Has
the spouse abuser reoffended or not? Has the foster child been

reunited with her family or not? These outcomes are dichotomous. That
is, dichotomous variables have two categories that indicate whether an
event has or has not occurred, or that some characteristic is or is not
present. To simplify, we will just refer to “events” in this chapter. These
variables are also called binary or sometimes binomial (the assumed
underlying distribution). Social workers and those in related disciplines
frequently conduct research with dichotomous DVs.

For example, we have investigated whether foster home applicants are
subsequently licensed to foster or not (Orme et al., 2006) and whether or
not mothers have used corporal punishment to discipline their infants
(Combs-Orme & Cain, 2008).

In this chapter, we discuss the use of binary logistic regression (also
known simply as logistic regression or sometimes as logit regression),
a versatile and popular method for modeling relationships between a
dichotomous DV and multiple IVs. Binary logistic regression extends
linear regression to the situation where the DV is dichotomous (Bagley,
White, & Golomb, 2001; Cohen et al., 2003; DeMaris, 2004; Hoffmann,
2004; Hosmer & Lemeshow, 2000; Jaccard, 2001; Kleinbaum & Klein,
2002; Long, 1997; Long & Freese, 2006; Norusis, 2006; Pampel, 2000).

30
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It can also be used to analyze results from numerous types of designs,
including, for example, case-control studies, cohort studies, complex
sample surveys, clinical trials, and repeated measurements or other
correlated observations such as multilevel data (Gelman & Hill, 2007;
Hosmer & Lemeshow, 2000; Kleinbaum & Klein, 2002; McCulloch et al.,
2008; Piantadosi, 2005).

Binary logistic regression has a lot in common with other regression
models presented in the remainder of this book. In fact, logistic regres-
sion models for dichotomous outcomes are the foundation from which
these more complex models are derived (Long & Freese, 2006). Except
for linear regression, binary logistic regression probably is used more
than any other regression model. Therefore, in this chapter, we introduce
many of the concepts and principles of estimating, testing, and interpret-
ing regression models that can be adapted to regression models presented
in the remaining chapters. Consequently, this chapter is longer and more
detailed than the subsequent chapters, and we strongly advise you to read
it carefully before turning to the remaining chapters. If you are not famil-
iar with logarithms, we urge you to read the discussion of logarithms in
Appendix B before reading this chapter.

Chapter Example

In this chapter, we discuss and illustrate binary logistic regression by
examining variables that influence foster families’ plans to continue fos-
tering or not. The sample includes 131 foster families (Rhodes, Orme,
Cox, & Buehler, 2003a).

Families’ reports of whether they planned to continue fostering or
not make up the DV, and we coded families who did not plan to continue
fostering as 0 and those who did plan to continue as 1. (It is customary
to code the category of greatest interest as 1 and the other category as 0
because this makes it easier to interpret binary logistic regression results.)
This outcome concerns whether or not families say they plan to continue
fostering, not whether they actually continue, but for simplicity we just
refer to the DV as continuation. The variable name in the data set and
output is ContinueFostering. A total of 60 (45.80%) families in our sample
reported that they did not plan to continue fostering, and 71 (54.20%)
did plan to continue.



32 Multiple Regression with Discrete Dependent Variables

We will analyze the effects of three IVs at one point or another:
marital status, number of family resources, and county of residence. Mar-
ital status (variable name Married) is a dichotomous variable that refers
to whether a foster family was headed by an unmarried single parent
(coded 0) or by two parents who were married (coded 1). The sample
contains 49 (37.40%) one-parent families and 82 (62.60%) two-parent
families.

Number of resources (variable name Resources) is the cumula-
tive number of different types of family resources, both social (such
as education) and material (such as high income). It has a fairly
normal distribution, with M = 6.60 (SD = 1.93), and a range from 2
through 11.

County of residence (variable name County) is a multicategorical
variable with three categories: Davidson, Hamilton, and Knox. The sam-
ple contains 46 (35.11%) families from Davidson County, 22 (16.79%)
families from Hamilton County, and 63 (48.09%) families from Knox
County.

Cross-Tabulation and Chi-Squared Test

We start by examining a simple research question: Are two-parent families
more likely to continue fostering than one-parent families? We might expect
this to be so for a number of reasons, and it’s an important question for
foster care agencies. A cross-tabulation table and chi-squared test let us
answer this question and provide a good starting point for understanding
binary logistic regression.

Before you estimate a binary logistic regression model, cross-tabulate your
DV with each of your categorical IVs to check for empty cells. If there are
empty cells, consider collapsing or eliminating categories if it is justified
theoretically.

Cross-Tabulation

The relationship between marital status and continuation of fostering
is statistically significant [χ2( 1, N = 131) = 5.65, p = .017]. As shown
in Table 2.1, a higher percentage of two-parent families (62.20%) than
single-parent families (40.82%) planned to continue fostering.
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Table 2.1 Plan to Continue Fostering as a Function of Marital Status

Married

(0) Not Married (1) Married Total

Continue (0) Not Continue Count 29 31 60
Fostering % within

Married
59.18 37.80 45.80

(1) Continue Count 20 51 71
% within
Married

40.82 62.20 54.20

Total Count 49 82 131
% within
Married

100.00 100.00 100.00

In binary logistic regression, the effects of IVs on the DV are inter-
preted and presented in terms of probabilities, odds, and odds ratios, so
we now turn to a discussion of these concepts.

Probabilities

Think of the percentages in Table 2.1 as proportions (e.g., 62.20% as
.6220). Then, think of the proportions as probabilities, where p̂ is the
estimated probability that the event will occur (continue) and 1 − p̂ is
the estimated probability that the event will not occur (not continue).
(Remember, this is a sample, and the probabilities are estimates of the
population probabilities.)

Probabilities are one way to express the likelihood of events. As seen
from Table 2.1, the probability that one-parent families plan to continue
is .4082, and the probability that they do not is .5918( 1 − .4082). The
probability that two-parent families plan to continue is .6220, and the
probability that they do not is .3780( 1 − .6220).

Odds

The odds are another way to express the likelihood that an event will
occur. Sometimes in day-to-day language, we use the term “odds” to
refer to probabilities (e.g., the probability that someone plans to con-
tinue fostering), but that is not what we mean here. The odds is a ratio of
probabilities. More specifically, the odds is a ratio of the probability that
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some event will occur to the probability that it will not occur. We can
calculate the odds of continuation for one- and two-parent families as
follows:

odds = p̂
1 − p̂

In our example, the odds of continuation for one-parent families are 0.69
(0.4082/0.5918). The odds of continuation for two-parent families are
1.65 (0.6220/0.3780).

Unlike probabilities, which can only range from 0 to 1, odds can
range from 0 to positive infinity, theoretically, and a value of 1 indicates
that both outcomes are equally likely. Table 2.2 illustrates the relation-
ship between probabilities and odds. When p̂ = .50 (both outcomes are
equally likely), the odds equal 1. As you see, as p̂ increases the odds
increase, but not by a constant amount. For example, when p̂ goes from
.70 to .80 the odds increase from 2.33 to 4.00, but when p̂ goes from .80
to .90 the odds increase from 4.00 to 9.00.

Odds Ratios

Since our interest is whether two-parent families are more likely to con-
tinue fostering than one-parent families, it is useful to compare the odds
of continuing for different values of the IV (one- and two-parent fami-
lies). The odds of continuing for two-parent families are more than dou-
ble the odds for one-parent families. More specifically, the ratio of these
two odds, the odds ratio (OR), is: 1.6455/0.6898 = 2.39. The OR plays
an important role in quantifying the strength and direction of relation-
ships between IVs and DVs in binary, multinomial, and ordinal logistic
regression, so we will spend some time here considering its properties.

The OR is the ratio of the odds of the event for one value of the IV
(e.g., two-parent families) divided by the odds for a different value of
the IV, usually a value one unit lower (e.g., one-parent families). The
OR indicates the amount of change in the odds and the direction of the
relationship between an IV and DV.

Table 2.2 Probabilities and Corresponding Odds

p .01 .10 .20 .30 .40 .50 .60 .70 .80 .90 .99
Odds 0.01 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 99.00
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An OR equal to 1 indicates that the odds of the event are the same
regardless of the value of the IV; an OR greater than 1 indicates that the
odds of the event increase as values of the IV increase (a positive relation-
ship); and an OR less than 1 indicates that the odds of the event decrease
as values of the IV increase (a negative relationship). For example, the OR
in our example is 2.39, indicating that the odds that two-parent families
plan to continue are greater than the odds for one-parent families (1.6455
versus 0.6898). What if the odds were the same for one- and two-parent
families (e.g., 1.50 for both)? In that case, the OR would equal 1.00 (i.e.,
1.50/1.50 = 1.00), indicating no difference in the odds for one- and
two-parent families, and thus no relationship between marital status and
continuation. What if the odds were reversed (i.e., 0.6898 for two-parent
families and 1.6455 for one-parent families)? In that case, the OR would
be less than 1.00 (i.e., 0.6898/1.6455 = 0.42).

The size of the OR indicates the amount of change in the odds of the
event (e.g., continuation) associated with a change in the IV. For exam-
ple, in going from one- to two-parent families, the odds of continuing
increases by a factor of 2.39[ 2.385 × 0.6898 = 1.6455].

The strength and direction of a relationship quantified by the OR can
be expressed in different ways. For example, you could express the OR of
2.39 as follows:

• A one-unit increase in the IV increases the odds of continuing by a
factor of 2.39.

• The odds of continuing are 2.39 times higher for two-parent
compared to one-parent families.

It would be incorrect to say that two-parent families are 2.39 times as likely
to continue. This means that the probability that two-parent families plan
to continue is 2.39 times higher when in fact it’s only 1.45 times higher
(i.e., .5918/.4082 = 1.45) (DeMaris, 2004).

ORs of less than 1 are a little more difficult to express in words than
ORs of greater than 1. Suppose the OR is 0.50. You could express this in
different ways:

• A one-unit increase in the IV decreases the odds of continuing by a
factor of .50.

• The odds that two-parent families will continue are 0.50 (or
one-half) of the odds that one-parent families will continue.
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Another way to express ORs of less than 1 is to compute the recipro-
cal (i.e., 1/OR) and express the relationship in terms of the opposite
of the event of interest (i.e., discontinuing instead of continuing). For
example, if the OR is 0.50, the reciprocal (1/0.50) is 2.00 and you
could say:

• A one-unit increase in the IV increases the odds of discontinuing by a
factor of 2.00.

• The odds that two-parent families will discontinue are 2.00 times (or
twice) the odds of one-parent families.

Another especially useful way to express ORs is in terms of percentage
change in the odds associated with a one-unit increase in the IV. The
formula for converting the OR to percentage change is: 100( OR−1). So,
in our example, you could say:

• A one-unit increase in the IV increases the odds of continuing by
139.00% [100( 2.39 − 1) = 139.00].

Or, for example, if the OR is .50 you can say:

• A one-unit increase in the IV decreases the odds of continuing by
50.00% [100( 0.50 − 1) = −50.00].

Percentage change provides the same information as the OR, and which
you use is a matter of preference, but many people find percentage change
easier to understand.

In linear regression, it is easy to compare the size of negative and
positive slopes—you just ignore the sign and compare the values. For
example, a slope of −.75 indicates a stronger relationship than a slope
of +.50. However, to compare the strength of ORs when one OR is less
than 1 and the other OR is greater than 1, you need to take the reciprocal
(1/OR) of one of the ORs. For example, suppose that you have an OR of
2.00 and an OR of 0.50. The reciprocal of 0.50 is 2.00 (1/0.50 = 2.00),
so you would conclude that the ORs are equal in size (but not in the
direction of the relationship).

Qualitative descriptors are useful for interpreting and communicat-
ing the strength of the relationships between variables. Rosenthal (1996)
proposed the guidelines for ORs shown in Table 2.3. (These guidelines
have limitations and should be used cautiously.) In particular, the sizes
of ORs, like unstandardized regression slopes, depend on how the IVs are
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Table 2.3 Qualitative Interpretation of ORs

OR > 1 OR < 1 Descriptor

1.50 0.67 Weak/small
2.50 0.40 Moderate/medium
4.00 0.25 Strong/large
10.00 0.10 Very strong/very large

measured (Cohen et al., 2003). The relative size of unstandardized regres-
sion slopes and ORs cannot be compared for IVs measured on different
scales. For example, an OR associated with a one-unit change in mari-
tal status is not comparable to an OR associated with a 1-year increase
in age.

Finally, most often the odds ratio is abbreviated by OR. Sometimes,
for reasons we will discuss below, the odds ratio is symbolized by eB,
Exp(B), or exp(B). We will use OR except when discussing hypotheses
about the population value of the odds ratio, in which case we will use ψ

(psi, pronounced like “sci” in science).

One Dichotomous Independent Variable

Binary Logistic Regression Model

Logits

In linear regression, the estimated value of the DV, usually symbolized as
Ŷ is the mean of a continuous DV. But in binary logistic regression, the
estimated value, L, is the natural logarithm (or simply log) of the odds,
typically called the logit for short, and it is written as:

ln
[

p̂
1 − p̂

]

In the formula above, p̂ is the estimated probability of the outcome (the
category coded 1).

The estimated binary logistic regression model for our bivariate
example can be written in much the same way as the linear regression
model:

L(Continue) = a + BMarriedXMarried



38 Multiple Regression with Discrete Dependent Variables

The right-hand side of this equation looks just like the right-hand side
of the linear regression equation. Just as in linear regression, each IV
has a slope that indicates the amount of change in the DV associated
with a one-unit increase in the IV, controlling for the other IVs. Also,
just as in linear regression, the intercept is symbolized by a, each slope is
symbolized by B, and each IV is symbolized by X.

As with linear regression, the binary logistic regression equation can
be used to compute estimated values for each case, given the values of the
IVs for that case. In linear regression, the value estimated by the regres-
sion equation is the mean value of the DV. In binary logistic regression,
the estimated value is the natural logarithm of the odds that the DV
equals 1 (e.g., in our study that the family will continue to foster), the
logit.

Estimated values are obtained in binary logistic regression the same
way as they are in linear regression: Replace the IVs in the equation with
specific values of the IVs (e.g., 0 or 1 for marital status). Then, multiply
values of the IVs by their respective slopes, sum the resulting products,
and add the intercept. This is similar to computing estimated values of
the mean for the continuous DV in linear regression, except that the
estimated value is the mean logit.

What is a logit and why do we talk about it? The logit is simply the natural
logarithm (or log) of the odds that the event will occur or that the
characteristic is present—the positive of the two possible outcomes. Logits
can range from negative to positive infinity, theoretically, and 0 indicates that
both outcomes are equally likely. The logit has no substantive meaning, and
you generally will not discuss it at length. (You will be more likely to talk
about the probabilities or the odds of the positive outcome.). However,
estimated logits are useful for examining curvilinear relationships and
interaction effects, which we discuss later in this chapter, and in computing
odds, ORs, and probabilities.

Table 2.4 shows partial results of the binary logistic regression with
marital status as the IV and continuation as the DV. For one-parent
families, the estimated logit equals:

L(Continue) = −.372 = −.372+( .869) ( 0)



Table 2.4 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)
Wald

Parameter B Std. Error Lower Upper Chi-Square df Sig. Exp(B) Lower Upper
(Intercept) −.372 .2907 −.941 0.198 1.634 1 .201 0.690 0.390 1.219
[Married = 1] .869 .3693 .146 1.593 5.544 1 .019 2.385 1.157 4.919
[Married = 0] 0a 1
(Scale) 1b

a Set to zero because this parameter is redundant.
b Fixed at the displayed value.
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For two-parent families, the estimated logit equals:

L(Continue) = .497 = −.372 + (.869) (1)

The number of parameters estimated for a categorical IV is m − 1, where m
is the number of categories. So, in Table 2.4 only one set of parameters is
estimated and reported for Married. We will delete this line of information
from subsequent SPSS tables. Also, discussion of modification of the Scale
parameter shown in Table 2.4 is beyond the scope of this book, and we will
delete this line of information from subsequent SPSS tables. See Norusis
(2007) for a discussion of this issue.

The relationship between marital status and continuation in terms
of logits is illustrated in Figure 2.1. The relationship is positive, and for
a one-unit increase in marital status the estimated logit increases from
−.37 to .50 by .87, which is the slope, the expected change in the logit
associated with a one-unit increase in the IV. A positive slope indicates
a positive relationship between the IV and DV; a negative slope indi-
cates a negative relationship; and 0 indicates no linear relationship, just
as in linear regression. However, the expected values and the substantive
interpretation of the slope have different meanings in binary logistic and
linear regression.

In our example, for one-parent families the logit equals −.372 and
for two-parent families it is .497. The slope equals .869, and it indicates
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Figure 2.1 Effect of Marital Status on Plans to Continue
Fostering (Logits)
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the expected change in the logit for a one-unit increase in the IV. The
intercept, a, is the estimated value of the logit when the IV equals 0.

Odds

Odds, ORs, and probabilities are key to interpreting results of a binary
logistic regression, and they can be easily obtained from the results of a
binary logistic regression analysis. You need to know how to do this, and
to do it you need to understand and be able to do some relatively simple
calculations.

Take the square root of a number; for example, the square root of
4 is 2(

√
4 = 2). To get back to the original number, you just square the

square root ( 22 = 4). Squaring the number does the reverse of taking the
square root; in mathematics this is called an inverse function. You need
to do something like this to get the odds from the log of the odds (i.e.,
the logit).

You convert a logit back to the odds by exponentiation, that is, raising
the base of the natural logarithm to the log of the odds. The exponential
function is the inverse of the log function, just as squaring a number is
the inverse of taking the square root. On your calculator, it is probably
symbolized by ex , and in SPSS and MS Excel the mathematical function
is exp(x).

For our example, the estimated odds of a dichotomous outcome (e.g.,
continuing to foster) can be calculated as:

odds = ea+BMarriedXMarried

That is, the estimated value of the linear predictor (a + BMarriedXMarried) is
exponentiated to get the odds or, equivalently:

odds = eL

That is, the estimated value of the logit (L) is exponentiated to get the
odds.

For example, in the previous section, we determined that L = −.372
for one-parent families, so we exponentiate L to get the odds:
e−.372 = .69. For two-parent families L = .498, so the odds that two-
parent families will continue are e.498 = 1.65. Go ahead and try these
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calculations now using your calculator, SPSS, or MS Excel to make sure
that you can exponentiate a logit.

The relationship between marital status and continuation in terms
of odds is illustrated in Figure 2.2. The relationship is positive, and for a
one-unit increase in marital status the estimated odds increase from 0.69
to 1.65. Compare this to Figure 2.1 above, and note that as the log of the
odds (the logit) increases, the odds also increase.

Odds Ratios

Once you know the odds for each value of the IV, you simply take the
ratio of one to the other to get the OR. As illustrated above in Figure 2.2,
for a one-unit increase in marital status (i.e., one-parent to two-parent
families) the estimated odds increase from 0.69 to 1.65, so the OR equals
2.39 (1.65/0.69).

The OR for an IV also can be calculated by exponentiating the asso-
ciated slope. The slope for marital status, as shown above in Table 2.4, is
.869. So, the OR = 2.38 = e.869. Note in Table 2.4 that this is reported as
part of the SPSS output, labeled “Exp(B).” The slope and the OR, then,
are closely related and, more specifically, when B = 0, OR = 1; when
B < 0, OR < 1; and when B > 0, OR > 1.
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Probabilities

The binary logistic model also can be expressed in terms of probabilities
(the “inverse link function” referred to in Chapter 1):

p̂(Continue) = eL

1 + eL

(Since the odds = eL, another way to express this is:

p̂(Continue) = odds

1 + odds

Sometimes this formula is written as:

p̂(Continue) = 1

1 + e−L

So, the estimated probability of continuation, p̂(Continue) can be calculated
from L, the estimated logit. This is similar to computing estimated val-
ues of the mean for the DV in linear regression for cases with different
characteristics, except here we are estimating the mean probability. In
our example, the estimated probability that one-parent families plan to
continue is expressed as:

p̂(Continue) = e−.3716

1 + e−.3716
= .6896

1.6896
= .4082

The estimated probability that two-parent families plan to continue is
expressed as:

p̂(Continue) = e.4978

1 + e.4978
= 1.6451

2.6451
= .6220

The relationship between marital status and continuation in terms of
probabilities is illustrated in Figure 2.3. The relationship is positive,
and for a one-unit increase in marital status the estimated probabil-
ity increases from .41 to .62. Compare this to Figure 2.1 above, and
note that as the log of the odds (logit) increases, the probabilities also
increase.
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One Quantitative Independent Variable

Binary Logistic Regression Model

The use and interpretation of binary logistic regression are much the
same with quantitative and categorical IVs. We start with a simple exam-
ple to illustrate the use of binary logistic regression with a quantitative
IV. The research question is this: Are foster families with more resources
more likely to continue fostering?

Table 2.5 shows partial results of this regression analysis. The
slope (.212) is positive, and the OR (1.237) is greater than 1,
indicating a positive relationship between number of resources and foster
continuation.

Logits

We computed the estimated logit for 1 through 11 resources using the
following regression equation:

L(Continue) = −1.227 + (.212) (X )

There were no families with 0 resources, so in a way the intercept is
hypothetical and 0 resources has little meaning as a reference point.



Table 2.5 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −1.227 .6517 −2.504 0.050 3.544 1 .060 0.293 0.082 1.052
Resources .212 .0957 0.025 0.400 4.924 1 .026 1.237 1.025 1.492
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The relationship between resources and continuation in terms of
logits is illustrated in Figure 2.4. The relationship is positive, and for a
one-unit increase in resources (i.e., one resource in this case) the esti-
mated logit increases by .21 (i.e., the slope). Like the linear regression
coefficient, the slope in binary logistic regression can be interpreted as
the change in the DV, in this case the logit, associated with a one-unit
increase in the IV.

Odds

Remember that the logit, the slope, and the intercept from a binary
logistic regression have no intuitive or substantive meaning, although
the slope does indicate the direction of the relationship. The compu-
tation and meaning of each of these terms are equivalent in the one-
quantitative-variable model and the one-categorical-variable model we
discussed above. Therefore, we computed the estimated odds of contin-
uing for 1 through 11 resources, using the estimated logits illustrated
in Figure 2.4. The estimated odds of continuation for each value of
Resources were calculated using the formula: eL, where L was the esti-
mated logit. For example, for one resource the estimated logit equals
−1.01, and, using exponentiation, we see that the estimated odds equals
0.36 (i.e., e−1.10 = 0.36).

The relationship between resources and foster continuation in terms
of odds is illustrated in Figure 2.5. You can see the positive relation-
ship between Resources and Continuation. The odds of continuing range
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from 0.36 for families with one resource to 3.03 for families with 11
resources.

Notice again that the relationship between resources and odds is
not linear. (Remember that in binary logistic regression, the relation-
ship between IVs and logits is linear, but the relationship between IVs
and odds is not.) That is, the change in the odds is different depending
on the initial value of resources. For example, in going from one to two
resources the odds increase from 0.36 to 0.45 (0.09), and in going from
10 to 11 resources the odds increase from 2.45 to 3.03 (0.58). (You can
see how important this kind of information could be to foster care agen-
cies, as they look at the resources that potential foster families bring to
the table.)

Certainly this lack of a linear relationship between the IV and the DV
means that in binary logistic regression the examination and presenta-
tion of the relationships between the IVs and the changes in odds are
somewhat complicated with multiple IVs.

Odds Ratios

One useful feature of a graph such as Figure 2.5 is that it is possible to
easily determine the OR associated with any amount of change in an
IV, not just a one-unit increase. That is, instead of the change in the
odds associated with each additional family resource, you could examine
the change in the odds associated with more than one additional family
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resource. For example, the OR associated with an increase of four fam-
ily resources equals 2.36 (0.85 / 0.36). In general, though, the OR for
any unit of change can be calculated for an IV by first multiplying the
slope by the unit of change (e.g., 4), and then exponentiating this value.
For example, the slope for resources equals .212, .212 × 4 equals 0.848,
and e.848 = 2.34. (The values of 2.34 and 2.36 are different because of
rounding error.)

Probabilities

We also computed the estimated probability of continuing for 1 through
11 resources, using the estimated logits illustrated in Figure 2.4. Each
estimated probability was calculated using the formula discussed above:

p̂(Continue) = eL

1 + eL

For example, for one resource the estimated probability is:

.27 = e−1.01

1 + e−1.01

The relationship between resources and continuation in terms of proba-
bilities is illustrated in Figure 2.6, and as you can see, it is positive. The
probability of continuing ranges from .27 for families with one resource
to .75 for families with 11 resources.
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Notice that the change in the probabilities differs, depending on the
initial value of resources. That is, the relationship between resources and
probabilities is not linear, and it cannot be linear because a probability
cannot be greater than 1. However, in this example, the lack of linear-
ity is not as obvious as is sometimes the case. For example, in going
from one to two resources, the probability increases from .27 to .31 (.04),
and from seven to eight resources, the probability increases from .56 to
.62 (.06). (This is consistent, of course with our findings using the OR,
above.) Again, examining and presenting the relationship between IVs
and change in the probability of the outcome is not complicated with
a single IV, as you see here, but it can be a bit more complicated with
multiple IVs.

Scaling Quantitative Independent Variables

The binary logistic regression slope is analogous to the unstandardized
linear regression slope in the sense that the size of the slope depends on
the scale of the IV. The same is true for the OR.

The size of the OR indicates the amount of change in the odds of the
event (e.g., continuation) associated with a one-unit increase in the IV.
ORs can be deceptively small for quantitative variables that can take on
a large number of values within the limits of the variable. For example,
suppose that one study measured the effect of maternal depression on
continuation, and depression was measured on a 5-point ordinal scale.
Suppose that a second study examined the same question, but measured
depression using a standardized scale with a potential range of values
from 1 through 100. If the strength of the relationship between depres-
sion and continuation were exactly the same in both studies, the OR
would be much smaller when depression was measured on a scale from
1 through 100 simply because of the difference in how “one unit” was
defined (i.e., one-fifth versus one-hundredth of the scale width). Or, if
the strength of the relationship between depression and continuation
were actually much stronger in the second study, the OR in the second
study could be much smaller than the OR in the first study because of the
difference in how “one unit” was defined.

Before including a quantitative IV in a binary logistic regression anal-
ysis, you should give some thought to how the variable is scaled and if
it might be best to rescale it to make it easier to use or interpret. For
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example, suppose you measured the variable income in units of $1,000
per year, so a family whose annual income was $50,000 would have a
value of 50. It might be more meaningful to examine the effect of yearly
income in units of $10,000 instead of $1,000. One way you could do this
is to compute a new variable, income divided by 10, and use this rescaled
income variable in your analysis. (Our example family would thus have a
value of 5 on the rescaled variable.) In doing this, you change the mean-
ing of “one unit” of yearly income from $1,000 to $10,000 (i.e., by a factor
of 10).

Factor Change

The OR for a one-unit change in the value of the IV may not be the most
meaningful unit, as with our income example. Fortunately, ORs for any
incremental change in an IV can be computed by multiplying the slope
by some factor, c, and exponentiating this value: e(B)(c). For example, the
slope for number of resources is .212, and the OR associated with an
increase of two resources equals 1.53(e(.212)(2)). (Note: first multiply the
slope by 2, and then exponentiate.)

Standard (z) Scores

Both unstandardized and standardized slopes are available with linear
regression, and both indicate the expected change in the DV associated
with a one-unit increase in the IV. The difference is in the units used to
quantify the IV and the DV.

