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Chapter 3

Maximum likelihood and
Bayesian parameter
estimation

3.1 Introduction

I n Chap. ?? we saw how we could design an optimal classifier if we knew the prior
probabilities P (ωi) and the class-conditional densities p(x|ωi). Unfortunately, in

pattern recognition applications we rarely if ever have this kind of complete knowledge
about the probabilistic structure of the problem. In a typical case we merely have
some vague, general knowledge about the situation, together with a number of design
samples or training data — particular representatives of the patterns we want to training

dataclassify. The problem, then, is to find some way to use this information to design or
train the classifier.

One approach to this problem is to use the samples to estimate the unknown prob-
abilities and probability densities, and to use the resulting estimates as if they were
the true values. In typical supervised pattern classification problems, the estimation
of the prior probabilities presents no serious difficulties (Problem 3). However, es-
timation of the class-conditional densities is quite another matter. The number of
available samples always seems too small, and serious problems arise when the di-
mensionality of the feature vector x is large. If we know the number of parameters in
advance and our general knowledge about the problem permits us to parameterize the
conditional densities, then the severity of these problems can be reduced significantly.
Suppose, for example, that we can reasonably assume that p(x|ωi) is a normal density
with mean µi and covariance matrix Σi, although we do not know the exact values
of these quantities. This knowledge simplifies the problem from one of estimating an
unknown function p(x|ωi) to one of estimating the parameters µi and Σi.

The problem of parameter estimation is a classical one in statistics, and it can be
approached in several ways. We shall consider two common and reasonable proce-
dures, maximum likelihood estimation and Bayesian estimation. Although the results maximum

likelihood

Bayesian
estimation

obtained with these two procedures are frequently nearly identical, the approaches
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4 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

are conceptually quite different. Maximum likelihood and several other methods view
the parameters as quantities whose values are fixed but unknown. The best estimate
of their value is defined to be the one that maximizes the probability of obtaining
the samples actually observed. In contrast, Bayesian methods view the parameters as
random variables having some known a priori distribution. Observation of the sam-
ples converts this to a posterior density, thereby revising our opinion about the true
values of the parameters. In the Bayesian case, we shall see that a typical effect of
observing additional samples is to sharpen the a posteriori density function, causing
it to peak near the true values of the parameters. This phenomenon is known as
Bayesian learning. In either case, we use the posterior densities for our classificationBayesian

learning rule, as we have seen before.
It is important to distinguish between supervised learning and unsupervised learn-

ing. In both cases, samples x are assumed to be obtained by selecting a state of nature
ωi with probability P (ωi), and then independently selecting x according to the proba-
bility law p(x|ωi). The distinction is that with supervised learning we know the state
of nature (class label) for each sample, whereas with unsupervised learning we do not.
As one would expect, the problem of unsupervised learning is the more difficult one.
In this chapter we shall consider only the supervised case, deferring consideration of
unsupervised learning to Chap. ??.

3.2 Maximum Likelihood Estimation

Maximum likelihood estimation methods have a number of attractive attributes.
First, they nearly always have good convergence properties as the number of train-
ing samples increases. Further, maximum likelihood estimation often can be simpler
than alternate methods, such as Bayesian techniques or other methods presented in
subsequent chapters.

3.2.1 The General Principle

Suppose that we separate a collection of samples according to class, so that we have c
sets, D1, ...,Dc, with the samples in Dj having been drawn independently according to
the probability law p(x|ωj). We say such samples are i.i.d. — independent identicallyi.i.d.
distributed random variables. We assume that p(x|ωj) has a known parametric form,
and is therefore determined uniquely by the value of a parameter vector θj . For
example, we might have p(x|ωj) ∼ N(µj ,Σj), where θj consists of the components of
µj and Σj . To show the dependence of p(x|ωj) on θj explicitly, we write p(x|ωj) as
p(x|ωj ,θj). Our problem is to use the information provided by the training samples
to obtain good estimates for the unknown parameter vectors θ1, ...,θc associated with
each category.

To simplify treatment of this problem, we shall assume that samples in Di give no
information about θj if i 6= j — that is, we shall assume that the parameters for the
different classes are functionally independent. This permits us to work with each class
separately, and to simplify our notation by deleting indications of class distinctions.
With this assumption we thus have c separate problems of the following form: Use a
set D of training samples drawn independently from the probability density p(x|θ) to
estimate the unknown parameter vector θ.

Suppose that D contains n samples, x1, ...,xn. Then, since the samples were drawn
independently, we have
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p(D|θ) =
n∏
k=1

p(xk|θ). (1)

Recall from Chap. ?? that, viewed as a function of θ, p(D|θ) is called the likelihood
of θ with respect to the set of samples. The maximum likelihood estimate of θ is, by
definition, the value θ̂ that maximizes p(D|θ). Intuitively, this estimate corresponds
to the value of θ that in some sense best agrees with or supports the actually observed
training samples (Fig. 3.1).
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Figure 3.1: The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figures shows the likelihood p(D|θ) as a function of the mean. If
we had a very large number of training points, this likelihood would be very narrow.
The value that maximizes the likelihood is marked θ̂; it also maximizes the logarithm
of the likelihood — i.e., the log-likelihood l(θ), shown at the bottom. Note especially
that the likelihood lies in a different space from p(x|θ̂), and the two can have different
functional forms.

For analytical purposes, it is usually easier to work with the logarithm of the like-
lihood than with the likelihood itself. Since the logarithm is monotonically increasing,
the θ̂ that maximizes the log-likelihood also maximizes the likelihood. If p(D|θ) is a
well behaved, differentiable function of θ, θ̂ can be found by the standard methods of
differential calculus. If the number of parameters to be set is p, then we let θ denote
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the p-component vector θ = (θ1, ..., θp)t, and ∇θ be the gradient operator

∇θ ≡


∂
∂θ1
...
∂
∂θp

 . (2)

We define l(θ) as the log-likelihood function∗log-
likelihood

l(θ) ≡ ln p(D|θ). (3)

We can then write our solution formally as the argument θ that maximizes the log-
likelihood, i.e.,

θ̂ = arg max
θ

l(θ), (4)

where the dependence on the data set D is implicit. Thus we have from Eq. 1

l(θ) =
n∑
k=1

ln p(xk|θ) (5)

and

∇θl =
n∑
k=1

∇θ ln p(xk|θ). (6)

Thus, a set of necessary conditions for the maximum likelihood estimate for θ can be
obtained from the set of p equations

∇θl = 0. (7)

A solution θ̂ to Eq. 7 could represent a true global maximum, a local maximum or
minimum, or (rarely) an inflection point of l(θ). One must be careful, too, to check
if the extremum occurs at a boundary of the parameter space, which might not be
apparent from the solution to Eq. 7. If all solutions are found, we are guaranteed
that one represents the true maximum, though we might have to check each solution
individually (or calculate second derivatives) to identify which is the global optimum.
Of course, we must bear in mind that θ̂ is an estimate; it is only in the limit of an
infinitely large number of training points that we can expect that our estimate will
equal to the true value of the generating function (Sec. 3.5.1).

We note in passing that a related class of estimators — maximum a posteriori ormaximum a
posteriori MAP estimators — find the value of θ that maximizes l(θ)p(θ). Thus a maximum

likelihood estimator is a MAP estimator for the uniform or “flat” prior. As such,
a MAP estimator finds the peak, or mode of a posterior density. The drawback ofmode
MAP estimators is that if we choose some arbitrary nonlinear transformation of the
parameter space (e.g., an overall rotation), the density will change, and our MAP
solution need no longer be appropriate (Sec. 3.5.2).

∗ Of course, the base of the logarithm can be chosen for convenience, and in most analytic problems
base e is most natural. For that reason we will generally use ln rather than log or log2.
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3.2.2 The Gaussian Case: Unknown µ

To see how maximum likelihood methods results apply to a specific case, suppose
that the samples are drawn from a multivariate normal population with mean µ and
covariance matrix Σ. For simplicity, consider first the case where only the mean is
unknown. Under this condition, we consider a sample point xk and find

ln p(xk|µ) = −1
2

ln
[
(2π)d|Σ|

]
− 1

2
(xk − µ)tΣ−1(xk − µ) (8)

and

∇θ ln p(xk|µ) = Σ−1(xk − µ). (9)

Identifying θ with µ, we see from Eq. 9 that the maximum likelihood estimate for µ
must satisfy

n∑
k=1

Σ−1(xk − µ̂) = 0, (10)

that is, each of the d components of µ̂must vanish. Multiplying by Σ and rearranging,
we obtain

µ̂ =
1
n

n∑
k=1

xk. (11)

This is a very satisfying result. It says that the maximum likelihood estimate for
the unknown population mean is just the arithmetic average of the training samples
— the sample mean, sometimes written µ̂n to clarify its dependence on the number sample

meanof samples. Geometrically, if we think of the n samples as a cloud of points, the
sample mean is the centroid of the cloud. The sample mean has a number of desirable
statistical properties as well, and one would be inclined to use this rather obvious
estimate even without knowing that it is the maximum likelihood solution.

3.2.3 The Gaussian Case: Unknown µ and Σ

In the more general (and more typical) multivariate normal case, neither the mean µ
nor the covariance matrix Σ is known. Thus, these unknown parameters constitute
the components of the parameter vector θ. Consider first the univariate case with
θ1 = µ and θ2 = σ2. Here the log-likelihood of a single point is

ln p(xk|θ) = −1
2

ln 2πθ2 −
1

2θ2
(xk − θ1)2 (12)

and its derivative is

∇θl = ∇θ ln p(xk|θ) =

[
1
θ2

(xk − θ1)

− 1
2θ2

+ (xk−θ1)2

2θ2
2

]
. (13)

Applying Eq. 7 to the full log-likelihood leads to the conditions

n∑
k=1

1

θ̂2

(xk − θ̂1) = 0 (14)
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and

−
n∑
k=1

1

θ̂2

+
n∑
k=1

(xk − θ̂1)2

θ̂2
2

= 0, (15)

where θ̂1 and θ̂2 are the maximum likelihood estimates for θ1 and θ2, respectively. By
substituting µ̂ = θ̂1, σ̂2 = θ̂2 and doing a little rearranging, we obtain the following
maximum likelihood estimates for µ and σ2:

µ̂ =
1
n

n∑
k=1

xk (16)

and

σ̂2 =
1
n

n∑
k=1

(xk − µ̂)2. (17)

While the analysis of the multivariate case is basically very similar, considerably
more manipulations are involved (Problem 6). Just as we would predict, though, the
result is that the maximum likelihood estimates for µ and Σ are given by

µ̂ =
1
n

n∑
k=1

xk (18)

and

Σ̂ =
1
n

n∑
k=1

(xk − µ̂)(xk − µ̂)t. (19)

Thus, once again we find that the maximum likelihood estimate for the mean
vector is the sample mean. The maximum likelihood estimate for the covariance
matrix is the arithmetic average of the n matrices (xk − µ̂)(xk − µ̂)t. Since the true
covariance matrix is the expected value of the matrix (x− µ̂) (x− µ̂)t, this is also a
very satisfying result.

3.2.4 Bias

The maximum likelihood estimate for the variance σ2 is biased; that is, the expectedbias
value over all data sets of size n of the sample variance is not equal to the true
variance:∗

E
[

1
n

n∑
i=1

(xi − x̄)2

]
=
n− 1
n

σ2 6= σ2. (20)

We shall return to a more general consideration of bias in Chap. ??, but for the
moment we can verify Eq. 20 for an underlying distribution with non-zero variance,
σ2, in the extreme case of n = 1, in which the expectation value E [·] = 0 6= σ2. The
maximum likelihood estimate of the covariance matrix is similarly biased.

Elementary unbiased estimators for σ2 and Σ are given by

∗ There should be no confusion over this use of the statistical term bias, and that for an offset in
neural networks and many other places.
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E
[

1
n− 1

n∑
i=1

(xi − x̄)2

]
= σ2 and (21)

C =
1

n− 1

n∑
k=1

(xk − µ̂)(xk − µ̂)t, (22)

where C is the so-called sample covariance matrix, as explored in Problem 33. If sample
covariancean estimator is unbiased for all distributions, as for example the variance estimator

in Eq. 21, then it is called absolutely unbiased. If the estimator tends to become
absolutely
unbiased

unbiased as the number of samples becomes very large, as for instance Eq. 20, then
the estimator is asymptotically unbiased. In many pattern recognition problems with

asymptot-
ically
unbiased

large training data sets, asymptotically unbiased estimators are acceptable.
Clearly, Σ̂ = [(n−1)/n]C, and Σ̂ is asymptotically unbiased — these two estimates

are essentially identical when n is large. However, the existence of two similar but
nevertheless distinct estimates for the covariance matrix may be disconcerting, and it
is natural to ask which one is “correct.” Of course, for n > 1 the answer is that these
estimates are neither right nor wrong — they are just different. What the existence of
two actually shows is that no single estimate possesses all of the properties we might
desire. For our purposes, the most desirable property is rather complex — we want
the estimate that leads to the best classification performance. While it is usually both
reasonable and sound to design a classifier by substituting the maximum likelihood
estimates for the unknown parameters, we might well wonder if other estimates might
not lead to better performance. Below we address this question from a Bayesian
viewpoint.

If we have a reliable model for the underlying distributions and their dependence
upon the parameter vector θ, the maximum likelihood classifier will give excellent
results. But what if our model is wrong — do we nevertheless get the best classifier in
our assumed set of models? For instance, what if we assume that a distribution comes
from N(µ, 1) but instead it actually comes from N(µ, 10)? Will the value we find for
θ = µ by maximum likelihood yield the best of all classifiers of the form derived from
N(µ, 1)? Unfortunately, the answer is “no,” and an illustrative counterexample is
given in Problem 7 where the so-called model error is large indeed. This points out
the need for reliable information concerning the models — if the assumed model is
very poor, we cannot be assured that the classifier we derive is the best, even among
our model set. We shall return to the problem of choosing among candidate models
in Chap. ??.

3.3 Bayesian estimation

We now consider the Bayesian estimation or Bayesian learning approach to pattern
classification problems. Although the answers we get by this method will generally
be nearly identical to those obtained by maximum likelihood, there is a conceptual
difference: whereas in maximum likelihood methods we view the true parameter vector
we seek, θ, to be fixed, in Bayesian learning we consider θ to be a random variable,
and training data allows us to convert a distribution on this variable into a posterior
probability density.
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3.3.1 The Class-Conditional Densities

The computation of the posterior probabilities P (ωi|x) lies at the heart of Bayesian
classification. Bayes’ formula allows us to compute these probabilities from the prior
probabilities P (ωi) and the class-conditional densities p(x|ωi), but how can we proceed
when these quantities are unknown? The general answer to this question is that the
best we can do is to compute P (ωi|x) using all of the information at our disposal.
Part of this information might be prior knowledge, such as knowledge of the functional
forms for unknown densities and ranges for the values of unknown parameters. Part
of this information might reside in a set of training samples. If we again let D denote
the set of samples, then we can emphasize the role of the samples by saying that our
goal is to compute the posterior probabilities P (ωi|x,D). From these probabilities we
can obtain the Bayes classifier.

Given the sample D, Bayes’ formula then becomes

P (ωi|x,D) =
p(x|ωi,D)P (ωi|D)
c∑
j=1

p(x|ωj ,D)P (ωj |D)
. (23)

As this equation suggests, we can use the information provided by the training samples
to help determine both the class-conditional densities and the a priori probabilities.

Although we could maintain this generality, we shall henceforth assume that the
true values of the a priori probabilities are known or obtainable from a trivial calcu-
lation; thus we substitute P (ωi) = P (ωi|D). Furthermore, since we are treating the
supervised case, we can separate the training samples by class into c subsets D1, ...,Dc,
with the samples in Di belonging to ωi. As we mentioned when addressing maximum
likelihood methods, in most cases of interest (and in all of the cases we shall consider),
the samples in Di have no influence on p(x|ωj ,D) if i 6= j. This has two simplifying
consequences. First, it allows us to work with each class separately, using only the
samples in Di to determine p(x|ωi,D). Used in conjunction with our assumption that
the prior probabilities are known, this allows us to write Eq. 23 as

P (ωi|x,D) =
p(x|ωi,Di)P (ωi)
c∑
j=1

p(x|ωj ,Dj)P (ωj)
. (24)

Second, because each class can be treated independently, we can dispense with need-
less class distinctions and simplify our notation. In essence, we have c separate prob-
lems of the following form: use a set D of samples drawn independently according to
the fixed but unknown probability distribution p(x) to determine p(x|D). This is the
central problem of Bayesian learning.

3.3.2 The Parameter Distribution

Although the desired probability density p(x) is unknown, we assume that it has a
known parametric form. The only thing assumed unknown is the value of a parameter
vector θ. We shall express the fact that p(x) is unknown but has known parametric
form by saying that the function p(x|θ) is completely known. Any information we
might have about θ prior to observing the samples is assumed to be contained in a
known prior density p(θ). Observation of the samples converts this to a posterior
density p(θ|D), which, we hope, is sharply peaked about the true value of θ.
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Note that we are changing our supervised learning problem into an unsupervised
density estimation problem. To this end, our basic goal is to compute p(x|D), which
is as close as we can come to obtaining the unknown p(x). We do this by integrating
the joint density p(x,θ|D) over θ. That is,

p(x|D) =
∫
p(x,θ|D) dθ, (25)

where the integration extends over the entire parameter space. Now as discussed in
Problem 12 we can write p(x,θ|D) as the product p(x|θ,D)p(θ|D). Since the selection
of x and that of the training samples in D is done independently, the first factor is
merely p(x|θ). That is, the distribution of x is known completely once we know the
value of the parameter vector. Thus, Eq. 25 can be rewritten as

p(x|D) =
∫
p(x|θ)p(θ|D) dθ. (26)

This key equation links the desired class-conditional density p(x|D) to the posterior
density p(θ|D) for the unknown parameter vector. If p(θ|D) peaks very sharply
about some value θ̂, we obtain p(x|D) ' p(x|θ̂), i.e., the result we would obtain by
substituting the estimate θ̂ for the true parameter vector. This result rests on the
assumption that p(x|θ) is smooth, and that the tails of the integral are not important.
These conditions are typically but not invariably the case, as we shall see in Sect. ??.
In general, if we are less certain about the exact value of θ, this equation directs us to
average p(x|θ) over the possible values of θ. Thus, when the unknown densities have
a known parametric form, the samples exert their influence on p(x|D) through the
posterior density p(θ|D). We should also point out that in practice, the integration
in Eq. 26 is often performed numerically, for instance by Monte-Carlo simulation.

3.4 Bayesian Parameter Estimation: Gaussian Case

In this section we use Bayesian estimation techniques to calculate the a posteri-
ori density p(θ|D) and the desired probability density p(x|D) for the case where
p(x|µ) ∼ N(µ,Σ).

3.4.1 The Univariate Case: p(µ|D)

Consider the case where µ is the only unknown parameter. For simplicity we treat
first the univariate case, i.e.,

p(x|µ) ∼ N(µ, σ2), (27)

where the only unknown quantity is the mean µ. We assume that whatever prior
knowledge we might have about µ can be expressed by a known prior density p(µ).
Later we shall make the further assumption that

p(µ) ∼ N(µ0, σ
2
0), (28)

where both µ0 and σ2
0 are known. Roughly speaking, µ0 represents our best a priori

guess for µ, and σ2
0 measures our uncertainty about this guess. The assumption

that the prior distribution for µ is normal will simplify the subsequent mathematics.
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However, the crucial assumption is not so much that the prior distribution for µ is
normal, but that it is known.

