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a b s t r a c t

This paper studies an optimal portfolio selection problem in the presence of the Maximum Value-at-
Risk (MVaR) constraint in a hidden Markovian regime-switching environment. The price dynamics of n
risky assets are governed by a hidden Markovian regime-switching model with a hidden Markov chain
whose states represent the states of an economy. We formulate the problem as a constrained utility
maximization problemover a finite timehorizon and then reduce it to solving aHamilton–Jacobi–Bellman
(HJB) equation using the separation principle. The MVaR constraint for n risky assets plus one riskless
asset is derived and the method of Lagrange multiplier is used to deal with the constraint. A numerical
algorithm is then adopted to solve the HJB equation. Numerical results are provided to demonstrate the
implementation of the algorithm.
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1. Introduction

In modern finance, optimal portfolio allocation of different
assets is a prominent issue. Markowitz (1952) pioneered the use
of a mean–variance approach in formulating optimal allocation
problems. His approach reduces the problem to the situation
that one only needs to maximize the expected return under an
acceptable level of risk in a single period. The risk level ismeasured
by the variance of the return. Then, Merton (1969, 1971) extended
this single-period model to a continuous-time framework which
reflects the market environment better. Closed form solutions
were then derived using stochastic optimal control techniques
with the premise that the coefficients in the price process of the
risky assets are constant. However, this assumption may not be
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realistic. Therefore, some researchers started investigating asset
allocation models with non-constant parameters. For example,
Boyle and Yang (1997) employed a multi-factor stochastic interest
ratemodel fromDuffie and Kan (1996) for the bond price dynamics
in their asset allocation model. Lim and Zhou (2002) analyzed a
continuous time mean–variance portfolio selection problem with
randommarket coefficients.

Recently, Markovian regime-switching models have been
widely applied in economics and finance, since it can give a
reasonably good description for some important stylized features
of the price dynamics of assets. The applications of Markov-
switching time series models to economics and econometrics
were introduced by Hamilton (1989). The use of Markovian
regime-switching models for portfolio selection has received
much attention. For example, in Zhou and Yin (2003), the state
of the market model which would affect the parameters in
the stock price process was described by Markovian regime
switchingmodels with observable regimes. The efficient portfolios
were derived explicitly in closed forms for their Markowitz
mean–variance portfolio selection model using techniques of
stochastic linear–quadratic control. In Elliott, Siu, and Badescu
(2010), they modeled the evolution of the state of the economy by
a hiddenMarkov chain model and assumed that the ‘‘true’’ state of
the underlying economy is unobservable. An explicit solution was
derived in theirmean–variance portfolio selectionmodel using the
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stochastic maximum principle. Honda (2003) studied the optimal
portfolio choice when the mean returns of a risky asset depend
on a hidden Markov chain. Some other works on optimal asset
allocation in hiddenMarkovian regime-switching economy are, for
example, Baeuerle and Rieder (2007), Elliott and Siu (2012), Korn,
Siu, and Zhang (2011), Sass and Haussmann (2004), Shen and Siu
(2015) and Siu (2011, 2012, 2013, 2015, 2016), amongst others.

Value-at-Risk (VaR) is one of the popular risk measures used
in market risk management. Informally speaking, VaR describes
the maximum expected loss during a given period at a given
level of confidence. VaR has been used as a risk constraint in
portfolio optimization. For example, Basak and Shapiro (2001)
considered the optimal portfolio policies when VaR is imposed
as a constraint though they pointed out that the use of the VaR
constraint may lead to sub-optimal results. Yiu (2004) derived
the VaR constraint for multiple risky assets and a riskless asset,
and found that investments in risky assets are reduced when the
VaR constraint becomes active. Typically, VaR is derived under the
assumption that the parameters, such as interest rate, drift and
volatility, in the price dynamics of assets are assumed to be known
beforehand so that some standard distributions such as a normal
distribution may be applied to compute VaR. However, if these
parameters depend on the state of the underlying economy which
may switch over time, then the values of these parameters may be
uncertain or unknown. The Maximum Value-at-Risk (MVaR) may
provide a conservative way to describe risks under this situation.
It is defined as the maximum value of the VaRs of the portfolio
at different states of the underlying economy in a given time. Yiu,
Liu, Siu, andChing (2010) discussed autilitymaximizationproblem
constrained by theMVaR. In their paper, the state of the economy is
modeled by an observableMarkov chain.While it seems that there
is a relatively little work on optimal portfolio allocation inmultiple
risky assets in a hidden Markovian regime-switching economy
using the MVaR as a risk constraint.

In this paper we extend the portfolio allocation model with
one risky asset in Yiu et al. (2010) to a more general situation
of multiple risky assets. Furthermore, the state of an economy
was assumed to be observable in Yiu et al. (2010). However, in
practice, the state of the underlying economymay be unobservable
or not directly observable. It is assumed that the hidden state of
the economy is described by a continuous-time hidden Markov
chain. Similar method can be found in Elliott and van der
Hoek (1997). The price dynamics of n risky assets follow an n-
dimensional Geometric Brownian Motion (GBM) where the value
of the drift is supposed to switch over time according to the
states of the underlying hidden Markov chain. The MVaR is
derived for n risky assets plus one riskless asset and imposed as a
constraint. We formulate this optimal portfolio allocation problem
as a constrained utility maximization problem. Then using the
separation principle in Elliott et al. (2010), the problem can be
separated into two problems: a filtering-estimation problem and a
constrained stochastic control problem. A robust form of filtering
equations is presented to estimate the unknown parameters by
applying the gauge transformation techniquewhich is proposed by
Clark (1978) and applied in Elliott,Malcolm, and Tsoi (2003); Elliott
et al. (2010). In this way, solving the constrained stochastic control
problem is converted to solving a Hamilton–Jacobi–Bellman (HJB)
equation, where the MVaR constraint is handled by the method of
Lagrangemultiplier. A numerical algorithm is used to solve the HJB
equation for the optimal constrained portfolio numerically.

The rest of this paper is structured as follows. In Section 2,
the price dynamics of n risky assets are presented. The optimal
portfolio selection problem without constraint is formulated as a
maximization of the expected utility over a given period. Section 3
discusses the separation principle. The correspondingMVaR is also
derived to describe investment risks. In Section 4, the filters for the
hidden states of the economy are presented. In Sections 5 and 6, a
numerical algorithm and numerical results are presented. Finally,
concluding remarks are given in Section 7.
2. Model dynamics and portfolio allocation problem

In this section, we consider a continuous-time economy with
a finite time horizon T := [0, T ]. All of the uncertainties are
described by a complete probability space (Ω, F , P), where P is
a real-world probability measure. Let y′ denote the transpose of
a matrix or a vector y and 1m×n denote an m × n-dimensional
matrix whose entries are all equal to one. The model dynamics
described are those in standard hidden Markovian regime-
switching financial models. Similar models have been used for
portfolio selection in the literature (see, for example, Elliott & Siu,
2012; Elliott et al., 2010; Korn et al., 2011; Sass & Haussmann,
2004; Shen & Siu, 2015; Siu, 2011, 2012, 2013, 2015, 2016, and the
relevant literature therein).