Unstandardized linear regression slopes are based on the original
units used to measure the IV and DV (e.g., number of resources, income
in thousands of dollars per year). Standardized linear regression slopes,
in contrast, are based on standard scores, also called “z-scores.” Standard
scores always have a mean of zero and a standard deviation of 1. A z-score
indicates how far and in what direction the value of a score deviates from
the distribution’s mean. So, a one-unit increase in the IV refers to a one
standard-deviation increase in the IV, whatever the standard deviation
may be for that IV. (You should find out what the standard deviation is
from your descriptive statistics.)

Counterparts of standardized slopes for linear regression have been
developed for binary logistic regression (Hardin & Hilbe, 2007; Pampel,
2000), but they are not widely used and they are not included in SPSS
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output. However, you can transform your quantitative IVs to standard
scores, and then analyze the standard scores for the IVs, and this can be
useful at times. Unlike in linear regression, only the IV (not the DV) is in
standard scores in this case—this is why the resulting slopes sometimes
are called semi-standardized slopes.

The formula for transforming a variable to z-scores is:

X(z) = X − M
SD

where X is the IV score for a case, M is the mean for the IV, and SD is the
standard deviation for the IV. In our example, M = 6.60, SD = 1.93.
To create a new variable, zResources, for each case, subtract 6.60 from the
number of resources, and divide this value by 1.93.

Again, the mean of a variable transformed to standard scores will
always be 0, values above the mean will be positive, and values below
the mean will be negative. (When you transform a variable to standard
scores, the resulting variable is rescaled to standard-deviation units in
place of the original units.) So, for example, a value of +1 will corre-
spond to a value one standard deviation above the mean, a value of −1
will correspond to a value one standard deviation below the mean, and a
one-unit increase in the IV will correspond to a one standard-deviation
increase.

Transforming a variable to standard scores will change its intercept,
slope, and OR, but not the associated test statistics from the binary logis-
tic regression. The slope for a variable transformed to standard scores
is interpreted as expected change in the logit associated with a one
standard-deviation increase in the IV, and the OR is interpreted as the
change in the odds associated with a one standard-deviation increase in
the IV.

We transformed resources to z-scores to illustrate interpretation of
binary logistic regression results with a standardized variable. Table 2.6
shows partial results of the binary logistic regression with zResources.

Compare results in Table 2.6 to those above in Table 2.5 for Resources.
In particular, notice that with zResources the slopes and ORs are differ-
ent because in this analysis “a one-unit increase” refers to an increase of
one standard deviation (1.93 resources in this example). Therefore, the
OR for zResources indicates the change in the odds associated with a one



Table 2.6 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)
Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) .174 .1789 −.177 0.525 0.947 1 .330 1.190 0.838 1.690
zResources .410 .1846 .048 0.771 4.924 1 .026 1.506 1.049 2.163
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standard-deviation (1.93) increase in resources, not an increase of one
resource.

Figure 2.7 shows the relationship between zResources and estimated
probabilities for this analysis. Compare results in Figure 2.7 to those
above in Figure 2.6 for Resources. In Figure 2.7, 0 represents the mean
number of resources, −1, −2, and −3 indicate the number of stan-
dard deviations below the mean, and 1, 2, and 3 indicate the number
of standard deviations above the mean. So, for example, the estimated
probability of continuing is .54 for families with the mean number of
resources (6.60), .34 for families with resources two standard devia-
tions below the mean [6.60−( 2 × 1.93] ) = 2.74 resources], and .73
for families with resources two standard deviations above the mean
[6.60+( 2 × 1.93) = 10.46 resources].

Centering

Similar to standardizing scores, we can also center scores on a certain
value. Often, we center scores on the mean, and in fact that is what we are
doing with standardization, except in that case we also divide by the SD.
Centering is useful when testing curvilinear relationships and interaction
effects (Cohen et al., 2003), as we illustrate below. Centering can also be
useful when a variable has no meaningful zero point (Cohen et al., 2003).
For example, no case had zero resources in our example, and so centering
at the mean results in a meaningful value of 0 (i.e., cases at the mean).
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Below, we center values on the mean. However, this is not the only
or always the most meaningful way to center an IV. IVs can be centered
on other values. For example, if you use a scale with a clinical cutting
score it can be useful to center on that value. Then, positive values will
be those above the clinical cutting score, and negative values will be
below.

The formula for centering a variable is:

X(centered) = X − M

where X is the value of the IV for a case, and M is the mean for the
IV. (Again, you can see that centering on the mean is similar to con-
verting to a z-score except that you do not divide by the SD.) In our
example, M = 6.60 and we subtract it from the number of resources
for each case to create a new variable, cResources. You can create this new
variable in SPSS using a compute statement, after first computing the
mean.

The mean of a centered variable will be 0, values above the mean
will be positive, and values below the mean negative. A centered variable
will have the same slope, OR, and associated test statistics as the original
IV on which it was based. Centering does change the intercept, though,
because the intercept is the estimated value of the DV when the IV equals
0 and with a centered variable 0 representing the mean.

We centered resources to illustrate interpretation of binary logistic
regression results with a centered variable. Table 2.7 shows partial results
of the binary logistic regression with cResources.

Compare results in Table 2.7 to those above in Table 2.5 for Resources.
The only differences are for the intercept, which now represents the esti-
mated logit when the number of resources equals 0 (0 being the mean
number of resources, not the number of resources).

Figure 2.8 shows the relationship between cResources and estimated
probabilities for this analysis. Compare results in Figure 2.8 to the com-
parable figures above for Resources and zResources. In Figure 2.8, the
number of resources is represented on the horizontal axis; 0 represents
the mean number of resources, negative values indicate the number of
resources below the mean, and positive values indicate the number of
resources above the mean. So, for example, the estimated probability of
continuing is .54 for families with the mean number of resources (6.60),



Table 2.7 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) .174 .1789 −.177 .525 0.947 1 .330 1.190 0.838 1.690
cResources .212 .0957 .025 .400 4.924 1 .026 1.237 1.025 1.492
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.39 for families with 3 resources below the mean (6.60 − 3 = 3.60), and

.69 for families with 3 resources above the mean (6.60 + 3 = 9.60).

Logits, Odds, Odds Ratios, and Probabilities Revisited

Suppose you have a single quantitative IV transformed to standard
scores, so the mean equals 0 and the standard deviation equals 1. Suppose
that the estimated binary logistic regression equation is:

L = 0 + (1) (X )

Table 2.8 shows values of the IV ranging from three standard deviations
below the mean to three above, and the corresponding estimated values
of the logit, odds, and probabilities. Notice that when the logit equals
0, the odds equals 1.00, and the probability equals .50. Also, notice that
probabilities of less than .50 are associated with odds of less than 1.00 and
logits of less than 0. Conversely, probabilities greater than .50 are associ-
ated with odds greater than 1.00 and logits greater than 0. Finally, notice
that for each one-unit increase in the IV, the ratio of the odds increases by
a constant, 2.72 (e.g., 2.72/1.00); this is the OR, the change in the odds
associated with a one-unit increase in X. (Notice that we incremented
values of X by 0.50, not 1.00.). When you exponentiate the slope, you get
the same value (e.g., e1 = 2.72).

Figures 2.9, 2.10, and 2.11 show the relationship between the IV and
the estimated logit, odds, and probabilities, respectively. As shown in
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Table 2.8 Logits, Odds, and Probabilities as a Function of X

X logit odds p

−3.00 −3.00 .05 .05
−2.50 −2.50 .08 .08
−2.00 −2.00 .14 .12
−1.50 −1.50 .22 .18
−1.00 −1.00 .37 .27
−.50 −.50 .61 .38

.00 .00 1.00 .50

.50 .50 1.65 .62
1.00 1.00 2.72 .73
1.50 1.50 4.48 .82
2.00 2.00 7.39 .88
2.50 2.50 12.18 .92
3.00 3.00 20.09 .95

–3.00

–2.00

–1.00

0.00

1.00

2.00

3.00

–3.00 –2.00 –1.00 0.00 1.00 2.00 3.00

Linear predictor

Lo
gi

t

Figure 2.9 Logit as a Function of Linear Predictor

Figure 2.9, the relationship between the IV and the estimated logits is
linear, so you can say that a one-unit increase in the IV is associated with
a constant change in the logits. The relationships between the IV and the
odds and between the IV and the probabilities are not linear, so you can-
not say that a one-unit increase in the IV is associated with a constant
change in the odds or probabilities. In particular, you see in Figure 2.11
(this figure illustrates the logistic function also called the logistic curve)
that the change associated with a one-unit change in the IV at the lower
and upper values of the IV is markedly less than at values closer to the
center.
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Figure 2.11 Probability as a Function of Linear Predictor

Finally, given that the relationship between the IV and the logit is
linear, the relationships between the logit and the odds and between the
logit and the probabilities are not linear.

Multiple Independent Variables

In multiple linear regression, the slope indicates expected change in the
DV, controlling for other IVs. The same is true in multiple binary logistic
regression, except that expected change in the DV refers to change in the
logit. More useful in multiple binary logistic regression is the fact that
the OR indicates change in the odds associated with a one-unit increase
in an IV, controlling for the other IVs (Hardin & Hilbe, 2007). It is also
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possible to examine expected change in the odds and probabilities of the
outcome associated with an increase in an IV, controlling for other IVs,
but as we have said before, such relationships aren’t linear and so they are
a bit more complicated.

Binary Logistic Regression Model

Let us build on our previous two examples in this chapter to illustrate
multiple binary logistic regression. Earlier, we saw that families with
more resources are more likely to continue fostering, but it is possible
that the relationship between family resources and continuation is due
to the fact that both are influenced by marital status (i.e., marital sta-
tus is a common cause of both, and so the relationship is spurious). So,
the research question examined here is this: Are foster families with more
resources more likely to continue fostering, controlling for marital status?
Family resources and marital status are the IVs, and continuation is the
DV. The coding for these variables was described above, and we will use
zResources, although untransformed or centered resources could also be
used with the same substantive results.

We know the direction and strength of the relationship between
resources and continuation from our previous analyses (see Table 2.6).
Now, though, we will enter both zResources and marital status into
our regression analysis and focus on the change in the relationship
between zResources and continuation when controlling for marital status.
Table 2.9 contains partial results of this analysis.

Without controlling for marital status, the OR for zResources is 1.51
(see Table 2.6). Controlling for marital status the OR for zResources is
1.26. The smaller value of zResources when controlling for marital sta-
tus implies that marital status may be, at least in part, a common cause
of family resources and continuation. (Of course, we could think about
this in the opposite way by thinking about resources as the cause of both
marital status and continuation. Then, we would be looking at the effects
of marital status, controlling for resources. This choice depends upon
your knowledge of the substantive area.)

To better understand and present substantive findings, we com-
pute estimated odds, ORs, and probabilities at substantively informative
values (e.g., mean number of resources) and for substantively impor-
tant types of cases (e.g., two-parent families with the mean number of



Table 2.9 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −.183 .3505 −.870 0.504 .273 1 .601 .833 0.419 1.655
zResources .228 .2389 −.240 0.696 .912 1 .340 1.256 0.787 2.006
[Married = 1] .570 .4808 −.372 1.513 1.408 1 .235 1.769 0.689 4.540
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resources). Or, for continuous IVs without inherently informative sub-
stantive values, you might compute and report estimated probabilities
using the mean and one or two standard deviations above and below the
mean (or the 25% and 75% percentiles), fixing all other IVs at selected
values (Hoffmann, 2004; Long & Freese, 2006). We now discuss how to
do this.

Logits

The estimated multiple binary logistic regression in this example is:

L(Continue) = −.183 + .228zResourcesXzResources + .570MarriedXMarried

As discussed in our previous examples, estimated values of the log-
its can be calculated by replacing the Xs with specific values of the
IVs (e.g., 0 or 1 for marital status). Estimated logits then can be used
to calculate the odds, ORs, and probabilities, which are necessary to
fully describe the results of a binary logistic regression. For example,
for one-parent families with the mean number of resources (i.e., 0,
because we transformed the number of resources into standard scores),
the estimated logit would be:

−.183 = −.183 + (.228) (0) +( .570) (0)

Odds

As discussed in our previous examples, estimated values of the odds of
the outcome can be calculated from estimated logits by eL. For example, L
equals −.183 for one-parent families with the mean number of resources,
so the odds that such families plan to continue are: e−183 = .83.

The challenge is to summarize changes in IVs associated with changes
in odds in the most meaningful and parsimonious way; however, no
standard way to do this exists, and again, it depends partly on your
understanding of your substantive area. This is complicated by the fact
that the relationships between IVs and odds are not linear. For any given
analysis, you should explore different ways to present the key substantive
findings in tables or graphs (Long & Freese, 2006).

Odds for cases with different values of the IVs can be presented
in tables. Table 2.10 shows estimated odds for one- and two-parent
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Table 2.10 Estimated Odds for Marital Status and Family Resources

Estimated Odds Family Resources

Marital Status M − 2SD M M + 2SD

One-Parent 0.53 .83 1.31
Two-Parents 0.93 1.47 2.32
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Figure 2.12 Effect of Resources and Marital Status on Plans to Continue
Fostering (Odds)

families with three different levels of family resources. For example, the
odds are relatively high that two-parent families with many resources
will continue (2.32) and relatively low for one-parent families with few
resources (0.53).

Finally, in addition to presenting odds in tables, oftentimes it can be
useful to present them in graphic form, such as Figure 2.12, which shows
the effect of zResources for one- and two-parent families. The larger the
number of IVs, though, the more difficult this becomes, and only a lim-
ited number of IVs can be represented meaningfully on a single graph.
One way to do this is to plot the relationship of one IV from its minimum
to maximum value, while all other variables are fixed at their mean (or,
for dichotomous variables, 0 or 1). Another strategy is to estimate odds
for selected sets of values of IVs that correspond to ideal or typical types
in the population (e.g., single-parent families with the mean number of
resources) (Long, 1997).

For example, a foster care agency is interested in understanding
which families will continue to foster long enough to make the significant
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investment in recruiting, selecting, training, and supervising those fam-
ilies worthwhile. They want to see whether shaping their recruitment
policies will maximize continuation, and will present the findings of
their study to the board for consideration of such changes. Clearly, the
board will find no meaning in logits, and so the agency may present the
findings, for example, in one of the following ways (see Table 2.10 or
Figure 2.12):

We found that the odds of continuing to foster for one-parent families
with above-average resources (odds = 1.31) were 2.47 (1.31/0.53) times
as great as the odds for one-parent families with below-average resources
(odds = 0.53); or

We found that the odds of continuing to foster for two-parent families
with above-average resources (odds = 2.32) were 4.38 (2.32/0.53) times
as great as the odds for one-parent families with below-average resources
(odds = 0.53).

Odds Ratios

The OR associated with each IV and reported in the SPSS output as
Exp(B) shows the estimated change in the odds of the outcome asso-
ciated with a one-unit increase in the IV, when controlling for other IVs.
These are not necessarily the only meaningful ORs. Other types of com-
parisons can also be made. For example, consider the information in
Table 2.10 and Figure 2.12. You could, for example, compare the odds
of continuation for two-parent families with two standard deviations
above the mean number of resources (odds = 2.32) to one-parent fami-
lies with two standard deviations below the mean number of resources
(odds = 0.53); the odds of continuation increase by a factor of 4.38
(OR = 4.38 = 2.32/0.53).

Probabilities

The estimated probability of the outcome for cases with the same values
of the IVs can be calculated from estimated logits using the following
formula discussed earlier:

p̂(Continue) = eL

1 + eL
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For example, in the previous section, we determined that L equals −.183
for one-parent families with the mean number of resources, so the
probability that such families will continue is:

p̂(Continue) = e−.183

1 + e−.183
= .833

1.833
= .46

A good place to start looking for the best way to present the probabili-
ties is to examine the frequency distribution of the probabilities for all
cases, basic descriptive statistics (e.g., mean, median, standard deviation,
range, and interquartile range), and different types of univariate charts
(histogram, boxplot, etc.). SPSS will compute expected probabilities for
each case. In our current example of one-parent families with the mean
number of resources, descriptive statistics for probabilities are as follows:
M = .46, Mdn = .42, SD = .11, range = .29–.67, and interquartile
range = .37–.56.

As above, there is no standard way to summarize changes in IVs asso-
ciated with changes in probabilities in a meaningful way, especially when
the relationship between the IVs and the probabilities is not linear. For
any given analysis, you should explore different ways to present the key
substantive findings in tables or graphs (Long & Freese, 2006). Again, this
depends in part on the subject and the objective of the study. For exam-
ple, previous research in your field may have demonstrated findings in
ways that you may want to present your own results.

Probabilities for cases with different values of IVs can be presented in
tables. Table 2.11 shows estimated probabilities for one- and two-parent
families with three different levels of family resources. For example,
two-parent families with many resources are likely to continue, and
one-parent families with few resources are not.

In addition to presenting probabilities in tables, often it is useful to
present probabilities in graphic form, such as Figure 2.13. The larger the

Table 2.11 Estimated Probabilities for Marital Status and Family Resources

Estimated Probability Family Resources

Marital Status M − 2SD M M + 2SD

One-Parent .35 .45 .57
Two-Parents .48 .60 .70
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Figure 2.13 Effect of Standardized Resources and Marital Status on Plans to
Continue Fostering (Probabilities)

number of IVs though, the more difficult this becomes. Only a limited
number of IVs can be represented meaningfully on a single graph.

Comparing the Relative Strength of Independent Variables

In linear regression, the standardized slope is used to compare the rela-
tive strength of different IVs. The standardized slope indicates expected
change in the DV in standard deviation units, for a one standard-
deviation increase in an IV. That is, the IVs and the DV are both
transformed to z-scores.

The binary logistic regression slope is analogous to the unstan-
dardized slope in linear regression. Although binary logistic regression
approximations to standardized slopes have been developed (Hardin &
Hilbe, 2007), they are not in widespread use and are not shown in SPSS
output. Neither the slope nor the OR can take the place of the standard-
ized regression slope (Menard, 2001), so it is more difficult to compare
the relative strength of IVs measured in different ways. The sizes of the
slope and the OR depend on how the IV is measured, just as they do with
the unstandardized slope in linear regression. We explained this point
above when we discussed transformations for quantitative IVs. However,
when IVs are measured the same way (e.g., two dichotomous IVs or two
continuous IVs transformed to z-scores) their relative strength can be
compared (Pampel, 2000).

Sometimes you need to compare the sizes of ORs indicating negative
and positive relationships. To compare the strength of ORs when one is
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less than 1 and the other is greater than 1, take the reciprocal (1/OR) of
one of the ORs. For example, suppose you have an OR of 2.00 and an
OR of 0.50. The reciprocal of 0.50 is 2.00 (1/0.50 = 2.00), so you would
conclude that the ORs are equal in size, though not in the direction of
the relationship. However, this does not mean that the effects of the IVs
are comparable, especially if the IVs are measured using different units
(e.g., one is dichotomous and the other is measured on a scale from 0
through 100).

Testing Hypotheses

In binary logistic regression, as in linear regression, you need to test the
overall null hypothesis that all slopes equal zero (equivalent to the null
hypothesis that all ORs equal 1). Also, you will want to test the null
hypothesis that the associated slope equals zero for each IV, (equivalent to
the null hypothesis that the OR equals 1), and examine 95% confidence
intervals associated with each OR. Finally, at times, you will want to test
hypotheses about incremental change in your model when additional IVs
are added.

Testing the Null Hypothesis that β1 = β2 = βk = 0

Up to this point, we have focused on estimating, interpreting, and pre-
senting the slope, odds, OR, and probabilities. In practice, though, before
you would do this, you would test the null hypothesis that all slopes equal
0. That is, you would want to know whether a statistically significant rela-
tionship exists between the entire set of IVs on the one hand and the DV
on the other. If that is not the case, you probably should not test the indi-
vidual relationships. To illustrate this, we will continue our example with
marital status and zResources as IVs.

The test of the null hypothesis that βMarried = βZResources = 0 is the
same as the test of the null hypothesis that ψMarried = ψzResources = 1,
where ψ is the symbol for the population value of OR. In linear regres-
sion, we use the omnibus F-test to test the null hypothesis that βMarried =
βzResources = 0. The binary logistic regression counterpart to the omnibus
F-test is the likelihood ratio χ2 test, which is shown in Table 2.12 for the
model with marital status and zResources. As you see, you can reject the
null hypothesis that the slopes for both IVs equal 0.
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Table 2.12 Omnibus Test

Likelihood Ratio Chi-Square df Sig.

6.585 2 .037

Testing the Null Hypotheses that βk = 0

If the omnibus null hypothesis that βMarried = βzResources = 0 is rejected,
typically the next step is to test the two null hypotheses that βMarried = 0
and βzResources = 0. The test of the null hypothesis that βMarried = 0, for
example, is the same as the test of the null hypothesis that ψMarried =
1. Directional hypotheses also can be tested. The null hypothesis that
βMarried ≥ 0 is the same as ψMarried ≥ 1, and βMarried ≤ 0 is the same as
ψMarried ≤ 1.

In binary linear regression, these null hypotheses are tested in much
the same way as in linear regression. In linear regression, the t-statistic
is used, but in binary logistic regression SPSS reports the Wald statistic,
which serves the same purpose. Sometimes this is called the Wald χ2 test
since it has a chi-squared distribution (DeMaris, 2004).

Values of the Wald statistic are shown above in Table 2.9 for mari-
tal status and zResources. The associated two-tailed p-values (i.e., “Sig.”)
indicate that neither βMarried = 0 nor βzResources = 0 can be rejected.
This is a little surprising, given that βMarried = βZResources = 0 was
rejected, but we will have more to say about this below when we discuss
multicollinearity.

In general, the likelihood ratio test is better than the Wald statis-
tic for testing null hypotheses for individual slopes; you can see these
in Table 2.13. In large samples, both procedures give approximately
the same results, but in small or moderate samples different results are

Table 2.13 Tests of Model Effects

Type III

Source Likelihood Ratio Chi-Square df Sig.

(Intercept) .289 1 .591
zResources .920 1 .338
Married 1.417 1 .234
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possible and the likelihood ratio test is preferred (Kleinbaum & Klein,
2002).

Confidence Intervals for Odds Ratios

The 95% confidence interval (CI) for an OR provides a range of values
centered on the sample estimate of the OR known to contain the true
value of the OR with a given degree of confidence (usually 95%). Also,
the CI can be used to test nondirectional hypotheses for the OR, as well
as to provide an interval estimate for the population value of the OR. If
the 95% confidence interval for the OR contains 1, the null hypothesis
cannot be rejected. If the 95% confidence interval does not contain 1, the
null can be rejected (see Table 2.9 above).

Comparing Nested Models

A regression model containing only family resources as the IV is said to
be nested within a model containing family resources and marital status.
In general, one regression model is nested within another if it contains
a subset of the variables included in the model within which it’s nested,
and the same cases are analyzed in both models. Sometimes, the more
complex model is called the full model and the nested model the reduced
model. A comparison of the full and reduced models allows you to exam-
ine whether one or more variable(s) in the full model contribute to the
explanation of the DV. For example, see Figure 2.14 below.

In this illustration, we see the full model containing three IVs on the
top row. The second row shows three reduced models, each containing
two of the IVs from the full model. Finally, on the bottom row, we see six

IV1, IV2,
IV3

IV1, IV2

IV1 IV2 IV2 IV3

IV2, IV3 IV1, IV3

IV1 IV3

Figure 2.14 Nested Models
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models that are further reduced, each containing one of the IVs from the
full model.

In regression analyses, we sometimes compare full and reduced mod-
els by entering variables sequentially, oftentimes called hierarchical entry.
(This is not to be confused with stepwise entry, which is something dif-
ferent.) For example, family resources might be entered first in a reduced
model to determine if and how it is related to continuation. Then, mari-
tal status might be added to make a full model, and the full and reduced
models would be compared to determine if and how marital status adds
to the explanation of continuation. One reason you might do this is to
first determine using the reduced model if family resources is related to
continuation and, if it is, to then examine whether this relationship is
spurious because family resources and continuation are both caused by
marital status (i.e., marital status is a common cause). Another reason
you might do this is to see whether marital status makes any addi-
tional contribution to explaining continuation, after allowing for family
resources. In any case, this sequential entry of IVs is exactly the same
as conducting and comparing two separate regression models, one with
family resources as the IV, and the other with family resources and
marital status—it’s just a little easier way of doing it.

In linear regression, you use Fchange to compare full and reduced
models. The binary logistic regression counterpart to Fchange is the dif-
ference between the likelihood ratio χ2 values for the full and reduced
models. (This is true for all of the GZLM models discussed in this
book.) Unfortunately, GZLM SPSS does not allow the automatic sequen-
tial entry of IVs, so you must estimate and compare full and reduced
models.

To illustrate the comparison of full and reduced models, first we esti-
mated a model with zResources as the IV, the reduced model [χ2( 1) =
5.168, p = .023]. Then, we estimated a model with zResources and mari-
tal status, the full model [χ2( 2) = 6.585, p = .037]. Next, we subtracted
the χ2 value for the reduced model from the χ2 value for the full
model (6.585 − 5.168 = 1.417), and subtracted the degrees of free-
dom for the reduced model from the degrees of freedom for the full
model (2 − 1 = 1). Then, we used an Excel file provided on the com-
panion Web site for this book (Chi-square Difference.xls) to find that for
χ2( 1) = 1.417, p = .234. That is, marital status does not add to the
explanation of continuation.
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Assumptions Necessary for Testing Hypotheses

There are no assumptions unique to binary logistic regression other than
the ones we discussed in Chapter 1 (pp. 21–28).

Model Evaluation

As we discussed in Chapter 1, before you test hypotheses or interpret
substantive results of any regression model, you should examine how well
your regression model fits your data, that is, how effectively the model
describes the DV. You will test the overall model, and many times you
need to compare different models, as we discussed above. You also need
to check for individual cases that are not well explained by the estimated
model (i.e., outliers), or that exert undue influence on the estimation of
the model. Finally, you will want to know how well your model explains
your DV overall. Now, we turn to the specifics of doing this with binary
logistic regression.

Outliers

Outliers are data points that are atypical, in that they are markedly differ-
ent from the other data in the sample. For example, it would be unusual
for a one-parent family with virtually no resources to continue foster-
ing. Or, given that the mean number of family resources in our example
is 6.60, the standard deviation is 1.93, and the distribution of resources
is fairly normal, a family with 20 resources would be unusual indeed.
Checking for outliers can help you identify errors and provide insight
into how well your regression model fits your data for individual cases.

Outliers can result from data entry or other types of errors (e.g.,
recording error by an observer), model misspecification (e.g., specifying
a relationship as linear when it is curvilinear, or specifying main effects
only when interactions are present), rare events (e.g., a 21-year-old with
a yearly income of $1,000,000), or numerous other reasons (Cohen et al.,
2003). Whatever their cause, outliers can markedly influence the results
of your regression analyses (e.g., your slopes and tests of statistical sig-
nificance) and lead to seriously flawed conclusions, especially in small
samples.

On the positive side, outliers can provide theoretical insights. For
example, suppose you identified single-parent families with virtually no
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resources who planned to continue fostering; a careful examination of
the other characteristics of these cases might lead to new insights about
why some families plan to continue fostering, and this in turn might
lead to changes in your regression model (e.g., the addition of variables
thought to explain continuation). For example, it might be that single-
parent families with virtually no resources who planned to continue fos-
tering were fostering relatives—i.e., providing “kinship care”. The inclu-
sion of a dichotomous IV indicating whether or not a family was provid-
ing kinship care might result in a better specified regression model.