Having selected the a priori density for µ, we can view the situation as follows.
Imagine that a value is drawn for µ from a population governed by the probability
law p(µ). Once this value is drawn, it becomes the true value of µ and completely
determines the density for x. Suppose now that n samples x1, ..., xn are independently
drawn from the resulting population. Letting D = {x1, ..., xn}, we use Bayes’ formula
to obtain

p(µ|D) =
p(D|µ)p(µ)∫
p(D|µ)p(µ) dµ

= α

n∏
k=1

p(xk|µ)p(µ), (29)

where α is a normalization factor that depends on D but is independent of µ. This
equation shows how the observation of a set of training samples affects our ideas about
the true value of µ; it relates the prior density p(µ) to an a posteriori density p(µ|D).
Since p(xk|µ) ∼ N(µ, σ2) and p(µ) ∼ N(µ0, σ

2
0), we have

p(µ|D) = α

n∏
k=1

p(xk|µ)︷ ︸︸ ︷
1√
2πσ

exp
[
− 1

2

(xk − µ
σ

)2] p(µ)︷ ︸︸ ︷
1√

2πσ0

exp
[
− 1

2

(µ− µ0

σ0

)2]
= α′ exp

[
−1

2

(
n∑
k=1

(
µ− xk
σ

)2

+
(
µ− µ0

σ0

)2
) ]

= α′′ exp

[
− 1

2

[( n
σ2

+
1
σ2

0

)
µ2 − 2

(
1
σ2

n∑
k=1

xk +
µ0

σ2
0

)
µ

] ]
, (30)

where factors that do not depend on µ have been absorbed into the constants α,
α′, and α′′. Thus, p(µ|D) is an exponential function of a quadratic function of µ,
i.e., is again a normal density. Since this is true for any number of training samples,
p(µ|D) remains normal as the number n of samples is increased, and p(µ|D) is said
to be a reproducing density and p(µ) is said to be a conjugate prior. If we writereproducing

density p(µ|D) ∼ N(µn, σ2
n), then µn and σ2

n can be found by equating coefficients in Eq. 30
with corresponding coefficients in the generic Gaussian of the form

p(µ|D) =
1√

2πσn
exp

[
−1

2

(
µ− µn
σn

)2
]
. (31)

Identifying coefficients in this way yields

1
σ2
n

=
n

σ2
+

1
σ2

0

(32)

and

µn
σ2
n

=
n

σ2
x̄n +

µ0

σ2
0

, (33)

where x̄n is the sample mean
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x̄n =
1
n

n∑
k=1

xk. (34)

We solve explicitly for µn and σ2
n and obtain

µn =
(

nσ2
0

nσ2
0 + σ2

)
x̄n +

σ2

nσ2
0 + σ2

µ0 (35)

and

σ2
n =

σ2
0σ

2

nσ2
0 + σ2

. (36)

These equations show how the prior information is combined with the empirical
information in the samples to obtain the a posteriori density p(µ|D). Roughly speak-
ing, µn represents our best guess for µ after observing n samples, and σ2

n measures
our uncertainty about this guess. Since σ2

n decreases monotonically with n — ap-
proaching σ2/n as n approaches infinity — each additional observation decreases our
uncertainty about the true value of µ. As n increases, p(µ|D) becomes more and
more sharply peaked, approaching a Dirac delta function as n approaches infinity.
This behavior is commonly known as Bayesian learning (Fig. 3.2). Bayesian

learning
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Figure 3.2: Bayesian learning of the mean of normal distributions in one and two di-
mensions. The posterior distribution estimates are labelled by the number of training
samples used in the estimation.

In general, µn is a linear combination of x̄n and µ0, with coefficients that are
non-negative and sum to one. Thus µn always lies somewhere between x̄n and µ0. If
σ 6= 0, µn approaches the sample mean as n approaches infinity. If σ0 = 0, we have
a degenerate case in which our a priori certainty that µ = µ0 is so strong that no
number of observations can change our opinion. At the other extreme, if σ0 À σ, we
are so uncertain about our a priori guess that we take µn = x̄n, using only the samples
to estimate µ. In general, the relative balance between prior knowledge and empirical
data is set by the ratio of σ2 to σ2

0 , which is sometimes called the dogmatism. If the dogmatism
dogmatism is not infinite, after enough samples are taken the exact values assumed
for µ0 and σ2

0 will be unimportant, and µn will converge to the sample mean.



14 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

3.4.2 The Univariate Case: p(x|D)

Having obtained the a posteriori density for the mean, p(µ|D), all that remains is to
obtain the “class-conditional” density for p(x|D).∗ From Eqs. 26, 27 & 31 we have

p(x|D) =
∫
p(x|µ)p(µ|D) dµ

=
∫

1√
2πσ

exp
[
− 1

2

(x− µ
σ

)2] 1√
2πσn

exp
[
− 1

2

(µ− µn
σn

)2]
dµ

=
1

2πσσn
exp

[
− 1

2
(x− µn)2

σ2 + σ2
n

]
f(σ, σn), (37)

where

f(σ, σn) =
∫

exp
[
− 1

2
σ2 + σ2

n

σ2σ2
n

(
µ− σ2

nx+ σ2µn
σ2 + σ2

n

)2]
dµ.

That is, as a function of x, p(x|D) is proportional to exp[−(1/2)(x−µn)2/(σ2 +σ2
n)],

and hence p(x|D) is normally distributed with mean µn and variance σ2 + σ2
n:

p(x|D) ∼ N(µn, σ2 + σ2
n). (38)

In other words, to obtain the class-conditional density p(x|D), whose parametric
form is known to be p(x|µ) ∼ N(µ, σ2), we merely replace µ by µn and σ2 by σ2 +σ2

n.
In effect, the conditional mean µn is treated as if it were the true mean, and the
known variance is increased to account for the additional uncertainty in x resulting
from our lack of exact knowledge of the mean µ. This, then, is our final result:
the density p(x|D) is the desired class-conditional density p(x|ωj ,Dj), and together
with the prior probabilities P (ωj) it gives us the probabilistic information needed to
design the classifier. This is in contrast to maximum likelihood methods that only
make points estimates for µ̂ and σ̂2, rather that estimate a distribution for p(x|D).

3.4.3 The Multivariate Case

The treatment of the multivariate case in which Σ is known but µ is not, is a di-
rect generalization of the univariate case. For this reason we shall only sketch the
derivation. As before, we assume that

p(x|µ) ∼ N(µ,Σ) and p(µ) ∼ N(µ0,Σ0), (39)

where Σ, Σ0, and µ0 are assumed to be known. After observing a set D of n inde-
pendent samples x1, ...,xn, we use Bayes’ formula to obtain

p(µ|D) = α

n∏
k=1

p(xk|µ)p(µ) (40)

= α′exp

[
−1

2

(
µt(nΣ−1 + Σ−1

0 )µ− 2µt
(

Σ−1
n∑
k=1

xk + Σ−1
0 µ0

))]
,

∗ Recall that for simplicity we dropped class distinctions, but that all samples here come from the
same class, say ωi, and hence p(x|D) is really p(x|ωi,Di).
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which has the form

p(µ|D) = α′′exp
[
−1

2
(µ− µn)tΣ−1

n (µ− µn)
]
. (41)

Thus, p(µ|D) ∼ N(µn,Σn), and once again we have a reproducing density. Equating
coefficients, we obtain the analogs of Eqs. 35 & 36,

Σ−1
n = nΣ−1 + Σ−1

0 (42)

and

Σ−1
n µn = nΣ−1µ̂n + Σ−1

0 µ0, (43)

where µ̂n is the sample mean

µ̂n =
1
n

n∑
k=1

xk. (44)

The solution of these equations for µ and Σn is simplified by knowledge of the matrix
identity

(A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A, (45)

which is valid for any pair of nonsingular, d-by-d matrices A and B. After a little
manipulation (Problem 16), we obtain the final results:

µn = Σ0

(
Σ0 +

1
n

Σ
)−1

µ̂n +
1
n

Σ
(
Σ0 +

1
n

Σ
)−1

µ0 (46)

(which, as in the univariate case, is a linear combination of µ̂n and µ0) and

Σn = Σ0

(
Σ0 +

1
n

Σ
)−1 1

n
Σ. (47)

The proof that p(x|D) ∼ N(µn,Σ + Σn) can be obtained as before by performing
the integration

p(x|D) =
∫
p(x|µ)p(µ|D) dµ. (48)

However, this result can be obtained with less effort by observing that x can be viewed
as the sum of two mutually independent random variables, a random vector µ with
p(µ|D) ∼ N(µn,Σn) and an independent random vector y with p(y) ∼ N(0,Σ).
Since the sum of two independent, normally distibuted vectors is again a normally
distributed vector whose mean is the sum of the means and whose covariance matrix
is the sum of the covariance matrices (Chap. ?? Problem ??), we have

p(x|D) ∼ N(µn,Σ + Σn), (49)

and the generalization is complete.
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3.5 Bayesian Parameter Estimation: General Theory

We have just seen how the Bayesian approach can be used to obtain the desired density
p(x|D) in a special case — the multivariate Gaussian. This approach can be gener-
alized to apply to any situation in which the unknown density can be parameterized.
The basic assumptions are summarized as follows:

• The form of the density p(x|θ) is assumed to be known, but the value of the
parameter vector θ is not known exactly.

• Our initial knowledge about θ is assumed to be contained in a known a priori
density p(θ).

• The rest of our knowledge about θ is contained in a set D of n samples x1, ...,xn
drawn independently according to the unknown probability density p(x).

The basic problem is to compute the posterior density p(θ|D), since from this we
can use Eq. 26 to compute p(x|D):

p(x|D) =
∫
p(x|θ)p(θ|D) dθ. (50)

By Bayes’ formula we have

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ) dθ

, (51)

and by the independence assumption

p(D|θ) =
n∏
k=1

p(xk|θ). (52)

This constitutes the solution to the problem, and Eqs. 51 & 52 illuminate its
relation to the maximum likelihood solution. Suppose that p(D|θ) reaches a sharp
peak at θ = θ̂. If the prior density p(θ) is not zero at θ = θ̂ and does not change
much in the surrounding neighborhood, then p(θ|D) also peaks at that point. Thus,
Eq. 26 shows that p(x|D) will be approximately p(x|θ̂), the result one would obtain
by using the maximum likelihood estimate as if it were the true value. If the peak
of p(D|θ) is very sharp, then the influence of prior information on the uncertainty in
the true value of θ can be ignored. In this and even the more general case, though,
the Bayesian solution tells us how to use all the available information to compute the
desired density p(x|D).

While we have obtained the formal Bayesian solution to the problem, a number
of interesting questions remain. One concerns the difficulty of carrying out these
computations. Another concerns the convergence of p(x|D) to p(x). We shall discuss
the matter of convergence briefly, and later turn to the computational question.

To indicate explicitly the number of samples in a set for a single category, we shall
write Dn = {x1, ...,xn}. Then from Eq. 52, if n > 1

p(Dn|θ) = p(xn|θ)p(Dn−1|θ). (53)

Substituting this in Eq. 51 and using Bayes’ formula, we see that the posterior density
satisfies the recursion relation
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p(θ|Dn) =
p(xn|θ)p(θ|Dn−1)∫
p(xn|θ)p(θ|Dn−1) dθ

. (54)

With the understanding that p(θ|D0) = p(θ), repeated use of this equation pro-
duces the sequence of densities p(θ), p(θ|x1), p(θ|x1,x2), and so forth. (It should be
obvious from Eq. 54 that p(θ|Dn) depends only on the points in Dn, not the sequence
in which they were selected.) This is called the recursive Bayes approach to param- recursive

Bayeseter estimation. This is, too, our first example of an incremental or on-line learning

incremental
learning

method, where learning goes on as the data is collected. When this sequence of den-
sities converges to a Dirac delta function centered about the true parameter value —
Bayesian learning (Example 1). We shall come across many other, non-incremental
learning schemes, where all the training data must be present before learning can take
place.

In principle, Eq. 54 requires that we preserve all the training points in Dn−1 in
order to calculate p(θ|Dn) but for some distributions, just a few parameters associated
with p(θ|Dn−1) contain all the information needed. Such parameters are the sufficient
statistics of those distributions, as we shall see in Sect. 3.6. Some authors reserve the
term recursive learning to apply to only those cases where the sufficient statistics are
retained — not the training data — when incorporating the information from a new
training point. We could call this more restrictive usage true recursive Bayes learning.

Example 1: Recursive Bayes learning

Suppose we believe our one-dimensional samples come from a uniform distribution

p(x|θ) ∼ U(0, θ) =
{

1/θ 0 ≤ x ≤ θ
0 otherwise,

but initially we know only that our parameter is bounded. In particular we assume
0 < θ ≤ 10 (a non-informative or “flat prior” we shall discuss in Sect. 3.5.2). We
will use recursive Bayes methods to estimate θ and the underlying densities from the
data D = {4, 7, 2, 8}, which were selected randomly from the underlying distribution.
Before any data arrive, then, we have p(θ|D0) = p(θ) = U(0, 10). When our first data
point x1 = 4 arrives, we use Eq. 54 to get an improved estimate:

p(θ|D1) ∝ p(x|θ)p(θ|D0) =
{

1/θ for 4 ≤ θ ≤ 10
0 otherwise,

where throughout we will ignore the normalization. When the next data point x2 = 7
arrives, we have

p(θ|D2) ∝ p(x|θ)p(θ|D1) =
{

1/θ2 for 7 ≤ θ ≤ 10
0 otherwise,

and similarly for the remaining sample points. It should be clear that since each
successive step introduces a factor of 1/θ into p(x|θ), and the distribution is nonzero
only for x values above the largest data point sampled, the general form of our solution
is p(θ|Dn) ∝ 1/θn for max

x
[Dn] ≤ θ ≤ 10, as shown in the figure. Given our full data
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2 4 6 8 10

0.2

0.4

0.6

θ

0

1

2

3

4

p(θ|Dn)

The posterior p(θ|Dn) for the model and n points in the data set in this Example.
The posterior begins p(θ) ∼ U(0, 10), and as more points are incorporated it becomes
increasingly peaked at the value of the highest data point.

set, the maximum likelihood solution here is clearly θ̂ = 8, and this implies a uniform
p(x|D) ∼ U(0, 8).

According to our Bayesian methodology, which requires the integration in Eq. 50,
the density is uniform up to x = 8, but has a tail at higher values — an indication
that the influence of our prior p(θ) has not yet been swamped by the information in
the training data.
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Given the full set of four points, the distribution based on the maximum likelihood
solution is p(x|θ̂) ∼ U(0, 8), whereas the distribution derived from Bayesian methods
has a small tail above x = 8, reflecting the prior information that values of x near 10
are possible.

Whereas the maximum likelihood approach estimates a point in θ space, the
Bayesian approach instead estimates a distribution. Technically speaking, then, we
cannot directly compare these estimates. It is only when the second stage of inference
is done — that is, we compute the distributions p(x|D), as shown in the above figure
— that the comparison is fair.

For most of the typically encountered probability densities p(x|θ), the sequence of
posterior densities does indeed converge to a delta function. Roughly speaking, this
implies that with a large number of samples there is only one value for θ that causes
p(x|θ) to fit the data, i.e., that θ can be determined uniquely from p(x|θ). When this
is the case, p(x|θ) is said to be identifiable. A rigorous proof of convergence underidentifi-

ability these conditions requires a precise statement of the properties required of p(x|θ) and
p(θ) and considerable care, but presents no serious difficulties (Problem 21).

There are occasions, however, when more than one value of θ may yield the same
value for p(x|θ). In such cases, θ cannot be determined uniquely from p(x|θ), and
p(x|Dn) will peak near all of the values of θ that explain the data. Fortunately, this
ambiguity is erased by the integration in Eq. 26, since p(x|θ) is the same for all of
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these values of θ. Thus, p(x|Dn) will typically converge to p(x) whether or not p(x|θ)
is identifiable. While this might make the problem of identifiabilty appear to be moot,
we shall see in Chap. ?? that identifiability presents a genuine problem in the case of
unsupervised learning.

3.5.1 When do Maximum Likelihood and Bayes methods differ?

In virtually every case, maximum likelihood and Bayes solutions are equivalent in the
asymptotic limit of infinite training data. However since practical pattern recognition
problems invariably have a limited set of training data, it is natural to ask when
maximum likelihood and Bayes solutions may be expected to differ, and then which
we should prefer.

There are several criteria that will influence our choice. One is computational
complexity (Sec. 3.7.2), and here maximum likelhood methods are often to be pref-
ered since they require merely differential calculus techniques or gradient search for θ̂,
rather than a possibly complex multidimensional integration needed in Bayesian esti-
mation. This leads to another consideration: interpretability. In many cases the max-
imum likelihood solution will be easier to interpret and understand since it returns the
single best model from the set the designer provided (and presumably understands).
In contrast Bayesian methods give a weighted average of models (parameters), often
leading to solutions more complicated and harder to understand than those provided
by the designer. The Bayesian approach reflects the remaining uncertainty in the
possible models.

Another consideration is our confidence in the prior information, such as in the
form of the underlying distribution p(x|θ). A maximum likelihood solution p(x|θ̂)
must of course be of the assumed parametric form; not so for the Bayesian solution.
We saw this difference in Example 1, where the Bayes solution was not of the para-
metric form originally assumed, i.e., a uniform p(x|D). In general, through their use
of the full p(θ|D) distribution Bayesian methods use more of the information brought
to the problem than do maximum likelihood methods. (For instance, in Example 1
the addition of the third training point did not change the maximum likelihood so-
lution, but did refine the Bayesian estimate.) If such information is reliable, Bayes
methods can be expected to give better results. Further, general Bayesian methods
with a “flat” or uniform prior (i.e., where no prior information is explicitly imposed)
are equivalent to maximum likelihood methods. If there is much data, leading to a
strongly peaked p(θ|D), and the prior p(θ) is uniform or flat, then the MAP estimate
is essentially the same as the maximum likelihood estimate.

When p(θ|D) is broad, or asymmetric around θ̂, the methods are quite likely to
yield p(x|D) distributions that differ from one another. Such a strong asymmetry
(when not due to rare statistical irregularities in the selection of the training data)
generally convey some information about the distribution, just as did the asymmetric
role of the threshold θ in Example 1. Bayes methods would exploit such information;
not so maximum likelihood ones (at least not directly). Further, Bayesian methods
make more explicit the crucial problem of bias and variance tradeoffs — roughly
speaking the balance between the accuracy of the estimation and its variance, which
depend upon the amount of traning data. This important matter was irrelevant in
Chap. ??, where there was no notion of a finite training set, but it will be crucial in
our considerations of the theory of machine learning in Chap. ??.

When designing a classifier by either of these methods, we determine the posterior
densities for each category, and classify a test point by the maximum posterior. (If
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there are costs, summarized in a cost matrix, these can be incorporated as well.)
There are three sources of classification error in our final system:

Bayes or indistinguisability error: the error due to overlapping densities p(x|ωi
for different values of i. This error is an inherent property of the problem and
can never be eliminated.

Model error: the error due to having an incorrect model. This error can only be
eliminated if the designer specifies a model that includes the true model which
generated the data. Designers generally choose the model based on knowledge
of the problem domain rather than on the subsequent estimation method, and
thus the model error in maximum likelihood and Bayes methods rarely differ.

Estimation error: the error arising from the fact that the parameters are estimated
from a finite sample. This error can best be reduced by increasing the training
data, a topic we shall revisit in greater detail in Chap. ??.

The relative contributions of these sources depend upon problem, of course. In the
limit of infinite training data, the estimation error vanishes, and the total classification
error will be the same for both maximum likelihodd and Bayes methods.

In summary, there are strong theoretical and methodological arguments supporting
Bayesian estimation, though in practice maximum likelihood estimation is simpler,
and when used for designing classifiers, can lead to classifiers nearly as accurate.

3.5.2 Non-informative Priors and Invariance

Generally speaking, the information about the prior p(θ) derives from the designer’s
knowledge of the problem domain and as such is beyond our study of the design of
classifiers. Nevertheless in some cases we have guidence in how to create priors that
do not impose structure when we believe none exists, and this leads us to the notion
of non-informative priors.

Recall our discussion of the role of prior category probabilities in Chap. ??, where
in the absense of other information, we assumed each of c categories equally likely.
Analogously, in a Bayesian framework we can have a “non-informative” prior over a
parameter for a single category’s distribution. Suppose for instance that we are using
Bayesian methods to infer from data the mean and variance of a Gaussian. What
prior might we put on these parameters? Surely the unit of spatial measurement —
meters, feet, inches — is an historical accident and irrelevant to the functional form
of the prior. Thus there is an implied scale invariance, formally stated asscale

invariance
p(θ) = αp(θ/α) (55)

for some constant α. Such scale invariance here leads to priors such as p(µ) ∝ µ−k

for some undermined constant k (Problem 20). (Such a prior is improper; it doesimproper
prior not integrate to unity, and hence cannot strictly be interpreted as representing our

actual prior belief.) In general, then, if there is known or assumed invariance — such
as translation, or for discrete distributions invariance to the sequential order of data
selection — there will be constraints on the form of the prior. If we can find a prior
that satisfies such constraints, the resulting prior is “non-informative” with respect
to that invariance.