Let X := {X(t)}t≤T be a continuous-time, finite-state Markov
chain with state space ε := {e1, e2, . . . , eN}, where ei is the unit
vector in RN with one in the ith position and zero elsewhere.
This convention of the state space of the chain was adopted in, for
example, Elliott, Aggoun, andMoore (1995). Then as in Elliott et al.
(1995), a semi-martingale representation for the chain is given as
follows:

X(t) = X(0) +

 t

0
AX(u)du + M(t),

where A := [aij]N×N is a time invariant rate matrix of the chain
and {M(t)|t ∈ T } is a martingale under P . The element aij in A is
the instantaneous intensity of the transition of the chain X from
State ej to State ei. Here the states of the chain X are interpreted as
hidden states of an economy.

We consider an optimal portfolio allocation problem with n
risky assets and one riskless asset. Suppose the price process of the
riskless asset which is denoted as S0 := {S0(t)|t ∈ T } follows:

S0(t) = exp(rt) and S0(0) = 1.

Here the interest rate r is assumed to be a positive constant. The
price process of the n risky assets, denoted by S = {S(t)|t ∈ T },
satisfies:

dS(t) = D(S(t))µ(t)dt + D(S(t))σdW (t) and S(0) = s0.

Here {W (t)|t ∈ T } is an n-dimensional standard Brownian
motion and D(S(t)) is the diagonal matrix of the vector S(t) =

(S1(t), . . . , Sn(t))′. The volatility σ = (σij)n×n is a constant non-
singular matrix. Readers interested in stochastic volatility models
can refer to Pham and Quenez (2001). Shen and Siu (2013)
investigated the pricing of variance swaps under stochastic interest
rate and volatility. They incorporated the stochastic interest
rate process and separated it from the volatility process using
techniques of forward measure changes. The situation when
r and σ are time-varying or stochastic processes will lead to
complication in the estimation of the model. In this case, the
standard EM algorithm may not work well and the statistical
properties such as asymptotic properties of the estimatorsmay not
be available. The driftµ(t) is assumed to depend on the state of the
economy and is given as follows:

µ(t) = µX(t),

where µ = (µij) is an n × N matrix.
Both the drift process and the Brownian motion are assumed to

be unobservable to the investor. The only observable information
is the price process S. The importance of incorporating the model
uncertainty of the drift is discussed in, for example, Elliott and
Siu (2012) and Elliott et al. (2010). Instead of considering the
price process directly, we consider the log return process Y :=

{Y (t)|t ∈ T }. Here Y (t) = (Y1(t), Y2(t), . . . , Yn(t))′ and Yi(t) =

ln(Si(t)/Si(0)). It is well-known that by Itô’s lemma,

dY (t) = g(t)dt + σdW (t),
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where

g(t) = µ(t) −
1
2
(σ̃ )′

and

σ̃ =


n

i=1

σ 2
1i,

n
i=1

σ 2
2i, . . . ,

n
i=1

σ 2
ni


.

Let

g = µ −
1
2
(σ̃ )′11×N ,

then g(t) = gX(t).
The filtrations generated by the state process and the return

process are given, respectively, as follows:

F X
t = σ {X(u), 0 ≤ u ≤ t} ∨ N ,

F i
t = σ {Yi(u), 0 ≤ u ≤ t} ∨ N

and

Ft = F 1
t ∨ F 2

t ∨ · · · ∨ F n
t , Gt = F X

t ∨ F 1
t ∨ · · · ∨ F n

t

where N is the collection of all P-null subsets in F ; E1 ∨ E2 is the
minimal σ -algebra containing the σ -algebras E1 and E2. Write

F := {Ft , t ∈ [0, T ]} and G := {Gt , t ∈ [0, T ]}.

Before presenting the optimization problem, we first define some
notations. Let π i(t) be the amount of wealth invested in the
ith risky asset at time t and c(t) be the consumption rate
of the investor at time t . A consumption–investment strategy
{(π(t), c(t)), t ∈ T } is supposed to be an F-adapted process,
which satisfies t

0
(∥π(s)∥2

+ c(s))ds < ∞.

The wealth process of the investor is written as {V (t), t ∈ T } with
initial wealth V (0) = v > 0 and

dV (t) = [π ′(t)(µX(t) − 1n×1r) + rV (t) − c(t)]dt
+ π ′(t)σdW (t).

Denote U(·, ·) : [0, T ] × [0, +∞) → R as a utility function,
which satisfies the standard property that for each t ∈

[0, T ], U(t, ·) is strictly increasing, strictly concave, twice
continuously differentiable on (0, +∞). In addition,

lim
c→∞

U ′(t, c) = 0 and lim
c→0

U ′(t, c) = ∞.

The unconstrained optimization problem of the investor with
initial wealth V (0) = v and initial state X(0) = ei is described
as follows:

max
π(t),c(t)

E
 T

0
U(t, c(t))dt

 V (0) = v, X(0) = ei


(1)

subject to the dynamic budget constraint:

dV (t) = [π ′(t)(µX(t) − 1n×1r) + rV (t) − c(t)]dt

+ π ′(t)σdW (t). (2)

Recall that the investor can only observe the price dynamics of the
assets, and that the processes X := {X(t)}t∈T andW := {W (t)}t∈T

are both unobservable. Amethod to discuss the above optimization
problem is to transform it to the one with complete observations
using the separation principle, which is well-known in the filtering
and control literature.
3. The separation principle and MVaR constraint

In this section, the separation principle and the Maximum
Value-at-Risk (MVaR) constraint will be illustrated. The purpose
of using the separation principle is to solve the two problems,
filtering and stochastic control, separately for partially observed
stochastic systems. Several works have successfully employed the
separation principle to solve stochastic optimal control problems
with partial observations, see for instance Elliott (1982), Elliott
et al. (2010) andKaratzas andZhao (2001). The separationprinciple
has been adopted to discuss optimal asset allocation in hidden
Markovian regime-switching models. Some examples include
Elliott and Siu (2012), Elliott et al. (2010), Korn et al. (2011), Shen
and Siu (2015) and Siu (2011, 2012, 2013, 2015, 2016), amongst
others. Here as in some of the literature, after giving filtered
estimates of the hidden states of the model, the optimal control
problem with complete observations can be solved by using the
HJB dynamic programming approach. Write {γ (t), t ∈ [0, T ]} for
the F-optional projection of any integrable, G-adapted process
{γ (t), t ∈ [0, T ]}. Then it is well known thatγ (t) = E[γ (t)|F (t)],
P-a.s., and thatγ takes into account the measurability in (t, ω).