A data point may be atypical in various ways. The value of an IV
may be extremely large or small relative to other values of the IV (e.g.,
a family with 20 resources). Or the estimated value of the DV for a case
may be very different than the actual value; that is, the actual value of
the DV for a given case is unusual or unexpected given the values of the
IV for that case, and it is not explained well by your regression model
(e.g., a one-parent family with no resources who continued fostering).
In any case, extreme values may exert undue influence on the estimation
of the regression model. (By undue influence, we mean that the case is so
influential that it causes the model to be less representative of the sample
as a whole.)

Leverage

In linear regression, leverage measures how unusual a case is in terms
of the values of the IVs in the regression model. Imagine a seesaw; the
farther away from the middle you get, the more leverage you have. Cases
with greater leverage can exert a disproportionately large influence on
regression results. SPSS will compute a leverage value for each case.

We know of no clear benchmarks for leverage values with binary
logistic regression. However, index plots can be used to identify cases
with substantially different leverage values than those of other cases
(Cohen et al., 2003). An index plot is a scatter plot with case numbers
on the horizontal axis, and leverage values, for example, on the vertical
axis. Figure 2.15 shows the index plot for our multiple regression exam-
ple. As you can see, there may be a few cases that are somewhat different
from the others (i.e., the five cases greater than or equal to approximately
.05), and these cases might be worth investigating. If unusual cases are
identified, you can open the SPSS editor for the scatter plot and select
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Figure 2.15 Index Plot for Leverage Values

Element/Data Label Mode, and place the cursor over a particular data
point to discover the case number for that data point.

Use the following language to get case numbers in SPSS:
Transform > Compute, Sequence = $casenum.

Residuals

A residual is a measure of the difference between the actual and the esti-
mated values of the DV for a case. A large absolute value of a residual
indicates a case for which the model fits poorly, and possibly a case that
exerts a disproportionately large influence on the estimated regression
results. You should not just discard such cases from your analysis; rather,
you should examine them and, to the extent that you can, determine why
they fit so poorly (Long & Freese, 2006).

With logistic regression, as with linear regression, you can quantify
residuals in a number of ways. SPSS computes several different types
of residuals for each case. Agreement does not exist on the single best
type of residual to examine (e.g., Hardin & Hilbe, 2007; Long & Freese,
2006; Menard, 2001). However, there seems to be some agreement that
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standardized or unstandardized deviance residuals are useful, and SPSS
will compute these residuals for each case.

Unlike linear regression, standardized and unstandardized residuals
will not be distributed normally, and there are no fixed rules for defin-
ing what counts as a large residual (Long & Freese, 2006). Cases that
stand out as markedly different certainly warrant investigation. For stan-
dardized and unstandardized deviance residuals, values less than −2 or
greater than +2 also warrant some concern, and values less than −3
or greater than +3 merit close inspection (Menard, 2001). Figure 2.16
shows the index plot for our multiple regression example with the
standardized deviance residuals on the horizontal axis; no cases have
markedly different values from the other cases, and no residual is less
than −2 or greater than +2.

Influence

Cases whose deletion results in substantial changes to the regression coef-
ficients are said to be influential. Cook’s D (distance) measures approxi-
mate aggregate change in estimated regression parameters resulting from
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Figure 2.16 Index Plot for Standardized Deviance Residuals
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Figure 2.17 Index Plot for Cook’s Distance

deletion of a case. SPSS will compute a value of Cook’s D for each case.
Cohen et al. (2003) and others (Norusis, 2006) note that values of 1.0 or
more indicate a problematic degree of influence for an individual case.
Other authors suggest much lower cutoffs (Fox, 2008). Figure 2.17 shows
the index plot with Cook’s D on the vertical axis and case numbers on the
horizontal axis; no cases have values of 1.0 or greater. However, there may
be a few cases that are somewhat different from the others (i.e., the eight
cases greater than or equal to approximately .02), and these cases might
be worth investigating.

Summary Measures

Analogs of R2

In linear regression, R2 provides a measure of overall model fit, but there
is no exact counterpart to the linear regression R2 in logistic regression.
A number of analogs to R2 exist, but none is in standard use and each
may give different results (DeMaris, 2004). Typically, these indices are
much smaller than R2 values in linear regression, and they’re difficult to
interpret (Norusis, 2006).
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Multicollinearity

As discussed in Chapter 1, multicollinearity refers to the existence of
strong linear relationships among IVs. (The term has nothing to do with
your DV.) Multicollinearity occurs when highly related IVs are included
in a regression model as, for example, might occur when different mea-
sures of the same construct are included in a regression model, or when
demographic characteristics are highly correlated.

Multicollinearity should always be examined before interpreting sub-
stantive results from any multiple regression analysis. Unfortunately,
SPSS does not compute multicollinearity statistics for binary logistic
regression. However, since multicollinearity only involves the IVs in a
regression model, multicollinearity statistics can be computed using lin-
ear regression as described in Chapter 1 (DeMaris, 2004). In our example
with two IVs (zResources and Married), tolerance equals 1 − r2, where r2

is the squared correlation between the two IVs, and r = .65. Therefore,
tolerance equals .58 and the VIF equals 1.72 (1/.58). Neither of these is
near problematic levels (tolerance < .10 or VIF > 10).

Additional Topics

Polytomous Independent Variables

You cannot enter multicategorical IVs into a binary regression analysis.
Instead, you (or the computer) must create new variables to enter. We
will describe the most common method, dummy (indicator) coding, but
this is only one of many different methods for coding multicategorical
IVs (Cohen et al., 2003).

Whenever dummy-coded or other types of variables are used to represent a
multicategorical IV, it is important to remember that all of the variables
should be included together as a group. The statistical significance of
individual variables should be examined only if the group of variables is
statistically significant (Menard, 2001)

Dummy (Indicator) Coding

Dummy coding (also called “indicator” coding because it “indicates”
the presence or absence of a categorical attribute) is often used in lin-
ear regression to code multicategorical IVs. In linear regression, dummy
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coding contrasts the mean of a reference group with the mean of each
remaining category of the categorical IV. In binary logistic regression,
the odds of the groups are contrasted using the OR.

In the above example, in which we examined the effect of marital
status on continuation while controlling for zResources, two-parent fam-
ilies (coded 1) were compared to one-parent families (coded 0). That is,
one-parent families were the reference group against which two-parent
families were compared. The resulting OR indicated that the odds of con-
tinuing were 1.77 higher for two-parent families compared to one-parent
families, when controlling for family resources. Alternatively, you could
say that the odds of continuing increased by 1.77 for a one-unit increase
in the IV (i.e., 0–1 in this example).

Let us extend this example to an IV with more than two cate-
gories, although in a way the only difference is that there are more than
two categories to be compared to the reference category. Suppose we
are interested in whether foster families in one county are less likely
to continue fostering than those in two other counties. More specifi-
cally, suppose we hypothesize that one county, Davidson, is having an
especially difficult time with foster family retention compared to the
remaining two counties, Hamilton and Knox. So, the IV is county, which
has three categories (Davidson = 0, Hamilton = 1, and Knox = 2),
and Davidson county is the reference group against which the other two
counties are compared. You can see partial results of the binary logistic
regression analysis with these two IVs in Tables 2.14 and 2.15.

The likelihood ratio χ2 test in Table 2.14 provides an overall test
of the null hypothesis that the slopes for the set of county variables
equal 0 (or that ORs = 1); the associated p value (0.220) indicates
that this null hypothesis cannot be rejected. Typically, then you would
not interpret the ORs for the county variables, but we’ll go ahead and
do this to illustrate how the ORs are interpreted. The OR for Hamilton
county equals 1.190, indicating that the odds of continuing in Hamilton

Table 2.14 Tests of Model Effects

Type III

Source Likelihood Ratio Chi-Square df Sig.

(Intercept) .287 1 .592
County 3.029 2 .220



Table 2.15 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −.174 .2960 −.755 0.406 .347 1 .556 0.840 0.470 1.501
[County = 2] .660 .3936 −.112 1.431 2.810 1 .094 1.935 0.894 4.184
[County = 1] .174 .5191 −.843 1.192 .113 1 .737 1.190 0.430 3.293
[County = 0] 0a 1
a Set to zero because this parameter is redundant.

77
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county are 1.190 times higher than in the reference group (Davidson
county). The OR for Knox county equals 1.935, indicating that the odds
of continuing in Knox county are 1.935 times higher than in the reference
group (Davidson county). Note, however, that neither OR is statistically
significant. (This is consistent with our findings above that we cannot
reject the overall null hypothesis.)

A cross-tabulation of county and foster continuation might also
help you understand ORs for multicategorical IVs. This cross-tabulation
is in Table 2.16. The OR for Hamilton county is computed as fol-
lows: ( 0.500/0.500) /(0.457/0.543) = 1.19. The OR for Knox county is
computed as follows: (0.619/0.381) /(0.457/0.543) = 1.93. (If you have
questions about these computations refer back to the cross-tabulation
table and the associated discussion at the beginning of this chapter.)

Curvilinear Relationships

One assumption of binary logistic regression is that the relationship
between the linear combination of IVs and the logit is linear. More
generally, as discussed in Chapter 1, the relationship between g( µ) and η

is assumed to be linear in the regression models discussed in this book.
Several different methods may be used to test for curvilinearity with

binary logistic regression (DeMaris, 2004; Hosmer & Lemeshow, 2000;
Norusis, 2006), and oftentimes the inclusion of nonlinear terms is of the-
oretical interest. For example, suppose we hypothesize that the number
of family resources positively influences continuation, but only up to a
certain point, beyond which the number of resources has no additional

Table 2.16 Plan to Continue Fostering as a Function of County of Residence

County

(0) Davidson (1) Hamilton (2) Knox Total

Continue (0) Not Continue Count 25 11 24 60
Fostering % within

County 54.35 50.00 38.10 45.80
(1) Continue Count 21 11 39 71

% within
County 45.65 50.00 61.90 54.20

Total Count 46 22 63 131
% within
County 100.00 100.00 100.00 100.00
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effect. (You might think of this as a threshold relationship—for exam-
ple, as long as you have the average number of resources, adding more
does not increase your probability of continuing.) This is an example of
what is known as a quadratic relationship. You test this relationship in
much the same way you would with linear regression (DeMaris, 2004;
Hosmer & Lemeshow, 2000). That is, create and enter two new variables
into the regression equation: (1) number of resources centered (cRe-
sources); and (2) number of resources centered and squared (cResources2).
If cResources2 is statistically significant, you would conclude that a curvi-
linear (quadratic) relationship exists, and you would describe the form
of this relationship. If not, reestimate the model without this curvilinear
term and interpret results of the “reduced” model.

Results of this analysis (not shown) indicate that cResources2 is not
statistically significant. If it were statistically significant, a useful way to
understand and depict the form of the relationship would be to create a
graph with cResources on the horizontal axis and estimated values of the
logit, odds, or probabilities on the vertical axis. As shown in Figure 2.18
(in terms of logits), the number of resources has a positive relationship
with continuation up to about one or two resources above the mean (0 on
the scatter plot, corresponding to 6.60 resources), and then the direction
of the relationship is reversed.

Figures 2.19 and 2.20 indicate essentially the same relationship as
Figure 2.18, but odds and probabilities are more easily interpreted and
understood. For example, the odds of continuing increase by a factor
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Figure 2.18 Curvilinear Relationship between Centered Resources and Plans to
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Continue Fostering (Odds)
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Figure 2.20 Curvilinear Relationship between Centered Resources and Plans to
Continue Fostering (Probabilities)

of 2.21 in going from two resources below the mean to two above (i.e.,
OR = 2.21 = 1.72/0.78) (although if the relationship is curvilinear,
the OR will not be constant across different values of the IV). The cor-
responding probability of continuing goes from .44 to .63 as shown in
Figure 2.20.

Interactions

As discussed in Chapter 1, an interaction occurs when the effect of one
IV (focal variable) is conditional on the values of one or more other IVs
(moderator variables). The focal variable is the IV whose effect on the DV
is thought to vary as a function of the moderator variable.
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You test interactions in binary logistic regression in much the same
way you do in linear regression, but they are a bit more work to present
and interpret, given the nonlinear relationship between the IVs and
the odds and probabilities (Jaccard, 2001). For example, suppose you
hypothesize that the effect of resources (the focal variable) is different for
one- and two-parent families (marital status is the moderator variable).
It may be that resources have a relatively large influence on continuation
for one-parent families, but less of an effect for two-parent families. To
test this possibility, create and enter two new variables into the regres-
sion equation: (1) cResources (number of resources centered); and (2)
MaritalXcResources (marital status multiplied by number of resources
centered). If MaritalXcResources is statistically significant, you would
conclude that the effect of resources is moderated by marital status (i.e.,
these two variables interact), and you would examine the form of this
relationship. If not, reestimate the model without this interaction term
and interpret results of the “reduced” model.

Results of this analysis (not shown) indicate no statistically signifi-
cant interaction. However, if the interaction were statistically significant,
a useful way to understand and depict the form of the relationship would
be to create a scatter plot with resources centered (the focal variable) on
the horizontal axis, estimated logits, odds, or probabilities on the vertical
axis, and separate lines representing the relationships between number
of resources centered and continuation for one- and two-parent fami-
lies. (See Figures 2.21, 2.22, and 2.23, respectively.) In the absence of an
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Figure 2.21 Effect of Centered Resources on Plans to Continue Fostering (Logits)
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Figure 2.22 Effect of Centered Resources on Plans to Continue Fostering (Odds)
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Figure 2.23 Effect of Centered Resources on Plans to Continue Fostering
(Probabilities)

interaction, the separate lines for one- and two-parent families will be
parallel for the plot of the logits, but not necessarily for the probabilities
or odds, and the ORs relating the number of resources to continuation
will be the same regardless of marital status.

As shown in Figure 2.21, visually the slope of the regression lines is
steeper for one-parent families, implying that the effect of resources is
stronger for these families. However, this interaction is not statistically
significant and so normally you would not construct and interpret these
figures; we are merely doing this for illustrative purposes.

Figures 2.22 and 2.23 indicate essentially the same relationship as
Figure 2.21, but odds and probabilities are more easily interpreted and
understood. For example, for one-parent families, the odds of continuing
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increase by a factor of 2.38 in going from two resources below the mean
to two above (i.e., OR = 2.38 = 1.50/0.63); for two-parent families, the
odds only increase by a factor of 1.26 (i.e., OR = 1.26 = 1.75/1.39). The
corresponding probability of continuing, as shown in Figure 2.23, goes
from .39 to .60 (an increase of .21) for one-parent families, and from .58
to .64 (an increase of .06) for two-parent families.

In addition to the graphs, sometimes it may also be useful to report
the results of interactions in tables. The data tables associated with the
above figures illustrate one way this could be done.

Sample Size

When trying to determine sample size for logistic regression, you must
be concerned about the number of events in the smaller of the two cate-
gories of your DV, in addition to total sample size. Some sources advise
at least 10 events for each IV (Peduzzi, Concato, Kemper, Holford, &
Feinstein, 1996), although more recent research suggests that 5–9 events
may be sufficient under some circumstances, and 10–16 events may be
insufficient under other circumstances (Vittinghoff & McCulloch, 2006).
Statistical power and the precision of parameter estimates should also
be considered carefully in determining sample size. Dattalo (2008) pro-
vides a good practical discussion of these issues for logistic regression
and a wide range of other statistical methods, including a discussion of
available software.

Overview of the Process

Finally, we conclude with an enumeration of the steps involved in a
binary logistic regression analysis, and more generally in all of the
regression models discussed in this book:

• Select IVs and decide whether to test curvilinear relationships or
interactions.

• Carefully screen and clean data, as needed.
• Transform and code variables, as needed.
• Estimate regression model.
• Examine assumptions necessary to estimate binary regression model,

examine model fit, and revise the model as needed.
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• Test hypotheses about the overall model and specific model
parameters, such as ORs.

• Create tables and graphs to present results in the most meaningful
and parsimonious way.

• Interpret results of the estimated model in terms of logits,
probabilities, odds, and odds ratios, as appropriate.

Additional Regression Models for Dichotomous Dependent Variables

We started this chapter by noting that binary logistic regression is one
possible method for analyzing the effects of multiple IVs on a dichoto-
mous DV, and a versatile and widely used one at that. Binary probit
regression is a related method that can be used in much the same circum-
stances as binary logistic regression (Hardin & Hilbe, 2007; Hosmer &
Lemeshow, 2000). The choice between these two models is largely one of
convenience and discipline-specific convention, because the substantive
results are generally indistinguishable. Many researchers prefer binary
logistic regression because it provides odds ratios whereas probit regres-
sion does not, and binary logistic regression comes with a wider variety
of fit statistics.

Complementary log-log (clog-log) and log-log models are alterna-
tives to binary logistic and probit models that may be useful when the
probability of the event is very small or very large (Hardin & Hilbe, 2007).
Discriminant analysis is an alternative to binary logistic regression, but it
has much more restrictive assumptions (Stevens, 2001). Loglinear analy-
sis is another alternative when all of the variables are categorical (Agresti,
2007).

Additional Readings and Web Links

We can recommend a number of good books and chapters in books
that cover binary logistic regression in some detail. Chapters on binary
logistic regression in Cohen et al. (2003), DeMaris (2004), Fox (2008),
Hoffmann (2004), Long and Freese (2006), and Norusis (2006) are useful
places to start. Books by Hosmer and Lemeshow (2000), Jaccard (2001),
and Pampel (2000) are especially useful.

Numerous published articles provide good examples of the applica-
tion of binary logistic regression, indeed far too many to list here. For
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example, Rishel, Greeno, Marcus, Shear, and Anderson (2005) used logis-
tic regression to test the predictive ability of a widely used psychiatric
screening tool for children in a community mental health setting. Seven
logistic regression models were computed, using CBCL subscale scores
as IVs in each model, and seven diagnoses (present or not) derived from
structured interviews as the DVs. Litwin and Zoabi (2004) also used
logistic regression to predict whether elderly Arab Israelis were abused
or not (DV), based on socio-demographic, dependency, modernization,
and social integration (IV) variables.

You might find the following Web sites useful resources for binary
logistic regression:

http://www2.chass.ncsu.edu/garson/PA765/logistic.htm
http://www.ats.ucla.edu/STAT/spss/topics/logistic_regression.htm
http://www.statisticssolutions.com/Logistic_Regression.htm
http://www.leeds.ac.uk/iss/documentation/tut/tut116/tut116-5.html

SPSS Instructions

Cross-Tabulation

• Start SPSS 16 and open the Chapter 2 data set.
• From the menus choose:

Analyze
Descriptive Statistics
Crosstabs. . .

• Select the DV (e.g., Continue Fostering) and click the arrow button
to move it to Row(s).

• Select the IV (e.g., Married) and click the arrow button to move it to
Column(s).

• Click Statistics and then click Chi-square. Click Continue.
• Click Cells and then click Column. Click Continue.
• Click OK to get the results.

z-scores

• Start SPSS 16 and open the Chapter 2 data set.
• From the menus choose:

Analyze

http://www2.chass.ncsu.edu/garson/PA765/logistic.htm
http://www.ats.ucla.edu/STAT/spss/topics/logistic_regression.htm
http://www.statisticssolutions.com/Logistic_Regression.htm
http://www.leeds.ac.uk/iss/documentation/tut/tut116/tut116-5.html
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Descriptive Statistics
Descriptives . . .

• Select the variable to be transformed (e.g., Resources) and click the
arrow button to move it to Variable(s).

• Click Save standardized values as variables to save new variables as
z-scores.

• Click OK to get the results.

Note: After you run the analysis save the data set, which now contains
new transformed variable(s).

Binary Logistic Regression (GZLM)

There are two ways to estimate binary logistic regression with SPSS. Let’s
start with SPSS GZLM, and then we’ll turn to instructions for binary
logistic regression with SPSS Regression. However, the only substantive
difference is that SPSS Regression lets you enter IVs sequentially.

• Start SPSS 16 and open the Chapter 2 data set.
• From the menus choose:

Analyze
Generalized Linear Models
(GZLM) Generalized Linear Models . . .

Generalized Linear Model Dialog Boxes

SPSS GZLM contains nine dialog boxes (Type of Model, Response, Predic-
tors, etc.). When you first open GZLM you’ll see the Type of Model dialog
box illustrated in Figure 2.24. To select another dialog box, click the asso-
ciated tab. When you are finished, click OK to get the results. Click Help
to get a more detailed description of options for a particular dialog box.
(Note: the bold flush-left headings below correspond to the nine tabs
across the top of the dialog box.)

Type of Model

• Click Binary Logistic.
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Figure 2.24 Generalized Linear Model Dialog Box: Type of Model

Response

• Select a dichotomous DV (e.g., ContinueFostering) and click the
arrow button to move it to Dependent Variable.

Note: The default reference category for the DV is the last (highest) value
of the DV (e.g., 1). Typically you’ll want to change this to the first (lowest)
value (e.g., 0). To do this, click Reference Category and click First (lowest
value).

Predictors

• Select categorical IVs (e.g., Married, County) and click the arrow
button to move them to Factors.

• For a polytomous variable, click Options and click Ascending or
Descending to use the last or first category, respectively, as the
reference category for dummy coding. For a dichotomous variable
coded as 0 and 1 typically, Descending should be used.
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• Select quantitative IVs (e.g., Resources) and click the arrow button to
move them to Covariates.

Model

• Select factors and covariates included as main effects in the model
and click the arrow button to move them to Model.

Note: You can also use this dialog box to create interaction terms. Click
Help to get a description of how to do this.

Estimation

• You don’t need to change default settings.

Statistics

• Click Likelihood ratio, listed under Chi-square Statistics.
• Click Include exponential parameter estimates, listed under Print.

Estimated Marginal (EM) Means

• You don’t need to change default settings.

Save

• Click Predicted value of mean response to save predicted
probabilities.

• Click Predicted value of linear predictor to save predicted logits.
• Click Cook’s distance to save Cook’s distance.
• Click Leverage value to save leverage values.
• Click Deviance residual to save deviance residuals.
• Click Standardized deviance residual to save standardized deviance

residuals.

Note: After you run the analysis, save the data set, which now con-
tains new variables that you can use to create index plots and for other
purposes.
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Note: SPSS does not have an option to compute odds for each case. How-
ever, odds = p/1− p. So, after using SPSS to compute and save estimated
probabilities for each case (i.e., Predicted value of mean response), you
can use SPSS to compute the odds for each case. For example, if the vari-
able name for probabilities is MeanPredicted, you could use the following
syntax to compute the odds for each case:

compute odds = MeanPredicted/( 1 − MeanPredicted ).

Binary Logistic Regression (Regression)

• Start SPSS 16 and open the Chapter 2 data set.
• From the menus choose:

Analyze
Regression
Binary Logistic . . .

• Select a dichotomous DV (e.g., ContinueFostering), and click the
arrow button to move it to Dependent.

• Select categorical and quantitative IVs (e.g., zResources, Married),
and click the arrow button to move them to Covariates.

• Click Next to enter IVs sequentially, if desired.

• Click Categorical and then select categorical IVs and click the arrow
button to move them to Categorical Covariates.

• Click Indicator and select the type of coding for each categorical
IV (First click Help to get a description of possible contrasts.).

• Click either First or Last for the reference category, if appropriate.
• Click Change, and then Continue.

• Click Save and then click Probabilities, Cook’s, Leverage values,
Studentized, and Deviance. Click Continue.

• Click Options and then click CI for exp(B). Click Continue.
• Click OK to get the results.

Note: After you run the analysis save the data set, which now con-
tains new variables that you can use to create index plots and for other
purposes.



90 Multiple Regression with Discrete Dependent Variables

Excel Workbooks

The names of the following seven workbooks correspond to the variables
used in the associated binary logistic regression analyses. These work-
books show how we created the figures reported in this chapter for the
associated analyses, as well as additional related figures not included.

• Married.xls
• Resources.xls
• zResources.xls
• cResources.xls
• Married & zResources.xls
• cResources & cResources2.xls
• Married, cResources, & MarriedXcResources.xls

This workbook shows how we created the data for Table 2.8.

• p odds logit.xls

This workbook shows how we created the data and graphs for Figures 2.9,
2.10, and 2.11.

• x logit odds p.xls

This workbook lets you compute the difference between two likelihood
ratio χ2 values in order to compare full and reduced models. Enter your
data into the highlighted cells and the difference between the two likeli-
hood ratio χ2 values, the difference between the degrees of freedom, and
the associated p value will be computed automatically.

• Chi-square Difference.xls



3

Regression with a Polytomous
Dependent Variable

Y our investigation of interventions with mothers leaving public wel-
fare is designed to enhance their ability to remain off the welfare

rolls. What is your dependent variable? Some similar studies have used a
dichotomous variable indicating return to welfare or not, but you real-
ize that this variable would not capture the success of your intervention,
so you construct a DV that indicates the reason for leaving welfare:
marriage, stable employment, a move to another state, incarceration, or
death.

Polytomous variables such as the outcome variable in the above sce-
nario have three or more unordered categories. Often, these variables are
called multicategorical or multinomial (the assumed underlying distribu-
tion). Dichotomous DVs probably are more common, but social workers
and those in related areas frequently conduct research in which the DV
is polytomous. For example, we have investigated whether foster home
applicants are subsequently licensed to foster, discontinue the applica-
tion process prior to licensure, or are rejected for licensure (Rhodes et al.,
2003a). Choi (2003) looked at predictors of changes in living arrange-
ments of the elderly: newly coresiding with their children, no longer
coresiding, or residing in institutions.

This chapter describes the use of multinomial logistic regression
(also known as polytomous or nominal logistic or logit regression or the

91



92 Multiple Regression with Discrete Dependent Variables

discrete choice model), a versatile and popular method for modeling rela-
tionships between a polytomous DV and multiple IVs (Borooah, 2001;
DeMaris, 2004; Hoffmann, 2004; Hosmer & Lemeshow, 2000; Long,
1997; Norusis, 2007). Multinomial logistic regression is a generalization
of binary logistic regression to a polytomous DV, and when it is applied
to a dichotomous DV it is identical to binary logistic regression (Hardin
& Hilbe, 2007; Long 1997). So, the basic issues involved in examining the
effect of IVs on polytomous DVs are the same as those we discussed in
Chapter 2.

Chapter Example

In this chapter, we will discuss and illustrate multinomial logistic regres-
sion by examining variables that influence the effort needed to interview
and track 246 mothers of newborns over time (Combs-Orme, Cain, &
Wilson, 2004; Wilson, 2006). The DV, interview tracking effort (vari-
able name TrackCat), consists of three mutually exclusive and exhaustive
categories of mothers: (1) 149 (60.60%) easy-to-interview-and-track
mothers (Easy); (2) 54 (22.00%) difficult-to-track mothers who required
more telephone calls (MoreCalls); and (3) 43 (17.48%) difficult-to-track
mothers who required more unscheduled home visits (More Visits).

We will analyze the effects of maternal race (variable name Race)
and number of years of education (variable name Education) on inter-
view tracking effort. Race is a dichotomous variable, with European
American mothers coded as 0 and African American mothers coded
as 1. The sample contains 143 (58.1%) European Americans and 103
(41.9%) African Americans. Number of years of education has a fairly
normal distribution, with M = 12.29 (SD = 2.14) and a range from 8
through 17.