It is tempting to assert that the use of non-informative priors is somehow “ob-
jective” and lets the data speak for themselves, but such a view is a bit naive. For
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example, we may seek a non-informative prior when estimating the standard deviation
σ of a Gaussian. But this requirement might not lead to the non-informative prior
for estimating the variance, σ2. Which should we use? In fact, the greatest benefit
of this approach is that it forces the designer to acknowledge and be clear about the
assumed invariance — the choice of which generally lies outside our methodology. It
may be more difficult to accommodate such arbitrary transformations in a maximum
a posteriori (MAP) estimator (Sec. 3.2.1), and hence considerations of invariance are
of greatest use in Bayesian estimation, or when the posterior is very strongly peaked
and the mode not influenced by transformations of the density (Problem 19).

3.6 *Sufficient Statistics

From a practical viewpoint, the formal solution provided by Eqs. 26, 51 & 52 is not
computationally attractive. In pattern recognition applications it is not unusual to
have dozens or hundreds of parameters and thousands of training samples, which
makes the direct computation and tabulation of p(D|θ) or p(θ|D) quite out of the
question. We shall see in Chap. ?? how neural network methods avoid many of the
difficulties of setting such a large number of parameters in a classifier, but for now we
note that the only hope for an analytic, computationally feasible maximum likelihood
solution lies in being able to find a parametric form for p(x|θ) that on the one hand
matches the characteristics of the problem and on the other hand allows a reasonably
tractable solution.

Consider the simplification that occurred in the problem of learning the parameters
of a multivariate Gaussian density. The basic data processing required was merely
the computation of the sample mean and sample covariance. This easily computed
and easily updated statistic contained all the information in the samples relevant to
estimating the unknown population mean and covariance. One might suspect that
this simplicity is just one more happy property of the normal distribution, and that
such good fortune is not likely to occur in other cases. While this is largely true,
there are distributions for which computationally feasible solutions can be obtained,
and the key to their simplicity lies in the notion of a sufficient statistic.

To begin with, any function of the samples is a statistic. Roughly speaking, a
sufficient statistic is a (possibly vector-valued) function s of the samples D that con-
tains all of the information relevant to estimating some parameter θ. Intuitively, one
might expect the definition of a sufficient statistic to involve the requirement that
p(θ|s,D) = p(θ|s). However, this would require treating θ as a random variable,
limiting the definition to a Bayesian domain. To avoid such a limitation, the conven-
tional definition is as follows: A statistic s is said to be sufficient for θ if p(D|s,θ) is
independent of θ. If we think of θ as a random variable, we can write

p(θ|s,D) =
p(D|s,θ)p(θ|s)

p(D|s)
, (56)

whereupon it becomes evident that p(θ|s,D) = p(θ|s) if s is sufficient for θ. Con-
versely, if s is a statistic for which p(θ|s,D) = p(θ|s), and if p(θ|s) 6= 0, it is easy to
show that p(D|s,θ) is independent of θ (Problem 27). Thus, the intuitive and the
conventional definitions are basically equivalent. As one might expect, for a Gaussian
distribution the sample mean and covariance, taken together, represent a sufficient
statistic for the true mean and covariance; if these are known, all other statistics
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such as the mode, range, higher-order moments, number of data points, etc., are
superfluous when estimating the true mean and covariance.

A fundamental theorem concerning sufficient statistics is the Factorization Theo-
rem, which states that s is sufficient for θ if and only if p(D|θ) can be factored into
the product of two functions, one depending only on s and θ, and the other depend-
ing only on the training samples. The virtue of the Factorization Theorem is that it
allows us to shift our attention from the rather complicated density p(D|s,θ), used
to define a sufficient statistic, to the simpler function

p(D|θ) =
n∏
k=1

p(xk|θ). (57)

In addition, the Factorization Theorem makes it clear that the characteristics of a
sufficient statistic are completely determined by the density p(x|θ), and have nothing
to do with a felicitous choice of an a priori density p(θ). A proof of the Factorization
Theorem in the continuous case is somewhat tricky because degenerate situations are
involved. Since the proof has some intrinsic interest, however, we include one for the
simpler discrete case.

Theorem 3.1 (Factorization) A statistic s is sufficient for θ if and only if the
probability P (D|θ) can be written as the product

P (D|θ) = g(s,θ)h(D), (58)

for some function h(·).

Proof:

(a) We begin by showing the “if” part of the theorem. Suppose first that s is sufficient
for θ, so that P (D|s,θ) is independent of θ. Since we want to show that P (D|θ) can
be factored, our attention is directed toward computing P (D|θ) in terms of P (D|s,θ).
We do this by summing the joint probability P (D, s|θ) over all values of s:

P (D|θ) =
∑

s

P (D, s|θ)

=
∑

s

P (D|s,θ)P (s|θ). (59)

But since s = ϕ(D) for some ϕ(·), there is only one possible value for s for the given
data, and thus

P (D|θ) = P (D|s,θ)P (s|θ). (60)

Moreover, since by hypothesis P (D|s,θ) is independent of θ, the first factor depends
only on D. Identifying P (s|θ) with g(s,θ), we see that P (D|θ) factors, as desired.
(b) We now consider the “only if” part of the theorem. To show that the ability to
factor P (D|θ) as the product g(s,θ)h(D) implies that s is sufficient for θ, we must
show that such a factoring implies that the conditional probability P (D|s,θ) is inde-
pendent of θ. Because s = ϕ(D), specifying a value for s constrains the possible sets
of samples to some set D̄. Formally, D̄ = {D|ϕ(D) = s}. If D̄ is empty, no assignment
of values to the samples can yield that value of s, and P (s|θ) = 0. Excluding such
cases, i.e., considering only values of s that can arise, we have
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P (D|s,θ) =
P (D, s|θ)
P (s|θ)

. (61)

The denominator can be computed by summing the numerator over all values of D.
Since the numerator will be zero if D /∈ D̄, we can restrict the summation to D ∈ D̄.
That is,

P (D|s,θ) =
P (D|s,θ)∑

D∈D̄
P (D|s,θ)

=
P (D|θ)∑

D∈D̄
P (D|θ)

=
g(s,θ)h(D)∑

D∈D̄
g(s,θ)h(D)

=
h(D)∑

D∈D̄
h(D)

, (62)

which is independent of θ. Thus, by definition, s is sufficient for θ.

It should be pointed out that there are trivial ways of constructing sufficient
statistics. For example we can define s to be a vector whose components are the
n samples themselves: x1, ...,xn. In that case g(s,θ) = p(D|θ) and h(D) = 1. One
can even produce a scalar sufficient statistic by the trick of interleaving the digits
in the decimal expansion of the components of the n samples. Sufficient statistics
such as these are of little interest, since they do not provide us with simpler results.
The ability to factor p(D|θ) into a product g(s,θ)h(D) is interesting only when the
function g and the sufficient statistic s are simple. It should be noted that sufficiency
is an integral notion. That is, if s is a sufficient statistic for θ, this does not necessarily
imply that their corresponding components are sufficient, i.e., that s1 is sufficient for
θ1, or s2 for θ2, and so on (Problem 26).

An obvious fact should also be mentioned: the factoring of p(D|θ) into g(s,θ)h(D)
is not unique. If f(s) is any function of s, then g′(s,θ) = f(s)g(s,θ) and h′(D) =
h(D)/f(s) are equivalent factors. This kind of ambiguity can be eliminated by defining
the kernel density kernel

density

ḡ(s,θ) =
g(s,θ)∫
g(s,θ) dθ

(63)

which is invariant to this kind of scaling.
What is the importance of sufficient statistics and kernel densities for parameter

estimation? The general answer is that the most practical applications of classical
parameter estimation to pattern classification involve density functions that possess
simple sufficient statistics and simple kernel densities. Moreover, it can be shown
that for any clasification rule, we can find another based solely on sufficient statistics
that has equal or better performance. Thus — in principle at least — we need only
consider decisions based on sufficient statistics. It is, in essence, the ultimate in data
reduction: we can reduce an extremely large data set down to a few numbers — the
sufficient statistics — confident that all relevant information has been preserved. This
means, too, that we can always create the Bayes classifier from sufficient statistics, as
for example our Bayes classifiers for Gaussian distributions were functions solely of
the sufficient statistics, estimates of µ and Σ.

In the case of maximum likelihood estimation, when searching for a value of θ
that maximizes p(D|θ) = g(s,θ)h(D), we can restrict our attention to g(s,θ). In this
case, the normalization provided by Eq. 63 is of no particular value unless ḡ(s,θ) is
simpler than g(s,θ). The significance of the kernel density is revealed however in the
Bayesian case. If we substitute p(D|θ) = g(s,θ)h(D) in Eq. 51, we obtain
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p(θ|D) =
g(s,θ)p(θ)∫
g(s,θ)p(θ) dθ

. (64)

If our prior knowledge of θ is very vague, p(θ) will tend to be uniform, or changing
very slowly as a function of θ. For such an essentially uniform p(θ), Eq. 64 shows
that p(θ|D) is approximately the same as the kernel density. Roughly speaking, the
kernel density is the posterior distribution of the parameter vector when the prior
distribution is uniform. Even when the a priori distribution is far from uniform, the
kernel density typically gives the asymptotic distribution of the parameter vector. In
particular, when p(x|θ) is identifiable and when the number of samples is large, g(s,θ)
usually peaks sharply at some value θ = θ̂. If the a priori density p(θ) is continuous
at θ = θ̂ and if p(θ̂) is not zero, p(θ|D) will approach the kernel density ḡ(s,θ).

3.6.1 Sufficient Statistics and the Exponential Family

To see how the Factorization Theorem can be used to obtain sufficient statistics,
consider once again the familiar d-dimensional normal case with fixed covariance but
unknown mean, i.e., p(x|θ) ∼ N(θ,Σ). Here we have

p(D|θ) =
n∏
k=1

1
(2π)d/2|Σ|1/2 exp

[
− 1

2
(xk − θ)tΣ−1(xk − θ)

]
=

1
(2π)nd/2|Σ|n/2 exp

[
− 1

2

n∑
k=1

(θtΣ−1θ − 2θtΣ−1xk + xtkΣ
−1xk)

]
= exp

[
−n

2
θtΣ−1θ + θtΣ−1

(
n∑
k=1

xk

)]

× 1
(2π)nd/2|Σ|n/2 exp

[
−1

2

n∑
k=1

xtkΣ
−1xk

]
. (65)

This factoring isolates the θ dependence of p(D|θ) in the first term, and hence from
the Factorization Theorem we conclude that

∑n
k=1 xk is sufficient for θ. Of course,

any one-to-one function of this statistic is also sufficient for θ; in particular, the sample
mean

µ̂n =
1
n

n∑
k=1

xk (66)

is also sufficient for θ. Using this statistic, we can write

g(µ̂n,θ) = exp
[
− n

2
(
θtΣ−1θ − 2θtΣ−1µ̂n

)]
. (67)

From using Eq. 63, or by completing the square, we can obtain the kernel density:

ḡ(µ̂n,θ) =
1

(2π)d/2| 1nΣ|1/2 exp
[
− 1

2
(θ − µ̂n)t

( 1
n

Σ
)−1

(θ − µ̂n)
]
. (68)

These results make it immediately clear that µ̂n is the maximum likelihood estimate
for θ. The Bayesian posterior density can be obtained from ḡ(µ̂n,θ) by performing
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the integration indicated in Eq. 64. If the a priori density is essentally uniform,
p(θ|D) = ḡ(µ̂n,θ).

This same general approach can be used to find sufficient statistics for other density
functions. In particular, it applies to any member of the exponential family, a group
of probability and probability density functions that possess simple sufficient statis-
tics. Members of the exponential family include the Gaussian, exponential, Rayleigh,
Poisson, and many other familiar distributions. They can all be written in the form

p(x|θ) = α(x) exp [a(θ) + b(θ)tc(x)]. (69)

If we multiply n terms of the form in Eq. 69 we find

p(D|θ) = exp
[
na(θ) + b(θ)t

n∑
k=1

c(xk)
] n∏
k=1

α(xk) = g(s,θ)h(D), (70)

where we can take

s =
1
n

n∑
k=1

c(x),

g(s,θ) = exp [n{a(θ) + b(θ)ts}],

and

h(D) =
n∏
k=1

α(xk).

The distributions, sufficient statistics, and unnormalized kernels for a number of
commonly encountered members of the exponential family are given in Table ??.
It is a fairly routine matter to derive maximum likelihood estimates and Bayesian
a posteriori distributions from these solutions. With two exceptions, the solutions
given are for univariate cases, though they can be used in multivariate situations if
statistical independence can be assumed. Note that a few well-known probability
distributions, such as the Cauchy, do not have sufficient statistics, so that the sample
mean can be a very poor estimator of the true mean (Problem 28).
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Table 3.1: Common Exponential Distributions and their Sufficient Statistics.
Name Distribution Domain s [g(s,θ)]1/n

Normal
p(x|θ) =√

θ2
2π e
−(1/2)θ2(x−θ1)2 θ2 > 0

x

θ1

θ2 √2/


1
n

n∑
k=1

xk

1
n

n∑
k=1

x2
k

 √
θ2e
− 1

2 θ2(s2−2θ1s1+θ2
1)

Multi-
variate
Normal

p(x|θ) =
|Θ2|1/2
(2π)d/2

e−(1/2)(x−θ1)tΘ2(x−θ1)

Θ2

positive
definite

x1

x2


1
n

n∑
k=1

xk

1
n

n∑
k=1

xkxtk

 |Θ2|1/2e−
1
2 [trΘ2s2

−2θt1Θ2s1+θt1Θ2θ1]

Exponential
p(x|θ) ={

θe−θx x ≥ 0
0 otherwise

θ > 0
0 1 2 3 4 5

x

0.2

0.4

0.6

θ

1
n

n∑
k=1

xk θe−θs

Rayleigh
p(x|θ) ={

2θxe−θx
2

x ≥ 0
0 otherwise

θ > 0
1 2 3 4

x

0.2

0.4

0.6

θ

1
n

n∑
k=1

x2
k θe−θs

Maxwell
p(x|θ) ={

4√
π
θ3/2x2e−θx

2
x ≥ 0

0 otherwise

θ > 0
1 2 3 4

x

0.2

0.4

0.6

θ

1
n

n∑
k=1

x2
k θ3/2e−θs

Gamma
p(x|θ) ={

θ
θ1+1
2

Γ(θ1+1)x
θ1e−θ2x x ≥ 0

0 otherwise

θ1 > −1
θ2 > 0

1 2 3 4
x

0.5

1

1.5

θ2

θ1 = -.2


(

n∏
k=1

xk

)1/n

1
n

n∑
k=1

xk

 θ
θ1+1
2

Γ(θ1+1)s
θ1
1 e
−θ2s2

Beta

p(x|θ) =
Γ(θ1+θ2+2)

Γ(θ1+1)Γ(θ2+1)x
θ1(1− x)θ2

0 ≤ x ≤ 1
0 otherwise

θ1 > −1
θ2 > −1

0 0.2 0.4 0.6 0.8 1
x

1

2

3

θ2

θ1 = -.2


(

n∏
k=1

xk

)1/n

(
n∏
k=1

(1− xk)
)1/n

 Γ(θ1+θ2+2)
Γ(θ1+1)Γ(θ2+1)s

θ1
1 s

θ2
2

Poisson P (x|θ) = θx

x! e
−θ x = 0, 1, 2, ... θ > 0

5 10 15 20
x

.05

.1

.15

θ

1
n

n∑
k=1

xk θse−θ

Bernoulli P (x|θ) = θx(1− θ)1−x x = 0, 1 0 < θ < 1
0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ

1 - θ

x

1
n

n∑
k=1

xk θs(1− θ)1−s

Binomial
P (x|θ) =

m!
x!(m−x)!θ

x(1− θ)m−x
x = 0, 1, ...,m

0 < θ < 1

2 4 6 8
x

0.1

0.2

mθ

m = 10 1
n

n∑
k=1

xk θs(1− θ)m−s

Multinomial

P (x|θ) =

m!
d∏
i=1

θ
xi
i

d∏
i=1

xi!

xi = 0, 1, ...,m
d∑
i=1

xi = m

0 < θi < 1
d∑
i=1

θi = 1
x1

x2

P(x|θ)

0
3

6
9

12 0

3

6
9

12

0
.03
.06

0
3

9
12x3 = m - x1 - x2

m = 12

1
n

n∑
k=1

xk
d∏
i=1

θsii
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3.7 Problems of Dimensionality

In practical multicategory applications, it is not at all unusual to encounter problems
involving fifty or a hundred features, particularly if the features are binary valued.
We might typically believe that each feature is useful for at least some of the discrim-
inations; while we may doubt that each feature provides independent information,
intentionally superfluous features have not been included. There are two issues that
must be confronted. The most important is how classification accuracy depends upon
the dimensionality (and amount of training data); the second is the computational
complexity of designing the classifier.

3.7.1 Accuracy, Dimension, and Training Sample Size

If the features are statistically independent, there are some theoretical results that
suggest the possibility of excellent performance. For example, consider the two-class
multivariate normal case with the same covariance where p(x|ωj) ∼ N(µj ,Σ), j =
1, 2. If the a priori probabilities are equal, then it is not hard to show (Chap. ??,
Problem ??) that the Bayes error rate is given by

P (e) =
1√
2π

∞∫
r/2

e−u
2/2 du, (71)

where r2 is the squared Mahalanobis distance (Chap. ??, Sect. ??):

r2 = (µ1 − µ2)tΣ−1(µ1 − µ2). (72)

Thus, the probability of error decreases as r increases, approaching zero as r ap-
proaches infinity. In the conditionally independent case, Σ = diag(σ2

1 , ..., σ
2
d), and

r2 =
d∑
i=1

(µi1 − µi2
σi

)2

. (73)

This shows how each feature contributes to reducing the probability of error.
Naturally, the most useful features are the ones for which the difference between the
means is large relative to the standard deviations. However no feature is useless if its
means for the two classes differ. An obvious way to reduce the error rate further is to
introduce new, independent features. Each new feature need not add much, but if r
can be increased without limit, the probability of error can be made arbitrarily small.

In general, if the performance obtained with a given set of features is inadequate,
it is natural to consider adding new features, particularly ones that will help separate
the class pairs most frequently confused. Although increasing the number of features
increases the cost and complexity of both the feature extractor and the classifier, it
is often reasonable to believe that the performance will improve. After all, if the
probabilistic structure of the problem were completely known, the Bayes risk could
not possibly be increased by adding new features. At worst, the Bayes classifer would
ignore the new features, but if the new features provide any additional information,
the performance must improve (Fig. 3.3).

Unfortunately, it has frequently been observed in practice that, beyond a certain
point, the inclusion of additional features leads to worse rather than better perfor-
mance. This apparent paradox presents a genuine and serious problem for classifier
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x1

x3

x2

Figure 3.3: Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace —
here, the two-dimensional x1−x2 subspace or a one-dimensional x1 subspace — there
can be greater overlap of the projected distributions, and hence greater Bayes errors.

design. The basic source of the difficulty can always be traced to the fact that we
have the wrong model — e.g., the Gaussian assumption or conditional assumption
are wrong — or the number of design or training samples is finite and thus the dis-
tributions are not estimated accurately. However, analysis of the problem is both
challenging and subtle. Simple cases do not exhibit the experimentally observed phe-
nomena, and more realistic cases are difficult to analyze. In an attempt to provide
some rigor, we shall return to topics related to problems of dimensionality and sample
size in Chap. ??.