Before discussing the separation principle, an F -adapted
process W (t) on (Ω, F , P) is defined by setting

W (t) :=

 t

0
σ−1(dY (s) −g(s)ds), (3)

whereg(t) = E[g(t)|F (t)] for any t ∈ [0, T ]. Rewriting it gives:

W (t) = W (t) +

 t

0
σ−1(µ(s) −µ(s))ds.

In filtering theory, this is called an innovation process. Indeed,
{W (t), t ∈ [0, T ]} is an n-dimensional (F, P)-Brownian motion.
For a more detailed discussion, we refer readers to, for example,
Karatzas and Zhao (2001) and Liptser and Shiryaev (1977).

Then the dynamics of the wealth process V and the logarithmic
return process Y can be expressed in terms of W :

dV (t) = [π ′(t)(µ(t) − 1n×1r) + rV (t) − c(t)]dt + π ′(t)σdW (t)

and

dY (t) =g(t)dt + σdW (t). (4)

Note that all of the processes in the wealth dynamics are
F-adapted.

Next, we shall derive the Maximum Value-at-Risk (MVaR)
constraint for the captured optimal portfolio problem, using the
method in Yiu (2004) and Yiu et al. (2010).

The dynamics of the wealth process in Eq. (2) can be rewritten
as follows:

dV (t) = α(θ(t) − V (t))dt + π ′(t)σdW (t),

where

α = −r and θ(t) =
π ′(t)(µ(t) − 1n×1r) − c(t)

−r
.

Assume that the investor adjusts his portfolio frequently and the
time duration from t to t + h (h > 0) is very small. During this
small interval, suppose that no trading happens. The decision for
the portfolio and the consumption rate is made at the beginning
of every time interval. The consumption rate is approximately a
constant during the time interval [t, t+h]. The hidden state which
represents the state of the economy is assumed to be stable and
unchanged in the small time interval.

Define a new process {Z(t), t ∈ [0, T ]} based on the wealth
process as follows:

Z(t) = eαtV (t).
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We let
α := −r;

θi(τ ) := θi(t) =
π ′(t)(µi

− 1n×1r) − c(t)
−r

;

Z(τ ) = eατV (τ ), i = 1, . . . ,N, τ ∈ [t, t + h].

Here µi means the ith column in µ. Then,

V (t + h) = e−αh(V (t) − θi(t)) + θi(t)

+

 t+h

t
e−α(t+h−τ)π ′(t)σdW (τ ).

The details can be found in, for example, Yiu (2004). Under the
probability measure P , the conditional mean and the conditional
covariance are given, respectively, by

E[V (t + h)|Gt , X(t) = ei] = θi(t) + e−αh(V (t) − θi(t));

and

Cov[V (t + h1), V (t + h2)|Gt , X(t) = ei]

=
π ′(t)Σπ(t)

2α
(e−α|h1−h2| − e−α(h1+h2)), (5)

where Σ = σσ ′. In particular, from Eq. (5),

Var[V (t + h)|Gt , X(t) = ei] =
π ′(t)Σπ(t)

2α
(1 − e−2αh).

The net conditional loss of the portfolio over the time interval
[t, t + h] given that X(t) = ei is defined as

∆iV (t, h) = V (t + h) − erhV (t) for i = 1, 2, . . . ,N.

Then according to the definition of VaR which requires the
maximum expected loss during a given period [t, t + h] at a given
level of confidence k:

P(∆iV (t, h) ≤ −VaR(t, h, i, k)|Gt , X(t) = ei) = k,

we obtain

VaR(t, h, i, k) = −θi(t)(1 − erh)

− Φ−1(k)


π ′(t)Σπ(t)

2α
(1 − e−2αh), (6)

where Φ(x) is the cumulative distribution of the standard normal
random variable. To simplify the expression, we let

a1 = −Φ−1(k)


e2rh − 1

2r
;

a2i = −
(µi

− 1n×1r)′

r
(erh − 1);

b =
erh − 1

r
.

Then, we have for i = 1, 2, . . . ,N .

VaR(t, h, i, k) = a1


π ′(t)Σπ(t) + a′

2iπ(t) + bc(t). (7)

As in Yiu et al. (2010), the conditional MVaR of the portfolio with
the probability level k over [t, t + h] is given by

MVaR(t, h, k) = max
i=1,...,N

VaR(t, h, i, k). (8)

The rationale of MVaR is to take account of the worst-case scenario
over different states of the economy in evaluating VaR. To control
the risks caused by the trading strategies, we ensure that theMVaR
is restricted by a given level R, i.e.

MVaR(t, h, k) ≤ R,
which is equivalent to

a1


π ′(t)Σπ(t) + a′

2iπ(t) + bc(t) ≤ R, ∀i = 1, 2, . . . ,N.

By imposing the MVaR as a constraint, the original portfolio prob-
lem presented in Section 2 can be transformed into the following
constrained optimization problem with complete observations:

max
π(t),c(t)

E
 T

0
U(t, c(t))dt

 V (0) = v, X(0) = ei


(9)

subject to
dV (t) = [π ′(t)(µ(t) − 1n×1r(t)) + r(t)V (t) − c(t)]dt

+ π ′(t)σdW (t),
a1


π ′(t)Σπ(t) + a′

2iπ(t) + bc(t) ≤ R, ∀i = 1, 2, . . . ,N.

4. Filtering and estimation

In this section, we present the robust-filtered estimates for
the drift parameters in different states of the economy. We first
present the Zakai stochastic differential equation, and then use
the gauge transformation technique proposed by Clark (1978) to
give the robust unnormalized filter of the hidden state X(t). The
filtering results and their derivations presented in this section are
standard. These results or some related results can be found in, for
example, Elliott (1993), Elliott et al. (1995), Elliott and Siu (2012),
Elliott et al. (2010), Korn et al. (2011), Shen and Siu (2015), Siu
(2011, 2012, 2013, 2015, 2016) and the relevant references therein.
For the sake of completeness, the derivations of the filtering results
are placed in Appendix.