Cross-Tabulation and Chi-Squared Test

We start by examining a simple research question: What is the rela-
tionship between race and interview tracking effort? A cross-tabulation
table and chi-squared test let us answer this question and provide a
good starting point for understanding multinomial logistic regression.
The relationship between Race and TrackCat is statistically significant
[χ2( 2, N = 246) = 8.69, p = .013]. Probabilities, odds, and ORs can
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help us understand our results more fully, but first we need to decide on
a reference category.

In binary logistic regression, the category of the DV coded 0 implic-
itly serves as the reference category. In multinomial logistic regression,
we need to select a reference category explicitly. We’ll use Easy as the ref-
erence category because we were interested in factors that make it more
difficult to track. So, we’ll compare More Calls and More Visits to Easy
when we compute probabilities, odds, and ORs.

We start with the probability of More Calls. As you can see in
Table 3.1, 30 European Americans required More Calls and 96 were Easy,
so the probability of More Calls equals .24 [ 30/( 30+96) ]. In contrast, 24
African Americans required More Calls and 53 were Easy, so the proba-
bility of More Calls equals .31 [ 24/( 24+53) ]. Notice that the probability
of More Calls is somewhat higher for African Americans.

We now turn to the probability of More Visits. As you can see in
Table 3.1, 17 European Americans required More Visits and 96 were Easy,
so the probability of More Visits equals .15 [ 17/( 17 + 96) ]. In contrast,
26 African Americans required More Visits and 53 were Easy, so the prob-
ability of More Visits equals .33 [ 26/( 26 + 53) ]. The probability of More
Visits is considerably higher for African Americans.

Table 3.1 Interview Tracking Status as a Function of Race

Race

European
American

African
American Total

Interview
Tracking
Effort
Categories

(1) Easy Count
% within
Race

96 53 149
67.13 51.46 60.57

(2) More
Calls

Count
% within
Race

30 24 54
20.98 23.30 21.95

(3) More
Visits

Count
% within
Race

17 26 43
11.9 25.24 17.48

Total Count
% within
Race

143 103 246
100.00 100.00 100.00
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Now, let us calculate odds and ORs from the cross-tabulation. The
odds that mothers require More Calls, compared to Easy, are .3125 (i.e.,
0.2098/0.6713) for European Americans and .4528 (i.e., 0.2330/0.5146)
for African Americans. The OR equals 1.45 (i.e., .4528 /.3125), indicating
that the odds of requiring More Calls, compared to being Easy, are higher
for African Americans by a factor of 1.45. You could also say that being
African American increases the odds of requiring more calls, compared
to being easy-to-track, by 45% [ 100( 1.45 − 1) ] 1.45 − 1.

The odds that mothers require more visits, compared to Easy, are
.1771 (i.e., 0.1189/0.6713) for European Americans and .4905 (i.e.,
0.2524/0.5146) for African Americans. The OR equals 2.77 (i.e., .4905/
.1771), indicating that the odds of requiring more visits, compared to
being easy-to-track, are higher for African Americans by a factor of
2.77. You could also say that being African American increases the odds
of requiring more visits, compared to being easy-to-track, by 177%
[ 100( 2.77 − 1)].

One Dichotomous Independent Variable

Multinomial logistic regression is identical to binary logistic regression
when the DV has only two values. Indeed, binary logistic regression can
be seen as a special case of the multinomial logistic model in which the
DV has only two categories (Hardin & Hilbe, 2007; Long, 1997).

Multinomial logistic regression can be thought of as a set of binary
logistic regression models that are estimated simultaneously. Just as with
binary logistic regression, one value of the DV is designated as the refer-
ence category, and we selected Easy. In binary and multinomial logistic
regression, each category of the DV is compared to the reference cate-
gory. However, multinomial logistic regression involves two or more such
comparisons, and a separate equation is estimated for each comparison.
This makes it a bit more difficult to interpret multinomial logistic regres-
sion results, but it follows the same basic ideas we discussed in Chapter 2
for binary logistic regression.

In our example, two binary regression models are estimated simul-
taneously and, as in Chapter 2, L symbolizes the estimated logit. With
multinomial logistic regression, the number of binary models estimated
is one fewer than the number of categories of the DV. (Again, this is just
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like binary logistic regression where the DV has two categories and one
model is estimated.)

Tables 3.2, 3.3, and 3.4 show partial results of the multinomial logistic
regression. From Table 3.4, the estimated multinomial logistic regression
equations are:

L(More Calls vs. Easy) = −1.163+( .371) ( XRace)

L(More Visits vs. Easy) = −1.731+( 1.019) ( XRace)

As shown in Table 3.2, the relationship between Race and Track-
Cat is statistically significant. This likelihood ratio chi-squared test
provides a test of the overall null hypothesis that all slopes equal 0
( β(Race, More Calls vs. Easy) = β(Race, More Visits vs. Easy) = 0). Table 3.3 provides
a likelihood ratio χ2 test that each of the two slopes for race equals 0
( β(Race, More Calls vs. Easy) = β(Race, More Visits vs. Easy) = 0). With a single IV,
these two likelihood ratio χ2 tests are identical.

Table 3.4 provides a Wald test for each slope. We see no statisti-
cally significant relationship between Race and More Calls compared to
Easy, but we do identify a statistically significant relationship between
More Visits and Easy. The OR for this latter comparison is 2.77, indi-
cating that the odds of More Visits, compared to Easy, are higher for
African Americans by a factor of 2.77. You could also say that being

Table 3.2 Model Fitting Information

Model Fitting Criteria Likelihood Ratio Tests

Model −2 Log Likelihood Chi-Square df Sig.

Intercept Only 27.610
Final 18.990 8.620 2 .013

Table 3.3 Likelihood Ratio Tests

Model Fitting Criteria Likelihood Ratio Tests

Effect −2 Log Likelihood of Reduced Model Chi-Square df Sig.

Intercept 90.575 71.585 2 .000
Race 27.610 8.620 2 .013



Table 3.4 Parameter Estimates

95% CI Exp(B)

Interview Tracking
Effort Categoriesa B Std. Error Wald df Sig. Exp(B)

Lower
Bound

Upper
Bound

(2) More Calls Intercept −1.163 .209 30.924 1 .000
Race .371 .323 1.319 1 .251 1.449 .769 2.729

(3) More Visits Intercept −1.731 .263 43.282 1 .000
Race 1.019 .356 8.203 1 .004 2.770 1.379 5.564

a The reference category is: (1) Easy.
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African American increases the odds of requiring more visits, compared
to being easy-to-track, by 177% [ 100( 2.77 − 1)]. (This is the same OR
we calculated above from the cross-tabulation.) Finally, note that as in
binary logistic regression, ORs are exponentiated values of the slopes
(i.e., e.371 = 1.45 and e1.019 = 2.77).

Estimated values of logits, odds, and probabilities can be calculated
using the estimated multinomial regression equations in the same way
as for binary logistic models, as described in Chapter 2. For example,
estimated logits for African Americans (X = 1) are:

L(More Calls vs. Easy) = −.792 = −1.163+(.371) (1)

L(More Visits vs. Easy) = −.712 = −1.731+(1.019) (1)

Figure 3.1 illustrates the estimated logits. Logits for More Calls and More
Visits are higher for African Americans (although the former relationship
is not statistically significant).

Estimated odds are obtained by exponentiating the logits. For exam-
ple, estimated odds for African Americans are:

Odds(More Calls vs. Easy) = e−.792 = .45

Odds(More Visits vs. Easy) = e−.712 = .49
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Figure 3.1 Effect of Race on Interview Tracking Effort (Logits)
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Figure 3.2 Effect of Race on Interview Tracking Effort (Odds)

See Figure 3.2 for the estimated odds. The odds of More Calls and More
Visits are higher for African Americans (although the former relationship
is not statistically significant). Compare the odds shown in Figure 3.2 to
those computed using the cross-tabulation and note that they are exactly
the same.

Estimated probabilities are obtained using the inverse link function.
For example, estimated probabilities for African Americans are:

p̂(More Calls vs. Easy) = e−.792

1 + e−.792
= .31

p̂(More Visits vs. Easy) = e−.712

1 + e−.712
= .33

Figure 3.3 shows the estimated probabilities. The probabilities of More
Calls and More Visits are lower for European Americans (although the
former relationship is not statistically significant). Compare the proba-
bilities in Figure 3.3 to those computed using the cross-tabulation and
note that they are exactly the same.

Reference Category

In binary and multinomial logistic regression, the reference category
(sometimes called a baseline, base, or comparison category) usually is the
absence of an event or characteristic, although this is not necessary and
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it depends on the research question. In Chapter 2, we used discontinue
fostering as the reference category because we formulated the research
question in terms of variables that influence families to continue fostering.
However, we could just as easily have formulated our research question in
terms of variables that influence families to discontinue fostering. In our
current example, we used easy-to-track as the reference category because
we were interested in factors that make it more difficult to track.

Your choice of a reference group affects your results. For example,
suppose we use More Visits as the reference group; our resulting compar-
isons would be Easy compared to More Visits and More Calls compared
to More Visits. Table 3.5 shows partial regression results with More Visits
as the reference category.

When we used Easy as the reference group, we did not compare More
Calls to More Visits, so the comparison of More Calls to More Visits is
an entirely new comparison. Also, when we used Easy as the reference
group we compared More Visits to Easy, but when we used More Visits
as the reference group we compared Easy to More Visits. So, as you will
notice in Table 3.5, the sign of the slope for Easy compared to More Visits
(−1.019) is reversed, and the OR is the reciprocal (1/2.77 = 0.361).

What should you do if you have an interest in all possible compar-
isons (e.g., More Calls and Easy, More Visits and Easy, and More Calls



Table 3.5 Parameter Estimates

95% CI Exp(B)

Interview Tracking
Effort Categoriesa B Std. Error Wald df Sig. Exp(B)

Lower
Bound

Upper
Bound

(1) Easy Intercept 1.731 .263 43.282 1 .000
Race −1.019 .356 8.203 1 .004 .361 .180 0.725

(2) More Calls Intercept .568 .304 3.501 1 .061
Race −.648 .415 2.437 1 .118 .523 .232 1.180

a The reference category is: (3) More Visits.
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and More Visits), such as might be the case if no natural reference cat-
egory exists? Simply run the multinomial logistic regression twice, each
time with a different reference category, as we did above.

The number of comparisons possible in a multinomial logistic
regression is m( m − 1) /2, where m is the number of categories in the
DV, so for our three-category variable we can conduct three possible
comparisons. However, there are only m−1 nonredundant comparisons
(DeMaris, 2004). For example, as we saw above when we used More Vis-
its as the reference category, Easy was again compared to More Visits, as it
was when we used Easy as the reference category, although the direction
of the slope and OR was reversed.

One Quantitative Independent Variable

The use and interpretation of multinomial logistic regression are much
the same with quantitative and categorical IVs. We will start with a simple
example of a single quantitative IV, using number of years of education
as the IV. The research question is this: What is the relationship between
number of years of education and tracking effort?

See Tables 3.6 and 3.7 for partial results of this analysis. As Table 3.6
shows, the overall relationship between education and TrackCat is sta-
tistically significant. However, as shown in Table 3.7, education has a
statistically significant relationship with More Visits compared to Easy,
but not with More Calls compared to Easy. More specifically, we see
a negative relationship between education and More Visits versus Easy
(OR = 0.76). That is, for every additional year of education the
odds of needing more visits, compared to being easy-to-track, decrease
by a factor of .76. Alternatively, you could say the odds decrease by
24.1%[100( 0.759 − 1)].

Table 3.6 Likelihood Ratio Tests

Model Fitting Criteria Likelihood Ratio Tests

Effect −2 Log Likelihood of Reduced Model Chi-Square df Sig.

Intercept 77.974 3.675 2 .159
Education 85.083 10.784 2 0.005



Table 3.7 Parameter Estimates

95% CI Exp(B)
Interview Tracking
Effort Categoriesa B Std. Error Wald df Sig. Exp(B) Lower Bound Upper Bound

(2) More Calls Intercept .583 0.962 .367 1 .545
Education −.130 0.078 2.774 1 .096 .878 .754 1.023

(3) More Visits Intercept 2.077 1.113 3.484 1 .062
Education −.276 0.094 8.660 1 .003 .759 .631 0.912

a The reference category is: (1) Easy.
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Figure 3.4 Effect of Education on Tracking Effort (Logits)

Estimated logits, odds, and probabilities can be calculated using the
estimated multinomial regression equations in the same way as described
above for race. For example, estimated logits for mothers with a high
school education or equivalent (X = 12) are:

L(More Calls vs. Easy) = −0.977 = 0.583 + ( −.130) ( 12)

L(More Visits vs. Easy) = −1.235 = 2.077 + ( −.276) ( 12)

Figure 3.4 shows the estimated logits. Estimated logits for More Calls and
More Visits, compared to Easy, decrease with education.

Estimated odds are obtained by exponentiating the estimated logits.
For example, estimated odds for mothers with a high school education
or equivalent (X = 12) are:

Odds(More Calls vs. Easy) = e−.977 = 0.38

Odds(More Visits vs. Easy) = e−1.235 = 0.29

See Figure 3.5 for the estimated odds. You can see that the odds for More
Calls and More Visits, compared to Easy, decrease with education. More
specifically, for every additional year of education the odds of More Vis-
its, compared to Easy, decrease by a factor of .76 (i.e., OR = 0.76), or
24.1%. For each additional 4 years of education (e.g., eighth grade to high
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Figure 3.5 Effect of Education on Tracking Effort (Odds)

school, high school to college graduate) the odds decrease by a factor of
.33 (i.e., OR = 0.33 = e(4)(B) = e(4)(−.276)), or 67%.

Estimated probabilities are obtained using the inverse link function.
For example, estimated probabilities for mothers with a high school
education or equivalent (X = 12) are:

p̂(More Calls vs. Easy) = e−.977

1 + e−.977
= .27

p̂(More Visits vs. Easy) = e−1.235

1 + e−1.235
= .22

Figure 3.6 shows the estimated probabilities. Probabilities for More Calls
and More Visits, compared to Easy, decrease with education. More specif-
ically, the probability of More Visits goes from .47 for mothers with an
eighth- grade education, to .22 for mothers with a high school educa-
tion or equivalent, to .07 for mothers with education beyond 4 years of
college.

Multiple Independent Variables

Here we will build on the previous two examples in this chapter to illus-
trate multiple multinomial logistic regression. Earlier, we saw that being
African American was associated with the need for more visits, but not
more calls, relative to easy-to-track. We also saw that education was
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Table 3.8 Model Fitting Information

Model Fitting Criteria Likelihood Ratio Tests

Model −2 Log Likelihood Chi-Square df Sig.

Intercept Only 139.216
Final 121.887 17.328 4 .002

Table 3.9 Likelihood Ratio Tests

Model Fitting Criteria Likelihood Ratio Tests

Effect −2 Log Likelihood of Reduced Model Chi-Square df Sig.

Intercept 123.368 1.480 2 .477
Race 128.432 6.544 2 .038
Education 130.595 8.708 2 .013

associated inversely with more visits, but not more calls, relative to easy-
to-track. Oftentimes, race and education are correlated, so the research
question examined here is this: What is the relationship between race and
interview tracking effort, when controlling for education?

See Tables 3.8, 3.9, and 3.10 for partial results of this analy-
sis. The null hypothesis that all four slopes equal 0 can be rejected
(β(Race, More Calls vs. Easy) = β(Race, More Visits vs. Easy) = β(Ed, More Calls vs. Easy) =
β(Ed, More Visits vs. Easy) = 0), as shown in Table 3.8. The null hypothesis that
the two slopes for race equal 0 can be rejected, and the null hypothesis



Table 3.10 Parameter Estimates

95% CI Exp(B)

Interview Tracking
Effort Categoriesa B Std. Error Wald df Sig. Exp(B)

Lower
Bound

Upper
Bound

(2) More Calls Intercept .345 .993 .120 1 .729
Race .307 .326 .882 1 .348 1.359 0.717 2.576
Education −.120 .078 2.352 1 .125 0.887 0.760 1.034

(3) More Visits Intercept 1.416 1.176 1.448 1 .229
Race .910 .362 6.330 1 .012 2.485 1.223 5.052
Education −.258 .097 7.057 1 .008 0.773 0.639 0.935

a The reference category is: (1) Easy.
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that the two slopes for education equal 0 can also be rejected, as shown
in Table 3.9. That is, race is related to interview tracking effort when
controlling for education, and education is related to interview tracking
effort when controlling for race.

Race has a statistically significant relationship with More Visits com-
pared to Easy but not More Calls compared to Easy, as shown in
Table 3.10. More specifically, the odds of more visits are higher for
African Americans by a factor of 2.48, when controlling for education
(or you could say that the odds are 148% higher). Notice that the OR of
2.48 is not that much different than the OR of 2.77 found above when
education was not controlled.

Education has a statistically significant relationship with More Vis-
its compared to Easy but not More Calls compared to Easy, as shown in
Table 3.10. More specifically, for every additional year of education the
odds of more visits decrease by a factor of .77, when controlling for race
(or you could say the odds decrease by 23%). Notice that the OR of .77
is virtually identical to the OR of .76 found above when race was not
controlled.

From Table 3.10, the multinomial logistic regression equations are:

L(More Calls vs. Easy) = .345 + ( .307) ( XRace) + ( −.120) ( XEd)

L(More Visits vs. Easy) = 1.416 + ( .910) ( XRace) + ( −.258) ( XEd)

These can be used to compute logits, odds, ORs, and probabilities, as dis-
cussed above. To understand and present results of a multinomial logistic
regression, you should examine the odds, ORs, and probabilities for sub-
stantively informative values (e.g., high school education or equivalent),
and for substantively important types of cases (e.g., European Ameri-
cans and African Americans with a high school education or equivalent).
Or, for continuous IVs without inherently informative substantive val-
ues, you might compute and report estimated probabilities using the
mean and one or two standard deviations above and below the mean
(or the 25% and 75% percentiles), fixing all other IVs at selected values
(Hoffmann, 2004; Long & Freese, 2006).

Odds for cases with different values of the IVs can be presented in
tables. Table 3.11 shows the estimated odds for European Americans and
African Americans with three different substantively meaningful levels
of education. From this table, you can see, for example, that the odds of
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Table 3.11 Estimated Odds as a Function of Education and Race

Estimated Odds Education

Race 8th Grade High School College

European American
More Calls .54 .33 .21
More Visits .52 .19 .07

African American
More Calls .73 .45 .28
More Visits 1.30 .46 .17

needing more visits are better than even for African Americans with an
eighth-grade education (odds = 1.30), but low for mothers of any race
with a college education.

In addition to presenting odds in tables, it is often useful to present
them in figures, such as Figures 3.7 and 3.8, which show the effect of
education for European Americans and African Americans, respectively.
The larger the number of IVs, though, the more difficult this becomes,
and only a limited number of IVs can be represented meaningfully on
a single graph. One way to do this is to plot the relationship of one IV
from its minimum to maximum value, while all other variables are fixed
at their means (or at 0 or 1 for dichotomous IVs). Another strategy is
to estimate the odds for selected sets of values of IVs that correspond to

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Years of education

Od
ds

More calls 0.54 0.48 0.42 0.38 0.33 0.30 0.26 0.23 0.21 0.18

More visits 0.52 0.40 0.31 0.24 0.19 0.14 0.11 0.09 0.07 0.05

8 9 10 11 12 13 14 15 16 17

Figure 3.7 Effect of Education on Tracking Effort for European-Americans
(Odds)



Regression with a Polytomous Dependent Variable 109

0.00
0.20

0.60
0.80

0.40

1.00
1.20
1.40

Years of education

Od
ds

More calls 0.73 0.65 0.58 0.51 0.45 0.40 0.36 0.32 0.28 0.25
More visits 1.30 1.01 0.78 0.60 0.46 0.36 0.28 0.21 0.17 0.13

8 9 10 11 12 13 14 15 16 17

Figure 3.8 Effect of Education on Tracking Effort for African-Americans
(Odds)

ideal or typical types in the population (e.g., African Americans with a
high school education or equivalent) (Long, 1997).

Notice in the above figures that the odds of More Calls and More
Visits decrease with education, but the absolute values of the odds and
the pattern of change are different for European Americans and African
Americans. Also, note that information from such figures can be used to
compute various ORs of importance. For example, for college-educated
African Americans, the odds of needing More Visits are one-third the
odds for European Americans with an eighth-grade education (OR =
0.33 = 0.17/0.52). Or, for college-educated African Americans, the odds
of needing More Visits are almost the same as the odds for European
Americans with a high school education or equivalent (OR = 0.89 =
0.17/0.19).

A good place to begin presenting probabilities is to examine the fre-
quency distributions of the probabilities for all cases, basic descriptive
statistics (e.g., mean, median, standard deviation, range, and interquar-
tile range), and different types of univariate charts (histogram, boxplot,
etc.). These descriptive statistics are shown in Table 3.12 for our current
example. The mean estimated probabilities for More Calls and More Vis-
its are relatively low, and the variability of these probabilities is relatively
low for More Calls.

The challenge is to summarize changes in IVs associated with changes
in probabilities in the most meaningful and parsimonious way, but no
standard way to do this exists. This enterprise is complicated by the fact
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Table 3.12 Descriptive Statistics for Estimated Probabilities as a
Function of Interview Tracking Status

Statistic Easy More Calls More Visits

M 0.61 0.22 0.17
Mdn 0.62 0.23 0.15
SD 0.11 0.03 0.09
Minimum 0.33 0.15 0.04
Maximum 0.81 0.26 0.43
Percentiles

25 0.52 0.21 0.11
50 0.62 0.23 0.15
75 0.69 0.24 0.24

Table 3.13 Estimated Probabilities as a Function of Education and Race

Estimated Probabilities Education

Race 8th Grade High School College

European American
More Calls .35 .25 .17
More Visits .34 .16 .06

African American
More Calls .42 .31 .22
More Visits .57 .32 .14

that the relationship between IVs and probabilities is not linear. For any
given analysis, you should explore different ways to present the key sub-
stantive findings in tables or graphs (Long & Freese, 2006). Again, this
depends in part on the subject and objectives of the study.

Probabilities for cases with different values of the IVs can be pre-
sented in tables. Table 3.13 shows estimated probabilities for European
Americans and African Americans with three different substantively
meaningful levels of education. From this table, you can see, for exam-
ple, that the probability of needing more visits ranges from a low of .06
for college-educated European Americans, to a high of .57 for African
Americans with an eighth-grade education. You can also see, for exam-
ple, that the probability of needing more calls or visits is relatively low for
college-educated mothers, regardless of race (i.e., .06 to .22).

In addition to presenting probabilities in tables, it is frequently useful
to present them in figures, such as Figures 3.9 and 3.10, which show the
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effects of education for European- and African-Americans, respectively.
As above, though, this becomes more difficult with more IVs, and a sin-
gle graph can show a limited number of IVs in a meaningful way. One
way to do this is to plot the relationship of one IV from its minimum to
maximum value, while all other variables are fixed at their means (or at
0 or 1 for dichotomous IVs). Another strategy is to estimate probabilities
for selected sets of values of IVs that correspond to ideal or typical types
in the population (e.g., African Americans with college degrees) (Long,
1997).
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Notice in the above figures that the probabilities of More Calls and
More Visits decrease with education, but both the absolute values of
the probabilities and the pattern of change are different for European
Americans and African Americans. For example, for European Ameri-
cans with an eighth-grade education, the probability of More Calls and
More Visits is about the same (.35 and .34, respectively). For African
Americans, both probabilities are higher than for European Americans,
and the probability of More Visits is higher than More Calls (.57 and .42,
respectively).

Collapsing Categories of the Dependent Variable

Race and education distinguish between More Visits and Easy but not
between More Calls and Easy, as we have seen in all of the analyses so
far in this chapter. Therefore, in the interest of parsimony, it might be
useful to collapse the More Calls and Easy categories into a single cat-
egory, which we will label LessDifficult, and then create a new variable
consisting of two categories: LessDifficult (0) and More Visits (1) (see
DeMaris, 2004, for a discussion of a more formal test of “collapsibil-
ity”). We used the following SPSS syntax to create this new dichotomous
variable, TrackCat2:

recode TrackCat ( 1 = 0) ( 2 = 0) ( 3 = 1) into TrackCat2.

That is, TrackCat2 equals 0 when TrackCat is 1 (Easy) or 2 (More Calls),
and it equals 1 when TrackCat is 3 (More Visits).

After the new dichotomous DV was constructed, we ran a binary
logistic regression analysis using the new dichotomous DV. Table 3.14
shows partial results of this analysis. As you can see, these results are very
similar to those shown in Table 3.10 concerning the effect of race and
education on More Visits as compared to Easy.

A Comparison of Multinomial and Binary Logistic Regression

At the beginning of this chapter, we noted that multinomial logis-
tic regression is a generalization of binary logistic regression to a
polytomous DV, and when it is applied to a dichotomous DV, it is iden-
tical to binary logistic regression. To illustrate this point, we used the



Table 3.14 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) .722 1.1354 −1.503 2.948 .405 1 .525 2.059 0.222 19.061
[Race = 1] .823 .3487 0.139 1.506 5.569 1 .018 2.277 1.150 4.510
Education −.224 .0940 −.409 −.040 5.700 1 .017 0.799 0.664 0.961
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multinomial logistic regression procedure described at the end of this
chapter to reanalyze the effect of race and education on the dichotomous
interview tracking variable, TrackCat2. Table 3.15 shows partial results of
this multinomial logistic regression. Compare Tables 3.14 and 3.15 and,
as you can see, the results are exactly the same.

We also noted earlier in this chapter that multinomial logistic regres-
sion can be thought of as a set of binary logistic regression models that
are estimated simultaneously. In binary and multinomial logistic regres-
sion, each category of the DV is compared to the reference category, but
multinomial logistic regression involves two or more such comparisons,
and a separate equation is estimated for each comparison. Let’s illustrate
this.

First, we used the following SPSS syntax to create two new dichoto-
mous variables, More Calls and More Visits, by recoding the original DV,
TrackCat (Interview Tracking Effort), into two new variables:

recode TrackCat ( 1 = 0) ( 2 = 1) ( 3 = sysmis) into More Calls.
recode TrackCat ( 1 = 0) ( 2 = sysmis) ( 3 = 1) into More Visits.

More Calls equals 0 when TrackCat is 1 (Easy), equals 1 when TrackCat is
2 (More Calls), and missing when TrackCat is 3 (More Visits). More Visits
equals 0 when TrackCat is 1 (Easy), missing when TrackCat is 2 (More
Calls), and equals 1 when TrackCat is 3 (More Visits).

Next, we ran two separate binary logistic regressions, one with More
Calls (versus Easy) as the DV, and the other with More Visits (versus Easy)
as the DV. Table 3.16 shows partial results of the binary logistic regression
for More Calls, and Table 3.17 shows partial results of the binary logistic
regression for More Visits. Compare results in these two tables to results
in Table 3.10 in which we used multinomial regression with Easy as the
reference category. Race has a statistically significant relationship with
More Visits compared to Easy but not More Calls compared to Easy, as
shown in Table 3.10 and in Tables 3.16 and 3.17. Education has a statis-
tically significant relationship with More Visits compared to Easy but not
More Calls compared to Easy, as shown in Table 3.10 and in Tables 3.16
and 3.17.

