Tabu Search

Lecture # 4

Esmaeil Nourani

Horse with wings !!

Some possibilities of escaping local optima within a
single run of an algorithm :

— An additional parameter (called temperature)
that changes the probability of moving from one
point of the search space to another. (simulated
Annealing)

— A memory, which forces the algorithm to explore
new areas of the search space.(Tabu Search)

You have

Crystal Maze

5 minutes!

e Place the numbers 1 through 8 in the nodes
such that:

— Each number appears exactly once

— No connected
nodes have
consecutive
numbers

Local Search Idea

e Randomly assign values (even if the
constraints are “broken”)

— Initial state will probably be infeasible

e Make “moves” to try to move toward a
solution

Random Initial Solution

Random Initial Solution

V4
/ \
/7
“Broken” constraint

Cost = # of broken constraints

What Should We Do Now?

e Move:

— Swap two numbers

e Which two numbers?
— Randomly pick a pair

— The pair that will lead to the biggest decrease in
cost

e Cost: number of broken constraints

What Should We Do Now?

e Move:

— Swap two numbers

e Which two numbers?
— Randomly pick a pair

— The pair that will lead to the biggest decrease in
cost

e Cost: number of broken constraints

Random Initial Solution

Cost Difference Table

COIN O O WIN|PF

Random Initial Solution

Swap 1 &2

12

Cost Difference Table

COIN O O WIN|PF

Random Initial Solution

Swap 1 &3

15

Cost Difference Table

COIN O O WIN|PF

Random Initial Solution

Swap 1l &4

/0

el I
I
i /
/
/
/7

Cost Difference Table

COIN O O WIN|PF

Cost Difference Table

Cost Difference Table

21

Current State

I
l
I /
l

G

* H

/

22

Swap 1 & 7: Cost 3

New Cost Difference Table

Current State

Swap 3 & 8: Cost 2

Swap 6 & 7: Cost 1

Moves

Initial State: Cost 6
Swap 1 & 7: Cost 3
Swap 3 & 8: Cost 2
Swap 6 & 7: Cost 1

Cost Difference Table

Now what?

 There are no improving
moves to make!

e So far, we have been “hill-

climbing”
cost

MOoves

30

Now what?

Options:
— Restart from a new random state

— Take the least worse move (increase cost by
minimal amount)

— Try a new style of local search

Now what?

Options:
— Restart from a new random state

— Take the least worse move (increase cost by
minimal amount)

— Try a new style of local search

Cost Difference Table

33

Swap 1 & 2: Cost 2

Cost Difference Table

Cost Difference Table

36

Moves

Initial State: Cost 6
Swap 1 & 7: Cost 3
Swap 3 & 8: Cost 2
Swap 6 & 7: Cost 1
Swap 1 & 2: Cost 2

Moves

Initial State: Cost 6
Swap 1 & 7: Cost 3
Swap 3 & 8: Cost 2
Swap 6 & 7: Cost 1
Swap 1 & 2: Cost 2
Swap 1 & 2:Cost1

Moves

Initial State: Cost 6
Swap 1 & 7: Cost 3
Swap 3 & 8: Cost 2
Swap 6 & 7: Cost 1
Swap 1 & 2: Cost 2
Swap 1& 2:Cost1
Swap 1 & 2: Cost 2
Swap 1 & 2: Cost 1 ...and soon

Now what?

Options:
— Restart from a new random state

— Take the least worse move (increase cost by
minimal amount)

— Try a new style of local search

Now what?

Options:
— Restart from a new random state

— Take the least worse move (increase cost by
minimal amount)

— Try a new style of local search

Tabu Search

A type of local search
Start with some (maybe random) initial state

Look at the moves in the “neighborhood” and
take the best one

Remember the last k moves (“tabu list”) so
you don’t undo them

Local Search

Procedure local search
begin
X = some initial starting pointin S
while improve(x) != ‘no’ do
X = improve(x)
return(x)
end

Simulated Annealing

Procedure simulated Annealing
begin
X = some initial starting pointin S
while not termination-condition do
X = improve?(x,T)
update(T)
return(x)
end

Tabu Search

Procedure Tabu Search
begin
X = some initial starting pointin S
while not termination-condition do
X = improve?(x,H)
update(H)
return(x)
end

Simulated Annealing and Tabu search

Tabu Search is almost identical to simulated annealing
with respect to the structure of the algorithm.