The filtering results are derived using the standard reference
probability approach. Firstly, a reference probability measure P̄ is
introduced, under which the observation process {Y (t)}t∈T does
not depend on the chain X . Consider the following G-adapted
process Λ := {Λ(t)}t∈T with

Λ(t) = exp
 t

0


σ−1g(s), σ−1dY (s)


−

1
2

 t

0


σ−1g(s), σ−1g(s)


ds


. (10)

A new probability measure P̄ is defined by putting

dP̄
dP


G(t)

:= Λ−1(t), t ∈ [0, T ]. (11)

By Girsanov’s Theorem, {σ−1Y (t), t ∈ [0, T ]} is an n-dimensional
standard Brownian motion under the reference probability mea-
sure P̄ .

Consider now the scalar process {Ht , t ∈ [0, T ]} of the following
form:

Ht = H0 +

 t

0
αsds +

 t

0
β ′

sdM(s) +

 t

0
δ′

sdW (s)

where α, β, δ are G-adapted, square-integrable processes of
appropriate dimensions. Write Ē[·] for the expectation taken
with respect to the probability measure P̄ and σ(Ht) for the
unnormalized filter of Ht , i.e.,

σ(Ht) = Ē[Λ(t)Ht |Ft ]. (12)

The following proposition presents the Zakai stochastic differential
equation governing the evolution of the unnormalized filter
σ(HtX(t)) over time. The proof is given in Appendix.
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Proposition 1. The unnormalized filter σ(HtX(t)) is governed by the
following stochastic differential equation:

σ(HtX(t)) = σ(H0X(0)) +

 t

0
σ(αsX(s))ds +

 t

0
Aσ(HsX(s))ds

+

 t

0

N
i,j=1

⟨σ(β j
sX(s) − β i

sX(s)), ei⟩ajids(ej − ei)

+

 t

0
diag(g′(σσ ′)−1dY (s))σ (HsX(s))

+

n
k=1

 t

0
⟨σ−1dY (s), ek⟩σ(δk

s X(s)).

From Proposition 1, the recursive equation for X(t) is given by

σ(X(t)) = σ(X(0)) +

 t

0
Aσ(X(s))ds

+

 t

0
diag(g′(σσ ′)−1dY (s))σ (X(s)). (13)

In the sequel, we shall estimate µ and the rate matrix A by
developing the filter-based EM algorithm as in, for example, Elliott
(1993) and Elliott et al. (1995).

As in Elliott et al. (1995), some quantities, which are useful for
deriving the filter-based estimates of unknown parameters, are
defined. For each t ∈ [0, T ] and each i, j = 1, 2, . . . ,N , let

J
ij
t :=

 t

0
⟨X(s−), ei⟩ajids + M ij

t ,

Oi
t :=

 t

0
⟨X(s), ei⟩ds,

T
ij
t :=

 t

0
⟨X(s), ei⟩⟨ej, dY (s)⟩

(14)

where

M ij
t =

 t

0
⟨X(s−), ei⟩⟨ej, dM(s)⟩.

Here J
ij
t is the number of jumps from ei to ej of the chain X in

the time interval [0, t], Oi
t is the amount of time that the chain X

stays in ei in the time interval [0, t] and T
ij
t is the level integral

with respect to the logarithm return process of the jth asset Yj(t)
corresponding to the state ei up to time t .

The following lemma gives the recursive equations for the
unnormalized filters σ(J

ij
t X(t)), σ (Oi

tX(t)) and σ(T
ij
t X(t)). The

proof is given in Appendix.

Lemma 1. The quantities are governed by the following stochastic
differential equations:

σ(J
ij
t X(t)) =

 t

0
⟨σ(X(s)), ei⟩ajiejds +

 t

0
Aσ(Jij

s X(s))ds

+

 t

0
diag(g′(σσ ′)−1dY (s))σ (Jij

s X(s)); (15)

σ(Oi
tX(t)) =

 t

0
⟨σ(X(s)), ei⟩eids +

 t

0
Aσ(Oi

s)X(s)ds

+


diag(g′(σσ ′)−1dY (s))σ (Oi

sX(s)); (16)
σ(T
ij
t X(t)) =

 t

0
⟨σ(X(s)), ei⟩gjieids +

 t

0
Aσ(T ij

s X(s))ds

+

 t

0
diag(g′(σσ ′)−1dY (s))σ (T ij

s X(s))

+

 t

0
dYj(s)⟨σ(X(s)), ei⟩ei. (17)

Note that the above stochastic differential equations involve
stochastic integrals. Then in order to compute the Zakai filter, some
numerical approximations to the stochastic integrals need to be
introduced. As in Elliott et al. (2010), the gauge transformation
technique pioneered by Clark (1978) is employed to transform the
stochastic differential equations involving stochastic integrals to
linear ordinary differential equations. A transformation matrix is
defined before applying the gauge transformation technique. For
i = 1, 2, . . . ,N , let

φi(t) := exp

gi′(σσ ′)−1Y (t) −

1
2
gi′(σσ ′)−1g it


where gi represents the ith column of the matrix g. Define
the gauge transformation matrix Φt as the diagonal matrix
diag(φ1(t), φ2(t), . . . , φN(t)). Write Φ−1

t for the inverse of Φt .
Then,

dΦt = Φtdiag(g′(σσ ′)−1dY (t)). (18)

Denote the transformed quantities as follows:
σ̄ (X(t)) = Φ−1

t σ(X(t));
σ̄ (J

ij
t X(t)) = Φ−1

t σ(J
ij
t X(t));

σ̄ (Oi
tX(t)) = Φ−1

t σ(Oi
tX(t));

σ̄ (T
ij
t X(t)) = Φ−1

t σ(T
ij
t X(t)).

The dynamics of these transformed quantities are given in the
following proposition. The proof can be found in Appendix.

Proposition 2. The transformed quantities are:

dσ̄ (X(t)) = Φ−1
t AΦt σ̄ (X(t))dt;

dσ̄ (J
ij
t X(t)) = Φ−1

t ⟨Φt σ̄ (X(t)), ei⟩ajiejdt
+ Φ−1

t AΦt σ̄ (J
ij
t X(t))dt;

dσ̄ (Oi
tX(t)) = Φ−1

t ⟨Φt σ̄ (X(t)), ei⟩eidt
+ Φ−1

t AΦt σ̄ (Oi
tX(t))dt;

dσ̄ (T
ij
t X(t)) = Φ−1

t AΦt σ̄ (T
ij
t X(t))dt

+ Φ−1
t ⟨Φt σ̄ (X(s)), ei⟩dYj(t)ei.

Denote the model parameters by

θ := {µkj, aij, k = 1, 2, . . . , n, i, j = 1, 2, . . . ,N}.

The Filter-based Expectation Maximization (EM) algorithm is
employed to estimate the unknownparameters. The key idea of the
algorithm is to ensure the observationwould be themost probable
under the measure P∗, given by another set of approximate
parameters

θ∗
:= {µ∗

kj, a
∗

ij, k = 1, 2, . . . , n, i, j = 1, 2, . . . ,N}.