Although results shown in Table 3.10 are similar to those shown in
Tables 3.16 and 3.17, they are not identical. The basic reason they are
not identical is that multinomial logistic regression estimates the entire



Table 3.15 Parameter Estimates

95% CI Exp(B)

TrackingCat2a B Std. Error Wald df Sig. Exp(B)
Lower
Bound

Upper
Bound

More Visits Intercept .722 1.135 .405 1 .525
Race .823 .349 5.569 1 .018 2.277 1.150 4.510
Education −.224 .094 5.700 1 .017 0.799 0.664 0.961

a The reference category is: (0) LessDifficult.
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Table 3.16 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) .335 .9825 −1.591 2.261 .116 1 .733 1.398 0.204 9.591
[Race = 1] .315 .3261 −.324 .954 .934 1 .334 1.371 0.723 2.597
Education −.120 .0778 −.272 .033 2.374 1 .123 0.887 0.762 1.033
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Table 3.17 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −1.047 1.1401 −3.281 1.188 .843 1 .359 0.351 0.038 3.280
[Race = 1] −.882 0.3631 −1.594 −.170 5.900 1 .015 0.414 0.203 0.843
Education .226 0.0933 .043 .409 5.870 1 .015 1.254 1.044 1.505
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model simultaneously using the entire sample. The two binary logistic
regressions, on the other hand, are each based on part of the sample.
That is, the binary logistic regression using More Calls as the DV includes
only the More Calls and Easy groups (n = 203), but not the More Visits
group (n = 43); the binary logistic regression using More Visits as the
DV includes only the More Visits and Easy groups (n = 192), but not
the More Calls group (n = 54). The advantage of multinomial logistic
regression, when the DV has three or more categories, is that the entire
sample is analyzed simultaneously.

Interactions and Curvilinear Relationships

Interactions and curvilinear relationships can be examined with multi-
nomial logistic regression (Jaccard, 2001). You use the same principles
and methods to do this as with binary logistic regression. However, inter-
pretation and presentation of the results are complicated by the fact that
you need to consider results from more than one regression equation
and, of course, this complexity increases as the number of categories of
the DV increases.

Assumptions Necessary for Testing Hypotheses

Other than the assumptions we discussed in Chapter 1 (pp. 21–28),
we must deal with only one assumption that is unique to multinomial
logistic regression. That is, multinomial logistic regression assumes the
independence of irrelevant alternatives (IIA) (Hoffmann, 2004; Long
& Freese, 2006). This peculiar phrase is also used in decision theory. In
that context, for example, IIA means that your choice of Candidate A
over Candidate B in the election is not influenced by whether Candidate
X joins the fray. In the current context, the assumption is that the odds
of one outcome (e.g., More Calls) relative to another (e.g., Easy) are not
influenced by other alternatives (e.g., More Visits). That is, the odds of
More Calls relative to Easy will be the same whether or not More Vis-
its is an alternative (i.e., More Visits is irrelevant), or the odds of More
Visits relative to Easy will be the same whether or not More Calls is an
alternative (i.e., More Calls is irrelevant).

Statistical tests are available to test the IIA, but these are not avail-
able with SPSS. Moreover, Cheng and Long (2007) demonstrated that
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these tests are not practical for applied statistics. They recommend a
logical approach to assessing whether the outcomes are distinct and
independent.

Methods for detecting outliers and influential observations are not
well developed for multinomial logistic regression. However, you can
create a set of binary DVs from the polytomous DV, run separate
binary logistic regressions, and use binary logistic regression methods
to detect outliers and influential observations (Hoffmann, 2004; Hosmer
& Lemeshow, 2000). For our example, you could use the following SPSS
syntax to create two new dichotomous variables, More Calls and More
Visits, by recoding the original DV, TrackCat (Interview Tracking Effort),
into two new variables:

recode TrackCat ( 1 = 0) ( 2 = 1) ( 3 = sysmis) into More Calls.
recode TrackCat ( 1 = 0) ( 2 = sysmis) ( 3 = 1) into More Visits.

These are the same two dichotomous variables we discussed when we
compared multinomial and binary logistic regression.

After the new dichotomous DVs are constructed, run separate binary
logistic regression analyses for each new dichotomous DV. Then, exam-
ine index plots for leverage values, standardized or unstandardized
deviance residuals, and Cook’s D as discussed in Chapter 2. For exam-
ple, Figure 3.11 shows the index plot of standardized deviance residuals
for a binary logistic regression with Education and Race as the IVs and
More Visits as the DV. No cases have markedly different values from the
other cases, and no residual is less than −2 or much more than +2.

Multicollinearity

You examine multicollinearity the same way with multinomial logistic
regression as with other regression models discussed in this book. For
our example with two IVs, tolerance equals .98 and the variance inflation
factor equals 1.02, indicating no concern with multicollinearity.

Additional Regression Models for Polytomous Dependent Variables

We started this chapter by noting that multinomial logistic regression is
the method used most frequently for analyzing the effects of multiple IVs
on a polytomous DV. Multinomial probit regression is a related method
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Figure 3.11 Index Plot of Standardized Deviance Residuals

that can be used in much the same circumstances as multinomial logistic
regression (Long & Freese, 2006). The choice between these two models
is largely one of convenience and discipline-specific convention, because
the substantive results are generally indistinguishable. Many researchers
prefer multinomial logistic regression, because it provides odds ratios
and there is a wider variety of fit statistics available.

Discriminant analysis is also an alternative to multinomial logistic or
probit regression, but it has much more restrictive assumptions (Stevens,
2001). Loglinear analysis is another alternative when all of the variables
are categorical (Agresti, 2007).

Additional Readings and Web Links

For good chapters discussing multinomial logistic regression, we recom-
mend Borooah (2001), DeMaris (2004); Hoffmann (2004); Hosmer and
Lemeshow (2000), Long (1997), and Norusis (2007).

Several published articles provide good examples of the application
of multinomial logistic regression. Courtney (1998) used multinomial



Regression with a Polytomous Dependent Variable 121

regression to study factors related to child welfare workers’ preferences
for different types of foster care settings for children. IVs included char-
acteristics of the child and family, including categorical (e.g., race) and
interval-level variables (e.g., age). The DV measured workers’ preferences
for foster, group, foster family, or kinship care.

In a prospective longitudinal study, Oxford, Gilchrist, Gillmore,
and Lohr (2006) used five risk factors (IVs) such as history of school
problems and delinquency to predict life course pathways for ado-
lescent mothers. The DV was membership in one of three outcome
groups at ages 17 to 23: normative, problem-prone, and psychologically
vulnerable.

You might find the following Web sites useful resources for multino-
mial logistic regression:

http://www2.chass.ncsu.edu/garson/PA765/logistic.htm
http://www.statisticssolutions.com/Logistic_Regression.htm
http://www.education.man.ac.uk/rgsweb/EDUC61022_2006_lec09.pdf
http://www.ats.ucla.edu/stat/Stata/library/odds_ratio_mlogit.htm

SPSS Instructions

Multinomial Logistic Regression (Regression)

Multinomial logistic regression can’t be estimated with SPSS GZLM. It
can be estimated with SPSS Regression.

• Start SPSS 16 and open the Chapter 3 data set.
• From the menus choose:

Analyze
Regression
Multinomial Logistic. . .

• Select a polytomous DV (e.g., TrackCat) and click the arrow button
to move it to Dependent.

• Click Reference Category and select the reference category (e.g., First
Category for TrackCat since Easy is the first category and it’s the
reference category.).

• Click “Continue”

http://www2.chass.ncsu.edu/garson/PA765/logistic.htm
http://www.statisticssolutions.com/Logistic_Regression.htm
http://www.education.man.ac.uk/rgsweb/EDUC61022_2006_lec09.pdf
http://www.ats.ucla.edu/stat/Stata/library/odds_ratio_mlogit.htm
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• Select polytomous IVs and click the arrow button to move them to
Factor(s). (There are no polytomous IVs in this model.)

• Select dichotomous (e.g., Race) and quantitative (e.g., Education)
IVs and click the arrow button to move them to Covariate(s).

• Click Save and click Estimated response probabilities to save
predicted probabilities for each case, for each category of the DV.
Click Continue.

• Click OK to get the results.

Note: In most cases, you won’t need to make changes to defaults in the
Model, Statistics, Criteria, or Options dialog boxes.

Note: After you run the analysis save the data set, which now con-
tains new variables that you can use to create index plots and for other
purposes.

Excel Workbooks

The names of the following three workbooks correspond to the variables
used in the associated multinomial logistic regression analyses. These
workbooks show how we created the figures reported in this chapter for
the associated analyses, as well as additional related figures not included.

• Race.xls
• Education.xls
• Race & Education.xls



4

Regression with an Ordinal
Dependent Variable

A researcher initiates a new intervention designed to improve the
activities of daily living of seniors in congregate living. She mea-

sures the outcomes of the intervention by testing the seniors on their
competence to perform a number of important tasks, rating each task
as 0 (unable to perform), 1 (performs with assistance), 2 (performs inde-
pendently with encouragement), or 3 (performs independently without
encouragement).

Ordinal variables such as the one described above have three or
more ordered categories. Sometimes these variables are called ordered
categorical variables or ordered polytomous variables. Social workers and
those in related areas frequently conduct research in which the DV is
ordinal. For example, we have investigated variables associated with the
severity of child abuse injury (none, mild, moderate, or severe) (Zuravin,
Orme, & Hegar, 1994), and willingness to foster children with different
emotional or behavioral problems (least acceptable, willing to discuss, or
most acceptable) (Cox, Orme, & Rhodes, 2003). Scott (2006) predicted
job satisfaction (very dissatisfied, somewhat dissatisfied, neutral, somewhat
satisfied, or very satisfied) among former welfare recipients.

In this chapter, we discuss ordinal logistic regression (also known
as the ordinal logit, ordered polytomous logit, constrained cumulative
logit, proportional odds, parallel regression, or grouped continuous model),
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a versatile and popular method for modeling relationships between
an ordinal DV and multiple IVs (Borooah, 2002; Cohen et al., 2003;
DeMaris, 2004; Hoffmann, 2004; Hosmer & Lemeshow, 2000; Long,
1997; Long & Freese, 2006; Norusis, 2007). Ordinal logistic regression
is a generalization of binary logistic regression to an ordinal DV, and the
multinomial distribution is the assumed underlying distribution. When
the DV is dichotomous, ordinal logistic regression is identical to binary
logistic regression (Long & Freese, 2006). As you will see, the basic issues
involved in examining the effect of IVs on an ordinal DV are the same as
those discussed in Chapters 2 and 3.

Chapter Example

In this chapter, we will discuss and illustrate ordinal logistic regression by
examining variables that influence foster mothers’ satisfaction with their
foster care agencies. Satisfaction with foster care agencies is the DV (vari-
able name Satisfaction). In the sample of 300 foster mothers, 62 (20.7%)
rated themselves as dissatisfied (1), 68 (22.7%) as neither satisfied nor
dissatisfied (2), and 170 (56.7%) as satisfied (3).

We will analyze the effects of two IVs. One is mothers’ reports of
whether agencies provided sufficient information about the role of fos-
ter care workers (variable name InfoFCWorker), a dichotomous variable
coded 0 (no) and 1 (yes). The sample contains 161 (53.7%) mothers who
reported they did not receive sufficient information and 139 (46.3%)
who reported that they did. We will also examine available time to foster,
measured using the Available Time Scale (ATS) (variable name Time).
The ATS has a potential range of values from 0 through 100, and higher
scores indicate more time to foster (M = 77.16, SD = 12.75).

Cross-Tabulation and Chi-Squared Test

Let us start by examining a simple research question: Are foster moth-
ers who report that they were provided sufficient information about the
role of foster care workers more satisfied with their foster care agencies? A
cross-tabulation table and chi-squared test let us answer this question
and also provide a good starting point for understanding ordinal logistic
regression.
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The relationship between information provided about the role of
foster care workers and satisfaction with foster care agencies is statisti-
cally significant [χ2( 2, N = 300) = 23.52, p < .001]. However, this just
tells us that information and satisfaction are related; it does not give us
specific-enough information to answer our research question. Probabili-
ties, odds, and ORs can help us understand our results more fully.

Binary and multinomial logistic regression focus on probabilities for
individual categories of the DV (e.g., the probability that an event will
occur) and on odds and ORs based on these probabilities. Ordinal logis-
tic regression focuses on cumulative probabilities of the DV and odds
and ORs based on cumulative probabilities. By cumulative probability
we mean the probability that the DV is less than or equal to a particular
value (e.g., 1, 2, or 3 in our example). This takes account of the fact that
the DV is ordinal.

As you can see in Table 4.1, for mothers who received insufficient
information, the cumulative probability of being dissatisfied is .2857, dis-
satisfied or neutral .5590 (.2857 + .2733), and dissatisfied, neutral, or
satisfied 1.00 (.2867 + .2733 + .4410). For mothers who received suf-
ficient information, the cumulative probability of being dissatisfied is
.1151, dissatisfied or neutral .2878 (.1151 + .1727), and dissatisfied,
neutral, or satisfied 1.00 (.1151 + .1727 + .7121). These cumulative
probabilities are plotted in Figure 4.1 (except for the total cumulative
probabilities for the highest value of the DV because they will always
sum to 1). As expected, the probability of being dissatisfied, as well as the
probability of being either dissatisfied or neutral, is greater for mothers
who received insufficient information.

Another feature of ordinal logistic regression is that probabilities,
odds, and ORs for values of the DV lower than or equal to a particu-
lar value are compared to (i.e., divided by) those for higher values of
the DV. This is the reverse of what you do in binary and multinomial
logistic regression. This makes it a little more difficult to interpret the
probabilities, odds, and ORs from ordinal logistic regression, especially
after you have become accustomed to interpreting results from binary
and multinomial logistic regression.

With ordinal logistic regression, you calculate odds using cumula-
tive probabilities, and sometimes these odds are called cumulative odds.
The probability that the DV is less than or equal to a particular value
is compared to the probability that it is greater than that value. In our
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Table 4.1 Satisfaction with Foster Care Agencies as a Function of Information
About the Role of the Foster Care Worker

Information About
Role of Foster Care
Worker

(0) (1)
Insufficient Sufficient Total

Satisfaction Dissatisfied Count 46 16 62
% within
Information about
Role of Foster Care
Worker

28.57 11.51 20.67

Neither Count 44 24 68
% within
Information about
Role of Foster Care
Worker

27.33 17.27 22.67

Satisfied Count 71 99 170
% within
Information about
Role of Foster Care
Worker

44.10 71.22 56.67

Total Count 161 139 300
% within
Information about
Role of Foster Care
Worker

100.00 100.00 100.00

example, the probability that the DV is 1 (dissatisfied) would be com-
pared to the probability that it is either 2 or 3 (neutral or satisfied); the
probability that the DV is 1 or 2 (dissatisfied or neutral) would be com-
pared to the probability that it is 3 (satisfied); and these probabilities
would be calculated separately for mothers who did and did not receive
sufficient information. (The probability that the DV is 1, 2, or 3 must be
1.00 because there are only three categories, so the last category does not
have any associated odds.)

For mothers who received insufficient information, the odds of
being dissatisfied (compared to neutral or satisfied) equal .4000 [.2857/

(1 − .2857)], and for mothers who received sufficient information, the
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Figure 4.1 Effect of Information on Satisfaction
(Cumulative Probabilities)

odds are .1301 [.1151/( 1 − .1151) ]. For mothers who received insuffi-
cient information, the odds of being dissatisfied or neutral (compared to
satisfied) are 1.2676 [.5590/(1 − .5590)], and for mothers who received
sufficient information they are .4041 [.2878/(1 − .2878)]. As expected,
the odds of being dissatisfied, and the odds of being dissatisfied or
neutral, are higher for mothers who received insufficient information.

We use cumulative odds to calculate ORs. The OR that mothers who
received sufficient information (compared to mothers who did not) are
dissatisfied (compared to neutral or satisfied) equals .33 (.1301/.4000).
The OR that mothers who received sufficient information (compared
to those who did not) are dissatisfied or neutral (compared to satisfied)
equals .32 (.4041/1.2676). These ORs can be expressed in different ways.
For the OR of .32, for example, you might say:

The odds of being dissatisfied or neutral (compared to being satisfied) are
.32 times smaller for mothers who received sufficient information.

The odds of being dissatisfied or neutral (compared to being satisfied) are
68% lower for mothers who received sufficient information [100( .32 − 1)].

Or, given that ORs greater than 1 are easier for most people to under-
stand, you might compute the reciprocal of the OR and say:

The odds of being dissatisfied or neutral (compared to being satisfied) are
3.13 (1/.32) times larger for mothers who received insufficient information.
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The odds of being dissatisfied or neutral (compared to satisfied) are 213%
higher for mothers who received insufficient information [100( 3.13 − 1)].

In summary, the OR for dissatisfied (compared to neutral or sat-
isfied) equals .33. The OR for dissatisfied or neutral (compared to
satisfied) equals .32. As we will see next, though, ordinal logistic regres-
sion assumes that these ORs are equal in the population (although they
might be different in a sample due to sampling error), and only a single
common OR is estimated. This is called the proportional odds or parallel
regression assumption, and we discuss it more below.

One Dichotomous Independent Variable

Ordinal logistic regression is identical to binary logistic regression when
the DV has only two values. Indeed, binary logistic regression can be seen
as a special case of the ordinal regression model in which the ordinal DV
has only two categories (e.g., not satisfied or satisfied) (Long & Freese,
2006).

We can think of ordinal logistic regression as a set of binary logistic
regression models that are estimated simultaneously. As with multino-
mial logistic regression, the number of nonredundant binary logistic
regression equations equals the number of categories of the DV minus
one. Unlike multinomial logistic regression, the focus with ordinal logis-
tic regression is on cumulative probabilities and odds, and ORs are
computed from cumulative odds.

Another feature of ordinal logistic regression that we mentioned
above, but that bears repeating, is that probabilities, odds, and ORs for
values of the DV lower than or equal to a particular value are compared
to (i.e., divided by) those for higher values of the DV. This is the reverse
of what is done in binary and multinomial logistic regression.

Finally, the concept of a threshold, sometimes called a cut-point, is
necessary for understanding ordinal logistic regression. You can think
of a threshold this way: Suppose our three-point ordinal satisfaction
measure is a rough measure of an underlying continuous satisfaction
variable. At a certain point on this continuous variable, the population
threshold (symbolized by τ , the Greek letter tau), that is, a person’s level
of satisfaction, goes from one value to another on the ordinal measure
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of satisfaction. In our example then, the first threshold (τ1) would be the
point at which the level of satisfaction goes from dissatisfied to neutral
(i.e., 1–2), and the second threshold (τ2) would be the point at which the
level of satisfaction goes from neutral to satisfied (i.e., 2–3). The number
of thresholds is always one fewer than the number of values of the DV.

Thresholds can range from negative to positive infinity, and the scale
on which they are measured has no intrinsic meaning because the scale
on which the underlying continuous variable is based is arbitrary. (Sim-
ilarly, actual values of an ordinal DV are irrelevant except insofar as
larger values are considered higher in some sense.) Also, thresholds are
not necessarily equally spaced, given that the variable is ordinal. Usu-
ally thresholds are of little interest except in the calculation of estimated
values. That is, thresholds typically are used in place of the intercept to
express the ordinal logistic regression model (Hardin & Hilbe, 2007).
(This is the case with SPSS, but not with all software [Long, 1997; Long
& Freese, 2006]).

In our example, two binary regression models are estimated simulta-
neously, where t1 and t2 are the estimated thresholds:

L(Dissatisfied vs. Neutral/Satisfied) = t1 − BInfoFCWorkerXInfoFCWorker

L(Dissatisfied/Neutral vs. Satisfied) = t2 − BInfoFCWorkerXInfoFCWorker

Notice several features of these equations. First, each equation has a dif-
ferent threshold (e.g., t1 and t2), but all share one common slope (B).
Ordinal logistic regression assumes the effect of the IVs is the same for
different values of the DV. For example, information has the same effect
on the odds of being dissatisfied (compared to being neutral or satisfied)
as it does on the odds of being dissatisfied or neutral (compared to being
satisfied). This is the proportional odds or parallel regression assumption
mentioned above. You should always check this assumption, and we will
discuss how to do that below. Second, notice that the slope is multiplied
by a value of the IV and subtracted from, not added to, the threshold.
(See Cohen et al. [2003] for another formulation of this model.)

Table 4.2 shows partial results for the ordinal logistic regression. As
shown in Table 4.2, information and satisfaction are significantly related.
The sign of the slope (1.139) is positive, indicating that higher values
of the IV are associated with higher values of the DV. In our example,
mothers who received sufficient information were more satisfied.



Table 4.2 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

[Satisfaction = 1] −.912 .1656 −1.237 −.588 30.359 1 .000 .402 .290 .556
[Satisfaction = 2] .235 .1547 −.069 .538 2.299 1 .129 1.264 .934 1.712
[InfoFCWorker = 1] 1.139 .2380 .673 1.605 22.907 1 .000 3.123 1.959 4.979
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From Table 4.2, the estimated ordinal logistic regression equations
are:

L(Dissatisfied vs. Neutral/Satisfied) = −.912 − ( 1.139) ( X )

L(Dissatisfied/Neutral vs. Satisfied) = .235 − ( 1.139) ( X )

You can calculate the estimated values of logits, odds, and probabilities
using the ordinal regression equations. For example, estimated cumula-
tive logits for mothers who received sufficient information when (X = 1)
are:

L(Dissatisfied vs. Neutral/Satisfied) = −2.051 = −.912−( 1.139) ( 1)

L(Dissatisfied/Neutral vs. Satisfied) = −.904 = .235−( 1.139) ( 1)

See Figure 4.2 for the estimated logits. As you see, logits for dissatisfied
(compared to neutral or satisfied) and dissatisfied or neutral (compared
to satisfied) are lower for mothers who received sufficient information.
That is, mothers who received sufficient information are less likely to be
dissatisfied (compared to neutral or satisfied), and they are also less likely
to be dissatisfied or neutral (compared to satisfied).
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Estimated cumulative odds are obtained by exponentiating the log-
its. For example, estimated odds for mothers who received sufficient
information are:

Odds(Dissatisfied vs. Neutral/Satisfied) = e−2.051 = .129

Odds(Dissatisfied/Neutral vs. Satisfied) = e−.904 = .405

Figure 4.3 shows the estimated odds, demonstrating that the odds of
being dissatisfied (compared to neutral or satisfied) and the odds of being
dissatisfied or neutral (compared to being satisfied) are lower for mothers
who received sufficient information.

Compare the odds in Figure 4.3 to those computed in Table 4.2 using
the cross-tabulation and note that they are exactly the same. This will not
always be the case. Ordinal logistic regression assumes that these ORs are
equal and only a single common OR is estimated, as we will discuss in
more detail below.

Estimated cumulative probabilities are obtained using the inverse
link function. For example, estimated probabilities for mothers who
received sufficient information are:

p̂(Dissatisfied vs. Neutral/Satisfied) = e−2.051

1 + e−2.051
= .11

p̂(Dissatisfied/Neutral vs. Satisfied) = e−.904

1 + e−.904
= .29
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See Figure 4.4 for the estimated probabilities. The probabilities of being
dissatisfied (compared to neutral or satisfied) and dissatisfied or neu-
tral (compared to satisfied) are lower for mothers who received sufficient
information. You might also note that the probability of being dissatisfied
is very low for mothers who received sufficient information (.11).

In addition to cumulative probabilities, it can be useful to examine
probabilities for individual values of the DV, and these are illustrated in
Figure 4.5. The probability for a particular value of the DV is just the



134 Multiple Regression with Discrete Dependent Variables

cumulative probability for that value minus the cumulative probability
for the preceding values of the DV (Norusis, 2007). Therefore, for moth-
ers with sufficient information, probabilities for the three values of the
DV are:

p̂(DV =1) = .11 − 0 = .11

p̂(DV =2) = .29 − .11 = .18

p̂(DV =3) = 1.00 − .29 = .71

The cumulative probability for the highest value of the DV will always
be 1.00, and the probability for the lowest value will always equal the
cumulative probability for that value of the DV.

As shown in Figure 4.5, the probability of being dissatisfied or neu-
tral is lower for mothers who received sufficient information, and the
probability of being satisfied is higher. Notice that the probability of
being satisfied is high for mothers who received sufficient information
(.71).

In binary and multinomial logistic regression, the slope is exponenti-
ated to obtain the OR, whereas in ordinal logistic regression, you reverse
the sign of the slope before exponentiating it. So, in our example, the
OR equals .31, calculated as e−1.139. The reason for this is that in contrast
to binary logistic regression, in which odds are calculated as a ratio of
probabilities for higher to lower values of the DV (odds of 1 versus 0),
in ordinal logistic regression it is the reverse. In our example, the odds
are calculated as a ratio of the probability of being dissatisfied (i.e., 1)
compared to being neutral or satisfied (2 or 3), and the ratio of the prob-
ability of dissatisfied or neutral (1 or 2) to probability of satisfied (3).
So, the common OR of .32 indicates that the odds of being dissatisfied
(compared to neutral or satisfied) are .32 times lesser for mothers who
received sufficient information. Similarly, the odds of dissatisfied or neu-
tral (compared to satisfied) are .32 times lesser for mothers who received
sufficient information.

It is important to note in Table 4.2 that SPSS reports the exponen-
tiated slope (e1.139 = 3.123), and the sign of the slope is not reversed
before it is exponentiated (e−1.139 = .320). Therefore, either you need to
compute the ORs by first reversing the sign of the slopes and then expo-
nentiating them or you need to compute reciprocals of the ORs reported
in the SPSS output (e.g., 1/3.123 = .320).
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One Quantitative Independent Variable

Both the use and interpretation of ordinal logistic regression are much
the same with quantitative and categorical IVs. Let us start with a sim-
ple example to illustrate the use of ordinal logistic regression with a
quantitative IV. The research question is: Are foster mothers with more
time to foster more satisfied with their foster care agencies? The DV is the
same satisfaction variable used in the previous section. The IV is scores
from the ATS, converted to z-scores (variable name zTime). (Remem-
ber that using standardized scores does not change the substantive
results.)

Table 4.3 shows partial results of the ordinal logistic regression, and
you see a statistically significant relationship between available time and
satisfaction. The sign of the slope (.281) is positive, indicating that moth-
ers with more time are more satisfied. The OR equals .76( e−.281). This
OR can be expressed in different ways. For example, you might say:

For a standard-deviation increase in available time, the odds of being
dissatisfied (compared to neutral or satisfied) decrease by a factor of
.76. Similarly, for a standard-deviation increase in time, the odds of
being dissatisfied or neutral (compared to satisfied) decrease by a factor
of .76.

You could also say:

For a standard-deviation increase in time, the odds of being dissatisfied
(compared to neutral or satisfied) decrease by 24% [100( .76 − 1)]. Simi-
larly, for a standard-deviation increase in time, the odds of being dissatisfied
or neutral (compared to being satisfied) decrease by 24%.

Alternatively, given that ORs greater than 1 are easier for most people to
understand, you might compute the reciprocal of the OR (1/.76 = 1.32)
and say:

For a standard-deviation decrease in time, the odds of being dissatisfied
(compared to neutral or satisfied) increase by a factor of 1.32. Similarly,
for a standard-deviation decrease in time, the odds of being dissatisfied or
neutral (compared to being satisfied) increase by a factor of 1.32.