3.7.2 Computational Complexity

We have mentioned that one consideration affecting our design methodology is that of
the computational difficulty, and here the technical notion of computational complex-
ity can be useful. First, we will will need to understand the notion of the order of aorder
function f(x): we say that the f(x) is “of the order of h(x)” — written f(x) = O(h(x))

big oh and generally read “big oh of h(x)” — if there exist constants c0 and x0 such that
|f(x)| ≤ c0|h(x)| for all x > x0. This means simply that for sufficiently large x,
an upper bound on the function grows no worse than h(x). For instance, suppose
f(x) = a0 + a1x + a2x

2; in that case we have f(x) = O(x2) because for sufficiently
large x, the constant, linear and quadratic terms can be “overcome” by proper choice
of c0 and x0. The generalization to functions of two or more variables is straightfor-
ward. It should be clear that by the definition above, the big oh order of a function is
not unique. For instance, we can describe our particular f(x) as being O(x2), O(x3),
O(x4), O(x2 ln x).

Because of the non-uniqueness of the big oh notation, we occasionally need to be
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more precise in describing the order of a function. We say that f(x) = Θ(h(x)) “big
theta of h(x)” if there are constants x0, c1 and c2 such that for x > x0, f(x) always
lies between c1h(x) and c2h(x). Thus our simple quadratic function above would obey
f(x) = Θ(x2), but would not obey f(x) = Θ(x3). (A fuller explanation is provided
in the Appendix.)

In describing the computational complexity of an algorithm we are generally inter-
ested in the number of basic mathematical operations, such as additions, multiplica-
tions and divisions it requires, or in the time and memory needed on a computer. To
illustrate this concept we consider the complexity of a maximum likelihood estimation
of the parameters in a classifier for Gaussian priors in d dimensions, with n training
samples for each of c categories. For each category it is necessary to calculate the
discriminant function of Eq. 74, below. The computational complexity of finding the
sample mean µ̂ is O(nd), since for each of the d dimensions we must add n component
values. The required division by n in the mean calculation is a single computation,
independent of the number of points, and hence does not affect this complexity. For
each of the d(d + 1)/2 independent components of the sample covariance matrix Σ̂
there are n multiplications and additions (Eq. 19), giving a complexity of O(d2n).
Once Σ̂ has been computed, its determinant is an O(d2) calculation, as we can easily
verify by counting the number of operations in matrix “sweep” methods. The inverse
can be calculated in O(d3) calculations, for instance by Gaussian elimination.∗ The
complexity of estimating P (ω) is of course O(n). Equation 74 illustrates these indi-
vidual components for the problem of setting the parameters of normal distributions
via maximum lielihood:

g(x) = −1
2

(x−

O(dn)

↑
µ̂ )t

O(nd2)︷︸︸︷
Σ̂
−1

(x− µ̂)−

O(1)︷ ︸︸ ︷
d

2
ln 2π−

O(d2n)︷ ︸︸ ︷
1
2

ln |Σ̂|+
O(n)︷ ︸︸ ︷

ln P (ω) . (74)

Naturally we assume that n > d (otherwise our covariance matrix will not have a
well defined inverse), and thus for large problems the overall complexity of calculating
an individual discriminant function is dominated by the O(d2n) term in Eq. 74. This
is done for each of the categories, and hence our overall computational complexity
for learning in this Bayes classifer is O(cd2n). Since c is typically a constant much
smaller than d2 or n, we can call our complexity O(d2n). We saw in Sect. 3.7 that it
was generally desirable to have more training data from a larger dimensional space;
our complexity analysis shows the steep cost in so doing.

We next reconsider the matter of estimating a covariance matrix in a bit more
detail. This requires the estimation of d(d+1)/2 parameters — the d diagonal elements
and d(d−1)/2 independent off-diagonal elements. We observe first that the appealing
maximum likelihood estimate

Σ̂ =
1
n

n∑
k=1

(xk −mn)(xk −mn)t, (75)

is an O(nd2) calculation, is the sum of n−1 independent d-by-d matrices of rank one,
and thus is guaranteed to be singular if n ≤ d. Since we must invert Σ̂ to obtain the
discriminant functions, we have an algebraic requirement for at least d + 1 samples.
To smooth our statistical fluctuations and obtain a really good estimate, it would not
be surprising if several times that number of samples were needed.
∗ We mention for the afficionado that there are more complex matrix inversion algorithms that are
O(d2.376...), and there may be algorithms with even lower complexity yet to be discovered.
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The computational complexity for classification is less, of course. Given a test
point x we must compute (x − µ̂), an O(d) calculation. Moreover, for each of the
categories we must multiply the inverse covariance matrix by the separation vector,
an O(d2) calculation. The maxigi(x) decision is a separate O(c) operation. For small
c then, recall is an O(d2) operation. Here, as throughout virtually all pattern clas-
sification, recall is much simpler (and faster) than learning. The complexity of the
corresponding case for Bayesian learning, summarized in Eq. 49, yields the same com-
putational complexity as in maximum likelihood. More generally, however, Bayesian
learning has higher complexity as a consequence of integrating over model parameters
θ.

Such a rough analysis did not tell us the constants of proportionality. For a finite
size problem it is possible (though not particularly likely) that a particular O(n3)
algorithm is simpler than a particularO(n2) algorithm, and it is occasionally necessary
for us to determine these constants to find which of several implemementations is the
simplest. Nevertheless, big oh and big theta analyses, as just described, are generally
the best way to describe the computational complexity of an algorithm.

Sometimes we stress space and time complexities, which are particularly relevant
when contemplating parallel implementations. For instance, the sample mean of a
category could be calculated with d separate processors, each adding n sample values.
Thus we can describe this implementation asO(d) in space (i.e., the amount of memoryspace

complexity or possibly the number of processors) and O(n) in time (i.e., number of sequential
steps). Of course for any particular algorithm there may be a number of time-space

time
complexity

tradeoffs, for instance using a single processor many times, or using many processors
in parallel for a shorter time. Such tradeoffs are important considerations can be
important in neural network implementations, as we shall see in Chap. ??.

A common qualitative distinction is made between polynomially complex and ex-
ponentially complex algorithms — O(ak) for some constant a and aspect or variable k
of the problem. Exponential algorithms are generally so complex that for reasonable
size cases we avoid them altogether, and resign ourselves to approximate solutions
that can be found by polynomially complex algorithms.

3.7.3 Overfitting

It frequently happens that the number of available samples is inadequate, and the
question of how to proceed arises. One possibility is to reduce the dimensionality,
either by redesigning the feature extractor, by selecting an appropriate subset of the
existing features, or by combining the existing features in some way (Chap ??). An-
other possibility is to assume that all c classes share the same covariance matrix, and
to pool the available data. Yet another alternative is to look for a better estimate for
Σ. If any reasonable a priori estimate Σ0 is available, a Bayesian or pseudo-Bayesian
estimate of the form λΣ0 + (1 − λ)Σ̂ might be employed. If Σ0 is diagonal, this
diminishes the troublesome effects of “accidental” correlations. Alternatively, one can
remove chance correlations heuristically by thresholding the sample covariance matrix.
For example, one might assume that all covariances for which the magnitude of the
correlation coefficient is not near unity are actually zero. An extreme of this approach
is to assume statistical independence, thereby making all the off-diagonal elements be
zero, regardless of empirical evidence to the contrary — an O(nd) calculation. Even
though such assumptions are almost surely incorrect, the resulting heuristic estimates
sometimes provide better performance than the maximum likelihood estimate of the
full parameter space.
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Here we have another apparent paradox. The classifier that results from assuming
independence is almost certainly suboptimal. It is understandable that it will perform
better if it happens that the features actually are independent, but how can it provide
better performance when this assumption is untrue? The answer again involves the
problem of insufficient data, and some insight into its nature can be gained from
considering an analogous problem in curve fitting. Figure 3.4 shows a set of ten data
points and two candidate curves for fitting them. The data points were obtained
by adding zero-mean, independent noise to a parabola. Thus, of all the possible
polynomials, presumably a parabola would provide the best fit, assuming that we are
interested in fitting data obtained in the future as well as the points at hand. Even
a straight line could fit the training data fairly well. The parabola provides a better
fit, but one might wonder whether the data are adequate to fix the curve. The best
parabola for a larger data set might be quite different, and over the interval shown
the straight line could easily be superior. The tenth-degree polynomial fits the given
data perfectly. However, we do not expect that a tenth-degree polynomial is required
here. In general, reliable interpolation or extrapolation can not be obtained unless
the solution is overdetermined, i.e., there are more points than function parameters
to be set.

2 4 6 8
x

-10

-5

5

10

f(x)

Figure 3.4: The “training data” (black dots) were selected from a quadradic function
plus Gaussian noise, i.e., f(x) = ax2 + bx + c + ε where p(ε) ∼ N(0, σ2). The 10th
degree polynomial shown fits the data perfectly, but we desire instead the second-order
function f(x), since it would lead to better predictions for new samples.

In fitting the points in Fig. 3.4, then, we might consider beginning with a high-
order polynomial (e.g., 10th order), and successively smoothing or simplifying our
model by eliminating the highest-order terms. While this would in virtually all cases
lead to greater error on the “training data,” we might expect the generalization to
improve.

Analogously, there are a number of heuristic methods that can be applied in
the Gaussian classifier case. For instance, suppose we wish to design a classifier
for distributions N(µ1,Σ1) and N(µ2,Σ2) and we have reason to believe that we
have insufficient data for accurately estimating the parameters. We might make the
simplification that they have the same covariance, i.e., N(µ1,Σ) and N(µ2,Σ), and
estimate Σ accordingly. Such estimation requires proper normalization of the data
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(Problem 36).
An intermediate approach is to assume a weighted combination of the equal and

individual covariances, a technique known as shrinkage, (also called regularized dis-shrinkage
criminant analysis) since the individual covariances “shrink” toward a common one.
If i is an index on the c categories in question, we have

Σi(α) =
(1− α)niΣi + αnΣ

(1− α)ni + αn
, (76)

for 0 < α < 1. Additionally, we could “shrink” the estimate of the (assumed) common
covariance matrix toward the identity matrix, as

Σ(β) = (1− β)Σ + βI, (77)

for 0 < β < 1 (Computer exercise 8). (Such methods for simplifying classifiers have
counterparts in regression, generally known as ridge regression.)

Our short, intuitive descussion here will have to suffice until Chap. ??, where we
will explore the crucial issue of controlling the complexity or expressive power of a
classifer for optimum performance.

3.8 *Expectation-Maximization (EM)

We saw in Chap. ?? Sec. ?? how we could classify a test point even when it has miss-
ing features. We can now extend our application of maximum likelihood techniques
to permit the learning of parameters governing a distribution from training points,
some of which have missing features. If we had uncorrupted data, we could use maxi-
mum likelihood, i.e., find θ̂ that maximized the log-likelihood l(θ). The basic idea in
the expectation maximization or EM algorithm, is to iteratively estimate the likeli-
hood given the data that is present. The method has precursors in the Baum-Welch
algorithm we will consider in Sec. 3.10.6.

Consider a full sample D = {x1, ...,xn} of points taken from a single distribution.
Suppose, though, that here some features are missing; thus any sample point can
be written as xk = {xkg,xkb}, i.e., comprising the “good” features and the missing,
or “bad” ones (Chapt. ??, Sect. ??). For notational convenience we separate these
individual features (not samples) into two sets, Dg and Db with D = Dg ∪ Db being
the union of such features.

Next we form the function

Q(θ; θi) = EDb [ln p(Dg,Db; θ)|Dg; θi], (78)

where the use of the semicolon denotes, for instance on the left hand side, that
Q(θ; θi) is a function of θ with θi assumed fixed; on the right hand side it de-
notes that the expected value is over the missing features assuming θi are the true
parameters describing the (full) distribution. The simplest way to interpret this, the
central equation in expectation maximization, is the following. The parameter vector
θi is the current (best) estimate for the full distribution; θ is a candidate vector for
an improved estimate. Given such a candidate θ, the right hand side of Eq. 78 calcu-
lates the likelihood of the data, including the unknown feature Db marginalized with
respect to the current best distribution, which is described by θi. Different candidate
θs will of course lead to different such likelihoods. Our algorithm will select the best
such candidate θ and call it θi+1 — the one corresponding to the greatest Q(θ; θi).
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If we continue to let i be an interation counter, and now let T be a preset conver-
gence criterion, our algorithm is as follows and illustrated in Fig. 3.5:

Algorithm 1 (Expectation-Maximization)

1 begin initialize θ0, T, i = 0
2 do i← i+ 1
3 E step : compute Q(θ; θi)
5 M step : θi+1 ← arg max

θ
Q(θ; θi)

6 until Q(θi+1; θi)−Q(θi; θi−1) ≤ T
7 return θ̂ ← θi+1

8 end

Q(θi+1; θi)

θ1

θ0

θ2 θ4

θ3

Figure 3.5: The search for the best model via the EM algorithm starts with some
initial value of the model parameters, θ0. Then, via the M step the optimal θ1

is found. Next, θ1 is held constant and the value θ2 found which optimizes Q(·, ·).
This process iterates until no value of θ can be found that will increase Q(·, ·). Note
in particular that this is different from a gradient search. For example here θ1 is
the global optimum (given fixed θ0), and would not necessarily have been found via
gradient search. (In this illustration, Q(·, ·) is shown symmetric in its arguments; this
need not be the case in general, however.)

This so-called Expectation-Maximization or EM algorithm is most useful when the
optimization of Q(·, ·) is simpler than that of l(·). Most importantly, the algorithm
guarantees that the log-likelihood of the good data (with the bad data marginalized)
will increase monotonically, as explored in Problem 37. This is not the same as
finding the particular value of the bad data that gives the maximum likelihood of the
full (completed) data, as can be seen in Example 2.

Example 2: Expectation-Maximization for a 2D normal model

Suppose our data consists of four points in two dimensions, one point of which
is missing a feature: D = {x1,x2,x3,x4} =

{(
0
2

)
,
(

1
0

)
,
(

2
2

)
,
(∗

4

)}
, where ∗ represents

the unknown value of the first feature of point x4. Thus our bad data Db consists of
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the single feature x41, and the good data Dg all the rest. We assume our model is a
Gaussian with diagonal covariance and arbitrary mean, and thus can be described by
the parameter vector

θ =


µ1

µ2

σ2
1

σ2
2

 .

We take our initial guess to be a Gaussian centered on the origin having Σ = I, that
is:

θ0 =


0
0
1
1

 .

In finding our first improved estimate, θ1, we must calculate Q(θ,θ0) or, by Eq. 78,

Q(θ; θ0) = Ex41 [ln p(xg,xb; θ|θ0; Dg)]

=

∞∫
−∞

[
3∑
k=1

lnp(xk|θ) + lnp(x4|θ)

]
p(x41|θ0; x42 = 4) dx41

=
3∑
k=1

[lnp(xk|θ)] +

∞∫
−∞

lnp

((
x41

4

)∣∣∣∣∣θ
)

p
((
x41
4

)
|θ0
) ∞∫

−∞

p

((
x′41

4

)∣∣∣∣∣θ0

)
dx′41


︸ ︷︷ ︸

≡K

dx41,

where x41 is the unknown first feature of point x4, and K is a constant that can be
brought out of the integral. We focus on the integral, substitute the equation for a
general Gaussian, and find

Q(θ; θ0) =
3∑
k=1

[ln p(xk|θ)] +
1
K

∞∫
−∞

ln p

((
x41

4

)∣∣∣∣∣θ
)

1
2π
∣∣(1 0

0 1

)∣∣exp
[
−1

2
(x2

41 + 42)
]
dx41

=
3∑
k=1

[ln p(xk|θ)]− 1 + µ2
1

2σ2
1

− (4− µ2)2

2σ2
2

− ln (2πσ1σ2).

This completes the expectation or E step. Through a straightforward calculation,
we find the values of θ (that is, µ1, µ2, σ1 and σ2 that maximize Q(, ·), to get the next
estimate:

θ1 =


0.75
2.0

0.938
2.0

 .
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This new mean and the 1/e ellipse of the new covariance matrix are shown in the figure.
Subsequent iterations are conceptually the same, but require a bit more extensive
calculation. The mean will remain at µ2 = 2. After three iterations the algorithm
converges at the solution µ =

(
1.0
2.0

)
, and Σ =

(
0.667 0

0 2.0

)
.

2

4

10

0

1 2 3

x1

x2

The four data points, one of which is missing the value of x1 component, are shown
in red. The initial estimate is a circularly symmetric Gaussian, centered on the
origin (gray). (A better initial estimate could have been derived from the three
known points.) Each iteration leads to an improved estimate, labelled by the iteration
number i; here, after three iterations the algorithm has converged.

We must be careful and note that the EM algorithm leads to the greatest log-
likelihood of the good data, with the bad data marginalized. There may be particular
values of the bad data that give a different solution and an even greater log-likelihood.
For instance, in this Example if the missing feature had value x41 = 2, so that
x4 =

(
2
4

)
, we would have a solution

θ =


1.0
2.0
0.5
2.0


and a log-likelihood for the full data (good plus bad) that is greater than for the good
alone. Such an optimization, however, is not the goal of the canonical EM algorithm.
Note too that if no data is missing, the calculation of Q(θ; θi) is simple since no
integrals are involved.

Generalized Expectation-Maximization or GEM algorithms are a bit more lax than generalized
Expectation-
Maximization

the EM algorithm, and require merely that an improved θi+1 be set in the M step
(line 5) of the algorithm — not necessarily the optimal. Naturally, convergence will
not be as rapid as for a proper EM algorithm, but GEM algorithms afford greater
freedom to choose computationally simpler steps. One version of GEM is to find the
maximum likelihood value of unknown features at each iteration step, then recalculate
θ in light of these new values — if indeed they lead to a greater likelihood.
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In practice, the term Expectation-Maximization has come to mean loosely any
iterative scheme in which the likelihood of some data increases with each step, even if
such methods are not, technically speaking, the true EM algorithm as presented here.

3.9 Bayesian Belief Networks

The methods we have described up to now are fairly general — all that we assumed,
at base, was that we could parameterize the distributions by a feature vector θ. If we
had prior information about the distribution of θ, this too could be used. Sometimes
our knowledge about a distribution is not directly of this type, but instead about
the statistical dependencies (or independencies) among the component features. Re-
call that for some multidimensional distribution p(x), if for two features we have
p(xi, xj) = p(xi)p(xj), we say those variables are statistically independent (Fig. 3.6).

x1

x2

x3

Figure 3.6: A three-dimensional distribution which obeys p(x1, x3) = p(x1)p(x3); thus
here x1 and x3 are statistically independent but the other feature pairs are not.

There are many cases where we know or can safely assume which variables are
or are not independent, even without sampled data. Suppose for instance we are
describing the state of an automobile — temperature of the engine, pressures of the
fluids and in the tires, voltages in the wires, and so on. Our basic knowledge of cars
includes the fact that the oil pressure in the engine and the air pressure in a tire are
functionally unrelated, and hence can be safely assumed to be statistically indepen-
dent. However the oil temperature and engine temperature are not independent (but
could be conditionally independent). Furthermore we may know several variables that
might influence another: the coolant temperature is affected by the engine tempera-
ture, the speed of the radiator fan (which blows air over the coolant-filled radiator),
and so on.

We will represent these dependencies graphically, by means of Bayesian belief nets,
also called causal networks, or simply belief nets. They take the topological form of a
directed acyclic graph (DAG), where each link is directional, and there are no loops.
(More general networks permit such loops, however.) While such nets can represent
continuous multidimensional distributions, they have enjoyed greatest application and
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success for discrete variables. For this reason, and because the formal properties are
simpler, we shall concentrate on the discrete case.

C D

A B

E

F G

P(c|a) P(d|b)

P(c|d)

P(e|c)

P(g|e)P(f|e)

P(a) P(b)

P(g|f)

Figure 3.7: A belief network consists of nodes (labelled with upper case bold letters)
and their associated discrete states (in lower-case). Thus node A has states a1, a2,
..., denoted simply a; node B has states b1, b2, ..., denoted b, and so forth. The
links between nodes represent conditional probabilities. For example, P (c|a) can be
described by a matrix whose entries are P (ci|aj).