Interested readers may refer to, for example, Elliott et al. (1995).
Let

Lijt = exp
 t

0
log

a∗

ji

aji


dJij

s +

 t

0
(aji − a∗

ji) ⟨X(s), ei⟩ ds
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and

Lµ
t = exp

 t

0
((g∗

− g)X(s))′(σσ ′)−1dY (s) −
1
2

 t

0


(g∗X(s))′

× (σσ ′)−1(g∗X(s)) − (gX(s))′(σσ ′)−1(gX(s))

ds


.

Define

dP∗

dP


Gt

= Lt :=


i≠j

Lijt L
µ
t . (19)

Maximizing the likelihood function E[log(Lt)|Ft ] over the param-
eters space yields

a∗

ji =
σ(J

ij
t )

σ (Oi
t)

and µi
=

σ(T i
t )

σ (Oi
t)

+
1
2
σ̃ ′ (20)

where µi is the ith column of µ. The unnormalized estimates of
J

ij
t , Oi

t and T i
t can be determined by taking an inner product with

1N×1:
σ(J

ij
t ) = ⟨σ(J

ij
t X(t)),1N×1⟩;

σ(Oi
t) = ⟨σ(Oi

tX(t)),1N×1⟩;

σ(T
ij
t ) = ⟨σ(T

ij
t X(t)),1N×1⟩;

σ(T i
t ) = (σ (T i1

t ), . . . , σ (T in
t ))′.

Since discrete-time observations are used for the estimation, a
discretization scheme for the filtering equations is adopted to
compute the estimates of the unknown parameters. For the time
horizon [0, T ], an equidistant time discretization is considered as
follows:

0 = t0 < t1 < · · · < tk < · · · < tK = T ,

where δ = T/K and tk = kδ. Then

φik := exp

gi′(σσ ′)−1Y (tk) −

1
2
gi′(σσ ′)−1gikδ


and

Φk := diag(φ1k, φ2k, . . . , φNk).

It follows that Φ−1
k = diag(φ−1

1k , φ−1
2k , . . . , φ−1

Nk ). We denote Ψk,k+1

:= Φk+1Φ
−1
k . The discrete-time dynamics for the quantities are

stated in Proposition 3, where symbols in the form of ϵ(tk) are
simplified as ϵk. The proof of Proposition 3 can be found in
Appendix.

Proposition 3. The unnormalized filter σ(X(t)) and the processes
σ(J

ij
kXk), σ (Oi

k) and σ(T
ij
k ) are given as follows:

σ(Xk+1) = Ψk,k+1(I + δA)σ (Xk); (21)

σ(J
ij
k+1Xk+1) = Ψk,k+1(I + δA)σ (J

ij
kXk)

+ Ψk,k+1⟨σ(Xk), ei⟩ajiejδ; (22)

σ(Oi
k+1Xk+1) = Ψk,k+1(I + δA)σ (Oi

kXk)
+ Ψk,k+1⟨σ(Xk), ei⟩eiδ; (23)

σ(T
ij
k+1Xk+1) = Ψk,k+1(I + δA)σ (T

ij
k Xk)

+

δΨk,k+1⟨Aσ(Xk), ei⟩

+ Ψk,k+1⟨σ(Xk), ei⟩

(1Yk)jei. (24)

Given the observed returns {Yk}, the parameter estimates in
Eq. (20) can be computed according to the recursive discrete-time
equations in Eqs. (21)–(24).
5. The portfolio allocation problem

In this section, we shall solve the constrained optimization
problem in Eq. (9) using the standard HJB dynamic programming
approach. Note that the objective function in Eq. (9) is equivalent
to

max
π(t),c(t)

E
 T

t
U(s, c(s))ds

Ft


= max

π(t),c(t)
E
 T

t
U(s, c(s))ds

 V (t) = v, q(t) = q


where q(t) = σ(X(t)) and the process (V , q) is jointly Markovian
with respect to the observed filtration F, (see, for example, Elliott
& Siu, 2012). Readers who are interested in solving this kind of
stochastic control problem can refer to, for example, Yong and
Zhou (1999).

Denote that

J(t, v, q) = max
π(t),c(t)

E
 T

t
U(s, c(s))ds

 V (t) = v, q(t) = q


.

For the partial derivatives, write

Jt :=
∂ J
∂t

, Jv =
∂ J
∂v

, Jvv :=
∂2J
∂v2

and

DqJ := (J1, . . . , JN)′ ∈ RN ,

D2
qJ := [Jij]i,j=1,...,N ∈ RN

⊗ RN ,

where Ji :=
∂ J
∂qi

and Jij :=
∂2J

∂qiqj
for each i, j = 1, 2, . . . ,N .

DqJv :=


∂2J

∂v∂q1
,

∂2J
∂v∂q2

, . . . ,
∂2J

∂v∂qN


∈ RN .

Assume that the above derivatives exist. This assumption may
perhaps be rather strong and may be relaxed using viscosity
solutions. Set σ(1) = ⟨σ(X(t)), 1⟩, then standard calculations
based on the Bayes’ rule give the normalized filter of X(t) as
follows:
σ(X(t))
σ (1)

.

Write πt for π(t) and we denote

F(t, v, q, πt , c(t)) =


π ′

t (µ
q

σ(1)
− 1n×1r) + rv − c(t)


,

G(t, v, q, πt , c(t)) = π ′

tΣπt , qi(t) = ⟨q(t), ei⟩,

K(t, q, v) = Aq + diag

g′(σσ ′)−1g

q
σ(1)


q,

and

B(t, v, q) = diag(q)(g′Σ−1g)diag(q).

Then using the standard principle of dynamic programming (see,
for example, Fleming & Rishel, 1975), under the smoothness
assumption of J , J should satisfy the following HJB equation:

Jt + sup
πt ,c(t)

[U(t, c(t)) + F(t, v, q, πt , c(t))Jv

+
1
2
JvvG(t, v, q, πt , c(t)) + ⟨DqJ, K(t, q, v)⟩

+
1
2
Tr(D2

qJB(t, q, v)) + ⟨DqJv, diag(q)g′πt⟩] = 0, (25)

where Tr(I) denotes the trace of matrix I . The terminal and
boundary conditions are given by

J(T , v, q) = 0 and J(t, 0, q) = 0.
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The method of Lagrange multiplier is adopted to handle the MVaR
constraint and the Lagrange function is

L(πt , c(t), λ(v, q, t))

= U(t, c(t)) + F(t, v, q, πt , c(t))Jv +
1
2
JvvG(t, v, q, πt , c(t))

+ ⟨DqV , K(t, q, v)⟩ +
1
2
Tr(D2

qVB(t, q, v))

+ ⟨DqVv, diag(q)g′πt⟩

−

N
i=1

λi(v, q, t)(R − a1


π ′
tΣπt − a′

2iπt − bc(t)).