Table 4.3 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

[Satisfaction = 1] −1.365 .1440 −1.647 −1.083 89.879 1 .000 .255 .193 .339
[Satisfaction = 2] −.269 .1176 −.500 −.039 5.245 1 .022 .764 .607 .962
zTime .281 .1109 .063 .498 6.409 1 .011 1.324 1.065 1.645
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Or, you could say:

For a standard-deviation decrease in available time, the odds of being
dissatisfied (compared to being neutral or satisfied) increase by 32%
[100(1.32 - 1)]. Similarly, for a standard-deviation decrease in time, the
odds of being dissatisfied or neutral (compared to being satisfied) increase
by 32%.

From Table 4.3, the estimated ordinal logistic regression equations
are:

L(Dissatisfied vs. Neutral/Satisfied) = −1.365−( .281) ( XzTime)

L(Dissatisfied/Neutral vs. Satisfied) = −.269−( .281) ( XzTime)

Estimated values of logits, odds, and probabilities can be calcu-
lated using the ordinal regression equations. Substituting values of
−3, −2, −1, 0, 1, 2, and 3 for values of the IV (i.e., number of standard
deviations from the mean), the estimated logits are in Figure 4.6. Logits
for dissatisfied (compared to neutral or satisfied) and dissatisfied or neu-
tral (compared to satisfied) are lower for mothers with more time. That
is, mothers with more time were less likely to be dissatisfied (compared to
neutral or satisfied) and less likely to be dissatisfied or neutral (compared
to satisfied).

Figure 4.7 shows the estimated odds. The odds of being dissatisfied
(compared to being neutral or satisfied) and the odds of being dissatisfied
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or neutral (compared to being satisfied) decrease with an increase in
available time.

Figure 4.8 shows the estimated cumulative probabilities. The prob-
ability of being dissatisfied (compared to neutral or satisfied) and
the probability of being dissatisfied or neutral (compared to satisfied)
decrease with an increase in time. Note too that the probability of being
dissatisfied or neutral is below .50 for mothers with ATS scores at or
above the mean (.43, .37, .30, and .25).

You can also compute probabilities for individual values of the DV,
and this is often useful. As you see in Figure 4.9, the probability of
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being dissatisfied or neutral decreases with an increase in time, and
the probability of being satisfied increases. You can also see that over-
all the probability of being satisfied is high whether ATS scores are low or
high (range from .73 to .85), although the probability of being satisfied
increases with an increase in time.

In this section, we illustrate change in estimated values associated
with standard-deviation change in a quantitative IV by transforming
the IV to z-scores. However, with quantitative IVs (as we discussed in
Chapter 2) often it will also be useful to examine change associated with
untransformed IVs or with mean-centered IVs (Long, 1997).

Multiple Independent Variables

Here, we build on our previous two examples in this chapter to illustrate
multiple binary logistic regression. Earlier, we saw that foster mothers
who received sufficient information about the role of foster care work-
ers were more satisfied with their agencies, but it is possible that the
relationship between these two variables is due to the fact that both are
influenced by available time to foster (i.e., available time to foster is a
“common cause” of both, and so the relationship is spurious), so the
research question examined here is this: Are foster mothers who receive
sufficient information about the role of foster care workers more satisfied
with their foster care agencies, controlling for available time to foster? Data
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Table 4.4 Omnibus Tests

Likelihood Ratio Chi-Square df Sig.

29.343 2 .000

Table 4.5 Tests of Model Effects

Type III

Source Likelihood Ratio Chi-Square df Sig.

InfoFCWorker 22.866 1 .000
zTime 5.217 1 .022

about the role of foster care workers and available time to foster (zTime)
are the IVs, and satisfaction with foster care agencies is the DV.

Tables 4.4, 4.5, and 4.6 show partial results of the ordinal logistic
regression. The likelihood ratio χ2 test in Table 4.4 tests the null hypothe-
sis that β1 = β2 = βk = 0 or, in our example, βzTime = βInfoFCWorker = 0,
and this null hypothesis can be rejected. The likelihood ratio χ2 tests in
Table 4.5 test the null hypotheses that βzTime = 0 and βInfoFCWorker = 0.
Both of these hypotheses can be rejected. These results are virtually
identical to results of the Wald tests in Table 4.6.

As shown in Table 4.6, information and satisfaction are positively and
significantly related when controlling for available time. We also see a
positive and statistically significant relationship between time and satis-
faction when controlling for information, although this is not the focus
of our research question.

The OR for information is .33 (e−1.116), which is virtually the same
as we found above when we did not control for time. This OR can be
expressed in different ways. For example, you might say:

The odds of being dissatisfied (compared to neutral or satisfied) are .33 times
less for mothers who received sufficient information, when controlling for
available time to foster. Similarly, the odds of being dissatisfied or neutral
(compared to satisfied) are .33 times less for mothers who received sufficient
information, when controlling for time.

The odds of being dissatisfied (compared to neutral or satisfied) are 67%
lower for mothers who received sufficient information [100( .33 − 1)], when



Table 4.6 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

[Satisfaction = 1] −.941 .1670 −1.269 −.614 31.774 1 .000 .390 .281 .541
[Satisfaction = 2] .222 .1557 −.083 .528 2.042 1 .153 1.249 .921 1.695
zTime .260 .1141 .036 .483 5.177 1 .023 1.296 1.037 1.621
[InfoFCWorker = 1] 1.116 .2392 .648 1.585 21.776 1 .000 3.054 1.911 4.881
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controlling for time. Similarly, the odds of being dissatisfied or neutral
(compared to satisfied) are 67% lower for mothers who received sufficient
information [100( .33 − 1)], when controlling for time.

Given that ORs greater than 1 are easier for most people to understand,
you might compute the reciprocal of the OR and say:

The odds of being dissatisfied (compared to neutral or satisfied) are 3.03
(1/.33) times greater for mothers who received insufficient information,
when controlling for time. Similarly, the odds of being dissatisfied or neu-
tral (compared to satisfied) are 3.03 (1/.33) times greater for mothers who
received insufficient information, when controlling for time.

The odds of being dissatisfied (compared to neutral or satisfied) are 203%
higher for mothers who received insufficient information [100( 3.03 − 1) ].
Similarly, the odds of being dissatisfied or neutral (compared to satis-
fied) are 203% higher for mothers who received insufficient information
[100( 3.03 − 1)].

From Table 4.6, the estimated ordinal logistic regression equations are:

L(Dissatisfied vs. Neutral/Satisfied) = −.941−[(1.116)( XInfoFCWorker)

+( .260) ( XzTime)]

L(Dissatisfied/Neutral vs. Satisfied) = .222−[(1.116)( XInfoFCWorker)

+( .260) ( XzTime)]

These equations can be used to compute logits, odds, ORs, and probabil-
ities, as discussed above. To understand and present results of an ordinal
logistic regression it is important to examine odds, ORs, and probabili-
ties for substantively informative values of your IVs (e.g., insufficient and
sufficient information) and for substantively important types of cases
(e.g., mothers with the mean amount of available time who did and did
not receive sufficient information). For continuous IVs without inher-
ently informative substantive values, you might compute and report esti-
mated probabilities using the mean and one or two standard deviations
above and below the mean (or the 25% and 75% percentiles), fixing all
other IVs at selected values (Hoffmann, 2004; Long & Freese, 2006).
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Computing estimated logits, probabilities, and odds for ordinal logis-
tic regression is relatively straightforward. Knowing what to compute and
report is complicated by the potential amount of information, and of
course this is compounded as the number of IVs increases. (Moreover, we
know of no substitute for knowledge of the substantive area and related
theory in making decisions about what to compute and present.) There is
no conventional way to do this, but below we examine a few possibilities.

Odds for cases with different values of the IVs can be presented in
tables or, as illustrated in Chapters 2 and 3, figures. Table 4.7 shows
estimated odds for mothers who received sufficient and insufficient
information for three different levels of time. From this table you can see,
for example, that the odds of being dissatisfied or neutral (compared to
satisfied) are especially high for mothers who received insufficient infor-
mation and have relatively little time (odds = 2.10). Even for mothers
with the mean amount of time, the odds of being less than satisfied (i.e.,
dissatisfied or neutral) are greater than the odds of being satisfied for
mothers who received insufficient information (odds = 1.25).

A good place to start presenting probabilities is to examine the fre-
quency distributions of the probabilities for all cases, basic descriptive
statistics (e.g., mean, median, standard deviation, range, and interquar-
tile range), and different types of univariate charts (histogram, boxplot,
etc.). SPSS will compute estimated probabilities for each case, for each
category of the DV. You can see these descriptive statistics in Table 4.8.
The mean estimated probabilities for Dissatisfied and Neutral are low rel-
ative to Satisfied, and the variability of these probabilities is relatively low
for Neutral and high for Satisfied.

Table 4.7 Estimated Odds as a Function of Available Time and Information

Estimated Odds
Available Time

Information −2SD M +2SDs

Sufficient
Dissatisfied .21 .13 .08
Dissatisfied/Neutral .69 .41 .24

Insufficient
Dissatisfied .66 .39 .23
Dissatisfied/Neutral 2.10 1.25 .74
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Table 4.8 Descriptive Statistics for Estimated Probabilities as a Function of

Satisfaction

Statistic Dissatisfied Neutral Satisfied

M .21 .23 .57
Mdn .22 .26 .52
SD .10 .05 .15
Minimum .07 .13 .24
Maximum .49 .28 .80
Percentiles

25 .11 .18 .44
50 .22 .26 .52
75 .28 .28 .71

Table 4.9 Estimated Probabilities as a Function of Available Time and Information

Estimated Probabilities
Available Time

Information −2SD M +2SDs

Sufficient
Dissatisfied .18 .11 .07
Dissatisfied/Neutral .41 .29 .20

Insufficient
Dissatisfied .40 .28 .19
Dissatisfied/Neutral .68 .56 .43

The challenge is to summarize changes in IVs associated with changes
in probabilities in the most meaningful and parsimonious way when
there is no standard way to do this. This is complicated by the fact that
the relationships between IVs and probabilities are not linear. For any
given analysis, you should explore different ways to present the key sub-
stantive findings in tables and graphs (Long & Freese, 2006). As always,
this depends in part on the subject and objectives of the study.

Probabilities for cases with different values of the IVs can be pre-
sented in tables or, as illustrated in Chapters 2 and 3, in figures. Table 4.9
shows estimated probabilities for mothers who received sufficient and
insufficient information for three different levels of available time. From
this table, you can see, for example, that the probability of being less
than satisfied (i.e., dissatisfied or neutral) is especially high for moth-
ers who received insufficient information and have relatively little time
(.68). Even for mothers with the mean amount of time, the probability
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of being less than satisfied is greater than .50 for mothers who received
insufficient information (.56).

Interactions and Curvilinear Relationships

Interactions and curvilinear relationships can be examined with ordinal
logistic regression (Hosmer & Lemeshow, 2000; Jaccard, 2001), using the
same principles and methods as you use with binary logistic regression.
However, interpretation and presentation of the results are complicated
by the fact that you need to consider results from more than one regres-
sion equation and, of course, this complexity increases as the number of
categories of the DV increases.

Assumptions Necessary for Testing Hypotheses

Ordinal logistic regression assumes that the DV is ordinal, and this
method should not be used if the order of the categories of the DV is
ambiguous (e.g., type of exit from foster care ordered as reunification,
adoption, or independent living). As Long and Cheng (2004) noted, a DV
can be ordered differently with respect to different IVs, ordered on more
than one dimension, or partially ordered. In situations where the ordinal
nature of the DV is in question, data can be analyzed using multino-
mial logistic regression (Hosmer & Lemeshow, 2000) or using alternative
regression models that do not require this assumption (Long & Freese,
2006).

Other than the assumption that the DV is ordinal, ordinal logis-
tic regression has the same assumptions as binary logistic regression
(pp. 21–28), with one addition. Ordinal logistic regression also assumes
that the effect of the IVs is the same for all values of the DV. This assump-
tion is called the proportional odds, parallel lines, parallel slopes, or parallel
regression assumption (Borooah, 2002; Hardin & Hilbe, 2007; Long,
1997), and we will refer to it as the parallel lines assumption. The paral-
lel lines assumption can and should be tested, and both Long (1997) and
Long and Freese (2006) note that it is not unusual for it to be violated.

Consider the ordinal logistic regression equations for our example
with two IVs:

L(Dissatisfied vs. Neutral/Satisfied) = t1−( BInfoFCWorkerXInfoFCWorker

+ BzTimeXzTime)

L(Dissatisfied/Neutral vs. Satisfied) = t2−( BInfoFCWorkerXInfoFCWorker

+ BzTimeXzTime)
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Table 4.10 Test of Parallel Lines

Model −2 Log Likelihood Chi-Square df Sig.

Null Hypothesis 341.914
General 341.559 .355 2 .838

Ordinal logistic regression assumes that BInfoFCWorker is the same for both
equations, and BzTime is the same for both equations (i.e., the slope of
the lines, or in this case planes, for the two equations are parallel). If the
slopes for an IV are different for different cumulative ordered categories
of the DV, estimation of a common slope misrepresents the association
between the IV and the DV (e.g., imagine that the sign of BzTime is nega-
tive in one equation and positive in the other). So, when this assumption
is violated, it is unreasonable to estimate an ordinal logistic regression
model because it is unreasonable to estimate a common slope.

If the parallel lines assumption is violated, the multinomial logis-
tic regression model could be used. However, such an analysis would
not take account of the ordinal nature of the DV, and hence results
might not fully address the research questions (DeMaris, 2004; Hosmer
& Lemeshow, 2000).

Table 4.10 shows the SPSS output for testing the parallel lines
assumption with our example with two IVs. SPSS tests the proportional
odds assumption by comparing the −2 Log Likelihood for the con-
strained model (row labeled Null Hypothesis) that assumes the slopes are
equal to the −2 Log Likelihood for the unconstrained model (row labeled
General), which allows the slopes to vary and estimates different slopes.
The difference between these −2 Log Likelihood values is distributed as
a chi-squared statistic, and rejection of the null hypothesis indicates that
the parallel lines assumption is violated. This is a null hypothesis that you
do not want to reject, because it means that the parallel lines assump-
tion is violated (Norusis, 2007). As you can see in Table 4.10, the null
hypothesis is not rejected in our example.

Model Evaluation

Methods for detecting outliers and influential observations are not well
developed for ordinal logistic regression. However, you can create a
set of binary DVs from the ordinal DV, run separate binary logistic
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regressions, and use binary logistic regression methods to detect outliers
and influential observations (Hosmer & Lemeshow, 2000; Long & Freese,
2006). For our example, you could use the following SPSS syntax to
create two new dichotomous variables, SatisfactionLessThan2 and Satis-
factionLessThan3, by recoding the original DV, Satisfaction, into two new
variables:

compute Satisfaction ( 1=1) ( 2=0) ( 3=0) into SatisfactionLessThan2.
compute Satisfaction ( 1=1) ( 2=1) ( 3=0) into SatisfactionLessThan3.

SatisfactionLessThan2 equals 1 when the DV is less than 2 (i.e., when it is
1) and 0 when the DV equals 2 or 3. SatisfactionLessThan3 equals 1 when
the DV is less than 3 (i.e., when it is 1 or 2) and 0 when the DV equals
3. Notice that the new dichotomous variables correspond to the cumula-
tive ordered categories of the DV, and the number of new dichotomous
variables is one less than the number of categories of the DV.

You should construct and examine index plots for leverage values,
standardized or unstandardized deviance residuals, as well as Cook’s D.
For example, Figure 4.10 shows the index plot of standardized deviance
residuals for a binary logistic regression with InfoFCWorker and zTime
as the IVs and SatisfactionLessThan2 as the DV. No cases have markedly
different values from the other cases, and no residual is less than −2 or
much more than +2.

Multicollinearity

You examine multicollinearity the same way with ordinal logistic regres-
sion as you do with the other regression models discussed in this book.
For our example with two IVs, tolerance equals .99 and the variance
inflation factor equals 1.01, indicating no concern with multicollinearity.

Additional Regression Models for Ordinal Dependent Variables

In addition to ordinal logistic regression, other logistic regression mod-
els can be used with ordinal DVs (Greene, 2008; Hardin & Hilbe, 2007;
Hosmer & Lemeshow, 2000; Long & Cheng, 2004; Long & Freese, 2006;
Norusis, 2007). Indeed, calling the model we discuss in this chapter the
ordinal logistic regression model is a bit misleading, because there are
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Figure 4.10 Index Plot of Standardized Residuals

other ordinal logistic regression models and the one we discuss in this
chapter is, perhaps, best referred to as the constrained cumulative logit
model. For example, the adjacent-category logistic model compares each
value of the DV to the next higher value, the continuation-ratio logis-
tic model compares each value of the DV to all lower values, and the
generalized ordered logit model relaxes the parallel lines assumption.

In addition to ordinal regression models based on the logit link,
there are regression models based on other link functions (Hardin &
Hilbe, 2007; Norusis, 2007). Ordinal probit regression is the alterna-
tive most often discussed (Borooah, 2002; Hoffmann, 2004; Long &
Freese, 2006). Ordinal probit regression is an extension of binary probit
regression that assumes that the ordinal DV has an underlying normally-
distributed latent variable. As with binary probit and logit models, the
choice between the ordered probit and the logit models is largely one
of convenience and discipline-specific convention, given that substantive
results are generally indistinguishable (Long, 1997). Other links include
the complementary log-log link (also known as clog-log), useful when
higher categories are more probable, negative log-log link, useful when
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lower categories are more probable, and the Cauchit link, useful when
the DV has a number of extreme values.

Additional Readings and Web Links

A number of books contain good chapters discussing ordinal logistic
regression. These include Borooah (2002), DeMaris (2004), Hoffmann
(2004), Hosmer and Lemeshow (2000), Long (1997), Long and Freese
(2006), Norusis (2007), and O’Connell (2006). Several published arti-
cles also provide good examples of the application of ordinal logistic
regression. For example, Cole and Eamon (2007) used ordered logistic
regression to predict depressive symptoms (none, one to three symp-
toms, or four to thirty symptoms) in foster caregivers. IVs included
income, health, childhood maltreatment, and available time to carry out
responsibilities.

You might find the following Web sites useful resources for ordinal
logistic regression:

http://www.stat.ubc.ca/∼rollin/teach/643w04/lec/node62.html
http://teaching.sociology.ul.ie/SSS/lugano/node74.html

SPSS Instructions

Ordinal Logistic Regression (GZLM)

There are two ways to estimate ordinal logistic regression with SPSS. Let’s
start with SPSS GZLM, and then we’ll turn to instructions for estimating
ordinal logistic regression with SPSS Regression. The most important dif-
ference between these two approaches is that SPSS Regression provides a
test of the parallel lines assumption, and SPSS GZLM does not.

• Start SPSS 16 and open the Chapter 4 data set.
• From the menus choose:

Analyze
Generalized Linear Models
(GZLM) Generalized Linear Models. . .

http://www.stat.ubc.ca/~rollin/teach/643w04/lec/node62.html
http://teaching.sociology.ul.ie/SSS/lugano/node74.html
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Type of Model

• Click Ordinal Logistic.

Response

• Select an ordinal DV (e.g., Satisfaction), and click the arrow button
to move it to Dependent Variable.

Predictors

• Select categorical IVs (e.g., InfoFCWorker), and click the arrow
button to move them to Factors.

• For a polytomous variable, click Options and click Ascending or
Descending to use the last or first category, respectively, as the
reference category for dummy coding. For a dichotomous variable
coded as 0 and 1 typically Descending, should be used.

• Select quantitative IVs (e.g., zTime), and click the arrow button to
move them to Covariates.

Model

• Select factors and covariates included as main effects in the model,
and click the arrow button to move them to Model.

Note: You can also use this dialog box to create interaction terms. Click
Help to get a description of how to do this.

Estimation

• You don’t need to change default settings.

Statistics

• Click Likelihood ratio, listed under Chi-Square Statistics.
• Click Include exponential parameter estimates, listed under Print.

Estimated Marginal (EM) Means

• EM means are not available for ordinal logistic regression.
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Save

• Click Predicted value of linear predictor to save predicted logits.
• Click OK to get the results.

Note: After you run the analysis save the data set, which now con-
tains new variables that you can use to create index plots and for other
purposes.

Ordinal Logistic Regression (Regression)

• Start SPSS 16 and open the Chapter 4 data set.
• From the menus choose:

Analyze
Regression
Ordinal. . .

• Select an ordinal DV (e.g., Satisfaction), and click the arrow button
to move it to Dependent.

• Select categorical IVs (e.g., InfoFCWorker), and click the arrow
button to move them to Factors.

• Select quantitative IVs (e.g., zTime), and click the arrow button to
move them to Covariate(s).

• Click Output, and then click Goodness of fit statistics, Summary
statistics, Parameter estimates, Test of parallel lines, and Estimated
response probabilities. Click Continue.

• Click OK to get the results.

Note: After you run the analysis save the data set, which now contains
new variables created by Output.

Excel Workbooks

The names of the following three workbooks correspond to the variables
used in the associated ordinal logistic regression analyses. These work-
books show how we created the figures reported in this chapter for the
associated analyses, as well as additional related figures not included.

• InfoFCWorker.xls
• zATS.xls
• zATS InfoFCWorker.xls
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Regression with a Count
Dependent Variable

R esearchers spend much of their time counting things: numbers
of criminal offenses, symptoms, placements, and so on. We have

investigated the number of specific concerns a new mother expresses
about providing care for her infant (Combs-Orme et al., 2004) and the
number of children fostered or adopted (Orme et al., 2007). This chapter
describes the use of Poisson and negative binomial regression to model
count DVs.

Count variables indicate the number of times a particular event
occurs to each case, usually within some domain of observation such as
a given time period (e.g., number of hospital visits per year), population
size (e.g., number of registered sex offenders per 100,000 population), or
geographical area (e.g., number of divorces per county or state). Counts
are whole numbers that can range from 0 through +∞; social workers
and those in related areas frequently conduct research in which the DV
is a count.

A number of regression models are available for analyzing count
DVs. This chapter first describes Poisson regression, which is the basic
model upon which many other regression models for counts are based
(DeMaris, 2004; Hardin & Hilbe, 2007; Hilbe, 2007; Hoffmann, 2004;
Long & Freese, 2006; Norusis, 2007).
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Many times the assumptions of Poisson regression are not met,
and negative binomial regression is an alternative to Poisson regres-
sion with less restrictive assumptions (DeMaris, 2004; Hardin & Hilbe,
2007; Hilbe, 2007; Hoffmann, 2004; Long & Freese, 2006). Negative
binomial regression has greater generality than Poisson regression, and
it’s the basic model on which a number of other regression models for
count DVs are based (DeMaris, 2004; Hardin & Hilbe, 2007; Hilbe, 2007;
Hoffmann, 2004; Long & Freese, 2006; Norusis, 2007). Therefore, after
discussing Poisson regression, we will turn to a discussion of negative
binomial regression.

Chapter Example

In this chapter, we will discuss and illustrate Poisson and negative bino-
mial regression by examining variables that influence the number of
foster children adopted by foster mothers. The sample includes 285 fos-
ter mothers. The number of foster children adopted is the DV (variable
name NumberAdopted). As illustrated in Figure 5.1, the distribution is
skewed positively with a large percentage of 0 values, as is common with
count variables. The M = 1.04 (SD = 1.53), and the range is from 0
through 8.

We will analyze the effects of three IVs: marital status, perceived
responsibility for parenting foster children, and number of years of fos-
tering. Marital status (variable name Married) is a dichotomous variable
coded 0 for unmarried mothers and 1 for married mothers. The sam-
ple contains 61 (21.4%) mothers who are unmarried and 224 (78.6%)
who are married. Perceived responsibility for parenting foster children
was measured using the Parenting subscale of the Foster Parent Role Per-
formance Scale (FPRPS-P, variable name ParentRole) (Le Prohn, 1994;
Rhodes, Orme, & McSurdy, 2003b). The FPRPS-P has a potential range
of values from 0 through 100, with higher scores indicating a greater
degree of perceived responsibility for parenting foster children. The scale
has a fairly normal distribution with M = 77.04 (SD = 11.27), and
it ranges from 47.83 through 100. Finally, the length of time mothers
had fostered (variable name YearsFostered) was measured in years. It’s
positively skewed with M = 7.59 (SD = 7.22) and ranges from 1
through 34.
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Figure 5.1 Number of Foster Children Adopted

Table 5.1 Number of Foster Children Adopted as a Function
of Marital Status

Marital Status Mean N Variance

(0) No 0.754 61 1.489
(1) Yes 1.112 224 2.557
Total 1.035 285 2.344

Group Means

Let us start by examining a simple research question: Is there a difference
in the number of foster children adopted by unmarried and married foster
mothers? A comparison of the mean number of foster children adopted
by unmarried and married foster mothers provides a good starting point
for answering this question and for understanding Poisson and negative
binomial regression.

Table 5.1 shows descriptive statistics for the number of foster chil-
dren adopted by unmarried and married mothers. The mean number
of children adopted equals 0.75 for unmarried and 1.11 for married
mothers.
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You can select different ways to quantify the direction and the
strength of this relationship. On average, married mothers adopted
0.36 more children ( 1.112 − 0.754), or you could say that being mar-
ried increased the number of children adopted by a factor of 1.47
(1.112/0.754). Similarly, you could say that a one-point increase in the IV
(unmarried to married) increased the mean number of children adopted
by a factor of 1.47. Finally, you could say that being married increased
the mean number of children adopted by 47% ([1.112−0.754]/0.754 or,
alternatively, 100[1.47 − 1.00]).

We have a problem with this analysis: It does not take account of
the fact that number of years of fostering varied across mothers, and so
opportunity to adopt foster children varied. For unmarried mothers, the
mean number of years of fostering was 8.803, and for married mothers it
was 7.254.

The opportunity for an event to occur is known as exposure. Expo-
sure can include length of time, population size, geographical area, or
other domains of interest.

If exposure is not the same for all cases, this fact must be taken
into account since a higher count might simply be due to greater expo-
sure. For example, the longer a mother fosters, the more opportunity she
has to adopt foster children. Exposure can be accounted for by examin-
ing a rate, which is a count per unit of time (e.g., number of children
adopted per year), population (e.g., number of registered sex offend-
ers per 100,000), geographical area (e.g., number of children below the
poverty line per state), or other type of exposure. A rate is calculated as:

λ = µ/E

where λ (Greek letter lambda) is the population rate (sometimes referred
to as incidence rate), µ (Greek letter mu) is the population mean for the
count DV (sometimes referred to as incidence), and E is exposure. The
estimated rates in our example are:

rate(Unmarried) = .754/8.803 = .086

rate(Married) = 1.112/7.254 = .153

On average, married mothers adopted 0.067 more children per year
(0.153 − 0.086). You could also say that being married increased the
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mean yearly adoption rate by 78% [ ( .153 − 0.086) /0.086], a value
considerably larger than when exposure was not taken into account
(47%).

What if, in our example, all mothers fostered for 1 year? In that case, the
yearly adoption rates would be:

rate(Unmarried) = 0.754/1.000 = 0.754

rate(Married) = 1.112/1.000 = 1.112

These rates are, of course, just the mean number of children adopted.

The direction and strength of the relationship between marital status
and adoption rate also can be quantified using the incidence rate ratio
(IRR), which is similar to the OR except that the response is the number
of events per some unit of exposure. The IRR has a potential range from
0 through +∞, and an IRR greater than 1 indicates that the numerator
group has a higher incidence rate than the denominator group, while an
IRR less than 1 indicates that the numerator group has a lower incidence
rate than the denominator group.