Each node (or unit) represents one of the system variables, and here takes on node
discrete values. We will label nodes with A, B, ..., and the variables at each node
by the corresponding lower-case letter. Thus, while there are a discrete number of
possible values of node A — here two, a1 and a2 — there may be continuous-valued
probabilities on these discrete states. For example, if node A represents the state of
a binary lamp switch — a1 = on, a2 = off — we might have P (a1) = 0.739, P (a2) =
0.261, or indeed any other probabilities. A link joining node A to node C in Fig. 3.7
is directional, and represents the conditional probabilities P (ci|aj), or simply P (c|a).
For the time being we shall not be concerned with how these conditional probabilities
are determined, except to note that in some cases human experts provide the values.

Suppose we have a belief net, complete with conditional probabilities, and know
the values or probabilities of some of the states. Through careful application of Bayes
rule or Bayesian inference, we will be able to determine the maximum posterior value
of the unknown variables in the net. We first consider how to determine the state
of just one node from the states in units with which it is connected. The connected
nodes are the only ones we need to consider directly — the others are conditionally
independent. This is, at base, the simplification provided by our knowledge of the
dependency structure of the system.

In considering a single node X in the simple net of Fig. 3.8, it is extremely useful
to distinguish the set of nodes before X — called its parents P — and the set of those parent
after it — called its children C. When we evaluate the probabilities at X, we must

childtreat the parents of X differently from its children. Thus, in Fig. 3.8, A and B are in
P of X while C and D are in C.

The belief of a set of propositions x = (x1, x2, ...) on node X describes the relative belief
probabilities of the variables given all the evidence e throughout the rest of the net-
work, i.e., P (x|e).∗ We can divide the dependency of the belief upon the parents and
∗ While this is sometimes denoted BEL(x), we keep a notation that clarifies the dependencies and

is more similar to that in our previous discussions.
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A B

X

C D

P(x|b)P(x|a)

P(d|x)P(c|x)

Parents of X

Children of X

Figure 3.8: A portion of a belief network, consistsing of a node X, having variable
values (x1, x2, ...), its parents (A and B), and its children (C and D).

the children in the following way:

P (x|e) ∝ P (eC |x)P (x|eP), (79)

where e represents all evidence (i.e., values of variables on nodes other than X), eP

the evidence on the parent nodes, and eC the children nodes. In Eq. 79 we show only
a proportionality — at the end of our calculation we will normalize the probabilities
over the states at X.

The first term in Eq. 79 is quite simple, and is a manifestation of Bayes’ formula.
We can expand the dependency upon the evidence of the children nodes as follows:

P (eC |x) = P (eC1 , eC2 , ..., eC|C| |x)
= P (eC1 |x)P (eC2 |x) · · ·P (eC|C| |x)

=
|C|∏
j=1

P (eCj |x), (80)

where Cj represents the jth child node and eCj the values of the probabilities of
its states. Note too our convention that |C| denotes the cardinality of set C — thecardinality
number of elements in the set — a convenient notation for indicating the full range of
summations or products. In the last step of Eq. 80 we used our knowledge that since
the child nodes cannot be joined by a line, then they are conditionally independent
given x. Equation 80 simply states that the probability of a given set of states
throughout all the children nodes of X is the product of the (independent) probabilities
in the individual children nodes. For instance, in the simple example in Fig. 3.8, we
have

P (eC, eD|x) = P (eC|x)P (eD|x). (81)

Incorporating evidence from parent nodes is a bit more subtle. We have:

P (x|eP) = P (x|eP1 , eP2 , ..., eP|P|)

=
∑

all i,j,...,k

P (x|P1i,P2j , ...,P|P|k)P (P1i,P2j , ...,P|P|k|eP1 , ..., eP|P|)

=
∑

all i,j,...,k

P (x|P1i,P2j , ...,P|P|k)P (P1i|eP1) · · ·P (P|P|k|eP|P|k), (82)
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where the summation is over all possible configurations of values on the different
parent nodes. Here Pmn denotes a particular value for state n on parent node Pm.
In the last step of Eq. 82 we have again used our assumption that the (unconnected)
parent nodes are statistically independent.

While Eq. 82 and its unavoidable notational complexities may appear intimidating,
it is actually just a logical consequence of Bayes’ rule. For the purposes of clarity and
for computing x, each term at the extreme right, P (P1i|eP1) can be considered to be
P (P1i) — the probability of state i on the first parent node. Our notation shows that
this probability depends upon the evidence at P1, including from its parents, but for
the sake of computing the probabilities at X we temporarily ignore the dependencies
beyond the parents and children of X.

Thus we rewrite Eq. 82 as

P (x|eP) =
∑

all Pmn
P (x|Pmn)

|P|∏
i=1

P (Pi|ePi) (83)

We put these results together for the general case with |P| parent nodes and |C|
children nodes, Eqs. 80 & 83, and find

P (x|e) ∝
|C|∏
j=1

P (eCj |x)︸ ︷︷ ︸
P (eC|x)

 ∑
all Pmn

P (x|Pmn)
|P|∏
i=1

P (Pi|ePi)


︸ ︷︷ ︸

P (x|eP)

. (84)

In words, Eq. 84 states that the probability of a particular values for node X is
the product of two factors. The first is due to the children (the product of their
independent likelihoods). The second is the sum over all possible configurations of
states on the parent nodes of the prior probabilities of their values and the conditional
probabilities of the x variables given those parent values. The final values must be
normalized to represent probabilities.

Example 3: Belief network for fish

Suppose we are again interested in classifying fish, but now we want to use more
information. Imagine that a human expert has constructed the simple belief network
in the figure, where node A represents the time of year, and can have four values:
a1 = winter, a2 = spring, a3 = summer and a4 = autumn. Node B represents the
geographical area where the fish was caught: b1 = north Atlantic and b2 = south
Atlantic. A and B are the parents of the node X, which represents the fish and has
just two possible values: x1 = salmon and x2 = sea bass. Similarly, our expert tells
us that the children nodes represent lightness, C, with c1 = dark, c2 = medium and
c3 = light as well as thickness, D, with d1 = thick and d2 = thin. The direction of the
links (from A and B to X and likewise from X to C and D) is meant to describe the
influences among the variables, as shown in the figure.
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A
season

P(x|b)P(x|a)

P(d|x)P(c|x)

B
locale

X
fish

C
light-
ness

D
thick-
ness

a
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 = spr ng

a
3
 = summer

a
4
 = autumn

1
b

2
 = south Atlantic

x
1
 = salmon

x
2
 = sea bass

c
1
 = light

c
2
 = medium

c
3
 = dark

d
1
 = wide

d
2
 = thin

A simple belief net for the fish example. The season and the fishing locale are statisti-
cally independent, but the type of fish caught does depend on these factors. Further,
the width of the fish and its color depend upon the fish.

The following probability matrixes (here, given by an expert) describe the influence
of time of year and fishing area on the identity of the fish:

P (xi|aj) :


salmon sea bass

winter .9 .1
spring .3 .7
summer .4 .6
autumn .8 .2

, P (xi|bj) :
( salmon sea bass

north .65 .35
south .25 .75

)

Thus salmon are best found in the north fishing areas in the winter and autumn,
sea bass in the south fishing areas in the spring and summer, and so forth. Recall
that in our belief networks the variables are discrete, and all influences are cast as
probabilites, rather than probability densities. Given that we have any particular
feature value on a parent node, we must have some fish; thus each row is normalized,
as for instance P (x1|a1) + P (x2|a1) = 1.

Suppose our expert tells us that the conditional probabilities for the variables in
the children nodes are as follows:

P (ci|xj) :
( light medium dark

salmon .33 .33 .34
sea bass .8 .1 .1

)
, P (di|xj) :

( wide thin
salmon .4 .6

sea bass .95 .05

)
Thus salmon come in the full range of lightnesses, while sea bass are primarily light
in color and are primarily wide.

Now we turn to the problem of using such a belief net to infer the identity
of a fish. We have no direct information about the identity of the fish, and thus
P (x1) = P (x2) = 0.5. This might be a reasonable starting point, expressing our lack
of knowledge of the identity of the fish. Our goal now is to estimate the probabilities
P (x1|e) and P (x2|e). Note that without any evidence we have

P (x1) =
∑
i,j,k,l

P (x1, ai, bj , ck, dl)

=
∑
i,j,k,l

P (ai)P (bj)P (x1|ai, bj)P (ck|x1)P (dl|x1)

=
∑
i,j

P (ai)P (bj)P (x1|ai, bj)

= (0.25)(0.5)
∑
i,j

P (x1|ai, bj)

= (0.25)(0.5)(0.9 + 0.3 + 0.4 + 0.7 + 0.8 + 0.2 + 0.1 + 0.6)
= 0.5,

and thus P (x1) = P (x2), as we would expect.
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Now we collect evidence for each node, {eA, eB, eC, eD}, assuming they are in-
dependent of each other. Suppose we know that it is winter, i.e., P (a1|eA) = 1 and
P (ai|eA) = 0 for i = 2, 3, 4. Suppose we do not know which fishing area the boat came
from but found that the particular fishing crew prefers to fish in the south Atlantic;
we assume, then, that P (b1|eB) = 0.2 and P (b2|eB) = 0.8. We measure the fish and
find that it is fairly light, and set by hand to be P (eC|c1) = 1, P (eC|c2) = 0.5, and
P (eC|c3) = 0. Suppose that due to occlusion, we cannot measure the width of the
fish; we thus set P (eD|d1) = P (eD|d2).

By Eq. 82, we have the estimated probability of each fish due to the parents P is,
in full expanded form

PP(x1) ∝ P (x1|a1, b1)P (a1)P (b1)
+P (x1|a1, b2)P (a1)P (b2)
+P (x1|a2, b1)P (a2)P (b1)
+P (x1|a2, b2)P (a2)P (b2)
+P (x1|a3, b1)P (a3)P (b1)
+P (x1|a3, b2)P (a3)P (b2)
+P (x1|a4, b1)P (a4)P (b1)
+P (x1|a4, b2)P (a4)P (b2)

= 0.82.

A similar calculation gives PP(x2) = 0.18.
We now turn to the children nodes and find by Eq. 84

PC(x1) ∝ P (eC|x1)P (eD|x1)
= [P (eC|c1)P (c1|x1) + P (eC |c2)P (c2|x1) + P (eC|c3)P (c3|x1)]
×[P (eD|d1)P (d1|x1) + P (eD|d2)P (d2|x1)]

= [(1.0)(0.33) + (0.5)(0.33) + (0)(0.34)]× [(1.0)(0.4) + (1.0)(0.6)]
= 0.495.

A similar calculation gives PC(x2) ∝ 0.85. We put these estimates together by Eq. 79
as products P (xi) ∝ PC(xi)PP(xi) and renormalize (i.e., divide by their sum). Thus
our final estimates for node X are

P (x1|e) =
(0.82)(0.495)

(0.82)(0.495) + (0.18)(0.85)
= 0.726

P (x2|e) =
(0.18)(0.85)

(0.82)(0.495) + (0.18)(0.85)
= 0.274.

Thus given all the evidence throughout the belief net, the most probable outcome is
x1 = salmon.

A given belief net can be used to infer any of the unknown variables. In Example
3, we used information about the time of year, fishing location and some measured
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properties of the fish to infer its identity (salmon or sea bass). The same network could
instead be used to infer the probability that a fish is thin, or dark in color, based on
probabilities of the identity of the fish, time of year, and so on (Problem 42).

When the dependency relationships among the features used by a classifier are
unknown, we generally proceed by taking the simplest assumption, i.e., that the
features are conditionally independent given the category, i.e.,

p(ωk|x) ∝
d∏
i=1

p(xi|ωk). (85)

In practice, this so-called naive Bayes rule or idiot Bayes rule often works quite wellnaive
Bayes
rule

in practice, and can be expressed by a very simple belief net (Problem 43).
In Example 3 our entire belief net consisted of X, its parents and children, and

we needed to update only the values on X. In the more general case, where the
network is large, there may be many nodes whose values are unknown. In that case
we may have to visit nodes randomly and update the probabilites until the entire
configuration of probabilities is stable. It can be shown that under weak conditions,
this process will converge to consistent values of the variables throughout the entire
network (Problem 44).

Belief nets have found increasing use in complicated problems such as medical
diagnosis. Here the upper-most nodes (ones without their own parents) represent a
fundamental biological agent such as the presence of a virus or bacteria. Intermediate
nodes then describe diseases, such as flu or emphysema, and the lower-most nodes
the symptoms, such as high temperature or coughing. A physician enters measured
values into the net and finds the most likely disease or cause. Such networks can be
used in a somewhat more sophisticated way, automatically computing which unknown
variable (node) should be measured to best reveal the identity of the disease.

We will return in Chap. ?? to address the problem of learning in such belief net
models.

3.10 Hidden Markov Models

While belief nets are a powerful method for representing the dependencies and inde-
pendencies among variables, we turn now to the problem of representing a particular
but extremely important dependencies. In problems that have an inherent temporal-
ity — that is, consist of a process that unfolds in time — we may have states at time
t that are influenced directly by a state at t − 1. Hidden Markov models (HMMs)
have found greatest use in such problems, for instance speech recognition or gesture
recognition. While the notation and description is aunavoidably more complicated
than the simpler models considered up to this point, we stress that the same underly-
ing ideas are exploited. Hidden Markov models have a number of parameters, whose
values are set so as to best explain training patterns for the known category. Later, a
test pattern is classified by the model that has the highest posterior probability, i.e.,
that best “explains” the test pattern.

3.10.1 First-order Markov models

We consider a sequence of states at successive times; the state at any time t is denoted
ω(t). A particular sequence of length T is denoted by ωT = {ω(1), ω(2), ..., ω(T )} as
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for instance we might have ω6 = {ω1, ω4, ω2, ω2, ω1, ω4}. Note that the system can
revisit a state at different steps, and not every state need be visited.

Our model for the production of any sequence is described by transition probabil-
ities P (ωj(t+ 1)|ωi(t)) = aij — the time-independent probability of having state ωj transition

probabilityat step t+ 1 given that the state at time t was ωi. There is no requirement that the
transition probabilities be symmetric (aij 6= aji, in general) and a particular state
may be visited in succession (aii 6= 0, in general), as illustrated in Fig. 3.9.

ω3

ω2

ω1

a12

a21
a23

a32

a31

a13

a33
a11

a22

Figure 3.9: The discrete states, ωi, in a basic Markov model are represented by nodes,
and the transition probabilities, aij , by links. In a first-order discrete time Markov
model, at any step t the full system is in a particular state ω(t). The state at step
t+1 is a random function that depends solely on the state at step t and the transition
probabilities.

Suppose we are given a particular model θ — that is, the full set of aij — as well
as a particular sequence ωT . In order to calculate the probability that the model
generated the particular sequence we simply multiply the successive probabilities.
For instance, to find the probability that a particular model generated the sequence
described above, we would have P (ωT |θ) = a14a42a22a21a14. If there is a prior
probability on the first state P (ω(1) = ωi), we could include such a factor as well; for
simplicity, we will ignore that detail for now.

Up to here we have been discussing a Markov model, or technically speaking, a
first-order discrete time Markov model, since the probability at t+ 1 depends only on
the states at t. For instance, in a Markov model for the production of spoken words,
we might have states representing phonemes, and a Markov model for the production
of a spoken work might have states representing phonemes. Such a Markov model for
the word “cat” would have states for /k/, /a/ and /t/, with transitions from /k/ to
/a/; transitions from /a/ to /t/; and transitions from /t/ to a final silent state.

Note however that in speech recognition the perceiver does not have access to the
states ω(t). Instead, we measure some properties of the emitted sound. Thus we will
have to augment our Markov model to allow for visible states — which are directly
accessible to external measurement — as separate from the ω states, which are not.

3.10.2 First-order hidden Markov models

We continue to assume that at every time step t the system is in a state ω(t) but now
we also assume that it emits some (visible) symbol v(t). While sophisticated Markov
models allow for the emission of continuous functions (e.g., spectra), we will restrict
ourselves to the case where a discrete symbol is emitted. As with the states, we define
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a particular sequence of such visible states as VT = {v(1), v(2), ..., v(T )} and thus we
might have V6 = {v5, v1, v1, v5, v2, v3}.

Our model is then that in any state ω(t) we have a probability of emitting a par-
ticular visible state vk(t). We denote this probability P (vk(t)|ωj(t)) = bjk. Because
we have access only to the visible states, while the ωi are unobservable, such a full
model is called a hidden Markov model (Fig. 3.10)

ω3

ω2

ω1

a12

a21
a23

a32

a31

a13

a33
a11

a22

v1
v2 v3 v4

b21

b22 b23 b24

v1 v2 v3
v4

b11 b12 b13
b14

v1 v2 v3
v4

b31 b32 b33
b34

Figure 3.10: Three hidden units in an HMM and the transitions between them are
shown in black while the visible states and the emission probabilities of visible states
are shown in red. This model shows all transitions as being possible; in other HMMs,
some such candidate transitions are not allowed.

3.10.3 Hidden Markov Model Computation

Now we define some new terms and clarify our notation. In general networks such as
those in Fig. 3.10 are finite-state machines, and when they have associated transition
probabilities, they are called Markov networks. They are strictly causal — the prob-
abilities depend only upon previous states. A Markov model is called ergodic if every
one of the states has a non-zero probability of occuring given some starting state. A
final or absorbing state ω0 is one which, if entered, is never left (i.e., a00 = 1).absorbing

state As mentioned, we denote the transition probabilities aij among hidden states and
for the probability bjk of the emission of a visible state:

aij = P (ωj(t+ 1)|ωi(t))
bjk = P (vk(t)|ωj(t)). (86)

We demand that some transition occur from step t→ t+ 1 (even if it is to the same
state), and that some visible symbol be emitted after every step. Thus we have the
normalization conditions:

∑
j

aij = 1 for all i and
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∑
k

bjk = 1 for all j, (87)

where the limits on the summations are over all hidden states and all visible symbols,
respectively.

With these preliminaries behind us, we can now focus on the three central issues
in hidden Markov models:

The Evaluation problem. Suppose we have an HMM, complete with transition
probabilites aij and bjk. Determine the probability that a particular sequence
of visible states VT was generated by that model.

The Decoding problem. Suppose we have an HMM as well as a set of observations
VT . Determine the most likely sequence of hidden states ωT that led to those
observations.

The Learning problem. Suppose we are given the coarse structure of a model (the
number of states and the number of visible states) but not the probabilities aij
and bjk. Given a set of training observations of visible symbols, determine these
parameters.

We consider each of these problems in turn.

3.10.4 Evaluation

The probability that the model produces a sequence VT of visible states is:

P (VT ) =
rmax∑
r=1

P (VT |ωTr )P (ωTr ), (88)

where each r indexes a particular sequence ωTr = {ω(1), ω(2), ..., ω(T )} of T hidden
states. In the general case of c hidden states, there will be rmax = cT possible
terms in the sum of Eq. 88, corresponding to all possible sequences of length T . Thus,
according to Eq. 88, in order to compute the probability that the model generated the
particular sequence of T visible states VT , we should take each conceivable sequence
of hidden states, calculate the probability they produce VT , and then add up these
probabilities. The probability of a particular visible sequence is merely the product
of the corresponding (hidden) transition probabilities aij and the (visible) output
probabilities bjk of each step.

Because we are dealing here with a first-order Markov process, the second factor
in Eq. 88, which describes the transition probability for the hidden states, can be
rewritten as:

P (ωTr ) =
T∏
t=1

P (ω(t)|ω(t− 1)) (89)

that is, a product of the aij ’s according to the hidden sequence in question. In
Eq. 89, ω(T ) = ω0 is some final absorbing state, which uniquely emits the visible state
v0. In speech recognition applications, ω0 typically represents a null state or lack of
utterance, and v0 is some symbol representing silence. Because of our assumption
that the output probabilities depend only upon the hidden state, we can write the
first factor in Eq. 88 as
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P (VT |ωTr ) =
T∏
t=1

P (v(t)|ω(t)), (90)

that is, a product of bjk’s according to the hidden state and the corresponding visible
state. We can now use Eqs. 89 & 90 to express Eq. 88 as

P (VT ) =
rmax∑
r=1

T∏
t=1

P (v(t)|ω(t))P (ω(t)|ω(t− 1)). (91)

Despite its formal complexity, Eq. 91 has a straightforward interpretation. The
probability that we observe the particular sequence of T visible states VT is equal to
the sum over all rmax possible sequences of hidden states of the conditional probability
that the system has made a particular transition multiplied by the probability that
it then emitted the visible symbol in our target sequence. All these are captured in
our paramters aij and bkj , and thus Eq. 91 can be evaluated directly. Alas, this is an
O(cTT ) calculation, which is quite prohibitive in practice. For instance, if c = 10 and
T = 20, we must perform on the order of 1021 calculations.