Then the first-order necessary conditions of the optimization
problem are given by:
µ

q
σ(1)

− 1n×1r

Jv + Σπt Jvv + gdiag(q)(DqJv)

+

N
i=1

λi(v, q, t)(a1
Σπt
π ′
tΣπt

+ a2i) = 0, (26)

∂U
∂c

−
∂ J
∂v

+

N
i=1

λi(v, q, t)b = 0, (27)

λi(v, q, t)(R − a1


π ′
tΣπt − a′

2iπt − bc(t)) = 0, (28)

λi(v, q, t) ≤ 0. (29)

From Eq. (26), we get

π
opt
t =

Q1

Q2
, (30)

where

Q1 = −Σ−1(µ
q

σ(1)
− 1n×1r)Jv

− Σ−1gdiag(q)(DqJv) −

N
i=1

λi(v, q, t)Σ−1a2i,

Q2 = Jvv +

N
i=1

λ
opt
i (v, q, t)a1/


π

opt′
t Σπ

opt
t .

In addition, copt(v, t) and λ
opt
i (v, q, t) can be calculated

from Eqs. (27) and (28) whenever λ
opt
i (v, q, t) ≠ 0. Substituting

π
opt
t , copt(v, t) and λ

opt
i (v, q, t) into Eq. (25), we obtain:

Jt + U(t, copt(t)) + F(t, v, q, π
opt
t , copt(t))Jv

+
1
2
JvvG(t, v, q, π

opt
t , copt(t)) + ⟨DqJ, K(t, q, v)⟩

+
1
2
Tr(D2

qJB(t, q, v)) + ⟨DqJv, diag(q)g′π
opt
t ⟩ = 0. (31)

The optimalwealth function Jopt(v, q, t) can be obtained by solving
the above equation. Due to the non-linearity in the quantities,
the first-order necessary conditions and the partial differential
equations will be solved by numerical methods.

6. Numerical methods and computational results

In this section, we shall conduct numerical experiments to pro-
vide some analysis for the optimal portfolio. First, the HJB equation
is solved numerically by employing an iterative algorithm. Then
some comparisons are made between the qualitative behaviors of
the optimal portfolio, the optimal consumption ratewith andwith-
out the MVaR constraint.
6.1. The iterative algorithm

In this subsection, an iterative algorithm is presented under
some assumptions. The utility function is defined to be

U(t, c(t)) = e−ηtc(t)γ , η > 0, 0 < γ < 1. (32)

This is a power utility function discounted by a factor eηt . Then
following the approach in Merton (1971), the value function is
assumed to take the following parametric form:

J(t, v, q) = e−ηth(t, v)vγ . (33)

As in Yiu (2004), the derivatives of h(t, v) with respect to v are
ignored and the following approximation results are obtained

∂ J
∂v

= e−ηth(t, v)γ vγ−1
;

∂2J
∂v2

= e−ηth(t, v)γ (γ − 1)vγ−2
;

∂ J
∂t

= e−ηt ∂h(t, v)

∂t
vγ

− ηe−ηth(t, v)vγ
;

DqJ = D2
qJ = DqJv = 0.

(34)

Substituting Eqs. (32)–(34) into Eq. (31), then dividing by e−ηtvγ

and rearranging the terms, we obtain

∂h(t, v)

∂t
+ M(πopt, v, q)h(t, v) + N(copt, h(t, v)) = 0, (35)

where

M(πopt, v, q) = γ


1
v
π ′

opt(µ
q

σ(1)
− 1n×1r) + r


+

1
2

π ′
optΣπopt

v2
γ (γ − 1) − η,

N(copt(t, v), h(t, v)) =
cγ
opt

vγ
−

γ h(t, v)copt
v

.

Denote

Φ = −
γ

1 − γ
and g(t, v) = h(t, v)1−Φ,

then Eq. (35) becomes

∂g(t, v)

∂t
+ (1 − Φ)M(πopt, v, q)g(t, v)

+ (1 − Φ)N(copt(t, v), g1−γ (t, v))gγ (t, v) = 0. (36)

The above HJB equation can be solved by employing an iterative
algorithm where the computational domain is divided into a grid
of Nt × Nv mesh points. The steps of the iterative algorithm are
summarized as follows:
(Step 1) λ

(0)
opt,i = 0;

π
(0)
opt = −

Σ−1(µ q
σ(1) −1n×1r)v

γ−1 ;

c(0)
opt = vh−

1
1−γ (0, v) and solve Eq. (36). Set k = 0.

(Step 2) For each n = Nt − 1, . . . , 0, v = [0, 1v, . . . ,Nv1v] and
t = [(Nt − 1)1t, . . . , 1t, 0],

λ
(k+1)
opt,i (R − a1


π

(k)′
opt Σπ

(k)
opt − a′

2iπ
(k)
opt − bcopt) = 0;

π
(k+1)
opt =

−Σ−1

µ q

σ(1) − 1n×1r

J (k)v −

N
i=1

λ
(k+1)
opt,i Σ−1a2i

J (k)vv +

N
i=1

λ
(k+1)
opt,i a1/


π

(k)′
opt Σπ

(k)
opt

;
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and calculate c(k+1)
opt from

γ (c(k+1)
opt )γ−1

= γ vγ−1h(k)
− eηt


N
i=1

λ
(k+1)
opt,i b


.

(Step 3) Then solve

g(k+1)
n = g(k+1)

n+1 + 1t(1 − Φ)M(π
(k+1)
opt , v, q)g(k+1)

n+1

+ 1t(1 − Φ)N(c(k+1)
opt , (g(k)

n )1−γ )(g(k)
n )γ .

(Step 4) Return to Step 2 with k = k + 1 until

∥J (k) − J (k−1)
∥ < ε

for some desirable level of accuracy ε > 0.
In the above algorithm, q is the value of q(t) which is given by

σ(X(t)). The values of σ(X(t)), t ∈ [0, 1t, . . . , (Nt − 1)1t], are
calculated using the recursive formula in Eq. (21), which needs to
approximately estimate the return at each iteration according to
Eq. (4).