The function “improve(x,T)” change to “improve(x,H)”
and returns an accepted solution y form the
neighborhood of x, the acceptance is based on the
history of the search H.

Tabu Search

Fred Glover in 1986, employs a different
approach to doing exploration = Tabu Search

Tabu” is an alternate spelling for “taboo”.

Original Paper: Fred Glover, 1986, Future
paths for integer programming and links to
artificial intelligence, Computers and
Operations Research, 5, 533-549.

Tabu Search

The main idea behind tabu search is very simple. A
“memory” forces the search to explore new areas of the
search space.

Tabu search is basically deterministic.

We can memorize some solutions that have been
examined recently and these become tabu points to be
avoided in making decisions about selecting the next
solution.

Tabu Search

 Tabu Search, by Fred Glover, employs a different
approach to doing exploration: it keeps around a
history of recently considered candidate solutions
(known as the tabu list) and refuses to return to
those candidate solutions until they’re sufficiently
far in the past.

e Original Paper:

* Fred Glover, 1986, Future paths for integer programming and
links to artificial intelligence, Computers and Operations

Research, 5, 533—549.

Tabu List

 The simplest approach to Tabu Search is to
maintain a tabu list L, of some maximum
length |, of candidate solutions we’ve seen so
far. Whenever we adopt a new candidate
solution, it goes in the tabu list. If the tabu list
is too large, we remove the oldest candidate
solution and it’s no longer taboo to reconsider.

Algorithm: Tabu Search

-

1: |+ Desired maximum tabu list length
2 1 «— number of tweals desired to sample the gradient

1 5 +— some initial candidate solution

4. Best — 5

5 L+« {1} atabu list of maximum length | = Implemented as first in, first-out queue
6: Enqueus 5 into L

7. repeat

a if Length{L) =1 then

0; Remove oldest element from L

10; E «— Tweak{Copy(5))

11: forn —1 times do

12: W — Tweak({Copy(5])

13: if W & L and (Quality(W) = Quality(E) or E £ L) then
14: R—W

15: if K& L and Quality(R) = Quality(5) then

16: 5— R

17: Enqueue R into L

18: if Quality(5) = Quality(Best) then

19: Best — &

20 until Best is the ideal solution or we have run out of time
21: return Best 51

Work Space

e Tabu Search :

e continues

e Discrete

Work Space

 Tabu Search really only works in discrete
spaces. What if your search space is real-
valued numbers?

Work Space

 Tabu Search really only works in discrete

spaces. What if your search space is real-
valued numbers?

e In this situation, one approach is to consider a
solution to be a member of a list if it is
“sufficiently similar” to an existing member of
the list. The similarity distance measure will
be up to you

Large Problem

e 5o, the big problem with Tabu Search is that if
your search space is very large, and particularly if
it’s of high dimensionality, it’s easy to stay around
in the same neighborhood, indeed on the same
hill, even if you have a very large tabu list. There
may be just too many locations. An alternative
approach is to create a tabu list not of candidate
solutions you’ve considered before, but of
changes you’ve made recently to certain features.

Crystal Maze

e Place the numbers 1 through 8 in the nodes
such that:

— Each number appears exactly once

— No connected
nodes have
consecutive
numbers

Tabu Search Idea

 Local search but:

— Keep a small list of the moves we made so that we
don’t revisit the same state

— Keep a list of 4 pairs: the nodes that the numbers
were in before we moved them

Assign Labels to Nodes

o O
C F

" ‘@

H

[

Return to a State Before We Started
Cycling

Initial State: Cost 6

Swap 1 & 7: Cost 3

Swap 3 & 8: Cost 2
Swap 6 & 7: Cost 1

Just Swapped 6 & 7: Cost 1

Cost Difference Table

Just Swapped 6 & 7: Cost 1

Swap 1 & 2: Cost 2

B E
C F
A D G //

— Tabu: [(1G,2B)]

Cost Difference Table

Cost Difference Table

Cost Difference Table

66

Swap 3 & 5: Cost 1

B E
C F

— Tabu: [(3H,5E),(1G,2B)]

Cost Difference Table

68

Swap 1 & 3: Cost 1

B E
C F

— Tabu: [(1B,3E),(3H,5E),(1G,2B)]

