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Hierarchical Visualization Techniques

 Visualization of the data using a hierarchical 
partitioning into subspaces

 Methods
 Dimensional Stacking
 Worlds-within-Worlds
 Tree-Map 
 Cone Trees
 InfoCube
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Dimensional Stacking

attribute 1

attribute 2

attribute 3

attribute 4

 Partitioning of the n-dimensional attribute space in 2-D 
subspaces, which are ‘stacked’ into each other

 Partitioning of the attribute value ranges into classes.  The 
important attributes should be used on the outer levels.

 Adequate for data with ordinal attributes of low cardinality
 But, difficult to display more than nine dimensions
 Important to map dimensions appropriately
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Used by permission of M. Ward, Worcester Polytechnic Institute

Visualization of oil mining data with longitude and latitude mapped to the 
outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes

Dimensional Stacking
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Worlds-within-Worlds

 Assign the function and two most important parameters to innermost 
world 

 Fix all other parameters at constant values - draw other (1 or 2 or 3 
dimensional worlds choosing these as the axes)

 Software that uses this paradigm

 N–vision: Dynamic 
interaction through data 
glove and stereo 
displays, including  
rotation, scaling (inner) 
and translation 
(inner/outer) 

 Auto Visual: Static 
interaction by means of 
queries
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Tree-Map

 Screen-filling method which uses a hierarchical partitioning 
of the screen into regions depending on the attribute values

 The x- and y-dimension of the screen are partitioned 
alternately according to the attribute values (classes)

MSR Netscan Image
Ack.: http://www.cs.umd.edu/hcil/treemap-history/all102001.jpg

More at 
https://en.wikipedia.org/wik
i/Treemapping
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Tree-Map of a File System (Schneiderman)
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InfoCube

 A 3-D visualization technique where hierarchical 
information is displayed as nested semi-transparent 
cubes 

 The outermost cubes correspond to the top level 
data, while the subnodes or the lower level data 
are represented as smaller cubes inside the 
outermost cubes, and so on
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Three-D Cone Trees

 3D cone tree visualization technique works 
well for up to a thousand nodes or so

 First build a 2D circle tree that arranges its 
nodes in concentric circles centered on the 
root node

 Cannot avoid overlaps when projected to 
2D 

 G. Robertson, J. Mackinlay, S. Card. “Cone 
Trees: Animated 3D Visualizations of 
Hierarchical Information”, ACM SIGCHI'91

 Graph from Nadeau Software Consulting 
website: Visualize a social network data set 
that models the way an infection spreads 
from one person to the next 

Ack.: http://nadeausoftware.com/articles/visualization



Visualizing Complex Data and Relations

 Visualizing non-numerical data: text and social networks
 Tag cloud: visualizing user-generated tags

 The importance of 
tag is represented 
by font size/color

 Besides text data, 
there are also 
methods to visualize 
relationships, such as 
visualizing social 
networks

Newsmap: Google News Stories in 2005
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Chapter 2: Getting to Know Your Data

 Data Objects and Attribute Types

 Basic Statistical Descriptions of Data

 Data Visualization

 Measuring Data Similarity and Dissimilarity

 Summary
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Similarity and Dissimilarity

 Similarity
 Numerical measure of how alike two data objects are
 Value is higher when objects are more alike
 Often falls in the range [0,1]

 Dissimilarity (e.g., distance)
 Numerical measure of how different two data objects 

are
 Lower when objects are more alike
 Minimum dissimilarity is often 0
 Upper limit varies

 Proximity refers to a similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

 Data matrix
 n data points with p 

dimensions
 Two modes

 Dissimilarity matrix
 n data points, but 

registers only the 
distance 

 A triangular matrix
 Single mode
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Proximity Measure for Nominal Attributes

 Can take 2 or more states, e.g., red, yellow, blue, 
green (generalization of a binary attribute)

 Method 1: Simple matching

 m: # of matches, p: total # of variables

 Method 2: Use a large number of binary attributes

 creating a new binary attribute for each of the 
M nominal states

p
mpjid ),(
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Proximity Measure for Binary Attributes

 A contingency table for binary data

 Distance measure for symmetric 

binary variables: 

 Distance measure for asymmetric 

binary variables: 

 Jaccard coefficient (similarity
measure for asymmetric binary 

variables): 

Object i

Object j
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Dissimilarity between Binary Variables

 Example

 Gender is a symmetric attribute
 The remaining attributes are asymmetric binary
 Let the values Y and P be 1, and the value N 0

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N
Mary F Y N P N P N
Jim M Y P N N N N
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Standardizing Numeric Data

 Z-score: 

 X: raw score to be standardized, μ: mean of the population, σ: 
standard deviation

 the distance between the raw score and the population mean in 
units of the standard deviation

 negative when the raw score is below the mean, “+” when above

 An alternative way: Calculate the mean absolute deviation

where

 standardized measure (z-score):

 Using mean absolute deviation is more robust than using standard 
deviation 
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Example: 
Data Matrix and Dissimilarity Matrix

point attribute1 attribute2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

Dissimilarity Matrix 

(with Euclidean Distance)

x1 x2 x3 x4
x1 0
x2 3.61 0
x3 5.1 5.1 0
x4 4.24 1 5.39 0

Data Matrix

0 2 4

2

4

x1

x2

x3

x4
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Distance on Numeric Data: Minkowski Distance

 Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two 
p-dimensional data objects, and h is the order (the 
distance so defined is also called L-h norm)

 Properties

 d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

 d(i, j) = d(j, i) (Symmetry)

 d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

 A distance that satisfies these properties is a metric
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Special Cases of Minkowski Distance

 h = 1:  Manhattan (city block, L1 norm) distance
 E.g., the Hamming distance: the number of bits that are 

different between two binary vectors

 h = 2:  (L2 norm) Euclidean distance

 h  .  “supremum” (Lmax norm, L norm) distance. 
 This is the maximum difference between any component 

(attribute) of the vectors

)||...|||(|),( 22

22

2

11 pp jxixjxixjxixjid 

||...||||),(
2211 pp jxixjxixjxixjid 



56

Example: Minkowski Distance
Dissimilarity Matrices

point attribute 1 attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

L x1 x2 x3 x4
x1 0
x2 5 0
x3 3 6 0
x4 6 1 7 0

L2 x1 x2 x3 x4
x1 0
x2 3.61 0
x3 2.24 5.1 0
x4 4.24 1 5.39 0

L x1 x2 x3 x4
x1 0
x2 3 0
x3 2 5 0
x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum 