6.2. Numerical results

This section considers the optimal portfolio allocation with two
risky assets plus one riskless asset in a two-state hiddenMarkovian
regime-switching economy. We collected the weekly data of close
prices of the Hang Seng Index from January 2000 to January 2012,
which were downloaded from https://hk.finance.yahoo.com/.
MATLAB is used for computing the results. Set T = 12 years,
1t =

1
50 ≈ 7 days, X(0) = e1, σ11 = 0.25, σ12 = 0.1, σ21 = 0.1,

and σ22 = 0.25. Then, using the observed asset returns {Y (tk)},
the estimates of µ and A in Eq. (20) can be computed using the
recursive discrete-time equations in Eqs. (21)–(24). Fig. 1(a) and
(b) show the values of µ and A at each iteration, respectively.
From these two figures, we can see that convergence is achieved
when the number of iterations is approximately equal to 15.
Furthermore, from these two figures, the estimates of the unknown
parameters are given as follows:

µ =


0.085 0.093
0.071 0.062


and A =


−16.3 23.1
16.3 −23.1


. (37)

The estimated parameters in µ reveal that the value of the drift in
Asset 1 (2) increases (decreases) by 9.4% (12.7%) when the state of
the economy changes from e1 to e2. Using the estimates of model
parameters, the iterative algorithmpresented in Section 6.1 is used
to calculate the optimal portfolio strategy. We choose the terminal
year as 4 and 1t =

1
50 ≈ 7 days. The portfolio value υ is assumed

to take values in the range [10, 1000]. We set 1υ = 10, then Nv =

100. The initial state is assumed to be X(0) = e1. The parameters
in the utility function are chosen as η = 0.2 and γ = 0.33. For the
MVaR constraint, the maximum loss is limited to be R = 80 with
a probability level k = 0.01. Suppose the volatility σ is a constant
matrix.

The unconstrained solutions plotted in Fig. 2(a) and (b) reveal
that the optimal investment strategy in the two risky assets
is approximately π = (1.050υ, −0.362υ), where υ is the total
portfolio value of an investor. Here the investor is able tomaximize
his expected utility of consumption under a good control of
risk even if the underlying economic states are unknown. The
constrained solutions in Fig. 2(a) and (b) show that at each time
t , the MVaR constraint becomes active when the portfolio value
researches a certain level. Otherwise, if the portfolio value is
below the critical value, the optimal strategies should coincide
with the unconstrained case. Fig. 2 shows that the investor will
increase his/her stock holdings in Asset 1 and decrease his/her
stock holdings in Asset 2 when his/her portfolio value goes beyond
some values, which indicates that the investor reduces share
Fig. 1. (a) The estimate of µ at each iteration, (b) the estimate of the rate matrix A
at each iteration.

holdings to fulfill the MVaR constraint. From Fig. 2(a), we find that
when time goes closer to the terminal time T , (say from t = 0.4 to
t = 3.6), the corresponding portfolio value of the point where the
constraint becomes active would be much smaller. Similar results
were found in Yiu (2004).

Fig. 3 shows the changes of the Lagrange multipliers λ1 and λ2
with respect to the value of portfolio at three different times. In
Fig. 3(b), the values of λ2 are zeros and keep unchanged, which
may indicate that the VaR constraint in state e2 is inactive in this
example. In Fig. 3(a), the VaR constraint in state e1 becomes active
when λ1 moves into negative values. From Fig. 3(a), we find that
the portfolio value gets smaller as the time goes closer to the
terminal time (say from t = 0.4 to t = 3.6), which is consistent
with the results depicted in Fig. 2. The MVaR values are plotted in
Fig. 4. In order tomeet the requirements of risk control, the value of
the MVaR is reduced to 80 when it exceeds 80 with the constraint.

The plot of the consumption rates at the two different times
(say t = 0.4 and t = 3.6) against the portfolio values is de-
picted in Fig. 5. In this example, the curves of consumption rate
under both unconstrained and constrained optimization look sim-
ilar when t = 0.4. While in the case when t = 3.6, the curves of
the consumption rate under the constrained casewould be slightly
affected when the portfolio value is large enough.

Fig. 6 describes the optimal value function J(0, υ, e1) along the
portfolio value with and without the MVaR constraint. It shows

https://hk.finance.yahoo.com/
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Fig. 2. (a) Optimal investment in Asset 1 with and without the MVaR constraint,
(b) optimal investment in Asset 2 with and without the MVaR constraint.

that when υ increases, a very small decrease occurs when the
MVaR constraint is present.

Fig. 7(b) and (a) show the function h(t, υ) over time with and
without the MVaR constraint, respectively. In the case without
constraint, Fig. 7(a) shows that there is no difference between the
curves of h(t, 100) and h(t, 1000) against time. Relative to Fig. 7(a),
(b) reveals that h(t, υ) is affected byυ when theMVaR constraint is
present, since a little variation is observed between the two curves
in Fig. 7(b). When υ is larger, the MVaR constraint is more likely
to be active. Therefore, the MVaR constraint may be active when
υ = 1000 while the MVaR constraint is mostly inactive when υ =

100. However, from the figure, only a very little variation of the
function h(t, υ) in υ along the time is observed. This may lend
some supports to ignore the derivatives of h(t, υ) with respect to
υ , which seems to be not affecting the final results very much in
this example.

7. Conclusions

This paper studies optimal portfolio problems under a hid-
den Markov-modulated multi-dimensional diffusion model with
a Maximum Value-at-Risk (MVaR) as a constraint. The optimal
consumption–investment strategies are determined by maximiz-
ing the total expected utility of consumption under the MVaR
Fig. 3. (a) Lagrange multiplier λ1 corresponding to X(t) = e1 , (b) Lagrange
multiplier λ2 corresponding to X(t) = e2 .

Fig. 4. The MVaR for different portfolio values.
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Fig. 5. The consumption rates for different portfolio values.

Fig. 6. The optimal total expected utility for different portfolio values.

constraint. The drifts in the price dynamics depend on the state of
the economy. The latter is unobservable to the agent and modeled
by a hidden Markov chain. The separation principle and the dy-
namic programming technique have been employed to convert the
original problem to solving a HJB-equation where the MVaR con-
straint is handled by the Lagrange multiplier method. The gauge
transformation technique is applied to estimate the unknown pa-
rameters. Finally, an iterative numerical method is used to solve
the constrained optimal portfolios numerically. From the numeri-
cal results, we find that the agent would reduce his/her share hold-
ings of the risky assets. This may provide a way to reduce one’s risk
exposure so as to fulfill the MVaR constraint. This paper also pro-
vides a flexible model for optimal portfolio problems by assuming
the underlying economic states are unknown to agents.
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Appendix

The proofs of the results presented in Appendix follow those
in the literature, (see, for example, Elliott, 1993 and Elliott et al.,
1995).