A computationaly simpler algorithm for the same goal is as follows. We can
calculate P (VT ) recursively, since each term P (v(t)|ω(t))P (ω(t)|ω(t − 1)) involves
only v(t), ω(t) and ω(t− 1). We do this by defining

αi(t) =


0 t = 0 and i 6= initial state
1 t = 0 and i = initial state∑
j α(t− 1)aijbjkv(t) otherwise,

(92)

where the notation bjkv(t) means the transition probability bjk selected by the visible
state emitted at time t. thus the only non-zero contribution to the sum is for the
index k which matches the visible state v(t). Thus αi(t) represents the probability
that our HMM is in hidden state ωi at step t having generated the first t elements of
VT . This calculation is implemented in the Forward algorithm in the following way:

Algorithm 2 (HMM Forward)

1 initialize ω(1), t = 0, aij , bjk, visible sequence VT , α(0) = 1
2 for t← t+ 1

3 αj(t)←
c∑
i=1

αi(t− 1)aijbjk

4 until t = T
5 return P (VT )← α0(T )
6 end

where in line 5, α0 denotes the probability of the associated sequence ending to the
known final state. The Forward algorithm has, thus, a computational complexity of
O(c2T ) — far more efficient than the complexity associated with exhaustive enumer-
ation of paths of Eq. 91 (Fig. 3.11). For the illustration of c = 10, T = 20 above, we
would need only on the order of 2000 calculations — more than 17 orders of magnitude
faster than that to examine each path individually.

We shall have cause to use the Backward algorithm, which is the time-reversed
version of the Forward algorithm.

Algorithm 3 (HMM Backward)
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Figure 3.11: The computation of probabilities by the Forward algorithm can be vi-
sualized by means of a trellis — a sort of “unfolding” of the HMM through time.
Suppose we seek the probability that the HMM was in state ω2 at t = 3 and gener-
ated the observed visible up through that step (including the observed visible symbol
vk). The probability the HMM was in state ωj(t = 2) and generated the observed
sequence through t = 2 is αj(2) for j = 1, 2, ..., c. To find α2(3) we must sum these
and multiply the probability that state ω2 emitted the observed symbol vk. Formally,

for this particular illustration we have α2(3) = b2k
c∑
j=1

αj(2)aj2.

1 initialize ω(T ), t = T, aij , bjk, visible sequence V T

2 for t← t− 1;

4 βj(t)←
c∑
i=1

βi(t+ 1)aijbjkv(t+ 1)

5 until t = 1
7 return P (V T )← βi(0) for the known initial state
8 end

Example 4: Hidden Markov Model

To clarify the evaluation problem, consider an HMM such as shown in Fig. 3.10,
but with an explicit absorber state and unique null visible symbol V0 with the following
transition probabilities (where the matrix indexes begin at 0):

aij =


1 0 0 0

0.2 0.3 0.1 0.4
0.2 0.5 0.2 0.1
0.8 0.1 0.0 0.1

 and

bjk =


1 0 0 0 0
0 0.3 0.4 0.1 0.2
0 0.1 0.1 0.7 0.1
0 0.5 0.2 0.1 0.2

 .
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What is the probability it generates the particular sequence V5 = {v3, v1, v3, v2, v0}?
Suppose we know the initial hidden state at t = 0 to be ω1. The visible symbol at
each step is shown above, and the αi(t) in each unit. The circles show the value for
αi(t) as we progress left to right. The product aijbjk is shown along each transition
link for the step t = 1 to t = 2. The final probability, P (VT |θ) is hence 0.0011.

ω2

ω0

ω3ω1

V1
V4V1 V4

V0

V1

V4

V3 V1 V3 V2 V0
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0.2 x 0

0.3 x 0.3
0.1 x 0.1

0.4 x 0.5

The HMM (above) consists of four hidden states (one of which is an absorber state,
ω0), each emitting one of five visible states; only the allowable transitions to visible
states are shown. The trellis for this HMM is shown below. In each node is αi(t) — the
probability the model generated the observed visible sequence up to t. For instance,
we know that the system was in hidden state ω1 at t = 1, and thus α1(0) = 1 and
αi(0) = 0 for i 6= 1. The arrows show the calculation of αi(1). for instance, since
visible state v1 was emitted at t = 1, we have α0(1) = α1(0)a10b01 = 1[0.2 × 0] = 0.
as shown by the top arrow. Likewise the nest highest arrow corresponds to the
calculation α1(1) = α1(0)a11b11 = 1[0.3×0.3] = 0.09. In this example, the calculation
of αi(1) is particularly simple, since only transitions from the known initial hidden
state need be considered; all other transitions have zero contribution to αi(1). For
subsequent times, however, the caculation requires a sum over all hidden states at
the previous time, as given by line 3 in the Forward algorithm. The probability
shown in the final (absorbing) state gives the probability of the full sequence observed,
P (VT |θ) = 0.0011.

If we denote our model — the a’s and b’s — by θ, we have by Bayes’ formula that
the probability of the model given the observed sequence is:

P (θ|VT ) =
P (VT |θ)P (θ)

P (VT )
(93)
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In HMM pattern recognition we would have a number of HMMs, one for each category
and classify a test sequence according to the model with the highest probability. Thus
in HMM speech recognition we could have a model for “cat” and another one for
“dog” and for a test utterance determine which model has the highest probability. In
practice, nearly all HMMs for speech are left-to-right models (Fig. 3.12). left-to-

right
model

ω1 ω2 ω3 ω4 ω5 ω0

Figure 3.12: A left-to-right HMM commonly used in speech recognition. For instance,
such a model could describe the utterance “viterbi,” where ω1 represents the phoneme
/v/, ω2 represents /i/, ..., and ω0 a final silent state. Such a left-to-right model is
more restrictive than the general HMM in Fig. 3.10, and precludes transitions “back”
in time.

The Forward algorithm gives us P (V T |θ). The prior probability of the model,
P (θ), is given by some external source, such as a language model in the case of speech.
This prior probability might depend upon the semantic context, or the previous words,
or yet other information. In the absence of such information, it is traditional to assume
a uniform density on P (θ), and hence ignore it in any classification problem. (This
is an example of a “non-informative” prior.)

3.10.5 Decoding

Given a sequence of visible states VT , the decoding problem is to find the most
probable sequence of hidden states. While we might consider enumerating every
possible path and calculating the probability of the visible sequence observed, this is
an O(cTT ) calculation and prohibitive. Instead, we use perhaps the simplest decoding
algorithm:

Algorithm 4 (HMM decoding)

1 begin initialize Path = {}, t = 0
2 for t← t+ 1
4 k = 0, α0 = 0
5 for k ← k + 1

7 αk(t)← bjkv(t)
c∑
i=1

αi(t− 1)aij

8 until k = c
10 j′ ← arg max

j
αj(t)

11 AppendTo Path ωj′
12 until t = T
13 return Path
14 end

A closely related algorithm uses logarithms of the probabilities and calculates total
probabilities by addition of such logarithms; this method has complexity O(c2T )
(Problem 48).



50 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION
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Figure 3.13: The decoding algorithm finds at each time step t the state that has the
highest probability of having come from the previous step and generated the observed
visible state vk. The full path is the sequence of such states. Because this is a
local optimization (dependent only upon the single previous time step, not the full
sequence), the algorithm does not guarantee that the path is indeed allowable. For
instance, it might be possible that the maximum at t = 5 is ω1 and at t = 6 is ω2, and
thus these would appear in the path. This can even occur if a12 = P (ω2(t+1)|ω1(t)) =
0, precluding that transition.

The red line in Fig. 3.13 corresponds to Path, and connects the hidden states with
the highest value of αi at each step t. There is a difficulty, however. Note that there
is no guarantee that the path is in fact a valid one — it might not be consistent with
the underlying models. For instance, it is possible that the path actually implies a
transition that is forbidden by the model, as illustrated in Example 5.

Example 5: HMM decoding

We find the path for the data of Example 4 for the sequence {ω1, ω3, ω2, ω1, ω0}.
Note especially that the transition from ω3 to ω2 is not allowed according to the tran-
sition probabilities aij given in Example 4. The path locally optimizes the probability
through the trellis.
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The locally optimal path through the HMM trellis of Example 4.

HMMs address the problem of rate invariance in the following two ways. The first
is that the transition probabilities themselves incorporate probabilistic structure of
the durations. Moreover, using postprocessing, we can delete repeated states and just
get the sequence somewhat independent of variations in rate. Thus in post-processing
we can convert the sequence {ω1, ω1, ω3, ω2, ω2, ω2} to {ω1, ω3, ω2}, which would be
appropriate for speech recognition, where the fundamental phonetic units are not
repeated in natural speech.

3.10.6 Learning

The goal in HMM learning is to determine model parameters — the transition prob-
abilities aij and bjk — from an ensemble of training samples. There is no known
method for obtaining the optimal or most likely set of parameters from the data, but
we can nearly always determine a good solution by a straightforward technique.

The Forward-backward Algorithm

The Forward-backward algorithm is an instance of a generalized Expectation-Maximization
algorithm. The general approach will be to iteratively update the weights in order to
better explain the observed training sequences.

Above, we defined αi(t) as the probability that the model is in state ωi(t) and has
generated the target sequence up to step t. We can analogously define βi(t) to be
the probability that the model is in state ωi(t) and will generate the remainder of the
given target sequence, i.e., from t+ 1→ T . We express βi(t) as:

βi(t) =


0 ωi(t) 6= sequence’s final state and t = T
1 ωi(t) = sequence’s final state and t = T∑
j

aijbjkv(t+ 1)βj(t+ 1) otherwise,

(94)
To understand Eq. 94, imagine we knew αi(t) up to step T − 1, and we wanted to

calculate the probability that the model would generate the remaining single visible
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symbol. This probability, βi(T ), is just the probability we make a transition to state
ωi(T ) multiplied by the probability that this hidden state emitted the correct final visi-
ble symbol. By the definition of βi(T ) in Eq. 94, this will be either 0 (if ωi(T ) is not the
final hidden state) or 1 (if it is). Thus it is clear that βi(T −1) =

∑
j aijbijv(T )βi(T ).

Now that we have determined βi(T − 1), we can repeat the process, to determine
βi(T − 2), and so on, backward through the trellis of Fig. ??.

But the αi(t) and βi(t) we determined are merely estimates of their true values,
since we don’t know the actual value of the transition probabilities aij and bij in
Eq. 94. We can calculate an improved value by first defining γij(t) — the probability
of transition between ωi(t−1) and ωj(t), given the model generated the entire training
sequence VT by any path. We do this by defining γij(t), as follows:

γij(t) =
αi(t− 1)aijbijβi(t)

P (V T |θ)
, (95)

where P (VT |θ) is the probability that the model generated sequence VT by any path.
Thus γij(t) is the probability of a transition from state ωi(t − 1) to ωj(t) given that
the model generated the complete visible sequence V T .

We can now calculate an improved estimate for aij . The expected number of
transitions between state ωi(t − 1) and ωj(t) at any time in the sequence is simply∑T
t=1 γij(t), whereas at step t it is

∑T
t=1

∑
k γik(t). Thus âij (the estimate of the

probability of a transition from ωi(t − 1) to ωj(t)) can be found by taking the ratio
between the expected number of transitions from ωi to ωj and the total expected
number of any transitions from ωi. That is:

âij =

T∑
t=1

γij(t)

T∑
t=1

∑
k

γik(t)
. (96)

In the same way, we can obtain an improved estimate b̂ij by calculating the ratio
between the frequency that any particular symbol vk is emitted and that for any
symbol. Thus we have

b̂jk =
∑
γjk(t)

T∑
t=1

γjk(t)
. (97)

In short, then, we start with rough or arbitrary estimates of aij and bjk, calculate
improved estimates by Eqs. 96 & 97, and repeat until some convergence criterion
is met (e.g., sufficiently small change in the estimated values of the parameters on
subsequent iterations). This is the Baum-Welch or Forward-backward algorithm —
an example of a Generalized Expectation-Maximumization algorithm (Sec. 3.8):

Algorithm 5 (Forward-backward)

1 begin initialize aij , bjk, training sequence V T , convergence criterion θ
2 do z ← z + 1
3 Compute â(z) from a(z − 1) and b(z − 1) by Eq. 96
4 Compute b̂(z) from a(z − 1) and b(z − 1) by Eq. 97
5 aij(z)← âij(z − 1)
6 bjk(z)← b̂jk(z − 1)
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7 until max
i,j,k

[aij(z)− aij(z − 1), bjk(z)− bjk(z − 1)] < θ; convergence achievedln : ForBackstop

8 return aij ← aij(z); bjk ← bjk(z)
9 end

The stopping or convergence criterion in line ?? halts learning when no estimated
transition probability changes more than a predetermined amount, θ. In typical
speech recognition applications, convergence requires several presentations of each
training sequence (fewer than five is common). Other popular stopping criteria are
based on overall probability that the learned model could have generated the full
training data.

Summary

If we know a parametric form of the class-conditional probability densities, we can
reduce our learning task from one of finding the distribution itself, to that of find-
ing the parameters (represented by a vector θi for each category ωi), and use the
resulting distributions for classification. The maximum likelihood method seeks to
find the parameter value that is best supported by the training data, i.e., maximizes
the probability of obtaining the samples actually observed. (In practice, for com-
putational simplicity one typically uses log-likelihood.) In Bayesian estimation the
parameters are considered random variables having a known a priori density; the
training data convert this to an a posteriori density. The recursive Bayes method
updates the Bayesian parameter estimate incrementally, i.e., as each training point
is sampled. While Bayesian estimation is, in principle, to be preferred, maximum
likelihood methods are generally easier to implement and in the limit of large training
sets give classifiers nearly as accurate.

A sufficient statistic s for θ is a function of the samples that contains all infor-
mation needed to determine θ. Once we know the sufficient statistic for models of a
given form (e.g., exponential family), we need only estimate their value from data to
create our classifier — no other functions of the data are relevant.

Expectation-Maximization is an iterative scheme to maximize model parameters,
even when some data are missing. Each iteration employs two steps: the expectation
or E step which requires marginalizing over the missing variables given the current
model, and the maximization or M step, in which the optimum parameters of a new
model are chosen. Generalized Expectation-Maximization algorithms demand merely
that parameters be improved — not optimized — on each iteration and have been
applied to the training of a large range of models.

Bayesian belief nets allow the designer to specify, by means of connection topology,
the functional dependences and independencies among model variables. When any
subset of variables is clamped to some known values, each node comes to a proba-
bility of its value through a Bayesian inference calculation. Parameters representing
conditional dependences can be set by an expert.

Hidden Markov models consist of nodes representing hidden states, interconnected
by links describing the conditional probabilities of a transition between the states.
Each hidden state also has an associated set of probabilities of emiting a particular
visible states. HMMs can be useful in modelling sequences, particularly context depen-
dent ones, such as phonemes in speech. All the transition probabilities can be learned
(estimated) iteratively from sample sequences by means of the Forward-backward or
Baum-Welch algorithm, an example of a generalized EM algorithm. Classification
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proceeds by finding the single model among candidates that is most likely to have
produced a given observed sequence.

Bibliographical and Historical Remarks

Maximum likelihood and Bayes estimation have a long history. The Bayesian ap-
proach to learning in pattern recognition began by the suggestion that the proper
way to use samples when the conditional densities are unknown is the calculation
of P (ωi|x,D), [6]. Bayes himself appreciated the role of non-informative priors. An
analysis of different priors from statistics appears in [21, 15] and [4] has an extensive
list of references.

The origins of Bayesian belief nets traced back to [33], and a thorough literature
review can be found in [8]; excellent modern books such as [24, 16] and tutorials [7]
can be recommended. An important dissertation on the theory of belief nets, with
an application to medical diagnosis is [14], and a summary of work on diagnosis of
machine faults is [13]. While we have focussed on directed acyclic graphs, belief nets
are of broader use, and even allow loops or arbitrary topologies — a topic that would
lead us far afield here, but which is treated in [16].

The Expectation-Maximization algorithm is due to Dempster et al.[11] and a thor-
ough overview and history appears in [23]. On-line or incremental versions of EM are
described in [17, 31]. The definitive compendium of work on missing data, including
much beyond our discussion here, is [27].

Markov developed what later became called the Markov framework [22] in order
to analyze the the text of his fellow Russian Pushkin’s masterpiece Eugene Onegin.
Hidden Markov models were introduced by Baum and collaborators [2, 3], and have
had their greatest applications in the speech recognition [25, 26], and to a lesser extent
statistical language learning [9], and sequence identification, such as in DNA sequences
[20, 1]. Hidden Markov methods have been extended to two-dimensions and applied
to recognizing characters in optical document images [19]. The decoding algorithm is
related to pioneering work of Viterbi and followers [32, 12]. The relationship between
hidden Markov models and graphical models such as Bayesian belief nets is explored
in [29].

Knuth’s classic [18] was the earliest compendium of the central results on com-
putational complexity, the majority due to himself. The standard books [10], which
inspired several homework problems below, are a bit more accessible for those with-
out deep backgrounds in computer science. Finally, several other pattern recognition
textbooks, such as [28, 5, 30] which take a somewhat different approach to the field
can be recommended.

Problems

⊕
Section 3.2

1. Let x have an exponential density

p(x|θ) =
{
θe−θx x ≥ 0
0 otherwise.

(a) Plot p(x|θ) versus x for θ = 1. Plot p(x|θ) versus θ, (0 ≤ θ ≤ 5), for x = 2.
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(b) Suppose that n samples x1, ..., xn are drawn independently according to p(x|θ).
Show that the maximum likelihood estimate for θ is given by

θ̂ =
1

1
n

n∑
k=1

xk

.

(c) On your graph generated with θ = 1 in part (a), mark the maximum likelihood
estimate θ̂ for large n.

2. Let x have a uniform density

p(x|θ) ∼ U(0, θ) =
{

1/θ 0 ≤ x ≤ θ
0 otherwise.

(a) Suppose that n samples D = {x1, ..., xn} are drawn independently according to
p(x|θ). Show that the maximum likelihood estimate for θ is max[D], i.e., the
value of the maximum element in D.

(b) Suppose that n = 5 points are drawn from the distribution and the maximum
value of which happens to be max

k
xk = 0.6. Plot the likelihood p(D|θ) in the

range 0 ≤ θ ≤ 1. Explain in words why you do not need to know the values of
the other four points.

3. Maximum likelihood methods apply to estimates of prior probabilities as well.
Let samples be drawn by successive, independent selections of a state of nature ωi
with unknown probability P (ωi). Let zik = 1 if the state of nature for the kth sample
is ωi and zik = 0 otherwise.

(a) Show that

P (zi1, . . . , zin|P (ωi)) =
n∏
k=1

P (ωi)zik(1− P (ωi))1−zik .

(b) Show that the maximum likelihood estimate for P (ωi) is

P̂ (ωi) =
1
n

n∑
k=1

zik.

Interpret your result in words.

4. Let x be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli
distribution

P (x|θ) =
d∏
i=1

θxii (1− θi)1−xi ,

where θ = (θ1, ..., θd)t is an unknown parameter vector, θi being the probability that
xi = 1. Show that the maximum likelihood estimate for θ is

θ̂ =
1
n

n∑
k=1

xk.
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5. Let each component xi of x be binary valued (0 or 1) in a two-category problem
with P (ω1) = P (ω2) = 0.5. Suppose that the probability of obtaining a 1 in any
component is

pi1 = p

pi2 = 1− p,

and we assume for definiteness p > 1/2. The probability of error is known to approach
zero as the dimensionality d approaches infinity. This problem asks you to explore the
behavior as we increase the number of features in a single sample — a complementary
situation.

(a) Suppose that a single sample x = (x1, ..., xd)t is drawn from category ω1. Show
that the maximum likelihood estimate for p is given by

p̂ =
1
d

d∑
i=1

xi.

(b) Describe the behavior of p̂ as d approaches infinity. Indicate why such behavior
means that by letting the number of features increase without limit we can
obtain an error-free classifier even though we have only one sample from each
class.