Swap 5 & 7: Cost 1

— Tabu: [(5H,7F),(1B,3E),(3H,5E),(1G,2B)]

Swap 1 & 5: Cost 1

B E
C -

— Tabu: [(1E,5F),(5H,7F),(1B,3E),(3H,5E),(1G,2B)]

Swap 1 & 5: Cost 1

B E
C -

— Tabu: [(1E,5F),(5H,7F),(1B,3E),(3H,5E)]

Swap 2 & 4: Cost 1

— Tabu: [(2G,4D),(1E,5F),(5H,7F),(1B,3E)]

Swap 2 & 6: Cost 1

B E
o C F
A D G

— Tabu: [(2D,6A),(2G,4D),(1E,5F),(5H,7F)]

Swap 3 & 5: Cost 0

B E
C F
A D G

— Tabu: [(3B,5E),(2D,6A),(2G,4D),(1E,5F)]

Learn by Example !

Suppose we’re solving SAT problem with n = 8 variables.
Initial assignment for x = (x1,...,x8), x=(0,1,1,1,0,0,0,1).

function for evaluation : calculate a weighted sum of a
number of satisfied clauses where the weights depend
on the number of variables in the clause.

Evaluation function should be maximized.

Eval(Init State) = 27.

Each state consist of eight neighborhoods , each of

which can be obtained by flipping a single bit in the
vector Xx.

What about Memory ?!

New facet of tabu search : Memory. In order to keep a
record of out actions , we’ll need some memory
structures for book keeping. We need memory M to
keep time of flipping . So we can difference between
older and more recent flips.

M(i) =j (when j !=0)

“j is the most recent iteration when the i-th bit was
flipped” after some period of time, the information
stored in memory is erased.

What about Memory ?!

Assuming that any piece of information can stay in a memory for
at most, say, five iterations, a new interpretation of an entry :
M(i) =j (whenj!=0)

“the i-th bit was flipped 5-j iterations ago”

Another interpretation , only requiring updating a single entry in
the memory per iteration, and increasing iteration counter.

O|0(5|0(0[{0|0]|O0

The contents of the memory
after iteration 1

What about Memory ?!

The contents of memory after five iterations

3015|0420

Bits 2, 5, 8 are available to be flipped any time. Bit 1 is not available
for he next three iterations, bit 3 isn’t available but only for the
next iteration, bit 4(which was just flipped) is not available for the
next five iterations, and so on. Thus at the next iteration (iteration
6) it’s impossible to flip bits 1,3,4,6 and 7, since all of these bits
were tried “recently”. These forbidden (tabu) solutions are not
considered.

After one iteration the contents of the memory change as follows :
all nonzero values are decreased by one to reflect the fact that all
of the recorded flips took place one generation earlier.

210|045/ 3|10

The contents of the memory
after iteration 6

Idea : at any stage there is a current solution being processed
which implies a neighborhood, and from this neighborhood , tabu
solution are eliminate from possible exploration.

Make search more flexible !

If we find an outstanding solution, we might forget about
the principles!
In our life: great opportunity = forget principle

normal circumstance : selects a non-tabu solution as the next
current solution , whether or nor this non-tabu solution has a
better evaluation score than the current solution.

circumstance that aren’t normal : an outstanding tabu
solution is found in the neighborhood, such a superior solution is
taken as the next point. This override of the tabu classification
occurs when a so-called aspiration criterion is met.

Make search more flexible !

We could change the previous deterministic selection
procedure into a probabilistic method where better
solution have an increased chance of being selected.

We could change the memory horizon during the
search. (what we do in our life....)

We might connect this memory horizon to the size of
problem

We might connect the memory horizon/size to iteration

Another Memory-based improvements

Recency-bases memory (short term memory) : It only record some
actions of the last few iterations.

Frequency-based memory (long term memory) : which operates
over a much longer horizon, for example, a vector H may serve as a
long-term memory.

H(i) =j is interpreted as “during the last h iterations of the
algorithm, the i-th bit was flipped j times”

517 (113 |98 1] 6

The contents of the frequency-
based memory after 100
iterations (horizon = 50)

83

The principles of the tabu search indicate that

this type of memory might be useful to diversify
the search.