Proof of Proposition 1. Given that

Ht = H0 +

 t

0
αsds +

 t

0
β ′

sdMs +

 t

0
δ′

sdWs

and

Xt = X0 +

 t

0
AXsds + Mt ,

then

HtXt = H0X0 +

 t

0
αsXsds +

 t

0
Xsβ

′

sdMs

+

 t

0
Xsδ

′

sdWs +

 t

0
HsAXsds +

 t

0
HsdMs

+


0<s≤t

β ′

s1Xs1Xs.
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Here
0<s≤t

β ′

s1Xs1Xs =

N
i,j=1

 t

0
(β ′j

s − β ′ i
s)⟨Xr−, ei⟩⟨ej, dMs⟩(ej − ei)

+

N
i,j=1

 t

0
⟨β ′j

sXs − β ′ i
sXs, ei⟩ajids(ej − ei).

Set

Λt = exp
 t

0
⟨σ−1gs, σ−1dYs⟩ −

1
2

 t

0
⟨σ−1gs, σ−1gs⟩ds


,

which implies that

dΛt = Λt⟨σ
−1gt , σ−1dYt⟩.

Then it gives

ΛtHtXt = H0X0 +

 t

0
ΛsαsXsds +

 t

0
Λs−Xs−β ′

sdMs

+

 t

0
Λs−Xs−δ′

sσ
−1dYs

+

 t

0
ΛsHsAXsds +

 t

0
Λs−HdMs

+

N
i,j=1

 t

0
(β ′j

s − β ′i
s)⟨Λs−Xs−, ei⟩⟨ej, dMs⟩(ej − ei)

+

N
i,j=1

 t

0
⟨Λsβ

′j
sXs − Λsβ

′ i
sXs, ei⟩ajids(ej − ei)

+

 t

0
Λs⟨σ

−1gs, σ−1dYs⟩HsXs.

Denote σ(HtXt) = Ē(ΛtHtXt |Ft). Under P̄ , σ−1Y is an
n-dimensional standard Brownian motion, thus

σ(HtXt) = σ(H0X0) +

 t

0
σ(αsXs)ds +

 t

0
Aσ(HsXs)ds

+

 t

0

N
i,j=1

⟨σ(β ′j
sXs − β ′ i

sXs), ei⟩ajids(ej − ei)

+

 t

0
σ(Xsδ

′

sσ
−1dYs)

+

 t

0
σ(⟨σ−1gs, σ−1dYs⟩HsXs).

Since

σ(Xsδ
′

sσ
−1dYs) =

n
k=1

(σ−1dYs)kσ(δk
s Xs)

and

σ(⟨σ−1gs, σ−1dYs⟩HsXs) = diag(g′(σσ ′)−1dYs)σ (HsXs),

the result follows. �

Proof of Lemma 1. Take Ht = J
ij
t , which implies that H0 = 0,

αs = ⟨Xs, ei⟩aji, βs = ⟨Xs, ei⟩ej, δs = 0 ∈ Rn. Then the
Zakai equation for σ(J

ij
t Xt) can be obtained by substituting in

Proposition 1.
Take Ht = Oi

t , which implies that H0 = 0, αs = ⟨Xs, ei⟩aji,
βs = 0 ∈ RN , δs = 0 ∈ Rn. Then the Zakai equation for σ(Oi

tXt)
can be obtained by substituting in Proposition 1.

TakeHt = T
ij
t , which implies thatH0 = 0, αs = ⟨Xs, ei⟩gji, βs =

0 ∈ RN , δs = ⟨Xs, ei⟩(σj−row)′. Then the Zakai equation for
σ(T

ij
t Xt) can be obtained by substituting in Proposition 1. �
Proof of Proposition 2. For i = 1, 2, . . . ,N , define

φi(t) := exp

gi′(σσ ′)−1Y (t) −

1
2
gi′(σσ ′)−1git


where gi represents the ith column of the matrix g. Note that

dΦt = diag(dφ1(t), dφ2(t), . . . , dφN(t))
= Φtdiag(g′(σσ ′)−1dY (t))

and

dΦ−1
t = −Φ−2

t dΦt + Φ−3
t dΦ2

t

= −Φ−1
t diag(g′(σσ ′)−1dY (t))

+Φ−1
t diag((g′σ−1′

σ−1g)ii)dt.

The transformed quantity is defined by

σ̄ (X(t)) = Φ−1
t σ(X(t))

which satisfies

dσ̄ (X(t)) = dΦ−1
t σ(X(t)) + Φ−1

t dσ(X(t)) + dΦ−1
t dσ(X(t)).

The equation for dσ̄ (X(t)) can be obtained by substituting Φ−1
t ,

σ(X(t)), dΦ−1
t and dσ(X(t)) into the above function. Equations for

dσ̄ (J
ij
t X(t)), dσ̄ (Oi

tX(t)) and dσ̄ (T
ij
t X(t)) are obtained by applying

similar method. �

Proof of Proposition 3. For the time interval [0, T ], an equidistant
time discretization is considered:

0 = t0 < t1 < · · · < tk < · · · < tK = T ,

where δ = T/K and tk = kδ. Integrating both sides of the equation
for dσ̄ (X(t)) in Proposition 2 from tk to tk+1, tk+1

tk
dσ̄ (X(t)) =

 tk+1

tk
Φ−1

t AΦt σ̄ (X(t))dt.

The above equation can be transformed to

σ̄ (Xk+1) − σ̄ (Xk) = Φ−1
k AΦkσ̄ (Xk)δ

where Φ−1
t , Φt and σ̄ (X(t)) are assumed to be unchanged during

the time interval δwhen δ is small enough. By substituting σ̄ (Xk) =

Φ−1
k σ(Xk), then

σ(Xk+1) = Ψk,k+1(I + δA)σ (Xk).

Here Ψk,k+1 = Φk+1Φ
−1
k . The equations for σ(J

ij
k+1Xk+1) and

σ(Oi
k+1Xk+1) are obtained by using the similar method.

To derive the equation for σ(T
ij
t X(t)), according to Proposi-

tion 2, tk+1

tk
dσ̄ (T

ij
t X(t)) =

 tk+1

tk
Φ−1

t Aσ(T
ij
t X(t))dt

+

 tk+1

tk
Φ−1

t ⟨σ(X(t)), ei⟩(dY (t))jei.

Here using the function that tk+1

tk
Φ−1

t ⟨σ(X(s)), ei⟩(dY (t))jei

= ⟨Φ−1
t σ(X(s)), ei⟩(Y (t))jei|

tk+1
tk

−

 tk+1

tk
(Y (t))j⟨Φ−1

t Aσ(X(t))dt, ei⟩ei

=

δΦ−1

t ⟨Aσ(Xk), ei⟩ + Φ−1
t ⟨σ(Xk), ei⟩


(1Yk)jei,

then the equation for σ(T
ij
t X(t)) can be obtained by using similar

method in deriving σ(X(t)). �
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