(c) Let T = 1/d
d∑
j=1

xj represent the proportion of 1’s in a single sample. Plot

P (T |ωi) vs. T for the case P = 0.6, for small d and for large d (e.g., d = 11 and
d = 111, respectively). Explain your answer in words.

6. Derive Eqs. 18 & 19 for the maximum likelihood estimation of the mean and
covariance of a multidimensional Gaussian. State clearly any assumptions you need
to invoke.
7. Show that if our model is poor, the maximum likelihood classifier we derive

is not the best — even among our (poor) model set — by exploring the following
example. Suppose we have two equally probable categories (i.e., P (ω1) = P (ω2) =
0.5). Further, we know that p(x|ω1) ∼ N(0, 1) but assume that p(x|ω2) ∼ N(µ, 1).
(That is, the parameter θ we seek by maximum likelihood techniques is the mean of
the second distribution.) Imagine however that the true underlying distribution is
p(x|ω2) ∼ N(1, 106).

(a) What is the value of our maximum likelihood estimate µ̂ in our poor model,
given a large amount of data?

(b) What is the decision boundary arising from this maximum likelihood estimate
in the poor model?

(c) Ignore for the moment the maximum likelihood approach, and use the methods
from Chap. ?? to derive the Bayes optimal decision boundary given the true
underlying distributions — p(x|ω1) ∼ N(0, 1) and p(x|ω2) ∼ N(1, 106). Be
careful to include all portions of the decision boundary.

(d) Now consider again classifiers based on the (poor) model assumption of p(x|ω2) ∼ N(µ, 1).
Using your result immediately above, find a new value of µ that will give lower
error than the maximum likelihood classifier.
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(e) Discuss these results, with particular attention to the role of knowledge of the
underlying model.

8. Consider an extreme case of the general issue discussd in Problem 7, one in
which it is possible that the maximum likelihood solution leads to the worst possible
classifier, i.e., one with an error that approaches 100% (in probability). Suppose our
data in fact comes from two one-dimensional distributions of the forms

p(x|ω1) ∼ [(1− k)δ(x− 1) + kδ(x+X)] and
p(x|ω2) ∼ [(1− k)δ(x+ 1) + kδ(x−X)],

where X is positive, 0 ≤ k < 0.5 represents the portion of the total probability mass
concentrated at the point ±X, and δ(·) is the Dirac delta function. Suppose our poor
models are of the form p(x|ω1, µ1) ∼ N(µ1, σ

2
1) and p(x|ω2, µ2) ∼ N(µ2, σ

2
2) and we

form a maximum likelihood classifier.

(a) Consider the symmetries in the problem and show that in the infinite data case
the decision boundary will always be at x = 0, regardless of k and X.

(b) Recall that the maximum likelihood estimate of either mean, µ̂i, is the mean
of its distribution. For a fixed k, find the value of X such that the maximum
likelihood estimates of the means “switch,” i.e., where µ̂1 ≥ µ̂2.

(c) Plot the true distributions and the Gaussian estimates for the particular case
k = .2 and X = 5. What is the classification error in this case?

(d) Find a dependence X(k) which will guarantee that the estimated mean µ̂1 of
p(x|ω1) is less than zero. (By symmetry, this will also insure µ̂2 > 0.)

(e) Given your X(k) just derived, state the classification error in terms of k.

(f) Suppose we constrained our model space such that σ2
1 = σ2

2 = 1 (or indeed any
other constant). Would that change the above results?

(g) Discuss how if our model is wrong (here, does not include the delta functions),
the error can approaches 100% (in probability). Does this surprising answer
arise because we have found some local minimum in parameter space?

9. Prove the invariance property of maximum likelihood estimators, i.e., that if θ̂ is
the maximum likelihood estimate of θ, then for any differentiable function τ(·), the
maximum likelihood estimate of τ(θ) is τ(θ̂).
10. Suppose we employ a novel method for estimating the mean of a data set
D = {x1,x2, ...,xn}: we assign the mean to be the value of the first point in the set,
i.e., x1.

(a) Show that this method is unbiased.

(b) State why this method is nevertheless highly undesirable.

11. One measure of the difference between two distributions in the same space is the
Kullback-Leibler divergence of Kullback-Leibler “distance”:

DKL(p1(x), p2(x)) =
∫
p1(x)ln

p1(x)
p2(x)

dx.
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(This “distance,” does not obey the requisite symmetry and triangle inequalities for a
metric.) Suppose we seek to approximate an arbitrary distribution p2(x) by a normal
p1(x) ∼ N(µ,Σ). Show that the values that lead to the smallest Kullback-Leibler
divergence are the obvious ones:

µ = E2[x]
Σ = E2[(x− µ)(x− µ)t],

where the expectation taken is over the density p2(x).⊕
Section 3.3

12. Justify all the statements in the text leading from Eq. 25 to Eq. 26.⊕
Section 3.4

13. Let p(x|Σ) ∼ N(µ,Σ) where µ is known and Σ is unknown. Show that the
maximum likelihood estimate for Σ is given by

Σ̂ =
1
n

n∑
k=1

(xk − µ)(xk − µ)t

by carrying out the following argument:

(a) Prove the matrix identity atAa = tr[Aaat], where the trace, tr[A], is the sum
of the diagonal elements of A.

(b) Show that the likelihood function can be written in the form

p(x1, ...,xn|Σ) =
1

(2π)nd/2
|Σ−1|n/2exp

[
−1

2
tr

[
Σ−1

n∑
k=1

(xk − µ)(xk − µ)t
]]

.

(c) Let A = Σ−1Σ̂ and λ1, ..., λn be the eigenvalues of A; show that your result
above leads to

p(x1, ...,xn|Σ) =
1

(2π)nd/2|Σ̂|n/2
(λ1 · · ·λd)n/2exp

[
− n

2
(λ1 + · · ·+ λd)

]
.

(d) Complete the proof by showing that the likelihood is maximized by the choice
λ1 = · · · = λd = 1. Explain your reasoning.

14. Suppose that p(x|µi,Σ, ωi) ∼ N(µi,Σ), where Σ is a common covariance matrix
for all c classes. Let n samples x1, ...,xn be drawn as usual, and let l1, ..., ln be their
labels, so that lk = i if the state of nature for xk was ωi.

(a) Show that

p(x1, ...,xn, l1, ..., ln|µ1, ...,µc,Σ) =
n∏
k=1

P (ωlk)

(2π)nd/2|Σ|n/2 exp
[
− 1

2

n∑
k=1

(xk − µlk)tΣ−1(xk − µlk)
]
.



3.10. PROBLEMS 59

(b) Using the results for samples drawn from a single normal population, show that
the maximum likelihood estimates for µi and Σ are given by

µ̂ =

∑
lk=i

xk∑
lk=1

1

and

Σ̂ =
1
n

n∑
k=1

(xk − µ̂lk)(xk − µ̂lk)t.

Interpret your answer in words.

15. Consider the problem of learning the mean of a univariate normal distribution.
Let n0 = σ2/σ2

0 be the dogmatism, and imagine that µ0 is formed by averaging n0

fictitious samples xk, k = −n0 + 1,−n0 + 2, ..., 0.

(a) Show that Eqs. 32 & 33 for µn and σ2
n yield

µn =
1

n+ n0

n∑
k=−n0+1

xk

and

σ2
n =

σ2

n+ n0
.

(b) Use this result to give an interpretation of the a priori density p(µ) ∼ N(µ0, σ
2
0).

16. Suppose that A and B are nonsingular matrices of the same order.

(a) Prove the matrix identity

(A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A.

(b) Must these matrixes be square for this identity to hold?

(c) Use this result in showing that Eqs. 46 & 47 do indeed follow from Eqs. 42 &
43.⊕

Section 3.5

17. The purpose of this problem is to derive the Bayesian classifier for the d-
dimensional multivariate Bernoulli case. As usual, work with each class separately,
interpreting P (x|D) to mean P (x|Di, ωi). Let the conditional probability for a given
category be given by

P (x|θ) =
d∏
i=1

θxii (1− θi)1−xi ,

and let D = {x1, ...,xn} be a set of n samples independently drawn according to this
probability density.
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(a) If s = (s1, ..., sd)t is the sum of the n samples, show that

P (D|θ) =
d∏
i=1

θsii (1− θi)n−si .

(b) Assuming a uniform a priori distribution for θ and using the identity

1∫
0

θm(1− θ)n dθ =
m!n!

(m+ n+ 1)!
,

show that

p(θ|D) =
d∏
i=1

(n+ 1)!
si!(n− si)!

θsii (1− θi)n−si .

(c) Plot this density for the case d = 1, n = 1, and for the two resulting possibilities
for s1.

(d) Integrate the product P (x|θ)p(θ|D) over θ to obtain the desired conditional
probability

P (x|D) =
d∏
i=1

(si + 1
n+ 2

)xi(
1− si + 1

n+ 2

)1−xi
.

(e) If we think of obtaining P (x|D) by substituting an estimate θ̂ for θ in P (x|θ),
what is the effective Bayesian estimate for θ?

18. Consider how knowledge of an invariance can guide our creation of a prior in the
following case. Suppose we have a binary (0 or 1) variable x, chosen independently
with a probability p(θ) = p(x = 1). Imagine we have observed Dn = {x1, x2, ..., xn},
and now wish to evaluate the probability that xn+1 = 1, which we express as a ratio:

P (xn+1 = 1|Dn)
P (xn+1 = 0|Dn)

.

(a) Define s = x1 + · · · + xn and p(t) = P (x1 + · · · + xn+1 = t). Assume now
invariance of exchangeability, i.e., that the samples in any set Dn could have
been selected in an arbitrary order and it would not affect any probabilities.
Show how this assumption of exchangeability implies the ratio in question can
be written

p(s+ 1)/
(
n+1
s+1

)
p(s)/

(
n+1
s

) ,

where
(
n+1
s

)
= (n+1)!

s!(n+1−s)! is the binomial coefficient.

(b) Evaluate this ratio given the assumption p(s) ' p(s+ 1), when n and n− s and
s are not too small. Interpret your answer in words.



3.10. PROBLEMS 61

(c) In the binomial framework, we now seek a prior p(θ) such that p(s) does not
depend upon s, where

p(s) =

1∫
0

(
n

s

)
θs(1− θ)n−sp(θ) dθ.

Show that this requirement is satisfied if p(θ) is uniform, i.e., p(θ) ∼ U(0, 1).

19. Assume we have training data from a Gaussian distribution of known covari-
ance Σ but unknown mean µ. Suppose further that this mean itself is random, and
characterized by a Gaussian density having mean m0 and covariance Σ0.

(a) What is the MAP estimator for µ?

(b) Suppose we transform our coordinates by a linear transform x′ = Ax, for non-
singular matrix A, and accordingly for other terms. Determine whether your
MAP estimator gives the appropriate estimate for the transformed mean µ′.
Explain.

20. Suppose for a given class with parameter s the density can be written as:

p(x|α) =
1
α
f
(x
α

)
.

In such a case we say that α is a scale parameter. For instance, the standard deviation
σ is a scale parameter for a one-dimensional Gaussian.

(a) Imagine that we measure x′ = αx instead of x, for some constant α. Show that
the density now can be written as

p(x′|α′) =
1
α′
f

(
x′

α′

)
.

Find α′.

(b) Find the non-informative prior for α′, written as p′(α′). You will need to note
that for any interval ∆ ∈ (0,∞) the following equation should hold:∫

∆

p(α)dα =
∫
∆

p′(α′) dα′.

21. State the conditions on p(x|θ), on p(θ), and on Dn that insure that the estimate
p(θ|Dn) in Eq. 54 converges in the limit n→∞.⊕

Section 3.6

22. Employ the notation of the chapter and suppose s is a sufficient statistic statis-
tics for which p(θ|s,D) = p(θ|s). Assume p(θ|s) 6= 0 and prove that p(D|s,θ) is
independent of θ.
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23. Using the results given in Table 3.1, show that the maximum likelihood estimate
for the parameter θ of a Rayleigh distribution is given by

θ̂ =
1

1
n

n∑
k=1

x2
k

.

24. Using the results given in Table 3.1, show that the maximum likelihood estimate
for the parameter θ of a Maxwell distribution is given by

θ̂ =
3/2

1
n

n∑
k=1

x2
k

.

25. Using the results given in Table 3.1, show that the maximum likelihood estimate
for the parameter θ of a multinomial distribution is given by

θ̂i =
si
d∑
j=1

sj

.

where the vector s = (s1, ..., sd)t is the average of the n samples x1, ...,xn.

26. Demonstrate that sufficiency is an integral concept, i.e., that if s is sufficient for
θ, then corresponding components of s and θ need not be sufficient. Do this for the
case of a univariate Gaussian p(x) ∼ N(µ, σ2) where θ =

(
µ
σ2

)
is the full vector of

parameters.

(a) Verify that the statistic

s =
(
s1

s2

)
=


1
n

n∑
k=1

xk

1
n

n∑
k=1

x2
k


is indeed sufficient for θ, as given in Table 3.1.

(b) Show that s1 taken alone is not sufficient for µ. Does your answer depend upon
whether σ2 is known?

(c) Show that s2 taken alone is not sufficient for σ2. Does your answer depend upon
whether µ is known?

27. Suppose s is a statistic for which p(θ|x,D) = p(θ|s).

(a) Assume p(θ|s) 6= 0, and prove that p(D|s,θ) is independent of θ.

(b) Create an example to show that the inequality p(θ|s) 6= 0 is required for your
proof above.

28. Consider the Cauchy distribution,

p(x) =
1
πb
· 1

1 +
(
x−a
b

)2 ,
for b > 0 and arbitrary real a.
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(a) Confirm that the distribution is indeed normalized.

(b) For a fixed a and b, try to calculate the mean and the standard deviation of the
distribution. Explain your results.

(c) Prove that this distribution has no sufficient statistics for the mean and standard
deviation.⊕

Section 3.7

29. In the following, suppose a and b are constants and n a variable parameter.

(a) Is an+1 = O(an)?

(b) Is abn = O(an)?

(c) Is an+b = O(an)?

(d) Prove f(n) = O(f(n)).

30. Consider the evaluation of a polynomial function f(x) =
n−1∑
i=0

aix
i, where the n

coefficients ai are given.

(a) Write pseudocode for a simple Θ(n2)-time algorithm for evaluating f(x).

(b) Show that such a polynomial can be rewritten as:

f(x) =
n−1∑
i=0

aix
i = (· · · (an−1x+ an−2)x+ · · ·+ a1)x+ a0,

and so forth — a method known as Horner’s rule. Use the rule to write pseu-
docode for a Θ(n)-time algorithm for evaluating f(x).

31. For each of the short procedures, state the computational complexity in terms
of the variables N , M , P , and K, as appropriate. Assume that all data structures
are defined, that those without indexes are scalars and that those with indexes have
the number of dimensions shown.

Algorithm 6

1 begin for i← i+ 1
2 s← s+ i3

3 until i = N
4 return s
5 end

Algorithm 7

1 begin for i← i+ 1
2 s← s+ xi × xi
3 until i = N
4 return

√
s

5 end
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Algorithm 8

1 begin for j ← j + 1
2 for i← i+ 1
3 sj ← sj + wijxi
4 until i = I
5 until j = J
6 for k ← k + 1
7 for j ← j + 1
8 rk ← rk + wjksj
9 until j = J

10 until k = K
11 end

32. Consider a computer having a uniprocessor that can perform one operation per
nanosecond (10−9 sec). The left column of the table shows the functional dependence
of such operations in different hypothetical algorithms. For each such function, fill in
the number of operations n that can be performed in the total time listed along the
top.

f(n) 1 sec 1 hour 1 day 1 year
log2n√
n
n

nlog2n
n2

n3

2n

en

n!

33. Show that the estimator of Eq. 21 is indeed unbiased for:

(a) Normal distributions.

(b) Cauchy distributions.

(c) Binomial distributions.

(d) Prove that the estimator of Eq. 20 is asymptotically unbiased.

34. Let the sample mean µ̂n and the sample covariance matrix Cn for a set of n
samples x1, ...,xn (each of which is d-dimensional) be defined by

µ̂n =
1
n

n∑
k=1

xk

and

Cn =
1

n− 1

n∑
k=1

(xk − µ̂n)(xk − µ̂n)t.

We call these the “non-recursive” formulas.
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(a) What is the computational complexity of calculating µ̂n and Cn by these for-
mulas?

(b) Show that alternative, “recursive” techniques for calculating µ̂n and Cn based
on the successive addition of new samples xn+1 can be derived using the recur-
sion relations

µ̂n+1 = µ̂n +
1

n+ 1
(xn+1 − µ̂n)

and

Cn+1 =
n− 1
n

Cn +
1

n+ 1
(xn+1 − µ̂n)(xn+1 − µ̂n)t.

(c) What is the computational complexity of finding µ̂n and Cn by these recursive
methods?

(d) Describe situations where you might prefer to use the recursive method for com-
puting µ̂n and Cn, and ones where you might prefer the non-recursive method.

35. In pattern classification, one is often interested in the inverse of the covariance
matrix, for instance when designing a Bayes classifier for Gaussian distributions. Note
that the non-recursive calculation of C−1

n (the inverse of the covariance matrix based
on n samples, cf., Problem 34) might require the O(n3) inversion of Cn by standard
matrix methods. We now explore an alternative, “recursive” method for computing
C−1
n .

(a) Prove the so-called Sherman-Morrison-Woodbury matrix identity

(A + xyt)−1 = A−1 − A−1xytA−1

1 + ytA−1x
.

(b) Use this and the results of Problem 34 to show that

C−1
n+1 =

n

n− 1

[
C−1
n −

C−1
n (xn+1 − µ̂n)(xn+1 − µ̂n)tC−1

n
n2−1
n + (xn+1 − µ̂n)tC−1

n (xn+1 − µ̂n)

]
.

(c) What is the computational complexity of this calculation?

(d) Describe situations where you would use the recursive method, and ones where
you would use instead the non-recursive method.

36. Suppose we wish to simplify (or regularize) a Gaussian classifier for two categories
by means of shrinkage. Suppose that the estimated distributions are N(µ1,Σ1) and
N(µ2,Σ2). In order to employ shrinkage of an assumed common covariance toward
the identity matrix as given in Eq. 77, show that one must first normalize the data
to have unit variance.⊕

Section 3.8

37. Consider the convergence of the Expectation-Maximization algorithm, i.e., that
if l(θ,Dg) = lnp(Dg; θ) is not already optimum, then the EM algorithm increases it.
Prove this as follows:
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(a) First note that

l(θ; Dg) = lnp(Dg,Db; θ)− lnp(Db|Dg; θ).

Let E ′[·] denote the expectation with respect to the distribution p(Db|Dg; θ′).
Take such an expectation of l(θ; Dg), and express your answer in terms of
Q(θ,θ′) of Eq. 78.

(b) Define φ(Db) = p(Db|Dg; θ)/p(Db|Dg; θ′) to be the ratio of expectations as-
suming the two distributions. Show that E ′[lnφ(Db)] ≤ E ′[φ(Db)]− 1 = 0.

(c) Use this result to show that if Q(θt+1,θt) > Q(θt,θt), achieved by the M step
in Algorithm ??, then l(θt+1; Dg) > l(θt; Dg).

38. Suppose we seek to estimate θ describing a multidimensional distribution from
data D, some of whose points are missing features. Consider an iterative algorithm in
which the maximum likelihood value of the missing values is calculated, then assumed
to be correct for the purposes of restinating θ and iterated.

(a) Is this always equivalent to an Expectation-Maximization algorithm, or just a
generalized Expectation-Maximization algorithm?

(b) If it is an Expectation-Maximization algorithm, what is Q(θ,θt), as described
by Eq. 78?

39. Consider data D =
{(

2
3

)
,
(

3
1

)
,
(

5
4

)
,
(

4
∗
)
,
(∗

6

)}
, sampled from a two-dimensional

uniform distribution

p(x) ∼ U(xl,xu) =


1

|xu1−xl1||xu2−xl2|
if xl1 ≤ x1 ≤ xu1

and xl2 ≤ x2 ≤ xu2

0 otherwise,

where ∗ represents missing feature values.