This memory concerning which flips have been
under-represented (less frequent) or not
represent at all and we can diversify the search
by exploring these possibilities.

Long term memory

The use of long term memory in Tabu search is
usually restricted to some special cases.

For Example:

When All non Tabu moves lead to worse
situation.

How?
- Make more frequent moves less attractive

Penalty conditions

Makes the most frequent moves less attractive.

New circumstance : when all directions lead to lower solutions .
Assume the evaluation function for a new solution in such
circumstances is :
eval(x’) — penalty(x’),
where eval return the value of the original evaluation function and
penalty(x’) = 0.7*H(i)
H(i) is the value taken from long term memory H.

Example

Tabu list/ short term memory

2 o o a5 3 0 1

Frequency-based memory / long term memory

X N ET X O O O

Vc =35 current solution

Non-Tabu flips (2/3/7) = value: 30/33/31

Maximum Tabu flips = value 37 = we can not use aspiration criterion
=>» Using Frequency based memory

Bit#2 =» 30—-0.7 *7=25.1

Bit#3 =» 33 -0.7 * 11 =25.3

Bit#7 =» 31-0.7 * 1 =30.3

=>» We flip the bit 7

87

TSP Problem

e We conclude this section by providing an
additional example of possible structures used in
tabu search while approaching the TSP. For this
problem , we can consider moves that swap two
cities in a particular solution. The following
solution (for an eight- city TSP),

(2, 4I7ISI 1I81 316)1

has 28 neighbors, since there are 28 different
pairs of cities, that we can swap (two from eight).

TSP Continue
Recency-based memory

The swap of cities i andj is recorded in the i-th row
and the j-th column (for i < j).

Note that we interpreti and j as cities, and not

as their positions in the solution vector, but this might
be another possibility to consider .

Note that the same structure can also be used for
Frequency- based memory.

89

TSP Tabu

For clarity, we 'll maint ain the number of remaining it
erations for which a given swap stays on the tabu list

(recency-based memory) as with the previous SAT
problem, while the frequency- based memory will
indicate the totals of all swaps that occurred within

some horizon h.

TSP Tabu

Assume both memories were initialized to zero and 500 iterations of the search
have been completed. The current status of the search then might be as follows .
The current solution is

(7,3,56,1,2,4, 8)
with the total length of the tour being 173. The best solution encountered
during these 500 it erat ions yields a value of 171.

The contents of the recency-
based memory M for the TSP
after 500 iterations. The
horizon is five iterations

91

TSP Tabu

The current status of the search then might be as follows .
The current solution is

(7, 3, 5,6,1,2,4, 8)

it 's easy to interpret the numbers in these memories. The
value M(2, 6) = 5 indicates that the most recent swap was
made for cities 2 and 6, i.e., the previous current solution
was (7,3,5,2, 1,6, 4, 8)

2 3 4 5 6 7 8

0 0 .1 O 0 0o O i 1

i ———————

Therefore , swapping cities 2
and 6is tabu for the next five
iterations .

0 Qa | 0 ‘ 5 | 0O] 0 2
oo o] 4]0l
?—d 0 | (l_i—uJ:—s
ot
Note that only 5 swaps (out of 28 —
possible swaps) are forbidden (tabu).

ooiﬁ
0

92

TSP Tabu

The frequency- based memory
provides some additional
statistics of the search. It seems
that swapping cities 7 and 8
was the most frequent (it
happened 6 times in the last 50
swaps), and there were pairs of
cities (like 3 and 8) that

weren't swapped within the last

50 iterations . The contents of the frequency-based
memory F for the TSP after 500 iterations.
The horizon is 50 iterations

-~ =

93

TSP Tabu

The neighorhood of a tour was defined by a swap operation between two
cities in the tour. This neighborhod is not the best choice either for tabu
search or for simulated annealing. Many researchers have seleced larger
neighborhoods .

There’s a huge variety of local search algorithms for the TSP. The simplest is
called 2-opt. It starts with a random permutation of cities (call this tour T) and
tries to improve it. The neighborhood of T 15 defined as the set of all tours that
can be reached by changing two nonadjacent edges in 7'. This move s called a
2-interchange and 1s illustrated in figure 3.6.

ST

(a) (b)

94

Ref

e Slides adapted from Advanced Algorithms
course, presented by Dr. kourosh ziarati