In our example the IRR is:

IRR = rate(Married)/rate(Unmarried) = 0.153/0.086 = 1.78

That is, being married increased the mean yearly adoption rate by a factor
of 1.78 (0.153/0.086). Also, you could say that a one-point increase in the
IV (unmarried to married) increased the mean yearly adoption rate by a
factor of 1.78. You can also use the IRR to compute percentage change in
the rate in the same way you use the OR to compute percentage change
in the odds. That is, being married increased the mean yearly adoption
rate by 78% [100( 1.78 − 1.00) ].

Poisson Regression

This Poisson regression model can be written as (ignoring exposure for
the moment, as you would do if exposure were the same for all cases, in
which case λ = µ):

ln( λ) = α + β1X1 + β2X2 + . . . βkXk
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Or, for short, it can be written as:

ln( λ) = η

This is read as “the natural log of the rate equals the linear predic-
tor.” That is, the log link is the link function for the Poisson regression
model.

As we discussed in previous chapters, functions of the DV, like the
log of a rate, are difficult to interpret because they have no intuitive or
substantive meaning. So, when you interpret and present your results it
is useful to compute the inverse (or, reverse, if you will) of the estimated
value. The exponential function is the inverse of the log function, as dis-
cussed in previous chapters, and with Poisson regression exponentiating
the linear predictor, η, gives the rate:

λ = eη

This is read as “the rate equals the exponentiated value of the linear
predictor.”

The estimated Poisson regression model for our example (ignoring
exposure for the moment, as you would do if exposure were the same for
all cases) is:

ln(rate) = a + BMarriedXMarried

The corresponding rate is:

rate = ea+BMarriedXMarried

One Dichotomous Independent Variable

Tables 5.2 and 5.3 show partial results of the Poisson regression. As
shown in Table 5.2, the relationship between marital status and num-
ber of foster children adopted is statistically significant. The likelihood

Table 5.2 Omnibus Test

Likelihood Ratio Chi-Square df Sig.

6.380 1 .012



Table 5.3 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −.282 .1474 −.571 .007 3.664 1 .056 0.754 0.565 1.007
[Married = 1] .388 .1605 .073 .703 5.846 1 .016 1.474 1.076 2.019
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ratio χ2 test in Table 5.2 tests the null hypothesis that all slopes equal
0, although in this case we have only one slope. Table 5.3 provides
a Wald test for each slope, which also indicates a statistically signifi-
cant relationship between marital status and number of foster children
adopted.

The positive slope for marital status (.388) indicates that married
mothers adopt more foster children than unmarried mothers do; a
negative slope would indicate the opposite. The exponentiated value
of the slope, Exp(B), indicates that being married increases the mean
number of children adopted by a factor of 1.474. You could also say
that being married increases the mean number of children adopted by
47.4% [100(1.474 − 1)]. These values are exactly what we obtained with
descriptive statistics in Table 5.1 before we took account of exposure.

From Table 5.3, the estimated Poisson regression equation is:

ln( rate) = −.282 + ( .388) ( XMarried)

So, the estimated logs of the rates are:

ln(rate(Unmarried)) = −.282 = −.282+( .388) ( 0)

ln(rate(Married)) = .106 = −.282+( .388) ( 1)

The corresponding rates are:

rate(Unmarried) = e−.282 = .754

rate(Married) = e.106 = 1.112

That is, the mean number of children adopted equals 0.75 for unmarried
and 1.11 for married mothers. On average, married mothers adopted
0.36 more children (1.112 − .754). You could also say that being mar-
ried increased the mean number of children adopted by a factor of
1.47 (1.112/0.754), the exponentiated value of the slope, Exp(B), or you
could say that being married increased the mean number of children
adopted by 47% [100(1.47 − 1)]. Again, these values are exactly what we
obtained with descriptive statistics in Table 5.1 before we took account of
exposure.

If exposure for all mothers were the same, for example 1 year, the esti-
mated means for unmarried and married mothers could be interpreted
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as yearly adoption rates. That is, for unmarried mothers, the mean num-
ber of children adopted per year would be 0.75 and for married mothers
1.11. However, exposure is different for different mothers, and we need
to incorporate this fact into the Poisson regression model.

Typically, exposure is incorporated into a Poisson regression by first
creating a new variable, the natural log of the exposure variable. In
our example, YearsFostered is the exposure variable. The following SPSS
syntax could be used to compute the new variable:

compute lnYearsFostered = ln(YearsFostered).

The new variable, lnYearsFostered, is called an offset variable. The log
of the exposure variable is used instead of the exposure variable itself so
that exposure will be on the log scale, just as other values of the linear
predictor, η, are on the log scale. Note that the exposure variable must be
greater than 0; that is, there must be some opportunity for the event to
occur, and logs of values less than or equal to 0 are undefined.

Tables 5.4 and 5.5 show partial results of the Poisson regression incor-
porating the offset variable, lnYearsFostered. The relationship between
marital status and number of children adopted per year is statistically
significant as indicated by the likelihood ratio χ2 test and the Wald test.

The positive slope for marital status (.582) indicates that the yearly
adoption rate is higher for married mothers. In fact, the relationship
between adoption rate and marital status is stronger (the slope is larger),
when exposure is considered than when it is not. The exponentiated
value of the slope, Exp(B), indicates that being married increases the
mean yearly adoption rate by a factor of 1.79; this is the IRR. Instead,
you could say that a one-point increase in the IV (unmarried to married)
increases the mean yearly adoption rate by a factor of 1.79, or that being
married increases the mean yearly adoption rate by 79% [100(1.79 − 1)].
These values are exactly (given rounding error) what we obtained with
descriptive statistics presented above when we took account of exposure.

Table 5.4 Omnibus Test

Likelihood Ratio Chi-Square df Sig.

14.940 1 .000



Table 5.5 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −2.457 .1474 −2.746 −2.168 277.776 1 .000 0.086 0.064 0.114
[Married = 1] .582 .1605 .267 .896 13.131 1 .000 1.789 1.306 2.450
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From Table 5.5, the estimated Poisson regression equation is:

ln(rate) = a + BMarriedXMarried

So, the estimated log of the rates is:

ln(rate(Unmarried)) = −2.457 = −2.457+( .582) (0)

ln(rate(Married)) = −1.875 = −2.457+( .582) (1)

The corresponding rates are:

rate(Unmarried) = e−2.457 = .086

rate(Married) = e−1.875 = .153

These values are exactly what we obtained with descriptive statistics
(presented above) when we accounted for exposure.

When you do not include an offset variable in your regression model,
as might be the situation if exposure is the same for all cases, the mean
count is a rate. So, for example, if only mothers who fostered for 1
year were included in the sample, the mean count would be the yearly
adoption rate.

When an offset variable is included in Poisson regression, the esti-
mated rate for a particular case is computed by first calculating the
estimated log of the rate. In our example:

ln(rate) = a + BMarriedXMarried + ln(E)

Then, the value of the linear predictor is exponentiated to obtain the
estimated rate:

rate = ea+BMarriedXMarried+ln(E)

In both of these equations note that values of ln(E) are computed for each
case, and may be different for each case. For example, for mothers who
fostered for 2 years, ln(E) = ln( 2) = .69. Finally, notice that the offset
term in the regression equation [ln(E)] does not have an associated slope
coefficient (i.e., β is set to a value of 1).
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Table 5.6 Omnibus Test

Likelihood Ratio Chi-Square df Sig.

10.272 1 .001

One Quantitative Independent Variable

The use and interpretation of Poisson regression is much the same with
quantitative and categorical IVs. We will start with a simple example to
illustrate Poisson regression with a quantitative IV. The research ques-
tion is this: Do foster mothers who feel a greater responsibility to parent
foster children adopt more foster children? As the IV, we will use scores
from the Parenting subscale of the Foster Parent Role Performance Scale,
transformed to z-scores (variable name zParentRole). We will include
lnYearsFostered as the offset variable.

Tables 5.6 and 5.7 show partial results of the Poisson regression. The
relationship between parenting responsibility and yearly adoption rate is
statistically significant as indicated by the likelihood ratio χ2 test and the
Wald tests.

The slope (.184) is positive, and the IRR (1.202) is greater than 1,
indicating a positive relationship between parenting responsibility and
yearly adoption rate. That is, for every one standard-deviation increase
in parenting responsibility, the mean yearly adoption rate increases by a
factor of 1.20. (Or, for every two standard-deviation increase in parenting
responsibility, the yearly adoption rate increases by a factor of 1.44 [i.e.,
e(2)(.184)].) Finally, you could say that for every one standard-deviation
increase in parenting responsibility, the yearly adoption rate increased by
20% [100(1.20 − 1.00)].

From Table 5.7, the estimated Poisson regression equation is:

ln(rate) = a + BzParentRoleXzParentRole

So, for example, mothers with the mean value of parenting responsibility
(i.e., when zParentRole = 0) is:

ln(rate) = −2.008 = −2.008+( .184) ( 0)

The corresponding rate is:

rate = e−2.008 = .134



Table 5.7 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −2.008 .0592 −2.123 −1.892 1151.808 1 .000 0.134 0.120 0.151
zParentRole .184 .0580 .070 .297 10.045 1 .002 1.202 1.073 1.346
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Figure 5.2 Effect of Standardized Parenting Responsibility on Adoption Rate

Figure 5.2 shows the relationship between zParentRole and yearly
adoption rate. Note that 0 represents the mean value of parenting respon-
sibility; −1, −2, and −3 indicate the number of standard deviations
below the mean; and 1, 2, and 3 indicate the number of standard
deviations above the mean. Thus, for example, the estimated mean
yearly adoption rate for mothers with the mean value of parenting
responsibility is 0.13.

Multiple Independent Variables

Now we build on our previous two examples in this chapter to illustrate
Poisson regression with multiple IVs. Earlier, we saw that the mean yearly
adoption rate was greater for mothers who were married and for mothers
who took more responsibility for parenting. It might be that the relation-
ship between parenting responsibility and yearly adoption rate is due to
the fact that both are influenced by marital status (i.e., marital status is
a “common cause” of both, and so the relationship is spurious). There-
fore, the research question examined here is this: Do foster mothers who
take more responsibility for parenting adopt more foster children per year,
controlling for marital status?

Marital status and parenting responsibility were included in the
regression model, and lnYearsFostered was included as the offset variable.
We show partial results of this analysis in Tables 5.8, 5.9, and 5.10.

The likelihood ratio χ2 test in Table 5.8 tests the null hypothesis that
β1 = β2 = βk = 0 or, in our example, βzParentRole = βMarried = 0. As you
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Table 5.8 Omnibus Test

Likelihood Ratio Chi-Square df Sig.

26.792 2 .000

Table 5.9 Tests of Model Effects

Type III

Source Likelihood Ratio Chi-Square df Sig.

(Intercept) 2200.743 1 .000
zParentRole 11.853 1 .001
Married 16.520 1 .000

can see, we can reject the null hypothesis. The likelihood ratio χ2 tests in
Table 5.9 test the null hypotheses that βzParentRole = 0 and βMarried = 0.
Both of these hypotheses can be rejected, and these results are identical
to results of the Wald tests shown in Table 5.10.

As shown in Table 5.10, the slope for parenting responsibility (.198)
is positive, and the IRR (1.22) is greater than 1, indicating a positive
relationship between parenting responsibility and yearly adoption rate,
when controlling for marital status. That is, for every one standard-
deviation increase in parenting responsibility, the mean yearly adoption
rate increased by a factor of 1.22, when controlling for marital status. (Or,
for every two standard-deviation increase in parenting responsibility, the
mean yearly adoption rate increased by a factor of 1.49 [i.e., e(2)(.198)],
when controlling for marital status.) Finally, you could say that for every
one standard-deviation increase in parenting responsibility, the mean
yearly adoption rate increased by 22% [100( 1.22 − 1.00)], when con-
trolling for marital status. This percentage increase is virtually the same
as we found above (20%), when we did not control for marital status.

Although our substantive interest here is in the effect of parenting
responsibility on adoption rate when controlling for marital status, we
can also interpret the results for marital status. The slope for marital
status (.611) is positive, and the IRR (1.842) is greater than 1. The IRR
indicates that being married increased the mean yearly adoption rate by
a factor of 1.84, when controlling for parenting responsibility. Or, you
could say that a one-point increase in the IV (unmarried to married)



Table 5.10 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −2.498 .1485 −2.789 −2.207 282.867 1 .000 .082 0.062 0.110
zParentRole .198 .0582 .084 .312 11.576 1 .001 1.219 1.088 1.366
[Married = 1] .611 .1607 .296 .926 14.443 1 .000 1.842 1.344 2.524
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increased the mean yearly adoption rate by a factor of 1.84, when control-
ling for parenting responsibility. Finally, you could say that being married
increased the mean yearly adoption rate by 84% [100(1.84−1.00)], when
controlling for parenting responsibility.

From Table 5.10, the estimated Poisson regression equation is:

ln(rate) = a + BMarriedXMarried + BzParentRoleXzParentRole

So, for example, for unmarried mothers (married = 0) with the mean
value of parenting responsibility (i.e., zParentRole = 0):

ln( rateUnmarried) = −2.498 = −2.498+( .611) ( 0) +( .198) (0)

The corresponding rate is:

rate = e−2.498 = .082

That is, the estimated mean yearly adoption rate for unmarried mothers
with the mean value of parenting responsibility is .08.

To think about the best way to present estimated rates, examine their
frequency distributions, basic descriptive statistics (e.g., mean, median,
standard deviation, range, and interquartile range), and different types
of univariate charts (histogram, boxplot, etc.). SPSS will compute an
expected count for each case and save these counts as a new variable,
so you do not need to compute these manually. In the current exam-
ple, descriptive statistics for estimated rates are: M = .14, Mdn = .14,
SD = .04, range = .05 − .23, and interquartile range = .11 − .17.

The challenge with Poisson regression, as with all regression mod-
els discussed in this book, is to summarize changes in IVs associated
with changes in rates in the most meaningful and parsimonious way,
in the absence of a standard way to do this. This is further complicated
by the fact that the relationship between IVs and rates is not linear. For
any given analysis, you should explore different ways to present key sub-
stantive findings in tables or graphs. Again, this depends in part on the
subject and objectives of the study.

Rates for cases with different values of IVs can be presented in tables.
Table 5.11 shows estimated rates for unmarried and married mothers
with three different levels of parenting responsibility. At each level of
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Table 5.11 Estimated Adoption Rate as a Function of
Parenting Responsibility and Marital Status

Estimated Adoption Rate
Parenting Responsibility

Marital Status M − 2SD M M + 2SD

Unmarried .06 .08 .12
Married .10 .15 .23

parenting responsibility, being married increases the mean yearly adop-
tion rate. Also, you might note that the lowest mean yearly adoption
rate (.06) is for unmarried mothers two standard deviations below the
mean for parenting responsibility, and the highest (.23) is for married
mothers two standard deviations above the mean for parenting responsi-
bility. That is, the mean yearly adoption rate increased by a factor of 3.83
(IRR = .23/.06) or, stated another way, by 283% [100(3.83 − 1.00)].

In addition to presenting rates in tables, it is often useful to present
rates in graphic form, such as Figure 5.3. The larger the number of IVs
though, the more difficult this becomes, and a limited number of IVs
can be represented meaningfully on a single graph. One way to do this is
to plot the relationship of one IV from its minimum to maximum value,
while all other variables are fixed at their mean (or, for dichotomous vari-
ables, 0 or 1). Another strategy is to estimate rates for selected sets of
values of IVs that correspond to ideal or typical types in the population
(e.g., unmarried mothers with the mean for parenting responsibility).
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Assumptions Necessary for Testing Hypotheses

In addition to the assumptions we discussed in Chapter 1 (pp. 21–28),
Poisson regression has two additional assumptions. First, it assumes
that the variance equals the mean; this situation is known as equidis-
persion. Underdispersion occurs when the variance is smaller than the
mean. The Poisson model rarely fits in practice because in most cases the
variance is greater than the mean, a situation known as overdispersion.
Typically, when overdispersion occurs standard errors are inflated and,
consequently, p values are spuriously low. Consequently, overdispersed
Poisson models may lead us to believe that IVs are statistically significant
when in fact they are not (Hilbe, 2007).

All the regression models discussed in this book are based on the
assumption that observations are independent of one another. Poisson
regression also assumes that events for individuals are independent. That
is, for an individual the occurrence of an event does not influence the
occurrence of later events. For example, we assume that the fact that a
person adopts a child does not make the likelihood of future adoptions
more or less likely. Sometimes the violation of this assumption is referred
to as state dependence or contagion (Cohen et al., 2003).

Overdispersion can result from contagion, as well as from other
reasons. Hilbe (2007) provides an excellent discussion of this issue, dif-
ferentiating between apparent and real overdispersion. Apparent overdis-
persion can occur as a result of many of the factors we discussed in
Chapter 1, including, for example, outliers and the exclusion of rele-
vant IVs, interaction terms, or curvilinear terms. The resolution of these
problems may eliminate overdispersion, and these issues should be con-
sidered before you assume that overdispersion is real and proceed to
use a regression model designed to accommodate overdispersion (e.g.,
negative binomial regression).

The test for overdispersion involves estimating a negative binomial
regression, which we’ll discuss below. Negative binomial regression adds
an ancillary parameter that allows overdispersion (but not underdisper-
sion), and this parameter is directly related to the amount of overdis-
persion. If the data are not overdispersed, the ancillary parameter equals
0. (Poisson regression can be considered a negative binomial regression
with an ancillary parameter of 0.) Larger values of the ancillary parame-
ter indicate more overdispersion; in practice, values typically range from
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Table 5.12 Lagrange Multiplier Test

Significance (by Alternative Hypothesis)

z Parameter < 0 Parameter > 0 Non-directional

Ancillary
Parameter

1.902 .971 .029 .057

0 to about 4 (Hilbe, 2007). SPSS provides a Lagrange Multiplier test of the
null hypothesis that the ancillary parameter equals 0. Rejection of this
null hypothesis indicates overdispersion.

Table 5.12 shows results of the Lagrange Multiplier test for the model
with Married and zParentRole. The null hypothesis that the ancillary
parameter is greater than 0 (i.e., overdispersion) can be rejected—
indicating the presence of statistically significant overdispersion.

When you use this method, you should also construct index plots
for leverage values, standardized or unstandardized deviance residuals,
and Cook’s D. For example, Figure 5.4 shows the index plot of stan-
dardized deviance residuals for our Poisson regression with Married and
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Figure 5.4 Index Plot of Standardized Deviance Residuals
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Figure 5.5 Observed versus Estimated Proportion of Cases

zParentRole as the IVs, and lnYearsFostered as the offset variable. Nine
cases (3%) have values below −3 or above +3, and one case in particular
is markedly different and especially large. This case is a married mother
who has about the mean value of parenting responsibility and has fos-
tered for 1 year but has adopted five foster children. It might be useful
to rerun the analysis without this case and see whether the results change
substantially. (When we excluded this case, results were virtually identical
to the original results.)

It can also be useful to graph and compare observed and estimated
counts. As shown in Figure 5.5, the estimated proportion of mothers who
did not adopt any foster children is notably less than the actual propor-
tion, and the estimated proportion of mothers who adopted one foster
child is notably higher than the actual proportion. For counts of two
and above, the estimated and actual distributions are similar. The sit-
uation where the actual number of zeros is greater than the estimated
number is known as zero-inflation, and variations of both Poisson and
negative binomial regression are designed to handle this situation (Hilbe,
2007).

Multicollinearity

The examination of multicollinearity is conducted in the same way with
Poisson and negative binomial regression as with other regression mod-
els discussed in this book. For our example with two IVs, tolerance equals
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.99, and the variance inflation factor equals 1.01, indicating no concern
with multicollinearity.

Negative Binomial Regression

Negative binomial regression is an extension of Poisson regression that
allows overdispersion (but not underdispersion). It is the standard
method used to model overdispersed Poisson data. Given that overdis-
persion is the norm, the negative binomial regression model has more
generality than the Poisson model (Hilbe, 2007).

Our focus here will be on the basic negative binomial regression
model (sometimes referred to as NB-2). However, it is important to note
that there are a number of extensions of this basic model, just as there are
of the basic Poisson model, and we will discuss some of these extensions
briefly at the end of this chapter.

Negative binomial regression has much in common with Poisson
regression. Methods for testing the overall model, quantifying and inter-
preting the effects of IVs, incorporating exposure variables, estimating
rates, testing interactions and curvilinear effects, testing assumptions,
and quantifying multicollinearity are the same. We begin below by esti-
mating and interpreting results of a negative binomial regression analysis
of the multiple IV Poisson model we discussed above.

Multiple Independent Variables

Marital status and parenting responsibility were included in the regres-
sion model, and lnYearsFostered was included as the offset variable. You
can see partial results of this analysis in Tables 5.13, 5.14, and 5.15.

As shown in Table 5.13, you can reject the null hypothesis that the
slopes for the two IVs equal 0. In Tables 5.14 and 5.15, you can see that
both Married and zParentRole are statistically significant.

As shown in Table 5.15, the slope for parenting responsibility (.227)
is positive, and the IRR (1.254) is greater than 1, indicating a positive

Table 5.13 Omnibus Test

Likelihood Ratio Chi-Square df Sig.

8.668 2 .013
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Table 5.14 Tests of Model Effects

Type III

Source Likelihood Ratio Chi-Square df Sig.

(Intercept) 109.483 1 .000
Married 4.710 1 .030
zParentRole 4.854 1 .028

relationship between parenting responsibility and yearly adoption rate,
controlling for marital status. That is, for every one standard-deviation
increase in parenting responsibility, the mean yearly adoption rate
increased by a factor of 1.25, controlling for marital status. Finally,
you could say that for every one standard-deviation increase in par-
enting responsibility, the mean yearly adoption rate increased by 25%
[100(1.25 − 1.00)], controlling for marital status. This percentage
increase is slightly higher than the one we found with Poisson regression
(22%).

Although our substantive interest here is in the effect of parenting
responsibility on adoption rate controlling for marital status, we can also
interpret the results for marital status. The slope for marital status (.565)
is positive, and the IRR (1.760) is greater than 1. The IRR indicates that
being married increased the mean yearly adoption rate by a factor of
1.76, when controlling for parenting responsibility. You could also say
that a one-point increase in the IV (unmarried to married) increased the
mean yearly adoption rate by a factor of 1.76, when controlling for par-
enting responsibility. Finally, you could say that being married increased
the mean yearly adoption rate by 76% (100[1.76−1.00]), when control-
ling for parenting responsibility. This percentage increase is lower than
the one we found with Poisson regression (84%).

The adoption rate is estimated by first estimating the log of the
rate. So, for example, for unmarried mothers (Married = 0) with the
mean value of parenting responsibility (i.e., when zParentRole = 0) the
estimated log of the rate is:

ln(rateUnmarried) = −2.256 = −2.256+( .565) ( 0) +( .227) (0)

The corresponding rate is:

rate = e−2.256 = .10



Table 5.15 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −2.256 .2337 −2.714 −1.798 93.216 1 .000 0.105 0.066 0.166
[Married = 1] .565 .2568 .062 1.068 4.845 1 .028 1.760 1.064 2.911
zParentRole .227 .1022 .026 .427 4.917 1 .027 1.254 1.027 1.532
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Table 5.16 Estimated Adoption Rate as a Function of
Parenting Responsibility and Marital Status

Estimated Adoption Rate
Parenting Responsibility

Marital Status M − 2SD M M + 2SD

Unmarried .07 .10 .16
Married .12 .18 .29

This estimated yearly adoption rate is slightly higher than the rate we
found with Poisson regression (.08).

As with Poisson regression, rates for cases with different values of
IVs can be presented in tables. Table 5.16 shows estimated rates for
unmarried and married mothers with three different levels of parent-
ing responsibility. At each level of parenting responsibility, being married
increases the mean yearly adoption rate. Also, you might note that the
lowest mean yearly adoption rate (.07) is for unmarried mothers two
standard deviations below the mean on parenting responsibility, and the
highest (.29) is for married mothers two standard deviations above the
mean on parenting responsibility. That is, the mean yearly adoption rate
increased by a factor of 4.14 (IRR = .29/.07) or, stated another way, by
314% [100(4.14 − 1.00)].

In addition to presenting rates in tables, it is often useful to present
rates in graphic form, such as Figure 5.6. The larger the number of IVs,
of course, the more difficult this becomes, and only a limited number of
IVs can be represented meaningfully on a single graph.
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Figure 5.6 Effect of Standardized Parenting Responsibility and Marital Status on
Adoption Rate



Regression with a Count Dependent Variable 177

Interactions and Curvilinear Relationships

Curvilinear relationships and interactions are tested with negative bino-
mial (and Poisson) regression in much the same way as with linear
regression. However, both types of relationships are a bit more work to
present and interpret, given the nonlinear relationship between the IVs
and the rates.

Curvilinear Relationships

One assumption of negative binomial and Poisson regression is that the
relationship between the linear combination of IVs (i.e., α + β1X1 +
β2X2 + . . . βkXk, symbolized by η) and the log of the rate, ln( λ), is linear.

Suppose we hypothesize that responsibility for parenting positively
influences adoption rates, but only up to a certain point, beyond which
it has no additional effect. This is an example of a quadratic relationship,
and oftentimes such relationships are of theoretical interest.

First create two new variables: (1) parenting responsibility (centered
or transformed to z-scores, which are centered scores divided by the stan-
dard deviation—we will use z-scores) (zParentRole); and (2) parenting
responsibility z-scores squared (zParentRole2). Then, enter zParentRole
and zParentRole2 into the regression equation, along with lnYearsFos-
tered as the offset variable. If zParentRole2 is statistically significant you
conclude that a curvilinear (quadratic) relationship exists and proceed
to describe the form of this relationship. If not, reestimate the model
without this curvilinear term and interpret results of the “reduced”
model. Partial results of this analysis shown in Table 5.17 indicate no
statistically significant relationship between zParentRole2 and adoption
rate.

If the relationship between zParentRole2 and adoption rate were sta-
tistically significant, a useful way to understand and depict the form of
the curvilinear relationship would be to create a graph with zParent-
Role (not zParentRole2) on the horizontal axis and estimated values of
the yearly adoption rate on the vertical axis. As shown in Figure 5.7,
parenting responsibility has a positive relationship with yearly adoption
rate up to about one standard deviation above the mean, and then the
direction of the relationship is reversed slightly. However, this curvilin-
ear relationship is not statistically significant, so normally you would not
construct and interpret these graphs; we have done this for illustrative
purposes.



Table 5.17 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −1.653 .1303 −1.908 −1.398 160.963 1 .000 .191 0.148 0.247
zParentRole .196 .1024 −.004 .397 3.680 1 .055 1.217 0.996 1.488
zParentRole2 −.138 .0829 −.300 .025 2.750 1 .097 .871 0.741 1.025
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Figure 5.7 Curvilinear Relationship Between Standardized Parenting
Responsibility and Adoption Rate

Interactions

As discussed in Chapter 1, an interaction occurs when the effect of one
IV (focal variable) is conditional on the values of one or more other IVs
(moderator variable). The focal variable is the IV whose effect on the DV
is thought to vary as a function of the moderator variable.

For example, suppose you hypothesize that the effect of parenting
responsibility (the focal variable) on the yearly adoption rate is differ-
ent for unmarried and married mothers (marital status is the moderator
variable). It may be that parenting responsibility has a relatively large
influence on the yearly adoption rate for unmarried mothers, but less of
an effect for married mothers.