(a) Start with an initial estimate

θ0 =
(

xl
xu

)
=


0
0
10
10

 ,

and analytically calculate Q(θ,θ0) — the E step in the EM algorithm.

(b) Find the θ that maximizes your Q(θ,θ0) — the M step.

(c) Plot your data and the bounding rectangle.

(d) Without having to iterate further, state the estimate of θ that would result after
convergence of the EM algorithm.

40. Consider data D =
{(

1
1

)
,
(

3
3

)
,
(

2
∗
)}

, sampled from a two-dimensional (separable)
distribution p(x1, x2) = p(x1)p(x2), with
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p(x1) ∼
{

1
θ1
e−θ1x1 if x1 ≥ 0

0 otherwise,
and

p(x2) ∼ U(0, θ2) =
{

1
θ2

if 0 ≤ x2 ≤ θ
0 otherwise.

As usual, ∗ represents a missing feature value.

(a) Start with an initial estimate θ0 =
(

2
4

)
and analytically calculate Q(θ,θ0) —

the E step in the EM algorithm. Be sure to consider the normalization of your
distribution.

(b) Find the θ that maximizes your Q(θ,θ0) — the M step.

(c) Plot your data on a two-dimensional graph and indicate the new parameter
estimates.

41. Repeat Problem 40 but with data D =
{(

1
1

)
,
(

3
3

)
,
(∗

2

)}
.⊕

Section 3.9

42. Use the conditional probability matrices in Example 3 to answer the following
separate problems.

(a) Suppose it is December 20 — the end of autumn and the beginning of winter
— and thus let P (a1) = P (a4) = 0.5. Furthermore, it is known that the fish
was caught in the north Atlantic, i.e., P (b1) = 1. Suppose the lightness has not
been measured but it is known that the fish is thin, i.e., P (d2) = 1. Classify the
fish as salmon or sea bass. What is the expected error rate?

(b) Suppse all we know is that a fish is thin and medium lightness. What season is
it now, most likely? What is your probability of being correct?

(c) Suppose we know a fish is thin and medium lightness and that it was caught in
the north Atlantic. What season is it, most likely? What is the probability of
being correct?

43. One of the simplest assumptions is that of the naive Bayes rule or idiot Bayes
rule expressed in Eq. 85. Draw the belief net for a three-category problem with five
features xi, i = 1, 2, ...5.
44. Consider a Bayesian belief net with several nodes having unspecified values.

Suppose that one such node is selected at random, the probabilities of its nodes
computed by the formulas described in the text. Next another such node is chosen at
random (possibly even a node already visited), and the probabilities similarly updated.
Prove that this procedure will converge to the desired probabilities throughout the
full network.⊕

Section 3.10

45. Consider training an HMM by the Forward-backward algorithm, for a single
sequence of length T where each symbol could be one of c values. What is the
computational complexity of a single revision of all values âij and b̂jk?
46. The standard method for calculating the probability of a sequence in a given

HMM is to use the forward probabilities αi(t).
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(a) Show by a simple substitution that a symmetric method can be derived using
the backward probabilities βi(t).

(b) Prove that one can get the probability by combining the forward and the back-
ward probabilities at any place in the middle of the sequence. That is, show
that

P (ωT
′
) =

T ′∑
i=1

αi(t)βi(t),

where ωT
′

is a particular sequence of length T ′ < T .

(c) Show that your formula reduces to the known values at the beginning and end
of the sequence.

47. Suppose we have a large number of symbol sequences emitted from an HMM
that has a particular transition probability ai′j′ = 0 for some single value of i′ and
j′. We use such sequences to train a new HMM, one that happens also to start
with its ai′j′ = 0. Prove that this parameter will remain 0 throughout training by
the Forward-backward algorithm. In other words, if the topology of the trained model
(pattern of non-zero connections) matches that of the generating HMM, it will remain
so after training.
48. Consider the decoding algorithm (Algorithm 4) in the text.

(a) Take logarithms of HMM model parameters and write pseudocode for an equiv-
alent algorithm.

(b) Explain why taking logarithms is an O(n) calculation, and thus the complexity
of your algorithm in (a) is O(c2T ).

49. Explore the close relationship between Bayesian belief nets and hidden Markov
models as follows.

(a) Prove that the forward and the backward equations for hidden Markov models
are special cases of Eq. 84.

(b) Use your answer to explain the relationship between these two general classes
of models.

Computer exercises

Several exercises will make use of the following three-dimensional data sampled from
three categories, denoted ωi.
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ω1 ω2 ω3

point x1 x2 x3 x1 x2 x3 x1 x2 x3

1 0.42 -0.087 0.58 -0.4 0.58 0.089 0.83 1.6 -0.014
2 -0.2 -3.3 -3.4 -0.31 0.27 -0.04 1.1 1.6 0.48
3 1.3 -0.32 1.7 0.38 0.055 -0.035 -0.44 -0.41 0.32
4 0.39 0.71 0.23 -0.15 0.53 0.011 0.047 -0.45 1.4
5 -1.6 -5.3 -0.15 -0.35 0.47 0.034 0.28 0.35 3.1
6 -0.029 0.89 -4.7 0.17 0.69 0.1 -0.39 -0.48 0.11
7 -0.23 1.9 2.2 -0.011 0.55 -0.18 0.34 -0.079 0.14
8 0.27 -0.3 -0.87 -0.27 0.61 0.12 -0.3 -0.22 2.2
9 -1.9 0.76 -2.1 -0.065 0.49 0.0012 1.1 1.2 -0.46
10 0.87 -1.0 -2.6 -0.12 0.054 -0.063 0.18 -0.11 -0.49⊕

Section 3.2

1. Consider Gaussian density models in different dimensions.

(a) Write a program to find the maximum likelihood values µ̂ and σ̂2. Apply your
program individually to each of the three features xi of category ω1 in the table
above.

(b) Modify your program to apply to two-dimensional Gaussian data p(x) ∼ N(µ,Σ).
Apply your data to each of the three possible pairings of two features for ω1.

(c) Modify your program to apply to three-dimensional Gaussian data. Apply your
data to the full three-dimensional data for ω1.

(d) Assume your three-dimensional model is separable, so that Σ = diag(σ2
1 , σ

2
2 , σ

2
3).

Write a program to estimate the mean and the diagonal components of Σ. Apply
your program to the data in ω2.

(e) Compare your results for the mean of each feature µi calculated in the above
ways. Explain why they are the same or different.

(f) Compare your results for the variance of each feature σ2
i calculated in the above

ways. Explain why they are the same or different.⊕
Section 3.3

2. Consider a one-dimensional model of a triangular density governed by two scalar
parameters:

p(x|θ) ≡ T (µ, δ) =
{

(δ − |x− µ|)/δ2 for |x− µ| < δ
0 otherwise,

where θ =
(
µ
δ

)
. Write a program to calculate a density p(x|D) via Bayesian methods

(Eq. 26) and apply it to the x2 feature of category ω2. Plot your resulting posterior
density p(x|D).⊕

Section 3.4

3. Consider Bayesian estimation of the mean of a one-dimensional Gaussian. Suppose
you are given the prior for the mean is p(µ) ∼ N(µ0, σ0).
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(a) Write a program that plots the density p(x|D) given µ0, σ0, σ and training set
D = {x1, x2, ..., xn}.

(b) Estimate σ for the x2 component of ω3 in the table above. Now assume µ0 = −1
and plot your estimated densities p(x|D) for each of the following values of the
dogmatism, σ2/σ2

0 : 0.1, 1.0, 10, 100.

⊕
Section 3.5

4. Suppose we have reason to believe that our data is sampled from a two-dimensional
uniform density

p(x|θ) ∼ U(xl,xu) =


1

|xu1−xl1||xu2−xl2| for xl1 ≤ x1 ≤ xu1 and xl2 ≤ x2 ≤ xu2

0 otherwise,

where xl1 is the x1 component of the “lower” bounding point xl, and analogously for
the x2 component and for the upper point. Suppose we have reliable prior information
that the density is zero outside the box defined by xl =

(−6
−6

)
and xu =

(
+6
+6

)
. Write

a program that calculates p(x|D) via recursive Bayesian estimation and apply it to
the x1−x2 components of ω1, in sequence, from the table above. For each expanding
data set Dn (2 ≤ n ≤ 10) plot your posterior density.⊕

Section 3.6

5. Write a single program to calculate sufficient statistics for any members of the
exponential family (Eq. 69). Assume that the x3 data from ω3 in the table come from
an exponential density, and use your program to calculate the sufficient statistics for
each of the following exponential forms: Gaussian, Rayleigh and Maxwell.⊕

Section 3.7

6. Consider error rates in different dimensions.

(a) Use maximum likelihood to train a dichotomizer using the three-dimensional
data for categories ω1 and ω2 in the Table above. Numerically integrate to
estimate the classification error rate.

(b) Now consider the data projected into a two-dimensional subspace. For each of
the three subspaces — defined by x1 = 0 or x2 = 0 or x3 = 0 — train a Gaussian
dichotomizer. Numerically integrate to estimate the error rate.

(c) Now consider the data projected onto one-dimensional subspaces, defined by
each of the three axes. Train a Gaussian classifier, and numerically integrate to
estimate the error rate.

(d) Discuss the rank order of the error rates you find.

(e) Assuming that you resestimate the distribution in the different dimensions, log-
ically must the Bayes error be higher in the projected spaces.
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7. Repeat the steps in Exercise 6 but for categories ω1 and ω3.
8. Consider the classification of Gaussian data employing shrinkage of covariance

matrixes to a common one.

(a) Generate 20 training points from each of three equally probable three-dimensional
Gaussian distributions N(µi,Σi) with the following parameters:

µ1 = (0, 0, 0)t, Σ1 = diag[3, 5, 2]

µ2 = (1, 5,−3)t, Σ2 =

 1 0 0
0 4 1
0 1 6


µ3 = (0, 0, 0)t, Σ3 = 10I.

(b) Write a program to estimate the means and covariances of your data.

(c) Write a program that takes α and shrinks these estimated covariance matrixes
according to Eq. 76.

(d) Plot the training error as a function of α, where 0 < α < 1.

(e) Use your program from part (a) to generate 50 test points from each category.
Plot the test error as a function of α.

⊕
Section 3.8

9. Suppose we know that the ten data points in category ω1 in the table above come
from a three-dimensional Gaussian. Suppose, however, that we do not have access to
the x3 components for the even-numbered data points.

(a) Write an EM program to estimate the mean and covariance of the distribution.
Start your estimate with µ0 = 0 and Σ0 = I, the three-dimensional identity
matrix.

(b) Compare your final esimate with that for the case when there is no missing data.

10. Suppose we know that the ten data points in category ω2 in the table above
come from a three-dimensional uniform distribution p(x|ω2) ∼ U(xl,xu). Suppose,
however, that we do not have access to the x3 components for the even-numbered
data points.

(a) Write an EM program to estimate the six scalars comprising xl and xu of the dis-
tribution. Start your estimate with xl = (−2,−2,−2)t and xu = (+2,+2,+2)t.

(b) Compare your final esimate with that for the case when there is no missing data.

⊕
Section 3.9

Write a program to evaluate the Bayesian belief net for fish in Example 3, including
the information in P (xi|aj),P(xi|bj), P (ci|xj), and P (di|xj). Test your program on
the calculation given in the Example. Apply your program to the following cases, and
state any assumptions you need to make.
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(a) A dark, thin fish is caught in the north Atlantic in summer. What is the
probability it is a salmon?

(b) A thin, medium fish is caught in the north Atlantic. What is the probability it
is winter? spring? summer? autumn?

(c) A light, wide fish is caught in the autumn. What is the probability it came from
the north Atlantic?

⊕
Section 3.10

11. Consider the use of hidden Markov models for classifying sequences of four visible
states, A-D. Train two hidden Markov models, each consisting of three hidden states
(plus a null initial state and a null final state), fully connected, with the following
data. Assume that each sequence starts with a null symbol and ends with an end null
symbol (not listed).

sample ω1 ω2

1 AABBCCDD DDCCBBAA
2 ABBCBBDD DDABCBA
3 ACBCBCD CDCDCBABA
4 AD DDBBA
5 ACBCBABCDD DADACBBAA
6 BABAADDD CDDCCBA
7 BABCDCC BDDBCAAAA
8 ABDBBCCDD BBABBDDDCD
9 ABAAACDCCD DDADDBCAA
10 ABD DDCAAA

(a) Print out the full transition matrices for each of the models.

(b) Assume equal prior probabilities for the two models and classify each of the
following sequences: ABBBCDDD, DADBCBAA, CDCBABA, and ADBBBCD.

(c) As above, classify the test pattern BADBDCBA. Find the prior probabilities for your
two trained models that would lead to equal posteriors for your two categories
when applied to this pattern.
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[4] José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. John Wiley, New
York, NY, 1996.

[5] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Oxford, UK, 1995.

[6] David Braverman. Learning filters for optimum pattern recognition. IRE Trans-
actions on Information Theory, IT-8:280–285, 1962.

[7] Wray L. Buntine. Operations for learning with graphical models. Journal of
Artificial Intelligence Research, 2:159–225, 1994.

[8] Wray L. Buntine. A guide to the literature on learning probabilistic networks
from data. IEEE Transactions on Knowledge and Data Engineering, 8(2):195–
210, 1996.

[9] Eugene Charniak. Statistical Language Learning. MIT Press, Cambridge, MA,
1993.

[10] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

[11] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Journal of the
Royal Statistical Society, Series B, 39:1–38, 1977.

[12] G. David Forney, Jr. The Viterbi algorithm. Proceedings of the IEEE, 61:268–278,
1973.

[13] Peter E. Hart and Jamey Graham. Query-free information retrieval. IEEE Ex-
pert: Intelligent Systems and Their Application, 12(5):32–37, 1997.

73



74 BIBLIOGRAPHY

[14] David Heckerman. Probabilistic Similarity Networks. ACM Doctoral Dissertation
Award Series. MIT Press, Cambridge, MA, 1991.

[15] Harold Jeffreys. Theory of Probability. Oxford University Press, Oxford, UK,
1961 reprint edition, 1939.

[16] Michael I. Jordan, editor. Learning in Graphical Models. Kluwer, Dortrecht,
Netherlands, 1998.

[17] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and
the EM algorithm. Neural Computation, 6:181–214, 1994.

[18] Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-
Wesley, Reading, MA, 1 edition, 1973.

[19] Gary E. Kopec and Phil A. Chou. Document image decoding using Markov
source models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(6):602–617, 1994.

[20] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjölander, and David
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O(·), see big oh
δ(·), see Dirac delta (δ(·))
Θ(·), see big theta
θ, see vector, parameter

Baum-Welch Algorithm, see Forward-
backward Algorithm

Bayes
maximum likelihood comparison,

see maximum likelihood, Bayes
comparison

Bayes error
dependence on number of features,

27
Bayes estimation

maximum likelihood comparison,
19

Bayes’ formula, 10
density estimation, 16

Bayesian
learning, see learning, Bayesian

Bayesian belief networks, see Belief net-
works

Bayesian estimation, see learning, Bayesian
Gaussian

multidimensional, 16
Bayesian learning, see learning, Bayesian
BEL(·), see belief, function
belief

function, 37
belief net

node, 37
Belief networks, 36
Bernoulli, see distribution, Bernoulli
Beta, see distribution, Beta
bias-variance

tradeoff, 19
big oh

non-uniqueness, 28
notation, 28

big theta, 29

Binomial, see distribution, Binomial

cardinality, 38
Cauchy distribution, see distribution,

Cauchy
causal network, see belief network
child (belief net), 37
class

independence, 4, 10
classifier

Bayes, 10
complexity

computational, 28
maximum likelihood classifier, 29

exponential, 30
polynomial, 30
space, 30
time, 30

computational complexity, see complex-
ity, computational, 28–32

of estimation, 19
conjugate prior, see prior, conjugate
covariance

matrix
sample, 9

of sum distribution, 15

DAG, see directed acyclic graph
data

training, 3
density

class-conditional, 11
estimation, 3

estimation, 11
sequence, 17

Gaussian, 3
joint

estimate, 11
design sample, see sample, design
determinant

complexity, 29

76
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Dirac delta, 13, 17
directed acyclic graph (DAG), 36
discriminant

regularized, 32
distance

Mahalanobis, 27
distribution

Bernoulli, 26
Beta, 26
Binomial, 26
Cauchy, 62
exponential, 26
Gamma, 26
Gaussian, 26
identifiable, 18
Maxwell, 26
multinomial, 26
normal, see distribution, Gaussian,

26
Poisson, 26
Rayleigh, 26
uniform, 17

dogmatism, 59

EM algorithm, see Expectation-Maximization
error

Bayes, 20
Gaussian, 27

dependence on number of features,
27

estimation, 20
indistinguisability, see error,Bayes
model, 9, 20

estimation
complexity, 19

estimation error, see error, estimation
estimator

absolutely unbiased, 9
asymptotically unbiased, 9
unbiased, 8

exchangeability
invariance, 60

Expectation-Maximization, 32–36
Algorithm, 33
Example, 33

exponential, see distribution, exponen-
tial

Factorization Theorem, 22
feature

independent, 27
related to error, 27

Forward-backward Algorithm, 52
function

Dirac delta, 13

Gamma, see distribution, Gamma
Gaussian, see distribution, Gaussian
Gaussian elimination, 29
GEM algorithm, see Expectation-Maximization,

generalized
generalized expectation maximization,

see Expectation-Maximization,
generalized

generalized Expectation-Maximization,
51

gradient
operator, 6

hidden Markov model
Example, 47
causal, 44
computation, 44
decoding, 49–51
ergodic, 44
evaluation, 45–49
learning, 51–53

Forward-backward Algorithm, 52
state

absorber, 44
final, 44

HMM
decoding

Example, 50
left-to-right, 49

Horner’s rule, 63

i.i.d., 4
identifiable, 18
idiot Bayes rule, see naive Bayes rule
improper prior, see prior, improper
independence

class, 10
independent features, 27
indistinguisability error, see error, Bayes
invariance

exchangeability, 60
scale, 20, 61
translation, 20

knowledge
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prior, 10
Kullback-Leibler divergence

Gaussian, 57

learning
Bayesian, 4, 17

pattern classification, 9
degenerate, 13
incremental

recursive Bayes, 17
supervised, 4
unsupervised, 4

likelihood, 5
extremum, 6
in belief net, 39
smoothness assumption, 11

log-likelihood, 5
function, 6

MAP, see maximum a posteriori
matrix

covariance
complexity, 29
estimates, 9

inversion
complexity, 29

sweep methods, 29
trace, 58

maximum a posteriori (MAP), 6
estimator, 6

maximum likelihood, 3, 5
Bayes comparison, 4, 19
Gaussian

mean, 7
mean and covariance, 7

solution non-uniqueness, 18
Maxwell distribution, see distribution,

Maxwell
mean

sample, see sample mean
mode

MAP estimation, 6
model error, see error, model
Monte-Carlo, 11
multinomial, see distribution, multino-

mial

naive Bayes rule, 42, 67
node

belief net, see belief net, node

node (belief net), 38
child, 38
parent, 37

normal, see distribution, normal

on-line learning, see learning, incremen-
tal

order of a function, 28
overdetermined solution, 31

parameter
estimation, 3
space, 11

parameter estimation
Bayesian

Gaussian case, 15
recursive Bayes, 17

parent (belief net), 37
Poisson distribution, see distribution,

Poisson
posterior

convergence, 18
delta function, 18

prior
conjugate, 12
determination, 10
estimation, 3
improper, 20

probability
density

estimation, 3

Rayleigh distribution, see distribution,
Rayleigh

recursive Bayes, 17
Example, 17
true, 17

regression
ridge, 32

ridge regression, see regression, ridge

sample
design, 3
mean, 7

Sherman-Morrison-Woodbury formula,
65

shrinkage, 32, 65
state of nature (ω), 4
stopping criterion, 53
sufficient statistic, 17
sufficient statistics, 21–27
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integral nature, 23, 62

temporality, 42
trace, 58
training data, see data, training
transition probability

Markov model, 43

uniform distribution, see distribution,
uniform

variance
addition, 14
bias, 8

vector
parameter (θ), 4, 11

true, 11