First create two new variables: (1) parenting responsibility (centered
or transformed to z-scores, which are centered scores divided by the stan-
dard deviation—we use z-scores here) (zParentRole); and (2) parenting
responsibility z-scores multiplied by marital status (zParentRoleXMar-
ital). Then, enter zParentRole, married, and zParentRoleXMarital into
the regression equation, along with lnYearsFostered as the offset vari-
able. If zParentRoleXMarital is statistically significant, you conclude that
an interaction exists, and you describe the form of this relationship. If
not, reestimate the model without this interaction term and interpret
results of the “reduced” model. Partial results of this analysis in Table 5.18
indicate no statistically significant interaction.

If the interaction were statistically significant, it would be useful to
create a graph with zParentRole on the horizontal axis, the estimated log



Table 5.18 Parameter Estimates

95% Wald CI Hypothesis Test 95% Wald CI Exp(B)

Parameter B Std. Error Lower Upper Wald Chi-Square df Sig. Exp(B) Lower Upper

(Intercept) −2.270 .2433 −2.747 −1.793 87.036 1 .000 .103 0.064 0.166
[Married = 1] .579 .2659 .058 1.100 4.743 1 .029 1.784 1.060 3.005
zParentRole .270 .2345 −.190 .730 1.326 1 .250 1.310 .827 2.075
zParentRole X Marital −.054 .2606 −.565 .457 .043 1 .837 .948 .569 1.579
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Figure 5.8 Effect of Standardized Parenting Responsibility on the log of the
Adoption Rate Moderated by Marital Status
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Figure 5.9 Effect of Standardized Parenting Responsibility on Adoption Rate
Moderated by Marital Status

of the adoption rate (or the adoption rate itself) on the vertical axis, and
separate lines representing the relationships between parenting responsi-
bility and adoption rate for unmarried and married mothers. The graphs
for this example are in Figures 5.8 and 5.9. In the absence of an inter-
action, the separate lines for unmarried and married mothers will be
parallel for the plot of the log of the rate, but not necessarily for the rate,
and the IRR relating parenting responsibility to the adoption rate will be
the same regardless of marital status. Visually, the slope of the regression
line is slightly steeper for unmarried mothers, as shown in Figure 5.8,
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implying that the effect of parenting responsibility is stronger for unmar-
ried mothers. However, this interaction is not statistically significant and
so normally you would not construct and interpret these graphs; again,
we have done this for illustrative purposes.

Assumptions Necessary for Testing Hypotheses

In addition to the assumptions we discussed in Chapter 1 (pp. 21–28),
overdispersion can also be a problem with negative binomial regression.
Although negative binomial regression is a standard way to account for
certain types of overdispersed Poisson data, and the basic negative bino-
mial model may be sufficient to account for this overdispersion, negative
binomial regression does not account for all sources of overdispersion.
Hilbe (2007) provides a detailed discussion of these issues and extensions
of the basic negative binomial regression model for these situations.

Index plots for leverage values, standardized or unstandardized
deviance residuals, and Cook’s D should be constructed and examined
when you use negative binomial regression. It can also be useful to graph
and compare observed and estimated counts as shown in Figure 5.5.

Additional Regression Models for Count Dependent Variables

Hilbe (2007), Hardin and Hilbe (2007), Greene (2008), and Long and
Freese (2006) describe a number of extensions to the basic Poisson and
negative binomial models, but SPSS 16 does not allow you to estimate
most of these models. LIMDEP/NLOGIT (http://www.limdep.com/) is
an especially versatile program for estimating a wide range of regression
models for counts. STATA also allows you to estimate a number of these
count models (Hardin & Hilbe, 2007; Long & Freese, 2006).

The negative binomial model is not appropriate when data are under-
dispersed. An extension of the Poisson model known as the generalized
Poisson model can be used when data are under- or overdispersed. Hilbe
(2007) predicts that this will become a well-used model one day.

In some data, you will find more zeros than are estimated by the
model, as illustrated in Figure 5.8. This can occur, for example, with a
mix of two processes in the count variable, one that generates only zero
counts, and another that generates both zero and positive counts. For

http://www.limdep.com/
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example, some parents might not adopt because they are not interested
in adopting (a process that generates only zero counts), and some parents
might want to adopt but have not had the opportunity (a process that
generates both zero and positive counts). Extensions of the Poisson and
negative binomial models known as zero-inflated Poisson and negative
binomial models are appropriate for this situation, and the class of mod-
els known as Hurdle models can also be used (Greene, 2008; Hilbe, 2007).

Both the basic Poisson and the negative binomial models assume the
possibility of zero counts, even if they do not exist in the data. In sit-
uations where zero counts are excluded (e.g., only mothers who have
adopted one or more children are included in the sample), you can use
an extension of the negative binomial model known as the zero-truncated
negative binomial model. Also, there are extensions of the Poisson and
negative binomial models designed to estimate models for more gen-
eral forms of truncation (i.e., exclusion of cases from the population of
interest based on characteristics of the DV) (Greene, 2008; Hilbe, 2007).

Poisson and negative binomial models also assume that the DV is
not censored. Consider a study of the number of contacts between foster
children and their biological parents. You might measure the number of
contacts per month as 0, 1, 2, or 3 or more. In this case, the values are
censored at the top. That is, censored variables are variables whose val-
ues are known over some range, but are unknown beyond a certain value
because they were recorded or collected only up (or down) to a certain
value. Variations of the Poisson and negative binomial models exist to
model DVs that are censored from above or below (Greene, 2008; Hilbe,
2007).

Additional Readings and Web Links

Hilbe (2007) provides a recent comprehensive text covering negative
binomial, Poisson, and many related models. A number of books also
contain good discussions of Poisson and negative binomial regression.
These include Cohen et al. (2003), DeMaris (2004), Dunteman and Ho
(2006), Fox (2008), Hardin and Hilbe (2007), Hoffmann (2004), Long
(1997), and Long and Freese (2006).

Several published articles provide good examples of the applica-
tion of Poisson regression. For example, Leslie et al. (2000) employed
the method to model outpatient mental health service use (number
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of outpatient visits, the DV) by foster children. IVs included age,
race/ethnicity, gender, maltreatment history, placement pattern, and
behavior problems. Since children were in care for varying lengths of
time, length of time in care was used to control for exposure.

Barth et al. (2007) examined predictors of the number of placement
moves during the first 36 months of out-of-home placement. Two sep-
arate Poisson regression models tested the effects of depression, living
with siblings, and other variables on number of moves for children with
and without emotional disorders.

You can also find a number of published articles that provide good
examples of the application of negative binomial regression. For exam-
ple, Diwan, Jonnalagadda, and Balaswamy (2004) used negative binomial
regression because their DVs (indicators of positive and negative affect
among older Asian Indian immigrants) were overdispersed. IVs included
personal characteristics, stressful life events, personal resources, and
social support.

See also Smokowski, Mann, Reynolds, and Fraser (2004), who used
the method to predict counts of depressive symptoms and juvenile arrests
among adolescents who were part of the Chicago Longitudinal Study.
IVs included a number of risk factors collected in early and middle
childhood.

You might find the following Web sites useful resources for Poisson
and negative binomial regression:

http://www.stat.psu.edu/∼jglenn/stat504/07_poisson/
04_poisson_model.htm

http://www.uky.edu/ComputingCenter/SSTARS/P_NB_1.htm
http://www.uky.edu/ComputingCenter/SSTARS/P_NB_3.htm

SPSS Instructions

Poisson and Negative Binomial Regression (GZLM)

• Start SPSS 16 and open the Chapter 5 data set.
• From the menus choose:

Analyze
Generalized Linear Models
(GZLM) Generalized Linear Models. . .

http://www.stat.psu.edu/~jglenn/stat504/07_poisson/04_poisson_model.htm
http://www.stat.psu.edu/~jglenn/stat504/07_poisson/04_poisson_model.htm
http://www.uky.edu/ComputingCenter/SSTARS/P_NB_1.htm
http://www.uky.edu/ComputingCenter/SSTARS/P_NB_3.htm
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Type of Model

• Click Custom.

• Select Negative binomial from the Distribution drop-down box.
• Select Log from the Link function drop-down box.
• For Poisson regression, click Specify value and enter 0 for the

value. For negative binomial regression, click Estimate value.

Note: A negative binomial regression with the ancillary parameter set to 0
is a Poisson regression. The advantage of estimating a Poisson regression
this way, instead of clicking Poisson loglinear, is that you can obtain the
test of overdispersion.

Response

• Select a count DV (e.g., NumberAdopted), and click the arrow
button to move it to Dependent Variable.

Predictors

• Select categorical IVs (e.g., Married), and click the arrow button to
move them to Factors.

• For a polytomous variable, click Options and click Ascending or
Descending to use the last or first category, respectively, as the
reference category for dummy coding. For a dichotomous variable
coded as 0 and 1 typically, Descending should be used.

• Select quantitative (e.g., zParentRole) IVs, and click the arrow
button to move them to Covariates.

• Select an offset variable (e.g., lnYearsFostered), if appropriate, and
click the arrow button to move it to Offset Variable.

Model

• Select factors and covariates included as main effects in the model
and click the arrow button to move them to Model.

Note: You can also use this dialog box to create interaction terms. Click
Help to get a description of how to do this.
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Estimation

• You don’t need to change default settings.

Statistics

• Click Likelihood ratio, listed under Chi-Square Statistics.
• Click Include exponential parameter estimates, listed under Print.
• For Poisson regression, click Lagrange multiplier test of scale

parameter or negative binomial ancillary parameter to obtain the
test of overdispersion. Don’t click this for negative binomial
regression.

Estimated Marginal EM Means

• You don’t need to change default settings.

Save

• Click Predicted value of mean response to save predicted mean
counts.

• Click Predicted value of linear predictor to save the predicted log of
the count.

• Click Cook’s distance to save Cook’s distance.
• Click Leverage value to save leverage values.
• Click Deviance residual to save deviance residuals.
• Click Standardized deviance residual to save standardized deviance

residuals.
• Click OK to get the results.

Note: After you run the analysis save the data set, which now con-
tains new variables that you can use to create index plots and for other
purposes.

Note: SPSS does not have an option to compute a rate for each case. How-
ever, after using SPSS to compute and save the predicted mean count for
each case (Predicted value of mean response) you can use SPSS to compute
the rate for each case. For example, if the variable name for the predicted
mean count is MeanPredicted, and the variable name for the exposure
variable is YearsFostered, you could use the following syntax to compute
the rate for each case:

compute rate = MeanPredicted/YearsFostered.
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Excel Workbooks

The names of the following three workbooks correspond to the variables
used in the associated Poisson and negative binomial (NB) regression
analyses. These workbooks show how we created the figures reported
in this chapter for the associated analyses, as well as additional related
figures not included.

• (Poisson) zParentRole.xls
• (Poisson) Married & zParentRole.xls
• (NB) zParentRole & zParentRole2.xls
• (NB) Married, zParentRole, MarriedXzParentRole.xls
• (NB) Married & zParentRole.xls

This workbook shows how we created Figure 5.8.

• (Poisson) Observed & Estimated.xls



Glossary

Binary logistic regression Regression model in which the DV is dichoto-
mous; the link function is the logit link; and the assumed underlying
distribution is the binomial distribution. Often referred to simply as
logistic regression or sometimes as logit regression.

Censored variables Variables whose observed values are known over some
range, but unknown beyond a certain value because they were recorded
or collected only up (or down) to that value.

Centering Subtracting the sample mean (or some other value such as the
median) of a variable (typically an IV) from each case’s score on that
variable.

Common cause Variable that is a cause of both the IV and the DV and,
as such, provides a threat to the validity of the inference that the IV
causes the DV (i.e., the observed relationship between the IV and the
DV is spurious because the relationship between the IV and DV is
due to the common cause). Also known as a confounding variable or
confound.

Continuous variables Quantitative variables that can take on any value
within the limits of the variables.

Cook’s D (distance) Measure of the approximate aggregate change in
estimated regression parameters resulting from deletion of a case.

188
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Count variables Variables that indicate the number of times a particular
event occurs, usually within some time period (e.g., number of hospital
visits per year), population size (e.g., number of registered sex offenders
per 100,000 population), or geographical area (e.g., county or state).
Counts are whole numbers that can range from 0 through +∞.

Covariate Quantitative IV.

Cumulative probability Probability that a variable is less than or equal to
a particular value.

Curvilinear relationship Relationship between two variables wherein
change in the DV differs at different levels of the IV.

Dichotomous variables Variables with two categories indicating that an
event has or has not occurred, or that some characteristic is or is not
present.

Discrete variables Variables with a finite number of indivisible values; they
cannot take on all possible values within the limits of the variable. Dis-
crete variables include dichotomous, polytomous, ordinal, and count
variables.

Dummy (indicator) coding Strategy for coding polytomous IVs in which
each category is coded as a dichotomous variable (usually 0 or 1); the
number of dichotomous variables created and entered into the regres-
sion analysis is one less than the number of categories in the polytomous
IV; and the excluded category is the reference category against which
other categories are compared.

Equidispersion In Poisson regression, the assumption that the variance
equals the mean. Underdispersion occurs when the variance is smaller
than the mean, and overdispersion occurs when the variance is greater
than the mean.

Exponential function Inverse of the natural log, typically abbreviated as ex

or exp(x).

Exposure Opportunity for an event to occur, such as length of time,
population size, geographical area, or other domains of interest.

Factor Categorical/Polytomous IV.
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Focal variable See Interaction

Full model See nested models

General linear model (GLM) Special case of the generalized linear model
in which the link function is the identity function; the DV is con-
tinuous; it is assumed that the errors are normally distributed and
independent with a constant variance; and there is a linear relationship
between a linear combination of one or more IVs and one DV. The
general linear model includes different statistical models including, for
example, the t-test, ANOVA, and ANCOVA; these single DV models
are subsumed under linear regression.

Generalized linear model (GZLM) Class of regression models in which
a linear combination of the IVs (the linear predictor) is related to a
function (the link function) of a continuous or discrete DV. The gen-
eralized linear model encompasses and is an extension of the general
linear model. It provides a unifying framework for an entire class of
regression models; and it subsumes linear regression, binary, multino-
mial, logistic regression, Poisson and negative binomial regression, and
numerous other regression models.

Hierarchical entry See sequential entry.

Incidence rate ratio (IRR) In regression models for count variables, the
ratio of two rates (e.g., ratio of the rate of occurrence of the DV for
males and females).

Independence of irrelevant alternatives (IIA) In multinomial logistic
regression, the assumption that the odds of one outcome relative to
another are not influenced by other alternatives.

Index plot Scatter plot with case numbers on the horizontal axis, and
residuals, influence, or leverage values, for example, on the vertical axis.

Influence Cases whose deletion results in substantial changes to the regres-
sion coefficients are said to be influential. For example, Cook’s D (dis-
tance) measures approximate aggregate change in estimated regression
parameters resulting from deletion of a case.

Interaction Situation in which the effect of one IV (focal variable) is con-
ditional on the values of one or more other IVs (moderator variable).
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The focal variable is the IV whose effect on the DV is thought to vary
as a function of the moderator variable.

Inverse Link Function In the generalized linear model, the reverse of the
link function.

Leverage Degree to which a case is unusual in terms of values of the IVs in
the regression model.

Likelihood Probability of the observed sample data, given the parameter
estimates.

Linear predictor In the generalized linear model, linear combination of
the IVs.

Link function In the generalized linear model, the mathematical func-
tion (e.g., log) that links the expected value of the DV to a linear
combination of IVs.

Logit Natural logarithm of the odds.

Model misspecification Fitting an incorrect model to the data.

Moderator variable See Interaction.

Multicollinearity Situation where strong linear relationships exist among
IVs.

Multinomial logistic regression Regression model in which the DV
is polytomous; the link function is the logit link; and the assumed
underlying distribution is the multinomial distribution. Also known as
polytomous or nominal logistic or logit regression or the discrete choice
model. Binary logistic regression can be seen as a special case of the
multinomial logistic model in which the DV has only two categories.

Negative binomial regression Regression model in which the DV is a
count; the link function is the log link; and the assumed underlying
distribution is the negative binomial distribution.

Nested models Two models are nested if one (the reduced model) is a more
restricted version of the other (the full model).

Odds Ratio of the probability that some event will occur to the probability
that it will not occur.
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Odds Ratio (OR) Ratio of the odds of the event for one value of the IV
divided by the odds for a different value of the IV, usually a value one
unit lower. The OR indicates the amount of change in the odds and the
direction of the relationship between an IV and DV.

Offset variable Natural log of an exposure variable.

Ordinal logistic regression Regression model in which the DV is ordinal;
the link function is the logit link; and the assumed underlying distri-
bution is the multinomial distribution. Also known as polytomous or
nominal logistic or logit regression or the discrete choice model. Binary
logistic regression can be seen as a special case of the ordinal logistic
model in which the DV has only two categories.

Ordinal variables Variables that have three or more ordered categories.
Sometimes called ordered categorical variables or ordered polytomous
variables.

Outliers Data points that are atypical, in that they are markedly differ-
ent from the other data in the sample (e.g., the value of an IV may be
extremely large or small relative to other values of the IV, or the esti-
mated value of the DV for a case may be very different than the actual
value).

Parallel lines assumption In ordinal logistic regression, the assumption
that the effect of the IVs is the same for all values of the DV. Also
known as proportional odds, parallel lines, parallel slopes, or parallel
regression assumption.

Parameters Numerical characteristics of a population symbolized by Greek
letters.

Poisson regression Regression model in which the DV is a count; the link
function is the log link; and the assumed underlying distribution is the
Poisson distribution.

Polytomous variables Variables that have three or more unordered cate-
gories; often called multicategorical variables.

Rate In regression models for count variables, a count per unit of time
(e.g., number of children adopted per year), population (e.g., number
of registered sex offenders per 100,000), geographical area (e.g., number
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of children below the poverty rate per state), or other type of exposure
(sometimes called an incidence rate).

Reduced model See nested models.

Residual Difference between actual and estimated value of the DV for a
case.

Sequential entry Method for entering IVs into a regression equation one
at a time, or in blocks, in a predetermined order dictated by the purpose
and logic of the research questions. Often called hierarchical entry of
variables.

Spurious relationship Relationship between two variables that is not due
to one variable causing the other (e.g., A causes B), but instead is the
result of a third variable (referred to as a common cause, confound, or
a confounding variable) causing both (e.g., C causes A and B) (also
known as spurious correlation).

Standard scores Scores transformed by subtracting the mean and dividing
by the standard deviation for each case. Standard scores always have
a mean of zero and a standard deviation of 1. A z-score indicates, in
standard deviation units, how far and in what direction the value of
a score deviates from the distribution’s mean. Often these are called
z-scores.

Statistics Numerical characteristic of a sample symbolized by letters from
the Latin alphabet.

Tolerance Measure of multicollinearity that equals the amount of variance
in an IV not accounted for by the remaining IVs (1 − R2).

Truncation Exclusion of cases from the population of interest based on
characteristics of the DV.

Variance inflation factor (VIF) Measure of multicollinearity which equals
1/tolerance.

Zero-inflation In Poisson and negative binomial regression, situation
where the actual number of zeros is greater than the estimated number.



Appendix A:
Description of Data Sets

Chapter 1 Data Set

This is a subset of data described in more detail in Chapter 1. (Most
of these can be downloaded from this Web site: http://utcmhsrc.csw.
utk.edu/caseyproject/default.htm):

Coakley, T. M., & Orme, J. G. (2006). A psychometric evaluation of the Cultural

Receptivity in Fostering Scale. Research on Social Work Practice, 16, 520–533.

Orme, J. G., Cherry, D. J., & Cox, M. E. (2006). Foster Fathers’ CFAI-A and CHAP-

SR Technical Manual. Knoxville, TN: University of Tennessee, Children’s Men-

tal Health Services Research Center (http://utcmhsrc.csw.utk.edu/caseyproject/).

Orme, J. G., Cherry, D. J., & Rhodes, K. W. (2006). The Help with Fostering

Inventory. Children and Youth Services Review, 28, 1293–1311.

Orme, J. G., Cox, M. E., Rhodes, K. W., Coakley, T., Cuddeback, G. S., &

Buehler, C. (2006). Casey Home Assessment Protocol (CHAP): Technical man-

ual (2nd ed.). Knoxville, TN: University of Tennessee, Children’s Mental

Health Services Research Center (http://utcmhsrc.csw.utk.edu/caseyproject/).

Orme, J. G., Cuddeback, G. S., Buehler, C., Cox, M. E., & Le Prohn, N. (2006).

Casey Foster Applicant Inventory (CFAI) Technical manual (2nd ed.). Knoxville,

TN: University of Tennessee, Children’s Mental Health Services Research

Center (http://utcmhsrc.csw.utk.edu/caseyproject/).

Orme, J. G., Cuddeback, G. S., Buehler, C., Cox, M. E., & Le Prohn, N. S.

(2007). Measuring foster parent potential: Casey Foster Applicant Inventory—

Applicant Version. Research on Social Work Practice, 17, 77–92.
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Chapter 2 Data Set

This is a subset of data described in more detail in Chapter 2.
(Most of these can be downloaded from http://utcmhsrc.csw.utk.edu/
caseyproject/default.htm):

Cox, M. E., Orme, J. G., & Rhodes, K. W. (2002). Willingness to foster spe-

cial needs children and foster family utilization. Children and Youth Services

Review, 24(5), 293–318.

Cox, M. E., Orme, J. G., & Rhodes, K. W. (2003). Willingness to foster chil-

dren with emotional or behavioral problems. Journal of Social Service Research,

29(4), 23–51.

Orme, J. G., Buehler, C., McSurdy, M., Rhodes, K. W., & Cox, M. W. (2003). The

foster parent potential scale. Research on Social Work Practice, 13(2), 181–207.

Orme, J. G., Buehler, C., McSurdy, M., Rhodes, K. W., Cox, M. E., & Patterson, D.

A. (2004). Parental and familial characteristics of family foster care applicants.

Children and Youth Services Review, 26, 307–329.

Orme, J. G., Buehler, C., Rhodes, K. W., Cox, M. E., McSurdy, M., & Cuddeback,

G. (2006). Parental and familial characteristics used in the selection of foster

families. Children and Youth Services Review, 28, 396–421.

Rhodes, K. W., Orme, J. G., Cox, M. E., & Buehler, C. (2003a). Foster fam-

ily resources, psychosocial functioning, and retention. Social Work Research,

27(3), 135–150.

Rhodes, K. W., Orme, J. G., & McSurdy, M. (2003b). Foster parents’ role per-

formance responsibilities: Perceptions of foster mothers, fathers, and workers.

Children and Youth Services Review, 25(3), 935–964.

Chapter 3 Data Set

This is a subset of data described in more detail in Chapter 3:

Combs-Orme, T., Cain, D., & Wilson, E. (2004). Do maternal concerns at delivery

predict parenting stress during infancy? Child Abuse & Neglect, 28(4), 377–392.

Wilson, E. E. (2006). Measuring effort to interview and track mothers of newborns.

Knoxville, TN: University of Tennessee, College of Social Work.

Chapter 4 Data Set

This is a subset of data from the same data set employed in Chapter 1.

Chapter 5 Data Set

This is a subset of data from the same data set employed in Chapter 1.

http://utcmhsrc.csw.utk.edu/caseyproject/default.htm
http://utcmhsrc.csw.utk.edu/caseyproject/default.htm


Appendix B: Logarithms

C onsider the expression 102; it is equivalent to 10×10, it equals 100,
and it can be read as “10 squared” or “10 to the 2nd power.” In this

expression, 10 is called the base and 2 the exponent. Raising a number
(the base) to a power (the exponent) is called exponentiation.

Logarithms (“logs”) are exponents. We will start with base 10 logs
because they illustrate the basic logic of logs, and they are relatively
easy to understand. Then, we will turn to natural logs because they are
important to understanding and interpreting generalized linear models
(GZLMs) (see Cohen et al., 2003, and Pampel, 2000, for more detailed,
but very readable, discussions of logarithms).

Base 10 Logarithms

Look at Table 8.1. As you can see, 10 must be raised to the power of 1
to get 10, the power of 2 to get 100, the power of 3 to get 1,000, and so
forth.

The log of a number (x) to the base 10 equals the power to which 10
must be raised in order to get x. The log of a number to the base 10 is
written as log10( x) = y, and read as “the log of x to the base 10 equals y.”
The log10 of 100, for example, is written as: log10( 100) = 2, and read as
“the log of 100 to the base 10 equals 2.”

196
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Table 8.1 Log10 Examples

Base (b) log10( x) x

10 1 10 (101)
10 2 100 (102)
10 3 1,000 (103)
10 4 10,000 (104)

In short, when you take the log of a number you know the base and
the number you are trying to take the log of (x), and you are trying to
find the correct exponent.

Suppose for the moment that the values of 10, 100, 1,000, and 10,000
from Table 8.1 represent income in dollars. The corresponding logs of
these numbers (1, 2, 3, and 4) have no intuitive or substantive meaning,
so how do you get the original income numbers if you have the logs?

Look again at Table 8.1. As you can see, 101 = 10, 102 = 100, 103 =
1, 000, and so on. What we are doing here is raising the base of the log
(10) to the value of the log (1, 2, 3, or 4) in order to get the original value
of the number (10, 100, 1,000, or 10,000). That is, we “exponentiate”
the log. This is known as the inverse of the log; sometimes it is called the
antilog, and it is just the reverse of the log.

In short, when you take the inverse of a log you know the base and
the exponent, and you are trying to find the original number (x).

Natural Logarithms

The natural logarithm is used as the link function for the GZLMs dis-
cussed in this book. The natural logarithm is a little more difficult to
think about, compared to base 10 logarithms. The reason it is a bit more
difficult is that the base of the natural logarithm is e, where e is approxi-
mately 2.718 (e, after the mathematician Leonhard Euler). However, the
basic ideas are the same.

Look at Table 8.2. As you can see, 2.718 must be raised to the power
of 1 to get 2.718, the power of 2 to get 7.389, the power of 3 to get 20.086,
and so on.

The log of a number (x) to the base of the natural logarithm equals
the power to which e must be raised in order to get x. The log of a number
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Table 8.2 Natural Logarithm (ln) Examples

Base (b) ln(x) x

2.718 1 2.718 (2.7181)
2.718 2 7.388 (2.7182)
2.718 3 20.079 (2.7183)
2.718 4 54.586 (2.7184)

Note: 2.718 is the approximate base of the natural logarithm.

to the base of the natural logarithm is written as ln( x) = y, and read as
“the log of x to the base of the natural logarithm equals y.” The natural
logarithm of 7.389, for example, is written as: ln( 7.389) = 2, and read as
“the natural logarithm of 7.389 equals 2.”

As with logarithms to the base 10, when you take the natural loga-
rithm of a number you know the base and the number you are trying to
take the log of (x), and you are trying to find the correct exponent.

Look again at Table 8.2. As you can see, 2.7181 = 2.718, 2.7182 =
7.389, 2.7183 = 20.086, and so on. What we are doing here is raising
the base of the natural logarithm (2.718) to the value of the log (1, 2,
3, or 4) in order to get the original value of the number (2.718, 7.389,
20.086, 54.598). That is, we “exponentiate” the log. This is the inverse of
the natural log (called the exponential function), and it can be written as
ex or exp(x). For example, the base of the natural log raised to a power of
2 equals 7.39, and this expression can be written as e2 = 7.39 or exp( 2) =
7.39, and read as “the base of the natural log raised to the power of 2
equals 7.39.”

As with logarithms to the base 10, when you take the inverse of a nat-
ural logarithm you know the base and the exponent, and you are trying
to find the original number (x).
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